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Abstract

Composition and Verification of Formal Behaviors

Siamak Kolahi

In this thesis, we present a platform and a tool support for formal modeling, auto-
mated composition, and formal verification of partial system behaviors defined as Use
Case Automata (UCAs). Based on research works [24, 31, 32|, the Use case Com-
position, Modeling and Verification (UCOMYV) is presented as tool support for the
visual modeling of formal behaviors and their merging through the notion of compo-
sition expression. The composition expressions determine the extension points in the
use cases where the composition is performed, and the operators for the semantics
of the composition. The theory and the tool supports a new incremental approach
of building the desired system specification with a formal automated mechanism of
composition. In addition, it allows the verification of UCAs over temporal properties
defined as part of the system requirements specification using an integrated model
verification tool. The UCOMYV also provides features on traceability of the require-
ments, and an XML based schema for the introduction of new operators for UCAs

composition.
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Chapter 1

Introduction

1.1 Motivation

Modeling and reasoning about a prospective system is a key solution to todays com-
plex system development problems. Producing a sound, complete and consistent
specification for the system is an important step which can help studying the system
a-priori and largely affect the future steps of the development process. It can help to
detect and reduce defects in early stages of the system life-cycle, and hence, reduce
the potentially large cost of detecting these defects in future steps of system devel-

opment. In fact, it is the place where the real complexity of the system begins to form.

Scenario based behavior analysis is one of the most accepted and widely studied
approaches to produce the desired system specification. Scenarios are partial narra-

tors of the system behavior story, which in case all together can show how the system



works. Each scenario describes a specific system behavior from users perspective, and
can show interactions between system and its users. It can also show how different
parts of the system interact in order to provide the required functionality. They are
abstract and understandable for the stakeholders, while expressive enough to provide
the ground for representing large and complex system specifications. Moreover, a set
of these scenarios form a use case which act as a system-level functionality. Each use
case depicts a desired functional requirement of the prospective system, carrying a

set of execution scenarios of the behavior.

1.2 Problem Definition

Despite consensus on their usefulness, use case and scenario based approaches suffer
from the lack of a rigorous and easy-to-use formality. The formality could trigger the
development of automated composition and verification mechanisms that can sup-
port generation of proper system specifications. The complexity of such approaches
lies in finding a formal model with proper level of formality for the presentation of
behaviors, defining an elaborative composition mechanism, preventing implied and
undesired behaviors stemming from the composition, and verifying the model for

safety and progress properties.



Moving to more a formal presentation model for the scenarios and use cases would
increase the expressiveness power and facilitate automating the composition and ver-
ification of system models. However, as the model gets more formally expressive, it
gets harder to understand for the stakeholders and more complex to compose. More-
over, regardless of the notations used, the composition of use cases is a hard task and
is subjected to many inherent issues that the designer should deal with. Issues such as
realizability of the model, state explosion problem, and implied scenarios generated

from the integration are examples of such unresolved issues.

1.3 Solution

Modeling the system as a whole is a hard and complex task to do. Moreover is harder
to define proper verification properties on the model. Deploying an incremental ap-
proach of constructing the system specification can help to reduce the problems on
this suit. It can break the complexity of modeling and verification of the system to
small problems in each increment in the specification. Such an approach could assure
to obtain the verified system model and gradually form the desired trustable speci-
fication. Our objective is to facilitate this process. We present a formal description
of use cases, provide mechanism for automated composition of them, and develop a
platform for defining and verifying behavioral properties on the generated models.
We also present a supporting tool for the deployment of such approach over large

scale real-life specification problems.



1.3.1 Context

The originality of the approach presented in this thesis is based on a new incremental
approach for modeling, composing and verifying the behavioral models. The theory
of the modeling and composition refers to the works of the PhD thesis of Rabeb

Mizouni [31] and our earlier research work [32, 33].

1.3.2 Objective

In this thesis, we present the theory of use case composition. Furthermore, we develop
a supporting tool as a proof of concept of the theory. We also use temporal logic for
the verification of use cases. Moreover, using the supporting tool, we apply the theory
on a real-life specification problem. Novel features such as traceability have also been

presented.

1.4 Thesis Plan

The thesis is organized as follows. In Chapter 2, we discuss the basic concepts and
problem definition for the scenario based requirement analysis. We also present some
of the most well-known inherent issues in the field. In Chapter 3, we study the state
of the art in the literature for scenario presentation and composition, and see some
of the relevant works on tackling the problems in the area. We also review some of
the available tools for supporting novel theoretical works. Chapter 4 presents UCAs

as our formal model of system behaviors, and relevant theoretical basis are given



for the composition of UCAs. We also discuss the EUCA as the extended model
of UCA, and novel concepts on introducing new compositional semantics desired
compositions. Chapter 5 discusses the UCOMYV as the tool support for the theory
and its architecture. Different layers of the tool architecture discussed in this chapter
are detailed in its following chapters. Chapter 6 discusses the design environment
for the specification with useful features provided in the tool for the modeling and
verification of UCAs in the tool. Furthermore in Chapter 7 we detail the design of the
composition engine of the tool, which is the place that our core composition theory
has been implemented. The model verification and its integrated environment in the
tool is discussed in Chapter 8. This chapter also discusses the model transformation
of UCA to the target language and the limitations in this process. Chapter 9 address
an interesting and essentially useful feature in the tool which supports the traceability
of composed behaviors in the generated model. It describe how the changes in the
specification are propagated in the hierarchy of their composition. We show the
applicability of our approach in Chapter 10 on the generation of the specification for
an e-purchasing system, and give examples of possible behavioral properties which
could be verified on the generated models for such system. Chapter 11 discusses
the benefits of our approach as well as its limitations in facing real-life specification
problems. We conclude our discussion and show the possible directions for future

extensions of our research motivation in this chapter.



Chapter 2

Background

2.1 Introduction

Scenario based requirement analysis is one the most accepted and welcomed ap-
proaches to produce the desired system specification. Scenarios are partial executions
of system models which shows how the system would works with its surrounding en-
vironment. They can also show how different parts of the system interact to provide
the required functionality. A set of system scenarios combined together can perform
required behavior and submit intended results for the user. They conform complete
system specification. However integrating and reasoning about scenario sets is hard.
Integration is subjected to problematic issues such as realizability and implied sce-
narios which should be decided to deal with. Moreover, the verification carries the
inherent problems on exponential growth in the state space of the system. In this

chapter, we present the basic concepts on the area of scenario based requirement



analysis, and address some of the major issues which arise during the modeling and

reasoning in such approaches.

The chapter is organized as follows. In Section 2.2 some of the basic concepts for
the formal analysis of requirements are provides. In Section 2.3, some of the major
issues in the domain of formal system analysis are addressed, and some relevant
approaches for tackling these issues are studied. Some of these issues impose major

major constraints on a rigorous study of system behaviors.

2.2 Basic Concepts

2.2.1 Requirement Engineering

Requirement Engineering is the science of using technology centered systems for elic-
itation of the expectations of the stakeholders form a prospective system [8]. During
the analysis phase of system development, which in our case is software development,
requirements of the system should be clarified. These requirements should cover in-
tended expectations of the stakeholders from the system, and nothing more. As the
first step, this phase, plays an important rule and can affects the future steps of the
system development. Requirement engineering tries to help this process by using
formal and mathematical notations. It includes formalizing the requirements, pro-
ducing specification documents, developing algorithms for detecting inconsistencies

and unintended features in them and in general, building frameworks for requirement



elicitation process. It also provides models from the system which can be used in
the future steps of the system development in terms of generative developments and

prototypes.

Requirements of a system can be functional or non-functional. Functional require-
ments are those regarding the expected behaviors and functions of the system while
the latter one concerns how well the system can meet these requirements, e.g. per-
formance,maintainability, usability and to name some of them. In fact, functional
requirements show what the system should do and non-functional requirements show
‘minimum accepted standards for the system to do these jobs. These requirements
should further be checked for: Validity (are they the right functions regarding the cus-
tomers needs), consistency (do these requirements conflict at some points and why),
completeness (they cover all the functions needed by the customer), feasibility (can

they be implemented concerning restrictions on budget, time, and technology?)

Scenario-based requirement engineering is one of the recent and popular approaches
in this field. Scenarios describing system views, uses, and services are becoming a
common method of capturing functional requirements of reactive and distributed
systems. They are particularly appropriate to present behaviors of the system in
an understandable way for stakeholders. In this approach, from the early stages of

the development, functionalities and behaviors expected from the stakeholders are



defined. They start first by the description of the system as seen by the user in prac-
tice. Initially, these functionalities are expressed in a very abstract notation without
description on how these functionalities are going to be met. After refining them in
an interactive process, we need to move forward to the implementation of the system.
Hence more detailed descriptions of the system are needed. Then abstract notations
are refined to more detailed ones and sometime more formal ones, and get closer to

the details needed for the design phase.

Formal methods are techniques for expressing requirements in a manner that en-
ables the requirements to be studied mathematically. They allow sets of require-
ments/descriptions to be examined for consistency, and equivalency with respect to
requirements/descriptions and compatibility to the original requirements. Formal
methods are used to produce formal specifications. A specification is a document
that clearly and accurately describes requirements of a prospective system. A speci-

fication is qualified as formal when it is written using a formal language [8].

2.2.2 Use Cases and Scenarios

Use cases are means for capturing potential requirements of a new system or soft-
ware. Each use case provides one or more scenarios that convey how a system should
interact with end user or other systems to achieve a certain functionality. In the usé
case presentation, formal expressions are avoided, instead the language used by the

end user or domain expert is used to represent requirements. Use cases are sometimes



co-authored by software developers and end users, depending on the level of formality

and abstraction of the analysis [34].

A scenario is a typical interaction between the user and the system or between
two software components. A scenario describes a specific instance of a particular
process within the systems business structure. It shows a behavior of the system
that may result in an observable outcome for the foreign user or environment. Each
scenario sees the system from its own perspective and model the specific behavior of
the system in that domain [7]. In this thesis, scenarios and use cases are not two
separate concepts. In the object oriented world, use cases are interpreted as classes of
related scenarios which perform sequences of actions and yield observable results while
scenarios are sequential specific realization of a use case. In this text, we consider
scenarios as specific instances of use cases.

The composition of these use cases would conform the system behavioral model
which is subjected to further checking of model compliance to certain properties
and correctness. Despite consensus on their usefulness, use case based approaches
suffer from the lack of a rigorous formality. This formality triggers the development
of automated composition approaches and verification mechanisms that support the

generation of sound and complete system specifications.

10



2.3 Inherent Issues

Formality Level and Automation

Presenting formal notations of requirements could help the designer to better analyze
the intended system and can be further used for model verification, making design
revisions, and even code generation. However it needs the analysts and designers to
be familiar with mathematical formalizations which are hard to read and understand
by the stakeholders. The formality level of our model and the level of the automation
of the specification generation is an important influential issue which should be con-
sidered and decided. A more formally expressive model would benefit from a more
expressive power for the requirements, an automated composition and formal verifi-
cation mechanisms. A full automated approach can benefit from the ability for rapid
prototyping and system generation. On the OtheI: hand, a less formally expressive
model and semi-automated composition mechanism can benefit from an interactive
process which helps refining system specification in case of the detection of implied
or missing scenarios with the participation of the stakeholders in an interactive way.

It also makes the composition process less complex.

Implementation and Behavioral Model

In a scenario specification, not only a set of acceptable system executions are specified,
but also components that participate in these executions and their responsibilities are

described, depending on the level of abstraction used in the specification. Thus we

11



may want to build a set of components which can send and receive messages accord-
ing to the scenario specifications. Therefore, a model which exhaustively shows the
behaviors described by the specification should be developed. The requirements ex-
pressed in the scenario specification would be implemented into a specification which
contains an exhaustive model of the scenario executions mentioned in the specifica-

tion.

The synthesized implementation of the system can be used as a precise specifica-
tion of the intended behavior of the system, as a prototype for exploring the systems
requirements and for automated verification of model compliance to the correctness
and completeness properties for the system through model checking, or finding possi-
ble missing or implied behaviors emerging from the composition. This model can also
be used for further refinements through achieving a possible lower implementation of
the system.

This implementation and modeling of scenario specifications is done on state based
models like Finite State Machines or Label Transition Systems. Therefore a possi-
ble execution of the system, or equivalently the externally observable behavior of
a scenario-based specification which are given by a sequence of message labels, are

implemented as a trace of the finite state machine.

12



Figure 1: Basic MSC and its corresponding implementation

Realizability

We discussed the benefits of implementing the scenario-based specification into a
state-based notation. But this task is not straight-forward and not always possible.
A set of scenarios are called realizable or implementable if a state-base specification
can be produced that implement precisely the same behaviors as of the set of scenarios
in the specification. It has been shown that in general, the problem of realizability of
scenario specifications is an undecidable problem [3] [26], and further only decidable

in the NP-Space time complexity [5] [26] [27].

The realizability problem depends on many factors, including the architecture we
are using for our implementation model and the semantic type used for the commu-
nication model (synchronous vs. asynchronous). There exist two notions of weak and
safe realizability [2] depending on whether or not we require the implementation to
be deadlock-free. It is shown [3] that for a finite set of scenarios, like MSCs, weak

realizability is coNP-Complete while safe realizability has a polynomial time solution.

13



Implied Scenarios

The composed model from a set of scenarios may, or may not implement exact behav-
iors noted in the original specification. This is due to the fact that some scenarios may
emerge from the composition itself, which may not be expressed in the scenario set.
Therefore, after building the implemented model, we need to check the compliance of
the model with the original specification. We require a model to include all possible
behaviors that have been described in the specification. Not all the behaviors that
the implementation is presenting are mentioned in the original scenario specification.
In other words, some unintended behaviors may appear in the implementatipn as
the result of composition. We may want to find the closest implementation to our
specification with the minimum unintended behaviors. One may expect the model to
contain exactly the same behaviors as those specified in the specification, and noth-
ing more. But this implementation does not always exist. One may also not find the
implementation that has exactly the same language as the specification. During the
composition process, certain unexpected and unspecified behaviors may appear in all
possible implementations of the system. These behaviors are called implied scenarios.

These behaviors stem from the fact that each scenario in the system has its local
view of what is happening in the system, and if sufficient information is not provided,
the process may behave unexpectedly and incorrectly in terms of implied behavior
at a system level. In fact, implied behaviors are results of an inconsistency between

system decomposition and system behavior. Implied scenarios are not produced by

14



a particular scenario language, say MSC. They are the result of specifying the global
behaviors of a system that will be implemented from the processes point of view.
They are produced as a result of composing the partial ordered scenarios which has
their own view of the system.

Implied scenarios are sometimes unintended. They can simply be acceptable be-
haviors which have been overlooked by the stakeholders. In this case the scenario
specification needs to be revised and completed. In other case however, they rep-
resent an unacceptable behavior in which requires the specification be modified to
avoid undesired behaviors. Some approaches have been developed to detect implied
scenarios [2] [43] [46], and further use them to form the revised specification and

hence, more sound and complete specification.

State Explosion

We implement scenarios into a state-based notation in order to have a behavioral
model, have explicit formal definition of behaviors, and to verify the behaviors over
intended properties and find unintended ones. One big disadvantage for this process
is that we have to define all the possible states which the system could reach. This
task might be feasible for small systems with limited number of states. However for
larger systems, modeling task gets harder and more complex, as the number of in-
tended states grow exponentially resulting in far too more states and transitions to be
applicable. Checking the behaviors of the scenario model is usually linear to the size

of the states, but the size of the state specification grows exponentially, as the size

15



of scenario model grows linearly [47]. The base of the exponentiation depends on the
number of local states a process has, or the number of values a variable may store.
As we have seen, in general, the problem of implementing the state specification is
fundamentally hard (NP, PSPACE or worse) and the problem will be how to make

this problem scalable [20].

Different approaches have been proposed to tackle the state explosion problem
[47]. They include building local state specifications for different parts of the system
and then combine them together to have the comprehensive model. But this raises a
problem that it is difficult to show the behavior of the whole system from a number
of implementations from individual classes. Another widely studied technique is to
express symbolically the states of the system and hence, avoid explicit exploration
of the exhaustive system model. Other approaches are algorithmic approaches which
include state pruning technique to avoid exploring parts of the states space, and
techniques to tackle the effects of state explosion such as bit-state hashing, state

machine compression catching, etc [20].
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2.4 Conclusion

In this chapter, we studied some basic concepts and notations on the area of scenario
based requirement analysis which could provide a base for the work in this thesis.
Also we have addressed some of the major issues being present in this area and all
the approaches on formal modeling and reasoning. In the next chapter, we will briefly
overview some of the major research works related to our approach, as well as some

tool supports for their practical uses.
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Chapter 3

State of the Art

3.1 Introduction

Scenario and use cases are well-known and well-studied concepts in both academia
and industry. Many approaches have been investigated to model and reason about
scenario specifications. Some of this existing work focus on developing notations for
the presentation of scenarios and use cases while others try to tackle problematic
issues stemming from the composition and verification. UML Statecharts and MSCs,
have become standard notations and are used widely in the industry. They are mostly
general purpose notations, which can be applied in many different problems. Some
others however, are more specialized notations which could be used in certain domains
of system developments.

In this chapter, we present a state of the art literature review on different notations

for the presentation and composition of scenarios, as well as tools supporting them.

18



The chapter is organized as follows: in Section 3.2, we study some of the most well-
known notations present in the literature for scenario modeling. In Section 3.3, some
of the composition notations and approaches are described and some approaches
for determining automated composition are studied. Section 3.4 discuss some of

the supporting tools which are available for practicing theories on composition and

verification for specification problems.

3.2 Scenario Notations

Many notations [34] [23] have been proposed and standardized for modeling and
studying the behaviors of systems at different levels of formality and expressiveness.
There is a wide range of formal and non-formal notations and their respective com-

position and verification mechanism presented in the literature for this purpose.

Glinz [18] uses Statecharts to model formal scenarios. He aims at modeling the
relationship between the scenarios, regardless of their internal structure and to de-
tect inconsistencies among them. His model of use case is based on Statecharts. His
integration is based on the assumption that use cases and scenarios are modeled in
disjoint contexts. If the designer come up with overlapping use cases, it should be
treated as composing elements and therefore be decomposed into disjoint use cases.
Over this disjoint use cases, he defines four constructors of sequencing, alternative,

iteration and concurrency for constructing new use case models from the initial ones.
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Based on this formal model, they present a new approach to object oriented modeling
of software in their ADORA project [19] a modeling language which is based on the
use of abstract objects. As an extension of this work, Ryser [35] introduces a new kind
of chart and notation to model dependencies among scenarios, presenting a notation

rather than a methodology.

Bordeleau et al. [12] [11] have proposed integration patterns for scenario depen-
dencies. A state-based specification per use case is generated for each component and
integrated to reflect the scenarios dependencies. However the whole process is done
manually and relies on the creativity of the analyst to connect together the different
Statecharts in the right way. They argue [13] for the systematic design of hierarchical
finite state machines from scenarios. They do not assume that a component’s behav-
ior is necessarily typical, that is, it matches a particular behavioral pattern. Instead,
they overview how to construct the behavior of a component from the scenarios in
which it is used in order to assemble together the different roles this component plays.
In this point, their perspective is informal and their specification generation process

is non-automated in terms of composition.

Araujo et al. [9] focuses on representing aspects during the use case modeling.
They propose to differentiate between aspectual and non-aspectual scenarios. Similar
to our approach, the integration is done on the state machine level. The relationships

between use cases are defined through an interaction pattern and defined in term of
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roles. In our case, we define composition operators to generate new use cases that

integrate the behaviors of the original ones.

Amyot et al. [6] presents a notation to model the main functional aspects of
the system as well as their internal relations and their structure. In their approach,
scenarios are described as causalities and responsibilities, allowing a higher level of
abstraction than diagrams such as message sequence charts. They use Use Case
Maps (UCM) for presenting their scenarios. A scenario is seen as a sequence of
responsibilities (events and activities) that occur internally or externally, regrouping

together in a casual manner, to serve as a certain functionality.

3.3 Scenario Composition

Alur et al. [2] presented an algorithm for checking the completeness of the message
sequence chart specifications raised from the composition of MSC scenarios on an
abstract notion of HMSC. The algorithm produces missing implied partial scenar-
ios to help guide the designer in refining and extending the specification. It refers
to the designer when the implied MSC is detected, and it generates automatically
the implementing state machines from the MSCs for checking of the completeness
of the composition. The technique can be applied on different communication ar-
chitectures (asynchronous vs. synchronous, FIFO or non-FIFO message buffering...)

[4] [2]. Their rigorous theoretical work lacks a convenience tool support to practice
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the idea on large industrial specification problems. Moreover, the decidability and
realizability of the MSC compositions has been widely studied [3] [5] [26] [27]. It has
been shown that synchronous HMSCs are decidable in the P-complete order of time
while the asynchronous HMSCs are decidable only in NP-complete space of time or-
der. Moreover on MSCs, Ben-Abdellah et al. [10] addressed a very important issue
of process divergence and non-local choice in the composition of MSCs in particular,
and any scenario composition notation in general, and present a syntactic method
to detect and resolve them with a tool support for practicing their approach on the

MSC scenarios.

In a series of works from Uchitel et al. [43], [42], [44] address the importance of
implied scenarios in the generation of behavioral model specification. They present
a methodology and a series of algorithms for detecting implied scenarios emerged
from the composition of MSC scenarios, and further use these scenarios for incremen-
tally constructing an elaborated specification of negative and positive scenarios [45]
[46]. They use their approach of detecting implied scenarios for determining if the
generated scenario is an intended or unintended one, and hence the intended system

specification evolves during several incrementation.

Whittle et al. [49] presented and algorithm and tool support for automatically

generating UML Statecharts from the combination of UML Sequence Diagrams (SDs)
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with a set of pre and post conditions given in UML OCL (Object Constraint Lan-
guage). Their algorithm tackles three main issues related to generating statecharts
from sequence diagrams. First, they detect and resolve conflicts arising from the
merging of independently developed sequence diagrams. Secondly, different sequence
diagrams with identical or similar behaviors are recognized and merged for a true
interleaving of sequence diagrams. Finally, they introduce a hierarchy for statechart
generation to make the generated statechart more structured and readable. Later,

they study their approach on a large-scale specification of an air traffic control [50].

Some et al. [39] have developed an algorithm for the synthesis of paramet-
ric timed automata [1] from structural textual scenarios or extended MSCs. They
present an incremental algorithm that merges scenarios with respect to timing con-
straints to obtain the desired behavior. They have further extended their work with
operations semantics and conditions to define states in order to group states and
hence, reduce the complexity of their algorithm [38]. More recently, Some introduced
in [37] a new notion for the modeling of use case precedence in the specification gen-
eration process and their verification and validation. He presents the addition of use
case description elements to explicitly express sequencing constraints between use
cases. With complementary constructs to specify which use cases need to precede a
use case and how these preceding use cases are synchronized. The second construct
allows to specify which use cases are enabled from a use case and how these use cases

execute concurrently.
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More recently in [48], Kicillof and Grieskamp introduce a schema language for
modeling and composition of behavioral models based on action machines, a deriva-
tion of label transition systems. They have algorithmic composition mechanism for
each composition semantics separately and act on a lower level of semantics, closer
to the design. However the semantics of composition operators in our approach in
deployed in builders, hence a unique merging algorithm is used for all the existing

and future operator.

3.4 Supporting Tools

In [28], LTSA is presented as a verification platform for state-based concurrent sys-
tems. It mechanically checks that the specification of a concurrent system that satis-
fies the properties required of its behavior. In addition, LTSA supports specification
animation to facilitate interactive exploration of system behavior. A system in LTSA
is modeled as a set of interacting finite state machines. The properties required of the
system are also modeled as state machines. LTSA performs compositional reachability
analysis to exhaustively search for violations of the desired properties. More formally,
each component of a specification is described as a Labeled Transition System (LTS),
which contains all the states a component may reach and all the transitions it may

perform. However, explicit description of an LTS in terms of its states, set of action
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labels and transition relation is cumbersome for other than small systems. The tool
allows the LTS corresponding to a FSP specification to be viewed graphically.
LTSA is a useful tool with expendable features which can be used as a start point
for the implementation of algorithms and approaches. As an extension plug-in, LTSA-
MSC [41] provides the tool support for the method presented in [46, 43]. It supports
the elaboration of behavior models and scenario-based specification by providing sce-
nario editing, behavior model synthesis, and model checking for implied scenarios.
It allows models to be described by graphically editing sets of scenarios in the form
of message sequence charts. The LTSA-MSC can be used to detect the presence of
implied scenarios in the system as part of an iterative design process. Furthermore,

this analysis is used to incrementally generate the desired system specification [46].

As another extension to LTSA, Foster et al. [17] presented tool support for a
model based approach to the composition and verification of web service implemen-
tations. Their approach [16] supports verification against specification models and
assigns semantics to the behavior of implementation models to confirm expected re-
sults for both the designer and implementer. Specifications of the design are modeled
in UML, in the form of Message Sequence Charts (MSCs), and automatically com-
piled into the Finite State Process notation (FSP) to concisely describe and reason
about the concurrent programs. Their work is on the context of web services chore-
ography. The LTSA-WS tool benefits useful features on the scenario design in MSC

notations, as well as synthesis verification for the web service compositions.
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Harel et al. [30] has proposed a methodology and tool support to model the re-
quirements based on LSC, and studies the possibility of generating code from them.
Their method is based on a play-in and play-out technique of the requirements pre-
sented in [21], and a BDD model checker is used in their tool to verify the actions
done by the user and its consequences. It consists of a play-in play-out mechanism for
the requirements as input LSCs [14]. The play-in concept is a high-level user-friendly
graphical interface GUI that allows the user to capture the requirements of the target
system by describing the sequencing of the model messages as desired by the user.
The play-out however consists of executing the requirements interactively, without
building the model or writing the code. The tool translates the play out task into the
corresponding model, runs the model checker, and injects the counter example from
the breach to the play engine for visualization. They end up with a system speci-
fication with no exhaustive verification over the behaviors and hence, some implied

scenarios can remain undetected.

As an earlier work, Alur et al. [4] presented both a method and tool support
illustrating that message sequence charts are open to a variety of semantic interpreta-
tions such as whether one allows or denies the possibility of message loss or message
overtaking and on the particulars of the message queuing policy to be adopted. They

present an analysis tool that can perform automatic checks on message sequence
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charts and can alert the user to the existence of subtle design errors for any prede-
fined or user-specified semantic interpretation of the chart. The tool can be used to
specify temporal constraints on message delays and can then return useful additional
timing informations such as the minimum and the maximum possible delays between

pairs of events.

Makinen et al. [29] presented an algorithm, and a respective tool support
named as MAS (Minimally Adequate Synthesizer) which synthesize UML Statechart
diagrams from sequence diagrams in an interactive manner. The algorithm interacts
with the user to guide the process in the critical points, hence lacks the automation
in the composition. It keeps track of the interaction with the user, trying to learn
from the desired behaviors and minimize the interactions. In addition, it detects in-

accurate or incomplete sequence diagrams.

Calife [40] developed as an interfacing platform to allow the specification and for-
mal validation of systems described as synchronized product of automata. In Calife,
the goal is not to provide another verification tool, but to interface ideally all existing
tools working on automata in a unique environment. Tools can be grouped using
model definition associated with automata classes. The Calife platform works on
several automata models (transition systems, timed automata, counter automata,...)
and allows to define new models and interface new tools. They support the interface

with some verification suites (UPPAAL, Hytech, Kronos, CMC, Coq....). They also
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support exporting the unique timed-automata system modeled under the Calife sys-

tem editor to all these tools.

Several reasons have contributed for us to develop a whole new supporting tool in-
stead of extending the existing ones. First, the UCOMYV implements a novel approach
with a unique model of use cases. The requirements for such model, with its composi-
tion mechanism [32], leads to specific interfacing features for the design and modeling
procedure which are not found in other tools. For example, LTSA, with all its useful
features on modeling and verifying features, would have to be largely customized to
support our UCA model. Moreover, the verification mechanism in UCOMYV which is
based on temporal ordering of sequences is based on an XML based schema for trans-
forming the model to a model checker. None of the above mentioned tools present
such feature for their models. Calife supports many automata models. However the
lack of documentation on their parsing method prevents us from customizing their
tool for our approach. Other tools presented in this chapter such as [14, 29] and ear-
lier [4] are all specific tools developed for the presentation of their approaches, rather
than providing a platform for reasoning about other models. The implementation of
our specific features need specific architectural designs which was hard to achieve in
other existing tools. For example, retrieving hierarchical compositions needed specific

data structure.
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Chapter 4

Use Case Automata

4.1 Introduction

In this chapter, we present the theoretical work on which this thesis is based on. We
present the Use Case Automata (UCA) as our formal behavioral model in the system
specification. We also present the theoretical background needed for incrementally
composing these partial system descriptions and gradually deriving the intended sys-
tem specification. The basis of the theory on the modeling and composition has been
originally developed and detailed in [31], and is rooted in our earlier research works of
[32, 33] and [24]. Here in this chapter, we give a brief overview of the formal platform

and principal structures needed for our approach.

The chapter is organized as follows. In Section 4.2, we present UCA as the basic

behavior model used in our approach. Section 4.3 provides an overall description of
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the composition approach, its steps, and its artifacts. It also defined how the overall
system specification is gradually incremented after the evaluation of each composition
expression list. Steps of the composition and the merging algorithm as well as the
refinement process are presented in Section 4.4. Finally in Section 4.5 different com-
position semantics are presented and the available operators are introduced. Section

8.7 concludes the chapter.

4.2 The UCA Model

In our approach, a partial system behavior is modeled as a Use Case Automata
(UCA). UCA is structurally an automaton. Each scenario is presented as a word of
this automaton and the set of these scenarios form the language of the UCA as partial
descriptions of system usage. Each UCA model acts as a partial functionality of the
system which models the interaction between the system and its environment. The
model acts as the reference for a behavior model and is be instantiated for the use in
the composition and generation of new UCA. Hence formally, a Use Case Automaton
is a 5-tuple structure (S, s%, 57, L, E) where S is the set of states, s the initial state
and S7 the set of final states, L is an alphabet and £ C S x L x S is the transition

function, defining the set of transitions.

Literally a UCA is an automaton modeling partial interactions between the sys-

tem and its environment as sequences of events. Each UCA carries a set of traces
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Figure 2: Example UCAs

as its scenarios which form the language of the automaton. The set of states reflects
the conditions that the system could rest after reading the certain set of sequential
events. Moreover the alphabets of the UCA reflects the set of possible events that the
behavior model can interact on, and the reflection of these labels on the transitions
constructs the executions of the model. Through the set of the alphabets of the UCA,
any ordering of sequence of input alphabets is possible as the input to the UCA. How-
ever only sequences acceptable to the language of the UCA would be considered as
a UCA scenario and would act as a execution of the system functionality. Figure 2

shows two examples of UCAs.

As the extension to the UCA model, the Ezxtended UCA is introduced as enrich-
ment of the UCA model with variables and guard conditions. The extended model
would be the decorated UCA model with variables, condition on transition firing,

and the assignments which are performed after firing the transitions. The formal
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definition of the extended UCA is also detailed in [31].

Hence, an Extended Use Case Automaton (E-UCA) is a 7-tuple of the form
(S,s%,87,L,V,I,E) such that S is the set of states, s in the initial state, S/ C S
is the set of final states, L is the set of labels, V' is the set of variables, I C V is
the set of input variables, F C § x C x L x A x S is the transition relation such
that C groups the set of pre-conditions on variables, and A the set of variable as-
signments. The set of pre-conditions are to be true before the transition is fired, and
the variable assignments play the role of a post-condition. The set of variables given
in the definition of an extended UCA are local variables to that UCA, and are valid
through the scope of that UCA. Each variable should be unique in its name through
its scope. According to the extended UCA model, the behaviors of the model and
its scenario traces are also extended with variable values. This means that a set of
execution scenarios of the EUCA is enriched with variables and their assigned values.
EUCA in our approach is deployed in the same way as the UCA. Therefore in the
rest of this chapter, we speak of the UCA and EUCA as the same notion following

the same approach.
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Clones

Each UCA, or EUCA, can be used to generate a more compound behavior. Each
couple of UCAs is used to compose new behaviors through a formal automated com-
position. However, the generation of the new behaviors does not constraint the origi-
nal UCAs. The composition of new behaviors would form an instance of the original
UCA, called clone of that UCA. The clone of a UCA is generated using a labeling
function acting on the transition labels. These clones are further used for composition
of new UCAs, acting as new behaviors for the system. More formally, the clone of
a UCA A = (S,s° S, L, E) respecting a renaming function Rename : L — L' is a
UCA A’ = (8,s° 84, L', E') such that!:

q = (817l732) €k
q = (s1, Rename(l), s2) € E'

Literally, clone of a UCA is renamed copy of a UCA behavior model. The transi-
tion labels of this copy are renamed according to the use of the UCA in the compo-
sition. Therefore, for each two clones, it is guaranteed that they would have disjoint
sets of transition labels during the composition. Based on the number of places where
the composition is to be done, several clones of a UCA may be needed for composing
a new UCA. Here in the examples of this chapter, we just present a composition with
one clone for simplicity. Figure 3 shows the clones for the two given example UCAs
in Figure 2. You can see in the examples that how transition labels are decorated

with the renamed labels according to their UCA. For more details on the UCAs and

!The 5 notation is a logical implication notion, meaning that the upper expression would imply
the lower expression. For example f—j implies that if p is true, therefore the ¢ would be logically true.
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their clone generation, please refer to [33].
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Figure 3: Clones of the two example UCAs

4.3 Approach Overview

Our composition approach, illustrated in Figure 4 and fully described in [32] and
[33], defines the theoretical base for formal modeling and composition of UCAs and
Extended UCAs as our behavior models. The designer starts with defining the prelim-
inary specification with the first set of UCAs and a list of composition expressions for
the generation bf new UCAs from the existing ones. | In each increment, a list of these
composition expressions are evaluated and new behaviors are composed and added to
the exiting UCA set. Each composition expression determines information needed for
generating a new behavior model. The information includes two UCAs assigned for

behavioral composition, named as base and referred UCAs, a composition operator,
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and a set of extension points which gives the exact places in the base UCA where
the new behavior should be inserted. Extension points could be expressed as states
of the base UCA or transitions preceded by Before and After qualifiers. Thus, the
behavior of the new UCA would be formed from the two existing behaviors according

to the compositional semantic of the operator within the proper extension points.

X Y
------------------------------------------------
UCA Clones ; ;
Composition expression Generation Builders Generation

. Label Matching
Automated Composition

Composition
Z
&
Final State Transition Label
new UCA Determination Recovery

U OSSR A

Figure 4: Composition Approach|[32]

The evaluation of a composition expression consists of several steps. First, clones
of the UCAs are generated as instantiations of the UCA model following a renaming
function, as described before. From each clone, builders are constructed according to
rules defined for the semantics of the expression. A builder is a UCA generated from
the involving base or referred UCA, carrying additional transitions and states added
to reflect the compositional semantics of the composition expression. They serve as
inputs to the composition algorithm. The two builders generated from the base and

referred UCAs are called base and referred builders respectively. Base builder reflects
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the semantics of the composition operator in the extension point of the base UCA, as
the referred builder prepares the referred UCA for the composition. Two labeled tran-
sitions of begin and end are added at the extension point of the builders which shows
the beginning and ending of the insertion of the referred behavior in the base one.
These two transitions will serve as common labels in the merging algorithm which
is based on the label matching mechanism. It is notable that the intersection of the
two alphabets of the involving builders should exactly be these two added transition
labels. The proper insertion of these two transitions in the extension point would
guarantee the composition of the traces according to the intended compositional se-
mantics of the operator. These transitions are further removed from the composed
automaton through a removal algorithm. This algorithm in turn, guarantees the re-
moval of the added begin and end from the scenarios of the UCAs, maintaining the
original scenario set of the composed UCA. The formal details of the rules on how
builders are generated and composed are given in [33] and [31]. Figure 5 shows an

example of two simple UCAs and the expected model from their composition.

Evaluation of a list of composition expressions would form an evolution in the
specification by adding the newly composed UCA models. Therefore, starting from
an initial set, further new UCAs can gradually form the desired specification with

intended behaviors, which is subject to behavioral verification for desired properties.

36



Specified Behaviors [New behavior

&) =,

(a) UCAX ®UCAY | YD pnitial State
Z:= Extend_with (X,Y) IN {x1} () Final State
(a) (b

.

Figure 5: Expected UCA from evaluation of an expression

As for the case in the extended UCA, the same methodology is deployed for in-
cremental generation of the specification. The composition is expressed using the ex-
tended version of the composition expressions. However the composition is performed
using the same approach of generating builders and following the same merging and

removal algorithm, decorated with variables on transitions.

4.4 Composition

In our approach, the composition is the insertion of the behaviors of the referred
UCA in the traces of the base UCA according to the compositional semantics of the
operators. These traces are composed on the extension points inside the base UCA,

which is specified in the expression of the composition along with the two UCAs.

Extension points can be consist of several states or transitions. Accordingly, the

FExtension Set is defined as a non-empty subset of states or transitions from the base
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UCA. For the given composition examples presented in this chapter, we restrict for
simplicity reason to composition expressions with single extension points for sim-
plicity. Hence the extension sets in our examples has one element as a state or a
transition. Generic rules and details for several extension points can be found in [32]

and [33].

The composition on the extension point is performed according to the composition
semantics of the operator used in the expression. We define composition operators as
binary operators between two UCA, carrying certain semantics for the composition of
the traces of two UCAs. We have some predefined operators such as Include, Extend,
and Alternative. The supporting tool, as it will be discussed in Chapter 5, provides
a ground for the description of the new operators. Evaluation of a composition
expression results in the generation of a new UCA. Hence, the new UCA is expected
to reflect the set of interleaving traces of the two UCA according to the semantics

given in the composition operator in the extension point.

Builders

The semantics of the composition operator for the composition is implemented using
builders. Builders are automata built from the two base and referred UCAs, reflect-
ing this compositional semantic on the extension point. The two base and referred
builders act as the inputs to the merging algorithm, which will finally result in the

composition of the new UCA model. The base builder is generated from the base
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UCA from the operator’s compositional semantics on the extension point, while the
referred builder is based on the referred UCA and is synthesized independently from

the compositional expression.

Each base builder is generated from the base UCA in the UCA expression re-
flecting the traces in the base UCA enriched with two labels of begin and end. The
structure of this builder is constraint by the rules defined according to each composi-
tion operator and the extension point specified in the expression. Here we present an
example of two builders. For formal details and more examples of the builders please
refer to the respecting research works [32, 33]. Figure 6 shows an example of a base
builder generated for the example UCA X given in Figure 2. You can see how the
begin and end transitions are added according to the semantic of the Include operator
in the extension point s = ¢ in the UCA X. These two transitions mark the begin-
ning and ending of the composition in the base UCA. These two transitions would
act as the common base on out merging algorithm. The combination of the three
mentioned operators with different types of extension points as states or transitions
leaves us with 16 distinct semantics for the generation of base builders which can be

used in the UCA expressions. The formal details of all these builders are given in [33].

The second builder used for the composition generated from the referred UCA
and is called referred builder. It is simply the referred UCA with added transition of

begin and end. Hence the generation of the referred builder is independent from the
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Figure 6: Builder example for UCA X

semantic of the composition operator and the extension point in the expression. The
generation of the referred builder is adding an initial state to the original UCA, and

adding the begin and end transitions to prepare the UCA for the inclusion inside the

base UCA.

Merging

The two builders are then used for the composition and generation of the new UCA.
This is done through the merging algorithm which is based on the label matching
mechanism between the two automaton. The label matching algorithm define a sort of
synchronization on message labels of transitions of the two automata. If the transition
label is a common label of the two alphabets, the algorithm fires a transition with
that common label on the new automaton. Otherwise, each transition label is defined

separately. The basic form of the algorithm works for two automaton, however the
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extension of the algorithm for n automaton [33] is given in Definition 1. We once
more note that the only shared labels between the builders is the two added labels of

begin and end, marking the beginning and ending of the insertion of the UCAs.

Definition 1. (Label Matching). Let {A1, As,...,A,} be a set of UCA where
A = (S;, 89, 5;7 L;, E;). Their behavioral composition, denoted as A; e Ay e...0 A,
is a UCA A = (S5,5°,8/,L,E) where S C S; x ... x Sp, 8% = (s%,...,82) € S,

SfC(8fx..x8,), L=LULyU...UL, and E is the smallest relation in S x L x S

that satisfies the following rules:

(s; = st € E;,i € J) where J = U{i|s; —' s} € E;}
(orrsn) S (o, s ) E BV (5 = 53] G 7))

The resulting automaton from the merging algorithm is an intermediate automa-
ton, which contains the original interleaved traces of the two UCAs as well as begin
and end transitions. The automaton needs a final process to become a UCA and

could be added as a new behavior model to the specification.

The final process in fact consists of two major procedures. First the transition

labels which which are renamed and indexed during the cloning process should be

converted to their original form. This would bring the transitions to their original
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labels as they were presented in the UCA alphabet. Second, the two added transi-
tions should be removed following a removal algorithm which acts on the transitions
carrying these labels.

This algorithm is based on the classical lambda removal algorithm. The two begin
and end transitions are treated as lambda transitions and are subjected to act as an
empty message event. However we decided not to use the classical lambda transi-
tion removal algorithm [25]. Instead, we define a customized version of the lambda
removal algorithm which performs the elimination of the transitions on some specific
transitions. This is because of the fact that the original lambda removal algorithm
surfs on the whole automaton to detect the lambda labeled transitions. However,
we have the specific privilege on knowing exactly which transitions would carry such
labels a priori. We know that we only have two transitions to be deleted, and more-
over, we know the exact transitions to act on. Therefore we use these information to
develop our own customized removal algorithm and reduce the complexity of surfing
the whole transition set of the automaton to the linear complexity of removing two
transitions. Figure 7 shows the result of the evaluation of our example composition

expression from the UCA X and Y before and after the refining process.

4.5 Operators

In our approach. composition operators are binary operators each defining a unique

semantic for the composition of UCAs. These semantics reflects how the traces of the
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Figure 7: Resulting automaton from merging and refinement

two involving UCAs are composed together and the trace set of new UCA model is
formed. Each operator carries formal rules for the deduction of the new UCA trace set.
These rules define the set of the new behavior according to the sets of the involving
base and referred UCAs. These rules act on the affecting subset of the trace set of
the base UCA determined by the definition of the extension point in the expression.
As an example, we give the formal rules of trace composition of basic operator Include
reflecting its compositional semantics. Assuming A; and A, as the base and referred
UCAs respectively, ep as an extension point in A;, and L(Aj.ep) C L(A;) as the
subset of traces passing through ep, the building set of opr reflects the set of traces

of the new UCA.

w; = u.v € L(Aj.ep), wy € L(As)
UW2.V € opr
wy € L(A1) — L(A;.ep)
wy € opr
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These rules are applied for the composition of traces of the two UCAs and the
resulting set of these rules would be the deduced trace set of the new behavior from
the composition expression. The abstraction of these rules and their compositional
capacity defines a logic on the composition of traces and rules for the deduction of new
behavior sets from the existing ones. These rules could be overridden for introducing
a new compositional semantic for a new elaboration of the trace set of the composed
UCA. As can be seen in the example of Include, definition of these rules include
how the traces from the base trace set are determined, and moreover, how they are
composed with the traces of the referred UCA and further deployed in the new trace
set. Any intended composition semantic on the traces can be expressed using this
logic and the refinement of these semantical rules. Each operator carries a set of these

rules which are implemented and applied for the composition of the new UCAs.

Extension Point

The composition expression determines a subset of traces in the base UCA that are
affected by the composition, and not necessarily the whole set of traces. This subset
is determined by the extension point. As explained before, extension points are the
places inside a UCA where the compositional semantics of the operators are to be
reflected. The set of extension points in each composition expression can include
states or transitions. It can be specified through explicit states and transitions, or
a characterization of transitions inside the UCA in terms of transitions carrying a

certain label. In both cases, each extension point partitions the set to two subsets
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Figure 8: State and transition extension points and their affected traces

depending on if the trace would be involved in the composition or not. The extension
point reflects the exact point of the sequence within the trace in which the new traces
are to be composed. Depending on the type of the extension point (state or transi-
tion), these traces can be traces passing a certain transition, or all the traces passing
a certain state. Generally speaking, the cardinality of the set of traces determined by
a state is bigger that the one determined by a transition. Figure 8 shows examples

of two types of extension points and their respective affected traces.

Defining Builders

New operators for the UCA composition can be created by overwriting the composi-
tional rules of the trace composition. In our approach [32], the composition semantics
of the operators are implemented thro'ugh the notion of builders. As mentioned be-
fore, builders are finite state automata which are built from the two involving UCAs,

reflecting the proper semantic on the extension points for the composition. Builders
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derived from the base and referred UCAs are called base and referred builders re-
spectively. These two builders would be fed as the inputs to the merging algorithm
of composition which result in an intermediate automaton, further processed for the

generation of the new UCA.

UCOMYV provides a platform for the introduction of new compositional seman-
tics. It provides a platform for defining new operators and their respective builder
templates. The analyst can define new builders and reflect their intended semantics
regarding the base UCA in the composition. The introduction of the new operators
would consists of defining proper composition rules for the traces and implementing
them on proper classes. The implementation of these rules are done on the classes
encapsulating the construction of the base builders. They contain the structural infor-
mation needed for the generation of the builders. This information includes the states
added to the base UCA, the added transitions, two of which are the begin and end
for the marking of the exact place of composition in the UCA, and how these added
transitions would reflect the semantic on the UCA. An example of these builders for
the it Include operator is given in figure 9. This example shows the conceptual seman-
tic of the Include and how the composition rules of the operator would be reflected
on the base builder (a), and how this would result in the intended trace inclusion of
the referred UCA inside the base traces. Dark states in the generic builder marks
the extension point. As you can see in the figure, Include is an operator which the

reflection of its semantic needs only one extension point. Other possible operators
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Figure 9: Concept of Include builder (a), the example UCA X (b), and the generated
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might need more extension points to implement their semantics. Figure 9 shows how
the generic concept of the builder of Include would be used for the construction of

base builders for a given UCA .

Current Operators

Several operators have been implemented so far for the most used semantics in the
composition of behaviors. These include six operators, named as Include, Extend,
Alternative, Refine, Graft and Interrupt. As of Include, the behavior of the referred use
case is inserted in the behavior of the base use case in the extension points, while the
Extend operator aims at inserting the behavior of the referred use case in the traces
of the behavior of the base use case as a possible alternative in the extension points.
Alternative acts as an alternative for the behavior of the referred UCA to the behavior

of the base UCA in the extension points. In Refine, the extension point is refined
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with the behavior of the referred UCA, meaning to replace behavior in the extension
point with the whole behavior of the referred UCA. Graft act as an extension of
Extend which can start in and extension point and end in another distinct one, and
finally, Interrupt is the extension of the Alternative on all the states possible in the base
UCA. The detailed semantics of these six operators is given in [32]. The two types
of extension points as states or transitions, as well as the Before and After qualifiers
on the transitions, combined with our six pre-defined operators provides eighteen
distinct semantics for the composition of traces in the tool. Proper base builders
would reflect these semantics on the traces of the base UCA during the composition.
This abstraction of the operators provides a common ground for deriving user-defined
compositional semantics, and gives the ability to the analyst to produce more optimal
UCA specifications using his customized operators. Figure 10 delineates a picture of
how the compositional semantics are performed for three operators of Include, Extend,

Alternative.

4.6 Conclusion

In this chapter, we presented the theoretical framework for the modeling and com-
position approach deployed in this thesis. We presented UCAs and the EUCA as
our formal models of behavior, and discussed the approach of the composition of
new behaviors. We also discussed our customized removal algorithm and the reason

we deployed such algorithm. Finally we discussed the composition semantics of the
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Figure 10: Overview of the operators composition semantics [33]

operators and introduced the currently operational operators in the tool. In the next
chapter of the thesis, we study the tool we have developed for the modeling and com-
position approach presented here. In the next chapter, we introduce the tool support

for practicing this approach on specification generation problems.
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Chapter 5

UCOMV

5.1 Introduction

Despite their proved advantages, formal models of system requirements are usually
hard to work and understand, and needs a level of mathematical expertise from the
stakeholders. Providing tool supports can ease this process and help the analyst for
an easier study of their prospective system, and the stakeholders to better understand

the intended system, benefiting from a rigorous formal behavioral analysis.

Based on the theory of composition presented in Chapter 4, we have developed a
tool and provide a platform to support practicing the approach on the real-life spec-
ification problems. The tool implements the modeling and composition theoretical
work presented in the previous chapter, and propose a strategy for incremental gen-

eration of system specification from initial basic requirements.
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The chapter is organized as follows. The properties of the tool and the idea of the
development of an integrated framework are presented in Section 5.2. Internal design
of the tool architecture has been discussed in Section 5.2.1 and different parts of it are
reviewed. It is also discussed why this architecture has been chosen. Different layers
of the tool are introduced in Section 5.2.2, each of which is described in their design

and feature details in their respective chapters. Section 5.3 concludes the chapter.

5.2 Integrated Framework

The composition theory presented in previous chapter was the original motivation for
the development of a supporting tool. The idea was to develop a tool make it possible
to practice the application of the modeling and composition theory on real-life spec-
ification problems. However, the original idea evolved into an integrated framework
for formal modeling, composition and verification with many interesting features on

the improvements in the theory.

Within the presented tool an incremental specification generation strategy is pro-
posed and implemented. According to this approach, the target system specification
is modeled and verified in incremental steps. Basic functionalities of the system
are introduced as UCAs and EUCAs, composed to generate new behaviors, verified

over certain behavioral properties, and gradually form the target specification with
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desired functionalities. This integrated framework provides a solid ground for incre-
mental elaboration of system specifications, and can help the analysts for a better

study of the prospective systems.

The tool is called UCOMYV, standing for Usecase Composition, Modeling
and Verification tool. It has been designed and implemented in Java, with full
object-oriented features on its various different sections. Its object-oriented design
along with it Java implementation provides a groundwork for its future extensions,
along with possibilities of collaboration with other extensions to the suite, such as

other automata design modules and possible composition and verification interfaces.

5.2.1 Tool Architecture

As for the formal study of our behavioral model, three major steps of modeling, com-
position and verification has been seen for each incrementation of the specification.
In UCOMYV, as for the formal study of our behavioral model, three major steps of
modeling, composition and verification are implemented in a layer. Features for the
design of the specification are implemented in specification interface layer. This layer
includes the data structures and features for interfacing the formal modeling of the
behaviors through UCAs and EUCAs, defining composition expressions, and tracking

their composition history.
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Moreover, the composition theory presented in previous chapter has been imple-
mented in the composition engine layer of the tool. This layer include the implemen-
tation of all the data structures and algorithms needed for performing our composition
theory. It includes the core components implementing the steps of the composition

from the builder generation, merging algorithm and transition removal process.

The third layer of the tool provide the implementation of a model verification
approach on our approach. It presents the integration of a model checking tool to
our framework and deploys a customization of the model verification approach to
our modeling and composition methodology. Next section would detail the design of

UCOMYV and its components in more details.

5.2.2 Three-Layered Design

As discussed, UCOMYV is implemented in three layers. Each of these layers is in
charge of providing features for deploying the specification generation approach on
real-life problems. Each layer along with is consisting components provides the im-
plementation of the theory of the approach, with many useful features which will be
described in details in their respective chapters. The layers are implemented with
distinct interfaces to each other which would ease future extensions of the platform.
Figure 11 illustrates the three layers of the tool and their corresponding components.
It also shows how these layers communicate with each others through their interfaces.

For each layer in the tool, different components has been implemented, some of which
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are to support the formal theory of the related features, while others are to provide

additional features to facilitate the process in that layer.
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Figure 11: Tool Component Architecture

In Figure 11, each arrow shows the artifact that the module sends to the target
module and gets the result of the process furthermore. For example the specification is
interfaced in the specification interface module of the tool. The specification resulting.
from the interface includes a set of use cases and the list of composition expressions.
This specification would be provided to the composition engine of the tool for the
evaluation of the composition expression and generation of new UCAs and EUCAs. In

the composition engine, the composition expressions are evaluated, and new UCAs
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are generated. New UCAs are then given back to the specification interface to be
added to the original specification and form an increment in the specification. These
UCAs are then given to the verification module of the tool to verify the UCA over
desired behaviors. Such interactions between the layers are modeled through wide
arrows in Figure 11. Each wide arrow shows an artifact of one layer, being transfered

to another one for further processed to be performed on.

5.3 Conclusion

In this chapter, we presented the integrated platform we have developed for the prac-
tice of our specification generation methodology on real-life specification problems.
We presented the overall architecture of the tool and discussed how a three layered
architecture design would contribute to the implementation, understanding of the
implementation, and future extendability of the tool. It would also ease the inter-
activity between layers during the revisions made on each increment. In the next
chapter, we present and discuss the specification layer as the first layer of the tool

which encapsulate the specification generation components of the framework.
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Chapter 6

Specification Interface

6.1 Introduction

The specification layer of the tool allows the user to define the specification of the
system under development. As described in Chapter 4, each specification in our ap-
proach consists of a set of UCAs, a list of composition expressions, and a hierarchy of
the composition history. The specification layer of the tool provides the proper data
structure and interfacing feature for the design and management of such specification,
such as automata design editor, composition expression presentation and management
environment and transformer structure for mapping the UCA and EUCA models into
verification module. This chapter describes different components and sections of the

layer and discuss the design of the implementation in the tool.

The chapter is organized as follows. The automata design interface of the tool is
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discussed in Section 6.3. The environment for defining and managing different types
of composition expressions are detailed in Section 6.4. And the interface provided
for defining and verifying properties on model checkers is discussed in Section 6.5.
The semantic of the variables implemented in the tool to be used in EUCAs and
their composition are discussed in Section 6.6. An interesting feature of the tool for
coloring of states in UCAs and EUCAs is presented in Section 6.7 and finally, the
XML schema developed in the tool for the presentation of UCAs, EUCAs and the

specification is described in Section 6.8. Section 6.9 concludes the chapter.

6.2 Interfacing the Specification

The specification layer of the tool provides the framework for developing and manag-
ing specification as the set of UCAs and EUCAs, a list of composition and extended
composition expressions, and a hierarchy of the compositions performed before in the

specification.

The set of UCAs and EUCAs are presented and managed in an ordered list on
the left corner of the tool. It gives designer the ability to add new models, view and
edit existing ones, trace the hierarchy of a UCA or EUCA in the specification and
change the default color of the states of the UCAs. Figure 12 shows a screen-shot
of the UCA-EUCA management environment of the UCOMYV. The environment also

provides features for exporting and importing of separate UCA and EUCAs in specific
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Figure 12: UCA-EUCA management environment

files. This feature enables the designer to export its common behavior models and
import them in other specifications, providing the ability to produce a pool of handy
behavioral models for future use. The exported file is an XML file generated with the
specific XML schema implemented in the tool which retrieves the UCA and EUCA
models into proper XML structures. Section 6.8 discuss this XML schema in more
details.

An other management environment is implemented for defining and managing the
composition expressions in the specification. This environment also provides features
for defining different types of composition expressions and extended composition ex-
pressions. It also provides features for monitoring and editing the current expressions
which are not vet evaluated and composed. Section 6.4 will also describe more about

the features of this environment.
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6.3 Automata Design Environment

The behavioral modeling in UCOMYV is based on the mathematical model of the finite
state automata. UCAs and EUCAs are both based on the structure of an automa-
ton, with finite states, transitions and final states. For the support of this modeling
approach in UCOMYV, we have implemented a library with proper data structures
for restoring the formal models of UCA and EUCA. In the specification layer of the
tool, we have implemented an interactive environment for the graphical design of the
UCAs and EUCAs and restore the proper data structure from it. This is the editor

for the design of the structure of an (extended) automata with all its formal details.

The graphical presentation of the UCAs are developed with the help of the JFLAP
[36] library. JFLAP is a tool for drawing automata and it provides useful features for
drawing and editing automata in a graphical interface. For the purpose in UCOMV,
the JFLAP drawing library is deployed within the multi-page editor, and is cus-
tomized for the fit of the specific features in our UCA model. The classes of the
library which has been used in UCOMYV include the classes for drawing the automata
and retrieving proper data structure from the visual editor. The graphical presenta-
tion of the JFLAP for simple automata has been enriched to support our Extended
UCA model with variables and guard conditions. The classes which have been used
from the JFLAP has been marked in the code with the signature they asked for. The

multi-page editor in UCOMYV provides full features needed for defining a complete
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Figure 13: Automata Design Multi-Page Editor

mathematical model of automata. The analyst can draw, remove and edit the states,
the transitions between states, the initial and final states, and additional state labels

for better understanding of the UCA behavior.

The GUI is designed on a Model-View-Controller (MVC) architecture de-
sign. This means that the GUI design of the automata is handled separately from
the original data structure used as the UCA model. The controller module in the
interface is in charge of coupling the designed automaton with the UCA model. It
also handles the structural changes performed during the design of the automaton. A
structural change in the automaton include the change in the states, transition, the

choose of initial state and the set of final states. As any of such changes happening to
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a UCA-EUCA, the controller listens to the change and catch the change in a parsing
from the graphical model. Therefore, the UCA structural model is in a synchroniza-
tion state during the design of the UCA model. The UCA code is generated from
the designed graphical structure for the use in the composition and model checking
phases. Originally the graphical model is encapsulated in a Java class representing
the UCA model. Furthermore this structure is transformed to an XML based schema
which is defined in UCOMYV for this purpose. The XML code of the UCA based on
the schema will serve as the code of our formal model of behavior for the further steps

in the composition and verification.

- The data structure preserving the formal model of UCA and EUCA are a hierarchy
derived from the class Automaton. This base class encapsulates the basic structure
of an automaton. It includes a finite set of class State and a finite set of transitions

from the proper types. As you can see in figure 14, the class FiniteStateAutomaton is
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derived from this base class and the class ExtendedF'SA is in turn derived from that
class. The FiniteStateAutomaton class contains a set of FSATransition, a class for
encapsulating the structure of a FSA transition which is derived from the base class
of Transition. Further the class ExtendedFSATransition is the derived class from the
FSATransition, inheriting the same structure and enriching it with guard conditions
for transitions. Each ExtendedFSA class holds a set of ExtendedF'SATransition ob-

jects for preserving its extended transitions.

6.4 Composition Expression Design

As a part of the specification, a list of composition expressions is to be defined through
the composition expression editor component of the specification layer. Each of these
expressions is a description of the synthesis a new UCA model from the existing
ones, composed through a compositional semantic from the operator on the exten-
sion point. Therefore the involving UCAs as well as the composing operator and the
extension points are encapsulated within the composition expression in the specifi-
cation. Along with its theoretical counterpart, the data structure representing the
composition expression consists of two use case automata as the base and referred
UCAs, a composition operator containing the compositional semantic of the expres-
sion, and an extension point which reflects the place of extension in the base UCA.

The composition expressions in UCOMYV are presented in the following syntax [32]:
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Z := Composition_Operator (X, Y) Extension_Point

For the EUCAs, the extension composition expressions should be defined by the
designer. The extended composition expression is an extension to the base composi-
tion expression which enrich it with conditions on the compositions and assignments
for post composition valuations. The syntax for the extended composition expression
is also the extension of the previous syntax with a composition condition, and two sets

of input and output variable assignments and would be represented by the following

syntax in UCOMV:

Z := Composition_Operator (X, Y) Extension_Point

Composition_Condition Input_Var_Assign Output_Var_Assgn

In the syntax of the extended composition expression, the composition condition
is a set of conditions on base EUCA variables which should be validates before the
execution of the referred EUCA in the composed model. Furthermore, the input vari-
able assignment is a set of variable assignments which should be performed before the
execution of the referred behavior while the output variable assignment is the set of
such assignments being performed after leaving the referred EUCA in the composed
model. The set of input variable assignments act as a sort of parameter passing for
the insertion of the new behavior, and the output variable assignment plays the role

of returning values from the referred behavior. Figure 15 shows the derivation of
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Figure 15: Derivation of composition expression classes

the class structures of the composition expression and the extended composition ex-
pression classes. an extended composition expression inherit the same set of fields as

of a regular composition expression, plus the composition conditions and assignments.

As mentioned before, the extension point in the base UCA can be based on states
or transitions. These states or transitions can be determined in different ways, such
as explicit expression of a set of states or transitions, or determining the subset of
transitions carrying a certain label. Baéed on these three ways of expressing the ex-
tension points, the composition expression ca be defined in three environments. The
user can choose to define the composition expression based on each of these three
types of extension points. Figure 16 shows the class structure of the extension point

classes which shows the hierarchy of their inheritance and derivation.

The user needs to choose the base and referred UCAs or EUCAs among the cur-

rent set present in the specification. Furthermore he needs to determine his intended
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Figure 16: Class hierarchy of extension points

composition operator from the list of previously implemented operators. Then, ac-
cording to the type of the extension point he has chosen, he has to choose the subset
of states or transitions from the base UCA. These settings are provided in easy to use
GUI interfaces. An optional check is provided for the designer to choose if he wants
the final result of the composition to be minimized or not. This check box is also
available in the respective dialog. After determining the composition expression, the
new expression is added to the list of expressions in the specification, and is shown
in the composition expression frame in the tool. Figure 17 shows an screen-shot of

defining a composition expression based on transition as extension point.
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Figure 17: Defining transition based composition expression

6.5 Verification Environment

Aiming at behavioral verification of the generated UCA models, UCOMYV provides a
verification platform for the checking of UCA model compliance over desired proper-
ties. In the specification interface of the tool, the UCA models are interfaced for the
verification on an interactive environment. In this environment, a model checking tool
is integrated to the tool which is the core of the verification. The UCA and EUCA
models, as will be detailed in Chapter 8, are transformed to the input language of
the model checker, which in this case is a Promela code. The transformation is done
following specific rules which are designed to simulate the UCA and EUCA behavior
in the target language code. This code is presented in an editing window, for any
possible modification from the designer. Also the environment includes a separate

form which has been designed to introduce the temporal properties on the model.
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These properties will be fully explained in the next section, are based on the syntax
of LTL temporal properties on the behaviors of the UCAs. It has been noted that the
model transformation and the property generation are interfaced in the specification
layer. However the core components of the verification module are implemented in
the verification layer of the tool. Figure 18 shows an screen-shot of the model verifi-
cation environment. The code shown in the editor is the Promela code generated for
the example UCA.

A separate dialog will help the designer to model the intended behavior. The dia-
log provides syntactical help to the designer for the expression of his desired property

through the first-order logic forming the LTL properties. The designer can introduce
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new atomic prepositions and the logical connectors. He can also use some pre-defined
property templates provided within the dialog, which include property templates such
as Invariance, Response, Precedence and Objective [15]. These pre-defined properties
have specific templates seeking specific behaviors from the property, with well-known
syntactical structures. They are a part of the model checking environment. Figure
19 illustrates an screen-shot of the LTL property manager and it’s property template
generator. The property template generator can be initiated using the Load button

on the top right corner of the dialog.

6.6 Variable Definitions

The variables which can be used in the EUCA models can have a wide range of

semantics. This range starts with primitive variable types, such as int, and could be
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extended to cover all the programming language semantics and its related structural
disciplines, such as arrays, data structures and object modeling. However, the more
we enrich variable semantics, the more we add to the complexity of the model and
its composition and verification process. Therefore we need to accept the limitations
of the implementation of such semantics and define certain constraints. However, we
can define a generic platform for the possible extensions to any of these semantics in

future.

Variable Types

So far, three basic variable types has been introduced in UCOMYV which could be
used in the extended UCA models. These three types are of boolean, int and float,
which are considered as primitive variable semantics in any programming language
and are implemented with their common logical semantics in the Java language. The
boolean represents a logical boolean values of true or false, while int represents the
integer values of the natural numbers. Finally float act as the float values of the real
numbers in the programming semantics. The variables are encapsulated in the class
named Variable, which contains a string field as a unique name, the value of the

variable in the range, and the model which owns this variable.

The syntax of each condition and assignment could vary to form new values from
these primitive types. This could include determining an operation on the value of a

variable or assigning the value of this variable to another one. To give an example,
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the syntax could be of the form A = 5, A = A + 1 and A = B. According to the type
of these three variables, we implemented the logical operations needed to form the
whole semantics for the condition and assignment definitions. The operations include
add, deduce, multiply and divide for the integer and float values and logical and, or
and negation for the boolean semantics. The abstract class of Operation carries the
interface of these operations and should be implemented for each logical semantics
in the operators. Figure 20 illustrates the structure of the class derivations for the

operations dealing with our basic variables.
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We have also defined three types of relative comparators to perform the compari-
son between the values of two variables of the same type. These comparators are used
in the conditions, and would be used to evaluate the validity of the condition during
the execution of the EUCA. The three comparator types are equal, more than and
less than comparators with their common semantics in the programming languages.
Like the operations, they are interfaced in the abstract class of Comparator which
would be overridden for each of these comparator semantics and any possible future

comparators. Figure 21 shows the class structure of the comparators.

The class Condition encapsulates a transition pre-condition containing two ex-
pressions which would be compared according to their value and type. Also the class
Assignment carried the needed variables for the variable assignments in the transi-
tions. It contains a variable and expression, the value of which would be assigned
to the variable. Figure 22 shows an screen-shot of the environment for defining the

guard conditions and assignment for an extended transition.

Local vs. Global Variables

Each variable available to be used in conditions and assignments have an scope.
The scope of each variable could be the very EUCA that defines and use it, or the
whole specification meaning that that variable is a shared variable among the EUCAs.
Therefore the variables available for use in the scope of each EUCA could be the local

variables for that EUCA or the global variables of the specification. Local variables
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Figure 22: Adding conditions and assignments for an extended transition

act only on the scope of the EUCA that defines them and their values are not available
on other EUCAs. Moreover, each specification contains a set of variables which are
globally defined for the specification and are common between all the EUCAs. The
values of these variables are accessible within each EUCA in the specification and act
as shared variable values through the specification and among the EUCAs. Figure

23 shows a list of global and local variables of the example EUCA. In this list, you

could see each variable with its definition type, scope (L or G) and the initial values.

6.7 State Coloring

Each designed UCA within the editor is assigned with a color that will be used for the
coloring of its states. The type of the color chosen is used to draw the states at the time

of design. These colors will further be maintained during the composition process and
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newly created states of the new behavior are colored according to the color of their
original UCA. Therefore the states of the two composing automata could be traced
according to their color. As each state holding the color of its parent, traces of the
original UCAs can be tracked in the composed automaton. This coloring technique
will help the designer for a better understanding of the composed behavior, and a
visual study on the origin of the possible failure in the behavior of the composed UCA.
Moreover, as the use cases get more and more complex through several increments,
each involving UCA can easily be tracked in the compound UCA which draw an
overview of the roots of the newly created requirement and the separation of the
concerns within the base use cases. The colors used to characterize the states can be
chosen from the list of primary colors, or be customized in the whole range of RGB

colors.
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Figure 24: UCOMV

6.8 XML Schemas

A specific XML schema has been designed in UCOMV for the coding of the UCA
models and the whole specification which is used for their storage and retrieval as
well. Each UCA or EUCA can be singly exported as a proper XML file, which could
later be imported to other specifications. This importing and exporting are done
using an XML parser with a proper XML schema for defining the structure of the
UCA and EUCA. The schema includes elements for retrieving the set of states, tran-
sitions, state colorings, and atomic properties. It also retrieves some parameters for

graphical presentation of the automata in order to preserve the graphical layout that
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the designer has intended for. This information include the location of the states in
the screen and ids of the states. These information preserves the latest layout of the

automata to be retrieved for the cases of exporting and importing UCAs and EUCAs.

Furthermore, the specification, as the set of UCAs and EUCAs, the list of com-
position expression, and some other information such as composition history and the
hierarchy of the dependencies among the UCAs and EUCAs are stored using the
XML schema that we specifically designed in the UCOMYV for this purpose. The fol-

lowing code shows the XML code generated for the example UCA shown in Figure 13.

<?xml version="1.0" encoding="UTF-8" standalone="no"7>
<!-- Created with UCOMV -->

<structure>
<usecase>
<type>fsa</type>
<fsa>Login</fsa>
<fsacolor>yellow</fsacolor>

<!--The list of states.-->

<state id="0">
<x>91.0</x>
<y>92.0</y>
<color>yellow</color>
<initial/>

</state>

<state id="1">
<x>284.0</x>
<y>92.0</y>
<color>yellow</color>
</state>

<state id="2">
<x>284.0</x>
<y>267.0</y>
<color>yellow</color>
</state>

<state id="3">
<x>479.0</x>
<y>257.0</y>
<color>yellow</color>
<final/>

</state>

<!--The list of transitions.-->

<transition>
<from>2</from>
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<to>0</to>
<read>password-rejected</read>
</transition>

<transition>
<from>2</from>
<t0>3</to>
<read>password-validated</read>
</transition>
<transition>
<from>0</from>
<to>1</to>
<read>enter-username</read>
</transition>
<transition>
<from>1i</from>
<to>2</to>
<read>enter-password</read>
</transition>

</usecase>
</structure>

6.9 Conclusion

In this chapter, we have presented the specification layer of the tool in details. We have
shown how this layer of the tool provides the necessary data structure and platform
for interfacing our notion of specification as the set of UCAs and EUCAs and the list
of composition expressions. In the next chapter, we will have the same detail study
on the composition engine of the tool and present the core components in the layer

implementing the of the composition theory and its implementation necessities.

76



Chapter 7

Composition Engine

7.1 Introduction

The implementation of the composition theory presented in Chapter 4 is done in the
composition engine layer of the UCOMYV. This engine provides the implementation
for the steps needed in the composition such as builder generation and clone synthesis.
It also provides the implementation of the algorithms used for the composition steps,
including the label matching algorithm, automata connected component algorithm

and transition removal algorithm.

The chapter is organized as follows. Section 7.2 describe how each composition
expression are interpreted and the necessary information for the composition are re-

trieved from it. In Section 7.3, we discuss the process of synthesizing the builders
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which are the inputs to the merging algorithm. Section 7.4 discusses the implemen-
tation of the merging algorithm which is based on the label matching mechanism.
Section 7.5 details the post processes that are needed to be perform on the resulting
automaton from the merging algorithm. In Section 7.6 we discuss how the imple-
mented composition approach has been extended for composing the Extended UCAs
for their composition conditions and assignments and finally Section 7.7 concludes

the chapter.

7.2 Expression Evaluation

Defining a list of composition expressions as an increment is to enhance the specifi-
cation with new UCAs and EUCAs with more compound behaviors. The new UCA
can be designed in the automata design editor, ot be composed and generated from
existing ones. The notion of the composition of new UCA is defined through com-
position expressions and the semantics of the composition operators in them. Each
expression defines a new behavior from the existing ones. These expressions are to be
evaluated and the new behavior is to be synthesized accordingly. The evaluation of

the composition expressions are performed within the composition engine of the tool.

Composition expressions and extended composition expressions are evaluated within
a class called ExpressionComposer. An instance of this class is in charge of evaluat-

ing the composition expression and composition the new behavior. Different steps
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of the composition, including builder generation, merging mechanism, and transition

removal algorithm are implemented in these composers.

The expression composer creates the new behavior according to the operator se-
mantics in the expression. The composer produces respective builders for the opera-
tors, compose them using the merging mechanism and perform the removal algorithm
on the resulting intermediate automaton. It also determines the final states of the
UCA according to the specified semantics. Each of these steps along with their im-

plementing components are detailed in the following sections.

7.3 Builder Synthesis

The expression composer component generates the respective builders from the base
and referred UCAs. As described in Chapter 4, the semantics of these builders are
encapsulated in the composition operators. These semantics are implemented in the
operator classes and the expression composer component uses the instantiated oper-
ator class in the expression for this purpose. The expression composer generates a

clone of the two UCAs and performs the operators’ semantics to generate the intended

builders.
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Base Builder

An abstract implementation of the operators encapsulates the generic semantical tasks
performed by all operators. These tasks include the templates for the generation of
the base builder with respect to certain semantics, and the generation of the referred
builder which is independent from the compositional semantics and shared among
all the operators. An abstract class called Operator is in charge of performing these
tasks. Two primary methods are implemented in this class which are inherited by
the The method named getReferredBuilder implements the process of generating the
referred builder while the method named getBaseBuilder is in abstract form and is to
be overridden in the derived classes of operators. This generic design of operator en-
ables the tool for future extensions over new compositional semantics and respective

operators.

Six operators with unique compositional semantics and their respective base builder
templates has been implemented. They are named as Include, Extend, Alternative, Re-
fine, Graft and Interrupt. Figure 25 shows the derivation of these operators from the
class Operator. The semantics of these operators for the composition of the behaviors

are detailed in Chapter 4 of the thesis, and in [31].
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Figure 25: Derivation of Operator classes

Referred Builder

As described before, the referred builder is synthesized independently from the se-
mantic of the composition operator in the expression. In fact, the referred builder is
the extension of the original referred UCA with an additional 'begin’ state, and two
added transitions connecting the final states of the UCA to this new initial state for
the builder. These two new transitions are labeled as begin and end. Other transi-
tion labels of the automaton are relabeled with adding a postfix showing the index
of extension point being merged. This labeling is to guarantee the distinction of the
alphabets of the two automata begin merged, and is to be redone after the compo-
sition. This semantic is implemented in the abstract Operator class in the method
getReferredBuilder, and deployed for all the operators derived from this class. The
other methods in the Operator class are abstract interface methods and should be im-

plemented in the derived classes according to the intended compositional semantics
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of the operator. As an abstract Java class, the Operator class can not be instantiated
directly and objects of its type should only be created through the implementing

classes derived from it.

7.4 Merging Algorithm

Each composer uses the merger component for the composition of its generated
builders. The merger component is in charge of the composition activities and is
used to run the composition algorithm. The class called Synchronizer provides a pure
implementation of the label matching mechanism which is the basis of the composition
algorithm. For the evaluation of each composition expression, the merger component
creates an instance of the Synchronizer class with the base and referred UCAs as its
parameters. The Synchronizer class provides the implementation of the label match-

ing mechanism for the two given automata in the method called synchronize().

The merging algorithm works on the basis of composing the two automata accord-
ing to their shared transition labels. This means that the resulting automata from
this algorithm would carry a transition with the shared labels of the two automata,
and the rest of the transitions of each automata which have separate labels. In our
composition approach, these shared labels are only the two added transitions labels
of begin and end. The input to the merging algorithm is the two generated base and

referred builders. The intersection of the sets of alphabets of the two automata in
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the merger component should just be the added transitions of begin and end in the
builders. This is guaranteed in the composition engine through a renaming procedure
on the transition labels done through the cloning process of generating the builders

in the composer component. The implementation of this algorithm is deployed for

both UCA and EUCA compositions.

Connected Component Algorithm

The resulting automaton of the merging algorithm and the label matching mecha-
nism contains a set of transitions produced as a subset of the Cartesian product of the
transition sets of the two base and referred builders. This set of transitions and their
respective states are not necessarily representing a connected graph that can be used
as a UCA automaton. Many states would be unreachable from the initial states and
therefore, transitions firing from and to these states could not be part of any traces
and scenarios of the UCA behavior. Therefore, the connected component of the re-
sulting graph of the merging algorithm would be extracted and a clean UCA which
is free from redundant states is given. This is done through an specific algorithm
we have implemented for this purpose. First a reachability analysis is performed and
each single state is determined to be reachable from the initial state. The unreachable
states, which are redundant states, are marked. These states are then removed from
the automaton and the result would be a connected graph representing our automa-
ton. Each state in the resulting automaton would be a part of at least a scenario in

the set of scenarios.
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7.5 UCA Post-processing

The result of the merging algorithm is an intermediate automaton containing traces
of the base and referred UCAs according to the composition semantic, which needs
further treatments to form the new UCA partial behavior. The UCA processor com-
ponent performs post processes on the intermediate automaton. It recovers transition
labels which were renamed during the cloning, and also determines the final states of

the new UCA according to the semantics of the composition operator.

7.5.1 Final States

The final states of the resulting automaton are determined according to the compo-
sitional semantics of the operator. This means that in the case of Include and Extend
and their deriving operators, the final states of the resulting automaton would be the
states generated from the final states of the base UCA only. However for the Alter-
native operator and its deriving operator, the set of final states would also contain
the states generated from the final states of the referred UCA. This is because of
the nature of their composition semantic, and that in the case of Alternative and its
children, the referred behavior is interrupting the base behavior without any return
to the original one. And therefore the final states of the referred UCAs should also
be considered in the final product in order to preserve the scenarios passing to the
interrupted section of the automaton. This is all done in a method called determine-

FinalStates as a part of the class ExpressionComposer.
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7.5.2 Removal Algorithm

The UCA processor component also preforms another important process on the re-
sulting automaton from the composition. It removes the added transition of begin
and end which served as the shared labels during the composition. As we discussed
before, these transitions are added for generating the builders, and served during
the composition as the only common label between the sets of the labels of the two
builders. They are to be removed at this point in order to give a clean UCA repre-

senting only the traces of the scenarios of the base and referred UCAs.

The base of this algorithm, as discussed in chapter 4 is the classical lambda tran-
sition removal of the automata theory. In this regard, the two begin end transitions
are treated as null transitions and are removed from the traces of the automaton,
without harming the rest of the parts of the traces carrying these labels in them.
The original lambda transition removal carries the approach by processing the whole
automaton since the null transitions might be present in any number and in any place
in the traces. However, in our resulting automaton, we know that we only have two
of these transitions, and so we customize the algorithm to be preformed only on these
two cases. With this customization, we reduce the complexity of the algorithm to
the order of traversing the transition set of the automaton. The algorithm in tool is

implemented in the class called TransitionRemover.
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7.5.3 UCA Minimization

As an option, the designer could choose to have the resulting UCA from the composi-
tion as a minimal automaton. This option was presented at the specification layer and
is a part of the description of the expression. If the minimal option is checked, an au-
tomaton minimization algorithm is performed on the resulting UCA from the removal
algorithm. The algorithm which is implemented in UCOMYV is merely the classical
minimization algorithm from automata theory which applies the state grouping tech-

nique to find the states which could be merged while preserving the same set of traces.

The algorithm starts with transforming the given UCA to a deterministic finite
state automaton. The UCAs structure can have lambda transitions and multiple
same labeled transitions from a states which could result in non-deterministic struc-
tures. Therefore this transformation is needed as the initial step before the origi-
nal minimization algorithm begins. After retrieving the deterministic version of the
UCA, the minimization algorithm starts with the initial state, holding initially all the
states of the automaton. These states are gradually expanded to separate states in
each iteration of the algorithm, and hence the ones which could possibly be merged
are eventually held unexpanded. The states which represent more than one merged
states from the original UCA in the minimized automaton are colored as gray and are
distinguishable from other states not merged with any other one. Other non-merged

states are colored as the color of their original states in the UCA. The output of
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the algorithm would be the minimized UCA, containing the same trace of scenarios
expected from the composition with equal or less number of states than the resulting
UCA from the removal algorithm. It is notable that this option enables the designer
to have the final UCA as such that the structure of the referred UCA is not unfolded
inside the base UCA, which happens on the removal algorithm. This would be the
last phase and the product of the UCA Processing component is the final new UCA

model and is to be added to the existing set of UCAs.

7.6 Composition of Extended UCAs

The composition of the extended UCA models are performed with the extension of
the same approach used for the UCAs. The new behaviors are composed from the
evaluation of the extended composition expressions, and will pass the same steps
of the UCA composition. First the two base and referred builders are generated
according to the compositional semantics in the operator. Then these builders are
used as the inputs to the merging algorithm based on the label matching mechanism.
It is notable that the decoration of the UCA model with variables would not affect
the merging algorithm, and the label matching mechanism would be performed for
the composition of UCA models. After the merging, the intermediate EUCA would
be refined according to the extended version of the removal algorithm, which would

be described in the following section.
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Extended Builders

The generation of the builders in the evaluation of the extended composition expres-
sions follows the same synthesis rules of the UCAs, except that the two transitions of
the begin and end would carry the composition conditions and assignments expressed
in the extended expression. The added begin transition in the base builder would be
decorated with the composition condition in the expression as the pre-condition and
the set of input variable assignments as the assignment set of its transition. Also the
added end transition in the base builder would be decorated with the set of output

variable assignments in the extended expression as the transition assignment set.

It is notable that the variables used in these three sets of conditions and assign-
ments should be limited to the valid variables in the scope of the base EUCA. This
include the local variables of the base EUCA, as well as the global variables defined in
the specification. This limitation is due to the fact that some variables in the referred
EUCA may not be initialized before the execution of its behavior, and hence they may
not be evaluated in any condition or assignment expressions. The referred builder is
synthesized following the exact approach in the evaluation of the UCA composition
expressions. Furthermore, the composition is performed on these builders through
the same merging algorithm and following the same label matching mechanism for

the regular UCA composition.
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Extended Removal Algorithm

The removal algorithm used for the removal of the begin and end transitions would
be an extension of the removal algorithm used in the UCA composition [31]. In the
intermediate automaton from the merging algorithm, the two begin and end transi-
tions would carry the set of composition conditions and the input and output variable
assignments. Therefore, as the first step and before the original removal algorithm
is implemented, these conditions and assignments should be propagated to other
transitions in the new EUCA. The pre-conditions of the begin transition would be
propagated forwardly to all the outgoing transitions from the incoming state of the
begin transition. In contrast, the propagation of the variable assignment set is done
backwardly on the incoming transitions of the outgoing state of the begin transition.

The similar approach would be applied for the removal of the end transition [31].

After this phase, the intermediate extended automaton is ready for the original
transition removal mechanism, and the two transitions would be removed according
to the algorithm presented in chapter 4. These two phases are implemented in the
extended class of ExtendedTransitionRemoval, which is a derivation from the class Tran-

sitionRemover implementing the original removal algorithm for the UCA composition.
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Figure 26: Derivation of transition remover classes

7.7 Conclusion

In this chapter, we discussed in details, the composition engine of the tool which
provides the necessary data structures and implements the proper algorithms for
deploying the composition approach presented in Chapter 4. This layer of the tool
gets the description of composition of a new behavior in the composition expressions as
its inputs, and delivers the composed and processed UCA or EUCA expected from the
composition expression, hence a distinct layer with interfaces with the specification
layer and the verification layer. In the next chapter, we will discuss the verification
layer of the tool and show how the integration of our model to a model checking

model has been done.
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Chapter 8

Model Verification

8.1 Introduction

As the requirements specification is gradually being formed in each increment, the
newly generated models are subjected to check for breaches from the desired behav-
ioral properties. Through the composition of two UCAs, the designer seeks to acquire
a specific series of behaviors with the composed UCA model. But the semantic of
the composition used as operator for the composition might not produce the exact
behavior that the designer targets for. These breaches can be detected using a veri-
fication mechanism designed in UCOMYV, and the violating traces can be found and
used to debug for the root of the problem. UCOMYV provides an integrated model
verification platform for helping the designer to achieve this goal. In this chapter
we will discuss the details of model verification layer of UCOMV and show how it

could be used as an assistant to produce proper desired specifications in our approach.
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The chapter is organized as follows. Section 8.2 discuss how we aim at deploying a
model checking mechanism on our scenario based approach of generating the system
specification. In Section 8.3, we present the tool and platform that we have chosen
to be integrated in UCOMYV for the verification purpose. Further in Section 8.4, we
show how we transform our formal UCA model to a proper code for the model checker
to represent the behavior of the UCA, and show how this parsing approach has been
implemented in UCOMYV to be expendable to other model checkers to the suite. We
also discuss how we restrict the formal model used in the target model checker to
our UCA. Section 8.5 shows the steps implemented to perform the model checking in
UCOMYV, and how the results of the verification process is used to extract the error
traces generating the failure scenarios. Finally in Section 8.6 we note a limitation of
our study on the inheritance of the behavior properties on the composed models and
show the direction for this study in future. Section 8.7 concludes the discussion on

model verification in UCOMYV.

8.2 Behavior Verification

Each UCA represents a set of scenarios of behaviors from the system. As a designer,
the UCOMYV user is supposed to produce the proper set of behavior from the spec-
ification generation process supported in UCOMV. This set of behaviors are to be

produced by designing new UCA models and use them to compose new compound
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models according to compositional semantics. However, its always challenging to
foresee the proper UCA model with the exact desired set of behaviors, both from the
designing process and composition using compositional semantics of the operators.
Therefore the designer might want to check for the properness of its product and ver-
ify them over its target set of behaviors. This is done through defining and verifying

proper liveness and safety properties on the set of scenarios.

UCOMYV provides a platform for defining a set of safety and liveness properties for
each UCA model. These properties are verified over the behaviors of the UCA and
possible breaches can be followed as traces of the UCA. The set of properties include
the checking of the model over desired and undesired behaviors in the composed
UCA. Hence the model can be checked for the presence or absence of a specific set
of behaviors and respective properties representing them. It is notable that the steps
of the composition mechanism are guaranteed to be free of implied scenarios, and
the verification at this layer aims at helping the analyst to verify his desired set of
behaviors in the generated UCA model. The SPIN model checker [22] is integrated
into our framework for this purpose, and Linear Temporal Logic (LTL) formalism is

deployed to specify the temporal properties on the model’s behavior.
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8.3 Promela and SPIN

In the theory of automated verification, to verify a prospective system, two concepts
should be defined: the set of facts we want to verify, and the relevant aspects of the
system that are needed to verify those facts, such as a model representing the system.
Furthermore, two distinct approach for this verification has been developed in the lit-
erature. In the first approach, a mathematical proof steps are provided for a specific
theorem based on basic models. However in the second approach, an exhaustive check
over the behaviors of the prospective system is performed, and possible violations are
extracted. Generally the first approach is referred to as the Automated Theorem
Proving, while second is called the Model Checking. In the model checking approach,
a behavior specification describes what is possible in our model, while a property
specification defines what are we checking for. In our approach, our verifiable model
is the generated UCA model, and the facts to be verified are the behavioral properties
in terms of LTL expressions. We use the model checking technique to verify the model
conformance over the desired properties, and use the SPIN model checking tool for

this purpose.

The SPIN (Simple Promela INterpreter) is a popular tool for analyzing the
logical consistency of concurrent systems [22] which is originally developed by Gerard
Holzmann in 1991. Formal concurrent systems in SPIN are described in a modeling

language called Promela. Promela is a specification language to model finite-state
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systems which is used to specify the behavior specification. It has a close syntax to
C language, but it is just a modeling language rather than a whole programming
language semantic. Furthermore property specifications are generated from the given
LTL properties. SPIN takes the Promela specification for the behavior model and
for the properties, generates the property specification from the LTL property, and
automata from the Promela code. Then it uses the automata to check for the language
emptiness of these two models. In UCOMYV, the behavior model is generated from
the UCA model produced in the specification layer. The property model is generated
in a separate environment with the help of SPIN, and is added to the behavior model

as a never claim.

8.4 Model Transformation

As the first step, as the designer chooses to enter in the model verification environ-
ment, the given UCA in the specification layer is transformed to a proper Promela
model for SPIN within the UCA-Promela Transformer component. This component
provides an abstract template of parsing rules for the UCA model to generate the
proper code for the target language of verification. These rules specify how the UCA
model is translated to the target modeling language and how to generate codes sim-
ulating the automata behavior of the UCA in the language of the verification tool.
It determines how the states are specified in the code, and how transitions from the

automata are coded between these states. In the current version of the tool, the
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transition rules from the UCA model to the SPIN Promela language of the SPIN
model checker have been implemented. In the transformation of a UCA model to
the Promela code, state labels are specified as the labels of code lines. Each of these
labels define a block of code which determines the actions happening from that state.
The block is labeled with the state label and is referred to with this label for the
modeling of transitions to this state. Furthermore the atomic property predicates
which are valid in that state are coded inside the block. The following code shows an

example coded for state gl in the UCA given in Figure 27.

accept_gl: atomic {

set(a);
reset(b);
reset(c);

};
if
:: true -> {goto g2;} /* b */

:: true -> {goto q0;} /* d */
fi;

Atomic properties are those which are introduced in the specification layer on the
UCA, and are used further to specify desired properties to be checked. a, b and c are
the examples of such property predicates which the code shows a is valid in this state,
and b and ¢ are not. As for the transitions fired from the state, the set of transitions
are modeled with a set of if statements, each representing the transition firing in the

case of the transition label being seen and Promela code being traversed by the SPIN.

In the Promela code, to form the notion of final state, we add another extra state
block called end state, which represents an additional state used to redirect all the
transitions targeting a final state to this state. This state is the last state coded in
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the Promela code, and contains no transitions fired from it. It basically act as an
empty accepting state, directing the Promela script to end the execution of the code.
Furthermore, we add an empty transition to this state from all the states which are
marked as final states in the UCA. Therefore all the final states of the UCA model
would have an additional empty transition to this state. This approach would emu-
late the notion of final state of our UCA model in the Promela code. As you can see
in the given example code, state q2 is a final state and has a extra coded transition
to the additional state block of end at the end of the code. The notion of the initial
state is emulated with having the UCA’s initial state coded as the first state block in
the Promela code and hence, the first block of code to be traversed by the SPIN at
the time of execution. When the model checker first starts to traverse and execute
the code, it starts from the beginning with this initial block of state which brings our

intended notion of initial state in the UCA.

Moreover on the UCA, we have also the notion of ’accepting’ states, which are
the states considered as accepting states in SPIN. On the specification layer, the de-
signer has the option on each state to declare that state as the accepting state of the
automata. This would mark that state as the relevant notion of accepting state in
Promela. These states are respected with their marking label of the block of code
which their labels would start with addition of "accept_”. We note that accepting
states are the states used by SPIN to prove either the absence or presence of infinite

runs that traverse at least one accept state in the global system state space infinitely
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often. These states and their mechanism are used to prove LTL liveness properties,
as an example, and are different than the notion of final state which mark the termi-

nation of the execution of the automaton.

These coding conventions help us to emulate the UCA behavior as a Promela
code for SPIN. They are abstracted and could be valid for any modeling language for
any other model checker. Therefore the rules can easily be overridden for generating
codes of target languages used in other model checkers to the suite, hence enabling
the tool to plug the interface to other model verification tools. The extension of the
verification layer to support the UPPAAL model checker is seen as part of our future
extensions. Figure 27 shows an example of a simple UCA model and its relatively
generated Promela code. The parsing rules for the Promela has been implemented in
the class called AutomataParser. This class implements the abstract method called
parse() for transforming the given UCA model to a proper Promela model, and can be
overridden in future derived classes of parsing for other model checkers. This method
assumes the parsing conventions we discussed for generating proper codes of Promela

modeling language from the UCA automata model.

As described in Chapter 5, behavioral properties in UCOMYV are defined using
the LTL temporal logic formalism which is the base for the SPIN model checker. The
class called LTLProperty encapsulates the specification of an LTL property formal-

ism. This class includes the syntax of a property written respecting the LTL logic.
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Figure 27: Example of an UCA, and its Promela models in UCOMV

It also includes the never claim which reflects the given property transformed to a
proper Promela model. This whole is done in the LTL Property Manager component.
This claim along with the behavior model from the automata interpreter provides a
complete verification model as the input to the SPIN, and is used to check for cor-
rectness of the property on the UCA model. Following is an example of a Promela
code generated in UCOMYV to represent the simple UCA model and a simple liveness
property. It emulates a UCA with three states and three transitions and two atomic
properties of p and g. You can see how these properties are set or unset in the states,
and how the LTL response property on p and q is transformed to the never claim in

the code.
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bool p = false;
bool q = false;

inline set(x) {
atomic{x = true;}

inline reset(x) {
atomic{x = false;}

active proctype UseCaseModel() {

q0: atomic{
reset(p);
reset(q);
3
if
11 true -> {goto q1;} /* a */
fi;
accept_ql: atomic{
set(p);
reset(q);
};
if
:: true -> {goto q0;} /% d */
:: true -> {goto q2;} /* b */
fi;
q2: atomic{
reset(p);
set(q);
I
if
: true -> {goto q0;} /* c */
:: true -> {goto end;} /* final */
fi;
end: skip;
}

never { /* I([1 ((p) —> (<> (q)))) */

Tg_lnlt:

i

tr (P ((q)) && (p)) -> goto accept_S4
:: (1) -> goto TO_init

fi;

accept_S4:

if
ég (t ({@))) -> goto accept_S4
is

s

8.4.1 UCA as Promela Model

In order to enable the user with the capabilities of verifying the model with LTL

properties, we add some notions to the original UCA definition. In fact, the property
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predicates that the designer define on states, and the notion of accepting states are
the two concepts that we need the designer to define in order to enable him defining
LTL properties. These two notions are not present in the theory part of the UCA,
and are not parts of the original formal model presented in [32, 33, 24]. These two
definition not needed for behavioral modeling using UCA, and are just used to enrich
the transformed model of UCA to Promela. We note that the transformed code of our
UCA model in SPIN are the restricted model of Promela to represent the UCA and
its behavior. In fact the semantic of the behaviors that the UCA is representing is a
far less expressive than the model that SPIN is using for its verification. SPIN uses a
mathematical model called Biichi automaton for the check of emptiness of the inter-
section of the model from the behavior and the property. The Biichi automaton is the
extension of the finite state automaton on infinite inputs and loops. It can be used to
detect systems with indefinite final states with infinite number of occurrences of loops.
Therefore by definition, the model SPIN uses for his check is far more expressive than

our UCA model which could model and check other types of properties and behaviors.

In UCOMYV, we restrict the input model to SPIN to a proper representation of
our UCA. For this purpose, we use templates for transforming the UCA structure to
a Promela code, and simulate its behavior there. This template restricts the model
supported by the Promela language to the representing UCA, and use the SPIN to
actually run this restricted model and check for its emptiness along the model from

the property. This is not a limitation to our approach since in our formalism we don’t
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aim at modeling that level of expressiveness that Promela is supporting. We aim at
at deploying the SPIN and its model to check for the compliance of our UCAs over
the properties, at the same level of expressiveness and formality that they are defined

in UCOMV. And we add the two notion of state property predicates and accepting

states to provide the necessary framework for LTL property definitions.

8.5 Verification and Error Trace Parsing

After transforming the UCA model and the LTL property to proper Promela codes,
these codes are given as an input to the SPIN model checker. The verification is
done in three steps which are the main steps for the verification using SPIN. These
steps are implemented in UCOMYV in the class called SPINVerifier. First the SPIN is
triggered and the generated Promela code for the UCA and the property are given as
the input to the engine. Then SPIN generates a C file, which contains a simulation
code for the checking of the emptiness of the intersection of the main Promela code
and the code for the property. This C code file needs to be compiled using the 'gcc’
compiler, which results in an ’.exe’ file. This ’.exe’ file performs the verification for
the checking of the model, and returns a report file. The report file contain useful
information on the result of the verification, and should be interpreted to check if
the model has satisfied the given property. It also helps to prodﬁce the possible error
trail of the model which violated the property. The interpretation of the report file

from the SPIN is done in the class called ReportAnalyzer. This class is used within
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the debugger component of the verification module in the tool, and determines if the
model has satisfied the property. If not, runs the SPIN in the debug mode and use
the output of the debug mode to extract the error trail section from the report file,
and instantiate the class ErrorTrailExtractor with the generated error trail code. From
the given simple example LTL property given in Figure 27, the following report is
produced as the original output of the SPIN verification.

(Spin Version 4.2.7 -- 23 June 2006)
Warning: Search not completed
+ Partial Order Reduction

Full statespace search for:
never claim +
assertion violations + (if within scope of claim)

acceptance cycles + (fairness disabled)
invalid end states - (disabled by never claim)

State-vector 16 byte, depth reached 29, errors: 1

14 states, stored (18 visited)

4 states, matched

22 transitions (= visited+matched)
12 atomic steps

hash conflicts: 0 (resolved)

Stats on memory usage (in Megabytes):
0.000 equivalent memory usage for states (stored*(State-vector + overhead))

0.299 actual memory usage for states (unsuccessful compression: 88979.76%)
State-vector as stored = 21347 byte + 8 byte overhead

2.097 memory used for hash table (-w19)

0.320 memory used for DFS stack (-m10000)
0.094 memory lost to fragmentation
2.622 total actual memory usage

unreached in proctype UseCaseModel

line 11, "pan.___", state 6, "b = 0"
line 7, “?an.___", state 9, "¢ = 1"
line 20, "pan.___", state 13, "goto gi"
line 19, "pan.___", state 14, "(1)"
line 11, "pan.___", state 21, "b = 0"
line 22, "pan.___", state 25, "a = 1"
line 41, "pan.___", state 53, "-end-"

(7 of 53 states)
unreached in proctype :never:
line 52, "pan.___", state 11, "-end-"

(1 of 11 states)

From the report you could see that there is an error happening while verifying the
property from the line errors: 1. Therefore SPIN needs to be run in the debug mode

and the error trail information should be extracted. The SPIN generate the possible
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error trail on the reachability graph of the Promela code. This graph is originally
generated by the SPIN from the input Promela code in order to traverse and execute
the code. The error trail given on this graph needs to be interpreted back as a trace
of the UCA model. In output report from the verification, SPIN specifies information
such as if the property has been verified and that which lines of the Promela code
has not been reached during the execution. If the property is not verified, then the
SPIN specifies the cycle it found in the execution of code preventing the graph to
reach its final states, and the values of the variables in the states failing the property.
According to these information, we can trace which line of the Promela code has been
executed in the error scenario, and from the code line, we can determine which code
block this line belongs to and hence, determining the UCA state on which this event
has happened. Following is the result of the debug running of SPIN on our example

for the LTL property.

Starting UseCaseModel with pid 0
Starting :never: with pid 1

Never claim moves to line 46 [(1)]

2: proc 0 (UseCaseModel) line 10 "pan.___" (state 1) [a = 0]

3: proc 0 (UseCaseModel) line 10 "pan.___" (state 4) [b = 0]

4: proc O (UseCaseModel) line 6 "pan.___" (state 7) [c = 1]

6: proc O (UseCaseModel) line 20 "pan.___" (state 11) [(1)]

8: proc 0 (UseCaseModel) line 20 "pan.___" (state 12) [goto qi]
10: proc O (UseCaseModel) line 6 "pan._w_" (state 16) [a = 1]
11: proc 0 (UseCaseModel) line 10 "pan.___" (state 19) [b = 0]
12: proc O (UseCaseModel) line 10 "pan.___" (state 22) [c = 0]

Never clalm moves to line 45 [((!(b)&&a))]
14: proc 0 (UseCaseModel) line 29 "pan.
<<<<<START OF CYCLE>>>>>

Never claim moves to line 50 [('(b))]

' (state 29) [(1)]

16: proc 0 (UseCaseModel) line 29 "pan.___" (state 30) [goto g0]
18: proc 0 (UseCaseModel) line 10 "pan.___" (state 1) [a = 0]
19: proc O (UseCaseModel) line 10 "pan.___" (state 4) [b = 0]
20: proc O (UseCaseModel) line 6 "pan.___" (state 7) [c = 1]
22: proc O (UseCaseModel) line 20 "pan.___" (state 11) [(1)]

24: proc O (UseCaseModel) line 20 "pan.___" (state 12) [goto qi]
26: proc O (UseCaseModel) line 6 "pan.___" (state 16) [a = 1]
27: proc O (UseCaseModel) line 10 "pan.___" (state 19) [b = 0]



28: proc 0 (UseCaseModel) line 10 "pan.___" (state 22) [c = 0]

30: proc 0 (UseCaseModel) line 29 "pan.___" (state 29) [(1)]
spin: trail ends after 30 steps
#progesses: 1

a:

b=20

c=0

30: proc O (UseCaseModel) line 29 "pan.___" (state 31)
30: proc - (:never:) line 49 "pan.___" (state 9)

1 processes created

You can see the lines of the Promela code involved in each line of the report. From
the start of the cycle, we determine the start of the error trail and follow up the
transitions of the trail passing through the code. For example the first line shows
that line 29 on the Promela code has been executed and the following three lines
are the variable evaluations which follow that code. Line 29 on the Promela code
belongs to the block of the code related to the state ql. Therefore we determine
that the cycle starts at state ql of our UCA. From the rest of that line in the error
report, we see the next command which has been executed is the command goto g0
on the line 29 of the code. This shows us that we have been in state ql and the
next transition which is run by the SPIN had leaded it to the block code of the state
q0. From the line 29 of the Promela code, we determine the label of this transition,
as d, and reproduce the fact that the cycle in the error trail has been started with
firing transition (q1,d,q0) of the UCA. The tool follows the same path for interpreting
the other transitions of the error trail report, and extract other transitions fired in
the automata which resulted in the violation of the property on the UCA. The tool
further sequences these transitions starting with the transition fired from the initial
state, and reproduce the UCA trace violating the desired property. All these are

implemented in the ErrorTrailExtractor class within the tool. The product of this
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process is the violating UCA trace and is then visualized on the respective UCA as
traces of the UCA. The analyst can visually track the failure of the property and

modify the UCA according to his desired behavior.

8.6 Property Inheritance

When two UCAs compose together and produce a new compound UCA, the atomic
properties of the base and referred UCAs are inherited in the composed UCA and
would be available for new property verifications on the new UCA. However, for the
verified LTL properties on the both parent UCAs, the results are not straightforward
in the compound model. Because of the nature of the composition and the base
and referred UCA approach, the LTL properties verified on the referred UCA would
still be valid for the respective section of the compound UCA. However for the base
UCA, there is no proof for the whole compound model to maintain the properties
previously verified on the base UCA parent. The validity of those properties and
their relationship to possible valid properties to be hold on the new composed UCA

needs further detailed investigation and is farther than the scope of this thesis.

8.7 Conclusion

The incremental approach we present in this thesis can help the designer for the
verification of the large composed models. This incremental approach can help the

analyst to break the complexity of verifying the behaviors on large complex models

106



into simpler property verifications in each step. In this chapter we have shown how
we deploy a model verification mechanism to assist the designer in verification of the
model compliance to his desired properties. We detailed on how we transform our
model to a proper model in the target model checking tool, and how we parse back
the result from the verification and translate it to a behavior in the UCA model. We
also have discussed the notions that we add to the original UCA model in the target
language, in order to make this verification possible. In the next chapter, we would
discuss the interesting feature of traceability in UCOMYV and the details of how the

feature is designed.
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Chapter 9

Traceability

9.1 Introduction

Requirements are subjected to constant changes. The ability to automate the re-
flection of these changes on the specification is an essentially useful feature for the
maintenance of the requirement specifications. These changes may also root in the
modifications needed on the composed models after the study of by the designer. As
the two behaviors are composed and a whole new behavior is produced, tracking the
generating behaviors in the compound model can help the study of the new model.
In this chapter, we present an essentially useful feature in the tool which enables the
designer to perform this reflection. We will discuss the details of how the feature is
designed and implemented in the tool, and how proper data structures are defined in

order to support efficient reflection on the UCAs.
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The chapter is organized as follows. Section 9.2 discuss two types of UCAs and
their difference in terms of their relation to other UCAs. Section 9.3 defines the recur-
sive forward and backward dependencies of UCAs and shows how these dependencies
would recursively form a hierarchy of composition history. Section 9.4 defines the idea
of forward propagation of structural changes on the dependent UCAs. Section 9.5
discuss the notion of efficient propagation and presents the algorithm of propagation
on the hierarchy. It discusses how the idea of defining and using a compositional or-
der on the hierarchy would enables us to reach the minimum number of propagation.
Finally Section 9.6 talks about a problem during the propagation and presents its

solution that we have deployed. Section 9.7 concludes the chapter.

9.2 UCA Relation Types

Once a UCA is composed and added to the existing set of UCAs, it becomes a part
of the specification as a new partial system behavior. The new compound behavior
would not constrain the behavior of its composers. However its structure would be
dependent to its composing parents. This means that the structure of the UCA which
is composed from other UCAs in the specification is not an independent structure,

but a product of the structure of the base and referred UCAs.

Accordingly, the set of UCAs in the specification can be categorized to two classes

according to the type of their relations to other UCAs. The first category would be
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the UCAs which are the product of composition of other UCAs, while the second
category are those UCAs which are solely a product of the automata design interface.
The definition of the structure of the automata and the nature of their behaviors in
the two groups are the same. However, the structure of UCAs in the first group is
dependent on their precedents while in the second group, the structure is independent
from the other behaviors. We note the first group as dependent UCAs and the second

group as atomic UCAs.

9.3 Hierarchy of Dependency

Different increments in the specification create a hierarchy of composed UCAs which
are dependent on each other. Each UCA in the specification may be composed of
two UCAs, each of them in turn may be composed from other UCAs. We call this
hierarchy as the backward dependency of the UCAs. Moreover, each UCA may be
used to compose arbitrary number of new UCAs, each of which may be used for new
UCAs in other increments of system specification. This hierarchy is called forward
dependency. The forward and backward dependency of UCAs generates a hierarchy
of composition which we call as hierarchical dependency chart. The hierarchical de-
pendency chart is formed in the first increment of composition, and is updated during
each increment. After the evaluation of each composition expression, the new UCA
is inserted into the hierarchy, and the hierarchy is updated regarding the forward and

backward dependencies of the newly inserted UCA and the affecting UCAs in the
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Figure 28: Hierarchical Dependency Chart

hierarchy. Figure 28 shows an example of such hierarchy.

9.4 Forward Propagation

While structurally the same, atomic and dependent UCAs are different according to
their compositional history, hence further changes in the specification has different
impacts on them. The structure, and therefore the semantics of the atomic UCA
can only be changed through the automata design interface inclusively. However the
behavior and structure of the dependent UCA can be updated by semantical changes
in the affecting UCAs anywhere in the hierarchy. This means that any change in the
structure of a UCA through the automata design interface can affect the behavior of
all the forward depending UCAs as well. This feature is called forward propagation of

change in the specification. Forward propagation is presented as an optional feature
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in the tool, which means that the analyst can choose to propagate the change, or to
destroy the dependency relationship of the changed UCA and have it as an atomic
behavior.

The nature of forward and backward dependency is complex. This stems from
the fact that each dependent UCA is backward dependent to two involving UCAs
directly, and recursively to a sequence of UCAs. On the other hand, it can be de-
pendent forward to a set of arbitrary number of UCAs directly, and a sequence of
such sets recursively. This notion leaves us with a complex hierarchical dependency
chart along the existing UCAs. Figure 28 delineates an example of such structure.
As an example, the UCA U5 in this figure is backward dependent to Ul and U2, and
forward dependent to U7, U8, U9 and U10. Therefore any change in the Ul and U2
would optionally be reflected to U5, and in turn recursively to the other UCAs from

the forward dependency set of Ub5.

Forward propagation of changes is done in the dependency propagator component
of the composition engine as the primary step in interpreting each increment. First,
each change in the previously composed UCAs are monitored and marked. These
changes include any structural change which affects the behavioral semantics of the
UCA, including the set of states, transitions, the initial and the final states of the
UCA. As the changes are detected, the UCA is marked and the sequence of forward
dependent UCAs affected from this change are determined recursively according to the

hierarchical dependency chart. The structural change is then forwardly propagated
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in the specification through a minimal recomposition process of the dependent UCAs

in the hierarchy.

9.5 Efficient Propagation

During the forward propagation, any repetitive recompositions of UCAs may lead to
incorrect propagations and should be avoided. However because of the complex nature
of the hierarchy, managing the dependencies would be hard. For example in Figure
28, if there happens such change in Ul, the direct following affected UCAs would be
U5 and U8. However this change would affect U8 in another way in the hierarchy.
The propagated change in U5 would form a new hierarchy of forward propagation
which will affect U7, and recursively U8 in the next layer. Therefore the original
change in Ul would be propagated to U8 from two paths in the dependency chart.
This cause a repetitive propagation on U8 which will result in incorrect behaviors,
and inconsistency in the specification. To avoid this problem, the propagation should
first be reflected on U5 and hence, U7, before reaching the U8 use case. In a general
case, this would lead to the fact that in order to minimize the propagation of changes
and the recompositions, for each UCA to be affected, the two possible paths leading
to the UCA should be synchronized at the previous level right before the UCA in the

hierarchy.
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9.5.1 Compositional Order

The solution to this problem is to find a sort of order for the propagation process in
the UCAs. Such order would help to prevent the repetitive propagations. The hint for
such order lies in the original set of UCAs in the specification, where the dependent
UCAs are added. This hint can be used to form a set of orders in each UCA which
preserves the order of insertion of the UCA in the specification and can be used to
recursively surf the dependency chart to find the UCAs added to the specification
"before™ and "after” each UCA. Each UCA would have an ordered set of dependent
UCAs, and the hierarchy of these orders is detained through the hierarchical depen-
dency chart. This compositional order would be used during the propagation process,
and would prevent us from any repetitive propagation while guarantees the forward

reflection of changes for all sequences of the affected UCAs, recursively.

The partial order on the set of UCAs would help us determine their privilege
on the process of propagation. The order counts such that each UCA would have
a higher order in the set if and only if it has been composed in the hierarchy when
the other UCA has existed. In other words, the the UCAs with less order in the set
had probably been composed, or designed before the UCAs with higher orders. We
define the function order(U) on the set of UCA defining the compositional order of
each UCA. Also we define < as the partial order of UCAs on the set of order of the

UCAs. Therefore, if order(U1) < order(U2), then Ul < U2.
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9.5.2 Forward Propagation Algorithm

This order would help us preserve the compositional order of the insertion of UCAs
into the hierarchy. From the order of insertion, we would be able to minimize the
process of propagation of changes in the hierarchy. Based on this order we determine
which UCA in the hierarchy and in the set of affected UCAs from the change would
be affected with the change. Starting from the UCA node in the hierarchy which the
change has happened, the propagation algorithm would propagate the change on the
UCAs first with a lower order in the set of forward dependent UCAs which are affected
by the change. It performs such task in a recursively on the forwardly defendant UCAs
in the hierarchy, starting from the direct dependent of the changed UCA. Therefore,
we suppose that there happened a change in the UCA U in the dependency hierarchy.
And we define direct(U) as the set of direct forward dependent UCAs of the UCA U.

the propagation is done through the following algorithm:

ForwardPropagate(U):
if isPropagated(U):
return True
else:
Propagate(U)
for all(U1,U2) in direct(U):
if order(U1) < order(U2):
ForwardPropagate(U1)
ForwardPropagate(U2)

isPropagated(U) = True
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The method isPropagated(U) returns true if the forward propagation of changes
has been already been reflected on the UCA U, otherwise it returns false. Moreover,
method Propagate(U) performs the propagation by the recomposition of the UCA
U, using his already propagated parent base and referred UCAs. Using the isPropa-
gated(U) method and the partial order function on the set of UCAs and following this
recursive algorithm, we guarantee that when the Propagate(U) method is being called,
both of its base and referred UCAs has already been propagated with the changes
of their parents recursively. This algorithm would guarantee that no UCA would be
propagated more than once in the hierarchy and hence, the efficient propagation of

the changes on each forward dependent UCA in the hierarchy.

9.6 Forward Retrieve of Extension Points

Forward propagation of structural changes of UCAs toward the specification is achieved
with the track of the composition expression forming a dependent UCA. As described,
the change would be propagated according to the ordered hierarchy of the dependen-
cies of the UCAs. When each UCA is updated with the propagated change, it comes
up with a modified set of states and transitions according to the type and nature
of the change. These states and transitions may have been used as extension points
in the forward dependent UCAs to the current UCA in the hierarchical dependency
chart. Therefore we need to keep track of these these extension points to assure the

correct propagation of the change in the recursively dependent UCAs. Hence forward

116



updates on the extension points in the hierarchy of these expressions forming the

UCAs should be performed to retrieving such tracks.

Some of these changes may cause ambiguities in the hierarchy. For example, if
a transition which is used in its forwardly dependent UCAs as an extension point is
removed in the UCA, the forward dependent UCAs would face ambiguities in the pro-
cess of forward propagation. While we are in the process of propagating the change in
the hierarchy, the composition would no more result in the same behavior and hence,
might not be valid for the designer. In such cases the tool pops up the designer and
asks him to resolve this ambiguity by choosing another extension point or simply
remove the dependency and break the hierarchy from that point. Such re-localization
in the extension points are necessary to maintain the process of forward propagation

of the changes.

In other cases which the performed change in the UCA is not related to extension
points used forward in the hierarchy, the update on the extension point is just limited
to the updates on state names. The problematic issue for such process would be that
these states may be renamed through the use of the UCAs in future compositions,
and are impossible to retrieve. Therefore, we keep a characterization of each state in
the composition expressions. This means that we keep a hash name for each state
and its related transitions, which is generated automatically within the tool and could

not be accessed or changed by the designer. This hash name acts as a signature for
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that state, and is updated only after the UCA is propagated and therefore according
to the recursive algorithm, its forward dependent UCAs are also propagated with
the change. This trick differentiate between the presented labels for the states and
labels in the automata. The hash name would be further used to recursively update
the extension points during the forward propagation process. It is notable that this
signature and its update is not visible to the designer and would never been observed

by the user during the forward propagation process.

9.7 Conclusion

In this chapter, we presented the details of the idea and the implementation of an
interesting feature in the tool on the traceability of the UCAs in the specification.
We discussed how the composition of the UCAs and their dependencies would re-
cursively form a hierarchical dependency chart, and how structural changes in each
UCA would could be affective to its forward dependent UCAs. We detailed on how
we implement this idea on a recursive algorithm, and shown how we use the partial
order of insertions of UCAs in the hierarchy to make this process more efficient and
prevent repetitive propagations. In the next chapter, we practice our composition

and verification approach on an actual specification generation problem.

118



Chapter 10

Case Study: e-Purchasing System

10.1 Introduction

In this chapter, we show the applicability of our approach in UCOMV by applying it
on a real-life specification problem. We present the application of our methodology on
the elaboration of the behavior specification of an e-purchasing system. We show how
the overall system specification is gradually formed from the initial requirements and
their respective UCAs following several increments in the primitive specification. We
also illustrate how the generated compound model of the requirement can be verified

for the desired behavioral properties.

The chapter is organized as follows. Section 10.2 describe the early informal
requirements of the system and show how the primitive specification is defined by

the first set of UCAs. Section 10.3 defines the three steps of composition and the
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composition expressions in each step which are to be followed to reach the target
overall behavior model. Furthermore, Section 10.4 illustrates two cases of behavioral
verification on the generated UCA model and discusses the result from the verification.

Section 10.5 analyzes the results and concludes the chapter.

10.2 Partial Requirement Specification

The behavioral requirements of the e-purchasing system include a wide range of use
cases on purchasing related activities and features. It covers all the activities from the
early surfing to the final check out and payment in the process of purchasing an arti-
fact in an online shopping store. We restrict our case study to the description of the
system behaviors from the clients point of view. We present the informal description
of partial requirements. of such system from the clients perspective. From there, we
build a primitive specification of the UCAs representing each separate functionality in
the system and show how these informal requirements are transformed to our formal
model of UCA as partial behavior models. These UCAs are then composed to form
the requirements specification of the system which is subjected for verification over

safety and liveness properties.

The following informal description of requirements express how a customer would
enter to the system, orders his artifacts and pay, as well as some features and pos-

sibilities that he could benefit from. It basically expresses some scenarios which the
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user could pass through the system in order to achieve his final goal of purchasing.
This informal expression of requirements could be expressed from a stakeholder as
the start point of a prospective system, and reflects what he has in mind from such

a system.

The customer has to select a product. He either consults the

catalog list or makes a search with the name of the product in
the available catalogs, and then selects the product. Giving

the needed quantity, the availability of the product has to be
checked. Then, the order is placed and some information about
the type of delivery are asked to be specified. Finally, the

payment should be made. The customer should pass an

authorization process before the payment, and a quote of

report may optionally be printed after the order is placed.

As the first step, the informal requirements expressed for the system are parti-
tioned into basic functionalities. As other approaches for the requirement analysis,
this partitioning would be an state of the art from the analyst. It is notable that
breaking the overall informal requirement specification is an important step in the
requirement analysis, which can have a huge effect on the process of generating the
overall specification and the composition strategy. A good partitioning of original re-
quirements could help the process with clear composition and property analysis while
a bad and overlapping partitioning could result in further difficulties in the study of
final model. Hence the analyst can refer to his experience and other similar systems
to the suite which may help on determining basic functionalities from the original
overall requirement description.
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In our example of e-purchasing system, the analyst may think of different partial
behaviors, each in charge of a part of the requirements. For example the selection of
the product and searching it could form an independent functionality. Also the general
famous behaviors which are present in such systems could also be distinguished from
the description and formally modeled as UCA. Formal UCA models in UCOMYV are
given in Figure 29 which will act as the initial partial behaviors and the primitive
specification of our example. Different state colorings which has been selected for
different UCA models can be seen in this figure. These colors can be further used to

visually track each behavior in the final compound model.

10.3 Composition Increments

The initial UCAs are the initial step toward gradually forming the target specification.
The overall model will be constructed in three composition steps. In the first incre-
ment, two new UCAs as Prod_Select_1 and Order_1 are created. The Prod_Select_1
UCA aims to insert the process of authorizing the client after the selection of the
product and the Order_1 would place calculation of the price after the selection of
the order. We note that these new behavior models are composed independently for
different parts of the requirements. They will further be merged together and form
the overall behavior model. The composition expressions for the two new UCAs are

given as follows:
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Figure 29: Primitive UCA specification of e-Purchasing system
1. Prod_Select_1 := ALTERNATIVE (Prod_Selection,Login) IN {q5}

2. Order_1 := INCLUDE (Order,Price_Calculate) AFTER {(q0,enter_quantity,ql)}

With the evaluation of the two specified composition expressions, the two new
UCAs are added to the set of behaviors. In the second step, using the newly com-
posed Order_1, a UCA will be generated which asks for the customer’s delivery infor-
mation before making the payment. We use UCA Order_1 generated in the previous
increment. The transition (q6,check_price,q7) is the extension point of Order_1 where

we want to include the Delivery UCA.
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1. Order_2 := INCLUDE (Order_1, Delivery) AFTER {(q6,check_price,q7)}

Finally as the third steps, we generate the Order_3 UCA by adding a quote printing
option for Order_2 UCA. Then we compose the generated Order_3 with Prod_Select_1 in
order to gain the overall behavior in Prod_Select_2. The second composition expression
in this step includes the whole generated behavior of the UCA Order_3 after the login

in Prod_Select_1.

1. Order_3:= EXTEND (Order.2, Printing) IN {q3}

2. Prod_Select_2 := INCLUDE (Prod_Select_1,0rder_3) IN {q4}

Covering all of the needed partial behaviors, Prod_Select.2 models the specified
informal requirements of the e-purchasing system. The output of the UCOMYV for
this UCA after three increments is shown in Figure 30. The initial behaviors can be
tracked with in Prod_Select_2 according to their initial color. The coloring of each
state shows the behavior which formed that part of the compound model and hence,
the overall structure of the initial behaviors can be tracked on the final product.
The intermediate UCAs Order_1, Prod_Select_1, Order_2, and Order_3 are not shown
here and are presented in Appendix A of the thesis. Prod_Select_2 is the product
behavior of the process and is subjected to model verification over desired behavioral
properties. It is transferred to the verification environment for behavioral property

verification.
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10.4 Behavioral Verification

The analyst can perform a wide range of behavioral verifications in terms of liveness
and safety properties, and further analyze the correctness of the composed model for
the decision on possible revisions in the requirements and their relations. For the e-
purchasing requirement model of Prod_Select_2, we define an example of a behavioral
verification which is modeled as a liveness property in the standard LTL template of
precedence in the tool. According to the specified requirements, after the selection of
a product, the authorization of the user should always be checked before the payment
is done and the purchase is finalized. The analyst want to make sure that if the
product is selected and the delivery information is entered, eventually the payment
is done before the system terminates on the delivery. Therefore the following LTL

property is defined for the tool to be verified on the generated model:

[ ] (select-product — > (user-authorized U payment-verified))

According to the three composition steps we performed, considering the seman-
tics of the operators used, the analyst can be sure that this intended property will
be verified on the generated model. However performing of the verification on the
Prod_Select_.2 UCA model in the first step would bring us to a certain scenario which
prevents the model to verify the property. This scenario happens because of the
loop in the Prod_Select UCA, and would be detected by the model verification mod-

ule, interpreted and visualized on the Prod_Select.2 UCA. The trace resulting in the
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deadlock can be followed in the model as search-product — > view-list — > select-
product. This loop is an infinite behavior which prevent us to verify the property, and

hence is a behavioral breach over the intended property.

As checking the safety compliance of the generated model, we give an example of
checking the authorization of the user. The analyst would want to make sure that
always in the system, the payment would not be completed before the user enters his
address. The negation of this behavioral property would result in that the payment
is not done until the user enters his address. Therefore we would have the following

formula on the property manager component:

[ ] (= choose-payment U enter-address)

As we can see in the generated model, this property is verified on the models.
This compliance can be expected according to the compositional semantics of the
Include operator which is used to compose the Delivery behavior inside the Ordering.
This semantic would guarantee the insertion of the traces of the Delivery behavior
inside the Ordering, and therefore the enter-address behavior would be placed before
the choose-payment in in all the scenarios in the composed model in the second com-
position step. As we can see, the compositional semantics of the operators could
guarantee the intended behavioral semantics from the original requirements if they

are used properly in accordance to the target behavior.
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10.5 Conclusion

In this chapter, we saw the practice of our approach in UCOMYV to help an actual
specification generation problem. We show that as the UCAs grow into complex
models through composition increments in the specification, the space of the traces
also grows and defining appropriate properties for the checking of their semantics
gets more complex. Moreover the classical problem of exponential state growth to
the order of the size of the UCA will increase the complexity of the verification.
We illustrate how the designer can reduce this complexity into smaller-scale verifica-
tion problems on each increment through the generation of the specification for the

requirements of an actual system.
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Chapter 11

Discussion, Conclusion and Future

Works

The motivation for the work presented in this thesis is to provide a requirement anal-
ysis approach and a tool support for formal modeling, composition and verification of
the requirements as Use Case Automata. The framework supports expression of new
models, their automated composition, and the verification of the generated models for
checking of model compliance to the desired behavioral properties. An incremental
approach for the generation of the requirement specification is supported in UCOMV
tool. The easy-to-use specification design interfaces with useful features along with
the composition engine and the verification module in UCOMYV, backed by a rigorous
theoretical work, provides a tool for elaboration of state-based requirement specifica-

tions.
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The formal model of requirements presented in this thesis is based on scenar-
ios and Use Case Automata as partial narrations of system requirements, which is
widely undertaken and accepted in the literature and industry. We provide a for-
mal model and an incremental composition and verification methodology for gradual
elaboration of requirement specifications. We also provide a tool support with an
easy-to-use graphical interface for requirement presentation, composition and verifi-
cation. The theory for the modeling and composition is based on earlier works in
[32, 33, 24] and [31]. Many interesting features to facilitate the design and composi-

tion of requirement models have been provided in the tool.

Our approach of generating requirements specifications consists of composition
UCA expressions in an incremental manner. The approach starts with defining a
set of initial UCA models for basic behaviors in the system. Furthermore in each
increment, the specification is enriched by the evaluation of composition expressions,
and new behaviors are generated and added to the existing set of models. Generating
a new UCA does not constrain the two involving base and referred UCAs, which is
a significant difference of our approach from existing approaches on use case com-
position. The generated model is guaranteed to carry the behaviors aimed from the
composition operator and its semantics, and nothing more. The new UCA is sub-
jected to behavioral verification for the desired properties in the verification layer of
the tool provided as an integrated framework for checking of model compliance to

temporal safety and liveness properties.
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The dependency relation of the new UCA is retained in a recursive hierarchy of
composition. This hierarchy is used to trace and propagate the structural changes in
UCAs to all of their forward depending UCAs in the hierarchy in an optimal manner.
This provides a traceability features for automated reflection of structural changes in
the compound requirements, an essentially useful feature for the maintenance of the
requirement specifications. Moreover, the generic design of the compositional seman-
tics can be used to introduce new composition operators. The extendability of the
UCOMYV tool with new composition operators within a XML based schema opens a
wide ground for future extension of the tool to user-defined operators with intended

customized semantics for synthesizing the behavioral models at state machines level.

Incremental generation is a key issue in our approach. As the UCAs grows into
complex models through composition increments in the specification, the verification
of the generated model becomes an intensively complex task. In our incremental
approach, the analyst has the ability to break this complexity into smaller-scale veri-
fication problems on each increment. Starting with small initial models and breaking
the generation of large UCA models into more increments would help the analyst to
handle this complexity and perform proper verifications on the behaviors of the re-

quirement models, and hence, generating more trustable and consistent specifications.
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Although theoretically our approach has no limitations in terms of the complexity
of UCA models, some limitations may apply to the size of the generated UCA models
for the composition and verification. This stems from the limitations on the higher
complexity orders of growth of the number of states generated during the composi-
tion and verification process. As the size of the UCA models grow linearly in terms
of the number of states, the complexity of the composition grows in a polynomial
order while the complexity in the verification side grows in exponential terms. This
brings the classical problem of state explosion on the verification side. The physi-
cal limitations of the computers may also prevent us from the study of arbitrarily
large and complex systems. However, despite these theoretical and implementation
considerations, the system performs very well on regularly large system descriptions
in real life. We have tried to generate large enough systems to detect this realistic
limitations, and came up with a high performance on system descriptions with up to
400 states. This is merely very high consideration and could easily cover the large

scale industrial specification generation problems.

As major extensions to the work, several ideas has been seen both in the theory
and tool support of the approach. As in the theoretical side, we seek to develop the
idea of deducing a given formal model from the existing models and compositional
semantics. This means an up-side down approach comparing to the method presented
here, and aims at partitioning the an overall given system model to smaller deduced

models using the semantics of the operators, and needs a rigorous theoretical study on
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the automated deduction of the behaviors. We also intended to study the persistence
of the verified properties on UCAs in their composition products, which we call as
property inheritance. As in the tool side, we see to present UCOMV as a plug-in
for Eclipse. Providing an interface for the migration of scenarios from other scenario
notations (such as MSC) to UCA is seen as a future extension to the tool. Also the
rewriting of the parsing and verification rules in the verification layer to support other
model checkers to the suit such as UPPAAL is seen as a part of the future work. The

tool is available for download at: hAttp://users. encs.concordia.ca/~s_kolahi/UCA/.
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Appendix A

Intermediate UCAs

In this section, the intermediate UCAs generated during the increments in the UCA
specification of the e-purchasing system in Chapter 10 are given. The two compo-
sition expressions in the first increment generate the two UCAs of Prodselectl and
Orderingl while in the second increment, Ordering2 is composed and finally in the
third increment, the final UCA model Ordering3 is generated as the overall model

representing the given informal requirements of the e-purchasing system.
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