
Efficient Algorithm and Architecture for Implementation 
of Multiplier Circuits in Modern FPGAs 

Jacques Laurent Athovv 

Department of Electrical and Computer Engineering 

Presented in Partial Fulfillment of the Requirements for 

Degree of Master of Applied Science 

Concordia University, Montreal, Canada 

November 2008 

© Jacques L Athow, 2008 



1*1 Library and Archives 
Canada 

Published Heritage 
Branch 

395 Wellington Street 
Ottawa ON K1A 0N4 
Canada 

Bibliotheque et 
Archives Canada 

Direction du 
Patrimoine de I'edition 

395, rue Wellington 
OttawaONK1A0N4 
Canada 

Your file Votre reference 
ISBN: 978-0-494-63306-9 
Our file Notre reference 
ISBN: 978-0-494-63306-9 

NOTICE: AVIS: 

The author has granted a non­
exclusive license allowing Library and 
Archives Canada to reproduce, 
publish, archive, preserve, conserve, 
communicate to the public by 
telecommunication or on the Internet, 
loan, distribute and sell theses 
worldwide, for commercial or non­
commercial purposes, in microform, 
paper, electronic and/or any other 
formats. 

L'auteur a accorde une licence non exclusive 
permettant a la Bibliotheque et Archives 
Canada de reproduce, publier, archiver, 
sauvegarder, conserver, transmettre au public 
par telecommunication ou par I'lnternet, preter, 
distribuer et vendre des theses partout dans le 
monde, a des fins commerciales ou autres, sur 
support microforme, papier, electronique et/ou 
autres formats. 

The author retains copyright 
ownership and moral rights in this 
thesis. Neither the thesis nor 
substantial extracts from it may be 
printed or otherwise reproduced 
without the author's permission. 

L'auteur conserve la propriete du droit d'auteur 
et des droits moraux qui protege cette these. Ni 
la these ni des extraits substantiels de celle-ci 
ne doivent etre imprimes ou autrement 
reproduits sans son autorisation. 

In compliance with the Canadian 
Privacy Act some supporting forms 
may have been removed from this 
thesis. 

Conformement a la loi canadienne sur la 
protection de la vie privee, quelques 
formulaires secondaires ont ete enleves de 
cette these. 

While these forms may be included 
in the document page count, their 
removal does not represent any loss 
of content from the thesis. 

Bien que ces formulaires aient inclus dans 
la pagination, il n'y aura aucun contenu 
manquant. 

• + • 

Canada 



ii 



HI 

ABSTRACT 

Efficient Algorithm and Architecture for Implementation 
of Multiplier Circuits in Modern FPGAs 

Jacques L Athow 

High speed multiplication in Field Programmable Gate Arrays is often performed 

either using logic cells or with built-in DSP blocks. The latter provides the highest 

performance for arithmetic operations while being also optimized in terms of power 

and area utilization. Scalability of input operands is limited to that of a single DSP 

block and the current CAD tools provide little help when the designer needs to build 

larger arithmetic blocks. The present thesis proposes an effective approach to the 

problem of building large integer multipliers out of smaller ones by giving two 

algorithms to the system designer, for a given FPGA technology. Large word length is 

required in applications such as cryptography and video processing. The first proposed 

algorithm partitions large input multipliers into an architecture-aware design. The 

second algorithm then places the generated design in an optimal layout minimizing 

interconnect delay. The thesis concludes with simulation and hardware generated data 

to support the proposed algorithms. 



IV 

ACKNOWLEDGEMENTS 

I would like to take the opportunity and thank everyone that made my research 

possible, which culminated with this thesis. In particular, I am indebted to my 

professor Asim who always encouraged me. He guided me during my thesis with his 

useful insight in the field of FPGAs and low level interconnects. He would always 

make me think out-of-the-box with his no-nonsense approach. To my many professors 

that I had throughout my stay at Concordia University including Professors Tahar, 

Amer, Lam, the late Gohary and Ted Obuchowicz, without whom I would never have 

known the world of VHDL. Indirectly to Peter Alfke and Ray Andraka for their work 

and guidance on the FPGA Usenet forum. To the staff at the AITS helpdesk and the 

librarians at the Webster library. Finally, to my parents who initially made everything 

possible and were always there to provide moral support. 



V 

TABLE OF CONTENTS 

LIST OF FIGURES ix 

LIST OF TABLES xii 

1. INTRODUCTION 1 

1. 1 Contribution 3 

1. 2 Thesis Organization 4 

2 Field Programmable Gate Arrays 5 

2. 1 Basic Multiplication 8 

3 FPGA Multiplication Algorithms 10 

3. 1 Serial-Parallel Signed Multiplier 10 

3. 2 Carry Save Array Multiplier 11 

3. 3 Constant Coefficient Multiplier 12 

3. 4 Partial Product Look-Up Table Multiplier 13 

3. 5 Partition Multiplication Algorithm (Shuli-Gao et al) 14 

3. 6 Summary of Multiplication Algorithms 21 

4 Xilinx Virtex Family FPGA 22 

4. 1 Logic Cells 23 

4. 2 Virtex Hardware Arithmetic 25 

4.3 Xilinx DSP48 Arithmetic Block 27 

4. 4 Interconnect 31 

4. 5 Congestion 33 

4. 6 Summary of Techniques 33 

5 Partition Algorithm for Virtex-4 FPGA 35 

5. 1 Details of Operation 36 



vi 

5. 2 Arithmetic Cell A Block 39 

5. 3 Arithmetic Cell B Block and Cascade Register 40 

5. 4 Partition Algorithm Description 41 

5. 5 Resources Utilization 44 

5. 6 Performance Equations 44 

5. 7 Non-Pipeline Design 45 

5.8 Results 48 

5.8.1 Combinational path delay 49 

5.8.2 Virtex-4 logic slice utilization 50 

5.8.3 Virtex-4 DSP48 slice usage 51 

5.8.4 Area delay (AT2) product 52 

5.8.5 Power dissipation 53 

5.8.6 Other results 54 

5. 9 Summary 56 

6 Placement algorithm for large-unsigned multipliers 57 

6. 1 Introduction 57 

6. 2 Placement Problem Formulation 59 

6. 3 Related Work on Placement Algorithms 61 

6.3.1 Placement algorithms for FPGA 61 

6.3.2 Heterogeneous Floorplanner for FPGA 63 

6.3.3 HPLAN Heterogeneous Floorplanner 63 

6.3.4 HPLAN problem formulation 64 

6.3.5 Comments 66 

6. 4 Relative Placement Macros 67 

6. 5 Area, delay and Power Heuristics 69 



vii 

6.5.1 Area 69 

6.5.2 Delay 70 

6.5.3 Power 70 

6. 6 Proposed Placement Algorithm 71 

6.6.1 Area constraints formulation 72 

6.6.2 Congestion Factor 74 

6.6.3 Objective function 75 

6.6.4 Graph theory 75 

6. 7 Proposed Placement Algorithm 76 

6.8 Results 79 

6.8.1 Combinational path delay 80 

6.8.2 Virtex-4 logic slice utilization for placed design 81 

6.8.3 Place-and-route tool runtime 82 

6. 9 Summary 83 

7 Testing strategy 84 

7. 1 Behavioural Testing 85 

7. 2 Timing Analysis 86 

7. 3 Placement Algorithm Testing 86 

8 Conclusion and future work 87 

8. 1 Partition Algorithm 87 

8. 2 Placement Algorithm 87 

8. 3 Conclusion 88 

8.4 Future Work 89 

REFERENCES 90 

APPENDIX A, VHDL MODELS 93 



Vl l l 

APPENDIX B, C++ SOURCE CODE 110 



ix 

LIST OF FIGURES 

Figure 2.1 Current FPGA technologies and trend towards built-in DSP blocks 6 

Figure 2.2 Virtex Family FPGA with amount of DSP blocks 7 

Figure 3.1 Serial Parallel N-bit multiplier architecture 11 

Figure 3.2 Carry Save Array multiplier architecture 12 

Figure 3.3 N-bit constant coefficient unsigned multiplier 13 

Figure 3.4 Architecture for Partial-Product Look-up Multiplier using 6bits LUT.... 14 

Figure 3.5 Long-Integer Multiplication Decomposition according to [4] 16 

Figure 3.6 Sequence of addition operation for algorithm [4] when m is even and odd 

19 

Figure 3.7 Graph of gate and interconnect (wire) delay versus technology for Virtex 

FPGA for a 16x2bit unsigned multiplier 21 

Figure 4.1 Trend for Xilinx FPGA during past 16 years 23 

Figure 4.2 Xilinx FPGA logic cell evolution during past 15 years 25 

Figure 4.3 Hardware dedicated for arithmetic operations in Virtex FPGA 26 

Figure 4.4 Internal view of Virtex-4 DSP48 tile (block) [15] 28 

Figure 4.5 DSP48 slice to CLB area ratio, as shown in Xilinx FPGAEDITOR 28 

Figure 4.6 Different interconnect classes found in the Virtex family of FPGA [19]. 32 

Figure 5.1 Technology mapping of [4] into proposed architecture for a 68bits 

unsigned multiplier 37 

Figure 5.2 DSP48 tile internal configuration 38 

Figure 5.3 Internal view of Arithmetic Cell A block 40 

Figure 5.4 Internal view of Arithmetic Cell B block 41 

Figure 5.5 Internal view of Cascade Register block 41 



X 

Figure 5.6 Long-integer 68x68bit multiplier generated by proposed algorithm 43 

Figure 5.7 Area-Delay product for non-pipeline multipliers 47 

Figure 5.8 Combinational path delay for different sized inputs 49 

Figure 5.9 Amount of Virtex-4 slices used against different sized inputs 50 

Figure 5.10 Number of DSP48 slices against different sized inputs 51 

Figure 5.11 Area Delay product (AT2) performance measure 52 

Figure 5.12 Power dissipation for different sized inputs 53 

Figure 5.13 Routing performance degradation for higher word length 54 

Figure 5.14 Layout of placed 136xl36bit multiplier circuit inside a Virtex-4 FX140 

FPGA 55 

Figure 6.1 Design using proposed set of algorithm 59 

Figure 6.2 Example of floorplan generated using HPLAN 64 

Figure 6.3 Usage of Relative Location in hardware descriptive language 67 

Figure 6.4 Internal logic slice arrangement using RLOC attribute 68 

Figure 6.4 Hierarchy representation using HSET and HU_SET 69 

Figure 6.5 ACA, ACB, CR Macro blocks internal placement 72 

Figure 6.6 Macro blocks physical dimensions 74 

Figure 6.7 51Bit Multiplier graph 76 

Figure 6.8 51Bit multiplier physical layout graph, as generated by proposed partition 

algorithm 79 

Figure 6.9 Combinational path delay for designs initially placed using proposed 

placement algorithm 80 

Figure 6.10 Interconnect delay in placed multiplier designs 81 

Figure 6.11 Logic slice utilization for placed multipliers designs 82 

Figure 6.12 Place-and-route run-time for different multiplier designs 83 



xi 

Figure 7.1 Testing hierarchy for multiplier partition algorithm 84 

Figure 7.2 Test setup for multiplier designs 85 



xii 

LIST OF TABLES 

Table 1.1 Performance of HDL, Coregen, Algorithm [1] and Proposed Algorithm. ..2 

Table 4.1 Valid opmode for dsp48 block, with respect to z multiplexer [18] 29 

Table 4.2 Valid opmode for dsp48 block, with respect to x and y multiplexer [19]. 30 

Table 4.3 Carryinsel control bits with corresponding opmode operation [20] 30 

Table 5.1 OPMODE/CARRY configuration bits for SliceO and Slicel 39 

Table 5.2 Performance results for combinational delay, non-pipelined designs 46 

Table 5.3 Performance results for area utilization, non-pipelined designs 47 



1 

1. INTRODUCTION 

Binary multiplication operations are at the center of many system level blocks 

used in high performance applications. The efficiency of the operation is crucial in 

order to have an edge over the competition. As an example, one of the latest television 

standard developed, the high-definition television (HDTV) is based on the MPEG-2 

compression algorithm [1]. This works at a lower level with Discrete Cosine 

Transforms (DCT) and Inverse DCTs which are bottom-line Fast Fourier Transform 

(FFT) operations [2]. The performance of FFT [3] is measured by the number of 

multiplication and addition operations per second. The higher the number, the higher 

the amount of frame compressed in unit time, hence a better quality. An HD-DVD 

recorder built around an efficient MPEG compression unit will generally perform 

better than one made up of conventional system blocks. Other applications of long 

integer multipliers include cryptography and hardware accelerator for software 

mathematic packages and algorithms. 

Presently there is a lack of Computer Aided Design (CAD) tools available to the 

system designer, which solve the problem of creating high-performing long-word 

multiplier circuits in Field Programmable Gate Array chips (FPGA). Current solutions 

include using the multiplication operator in Hardware Descriptive Languages (HDL) 

or using CAD applications such as Xilinx COREGenerator, to generate pre-built 

netlist files. Both solutions have limitations; using the VHDL multiplication operator 

will request from the HDL synthesizer the corresponding netlist. In most cases, the 

generated multiplier will not be based on high performance arithmetic blocks 



2 

available in the FPGA or will be un-pipelined. The current COREGenerator software 

has limitation in terms of size of input operands allowed and is constrained to a 

maximum of 64bits. The following table summarizes the performance of various 

methodologies available to implement unsigned multipliers. 

TABLE 1.1 PERFORMANCE OF HDL, COREOEN, ALGORITHM [4] AND PROPOSED ALGORITHM. 

Methodology 

Maximum 
Frequency 
Pipelining 

Maximum Word 
Width 

HDL 

MEDIUM 

LIMITED 

UNLIMITED 

CORE 
Generator 

HIGH 

OPTIMUM 

64 Bits 

GENERIC 
ALGORITHM [4] 

HIGH 

OPTIMUM 

UNLIMITED 

PROPOSED 
ALGORITHM [5] 

VERY HIGH 

OPTIMUM 

UNLIMITED 

The focus of this thesis is the implementation of unsigned long-word hardware 

multipliers more specifically using Xilinx Field Programmable Gate Array (FPGA) 

chips. As shown in Table 1.1, the proposed algorithm improves the generic algorithm 

[4] by increasing performance in terms of maximum frequency of operation. The size 

of the largest multiplier which can be implemented is limited only by the size of the 

FPGA, in terms of logic cells and arithmetic blocks used. The proposed partitioning 

algorithm thus increases utilization of high performance Digital Signal Processing 

(DSP) blocks available in Xilinx FPGA chips by breaking down long word operands 

into small subsets and performing multiplications on them. 



3 

1.1 Contribution 

This thesis presents two algorithms which will help a system designer develop 

high performance unsigned long-integer word multiplier using Xilinx Virtex-4 family 

of FPGA. The first proposed algorithm [7] shows how to adapt the Virtex-4 

architecture, in particular, DSP48 blocks, to the generic partition multiplier algorithm 

presented by Shuli Gao et al [4]. A second algorithm [8] further improves solutions 

generated by the partition algorithm by addressing the problem of placement 

associated with macro cells used by the proposed partition algorithm and results in an 

optimal arrangement reducing power, delay or area. The algorithms presented here 

have been verified for functionality and increase in performance. Algorithms are 

presented as high-level C++ source code. 



1. 2 Thesis Organization 

4 

This thesis is organized as follows. Chapter 2 introduces Field Programmable Gate 

Array technology along with a simple multiplication procedure. In Chapter 3, 

multiplication algorithms that are optimized for FPGA architectures are presented 

while Chapter 4 gives details about the architecture and arithmetic speed-up 

techniques available in the Xilinx Virtex FPGA. Chapter 5 elaborates on the proposed 

partition algorithm which is the central part of the thesis. Furthermore, Chapter 6 

gives a new placement algorithm that solves the problem associated with the 

floorplanning of large multiplier circuits in modern FPGA. Chapter 7 demonstrates 

how verification was done and how results were obtained. Finally, Chapter 8 

concludes the thesis and offers directions for future work. 



5 

2 FIELD PROGRAMMABLE GATE ARRAYS 

FPGA devices provide an ideal platform to design and test digital systems without 

the hassle associated with fabrication usually required for gate arrays and Application 

Specific Integrated Circuits (ASIC) technologies. For a long time though, FPGAs 

were limited to system clocks not exceeding a few hundreds megahertz but today, 

with the advent of smaller process technologies, a well pipelined design can go 

beyond the 400MHz boundary while arithmetic operations such as multiplication can 

easily reach 550MHz on the latest FPGA generation. In order to achieve the half 

Gigahertz level, FPGA designers resorted to custom sub-circuits built on the same 

FPGA die. These low level blocks are optimized for arithmetic operations (DSP) and 

data processing (microprocessor). The algorithm presented in this thesis employs 

arithmetic blocks, more precisely Xilinx DSP48, to perform long word multiplication 

in hardware. 

Initially, an analysis of FPGA technologies was performed with the conclusion 

that FPGA manufacturers had started integrating dedicated and highly optimized sub-

circuits into FPGA chips. This trend, which is shown in Figure 2.1, is due to the fact 

that smaller process technology allows for a denser FPGA and the list of practical 

innovations includes having high performance application-specific blocks on-chip. 



6 

Figure 2.1 Current FPGA technologies and trend towards built-in DSP blocks 

Being on the same hardware support also provides the designer with the most 

flexible, performing, cost effective, space and power efficient solution. A 

microprocessor built in the FPGA chip would allow an optimal placement of the 

support circuitry while incurring the least amount of delay and would not require any 

area from the printed circuit board. As for power consumption, the microprocessor 

being a standard cell built using the latest process technology would give reasonable 

energy utilization. The choice of specialized circuits built in FPGA chips offered by 

manufactures includes DSP blocks, high-speed I/O, embedded memory and 

microprocessor blocks. 

Figure 2.2 shows the trend in DSP technology for the Xilinx Virtex FPGA family 

across 4 generations. It clearly indicates that more DSP blocks are provided in the 

latest FPGA along with rising functionality and performance. From Figure 2.1, it can 

also be said that generally, the inclusion of these DSP blocks is done by most FPGA 

manufactures. Thus, it is safe to develop a suitable algorithm to solve the problem of 

long-word unsigned integer multiplication. 



NUMBER OF DSP BLOCKS ACROSS XILINX FPGA FAMILY 

Fmi,=173MHz 
18xJ 8 Signed Multiplication 

LLliLiJ ,_B_II 

^ 

Fiu;i=219MH2 
18x18 Signed Multiplication 

FM=500MHz 
18x18 Signed Multiplication 
Built-in 4Sbit Accumulator 
Pipelined Option 

F_*=550MHz 
25x18 Signed Multiplication 
Adder. Subtracter, Accumulator 
Pipelined Option 

. o_aj_LJ_l 

& 

Figure 2.2 Virtex Family FPGA with amount of DSP blocks 



8 

2.1 Basic Multiplication 

Multiplication is fundamentally based on a sequence of addition operations. We 

shall define for the purpose of explanation three positive integer variables: X 

(Multiplicand), Y (Multiplier) and Z (Result). 

Binary Long 
Multiplication 

101010 
x 

010 

0000000000 

0001010100 

0000000000 

0001010100 

One way to achieve multiplication is by iterating Y times the summation of X with 

itself, keeping along the way the running sums of previous steps. The time complexity 

of such an algorithm is N, meaning that N additions are required before a valid result 

is obtained. Another approach is to perform a series of base multiplications and 

additions. The latter is less efficient requiring the knowledge of base multiplication and 

powers. This is also known as the long multiplication method with time complexity of 

n log(«). With the advent of binary computers though, it became easy to implement 

long multiplication algorithm in hardware. The performance was also better since 

multiplying by the binary base is a left shift operation and the multiplication itself 

results in either the operand or zero. Hence the time complexity reduces to only 

log(rc) additions. This is an improvement over the iterated addition multiplication. 

General Multiplication Using Iterated 
Summation 

Z = XxY 
Z = 0ifY = 0orX = 0,Z = XifY = l 

Z = X + ...X...+X,Ytimes 

z = Zx 

Decimal Long 
Multiplication 

1234567 
x 

890 

0000000000 

0111111030 

0987653600 

1098764630 



9 

The proposed partition algorithm is based on the large-integer multiplication 

algorithm presented by Shuli Gao et al [4]. Presented here is an extension of the 

algorithm with details about an efficient technology mapping using DSP48 blocks. 

The placement problem which arises with the proposed partition algorithm is also 

solved with a greedy algorithm where area and delay are used as objective functions. 



10 

3 FPGA MULTIPLICATION ALGORITHMS 

Different techniques for integer multiplication in FPGA exist in literature. We will 

investigate only those that are required for a good understanding of the proposed 

algorithm as well as to provide basis for comparison since the presented architectures 

in the examples are all designed for FPGA technologies. Serial and array based 

hardware multipliers are simple algorithms that fit well FPGA implementations. The 

regular layout and constant amount of routing give reasonable gate delays. Moreover, 

specific FPGA structures such as look-up tables were initially used to accelerate 

multiplication operations and are based on the concept of long-hand multiplication. 

3.1 Serial-Parallel Signed Multiplier 

The serial-parallel signed multiplier offers a compact implementation of the shift-

and-add algorithm with very little combinational path delay. Figure 3.1 shows the 

regularity of the design together with little amount of interconnection between 

adjacent modules which allows a straight forward FPGA implementation. The system 

consists of parallel inputs for the multiplicand part which drive a wide bit-multiplier 

implemented as AND gates. This eventually feeds the first operand of cascaded Carry 

Save Adder (CSA) cells. The sign-extended multiplier operand is furthermore applied 

serially to the other input of the serial adder. The final product is obtained after m+n 

clock cycles, m and n being the size of the input operands. 



11 

PARALLEL / x 
INPUT I • 
(MULTIPLICAND! 

SERIAL 
INPUT 
(MULTIPLIER) 

Y 

2"S C O M P L E M E N T E R 

1 

1 

LUT 

1 
t 

LUT 

? 
I 

F0 

F, 

-* 

FF 

FF 

SLICE(n-I) 

X^, 

1-

FULL ADDER 

' 

1 
1 
1 

LUT 

1 
LUT 

1 

F0 

F, 

FF 

FF 

SLICE(n-2) 

x0 FULLADDER 

1 
1 
1 

LUT 

1 
LUT 

IN
IT

-E
88

8 

F, 

FF 

FF 

F, 

SLICE 0 

SERIAL 
RESULT 

Figure 3.1 Serial Parallel N-bit multiplier architecture 

3. 2 Carry Save Array Multiplier 

The Carry Save Array (CSA) multiplier [7], as shown in Figure 3.2, is based on 

the carry save adder architecture where carry bits are propagated down the array 

instead of being rippled horizontally to adjacent adder cells. In principle, CSA 

multipliers include extra AND gates at the input of the parallel adder to create partial 

product words. The adder which consists of Full-Adder (FA) and Half-Adder (HA) 

compresses further the information into carries and sums. For each partial product 

row, bits are processed independently and in 0(1). The final multiplication row is 

summed using a carry ripple adder. An FPGA implementation of a CSA multiplier 

involves the use of cells laid as a regular structured parallelogram. For an N x N 

multiplier, where N is the size of the input operands, the design is in 0(n2) cells in 

area. CSA multipliers have better timing characteristics compared to the classical 

ripple carry array multiplier with a decrease of 33% in delay. 



12 

Figure 3.2 Carry Save Array multiplier architecture 

3. 3 Constant Coefficient Multiplier 

In [9], an unsigned binary multiplication technique using dynamically updated 

tables is described. This approach is suitable when one operand is mostly kept 

constant. Applications, such as video color-space conversion [8], benefit from the 

high throughput offered by this concept. The generated solution has a small path delay 

since the only arithmetic operation required is the addition of partial products. The 

multiplication itself is generated from RAM and hence is in 0(1) time delay. The 

drawback of this algorithm is that in the worst case scenario 2N writes are needed to 

update one RAM table, N being the input size of the table. Figure 3.3 presents the 

architecture and makes use of two dual-ports memory blocks and a parallel adder. 



13 

MULTIPLIER UPPER NIBBLE 

N 

MULTIPLICAND 

N 

N/2 

STATE 
MACHINE 
(UPDATES 
CONSTANT 
TABLE 
WHEN 
REQUIRED) 

A 

ADDRl 

MULTIPLIER 
(DUAL PORT 
CONSTANT 
TABLE) 

ADDRO 

LOWER NIBBLE 

ADDRO 

MULTIPLIER 
(DUAL PORT 
CONSTANT 
TABLE) 

DA1A0 

ADDRl 

R O 
EIT 
G T 
I P 
S U 
T T 
E 
R 
E 
D 

DATA 1 

N 

'0' 

RO 
E U 
G T 
I P 
S U 
T T 
E 
R 
E 
D 

A 

K -

DATAl 

N 

N N-K 

A D D E R \ 

>+ 

V 
R 
E 
G 

\ 
T 

i 

N 

1 
? 
s 
T 
E 

A 

RESULT 

N 

N-K 

2N 

Figure 3.3 N-bit constant coefficient unsigned multiplier 

3. 4 Partial Product Look-Up Table Multiplier 

Another approach involves the use of LUTs to store permanent tables of 

multiplication [10], similar to algorithm [9]. As shown in Figure 3.4, partial products 

obtained from the table are shifted and added together as in the long-hand 

multiplication method. Since the table length storage depends on the input number 

radix, it is advantageous to use symmetric inputs so that LUT utilization is 

maximized. A hexadecimal-radix input will have 4 inputs for each operand, 

multiplicand and multiplier while containing 256 entries in the look-up table. In order 

to construct an arbitrary size input multiplier M x M , one would need to use \M I N~f 

LUTs, where N is the input size of the LUT. The intermediate stage consists of barrel 

shifters and cascaded parallel adders. 



14 

A A A , , A A A A A Afl 

K, I B 8 , I B!(1 I - B ^ I B , , I " B i 0 I B ^ I " B „ I B u I 

H il n w u n H u u 
>-BIT 
LUT 

I 
6-BIT 
LUT 

6-BIT 
LUT 

6-BIT 
LIT 

L1HK+) 

N BARREL LEFT SHIFTER BY N BIT 

UNSIGNED ADDER 

N x N BIT PARTIAL PRODUCT LOOK-UP TABLE MULTIPLIER 

Figure 3.4 Architecture for Partial-Product Look-up Multiplier using 6bits LUT 

The multiplier's performance depends on various factors. The number of partial 

products generated, how intermediate and final adders are implemented, and the 

relative distance between blocks all affect the critical path of the multiplier, hence the 

performance. Furthermore, the use of small adders helps to limit the combinatorial 

delay while pipelining also decreases delay but adds latency to the system. This 

architecture gives a very good idea how to construct large unsigned integer multiplier 

from smaller input multipliers. 

3. 5 Partition Multiplication Algorithm (Shuli-Gao et al) 

The paper titled "Efficient Realization of Large Integer Multipliers and Squarers" 

[4] presents a methodology on how to decompose large integer unsigned multipliers 

using smaller size multipliers. The idea is not new and the novelty resides in the 



15 

application of FPGA technologies with embedded multiplier blocks. The performance 

gain from doing the decomposition is significant considering the drawbacks of 

alternative means such as HDL arithmetic operator (inflexible) and COREGenerator 

solution (limited operand size). The algorithm presented in the paper is generic and 

applies to any nxn bit multiplier block, although the authors used 18x18bits 

multipliers in their model. They also showed that the same approach can be further 

extended to implement unsigned squarers. 

The original partition algorithm is explained below. The arithmetic base used is 

binary. Assuming that the size of the input operand is k and is greater than n, the size 

of the small multiplier and k is partitioned into m segments where n{m-\) <k <nxm, 

we have therefore: 

1. Inputs X and Y in binary format: 

X = [xk-lxk_2..JC„..jclx0];Y = [yk_1yk_2...y„...yly0] 

2. X and Y grouped into k segments each sized n: 

X = [Xm_xXm_2..XxXJ;Y = [Ym_xYm_2...YxYJ 

3. X as a summation of shifted segmented binary weights 

X = 2(m-i)nXm_x+2(m-l)"Xm_2 + ... + 2"Xx +X0 

4. Y as a summation of shifted segmented binary weights 

Y = 2(m-l)"Ym_l+2(m-i)"Ym_2+... + 2"Yl+Y 

5. Multiplication Z = Xx Y 

6. Z in terms of binary operands X and Y: 

Z = [xk„lxk_2...xn...xlx0].[yk_xyk_2...y„...y1y0] 

7. Z in terms of binary segmented operands X and Y: 



16 

Z = (2°"-,)"Xm_] +2(m-1)nXm_2 +... + 2"Xl +XQ). 

(2(m"°"7m.1 +2("-l)"Ym_2 + ... + 2T, +YQ) 

8. Finally, Z fully expanded and aligned as partial products: 

Z = (22"^Xm_, -Ym_x + 22"^2)Xm_2 -Ym_2 + ... + 22"XJ] +X0Y0) + 

m-\ m-2 (22n{m-2)+"Xm_rYm_2+22n{m-3)+nXm_2-Ym_i+... + 23"X2Yi+2"XlY0) + 

(2 2n(m-2)+n y V -1-9 
Im-\ ' A m-2 ~l~ Z 

2/7(m-3)+n Ym_2-Xm_3+... + 2i"Y2Xl+2»Y1X0) + 

(2™ Xm_, • 7, + 2"1"-" Xm_2 • Y0) + (2"" 7m_, • X, + 2" 1 "^ Ym_2 -X0) + 

(2«-»Xm_rY0) + (2«"-»Ym_rXQ) 

In the first statement from equation 8, all segments are squared and shifted as in 

22"(m-])Xm_, •Ym_i. The second level aligns elements that are m segment off each other. 

This operation of alignment and addition is repeated for every pair until the furthest 

elements, Xm_, • 70 and 7m_, • X0 are summed at the final step. These steps are shown in 

Figure 3.5, where the multiplication is done on X and Y using n-bit small multiplier 

blocks. 

Long Integer Multiplication X * Y 

n-bit Multiplication 

2k-l 2n(m-l) 2n(m-2) 2n(m-3) 2n(m-4) IQn 8n 6n 4n 2n 0 

Z O 1 X<M-1)«Y(M-U XtM-D'Y iM- : ) XOJ-JHf{M-3) X{M-4)-Y(M-t) 

k-hi(m-1)-1 n(2m-3) n(2m-5) n(2m-7) 

s..(U X(M-l)*Y<M-2) 

K tM-^ 'T iM- I ) 

X(M-2)*Y(M-J] 

X{M-3)*Y(M-2} 

X(M-J>*Y(M-4] 

X(M-4)'Y(>I-3) 

• • • 

1 In 9 

• • • 
X4-Y5 

X5*Y4 

XVY4 X3*Y3 X2*Y2 X l ' Y l 

n 7n 5n 3n 
X J ' Y I 

X-t*Y3 

X2*Y3 

X3*Y2 

X1"YS 

X:-YI 
XO'YJ 

Xl 'YO 

XO'YD 

n 

k+n(m-2)-l 2n(m-l) 2n(m-2) 2n(m-3) IQn 8n 6n 4n 2n 
C I "7 ( Z-3 I XiM-l)'YtM-3) XilM)*Y<M-«) X<M-3]'Y(M-<) X.1" 

•\TA X(M-?)'YlM-t) X & M l ' Y t M ; ) XiM- i ) 'Y(M- XS'Y) X**V3 X3*Y1 XJ'YO 

k+2n-l nra n(m-2) 
X(m-irY!l 1 

Y.>-i>-x.;i) 

X(m-2j'V(0) 

Y(in-21-Xffl) 
SKM-2)f Z ( 2 M - 5 ) 

"W'-'y Z(2M-4) 

S 1 ( M - . ) ( ^ M . 3 ) Q ™ 
k+n-1 n(m-l) 

Z(2M-2) I Y<-U-XW 

Figure 3.5 Long-Integer multiplication decomposition according to [4] 



17 

As a simple example, we shall consider the multiplication of two 5bits unsigned 

binary number. We shall also assume that n=2 and m=3, where n is the size of the 

small multiplier and m is the number of partitions, obtained fromp /2~| = 3. Assuming 

Jf = 1310 =011012and7 = 25I0 = 110012, we have Z = XxY = 325l0 =1010001012. 

Jf = 13,„=011012 7 = 2510 = 110012 Initial X and Y values 

Z = [00|l l |01]2 Y = [01110101]* X and Y Partitioning 

X = \2"X1 + 21X1+ 2°XI)]2 Y = [24 Y2 + 22Y, + 2°Y„]2 Sum of weighted binary values 

Z = XxY 

(24X2-24Y2 + 24X2-22Y,+24X2-Y0) + 

Z= (22X,-24Y2 + 22X, •22Y, + 22X,-Y0)+ Expansion 

(X0-2
4Y2 + X„-22Y, + X0-Y„) 

(28(X2-Y2) + 24(X,-Y,) + X0.Y0) + 

(26(X2-Y,) + 22(X, •¥„)) + 

Z= (26(X,-Y2) + 22(X0-Y,))+ Zrearranged 

(24(X2Y0)) + 

(24(X„-Y2)) 

(28(00002) + 24(01102) + 00012) + 

(26(00002) + 22(00112)) + 

Z replaced with initial X. and Y. 
' J 

(26(00112) + 2: 

(24(00002)) + 

(24(00012)) 

97,„ + 

12,o + 
200,() + 

16,o =325,,, 

'(00102)) + 

Z = 200,() + Z properly evaluated in decimal 

6,0=32 

= XxY 

The alignment of the partial products with respect to each other is essential when 

using the algorithm outlined in [4]. There are mainly two situations that need to be 

considered: when m is even and when it is odd. In the former, the execution of the 

addition operation happens pair-wise with Si(m-l) aligned with Zo, Si(m-2) aligned 

with Sii and so on. In other words, for an even number m, the algorithm always aligns 

the smallest adder through all partial products pairs while propagating un-used bits to 



18 

the result. In other words, the symmetry obtained through the second level operands is 

used to efficiently perform the addition. The scheme presented in [4] reduces the 

number of additions by half in each stage, given m is even. 

On the other hand, when m is odd, the operands are no longer in pairs. 

Consequently, the grouping operation which is used when m is even fails. To 

compensate for that, the algorithm is modified and includes an extra level of addition. 

Initially, Z0 is added to Si(m-l), skipping Sn and Si2 is added to Si(m-2). This is 

iterated, with the summation of the second partial product postponed and performed at 

the third level. Adding the first partial product to the last guarantees the use of the 

smallest adder, similarly to having an even number of segments. In both cases, the 

total number of addition levels required by the algorithm is L= |~log2 m +1]. 

Figure 3.6 shows the addition levels needed when the number of segments 'm' is 

even and odd. The algorithm implements the adders in a binary tree format hence 

reducing combinational delay. Since the adders are made out of logic cells, the largest 

available in the design (SI 1) will constitute the critical path of the system in a 

pipelined design. The critical delay obtained from adder SI 1 is represented by [16]: 

' ADDER = '•OPCY "*" 'BYP ' V* "*" n \ m ~ *•)) + 'SUM 

where IADDER is the total propagation time delay of the adder, topcy is the propagation 

delay from the output of the function generator to the carry chain and tsuM is the 

propagation delay from the carry chain onto the output. 



NUMBER OF SEGMENTS 'm' IS EVEN 
2™ LEVEL ADDITION 3RD LEVEL ADDITION R'» LEVEL ADDITIONtR-ILoG/nO+il) 

<£- sfc-i 

0- rC 

i 
FINAL RESULT 

COMBINATION OF PARTIAL PRODUCTS USING TWO OPERANDS ADDERS. REDUCING BY HALF THE NUMBER AT EVERY LEVEL 

NUMBER OF SEGMENTS 'm' IS ODD 
2™ LEVEL ADDITION 3™ LEVEL ADDITION R , a LEVEL ADDIT10N(R-|i.OG2(in)+51) 

Sl(m-3) 

Sl(m-2) 

$-" 

0 

1 

A -

S2(nv'2-1) 

SRO 

k M n-l) 
+ 

SI1 

I 
FINAL RESULT 

19 

FIGURE 3.6 SEQUENCE OF ADDITION OPERATION FOR ALGORITHM [4] WHEN M IS EVEN 

AND ODD 

Even though the algorithm outlined in [4] tries to minimize adder lengths, it does 

not control their implementation. More specifically, the methodology presented by 

Shuli Gao et al. lacks implementation details at the architectural level. The authors 

state that in their approach, adders at same level operate in parallel. Their algorithm 

was demonstrated on the Spartan-3 FPGA which contains multiplier blocks only. 

Also, for an m-segment multiplier, |~log2m + l] adder levels are needed to sum all 

concatenated partial products generated by the small multipliers. The Spartan-3 FPGA 

unfortunately does not include any high-speed adder block to perform the arithmetic 

operation. This is one motivation around this thesis as it is believed that the use of 



20 

embedded high-speed adders will increase the performance of the system. The DSP48 

block available in newer FPGA such as Virtex-4 provides this technological edge. The 

algorithm outlined in this thesis also shows precisely how parallelism is achieved by 

pipelining the system in a systematic way. 

The performance of the method presented in [4] indicates better combinational 

path delay and a smaller number of 4-input LUT used, compared to classical 

implementations such as using the VHDL multiplication operator or the Xilinx 

COREGenerator utility. The method in [4] relies heavily on parallelism and hence 

implicitly makes use of a high number of registers. This amount relies on the size of 

the input operand as well as the number of stages. For [4], this number is: 

/=[log2m] 

R = 2 2^(k-i-n) 

i=\ 

where R=total register count, k=size of large multiplier, n=size of small multiplier, 

m=number of segments. This number is non-negligible for large-input operands and 

negatively affects the performance of the system by increasing the amount of 

interconnects used in the FPGA while also raising power consumption. 

Figure 3.7 shows that with smaller process technology such as 90nm (Virtex-4) 

and 65nm (Virtex-5), interconnect delay contributes more to the overall system delay, 

hence affecting overall system performance more than in past technologies[14]. 

Having a good placement of multiplier blocks together with pipeline registers will in 

theory yield better overall performance compared to just algorithmic [4] and 

architectural improvements. 



21 

Figure 3.7 Graph of gate and interconnect (wire) delay versus technology for Virtex 

FPGA for a 16x2bit unsigned multiplier 

3. 6 Summary of Multiplication Algorithms 

This section introduced different long-integer unsigned multiplier architectures 

that are suitable for FPGA implementation. These techniques use architecture-specific 

enhancements that compensate for the main drawbacks of FPGA, which are limited 

interconnect resources as well as large interconnect delay. In some cases, we even see 

performance improvements when compared to other classic implementations such as 

carry-look-ahead style multipliers, which when built using the constant-coefficient 

method for example, will be much faster while requiring less space. Hence, knowing 

the basic building blocks available in the FPGA will give a deep understanding and 

the appropriate knowledge of how to fine-tune the device for an optimum operation. 

The next section presents these features that are typical in modern FPGA which are 

used extensively in arithmetic operations. 



22 

4 XILINX VIRTEX FAMILY FPGA 

The Virtex FPGA family currently at its sixth generation evolved from the 

XC4000E and XC5200 FPGA series. The first member of the family brought many 

advanced features such as Delay-Locked Loops (DLL) and discrete RAM blocks 

(BRAM). The internal wire bus was also re-designed to give a more accurate delay 

model while providing shorter run time for the routing algorithm. Features like JTAG 

programming and dedicated multiplication acceleration logic in the Configurable 

Logic Block (CLB) [11] were also built in. Two generations later, the Virtex-2 series 

were to incorporate discrete embedded multiplier blocks, which allowed faster DSP 

operations such as digital filtering. Today, the newest Virtex-5 FPGA family is built 

around third generation DSP blocks supported by fast routing busses and large amount 

of embedded memory. The proposed set of algorithms uses DSP48 blocks released in 

the Virtex-4 series, along with fast routing to improve on speed, area and power. 

Modern FPGA chips consist of full-custom Intellectual Property (IP) blocks 

surrounded by an array of logic elements interconnected by an intricate network of 

busses. At the lowest level, the Logic Cell (LC) lays the foundation for digital 

synthesis providing basic structures such as Look-up Tables (LUT), Flip-Flops (FF), 

fast carry chains and multiplexers. Going up the hierarchy are pre-built high 

performance IP blocks to execute DSP operations, discrete microprocessors for data 

handling, high-speed interfacing and clock synthesis and re-conditioning. The 

underlying interconnect also designed as a hierarchy, provides up to six different types 



23 

of routing. These are segmented and have switch boxes to control the flow of data 

from one point to another. 

FPGA are evolving every year as shown in Figure 4.1, with the newest Virtex-5 

capable of 1,056 DSP48E slices along with 149,760 LUTs and FFs. The considerable 

amount of DSP slices together with a high DSP-to-FF ratio (1:141) enables newer 

algorithms to solve the problem of high speed long-word multiplication more 

efficiently with the help of pipelining. 

350 

300 

£ 250 

| 200 

£ 150 
3 

£ 100 

50 

Xilinx FPGA Trend 

-Clock Frequency 

- Density 

VIRTEX-5 (6iuni) 
JfiKBIT EMBEDDED MEMORY 
6-LUT LOGIC CELL 
PC] EXPRESS INTERFACE 
DSP4SE BLOCK. 

VIRIEX-II(0.1!mui 
IBKBrT EMBEDDED MEMORY 
DICITALCLOCK MANAGER 
EMBEDDED MULTIPLIER 
DDR I/O 

V1RTEX (0.2;ILHI) 
4KBIT EMBEDDED MEMORY 
DIGITAL DELAY LOOP 
LMPRQVED ROUTING 

VIRTEX-4 (90mn) 
EMBEDDED ETHERNET MAC 
DSP4S BLOCK 
ASMBL 

VTRTEX-IIPROfO.IJimil 
POWER PC- EMBEDDED CPU 
ROCKET Gbpil'O 
TRIPLE DES SECURITY 

250000 

200000 

5F 

150000 o 
'a 
o 

100000 £ 

a 
a 50000 

1990 1995 2000 

Year 

2005 
V 0 

2010 

Figure 4.1 Trend for Xilinx FPGA during past 16 years 

4.1 Logic Cells 

The logic cell allows implementations of either combinational or sequential 

circuits or a mixture of both. Combinational systems are implemented using 4-inputs 

(up to 6 in Virtex-5) LUTs while state machines and registers are created out of built-

in Flip-Flops. The LUT element can also act as dynamic storage devices turning into 



24 

16bits shift registers. A group of logic cells sharing arithmetic resources is called a 

slice. In a Virtex FPGA, logic cells within a slice have dedicated carry lines as well as 

shared inputs. This enables the designer to implement arithmetic operations such as 

addition and multiplication with small delay penalty while extending the size of the 

operation. Also, slices are grouped into Configurable Logic Blocks (CLB) and share 

routing structures. 

The basic structure of the logic cell has evolved from a simple two-cell CLB to 

four then eight cells. The progression among the Xilinx Virtex FPGA family is shown 

in Figure 4.2, where differences between architectures are highlighted. In addition, 

arithmetic capability is enhanced with the inclusion of XOR and AND gates for 

arithmetic addition (Full-Adders based) and 1-bit multiplication respectively. Initially, 

the XC4000E FPGA included a dedicated carry path that introduced little delay in 

arithmetic operations. This has since then been added to all subsequent FPGA 

families. Finally, the newest Virtex-5 FPGA provides faster overall arithmetic 

operation since the carry path spans four logic cells compared to two in the previous 

families. This reduces by half the amount of interconnect delay that would be present 

should the operation be implemented in previous Virtex families. 



25 

CIN 
XC4000 CLB 

1:2 SLICE TO LOGIC CELL RATIO 
1:1 SLICE TO CLB RATIO 
4 INPUT LUT 
FAST CARRY CHAIN 
CARRY CHAIN HEIGHT: 2 CELLS 

Figure 4.2 Xilinx FPGA logic cell evolution during past 15 years 

4. 2 Virtex Hardware Arithmetic 

High performance arithmetic operation is achieved through different architectural 

speed-up techniques built in the Virtex architecture. A logic cell contains extra 2-

inputs AND and XOR gates, which process incoming bits, for multiplication and 

addition without committing an LUT [12]. This makes the design area efficient while 

reducing the combinational delay. Since most hardware multiplication algorithms are 

addition based, performance gain is further obtained when multiplication operations 

use adder blocks. The knowledge of FPGA infrastructures also enables an efficient 

implementation of arithmetic operations. For instance, addition operations are 

accelerated through the use of high-speed carry chains [15] which span the vertical 

1:2 SLICE TO LOGIC CELL RATIO 
2:1 SLICE TO CLB RATIO 
4 INPUT LUT 
FAST CARRY CHAIN 
ADDITIONAL XOR 
ADDITIONAL AND 
CARRY CHAIN HEIGHT: 2 CELLS 

VIRTEX-2 CLB 

1:2 SLICE TO LOGIC CELL RATIO 
4:1 SLICE TO CLB RATIO 
4 INPUT LUT 
FAST CARRY CHAIN 
ADDITIONAL XOR 
ADDITIONAL AND 
DYNAMIC SHIFT REGISTER (LUT) 
CARRY CHAIN HEIGHT: 2 CELLS 

1:4 SLICE TO LOGIC CELL RATIO 
2:1 SLICE TO CLB RATIO 
6 INPUT LUT 
FAST CARRY CHAIN 
ADDITIONAL XOR 
ADDITIONAL AND 
DYNAMIC SHIFT REGISTER (LUT) 
CARRY CHAIN HEIGHT: 4 CELLS 

FPGA LOGIC CELL EVOLUTION 



26 

height of the chip while proper placement of arithmetic cells decreases interconnect 

delay if adjacent cells are packed together in a CLB. The proposed placement 

algorithm combines layout information with the HDL code so that an optimum 

placement is achieved within the CLB. The algorithm then places larger CLB based 

blocks in an optimal arrangement so as to decrease interconnect delay. 

Figure 4.3 gives the internal structure of a CLB built in the Virtex FPGA. It shows 

how a single slice can implement a 3 x 1 bit multiplier using the adder cell (4-LUT, 

XORCY, MUXCY) together with an extra AND gate (MULTAND). This can be 

furthermore cascaded to extend the length of the multiplier. The critical path is along 

the carry propagate chain and is obtained from: 

*MULT_2N = hw "*" 'BXCY ' nVBYp) + VLO + *BXCY 

where tMULT_2N is total propagation delay of the 2xN multiplier, tiLo is the propagation 

delay of the 4-inputs look-up table (LUT), tBxcY is the propagation delay of output 

BX of LUT onto the carry chain and IBYP is the propagation delay per carry-chain 

multiplexer. 

5x2BITS UNSIGNED MULTIPLIER 

*>-r 
r-

SSoFK 
MULT AND 

A , — r 
B, n 

<R5joFh 

A, 
B, 
A° 
B 

4-LUT 

)E>̂  

INTERNAL VIEW OF SLICE FOR BITS A..A, AND A, INTERNAL VIEW OF LOOK-UP TABLE (LUT) 

Figure 4.3 Hardware dedicated for arithmetic operations in Virtex FPGA 



27 

Conventional synthesis tool such as XST uses this technique to create adders and 

eventually allows multipliers of arbitrary length to be created. This is a limitation 

since higher performance can be achieved if the tool is aware of implementations 

based on dedicated arithmetic blocks such as the DSP48. 

4. 3 Xilinx DSP48 Arithmetic Block 

The partition algorithm outlined in this thesis is based on the DSP48 block found 

in the Virtex-4 FPGA. Also known as DSP48 tile, the block contains a multi­

functional arithmetic unit capable of 18bits signed multiplication as well as three 

operands 48bits sign-extended addition-subtraction-accumulator. The unit is 

optimized for low power, high speed operation and offers pipelining at inputs, 

intermediate levels and outputs. Internally, the DSP48 tile includes two slices each 

with a set of multiplier and adder. The slice pair also shares internal connections 

which are used when arithmetic operations exceeding the normal size of the slice are 

implemented. 

As shown in Figure 4.4, the internal structure of a DSP48 slice reveals that the 

three operands 48bits adder can only add two operands if used with the multiplier 

since the two partial products generated from the multiplier block are combined by the 

adder. The proposed algorithm uses internal pipelining registers when required for the 

highest performance. 



28 

DSP SLICE 1 PIPELINE REGISTER 

*^3J> 
PIPELINE REGISTER 

iOffi 
PIPELINE REGISTER 

-*dl-b 

E PIPELINE REGtSTER ^M>r 
25X18 MULTIPLIER 

C 

PIPELINE REGISTER 

^*n±feD ^r 
4g. PCW 

DSP SLICEO 
PIPELINE REGISTER '3 

"-ffl PIPELINE REGISTER 

PlPELlTiE REGISTER 
^HW>n 

rPffi 
2?X18MULTIPLIER 

PIPELINE REGISTER 

a^rifeD 
~^r 

c 

Figure 4.4 Internal view of Virtex-4 DSP48 tile (block) [17] 

Figure 4.5 gives the internal view of a Xilinx Virtex-4 FPGA chip, as obtained 

from FPGAEDITOR [30]. The height of a DSP48 tile is equivalent to that of four 

CLBs [34], or eight slices. Since one tile consists of two DSP48-slices, we can 

calculate the height of a single DSP48 slice to be that of 4 logic-slices, with a width of 

1 logic-slice. This is clearly indicated in Figure 4.5. 

Figure 4.5 DSP48 slice to CLB area ratio, as shown in Xilinx FPGAEDITOR [35] 



29 

The internal operation of the DSP48 tile is fully programmable with the help of 

OPMODE and CARRY bits. The OPMODE defines how inputs X, Y and Z are used. 

X and Y each has two bits dedicated to their internal configuration and can be 

programmed in six different modes. The output from the X multiplexer can be zeroed, 

coming from the first partial-product multiplier, coming from port P or be 

concatenated with B. Similarly, the Y multiplexer allows only three valid 

combinations; zeroed, propagating the second partial-product or outputting port C. 

The OPMODE also controls the Z multiplexer and has 3bits reserved for it. Out of 

eight possibilities, only six are used with the actual combination shown in Table 4.1. 

TABLE 4.1 VALID OPMODE FOR DSP48 BLOCK, WITH RESPECT TO Z MULTIPLEXER [18] 

OPMODE 
PROGRAMMING BITS 

Z 

000 

001 

010 

011 

100 

101 

110 

111 

Y 

XX 

XX 

XX 

XX 

XX 

XX 

XX 

XX 

X 

XX 

XX 

XX 

XX 

XX 

XX 

XX 

XX 

Z MULTIPLEXER OUPUT 
DRIVING 

ADDER/SUBTRACTOR 

ZERO (DEFAULT) 

PCIN 

P 

C 

ILLEGAL SELECTION 

PCIN SHIFT 

P SHIFT 

ILLEGAL SELECTION 

Table 4.2 gives the configuration bits of the second and third operand multiplexes 

driving the adder (MUX X, MUX Y). In order to program the DSP block to 

perform/ = P±(AxB + ClN), the following bits would be needed in the OPMODE 

register: 0100101. 



30 

TABLE I. TABLE 4.2 VALID OPMODE FOR DSP48 BLOCK, WITH RESPECT TO X AND Y MULTIPLEXER [19] 

OPMODE BITS 

Z 

XXX 

XXX 

XXX 

XXX 

XXX 

XXX 

XXX 

XXX 

Y 

XX 

01 

XX 

XX 

00 

01 

10 

11 

X 

00 

01 

10 

11 

XX 

01 

XX 

XX 

Z MULTIPLEXER OUPUT 
DRIVING 

ADDER/SUBTRACTOR 

ZERO (DEFAULT) 

MULTIPLIER OUTPUT 
(PARTIAL PRODUCT 1) 

P 

A CONCATENATE B 

ZERO (DEFAULT) 

MULTIPLIER OUTPUT 
(PARTIAL PRODUCT 2) 

ILLEGAL SELECTION 

C 

Finally, Table 4.3 shows configuration bits for the CARRYINSEL register which 

controls how the carry input is connected to the adder. Furthermore, the mode of 

operation for the carry input is dependent on the value entered in the OPMODE 

register. 

TABLE 4.3 CARRYINSEL CONTROL BITS WITH CORRESPONDING OPMODE OPERATION [20] 

CARRY­
INSEL [1:0] 

00 

01 

01 

10 

11 

10 

11 

OPMODE 

XXXXXXX 

Z MUX OUTPUT = P OR 
SHIFT (P) 

Z MUX OUTPUT = PCIN OR 
SHIFT(PCIN) 

X AND Y MUX OUTPUT = 
MULTIPLIER PARTIAL 

PRODUCTS 

X AND Y MUX OUTPUT = 
MULTIPLIER PARTIAL 

PRODUCTS 

X MUX OUTPUT = A:B 

X MUX OUTPUT = A:B 

CARRY 
SOURCE 

CARRYIN 

~P[47] 

~PCIN[47] 

A[17] 
XNOR 
B[17] 

A[17] 
XNOR 
B[17] 

~A[17] 

~A[17] 

COMMENTS 

GENERAL FABRIC CARRY 
SOURCE (REGISTERED OR NOT) 

ROUNDING P OR SHIFT(P) 

ROUNDING CASCADED PCIN OR 
SHIFT(PCIN) FROM ADJACENT 

SLICE 

ROUNDING MULTIPLIER (MREG 
PIPELINE REGISTER DISABLED) 

ROUNDING MULTIPLIER (MREG 
PIPELINE REGISTER ENABLED) 

ROUNDING A:B (NOT 
PIPELINED) 

ROUNDING A:B (PIPELINED) 



4.4 Interconnect 

31 

The present work describes a placement algorithm which requires a clear 

understanding of the wire infrastructure available in the Virtex FPGA. The 

interconnect network can be seen as a hierarchy of wire connecting CLBs, DSP48s, 

clock generators, Input/Output ports and so on together. 

Hierarchy of interconnect [13]: 

(a) Local Routing (High speed) 

1. 1 Connection between LUTs, Flip-Flops and General Routing Matrix 

(GRM) switch box. 

1. 2 Internal CLB feedback routes connecting output to LUT input with 

minimum delay. 

1. 3 Direct path between horizontal adjacent CLBs (Virtex). 

1. 4 Direct path between adjacent CLBs in sixteen directions (Virtex-II and 

above) [21]. 

(b) General Purpose Routing (Low-medium speed) 

1. 5 Routing between GRM switch boxes. 

1. 6 Single-length lines connecting adjacent GRMs in four directions. 

1. 7 Buffered Hex lines connecting GRM to other GRMs placed six blocks 

further in each of the four directions. 

1. 8 Buffered Longlines bidirectional wires that span the full length of the 

FPGA chip either horizontally or vertically. 

(c) Global Routing (Low skew) 



32 

1. 9 Primary global routing includes high-fanout signal lines such as clock 

networks and are designed to have minimal skew. 

1. 10 Secondary global routing is mainly secondary clock routing consisting 

of backbones lines distributed across the top and bottom portion of the 

FPGA. They connect to Longlines interconnect, 

(d) Dedicated Routing (High speed) 

1.11 Constrained interconnect for the arithmetic carry chain. 

1.12 Horizontal routing for three-state busses. 

1.13 Dedicated SOP chain for each slice row [21]. 

1.14 Shift-chain routing, one per CLB [21]. 

The proposed placement algorithm relies on adjacently placed CLBs to minimize 

interconnect delay and consequently falls into the Local Routing class. Moreover, 

Dedicated Routing is implicitly used by the carry chain infrastructure in the 

realization of adders and DSP48 blocks. Figure 4.6 shows fives types of routing 

technologies found in the Virtex-2 FPGA. Since the Virtex-4 is based on the same 

routing infrastructure, a placement algorithm that first uses local, then direct, double, 

hex and finally long lines will reduce overall interconnect delay and hence improve on 

timing performance. 

Figure 4.6 Different interconnect classes found in the Virtex family of FPGA [21]. 



4. 5 Congestion 

33 

Congestion is a concentration measure of active interconnects in part of the 

routing resource. It negatively affects performance since a congested region is very 

unlikely to allow free routing of wires or would provide so with heavy delay penalty. 

Congestion also decreases area utilization because CLB is eventually used in the most 

congested regions as passthrough logic, logic that acts as simple wires to add extra 

routing resources. This quick-fix increases the interconnect delay significantly and 

should be used as a last resort. 

Anticipating congestion and increasing the region allocated to routing resources 

minimize most of the effect. The placement algorithm uses congestion as an objective 

function, where a slack region between CLBs is added if congestion is high. The 

placement algorithm models congestion using graph theory with congestion defined as 

the number of vertices sourced or sank at a node per unit area. 

4.6 Summary of Techniques 

This chapter presented the Virtex FPGA family at the low level, giving 

information about logic cell, arithmetic implementation techniques, the DSP48 block, 

the routing infrastructure and finally congestion. The focus of this thesis is to present 

an algorithm that will increase performance of long-integer multiplication operations. 

Using DSP48 blocks provide the user with processing elements that have the lowest 

delay, power and area. On the other hand, care should be taken in order not to increase 



34 

interconnect delay which would negate the use of DSP48 blocks. Hence, knowledge 

of the routing hierarchy as well as an understanding of congestion is essential. 



35 

5 PARTITION ALGORITHM FOR VIRTEX-4 FPGA 

The algorithm for partitioning unsigned multiplication operations is originally 

proposed by Shuli-Gao et al [4] and solves the problem using small but high-

performing DSP blocks abundantly found in modern FPGAs. The algorithm is generic 

in nature and hence does not specify with what technology the actual addition and 

multiplication operations are implemented. The algorithm is also modified depending 

on whether m is even or odd, m being [£/«], k being the size of the large multiplier 

input operand and n being the size of the small multiplier input operand. In case of m 

being odd, an extra adder level is needed. Finally, the generated multiplier relies on 

pipelining to reduce combinational delay as the circuit is in the form of an array 

multiplier, similar to the Carry Save Array multiplier. The algorithm can be expressed 

as: 

Z = X.Y = Yj2
{ki)Xi^2(k%m = 

i=o ;=o y=o 

where Z is the output of the large integer multiplier, k is size of the operand at the 

large multiplier input and n is size of the small multiplier. 

Our proposed algorithm adapts [4] to use the more efficient DSP48 block 

available in Virtex-4 FPGAs. This gives better overall performance since DSP48 is 

superior to the multiplier circuits available in the Spartan-3 FPGA. The physical 

location of hardware blocks is also crucial in order to get an optimal result. Using 

DSP48 allows the software mapper to lock blocks in reserved vertical regions which 



36 

minimizes the amount of interconnect. Since the partition algorithm does not include 

locality information, a second algorithm is described in this thesis that adds placement 

information. This reduces interconnect delay caused by pipelining structures used by 

the partition algorithm as well as in groups participating in the critical path. 

5.1 Details of Operation 

From the original algorithm, dataflow can be separated into different operation 

levels. This is also true in the proposed partition algorithm and initially, the 

multiplication of all sub-words of length m, m being the length of our DSP48 block 

operand, into their respective squares, Zo, is summed to the product of Xj with Yj+i 

and Xj+i with Yj, where Q<i < N, N=number or levels of multiplication, Xj and Yj 

are sub-words from the long-integer numbers, into the partial word, Zi. At the third 

level, Zi is added with Xj*Yj+2 and Xi+2*Yi where 0<z<JV-l . Additions at each 

stage is repeated in the same way until only a single addition/multiplication level is 

left which happens at i=0. This generates the middle range values for the 

multiplication. At each level, an extra adder is required to sum the carry bit of the 

current level with the most significant bit of the previous partial product. 

Since DSP48 multipliers operate with signed 18bits values, our implementation 

can only use the lower 17bits with the sign (most significant) bit connected to logic 

'0'. This results in the length of the input operand 'm' being equal to 17. The 

proposed algorithm performs all the required steps for partitioning long integer 

numbers including the creation of interconnects between DSP48 blocks and inclusion 

of intermediate pipeline registers. 



37 

The multiplier as well as adder blocks can be reorganized as shown in Figure 5.1. 

There is also a noticeable change in the proposed architecture, which removes the 

necessity of having to deal with odd and even number of segments (m). This is 

required because the original architecture does not allow for a direct combination of 

adders and multipliers blocks into a unified module. 

Figure 5.1 Technology mapping of [4] into proposed architecture for a 68bits 

unsigned multiplier 

As presented in this algorithm, the innovative aspect is the mergence of the 

addition block together with the multiplication block into a single entity: the 

Arithmetic Cell A (ACA). This is very different from the architecture proposed in [4], 

where no implementation details are given. A single DSP48 tile can therefore be 



38 

effectively used as a three operands adder with two inputs coming from 17bits 

multipliers. The resulting architecture shown in Figure 5.2 uses built-in pipeline 

registers and takes advantage of the dedicated routing infrastructure by making use of 

internal connection for data propagation between adjacent DSP48 slices. Using 

internal pipeline registers also decreases the amount of interconnect hence reducing 

congestion. Overall power consumption is also reduced when using built-in pipeline 

registers since the DSP48 tile is power optimized. 

KE>Og±)0 
:DSP48SLICE1 

iS-

PCIN: 

KH^ 
;DSP48SLICE0 

i INTERNAL 
I ROUTING 

Figure 5.2 DSP48 tile internal configuration 

The DSP48 block is configured to perform the sum of three operands with two of 

them obtained from unsigned multipliers. The operation is speed-up by the use of 

built-in high-speed adders with integrated carry chain. The main drawback present in 

the original algorithm which was implemented in the Spartan-3 FPGA is thus 

mitigated with the use of the more powerful Virtex-4 DSP48 block. Internally, 

SLICEO is configured to multiply the words AO and BO with the resulting product 

added to the summation of CIN with the C input. The result at the output of the 

DSP48 tile includes a carry out as the two most significant bits along with the final 

sum of length 2m, m being the length of the DSP48 input operand. 



39 

The functionality of the DSP48 block is programmed at compilation time with 

attributes for the operation mode and carry type written as attributes in the hardware 

descriptive language source. Table 5.1 gives binary values for the OPMODE as well 

as that of the CARRY register. Once set, they will control how the internal datapath of 

the DSP48 is setup and also, which registers are enabled. 

TABLE 5.1 OPMODE/CARRY CONFIGURATION BITS FOR SLICEO AND SLICEI 

SLICE 
CONFIGURATION 

SLICEO 
SLICEI 

CONFIGURATION BITS 
OPMODE 

6 
0 
0 

5 
1 
0 

4 
1 
1 

3 

0 
0 

2 
1 
1 

1 

0 
0 

0 
1 
1 

CARRY 
1 

0 
0 

0 

0 
0 

5. 2 Arithmetic Ceil A Block 

The proposed algorithm defines two types of arithmetic cells which are based on 

the Virtex-4 DSP48 block. Arithmetic Cell A (ACA) (Figure 5.3) encapsulates the 

operation: 

P = (4,-50) + (4-51) + C Eq. 1 

The total latency is equal to that of SLICEO combined with SLICEI and results in 

4 registers. The external registers on AO, BO, C, Al, Bl inputs are needed in order to 

synchronize the arrival of data at the DSP48 tile, with respect to their internal latency. 

Furthermore, registers REGc and REGp are optional. REGp is needed when ACA is 

used internally and not in the last column while REGc is required at the second level 

only. The proposed algorithm generates the correct ACA block with the use of Eo 

(Enable of REGc) and Ei (Enable of REGp). REGP is also of constant depth (4 

registers) which equals to the latency of one DSP48 tile. The input of REGp is taken 



40 

from the most significant 17bits of output P and ranges from bit Pn to bit P33. The 

output of REGp is then reconnected to signal P, hence delaying only the upper part of 

P when needed. If REGp is disabled, then the output of the DSP48 tile bypasses REGp 

and connects directly to the product P. COUT represents carry-out bits and connects 

the two most significant bits of P to adjacent ACA and ACB blocks. CIN is the carry 

input of ACA and is internally pipelined by the DSP48 slice. 

AO . : , 

BO . : , 

' . 

c . •• , 

3 4 • 

Al , : , 
17 ; 

17 ; 

73 

n 

73 

CD 

"73 m 
0 

rv -
73 
1II 

n 
73 
111 

0 
Lc 

• ••• 

• ••* 

REG 
REG 

• ••* 

• ••• 

• ••• 

tency D. 

m 
§11 

73 
111 

n 
73 
111 n 

4t La 

REG 
REG 

73 

O 

REG 
REG 

tency 

t 

?t 

?t 

2t 

O N -

\ 

{*> 
s 

REG 
1 

REC,. IMPLEMENTED WHEN 

RECC_EN='r ELSE BYPASS 

REG,, IMPLEMENTED WHEN 

REGP_EN=l ELSE BYPASS 

\ 

®-
s 

REG | 

DSP48 SlICEO; 

>+Vn ^ 

r 

REG 

t A 

L 1 

£> 

REG 

t j 

DSP48 SLICE!; 

M 
4t 

\ \ 

Figure 5.3 Internal view of Arithmetic Cell A block 

5. 3 Arithmetic Cell B Block and Cascade Register 

The Arithmetic Cell B (ACB) (Figure 5.4) performs the operation R = X + Y(Eq. 

2). Input X is unregistered and connects directly to the first operand of the adder 

block. Input Y conversely has registers m-bits wide and of depth Do which connects to 

the second operand of the adder. The result R at the output can also be registered with 

a depth of Dj. A single DSP48 slice is sufficient to perform the addition operation 



41 

together with some pipelining (4 registers). Alternatively, the adder can be constructed 

using logic cells. 

ARITHMETIC CELL 8 

Figure 5.4 Internal view of Arithmetic Cell B block 

The proposed partitioning algorithm finally makes use of a third type of block, the 

Cascade Register (CR) (Figure 5.5). It consists of a series of cascaded registers of 

fixed width (m) and of variable depth D2. 

Do=D.=D,=0 ^ BYPASS REGISTER CASCADE REGISTER 

Figure 5.5 Internal view of Cascade Register block 

5. 4 Partition Algorithm Description 

When run at a high level, the time complexity of the algorithm is in 0(N2) while 

requiring constant amount of space, hence in 0(1) space-wise. Initial parameters are 

needed for the input length of operands (n) and the size of the small multiplier (m). 

The algorithm is described in pseudo code format in the Algorithm la listing. First, 

the number of levels (N) is calculated in line 1. Then, input segments of length m are 

squared together to produce Zo (lines 2 to 4). This is accomplished by using N 



42 

unsigned multipliers created from DSP48 tiles, where N=number of levels, resulting 

in an aggregated 2mN partial product word, where m is the small multiplier operand 

size, representing the square of the input values grouped with length 2m. 

Algorithm la Proposed Partition Algorithm 

2. For i=0toN-l loop 
3. Z0(2m(i+1)-1 .. 2mi)=DIN_A(m(i+l)-l .. mi) * DIN_B(m(i+l)-l .. mi) 
4. End for 
5. M(16..0)=Zo(16..0) 
6. Latency D2=2N-1 
7. For i=0 toN-1 loop 
8. For j=i toN-1 loop 
9. Generate Arithmetic Cell A (ACA) 
10. If i=0 then E0=l else E0=0 
11. If i=N-l then E,=0 else E,=l 
12. Latency D=i+j 
13. A0=DIN_A(m(j-i+l)-l .. m(j-i)) 
14. B0=DIN_B(m(j+2)-l .. m(j+l)) 
15. Al=DIN_A(m(j+2)-l .. mQ+1)) 
16. Bl=DIN_B(m(j-i+l)-l .. m(j-0) 
17. C=Zi(2mG-i+l)+m-l .. m(2G-i)+l)) 
18. Zi+1(2mG-i+l)-l .. 2mG-i))=P 
19. CIN=C,(2G-i)); Q(2G-i+2)-l .. 2G-i+l))=COUT 
20. End for 
21. Generate Arithmetic Cell B (ACB) 
22. If i=0 then D0=3 else Do=0; D,=N-i-l 
23. X=CIN(2G-i+l)-l .. 2(j-i)) 
24. Y=Zi(m(2G-i)+2)-1 .. m(2G-i)+l)) 
25. M(m(2N+2-i)-l..m(2N-i+l))=R 
26. Generate Cascade Register (CR) 
27. D2=2(N-i-l) 
28. DIN=Zi(16..0) 
29. M(m(i+2)-l .. m(i+l))=DOUT 
30. End for 

Line 6 represents the first partial product generated, as obtained from Z0 and 

completes part of the output M of the large multiplier. Two nested loops (lines 7,8) 

then take care of producing the main array multiplier. Iterator T goes from 0 to N-l 

while ' j ' starts from i and ends at N-l. The main purpose of j is to generate multipliers 

across a particular level while i iterates through the levels. Furthermore, blocks of type 

ACA (line 9), ACB (line 21) and CR (line 26) will be generated at each level. For the 

first level (line 10), pipeline registers are present on all inputs of the ACA blocks. In 



43 

every step, the latency D of the block is calculated with the formula D = i + j , while 

inputs to the ACA block are taken either from the large input word (m) or from the 

result obtained at the previous level (line 13 through 17). The output at each ACA 

block from one level consists of Z\+\ and carry-lines, which are propagated through 

adjacent ACA blocks. At each level, an ACB-CR block pair is required to sum the 

current carry information with the previous data obtained and to delay the resulting 

data respectively (line 21 to 28). ACB blocks are positioned at the end of the column 

while CR blocks are placed at the beginning. Finally, the output from both CR and 

ACB blocks drives the final output of the large multiplier (M). 

Figure 5.6 shows a long-integer multiplier of size 68bits generated using the 

proposed algorithm. The structure consists of 4 levels, including the squarers at the 

input, and intermediate levels consisting of ACA, ACB and CR blocks. The output is 

obtained at M after 5 latency cycles. 

E.- ' E."1 

E„- l E,-l D=l 

Y<1 

E,-l E,-l 

DIN.A: XJX,X1X0 
DIN_B Y Y.Y,Y 
DOUT M: M,M,M,M,M.r 

-\m 
E,=REGC ENABLE 
E.-RECP ENABLE 
ACA - ARITHMETIC CELL A 
ACB = ARITHMETIC CELL B 
CR = CASCADE REGISTER 

v XOTAO 
a— so 

j - c ACA P 

E.-0 E,=l 0=2 

E,-0 E,-l 

D.-0, D,- l 

"04 
A * 

J D»4 E.-0 E,-0 

Do-0, 0,-0 

Figure 5.6 Long-integer 68x68bits multiplier generated by proposed algorithm 



5. 5 Resources Utilization 

44 

The amount of FPGA resources needed for a multiplier generated by the algorithm 

can be derived in terms of the input word length n, the DSP48 operand size m and the 

number of levels N. 

Number of levels (N) = 
n 

m 
- 1 

Number of input multipliers = N+l 

N(N +1) 
Number of Arithmetic Cell A blocks = — -

2 
Number of Arithmetic Cell B blocks = N 

Number of DSP48 slices used (ACB implemented with logic cells) = 

For a pipelined design, the algorithm further defines the 

DSP48 block latency (L) = 4 

Number of Cascade Register blocks = N 

Total pipeline latency = 4(2N-l) 

Eq. 3 

Eq. 4 

Eq. 5 

Eq. 6 

= (N +1)2 Eq. 7 

following terms: 

Eq. 8 

Eq. 9 

Eq. 10 

5. 6 Performance Equations 

The following equations describe the performance of the proposed partition 

algorithm when the width V is changed, while m, the size of the DSP48 input is kept 

constant. In the equations, L=4 and represents the latency of a DSP48 block. 



45 

Number of levels (N) = 
r- - l 

n 
m 

-1 Eq. 11 

N2 

Number of multiplier blocks = \-3N + \ Eq. 

N-lN-\ 

Number of registers for pipeline design= mL((^ ^ 4(/' + j) + 1) + N2 - N -I) Eq. 
y=0 i=j 

Worst case combinational delay TP=TDSPD0 BPL ns Eq. 

Maximum frequency of operation FM^T= MHz Eq. 
T +T +T 
1DSPCKO _ PCOUTP ^ 1 DSPDO _BPL^ 1DS 

12 

13 

14 

15 

, w h e r e TDSPD0 BPL,TDSPCK0 PC0UTP and TDS are defined in [33]. 

5. 7 Non-Pipeline Design 

From Eq. 13, a generated design has an area that exhibits a quadratic behaviour in 

N. Instead, the design can also be used with less pipelining stages. This is a trade-off 

of area against speed of operation. As such, the proposed partition algorithm is 

modified for a non-pipelined design, with the configuration of the DSP48 blocks also 

changing in order to reflect this, as shown in Algorithm lb. 



46 

Algorithm lb Proposed Partition Algorithm (Non-Pipelined) 

1. 

_- -, 
N = n 

m 
- 1 

2. For i=0toN-l loop 
3. Z0(2m(i+1)-1 .. 2mi)=DIN_A(m(i+l)-l .. mi) * DIN_B(m(i+l)-l .. mi) 
4. End for 
5. M(16.. 0)=Zo(16..0) 
6. For i=0toN-l loop 
7. Forj=i toN-1 loop 
8. Generate Arithmetic Cell A (ACA) 
9. AO=DIN_A(m(j-i+l)-l .. m(j-i)) 
10. B0=DIN_B(m(j+2)-l .. m(j+l)) 
11. Al=DIN_A(m(j+2)-l .. m(j+l)) 
12. Bl=DIN_B(m(j-i+l)-l ..m(j-i)) 
13. C=Zi(2mG-i+l)+m-l .. m(2(j-i)+l)) 
14. Zi+i(2m0-i+l)-l •• 2m(j-i))=P 
15. CIN=Ci(2G-i)); Cj(20-i+2)-l .. 2(j-i+l))=COUT 
16. End for 
17. Generate Arithmetic Cell B (ACB) 
18. X=CIN(2(j-i+l)-l .. 2(j-i)) 
19. Y=Z,(m(2(j-i)+2)-l .. m(2(j-i)+l)) 
20. M(m(2N+2-i)-l .. m(2N-i+l))=R 
21. Generate Cascade Register (CR) 
22. M(m(i+2)-l .. m(i+l))= Z,(16 .. 0) 
23. End for 

Synthesis results as obtained from the Xilinx ISE tool [30] show that timing 

performance for the proposed algorithm decreases when compared to an 

implementation such as using the multiplication operator as obtained from the HDL 

library. The timing result of our proposed implementation is still better than solutions 

obtained from COREGenerator. 

TABLE 5.2 PERFORMANCE RESULTS FOR COMBINATIONAL DELAY, NON-PIPELINED DESIGNS 

Multiplier Width 
Proposed Algorithm 

Implementation using VHDL 
multiplication operator 

COREGenerator 

34bits 
10.195ns 

9.514ns 

10.596ns 

64bits 
22.948ns 

15.190ns 

40.742ns 

136bits 
73.069ns 

21.925ns 

N/A 

221bits 
111.428ns 

28.485ns 

N/A 



47 

TABLE 5.3 PERFORMANCE RESULTS FOR AREA UTILIZATION, NON-PIPELINED DESIGNS 

Multiplier Width 
Proposed Algorithm 

Implementation using VHDL 
multiplication operator 

COREGenerator 

34bits 
16 Slices 

16 Slices 

16 Slices 

64bits 
64 Slices 

143 Slices 

64 Slices 

136bits 
256 Slices 

800 Slices 

N/A 

221bits 
676 Slices 

2288 Slices 

N/A 

As shown in Table 5.3, a design generated by our algorithm (non-pipelined) does 

not consume any logic cell with all arithmetic operations taking place in DSP48 

blocks. The table uses the logic slice to DSP48 slice ratio of 4:1, as introduced in 

Chapter 4.3. 

The delay product (AT2) is given in Figure5.7 and shows the performance of three 

non-pipeline implementation methods. When measured in AT2, the proposed 

algorithm for non-pipelined designs is actually worse than HDL and Coregen 

implementations. This is so since the DSP48 block is highly optimized for pipelining 

operations, which is not the case here. 

10000000 

1000000 -

= 100000 -
•D 
o 

1 10000 -
n 
3 

% 1000 -
J2 o 
a 
2 100-

10 -

1 -

0 50 100 150 200 250 

Size of Operands (bits) 

Figure 5.7 Area-Delay product for non-pipeline multipliers 

- coregen 

- proposed algorithm 

• hdl implementation 



5. 8 Results 

48 

The partition algorithm presented was originally designed to use a pipelined 

architecture. This was decided since the building block itself, the DSP48, is optimized 

for pipelining under which it will operate at a theoretical 500MHz. With the following 

figures, the reader will get an idea of how well multipliers generated by the algorithm 

perform against classical implementations which are readily available to the designer. 

For comparison, designs with input width of 34bits, 68bits, 136bits and 221 bits were 

chosen because they are very close to practical multiplier lengths while at the same 

time, are multiplies of the DSP48 block input size. Classical implementations were 

obtained from two sources: 

(a) Components generated from the COREGenerator utility [30]. 

(b) VHDL synthesis of the multiplication operator, as provided by the 

language's arithmetic library. 

Also, for comparison, results from the original partition algorithm are included to get 

an idea of the improvement that the proposed algorithm brings to the end user. Graphs 

for combinational path delay, amount of logic slices, DSP48 slices and power 

dissipation against changing input sizes are given. Area-Delay product (AT2) is given 

to understand where the proposed partition algorithm is best at, either in terms of 

delay or area. The graph of interconnect and gate delay is given which shows where 

improvements exist. 

Data for the given graphs were obtained from report files generated by the 

Mapping and Place-and-route tools and included area and delay respectively. 



5.8.1 Combinational path delay 

49 

Combinational delay of the critical path in the multiplier is given for changing 

input sizes. The critical path includes gate as well as interconnect delay. Figure 5.9 

shows that multipliers generated using our algorithm outperform other methods 

available. Data for "Coregen" and "Original algorithm" were either unrealizable or 

not available for input sizes above 64bits. 

100 

a 

t 10 n c o 

.Q 
E 
o 
u 

- Proposed multiplier 

Coregen multiplier 

• HDL multiplier 

Original algorithm 

16 32 64 128 

Size of Operands (bits) 

221 

Figure 5.8 Combinational path delay for different sized inputs 



50 

5.8.2 Virtex-4 logic slice utilization 

The amount of resources in terms of slices used is presented in Figure 5.9. The 

number of DSP48 used is also factored in with an equivalent number of four slices per 

DSP48 block used. The proposed algorithm uses a large number of logic slices to 

implement pipeline datapaths, which is revealed in the graph. 

100000 

10000 

t x a 

5 

! 

1000 

100 

10 

- Proposed multiplier 

Coregen multiplier 

• HDL multiplier 

Original agorithm 

. » > ' 

16 32 64 128 

Size of Operands (bits) 

221 

Figure 5.9 Amount of Virtex-4 slices used against different sized inputs 



51 

5.8.3 Virtex-4 DSP48 slice usage 

The amount of DSP48 slices is shown in Figure 5.10. The number is the same in 

all implementations, which means that there is no advantage in using one method over 

another, if DSP48 usage is considered. 

300 

•D 

» 250 
</> 
0 o 
55 
o. 200 
if) 
a 

| 150 
!> 
00 

2 
g 100 

f 50 

Proposed algorithm 
Coregen 
HDL Synthesis 
Original algorithm 

100 150 200 

Size of Operands (bits) 

250 300 

Figure 5.10 Number of DSP48 slices against different sized inputs 



52 

5.8.4 Area delay (AT ) product 

The area delay-squared product is a performance measure used to benchmark 

designs. Multipliers of various sizes generated by the proposed algorithm are hence 

evaluated using this method and compared with more commonly used HDL and 

Coregen implementations (Figure 5.11). Also, results obtained from the original 

algorithm [4] are included. 

10000000 

1000000 

T> 
3 
•D 
O 
Q. 

ar
ed

 

3 
a-(/> 
>. 
n 
a 
a 
a 

A
re

 

100000 

10000 

1000 

100 

10 

- Froposed multiplier 1 

Coregen multiplier 3 

• HDL multiplier 2 

Original agorithm 

16 32 64 128 

Size of Operands (bits) 

221 

Figure 5.11 Area Delay product (AT2) performance measure 



53 

5.8.5 Power dissipation 

Power dissipation is obtained from the Xilinx Xpower [36] software. The utility 

takes into account static as well as dynamic power dissipation. Results were obtained 

for HDL, Coregen and the multipliers generated by the proposed algorithm (Figure 

5.12). The frequency of operation was fixed at 50MHz while the activity rate was set 

at 50%. 

12 

10 

5. 8 

S 4 
o 

Q. 

FVoposed multiplier 1 

Coregen multiplier 3 

HDL multiplier 2 

20 40 60 80 100 

Size of Operands (bits) 

120 140 

Figure 5.12 Power dissipation for different sized inputs 



54 

5.8.6 Other results 

To conclude the analysis of the proposed partition algorithm, two additional 

figures are included that put in perspective the main problem arising in large pipeline 

designs. The first graph shows gate and interconnect delay against input size. The 

proposed multiplier algorithm has constant gate delay, independent on input size 

while interconnect delay increases, as shown in Figure 5.13. 

2.5 -

2 -

in 

c 

0) 
Q 

0.5 

Interconnect delay 
- Gate delay 

16 32 64 128 

Size of Operands (bits) 

221 

Figure 5.13 Routing performance degradation for higher word length 



55 

Figure 5.14 shows the final placement of logic blocks along with DSP48 slices as 

produced by the Xilinx place-and-route tool [30]. It shows the drawback associated 

with the automated placement tool used, where logic placement is not relatively 

placed with respect to DSP48 blocks. 

Figure 5.14 Layout of placed 136xl36bits multiplier circuit inside a Virtex-4 FX140 

FPGA 



56 

5. 9 Summary 

The partition algorithm presented in this thesis uses DSP48 blocks efficiently to 

create large-input unsigned multipliers. Figure 5.8 shows that the proposed solution 

outperforms other methods if compared using critical path delay. Since the design is 

heavily pipelined, improved delay performance comes at a price of higher logic-cell 

consumption. Another performance measure (AT2) has been presented (Figure 5.11), 

where it is shown that for input sizes of less than 64bits, the COREGeneator 

implementation method was marginally better, while the proposed partition algorithm 

has a much lower value for AT2 across all input sizes when compared to HDL 

implementation using the multiplication operator. To conclude, problems arising when 

doing pipeline designs are outlined and possible solutions to the placement problem 

are further discussed in Chapter 6. 



57 

6 PLACEMENT ALGORITHM FOR LARGE-UNSIGNED MULTIPLIERS 

Chapter 5 outlined a partition algorithm that can be used to develop arbitrary sized 

multipliers based on small but efficient DSP48 arithmetic blocks available in the 

Xilinx Virtex-4 FPGA. The improvement achieved is mainly dependant on the ability 

to fit the algorithm presented in [4] into the architecture using both multiplier and 

adder elements of the DSP48 slice. Even though the main cause of delay reduction is 

the use of high-performance DSP blocks, delay is also minimized with the use of local 

wire interconnect since a DSP48 block packs together a source (multiplier) along with 

its sink (adder) in the same physical component and thus avoids using the FPGA 

routing channels. The consequence of this improvement is also an increase in the 

amount of wire in the multiplier design to connect ACA, ACB and CR blocks 

together. This is shown at the end of Chapter 5 (Figure 5.13), where gate delay is 

constant while overall interconnect delay actually increases almost linearly. 

6.1 Introduction 

The proposed partition algorithm needs only a timing constraint on the clock input 

to generate a solution. The software auto-placer then decides where DSP blocks and 

pipeline registers should be located. The running time to get a solution is generally 

long because finding a possible placement is considered an NP-complete problem 

[22]. The placement tool uses an algorithm which can be manually adjusted to find a 



58 

reasonable answer according to rules supplied by the designer such as high speed or 

low power. 

A long-integer multiplier generated by the proposed partition algorithm consists 

mainly of DSP blocks connected to pipelining registers without any control logic. The 

next improvement will be to place the various hardware blocks in an optimum 

arrangement so that area, delay and power are minimized. A logical placement of 

critical blocks will also reduce the set of solution which can be obtained, decreasing as 

a result the running time of the Place-And-Route (PAR) algorithm used by the 

implementation CAD tool and giving consistent timing results between PAR 

iterations. A new placement algorithm is hence proposed which is partly based on the 

greedy algorithm concept and uses property of the heterogeneous placement algorithm 

proposed by Love Singhal et al. [23]. 

Figure 6.1 shows the required steps in order to partition and place an arbitrary 

length multiplier with the proposed set of algorithms. The resulting design can either 

be used as a single unit residing on the FPGA, as in the case of an arithmetic 

accelerator, or alongside other systems, similar to a System-On-Chip (SOC) 

methodology. In the case of a SOC design, the partitioning and placement algorithm 

has to be executed first before any other placement in order to guarantee the highest 

performance. The placement algorithm is also generic and can be ported across other 

FPGA families (Virtex-2 and upwards). 



59 

DESIGN 
IMPROVEMENT 
WITH PROPOSED 
ALGORITHMS 

PARTITION 
ALGORITHM 

PLACEMENT 
ALGORITHM 

NORMAL 
DESIGN 
FLOW 

1 
INITIAL MULTIPLIER 
SPECIFICATIONS: 
OPERAND SIZE 

Figure 6.1 Typical design flow using proposed set of algorithm 

6. 2 Placement Problem Formulation 

A circuit generated by the placement algorithm consists primarily of nets and 

modules. Modules can be either of type ACA, ACB or CR. ACA and ACB have 

further restrictions to their physical location on the FPGA, DSP blocks being located 

in dedicated DSP columns spanning the vertical height of the chip and have 

input/output ports located to one side of the column. The placement problem is in 

finding suitable locations for elements of the circuit that will either minimize or 

maximize objective functions supplied by the designer, which are usually minimum 

delay, minimum power and minimum area. The solution hence improves on the 



60 

original design according to the objective functions. Optimum placement can also be 

seen as a search problem where a solution that satisfies all objective functions is 

enough. The search space is very large in modern FPGA hence the reason why the 

complexity is NP-complete. 

Formally, the general placement problem can be written as follows. A circuit W is 

a set containing nets and basic elements, the set of nets being./V = {./V1,./V2,...,./V,} 

while the set of elements is2? = {E],E2,...,EJ}. Furthermore, a group of elements and 

nets is called a module and the set of modules M = {MvM2,...,Mk}. We associate 

with each module in M a subset of N and a subset of E which correspond to nets and 

elements present in a particular module. Therefore, M, e M,NM c N where M,is a 

module from set M, and NMi is a subset of N related to M,. Similarly, M' e M, 

EM cE where M is a module from set M which contains a subset of basic elements 

of set E. Also, elements are constrained to specific locations and the set of locations 

LE ={LE01 ,LE02,.,.,LExy)where 0<x<sx and 0<y<sy, sx and sy being the 

horizontal and vertical resource counts for the chip used. Placement difficulty arises 

when we need to find locations in LE for modules in M that will optimize the objective 

function(s): 

/ = c\ • delay(f) + c2 • power(f) + c3 • area(f) 

The main objective function is to decrease system delay. Given that gate delay is 

in 0(1), only reduction in interconnect delay can be achieved using this methodology. 

Also, all resources have to fit inside the perimeter of the chip which is guaranteed by 

the x-y coordinates limit of LE. 



61 

6. 3 Related Work on Placement Algorithms 

Placement algorithms can be classified as being either homogeneous or 

heterogeneous. The former applies to the placement of blocks having identical form, 

such as logic cells in an FPGA, while the latter applies to designs which contain 

different structures, such as DSP48, BRAM and logic cells. A heterogeneous placer 

reflects the trend of modern FPGA technologies. Several placement algorithms for 

FPGA are described in literature, with Simulated Annealing (SA) [24] among the 

most commonly referred to. 

6.3.1 Placement algorithms for FPGA 

Simulated Annealing falls into the class of non-deterministic algorithms which are 

used to solve global optimization problems such as logic cells placement. SA can be 

used as an approximation algorithm that yields an acceptable solution to the global 

minimum, for a given function in finite time. This is done on a large search space, 

where other methods would require an exhaustive enumeration of all possible 

combinations. The concept of SA finds its roots in metallurgy and energy levels of 

atoms. An SA algorithm usually begins with an acceptable solution which is improved 

by looking for a nearby replacement obtained from a probability function. Initial 

parameters for SA are determined experimentally and thus, can be challenging to find. 

Another approach presented in [25] involves placement of modules in terms of 

logic cells and macro blocks. The design is broken down hierarchically into a tree 

which can either be flatten into a single level or allowed to keep its original form. The 



62 

algorithm then proceeds to placing blocks obtained from the hierarchy into quadrants. 

The solution is generic in terms of macro blocks and does not consider hard-wired 

macros such as the DSP48. 

In [26], an optimized design flow for FPGA is described which maps an RTL 

netlist onto different FPGA architectures using an algorithm that allows interaction 

among various implementation processes such as partitioning, mapping, floorplanning 

and block placement. The algorithm keeps structural information obtained from the 

RTL netlist, which it uses during the partition step in a database. Information is 

furthermore shared among the module generator, the partitioner and the floorplanner. 

If the amount of logic cell used by a module exceeds the amount that the FPGA can 

provide, the partitioner is called upon to break the module further. Hence, [26] 

provides an iterative methodology to the placement problem. 

In [27], Emmert et al. presents a method for floorplanning FPGA addressing both 

hard and soft macros placement. For their solution, a hard macro is defined as a sub-

circuit which possesses both fixed size and shape while soft macros possess fixed size 

but variable shape. This is a subtle difference from current hard-macros present in 

modern FPGA devices, which deal with custom-built sub-circuits of fix size, shape 

and location. The algorithm uses the notion of clusters which are groups of macros 

with an area constraint limit. Once formed, clusters are collected into a cluster set B 

following with a Tabu Search optimization on B. 

Finally, [28] demonstrates an approach to the problem of 3D placement in 

integrated circuits, with the proposed methodology equally suitable for ASIC and 

FPGA designs. The proposed framework addresses issues such as higher power 

dissipation for ASIC and challenging 3D connectivity and switch-box for FPGA. 



63 

6.3.2 Heterogeneous Floorplanner for FPGA 

The first heterogeneous floorplanner algorithm for FPGA was developed by 

Cheng and Wong [29]. In their proposed solution, a design is represented using slicing 

tree with polish notation for the nodes. Leafs and internal nodes are then converted to 

an irreducible realization list (IRL). An irreducible element is by definition a node of 

the slicing tree with distinct height and width (distinct blocks properties). A feasible 

solution is finally obtained using simulated annealing with area and half-perimeter 

wirelength as parameters for the objective function. 

6.3.3 HPLAN Heterogeneous Floorplanner 

The main disadvantage found in the first generation of heterogeneous 

floorplanners [23] is a waste of resources as a result of placing related modules with 

disproportionate ratio of logic cells to heterogeneous resources. For example, the 

placement of a group of components using [29] will take up a large area on the FPGA 

if the group contains a high number of BRAM elements but little logic cells. This is a 

consequence of the algorithm in [29] using dimensions of the BRAM block as 

parameters for the IRL, a BRAM unit being four times the vertical height of a logic 

cell. The ideal heterogeneous floorplanner hence should aim at distributing related but 

different logic efficiently. The HPLAN floorplanner presented by Love Singhal et al. 

solves this problem by tying a layer to one type of resource and eventually treating 

each layer as a smaller placement problem. This is intuitively accurate as a logic 

designer usually sees each heterogeneous component as separate sets when allocating 



64 

resources and then considers related components as groups while decreasing their 

relative distances with respect to each other (if objective function is minimum delay). 

Thus, HPLAN looks at the problem differently and adds the concept of layers, 

defining three initially for Block RAM, CLB and DSP components. HPLAN then 

places layers along with resulting bounding boxes simultaneously. This allows 

modules with different resources types to overlap each other given that they are in 

different layers. 

Figure 6.2 shows how placement using HPLAN is achieved using three defined 

layer types. An efficient floorplanning using SA [23] is then performed on each layer. 

LOGIC CELL BLOCK RAM DSP BLOCK MERGED LAYERS 
LAYER LAYER LAYER OF FINAL FLOORPLAN 

Figure 6.2 Example of floorplan generated using HPLAN 

6.3.4 HPLAN problem formulation 

The multi-layer floorplanning of block bj requires a resource allocation vector 

$ =(«1,«2,...,«/t)that details each block's resource utilization in terms of CLB (n,), 

RAMs (n2) and so on. A block bi in layer j is represented by a rectangular bounding 

box, bby. A floorplan, which is a non-overlapping 2-dimensional placement of all 

MULTI-BOUNDING BOX 
SEQUENCE PAIR 

X: <A,B.C> 
Y: <A.B.C> 



65 

blocks B in the ith layer is represented by the set F -(fvf2,-,fk) • The criteria to 

validate a floorplan are: 

(a) F is free to overlap blocks in other layers but itself 

(b) F fits inside the device physical boundaries 

(c) F consume up to the maximum resource allocated to each layer 

The problem statement is completed with the objective function for the placement 

algorithm which is to find a feasible solution F to minimize the cost function: 

C(F) = cx • area(F) + c2 • wirelength(F) + c3 • aspect ratio penalty'(F) + 

c4 • bounding box_deviation(F) 

For the first term area(F), the final area of the floorplan (F) is obtained by 

multiplying the maximum height with the maximum width of all layers. The second 

term, wirelength(F), is obtained using half-perimeter of bounding boxes through 

each layer. For third term, aspect ratio penalty(F) is obtained from the difference 

between the aspect ratio of floorplan F and the one of the device used. The final term 

bounding box _deviation(F) is obtained from the displacement between boxes and 

is used to bring them close to each other. 

HPLAN also uses a notation to represent multiple floorplans for each layer. The 

arranged enumeration gives information of the placement of modules of a particular 

layer with respect to one another. The sequence pair for multiple bounding boxes, 

commonly called multiBox Sequence Pair (BSP) is defined as follows: 

BSPA = (<..., p,...,q,...>,<..., p,..., q,... >) 

=>M>rfisleftofM„ Vj,\<j<k 

BSPB = (<...,p,...,q,...>,<...,p,...,q,... >) 

=> bb is above of bb, V/, 1 < j < k 



66 

The BSP criteria accordingly states that each bounding box of a layer is linked to all 

others which belong to the same layer according to either BSPA or BSPB . 

6.3.5 Comments 

The methodology presented in [23] shows how to properly separate and place 

heterogeneous blocks into large FPGA devices. The algorithm is effective with 

disproportionate design. The objective function as well as the final placement 

algorithm is chosen such that most designs are covered. Area and wirelength in 

particular are used as cost function while SA is used for final block placement. To 

support their claim, the author used as an example a design containing a Microblaze 

processor with coprocessors for DES, CRC and FFT and was eventually targeted to a 

Xilinx Virtex-4 FPGA. The placement algorithm writes a user-constraint file (UCF) at 

the end of the process which gives the explicit location of each block. 

In the context of a multiplier design with pipelining, the placement algorithm can 

be further enhanced since the critical path of the design is known before-hand. Also, 

the cost function can also include a power component which would make the new 

placement algorithm aware of how power is affected if more logic cells are used. In 

the remaining document, we explain modifications that are brought to [23] along with 

a different final placement algorithm based on a greedy algorithm instead of SA, as 

originally suggested by the authors. 



67 

6. 4 Relative Placement Macros 

The Xilinx toolset [30] gives a convenient way of representing hardware structures 

together with their physical, absolute or relative locations. Relationally Placed Macros 

(RPM) [31] add location attributes along with hierarchical relationships to a structural 

HDL model. Synthesis transfers that information to the netlist file which is then used 

at the mapping stage. Most basic elements in the FPGA fabric can have a relative 

location compared to an initial reference element. The attribute RLOC is used to 

convey the placement information to the mapper. For example, in a VHDL design, 

RLOC is defined as: 

--DECLARATIVE PART 

attribute RLOC : string; 

-DECLARATIVE PART OF GENERATE 

attribute RLOC of A C A 0 0 label is 'XmYn" 

Figure 6.3 Usage of Relative Location in hardware descriptive language 

As shown in Figure 6.3, ACA00 is an instance of component ACA (Arithmetic 

Cell A), which is a module used in the proposed multiplier algorithm. RLOC also uses 

the Cartesian coordinate system as the relative physical placement grid, which began 

with Virtex-2 family of FPGA. The notation is Xm and Yn, where m and n are integer 

values. The X and Y values are translated to absolute coordinates by the synthesizer 

using the difference between RLOC and the reference element. 

In Figure 6.4, Arrangement2, the RLOC notation is used to place up to four flip-

flops per CLB, accounting for half of its utilization. This is because RLOC works at 



68 

the slice level where each slice consists of two flip-flops [32]. A turn around is to 

place the same RLOC for two components within the same hierarchy, thus forcing the 

mapper to put two flip-flops in the same slice. 

1 
L _ 

LSLOC 1 
rxoY2 1 

1 1 
1 

J SLICE 

1 
1 

TXOYO 1 

1 1 
1 

J SLICE 

CLB 

LSLOC ' 1 
rX0Y2 I 

1 1 

LSLOC 1 
rxm 1 

1 1 
SLICE 

LTELOC 1 
novo 1 

1 1 

rra.BC 1 
rxjYo I 

1 1 

SLICE 

rsroc "1 
fXOYO 1 

1 1 

rxiYo i 

I i 

SLICE 

ARRANGEMENT 1 ARRANGEMENT 2 

Figure 6.4 Internal logic slice arrangement using RLOC attribute 

Along with specifying locations, components can also be grouped according to 

rules. The keywords HSET, USET and HU_SET are used to create or modify 

relationships among basic elements in a design. Elements under the same hierarchy 

are by default labelled with auto-generated H_SET attributes, indicating that they 

belong to one particular set and are hence related. Moreover, USET attributes have 

an arbitrary but distinct name. Any component with same USET will belong to the 

same group, irrespective of their design hierarchy. Finally, HUSET modifies the 

HSET set attribute to allow arbitrary set names. The proposed partition algorithm 

generates structural VHDL, hence implicitly enabling the use of HSET. 

Figure 6.5 shows how RLOC organizes a design using either HSET or HUSET. 

Component A and B inherit by default their parent "hset" name. This is different in 

the second case (Hierarchy with HUSET), where HUSET is used in component C. 

This forces the synthesizer to rename components in D and E with the arbitrary name 

"TEMP". 

IZZI 

I I SLICE 

LHEOC 
rX4YQ 

1 

LW-OC 1 
ftcYO I 
1 1 

1 1 

SLICE 

CLB 

http://rra.BC


69 

TOP LEVEL TOP LEVEL 

RLOC 
X0Y1 

B 

W B 1 
H SET= 
B'htti 

H SET= 
B?hs« 

a 
m 

}• 
COMPONENT 'A' 
INSTANTIATION 

:HU_SF!feH 
TEMP • 

RLOC 
:H SEI= 

» • 
G • 

E 
H • 
I • 

HIERARCHY WITH H SET HIERARCHY WITH HU SET 

Figure 6.5 Hierarchy representation using HSET and HU_SET 

6. 5 Area, delay and Power Heuristics 

6.5.1 Area 

Area is bound to have a minimum value representing the sum of all slices used in 

the hardware multiplier. In addition, pass-through look-up tables are used whenever 

interconnect resources are exhausted as a consequence of highly congested regions. A 

possible heuristic to the area problem is: Knowing in advance the area of high-

congestion and eventually adding slack space to accommodate for more routing 

resources will decrease the amount of slices used as pass-through logic. Also, 

predicting the amount of congestion and planning for additional area will increase the 

chance of finding a solution while also reducing the placer run-time. 

A block with high fan-in and fan-out is bound to have a highly congested region, 

hence increasing area, delay and power. Blocks falling in this category should be 

placed first. A possible heuristic to the second area problem is: Finding the maximum 



70 

cut between two vertices permits placement according to high fan-in, fan-out and 

maximum delay. 

6.5.2 Delay 

Obtaining the critical path and therefore blocks that include it allows the algorithm 

to place that block first, hence increasing likelihood of meeting timing constraints. A 

possible heuristic to the delay problem is: Finding the longest combinational path in 

part of the graph which covers a block yields an accurate estimation for delay and 

allows high-priority placement for that block. 

A loaded net will have buffers inserted automatically by the synthesis tool to 

reduce delay. An optimum placement for the buffer would be one with minimum 

length to all sinks, or more importantly, one that would not increase the worst case 

delay. A possible heuristic for redundant buffer removal is: Select an edge with a 

certain load, insert a new node (buffer) and place it so that the overall delay of the 

system is unchanged. 

6.5.3 Power 

Minimizing area and interconnect length all have an indirect but positive effect in 

power reduction. Using empirical data, the cost function for power will be obtained. 



6. 6 Proposed Placement Algorithm 

71 

The partition algorithm for long-unsigned multiplication as presented in Chapter 5 

is improved with a new placement algorithm that takes into consideration important 

details of placement in FPGA technologies, such as a reduction in long-type 

interconnect, removal of pass-through logic and placement according to critical 

combinational path. Also, part of the new algorithm is based on work presented in 

[23] and relates to placement of the blocks within the physical limit of the FPGA 

device. 

A generated multiplier design is initially updated with locality information, using 

Xilinx PvLOC attributes. The partition algorithm defines two main arithmetic units, 

Arithmetic Cell A (ACA) and Arithmetic Cell B (ACB) in addition to cascade register 

(CR) blocks. The placement algorithm considers ACA, ACB and CR as atomic blocks 

having predefined layouts which it then arranges optimally. Figure 6.6 shows the 

improvement in delay and PAR runtime when using RLOC to create arithmetic cells. 

The blocks ACA, ACB and CR are in O(L) area-wise and in O(l) delay-wise, where L 

is the latency. The area is a function of latency only since for each increment in L, the 

depth of the pipeline is increased by L while the datapath's width remains constantly 

at either 17 or 34 bits. Delay of a block is also constant given that the distance 

between pipelining columns is fixed and that the local interconnect is used as routing 

resource. 



72 

ARITHMETIC 
CELL 'B ' (ACB) 

ARITHMETIC 
CELL 'A' (ACA) 

DSP48 SLICE 

DELAY: 2.346nS(2.824nS) 
RUNTIME: 26S (34S) 

Values in parenthesis are for un-placed macros 

CASCADE 
REGISTER (CR) 

111! 
III! 1111 111! 

INPUT REGISTERS OUTPUT REGISTERS INPUT REGISTERS OUTPUT REGISTERS 

1.220nS(2.462nS) 
]min24S(2min20S) 

1.006nS(1.336nS) 
39S(39S) 

All blocks are with latency of 4 registers 

Figure 6.6 ACA, ACB, CR Macro blocks internal placement 

6.6.1 Area constraints formulation 

The proposed placement algorithm is partly based on the HPLAN heterogeneous 

floorplanner [23]. HPLAN decomposes a complete system into basic primitives, 

groups the primitives into different layers, adds bounding-box constraints at all layers 

and finally produces a result by combining the layers if and only if: 

(a) The resources needed do not exceed the total available in the FPGA. 

(b) There are no collisions between bounding-boxes. 

(c) All layers fit in their respective primitive sets. 

The proposed placement algorithm restricts the HPLAN resource allocation vector 

cj>. to primitives only used by the proposed partition multiplier algorithm, which are 

DSP48 (ni) and FLIP-FLOPS (n2), thus <D, ={«,,/%}. Since |<D,| = 2, the number of layers 

needed is also two. The set of high level blocks used is defined as 

H = {ACA,ACB,CR,DSP48}. The generated floorplan F is the aggregate of f.,f. being 



73 

the non-overlapping placement of o, in each layer. The problem is simplified as only 

elements in H have to be placed. It can be proven that elements have to be mutually 

exclusive in order to satisfy the second HPLAN criteria. The set of all components 

used to build the large-integer multiplier is B={ACA0, ACA),..., ACB0, ACBi,..., 

CR0, CR,,..., DSP480, DSP48,,...}. 

We also define the cardinality of B as BC= \B\ . The bounding box for each element 

in B is bby where i={ 1,2} and j={l,...,Bc}. As each ACA block consists of 2 DSP48 

blocks, bbij(ACA)=2. An ACB block contains a 17bits adder with optional pipeline 

registers hence bbij(ACB)=l. Lastly, cascade register CR consists of only flip-flops 

thus bbij(CR)=0. Figure 6.7 depicts the physical layout of arithmetic blocks and gives 

worst case scenarios for the heights and widths. We can hence find the flip-flops 

count, which is represented by n2 and obtained from the following equations: 

bb2j {A CA) = 34(1 + xL + 2y + 2L) Eq. 16 

bb2j(ACB)L° = l7(L0 + Ll) Eq. 17 

bb2j(CR)L = 17L Eq. 18 

where L=latency, x=register-e enable {0, 1}, y=output register enable {0, 1}, Lo=input 

register latency, Li=output register latency. This completes the analysis for HPLAN. 



74 

ARITHMETIC 
CELL 'A' (ACA) 

REGISTERS DSP48 

H
=3

4 
R

eg
is

te
rs

 

I |ll 
L 1 I Li 4 

ARITHMETIC 
CELL 'B ' (ACB) 

CASCADE 
REGISTER (CR) 

REGISTERS DSP48 REGISTERS 

=
17

 R
eg

is
te

r 
< 

> 

~ 

>l> 
L L 

1" 
7 .. 
3d — 

II 
L 

H=Block Height in terms of logic cells 
W=Block Width in terms of slices 

W„=L 

L=Latency in terms of slices 

Figure 6.7 Macro blocks physical dimensions 

6.6.2 Congestion Factor 

Congestion adversely affects performance of a design by increasing area and delay 

components. The Xilinx auto-placer first adds extra route-through Look-Up Tables 

(LUT) to accommodate for more routing resources when local interconnect is 

exhausted. LUT adds delay penalty of the order of nanoseconds which can be up to 

ten times higher than local interconnect. To solve the problem of congestion, the 

algorithm assumes that it is always present and adds slack regions, which are 

peripheral zones around a macro block to compensate for the extra routing needed. 

The peripheral region is measured in terms of row and column slices. The algorithm 

uses area coefficients for the three types of blocks present: ACA, ACB and CR. 



6.6.3 Objective function 

75 

The aim of the placement algorithm is to minimize area, delay, power and 

congestion. The general objective function is: F=CA-FA+CD-FD+CP.FP where CA is the 

cost factor for area, Co is the cost factor for delay and CP is the cost factor for power. 

In order to achieve a monotonous function, F is modified with the terms for power and 

area combined into a single coefficient. This is true, considering that as area increases, 

so is the amount of interconnect and hence capacitance. Since p = cv2f where C is the 

node capacitance, V is the voltage and f frequency of operation, power relates to area 

but not linearly. Furthermore, the congestion coefficient is added to the objective 

function. The new FA is now CAI=CA+CP+CC, where Cc is the congestion coefficient 

while the refined objective function is: 

F=C F+C F 
1 ^Al l A ^^D l D 

6.6 A Graph theory 

Figure 6.8 shows an equivalent graph for a 51 bits input multiplier. The input is 

broken down into three 17bits segments that feed the DSP48 multipliers Mo to M2. All 

blocks except CRX are based on DSP48 cores. According to HPLAN, layer ni will 

contain DSP48 cores only while n2 will have registers. Since DSP48s are further 

constrained to specific columns in the FPGA fabric, they are given the highest 

placement priority over registers (n2) which are mapped to regular logic cells. The 

algorithm also determines the critical path of the circuit and the fan-out for each 

macro block, both of which are used as criteria in the algorithm. To simplify the 



76 

process, the large multiplier design is considered as a graph with the mentioned 

properties added to vertices and edges. The algorithm can hence determine the 

shortest path in the graph or get a list of nodes in a specific order according to criteria 

such as highest delay in critical path or highest fan-out. 

COMPONENT AREA 
AO 
Al 
A2 
BO 
Bl 
CRO 
CR1 

54 SLICES 
259 SLICES 
292 SLICES 
106 SLICES 

9 SLICES 
103 SLICES 
71 SUCES 

• A ^ A C A BLOCK 
% BS=ACB BLOCK 

[ # ] CRX=CASCADE REGISTER 

B M ^MULTIPLIER BLOCK 

Figure 6.8 51Bits Multiplier graph 

6. 7 Proposed Placement Algorithm 

The question of where DSP48 blocks should be placed can be answered by 

choosing a greedy algorithm which will place the largest of all ACA blocks first. As 

the number of DSP48 in one ACA is fixed, the factor which determines the size is 

actually the latency of the block. In a Cartesian coordinate system, the latency of an 

ACA block can then be evaluated as: LXY=X+Y-1. The choice of a greedy strategy 

which places block according to the largest size criteria is suitable since this always 

minimizes delay. The algorithm thus uses area as its decision factor and places first 

the largest block also containing the critical path. In the next iteration, the resulting 

sub-circuit contains a new critical path and a new largest block is selected and placed 

with little increase in delay. Part of the HPLAN methodology is also used and consists 

of breaking the design into primitives and treating each one on its own layer. 



77 

Algorithm 2.a Proposed Placement Algorithm 
1. B=List of blocks to be placed; Relocate CRQ at end of list 
2. L,=List of bounding box bbij, 
3. L2=List of bounding box bb2j 

4. Sort B in decreasing order of area 
5. Do 
6. Remove E0 from list B 
7. If E0 is an ACA and is a predecessor for an ACB 
8. RealPlacer(Eo) 
9. E,=GetSuccessor(Eo) 
10. RealPlacer(E,) 
11. Else 
12. RealPlacer (E0) 
13. While |B|>0 
14. Validate solution with HPLAN criteria 

Algorithm 2.b Proposed Placement Algorithm 
15. RealPlacer (E) 
16. Update E with slack factor for congestion 
17. Get free region F0 in <!>,, with bb,j from Li 
18. Place DSP48 from E in region F0 which minimizes F 
19. Get free region F] in <&2 , with bb2j from L2 

20. Place register from E in region F, which minimizes F 

The proposed placement algorithm consists of two parts, Algorithm 2.a and 2.b. 

First, 2a implements a greedy algorithm with elements further obtained from 2.b 

according to criteria obtained from HPLAN. 

In line 1, the placement algorithm building a list of arithmetic blocks to be placed, 

obtained from the partition algorithm. At the same time, RLOC attributes are added to 

the VHDL code. Blocks are of type CR, ACA and ACB. For each element in the list, 

it furthermore defines corresponding bounding boxes which are stored in two lists, L] 

for ni and L2 for n2 as shown in steps 2 and 3. Step 4 is the greedy part of the 

algorithm and sorts the list B in decreasing order of area. Statements 6 to 12 are 

repeated for the amount of elements present in list B. Step 6 removes an element E 

from list B. Step 7 uses the data flow graph representation of the multiplier to place 

ACA and ACB blocks. In steps 8 to 10, if element E is an ACA and sinks an ACB the 

algorithm places E and its successor. Conversely, only E is placed in step 12. Both 

placements are accomplished using the RealPlacer procedure which implements the 



78 

HPLAN methodology with F as objective function. Operations are executed in 0(1) 

except for sorting which takes O(nlogn) when implemented using Quicksort while 

the loop at line 5 is in O(n). 

The last step is to verify if all conditions necessary for HPLAN are satisfied, 

namely, if all blocks located in different layers are mutually exclusive, that they do 

not lie outside of the FPGA boundaries and that primitives used fit inside their 

allocated regions. The placement algorithm can then be applied to the graph in Figure 

6.8 and results in B={A2, A\, Bo, CRo, CRi, Ao, Bi}. At first, E=A2 and on the initial 

iteration, A2 and Bi are placed. The second iteration will then place Ai and Bo along 

with CRi which is placed adjacently to Ai. Multipliers M2, Mi and Mo are next placed 

while CRo is placed at the end. The RealPlacer procedure uses a seed location to 

indicate the initial placement of the first block to be placed (A2). By default, the seed 

locates A2 at the bottom of the FPGA die and augments the Y coordinate for each 

pass. 

Figure 6.9 illustrates the resulting layout for a 51 bits multiplier with the proposed 

placement algorithm. Initially, block A2 is placed using HPLAN using an initial seed 

having the coordinate of the first DSP48 in the column. The next step iteratively 

places Bi, Ai and B0, A0, CRi, M2, Mi, M0 and finally CRo. There can be other 

solutions for the same design if different seeds are used. Since the critical path is 

minimized, the difference in performance for other placements is negligible. 



79 

0 A,=ACA BLOCK 
g B„=ACB BLOCK 
g g CR^ASCADE REGISTER 

'9I M -̂MULTIPLIER BLOCK 

Figure 6.9 51 Bits multiplier physical layout graph, as generated by proposed partition 

algorithm 

6.8 Results 

Performance results in terms of area and delay are given below. Delay is 

furthermore broken down in terms of interconnect and combinational path delay, the 

latter including both gate and interconnect delay. Efficiency of the proposed 

placement algorithm is also measured quantitatively with the run-time of the place-

and-route tool for different input sizes. In the graphs, "Tool placed" represents cases 

where the placement algorithm is not used and with values that were initially obtained 

using only the provided CAD placement algorithm. 

The placement algorithm was modified for the tests, with the addition of a 

threshold level that stopped execution if the size of the current block placed was less 



80 

than a certain number. This allowed the place-and-route tool to take over and do a 

regular placement. Consequently, this modification prevented the use of large 

segmented nets which appeared at the end in the proposed placement algorithm, for 

very large input length. 

6.8.1 Combinational path delay 

Combinational path delay of various multipliers placed with the proposed 

placement algorithm is shown in Figure 6.10. Since the gate delay is constant as stated 

in Eq. 14, the net combinational delay depends solely on interconnect delay. The 

figure shows that for widths between approximately 32bits and 15 lbits (Region of 

interest), the proposed placement algorithm generates solutions that outperform those 

obtained from the alternative placement tool. 

JS 

Q 

H 3 

I 2 

c 
E 

8 1 

<C^s 

'^MW^MMW^;W^^ 
• - • 

_ _ _ - - - " " 

Raced 

Raced w ith area 
threshold 
Interconnect delay 
(Raced) 

50 100 150 

Size of Operands (bits) 

200 250 

Figure 6.10 Combinational path delay for designs initially placed using proposed 

placement algorithm 



81 

Figure 6.11 shows how interconnect delay progresses with changing width size. 

Using the proposed placement algorithm with an area threshold of 1500 registers 

minimizes the effect of wire segmentation present in the FPGA interconnect. 

Consequently, the result is improved until approximately 151bits, where curves for 

"Placed with area threshold" and "Tool placed" intersect each other. 

3.5 

3 

2.5 

2 

1.5 

1 

0.5 

0 

Raced 

Placed with area threshold j 

Tool placed 

.S 

100 150 

Size of Operands (bits) 

200 250 

Figure 6.11 Interconnect delay in placed multiplier designs 

6.8.2 Virtex-4 logic slice utilization for placed design 

The proposed placement algorithm treats ACA, ACB and CR blocks as atomic 

elements without merging them. The mapping part of the implementation flow is not 

as effective in removing duplicate logic as it could be. Hence, an increase in terms of 

logic cells used is noted and shown in Figure 6.12. To offset this, the graph algorithm 

used should be modified to take into accounts inputs and latency registers that have 



82 

similar delays and further combine them together. Then, outputs from these register 

banks would be used to drive ACA and ACB blocks. 

60000 -r 

50000 -

| 40000 -

| 30000 -

•5 
_§ 20000 -
E 
z 

10000 -

0 -• 

0 20 40 60 80 100 120 140 

Size of Operands (bits) 

Figure 6.12 Logic slice utilization for placed multipliers designs 

6.8.3 Place-and-route tool runtime 

As shown in Figure 6.13, the proposed placement algorithm makes it easier for the 

place-and-route (PAR) algorithm built in the design tool to execute. Consequently, the 

proposed algorithm gives a gain in performance of approximately 9% when compared 

to running the PAR without the initial placement step. 



83 

3 

tr 
•2 
o 
a. 
-a 
c 
ro 
<D 
o 
iS 
Q . 

2000-

1500 -

1000 -

500 

0 

Tool placed 

Placed 

.'' 

•^1/ 

/ / 

* / 

.-• 

-' / 

20 40 60 80 

Size of Operands (bits) 

100 120 140 

Figure 6.13 Place-and-route run-time for different multiplier designs 

6.9 Summary 

The placement algorithm presented in this chapter increases the multiplier's 

timing performance by as much as 20% in the case of an input width of 64bits. The 

algorithm itself will improve on an unplaced design for input sizes in the range of 

32bits to 15 lbits. Since the cost function used and hence heuristics employed consider 

minimizing delay as the main objective, area utilization suffers to a certain extent. In 

this view, the proposed algorithm can be enhanced by using a refined graph model 

that would instead treat AC A, ACB and CR block as non-atomic and remove 

redundant elements. Once done, the algorithm would then regroup the basic blocks 

and continue with steps outlined. Finally, the run-time for implementing large 

multiplier designs is also reduced. 



84 

7 VERIFICATION STRATEGY 

The final stage in the design of the partition and placement algorithm is to verify 

the proper operation of solutions generated. The objective of the first algorithm is to 

break down a large-input unsigned multiplier design using smaller 17bits ones, with 

which the actual multiplication operations are performed. Also, 34bits adders are used 

to sum partial products into the final result. The partition algorithm makes use of 

custom-made discrete blocks, ACA, ACB and CR, where each has specific behaviours 

when subjected to particular input combinations. The large-input multiplier uses the 

forth-mentioned modules, interconnected together to form a working entity. 

Since the generated solution can be viewed as a hierarchy of components as shown 

in Figure 7.1, the strategy adopted was to test the functionality of each block at each 

level and then test the multiplier entirely. Initially, DSP48 blocks and register 

components were assumed to be working properly. This represents the lowest level of 

component and is provided by the FPGA vendor, while VHDL models were also 

available. They have been already tested and are assumed to be trustworthy. 

TESTING NEEDED 

TESTING NEEDED 

TRUSTWORTHY LEVEL 
MODELS SUPPLIED BY 
FPGA MANUFACTURER 

TESTING STRATEGY 

VHDL TESTBENCH 

VHDL TESTBENCH 

NO TESTING 

Figure 7.1 Testing hierarchy for multiplier partition algorithm 



7. 1 Behavioural Verification 

85 

ACA, ACB and CR are tested with VHDL testbenches and the test flow is shown 

in Figure 7.2. Stimulus signals are first applied at the multiplier's inputs while having 

its outputs recorded. The behaviour is then compared to expected results as obtained 

from Eq. 1 and Eq. 2. Finally, the large integer multiplier is tested at the top-level, 

with random stimulus given using a VHDL testbench. The behaviour is again 

recorded and compared against the expected result obtained from the multiplier 

operator provided by the VHDL unsigned library. 

UNIT UNDER TEST (UUT) 

RTL 
VHDL MODEL 

BIT COMPARE TEST 

BEHAVIORAL 
VHDL MODEL 

POST-SYNTHESIS 
MODEL AND SIMULATION 

VHDL TESTBENCH 

XILINX 
VHDL 
SYNTHESIZER 

VHDL 
NETLIST 

VHDL 
MODEL 
MODIFICATION 

MODELSLM 
VHDL 
SLMULATOR 

Figure 7.2 Test setup for multiplier designs 

Figure 7.2 shows one possible test procedure. This was used for testing all the 

basic blocks and the final multiplier designs. Furthermore, timing analysis was done 



86 

using this set-up by replacing UUT with the gate-level HDL model containing the 

appropriate delays. 

7. 2 Timing Analysis 

Timing analysis and simulation consist of running the place-and-route (PAR) step 

of the CAD tool. This will generate a structural model containing delays along with a 

timing report from which information such as critical path delay and maximum 

frequency of operation are obtained. Timing simulation catches timing errors such as 

setup and hold violations, which are not present in the post-synthesis model. The 

report also provided data for the graphs presented in Chapters 5. The PAR step 

required a constraint file containing the targeted frequency of operation. 

7. 3 Placement Algorithm Testing 

The placement algorithm decreases combinational delay while removing pass-

through gates which are look-up tables used as interconnect. Placement information 

was added either in the VHDL file description or in the constraint file. Since the basic 

arithmetic blocks and connections are unchanged, no simulation was done in the 

placement phase. Data for critical path delay, area utilization and maximum frequency 

of operation were collected from report files and used in Chapter 6. 



87 

8 CONCLUSION AND FUTURE WORK 

This thesis presented algorithms that increase the efficiency of DSP48 blocks so as 

to realize large-integer unsigned multiplication. 

8.1 Partition Algorithm 

The generic algorithm presented by Shuli Gao et al. [4] paved the way for the 

proposed partition algorithm. As such, the research involved finding a suitable 

mapping that would allow an even higher performance for these classes of hardware 

parallel multipliers. It was noted that high timing performance could be further 

enhanced by the use of pipelining as the DSP48 block reaches maximum frequency of 

operation under specific condition. The suggested partition method and resulting 

algorithm [5] minimize gate delay, as shown in Figure 5.13 Routing performance 

degradation for higher word length. The method makes use of pipelining registers 

present in any DSP48 block. 

8. 2 Placement Algorithm 

Research in the area of floorplanning as obtained from a survey of placement 

algorithms gave more insight on newer generations of algorithms and heuristics for 

FPGA technologies, particularly ones that are related to heterogeneous placers. By 



88 

positioning groups of related logic units together according to certain rules, 

interconnect delay is hence mitigated to a certain extent. The most pertinent method 

for heterogeneous floorplanners was proposed by Love Singhal et al. [23], which 

attempts to solve the problem by assigning resources to layers and applying the 

placement algorithm on these layers. 

Our placement algorithm tries to reduce interconnect delay by placing large 

arithmetic units first while also placing components related to the critical path [6]. 

Resource allocation is performed using HPLAN [23]. The proposed concept is based 

on the greedy model which considers local optimum solutions. The method also 

minimizes congestion by giving slack space around the basic building blocks of the 

multiplier. It was shown that when using this methodology, interconnect delay and 

consequently maximum frequency of operation for very large multiplier circuits were 

enhanced. Use of the placement algorithm is of course optional but should be 

employed if the highest timing performance is needed. 

S. 3 Conclusion 

Presented here are two algorithms that will help in designing multiplier circuits 

implemented in the Virtex-4 family of FPGA. Performance measure, in terms of Area-

Delay product for both fully-pipelined and non-pipelined versions is provided to give 

an idea of what to expect for a certain input length. Consequently, the designer has the 

choice of picking the appropriate large-integer multiplier design for the best cost 

function of the project. 



8. 4 Future Work 

89 

The algorithms presented in this thesis are not perfect. They were designed to 

optimize speed and minimize both interconnect and gate delay. Area used up by the 

pipelining registers can be further reduced when the placement algorithm is used. 

Using data flow graphs, a better algorithm can be obtained that would remove 

equivalent registers and hence decrease area utilization. 

The given algorithms can be easily adapted to newer FPGA such as the Virtex-5, 

which possesses better DSP blocks. Since the designing approach of the partition 

algorithm is modular, one would just need to update ACA, ACB and CR with newer 

equivalent models. 



90 

REFERENCES 

[I] Charles Poynton, "Digital Video and HDTV Algorithms and Interfaces", pp. 127. 

[2] Uwe Meyer-Baese, "Digital Signal Processing with FPGA", 1st Edition, pp. 248. 

[3] Uwe Meyer-Baese, "Digital Signal Processing with FPGA", 1st Edition, pp. 232. 

[4] S.Gao, N.Chabini, D.Al-Khalili, and P.Langlois, "Efficient Realization of Large 

Integer Multipliers and Squarers", Circuits and Systems, 2006 IEEE North-East 

Workshop. 

[5] J.L.Athow, AJ.Al-Khalili, "Implementation of Large-Integer Hardware Multiplier 

in Xilinx FPGA", IEEE International Conference on Electronics, Circuits and 

Systems, 2008. 

[6] J.L.Athow, A.J.Al-Khalili, "Placement Algorithm For Multiplier-Based Fpga 

Circuits", IEEE International Conference on Microelectronics, 2008. 

[7] J.P.Deschamps, G.J.A.Bioul, G.D.Sutter, "Synthesis of Arithmetic Circuits", 1st 

Edition, pp. 369. 

[8] B. Payette, "Color Space Converter: R'G'B to Y'CbCr", Xilinx, XAPP637, 2002. 

[9] K. Chapman, "Constant Coefficient Multipliers for the XC4000E", Xilinx, 

XAPP054, 1996. 

[10] K. Chapman, "Fast Integer Multipliers Fit in FPGAs" , EDN, vol. 39, no. 10, 

1994, pp. 80. 

[II] Jean-Pierre / Bioul, Gery J. A. / Sutter, Gustavo D. Deschamps "Synthesis of 

Arithmetic Circuits: FPGA, ASIC and Embedded Systems" . 



91 

[12] S. Elzinga, J. Lin, V. Singhal, "Design Tips for HDL Implementation of 

Arithmetic Functions", XAPP215, June 2000, pp. 11. 

[13] Virtex 2.5V Field Programmable Gate Arrays, pp. 7. 

[14] A. Cosoroaba, F. Rivoallon, "Achieving Higher System Performance with the 

Virtex-5 Family of FPGAs", Xilinx WP245, pp. 5, July 2006 

[15] B. New, Xilinx, "Using the Dedicated Carry Logic in XC4000E", XAPP013, 

July 1996, pp. 4. 

[16] B. New, Xilinx, "Using the Dedicated Carry Logic in XC4000E", XAPP013, 

July 1996, pp. 10. 

[17] Xilinx "XtremeDSP for Virtex-4 FPGA User Guide", UG073, October 2007, 

Figure 1-3, pp. 20. 

[18] Xilinx "XtremeDSP for Virtex-4 FPGA User Guide", UG073, October 2007, 

Table 1-6, pp. 30. 

[19] Xilinx "XtremeDSP for Virtex-4 FPGA User Guide", UG073, October 2007, 

Table 1-4, Table 1-5, pp. 29. 

[20] Xilinx "XtremeDSP for Virtex-4 FPGA User Guide", UG073, October 2007, 

Table 1-8, pp. 34. 

[21] Xilinx, "Virtex-II Platform FPGA Detailed Description", DS031-2, Module 2, 

pp. 35, December 2002. 

[22] S.M. Sait, H.Youssef, "VLSI Physical Design Automation" McGraw Hill 

Book Company, 1995, pp. 23. 

[23] Love Singhal, Elaheh Bozorgzadeh, "Heterogeneous Floorplanner for FPGA", 

IEEE FCCM07. 



92 

[24] S. Kirkpatric, CD. Gelatt, MP. Vecchi, "Optimization by simulated 

annealing", Science, vol. 220, no. 4598, pp. 671-680, May 1983. 

[25] H. Krupnova, C. Rabeaoro, G. Saucier, "Synthesis and Floorplanning for 

Large Hierarchical FPGAs", FPGAACM FPGA97. 

[26] J. Stohmann, K. Harbich, M. Olbrich, E. Barke, "An Optimized Design Flow 

for Fast FPGA-Based Rapid Prototyping", Institute of Microelectronic Systems, 

University of Hanover, Callinstr. 34, D-30167 Hanover, Germany. 

[27] J.M. Emmert, D. Bhatia, "A Methodology for Fast FPGA Floorplanning", 

Proc. FPL, 1998, pp. 129-138. 

[28] C. Ababei, Yan Feng, B. Goplen, H. Mogal, Tianpei Zhang, K. Bazargan, S. 

Sapatnekar, "Placement and Routing in 3D Integrated Circuits", IEEE CASS05. 

[29] L. Cheng, M.D.F Wong, "Floorplan Design for Multi-Million Gate FPGAs", 

ACM ICCAD, pp. 292-299, 2004. 

[30] Xilinx ISE 8.2 design tool suite, 2006 

[31 ] Paul Glover, Steve Elzinga, "Relational^ Placed Macros", Xilinx WP329, Jan 

2008 

[32] Xilinx "Virtex-4 User Guide", UG070, August 2007, pp. 182 

[33] Xilinx "XtremeDSP for Virtex-4 FPGA User Guide", UG073, October 2007, 

Table 1-3, pp. 22-23. 

[34] Xilinx "XtremeDSP for Virtex-4 FPGA User Guide", UG073, October 2007, 

pp. 19. 

[35] Xilinx FPGA Editor, Release 8.2.03i, 2006 

[36] Xilinx XPower, Release 8.2.03i, 2006 



93 

APPENDIX A, VHDL MODELS 



--Programmer: Jacques Laurent Athow 
--Objective: Cascade register with programmable latency 
—Project: Master thesis, Concordia University, November 2008 

library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 

entity register_cascade is 
generic( width : integer :=17; depth : integer := 4 ); 

Port ( reset : in STD_LOGIC; 
elk : in STD_LOGIC; 

data_in : in STD_LOGIC_VECTOR (width-1 downto 0); 
data_out : out STD_LOGIC_VECTOR (width-1 downto 0)); 

end register_cascade; 

architecture Behavioral of register_cascade is 

constant pipelineO : integer :=1; — 1 

signal int_register : std_logic_vector((width*depth)-1 downto 0); 

begin 

genO: 
if depth/=0 and pipelineO/=0 generate 

process(elk) 
begin 

if elk'event and clk='l' then 
if reset='l' then 

int_register<=(others=>'0'); 
else 

int_register(width-1 downto 0)<=data_in; 
for i in 2 to depth loop 

int_register((width*i)-1 downto 
1))<=int_register((width*(i-1))-l downto width*(i-2)); 

end loop; 
end if; 

end if; 
end process; 
data_out<=int_register; 

end generate; 

genl: 
if depth=0 or pipeline0=0 generate 

data_out<=data_in; 
end generate; 

end Behavioral; 



—Programmer: Jacques Laurent Athow 
—Objective: Wrapper for DSP48 block, part of ACA 
—Project: Master thesis, Concordia University, November 2008 

library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 

library UNISIM; 
use UNISIM.VComponents.all; 

entity dsp48reg_wrapper is 
—generic ( bcin_en 

Port ( elk : 
reset 
cin : 
din_a 
din_b 
din_c 
din_d 
din e 

_ boolean ); 
in STD_LOGIC; 
: in STD_LOGIC; 
in STD_LOGIC; 
: in STD_LOGIC_VECTOR (16 downto 0) 

STD_LOGIC_VECTOR (16 downto 0) 
STD_LOGIC_VECTOR (16 downto 0) 
STD_LOGIC_VECTOR (16 downto 0) 
STD LOGIC VECTOR (33 downto 0) 

in 
in 
in 
in 

bcin : in std_logic_vector(17 downto 0) ; 
bcout : out std_logic_vector(17 downto 0); 

result : out STD_LOGIC_VECTOR (35 downto 0)); 
end dsp48reg_wrapper; 

architecture Behavioral of dsp4 8reg_wrapper is 

constant pipelineO 
constant pipelinel 

integer 
integer 

:=1; 
:=2; 

— 1 
—2 

signal int_al, int_bl, int_a0, int_b0 : std_logic_vector(17 downto 0), 
signal int_cl, int_c0 : std_logic_vector(47 downto 0); 
signal int_p0, int_p : std_logic_vector(47 downto 0); 
signal int_res : std_logic_vector(47 downto 0); 
signal int_reg_din_e : std_logic_vector(33 downto 0); 
signal int_carry0, int_carryl : std_logic; 

attribute RLOC : string; 
—attribute RLOC of DSP48_inst_slice2: label is "X0Y0"; 
—attribute RLOC of DSP48 inst slicel: label is "X0Y1"; 

begin 

int_p0<=(others=>'0'); 
int_a0<='0'£din_a; 
int_b0<='0'Sdin_b; 
int_al<='0'sdin_c; 
int_bl<='0'&din_d; 
int_cO<=b"00_0000_0000_0000"sint_reg_din_e; 

genO: if pipeline0=l generate 
process(clk)begin 

if elk'event and clk='l' then 
if reset='l' then 

int_reg_din_e<=(others=>'0') ; 
int_carry0<='0'; 

else 
int_reg_din_e<=din_e; 
int_carry0<=cin; 

end if; 
end if; 

end process; 
end generate; 

genl: if pipeline0=0 generate 
int_reg_din_e<=din_e; 
int_carry0<=cin; 

end generate; 

DSP48_inst_slice2 
generic map ( 

AREG => pipelineO, 
BREG => pipelineO, 

DSP48 

- Number of pipeline registers on the A input, 0, 1 
- Number of pipeline registers on the B input, 0, 1 



96 

input 

or 1 

B_INPUT => "DIRECT", — B input DIRECT from fabric or CASCADE from another DSP48 
CARRYINREG => pipelineO, — Number of pipeline registers for the CARRYIN 
0 or 1 

CARRYINSELREG => 0, — Number of pipeline registers for the CARRYINSEL, 0 or 1 
CREG => pipelineO, -- Number of pipeline registers on the C input, 0 

LEGACY_MODE => "MULT18X18S", — Backward compatibility, NONE, MULT18X18 or 
MULT18X18S 

MREG => pipelineO, — Number of multiplier pipeline registers, 0 or 1 
OPMODEREG => 0, — Number of pipeline regsiters on OPMODE input, 0 or 1 
PREG => pipelineO, — Number of pipeline registers on the P output, 0 
SUBTRACTREG => 0) — Number of pipeline registers on the SUBTRACT input, 0 

port map ( 
BCIN => "000000000000000000", —bcin, — 18-bit B cascade input 
BCOUT => open, — 18-bit B cascade output 

A => int_a0, 
B => int_b0, 
C => int c0, 

18-bit A data input 
18-bit B data input 
48-bit cascade input 

PCIN => int_p0, 
P => open, 
PCOUT => int_p, 

— 48-bit PCIN input 
— 48-bit product output 
48-bit cascade output 

CARRYIN => int_carryO, -- Carry input signal 
CARRYINSEL => "00", — 2-bit carry input select 
OPMODE => "0110101", — 7-bit operation mode input 

CEA => '1', — A data clock enable input 
CEB =>'!', — B data clock enable input 
CEC => '1', — C data clock enable input 
CECARRYIN => '1', — CARRYIN clock enable input 
CECINSUB => '1', — CINSUB clock enable input 
CECTRL => '1', — Clock Enable input for CTRL regsitersL 
CEM => '1', — Clock Enable input for multiplier regsiters 
CEP => '1', -- Clock Enable input for P regsiters 
CLK => elk, — Clock input 

RSTA => reset, — Reset input for A pipeline registers 
RSTB => reset, — Reset input for B pipeline registers 
RSTC => reset, — Reset input for C pipeline registers 
RSTCARRYIN => reset, — Reset input for CARRYIN registers 
RSTCTRL => reset, — Reset input for CTRL registers 
RSTM => reset, — Reset input for multiplier registers 
RSTP => reset, — Reset input for P pipeline registers 
SUBTRACT => '0' — SUBTRACT input 

), 

int_cl<=(others=>'0'); 
DSP48_inst_slicel : DSP48 
generic map ( 

AREG => pipelinel, 
BREG => pipelinel, 
B_INPUT => "DIRECT 
CARRYINREG => 0, 

— Number of pipeline registers on the A input, 0, 1 or 2 
— Number of pipeline registers on the B input, 0, 1 or 2 
— B input DIRECT from fabric or CASCADE from another DSP48 
— Number of pipeline registers for the CARRYIN input, 0 or 

CARRYINSELREG => 0, 
CREG => pipelineO, 

Number of pipeline registers for the CARRYINSEL, 0 or 1 
— Number of pipeline registers on the C input, 0 

or 1 
LEGACY_MODE => "MULT18X18S", — Backward compatibility, NONE, MULT18X18 or 

MULT18X18S 
MREG => pipelineO, — Number of multiplier pipeline registers, 0 or 1 
OPMODEREG => 0, — Number of pipeline regsiters on OPMODE input, 0 or 1 
PREG => pipelineO, — Number of pipeline registers on the P output, 0 or 1 
SUBTRACTREG => 0) — Number of pipeline registers on the SUBTRACT input, 0 or 1 

port map ( 
BCIN => "000000000000000000", — 18-bit B cascade input 
BCOUT => open, —bcout, — 18-bit B cascade output 

A => int_al, 
B => int_bl, 
C => int cl, 

— 18-bit A data input 
— 18-bit B data input 
— 48-bit cascade input 

PCIN => int_p, — 48-bit PCIN input 
p => int_res, — 48-bit product output 
PCOUT => open, — 48-bit cascade output 



97 

CARRYIN => '0', 
CARRYINSEL => "00", 
OPMODE => "0010101", 

— Carry input signal 
— 2-bit carry input select 
— 7-bit operation mode input 

CEA => ' 1', — A data clock enable input 
CEB => ' 1', — B data clock enable input 
CEC => ' 1', — C data clock enable input 
CECARRYIN => '1', — CARRYIN clock enable input 
CECINSUB => '1', — CINSUB clock enable input 
CECTRL => '1', — Clock Enable input for CTRL regsitersL 
CEM => '1', — Clock Enable input for multiplier regsiters 
CEP => '1', — Clock Enable input for P regsiters 
CLK => elk, — Clock input 

RSTA => reset, — Reset input for A pipeline registers 
RSTB => reset, — Reset input for B pipeline registers 
RSTC => reset, — Reset input for C pipeline registers 
RSTCARRYIN => reset, — Reset input for CARRYIN registers 
RSTCTRL => reset, — Reset input for CTRL registers 
RSTM => reset, -- Reset input for multiplier registers 
RSTP => reset, — Reset input for P pipeline registers 
SUBTRACT => '0' — SUBTRACT input 

result<=int res (35 downto 0), 

end Behavioral; 



—Programmer: Jacques Laurent Athow 
—Objective: Arithmetic Cell A (ACA) block 
—Project: Master thesis, Concordia University, November 2008 

library IEEE; 
use IEEE.STD_L0GIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD LOGIC UNSIGNED.ALL; 

entity arithmetic_cell is 
generic (depthO : integer:=16; reg_c_en 

Port ( reset : in STD_LOGIC; 
elk: in STD_LOGIC; 
cin : in STD_LOGIC; 

cout : out std_logic_vector(1 downto 0); 
din_a : in STD_LOGIC_VECTOR (16 downto 0) 
din_b : in STD_LOGIC_VECTOR (16 downto 0) 
din_c : in STD_LOGIC_VECTOR (16 downto 0) 
din_d : in STD_LOGIC_VECTOR (16 downto 0) 
din e : in STD LOGIC VECTOR (33 downto 0) 

boolean:=false; mode : integer 

bcin : 
bcout 

in std_logic_vector(17 downto 0); 
: out std_logic_vector(17 downto 0), 

result : out 
end arithmetic cell; 

STD LOGIC VECTOR (33 downto 0)); 

architecture Behavioral of arithmetic_cell is 

COMPONENT register_cascade 
generic (width : integer; depth : integer); 
PORT( 

reset : IN std_logic; 
elk : IN std_logic; 
data_in : IN std_logic_vector(16 downto 0); 
data_out : OUT std_logic_vector(16 downto 0) 
) ; 

END COMPONENT; 

COMPONENT register_cascadel 
generic (width : integer; depth : integer); 
PORT( 

reset : IN std_logic; 
elk : IN std_logic; 
data_in : IN std_logic_vector(33 downto 0); 
data_out : OUT std_logic_vector(33 downto 0) 
); 

END COMPONENT; 

COMPONENT dsp48reg_wrapper 
PORT( 

elk : 
reset 
cin : 
din_a 
din_b 
din_c 
din_d 
din_e 
bcin : 
bcout : 
result 
); 

END COMPONENT; 

IN std_logic; 
: IN std_logic; 
IN std_logic; 
IN std_logic_vector(16 downto 0), 
IN std_logic_vector(16 downto 0), 
IN std_logic_vector(16 downto 0), 
IN std_logic_vector(16 downto 0), 
IN std_logic_vector(33 downto 0), 
IN std_logic_vector(17 downto 0); 
OUT std_logic_vector(17 downto 0); 
: OUT std_logic_vector(35 downto 0) 

IN std_logic; 
: IN std_logic; 
IN std_logic; 

COMPONENT dsp48_wrapper 
PORT( 

elk : 
reset 
cin : 
din_a 
din_b 
din_c 
din_d 
din_e 
result 

IN 
IN 
IN 
IN 
IN 

std_logic_vector(16 downto 0) 
std_logic_vector(16 downto 0) 
std_logic_vector(16 downto 0) 
std_logic_vector(16 downto 0) 
std_logic_vector(33 downto 0) 

OUT std_logic_vector(35 downto 0) 

); 



99 

END COMPONENT; 

COMPONENT dsp48regben_wrapper 
PORT( 

IN std_logic; 
: IN std_logic; 
IN std_logic; 

elk : 
reset 
cin : 
din_a 
din_b 
din_c 
din_d 
din_e 
bcin : 
bcout 
result 
); 

END COMPONENT; 

IN std_logic_vector(16 downto 0) ; 
IN std_logic_vector(16 downto 0); 
IN std_logic_vector(16 downto 0); 
IN std_logic_vector(16 downto 0); 
IN std_logic_vector(33 downto 0); 
IN std_logic_vector(17 downto 0); 
OUT std_logic_vector(17 downto 0); 
: OUT std_logic_vector(35 downto 0) 

0), 
signal int_din_a, int_din_b, int_din_c, int_din_d : std_logic_vector(16 downto 

signal int_din_e : std_logic_vector(33 downto 0) 
signal int_p_reg : std_logic_vector(16 downto 0} 
signal int_result std_logic_vector(35 downto 0) 

begin 

gen_blkl: 
if depth0/=0 generate 

Inst_register_cascade_a: register_cascade 
GENERIC MAP( width => 17, depth => depthO) 
PORT MAP( 

elk => elk, 
reset => reset, 
data_in => din_a, 
data_out => int_din_a 

); 

Inst_register_cascade_b: register_cascade 
GENERIC MAP( width => 17, depth => depthO) 
PORT MAP( 

elk => elk, 
reset => reset, 
data_in => din_b, 
data out => int din b 

register_cascade 
depth => depthO) 

) ; 

Inst_register_cascade_c: 
GENERIC MAP( width => 17 
PORT MAPI 

elk => elk, 
reset => reset, 
data_in => din_c, 
data_out => int_din_c 

); 

Inst_register_cascade_d: register_cascade 
GENERIC MAP( width => 17, depth => depthO) 
PORT MAP( 

elk => elk, 
reset => reset, 
data_in => din_d, 
data_out => int_din_d 

); 
end generate; 

gen_blk2: 
if depth0=0 generate 

int_din_a<=din_a; 
int_din_b<=din_b; 
int_din_c<=din_c; 
int_din_d<=din_d; 
int_din_e<=din_e; 

end generate; 

gen_blk3: 
if reg_c_en=true and depth0/=0 generate 

Inst_register_cascade_e: register_cascadel 



100 

GENERIC MAP( width => 34, depth => depthO) 
PORT MAP( 

elk => elk, 
reset => reset, 
data_in => din_e, 
data_out => int_din_e 

tr­
end generate; 

gen_blk4: 
if depthO/=0 and reg_c_en=false generate 

int_din_e<=din_e; 
end generate; 

—DSP48 BLOCK PIPELINED IN DIRECT FROM FABRIC MODE FOR BCIN 
gen_blk5: 
if mode=l generate 

Inst_dsp48reg_wrapper: dsp48reg_wrapper PORT MAP( 
elk => elk, 
reset => reset, 
cin => cin, 
din_a 
din_b 
din_c 
din_d 
din e 

=> 
=> 
=> 
=> 
=> 

int_ 
int~ 
int 
int" 
int 

_din_a, 
_din_b, 
_din_c, 
din d, 
din e, 

bcin => bcin, 
bcout => bcout, 

result => int_result 

); 
result<=int_result(33 downto 0 ) ; 
cout<=int_result(35 downto 34); 

end generate; 

—DSP4 8 BLOCK ONLY WITHOUT PIPELINE 
gen_blk6: 
if mode=0 generate 

Inst_dsp48_wrapper: dsp48_wrapper PORT MAP( 
elk => elk, 
reset => reset, 
cin => cin, 
din_a => int_din_a, 
din__b => int_din_b, 
din_c => int_din_c, 
din_d => int_din_d, 
din_e => int_din_e, 
result => int_result 

); 
result<=int_result(33 downto 0 ) ; 
cout<=int_result(35 downto 34); 

end generate; 

—DSP48 PIPELINED IN CASCADE MODE FOR BCIN 
gen_blk7: 
if mode=2 generate 
Inst_dsp48regben_wrapper: dsp48regben_wrapper PORT MAP( 

elk => elk, 
reset => reset, 
cin => cin, 
din_a 
din_b 
din_c 
din_d 
din_e 
bcin = 
bcout 

=> int_din_a, 
=> int_din_b, 
=> int_din_c, 
=> int_din_d, 
=> int din e, 
=> bcin, 
=> bcout, 

result => int_result 
); 
result<=int_result(33 downto 0 ) ; 
cout<=int_result(35 downto 34); 

end generate; 

--DSP48 PIPELINED IN CASCADE MODE FOR BCIN, WITH EXTRA OUTPUT 
gen_blk8: 
if mode=3 generate 
Inst_dsp48reg_wrapper: dsp48reg_wrapper PORT MAP( 

elk => elk, 



101 

reset 
cin => 
din_a 
din__b 
din_c 
din_d 
din_e 
bcin = 
bcout 
result 

=> reset, 
cin, 
=> 
=> 
=> 
=> 
=> 

int_ 
int] 
int_ 
int" 
int" 

> bcin, 
=> 

din_ 
din 
_din_ 
din_ 
din 

bcout, 

a, 
>' 
c, 
_d, 
_e' 

=> int result 

); 

Inst_register_cascade_a: register_cascade 
GENERIC MAP( width => 17, depth => 4) 
PORT MAP( 

elk => elk, 
reset => reset, 
data_in => int_result(33 downto 17), 
data_out => int_p_reg 

); 

result<=int_p_reg&int_result(16 downto 0); 
cout<=int result (35 downto 34); 

end generate; 
end Behavioral; 



102 

—Programmer: Jacques Laurent Athow 
—Objective: Arithmetic Cell B (ACB) block 
—Project: Master thesis, Concordia University, November 2008 

library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 

entity arithmetic_celll is 
generic ( latencyl : integer:=2; latency2 : integer:=2); 

Port ( elk : in STD_LOGIC; 
reset : in STD_LOGIC; 
din_a : in STD_LOGIC_VECTOR (16 downto 0); 
din_b : in STD_LOGIC_VECTOR (1 downto 0); 
result : out STD_LOGIC_VECTOR (16 downto 0)); 

end arithmetic_celll; 

architecture Behavioral of arithmetic_celll is 

COMPONENT register_cascade 
GENERIC ( width : integer; depth : integer); 
PORT( 

reset : IN std_logic; 
elk : IN std_logic; 
data_in : IN std_logic_vector(16 downto 0); 
data_out : OUT std_logic_vector(16 downto 0) 
); 

END COMPONENT; 

signal int_reg_din__a : std_logic_vector (16 downto 0); 
signal int_result : std_logic_vector (16 downto 0); 

begin 

acl_genl: 
if latencyl/=0 generate 

Inst_register_cascade0: register_cascade —input register for din_a 
GENERIC MAP(width=> 17 ,depth=> latencyl) 
PORT MAP( 

reset => reset, 
elk => elk, 
data_in => din_a(16 downto 0), 
data_out => int_reg_din_a(16 downto 0) 

); 
end generate; 

acl_gen2: 
if latencyl=0 generate 

int_reg_din_a(16 downto 0)<=din_a(16 downto 0); 
end generate; 

process(int_reg_din_a, din_b) 
variable x : std_logic_vector(18 downto 0); 
begin 

x: = ("00"&int_reg_din_a)+din_b; 
int_result<=x(16 downto 0); 

end process; 

acl_gen3: 
if latency2/=0 generate 

Inst_register_cascadel: register_cascade —output register for result 
GENERIC MAP(width=> 17 ,depth=> latency2) 
PORT MAP( 

reset => reset, 
elk => elk, 
data_in => int_result(16 downto 0), 
data_out => result(16 downto 0) 

); 
end generate; 

acl_gen4: 
if latency2=0 generate 

result<=int_result; 
end generate; 

end Behavioral; 



103 

--Programmer: Jacques Laurent Athow 
--Objective: Generated 68bits multiplier design using proposed partition algorithm 
--Project: Master thesis, Concordia University, November 2008 

library IEEE; 
library UNISIM; 
use UNISIM.VComponents.all; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 

entity top_level_68 is 
generic(width : integer:=68); 

Port ( da : in STD_LOGIC_VECTOR (width-1 downto 0); 
db : in STD_LOGIC_VECTOR (width-1 downto 0); 
r : out STD_LOGIC_VECTOR ((width*2)-l downto 0); 

reset : in std_logic; 
elk : in STD_LOGIC); 

end top_level_68; 

architecture Behavioral of top_level_68 is 

constant dsp_block_latency : integer :=4; 

COMPONENT arithmetic_celll 
generic (latency1 : integer; latency2 
PORT( 

elk : IN std_logic; 

integer) , 

reset 
din_a 
din b 

IN std_logic; 
IN std_logic_vector(16 downto 0) ; 
IN std_logic_vector(1 downto 0); 

result : OUT std_logic_vector(16 downto 0) 
) ; 

END COMPONENT; 

COMPONENT arithmetic_cell 
generic(depthO : integer; reg_c_en : boolean; mode : integer); 
PORK 

: IN std_logic; 
IN std_logic; 
IN std_logic; 
out std_logic_vector(1 downto 0); 
IN std_logic_vector(16 downto 0), 
IN std_logic_vector(16 downto 0), 
IN std_logic_vector(16 downto 0), 
IN std_logic_vector(16 downto 0), 
IN std_logic_vector(33 downto 0), 
IN std_logic_vector(17 downto 0); 

reset 
elk : 
cin : 
cout : 
din_a 
din_b 
din_c 
din_d 
din_e 
bcin : 
bcout 
result 
); 

END COMPONENT; 

OUT std_logic_vector(17 downto 0) ; 
: OUT std_logic_vector(33 downto 0) 

COMPONENT register_cascade 
GENERIC ( width : integer; depth : integer); 
PORT( 

reset : IN std_logic; 
elk : IN std_logic; 
data_in : IN std_logic_vector(16 downto 0); 
data_out : OUT std_logic_vector(16 downto 0) 
); 

END COMPONENT; 

--Number of levels is: 3 
—Generating signal declaration 

signal Z0 
signal Zl 
signal Z2 
signal Z3 
signal CO 
signal CI 
signal C2 

std_logic_vector(135 downto 0); 
std_logic_vector(101 downto 0); 
std_logic_vector(67 downto 0); 
std_logic_vector(33 downto 0); 
std_logic_vector(7 downto 0), 
std_logic_vector(5 downto 0), 
std_logic_vector(3 downto 0), 

begin 
signal int_reset : std_logic 

int reset<=reset; 



104 

-Generating input multipliers Xi*Yi 
Z0(33 downto 0) <= DA(16 downto 0) * DB(16 downto 0); 
Z0(67 downto 34) <= DA(33 downto 17) * DB(33 downto 17); 
Z0(101 downto 68) <= DA(50 downto 34) * DB(50 downto 34); 
Z0(135 downto 102) <= DA(67 downto 51) * DB(67 downto 51), 

-Generating Output register with latency: 5 
Inst_register_cascadeO: register_cascade 
GENERIC MAP(width=> 17 ,depth=> (5*dsp_block_latency)) 
PORT MAP( 
reset => int_reset, 
elk => elk, 
data_in => Z0(16 downto 0), 
data_out => R(16 downto 0) 
); 

-iteration for Zl 
C0(1 downto 0)<="00"; 
—Generating Arithmetic Cell A with connection: 

Inst_arithmetic_cellA_00: arithrnetic_cell 
GENERIC MAP(depthO => (0*dsp_block_latency), reg_c_en =>true, rnode=> 3) 
PORT MAP( 
elk => elk, 
reset => int_reset, 
cin => CO (0), 
cout => CO(3 downto 2), 
din_a => DA(16 downto 0), 
din_b => DB(33 downto 17), 
din_c => DA(33 downto 17), 
din_d => DB(16 downto 0), 
din_e => Z0(50 downto 17), 
bcin => b"00_0000_0000_0000_0000", 
bcout => open, 
result => Zl(33 downto 0) 
); 

—Generating Arithmetic Cell A with connection: 
Inst_arithmetic_cellA_01: arithmetic_cell 
GENERIC MAP(depthO => (l*dsp_block_latency), reg_c_en =>true, mode=> 3) 
PORT MAP( 
elk => elk, 
reset => int_reset, 
cin => C0(2), 
cout => CO(5 downto 4), 
din_a => DA(33 downto 17), 
din_b => DB(50 downto 34), 
din_c => DA(50 downto 34), 
din_d => DB(33 downto 17), 
din_e => Z0(84 downto 51), 
bcin => b"00_0000_0000_0000_0000", 
bcout => open, 
result => Zl(67 downto 34) 
); 

—Generating Arithmetic Cell A with connection: 
Inst_arithmetic_cellA_02: arithmetic_cell 
GENERIC MAP(depthO => (2*dsp_block_latency), reg_c_en =>true, mode=> 3) 
PORT MAP( 
elk => elk, 
reset => int_reset, 
cin => CO (4), 
cout => CO(7 downto 6 ) , 
d in_a => DA(50 downto 34 ) , 
din_b => DB(67 downto 51 ) , 
d in_c => DA(67 downto 51 ) , 
d in_d => DB(50 downto 34) , 
d in_e => Z0(118 downto 85) , 
b c i n => b"00_0000_0000_0000_0000", 
bcout => open, 
r e s u l t => ZK101 downto 68) 
) ; 

—Generating Arithmetic Cell B with connection: 
Inst arithmetic cellB 0: arithmetic celll 



105 

GENERIC MAP(latencyl => (3*dsp_block_latency), latency2 => 
(2*dsp_block_latency)) 

PORT MAP( 
elk => elk, 
reset => int_reset, 
din_a => Z0(135 downto 119), 
din_b => CO(7 downto 6), 
result => R(135 downto 119) 
); 

—Generating Output register with latency: 4 
Inst_register_cascadel: register_cascade 

GENERIC MAP(width=> 17 ,depth=> (4*dsp_block_latency)) 
PORT MAP( 
reset => int_reset, 
elk => elk, 
data_in => Zl(16 downto 0), 
data_out => R(33 downto 17) 
> ; 

—iteration for Z2 
Cl(l downto 0)<="00"; 
—Generating Arithmetic Cell A with connection: 

Inst_arithmetic_cellA_ll: arithmetic_cell 
GENERIC MAP(deptht) => (2*dsp_block_latency) , reg_c_en =>false, mode=> 

3) 
PORT MAP( 
elk => elk, 
reset => int_reset, 
cin => C1(0), 
cout => CI(3 downto 2), 
din_a => DA(16 downto 0), 
din_b => DB(50 downto 34), 
din_c => DA(50 downto 34), 
din_d => DB(16 downto 0), 
din_e => Zl(50 downto 17), 
bcin => b"00_0000_0000_0000_0000", 
bcout => open, 
result => Z2(33 downto 0) 
) ; 

--Generating Arithmetic Cell A with connection: 
Inst_arithmetic_cellA_12: arithmetic_cell 
GENERIC MAP(depthO => (3*dsp_block_latency), reg_c_en =>false, mode=> 

PORT MAP( 
elk => elk, 
reset => int_reset, 
cin => CI(2), 
cout => CI(5 downto 4), 
din_a => DA(33 downto 17), 
din_b => DB(67 downto 51), 
din_c => DA(67 downto 51), 
din_d => DB(33 downto 17), 
din_e => Zl(84 downto 51), 
bcin => b"00_0000_0000_0000_0000", 
bcout => open, 
result => Z2(67 downto 34) 
); 

—Generating Arithmetic Cell B with connection: 
Inst_arithmetic_cellB_l: arithmetic_celll 

GENERIC MAP(latencyl => (0*dsp_block_latency) , latency2 => 
(l*dsp_block_latency)) 

PORT MAP( 
elk => elk, 
reset => int_reset, 
din_a => Zl(101 downto 85), 
din_b => CI(5 downto 4), 
result => R(118 downto 102) 
) ; 

—Generating Output register with latency: 2 
Inst_register_cascade2: register_cascade 

GENERIC MAP(width=> 17 ,depth=> (2*dsp_block_latency)) 

3) 



106 

l) 

PORT MAP( 
reset => int_reset, 
elk => elk, 
data_in => Z2(16 downto 0), 
data_out => R(50 downto 34) 
); 

-iteration for Z3 
C2(1 downto 0)<="00"; 
—Generating Arithmetic Cell A with connection: 

Inst_arithmetic_cellA_22: arithmetic_cell 
GENERIC MAP(depthO => (4*dsp_block_latency), reg_c_en =>false, mode=> 

PORT MAP( 
elk => elk, 
reset => int_reset, 
cin => C2(0), 
cout => C2(3 downto 2), 
din_a 
din_b 
din_c 
din_d 
din e 
bcin = 
bcout 
result 
); 

=> 
=> 
=> 
=> 
=> 

DA (16 
DB(67 
DA (67 
DB(16 
Z2(50 

downto 
downto 
downto 
downto 
downto 

0), 
51), 
51), 
0), 
17), 

=> b"00_0000_0000_0000_0000", 

=> open, 
> Z3(33 downto 0) 

—Generating Arithmetic Cell B with connection: 
Inst_arithmetic_cellB_2: arithmetic_celll 

GENERIC MAP(latencyl => (0*dsp_block_latency), latency2 => 
(0*dsp_block_latency)) 

PORT MAP( 
elk => elk, 
reset => int_reset, 
din_a => Z2(67 downto 51), 
din_b => C2(3 downto 2), 
result => R(101 downto 85) 
); 

--Generating Output register with latency: 0 
Inst_register_cascade3: register_cascade 

GENERIC MAP(width=> 17 ,depth=> (0*dsp_block_latency)) 
PORT MAP( 
reset => int_reset, 
elk => elk, 
data_in => Z3(16 downto 0), 
data_out => R(67 downto 51) 
) ; 

R(84 downto 68) <= Z3(33 downto 17); 

—Done! 
—Statistics- Input multiplier: 4 
—Statistics- DSP slice count: 16 Register count: 5168 
--Statistics- ACA: 6 ACB: 3 CR: 3 
—Statistics- Total external DSP block register: 59 
—Statistics- Total ACB block register: 6 
—Statistics- Total CR register: 11 

end Behavioral; 



107 

—Programmer: Jacques Laurent Athow 
—Objective: Generated 51bits multiplier design using proposed partition algorithm 
with placed blocks 
—Project: Master thesis, Concordia University, November 2008 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 

entity top_level_alg_51_rpm is 
Port ( da : in STD_LOGIC_VECTOR (50 downto 0); 

db : in STD_LOGIC_VECTOR (50 downto 0); 
r : out STD_LOGIC_VECTOR (101 downto 0); 

—generated_result : out std_logic_vector(135 downto 0); 
reset : in std_logic; 

elk : in STD_LOGIC); 
end top_level_alg_51_rpm; 

architecture Behavioral of top_level_alg_51_rpm is 
constant dsp_block_latency : integer :=4; 

COMPONENT aca_ 
generic(depth 
PORT( 

reset 
elk : 
cin : 
cout : 
din_a 
din_b 
din_c 
din_d 
din_e 
bcin : 
bcout 
result 
) ; 

END COMPONENT; 

_rpm 
: integer; reg_c_en : integer; mode : integer), 

: IN std_logic; 
IN std_logic; 
IN std_logic; 
out std_logic_vector(1 downto 0); 
IN std_logic_vector(16 downto 0) 
IN std_logic_vector(16 downto 0) 
IN std_logic_vector(16 downto 0); 
IN std_logic_vector(16 downto 0); 
IN std_logic_vector(33 downto 0) 

IN std_logic_vector(17 downto 0); 
OUT std_logic_vector(17 downto 0); 
: OUT std_logic_vector(33 downto 0) 

component acb_rpm 
generic(input_width : integer; input_depth : integer; output_depth : integer), 
PORT( 

elk : IN std_logic; 
reset 
din_a 
din_b 
result 
) ; 

END COMPONENT; 

in std_logic; 
IN std_logic_vector(16 downto 0); 
IN std_logic_vector(1 downto 0); 
: OUT std_logic_vector(16 downto 0) 

COMPONENT reg_cascade_rpm 
GENERIC ( width : integer; depth : integer; interleave : integer) ; 
PORT( 

reset : IN std_logic; 
elk : IN std_logic; 
data_in : IN std_logic_vector(16 downto 0); 
data_out : OUT std_logic_vector(16 downto 0) 
) ; 

END COMPONENT; 

-Number of levels is: 2 
-Generating signal declaration 

signal Z0 
signal Zl 
signal Z2 
signal CO 
signal CI 

std_logic_vector(101 downto 0); 
std_logic_vector(67 downto 0); 
std_logic_vector(33 downto 0); 
std_logic_vector(5 downto 0); 
std_logic_vector(3 downto 0); 

signal int_reset : std_logic; 

attribute RLOC_ORIGIN : string; 

attribute RLOC_ORIGIN of Inst_aca_rpm_00 
attribute RLOC_ORIGIN of Inst_aca_rpm_01 
attribute RLOC_ORIGIN of Inst_aca_rpm_ll 

label is "X15Y5' 
label is "X2Y25' 
label is "X2Y55' 



108 

attribute RLOC_ORIGIN of lnst_acb_rpm_0: label is "X13Y43"; 
attribute RLOC_ORIGIN of Inst_acb_rpm_l: label is "X10Y75"; 

attribute RLOC_ORIGIN of Inst_reg_cascade_rpmO: label is "X10Y85"; 
attribute RLOC_ORIGIN of Inst_reg_cascade_rpml: label is "X10Y95"; 
—attribute RLOCJDRIGIN of Inst_reg_cascade_rpm2: label is "X22Y150"; 

begin 

int_reset<=reset; 

—Generating input multipliers Xi*Yi 
Z0(33 downto 0) <= DA(16 downto 0) * DB(16 downto 0); 
Z0(67 downto 34) <= DA(33 downto 17) * DB(33 downto 17); 
Z0(101 downto 68) <= DA(50 downto 34) * DB(50 downto 34); 

—Generating Output register with latency: 3 
Inst_reg_cascade_rpmO: reg_cascade_rpm 
GENERIC MAP(width=> 17 ,depth=> (3*dsp_block_latency), interleave=>0) 
PORT MAP( 
reset => int_reset, 
elk => elk, 
data_in => Z0(16 downto 0), 
data_out => R(16 downto 0) 
) ; 

—iteration for Zl 
C0(1 downto 0)<="00"; 
—Generating Arithmetic Cell A with connection: 

lnst_aca_rpm_00: aca_rpm 
GENERIC MAP(depth => (O*dsp_block_latency), reg_c_en =>1, mode=> 3) 
PORT MAP( 
elk => elk, 
reset => int_reset, 
cin => C0(0), 
cout => CO(3 downto 2), 
din_a => DA(16 downto 0), 
din_b => DB(33 downto 17), 
din_c => DA(33 downto 17), 
din_d => DB(16 downto 0), 
din_e => Z0(50 downto 17), 
bcin => b"00_0000_0000_0000_0000", 
bcout => open, 
result => Zl(33 downto 0) 
); 

—Generating Arithmetic Cell A with connection: 
Inst_aca_rpm_01: aca_rpm 
GENERIC MAP(depth => (l*dsp_block_latency), reg_c_en =>1, mode=> 3) 
PORT MAP( 
elk => elk, 
reset => int_reset, 
cin => CO (2), 
cout => CO(5 downto 4), 
din_a => DA(33 downto 17), 
din_b => DB(50 downto 34), 
din_c => DA(50 downto 34), 
din_d => DB(33 downto 17), 
din_e => Z0(84 downto 51), 
bcin => b"00_0000_0000_0000_0000", 
bcout => open, 
result => Zl(67 downto 34) 
) ; 

—Generating Arithmetic Cell B with connection: 
lnst_acb_rpm_0: acb_rpm 

GENERIC MAP(input_width => 17, input_depth=> (2*dsp_block_latency), 
output_depth => (l*dsp_block_latency)) 

PORT MAP( 
elk => elk, 
reset => int_reset, 
din_a => Z0(101 downto 85), 
din_b => CO(5 downto 4), 
result => R(101 downto 85) 
) ; 



109 

—Generating Output register with latency: 2 
Inst_reg_cascade_rpml: reg_cascade_rpm 

GENERIC MAP(width=> 17 ,depth=> (2*dsp_block_latency), interleave=>0) 
PORT MAP( 
reset => int_reset, 
elk => elk, 
data_in => Zl(16 downto 0), 
data_out => R(33 downto 17) 
); 

—iteration for Z2 
Cl(l downto 0)<="00"; 
—Generating Arithmetic Cell A with connection: 

Inst_aca_rpm_ll: aca_rpm 
GENERIC MAP(depth => (2*dsp_block_latency), reg_c_en =>0, mode=> 1) 
PORT MAP( 
elk => elk, 
reset => int_reset, 
cin => CI (0), 
cout => CI(3 downto 2), 
din_a => DA(16 downto 0), 
din_b => DB(50 downto 34), 
din_c => DA(50 downto 34), 
din_d => DB(16 downto 0), 
din_e => Zl(50 downto 17), 
bcin => b"00_0000_0000_0000_0000", 
bcout => open, 
result => Z2(33 downto 0) 
); 

—Generating Arithmetic Cell B with connection: 
Inst_acb_rpm_l: acb_rpm 

GENERIC MAP(input_width=>17, input_depth => (0*dsp_block_latency), 
output_depth => (0*dsp_block_latency)) 

PORT MAP( 
elk => elk, 
reset => int_reset, 
din_a => Zl(67 downto 51), 
din_b => CI(3 downto 2), 
result => R(84 downto 68) 
); 

—Generating Output register with latency: 0 
Inst_reg_cascade_rpm2: reg_cascade_rpm 

GENERIC MAP(width=> 17 ,depth=> (0*dsp_block_latency), interleave=>0) 
PORT MAP( 
reset => int_reset, 
elk => elk, 
data_in => Z2(16 downto 0), 
data_out => R(50 downto 34) 
); 

R(67 downto 51) <= Z2(33 downto 17); 

—Done! 
—Statistics- Input multiplier: 3 
—Statistics- DSP slice count: 9 Register count: 1768 
—Statistics- ACA: 3 ACB: 2 CR: 2 
—Statistics- Total external DSP block register: 18 
—Statistics- Total ACB block register: 3 
--Statistics- Total CR register: 5 
end behavioral; 



110 

APPENDIX B, C++ SOURCE CODE 



I l l 

// Programmer: Jacques Laurent Athow 
// Objective: C++ source to implement proposed partition algorithm 
//' Project: Master thesis, Concordia. University, November 2008 

#include "stdafx.h" 
#include <math.h> 
ttinclude <iostream> 
#include <string> 
using namespace std; 

int _tmain(int argc, _TCHAR* argv[]) 
{ 

const int len=68; 
//const int N = 3; //number of levels 
const int m=17; //size of multiplier operands 
const int dsp_blk_k=4; 
char buff[100]; 
char x; 
int xO; 
int mode=0; 

int N=(int)ceil((double)len/m)-1; 
int dsp_block_count=0; 
int register_count=0; 
int cella=0, cellb=0, cellc=0; 
int aca_reg=0; 
int cr_reg=2*N-l; 
int acb_reg=N; 
int au=0; 

cout<<"—Number of levels is: "<<N<<endl; 

cout<<"—Generating signal declaration\n"; 
for (int i=0; i<N+l; i++){ 

sprintf(buff, "\tsignal 2%i : std_logic_vector(%i downto 0);\n", i, (N-
i+l)*m*2-l ); 

cout<<buff; 
} 
for (int i=0; i<N; i++){ 

sprintf(buff, "\tsignal C%i : std_logic_vector(%i downto 0);\n", i, 
2*(N+l-i)-l); 

cout<<buff; 
) 
cout«endl; 

//—iteration for Z0 first level output 
cout«"--Generating input multipliers Xi*Yi\n"; 
for (int i=0; i<N+l; i++){ 

sprintf(buff, "\tlnst_mult_dsp_%i: mult_dsp port map(dout=>Z0 (%i downto 
%i), din_a=>DA(%i downto %i), din_b=>DB(%i downto %i));\n", 

//sprintf (buff, "\tZ0(%i downto %i) <:= DA(%i downto %i) * DB(%i downto 
»i);\n", 

i, 2*m*(i+l)-l, 2*m*i, m*(i+l)-l, 
m*i, m*(i+l)-l, m*i); 

cout<<buff; 
} 
cout«"\n--Generat ing Output reg i s te r with latency: " « 2 * N - l « e n d l ; 
cout<<"\tlnst_reg_cascade0: reg_cascade_rprn\n"; 
sprintf(buff, "\tGENERIC MAP(width=> 17 ,depth=> (%i*dsp_block_latency), 

interleave=>%i)\n", 2*N-1, 0); 
cout<<buff; 

cout«"\tPORT MAP(\n"; 
c o u t « " \ t r e s e t => in t_rese t , \n"; 
c o u t « " \ t c l k => c lk , \n" ; 
cou t«" \ t da t a_ in => Z0(16 downto 0) , \n" ; 
cou t«" \ tda ta_out => R(16 downto 0)\n"; 
c o u t « " \ t ) ; \n \n" ; 

for (int i=0; i<N; i++)( 
cout«"\n\n—iteration for Z"«i+l«"\n"; 
sprintf(buff, "\tC%i(l downto 0)<=\"00\";\n", i); 
cout<<buff; 
int j ; 
for (j=i; j< N; j++)( 

aca_reg+=(4*(i+j)); 

file:///tsignal
file:///tsignal
file:///tGENERIC


112 

if (i==N-l) 
mode=l; 

else{ 
mode=3; 
aca_reg++; 

} 

cout<<"\t—Generating Arithmetic Cell A with connection:\n"; 

if (i==0){ 
if (mode==3) 

au=34*(3+4*(i+j)+(2*4*(i+j))); 
else 

au=34*(l+4*(i+j)+(2*4*(i+j))); 

sprintf(buff, "\t—Area utilization: %i\n", au) ; 
cout<<buff; 
sprintf(buff, "\tlnst_aca_rpm_%i%i: aca_rpm\n", i, j); 
cout<<buff; 
sprintf(buff, "\t\tGENERIC MAP(depth => 

(%i*dsp_block_latency), reg_c_en =>%s, mode=> %i)\n", i+j, "1", mode); 
aca_reg+=2;} 

else{ 
if (mode==3) 

au=34*(3+(2*4*(i+j) ) ) ; 
else 

au=34*(l+(2*4*(i+j))) ; 

sprintf(buff, "\t—Area utilization: %i\n", au); 
cout<<buff; 
sprintf(buff, "\tlnst_aca_rpm_%i%i: aca_rpm\n", i, j) ; 
cout<<buff; 
sprintf(buff, "\t\tGENERIC MAP(depth => 

(%i*dsp_block_latency), reg_c_en =>%s, mode=> %i)\n", i+j, "0", mode);} 
cout«buf f ; 

cout«"\t\tPORT MAP(\n"; 
cout«"\t\tclk => clk,\n"; 
cout«"\t\treset => int_reset, \n"; 

sprintf (buff, "\t\tcin => C%i(%i),\n", i, (j-i)*2); 
cout«buff ; 
sprintf(buff, "\t\tcout => C%i(%i downto %i),\n", i, (j+2-i)*2-

1, (j + l-i)*2); 

m*(j-i)); 

m*(j+l)); 

m*(j+l)); 

m*(j-i)); 

cout«buff ; 

sprintf(buff, "\t\tdin_a => DA(%i downto %i),\n", m*(j-i+l)-l, 

cout<<buff; 
sprintf(buff, "\t\tdin_b => DB(%i downto %i),\n", m*(j+2)-l, 

cout<<buff; 
sprintf(buff, "\t\tdin_c => DA(%i downto %i),\n", m*(j+2)-l, 

cout<<buff; 
sprintf(buff, "\t\tdin_d => DB(%i downto %i),\n", m*(j-i+1)-1, 

cout<<buff; 
sprintf(buff, "\t\tdin_e => Z%i(%i downto %i),\n", i, 2*m*(j-

i+l)-l+m, m*(2*(j-i)+l)); 
cout«buf f ; 

c o u t « " \ t \ t b c i n => b\"00_0000_0000_0000_0000\", \n"; 
cout<<"\t\tbcout => open,\n"; 

i+l)-l, 2*m*(j-i)), 
sprintf(buff, "\t\tresult => Z%i(%i downto %i)\n", i+1, 2*m*(j-

cout«buf f ; 

cout«"\t\t) ;\n"; 
cout«endl; 

cella++; 
) 
//implement the output registers and arithmetic cell B 

file:///t/tGENERIC
file:///t/tGENERIC
file:///t/tcin
file:///t/tcout
file:///t/tdin_a
file:///t/tdin_b
file:///t/tdin_c
file:///t/tdin_d
file:///t/tdin_e
file:///t/tresult


113 

cout«"\t—Generating Arithmetic Cell B with connection: \n"; 

if (i==0) 
xO=N; 

else 
x0=0; 

acb_reg+=N-i-l; 

sprintf (buff, "\t—Area utilization: %i\n", 17* (xO+N-i-1)*4); 
cout<<buff; 

sprintf(buff, "\tlnst_acb_dsp48_rpm_%i: acb_dsp4 8_rpm\n", i); 
cout<<buff; 
sprintf(buff, "\t\tGENERIC MAP(input_width=>17, input_depth => 

(%i*dsp_block_latency), output_depth => (%i*dsp_block_latency))\n", xO, N-i-1); 
cout<<buff; 

sprintf(buff, "\t\tPORT MAP(\n"); 
cout<<buff; 
sprintf(buff, "\t\tclk => clk,\n"); 
cout<<buff; 
sprintf(buff, "\t\treset => int_reset,\n"); 
cout<<buff; 
sprintf(buff, "\t\tdin_a => Z%i(%i downto %i),\n", i, m*(2*(j-i)+2)-1, 

m*(2*(j-i)+l) ); 
cout<<buff; 
sprintf(buff, "\t\tdin_b => C%i(%i downto %i),\n", i, (j+l-i)*2-l, (j-

i)*2); 

i+D) ; 

l)«endl; 

cout«buff; 
sprintf(buff, "\t\tresult => R(%i downto %i)\n", (2*N+2-i)*m-l, m*(2*N-

cout<<buff; 
sprintf(buff, "\t\t);\n"); 
cout<<buff; 

cout<<"\n\t—Generating Output register with latency: "«2*(N-i-

sprintf(buff, "\t—Area utilization: %i\n", 34*(N-i-1)*4); 
cout<<buff; 
sprintf(buff, "\tlnst_reg_cascade_rpm%i: reg_cascade_rpm\n", i+1); 
cout<<buff; 
sprintf(buff, "\t\tGENERIC MAP(width=> 17 , depth=> 

(%i*dsp_block_latency), interleave=>%i)\n", 2* (N-i-1), 0); 
cout<<buff; 

cr_reg+=2*(N-i-1); 

cout<<"\t\tPORT MAP(\n"; 
cout<<"\t\treset => int_reset,\n"; 
cout<<"\t\tclk => clk,\n"; 
sprintf(buff, "\t\tdata_in => Z%i(16 downto 0),\n", i+1); 
cout<<buff; 
sprintf (buff, "\t\tdata_out => R(%i downto %i)\n", m*(i+2)-l, m*(i+l)), 
cout<<buff; 
cout<<"\t\t);\n\n"; 

if (i==N-l)( 
sprintf (buff, "\tR(%i downto %i) <= Z%i(33 downto 17),An", 

m*(i+3)-l, m*(i+2), i+1); 
cout«buf f «endl ; 

} 
cellb++; 
cellc++; 

) 
cout<<"—Done!"<<endl; 
cout<<"—Statistics- Input multiplier: "«N+l«endl; 
cout<<"--Statistics- ACA register count : "«aca_reg«" , ACB register count : 

"<<acb_reg<<" , CR register count : "<<cr_reg; 
cout<<"—Statistics- DSP slice count: " « (cella*2) + (N+l) « " Register count: 

" « (aca_reg+acb_reg+cr_reg) *dsp_blk_k*m<<endl; 
cout<<"—Statistics- ACA: "«cella<<" ACB: "«cellb«" CR: "<<cellc<<endl; 
cout<<"—Statistics- Total external DSP block register: "<<aca_reg«endl; 
cout<<"—Statistics- Total ACB block register: "«acb_reg<<endl; 
cout<<"—Statistics- Total CR register: "«cr_reg«endl; 

file:///t/tGENERIC
file:///t/tPORT
file:///t/tclk
file:///t/treset
file:///t/tdin_a
file:///t/tdin_b
file:///t/tresult
file:///t/tGENERIC
file:///t/tdata_in
file:///t/tdata_out


114 

cin>>x; 
return 0; 

#include "stdafx.h" 
#include <math.h> 
•include <iostream> 
•include <string> 

•include "graph.h" 
•include "HPLAN.h" 
•include "quicksort.h" 
•include "fpga_resource.h" 

using namespace std; 

float k=0.5; 

i n t _ t m a i n ( i n t a r g c , _TCHAR* a r g v [ ] ) 
( 

int seed=0; 
int threshold=ll; 

String fpga_type="XC4V140FX"; 
List* curr_list_ptr=openDesign() ; 
List bounding_boxl_list, bounding_box2_list; 
Elem generic_elem, generic_eleml; 
Hplan hplan(seed); 

buildResource(fpga_type); 

//build bounding box lists 
while(curr_list_ptr->size())( 

generic_elem=new Elem(curr_list_ptr->getElem()); 
if (generic_elem.type()==ACA) 

bounding_box_listl.addElem(generic_elem); 
if (generic_elem.type()==ACB) 

bounding_box_list2.addElem(generic_elem); 
} 

curr_list_ptr=openDesign() ; 
quicksort(curr_list_ptr) ; 
do{ 

generic_elem=new(generic_elemcurr_list_ptr->removeElem()); 
cout<<"now placing: "<<generic_elem.getInfo()<<endl; 
if (generic_elem.type()==ACA SS 

(generic_elem.getPredecessor()).type()==ACB)( 
cout<<"ACA is largest block..."<<endl; 
cout<<"Placing it and its predecessor"<<endl 
realPlacer(generic_elem, hplan, bounding_box_listl, 

bounding_box_list2), 

bounding_box_list2) , 

) 
else) 

bounding_box_list2); 
} 

cout«"Predecessor is: "; 
generic_eleml=new element(generic_elem.getSuccessor()); 
cout«generic_eleml. getlnf o () <<endl ; 
realPlacer(generic_eleml, hplan, bounding_box_listl, 

//modified to avoid segmentation of interconnect 
if (threshold>curr_list_ptr->size()) 

break; 

realPlacer(generic_elem, hplan, bounding_box_listl. 

}while(curr_list_ptr->size() ) ; 

hplan.validate(); 

cout<<"Done with placing!\r\n"; 

cin>>x; 



115 

return 0; 
) 

void realPlacer(Elem working_element, Hplan & hplan_working, List working_listl, List 
working_list2){ 

int size_x=working_element.getXSize(); 
int size_y=working_element.getYSize(); 

working_element.adjustSlack(size_x*k, size_y*k); 

hplan_working.getFreeResource(working_listl, 0); 
hplan_working.placeElement(working_element); 

hplan_working.getFreeResource(working_listl, 1) ; 
hplan_working.placeElement(working_element); 


