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Abstract 

Discrete Tchebichef Transform and its Application to Image/ Video Compression 

Sujata Ishwar 

The discrete Tchebichef transform (DTT) is a novel polynomial-based orthogonal trans

form. It exhibits interesting properties, such as high energy compaction, optimal decorre-

lation and direct orthogonality, and hence is expected to produce good transform coding 

results. Advances in the areas of image and video coding have generated a growing interest 

in discrete transforms. The demand for high quality with a limited use of computational 

resources and improved cost benefits has lead to experimentation with novel transform 

coding methods. One such experiment is undertaken in this thesis with the DTT. 

We propose the integer Tchebichef transform (ITT) for 4x4 and 8x8 DTTs. Using the 

proposed ITT, we also design fast multiplier-free algorithms for 4-point and 8-point DTTs 

that are superior to the existing algorithms. 

We perform image compression using 4 x 4 and 8 x 8 DTT. In order to analyze the 

performance of DTT, we compare the image compression results of DTT, discrete cosine 

transform (DCT) and integer cosine transform (ICT). Image quality measures that span 

both the subjective and objective evaluation techniques are computed for the compressed 

images and the results analyzed taking into account the statistical properties of the images 

for a better understanding of the behavioral trends. Substantial improvement is observed in 

the quality of DTT-compressed images. 

The appealing characteristics of DTT motivate us to take a step further to evaluate the 

computational benefits of ITT over ICT, which is currently being used in the H.264/ AVC 

standard. The merits of DTT as demonstrated in this thesis are its simplicity, good image 

compression potential and computational efficiency, further enhanced by its low precision 

requirements. 
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Chapter 1 

Introduction 

1.1 Background and Motivation 

Signal processing techniques have assisted in delivering high end technology solutions 

that have revolutionized consumer and industry products. Discrete transforms have re

ceived much attention owing to their applications in various classes of problems such as 

feature extraction, image/ video/ speech enhancement, pattern recognition, adaptive tech

niques, watermarking and image/ video/ speech compression. Consequently, these areas 

harbor enormous research potential. Active research has been carried out in all the above 

mentioned areas, and new algorithms are constantly being developed, and in turn, are be

ing used in the industry. These algorithms are used in a variety of applications such as 

data archival, surveillance and security applications, process automation based on audio 

or graphics content, image transmission on the internet, space sciences, geophysical, med

ical and entertainment applications. Some specific examples may be mentioned. High 

definition coding or HD technology, as it is popularly termed, uses advanced video coding 

techniques, and is now taking over the multimedia landscape. Image compression is central 

to any space mission, for instance, the Galileo deep space mission used the integer cosine 

transform for end-to-end image compression [1]. Medical procedures inevitably deal with 
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images. Hence, some common clinical applications are de-noising, compression and en

hancement of medical images. Closed circuit television (CCTV) is presently a very popular 

surveillance technique, which also requires video compression and video processing tech

niques for further analysis of data. Biometrics, which is based on the concept of pattern 

recognition, is being widely used for security procedures. 

Most of the above mentioned applications and techniques deal with bulky data, be it 

video, image, speech or text, during real-time or offline periods. Hence, compression plays 

a crucial role in storage and transmission of data. Techniques such as predictive coding 

and transform coding are typically used in image compression. The latter uses discrete 

transforms for spatial to frequency domain, followed by coding methods such as Huffman 

coding. The last few years have witnessed the interplay of signal processing, semiconduc

tor circuits, wireless networks and embedded systems to provide viable and cutting-edge 

technologies that are truly state-of-the-art. The challenge lies in delivering practically real

izable and economic solutions, while retaining the quality. 

The discrete Tchebichef polynomials (DTPs) belong to the family of orthogonal polyno

mials, and have been widely used for data approximation, data fitting and spectral methods. 

Four kinds of Tchebichef polynomials have often been mentioned in the literature in the 

context of their relationship with the well-known trigonometric transforms like discrete 

Hartley transform (DHT) and discrete sine transform (DST). The transform kernel of the 

widely popular discrete cosine transform (DCT) originates from the trigonometric repre

sentation of the Tchebichef polynomials of the first kind. Discrete Tchebichef transform 

(DTT) has a polynomial kernel and maps a finite sequence of data to the DTP space. DTP 

is a special case of the Hahn polynomial, and can be related to other families of polynomi

als such as Krawtchouk, Meixner and Charlier polynomials. Mukundan et al. were the first 

authors to propose the application of polynomial-based orthogonal moments in image anal

ysis [2]. The advantage of using Tchebichef polynomials over polynomials that have been 
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used in image analysis such as Legendre, Zernike, pseudo-Zernike [3], is that the former 

are directly orthogonal in the discrete domain and hence, do not result in approximation 

or discretization errors during transformation to the image coordinate space. Since DTPs 

satisfy exact orthogonality property in the discrete domain of the image coordinate space, 

an image can be exactly reconstructed from the complete set of transformed coefficients 

in a lossless manner. DTT exhibits many useful properties required of a transform in sig

nal processing applications such as good energy compaction, near-optimal decorrelation, 

inherent properties of symmetry and orthogonality. Like DCT [4], DTT is a close approx

imation of Karhunen Loeve transform (KLT), and is not signal dependant. Furthermore, 

since DTT can be derived recursively from a polynomial recurrence relation, it is possible 

to transmute the computations into non-float operations. Therefore, DTT is expected to 

show good results when employed in an image compression scheme for transform coding. 

The current video coding standard recommended by ITU-T1 and the moving picture 

experts group (MPEG), H.264/ MPEG-4 AVC, employs a 4x4 integer cosine transform 

(ICT) due to its low complexity. Given the polynomial nature of the DTT, it is interesting 

to note that the transform by itself, easily conforms to an integer representation without the 

need for either an approximation, or intermediate scaling (by 2), contrary to that in the case 

of the ICT. 

DCT has been considered to be the de-facto standard in image compression for quite 

sometime, and is continuing to be used for video compression. Apart from DCT, discrete 

wavelet transform (DWT) is being widely used in the JPEG 2000 standard. DCT has been 

explored to a great extent for applications in image compression. Quality assessment of 

DCT-compressed images has been investigated [5]. Various fast DCT algorithms [6-8] 

have also been developed. Most of the work carried out using discrete orthogonal polyno

mials in the literature is based on the moment approach, and not on a discrete transform 

'International telecommunication union-radiocommunication sector 
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approach. Corr et al. proposed a discrete transform based on the continuous Chebyshev 

(Tchebichef) polynomials [9]. Nakagaki and Mukundan proposed DTT with DTPs as the 

kernel [10]. Since then, no work has been published on the DTT. Heretofore, DTT has not 

been tested on a complete and practical image compression scheme such as the standard 

popularly known as the joint photographic experts group (JPEG). Also, the performance 

evaluation of DTT has been carried out only via the rudimentary means of using the number 

of coefficients used to reconstruct the data (which is suitable for moment-based approaches, 

and not transform-based approaches). There is no evidence of any work that has been car

ried out to reduce the complexity involved in the computation of the transform. All the 

above observations necessitate a deeper investigation of the DTT, which is currently in a 

nascent stage. 

1.2 Scope of the Thesis 

From the discussion above, it is noted that DTT has a good potential in transform cod

ing applications. Also, as discussed in the previous section, DTT has not been explored 

completely. The key points which need to be addressed are threefold: firstly, the need for 

application of DTT in an image compression scheme that is comparable to the available 

schemes, secondly, a detailed analysis of compression performance of DTT and thirdly, the 

design of a fast DTT algorithm with reduced complexity. Hence, in this thesis we con

centrate on all the afore-mentioned points. We perform lossy image compression using 

DTT, wherein gray-scale images of block sizes 4 x 4 and 8 x 8 are transformed, quan

tized, arranged in the zigzag sequence and Huffman-coded. The performance evaluation 

of DTT-compressed images are carried out using standard objective measures as well as 

comprehensive picture quality assessment measures. We undertake the application of DTT 

in an image/ video compression scenario. We have attempted to uncover some interesting 

functional aspects of DTT, and also to mould it into a form suitable for a fast realization of 

4 



the transform. 

1.3 Organization of the Thesis 

The rest of the thesis is organized as follows. Chapter 2 is concerned with discrete Tchebichef 

polynomials, which is the foundation of this thesis. An introduction to orthogonal polyno

mials is given and their basic properties are described, followed by a description of Hahn 

polynomials and their properties. On the basis of the Hahn polynomial, DTP, which is 

a special case of the Hahn polynomial, is defined, and various properties of the DTPs are 

then derived from the Hahn polynomials. In the final section of the chapter, the orthonormal 

DTPs are presented. 

Chapter 3 begins with an introduction of discrete Tchebichef transform and its impor

tance in transform and image coding. We present the formal definitions of 1-D and 2-D 

DTTs that are transform-notation-friendly versions of the DTT originally proposed in [10]. 

We then derive some fundamental properties of DTT that are necessary for their use in the 

image compression application studied in this thesis. In the second half of the chapter, an 

introduction to fast algorithms is given, where we describe the need for integer transforms. 

In this chapter, we also consider a framework to construct integer transforms of sizes 4 x 4 

and 8 x 8 . The possibility of using 4 x 4 integer Tchebichef transform (ITT) for trans

form coding in H.264 is discussed by comparing the transform kernels of ICT and ITT. 

Later in the chapter, the importance of multiplier-free designs is explained, new multiplier-

free algorithms are proposed and their complexities compared with the existing algorithms. 

A 5-Stage pipelined design is also proposed to illustrate die hardware implementation of 

8-point DTT using the proposed algorithm. 

In Chapter 4, we describe the fundamental concepts concerning images, and give a 

brief account of image compression, wherein we describe the steps involved in a general 

compression process, methods of compression and the compression scheme used in this 
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thesis. Experimental results of image compression for 4 x 4 and 8 x 8 DTTs are given. 

The performance of 4 x 4 DTT is compared with that of 4 x 4 DCT and 4 x 4 ICT. In this 

chapter, we also give an introduction to the picture quality evaluation (PQE) of images. We 

compare the performances of 8 x 8 DTT and 8 x 8 DCT in a comprehensive manner by 

using PQE in combination with the spatial and spectral properties of images, and carry out 

a detailed analysis of the results. Finally, in this chapter, we compare the performances of 

4 x 4 and 8 x 8 DTTs. 

Chapter 5 gives a summary of the work carried out in this thesis. Scope for future work 

is discussed and possible directions in this regard are pointed out. 
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Chapter 2 

Discrete Orthogonal Polynomials 

Classical orthogonal polynomials have been studied under the theory of special functions, 

which are usually given as solutions of the Sturm-Louisville problem, which is a linear 

second-order differential equation with variable coefficients under certain boundary condi

tions. Their extensions from the continuous case to the discrete case lead to polynomials 

that are the difference analogs of Jacobi, Laguerre, and Hermite polynomials on uniform 

and nonuniform lattices. They have been encountered in various fields of study such as 

mathematics, physics and chemistry, in problems pertaining to difference equations, quan

tum mechanics, genetics, group representation theory, coding theory, combinatorics and 

numerical analysis, the main reason for this being that many problems in these fields can 

be modeled using equations of the hypergeometric type. The discrete analogs are given by 

solutions of difference equations of hypergeometric type. Among the most popular classi

cal orthogonal polynomials of a discrete variable are the Hahn, Meixner, Krawtchouk and 

Charlier polynomials. The discrete Tchebichef polynomials, a special case of the Hahn 

polynomials, are a discrete analog of the Chebyshev polynomials, which are a special case 

of the Jacobi polynomials. The Hahn, Tchebichef, Meixner, Krawtchouk and Charlier 

polynomials are orthogonal on the uniform lattice i.e., {x = 0,1,2,...}. The dual Hahn, 

q-Hahn, q-Meixner, q-Krawtchouk and Racah polynomials are examples of polynomials 
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orthogonal on the non-uniform lattice i.e., {x = x(s), s = 0,1,2,...}. Most of the above 

mentioned polynomials can be related to one another in the form of limiting cases. 

2.1 System of Orthogonal Functions 

The system of orthogonal functions [11] can be described as 

(Pi, Pi) = ^ mP\(Xi)Pi(xd (2.1) 
i 

where w{ is the magnitude of the jump function at x - xi, and Pk(x) is a real function of a 

discrete variable. Two functions are said to be orthogonal if their scalar product vanishes. 

The functions {pk(x)} form an orthonormal system if 

<Ph, Pk) = { 
0 for h t k, 

(2.2) 
1 for h = k 

An orthogonal system can be normalized by letting 

Ph(x) = {Ph,PhY*Ph{x) (2.3) 

Classical orthogonal polynomials of a single variable are eigenfunctions of a second order 

differential operator. The difference equation of hypergeometric type that has orthogonal 

polynomials as solutions is given by [12] 

cr(x)AVy(x) + £(x)ky(x) + Ay(x) = 0 (2.4) 

where cr(x) and £(x) are polynomials of atmost second and first degree respectively, A is 

an appropriate constant and A and V are the forward and backward difference operators1 , 

respectively, given by Af(x) = f(x + 1) - f(x) and V/(x) = f(x) - f(x - 1). 

1 See also Appendix A for more properties 



The polynomial solutions [12] of (2.4), under the boundary conditions 

(T(x)g(x)xl\x=ob = 0 (1 = 0,1,..,...) (2.5) 

are orthogonal on [a, b - 1] with respect to weight function g(x) [12] 

b-\ 

^gixdy^xdykixd = 5mkd\ (2.6) 

In (2.4), when <r(x) is a polynomial of the second degree, a particular solution y = y^ix), 

obtained by the Rodrigue's formula, is given by [12] 

Vk(x) = -Y-yk[Qk(x)) (2.7) 
g(x) 

2.2 Hahn Polynomials 

The Hahn polynomials are a discrete analog of the Jacobi polynomials, and have been used 

in expressing functions such as Clebsch-Gordan [13] coefficients in the modeling of quan

tum chemistry problems [14] and also in coding theory [15]. The polynomial solutions of 

(2.4) are determined by (2.7) upto the normalizing factor Bk. Hence, by using the finite 

difference analogue of the Rodrigue's formula [12], different classes of orthogonal poly

nomials of a discrete vai 

function g(x) defined by 

(-1) nomials of a discrete variable can be generated. In (2.7), for Bk = and the weight 
A:! 

/ N T(N + a-x)T(x + B+l) , 1 n 
e W = r ( ,+ i )r (*-*) • <«>- l-/J>- l>- <2-8> 

where Y(x) is the Gamma function 2, we obtain the Hahn polynomials denoted by hf' p\x, N). 

The Hahn polynomials are solutions of (2.4) corresponding to [12] 

cr(x) = x(yx - x), cr(x) + £(*) = (x + y2)(y3 - x), (2.9) 

2 See also Appendix A for some common properties 
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where 

j \ = N + a, y2 = P + 1» j3 - N - \, for a > -I,ft > -1 are constants 

so that • (2.10) 

£(*) = OS + 1)(# - 1) - x(a + fi + 2) and cr(x) = x(N + a - x). 

In addition, A is given by k(a + j3 + k + 1). 

2.2.1 Properties of Hahn Polynomials 

Orthogonality 

When y(x) = hk(x), a = 0 and b = N in (2.6), we have for the Hahn polynomials [12], 

(2.11) 2 _T(a + k+ l)r(/S + k + \){a +/3 + k+ 1)(A0 

(a+)8 + 2ife+l)fe!(A^-Jfe-l)! 

where (a)^) is the Pochammer symbol3 given by (a\n) = a(a + \){a + 2) (a + n - 1). The 

Hahn polynomials are orthogonal over [0, N - 1]. 

Symmetry 

The weight function g(x) has the following symmetry 

g(x, a, P) = g(N - 1 - x, ft, a) (2.12) 

As a consequence of the above symmetry, it is seen from [12] that the Hahn polynomials 

satisfy the symmetry property 

h("'p\N -\-x,N) = (-l)khfa\x,N) (2.13) 

3 See also Appendix A for more properties 
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Some Special Values 

The end-point values for Hahn polynomials at x = 0, N - 1 are given by [12] 

L(* . /D 
hrp'(o,N) = (-iy 

By using (2.13) in (2.14), we have 

(JV-1)! r(k + /3+\) 
(k)\(N-k-l)\ TOS+1) 

(2.14) 

h{"'^(N-l,N) = 
(JV-l)i T(k + a+\) 

(k)\(N-k-\)\ Y(a+\) 
(2.15) 

Recurrence Relation 

The Hahn polynomials satisfy a three term recurrence relation given by [12] 

xh[a^\x,N) = anhf'f\x,N) + pnh
("'/3\x,N) + 7nh

{":f\x,N) (2.16) 

with 

ak 

(k+\)(a+p + k+\) 
(a + p + 2k + \)(a + p + 2k + 2)' 

(P2 - a2)(a + p + 2N) (a-£+2N-2) 
Pk - : r 

Jk 

4 4(a +p + 2k)(a + p + 2k + 2)' 
(a + k)(J3 + k)(a +/3 + N + k)(N - k) 

(a+p + 2k)(a+p + 2k+l) 

2.2.2 Hypergeometric Representation of Hahn Polynomials 

The Hahn polynomials can be expressed in terms of the generalized hypergeometric func

tion [12], 3Fi(x) 

t^N) = tR (N - k)ik)(0 + l)(k) 3F2 
-k,a+/3 + k+ \,-x 

p+\,\-N 
(2.17) 
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where the hypergeometric function 3F2 is given by 

3F2 
kuk2,k3 

^ mum2 

Another form of the above is [16] 

Z 
k=0 

(h)k(h)k(h)k zk 

(mi)k(m2)k k\ 

hf^\x,N) = {-^-(N -x- k\k)(p + x+ l)(t)3F2 
—k, a + N - x,-x 

N-x-k,-fi-x-k 

(2.18) 

(2.19) 

2.3 Discrete Tchebichef Polynomials: A Special Case of 

Hahn Polynomials 

Tchebichef polynomials, which also goby the names of Chebyshev, TchebichefFandTcheby-

chev, are named after Pafnuty Tchebychev, who is known to have introduced the classical 

Tchebichef polynomials. The discrete Tchebichef polynomials are associated with distri

butions of Stieltjes type [17] that were studied by Tchebichef. When the prefix 'discrete' is 

dropped, it is understood that reference is being made to the continuous class of Tchebichef 

polynomials, which are a special case of the Jacobi polynomials. The Tchebichef polyno

mial of a discrete variable, denoted by tk(x), is a special case of the Hahn polynomial, with 

a = 0 andyS = 0. DTP is denned as [11] 

tk{x) = k\Ak x\(x - N' 
kl\ k 

for £ = 0,1 N-\ (2.20) 

By substituting for a = 0 and/? = 0 in (2.11), we have the squared norm for DTPs 

2 = nk+\)T(k + \)(k+\\N) 

* (2Jt + l ) * ! ( # - i t - l ) ! (2k + 1)(N - k - 1)\ 

d\ 

(2k + \)(N - k - \)\ 

2 (k + N)\ 
(2k + \)(N - k - \) 

(using (A. 10)) 

(using (A. 14)) 

(using (A.4)) (2.21) 
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By substituting for a = 0 and/3 = 0 in (2.10), we obtain the following values for the DTP 

J\ = N, y2 = 1, 73 = N - 1, so that £(x) = N - I - 2x and cr(x) = x(N -

x). Also, /^ is given by k(k +1). The above values describe the parameters for Tchebichef 

polynomials in (2.4). In the next few sub-sections, some properties of DTP are derived. 

2.3.1 Properties of DTPs 

Orthogonality 

By substituting a = 0 and/3 = 0 in (2.8), we see that the weight function for the Tchebichef 

polynomials is unity 
T(N - *)r(* + 1) 

0(*) = r , x n m r r = 1 (2-22) 
T(x + 1 )r(iv - x) 

Hence, DTPs are orthogonal with respect to a unit weight function. The general orthogo

nality condition in (2.6), with a = 0 and b = N is rewritten for DTPs as 
J V - l 

2 J '*(*K(*) = 5mkdl (2.23) 

where d\ is the squared norm of DTPs. 

Symmetry 

By substituting a = /? = 0 in (2.13), we obtain the symmetry property for the DTP 

tk(x) = (-lftk(N-l-x) (2.24) 

Difference Equation 

The difference equation [11] for DTPs is given by 

(x + 2){x -N + 2)&\(x) + [2x-N + 3-k(k+ l)]Atk(x) - k(k + \)tk(x) = 0 (2.25) 

forJk= 1,2...A^-1 
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Special Values 

By substituting a = fi - 0 in (2.14), we have 

tk(0) = (-1) k
 (N-l)\ T(k+l) 
(k)\(N-k-iy. r(i) 

= (~1 } ( jv-fc-i) t ( u s i n g ( A , 9 ) a n d ( A - 1 0 ) ) 

^ - l ) * ^ " 1 ) * ! (using (A.14)) 

= (-l)*(iV-l)w (using (A. 16)) 

=> f*(0) = (1 - AOw (using (A. 15)) (2.26) 

Similarly, by substituting or = /3 = 0 in (2.15), we have 

(JV-1)! 
tk(N-l) 

(N-k-l)\ 

tk(N-l) = (-\f(l-N){k) (2.27) 

Central Values 

The central values for the Tchebichef polynomial [11] are 

, 2 1 ( ^ ) = ( - . A 2 „ . ( « ) ( ^ + t ) (2.28) 

l a » i ( ^ ) = 0 (2.29) 

Recurrence Relations 

(a) Recurrence Relation in x: The recurrence relation in x for DTPs is derived here. The 

difference equation in (2.25) can be re-written using (A.l) as 

(x + 2)(x -N + 2) [tk(x + 2) - 2tk{x + 1) + **(*)] + [2x - N + 3 - k(k + 1)] 

[tk(x + 1) - tk(x)] - k{k + \)tk{x) = 0 
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In the above equation, we put x as x - 2, and we re-group the terms to obtain 

-2x(x - N)tk(x - 1) + x(x - N)tk(x -2) + [2x-l-k-N(k + l)]tk(x - 1) 

- [2x - 1 - N - k(k + 1)] tk(x - 2) - k(k + l)tk(x - 2) + [x(x - N)] tk(x) = 0 

On simplifying, we have the recurrence relation with respect to x 

x(x-N)tk{x) + [-2X2 + 2kN + 2x-N- k(k + 1) - l]tk(x- 1) 

+[x2-kN-2x+\ + N]tk(x-2) = 0 (2 

(b) Recurrence Relation in k: By substituting for a = /? = 0 in (2.16), we have 

(fc+l)(fe + l) (2N-2) k2(N + k)(N-k) 
Xh{x) - (2k + Wk + 2)tk+](x) + —^—^ + 2kQk+» 4 - , ( ) ' 

which can be rewritten as 

tk+i(x) + tk(x) + . , . , i ,N fr-i(x) = 0 
2(2*:+1) 2 *v ' 2(2*+ 1) 

which is simplified as 

(k + l)tM(x) + (N-l- 2x)(2k + l)tk(x) + k(N2 - k2)tk^(x) = 0 

Hence, DTPs satisfy a three-term recurrence relation given by 

(k + l)tk+l(x) - (2k + l)ti(x)tk(x) + k(N2 - k2)tk^(x) = 0 (2 

with t0(x) = 1 and t}(x) = 2x - N + 1. 
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2.3.2 Hypergeometric Representation 

The Tchebichef polynomials can be expressed in terms of the generalized hypergeometric 

function, ?,F2(x). By substituting for a = j5 - 0 in (2.14), we have 

tk(x) = Li2-(tf-*)(t)(l)(t)3F2 

(-\)\N - k)miF2 

2.3.3 Direct Representation 

Kj /C T" 1 , X 

1 , 1 - i V 

K, K T 1 , X 

1,1-AT 
(using (A. 13)) (2.32) 

By using (2.18) to expand the expression in (2.32) as a partial sum, 

fc<*) - ( - 1 ) (TV - % ) 2 , n v . n . v , ; , 
(l)o )(l-A0O ) ;! 

E 

* (_iy(fc)0-)(fc+i)w(_iy(jc)0-) , ^ (-1)W>(* 

= ( _ 1 / ( A , _ t ) m g _ _ _ (N-1W 

k (-i){k-nk+1H'W-kh) 
N-l 

i 

(using (A. 15)) 

(using (A. 16)) 

iV-1 

•g«-HXT;>fe 

-^-^m'vr: 
(using (A. 14)) 

(using (A.4)) (2.33) 

or 

^ • H f i T w ' 
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2.3.4 Normalization of DTP 

From (2.23), it is evident that {tk(x)} is orthogonal, but not orthonormal. In view of (2.2), 

(2.3) and (2.23), orthonormal DTP, denoted by Tk(x), is given by 

n(x) = ^ (2.34) 

where d\ is given by (2.21). Note that the classical DTP is denoted by lowercase tk(x) and 

the orthonormal DTP by Xk{x). Since VA;, m : (T^, rm) = 6^m, it can be seen from (2.2) that 

{T>(X)} form an orthonormal set. The orthonormal DTP can be evaluated by using rk(x) in 

(2.31). Henceforth in this thesis, the orthonormal DTP is used for all purposes. 

Note: For the purpose of transform notation explained in the next chapter, we abuse the no

tation of Tk(x) used in this chapter. From here on, in this thesis, we denote the orthonormal 

DTP as rk(n), since n is more commonly used over x to indicate discrete-time notation. In 

Tk(n), n and k are the indices of the time and frequency components respectively. 

The recurrence relation (2.31) may be rewritten for orthonormal DTPs in the form [10] 

rk(n) = {axn + a2)TnW + a37v.2(n) (2.35) 

with 

ro(n) = ^ , T l ( n ) = (2, + l - i V ) y ^ - ^ 

where 

_ 2 Uk2 - 1 l-N J4k2 - 1 
ax-iiw^k2' ^--iriN^T2 

and 

- x ~ k 2k +1 IN2 -(k-Y? 
°3 ~ k 2k-3 y N2-k2 
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Chapter 3 

Discrete Tchebichef Transform, Integer 

Tchebichef Transform and Fast 

Algorithms 

3.1 Introduction 

Orthogonal transforms have been vastly explored. DCT, DFT, DWT, KLT, DHT and DST 

have been used in a variety of applications such as image compression, pattern recognition, 

video processing, feature extraction and speech processing, depending on how beneficial 

the transform kernel is to the said application. The fundamental rationale behind using 

transforms is as follows: 

1. A signal presents itself in a very useful manner in the transform domain. Hence, 

information that may not be visible in the spatial domain is very often distinctly 

evident in the frequency domain. 

2. Typical time domain implementations are not very efficient from the point of view of 

system complexity. 
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3. Orthogonal transforms decorrelate the original signal and also have a good energy 

compaction property, both of which aid in the compression of signals without losing 

vital information, since each coefficient can be treated independently. This is more 

clearly evident from Fig. 3.1, where (a) is the original image of Lena, (b) is the 

transformed image of Lena and (c) represents the distribution of the power of the 

Tchebichef transform coefficients in every block (divided into blocks of 16 x 16 for 

the image Lena, whose dimensions are 128 x 128). From these figures, it is seen 

that in the transform domain of the DTT, most of the energy tends to be concentrated 

in the low frequency regions (top left). This property is exploited for compression 

methods in quantization and coding stages. 

3.1.1 Transform Coding 

Transform coding is an important operation in image and video processing applications. 

Transform coding is used to convert spatial image pixel values to coefficient values per

taining to the transform domain, followed by quantization and entropy coding. Transform 

coding relies on the fact that pixels in an image are correlated with their neighboring pix

els. In the DTT domain, an input image can be represented by fewer coefficients, since 

the image data along the rows and the columns are highly correlated. This means that the 

transform-coded image can be reconstructed without a drastic loss in information. 

3.1.2 Orthogonal Polynomials in Image Coding 

An image can be represented in the transform domain by a linear combination of the ele

ments of the orthogonal basis. Polynomials have been used to code images on rectangu

lar [3] and polar coordinates [18]. The application of orthogonal polynomials, especially 

Tchebichef polynomials, in image analysis can also be seen to follow naturally from the 

fact that these polynomials have been widely used in data fitting and approximation theory, 
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and are known to be good descriptors of real-world functions. Also, since these polyno

mials are directly orthogonal on the discrete domain, discretization errors do not occur. In 

some cases, image normalization can also be skipped. 

3.2 Discrete Tchebichef Transform 

Discrete Tchebichef transform is based on a polynomial kernel derived from discrete Tchebichef 

polynomials. By performing DTT on an image, we transform the pixel intensity values in 

the spatial domain to the frequency domain. From the standpoint of digital signal process

ing applications, the importance of DTT is evident. DTT and DCT share many common 

characteristics such as high energy compaction, near optimal decorrelation and computa

tional tractability. Due to these properties, DTT is useful for transform operations in image 

and video processing applications like feature extraction, image compression and video 

coding. 

3.2.1 Formulation of DTT 

Before we formulate the DTT, for the sake of convenience of notation, we introduce j(k, n) 

to replace Tk(n) in (2.35). With this notation, we can define the matrix T to be a matrix of 

k rows and n columns, a typical element of the matrix being r(k, n). Now we proceed to 

formulate the DTT. 

The DTP in (2.34) constitute an orthonormal basis in the interval [0, N - 1 ] . In the DTT 

domain, an input data sequence x{n) is given as 

AM 

Y(k) = J ] T(k, n)x(n) for k, n = 0,1 • • • N - 1 (3.1) 
n=0 

In the above equation, the kernel r(k, n) represents the orthogonal basis of DTP, where n 

and k are the indices of the time and frequency components respectively, corresponding to 

20 



the Mi DTP evaluated at x in (2.34). The input data sequence is recovered by applying the 

inverse DTT (IDTT) denned as 

i V - l 

x{n) = YJ r(k, n)Y{k) for k, n = 0,1 • • • N - 1 (3.2) 
£=0 

When we apply DTT to an iV-point vector, x(n), the input vector is decomposed into a 

linear combination of the basis functions of the transform kernel, r(k, n). Here, n and k 

represent the time and frequency domain indices respectively. For N = 8, the plot of the 

Tchebichef basis functions are given in Fig. 3.2. 

3.2.2 Properties of DTT 

In addition to the properties inherited from the DTP explained in Section 2.3, DTT exhibits 

some interesting properties that are key factors in transform coding operations. Some prop

erties also assist in scaling down the complexity involved in the computation of the trans

form. These properties are derived below. 

Symmetry 

As already explained in (2.24) of the previous chapter, DTP, which constitutes the kernel 

of the DTT exhibits the symmetry property 

r(k,n) = (-l)kT(k,N- 1 -n) (3.3) 

By using this property, the number of computations required for DTT can be reduced by 

one half. 

Other useful relations for DTT including the orthogonality property given by (2.23) 

follow from the properties of DTP derived in the previous chapter. 
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Linearity 

Theorem 3.1 (Linearity Property of DTT) The DTT operation is linear. 

DTT 

a\X\(n) + a2x2(n) < > a\Y\(k) + a2Y2(k) 

DTT DTT 

Proof: Let x\{n) < > Y\(k) and x2(n) < > Y2(k), and also, let x(n) = aiXi(n) + a2x2(n) 
DTT 

and x(n) < > Y(k). 

From (3.1), we have 

Y(k) = Y,r(k,n)x(n) 
n=0 

N-l 

- 2_j T(k,n) {axx\(n) + a2x2(n)} 
n=0 

N-l N-l 

= ax 2. f(k, n)x\{n) + «2 / , T(k, n)x2(n) 
n=0 n=0 

= fl1yi(fc) + a2I'2W (using (3.2)) 

Energy Property 

A variant of Plancherel's theorem, which corresponds to Parseval's theorem for Fourier 

series is given below. 

Theorem 3.2 (Energy Property of DTT) The summation of the squared modulus of a 

function is equal to the summation of the squared modulus of its spectrum i.e., 

N-l N-l 

n=Q k=0 
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': From (3.2), 

JV-l 

n=0 

N-l (N-l 
= E x ( n ) E T ( f c ' 

„=0 1k=0 
N-l N-l 

= 2_j2_j{x(ri)T(k,r 
lc=0 n=0 

N-l 

= J ] Y(k)Y(k) 
k=0 

N-l 

= Y,\Y(k)\2 

n)Y(k) 

i)} Y(k) 

(using (3.1)) 

This implies that the information is preserved in the transform domain, in the sense that the 

transformed signal can be recovered completely. 

Separability of DTT 

DTT follows the separability property 

N-l (M-l \ 

Y(kuk2) = ^T(k\,n\)< ^r(k2,n2)x{nx,n2)\ 
«i=0 ln2=0 J 
N-l 

= YiTikl,rh)nkz,m) (3.4) 
«!=0 

A/-1 

where Y'{k2,n\) = j T{k2,n2)x{n\,n2). This property is useful in applications such as 
"2=0 

image coding, where a 2-D transform needs to be performed. The 2-D DTT can be carried 

out just as we would perform a 1-D DTT, first along the rows and then along the columns. 

Unitary Property 

DTT operates as a unitary transform on matrices, i.e., r is a unitary matrix. This follows 

from (2.34), since 

T'T = TT' = I, (3.5) 
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where I is the identity matrix. 

3.2.3 2-D Discrete Tchebichef Transform 

For a 2-D input sequence x{n\, n2), the 2-D DTT of order N x M is defined as 

N-\ M-\ 

Y(kx,k2) = ^ ] ^T(fci,ni)T(fc2,n2)*("i,"2) (3.6) 

for ku n\ = 0,1 • • • N - 1 and k2, n2 - 0,1 • • • M - 1 

2-D transformation is achieved by either using the separability property of the DTT in (3.4) 

to perform a row-column transform, or by direct application of the 2-D transform kernel. 

The inverse 2-D DTT applied to the transform coefficients restores the input data 

JV-l M-\ 

x(nu n2) = 2_j 2_j T(^i' "iM^2, n2)Y(ki, k2) (3.7) 
it, =0fe=0 

for k\,n\ =0,\ • • • N -I and k2, n2 = 0,1 • • • M - 1 

Fig. 3.3 gives a 3-D visualization of the 2-D basis functions for N = 4. Fig. 3.4 gives the 

plot of the 2-D basis functions for N = 8, where gray represent zeroes, black represents 

negative and white represents positive amplitudes of the basis functions. In this figure, the 

top left coefficient is called the DC component, and the rest of the coefficients are called 

the AC components. 
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Figure 3.1: Energy Distribution of Transformed Image Coefficients in the Tchebichef Domain (a) 
Original Image of Lena (b) Tchebichef Transformed Image (c) Power of the Tchebichef Trans
formed Coefficients 
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3.3 Integer Tchebichef Transform for the Design of Fast 

Multiplier-free Algorithms 

Transform coding is an important stage in many coding standards such as JPEG, H.264 

and MPEG. These standards are used in image, audio and video codecs. Efficient designs 

with limited utilization of resources are well-suited for the implementation of transforms in 

hardware. Continuing cost improvements provide impetus to the design of fast transforms. 

Transform domain conversion accounts for over 60% of the total encoding time. From 

(3.1), it is seen that by using a brute-force method, the number of computations involved 

per 1-D DTT are N2 multiplications and N(N - 1) additions. 

The transform computation approach used in [10] to design a fast algorithm for 4 x 4 

DTT was to consider all uniquely occurring DTT coefficients to form a new basis and 

express the remaining coefficients as a linear combination of these coefficients. This is 

the only fast algorithm available for DTT in the literature. In the Sub-section 3.3.4, fast 

algorithms for 8 x 8 and 4x4 DTT are proposed, which are computationally less-intensive. 

Fixed-point operations are hardware-friendly, but rounding leads to loss of accuracy due 

to the lack of more significant digits. Floating-point operations preserve the full-precision 

value, but at the cost of increased resource consumption. Moreover, floating-point oper

ations are not defined in all processors. Integer operations have many advantages over 

floating point operations such as increased computational speed, low complexity, low cost 

and low power consumption. Hence, in the following sub-section, a framework is proposed 

to construct an integer Tchebichef transform. Using this framework, 8x8 [19] and 4x4 [20] 

ITTs are proposed. 
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3.3.1 Integer Tchebichef Transform for 8x8 DTT 

Due to the unitary property of DTT given in (3.5), the 2-D DTT of the input data, X, of size 

8 x 8 given by (3.6), can also be expressed as 

Y = TXT' (3.8) 

(3.9) 

where r, the 8 x 8 transform kernel for N = 8, is given by 

0.3536 0.3536 0.3536 0.3536 0.3536 0.3536 0.3536 0.3536 

-0.5401-0.3858-0.2315-0.0772 0.0772 0.2315 0.3858 0.5401 

0.5401 0.0772 -0.2315-0.3858-0.3858-0.2315 0.0772 0.5401 

-0.4308 0.3077 0.4308 0.1846-0.1846-0.4308-0.30770.4308 

0.2820 -0.5238-0.1209 0.3626 0.3626 -0.1209-0.52380.2820 

-0.1498 0.4922 -0.3638-0.3210 0.3210 0.3638 -0.49220.1498 

0.0615 -0.3077 0.5539 -0.3077-0.3077 0.5539 -0.30770.0615 

-0.0171 0.1195 -0.3585 0.5974 -0.5974 0.3585 -0.11950.0171, 

The transform equation in (3.9) is now factorized to separate the integer and float numbers. 

Let 

q(k) = 4 ^ , k = 0 7 (3.10) 

where 

P(k) = 

k\k for & = 1 

k\{k+\) forfc = 0, 2, 4, 6 

kl(N-k) fork = 3, 5,1 

and d\ is the squared norm of DTPs given by (2.21). 

Let Q be a diagonal matrix with q(k) as the diagonal element of the kth row. 
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Therefore, 

Q = 

defin 

0.3536 

0 

0 

0 

0 

0 

0 

0 

e 

0 

0.0772 

0 

0 

0 

0 

0 

0 

0 

0 

0.0772 

0 

0 

0 

0 

0 

0 

0 

0 

0.0615 

0 

0 

0 

0 

0 

0 

0 

0 

0.0403 

0 

0 

0 

0 

0 

0 

0 

0 

0.0214 

0 

0 

0 

0 

0 

0 

0 

0 

0.0615 

0 

0 

0 

0 

0 

0 

0 

0 

0.0171 

T = Q f (3.11) 

Hence, 

* = QlT = Q|T (3.12) 

where, Qi is the diagonal matrix which contains the reciprocal of the corresponding diago

nal elements of Q as its diagonal elements and is given by 

Qi = 

/qo 

0 

0 

0 

0 

0 

0 

0 

0 

lAzi 

0 

0 

0 

0 

0 

0 

0 

0 

l/<72 

0 

0 

0 

0 

0 

0 

0 

0 

l /?3 

0 

0 

0 

0 

0 

0 

0 

0 

l/<?4 

0 

0 

0 

0 

0 

0 

0 

0 

l/<75 

0 

0 

0 

0 

0 

0 

0 

0 

l /?6 

0 

0 

0 

0 

0 

0 

0 

0 

1/47 
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or 

Qi = 

2.8284 

0 

0 

0 

0 

0 

0 

0 

Therefore, 

By su bstituting 

0 0 0 

12.9615 0 0 

0 12.9615 0 

0 0 16.2481 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

T = 

for r : 

1 1 1 1 

- 7 - 5 - 3 - 1 

7 1 - 3 - 5 

- 7 5 7 3 

7 -13 - 3 9 

- 7 23 -17 -15 

1 - 5 9 - 5 

1 - 7 21 -35 

rom (3.11) in (3.8), we 

0 

0 

0 

0 

24.8193 

0 

0 

0 

1 1 

1 3 

- 5 - 3 

- 3 - 7 

9 - 3 

15 17 

- 5 9 

35 -21 

iave 

0 

0 

0 

0 

0 

46.7333 

0 

0 

1 

5 

1 

- 5 

-13 

-23 

- 5 

7 

0 

0 

7 

0 

0 

0 

16.2481 

1 

7 

7 

7 

7 

7 

1 

- 1 

0 

0 

0 

0 

0 

0 

0 

0 

58.5833 

(3 (3.13) 

Y =(Qf)X(Qf)' 

=Q(fXf')Q' (using matrix properties (AB)' = B'A' and A(BC) = (AB)C) 

=(fXf')©Q (using Theorem B.l) 
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where O represents element-by-element multiplication. Consequently, the transform equa

tion of (3.8) may be rewritten as 

Y = (fXf) O Q (3.14) 

where for N = 8, Q is given by 

or 

Q 

% <7o<?i <7o<?2 <7o<?3 <7o<?4 qoqs Qoqe qoqi 

loqi q\ q\qi q\qz qm q\qs <?i<?6 q\qi 

qoq2 <?2<7i q \ qiq?, qiq<\ qiq^ qiq6 qiqi 

qoqi <?3<?i q-iqi q\ <?3<?4 <?3#5 <?3<?6 q^qi 

q0q4 q4qi q\qi q*qi q\ q^q$ q4qe q*qi 

qoqs q$q\ qsqi qsqi q$q* q] qsqe q%qi 

qoqe <?6<?i q&qi q^qi qt>q* q&s q\ q<>qi 

k qoqi qiq\ qiqi qiq-i qiq* qiqs qiqe q* J 

(3.15) 

0.1250 0.0273 0.0273 0.0218 0.0142 

0.0273 0.0060 0.0060 0.0047 0.0031 

0.0273 0.0060 0.0060 0.0047 0.0031 

0.0218 0.0047 0.0047 0.0038 0.0025 

0.0142 0.0031 0.0031 0.0025 0.0016 

0.0076 0.0017 0.0017 0.0013 0.0009 

0.0218 0.0047 0.0047 0.0038 0.0025 

0.0060 0.0013 0.0013 0.0011 0.0007 

(3.15) is seen to follow from (B.l) of Theorem B.l. 

In (3.14), Y is the 8 x 8 ITT given by 

0.0076 0.0218 0.0060 

0.0017 0.0047 0.0013 

0.0017 0.0047 0.0013 

0.0013 0.0038 0.0011 

0.0009 0.0025 0.0007 

0.0005 0.0013 0.0004 

0.0013 0.0038 0.0011 

0.0004 0.0011 0.0003 

Y = fXf' (3.16) 
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The normalization is complete after element-by-element multiplication is carried out be

tween the core transform, (f Xf') and Q. This operation is incorporated into the quantization 

stage. The same framework applies for 4 x 4 ITT also as shown in the next sub-section. 

3.3.2 Integer Tchebichef Transform for 4x4 DTT 

Using the framework described in Sub-section 3.3.1, we now derive the 4 x 4 ITT. The 2-D 

DTT of the input data, X, of size 4 x 4 given by (3.6), can also be expressed as 

Y = TXT' 

where r, the 4 x 4 transform kernel for N = 4, obtained from (2.35), is given by 

0.5000 0.5000 0.5000 0.5000 

-0.6708 -0.2236 0.2236 0.6708 

0.5000 -0.5000 -0.5000 0.5000 

-0.2236 0.6708 -0.6708 0.2236 

(3.17) 

T = (3.18) 

The transform equation in (3.18) is now factorized to separate the integer and float numbers. 

Let 

q(k) = EtQ, k = 0 3 (3.19) 
dk 

where 

k\k for k = 1 

P(k) = \ k\(k + \) forfc = 0, 2 

k\(N-k) for* = 3 

and d\ is the squared norm of DTPs given by (2.21). Let Q be a diagonal matrix with q{k) 

as the diagonal element of the kth row. 
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Therefore, 

We define 

Q = 

0.5 0 0 0 

0 0.2236 0 0 

0 0 0.5 0 

0 0 0 0.2236 

Hence, 

r = Qf 

f = Q ! T = QiT 

(3.20) 

(3.21) 

where, Qj is the diagonal matrix, which contains the reciprocal of the corresponding diag

onal elements of Q as its diagonal elements, and is given by 

Qi = 

IQQ 

0 

0 

0 

0 

\lq\ 

0 

0 

0 

0 

l/<72 

0 

0 

0 

0 

1/93 

2 

0 

0 

0 

0 

4.4721 

0 

0 

0 

0 

2 

0 

0 

0 

0 

4.4721 

Therefore, 

1 1 1 1 

- 3 - 1 1 3 

1 - 1 - 1 1 

- 1 3 - 3 1 

(3.22) 
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By substituting for r from (3.20) in (3.17), we have 

Y =(Qf)X(Qf)' 

=Q(fXf')Q' (using matrix properties (AB)' = B'A' and A(BC) = (AB)C) 

=(fXf') © Q (using Theorem B. 1) 

Consequently, the transform equation of (3.17) may be rewritten as 

Y = ( fX f ' )©Q 

where for N = 4, Q is given by 

Q = 

<?o <?o<?i q^qi qm 

q0qi q\ qxq2 qxqz 

qoqi qm q\ qiq-b 

,2 
^ qoq-i qiqs qiq?> q%, ) 

which follows from (B.l) of Theorem B.l. 

In (3.23), Y is the 4 x 4 ITT given by 

0.2500 0.1118 0.2500 0.1118 

0.1118 0.0500 0.1118 0.0500 

0.2500 0.1118 0.2500 0.1118 

0.1118 0.0500 0.1118 0.0500 

Y = fX f ' 

(3.23) 

(3.24) 

(3.25) 

The normalization is complete after element-by-element multiplication is carried out be-

tween the core transform, (fXf) and Q. This operation is incorporated into the quantiza

tion stage. Alternatively, but on the same lines, we derive another possibility of deriving 

4 x 4 ITT, so that ITT and ICT are easily comparable for the purpose of computational 

complexity. 
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Alternate Intermediate Framework 

If we define c = 1/2 and d = 1/ V5 in (3.18), T is re-written 

c c c c 

-3cd -cd cd Zed 

c -c -c c 

-cd led -3cd cd 

Hence, the 1-D transform Y = rX is given as 

as 

T = 

Y = (fX) O S (3.26) 

where O represents element-element multiplication, and 

c c c c 1 1 1 1 ^ 

- 3 - 1 1 3 

1 - 1 - 1 1 

-1 3 - 3 1 

(3.27) 
cd cd cd cd 

c c c c 

cd cd cd cd 

S is the scaling matrix that can be separated from the core transform computation which 

involves the new matrix f. Since f is orthogonal, but not orthonormal, normalization is 

complete when the scaling matrix S is merged into the quantization process. 

The expression in (3.8) is factorized as 

Y = (fXf')©S (3.28) 

where 

S = 

c2 c2d c2 c2d 

czd cldL cld cld 2^2 

C2d C2d 

c2d c2d2 c2d c2d2 
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Multipliers are not needed for a transform such as (3.26) involving f given by (3.27), since 

multiplications by 3 can be implemented by shift and add operations. This formulation 

lays a framework to compute a fast integer DTT for applications with 4x4 transform block 

coding. 

3.3.3 Transform Coding using DTT in Video Compression 

Next, we illustrate the possible use of DTT in video compression by comparing the com

putational nature of DTT and ICT, which is currently being used in the video compression 

standard, H.264/ AVC. In the next chapter, we demonstrate via comparison of image com

pression performances of ITT, ICT (and DCT), that ITT performs better than ICT (and 

DCT). The H.264/ AVC standard is discussed below to explain the role of DTT in the 

transform coding stage. 

Review of MPEG-4 Advanced Video Coding 

Most of the performance gain in image and video processing applications is attributed to 

tailor-made quantization and coding schemes. DCT of block size 8x8 is generally used 

in image processing applications due to its superior performance. The H.264 standard 

uses a 4x4 ICT in order to facilitate exact reversibility for coding and decoding mainly 

due to its low computational complexity [21]. This has brought about a reduction in the 

ringing effects resulting from predictive coding, and has also made it possible to use 16-bit 

arithmetic in the transform calculation. The forward 2-D transform used in H.264 [22,23] 

is Y2£> = (HXH') O Ef, where (HXH') is the core transform. The 1-D transform is given 

as Y1D = (HX) O E. Here, the transform matrix H is an integer approximation of the DCT 
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matrix (H = roww/(a:HDcT)) [24]. 

H = 

1 

2 

1 

1 

1 

1 

-1 

-2 

1 

-1 

-1 

2 

1 

-2 

1 

-1 
) 

/ 

, E = 

, 

a b/2 a b/2 

b/2 b/2 b/2 b/2 

a b/2 a b/2 

b/2 b/2 b/2 b/2 ^ 

and 

Ef 

a2 ab/2 a2 ab/2 

ab/2 b2/4 ab/2 b2/4 

a2 ab/2 a2 ab/2 
(3.29) 

H©E = 

{ ab/2 b2/4 ab/2 b2/4 J 

Values of a and b in E,Ef are a = \,b - J | (b is modified from 0.6533 to 0.6325 in 

order to preserve the orthogonality of the transform). Effectively, H O E represents the 

basis functions used by ICT given by 

0.5000 0.5000 0.5000 0.5000 

0.6325 0.3162 -0.3162 -0.6325 

0.5000 -0.5000 -0.5000 0.5000 

0.3162 -0.6325 0.6325 -0.3162 

whereas the actual kernel of DCT is 

0.5000 0.5000 0.5000 0.5000 

0.6533 0.2706 -0.2706 -0.6533 

0.5000 -0.5000 -0.5000 0.5000 

0.2706 -0.6533 0.6533 -0.2706 

(3.30) 

(3.31) 

We note that the transition from DCT to ICT has inflicted some approximation errors. 

But, the computational ease of the core transform outweighs the consideration of these 

errors [22]. 
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ITT as a Substitute for ICT in MPEG-4 

In addition to all the benefits offered by ICT, DTT has added advantages and hence, can be 

used in video processing applications. It has already been shown in Sub-section 3.3.2 that 

a separable core transform, ITT, pertaining to the DTT, is arrived at with ease and without 

any approximation. By observing the following points, it is seen that ITT has an edge over 

ICT. 

1. DTT is akin to DCT and their performances are very close in general. In particular, 

for a 4x4 block size, DTT outperforms DCT in most cases. 

2. Approximation errors are not present in ITT inspite of having integralized the DTT, 

since modification of any kind is not required to make it multiplier-free or to obtain 

its integral representation. 

3. DTT has a polynomial kernel. Hence, in a way, we are already dealing with integers 

by scaling the rows of DTT. 

4. The dynamic range of ITT is comparable to that of ICT. The transform coefficients 

are bounded by g2U, where U is the upper limit of the input [22]. In the case of 

ITT, g=8. Since log264 - 6, for [7=255, 6 more bits are required to compute the 

transform. Hence 16-bit arithmetic can be used in ITT. 

5. H in (3.29) can also be obtained from the DTT basis in (3.18) just as in the case of 

DCT using H = round(ar) for a = 2.5, with a sign reversal for the even rows. 

6. Since ITT does not involve approximations, the scaling matrix used in quantization 

does not have to be modified to satisfy the orthogonality condition, though this does 

not really affect the performance in any way. 
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3.3.4 Fast Algorithms for 8-point and 4-point ITTs 

Multiplications increase complexity, power consumption and result in bulky designs, with 

increased computational time. Also, not all processors have in-built multiply units. Most 

modern-day processors have built-in instructions for addition and shift operations. Hence, 

later in this chapter, we propose multiplier-free algorithms with only shifts and additions 

for 4 x 4 and 8 x 8 ITTs. 

8-point Discrete Tchebichef Transform 

The DTT of an 8-point input sequence x(n), given by (3.1), for N = 8, is 

7 

Y(k) = YJ T(AT, n)x(n) for k, n = 0,1 • • • 7 (3.32) 
n=0 

where the kernel r(k, n) is the orthogonal basis of DTP. The inverse DTT in (3.2) is given 

as 

7 

x(n) = ^ r{k, n)Y(k) for k, n = 0,1 • • • 7 (3.33) 

2-D 8x8 Discrete Tchebichef Transform 

The 2-D DTT in (3.6), for N = 8, is given as 

N-\ M-\ 

Y(kuk2) = 2_j2_jr(ki,ni)T(k2,n2)x(nun2) (3.34) 
n\=0 112=0 

for k\, n\ = 0,1 • • • 7 and k2,n% = 0,1 • • • 7 

The inverse 2-D DTT for iV = 8 is given by 
7 7 

x(ni,n2) = ^2_JT(ki,ni)T(k2,n2)Y(kuk2) (3.35) 
*! =<H2=0 

for k\, n\ = 0,1 • • • 7 and k2, n2 - 0,1 • • • 7 
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Fast 8-point ITT Algorithm 

Here, we design [19] a multiplier-free algorithm, by using the ITT proposed in (3.16) in the 

previous section. As already explained in the introduction of this chapter, a multiplier-free 

design is computationally fast and efficient. The complexity involved in the core transform 

computation is optimized by devising a fast algorithm. The steps involved in the algorithm 

are given below. 

Stepl: 

UQ — XQ + X~i VQ = XQ — X-] 

U\ — X\ + X(, V\ — X\ — X(, 

and (3.36) 
U2 = Xi + X5 V2 - X2 - Xs 

H3 = XT, + X4 V3 = XT, — X4 

Step 2: 

Zo = V0 + V3 

k0 = u0 + u2 
and Zl - Vl - v2 (3-37) 

Step-3: 

k\ = u\ + M3 

Zl = Vl + V2 

m0 = ko + k\ 
wo = ~{Z\ + zo) 

m;=k0- kx and (3.38) 
w\ - z\ - Zo 

m2 = fc«o - «"2 

where b - 6 and a = 4 
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Step 4: 

lo - m.Q + m-2 

l\ = m\+ m-i 

h = a(2kx + ux) and 

Ij - a(2w2 - k\) 

U = wo - bvo 

15 = wx + az\ 

16 = (av3 + bzi) 

h - 2a(vi - v3) 

/g = bv-i - av2 

(3.39) 

Step 5: 

y0 = m0 

yi = k- az2 

y i - k - au-i 

y3 = U + k 

and 

y4 = h~ h 

ys = h + h 

y6 = m\ + h 

yi = h + k 

(3.40) 

The only multiplying coefficients that appear in the proposed algorithm are a = 4 and 

b = 6. The proposed fast algorithm thus eliminates multiplications altogether, since mul

tiplication by a can be implemented by two shifts, and that with b can be implemented 

by adding the left-shifted value of the multiplicand to its twice left-shifted value i.e., 

mx a =«: m and m x b =«: m+ <K«: m, where «. represents one-bit left shift. 

Table 3.1 gives a comparison of the number of computations of the proposed fast al

gorithm with those of pouplar fast DCT algorithms [6-8]. It is seen that the proposed 

algorithm requires only a reasonable number of additions to compute the DTT, inspite of 

the fact that all multiplications have been eliminated. Since a fast algorithm for DTT does 

not exist in the literature, we compare the computational complexity of our algorithm only 

with that of the DCT. 

2-D ITT can be computed efficiently by using the proposed 1 -D algorithm first along the 

rows and then along the columns in two steps by using the separability property of the DTT. 

Using the proposed fast algorithm, 8-point ITT can be implemented in hardware using a 

5-stage pipelined hardware as proposed in Fig. 3.5. The functions of the individual cells of 
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Table 3.1: Arithmetic Complexities of 8x8 DCT and 8x8 ITT 

Input Type 

8-point 

1-D array 

(8 x 8)-point 

2-D array 

Operation 

add 

mult 

shift 

add 

mult 

shift 

DCT 

[6] 

N/A 

N/A 

N/A 

454 

94 

6 

DCT 

[7] 

28 

11 

N/A 

448 

176 

N/A 

DCT 

[8] 

29 

5 

N/A 

464 

144 

N/A 

ITT 

(proposed) 

38 

0 

24 

608 

0 

384 

the architecture shown in Fig. 3.5 are given in Fig. 3.6. Fig. 3.7 gives the computational 

flow graph for the proposed architecture for the computation of 2-D ITT of size 8 x 8 . 

4-point Discrete Tchebichef Transform 

The DTT of a 4-point input sequence x(n), given by (3.1), is 

3 

Y(k) = ̂  r(k, n)x{n) for k, n = 0,1,2,3 (3.41) 
n=0 

and the inverse 4-point DTT in (3.2) is given by 

3 

x{n) = YJ r(k, n)Y(k) for k, n = 0,1,2,3 (3.42) 

Orthonormal DTP can be generated recursively by using (2.35). 
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Figure 3.5: 5-Stage Pipelined Design for the Proposed Fast Algorithm for 8-point ITT 

2-D 4x4 Discrete Tchebichef Transform 

For a 2-D input sequence x(nun2), the 2-D DTT of order 4 x 4 is defined as 

3 3 

«l=0«2=0 

(3.43) 

for ki,ti\ = 0,1,2,3 and k2,n2 = 0,1,2,3 
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Figure 3.6: Function of Individual Cells of Proposed Pipelined Design in Fig. 3.5 

The inverse 2-D 4 x 4 DTT is given by 

3 3 

x(nun2) = ^ YJT{kx,nx)T{k2,n2)Y{kx,k2) (3.44) 
kl=0k2=0 

for k\,n\ = 0,1,2,3 and &2>"2 = 0,1,2,3 

Fast Algorithm for 4x4 ITT 

A fast multiplier-free algorithm for 4 x 4 ITT is proposed here [20] to compute the core 

transform Y = fXf', otherwise known in this thesis as ITT. 1-D ITT is obtained from the 
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Figure 3.7: Computational Flowgraph of 2-D ITT of Size 8x8 

matrix multiplication of the input data vector X with the coefficient matrix f in (3.26) 

Yx 

Y2 

^ , 

( 

< 

1 1 1 1 

- 3 - 1 1 3 

1 - 1 - 1 1 

- 1 3 - 3 1 

XQ 

X\ 

X2 

*3 

(3.45) 

Utilizing the symmetry behavior of DTT in (2.24), the input vector is grouped as 

UQ = XT, + XQ, 

VO = *3 _ ^0> 

U i = X2 + X\, 

vx-x2- x\ 

The structure of the coefficient matrix f in (3.27) is utilized for its factorization into two 

sparse matrices to increase the computational efficiency, f is written as f = f\ + 3f2, where 

t \ 

1 1 1 1 

0 - 1 1 0 

1 - 1 - 1 1 

- 1 0 0 1 

T2 = 

0 0 0 0 

- 1 0 0 1 

0 0 0 0 

0 1 - 1 0 
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Output data points in (3.45) can be separated into even and odd parts, Ye and Yo. 

for 

or 

and 

Y = 

i \ 
Ye 

Yo 

Ye 
' Y^ 

V y2 ; 
, Yo = 

1 Yx ^ 

V F 3 , 

Ye 
1 1 

1 - 1 

U0 

V " 1 J 

Yo 3 

( \ 
-1 0 

-

( \ 
0 1 vo 

If we denote [u] = 

( \ 
«o 

u\ ) 
and [v] 

( \ 
vo , Ye and Yo can be written compactly as 

Ye = H2[u] and Yo = 3D2[v] - E2[v], 

where D2 is a unit diagonal matrix with alternating sign, and H 2 and E2 are the second order 

Hadamard and exchange matrices respectively. Multiplications by 3 can be substituted by 

shift and add operations as mentioned before. The transformed output data points in (3.45) 

48 



can also be written as 

YQ — UQ + U\, 

Yx = 3v0 + V! = (v0+ «: v0) + vi, 

Yi — UQ - U\, 

Y3 = v0 - 3vi = v0 - (vi+ «: vO 

where «: represents one-bit left shift. 

Fig. 3.8 shows the signal flow graph for this algorithm. Table 3.2 gives a comparison 

of complexity involved in transform computation. The complexities for the proposed al

gorithm and ICT are obtained by extending the proposed 1-D algorithms to 2-D using the 

separability property of the transforms. 

The proposed method has eliminated multiplications altogether. The number of addi

tions can be further reduced by designing algorithms specifically for the 2-D case. Since 

the implementation of shift operations is simpler than that of arithmetic operations, ITT is 

computationally more efficient than the other algorithms in Table 3.2. Owing to the sep

arability property of DTT, 2-D transform can be evaluated using a row-column approach, 

wherein a 1-D transform is applied to the rows and then to the columns of the input. 
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Figure 3.8: Signal Flow Diagram for the Proposed Fast Algorithm for 4-point ITT 

Table 3.2: Complexity Comparison of Fast 4x4 2-D Transforms 

Add 

Mul 

Shifts 

Conventional 

72 

32 

-

DCT [25] 

74 

16 

-

DTT [10] 

66 

32 

-

ICT [21] 

64 

0 

16 

Proposed 

80 

0 

16 
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Chapter 4 

Image Compression 

4.1 Introduction 

Recent technological developments have spawned a generation of digital multimedia prod

ucts applicable to the medical, biological, space, security, geo-physical and entertainment 

realms. The storage and transmission of graphics, video and audio consume a large amount 

of memory and transmission bandwidth. For example, a color image of dimension 100x100 

represented by 8 bits per pixel requires 100x100x8x3 = 240 Kbits in memory. Compres

sion of images enables us to reduce the storage and transmission requirements. Compres

sion techniques rely on correlation and redundancies in images. Generally, compression 

also involves coding, which can be useful to encrypt data for security purposes. Image 

compression finds applications in many areas such as image sharing over the internet, tele

conferencing for educational, professional and medical purposes, medical image archival 

and storage of personal multimedia data. 
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4.1.1 Digital Images 

A digital image is a two-dimensional function, f(x, y), where x and y are coordinates in 

the spatial domain, where the value at a coordinate represents the intensity of the image at 

that point in the spatial plane [26]. In general, we represent a digital image of dimension 

M x L as shown in Fig. 4.1. Pixels or picture elements are the building blocks of digital 

f Pixel (2,3) 

0 1 2 / L-1 

L-11 I I I I I I I I I I I I 

Figure 4.1: Representation of a Digital Image in Spatial Domain 

images. It is easy to visualize an image as a 2-D matrix with each coordinate representing 

a pixel intensity value. Images are either color or gray (black and white). Pixel values in a 

black and white image can be any of the different shades of gray. A pixel represented by 

n bits can take any of the 2" different values. If we assume 256 levels of gray, 28 = 256, 

hence each pixel takes 8 bits in memory. RGB color spaces have three sub-channels red, 

green and blue, and hence need three times the space as that of gray images. If we again 

assume 256 levels for each sub-channel, each pixel takes 8 x 3 = 24 bits in memory. 

Among the many available file formats for images, the most common ones are graphics 

interchange format (GIF), tagged image file format (TIFF), image silicon graphics (SGI), 

PICT, microsoft windows bitmap (BMP), X bitmap (XBM), PGM and JPEG. 

Some of the image formats such as JPEG and BMP convert the original image to a 

compressed format which maybe lossy, and some of them such as GIF, PGM and TIFF 

52 



allow the lossless storage of images. 

Redundancies in Images 

An image typically contains redundancies such as coding, psychovisual, spatial and statis

tical redundancies, that can be exploited in images for the purpose of compression [26]. 

Coding redundancies can be reduced by using code words of varying lengths, based on the 

probability of occurrence of certain pixel values. For instance, pixel values occurring with 

a higher probability can be represented by shorter bit lengths compared to those that occur 

less frequently. Psychovisual redundancies are based on the assumption that the compo

nents of an image, whose change is not detected by the human eye, are not considered 

to be significant by an image compression system. The human visual system (HVS) is 

more sensitive to edge information in an image. As shown in Fig. 4.2, the human eye is 

most sensitive to frequencies around 5 cycles per degree, and is not sensitive to frequen

cies above 100 cycles per degree [27]. It can also be seen from the graph that variations in 

chrominance components are less detected by the HVS compared to variations in luminance 

components. This type of irrelevance can be removed by performing color quantization, 

which is an irreversible and a lossy process in which the number of colors in the image are 

reduced. Inter-pixel redundancies rely on the fact that neighboring pixels have similar val

ues, and hence these values are predictable. These statistical redundancies can be removed 

by performing variable length coding (VLC). Predictive coding techniques can be used to 

eliminate spatial correlations in addition to application of orthogonal transforms with good 

decorrelation capabilities such as DCT. 
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Figure 4.2: Sensitivity of the Eye to Luminance and Chrominance Changes 

4.2 Existing Compression Techniques 

Image compression can be either lossy or lossless. In lossless compression, all the infor

mation is preserved, and hence, the image can be reconstructed exactly. Lossless compres

sion techniques depend largely on predictable characteristics of the images. Examples of 

lossless compression are run length encoding (RLE), lossless JPEG (JPEG-LS) and LZW 

compression. Common image formats for lossless compression techniques are TIFF us

ing the LZW compression and BMP using the RLE compression [28]. Lossy compression 

techniques are used in a host of applications where some loss of information can be tol

erated. Coding is carried out by examining the components of the image which are not 

influential in image perception. An optimal lossy compression technique is that which re

quires a low bandwidth utilization, while providing good visual quality along with a low 

system complexity. Image file formats of the lossy type are JPEG, LWF (Lurawave format) 
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and FIF (fractal image format). Popular lossy techniques which are also international com

pression standards are JPEG and JPEG 2000 (JPEG 2K). JPEG is an image compression 

standard [29] and operates in one lossless mode and three lossy modes which are sequen

tial, progressive and hierarchical modes, respectively. In the baseline or the sequential 

JPEG scheme, the image is grouped into non-overlapping blocks of size 8x8. They are 

transformed using DCT and quantized followed by a zigzag ordering, which are then Huff

man coded. Linear predictive coding is used in the lossless JPEG mode. Since image pixel 

values are highly correlated, they are predicted depending on neighboring pixels. Progres

sive JPEG compression is similar to the baseline JPEG scheme except that the quantized 

coefficients are coded in multiple scans until the desired quality is achieved. JPEG coding 

results in blocking artifacts in the compressed image, since correlation across the block 

boundaries is not eliminated. Lapped orthogonal transforms (LOT) have been proposed to 

deal with this problem. 

JPEG 2000 performs a wavelet transform on the image, quantizes the transformed im

age and codes the quantized image using bit plane coding and arithmetic entropy coding. 

In comparison with JPEG, JPEG 2000 offers advantages such as higher compression ra

tios, better error resilience and region of interest (ROI) capability. The complexity of a 

JPEG 2000 system is much higher than that of JPEG, and hence, JPEG 2000 is used se

lectively. While lossless compression procedures can achieve lower compression ratios of 

about 3:1, lossy compression techniques can achieve relatively higher compression ratios 

ranging from 5:1 up to 200:1. 

4.2.1 Steps involved in Image Compression 

The following steps are carried out generally in compression systems 

• Color space conversion: RGB formats, which are widely used in images exhibit a 

high visual correlation between the three color components. Hence, these images are 
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converted to the YCbCr space, where luminance is described by Y, whereas Cb and 

Cr represent the color information. 

• Chroma sub-sampling: As explained in the previous section, the HVS is more sen

sitive to luminance components of an image compared to the chrominance compo

nents. Hence, chroma re-sampling is carried out as a part of the compression process. 

• Transform coding: The image is converted from spatial to transform domain by ap

plying a discrete transform such as DCT or DWT, followed by quantization and 

entropy coding techniques such as Huffman, arithmetic or progressive coding. 

4.3 Image Compression Scheme 

As explained above, image compression is a multi-stage process. For our purpose, we 

define the following scheme to carry out image compression using DTT. The concepts 

of the different stages of this scheme are mainly borrowed from the JPEG compression 

scheme [29,30]. The various steps in the encoding and decoding process involved in image 

compression using DTT are given below. 

Encoding process: 

• Images are divided into sub-blocks of size N xN . 

• The individual values of the image sub-block are level-shifted by 2P_1, where p is the 

precision of the input image. 

• The level-shifted NxN image block is transformed using DTT of block size N x N . 

• The transform coefficients are quantized and rounded to the nearest integer. 

• The quantized coefficients are scanned in a zigzag order. 

• The frequency-ordered coefficients are coded using differential and Huffman coding. 
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Decoding process: 

• The encoded bit-stream is decoded. 

• The decoded values are re-arranged from the zigzag order and de-quantized using the 

quantization tables. 

• Inverse DTT is performed on the de-quantized values and the resulting values are 

level-shifted back to their original format. 

• The image sub-blocks are re-combined to reconstruct the original image. 

The codec for the image compression technique adopted in this thesis is shown in Fig. 4.3. 

4.3.1 Encoding and Decoding Process 

The steps mentioned above to obtain the compressed image are explained in detail below. 

Sample plots are also given for intermediate outputs in the coding and decoding paths to 

illustrate the working of the codec. Figs. 4.4 (a) and (b) show the mesh and histogram plots 

of an 8 x 8 image sub-block of Einstein shown in Fig. 4.5-(a). 

Sub-block Extraction 

The input image of size M x L is grouped into sub-blocks of size N x N, and the subse

quent operations are performed on each N x N sub-block. Additional samples are added 

if required to ensure integral number of blocks, and further additional samples are mir

rored along the existing samples within a block, when the remaining existing samples (after 

grouping N x N sub-blocks) cannot completely form an N x N block. (This is consistent 

with the idea that neighboring pixels are highly correlated.) During decoding, the header 

information suggests the presence of additional samples that can be removed in order to 

57 



reconstruct the original image. This process is shown in Fig. 4.5, where 4.5(a) shows the 

original image of Einstein of size 256 x 256, 4.5(b) and 4.5(c) represent the first 8 x 8 

image sub-block. After decoding, the reverse operation is carried out, i.e., the sub-blocks 

are re-grouped and the original image is reconstructed. 

Level Shifting 

In order to reduce internal precision requirements, the range of the input data is changed 

from 0 to V - 1 to the range -2p~l to 2P~1 - 1, where p is the precision of the input image, 

i.e., for p = 8, for an image of size 256 x 256 with unsigned integer values in the range 0 

to 255, the level shifted values are signed integers in the range -128 to +127. Fig. 4.7(a) 

shows the mesh plot of the level-shifted image sub-block of Einstein. After decoding, the 

values are level-shifted back to the original unsigned representation. 

Discrete Tchebichef Transform 

The discrete Tchebichef transform is performed on the level-shifted image sub-block. This 

process decorrelates the components of the sub-block, and the energy compaction property 

of DTT also ensures that the image information contained in the sub-block is represented 

by fewer coefficients in the Tchebichef domain. This is evident in the transformed image 

sub-block coefficients in Fig. 4.6 of Einstein shown in Fig. 4.5. The transform stage does 

not perform any image compression by itself, but contributes to the process by structuring 

coefficients in a manner advantageous to the coding stage. 

Fig. 4.7(b) shows the mesh plot of the transformed sub-block of Einstein. 

Quantization 

Quantization is an irreversible and a lossy process, which contributes to the compression 

of data. The transformed coefficients, Yklk2, are quantized using uniform quantization with 
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different quantization steps, Qkxk2, as 

Tk}k2 = round(^) (4.1) 
Uk\k2 

where k\, k2 are the frequency domain indexes. Qkxk2 corresponds to the entry of the quanti

zation matrix in the position (k\, k2). The quantization matrix is user-defined. The rounding 

function rounds the result to the nearest integer and ensures that we deal with integral val

ues. The reverse operation is carried out to de-quantize the values in the decoding process. 

Figs. 4.8(a) and 4.8(b) show the mesh plots of the quantized and rounded sub-blocks of 

Einstein for lower and higher quantization values respectively. 

Zigzag scanning 

The transform stage results in the concentration of the significant image components in the 

lower spatial frequencies. The quantized DC coefficient undergoes differential encoding 

[31] and the quantized AC coefficients are arranged in a zigzag scan order, which sorts the 

quantized values in the increasing order of spatial frequencies. Since spatial frequencies 

increase horizontally as we move from left to right, and vertically as we move from top to 

bottom, the scanning order shown in Fig. 4.9 has been found to be useful [31]. 

Entropy Coding 

Entropy coding techniques such as arithmetic coding and RLE help in further compression 

of the quantized coefficients by removing statistical redundancies. Huffman encoding maps 

the zigzag ordered quantized coefficients into shorter symbols depending on the probability 

of occurrence of the symbols [31]. The decoding process extracts the symbols based on 

the statistical information. User-defined Huffman code tables are required to be fed to the 

encoder and the decoder. Figs. 4.10(a) and 4.10(b) show the histogram plots of the decoded 

sub-block for lower quantization and higher quantization values respectively for Einstein. 
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Since a histogram plot shows the number of pixels at different intensity values of an image, 

it is an indicator of the entropy of the image. More uniformly distributed histogram plots 

with higher number of pixels suggest a higher entropy since, if all the source symbols are 

equally probable, then the source has a maximum entropy. An image with a higher entropy 

requires more number of bits to represent each pixel. Since higher quantization levels 

allow image encoding with fewer bits (higher compression), it is seen from Figs. 4.10(a) 

and 4.10(b) that Fig. 4.10(b) offers better compression. More evenly distributed histogram 

plots have higher image contrast and clustered histogram plots have lower image contrast. 

This observation directly translates to the principle of image compression, which takes 

advantage of the HVS characteristics, i.e., the HVS is not very sensitive to variation in 

contrast. Figs. 4.11 (a) and (b) show the mesh plots of the decoded sub-blocks of Einstein 

for lower and higher quantization values, respectively. 

4.3.2 Sample Precision 

The precision of the transformed coefficients is bounded by g2 U, where U is the upper 

limit of the input and g is the maximum value for the sum of the absolute values of any 

row [22]. For 8 x 8 DTT, from (3.9), g2=8. Since log28 = 3, 3 more bits are required for 

the computation of DTT. Hence, for £7=255, that is for image values of 8-bit precision, the 

output images have 8-bit precision and the quantized DTT coefficients are restricted to 11 

bits. (The quantization steps are restricted to 8-bit precision). For 4 x 4 DTT, from (3.18), 

g2=4. Since log2^ = 2, 2 more bits are required for the computation of DTT. Hence, for 

{7=255, that is, for image values of 8-bit precision, the output images have 8-bit precision 

and the quantized DTT coefficients are restricted to 10 bits. 
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Figure 4.4: (a) Mesh Plot and (b) Histogram plot Characteristics of the Input Sub-blocks of Einstein 
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Figure 4.5: 8x8 Sub-block Extraction for Einstein 
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Figure 4.9: Example of Zigzag Scanning Sequence for 8x8 DTT 
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Figure 4.10: Histogram Characteristics of the Decoded Sub-blocks of Einstein for (a) Lower and 
(b) Higher Quantization Values 
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Figure 4.11: Characteristics of the Decoded Sub-blocks of Einstein for (a) Lower and (b) Higher 
Quantization Values 
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4.4 Experimental Results and Discussions 

Using the scheme in Fig. 4.3 explained in the previous sub-section, we perform image 

compression on various gray scale images using 8 x 8 [19] and 4 x 4 [20] DTTs. The test 

images used in our experiments are shown in Figs. 4.12 (a) - (j)- The images are (a) Lena, 

(b) Einstein, (c) Airplane, (d) Mandrill, (e) Peppers, (f) Cameraman, (g) Grass, (h) Moon, 

(i) Leopard and (j) Texture Mosaic. 

All the images are in the TIFF format [32], except the images Einstein and Leopard, 

which are in the PGM format [33]. Images Einstein, Leopard, Cameraman and Moon are 

of dimension 256 x 256, and the rest of the images are of dimension 512 x 512. The 

types of images chosen for the experiment include natural, artificial, highly-textured and 

detailed, predictable, and non-predictable type of images. This is done to ensure that all 

types of images are considered for the performance evaluation of the transforms. The 

analysis of the experimental results has been carried out by using image quality measures 

meant for gray-scale compressed images [34]. Objective measures are more commonly 

employed in image quality analysis due to their simplicity and their popularity. However, 

it is necessary to study the performance based on the end-user. HVS models [35] have 

been developed and incorporated into coding and analysis from the subjective viewpoint of 

image compression. Hence, we evaluate the performance of DTT by using both subjective 

and objective measures. 

4.4.1 Picture Quality Evaluation 

The quality of perception of an image largely depends on the structural nature of the image. 

Spectral activity measure (SAM) and spatial frequency measure (SFM) [36] are quantities 

that identify the structural nature of an image. SAM gives a measure of image predictability 

in the spectral domain, and is defined as the ratio of the arithmetic mean to the geometric 
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mean of the discrete Fourier transform coefficients. It is given by 

M-\ L-\ 
1 

M-N . . ._ 
1=0 7=0 

SAM= — 

£I>'^ 
_ 1 _ 

M-\ L-\ \ M-N 

nn | F (^ ) | 2 
. i'=0 7=0 

and has a dynamic range of [1, oo). The SAM of an image is directly proportional to the 

predictability of the image. SFM indicates the overall activity level in a picture, defined by 

the row frequency, R and the column frequency, C. It is given by 

SFM= Vi?2 + C2 

where 

R = N 
1 M L 

(=1 j=2 

and 

C 
N 

. L Af 

7=1 i=2 
Z J ZJ^'--/' ~ Xi~Uj) 

An image with high frequency components has a large value of SFM, and an image with 

low predictability has a small value of SAM. For example, the Mandrill image has a very 

high SFM and a low SAM. It is not very well-correlated and contains a large amount of 

details. Therefore, images with a large SFM and a small SAM (closer to unity) are difficult 

to code, since they are highly active and are not very predictable. 

By using SFM and SAM, it is possible to assess the performance of a discrete transform 

on different images. The test images in Figs. 4.12 (a)-(j) have been arranged below in the 

order of increasing SAM and decreasing SFM, i.e., the left-most quantities are difficult to 
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code and the right-most ones are relatively easier to code 

«- «-<-«-«-«-«-«-«-«- Increasing level of coding difficulty <-<-<-<-<-<-<-<-<-

SAM : Leopard «: Mandrill «: Grass «; Cameraman «; Einstein <s: Moon 

«: Peppers «: Lena <sc Texture Mosaic «c Airplane } (4-2) 

SFM : Mandrill » Leopard » Cameraman » Grass :» Einstein » Peppers 

» Moon » Airplane » Lena » Texture Mosaic 

Picture quality evaluation (PQE) can be subjective or objective. While subjective measures 

are based on the psychovisual physics of human perception, objective measures deal with 

distortions that a human eye cannot capture. We use a new set of quality measures, in addi

tion to the conventional metrics such as the peak signal to noise ratio (PSNR) and the root 

mean square error (RMSE). In [37], the authors have given a new set of quality measures 

such as average difference (AD), structural content (SC), normalized cross-correlation 

(NK), maximum difference (MD), Laplacian mean squared error (LMSE), normalized abso

lute error (NAE), picture quality scale (PQS) and mean opinion score (MOS). Most of these 

image-quantifying parameters are recommended by the International Telecommunication 

Union-Radiocommunication Sector (ITU-R ). The mathematical expressions for each of 

the above metrics are given in Table 4.1. 

PSNR gives a quality measure for the image compression scheme used, and RMSE 

represents the average distortion in the recovered image. NK depicts the cross-correlation 

between the original and distorted images, normalized with respect to the undistorted im

age. LMSE is known to typify edge information, which impinges heavily on the image 

perception of the human eye. NAE represents the mean absolute error, normalized with 

respect to the undistorted image. PQS is a perception-based objective measure that incor

porates the human visual system (HVS). Given the original (x,i;) and distorted (JCJ •) images, 

the local distortion maps and distortion factors are computed. Regression methods are then 
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Table 4.1: Quality Measures for PQE 

Gain/ Error-based Measures 
M-l N-\ 

<=0 7=0 

RMSE = yT(MSE) 

PSNR = 20log 10 
2 " - l 

i?MS£ 

Correlation-based Measures 
M L 

zz-^<> 
yV# = 1=1 7=1 

M L 

ZZ4, 
<=1 7=1 

M L 

Z2H 
SC = 1=1 7=1 

M Z. 

ZZ«/ 
«=1 7=1 

HVS-based Measures 
M L 

ZZ'*•••; ~*y 
JVA£ = 1=1 7=1 

M L 

Z Z î /i 
(=1 , /=l 

M - l L - l 

ZZ^-<./)2 

LMSE i=i i=i 
M-l t -1 

Z2X-
(=1 7=1 

Rating-based Measures 

PQS=b0 + ZUl>jZj MOS(k) = ±Zn
j=lS(j,k) 

Difference-based Measures 
M L 

A D ~ WN 2_J/_J X'J ~ xij 
'=i i=\ 

MD = Max\Xj,k - •*,•*! 

used to combine these factors into a single quantity which quantifies the image quality, 

taking local and global distortions into account. PQS is given by 

j 

PQS=b0 + YJbjZj 

; = i 

where bj are the partial regression coefficients and Z, are the principal components. PQS 

values fall out of the valid range for very low quality images at low bit-rates. MOS [38] is 
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a perception-based subjective measure and is given by 

MOS(k) = -J]S(J,k) 
;=i 

where n denotes the number of observers and S (j, k) is the score given by the y-th observer 

to the fc-th image. The observers are asked to assign a score to each encoded image. Each 

score (from 1-5) is assigned according to the impairment scale shown in Table 4.2. For 

each encoded image, the scores are averaged to obtain the MOS for that image. A detailed 

account of PQS and MOS is given in [38]. 

Table 4.2: Impairment Scale for MOS 

Scale 

5 

4 

3 

2 

1 

Impairment 

imperceptible 

perceptible, but not annoying 

slightly annoying 

annoying 

very annoying 

The Pearson product-moment (r) provides the correlation coefficient [36] defined as 

^Tu- - x)o; - x!) 
r = ' (4.3) 

l^iXi-x)2^-*')2 

where r gives the extent of correlation between the vectors x and x'. The closer V is to ±1, 

the better is the correlation. 
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Figure 4.12: Original Test Images (a) Lena, (b) Einstein, (c) Airplane, (d) Mandrill, (e) Peppers, 
(f) Cameraman, (g) Grass, (h) Moon, (i) Leopard and (j) Texture Mosaic 
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4.4.2 Image Compression using 8x8 Discrete Tchebichef Transform 

The performance of 8 x 8 DTT in image compression is analyzed in this sub-section. Since 

8 x 8 DCT has a large presence in image compression algorithms, we compare the perfor

mance of 8 x 8 DTT with that of 8 x 8 DCT by using a set of quality measures specifically 

meant for gray scale image compression. We further analyze the results obtained with re

spect to the spatial and spectral properties of the images under consideration. We carry out 

compression of image blocks of size 8 x 8 using the image compression scheme shown 

in Fig. 4.3. The test images used are shown in Fig. 4.12. The performance evaluation is 

based on subjective and objective measures. Subjective tests using MOS, PQS, LMSE and 

NAE incorporate HVS characteristics in the performance analysis. In our experiment, 15 

observers were asked to assign scores to images with different impairments according to 

the specifications in [39] for Variant-1 using the double-stimulus impairment scale method. 

Tables 4.3 - 4.9 give the values of quality measures at different bit-rates for DCT and DTT 

for all the test images. Tabulated in the last column of all these tables, are the Pearson 

product-moment, rPQS, which shows the extent of correlation of the various quality mea

sures and PQS, that is, 

rPQS - corr(qualitymeasure,PQS) 

where qualitymeasure, PQS correspond to x and x' in (4.3). 

In Table 4.10, MOS values at different bit-rates for some of the test images are given 

and columns rMsE - >"PQS contain the correlation measure (Pearson product-moment) of 

MOS with each quality measure, i.e., 

rqualitymeasure = corr(qualitymeasure, MOS) 

where qualitymeasure and MOS correspond to x and x' in (4.3). Plots of PSNR against 

bits per pixel (bpp) obtained by performing 8x8 DTT compression are shown in Figs. 4.13 
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Table 4.3: Quality Measures at Different Bit-rates for 8x8 DTT-compressed Images of Mandrill 
(SF.-36.5146; SAM:100) 

D 

T 

T 

D 

C 

T 

bpp 

MSE 

RMSE 

PSNR 

AD 

SC 

NK 

MD 

LMSE 

NAE 

PQS 

bpp 

MSE 

RMSE 

PSNR 

AD 

SC 

NK 

MD 

LMSE 

NAE 

PQS 

4.58 2.43 1.92 1.74 1.59 1.46 1.36 1.16 1.05 0.93 0.81 0.67 0.35 

3.06 32.01 54.71 65.97 76.78 87.19 96.98 120.19 134.72 152.88 175.93 207.31 321.56 

1.61 3.03 3.84 4.24 4.63 5.02 5.40 6.35 7.01 7.92 9.10 10.98 21.04 

43.27 33.08 30.75 29.94 29.28 28.73 28.26 27.33 26.84 26.29 25.68 24.96 23.06 

0 -0.01 0 0 -0.01 0 0 0 0 0 -0.02 0 0 

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.99 0.99 

9.00 32.00 42.00 53.00 55.00 63.00 69.00 86.00 85.00 95.00 95.00 92.00 111.00 

0.02 0.20 0.32 0.37 0.42 0.47 0.51 0.59 0.63 0.68 0.74 0.80 0.96 

0.01 0.03 0.04 0.05 0.05 0.05 0.06 0.06 0.07 0.07 0.08 0.08 0.10 

5.33 4.84 4.59 4.49 4.38 4.28 4.19 3.97 3.83 3.67 3.44 3.14 2.04 

4.49 2.35 1.87 1.70 1.55 1.44 1.35 1.15 1.06 0.94 0.82 0.69 0.38 

3.74 35.79 58.34 69.05 79.16 88.82 97.79 118.89 131.78 147.77 167.43 193.53 295.79 

1.64 3.13 3.94 4.34 4.73 5.11 5.46 6.38 6.96 7.82 8.93 10.65 19.51 

42.41 32.59 30.47 29.74 29.15 28.65 28.23 27.38 26.93 26.43 25.89 25.26 23.42 

0 0 0 0 0 -0.01 0.01 0 0 0 0 0 -0.03 

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.99 0.99 

10.00 35.00 45.00 54.00 60.00 65.00 74.00 84.00 100.00 92.00 99.00 97.00 104.00 

0.03 0.23 0.35 0.40 0.44 0.48 0.51 0.58 0.62 0.67 0.71 0.76 0.91 

0.01 0.04 0.04 0.05 0.05 0.05 0.06 0.06 0.07 0.07 0.07 0.08 0.10 

5.37 4.92 4.71 4.61 4.51 4.42 4.34 4.14 4.02 3.86 3.65 3.37 2.26 

rpQs 

-0.9992 

-0.9132 

0.8254 

0.5390 

-0.9797 

0.9950 

-0.9528 

-0.9193 

-0.9808 

1.0000 

TPQS 

-0.9980 

-0.9218 

0.8202 

0.4933 

-0.8635 

0.9936 

-0.9164 

-0.9183 

-0.9818 

1.0000 

(a), (b) and (c) for the images Mandrill, Lena and Einstein respectively. Plots of RMSE 

against compression ratio as a result of 8x8 DTT compression are shown in Figs. 4.14 

(a),(b) and (c) for the images Mandrill, Lena and Einstein respectively. Plots of LMSE 

against bits per pixel (bpp) obtained by performing 8x8 DTT compression are shown in 

Figs. 4.15 (a), (b) and (c) for the images Mandrill, Lena and Einstein respectively. Plots of 

NAE against bits per pixel (bpp) obtained by performing 8x8 DTT compression are shown 

in Figs. 4.16 (a), (b) and (c) for the images Mandrill, Lena and Einstein respectively. 
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Table 4.4: Quality Measures at Different Bit-rates for 8x8 DTT-compressed Images of Grass 
(SF.-25.2; SAM:117.94) 

D 

T 

T 

D 

C 

T 

bpp 

MSE 

RMSE 

PSNR 

AD 

SC 

NK 

MD 

LMSE 

NAE 

PQS 

bpp 

MSE 

RMSE 

PSNR 

AD 

SC 

NK 

MD 

LMSE 

NAE 

PQS 

4.15 2.04 1.53 1.35 1.21 1.09 0.99 0.89 0.79 0.47 0.35 0.24 0.13 

2.78 26.36 44.74 54.27 63.54 73.17 82.63 93.77 106.62 175.28 217.95 277.14 366.98 

1.63 3.29 4.41 4.98 5.56 6.19 6.81 7.56 8.50 14.44 19.39 28.40 51.23 

43.69 33.92 31.62 30.79 30.10 29.49 28.96 28.41 27.85 25.69 24.75 23.70 22.48 

-0.00 -0.00 -0.00 -0.01 -0.01 -0.00 -0.02 0.00 0.01 -0.01 -0.00 -0.02 -0.07 

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.01 

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.99 0.98 0.97 

8.00 26.00 34.00 37.00 41.00 42.00 43.00 49.00 63.00 72.00 88.00 98.00 120.00 

0.05 0.38 0.55 0.62 0.68 0.74 0.80 0.86 0.92 1.16 1.25 1.32 1.35 

0.01 0.04 0.06 0.06 0.07 0.07 0.08 0.08 0.09 0.11 0.12 0.14 0.16 

5.11 4.20 3.71 3.47 3.26 3.05 2.84 2.61 2.36 1.05 0.29 -0.72 -2.23 

4.39 2.22 1.74 1.58 1.45 1.35 1.26 1.18 1.09 1.01 0.91 0.80 0.36 

3.83 28.80 41.36 46.78 51.56 56.02 60.31 64.71 70.19 76.29 84.69 95.81 189.27 

1.53 3.04 3.88 4.27 4.65 5.01 5.33 5.70 6.17 6.68 7.41 8.42 18.49 

42.30 33.54 31.97 31.43 31.01 30.65 30.33 30.02 29.67 29.31 28.85 28.32 25.36 

-0.01 -0.01 -0.00 0.00 -0.01 0.00 -0.02 -0.00 0.01 -0.00 -0.03 0.03 -0.07 

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.99 0.99 

9.00 31.00 33.00 39.00 39.00 43.00 46.00 46.00 52.00 46.00 51.00 54.00 79.00 

0.07 0.44 0.56 0.60 0.63 0.66 0.69 0.71 0.74 0.77 0.80 0.85 1.08 

0.02 0.05 0.05 0.06 0.06 0.06 0.07 0.07 0.07 0.07 0.08 0.08 0.12 

5.31 4.77 4.50 4.37 4.24 4.12 4.01 3.89 3.74 3.57 3.35 3.05 0.88 

rpQS 

-0.9976 

-0.8873 

0.8653 

0.7558 

-0.9121 

0.9756 

-0.9941 

-0.7799 

-0.9898 

1.0000 

rpQs 

-0.9932 

-0.9245 

0.8594 

0.5890 

-0.9516 

0.9903 

-0.9831 

-0.9007 

-0.9880 

1.0000 

Figs. 4.17 (a), (b), (c) and (d) show the performance plots of PQS against bpp for the 

images Mandrill, Lena, Einstein and Airplane respectively. Due to the large number of 

plots generated from the variety of quality measures used, we selectively present the plots 

of quality measures that exhibit good correlation with subjective quality measures (some 

have been plotted in log scale for better perception). 

In the sub-sections that follow, we first give a preliminary analysis for detailed account 

of experimental results for subjective and objective measures of quality for DTT and DCT. 
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Table 4.5: Quality Measures at Different Bit-rates for 8x8 DTT-compressed Images of Cameraman 
(SF.-28.86; SAM: 184.22) 

D 

T 

T 

D 

C 

T 

bpp 

MSE 

RMSE 

PSNR 

AD 

SC 

NK 

MD 

LMSE 

NAE 

PQS 

bpp 

MSE 

RMSE 

PSNR 

AD 

SC 

NK 

MD 

LMSE 

NAE 

PQS 

2.96 1.37 1.05 0.95 0.87 0.80 0.74 0.69 0.63 0.56 0.50 0.43 0.36 0.28 

1.91 13.55 23.48 28.51 33.12 37.89 42.50 47.84 53.96 62.21 72.21 86.04 106.46 136.12 

2.37 5.12 6.67 7.38 8.02 8.78 9.49 10.22 11.18 12.41 13.92 16.20 19.62 25.03 

45.33 36.81 34.42 33.58 32.93 32.35 31.85 31.33 30.81 30.19 29.54 28.78 27.86 26.79 

0.00 -0.00 0.00 0.01 0.00 -0.02 -0.01 -0.02 -0.02 -0.05 -0.04 -0.08 -0.03 -0.09 

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

7.00 26.00 36.00 39.00 47.00 46.00 59.00 59.00 67.00 64.00 67.00 83.00 122.00 121.00 

0.02 0.15 0.25 0.29 0.32 0.36 0.39 0.43 0.47 0.51 0.57 0.63 0.72 0.84 

0.01 0.02 0.03 0.03 0.03 0.03 0.04 0.04 0.04 0.04 0.04 0.05 0.05 0.06 

4.53 2.96 2.17 1.85 1.55 1.24 1.03 0.76 0.43 0.08 -0.37 -0.85 -1.49 -2.18 

2.99 1.44 1.02 0.94 0.87 0.81 0.76 0.70 0.64 0.58 0.51 0.43 0.35 0.25 

2.50 17.12 31.17 35.52 39.67 43.52 47.61 52.96 58.62 66.23 76.24 89.96 110.25 147.67 

2.34 4.88 6.85 7.44 8.05 8.61 9.23 10.05 10.94 12.15 13.85 16.33 20.27 27.96 

44.15 35.80 33.19 32.63 32.15 31.74 31.35 30.89 30.45 29.92 29.31 28.59 27.71 26.44 

-0.00 0.01 -0.01 -0.01 -0.03 -0.03 -0.02 -0.00 -0.00 -0.04 -0.10 -0.10 -0.05 -0.16 

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 

8.00 31.00 44.00 51.00 54.00 52.00 55.00 73.00 77.00 80.00 86.00 102.00 104.00 111.00 

0.03 0.21 0.34 0.37 0.40 0.43 0.46 0.50 0.53 0.57 0.62 0.67 0.75 0.85 

0.01 0.02 0.03 0.03 0.03 0.03 0.04 0.04 0.04 0.04 0.04 0.05 0.05 0.06 

4.50 2.96 2.00 1.72 1.48 1.27 1.05 0.82 0.51 0.23 -0.13 -0.73 -1.38 -2.37 

rpQs 

-0.9443 

-0.8997 

0.9503 

0.2929 

-0.8357 

0.9098 

-0.9815 

-0.9984 

-0.9949 

1.0000 

rpQs 

-0.9585 

-0.9336 

0.9361 

0.2353 

-0.5041 

0.9170 

-0.9895 

-0.9889 

-0.9860 

1.0000 

Later on, the performance of DTT is analyzed image-wise based on the structural properties 

of images explained in the Sub-section 4.4.1. We also present a HVS-based performance 

evaluation. For all the above, we refer to Figs. 4.13-4.17 for the performances of quality 

measure, and to Tables 4.3-4.9 for quality measures tabulated for various compression lev

els measured at the respective bpp. The last column of every table gives the correlation of 

the quality measure with PQS. We refer to Table 4.10 for MOS values and its correlation 

with quality measures. 
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Table 4.6: Quality Measures at Different Bit-rates for 8x8 DTT-compressed Images of Lena 
(SF: 14.0436; SAM.-909.09) 

D 

T 

T 

D 

C 

T 

bpp 

MSE 

RMSE 

PSNR 

AD 

SC 

NK 

MD 

LMSE 

NAE 

PQS 

bpp 

MSE 

RMSE 

PSNR 

AD 

SC 

NK 

MD 

LMSE 

NAE 

PQS 

2.70 1.09 0.82 0.74 0.61 0.57 0.49 0.44 0.39 0.34 0.29 0.23 0.17 0.14 

2.42 9.45 12.84 14.37 15.86 17.27 20.15 22.05 24.21 27.08 30.97 36.91 46.21 64.31 

3.05 9.06 12.79 14.49 16.10 17.72 20.99 23.12 26.00 29.74 34.48 42.63 55.86 80.38 

44.29 38.38 37.05 36.56 35.76 35.43 34.69 34.29 33.80 33.22 32.46 31.48 30.05 29.24 

-0.00 -0.00 0.00 0.00 -0.01 0.01 0.00 0.00 0.00 0.01 -0.00 0.02 -0.02 -0.03 

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

8.00 33.00 32.00 38.00 38.00 42.00 41.00 48.00 57.00 53.00 59.00 58.00 78.00 79.00 

0.18 0.52 0.63 0.67 0.71 0.74 0.80 0.84 0.88 0.92 0.98 1.05 1.17 1.33 

0.01 0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.04 

5.27 4.68 4.37 4.25 4.11 4.00 3.75 3.60 3.44 3.22 2.93 2.52 1.94 0.87 

2.65 1.11 0.85 0.76 0.64 0.59 0.50 0.46 0.41 0.36 0.31 0.25 0.18 0.14 

2.71 9.11 12.04 13.40 15.92 17.07 19.97 21.76 24.29 27.71 32.87 41.55 59.16 73.48 

2.81 6.73 8.75 9.74 11.66 12.52 14.76 16.13 18.07 20.63 24.35 30.23 42.14 51.62 

43.81 38.54 37.33 36.86 36.46 36.11 35.50 35.13 34.75 34.28 33.70 32.96 31.95 30.41 

-0.00 0.00 -0.00 -0.00 0.01 0.01 0.00 -0.01 0.01 -0.02 0.01 0.01 0.04 -0.05 

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

9.00 25.00 39.00 38.00 45.00 42.00 47.00 57.00 55.00 54.00 55.00 62.00 89.00 98.00 

0.20 0.50 0.59 0.63 0.68 0.71 0.76 0.79 0.82 0.87 0.93 1.02 1.16 1.24 

0.01 0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.03 0.03 0.03 0.04 0.04 0.05 

5.32 4.78 4.50 4.39 4.15 4.05 3.79 3.64 3.42 3.15 2.77 2.21 1.21 0.50 

>"PQS 

-0.9868 

-0.9817 

0.3685 

0.3685 

-0.0985 

0.9721 

-0.9709 

-0.9640 

-0.9959 

1.0000 

rpQs 

-0.9739 

-0.9826 

0.9416 

0.7460 

0.6730 

0.9402 

-0.9785 

-0.9740 

-0.9961 

1.0000 

Preliminary Analysis 

Since a large number of tables for various quality measures have been given, for ease of 

view and understanding, we present a preliminary analysis based on a short table with 

only a few results in Table 4.11 for images Einstein, Lena and Airplane. In this table, 

by comparing the values of MSE, LMSE and MD for DTT and DCT, we see that the 

reconstruction accuracy of DTT is better than that of DCT. Also, by observing the values 
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Table 4.7: Quality Measures at Different Bit-rates for 8x8 DTT-compressed Images of Moon 
(SF: 15.61; SAM.-448.49) 

D 

T 

T 

D 

C 

T 

bpp 

MSE 

RMSE 

PSNR 

AD 

SC 

NK 

MD 

LMSE 

NAE 

PQS 

bpp 

MSE 

RMSE 

PSNR 

AD 

SC 

NK 

MD 

LMSE 

NAE 

PQS 

3.26 1.28 0.81 0.66 0.56 0.48 0.42 0.36 0.31 0.26 0.21 0.17 0.13 

2.75 22.04 34.13 39.33 43.86 48.29 52.17 56.52 61.03 66.26 72.30 79.68 88.96 

2.06 5.25 8.28 10.13 11.90 13.86 15.98 18.49 21.72 26.07 31.36 39.14 49.83 

43.73 34.70 32.80 32.18 31.71 31.29 30.96 30.61 30.28 29.92 29.54 29.12 28.64 

0.00 -0.00 0.01 0.00 -0.00 -0.01 0.01 0.02 0.01 0.02 0.01 -0.08 0.04 

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

8.00 23.00 33.00 35.00 38.00 48.00 48.00 49.00 50.00 56.00 67.00 75.00 82.00 

0.10 0.60 0.79 0.84 0.88 0.93 0.96 0.99 1.02 1.05 1.07 1.10 1.12 

0.01 0.03 0.04 0.04 0.04 0.04 0.04 0.04 0.05 0.05 0.05 0.05 0.05 

4.07 1.14 -0.30 -0.90 -1.44 -1.90 -2.30 -2.72 -3.14 -3.69 -4.23 -4.83 -5.50 

3.57 1.51 1.11 0.80 0.73 0.66 0.59 0.53 0.46 0.38 0.30 0.22 0.14 

3.76 21.65 28.73 36.25 38.28 40.32 42.82 45.60 49.38 54.06 60.63 70.17 86.95 

1.88 4.46 6.05 8.43 9.24 10.13 11.33 12.61 14.68 17.61 22.42 30.56 48.22 

42.38 34.78 33.55 32.54 32.30 32.08 31.81 31.54 31.20 30.80 30.30 29.67 28.74 

0.00 -0.00 -0.01 -0.01 0.02 -0.00 -0.00 0.01 -0.07 -0.13 -0.01 0.09 -0.04 

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

8.00 27.00 42.00 51.00 53.00 59.00 63.00 60.00 60.00 61.00 77.00 82.00 85.00 

0.14 0.65 0.77 0.85 0.87 0.89 0.90 0.92 0.95 0.97 1.00 1.03 1.08 

0.01 0.03 0.03 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.05 0.05 0.05 

4.02 1.57 0.66 -0.29 -0.57 -0.81 -1.17 -1.49 -1.97 -2.49 -3.19 -3.98 -5.12 

fpQS 

-0.9624 

-0.8542 

0.9306 

-0.4555 

-0.9232 

0.9484 

-0.9572 

-0.8874 

-0.9892 

1.0000 

rPQs 

-0.9580 

-0.8841 

0.9378 

-0.5972 

-0.6573 

0.9195 

-0.9894 

-0.8750 

-0.9878 

1.0000 

of PSNR and NK for DTT and DCT, we see that DTT-reconstructed images have a higher 

gain and a better correlation with the original image as compared to those reconstructed 

using DCT. It should be noted that lower bit-rate results of DTT have been compared to 

corresponding higher bit-rate results of DCT. As a result of this comparison, the higher 

performance of DTT when compared with DCT, reflects the better coding efficiency and 

image reconstruction quality of DTT. Next, we give a detailed analysis of the performance 

of DTT for each quality measure. 
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Table 4.8: Quality Measures at Different Bit-rates for 8x8 DTT-compressed Images of Einstein ( 
SF:20.8394; SAM:344.8 ) 

D 

T 

T 

D 

C 

T 

bpp 

MSE 

RMSE 

PSNR 

AD 

SC 

NK 

MD 

LMSE 

NAE 

PQS 

bpp 

MSE 

RMSE 

PSNR 

AD 

SC 

NK 

MD 

LMSE 

NAE 

PQS 

2.91 1.14 0.80 0.69 0.61 0.55 0.50 0.46 0.41 0.37 0.32 0.27 0.22 

2.35 15.52 24.13 28.08 31.69 35.37 38.64 42.48 47.27 53.02 60.34 70.61 86.08 

2.37 6.01 8.64 9.92 11.22 12.54 13.72 14.99 16.70 18.80 21.56 25.63 31.40 

44.42 36.22 34.31 33.65 33.12 32.64 32.26 31.85 31.38 30.89 30.32 29.64 28.78 

-0.01 -0.02 -0.02 -0.03 -0.06 -0.03 -0.06 -0.08 -0.05 -0.05 -0.06 -0.03 -0.08 

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

7.00 25.00 35.00 37.00 43.00 41.00 45.00 50.00 60.00 64.00 60.00 64.00 90.00 

0.04 0.21 0.28 0.31 0.33 0.36 0.38 0.40 0.43 0.45 0.48 0.52 0.57 

0.01 0.03 0.03 0.04 0.04 0.04 0.04 0.04 0.05 0.05 0.05 0.06 0.06 

4.26 2.35 1.46 1.08 0.71 0.43 0.22 -0.11 -0.50 -0.95 -1.46 -2.12 -3.08 

3.14 1.40 1.09 0.83 0.77 0.72 0.66 0.60 0.54 0.47 0.40 0.32 0.23 

3.06 14.97 20.14 27.41 29.78 32.16 34.87 37.76 41.82 47.58 55.78 69.48 94.20 

2.19 4.93 6.31 8.25 8.89 9.58 10.50 11.50 12.84 14.69 17.42 21.67 30.52 

43.27 36.38 35.09 33.75 33.39 33.06 32.71 32.36 31.92 31.36 30.67 29.71 28.39 

-0.01 -0.02 -0.01 -0.02 -0.04 -0.04 -0.06 -0.03 -0.04 0.03 0.05 -0.03 -0.17 

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

8.00 30.00 38.00 43.00 50.00 48.00 56.00 57.00 64.00 53.00 61.00 74.00 79.00 

0.06 0.23 0.28 0.35 0.38 0.40 0.41 0.42 0.44 0.49 0.54 0.70 0.75 

0.01 0.03 0.03 0.04 0.04 0.04 0.04 0.04 0.04 0.05 0.05 0.06 0.07 

4.28 2.71 2.12 1.41 1.19 0.96 0.70 0.44 0.12 -0.40 -0.95 -1.83 -3.21 

rpQs 

-0.9336 

-0.8708 

0.9528 

-0.4176 

-0.6557 

0.8249 

-0.9728 

-0.9910 

-0.9853 

1.0000 

rpQs 

-0.9503 

-0.9414 

0.9468 

-0.7096 

-0.4111 

0.8983 

-0.9928 

-0.9870 

-0.9901 

1.0000 

Correlation-based Measures 

NK and SC are measures of correlation of the compressed/ distorted image with respect to 

the original/ unimpaired image. From the 6th and 5th rows of Tables 4.3 - 4.9, we observe 

that DTT and DCT have almost the same values for NK and SC respectively across various 

images. From the last column rPQs of Tables 4.3 - 4.9 and from columns rNK and rSc of 

Table 4.10, it is seen that NK and SC correlate very poorly with PQS and MOS respectively. 
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Table 4.9: Quality Measures at Different Bit-rates for 8x8 DTT-compressed Images of Airplane 
(SF: 15.1025; SAM:5000 ) 

D 

T 

T 

D 

C 

T 

bpp 

MSE 

RMSE 

PSNR 

AD 

SC 

NK 

MD 

LMSE 

NAE 

PQS 

bpp 

MSE 

RMSE 

PSNR 

AD 

SC 

NK 

MD 

LMSE 

NAE 

PQS 

1.64 0.53 0.41 0.36 0.33 0.31 0.28 0.26 0.24 0.23 0.20 0.18 0.15 

1.52 5.97 8.70 10.18 11.61 13.06 14.56 16.02 17.90 20.60 23.72 28.80 36.79 

3.94 12.12 15.90 17.71 19.40 21.13 22.84 24.47 26.54 28.45 31.87 36.22 42.18 

46.31 40.37 38.73 38.05 37.48 36.97 36.50 36.08 35.60 34.99 34.38 33.54 32.47 

0.00 0.05 0.03 0.04 0.03 -0.01 0.00 0.10 0.03 0.07 0.06 0.06 -0.00 

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

6.00 19.00 27.00 29.00 36.00 36.00 36.00 39.00 42.00 48.00 53.00 64.00 70.00 

0.05 0.14 0.18 0.20 0.22 0.25 0.27 0.29 0.31 0.35 0.38 0.44 0.54 

0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 

4.81 3.97 3.59 3.44 3.30 3.14 2.99 2.89 2.71 2.51 2.29 1.92 1.42 

1.90 0.79 0.61 0.55 0.50 0.43 0.40 0.36 0.33 0.30 0.26 0.22 0.18 

1.65 4.90 6.68 7.66 8.68 10.72 11.83 12.99 14.44 16.72 19.66 25.09 32.83 

3.39 8.15 10.60 11.76 12.93 15.10 16.24 17.89 19.42 21.63 24.66 29.29 35.72 

45.96 41.23 39.89 39.29 38.75 37.83 37.40 36.99 36.54 35.90 35.20 34.14 32.97 

0.01 0.01 0.01 0.00 0.02 -0.00 -0.00 0.06 -0.03 -0.03 0.03 0.09 -0.13 

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

8.00 25.00 27.00 30.00 31.00 34.00 36.00 34.00 43.00 49.00 54.00 68.00 55.00 

0.07 0.15 0.18 0.20 0.22 0.28 0.30 0.32 0.33 0.34 0.37 0.43 0.63 

0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 

4.87 4.20 3.94 3.81 3.69 3.46 3.35 3.22 3.09 2.90 2.64 2.30 1.93 

>~PQS 

-0.9392 

-0.9309 

0.9628 

0.0620 

-0.2897 

0.7118 

-0.9873 

-0.9876 

-0.9915 

1.0000 

rPQS 

-0.9424 

-0.9737 

0.9719 

0.9331 

0.9314 

-0.9042 

-0.9797 

-0.9804 

-0.9880 

1.0000 

Gain/ Error-based Measures 

PSNR: From the 3rd row of Tables 4.3 - 4.9 and Fig. 4.13, we can see that the PSNR of 

DTT is consistently more than that of DCT. There is over one dB gain in the DTT domain as 

compared to the DCT domain for most images except for the Mandrill image, where their 

performances are almost similar. Also, from the corresponding values in the last column 

rPQs of Tables 4.3 - 4.9, and from the column rPSNR of Table 4.10, it is seen that for most of 
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the images, especially the Grass image, PSNR does not correlate well with PQS and MOS 

for both DCT and DTT. 

RMSE: From the 2nd row of Tables 4.3 - 4.9 and Fig. 4.14, we notice that RMSE of 

DTT is less than that of DCT for images Einstein, Peppers, Lena, Airplane and Moon. 

For Mandrill, Grass and Cameraman images, by and large, RMSE of DTT is slightly less 

than that of DCT at higher compression ratios and is almost equal to that of DCT at lower 

compression ratios. From the corresponding rPQS values in the last few columns of Tables 

4.3 - 4.9, it is seen that for all the images, RMSE does not correlate well with PQS for both 

DCT and DTT (except for the Peppers and Lena images). 

AD: From the 4th row of Tables 4.3 - 4.9, we can deduce that AD of DTT is lower than 

that of DCT for Einstein. It performs similar to DCT for Mandrill, Peppers, Moon and 

Lena images (at moderate and high bpp) and is higher than that of DCT for the Airplane 

image. From the corresponding values in the last column rPQS of Tables 4.3 - 4.9 and from 

the column rAD of Table 4.10, we see that AD correlates very poorly with PQS and MOS 

respectively. 

MD: From the 7th row of Tables 4.3 - 4.9, we can see that MD of DTT is lower than 

that of DCT for Einstein, Moon, Cameraman, Peppers and Lena images at all bpp and for 

Cameraman, Grass and Airplane images at moderate and high bpp. DTT performs almost 

like DCT for Mandrill and Grass images. Also, from the corresponding values in the last 

column rPQS of Tables 4.3 - 4.9 and from the column rMD of Table 4.10, it is seen that MD 

does not correlate well with PQS (especially for the Moon image) and MOS respectively. 

MSE: From the corresponding values in the last column rPQS of Tables 4.3 - 4.9 and 

from the column rMSE of Table 4.10, we can see that MSE correlates well with PQS but not 

with MOS respectively (especially for Einstein). 
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HVS-based Measures 

LMSE: From the 8th row of Tables 4.3 - 4.9 and Fig. 4.15, we see that LMSE of DTT is 

lower than that of DCT for Einstein, Peppers, Lena, Airplane and Grass images at higher 

bpp and for Moon and Cameraman images at all bpp. LMSE of DTT is on par with that 

of DCT for Mandrill image. From the corresponding values in the last column rpQs of 

Tables 4.3 - 4.9 and from the column rLMsE of Table 4.10, we can see that LMSE does not 

correlate well with PQS and MOS respectively. 

NAE: From the 9th row of Tables 4.3 - 4.9 and Fig. 4.16, we observe that NAE for 

DTT is lower than that of DCT for Einstein, Moon, Cameraman, Peppers, Lena, Airplane 

and Grass images. DTT performs almost similar to DCT for Mandrill image. From the 

corresponding values in the last column rPQS of Tables 4.3 - 4.9 and from the column rNAE 

of Table 4.10, we see that NAE correlates well with PQS and correlates marginally with 

MOS respectively. 

PQS: From the 10th row of Tables 4.3 - 4.9 and Fig. 4.17, we see that PQS for DTT 

is higher than that of DCT for Lena and Airplane images. PQS of DTT is almost equal 

to DCT for Einstein and Cameraman images and is worse than that of DCT for Mandrill, 

Peppers (at high bpp) and Grass images. From the column rPQS of Table 4.10, we see 

that PQS correlates quite well with MOS for all images except for Einstein and Mandrill 

images. 

Rating-based Measures 

MOS: From Table 4.10, we see that MOS ratings for DTT are higher than DCT for Lena 

image. MOS ratings for DTT are lower than DCT for Einstein, Airplane and Mandrill 

images at low bpp and for Peppers at moderate bpp, and overall for Grass and Cameraman 

images. 

Thus far, by perusing the results for all the quality measures, it is evident that the 
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performance of DTT is almost similar to that of DCT for images with high SFM and greatly 

improves as the SFM of the image decreases. 

We now further analyze the results we have obtained. For greater accuracy and consis

tency [37], we need to 

(i) consider those quality measures which have the best correlation with the subjective 

measures PQS/ MOS and 

(ii) obviate a quality measure for which the sign of the correlation coefficient changes 

(for the same quality measure across different techniques). 

AD and SC exhibit the most poor correlation for all the test images. NK correlates poorly 

for Einstein and Airplane images. LMSE has a low value of correlation coefficient for 

Grass image. The correlation coefficient pertaining to MD changes sign for Moon, Airplane 

and Lena images. Hence, it is not suitable to use AD, SC, NK and MD quality measures for 

our purpose. We inspect the cases of quality measures for which DTT is outperformed by 

DCT based on (i) stated above. These are MD for Mandrill image, AD for Lena image, NK 

and AD for Airplane image, MD for Cameraman image, LMSE, NAE, AD, MD and SC 

for Grass image and SC for Moon image. In light of the stipulations mentioned above, it 

is apparent that we have to examine only the cases of NAE-Grass image and VSNR-Grass 

image in the range of low bpp as shown in Fig. 4.18. Hence, except for these cases, the 

overall performance of DTT is similar to or better than that of DCT. This shows that DTT 

has a competitive performance with respect to that of DCT. 

Summary 

The results reinstate some well-known observations 

(a) RMSE increases with an increase in the number of higher frequency components in the 

image, which corresponds to increasing SFM. 
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(b) PQS decreases with increasing SAM of images. 

Another noteworthy observation is that the LMSE performance of DTT for most of the 

images is relatively much better than that of DCT for most of the images compared to other 

error measures. This is a desirable feature for subjective evaluation, since LMSE pertains 

to edge information, which the HVS is sensitive to. 

By and large, the perceptual-based performance measures (PQS, MOS, LMSE, NAE) 

of DCT and DTT are close to one another for the Mandrill image, and for the rest of the 

images, DTT performs better than DCT. However, from the point of view of objective 

measures, DTT scores over DCT in almost all the cases. 
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Table 4.10: MOS Performances at Different Bit-rates for 8x8 DTT-compressed Images of all Test 
Images 

Image 

/ 

< / 

• 

/ 
& 

bpp 

DTT 

bpp 

DCT 

bpp 

DTT 

bpp 

DCT 

bpp 

DTT 

bpp 

DCT 

bpp 

DTT 

bpp 

DCT 

bpp 

DTT 

bpp 

DCT 

bpp 

DTT 

bpp 

DCT 

bpp 

DTT 

bpp 

DCT 

MOS Values 

0.05 0.10 0.17 0.34 0.53 0.61 0.74 0.82 

1.63 2.63 4.00 4.38 4.75 4.75 4.75 4.50 

0.05 0.11 0.18 0.36 0.55 0.64 0.76 0.85 

1.13 2.00 2.88 4.50 4.50 4.50 4.38 4.50 

0.11 0.20 0.35 0.52 0.67 0.81 0.93 1.05 

2.00 2.75 3.75 3.63 4.50 4.25 4.25 4.38 

0.13 0.22 0.38 0.55 0.69 0.82 0.94 1.06 

2.25 3.50 4.00 4.13 3.63 4.25 4.38 4.75 

0.06 0.10 0.21 0.51 0.62 0.70 1.00 2.90 

1.63 2.75 3.63 4.75 4.63 4.75 4.38 4.50 

0.06 0.12 0.19 0.52 0.61 0.72 0.89 2.98 

1.50 2.50 3.63 4.75 4.75 4.75 4.75 4.38 

0.13 0.24 0.35 0.47 0.68 0.79 0.89 0.99 

1.88 2.13 3.25 3.38 3.38 3.88 4.13 4.13 

0.11 0.28 0.36 0.54 0.67 0.80 0.91 1.18 

1.88 3.25 3.50 3.75 3.88 4.13 4.00 4.50 

0.09 0.11 0.17 0.32 0.41 0.61 0.80 1.14 

1.75 1.50 1.63 2.38 2.88 3.63 4.00 4.50 

0.09 0.18 0.23 0.32 0.40 0.60 0.83 1.09 

1.63 1.75 2.13 2.50 3.00 4.00 3.75 4.50 

0.13 0.20 0.26 0.33 0.36 0.41 0.53 1.64 

1.38 1.88 2.63 2.88 3.00 3.13 3.50 3.63 

0.12 0.18 0.26 0.33 0.36 0.46 0.55 1.90 

1.75 2.38 2.75 2.88 3.50 3.38 3.38 3.50 

0.07 0.09 0.20 0.43 0.50 0.63 0.87 0.95 

1.75 1.38 1.63 2.88 2.63 3.13 3.75 3.75 

0.08 0.11 0.21 0.43 0.51 0.64 0.87 0.94 

1.38 1.63 2.38 3.13 3.38 3.38 3.75 4.00 

fmse Fpsnr ^ad *"sc ?nk rmd ^Imse ?nae fpqs 

-0.98 0.93 0.58 0.22 0.95 -0.97 -0.93 -0.97 0.9: 

-0.94 0.97 0.76 0.90 0.90 -0.96 -0.97 -0.97 0.9* 

-0.96 0.92 0.62 -0.97 0.97 -0.98 -0.88 -0.95 0.9( 

-0.91 0.88 -0.82 -0.94 0.92 -0.86 -0.86 -0.90 0.9( 

-0.98 0.81 -0.48 -0.89 0.96 -0.95 -0.88 -0.94 0.9: 

-0.95 0.81 0.78 0.80 0.30 -0.94 -0.86 -0.94 0.9: 

-0.96 0.95 0.75 -0.90 0.95 -0.94 -0.92 -0.96 0.9( 

-0.99 0.95 0.07 -0.93 0.99 -0.97 -0.93 -0.98 0.95 

-0.88 0.97 0.79 -0.81 0.90 -0.82 -0.92 -0.94 0.9! 

-0.83 0.96 -0.12 -0.31 0.70 -0.87 -0.92 -0.90 0.9: 

-0.94 0.91 -0.24 -0.15 0.83 -0.96 -0.96 -0.96 0.9: 

-0.96 0.83 0.90 0.88 -0.83 -0.91 -0.92 -0.95 0.9: 

-0.86 0.96 0.35 -0.68 0.79 -0.91 -0.96 -0.91 0.91 

-0.98 0.99 0.30 -0.32 0.92 -0.99 -0.99 -0.98 1.0( 
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Figure 4.13: PSNR Performances of 8x8 DTT-Compressed Images (a) Mandrill (b) Lena and (c) 
Einstein 

85 



HI 
$ 15 

10 

20 40 60 
CR 

(a) 

SO 100 150 
CR 

(b) 

-A- DTT 
o DCT 

80 

16 

14 

12 

R
M

S
E

 

00
 

O
 

6 

4 

2 

n 

O ^ ^ " ^ 
^ -

• 

-

" 

-

• 

- * — D T T 
• • • © • • D C T 

200 250 
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Figure 4.15: LMSE Performances of 8x8 DTT-Compressed Images (a) Mandrill (b) Lena and (c) 
Einstein 
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Figure 4.16: NAE Performances of 8x8 DTT-Compressed Images (a) Mandrill (b) Lena and (c) 
Einstein 
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Figure 4.17: PQS Performances of 8x8 DTT-Compressed Images (a) Mandrill (b) Lena and (c) 
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Table 4.11: Short Table of Results for 8x8 DTT 

Einstein (bpp=6.8) 

SF.-20.83; SAM:344.8 

Lena (bpp=7.4) 

SF:14.04; SAM:909.09 

Airplane (bpp=6.4) 

SF.-15.10; SAM.-5000 

DTT 

DCT 

DTT 

DCT 

DTT 

DCT 

bpp MSE PSNR NK MD LMSE 

2.9 2.34 44.42 1.00 7 0.04 

3.1 3.06 43.27 1.00 8 0.05 

2.4 2.25 44.59 1.00 8 0.15 

2.6 2.72 43.78 0.99 9 0.20 

1.6 1.52 46.30 1.00 6 0.05 

1.9 1.64 45.96 0.99 8 0.06 

0.2 
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Figure 4.18: Results of 8x8 DTT-Compressed Images of Grass for (a) NAE and (b) PSNR 
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4.4.3 Image Compression using 4x4 Discrete Tchebichef Transform 

The advantages of using ITT over ICT in the transform coding stage of H.264/ AVC has 

been discussed in Sub-section 3.3.3. In this section, we compare the experimental results 

of 4x4 DTT, 4x4 DCT and 4x4 ICT. In this experiment, a gray image is divided into sub-

blocks of size 4 x 4 as shown in Fig. 4.5. The test images used are those shown in Fig. 4.12. 

The image compression scheme shown in Fig. 4.3 is employed to obtain the transform 

coded image. Metrics for the picture quality evaluation of the compressed images are 

tabulated. The performance evaluation is carried out by carefully studying the correlation 

of the metrics to the HVS characteristics. 

In the sub-sections that follow, we first give a preliminary analysis based on the conven

tional objective measures, PSNR and RMSE. Later, we delve into the performance analysis 

of DTT image-wise based on the structural properties of images explained in Sub-section 

4.4.1. We give a detailed account of experimental results for various measures of quality 

for DTT, ICT and DCT. We refer to Figs. 4.19 - 4.25 for the performances of the quality 

measures, and we refer to Tables 4.12 - 4.19 for quality measures tabulated for various 

compression levels measured at the respective bpp. The last column of every table gives 

the extent of correlation of each of the quality measure and PQS, i.e., 

rPQS - corr{qualitymeasure, PQS) 

where qualitymeasure, PQS correspond to x and x' in (4.3). The results of image quality 

analysis for 8x8 DTT compression are shown in Figs. 4.19 (a) - (f), Figs. 4.23 (a) - (f), Figs. 

4.20 (a) - (f), Figs. 4.21 (a) - (f), Figs. 4.22 (a) - (f) and Figs. 4.24 (a) - (f) for the images 

Mandrill, Cameraman, Peppers, Leopard, Lena and Airplane respectively. In these figures, 

the rate distortion plots of PSNR, LMSE, RMSE, PQS, NAE and MD are presented. In 

Figs. 4.25 (a) and (b), PSNR results are shown for the images Einstein and Texture Mosaic 

respectively.In Figs. 4.25 (c) and (d), RMSE results are shown for the images Einstein and 
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Texture Mosaic respectively. 

Preliminary Analysis 

Since a large number of tables for various quality measures have been given, for ease of 

view, we present a short table with only a few PSNR and RMSE results in Table 4.20. 

Figs. 4.26 and 4.27 give the original and reconstructed images of Peppers and Mandrill 

respectively for these transforms. From these figures, it can be seen that DTT encodes a 

given image at a lower bit rate with a higher PSNR and a lower RMSE as compared to DCT 

and ICT. Overall, a comparative gain in PSNR of 0-4 dB has been observed. It is evident 

from Table 4.20, Figs. 4.27 (a) - (d) and Figs. 4.26 (a) - (d) that DTT outperforms DCT 

and ICT even at very low bit-rates. This is a significant factor that supports our proposal of 

using DTT for video compression, since encoding at low bit-rates is a prominent feature of 

the H.264 standard. Comparative gain in PSNR for DTT of 0-2.2 dB is noticed. From the 

RMSE results, it is seen that the reconstruction accuracy of DTT is seen to be better than 

that of DCT and ICT. 

Picture Quality Evaluation of 4x4 DTT Compressed Images 

Now we undertake a detailed image quality analysis for all the test images. Due to the large 

number of plots generated from the variety of quality measures used, we selectively present 

the plots of quality measures that exhibit good correlation with the subjective quality mea

sure, PQS (some have been plotted in log scale for better perception). The values of PQS 

fall out of range at the lowest bpp for all images since the image quality is extremely low at 

these values of bpp. PQS falls out of range for more than half of the values for the images 

Einstein and Texture Mosaic as seen in the last rows of Tables 4.16 and 4.18. Hence, we 

will carry out only an objective image quality study for these two images. For almost all 

quality measures except PSNR and RMSE, the performance of ICT is significantly out of 
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range. Hence, we compare DTT with ICT only in valid cases. 

For accurate analysis and consistency of the results [37], as explained in the 8x8 case, 

we 

(i) consider those quality measures which have the best correlation with the subjective 

measures PQS and 

(ii) obviate a quality measure for which the sign of the correlation coefficient changes 

(for the same quality measure across different techniques). 

From the last column, rPgS of Tables 4.12 - 4.19, it is seen that AD and SC have the 

poorest correlation for all the test images. Also, NK correlates poorly for all images except 

Lena and Cameraman. Moreover, the correlation coefficient pertaining to SC, AD and NK 

change signs for the images Mandrill, Lena, Peppers and Airplane. Hence, it is not suitable 

to use AD, SC and NK in our image quality analysis. 

Mandrill: 

The image Mandrill has a low SAM and a high SFM (in (4.2)), i.e., it is a fairly difficult 

image to code due to the large amount of details embedded in the image. From Figs. 4.19 

(a) - (f) and Table 4.12, it can be seen that the DTT compressed images of Mandrill perform 

very well across various quality measures. It is seen that RMSE, LMSE, NAE, MD and 

AD for DTT are lower than those for DCT. There is a gain of ldB at low bit-rates upto 2.5 

dB at higher bit-rates for the PSNR of DTT as compared to that of DCT and ICT. LMSE, 

MD and RMSE of DTT are lesser than those of DCT. NAE is almost the same for DTT and 

DCT. PQS of DTT is higher at low bit-rates and is almost equal to that of DCT at higher 

bit-rates. 

Peppers: 

The image Peppers has a low SAM and a medium SFM (in (4.2)), i.e., it is a mixed image 

with details as well as a large number of correlated regions. The following observations 

are noted from Figs. 4.20 (a) - (f) and Table 4.17. PQS falls out of range at very low bpp. 
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At high bpp, the performance of DTT and DCT is almost same. LMSE, MD and NAE for 

DTT is lower than that of DCT, but is higher than that of ICT. RMSE for DTT is almost 

the same as that for DCT and ICT at low bpp, and lower than DCT and ICT at higher bpp. 

There is a gain of ldB at low bit-rates upto 1.7 dB at higher bit-rates for the PSNR of DTT 

as compared to that of DCT and ICT. 

Leopard: 

The image Leopard is similar to the image Mandrill, in the sense that it has a low SAM and 

a high SFM (in (4.2)) leading to high frequency contents and low predictability. Analysis 

of results in Figs. 4.21 (a) - (f) and Table 4.13 lead to the following observations. The 

DTT compressed images of Leopard perform very well across various quality measures. 

PQS falls out of range at very low bpp. At high bpp, the performance of DTT and DCT is 

almost same. NAE for DTT is almost the same as that for DCT. LMSE and MD for DTT 

is lower than that of DCT, but is higher than that of ICT. RMSE for DTT is lower than that 

for DCT and ICT . There is a gain of ldB at low bit-rates upto 1.7 dB at higher bit-rates for 

the PSNR of DTT as compared to that of DCT and ICT. 

Lena: 

The image Lena has a low SFM and a low SAM (in (4.2)). Hence, it has a medium level of 

coding difficulty. From Figs. 4.22 (a), (b) and Table 4.14, the following observations are 

made. PQS falls out of range at very low bpp. At high bpp, die performance of DTT and 

DCT is almost same. NAE, MD and LMSE for DTT is almost the same as that for DCT. 

RMSE for DTT is lower than that for DCT and ICT . There is a gain of upto 0.7 dB for the 

PSNR of DTT as compared to that of DCT and ICT. 

Cameraman: 

The image Cameraman has a low SAM and a high SFM (in (4.2)). From Figs. 4.23 (a) -

(f) and Table 4.15, it can be seen that the DTT-compressed images of Cameraman perform 

very well across various quality measures. PQS falls out of range at very low bpp. At high 
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bpp, the performance of DTT and DCT is almost same. NAE for DTT is almost the same 

as that for DCT. RMSE (at low bit rate), LMSE and MD for DTT is lower than that for 

DCT. There is a gain of 0.5dB at low bit-rates upto 2dB at higher bit-rates for the PSNR of 

DTT as compared to that of DCT and ICT. 

Airplane: 

The image Airplane has a high SAM and a low SFM (in (4.2)), i.e., it has a high predictabil

ity and contains less amount of details. The following observations are noted from Figs. 

4.24 (a) - (f) and Table 4.19. PQS falls out of range at very low bpp. At high bpp, the 

performance of DTT and DCT is almost same. MD and LMSE for DTT is almost the same 

as that for DCT. RMSE and NAE for DTT are lower than those for DCT and ICT . There 

is a gain of upto 1.3 dB for the PSNR of DTT as compared to that of DCT and ICT. 

Texture Mosaic: 

The image Texture Mosaic has a high SAM and a low SFM (in (4.2)), similar to the image 

Airplane. From Table 4.18, Figs. 4.25 (a) and (b), it can be seen that the PSNR for DTT is 

about 1.2 dB higher and RMSE of DTT is lower than that of DCT and ICT. 

Einstein: 

The image Einstein has a medium SAM and SFM (in (4.2)), which shows that it lies in the 

mid-range of coding difficulty. From Table 4.16, Figs. 4.25 (a) and (b), it can be seen that 

the PSNR for DTT is about 0.5-0.8 dB higher than that of DCT and ICT, and it can also 

be seen that the RMSE of DTT is lower than that of DCT and ICT, especially at higher 

compression ratios. 

Summary 

From the above we see that the performance gain of DTT over DCT is highest for the im

ages Mandrill, Leopard and Cameraman. Considering the structural properties of images 

described by SFM and SAM, Mandrill, Leopard and Cameraman have high values of SFM 
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and low values of SAM (in (4.2)), i.e., these images have a high amount of details and a 

low predictability. Hence, it can be concluded that DTT performs better on images with a 

high SFM and a low SAM. 

The trends observed in the results imply that RMSE increases with an increase in the 

number of higher frequency components in the image, which corresponds to increasing 

SFM. Reconstruction accuracy depends on SFM, while visual quality depends on SAM. 

These observations are consistent with those in the literature in the context of image com

pression. 

From the observations made thus far, the following points can be noted 

1. PQS of DTT and DCT are almost same across all images. 

2. DTT has a significant performance improvement over DTT in error-based and gain-

based measures. For HVS-based measures, the performance of DTT is almost the 

same as that of DCT. 

3. DTT performs very well across all quality measures for images with high SFM lying 

in the higher coding difficulty region in (4.2). 

4. RMSE of DTT is lower at higher compression ratios across all the images, and the 

PSNR performance of DTT is very good across all images. Performance gain of upto 

2dB has been observed for DTT over DCT and ICT. 
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Table 4.12: Quality Measures Results for 4x4 DTT-compressed Images at Different Bit-rates for 
Mandrill (SF:36.5146; SAM:100) 

D 

T 

T 

D 

C 

T 

I 

C 

T 

bpp 

MSE 

RMSE 

PSNR 

AD 

SC 

NK 

MD 

LMSE 

NAE 

PQS 

bpp 

MSE 

RMSE 

PSNR 

AD 

SC 

NK 

MD 

LMSE 

NAE 

PQS 

bpp 

MSE 

RMSE 

PSNR 

AD 

SC 

NK 

MD 

LMSE 

NAE 

PQS 

4.39 3.59 3.33 2.53 0.10 

2.62 6.93 9.54 22.58 647.87 

1.68 2.05 2.21 2.91 70.66 

43.94 39.73 38.33 34.59 20.02 

-0.00 -0.00 -0.00 0.00 -0.03 

1.00 1.00 1.00 1.00 1.02 

1.00 1.00 1.00 1.00 0.97 

8.00 12.00 15.00 23.00 147.00 

0.02 0.05 0.06 0.14 1.12 

0.01 0.02 0.02 0.03 0.15 

5.24 5.06 4.99 4.69 -0.46 

4.51 3.68 3.44 2.68 0.10 

4.18 10.81 14.37 29.70 824.15 

1.63 2.00 2.14 2.75 73.26 

41.92 37.79 36.56 33.40 18.97 

0.00 0.00 0.00 0.00 -1.36 

1.00 1.00 1.00 1.00 0.98 

1.00 1.00 1.00 1.00 0.99 

10.00 16.00 19.00 30.00 162.00 

0.03 0.08 0.10 0.20 1.26 

0.01 0.02 0.02 0.03 0.17 

5.31 5.18 5.12 4.91 -1.60 

4.52 3.68 3.45 2.68 0.10 

4.18 10.77 14.35 29.61 825.08 

1.63 2.00 2.14 2.75 73.26 

41.92 37.81 36.56 33.42 18.97 

-0.00 -0.01 0.00 -0.01 -1.35 

1.00 1.00 1.00 1.00 0.98 

1.00 1.00 1.00 1.00 0.99 

9.00 16.00 20.00 30.00 162.00 

0.03 0.08 0.10 0.20 1.27 

0.01 0.02 0.02 0.03 0.17 

5.31 5.18 5.12 4.90 -1.60 

rpQs 

-0.9984 

-0.9978 

0.9575 

0.9760 

-0.9950 

0.9973 

-0.9999 

-0.9999 

-0.9993 

1.0000 

rPQs 

-0.9997 

-0.9993 

0.9533 

0.9988 

0.9993 

0.9999 

-0.9980 

-0.9975 

-0.9984 

1.0000 

rPQS 

-0.9997 

-0.9993 

0.9535 

0.9989 

0.9993 

0.9999 

-0.9976 

-0.9976 

-0.9984 

1.0000 
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Table 4.15: Quality Measures Results for 4x4 DTT-compressed Images at Different Bit-rates for 
Cameraman ( SF:28.86; SAM: 184.22) 

D 
T 
T 

D 
C 
T 

I 

C 

T 

bpp 
MSE 

RMSE 
PSNR 

AD 
SC 
NK 
MD 

LMSE 
NAE 
PQS 
bpp 

MSE 
RMSE 
PSNR 

AD 
SC 
NK 
MD 

LMSE 
NAE 
PQS 
bpp 
MSE 

RMSE 
PSNR 

AD 
SC 
NK 
MD 

LMSE 
NAE 
PQS 

1.37 0.91 0.69 0.30 

11.73 30.04 48.43 151.38 
5.12 7.73 10.15 23.64 
37.44 33.35 31.28 26.33 
0.00 -0.04 -0.04 -0.17 
1.00 1.00 1.00 1.00 
1.00 1.00 1.00 1.00 
21.00 41.00 48.00 124.00 
0.13 0.29 0.41 0.90 
0.02 0.03 0.04 0.06 
3.16 1.87 0.98 -1.72 

1.51 1.05 0.75 0.21 

15.14 29.98 49.47 206.97 
4.63 6.68 9.32 32.81 
36.33 33.36 31.19 24.97 
-0.00 -0.05 -0.01 -0.28 
1.00 1.00 1.00 1.00 
1.00 1.00 1.00 0.99 
31.00 46.00 74.00 138.00 
0.19 0.33 0.49 0.97 
0.02 0.03 0.04 0.08 
3.26 2.31 1.35 -2.22 

1.52 1.05 0.75 0.21 

15.30 30.49 49.19 206.13 
4.63 6.68 9.32 32.81 
36.28 33.29 31.21 24.99 
-0.02 -0.07 -0.02 -0.29 
1.00 1.00 1.00 1.00 
1.00 1.00 1.00 0.99 
31.00 45.00 66.00 125.00 
0.19 0.34 0.48 0.97 
0.02 0.03 0.04 0.08 
3.26 2.32 1.35 -2.15 

rPQS 

-0.9782 
-0.9803 
0.9897 
0.9760 
-0.7196 
0.9364 
-0.9801 
-0.9958 
-0.9990 
1.0000 

rPQs 

-0.9850 
-0.9829 
0.9920 
0.9415 
-0.8432 
0.9747 
-0.9967 
-0.9996 
-0.9964 
1.0000 

rpQs 

-0.9840 
-0.9821 
0.9925 
0.9333 
-0.8665 
0.9737 
-0.9992 
-0.9997 
-0.9960 
1.0000 
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Table 4.16: Quality Measures Results for 4x4 DTT-compressed Images at Different Bit-rates for 
Einstein ( SF.-20.8394; SAM:344.8) 

D 
T 
T 

D 
C 
T 

I 
C 
T 

bpp 

MSE 
RMSE 
PSNR 

AD 
SC 
NK 
MD 

LMSE 
NAE 

PQS 

bpp 

MSE 
RMSE 
PSNR 

AD 

SC 
NK 

MD 

LMSE 
NAE 
PQS 
bpp 

MSE 
RMSE 

PSNR 
AD 

SC 
NK 
MD 

LMSE 
NAE 
PQS 

1.33 0.74 0.54 0.36 0.08 

13.86 29.27 41.76 67.11 383.47 
5.18 9.26 12.79 19.03 85.88 
36.71 33.47 31.92 29.86 22.29 
0.00 0.01 0.04 -0.01 0.31 
1.00 1.00 1.00 1.00 1.02 
1.00 1.00 1.00 1.00 0.98 
22.00 35.00 51.00 74.00 168.00 
0.19 0.33 0.42 0.58 1.35 
0.03 0.04 0.04 0.05 0.13 
2.51 0.85 -0.09 -1.80 -10.24 

1.39 0.85 0.57 0.39 0.10 

15.73 28.74 43.47 69.50 392.35 
4.94 8.09 12.18 17.57 66.22 
36.16 33.55 31.75 29.71 22.19 
-0.03 -0.01 0.04 -0.11 0.06 
1.00 1.00 1.00 1.00 0.98 
1.00 1.00 1.00 1.00 1.00 
32.00 44.00 73.00 72.00 139.00 
0.25 0.39 0.50 0.83 1.47 
0.03 0.04 0.04 0.06 0.16 
2.70 1.34 0.17 -1.31 -10.68 

1.40 0.85 0.57 0.39 0.10 

15.89 28.79 43.29 69.61 397.89 
4.94 8.09 12.18 17.57 66.22 
36.12 33.54 31.77 29.70 22.13 
0.00 -0.00 0.06 -0.07 0.10 
1.00 1.00 1.00 1.00 0.98 
1.00 1.00 1.00 1.00 1.00 
34.00 40.00 74.00 73.00 139.00 
0.25 0.39 0.48 0.82 1.61 
0.03 0.04 0.04 0.06 0.16 
2.69 1.36 0.15 -1.36 -10.70 

rPQS 

-0.9813 
-0.9860 
0.9855 
-0.9403 
-0.9585 
0.9733 
-0.9986 
-0.9999 
-0.9966 
1.0000 

rPQS 

-0.9874 
-0.9953 
0.9831 

-0.4849 
0.9571 

0.8604 

-0.9777 

-0.9817 
-0.9970 
1.0000 

rPQS 

-0.9867 
-0.9951 
0.9843 
-0.6082 
0.9563 
0.9350 
-0.9733 
-0.9912 
-0.9967 
1.0000 
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Table 4.17: Quality Measures Results for 4x4 DTT-compressed Images at Different Bit-rates for 
Peppers (SF:13.5756;SAM:100) 

D 

T 

T 

D 

C 

T 

I 

C 

T 

bpp 

MSE 

RMSE 

PSNR 

AD 

SC 

NK 

MD 

LMSE 

NAE 

PQS 

bpp 

MSE 

RMSE 

PSNR 

AD 

SC 

NK 

MD 

LMSE 

NAE 

PQS 

bpp 

MSE 

RMSE 

PSNR 

AD 

SC 

NK 

MD 

LMSE 

NAE 

PQS 

2.95 2.18 1.86 1.25 0.07 

2.62 5.96 7.47 12.23 341.22 

2.57 3.48 4.07 6.10 104.65 

43.96 40.38 39.40 37.26 22.80 

0.00 -0.00 0.00 0.00 1.22 

1.00 1.00 1.00 1.00 1.02 

1.00 1.00 1.00 1.00 0.98 

7.00 12.00 15.00 21.00 159.00 

0.11 0.24 0.29 0.43 1.77 

0.01 0.02 0.02 0.02 0.12 

5.04 4.78 4.63 4.23 -7.62 

2.95 2.15 1.93 1.36 0.08 

3.90 7.56 8.81 12.18 524.18 

2.57 3.54 3.94 5.60 100.32 

42.22 39.34 38.68 37.27 20.94 

-0.00 -0.00 -0.00 -0.01 0.27 

1.00 1.00 1.00 1.00 0.97 

1.00 1.00 1.00 1.00 1.00 

10.00 15.00 18.00 27.00 155.00 

0.17 0.33 0.38 0.48 2.06 

0.01 0.02 0.02 0.02 0.16 

5.18 4.99 4.91 4.59 -11.69 

2.98 2.16 1.94 1.36 0.08 

3.92 7.62 8.90 12.42 525.65 

2.57 3.54 3.94 5.60 100.32 

42.20 39.31 38.64 37.19 20.92 

0.00 0.00 -0.00 -0.01 0.28 

1.00 1.00 1.00 1.00 0.97 

1.00 1.00 1.00 1.00 1.00 

9.00 15.00 17.00 24.00 155.00 

0.17 0.33 0.38 0.48 2.14 

0.01 0.02 0.02 0.02 0.16 

5.18 4.99 4.90 4.59 -11.69 

rPQS 

-0.9995 

-0.9997 

0.9690 

-0.9985 

-0.9989 

0.9992 

-0.9997 

-0.9929 

-0.9991 

1.0000 

rPQS 

-0.9999 

-1.0000 

0.9823 

-0.9981 

0.9995 

-0.9528 

-0.9974 

-0.9935 

-0.9996 

1.0000 

rpQs 

-0.9999 

-1.0000 

0.9818 

-0.9982 

0.9994 

-0.9364 

-0.9983 

-0.9938 

-0.9996 

1.0000 
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Table 4.19: Quality Measures Results for 4x4 DTT-compressed Images at Different Bit-rates for 
Airplane ( SF:15.1025; SAM:5000 ) 

D 

T 

T 

D 

C 

T 

I 

C 

T 

bpp 

MSE 

RMSE 

PSNR 

AD 

SC 

NK 

MD 

LMSE 

NAE 

PQS 

bpp 

MSE 

RMSE 

PSNR 

AD 

SC 

NK 

MD 

LMSE 

NAE 

PQS 

bpp 

MSE 

RMSE 

PSNR 

AD 

SC 

NK 

MD 

LMSE 

NAE 

PQS 

0.77 0.49 0.38 0.10 

4.77 8.17 12.59 121.22 

8.39 13.11 16.97 64.62 

41.35 39.01 37.13 27.30 

-0.04 -0.02 -0.21 0.61 

1.00 1.00 1.00 1.01 

1.00 1.00 1.00 1.00 

16.00 25.00 38.00 126.00 

0.13 0.19 0.28 1.41 

0.01 0.01 0.01 0.04 

4.16 3.70 3.25 -0.55 

0.78 0.46 0.40 0.11 

5.51 11.19 13.02 131.29 

8.27 14.13 16.32 56.51 

40.72 37.64 36.98 26.95 

0.03 -0.14 -0.03 -0.67 

1.00 1.00 1.00 0.99 

1.00 1.00 1.00 1.00 

24.00 31.00 38.00 109.00 

0.17 0.29 0.30 1.24 

0.01 0.01 0.01 0.05 

4.15 3.55 3.37 0.11 

0.79 0.46 0.40 0.11 

5.68 11.48 14.01 133.74 

8.27 14.13 16.32 56.51 

40.59 37.53 36.67 26.87 

-0.02 -0.20 -0.09 -0.68 

1.00 1.00 1.00 0.99 

1.00 1.00 1.00 1.00 

23.00 34.00 39.00 108.00 

0.18 0.30 0.34 1.37 

0.01 0.01 0.01 0.05 

4.17 3.55 3.33 0.09 

rPQS 

-0.9932 

-0.9992 

0.9939 

-0.9250 

-0.9249 

0.9514 

-0.9998 

-0.9975 

-0.9986 

1.0000 

rPQS 

-0.9912 

-0.9995 

0.9958 

0.9823 

0.9861 

-0.9780 

-0.9980 

-0.9973 

-0.9971 

1.0000 

rpQs 

-0.9903 

-0.9992 

0.9958 

0.9789 

0.9849 

-0.9743 

-0.9997 

-0.9976 

-0.9967 

1.0000 
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Table 4.20: PSNR and RMSE for 4x4 Block Size Compression Experiment at Different Bit-rates 

bpp 4.39 

Mandrill 

3.68 2.68 

Peppe 

0.1 3.01 

rs 

1.86 1.25 0.1 

PSNR 

DTT 

DCT 

ICT 

43.94 

41.42 

41.42 

40.21 

37.79 

37.81 

35.27 

33.40 

33.42 

20.03 

18.98 

18.98 

43.98 

42.24 

42.20 

39.40 

38.44 

38.40 

37.26 

35.27 

35.19 

23.42 

21.65 

21.64 

RMSE 

DTT 

DCT 

ICT 

1.52 

2.05 

2.04 

2.53 

3.29 

3.28 

4.45 

5.45 

5.44 

25.45 

28.68 

28.69 

1.60 

1.97 

1.98 

2.73 

3.06 

3.07 

3.50 

5.24 

5.26 

17.93 

21.89 

21.93 
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/ « & 

(c) (d) 

Figure 4.26: Original and Reconstructed Images of Peppers using 4x4 DTT (a) Uncompressed, 
bpp=7.59, (b) DCT-compressed, bpp=1.73, PSNR=38.24, RMSE = 3.12, (c) ICT - compressed 
bpp=1.74, PSNR=38.19, RMSE=3.14 and (d) DTT - compressed, bpp=1.65, PSNR=38.60, 
RMSE=2.99 
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Figure 4.27: Original and Reconstructed Images of Mandrill using 4x4 DTT (a) Uncompressed, 
bpp=7.36, (b) DCT-compressed, bpp=1.58, PSNR=28.84, RMSE = 9.21, (c) ICT-compressed, 
bpp=1.58, PSNR=28.87, RMSE=9.18 and (d) DTT - compressed, bpp=1.48, PSNR=29.21, 
RMSE=8.82 
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4.4.4 DTT Block Sizes 4 and 8- A Comparison 

In the literature, documentation for 8 x 8 DCT seems to be larger than that for 4 x 4 DCT. 

In the previous sub-sections, we have compared the performances of 8x8 and 4x4 DTTs 

with respect to 8 x 8 and 4x4 DCTs, respectively. We now examine the image compression 

performances of 8 x 8 DTT and 4 x 4 DTT. Figs. 4.28(a)-(d) give the reconstructed images 

of Mandrill for 4x4 and 8x8 DTTs at the indicated bits per pixel. The plots of PSNR vs 

50 100 150 200 250 300 350 400 450 500 50 100 150 200 250 300 350 400 450 500 

(a) (b) 

(c) (d) 

Figure 4.28: Reconstructed Images of Mandrill using (a) 8x8 DTT at 0.1 bpp, (b) 4x4 DTT at 0.1 
bpp, (c) 8x8 DTT at 2.4 bpp and (d) 4x4 DTT at 2.5 bpp 

bpp reconstructed by 4x4 and 8x8 DTTs are given in Figs. 4.29 for the images Airplane, 
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Mandrill, Cameraman, Peppers, Einstein and Lena. From these plots and from the results 

in the previous sub-sections for 4x4 DTT in Figs. 4.19-4.25 and for 8x8 DTT in Figs. 

4.13-4.17 that 4 x 4 DTT has a higher gain in performance over 4 x 4 DCT, than 8x8 DTT 

has over 8 x 8 DCT. Higher resolution at low frequencies is a direct consequence of larger 

block size. 

Figs. 4.28 (a) and (b) are compressed at 0.1 bits per pixel by 8x8 and 4x4 DTTs respec

tively. By comparing these two figures, we see that Fig. 4.28(b) is more degraded and has 

higher blocking artifacts than Fig. 4.28 (a). Figs. 4.28 (c) and (d) are compressed at 2.4 

and 2.5 bits per pixel by 8x8 and 4x4 DTTs respectively. By comparing these two figures 

to the previous two figures, we see that 4x4 DTT induces more noticeable ringing artifacts 

and blocking artifacts when compared to 8 x 8 DTT. At very low bit-rates, 4x4 DTT has a 

lower performance than 8x8 DTT, and at higher bit-rates, for images with a high SFM and 

a low SAM (in (4.2)), the performance of 8x8 DTT is better than 4x4 DTT on a perceptual 

basis, i.e., although 4x4 DTT scores over 8x8 DTT in objective measures, the visual quality 

of 8x8 DTT is better than 4x4 DTT at higher bit-rates. For images with a lower SFM and 

a higher SAM (in (4.2)), the performance of 4x4 DTT is significantly lower than that of 

8x8 DTT. From Figs. 4.19-4.25 and Figs. 4.13-4.17, it can be seen that there is a gain of 

almost 2dB in 8x8 DTT coded images as compared to 4x4 DTT coded images. A possible 

explanation for this behavior could be that since images with a high SFM and a low SAM 

are not very predictable, they are difficult to code. There is a higher correlation among the 

4x4 transformed sub-blocks compared to the 8x8 transformed sub-blocks. This correlation 

is exploited during the differential coding of the DC coefficient (which is representative of 

the sub-block, since it has the maximum information in that sub-block), where predictive 

coding is used. This results in lower compression ratios for images with a high SFM and a 

low SAM, if better visual quality has to be preserved. 
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Figure 4.29: PSNR and RMSE performances of 4x4 and 8x8 DTTs and DCTs for Images (a) 
Airplane, (b) Mandrill, (c) Cameraman, (d) Peppers, (e) Einstein and (f) Lena 
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Chapter 5 

Conclusions and Future Work 

This thesis has been concerned with the study of the discrete Tchebichef transform, which 

is a relatively new transform compared to the more popular transforms such as the discrete 

cosine and wavelet transforms. The interesting properties of the DTT motivated us to 

conduct research on the DTT to evaluate its potential in applications based on discrete 

orthogonal transforms. 

5.1 Summary 

In the first half of the thesis, we have concentrated on the formulation, properties and fast 

algorithms for the DTT. The later half of the thesis is dedicated to the experimental study 

of image compression using DTT and evaluation of its performance for the same. 

We have derived important properties such as orthogonality, symmetry and recurrence 

relations for the discrete Tchebichef polynomials. Based on these properties, we have 

presented the discrete Tchebichef transform with new notations that conform to the lan

guage of discrete transforms. Some important properties of DTT such as the energy prop

erty, unitary property and separability property, which lay the foundation for using DTT in 

transform coding applications, have also been derived. (Although the end results (of the 
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properties) have been mentioned elsewhere in the literature, the derivations and proofs for 

the Tchebichef case are not documented to the knowledge of the author of this thesis, and 

hence, have been presented here.) 

Since the polynomial kernel of DTT allows for a multiplier-free approach with low-

complexity and without any approximation errors, DTT is more appropriate for synthesis 

of an integer transform than DCT. The popularity of integer-based algorithms which offer 

highly simplified designs for implementation, and the significance of multiplier-free de

signs which bypass the restrictions of processors, find their application in this thesis as the 

integer Tchebichef transform and its multiplier-free design. We have proposed the concept 

of the integer Tchebichef transform, and designed a general framework to render 4 x 4 and 

8 x 8 DTTs into their respective integer transforms. We have derived fast multiplier-free 

algorithms based on ITT for 4-point and 8-point DTTs, and have given a design for the 

hardware implementation of the 8-point algorithm. The proposed DTT algorithms have 

been found to be computationally more efficient than the existing algorithm for DTT. We 

have also compared the computational aspects of ITT and ICT to demonstrate the ease of 

use of the ITT over the ICT for video coding applications based on integer-based arithmetic, 

such as the MPEG-4 part 10 codec. 

We have performed image compression using 4x4 and 8x8 DTTs by employing a prac

tical scheme which is comparable to the existing standards. The image quality measures 

meant for the picture quality evaluation of gray scale-compressed images span a wider 

perspective of quality analysis compared to the conventional quality metrics. We have an

alyzed the performance of DTT-compressed images using these quality measures based on 

perceptual techniques in addition to the customarily-used objective techniques. Since the 

visual quality of coded images is essentially determined by the structural properties of an 

image, we have integrated these concepts in our analysis of the performance of DTT. We 

have compared the performances of compression using 4x4 DTT with those using DCT 
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and ICT. These experiments have generated interesting results. In general, a transform 

seizes to perform well for images with a high spectral activity and a low predictability. In 

our analysis, we have found that 4x4 DTT performs better than 4x4 DCT and 4x4 ICT 

for these kinds of images compared to images which are relatively easier to code. The 

video quality expert group has advocated the use of PSNR for video quality measurement 

methods [40] based on their comprehensive experiments. Our results have shown that 4x4 

DTT exhibits a performance gain of 0.5dB - 2.5dB over that of 4x4 DCT and 4x4 ICT. 

Based on the encouraging results of image compression as well as the computational ease 

of DTT explained above, image compression using DTT has been proposed and the notion 

of video compression using DTT has been envisaged. The performances of 8x8 DTT and 

DCT have been compared. Our quality analysis shows that the performances of 8x8 DTT 

and DCT are almost similar to each other for perceptual quality measures, but a significant 

gain in performance is seen for DTT in the case of objective measures. However, we have 

found that unlike 4x4 DTT, 8x8 DTT has a relatively less gain in performance over DCT 

for images with a high spectral activity. But, we have also found that the visual quality of 

8x8 DTT-compressed images is better than that of 4x4 DTT-compressed images. 

5.2 Future Work 

Compression algorithms drastically reduce the storage and bandwidth requirements. The 

implementation of high-performance algorithms, such as those obtained from discrete Tchebichef 

transform can help reduce the cost requirements. Since DTT is a novel transform with very 

interesting characteristics, the areas of its application are many. In this thesis, we have al

ready laid a foundation for the application of DTT in video compression. Hence, the scope 

for the implementation of a complete video codec based on DTT is apparent. Based on 

methods such as the hexagonal fast Fourier transform, experiments on shifted Tchebichef 

120 



polynomials and non-linearly sampled Tchebichef polynomials may result in better com

pression performances. There seems to be good scope for application of DTP in filter 

banks. The scheme used for image compression in this thesis uses block coding, which is 

known to induce blocking artifacts due to block boundaries. It would certainly be inter

esting to see the results of DTT based on a non-block coding scheme, such as the lapped 

orthogonal transforms. Also, the analysis of DTT for noisy images is one of the possible re

search directions in future. It is possible to obtain a better gain in performance for DTT by 

using rate-distortion optimized quantization tables and also by studying a statistical model 

for the distribution of the DTT coefficients. While the strength of fast DCT designs lie in 

exploiting trigonometric properties, fast DTT designs can be developed by maneuvering 

around polynomial properties. Since polynomial theory is very well-developed, there is a 

possibility of developing more efficient DTT algorithms. 
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Appendix A 

Miscellaneous Identities and Formulae 

Difference Operator 

A, the forward difference operator and V, the backward difference operator, are given by 

Af(x) = f(x+l)-f(x) (A.l) 

V f(x) = f(x)-f(x-I) (A.2) 

and are related by 

V/(x) = A/(*) - AV/(x) (A.3) 
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Binomial Coefficients 

n\ n\ In 
k ( n - * ) ! * ! ' 10 

(A.4) 

nH:-hAk~:^ 
n \ ln\ n — k 

k+\ \kk+\ 
(A.6) 

n:Hnn-ii 

Gamma Function 

The gamma function, also known as the generalized factorial is denoted by T(x). The 

gamma function can be evaluated recursively by using 

T(x+l) = xT(x) (A.8) 

r ( i ) = 1 (A.9) 

When x is a positive integer 

T(x+l) = x] (A.10) 
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Rising and Falling Factorial 

(a)(„) is the Pochammer symbol, also known as the rising factorial and is given by 

(a)(„) = aia + \)(a + 2) (a + n - 1) (A 

(a + n - 1 ) ! - . 1 ,A = —( 7TT- for n > 1 (A 
(a -1 ) ! 

(a)(0) = 1, (1)(«) = (n)(n) = n\ (A 

where n, m are positive integers. Some more useful relations for the rising factorial are 

T(a + n) 
(«)(«) -

l\U) 
Iv 4- n — 1 \ 

(A 

T(a) 
(«)(«) (x + n-\ 

n\ \ n 

{-a\n) - (-ir(a)(">, (A 

where (a)(n> is the falling factorial given by 

(«)(n) M (A 
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Appendix B 

Some Properties of a Diagonal Matrix 

The well-known properties of diagonal matrices used in this thesis are given below. 

Let A, B and C be matrices of orders such that the given operations are defined. 

Lemma B.l (Product of Diagonal Matrices) Let D and E be diagonal matrices of the 

same order M xM. The product of D and E is a third diagonal matrix, F of order MxM, 

with diagonal entries equal to the products of the corresponding entries of D and E, i.e., if 

the diagonal elements of F, D and E be fkk, dkk and ekk respectively for the kth row, then 

F = DE implies fkk = dkkekk, where k = 1 • • • -M. 

The proof is straightforward and is omitted. 

Lemma B.2 (Pre-multiplication by a Diagonal Matrix) Pre-multiplication of a matrix A, 

of order M x N by a diagonal matrix, D of order MxM, results in multiplication of the 

entries in each row of A by the row-corresponding diagonal element in D i.e., ifdkk be the 

diagonal element in the kth row of D, and akj and bkj be the elements in the kth row and 

the jth column of A and B respectively, then 

B = DA implies bkj - dkkakj, where k = 1 • • • -M and j = 1 • • • -N. 

The proof is straightforward and is omitted. 

131 



Lemma B.3 (Post-multiplication by a Diagonal Matrix) Post-multiplication of a matrix 

A, of order N X M by a diagonal matrix D, of order M X M, multiplies the entries in 

each column of A, by the column-corresponding diagonal element in D, i.e., if da be the 

diagonal element in the kth row of D, and akj and bkj be the elements in the kth row and 

the jth column of A and B respectively, then 

B = AD implies bkj = d^ay, where k = 1 N and j - 1 • • • -M. 

The proof is straightforward and is omitted. 

Theorem B.l (Pre-post-multiplication by a Diagonal Matrix) If D is a diagonal ma

trix, and A is a matrix of the same order as that of D, then DAD' = A O Q, where qkj is the 

element in the kth row and the jth column of Q is given by q^j = d^djj for k,j=\----N. 

Proof: 

Let B = DAD'. Consider C = DA. 

Using Lemma B.2, ckj = dkkakj. 

Now B = CD'. Using Lemma B.3, bkj = djjCkj 

or bkj = djjdkkakj 

=> bkj = qkjakj, where qkj = djjdkk. (B.l) 

o rB = A © Q , where O represents element-by-element multiplication. (B.2) 
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Appendix C 

Definitions 

Hue 

The hue of a color identifies what is commonly called color. 

Saturation 

The saturation of a color represents the intensity of the color. 

Brightness 

Brightness is an attribute of visual perception, in which a source appears to emit a given 

amount of light. 

Luminance 

The luminance of a color is a measure of its perceived brightness. 
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Chrominance 

The chrominance of a color is the difference of the color with respect to a specified refer

ence color. 

DC coefficient 

The DC coefficient is the component in the image, which has a zero frequency with respect 

to the rows and columns of the image. 

Transform coefficient 

Transform coefficient refers to the transformed value as represented by the basis of the 

transform. With respect to the Tchebichef transform, the Tchebichef-transformed coeffi

cient is the amplitude of the input when Tchebichef-transformed, as seen in the Tchebichef 

domain. 

Tchebichef transform pair 

The definitions of the DTT and the inverse DTT combined are called the Tchebichef trans

form pair i.e., 

JV—1 

Y(k) = J^T(k,n)x(n) for k,n = 0,1 • • -N - 1 (C.l) 
n=0 

and 

N-\ 

x{n) = J ] r(k, n)Y{k) for k, n = 0,1 • • • N - 1 (C.2) 
jfc=0 

DTT 

are called the Tchebichef transform pair denoted by x(n) <•—> Y(k). 

134 



Entropy 

Entropy quantifies the amount of information contained in a set of data and is given by 

Entropy = - J ] J ] P(i, j)logP(i, j) (C.3) 
;=o i=o 

where M and L are the number of rows and columns of pixels, and P(i, j) is the probability 

of the occurrence of the pixel (/, j). 

Compression ratio 

Compression ratio is the ratio of the size of the original image to that of the compressed 

image. A trade-off between the compression ratio and the quality of the image is the key to 

decide the level of compression. 

Precision 

The precision of a value is determined by the number of bits allocated to a particular sam

ple. 

Histogram plot 

A histogram plot is a graph that shows the number of pixels in an image at each different 

intensity value found in that image. The number of intensity values depends on the image 

precision. 
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