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Abstract 

Coordinated Rendezvous and Surveillance for Multiple Unmanned Aerial 

Vehicles (UAVs) subject to Actuator and Sensor Faults 

Maria Palwasha Khan 

In this thesis, the problem of employing multiple UAVs for carrying out a 

Coordinated Strike and a Multiple UA V Surveillance mission has been addressed. The 

goal of the Coordinated Strike mission is for multiple UAVs to cooperate in order to 

simultaneously arrive at a high priority target to carry out a coordinated strike. The 

coordination strategy is based on coordination variables and coordination functions. A 

distributed system architecture is proposed that allows vehicles to communicate 

coordinating information across the team without reliance on a central ground controller. 

Simulations have been conducted to illustrate the performance of the coordination 

strategy under an actuator fault in single and multiple vehicles. 

The Multiple UAV Surveillance problem has been investigated by developing a 

hypothetical Border Surveillance Mission, wherein a UAV team is tasked to monitor a 

region along a border between two countries. The goal of the UAVs is to cover the 

entire surveillance region, while minimizing the team cost, which is a function of each 

vehicle's fuel consumption and mission time. Three fault cases in a single vehicle in the 

team have been simulated, namely (1) actuator; (2) sensor; and (3) simultaneous actuator 
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and sensor faults. These faults necessitate a resource allocation problem to be solved, 

which is used to determine the configuration of the team engaged in the surveillance 

mission. The team chosen to perform the surveillance mission is the one that incurs the 

minimum cost for performing the mission. 
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Chapter 1 

Introduction 

An Unmanned Aerial Vehicle (UAV) is a powered aerial vehicle that does not 

carry a human operator, uses aerodynamic forces to provide vehicle lift, can fly 

autonomously or be piloted remotely, can be expendable or recoverable, and can carry a 

lethal or non-lethal payload. Ballistic or semi-ballistic vehicles, cruise missiles, and 

artillery projectiles are not considered as UAVs [1]. 

UAVs have been identified as valuable assets for military as well as civilian 

(government and industrial) operations. The potential advantages of an UAV over a 

manned aircraft are significant and include but are not limited to: greater 

maneuverability, low risk to human operators (since an UAV can be remotely operated 

to perform dangerous missions), weight savings, and lower development costs. In the 

past decade, military investment in UAV research, systems and applied technologies has 

increased significantly. According to the Air Force Scientific Advisory Board, with 

advances in UAV technologies, these vehicles will be capable of fulfilling many of the 

current manned aircraft missions either autonomously or in conjunction with manned 

aircraft. Examples of the type of missions for which the UAVs are or will be employed 

by the United States Air Force are: Fixed and Moving Target Attack, Suppression of 

Enemy Air Defenses (SEAD), Intelligence, Surveillance, and Reconnaissance (ISR), 
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Radar Jamming, Theatre Missile Defense, and Air-to-Air Combat [2]. The civilian 

sector is also exploring the applications of UAVs for Land Management (e.g., wildfire 

monitoring, crop dusting), Homeland Security (e.g., border patrol, maritime 

surveillance), and Earth Science missions. 

In the past decade, the focus of research has shifted from development of 

algorithms for a single UAV performing a mission to development of viable strategies 

that will allow a group of UAVs to cooperate to perform multiple tasks. Hence, to utilize 

the full capabilities of a team of UAVs performing a wide variety of mission dependent 

tasks, research efforts in both civilian and military domains have been focused on the 

development of efficient cooperative control algorithms. 

With regard to UAVs, Cooperative Control means coordinating the activities of a 

team of vehicles so that they may work together to complete tasks in order to achieve a 

common goal. Effective group cooperation cannot be achieved without coordination of 

the actions of individual vehicles. However, each vehicle may not necessarily need to 

directly coordinate with every other vehicle in the team to achieve group cooperative 

behavior. Hence, coordination refers to the degree of interaction among team members. 

There are two types of coordination: local coordination and global coordination. In 

local coordination, an individual vehicle coordinates its actions only with either its 

nearest neighbors or team members in close physical proximity. Whereas, global 

coordination requires that each vehicle in the team coordinates its actions with every 

other vehicle in the team to achieve group cooperation. 
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The main objective of research into the Cooperative UA V Control problem is to 

develop and evaluate strategies (algorithms) for a team of UAVs working together to 

perform mission specific tasks in an extended area under varying operating conditions 

and constraints. For a given mission scenario, the Cooperative UA V Control problem 

formulation encompasses the following common sub-problems: Path Planning, 

Trajectory Generation, and Task Allocation. The complexity of these sub-problems 

depends on the chosen mission scenario, the assumptions made about the capabilities of 

the vehicles and the environment, and the constraints added by the mission designer. As 

these factors are varied, the Cooperative UAV Control problem formulation will also 

vary, with varying corresponding unique specialized solution strategies. Other problems 

that also need to be addressed are development of system architectures for the individual 

UAVs, the development of a team architecture (centralized, decentralized, or 

distributed), which determines how information is communicated across the team and 

how decisions are made, development of strategies for synchronizing the shared 

information across the team in the presence of factors such as partial network 

connectivity, and reduced communication range, and finally development of a viable 

coordination strategy. 

1.1 Contributions 

In this thesis, we have addressed the problem of employing multiple vehicles for 

carrying out two disjoint missions, i.e., Coordinated Strike and Multiple UAV 

Surveillance. 
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The goal of the Coordinated Strike mission is for multiple UAVs to 

simultaneously arrive at a high priority target to carry out a coordinated strike. We have 

used a coordination strategy based on coordination variables and coordination functions, 

originally developed by Chandler et. al. ([8], [9], [10], and [15]) and Beard et. al. ([4], 

[5], [6], [7], and [16]). Since the goal of the Coordinated Strike mission is for multiple 

vehicles to cooperate to achieve their joint mission objective, essential information must 

be communicated across the team. Instead of using a centralized system architecture, 

wherein each vehicle would only communicate with a central command and controller 

instead of its team members, we have utilized a distributed system architecture that 

allows vehicles to communicate coordinating information across the team without 

reliance on a central ground controller. 

While Beard et. al. ([4], [5], [6], [7], and [16]) have only tested their 

coordination strategy under nominal conditions for the rendezvous problem, we have 

extended it to include an actuator fault in both single and multiple vehicles in order to 

determine the effect of actuator faults on the performance of the coordination strategy. 

The type of actuator faults that are simulated in this thesis is the Loss of 

Effectiveness (LOE) [45]. In this type of fault, the output of the actuator is a fraction of 

the output of the controller, and is dependent on the value of the effectiveness 

coefficient ( kt) of the control effector. A perfectly functioning actuator has an 

associated value of kt = 1 (where &, can vary over the range: [f, ,1], where e. is the 
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minimum effectiveness of the control effector). Hence, in the case of the LOE failure, 

the effectiveness coefficient is £,. < 1, which lowers the output of the actuator. The 

severity of the actuator fault depends on the value of the effectiveness coefficient, k,. 

As the value of k, decreases, the severity of the actuator fault increases. 

Velocity has been used as the fault variable to simulate an actuator fault in single 

and multiple UAVs. The extent of the actuator fault has been simulated through gradual 

reduction of the maximum velocity of the UAV. While we have not modeled the 

actuator, we have assumed that the parameter kt will have a direct impact on the 

velocity range of a vehicle. It is assumed that the percentage reduction in the value of 

kf is directly proportional to the percentage reduction in maximum velocity of a UAV. 

Hence, the Loss of Effectiveness of a UAVs actuator will result in a lower maximum 

velocity of the UAV. 

It is assumed that each UAV is operating under nominal conditions upon takeoff 

from their respective bases, and that the Loss of Effectiveness fault in the actuator of the 

affected vehicle occurs while the team is en route to the target. In response to the 

actuator fault, all UAVs re-generate and share coordinating information with one 

another in order to re-plan their routes to the target. However, if the degradation in a 

UAVs actuator is to such an extent that it can no longer rendezvous with the other 

vehicles at the target, a resource allocation problem is solved in order to determine 

which vehicles should engage the target. If a vehicle is dropped from the team for the 

joint attack mission, it is commanded to travel to the surveillance area. 
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For the Multiple UA V Surveillance problem, we have designed a hypothetical 

Border Surveillance mission. For this part of the mission, we have assumed a centralized 

system architecture wherein each UAV communicates with a central controller on a 

periodic basis. The goal of the UAVs is to carry out surveillance of the entire 

environment of operation while minimizing the team cost, which is a function of the 

amount of fuel consumed by each vehicle in the team and the time required to complete 

the mission. To emulate real world situations, where a fault in one or more of the 

vehicles in a team can occur at any time, we have simulated three cases of faults in 

different sub-systems of a single vehicle in a team in order to determine the effect of the 

faults on the performance of the team. The affected vehicle is assumed to be suffering 

from a fault in either its actuator or sensor or both its actuator and sensor. 

As in the Coordinated Strike mission, the type of actuator fault simulated here is 

the Loss of Effectiveness (LOE). The type of sensor fault simulated here is called the 

Multiplicative-type sensor failure. In this failure type, a multiplicative factor is applied 

to the nominal value of the sensor. A scaling error in the sensor output is responsible for 

the multiplicative-type sensor failure. 

The sensor range (sensor output) has been used as the fault variable to simulate 

the sensor fault in a single UAV. Despite the presence of either the Loss of 

Effectiveness actuator fault and/or the Multiplicative-type sensor failure, the goal of the 

surveillance mission remains the same, which is minimization of the team cost. 

However, a fault in either the sensor, or actuator or both requires the mission designer to 



7 

address a resource allocation problem, i.e, whether to carry out the mission using all 

three vehicles or only the healthy, perfectly functioning vehicles. The team chosen to 

perform the surveillance mission is the one that incurs the minimum cost for performing 

the mission. 

1.2 Outline of Thesis 

In Chapter 2, a literature review of the problem of Coordinated Rendezvous, 

Multiple UAV Search and Surveillance, and Fault Diagnosis and Identification in UAVs 

is given. In Chapter 3, the background into the Coordinated Rendezvous problem is 

given followed by the development of a mission scenario, and the development of the 

rendezvous strategy. Finally, simulation results showing rendezvous under nominal 

conditions and under an actuator fault in a single vehicle and multiple vehicles are 

presented. In Chapter 4, the solution strategy for the surveillance mission is detailed, and 

simulation results are presented to show the effect of sensor, actuator, and both sensor 

and actuator faults on the performance of the UAV team engaged in the surveillance 

mission. Finally, in Chapter 5, the conclusions drawn in this thesis are given, some 

directions for future research are indicated, and the contributions of this thesis are 

reiterated. 



8 

Chapter 2 

Literature Review 

2.1 Coordinated Rendezvous Problem 

Coordinated Rendezvous is a type of Cooperative Timing problem that requires 

multiple UAVs to arrive simultaneously at their destination(s) to maximize the element 

of surprise. In [3], a generalized approach to solving cooperative control problems has 

been detailed. This approach can be applied to problems such as Spacecraft Formation 

Flying, Cooperative Timing, Cooperative Search, and Cooperative Forest Fire 

Surveillance. In [4]-[10], and [15], this approach has been applied to the coordinated 

rendezvous problem, and is divided into three steps. The first step requires the mission 

designer to define the cooperation objective (mission objective) of the team, and the 

cooperation constraints. Cooperation is said to be achieved when relationships between 

state variables, termed as cooperation constraints, are satisfied. The second step involves 

defining the coordination variable and coordination functions. The third and final step 

involves designing a cooperative control strategy for the team, which illustrates the 

process of how the team coordinates to achieve its mission objective. 
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Cooperation requires that an efficient method be developed to facilitate sharing 

of information between a team of vehicles. There are several ways in which information 

can be shared. For example, relative position sensors may enable vehicles to construct 

state information of other vehicles, information may be communicated between vehicles 

using a wireless network, or joint information may be pre-programmed into vehicles 

before the mission begins [7]. In the proposed approach to solving cooperative control 

problems, the strategy is to collect the information that must be shared across the team 

to enable cooperation into a single quantity called the coordination variable. The 

coordination variable represents the minimum amount of information needed by a team 

of vehicles to cooperate in order to achieve the team objective. Coordination functions 

parameteri2e the effect of changing the coordination variable on the objectives of 

individual vehicles. The information modeled by the coordination functions is used to 

determine an optimal value of the coordination variable for the team. 

For the generalized coordinated rendezvous problem for a military application, 

the cooperative objective of a team of UAVs is to arrive at a pre-determined destination 

(a single target or multiple targets) simultaneously to maximize the element of surprise, 

while conserving fuel and minimizing its exposure to threats in the environment. The 

cooperation constraint is the requirement that all vehicles arrive at a single target or 

multiple targets simultaneously. The coordination variable is the estimated time of 

arrival (ETA) of the team at the target. The idea is that if all vehicles are aware of the 

team's arrival time at the target, they will be able to plan their trajectories in order to 

meet the cooperation objective. Each vehicle generates its coordination function, which 
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describes the range of total cost (i.e., combined threat exposure and fuel cost) incurred 

by a vehicle for achieving a given range of arrival times. Coordinated rendezvous is 

achieved by sharing of the coordination functions across the team and the subsequent 

selection of the coordination variable. A Coordination (Intercept, Rendezvous) Manager 

selects the coordination variable, i.e., team ETA such that the combined threat exposure 

and fuel expenditure of the team is minimized. To this end, it uses the coordination 

functions of team members to first select a common range of arrival times for the team, 

and then selects the arrival time with the minimum associated total cost (sum of 

individual vehicle (threat and fuel) costs) for the team. 

In [4] and [5], a system architecture for a single UAV has been proposed, which 

shows how coordination functions are generated, how the team coordination variable is 

selected, and how the individual UAVs plan their trajectories to the target in order to 

satisfy the cooperation objective. The main functional blocks of this architecture are the 

Path Planner, the Target Manager, the Intercept Manager, and the Trajectory Generator. 

The Path Planner of a UAV is responsible for generating threat avoiding straight 

line paths from the vehicle's current position to its destination (target). Depending on 

the vehicle's knowledge of the environment (i.e., its knowledge of the locations of 

threats, and targets in the environment), the Path Planner generates one or more 

candidate paths from the vehicle's initial position to the target. These paths minimize the 

vehicle's exposure to threats and allow it to conserve fuel. The role of the Target 

Manager is to assign a target to a UAV before the beginning of the mission. 
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Once teams have been formed and assigned to their respective targets, the task of 

the Intercept Manager is to ensure that individual vehicles comprising a team arrive at 

their assigned target simultaneously. The Intercept Manager of each vehicle uses the 

candidate paths generated by the Path Planner, and the team assignment created by the 

Target Manager to generate a set of time of arrival ranges, and the coordination function 

for the UAV. Next, to ensure that all the vehicles in a team reach their target 

simultaneously, all team members must share their time of arrival ranges and the 

information modeled by their coordination function. To this end, a cooperative, 

distributed decision and control system has been proposed in [7] in which each UAV 

sends its coordination function and time of arrival ranges to all its team members. 

In [18], it is stated that there are three classes of distributed decision and control 

systems: Hierarchical ([10], [11], and [12]), Behavioural, and Cooperative [7]. The 

Cooperative class is characterized by a minimum level of global information to ensure 

team cohesion and coherence. In the cooperative control architecture proposed in [7], 

each vehicle in the team implements an identical copy of the Intercept (Coordination, 

Rendezvous) Manager algorithm, which is essentially a centralized algorithm 

implemented by each vehicle. It is assumed that the information shared across the team 

is synchronized by the Communication Manager of each vehicle. Hence, the Intercept 

Manager of each vehicle receives identical input data, i.e., coordination functions from 

all the vehicles. The Intercept Manager then selects the same team coordination variable, 

i.e., team ETA. 
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For the rendezvous mission, team ETA is chosen such that the total team cost, 

i.e., the combined threat cost and fuel expenditure of the vehicles forming the team is 

minimized. Once the team ETA is determined, the Intercept Manager of each vehicle 

generates a velocity and a set of waypoints for the vehicle to follow to reach its target. 

The chosen velocity and waypoint path allow the vehicle to reach the target at the given 

team ETA. These set of waypoints and velocity are then passed to the Trajectory 

Generator. The objective of the Trajectory Generator is to smooth the straight-line 

waypoint path that the UAV must follow to reach its target into a time parameterized 

trajectory. 

In [6] and [7], the cooperative control strategy developed in [4] and [5] is applied 

to three cooperative timing missions: simultaneous intercept, tight sequencing, and loose 

sequencing. In [8] and [9], the Intercept Manager has been modeled as a finite state 

machine. Different phases of the mission are planned in each state of the finite state 

machine. 

In [10], [11], and [12], a hierarchical, distributed architecture has been developed 

to address the general problem of cooperative control, and is applied to a cooperative 

rendezvous mission [10]. The hierarchical architecture is redundant, with the same agent 

hierarchy on each vehicle, and consists of three decisions layers, and one control layer. 

At decision level 3 is the team agent, which is responsible for accomplishing the mission 

objective (cooperation objective). It divides the mission objective into sub-objectives for 

the sub-teams, and allocates resources and tasks to the sub-teams accordingly. At 
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decision level 2 is the sub-team agent. This agent performs resource allocation (i.e., 

assigns vehicles in the sub-team to multiple targets), and coordinates the actions of the 

vehicles in the sub-team to perform tasks that require more than one vehicle to 

accomplish. For the cooperative rendezvous mission, the sub-team agent performs 

rendezvous coordination. At decision level 1 is the vehicle agent, which maintains 

models of the area of operation, threats and targets, and is responsible for the tasks of 

path planning, and trajectory generation for an individual vehicle. At the lowest level 

(control level) is the regulation agent, which provides commands to the UAV to 

accomplish tasks such as trajectory generation, changing speed, activating sensors, and 

releasing weapons. 

Depending on the mission scenario and the desired level of detail, the 

coordinated rendezvous problem can encompass the following sub-problems: Path 

Planning, Trajectory Generation, and Task Allocation. 

A Path Planning problem always needs to be solved to generate a straight-line 

waypoint path from a UAV's current position to its desired position such that the 

mission objective and cooperation constraints (mission dependent) are satisfied. If the 

kinematic constraints of a UAV, such as constraints on maximum velocity, and turning 

radius and their effect on the maneuvers a UAV can make, are taken into account, it 

becomes necessary to solve a Trajectory Generation problem. In [13], it is stated that the 

objective of a Trajectory Generation problem is to develop a trajectory that is possible to 

implement in real-time, allows a UAV to traverse between a sequence of waypoints in a 
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time-optimal manner, and that satisfies the kinematic and dynamic constraints of a UAV. 

For the rendezvous problem, in order to satisfy the simultaneous arrival constraint, the 

generated trajectory should be equal in length to the waypoint path produced by the Path 

Planning algorithm. 

In [14], various path planning and trajectory generation schemes have been 

compared and contrasted using the following metrics: threat avoidance, ability to satisfy 

dynamic constraints of a UAV, computational efficiency, and the ability to generate 

trajectories rather than paths. The path planning and trajectory generation strategies that 

have been investigated are Rectilinear Grid, Voronoi Grid, Voronoi Path Filleting, 

Mass-Spring-Damper System [17], Chain-Link System, Voronoi Grid Approximation, 

Polynomial Basis Functions, Cubic Spline Basis Functions, Voronoi Decomposition 

Approach, and Non-Dimensional approaches. In [4]-[10], [15], and [16], the Voronoi 

Grid (i.e., a Voronoi diagram) approach is used to construct a single waypoint path or 

multiple waypoint paths from a vehicle's current position to its target. The generated 

waypoint paths satisfy the mission objective and cooperation constraints. To find the 

optimal paths, graph search algorithms, such as A*, Dijkstra, or k-best path algorithms 

are used to search the Voronoi diagram. To ensure that the generated paths are 

dynamically feasible and are flyable by the UAVs, the following trajectory generation 

schemes have been used: Chain-Link System [9], [16], Voronoi Path Filleting [10], [15], 

and a real-time non-linear filter whose mathematical structure is similar to the 

kinematics of the UAV [4]-[7]. 
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The Task Allocation problem involves developing an assignment algorithm that 

assigns tasks to a team of vehicles. In [4] and [5], a task assignment algorithm based on 

the satisficing decision theory [44] has been detailed. However, in [6]-[9], it has been 

assumed that the UAVs have been assigned to targets (tasks) before the beginning of the 

mission, thereby not requiring a Task Allocation problem to be solved. However, to 

simulate real missions, a Target Manager should be included in the rendezvous problem, 

and a respective Task Allocation scheme should be developed. 

2.2 Multiple UAV Search and Surveillance Problem 

The main objective of research into the Multiple UAV Search problem is to 

develop and evaluate strategies for a team of UAVs searching an environment of known 

dimensions for (stationary and/or mobile) targets under varying operating conditions and 

constraints. Searching an area of interest using a group of vehicles is a problem that 

finds use in both military and civilian applications. Some of the possible missions that 

could benefit from multiple UAVs conducting search are: search-and-rescue operations, 

search-and-destroy missions for previously detected enemy targets, seek-destroy 

missions for land mines, intelligence gathering missions, and surveillance missions such 

as border patrol. 

According to [19], the problem of searching an unknown environment has been 

actively studied in classical search theory, where problems such as optimal distribution 
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of search effort, maximization of the probability of detection of stationary targets, and 

establishment of optimal values of various search parameters have been concentrated on. 

While additions have been made to the search theory literature by inclusion of mobile, 

multiple, and intelligent targets in the problem formulation, solution strategies have only 

been developed for a single searcher, and hence are inapplicable to multiple searchers. 

Moreover, the authors in [19] have pointed out that other realistic considerations such as 

communication constraints, a vehicle's ability to make autonomous decisions, 

information constraints (i.e., availability of only partial information to a vehicle), and 

distributed decision making issues have not been taken into account in search theory 

literature. 

The Multiple UA V Search problem can be formulated in a number of different 

ways, thus requiring the development of corresponding unique solution strategies. The 

variations in the problem formulation are due to the varying objectives of the UAV team, 

the imposed constraints under which the vehicles are operating, the assumptions made 

about the UAVs' capabilities, and the environment of operation. The search 

environment may contain obstacles (e.g., no fly zones such as mountains), multiple, 

stationary and/or mobile, intelligent, known and/or unknown targets, and threats. Hence, 

the composition of a search environment can dictate whether a static or a dynamic 

solution strategy is suitable for solving the search problem. As for constraints, some of 

the prominent ones in the UAV literature are constraints on a vehicle's maneuverability, 

velocity range, endurance time (dependent on the maximum amount of fuel a vehicle 

can consume during a mission), and communication ability (limited range of 



17 

communication). Examples of assumptions made are (but not limited to) the following: 

(1) Vehicles may or may not be capable of wireless communication, (2) The information 

base of the vehicles, representing the state of the environment, might be centralized or 

decentralized, (3) The sensors of the vehicles might have the same or different accuracy 

and ranges, (4) The vehicles may or may not be autonomous (capable of independent 

decision making, and computational capabilities), and (5) The vehicles may or may not 

be identical in terms of their abilities to perform tasks. 

A small sample of papers has been chosen and described briefly below in order 

to illustrate the various aspects of the Multiple UAV Search problem studied in literature, 

and the corresponding solution strategies. 

In [19], the authors have addressed the problem of multiple UAVs carrying out a 

search and surveillance mission based on the uncertainty map of a given unknown 

environment. The uncertainty map represents the a priori knowledge of the location of 

targets, and is comprised of real numbers between 0 and 1. The search environment is 

divided into identical hexagonal cells, where each cell has an associated uncertainty 

value, which represents the extent of the lack of information about a cell. The UAVs are 

directed to fly multiple sorties (or missions). For each mission, the objective of the 

UAVs is to maximize the reduction in uncertainty of the environment under a limited 

fuel constraint, which also constrains the length of the search path each vehicle takes 

since the vehicles have to return to their respective base stations for re-fueling at the end 

of each mission. 



18 

The search algorithm, based on the k-shortest path algorithm, directs individual 

UAVs to search (independently of their team members) through the area of maximum 

uncertainty in the environment while satisfying constraints on their endurance time and 

on the search path. The authors in [19] have compared the performance of their 

algorithm with that of random search and greedy search algorithms, and have shown that 

their algorithm reduces the uncertainty in the environment at a faster rate. However, 

there are several drawbacks of the proposed search strategy. Firstly, the uncertainty map 

remains static during a given search mission. It is updated only after the UAVs have 

returned to their respective base stations, where data acquired by all UAVs is combined 

through communication between base stations to create a global uncertainty map for all 

the vehicles. 

Secondly, only the perfect information case is assumed for the update of the 

uncertainty map, i.e., one in which all base stations share the data collected by their 

respective UAVs to create a global uncertainty map. In [20], the authors have addressed 

this problem by testing the performance of the k-shortest path based search algorithm 

under four different information structures, which are: a fully connected communication 

network, a partially connected communication network, a fully connected 

communication network with delay in information, and a partially connected 

communication network with delay in information. The third drawback of the search 

algorithm is that the search route of each vehicle is generated off-line before the 

beginning of the next search mission based on the local copy of the uncertainty map 
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available to the vehicle. Finally, direct communication between searchers has not been 

addressed since communication only takes place between base stations. 

In [21], the authors have addressed the first, third and fourth drawbacks of [19] 

by introducing a game theoretical framework in which each UAV (agent) updates its 

uncertainty map at every time step after using the position and route information (up to 

that time) of the other UAVs. Hence, at any given time, all UAVs have the same 

uncertainty map, and are aware of the past route and present location of their team 

members. At each time step, the objective of the UAVs forming the team is to select 

their future paths such that the reduction in uncertainty of the environment is maximized. 

To this end, the authors have proposed three search strategies based on notions in game 

theory to direct the UAVs to choose paths to maximize the reduction in uncertainty in 

the environment. These are Non cooperative search strategy using Nash Equilibrium, 

Security Strategy, and Cooperative Strategy. 

In [22], an agent based negotiation scheme has been presented to address the 

problem of communication between vehicles for the search problem presented in [19]. 

The vehicles have a limited sensor range and can communicate with their neighboring 

vehicles only. The objective of each UAV in the team is to coordinate with its 

neighboring UAVs to select search routes such that the collective uncertainty reduction 

of the team is maximized. In this scheme, at the beginning of each time step, 

information is shared between every agent, which is followed by a negotiation process, 
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based on which, every agent selects the next cell in its search route. This process 

continues until the given area is completely searched. 

As in [19], reduction in uncertainty in the environment has been used as a 

performance measure to show that the proposed search strategy outperforms the random 

and greedy search strategies for the cases of complete and partial information exchange 

among vehicles. However, the effects of communication delays and loss of 

communication on the performance of the search strategy have not been studied. 

Moreover, the negotiation scheme has a large communication overhead. In [23], the 

authors have presented self assessment schemes for the search problem in [19]. As in 

[22], each vehicle communicates and coordinates with its neighboring vehicles to select 

search routes such that the team's collective uncertainty reduction is maximized. 

However, the self assessment scheme requires a low communication and computational 

overhead, is scalable to a large number of vehicles, facilitates fast decision making, and 

can be used with partial or complete information sharing schemes during the search 

mission. 

In [24], the authors have proposed a cooperative search approach for a team of 

vehicles, where the objective of each vehicle is to follow a trajectory that would result in 

minimization of the uncertainty about the environment, subject to maneuverability 

constraints. The proposed cooperative search approach solves two interdependent tasks: 

online update of a vehicle's search map, and utilization of the search map to online 

generate a vehicle's search trajectory. Each vehicle continuously updates its search map 
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(a global search map) during the mission by processing information gathered about the 

search environment through its sensors and through communication with other vehicles. 

A q-step ahead planning approach is used by each UAV to generate its path online, 

independently of the other vehicles. Path selection is carried out using a multi-objective 

cost function, which is comprised of the following three sub-goals: 1) Follow the path of 

maximum uncertainty in the search map, 2) Follow the path that leads to the region of 

maximum uncertainty (on average) in the environment, and 3) Follow the path that 

results in minimum overlap between the regions being searched by other vehicles. 

In [25], multiple UAVs must autonomously search a given area such that, given 

some a priori information about target distribution, the vehicles can identify the 

maximum number of stationary targets during their life time, which is determined by 

the amount of fuel carried by the vehicles. To address this problem, the authors have 

formulated a discrete time stochastic decision model, which has been implemented with 

a Dynamic Programming algorithm, and in which gain is defined as the reduction in 

probability of there being an undiscovered target in a searched area. The objective of the 

vehicles is to maximize the total gain (equal to the sum of the individual vehicle gains) 

over their life time. In order to plan trajectories, vehicles use their cognitive maps, which 

represent the state of the environment. Each vehicle updates its own cognitive map 

(divided into unit sized cells) at every time step based on information gained from its 

sensors and the location and heading information of its team members. At every time 

step, each vehicle chooses a path that is q steps ahead of its current position (i.e., q step 

ahead planning), and cooperates with its team members by considering them as 
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stochastic elements. The problem in [25] has been extended in [26] to include the 

following information in the problem formulation: 1) uneven target distributions in the 

environment; 2) inclusion of an event that a detected target might not be a real target; 

and 3) inclusion of threats in the environment. 

In [27]-[31], the authors have considered a team of heterogeneous UAVs 

engaged in a search-and-destroy mission over a given region, divided into cells, 

containing multiple stationary targets but no threats. The locations of some of the targets 

are suspected a priori, while those of others must be discovered through search. The 

UAVs are drawn from two classes: Target Recognition (TR) UAVs, and Attack (A) 

UAVs. Each UAV is equipped with sensors and is capable of communicating with the 

other UAVs. The objective of the UAVs is to cooperatively search the environment, 

confirm suspected targets, discover and confirm new targets, attack these targets, and 

confirm their destruction through battle damage assessment. All these tasks must be 

performed by the UAV team in such a way that the entire environment is searched as 

rapidly as possible, and all targets are neutralized. In [27], [29], and [30], it has been 

assumed that before the beginning of the mission and during its progress, all UAVs have 

instantaneous and noise-free access to a centralized information base. In [27], a search 

algorithm has been developed for directing the UAVs to search for unknown targets, and 

an assignment algorithm for assigning UAVs to the known or newly discovered target 

locations. Simulations have been conducted to show that: (1) Team composition (ratio of 

TR UAVs to A UAVs) affects the target neutralization time but has relatively no effect 

on the total mission time; and (2) As the number of unknown targets in the search 
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environment increases, a search driven algorithm (one in which a UAV follows a path 

of least certainty, i.e., a path along which chances of finding targets is maximum) 

neutralizes all the targets as well as searches the entire environment faster than the non-

search driven algorithm (one in which a UAV chooses its path randomly). 

In [28], the authors have extended their results in [27] by decentralizing the 

information base of the vehicles. In [29] and [30], prediction has been included in the 

assignment process. The motivation for adding prediction to the assignment process is 

that it allows UAVs to bid for tasks that may become available in the future, and 

provides assignments for UAVs that do not have the expertise to perform any currently 

available tasks. In [31], the following items have been added to the problem in [27]: 

limited communication range and periodic communication between vehicles, 

decentralization of the information base of the vehicles, and decentralization of the 

decision making process. 

In [32], two algorithms, namely Best Leader Cooperative Search, and Optimal 

Best Path Cooperative Search have been proposed for a cooperative search problem 

involving a team of UAVs engaged in searching an environment with unknown 

opportunities and hazards. The objective of the team is to maximize its visits to the 

regions of opportunity, while minimizing visits to the regions of hazard subject to two 

constraints: (1) the UAVs must always remain within a communication range of one 

another, and (2) there should be no collisions between UAVs. 
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In [33], a search-theoretic approach based on the concept of rate of return (ROR) 

maps has been used to develop cooperative search plans for a team of UAVs searching a 

given environment, divided into cells, for multiple, stationary, and non-hostile targets. 

The objective in search theoretic problems is to find the optimal allocation of effort in an 

environment within a given constraint on effort. The ROR map shows the benefit of 

searching a cell with a small increment of effort. The ROR in a cell decreases as a cell is 

searched and may suddenly decrease if a target is found. Two cooperative search 

strategies and a non-cooperative search strategy have been compared to show the 

benefits of cooperative search. In the non-cooperative search strategy, i.e., random 

search, UAVs move in random directions within the cells (rectangular search regions) 

without using a priori information about target locations. One of the cooperative search 

strategies is the greedy search in which UAVs search the cells with the highest ROR, 

while the other assigns a UAV to search the cell with the highest ROR that has not been 

assigned to another searcher. 

In [34], a group of UAVs is used to search a predefined ground area, containing 

multiple stationary and relatively slow mobile targets and decoys. The UAVs must 

systematically search the given area until a target is found and confirmed. The objective 

of the team is to minimize the total path length covered by the individual vehicles while 

exhaustively searching the given area, and performing a second sighting of potential 

targets. The proposed approach depends on prior definition of search lanes, and takes 

into account realistic considerations such as wind disturbances, vehicle faults, and 

existence of decoys, and the resulting delays in the flight plans. However, uneven 
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probability of target distribution, dynamics in the information about target location, and 

the role of communication between vehicles have not been addressed. 

In search theory literature, most problem formulations consider a cellular 

environment in which uncertainty about target existence is modeled in a probabilistic 

manner by assigning an uncertainty value (or probability of target existence) to each 

cell. The uncertainty value (ranging between 0 and 1) associated with a cell reduces as a 

function of time spent by the UAV searching the cell. Each vehicle carries a probability 

map, which contains the probability of target existence (uncertainty value) associated 

with each cell. It is assumed that the uncertainty value associated with each cell is 

precisely known at the beginning of the search mission. The UAVs are then tasked to 

search the cells with the highest probability of target existence. However, the authors in 

[35] argue that the probabilities of target existence associated with each cell are often 

determined as a result of prior intelligence gathering missions, and are most likely not 

exactly known due to poor intelligence or noisy sensors. Hence, they have proposed a 

new framework for search operations that takes into account the uncertainty in 

information about target existence. The proposed approach uses the Beta distribution to 

model the uncertainty in the prior probability of target existence in each cell, and 

generates search actions that are robust to this uncertainty. Use of the Beta distribution 

allows one to analytically predict the number of observations needed by a UAV in a 

particular cell to determine above a specific threshold of confidence whether a target 

does or does not exist in the given cell. In [36], the authors have extended their 
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framework in [35], which accounted for uncertainty in probability of existence for 

stationary targets to include dynamic targets. 

In [37], the authors have considered two UAVs engaged in a search and destroy 

mission over a given search space, which contains randomly distributed targets, and a 

number of non-targets, which are either decoys used to deceive the UAV sensors, or are 

civilian structures whose radar signature may be confused with that of a real target. Two 

engagement strategies, namely cooperative and non-cooperative search and attack have 

been compared to quantify the benefits of cooperation. In the cooperative strategy, the 

two UAVs divide the search area, and independently search for targets until a potential 

target is discovered. Once a target is discovered, and identified as a real target (and not a 

decoy), the discovering UAV informs the other UAV of its decision to attack, and 

subsequently attacks the target. The role of the second UAV is to travel to the location 

of the discovered target and perform battle damage assessment. If the target was not 

destroyed by the first UAV, the second UAV will attack. However, if the target has been 

destroyed, the second UAV will travel back to its search region to continue with its 

search. The simulations results show that the advantages of cooperation are dependent 

upon the target density, the kill probability of an individual attack, and the probability of 

correct identification of a target. 

To summarize, references [19]-[26], and [32]-[37] address the Multiple UAV 

Search problem, wherein cooperative and non-cooperative search strategies are 

developed. References [19]-[24] assume that a team of UAVs is involved in both a 
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search and surveillance mission. Whereas, references [27]-[31], and [37] address the 

Cooperative Search and Destroy problem by developing algorithms for both the 

Multiple VAVSearch and task allocation problems. 

The Multiple UAVSurveillance problem is addressed by references [3], and [38]-

[41]. According to the authors in [41], surveillance is different than search, wherein the 

goal is to locate targets present in the search environment. However, for a surveillance 

mission, the location of the target (or targets) is already known to the UAVs, and the 

goal of each UAV in the team is to use its resources (camera, sensor) to closely observe 

the given target (a geographical region for border patrol, a region of specified radius in 

open-ocean for maritime surveillance, the perimeter of a wildfire, etc.). According to the 

authors in [3], numerous applications require aerial surveillance. Civilian applications 

include monitoring forest fires, oil fields, pipelines, oil spills, and tracking wildlife, 

whereas military and homeland security applications include border patrol, maritime 

surveillance, monitoring the perimeter of nuclear power plants, and mobile combatant 

surveillance. 

The authors in [3] have presented an overview of a cooperative control strategy 

for a team of UAVs performing two different aerial surveillance missions. In the first 

mission, a team of UAVs equipped with imaging sensors is tasked to persistently image 

a known target. The second mission is cooperative identification, where each UAV in 

the team is required to fly along different approach angles over a target simultaneously. 

The cooperative control strategy involves four phases, which are the definition of a 



28 

cooperation objective and cooperation constraints, the definition of coordination 

variable and coordination functions, and the development of a centralized cooperation 

strategy, which is transformed into a decentralized strategy using consensus schemes. 

In [38], [39], and [40], perimeter surveillance algorithms have been developed 

for a team of multiple, low-altitude, short endurance (LASE) UAVs, which are tasked to 

cooperatively monitor and track the propagation of a forest fire. By definition, perimeter 

surveillance is the process of gathering data at all points of the perimeter and 

transmitting it to a base station for analysis. The objective of the team is to cooperatively 

gather information about the state of the perimeter (i.e., to capture images along the 

perimeter of the fire and then share them with one another), and to upload the location of 

the changing fire perimeter with associated imagery to a base station as frequently and 

with as little delay as possible. Hence, the two performance metrics that are used to 

measure the performance of the proposed centralized and decentralized monitoring 

algorithms are: (1) the information update frequency at the base station, and (2) the 

maximum time delay required to transmit information to the base station. 

Each vehicle is equipped with an infrared camera and is subjected to a limited 

communication and flight range (due to limited fuel), and a turning constraint. A path 

planning algorithm and a centralized cooperation scheme has been developed in [38], 

which is extended in [39] to include a decentralized cooperative monitoring scheme, and 

a real-time tracking algorithm that allows a UAV to track the perimeter of a fire using an 

onboard infrared sensor. The decentralized perimeter surveillance algorithm is solved 
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using the notion of coordination variables, wherein agents must share the minimum 

amount of information in order to cooperate. Information shared among agents is the 

perimeter length, and the number of agents forming the team. The advantages of the 

decentralized approach, initially proposed in [40], include the ability to monitor a 

changing fire perimeter, the ability to systematically add and remove UAVs from the 

team, and the ability to supply time-critical information to forest fire fighters. 

2.3 Fault Detection and Isolation of Sensor and 

Actuator Failures in UAVs 

A fault is defined as an unexpected change that leads to the corruption of the 

overall performance of the system [48]. In any system, the occurrence of a fault will 

negatively affect the performance of the system and cause it to deviate from the norm. 

However, for critical and complex autonomous systems such as UAVs, the severity of 

faults in its subsystems, such as sensors, actuators, communication systems, and the 

guidance system can have drastic consequences. Hence, it is imperative that if a fault 

occurs in any of the subsystems of a UAV, it should be detected, and isolated in a timely 

manner, and algorithms should be designed that allow the vehicle to (partially) recover 

from these faults. 

In the Coordinated Rendezvous and Multiple UAV Search and Surveillance 

literature the effect of faults in the critical subsystems on the performance of a UAV has 

been largely ignored. In these areas, the main focus has been on the development of 
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efficient algorithms that allow a single vehicle or team of vehicles to effectively carry 

out the requirements of the given mission. However, this does not mean that fault 

detection and isolation techniques have not been investigated for UAVs. A brief 

description of a small sample of the papers addressing fault detection and isolation of 

sensor and actuator failures in UAVs is given below. 

In [45], an Integrated Retrofit Reconfigurable Flight Controller has been 

developed and implemented to compensate for control effector damage. The adaptive 

control system is capable of detecting and identifying flight-critical actuator failures and 

control effector damage, and is able to reject the state-dependent disturbances that arise 

due to the asymmetry of the damaged vehicle. The types of actuator faults that have 

been presented are: (1) Lock-In-Place (LIP) Failure; (2) Hard-Over Failure (HOF); (3) 

Float Type of Failure; and (4) Loss of Effectiveness (LOE). 

In [46], a sensor fault detection and diagnosis system has been developed for, 

and tested on an autonomous helicopter. The authors have utilized a model based Fault 

Detection and Identification (FDI) approach and have used Luenberger observers for 

observer-based residual generation. In the model-based FDI approach, all the 

information on the system can be used to monitor the behavior of the plant, including 

the knowledge about its dynamics [46]. The five different types of sensor failures that 

have been modeled are: (1) Total sensor failure; (2) Stuck with constant bias sensor 

failure; (3) Drift or additive-type sensor failure; (4) Multiplicative-type sensor failure; 

and (5) Outlier data sensor failure. 
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Total sensor failure is a catastrophic failure, in which at a given point in time, the 

sensor stops functioning. The output of the sensor is then a constant zero. This failure 

can be caused by electrical or communication problems. In (stuck with constant bias 

sensor failure), the sensor gets stuck with a constant bias, and the output (thereafter) 

remains constant [46]. Drift or additive-type sensor failure is a very common failure in 

analog sensors [46]. It is caused by internal temperature changes or calibration problems. 

The sensor output has an added constant term (the drift) [46]. A scaling error in the 

sensor output is responsible for the multiplicative-type sensor failure. In this failure type, 

a multiplicative factor is applied to the sensor nominal value [46]. Outlier data sensor 

failure occurs in GPS sensors. It is a temporal failure. The GPS sensor outputs a single 

point with a large error. However, the measurements following this error are correct. 

Possible causes of the error are failures in the GPS internal signal processing algorithms, 

and temporary satellite signal blocking. 

The authors in [47] have developed an approach based on the Interacting 

Multiple Model (IMM) Kalman Filter for sensor and actuator failure detection and 

identification (FDI) and fault tolerant control (FTC). The FDI-FTC approach has been 

tested on a linear simulation of Bell Helicopter's Eagle-Eye UAV. Simulation results 

show that the proposed approach is able to: (1) rapidly and reliably detect and identify 

all single and multiple (simultaneous) sensor failures; (2) detect and identify all single 

actuator failures; and (3) to detect, identify and control the UAV under combined, 

simultaneous actuator and sensor failures [47]. 
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2.4 Conclusion 

In this Chapter, we have presented the Coordinated Rendezvous and Multiple 

UAV Search and Surveillance problems in detail. Coordinated Rendezvous is a type of 

Cooperative Timing problem that requires multiple UAVs to arrive simultaneously at 

their destination(s) to maximize the element of surprise. The main objective of research 

into the Multiple UAV Search problem is to develop and evaluate strategies for a team of 

UAVs searching an environment of known dimensions for (stationary and/or mobile) 

targets under varying operating conditions and constraints. The Multiple UAV 

Surveillance problem is different than the Multiple UA V Search problem, wherein the 

goal is to locate targets present in the search environment. However, for a surveillance 

mission, the location of the target(s) is already known to the UAVs, and the goal of each 

UAV in the team is to use its resources (camera, sensor) to closely observe the given 

target (a geographical region for border patrol, a region of specified radius in open-

ocean for maritime surveillance, the perimeter of a wildfire, etc.). 

The focus of this thesis is on determining: (1) the effect of the actuator fault on 

the coordination algorithm in the Coordinated Rendezvous/Strike mission; and (2) the 

effect of actuator and sensor faults on the performance of UAV team performing the 

Multiple UAV Surveillance mission. While fault detection and isolation of sensor and 

actuator faults or failures is not the subject of this thesis, for sake of completeness, we 

have included some literature on this subject matter as well. 
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Chapter 3 

Coordinated Rendezvous Mission 

3.1 Background Information 

Coordinated Rendezvous is a type of cooperative timing problem, in which 

multiple vehicles must jointly reach a single destination or multiple destinations while 

minimizing their combined exposure to threats in the environment of operation and 

conserving fuel. 

In [4] and [5], the authors have addressed the coordinated rendezvous problem 

involving a team of UAVs, which must simultaneously arrive on the boundary of the 

radar detection region of multiple targets, while avoiding multiple threats. The approach 

has been illustrated through a case study involving 5 UAVs, 6 targets, and 36 threats. 

The locations of the targets are known before the start of the mission. The threats in the 

environment are of two types: known and pop-up. The locations of known threats are 

known by the UAVs at the start of the mission whereas the locations of pop-up threats 

become apparent only when they come within a vehicle's sensor range. It is assumed 

that individual UAVs fly at different, pre-assigned altitudes, thereby ensuring collision 

avoidance. Moreover, multiple UAVs can be assigned to a single target, while some 

targets can be unassigned. The mission objective (for the UAVs) is to visit all the targets, 

while minimizing the risk to each individual UAV [5]. To reduce risk to the UAVs, the 
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distance between the UAVs and the threats should be maximized, and the targets should 

be simultaneously engaged by multiple UAVs in order to increase the element of 

surprise. 

To address the coordinated rendezvous problem, the authors in [4] and [5] have 

proposed the system architecture shown in Figure 3.1. 

Communication 
Manager 

Target L 
Manager j 

^ \ T a r g e t 

Possible paths--

Intercept 
Manager 

Way-points j Flag 

Trajectory 
Generator 

Desired Trajectory ! I Trajectory 

\... L 
Controlled 

UAV 

Figure 3.1: System architecture for a single UAV [4], [5]. 

The four main functional blocks of the system architecture are the Path Planner, 

Target Manager, Intercept Manager and the Trajectory generator, which solve the 

problems of UAV Path Planning, Multi-Vehicle Task Allocation, Coordinated UAV 

Intercept, and Trajectory Generation. Each vehicle implements each of these functional 

blocks separately. The decisions reached by these functional blocks have to be 

synchronized among the different UAVs [5]. Synchronization of information is carried 

out by the Communication Manager. 
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The Path Planner is responsible for generating a set of feasible candidate paths 

between the UAV and each target. The paths are generated from each vehicle's current 

(initial) position to the location of each target. The development of paths involves two 

stages. In the first stage, a threat based Voronoi diagram is created to generate possible 

paths from each UAV's initial position to the location of each target. Each edge of the 

Voronoi diagram is assigned two costs: the threat cost and the length cost (or the fuel 

cost). 

While traveling along the ith edge, the threat cost incurred by a UAV is based on 

its exposure to radar sites located at all the threats present in the environment. It has 

been assumed that the radar signature of a UAV is uniform in all directions and is 

inversely proportional to the distance from the UAV to the threat to the fourth power, 

that is y 4 . The threat cost associated with the ith edge is calculated at three points 

along the edge, and is given by: 

N( 

threat,i ~ / J 
5 /=1 n 

+ • 
J 4 74 74 

U\lb,i,j aM2,i,j a5/6,iJ 
(3.1) 

where 

• N: the total number of threats 

• d]/2,ij '• the distance from the Vi point on the ith edge to the j ' threat 

• a: the constant scale factor 

• Lj: the length of edge i 
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The length cost associated with the ith edge is given by: 

Jlenghtj = A (3.2) 

The total cost incurred by a UAV for traveling along the ith edge of the Voronoi diagram 

is a weighted sum of the threat cost and the length cost associated with the given edge, 

and is given by the equation: 

^i = ^length,! +V~ KVthreatj (3-3) 

where 

0< K <1: weighting factor that allows weight to be placed on either exposure to threats or 

path length 

Once the total cost associated with each edge is determined, the second stage 

involves searching the Voronoi diagram to find the set of k lowest cost candidate paths 

between the initial location of each UAV and the location of each target. A variation of 

Eppstein's k-best paths algorithm has been used to search the Voronoi diagram. A 

shortest path algorithm is used to produce a shortest path such that a performance 

objective (cost) is minimized. A k-shortest paths algorithm produces a list of k paths, 

with monotonically increasing costs, starting from the shortest path. 

Each vehicle's Target Manager selects a set of potential targets for the vehicle, 

which is then communicated (through the communication manager) to all the other 
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vehicles to select a team assignment. The Target Manager assigns a UAV to a target 

such that the following constraints are satisfied: 1) Each target should have (if possible) 

multiple UAVs assigned to it; 2) The overall team cost (sum of the individual UAV 

costs) should be minimized; and 3) The number of targets destroyed should be 

maximized. While assigning targets to UAVs, the Target Manager takes into account 

four competing objectives, which are: The group path length to the target should be 

minimized (ShortPath); The group threat exposure should be minimized {AvoidThreats); 

To maximize survivability, the number of vehicles engaging each target should be 

maximized (MaxForce); and The number of targets visited should be maximized 

(MaxSpread). The ShortPath and AvoidThreats objectives are used by the target manger 

to determine target assignments for individual vehicles whereas the MaxForce and 

MaxSpread objectives are used to determine target assignments for teams of vehicles. 

The target assignment problem has been solved using the satisficing and social welfare 

paradigms [44]. 

Once the teams have been formed and assigned to their respective targets, the 

task of the Intercept Manager is to ensure that individual vehicles comprising a team 

arrive on the radar detection boundary of their assigned target simultaneously. 

Coordinated intercept is achieved by selection of the coordination variable, which is the 

minimal amount of information needed by the vehicles to achieve the task of 

simultaneous intercept. The team-optimal time over target (TOT*) has been chosen as 

the coordination variable. As shown in Figure 3.2, the Cooperative Path Manager selects 

the TOT* value for the team. Each vehicle implements an identical copy of the 
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Cooperative Path Manager algorithm. The process of selecting the TOT* value is shown 

in Figure 3.2 and is described briefly as follows. 

Resource Al locat ion Manager 

team and target 
assignments 

mission 
status 

Cooperative Path Manager 
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(2) 
Choose TOT* to minimize 2-i 

subject to TOT* e ^STOT,I 
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(1) 
Determine feasible TOT range: STOTJ 
Calculate coord, function: JrffOT') 
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roT=gfcyo 

> j , = h(TOT) 
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Plan path (determine ^j ,Vj) to 
match TOT* that minimizes J I (4T ,VJ) 

path description 
(to trajectory generator), 

4i.Vi 

Figure 3.2: Cooperative path planning algorithm [4], [5]. 

At first, the Intercept Manager of each vehicle calculates a set of feasible time 

over target (STOTj) ranges, and the coordination function, J, (TOT) . The STOTj for each 

UAV are based on the feasible candidate paths for that UAV found from a search of the 

Voronoi diagram, and the feasible range of its velocity. Each vehicle's coordination 

function, J^TOTj) is determined from the following relations: 

•th TOT, = fig, , Vj) is the time over target for the i1" UAV 

where 
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£ : the waypoint path followed by the ith UAV to reach the target, 

Vj: the forward speed of the ith UAV. 

J i = g(^i •> Vj) is the total cost (threat and fuel) incurred by the iA UAV to travel along the 

waypoint path £, at a speed Vj. 

A 

For a given vehicle, J/(TOTj) parameterizes the total cost incurred by the vehicle 

( J i = g(^i»%)) versus the vehicle's time over target (TOTj = f(^ , Vj)), and is given by: 

Ji(TOTi) = Ji{gi,\i) (3.4) 

For a specific waypoint path, £z- and forward speed, Vj, the time over the target for the 

ith vehicle, TOTf takes on a unique value (and is equal to the length of the waypoint path 

divided by the forward speed of the vehicle). For achieving a given TOTj, a vehicle 

incurs a combined fuel (or length) and threat cost, given by J; = g(£; , Vj), which has 

been defined in Equation (3.3). Hence, the coordination function of the il vehicle 

models the cost to the vehicle for achieving a particular time over target (TOTj). 

Each vehicle then sends its coordination function and time over target ranges to 

the other vehicles forming the team through its Communication Manager. Based upon 

its own coordination functions and time over target ranges and those received from its 

team members, each vehicle's Cooperative Path Manager selects the TOT* value (the 

team-optimal time over target) such that the following conditions are satisfied: 1) the 
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chosen TOT* value is common to all UAVs, and 2) the collective threat exposure of the 

team (i.e., the sum of the coordination functions of the individual vehicles forming the 

team) is minimized. The chosen TOT* is given by: 

N 

TOT* = argmin £ / , . (3.5) 

/=i 

subject to 

TOT*enST O T i 

It is assumed that the information shared across the team is synchronized and hence, the 

TOT* value calculated by all vehicles forming a team is identical. Once the TOT* value 

is calculated, the Intercept Manager of each vehicle generates a velocity and a set of 

waypoints for the vehicle to follow to reach its target. These set of waypoints and 

velocity are then passed to the Trajectory Generator. 

Each vehicle's Trajectory Generator is then responsible for planning a threat-

avoiding trajectory to the target while satisfying the TOT* value, and the constraints on 

the vehicle's velocity and maximum turning radius. The Trajectory Generator is 

calculated using the following differential equations (kinematics): 

X? 
V 
rf 
V? 
hf-

= vf 
= vf 
= K, 

= M2 

= 0 

cosy/f 

sin i//f 

(3.6) 

where: 
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{Xfjf): desired inertial position of the /'* UAV 

if/f : desired heading of the i'h UAV 

Vf: desired velocity of the i,h UAV 

hf: desired altitude of the i'h UAV 

ux,u2: input signals that are constrained by the heading rate constraint and the 

acceleration constraint 

For the coordinated rendezvous strategy proposed in [4] and [5], teams are 

created and assigned to targets before the beginning of the mission. Moreover, the initial 

TOT* value is also selected before the beginning of the mission by the Cooperative Path 

Manager (residing on each UAV) based on the location of the targets (all are known), 

and the known threats. All vehicles in a team then follow paths that allow them to arrive 

simultaneously at their respective target at the time TOT*. When a UAV encounters a 

pop-up threat, its Target Manger, Intercept Manager, and Path Planner have to be 

reinstantiated with the new threats list (containing the previously known threats and the 

new pop-up threat(s)). Hence, a new TOT* is generated for the team and each vehicle 

re-plans its path to the target such that the new TOT* value is satisfied and the team cost 

is minimized. 

In [6] and [7], the authors have shown that their cooperative control strategy 

developed in [4] and [5], based on the principle of coordination variable and 
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coordination functions can be applied to cooperative control problems other than 

coordinated rendezvous. To this end, they have applied their cooperative control 

strategy to three cooperative timing problems: Simultaneous Arrival (Coordinated 

Rendezvous), Tight Sequencing, and Loose Sequencing. To illustrate their approach to 

these problems, the authors have considered a team of 3 UAVs, which must travel 

through a 5 sq-km battle area, populated with one target and 33 threats (radars). For each 

cooperative timing problem, the objective is to coordinate the arrival of the team of 

UAVs at the target such that the team's exposure to threats is minimized and a given 

timing constraint (different for each cooperative timing mission) is satisfied. Individual 

vehicles must also satisfy velocity and heading rate constraints. 

The Simultaneous Arrival problem constrains N vehicles to arrive at their 

destinations (single or multiple) simultaneously. The coordination variable is the time of 

arrival of the team at the target(s), and the coordination function of each vehicle 

describes the range of total cost incurred by the vehicle for achieving a given range of 

arrival times. The simultaneous arrival constraint is given by: 

T =T - —T=T 

where 

Ts: the coordination variable 

Tg - HJV^/Vj : the time of arrival of the ith vehicle 

where: 

L{Wt): the length of the waypoint path, Wi 
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v,.: velocity of the ith UAV 

The Tight Sequencing problem requires that all vehicles on the team should 

arrive at their target(s) in a specified sequence, and enforces specified intervals between 

the arrival times of the vehicles composing the team. Hence, the tight-sequencing 

constraint for a team of N vehicles is given by: 

T,.=TS+^, i = 2,...,N 

where 

A.: the time interval between the arrival of the first and the ith vehicles 

Ts : the coordination variable, and is the time of arrival of the first vehicle at its target 

The Loose Sequencing problem requires all vehicles on the team to arrive at their 

target(s) in a specified sequence, with the time intervals between arrival times of 

individual vehicles given as acceptable ranges. The loose sequencing constraint for a 

team of N vehicles is given by: 

Ts<T,<Ts+r, 

r s+A,. <T, <r5+A,.+r, . , i = 2,...,N 

where 

A.: the interval between the opening of the first time window and the opening of the ith 

time window 
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tj: the duration of the ith time window 

Ts: the coordination variable, and is the time of arrival of the first vehicle at its target 

The team of three vehicles flies three different missions: simultaneous arrival, 

tight sequencing, and loose sequencing. The environment of operation remains the same 

for all three missions. For each timing mission, the coordination function for each 

vehicle describes the range of total cost incurred by the vehicle for achieving a given 

range arrival times. The coordination variable for the simultaneous arrival mission is the 

arrival time of the entire team at the target, whereas for the tight sequencing and loose 

sequencing missions, the time of arrival of the first vehicle at the target is chosen as the 

coordination variable. 

To address the cooperative timing problems, the authors in [7] have proposed a 

distributed cooperative control architecture, as shown in Figure 3.3. 
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Figure 3.3: Cooperative control architecture for team of UAVs [7], where WPP denotes 

the Waypoint Path Planner, DTS denotes the Dynamic Trajectory Smoother, and CFj 

denotes the Coordination Function of the ith vehicle. 

According to this architecture, the coordination variable is selected based on a 

consensus among the individual vehicles. The architecture of the individual vehicles is 

illustrated by Figure 3.4, and includes a Coordination Manager (CM), a Waypoint Path 

Planner (WPP), and a Dynamic Trajectory Smoother (DTS). Each vehicle implements 

each of these functional blocks separately. 

Coordination Manager (CM) 
Calculates and communicates coordination functions 

Chooses paths that minimize threat exposure and satisfy timing 
constraints 

Waypoint Path Planner (WPP) 
Plans low-cost candidate waypoint paths 

cuonliiiaieU 
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"̂  j Dynamic Trajectory Smoother (DTS) 
| Smoothes waypoint paths to produce livable trajectories * 
I ; livable trajectories 

"'" "" " " " ' tulJAVuutupilot 

Figure 3.4: Trajectory-planning architecture [6], [7]. 
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As in [4] and [5], the Coordination Manager implemented on each UAV is 

identical. As shown in Figure 3.4, the Coordination Manager of a vehicle computes the 

coordination function, sends it to the other vehicles in the team, receives the 

coordination functions from the other vehicles in the team and then subsequently 

chooses the team-optimal coordination variable. Since all the vehicles are aware of each 

other's coordination functions, it is assumed that the Coordination Manager of each 

vehicle computes the same team-optimal coordination variable. 

Figure 3.5 shows the time of arrival of the individual vehicles at the target for the 

three different cooperative timing missions. For each of the missions, the x-axis denotes 

the arrival time and the y-axis denotes the total cost incurred by the individual vehicle 

for achieving a given arrival time. Each line segment represents the total cost incurred 

by a given vehicle for achieving a given arrival time while traveling along a specific 

waypoint path, Wt at a velocity, v, . Hence, the line segments for an individual UAV 

represent the vehicle's coordination function. From Figure 3.5, we can see that each line 

segment is monotonically increasing. This is because the authors in [7] have set up the 

environment in a manner (i.e., chosen the position of the threats, the target, the UAVs, 

and the value of the weighting factor *") that ensures the individual vehicle cost for a 

given waypoint path is minimum at the earliest possible arrival time (which is also 

associated with the maximum possible velocity at which the vehicle can fly along the 

given waypoint path). 
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Figure 3.5: Coordination Functions for the three cooperative timing missions [7]. 
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For all three missions, the process of obtaining the arrival time of the individual 

members of the team is different. For the simultaneous arrival mission, the best 

coordination variable for the team (i.e., arrival time for all members in the team) is 

chosen such that the collective threat exposure of the team is minimized. In Figure 3.5, 

the arrival time for all the team members engaged in the simultaneous arrival mission is 

450 seconds. This arrival time is chosen such that the sum of the total costs of the 

individual vehicles (note that the value of each vehicle's cost is represented by a circle) 

is minimized. It should be noted that the minimum value of an individual vehicle's total 

cost does not necessarily correlate with the team's arrival time. Hence, the chosen 

arrival time is best from a team's perspective, and not necessarily ideal from an 

individual vehicle's perspective. 

For the tight sequencing mission, the coordination variable, i.e., the time of 

arrival of the first vehicle (UAV1) at the target is chosen such that the total cost incurred 

by the vehicle to reach the target is minimized. In the middle plot of Figure 3.5, the 

desired arrival time of UAV1 at the target is 450 seconds. This arrival time corresponds 

to the minimum possible value of the total cost incurred by UAV1. Earlier, we stated 

that the tight-sequencing problem enforces specified intervals between the arrival times 

of the team members. For the tight-sequencing mission in Figure 3.5, there is a 40-sec 

interval between the arrival times of UAVI and UAV2, and a 50-sec interval between 

the arrival times of UAV2 and UAV3. Hence, in the tight-sequencing plot, the second 

vertical line represents the arrival time of UAV2 at the target (490 seconds) and the third 

vertical line represents the arrival time of UAV3 at the target (540 seconds). 
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For the loose sequencing mission, each vehicle has a desired arrival-time 

window within which it should arrive at the target. In the loose-sequencing plot in 

Figure 3.5, the shaded regions represent the desired arrival-time (at the target) windows 

of the individual vehicles. The arrival-time windows of UAV1 and UAV2 are 20 

seconds wide, whereas the arrival-time window of UAV3 is 30 seconds wide. Given 

these arrival-time windows, the coordination variable, i.e., the time of arrival of the first 

vehicle (UAV1) at the target is chosen to be the upper limit of its time window. Hence, 

the arrival time of UAV1 is selected to be approximately 450 seconds. If there are 

several paths that the first vehicle can follow to achieve the team-optimal arrival time, it 

selects the path at which it incurs the minimum cost. The arrival time of every other 

vehicle in the team is chosen from within its desired arrival-time window, and is 

associated with the minimum cost (combined fuel cost and threat cost) incurred by the 

vehicle. 

Once the team coordination variable has been generated, each vehicle's 

Coordination Manager uses the Waypoint Path Planner to generate a velocity and a set 

of waypoints for the vehicle to follow. This set of waypoints is then passed to the 

Dynamic Trajectory Smoother, which produces a flyable trajectory, subject to the 

dynamic constraints of the vehicle. 

The authors in [8] and [9] have focused on the implementation of the rendezvous 

manager. In [8], the rendezvous manager is implemented as a state chart. As shown in 

Figure 3.6, the rendezvous manager plans the UAV team mission in four phases. 
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Rendezvous Manager Statechart 
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Figure 3.6: Rendezvous manager statechart [8]. 

The goal of the mission is for a team of three UAVs to simultaneously arrive at a 

single known target while maximizing the survivability of the team, which is a sum of 

the individual vehicle costs. Each vehicle's cost is a sum of its fuel cost, Jf, and its threat 

cost, J,, which are given by the following equations: 

Jf=Cfv(ll+lh) 

J,=C, I, + c\ 
(I \ 

JL 

(3.7) 

(3.8) 

where 

v : velocity of the UAV 

1,: path length in the low-threat region 

file:///communicate
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lh: path length in the high threat region 

Cf, Q, and Q: weighting factors 

In the first phase of the mission, the UAVs are en route to the battle area, which 

is divided into high threat and low threat regions by a threat boundary along which 

threats can pop-up. Once the UAVs enter the battle area, phase II begins. In this phase, 

assuming no pop-up threats along the boundary, the rendezvous manger of each vehicle 

follows the cooperative control strategy explained in [4] and [5] to select a team-

optimal ETA (coordination variable) such that the team's combined threat exposure is 

minimized and fuel is conserved. Next, the Rendezvous Manager of each UAV plans a 

trajectory to the target that avoids the known threats, and ensures that the team-optimal 

ETA is matched and the vehicle's constraints on velocity, heading rate and fuel are 

satisfied. The UAVs travel along these trajectories until a pop-up threat is detected, 

which leads to the third phase of the mission. In the third phase, individual vehicles have 

to recalculate their coordination functions, and ETA ranges, which are then used by each 

vehicle's Rendezvous Manager to determine a new team-optimal ETA. Subsequently, 

each vehicle plans a new trajectory (to the target) that avoids the pop-up threat(s), 

satisfies the team-optimal ETA, and does not violate its dynamic constraints. Thus, 

whenever a new pop-up threat is encountered, a new coordination variable has to be 

determined and all the vehicles have to re-plan their trajectories. Once the threat 

boundary is crossed, phase IV begins. In this final phase, the UAVs re-calculate their 

desired heading to the target while ensuring simultaneous intercept. 
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In [9], the rendezvous manager is modeled as a state machine, and runs 

concurrently on each UAV participating in the rendezvous mission. The mission 

objective is for three UAVs to arrive at their individually assigned targets 

simultaneously while satisfying two competing constraints. The first constraint requires 

the vehicles to have sufficient fuel to be able to return to base while the second requires 

the vehicles to minimize their exposure to both known and pop-up threats en route to 

their targets. 

[start mission] 

[dropped from team] 

! Plan Egress 

[threat detected, attacking] 

[fuel too low] 

[threat detected, egressing] 

Figure 3.7: Rendezvous manager state machine [9]. 

As shown in Figure 3.7, there are three states in the Rendezvous Manager state 

machine. At the beginning of the mission, the Rendezvous Manager of each vehicle is in 

the Plan Rendezvous state. In this state, using the locations of the targets and the known 

threats, the Path Planner of each vehicle (comprising the team) determines multiple 

candidate paths for the UAV through the threats to its target. The Rendezvous Manager 

of each vehicle then determines the coordination function and range of arrival times for 

the vehicle, and sends this information through the Communication Manager (shown in 

Figure 3.1) to all the vehicles in the team. Then, using the coordination functions and 
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range of arrival times of all team members, each Rendezvous Manager calculates 

feasible team ETA ranges. Next, the Rendezvous Manager of each vehicle selects the 

same optimal team ETA, which ensures the minimization of the collective threat 

exposure of the team while ensuring that the UAVs would have sufficient fuel to return 

to base. Finally, the Rendezvous Manager selects the best paths for the individual UAVs 

to achieve the team ETA. 

Within the Plan Rendezvous state, interactions between a Resource Allocation 

Manager (shown in Figure 3.2) and the Rendezvous Manager of each vehicle are also 

modeled. The Resource Allocation Manager is called whenever there is a change in the 

threat scenario, i.e., when a UAV encounters a pop-up threat. At this point, including the 

position of the pop-up threat in the threats list, the Rendezvous Manager of each vehicle 

computes the minimum team cost for all possible team compositions (one UAV, two 

UAVs, three UAVs, and so on), and communicates this information to the Resource 

Allocation Manager, which determines the optimal composition of the UAV team 

suitable for performing the given mission based on the threat risk threshold for the 

specified mission. 

Once the team ETA is determined, and individual vehicle paths to their 

respective targets are determined, the Rendezvous Manager state machine transitions 

from the Plan Rendezvous state to the Execute Plan state. In the Execute Plan state, the 

Rendezvous Manager generates heading and velocity commands for the UAV to follow 

along the waypoint path determined in the Plan Rendezvous state. If a UAV reaches its 
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target as planned, a transition to the Plan Egress state takes place. In the Execute Plan 

state, a radar function is implemented, which scans the battle area for pop-up threats. If a 

pop-up threat is detected, the Rendezvous Manager will either transition to the Plan 

Egress state or the Plan Rendezvous state. A transition to the Plan Egress state takes 

place if the risk threshold of the UAV is low, and the Resource Allocation Manager 

determines that it should be dropped from the team. On the other hand, if the risk 

threshold of the UAV is high, and it is not dropped from the team, a transition to the 

Plan Rendezvous state takes place, where calculations for rendezvous are carried out. In 

the Execute Plan state, the fuel level of a UAV is monitored, and its range to the 

assigned target is calculated. If the UAV is low on fuel, it drops out of the mission, and a 

transition to the Plan Egress state takes place, where the vehicle plans its path to its 

home base. 

In the Plan Egress state, a path to an egress point is calculated. The egress point 

can be the home base if a UAV is running low on fuel, or if it is dropped from the team 

by the Resource Allocation Manager, or another pre-planned location where a UAV 

would join its other team members upon the successful completion of its mission. 
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3.2 Problem Formulation 

The mission scenario developed in this thesis encompasses both the rendezvous 

and surveillance problems. A team of three UAVs starting from geographically separate 

locations (airbases) is tasked to arrive simultaneously at a pre-determined high-valued 

target location in order to carry out a successful attack. While traveling to the target, the 

team must pass through an enemy stronghold containing multiple radar sites whose 

positions are known due to a previous ISR (Intelligence, Surveillance, and 

Reconnaissance) mission. It is assumed that the radars are of equal power and are not 

able to communicate with one another. During this phase of the mission, the UAVs must 

pass through the region while minimizing their exposure to the radar sites and 

conserving fuel. It is assumed that none of the UAVs is lost during the joint strike 

mission. Upon successful completion of the mission, the UAVs are tasked to arrive on a 

militarized border between two countries. Upon arrival at the border, the team's mission 

is to conduct a surveillance mission in a specified 'rectangular' region. 

Each UAV is assumed to be equipped with a sensor with which it collects data 

and information about the environment it is currently traveling through. Moreover, each 

UAV is assumed to have wireless communication capabilities. The vehicles are also 

assumed to be able to avoid collisions with one another by flying at different, pre-

assigned altitudes. The dynamics of the vehicles have been ignored since we have 

chosen to generate straight-line waypoint paths from UAV positions to the target instead 

of generating trajectories. The generation of trajectories would have required us to 
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satisfy dynamic constraints, i.e., constraints on an individual vehicle's velocity as well 

as its turning rate. Moreover, our goal is not to model the system, but rather to test the 

robustness of the coordination (or cooperative control) algorithm. 

We have used the Rendezvous Strategy developed by Chandler et al ([8], [9], 

[10], and [15]) and Beard et al ([4], [5], [6], [7], and [16]), and extended it to include an 

actuator fault in both single and multiple vehicles in order to determine its effect on the 

performance of a team of vehicles. According to [45], there are four types of actuator 

and control effector failures. These are: (1) Lock-In-Place (LIP) Failure; (2) Hard-Over 

Failure (HOF); (3) Float Type of Failure; and (4) Loss of Effectiveness (LOE). In the 

case of Lock-In-Place failure, the effector freezes at a certain condition and does not 

respond to subsequent commands [45]. In a Hard-Over Failure, the effector moves to the 

upper or lower position limit regardless of the command. The speed of response is 

limited by the effector rate limit [45]. The Float failure occurs when the effector floats 

with zero moment and does not contribute to the control authority [45]. Loss of 

Effectiveness is characterized by lowering the effector gain with respect to its nominal 

value. The different types of actuator and control effector failures can be parameterized 

as follows [45]: 

No-Failure Case: ui(t) = uc{t), ki(t) = \, Vt>t0 

Loss of Effectiveness: ui (t) = k, {t)uc (t), 0 < si < £,. (t) < 1, V7 > tFj 

Float type of failure: ui(t) = Q, ki{t) = \, Vt>tFi 

Lock-In-Place Failure: w,. (t) = uc! (tFj), ki if) = 1, Vf > tFl 
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Hard-Over Failure: w. (t) = uim or um , k{ (t) = 1, Vf > fF; 

where 

u(. (/): actuator output 

wc/: output of the controller and an input to the actuator 

tFi: the time instant of the failure of the i* effector 

kt G [enl]: the effectiveness coefficient of the control effector, where ei is the 

minimum effectiveness of the control effector 

The type of actuator fault simulated in this thesis is the Loss of Effectiveness 

(LOE). As seen from the above definitions, in the No-Failure Case, the output of the 

actuator is equal to the output of the controller, and the effectiveness coefficient (&.) is 

equal to its nominal value, 1. In case of the LOE failure, the effectiveness coefficient is 

less than 1, which in turn lowers the output of the actuator. Hence, the severity of the 

actuator fault depends on the value of the effectiveness coefficient. As the value of kt 

decreases, the severity of the actuator fault increases. 

In the simulation results (given in Section 3.4), velocity has been used as the 

fault variable to simulate an actuator fault in single and multiple UAVs. The extent of 

the actuator fault has been simulated through gradual reduction of the maximum 

velocity of the UAV. While we have not modeled the actuator, we have assumed that the 

value of kt will have a direct impact on the velocity range of a vehicle ([vmjn, vmax]). 
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Hence, the Loss of Effectiveness of a UAV's actuator will result in a lower maximum 

velocity value. 

It is assumed that each UAV is operating under nominal conditions upon takeoff 

from their respective bases, and that the Loss of Effectiveness fault in the actuator of the 

affected vehicle occurs while the team is en route to the target. In response to the 

actuator fault, a new time of arrival at the target must be generated for the team, and the 

affected vehicle as well as the healthy vehicles must re-plan their routes to the target. 

However, if the degradation in a UAV's actuator is to such an extent that it can no 

longer rendezvous with the other vehicles at their pre-determined destination, a resource 

allocation problem must be solved in order to determine which vehicles should engage 

the target. If a vehicle is dropped from the team for the joint attack mission, it is 

commanded to travel to the surveillance area. 

3.3 Solution Strategy 

The proposed cooperative control strategy is applicable to general cooperative 

control problems. It is based on the notion of coordination variable and coordination 

functions. The goal of the cooperation strategy is to allow the team to meet its 

cooperation objective while satisfying given constraints. 
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The cooperation objective defines the goal of the UAV team. In the mission 

scenario developed here, the cooperation objective requires a team of three UAVs to 

arrive at a pre-determined target location while minimizing their collective exposure to 

radars, and conserving fuel. The cooperation constraint requires the team to 

simultaneously arrive at the target. 

In order for the team of UAVs to satisfy the cooperation objective and 

cooperation constraint, coordinating information must be shared across the team. In our 

approach, we have employed a distributed, cooperative control architecture, which 

requires a minimum level of global information to be shared across the team to ensure 

team coherence and cohesion. This is termed the coordination variable, which for the 

rendezvous (coordinated strike) problem, has been chosen as the estimated time of 

arrival, Ts, of the UAV team at the target. 

As shown in Figure 3.8, each vehicle implements an identical copy of a 

centralized Coordination Manager algorithm, which selects the estimated time of arrival 

of the team based on its own coordination function and the coordination functions it 

receives from the individual vehicles. The process involved in selecting the team ETA 

(estimated time of arrival of the team) is described using the distributed, cooperative 

control architecture shown in Figure 3.8. 
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UAV1 ETA Range. 
CF UAV1 

Communication 
Manager 

~f'"""~ 
Coordination Manager 

r~ 
Path Planner 

UAV2 A 

Figure 3.8: Distributed cooperative control architecture for a team of 3 UAVs, where 

th CFJJAVi denotes the Coordination Function of the i UAV and UAVi ETA range 

th denotes the set of time of arrival ranges of the i UAV at the target 

As shown in Figure 3.8, each UAV is composed of three functional blocks. 

These are the Communication Manager, the Path Planner, and the Coordination 

Manager. 

The Path Planner is responsible for generating shortest paths (paths that have the 

lowest associated total cost) between the UAV and each target. Given the position of the 

UAV in the environment, the radar (threat) distribution, and the location of the target, 

there might be either a single shortest path or multiple shortest paths over the velocity 
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range of a UAV. The Path Planner also determines the total cost (a function of the threat 

cost and the fuel cost) incurred by the vehicle for traveling along each path. 

The Coordination Manager of each vehicle receives (from the Path Planner) 

either a single shortest path or the list of possible shortest paths that the vehicle can 

follow to arrive at the target. The Coordination Manager calculates the possible time of 

arrival ranges (at the target) of a UAV, and the coordination function, which describes 

how the vehicle's total cost varies as a function of its arrival time range at the target. 

The Communication Manager of each vehicle facilitates the sharing of 

information between the UAVs. The Coordination Manager of each UAV sends the 

possible time of arrival ranges of the UAV at the target, and the information modeled in 

the coordination function to the other vehicles in the team through the Communication 

Manager. Based upon the coordination functions and associated time of arrival ranges 

for all members of the team, the centralized Coordination Manager algorithm 

implemented on each vehicle chooses the team ETA. It is assumed that the 

Communication Manager synchronizes the information transmitted across the team. 

Hence, an identical value of the team ETA is chosen by all UAVs. The team ETA is 

chosen such that the overall cost (combined threat exposure and fuel cost) incurred by 

the team for achieving simultaneous intercept is minimized. Based upon the team ETA, 

the Coordination Manager of each vehicle generates a velocity and selects the waypoint 

path from the list of possible paths (if multiple paths are available) for the vehicle to 

follow to reach its target. The waypoint path that is selected is the one that allows the 
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vehicle to achieve the team ETA. The design of each functional block is explained in 

detail as follows. 

The Path Planner is called at the beginning of the mission, or after an event has 

taken place (such as a change in the vehicle's condition), or when the vehicle reaches its 

destination. It generates a feasible velocity for the vehicle and also produces candidate 

waypoint path(s) between the UAV's current position and its destination(s). The 

development of each vehicle's path(s) involves three stages. In the first stage, a threat 

based Voronoi diagram [42] is created using the initial positions of all UAVs, the 

position(s) of the target(s), and the known threat locations (It is assumed that the 

positions of all threats are known before the beginning of the mission). In the second 

stage, each edge of the Voronoi diagram is assigned two costs: the threat cost and the 

fuel cost. These two costs are then summed to produce a total cost associated with each 

edge of the Voronoi diagram. 

Each vehicle incurs a threat cost for traveling along a given path to its 

destination. Since the threats in the environment are multiple radar sites, the threat cost 

is based on the radar equation. Radar is a system that uses electromagnetic waves to 

identify the range, altitude, direction, or speed of both moving and fixed objects. A 

transmitter emits radio waves, which are reflected by the target and detected by a 

receiver, hence enabling the radar to detect objects. As in [4] and [5], it has been 

assumed that the radar signature of a UAV is uniform in all directions and is inversely 

proportional to the distance from the UAV to the threat to the fourth power, that is y 4 . 
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The threat cost is a function of two factors: 1) distance between the vehicle and the 

threat, and 2) the duration of time for which the vehicle is exposed to the threat (i.e., the 

velocity of the vehicle). The threat cost of the 1th UAV associated with each edge of the 

Voronoi diagram is based on the velocity at which the vehicle travels along the edge and 

its distance to every threat in the environment, and is given by: 

1 j 

hhreat(yiXWj,V<j-\) = — J~ jds (3.9) 
v' j=ol-(w ; -_ 1 +s(yvj -Wj_i)) 

where: 

v,-: velocity of the i* UAV. 

h : the location of a radar ( h e / / , where H is the set of all radar (threat) locations, 

which are known to all UAVs in the team before the beginning of the mission), 

w •: current waypoint. 

wy_j: previous waypoint. 

5 e [0,1] : parameterizes the straight-line path from wy_] to w7-. 

p e [0,1]: is the percentage of the power in the radar signal that is reflected by the UAV, 

and indicates the vehicle's vulnerability to being detected by radar. 

p = 0 implies the UAV is in the stealth mode, and is not vulnerable to threats. 

p -1 indicates that the UAV will always be detected by radar. 

The closed-form solution to the integral in (3.9) is given by: 
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The fuel cost incurred by the i* UAV to travel across each edge of the Voronoi 

diagram from w;_j to wy- is a function of the UAV's velocity and the length of the 

edge. The fuel required by the ith UAV is given by: 

tfiiel(vi>wy»wy-1) = L fdt = v,- {tj ~tj_i) = vt •VHj-Vij-X (3.10) 

where w ; - w ; - i is the length of an edge. 

The total cost for traveling along an edge of the Voronoi diagram is a weighted 

sum of the threat cost and the fuel cost associated with a given edge, and is given by the 

equation: 

where: 
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K e [0,1]: weighting factor that can be used to prioritize either minimization of a 

vehicle's exposure to threats or the amount of fuel consumed. 

Once the total cost associated with each edge is determined, the third stage 

involves searching the Voronoi diagram to find the best path, i.e., the lowest cost path 

between the initial location of each UAV and the location of the target(s). To this end, a 

shortest path algorithm is used, which produces a shortest path between a given source 

and destination such that a performance objective is minimized. We have used the 

Floyd-Warshall algorithm [43] to find the shortest path between the UAV and its 

destination such that the total cost incurred by the UAV is minimized. This algorithm 

solves the all-pairs shortest paths problem, which involves finding the shortest path 

(least-weight) between every pair of vertices u,v e V in a graph. The weight of a path is 

the sum of the weight of its constituent edges [43]. 

For the rendezvous mission, the best path for a UAV is one for which the vehicle 

will incur the lowest total cost for a given value of velocity. Over the given velocity 

range of a UAV, there can be multiple shortest paths. The total cost incurred by a 

vehicle for traveling along a path is equal to the weighted sum of the threat cost and the 

fuel cost associated with that path, and is given by: 

3i(xi,ui) = (l-/c)Jthreat(xi,ni) + K-J^/CX,,!!,.) (3.12) 

where: 
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x,: is the situation state of the ith UAV, which is given by: x,= 

zio: is the current position of the ith UAV. 

, where 

Zif: is the destination of the ith UAV. 

H : is the set of radar (threat) locations, which are known to all UAVs in the team. 

u ; : is the decision vector of the ith UAV, which is given by: u, = ' , where 

v,: is the velocity of the il UAV chosen from within the range, [vmin, vmax ] . 

Wj: is the waypoint path from the i UAVs current position to its destination. The 

waypoint path of the ith UAV is given by: Wt = {w(1 w/2,..., wi7>}, where w;1 = zi0 

and v/jp - z^. 

3threat(Xj,u.j): the threat cost incurred by a UAV for traveling along a given path. 

J ^ ( x ^ u , ) : the fuel cost incurred by a UAV for traveling along a given path. 

The threat cost incurred by a UAV for traveling along a specific waypoint path 

to its destination is equal to the sum of the threat costs associated with the constituent 

edges of the waypoint path, and is given by: 

p 
J

( t a , ( x i . | 1 i ) = I E L ( ( , , i . M i , w j „ 1 ) (3.13) 
heHj=2 

The fuel required by the i UAV to travel along a waypoint path from its current 

position to its destination is given by: 
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p 

J /-Me/(X/ 'U/•) = E• ' fuel(vnwj^j-\) = vfL(Wi) (3-14) 
7=2 

where, I ( ^ ) = S | 
Wjj - w;-(y_]J is the length of the waypoint path, JF,-. 

The fuel cost and the threat cost associated with a given waypoint path are 

calculated based on the assumption that a UAV maintains a constant, uniform velocity 

while traveling along the path. 

Once the Path Planner of a UAV has generated the shortest path(s) the vehicle 

can follow to reach its destination, and the associated total costs, it passes this 

information to the Coordination Manager. The goal of the Coordination Manager is to 

find the feasible time of arrival ranges of an UAV, and to determine the total cost that a 

vehicle would incur for following a given velocity and hence, for achieving a given time 

of arrival at the target (coordination function). The estimated time of arrival of the ith 

UAV at its destination is given by: 

r , = ^ = / / ( x / , n , ) = ^ ^ (3.15) 
vi 

Each vehicle's time of arrival depends on the length of the path the vehicle 

chooses to follow to its destination and its choice of velocity, selected from the vehicle's 

feasible velocity range, [vmin,vmaxJ. Hence, for a given waypoint path, Wj , the 

estimated time of arrival of the i,h vehicle can vary between the range 

[L{Wj)lvmm,L(Wj)lvmin\. Moreover, it is not necessary that only one best waypoint 
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path will be generated for each vehicle by the Floyd Warshall algorithm for the entire 

velocity range, [vmin,vmax], of the vehicle. There might be different best waypoint paths 

generated for the i* vehicle for different velocity ranges, \ya, v^ ] , and [vc, v^ ] (with 

va •> vb' v c ' vd selected from within the feasible velocity range of the ith UAV given by 

[vmin' vmax ])> m& hence different sets of arrival times, given by [L(Wi) I v^, L(Wj )/va] 

and [L(Wj) / vd, L(W{) / vc ] , respectively. 

The coordination function for the ith UAV describes the combined threat 

exposure and fuel cost (total cost, given by Equation (3.12)) incurred by the vehicle for 

traveling along a path of length, L(W{) , at a velocity, v, selected from the range 

[vmin,vmax]. As described earlier, over the feasible velocity range of the ith UAV, 

vmjn < Vj < vmax , there might be several waypoint paths and hence, several arrival time 

ranges. Similarly, the total cost of a UAV also varies with the choice of waypoint path 

and associated velocity range. Hence, the coordination function of each vehicle 

describes the range of arrival times and the range of total cost associated with the 

different waypoint paths. 

The coordination function for the ith UAV is given by: 

^•(x /^I-) = J / ( x / , u / ) (3.16) 

where 

Jj-(x/,u,-) : is the total cost incurred by the ithUAV for traveling along a waypoint path 
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of length, L{Wi) at velocity, vz-. 

9l: the estimated time of arrival of the ithUAV at its destination. 

Cooperation among the UAV team is achieved through a centralized 

Coordination Manager algorithm, implemented by each vehicle. As shown in Figure 3.8, 

the Coordination Manager of each UAV in the team sends the range of feasible arrival 

times and the coordination function information via the Communication Manager to the 

other vehicles in the team. The role of the Coordination Manager of each vehicle is to 

then use the coordination function information and the range of arrival times received 

from each vehicle to find the coordination variable. The coordination variable is defined 

as the minimal amount of information needed by the team of vehicles to achieve the 

cooperation objective. For the mission scenario described in Section 3.2, the 

coordination variable for the rendezvous mission is the estimated time of arrival of the 

team (team ETA) at the pre-determined target location. 

To choose the best value for the estimated time of arrival of the team, the 

Coordination Manager of each vehicle first uses the time of arrival ranges of all the 

vehicles in the team to determine a common range of arrival times for the team, which is 

given by: 

where: 
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N: the number of vehicles comprising the team, 

®/(x2') = \^]fi(xi'ui) *s m e s e t of estimated time of arrival ranges of the ith vehicle 

in situation state, X;. 

Next, the Coordination Manager of each vehicle uses the coordination functions of the 

individual vehicles to find the team cost values associated with the range of arrival times 

common to the team, ®T. The team cost is the sum of the individual vehicle costs 

(individual vehicle coordination functions), and is given by: 

TV N 
J t e f l r a ( J l . J 2 v , ^ ) = Z J / ( X * ' U / ) = Z M x i > 0 ) (3-1 8) 

subject to 

T1=T2=T3=... = TN=TS=0 

where, Ts is the estimated time of arrival of the team (Team ETA) at the target. 

Once the range of arrival times for the team, and the team cost associated with these 

arrival times is determined by the Coordination Manager, it selects the estimated time of 

arrival of the team to be the one with the minimum associated team cost value. The 

chosen team cost function is given by: 

N 
Jteam(Jl»J2v..,Jjv) = nimJ]JI-(xJ-,ul-) (3.19) 

1=1 
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subject to 

Tl=T2=T3=... = TN=Ts 

Hence, the Coordination Manager ensures that the cooperation objective of the team is 

satisfied by minimizing the collective threat exposure and conserving the fuel of the 

team and by ensuring simultaneous intercept. Once the team ETA is chosen, the 

Coordination Manager of each vehicle selects the waypoint path W{ that the vehicle 

should travel along at velocity vt in order to reach the target at the time specified by the 

team ETA. 

3.4 Simulation Results 

As shown by Figure 3.9, three UAVs, represented by triangles, must 

simultaneously arrive at the target, represented by the star, while minimizing the team's 

threat exposure to 33 radar sites, represented by circles, and conserving fuel. Each UAV 

takes off form a different airbase. The entire area of operation is 3000 sq-km. 
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Figure 3.9: Mission scenario for the rendezvous problem showing the locations of the 

team of 3 UAVs, 33 radar sites and the target. 

As stated in Section 3.2, it has been assumed that the positions of all the radar 

sites are known before the beginning of the mission. Hence, the UAVs follow pre­

planned routes to their destination. For the following simulations, nominal velocity for 

all the vehicles has been chosen to be between 89m/s and 220m/s. The value of K = 0.5 

has been chosen to give equal weight to the conservation of fuel as well as avoidance of 

threats in determination of the vehicles' paths to the target. Moreover, for all the UAVs, 

the value of p = 0.5 has been chosen to indicate that there is a 50% chance that a UAV 

will be detected by the radars in the environment. The goal of the UAVs is to pre-plan 

threat avoiding routes to their destination while conserving fuel such that the total cost 

incurred by the team, which is a combination of the team's collective threat exposure 

and fuel consumption, is minimized, and simultaneous intercept is achieved. 
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In Section 3.4.1, we have shown team intercept at the target under nominal 

conditions, i.e., when neither a single nor multiple vehicles are suffering from an 

actuator fault. Here, a team of three UAVs, starting from geographically separate 

locations (airbases) is tasked to arrive simultaneously at a pre-determined high-valued 

target location in order to carry out a successful attack. While traveling to the target, the 

team must minimize its exposure to multiple radar sites and conserve fuel. The solution 

strategy outlined in Section 3.3 is employed in order to achieve simultaneous intercept. 

In Section 3.4.2, velocity is used as the fault variable to simulate an actuator fault 

in both single and multiple UAVs, and its effect on the performance of the team is 

demonstrated. The extent of the actuator fault has been simulated through gradual 

reduction of the maximum velocity of the UAV. 

As stated in Section 3.2, the type of actuator fault simulated in this thesis is the 

Loss of Effectiveness (LOE). Under nominal conditions, the output of the actuator is 

equal to the output of the controller. Moreover, the value of the effectiveness coefficient 

ki = I. In case of the LOE failure, kt < 1, which leads to a lower value of the output of 

the actuator. Hence, the severity of the actuator fault depends on the value of k{. As the 

value of kt decreases, the severity of the actuator fault increases. Moreover, the fault in 

the actuator of a UAV results in the reduction in the vehicle's maximum velocity. Hence, 

we can assume that the percentage reduction in the value of ki is directly proportional to 

the percentage reduction in maximum velocity of a UAV. For example, ks = 0.4 will 

imply that the maximum velocity of a UAV has reduced to 40% of its nominal value. 
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It is assumed that the Loss of Effectiveness fault in the actuator of the affected 

vehicle occurs while the team is en route to the target. In response to the actuator fault, a 

new time of arrival at the target is generated for the team (using the solution strategy 

outlined in Section 3.3), and the affected vehicle as well as the healthy vehicles re-plan 

their routes to the target. However, if the degradation in a UAV's actuator is to such an 

extent that it can no longer rendezvous with the other vehicles at their pre-determined 

destination, a resource allocation problem must be solved in order to determine which 

vehicles should engage the target. 

3.4.1 Performance Under Healthy Conditions 

In this section, we have shown how intercept at the target is achieved without 

any faults in the UAV systems. The coordination functions of UAV1, UAV2, and 

UAV3 are shown by Tables 3.1, 3.2, and 3.3, respectively. Figures 3.10, 3.11, and 3.12 

show the shortest paths to the target for UAV1, UAV2, and UAV3, respectively, for a 

given velocity range. Figure 3.13 shows the coordination function plots of UAV1, 

UAV2, and UAV3. 
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Table 3.1: The coordination function information of UAV1 for K = 0.5 under healthy 

conditions. 

kappa 

0.5 

Velocity Range 
ofUAVl 

vmin ^ v l ^ vmax 

(m/s) 
89-100 

101-125 

126-220 

Range of Arrival 
times for UAV1, 

1 min — 11 — J max 

(seconds) 

922.6577-
1.0367xl03 

632.8627-
783.2459 
290.4346-
507.1081 

Path Length 
ofUAVl, 

L(W0 

(km) 

92.2658 

79.1078 

63.8956 

Total Cost of 
UAV1, 

Jl(Xl,Uj) 

0.9827-1.0107 

1.0145-1.1117 

1.1173-1.8957 

0 10 20 30 40 50 60 
Y(East)km 

Figure 3.10: Optimal paths for UAV1 through the 33 radar sites to the target for 

(a)89m/s<v, <100m/.s,(b) \0lm/s<vl <125m/s,(c) I26m/s<vl <220m/s. 



Table 3.2: The coordination function information of UAV2 for K = 0.5 under healthy 

conditions. 

kappa 

0.5 

Velocity Range 
ofUAV2 

Vmin ^ v2 < vmax 

(m/s) 
89-95 

96-112 

113-220 

Range of Arrival 
times for UAV2, 

1 min — 12 — 1 max 

(seconds) 

798.0935-
851.8975 
483.4003-
563.9670 
217.5252-
423.5005 

Path Length 
ofUAV2, 

L(W2) 

(km) 

75.8189 

54.1408 

47.8556 

Total Cost of 
UAV2 

J 2 ( x 2 > u 2 ) 

0.9097-0.9131 

0.9076-0.9122 

0.9080-1.4675 

Figure 3.11: Optimal paths for UAV2 through the 33 radar sites to the target for 

(a)S9m/s<v2 <95m/s,(b) 96m/s<v2 <l\2m/s,(c) U3m/s<v2 <220m/s. 
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Table 3.3: The coordination function information of UAV3 for K= 0.5 under healthy 

conditions. 

kappa ( K) 

0.5 

Velocity Range 
ofUAV3 

vmin ^ v3 ^ vmax 

(m/s) 
89-220 

Range of Arrival 
times for UAV3, 

^min — ^3 — ^max 

(seconds) 
219.9692-
543.7440 

Path Length 
ofUAV3 

L(W3) 

(km) 
48.3932 

Total Cost of 
UAV3 

J 3 (x 3 , u 3 ) 

0.8675- 1.4585 

0 10 20 30 40 50 60 
Y(East)km 

Figure 3.12: Optimal path for UAV3 through the 33 radar sites to the target. 

Tables 3.1 and 3.2 show that three shortest paths are generated from the initial 

positions of UAV1 and UAV2 to the position of the target over the velocity range 89 

m/s - 220 m/s. However, Table 3.3 shows that only a single shortest path is generated 

from the initial position of UAV3 to the target over the velocity range 89 m/s - 220 m/s. 

The Floyd Warshall algorithm generates only a single shortest path between a vehicle 

and a target for a given velocity range. While it may seem confusing that three shortest 
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paths are generated for UAV1 and UAV2, and only a single shortest path is generated 

for UAV3, it should be noted that factors such as the position of the UAV, the number 

and distribution of threats, and the position of the target also play a significant role in 

determining the number of paths generated over a given velocity range. To test this 

explanation, for the given mission scenario depicted in Figure 3.9, one can try varying 

the number and distribution of threats, and the position of the UAVs, and the target. In 

some sets of simulations, only a single shortest path will be generated for all vehicles 

over the velocity range 89 m/s - 220 m/s, whereas in others, multiple paths (not 

necessarily the same number of paths) will be generated for all three vehicles. 

Figure 3.13 shows the total cost incurred by the three UAVs for achieving a 

given range of the arrival times. The total cost of UAV1 and UAV2 for the three 

different ranges of arrival times, decreases with an increase in arrival time. Whereas, for 

UAV3, at first, its total cost decreases until 441 sec, after which it starts to increase. 

Equations (3.9), (3.14), and (3.15) show that the fuel cost decreases with an increase in 

the arrival time (associated with a lower velocity), whereas the threat cost increases with 

an increase in the arrival time. Hence, a vehicle must travel at slow speeds and follow 

shorter paths to the target in order to conserve fuel. Whereas, avoiding threats involves 

higher speeds and longer paths to the target. 

By setting K= 0.5 in Equation (3.12), we give equal weight to the fuel cost and 

the threat cost in determination of the total cost for a given path for a given vehicle. 

However, the coordination functions of UAV1 and UAV2, and for the most part for 
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UAV3, show that the fuel cost is more influential in determining the overall cost as 

compared with the threat cost. The reason for this is that the units and hence, the values 

of the fuel cost and threat cost are different, making it difficult to equate the values of 

these two costs. The solution to this problem is to normalize the values of the threat and 

fuel cost so that they may be compared on a fair and equal basis. 

Each edge in the Voronoi diagram has an associated fuel cost and threat cost, 

which are summed using Equation (3.11) to produce the total cost associated with a 

given edge. However, even after normalization, for a given velocity and arrival time, the 

constituent edges of a waypoint path may have higher fuel or threat costs. For example, 

at a higher velocity and thus, an early arrival time, the threat cost will be lower, whereas 

the fuel cost will be higher. Moreover, the proximity of the constituent edges of the 

waypoint path to the threats also affects the threat cost. The fuel cost is also affected by 

another factor, which is the length of the constituent edges of the waypoint path. 

If a mission designer wishes to induce the same trend in the total cost versus the 

arrival time as in the threat cost or the fuel cost versus the arrival time, manipulation of 

the value of the weighting factor K is essential. For K < 0.5, the threat cost is given more 

weight than the fuel cost, and the coordination function graph generally tends to increase 

as the arrival time increases (i.e., as the velocity becomes lower). For tc> 0.5, the fuel 

cost is given more weight than the threat cost, and the coordination function graph 

generally tends to decrease as the arrival time increases. At K= 0.5, the ratio of the 

values of the fuel cost and threat cost for each edge remains the same. Hence, if the 
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values of the fuel cost for each constituent edge of a given path are higher than the threat 

costs, the trends shown in Figure 3.13 for UAV1 and UAV2 can be generated. As for 

UAV3, the total cost decreases up until 441 seconds, after which it starts to increase. 

This shows that after 441 seconds (i.e., at lower velocities), the values of the threat cost 

of the constituent edges are higher than those of the fuel cost, and thus have a more 

significant impact on the total cost trend. 
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Figure 3.13: The range of arrival times and their associated costs for the three UAVs 

under nominal conditions. 

The goal of the UAVs is to arrive at their destination simultaneously while 

minimizing the overall cost incurred by the team for accomplishing the rendezvous 

mission. The Coordination Manager of each vehicle uses the coordination functions to 

_L___ 1 L 



81 

determine the common range of arrival times for the team. The range of total cost 

incurred by each UAV for achieving the two separate common ranges of arrival times 

for the team is shown in Figures 3.14 and 3.15. For both the ranges, the Coordination 

Manager selects the arrival time with the lowest associated team cost. Table 3.4 shows 

that for the team arrival time range, 290sec < @r < 423sec, the best choice for the team 

ETA is 423 seconds, and for 483sec < © r < 507sec, the suitable choice of the team 

ETA is 507 seconds. Since the objective of the team is to arrive at the target while 

minimizing the combined threat cost and fuel cost, team ETA is chosen to be 507 

seconds. 

Table 3.4: Team ETA, team cost, and the associated individual vehicle costs and 

velocities for the time ranges: 290sec < 0 r < 423 sec, and 483sec < 0 r < 507 sec. 

Team 
ETA 

Ts 

(sec) 

423 
507 

(m/s) 

151.05 
126 

v 2 

(m/s) 

113.13 
106.79 

V3 

(m/s) 

114.405 
95.45 

Total 
Cost of 
UAV1 

J, (x , ,u , ) 

1.2379 
1.1174 

Total 
Cost of 
UAV2 

J2( x 2> u 2> 

0.9080 
0.9045 

Total 
Cost of 
UAV3 

J 3 ( X 3 , U 3 ) 

0.8693 
0.8828 

Team Cost 

3.0152 
2.9047 

Table 3.4 also shows the velocities each vehicle will have to maintain to achieve 

the team ETA, and the associated costs that will be incurred by the individual vehicles. 

Comparing the individual vehicle costs at 423 seconds and 507 seconds, we can see that 

UAV1 and UAV2 incur lower costs, whereas UAV3 incurs a higher cost for achieving 

team ETA of 507 seconds. This result has been pointed out to show that the optimal 
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value of the team ETA is best from the team's perspective as opposed to the individual 

vehicle's perspective. 

280 300 320 340 360 380 400 420 440 
timing-theta (seconds) 

Figure 3.14: The estimated time of arrival of the team (Team ETA) for the common 

range of arrival times given by 290 sec <®T < 423sec. 
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Figure 3.15: The estimated time of arrival of the team (Team ETA) for the common 

range of arrival times given by 483 sec <&T < 507 sec. 

3.4.2 Performance Under Actuator Fault 

The type of actuator fault simulated here is the Loss of Effectiveness (LOE). It is 

assumed that the Loss of Effectiveness fault in the actuator of the affected vehicle 

occurs while the team is en route to the target. Velocity has been used as the fault 

variable to simulate the severity of the actuator fault in single and multiple UAVs. The 

extent of the actuator fault has been simulated through gradual reduction of the 

maximum velocity of the UAV. It is possible that the maximum velocity of a UAV may 

reduce multiple times during the rendezvous mission. 
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In response to the actuator fault and its subsequent diagnosis (detection and 

isolation), the affected UAV first communicates its new time of arrival range, and 

coordination function information to all its team members. Next, the other team 

members recalculate and send their time of arrival ranges and coordination functions 

across the team. As in the healthy case, based on the coordination functions and time of 

arrival ranges of all the team members, a new team ETA will be selected by the 

Coordination Manager of each vehicle. For simplicity, we have assumed that the overall 

time required in generating a new team ETA, i.e, the time required by each UAV to send 

its coordination function to its team members, and for the Coordination Manager of each 

vehicle to re-calculate the team ETA, is negligible. 

The first set of simulations investigates the effect of the actuator fault in a single 

UAV (UAV1) on the arrival time ranges and total costs of UAV1, UAV2, and UAV3. 

Table 3.4 shows that the optimal team ETA occurs at 507 seconds, which requires 

UAV1, UAV2, and UAV3 to maintain velocities of 126 m/s, 106.79 m/s, and 95.45 m/s. 

Until UAVl's maximum velocity drops below 126 m/s, the vehicle can still arrive at the 

target without changing its path. Hence, to simulate the actuator fault during the mission, 

it is assumed that UAVl's velocity drops to 120 m/s at t = 100 seconds. The new 

maximum velocity of UAV 1 (120 m/s) is 54.5% of the nominal maximum velocity, 220 

m/s. This shows that the output of the actuator of UAV 1 has decreased by (100-54.5) 

45.5%. Since the output of the actuator is affected by the effectiveness coefficient £,., 

we can state that the value of £,.= 0.545. 
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At t = 100 seconds, the instance of the first actuator fault, UAV1 re-calculates 

its coordination function and sends its arrival time range to UAV2 and UAV3. Both 

UAV2 and UAV3 also re-calculate their coordination functions and their arrival time (at 

the target) values. Table 3.5 shows the revised coordination function information for 

UAV1, UAV2, and UAV3. 

Table 3.5: The coordination functions of UAV1, UAV2, and UAV3 after the actuator 

fault has occurred in UAV1 at t = 100 seconds. 

Velocity Range 

v • < v. < v (m/s) 
min — i — max V*"' " / 

Range of Arrival 
Times (sec) 

Path Length (km) 

Total Cost 

UAV1 

89-120 

422.0587-569.0679 

50.6470 

0.6165-0.6733 

UAV2 

89-220 

195.8741-484.1831 

43.0923 

0.8331- 1.3283 

UAV3 

89-220 

176.5832-436.4977 

38.8483 

0.8008-1.2299 

From Table 3.5, it can be seen that the common range of arrival times for UAV1, 

UAV2, and UAV3 is between 422 sec and 436 sec. The range of total cost incurred by 

UAV1 for the common range of arrival times is shown in Figure 3.16, whereas those of 

UAV2 and UAV3 are shown in Figure 3.17. As in the nominal case, each vehicle's 

Coordination Manager selects the arrival time for the team such that the team cost is 

minimized. From Figure 3.16, it can be seen that the cost function for UAV1 
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monotonically decreases with time, whereas for UAV2 and UAV3, the total cost 

monotonically increases with time. Since the goal of the rendezvous mission is for the 

team to intercept at the target while minimizing the overall team cost, the team ETA is 

chosen to be the value with the lowest associated team cost. The minimum team cost 

occurs at 422 seconds (which is the intercept time at which the maximum cost for UAV1 

and minimum cost for UAV2 and UAV3 occurs), and in order to achieve this intercept 

time, UAV1, UAV2, and UAV3 must maintain velocities of 120 m/s, 102 m/s, and 92 

m/s, respectively. Hence, from takeoff, it will take the team 522 seconds to arrive at the 

target as opposed to 507 seconds under healthy conditions. 

0.675 

0.67 

x" 

Vt 
o 
u 

0.665 

0.66 — 
420 422 424 426 428 430 432 434 436 438 440 

timing-theta (seconds) 

Figure 3.16: The range of total cost incurred by UAV1 for the common range of arrival 

times given by 422 sec < &T < 436 sec. 



87 

0.858 

0.856 

0.854 

0.852 

1 085 

g 0.848 
o 

0.846 

0.844 

0.842 

0.84 

UAV2 

UAV3 

420 422 424 426 428 430 432 434 436 438 440 
timing-theta (seconds) 

Figure 3.17: The range of total cost incurred by UAV2 and UAV3 for the common 

range of arrival times given by 422 sec <&T < 436 sec. 

It was stated earlier that the maximum velocity of the affected UAV may reduce 

multiple times during the rendezvous mission. Suppose that 200 seconds after the first 

instance of the actuator fault in UAV1 (which occurs at t = 100 seconds into the 

mission), a second fault occurs and UAVl's maximum velocity drops from 120 m/s to 

HOm/s. The new maximum velocity of UAV1 (110 m/s) is 50% of the nominal 

maximum velocity, 220 m/s. This shows that the output of the actuator of UAV1 has 

decreased by 50%. Since the output of the actuator is affected by the effectiveness 

coefficient ki, we can state that the new value of kt = 0.50. 

From its original position at t = 100 seconds into the mission, in the subsequent 

200 seconds, at a constant velocity of 120 m/s, UAV1 has traveled a distance of 24 km, 
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and its remaining distance to target along the chosen path is (50.6470 km - 24 km) 

26.647 km. At its new maximum velocity of 1 lOm/s, it will take UAV1 approximately 

another 242 seconds to arrive at the target. Hence, the earliest possible arrival time for 

UAV1 from the beginning of the mission will be (100 seconds + 200 seconds + 242 

seconds) 542 seconds. However, the team has to intercept at the target in another 222 

seconds (i.e., at 522 seconds from the beginning of the mission). Hence, UAV1 along 

with UAV2, and UAV3 must re-plan their route to the target. Table 3.6 shows the 

Coordination Function information for UAV1, UAV2, and UAV3 at t = 200 seconds 

from the instance of the first actuator fault, i.e., 300 seconds since the beginning of the 

mission. 

Table 3.6: The coordination functions of UAV1, UAV2, and UAV3 after the second 

actuator fault has occurred in UAV1 at t = 300 seconds into the mission. 

Velocity Range 

v • < v < v (m/s) 
mm / max V / 

Range of Arrival 
Times (sec) 

Path Length (km) 

Total Cost 

UAV1 

89-110 

242.2461-299.4053 

26.6471 

0.2631-0.2887 

UAV2 

89-220 

101.4897-250.8735 

22.3277 

0.4508-0.6869 

UAV3 

89-220 

83.1763-205.6044 

18.2988 

0.3062-0.5374 



89 

From Table 3.6, it can be seen that there is no overlap in the arrival time ranges 

of UAV1 and UAV3, thereby making the team intercept at the target impossible. Hence, 

at this point, the Coordination Manager of each vehicle calls a Resource Allocation 

Manager (present on each vehicle), which in turn determines the composition of the 

team that should engage the target. Given the coordination functions and range of arrival 

times for all vehicles, the Resource Allocation Manager of each vehicle computes the 

minimum team cost for all possible team compositions. Table 3.7 shows the two 

possible team configurations. 

Table 3.7: Team ETA, team cost, and the associated individual vehicle costs and 

velocities for the two possible team configurations. 

Team 
Configuration 

Team 1 
Team 2 

Team 
ETA 

Ts 

(sec) 

246 
188 

(m/s) 

108.32 

V2 

(m/s) 

90.76 
118.76 

(m/s) 

97.33 

Total 
Cost of 
UAV1 

J l ( x i , u , ) 

0.2858 

Total 
Cost of 
UAV2 

J 2 ( x 2 > u 2 ) 

0.4473 
0.429 

Total 
Cost of 
UAV3 

J3(x3,u3) 

0.3004 

Team 
Cost 

0.7331 
0.7294 

Team 1 comprises UAV1 and UAV2, whereas team 2 comprises UAV2 and 

UAV3. Table 3.7 shows that Team 1 can intercept at the target in 246 seconds (with a 

total rendezvous mission time of 100+200+246 = 546 seconds) whereas Team 2 can 

arrive at the target in 188 seconds (with a total rendezvous mission time of 

100+200+188 = 488 seconds). Moreover, the overall team cost of Team 2 is lower than 

that of Team 1. Since the goal of the rendezvous mission is for a given team to arrive at 
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the target while minimizing the combined threat cost and the fuel cost, the Resource 

Allocation Manager assigns Team 2 to the target, and orders UAV1 to drop out of the 

coordinated strike mission. UAV1 then proceeds to the surveillance area to begin the 

surveillance mission. With Team 2 assigned to the target, it will take UAV2 and UAV3 

(100 seconds + 200 seconds + 188 seconds) 488 seconds to arrive at the target. 

The results in Tables 3.5, 3.6, and 3.7 show that even with degradation in the 

performance of the actuator in one of the vehicles, the team can still simultaneously 

arrive at the target. However, if at t = 300 seconds into the mission, UAVl's velocity 

drops to 105m/s instead of HOm/s, the earliest possible arrival time for UAV1 at the 

target would be 253.78 seconds. Thus, there would be no overlap in the time of arrival 

ranges of UAV1 and UAV2 as there is in Table 3.6. In this case, the Resource 

Allocation Manager would give preference to the team over the single vehicle for the 

chances of successfully engaging the target are increased with multiple vehicles. It 

should be noted that UAV2 and UAV3 will still have to re-calculate their paths to the 

target instead of continuing along the path chosen after the first instance of the actuator 

fault in UAV1. This is because the intercept time of 422 seconds generated at t =100 

seconds was common to UAV1, UAV2, and UAV3. With UAV1 dropped from the team, 

the new intercept time for UAV2 and UAV3 should be one that ensures minimization of 

the overall cost of both UAVs. 

The cases detailed above only address the actuator fault in a single UAV. 

Moreover, in Table 3.7, it was straightforward to choose Team 2 over Team 1 because 



91 

Team 2 has an earlier intercept time as well as a lower cost than Team 1. However, that 

is not always the case. To this end, in the next scenario, we assume the actuator fault 

occurs in two vehicles. Suppose at t = 300 seconds into the coordinated strike mission, 

both UAV1 and UAV2 suffer from an actuator fault resulting in a further drop of 

UAVl's maximum velocity from 120 m/s to 110 m/s (as shown in Table 3.6), and a 

drop in UAV2's maximum velocity from 220 m/s to 110 m/s. Table 3.8 shows the 

coordination function information of all the three vehicles. 

Table 3.8: The coordination functions of UAV1, UAV2, and UAV3 after the velocities 

of UAV1 and UAV2 drop to 1 lOm/s at t = 300 seconds. 

Velocity Range 

v < v. < v (m/s) 
mm — i — max \ f 

Range of Arrival 
Times (sec) 

Path Length (km) 

Total Cost 

UAV1 

89-110 

242.2461-299.4053 

26.6471 

0.2631-0.2887 

UAV2 

89-110 

202.9795-250.8735 

22.3277 

0.4283- 0.4508 

UAV3 

89-220 

83.1763-205.6044 

18.2988 

0.3062-0.5374 

Table 3.8 shows that there are two distinct arrival time ranges common to 

different members of the team. UAV1 and UAV2 have a common arrival time range of 

242.2461-250.8735 seconds, whereas UAV2 and UAV3 have a common arrival time 

range of 202.9795-205.6044 seconds. Given the coordination function information in 
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Table 3.8, the Resource Allocation Manager computes the minimum team cost and the 

associated team ETA for both team configurations. 

Table 3.9: Team ETA, team cost, and the associated individual vehicle costs and 

velocities for the two possible team configurations. 

Team 
Configuration 

Team 1 
Team 2 

Team 
ETA 

Ts 

(sec) 

246 
203 

(m/s) 

108.32 

v2 

(m/s) 

90.76 
110 

v3 

(m/s) 

90.14 

Total 
Cost of 
UAV1 

J,(x,,u,) 
0.2858 

Total 
Cost of 
UAV2 

J2(x2,u2) 
0.4473 
0.4283 

Total 
Cost of 
UAV3 

J3(x3,u3) 

0.3051 

Team 
Cost 

0.7331 
0.7334 

As shown in Table 3.9, Teaml has a higher team ETA but a lower cost than 

Team 2. In Table 3.7, Team 2 was assigned to the target since it had both a lower cost as 

well as a lower team ETA than Team 1. If the goal of the mission designer is to achieve 

a minimum team ETA at the expense of the overall cost to the team, Team 2 would be a 

better choice. Similarly, Team 1 would be a better choice if minimizing the overall cost 

at the expense of team ETA was the mission goal. However, realistically, both team 

ETA and the fuel cost as well as threat cost should play a role in determining the team 

composition. To this end, we have defined the coordinated strike mission (or 

coordinated rendezvous mission) cost, given by Equation (3.20), to be a weighted sum 

of the combined threat and the fuel cost of the team and the team ETA, namely. 

where 
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Ts=Tn i = \,...,N 

X e [0,1]: scaling factor chosen by the mission designer to emphasize on either 

minimization of team cost or the team ETA. 

T _ ieam . s caijng factor that is used to equate the values of team cost and 
average _TS 

team ETA. 

For Team 1 and Team 2 in Table 3.8, we have selected X = 0.5 to give equal weight to 

the team cost and the team ETA. 

In Figures 3.18 and 3.19, the mission cost values for Team 1 (UAV1, UAV2), 

and Team 2 (UAV2, UAV3) are plotted against the common range of arrival times for 

the respective teams. The Resource Allocation Manager compares the minimum mission 

cost values for both teams, and finally selects the team with the lower minimum mission 

cost value. For the chosen team, the team ETA value is selected to correlate with the 

minimum value of the mission cost. For the teams in Table 3.8, comparison of the 

minimum mission cost values of Team 1 and Team 2 results in the selection of Team 1 

for the coordinated strike mission. Hence, UAV1 and UAV2 will head to the target 

while UAV3 will be dropped from the team and assigned to travel to the surveillance 

region. From Figure 3.18, it can be seen that the team ETA for UAV1 and UAV2 is 242 

seconds. 
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Figure 3.18: The mission cost of Team 1 for the common range of arrival times, 

242sec<0 r <251 sec. 
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3.5 Conclusions 

In this chapter, the coordinated rendezvous problem has been illustrated through 

an example scenario involving a team of 3 UAVs, which must travel through an area 

containing 33 radar sites to simultaneously arrive at a single high priority target to carry 

out a coordinated strike. While traveling to the target, the team must minimize its 

combined exposure to radars and conserve fuel. 

Two cases have been simulated. One is the healthy case in which all UAVs are 

functioning normally, and where the team ETA, selected through collaboration among 

team members, is associated with the minimum combined threat and fuel cost of the 

team (team cost). In the second case, velocity has been used as the control variable to 

simulate an actuator fault in single and multiple UAVs. The extent of the actuator fault, 

which occurs during the rendezvous mission, has been simulated through gradual 

reduction of the maximum velocity of the affected vehicle(s). 

Four set of simulations have been carried out to simulate the actuator fault. In the 

first set of simulations, the maximum velocity of a single UAV is slightly reduced, 

thereby requiring a re-plan. In the second set of simulations, the maximum velocity of 

the already affected vehicle is further reduced. However, this time, there is an overlap in 

the arrival time ranges of the affected vehicle and only one other vehicle, thereby 

making the team intercept at the target impossible. Results show that two possible team 

configurations are generated by a Resource Allocation Manager, which then assigns the 
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team with both the lower team cost and team ETA to the target. It has also been pointed 

out that if the affected vehicle's velocity were further reduced, there would be no 

overlap in the time of arrival ranges of the other vehicles and the affected vehicle. Hence, 

in this case, the Resource Allocation Manager chooses the team over the single vehicle 

to perform the coordinates strike mission. 

The fourth set of simulations has been carried out to simulate the actuator fault in 

multiple vehicles as well as to show that the results of the second set of simulations are 

not always possible, and there can be times when one team has a lower overall cost than 

the other team, whereas the other team has a lower team ETA. Moreover, realistically, 

both team ETA and the fuel cost as well as the threat cost should play a role in 

determining the team composition. Hence, a new coordinated strike mission cost has 

been introduced, which is a weighted sum of the combined threat and fuel cost of the 

team and the team ETA. The weighting factor in the mission cost equation allows the 

mission designer to either give equal, or more or less weight to the team ETA or the 

overall team cost. For our results, we gave equal weight to the team ETA and the overall 

team cost. As seen from the results, the Resource Allocation Manager selects the team 

with the lower minimum mission cost value to perform the mission. 
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Chapter 4 

Multiple UAV Surveillance Mission 

4.1 Problem Formulation 

In this chapter, the Multiple UAV Surveillance problem is addressed. In the 

previous chapter, multiple UAVs were tasked to simultaneously arrive at a high priority 

target to carry out a coordinated strike mission. In this chapter, it is assumed that upon 

completion of the coordinated strike mission, the UAV team must travel to a region of 

known dimensions along a border between two countries. Upon arriving at the border, 

the team must monitor the given region. In the previous chapter, the vehicles 

communicated with one another in order to re-plan their paths to the target or to decide 

which vehicles should engage the target. However, for the purpose of the surveillance 

mission, each UAV periodically communicates with a central command and control 

station through a satellite in orbit, and not with its team members. The goal of the UAVs 

is to carry out surveillance of the entire environment of operation while minimizing the 

team cost, which is a function of the individual vehicle costs. Each vehicle's cost is a 

function of the amount of fuel consumed by the vehicle during the surveillance mission 

and the time required to complete the mission. 

As shown in Figure 4.1, a team of three homogeneous UAVs has to perform a 

surveillance mission in a rectangular region spanning 600 sq-km. A central command 
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and control station divides the search region equitably among the UAVs, and assigns 

each vehicle to monitor a section of the region. Hence, the surveillance paths of the 

vehicles do not overlap. It is assumed that each vehicle will perform only one sortie. 

10 km<^ 

60 km 

Figure 4.1: A team of 3 UAVs is performing surveillance in a 600sq-km region. 

As an added dimension to the surveillance problem, the mission is carried out by 

a team of three vehicles where a single vehicle is assumed to be suffering from a fault. It 

is assumed that the fault occurs in either the actuator (Loss of Effectiveness, as 

mentioned in Chapter 3) or the sensor or both the actuator and the sensor of the affected 

vehicle. In [46], five types of sensor failures have been mentioned, which are: (1) Total 

sensor failure; (2) Stuck with constant bias sensor failure; (3) Drift or additive-type 

sensor failure; (4) Multiplicative-type sensor failure; and (5) Outlier data sensor failure. 

Total sensor failure is a catastrophic failure, in which at a given point in time, the 

sensor stops functioning. The output of the sensor is then a constant zero. This failure 

can be caused by electrical or communication problems. In (stuck with constant bias 

sensor failure), the sensor gets stuck with a constant bias, and the output (thereafter) 
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remains constant [46]. Drift or additive-type sensor failure is a very common failure in 

analog sensors [46]. It is caused by internal temperature changes or calibration problems. 

The sensor output has an added constant term (the drift) [46]. A scaling error in the 

sensor output is responsible for the multiplicative-type sensor failure. (In this failure 

type), a multiplicative factor is applied to the sensor nominal value [46]. Outlier data 

sensor failure occurs in GPS sensors. It is a temporal failure. The GPS sensor outputs a 

single point with a large error. However, the measurements following this error are 

correct. Possible causes of the error are failures in the GPS internal signal processing 

algorithms, and temporary satellite signal blocking. 

The Multiplicative-type sensor failure has been simulated in this thesis. The 

sensor range (sensor output) has been used as the fault variable to simulate the sensor 

fault in a single UAV. Despite the presence of either the Loss of Effectiveness actuator 

fault and/or the Multiplicative-type sensor failure, the goal of the surveillance mission 

remains the same, which is minimization of the team cost. However, a fault in either the 

sensor, or actuator or both requires the mission designer to address a resource allocation 

problem, i.e, whether to carry out the mission using all the three vehicles or two healthy, 

perfectly functioning vehicles. The team chosen to perform the surveillance mission is 

the one that incurs the minimum cost for performing the mission. 
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4.2 Cost Assignment 

The objective of the team of UAVs is to carry out surveillance of the given 

region while minimizing the cost incurred by the team. The team cost is a function of the 

individual vehicle costs, and is given as follows: 

N 

J team = 2ii smt (4-1) 

where: 

N: the number of UAVs. 

Jsm. : the total cost incurred by the i* UAV for carrying out surveillance of the area 

assigned to it. 

The individual vehicle cost is a function of the fuel cost incurred by the vehicle and the 

total mission time, and is given by: 

Jsm, = 0 ~ a)Jfueli + a ts. (4.2) 

where: 

a e [0,l]: is a scaling factor that gives the mission designer flexibility to emphasize on 

either minimization of fuel cost or minimization of the ith UAVs mission 

time. 
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The function J fm\. is the fuel cost incurred by the ith UAV. The fuel cost is a 

function of the vehicle's velocity and the length of the path covered by the vehicle 

during the mission. While each vehicle's velocity is constrained to be between a given 

range, vmjn < v < vm a x , it is assumed that while covering the surveillance region, a 

vehicle maintains a constant, uniform velocity. The fuel cost chosen here is based on the 

fuel cost in [7], where it has been assumed that the fuel consumption rate is proportional 

to the aerodynamic drag force, which is proportional to the velocity squared. Hence, the 

fuel required by the ith UAV to search the region it is assigned to, is given by: 

J fuel, = v? A (4-3) 

where: 

v{: the velocity of the ith UAV constrained to be between vmjn < v < vm a x . 

D{: the distance or the length of the path covered by the ith UAV. 

The distance covered by the ith UAV depends on the path taken, and the sensor range of 

the vehicle, and is given by: 

A = 
( ( WRA ^ 

LRA{ 

V 
SRJJAVi 

+ WRA (4.4) 

where: 

LRAj: is the length of the rectangular area to be covered by the i"1 UAV. 

WRA : is the width of the entire rectangular area. 

SR _ UA Vj: is the sensor range of the ith UAV. 
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: is the number of times a UAV has to travel along the breadth (or the length, 

LRAi ) of the rectangular area assigned to it in order to complete its 

surveillance mission. 

WRA 

< 

Starting point 

Destination poini 

v 

LRA UAVi 

•th Figure 4.2: The surveillance path followed by the i UAV. 

In Figure 4.2, the surveillance path of a UAV is shown by the dashed lines. The 

sensor range of the vehicle, represented by the circle, determines the number of times a 

vehicle has to travel along the length of the rectangular area in order to complete its 

surveillance mission. Under nominal conditions, the sensor range of each vehicle is 

assumed to be the same. 

The second term in Equation (4.2) is the time taken by a UAV to complete its 

surveillance mission, and is a function of the distance covered by the UAV in Equation 
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(4.4) and the vehicle's velocity. Hence, the surveillance mission time of the i UAV is 

given by: 

Each vehicle uses Equation (4.2) to determine the cost it will incur for 

completing its surveillance mission. This cost is a function of the fuel cost in Equation 

(4.3) and the surveillance mission time in Equation (4.5). These two metrics are in turn 

controlled by the velocity and the sensor range of the vehicle. Hence, manipulation of 

velocity and sensor range determines the cost that a vehicle would incur. As seen from 

Equations (4.3) and (4.5), an increase in velocity would result in an increase in the fuel 

cost but a decrease in the surveillance mission time. Similarly, as seen from Equation 

(4.4), an increase in the sensor range would result in a decrease in the distance covered 

by a UAV, which in turn decreases the fuel cost as well as the surveillance mission time. 

It has been assumed that the three vehicle team is operating under either an 

actuator fault, or sensor fault, or a fault in both the sensor and the actuator of an 

individual vehicle. The goal is to determine which team configuration is better suited for 

performing the surveillance mission i.e., either a three vehicle team or a two vehicle 

team. Hence, in the following simulations, using 1) velocity, 2) sensor range, and 3) a 

combination of velocity and sensor range of the vehicles as fault variables, the 

performance of a team of three vehicles is compared with a team of two normally 

functioning vehicles to determine which team is better suited for the surveillance 

mission and under what conditions. 
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4.3 Simulation Results 

For the following simulations, nominal velocity for all the vehicles is chosen to 

be between 89m/s and 220m/s. The nominal sensor range of each vehicle is assumed to 

be 100 meters. As shown by Figure 4.1, the entire rectangular area is 600 sq-km. For all 

simulations, UAV1 has been chosen as the vehicle suffering from the actuator fault, the 

sensor fault or both the actuator and the sensor faults. 

For each type of fault, two cases are simulated to determine whether the team of 

three vehicles (two healthy and one faulty) or the team of two healthy vehicles is better 

suited for performing the mission. 

In the first case, the team is composed of three vehicles, where one vehicle 

(UAV1) is suffering from an actuator fault and two (UAV2, and UAV3) are healthy 

vehicles. As shown by Figure 4.3, it is assumed that a central command and control 

station assigns each UAV to cover an equal portion of the rectangular surveillance 

region. 

WRA=l0krrK 

V _ _, A, >y 
• y , ™ — ^ ^ — ~ — — - — , ^ , — _ 

LRAJJAV1 = 20 km LRA_UAV2 = 20 km LRAJJAV3 = 20 km 

Figure 4.3: The surveillance region divided among a team of 3 UAVs. 
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In the second case, the team is composed of only two healthy vehicles (UAV2, 

and UAV3), which, as shown by Figure 4.4, are assigned to cover an area of 300 sq-km 

each. 

WRA=10km. 

LRAJJAV2 - 30 km LRA_UAV3 = 30 km 

Figure 4.4: The surveillance region divided among a team of 2 UAVs. 

The goal of each team is to cover the entire surveillance region while minimizing 

the team cost. The team that is chosen to perform the mission is the one which incurs 

the minimum cost, given by Equation (4.1). For the simulations below, the following 

equations are solved for determining the minimum value of the team cost for a team of 3 

UAVs and a team of 2 UAVs. It should be noted that the fuel cost and surveillance 

mission time shown in the following equations are calculated by using Equations (4.3) 

and (4.5). However, for calculating the individual vehicle costs, slight modifications to 

Equation (4.2) have to be made to take into account the following: 1) Differing velocity 

ranges of the vehicles (actuator fault in UAV1), and/or 2) Differing search distances of 

the vehicles (sensor fault in UAV1). For the actuator and/or sensor fault, the surveillance 

mission cost for each UAV is calculated using the following equations. The surveillance 

mission cost of UAV 1 is given by: 

Jsmx = 0 - <*Vfudx + «/*('*, ) (4-6) 

where: 
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average _J fuei 
P : is a scaling factor that is used to normalize the fuel cost and 

average ts 

surveillance mission time values for UAV1. 

Since UAV2 and UAV3 do not suffer from an actuator and/or sensor fault, they both 

have the same fuel cost and surveillance mission time, and hence the same surveillance 

mission cost, as given by: 

Jsm2 = 0 - a)Jfuel2 + aHtS2 ) (4-7) 

Jsm3 = (1 - a)Jfueh + a ^ s 3 > (4-8> 

where: 

average _ J fad average _Jfuel 

y — or Y : Js a scaling factor that is used to 
average _ts average _ts 

normalize the fuel cost and surveillance mission time values for UAV2 and UAV3. 

The scaling factors /? and Y are used because the units of surveillance mission 

time (seconds) and fuel cost (km3/sec2), and the respective values of these terms are 

different, and thus must be normalized so that they can be compared on a fair and equal 

basis using the scaling factor a . The scaling factor/ in Equations (4.7) and (4.8) is 

different from the scaling factor ft in Equation (4.6) because: 1) for the actuator fault, 

the velocity range of UAV1 is different from that of UAV2 and UAV3, 2) for the sensor 

fault, the sensor range and hence the distance covered by UAV1 is different from that of 

UAV2 and UAV3, and 3) for a combination of the sensor and actuator faults, both the 

velocity range and the distance covered by UAV1 is different. 
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For each team configuration, the surveillance mission cost of each vehicle in 

Equations (4.6), (4.7), and (4.8) is calculated for a = 0.1 to a = 0.9 (in increments of 

0.1). Subsequently, for each or , the minimum team cost for both teams is then 

determined using Equation (4.1). Next, depending on the value of or preferred by the 

mission designer (i.e., whether the minimization of the individual vehicle's fuel cost or 

its mission time is more important or both are given equal weighting), the team costs for 

both teams are compared. For the given a, the team with the minimum cost is chosen to 

perform the surveillance mission. For the following simulations, we do not choose one 

value of a over the other. We just compare the minimum team cost for both team 

configurations for all values of a between 0.1 and 0.9 to show the effects of the choice 

of a on the Minimum Team cost. 

4.4 Performance Under an Actuator Fault 

Velocity has been used as a fault variable to simulate the Loss of Effectiveness 

actuator fault in a single UAV, chosen to be UAV1. It is assumed that the fault in the 

actuator of UAV1 occurs before the beginning of the surveillance mission. The extent of 

the actuator fault has been simulated through gradual reduction of the maximum 

velocity of UAV1. To simulate the gradual degradation of the actuator of UAV1, its 

maximum velocity is reduced to 90% (Velocity Set 1) to 80% (Velocity Set 2) to 70% 

(Velocity Set 3) to 60% (Velocity Set 4) and finally to 50% (Velocity Set 5) of the 

nominal maximum velocity, which is 220 m/s. Since UAV2 and UAV3 are in a healthy 
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state, their velocity range remains between 89m/s and 220m/s for the duration of the 

mission. In Table 4.1, a description of the terms that will be used in the results is given. 

Table 4.1: Description of terms 

Term 
a (alpha) 

V/ (m/s) 
min-J

smi 

Jjuel; (km3/sec2) 

ts. (seconds) 

Description 
Scaling factor that gives the mission designer 
flexibility to emphasize on either minimization 
of fuel cost or minimization of total mission 
time 
Velocity of the ithUAV 

Minimum Surveillance Mission cost of the ith 

UAV 
Fuel cost of the ith UAV 

Surveillance Mission time of the ith UAV 

In the following tables, the results for only two velocity sets are given. These are 

Velocity Set 1 and Set 5 in which the maximum velocity of UAV 1 is 90% and 50% of 

the maximum velocity of UAVs 2 and 3. The results for the Velocity Set 2, Set 3, and 

Set 4 (80%, 70%, and 60%) are given in the Appendix A. 

In the tables, for the three member and the two member team, the value of a in 

Equations (4.6), (4.7), and (4.8) is varied between 0.1 and 0.9, and the corresponding 

Minimum Surveillance Mission cost of the i' UA V, min_J sm., is recorded. The fuel cost 

incurred by a vehicle and its surveillance mission time, associated with min_Jsm , for a 

given a , are also recorded. Figures have also been included to show the effect of 
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velocity and the scaling factor a on the Minimum Surveillance Mission cost of each 

vehicle. 

For all the velocity sets, for case I (team of 3 vehicles) as well as case II (team of 

2 vehicles), the Minimum Surveillance Mission costs for both UAV2 and UAV3 only 

need to be found once. This is because the velocity range of these vehicles remains the 

same throughout the simulations, i.e., they do not suffer from an actuator fault. UAV1 is 

the only vehicle in which the actuator fault is simulated, and hence its Minimum 

Surveillance Mission cost values will change as its maximum velocity is reduced. Thus, 

the minimum team cost values of the team of three vehicles will change but that of the 

team of two vehicles will remain the same. 

In the following section, i.e., Section 4.4.1, we will consider Velocity Set 1 in 

which the maximum velocity of UAV1 is limited to 90% of its nominal maximum 

velocity, 220 m/s. Two cases are considered, namely case I and case II. In case I, a team 

of three vehicles (two healthy and one faulty) carries out the surveillance mission. The 

results for case I are tabulated in Tables 4.2 and 4.3, which show, for a (scaling factor 

in Equation (4.2)) ranging from 0.1 to 0.9, the Minimum Surveillance mission cost along 

with the associated fuel cost and surveillance mission time of the individual vehicles in 

the three vehicle team (UAV1, UAV2, and UAV3). In case II, a team of two healthy 

vehicles (UAV2 and UAV3) is tasked to perform surveillance. The Minimum 

Surveillance mission cost, the fuel cost, and the surveillance mission time of UAV2 and 

UAV3 are tabulated in Table 4.4. 
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4.4.1 Velocity Set 1: UAV1: 89-198m/s, UAV2: 89-220m/s, UAV3: 89-220m/s 

Case I: Two healthy vehicles, 1 faulty vehicle performing surveillance 

Table 4.2: Minimum Surveillance mission costs of UAV1 when its maximum velocity is 

at 90% of the nominal value, 220m/s. 

alpha ( a ) 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

v l 
(m/s) 

89 
89 
89 
98 
113 
129 
149 
179 
198 

min_Jsmi 

20.97 
26.02 
31.07 
35.71 
38.99 
40.88 
41.16 
39.30 
34.75 

(km3/sec2) 
15.92 
15.92 
15.92 
19.3 

25.67 
33.45 
44.62 
64.40 
78.80 

(hours) 
6.273 
6.273 
6.273 
5.697 
4.941 
4.328 
3.747 
3.119 
2.82 

801 

70 i 

0.2 

Figure 4.5: Surveillance Mission Costs of UAV1 for the velocity 

range:89m/5<vi <198m/s. 

20' 
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Table 4.2 shows, for each value of a, the Minimum Surveillance mission cost 

incurred by UAV1. The velocity at which the minimum cost is incurred and the 

associated fuel cost and the surveillance mission time are also given. Figure 4.5 shows 

the effects of varying the value of a on the Surveillance Mission Cost of UAV1, given 

by Equation (4.6). 

At lower values of a, the weight given to the minimization of fuel cost is more 

than that given to the minimization of the surveillance mission time. As shown by 

Figure 4.6, fuel cost increases monotonically with an increase in velocity. Whereas, 

Figure 4.7 shows that the surveillance mission time decreases monotonically with an 

increase in velocity. Hence, as expected, Figure 4.5 shows that for a = 0.1 to 0.3, the 

Surveillance Mission cost of UAV1 increases monotonically with an inease in velocity. 

Table 4.2 also shows that for a = 0.1 to 0.3, the minimum Surveillance Mission cost is 

incurred by UAV1 at its minimum velocity, 89m/s. The minimum value of the fuel cost, 

15.92 km /sec , also occurs when UAV1 is flying at its minimum velocity of 89m/s. 

However the surveillance mission time, 6.273 hours, is maximum at 89m/s. As the value 

of a increases to 0.4 and then up to 0.9 (i.e., as the mission designer places more 

emphasis on the minimization of the surveillance mission time), the velocity of UAV1 

increases, which leads to an increase in the fuel cost and a decrease in the surveillance 

mission time. Finally, the minimum value of the surveillance mission time, 2.82 hours, 

occurs when the velocity of UAV1 is at its maximum, 198m/s. At this velocity, the fuel 

cost of UAV1 reaches its maximum value of 78.80km3/sec2. 
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Figure 4.6: Fuel cost of UAV1 for the velocity range: 89m/s < vj < 198m/s, 
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Figure 4.7: Surveillance Mission time of UAV1 for the velocity 

range: 89m/s < V] < 198m / s. 
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Table 4.3 shows, for each value of a , the Minimum Surveillance mission cost 

incurred by UAV2 and UAV3. Unlike UAV1, these vehicles function normally 

throughout the mission. Hence, their Minimum Surveillance mission cost, for each value 

of a , always remains the same, and hence will only be found once. Here, as in the case 

of UAV1, for lower values of a, UAV2 and UAV3 incur the minimum Surveillance 

mission cost at lower velocities. As shown by Figure 4.8, with an increase in a, the 

minimum Surveillance mission cost for UAV2 and UAV3 occurs at higher velocities. 

Table 4.3: Minimum Surveillance mission cost of UAV2 and UAV3 for case I. 

alpha ( a ) 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

v2,v3 

(m/s) 

89 
89 
91 
106 
122 
139 
160 
192 
220 

min-Jsm2 

22.6 
29.28 
35.91 
41.32 
45.12 
47.30 
47.63 
45.48 
39.84 

J fuel2 ' ^ fuel3 

(km3/sec2) 

15.92 
15.92 
16.64 
22.58 
29.92 
38.84 
51.46 
74.10 
97.28 

*S2 ' fs3 

(hours) 

6.273 
6.273 
6.136 
5.267 
4.577 
4.017 
3.49 

2.908 
2.538 
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Figure 4.8: Surveillance Mission Costs of UAV2 and UAV3 for case I, and for the 

nominal velocity range: 89m/s < V2 3 < 220m/s. 

In Table 4.4, the results of case II (where only two healthy vehicles are 

performing the surveillance mission) are tabulated, which show the Minimum 

Surveillance Mission cost incurred by UAV2 and UAV3. Figure 4.9 shows the effects of 

varying the value of a on the Surveillance Mission cost of UAV2 and UAV3, given by 

Equations (4.7), and (4.8). 

Comparing Tables 4.2, 4.3, and 4.4, one can see that in case II, the fuel cost and 

the surveillance mission time, and hence the surveillance mission cost of UAV2 and 

UAV3 is higher than that of each vehicle (UAV1, UAV2, and UAV3) in case I. This is 

because the search distance of UAV2 and UAV3 (300 sq-km each) in case II is greater 

than that of UAV1, UAV2, and UAV3 (200 sq-km each) in case I. 
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Case II: Two healthy vehicles performing surveillance 

Table 4.4: Minimum Surveillance mission cost of UAV2 and UAV3 for case II. 

alpha ( a ) 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

(m/s) 

89 
89 
92 
106 
122 
140 
161 
194 
220 

min J„m 

33.84 
43.84 
53.77 
61.88 
67.57 
70.83 
71.32 
68.10 
59.65 

J fuel2 J*' fuel3 

(kmVsec2) 

23.84 
23.84 
25.48 
33.82 
44.80 

59 
78.02 
113.3 
145.7 

*S2 ' S3 

(hours) 

9.395 
9.395 
9.088 
7.888 
6.853 
5.972 
5.193 
4.31 
3.801 

140 

120 

100 

80 

60 

40 

20' 
0.08 

a = alpha 

0.1 0.12 0.14 0.16 
velocity (km/sec) 

0.18 0.2 0.22 

Figure 4.9: Surveillance Mission Costs of UAV2 and UAV3 for case II, and for the 

nominal velocity range: 89m / s < v2 3 < 220m I s. 
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Finally, Table 4.5, given below, shows that for all values of a, as expected, the 

Minimum Team Cost of the three vehicle team is always lower than that of the two 

vehicle team. As seen from Tables 4.2, 4.3, and 4.4, the Minimum Surveillance Mission 

cost values of the individual vehicles (UAV1, UAV2, and UAV3) in the three vehicle 

team are always lower than that of the two vehicle team. This is because both UAV2 and 

UAV3 have to cover a greater distance as compared with each of the vehicles in the 

three vehicle team. 

Table 4.5: Comparison of Minimum Team Cost values for case I and case II when the 

velocity range of UAVI is: 89m/s<v^ < 198m/s 

alpha (a) 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

N 

min ^T Jsm (Minimum Team Cost) 
» = 1 

Case I (N = 3) 
66.17 
84.57 
102.89 
118.35 
129.23 
135.48 
136.42 
130.26 
114.43 

Case II (N = 2 ) 
67.68 
87.68 
107.54 
123.76 
135.14 
141.66 
142.64 
136.20 
119.30 

To see if further lowering the velocity of UAV1 will have any impact on the 

overall team cost of the three vehicle team (i.e., whether it will remain lower or become 

higher than that of the two vehicle team), we gradually decrease UAVl's maximum 

velocity. In Section 4.4.2, the maximum velocity of UAV1 is further lowered to 50% of 

the nominal maximum velocity, 220m/s (same for all three vehicles). The simulation 
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results for the cases where the maximum velocity of UAVI is decreased to 80%, 70% 

and 60% of its nominal maximum value are shown in the Appendix A. As in Section 

4.4.1, wherein the maximum velocity of UAV1 is limited to 90% of the nominal 

maximum velocity, two cases, namely case I and case II are considered in Section 4.4.2 

as well. However, it should be noted that for case I, only the results for UAV1 are 

tabulated in Table 4.6. The results for UAV2 and UAV3 are tabulated in Table 4.3 for 

case I and in Table 4.4 for case II. This is because the velocity range of these vehicles 

remains the same throughout the simulations, (89m/s - 220m/s) i.e., they do not suffer 

from an actuator fault. UAV1 is the only vehicle in which the actuator fault is simulated, 

and hence its results have to be tabulated for each velocity set. 

4.4.2 Velocity Set 5: UAV1: 89-110m/s, UAV2: 89-220m/s, UAV3: 89-220m/s 

Case I: Two healthy vehicles, 1 faulty vehicle performing surveillance 

Table 4.6: Minimum Surveillance mission cost of UAV1 when its maximum velocity is 

at 50% of the nominal value, 220m/s. 

alpha ( a ) 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

v l 
(m/s) 

89 
89 
89 
89 
89 
90 
103 
110 
110 

m in_^m, 

16.55 
17.19 
17.82 
18.45 
19.08 
19.71 
19.85 
19.26 
18.63 

Jfuel\ 

(knrVsec2) 
15.92 
15.92 
15.92 
15.92 
15.92 
16.28 
21.32 
24.32 
24.32 

(hours) 
6.273 
6.273 
6.273 
6.273 
6.273 
6.204 
5.421 
5.076 
5.076 
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Table 4.6 shows that UAV1 incurs its minimum Surveillance Mission cost at 

a =0.1 , and at its minimum velocity of 89m/s. For a = 0.2 to 0.5, UAV1 maintains 

the same velocity (89m/s) as well as fuel cost (15.92 km /sec ) and surveillance mission 

time (6.273 hours) as in or = 0.1. However, its minimum Surveillance Mission cost 

increases as a increases from 0.1 to 0.5. This is because the weighting given to the 

surveillance mission time (which remains constant at its maximum value of 6.273 hours 

from a - 0.1 to 0.5) increases with an increasing a , which in turn leads to an increase 

in the value of the minimum Surveillance Mission cost. 

In Table 4.7, the Minimum Team Cost values of the three vehicle team (Case I: 

UAV1, UAV2, and UAV3) and the two vehicle team (Case II: UAV2 and UAV3) are 

tabulated. 

Table 4.7: Comparison of Minimum Team Cost values for case I and case II when the 

velocity range of UAV1 is: 89m/s <v\ < 1 lOm/s. 

alpha (a) 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 

TV 
m i n ^ V ^ , (Minimum Team Cost) 

Case I (N = 3) 
61.75 
75.75 
89.64 
101.09 
109.32 
114.31 
115.11 
110.22 

Case II (N = 2 ) 
67.68 
87.68 
107.54 
123.76 
135.14 
141.66 
142.64 
136.20 

0.9 98.31 119.30 
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Comparing the Minimum Team Cost values for case II in Tables 4.5 and 4.7, one 

can see that these values are the same. This is because UAV2 and UAV3 do not suffer 

from an actuator fault, and hence their Minimum Surveillance Mission cost values do 

not change from one Velocity Set to the next. However, since the velocity range of 

UAV1 is reduced from 89m/s-198m/s in Section 4.4.1 to 89m/s-l lOm/s in Section 4.4.2, 

the Minimum Team Cost values of the three vehicle team in case I are affected, and 

hence, these values change from Table 4.5 to Table 4.7. 

From Tables 4.5 and 4.7, and the simulation results for the three cases included 

in the Appendix A, it can be seen that even when the maximum velocity of UAV1 is 

reduced from 90% down to 50% of its nominal value, the team of three vehicles is still a 

better choice for performing the surveillance mission. This is because the Minimum 

Team Cost of the three vehicle team is always (i.e., for or = 0.1 to 0.9) lower than that of 

the team of two healthy vehicles (UAV2 and UAV3). Hence, one may conclude from 

these results that when we consider the actuator fault to be in a single vehicle in a team 

of only three vehicles, it is not the extent of the fault in the actuator but rather the search 

distance to be covered by each vehicle that determines whether a team of two or three 

vehicles is better suited for performing the given mission. 

4.5 Performance Under a Sensor Fault 

In the second set of simulations, sensor range has been used as a fault variable to 

simulate a sensor fault in a single UAV. The extent of the sensor fault has been 



120 

simulated through gradual reduction of the sensor range of the affected vehicle. As in 

the case of the actuator fault, the goal here is to determine whether a team of three 

vehicles is better suited for the surveillance mission or a team of two vehicles. 

The nominal circular sensor range of each vehicle is 100 meters. It is assumed 

that the fault in the sensor of UAV1 occurs before the beginning of the surveillance 

mission. To simulate the sensor fault, the sensor range of UAV1 is gradually reduced 

from 80 meters to 50 meters and finally to 25 meters. Since UAV2 and UAV3 are in a 

healthy state, their sensor range remains at 100 meters for the duration of the mission. 

Hence, the results of UAV2 and UAV3 are not shown in the simulations that follow. 

These results are available in Tables 4.3, and 4.4., and Figures 4.8, and 4.9 respectively. 

It should be noted that the velocity range of each vehicle is assumed to be between the 

nominal range, 89m/s<vi2 3 <220m/s. In the following tables, the results for the 

sensor ranges of 80 meters and 50 meters are given, while the results for the sensor 

range of 25 meters are given in the Appendix A. 

In Sections 4.5.1 and 4.5.2, the sensor range of UAV1 is reduced to 80% and 

50% of its nominal range of 100 meters, respectively. As in the case of the Actuator 

Fault in Section 4.4, two cases are considered, namely case I and case II, in order to 

determine whether a team of three vehicles (two healthy and one faulty) or a team of 

two healthy vehicles is better suited for performing the surveillance mission. 
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4.5.1 Sensor Range: UAV1: 80 meters, UAV2:100 meters, UAV3: 100 meters 

Case I: Two healthy vehicles, 1 faulty vehicle performing surveillance 

Table 4.8: Minimum Surveillance mission cost of UAV1 when its sensor range is at 

80% of the nominal value, 100 meters. 

alpha ( a ) 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

v l 
(m/s) 

89 
89 
92 
106 
122 
139 
162 
193 
220 

min_/,OTi 

28.22 
36.56 
44.84 
51.60 
56.34 
59.06 
59.47 
56.79 
49.74 

Jfuelx 

(km3/sec2) 
19.88 
19.88 
21.24 
28.20 
37.36 
48.50 
65.87 
93.49 
121.5 

(hours) 
7.834 
7.834 
7.579 
6.578 
5.715 
5.016 
4.304 
3.613 
3.169 

201--- : - - -~L '--- - - - - - - !-— J 

0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 
velocity (km/sec) 

Figure 4.10: Surveillance Mission Costs of UAV1 for a sensor range of 80 

meters. 
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For case I, the results of only UAV1 are tabulated in Table 4.8 and graphed in 

Figure 4.10. The results for UAV2 and UAV3, for both case I and case II, are not 

tabulated since we assume that these vehicles function within normal parameters, i.e., 

they maintain a velocity within the nominal velocity range of 89 m/s - 220 m/s and have 

a nominal sensor range spanning 100 meters. Hence, as was pointed out in Section 4.4, 

the results for UAV2 and UAV3, for both case I and case II, only need to be found once, 

and are tabulated in Tables 4.3 and 4.4. 

For the results in Table 4.8 and Table 4.9, it is assumed that the sensor range of 

UAV1 is 80 meters as compared with the nominal sensor range of 100 meters for UAV2 

and UAV3. As seen from Equation (4.4), reducing the sensor range of UAV1 leads to an 

WRA 
increase in the value of the term, , which, for UAV1, represents the number 

SR_UAVt 

of times UAV1 has to travel along the length of the rectangular region. An increase in 

WRA 
the value of the term , leads to an increase in the distance covered by UAV1, 

SR_UAVt 

which in turn leads to an increase in both the fuel cost (given by Equation (4.3)) and the 

surveillance mission time (given by Equation (4.5)) of UAV1. According to Equation 

(4.6), an increase in the fuel cost and surveillance mission time of UAV1 leads to an 

increase in the surveillance mission cost of UAVI. Hence, a reduced sensor range leads 

to an increase in the surveillance mission cost. 

Observing the results of Table 4.8 and Figure 4.10 in entirety will not help us in 

understanding the effect of a reduced sensor range on the fuel cost and surveillance 
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mission time of UAV1. However, comparing the results of the fuel cost and the 

surveillance mission time for a = 0.1 in Table 4.8 with those in Tables 4.2 and 4.6, we 

can see that for a given velocity of 89 m/s, the fuel cost and the surveillance mission 

time of UAVI increase as its sensor range is reduced. 

Table 4.9 shows that even with a limited reduction in the sensor range in a single 

vehicle in a three vehicle team, the team of two healthy vehicles always (i.e., for or = 0.1 

to 0.9) incurs a lower Minimum Team Cost than a team of two healthy vehicles and one 

faulty vehicle. 

Table 4.9: Comparison of Minimum Team Cost values for case I and case II when the 

sensor range of UAV1 is 80 meters. 

alpha (a) 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

N 
min ^ ] Jsm. (Minimum Team Cost) 

Case I (N = 3) 
73.42 
95.12 
116.66 
134.24 
146.58 
153.66 
154.72 
147.75 
129.42 

Case II (N = 2 ) 
67.68 
87.68 
107.54 
123.76 
135.14 
141.66 
142.64 
136.20 
119.30 

From the results in Tables 4.5 and 4.7, we have seen that even with either a 

limited or a significant reduction in the maximum velocity of a single vehicle in a three 

vehicle team, a three vehicle team always incurs a lower Minimum Team Cost than a 
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team of two healthy vehicles. However, for those results, the sensor range of all three 

vehicles was assumed to be nominal, i.e., 100 meters, which is not the case for the 

results in Table 4.9, where the sensor range of UAV1 is limited to 80 meters. 

Comparison of these results shows that for our chosen surveillance scenario, a reduced 

sensor range and hence an increase in the distance covered by a vehicle has a more 

significant impact on a team's performance than a fault in a vehicle's actuator. 

In Section 4.5.2, the sensor range of UAV1 is further reduced to 50% of its 

nominal range of 100 meters, respectively. 

4.5.2 Sensor Range: UAV1: 50 meters, UAV2: 100 meters, UAV3: 100 meters 

Case I: Two healthy vehicles, 1 faulty vehicle performing surveillance 

Table 4.10: Minimum Surveillance mission cost of UAVI when its sensor range is at 

50% of the nominal value, 100 meters. 

alpha ( a ) 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

v l 
(m/s) 

89 
89 
92 
107 
122 
140 
162 
193 
220 

m i n _ ^ w , 

45.08 
58.40 
71.64 
82.43 
90.02 
94.36 
95.01 
90.73 
79.47 

Jfuelx 

(km3/sec2) 
31.76 
31.76 
33.94 
45.91 
59.68 
78.60 
105.2 
149.4 
194.1 

(hours) 
12.52 
12.52 
12.11 
10.41 
9.13 
7.956 
6.876 
5.771 
5.063 
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4 0 L 1 ' 1 ' L L- -•- — < 

0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 
velocity (km/sec) 

Figure 4.11: Surveillance Mission Costs of UAV1 for a sensor range of 50 meters. 

For reasons given in Section 4.5.1, the results in Section 4.5.2 also only include 

case I for UAV1 (Table 4.10 and Figure 4.11) and the comparison of the Minimum 

Team Cost values for case I and case II (Table 4.11). 

Comparing the results in Tables 4.8 and 4.10, we can see that for equivalent 

velocities, the fuel cost and the surveillance mission time values are higher in Table 4.10 

than in Table 4.8. These results are expected since the sensor range of UAV1 for the 

results in Table 4.10 is limited to 50 meters as compared with 80 meters for Table 4.8. 

Following the results from Tables 4.8 and 4.10, a comparison of the Minimum Team 

Cost values for case I in Table 4.11 with those in Table 4.9 also shows that a further 
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decrease in the sensor range of UAV1 from 80 meters to 50 meters leads to a higher 

Minimum Team Cost value for a = 0.1 to 0.9. 

Table 4.11: Comparison of Minimum Team Cost values for case I and case II when the 

sensor range of UAVI is 50 meters. 

alpha (a) 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

N 
min ^ Jsm (Minimum Team Cost) 

Case I (N = 3) 
90.28 
116.96 
143.46 
165.07 
180.26 
188.96 
190.27 
181.69 
159.15 

Case II (N = 2 ) 
67.68 
87.68 
107.54 
123.76 
135.14 
141.66 
142.64 
136.20 
119.30 

From Tables 4.9, 4.11, and A. 8 (Appendix A. These are the results for a sensor 

range of 25 meters for UAV1.), it can be seen that for all the values of a, the Minimum 

Team Cost value of the team of two vehicles is always lower than that of the team of 

three vehicles, making the team of 2 healthy vehicles (UAV2 and UAV3) a better choice 

for performing the surveillance mission. The explanation for these results is that as the 

sensor range of UAV1 decreases, its search distance increases, leading to an increase in 

its fuel cost and surveillance mission time, which in turn lead to an increase in its 

Minimum Surveillance mission costs (for a= 0.1 to 0.9). With a sensor range of 80 

meters, the distance covered by UAV1 is 2510 km (see Equation (4.4)), which increases 

to 4010 km as its sensor range reduces to 50 meters. Moreover, when the sensor range of 
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UAV1 is 80 meters, the overall distance to be covered by the three vehicle team is 6530 

km (UAV1: 2510 km, UAV2: 2010 km, UAV3: 2010 km), which increases to 8030 km 

(UAV1: 4010 km, UAV2: 2010 km, UAV3: 2010 km) as the sensor range of UAV1 

decreases to 50 meters. In comparison, the overall distance to be covered by the two 

vehicle team remains at 6020 km (UAV2: 3010 km, UAV3: 3010 km). Hence, from 

these results, it can be concluded that the team whose search distance is lower is the one 

that should be chosen to perform the surveillance mission. 

4.6 Performance Under Sensor and Actuator Faults 

In the third set of simulations, both sensor range and velocity have been used as 

fault variables to simulate a sensor and an actuator fault in a single UAV. It is assumed 

that before the start of the surveillance mission, the actuator of UAV 1 is suffering from 

Loss of Effectiveness, whereas the sensor is subject to a multiplicative type sensor 

failure. To simulate these two faults simultaneously, two sets of simulations have been 

carried out. 

In the first set, the sensor range of UAV1 is assumed to be limited to 80 meters, 

whereas that of UAV2 and UAV3 is 100 meters. The maximum velocity of UAV 1 is 

reduced to: 90% (198 m/s), 80% (176 m/s), 70% (154 m/s), 60% (132 m/s), and 50% 

(110 m/s) of its nominal maximum velocity, 220 m/s. As before, the velocity range of 

UAV2 and UAV3 remains between 89 m/s and 220 m/s for the duration of the mission. 
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In the second set of simulations, the sensor range of UAVI is assumed to be limited to 

50 meters. For this sensor range, the maximum velocity of UAV1 is reduced to 60% 

(132 m/s), and 50% (110 m/s) of the maximum velocity, 220 m/s. For the third set of 

simulations, the sensor range of UAV1 is further reduced to 25 meters, and its maximum 

velocity is dropped to 110 m/s. As in the cases of the actuator fault and the sensor fault, 

the mission designer must use minimization of the team cost as a performance measure 

to select either a team of all three vehicles or a team of two healthy vehicles to perform 

the surveillance mission. 

4.6.1 Results of Simulation Set 1: Sensor Range: UAV1: 80 meters, UAV2: 

100 meters, UAV3: 100 meters 

4.6.1.1 Velocity Range: UAV1: 89-198 m/s, UAV2: 89-220 m/s, UAV3: 89-220 m/s 

The results tabulated in Table 4.12 show, for a = 0.1 to 0.9, the Minimum 

Surveillance Mission cost, the fuel cost, and the surveillance mission time of UAV1 

when it is suffering from a simultaneous sensor and actuator fault. As explained in the 

previous section, the results for UAV2 and UAV3 for both cases, i.e., case I and case II 

only need to be recorded once (the results for case I are recorded in Table 4.3 whereas 

those of case II are recorded in Table 4.4) since these vehicles are considered to be 

healthy. Table 4.13 compares the Minimum Team Cost values of the three vehicle team 

with those of the two vehicle team. 



Table 4.12: Minimum Surveillance Mission costs of UAV1 when its maximum velocity 

is at 90% and its sensor range is at 80% of the nominal values. 

alpha (a) 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

v l 
(m/s) 

89 
89 
89 
99 
113 
130 
149 
179 
198 

min_^m, 

26.1891 
32.4965 
38.8039 
44.5908 
48.6918 
51.0432 
51.3952 
49.0783 
43.3995 

J fuelx 

(knrVsec2) 
19.88 
19.88 
19.88 
24.6 
32.05 
42.42 
55.72 
80.42 
98.40 

(hours) 
7.834 
7.834 
7.834 
7.043 
6.17 
5.363 
4.679 
3.895 
3.521 

Table 4.13: Comparison of Minimum Team Cost values for case I and case II when the 

maximum velocity of UAV1 is 198 m/s and its sensor range is 80 meters. 

alpha (a) 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

N 
min V Jsm. (Minimum Team Cost) 

Casel (N = 3) 
71.3856 
91.0471 
110.6187 
127.2306 
138.9329 
145.6420 
146.6467 
140.0351 
123.0709 

Case2 (N = 2 ) 
67.68 
87.68 
107.54 
123.76 
135.14 
141.66 
142.64 
136.20 
119.30 

From Table 4.13, it can be seen that when the maximum velocity of UAV1 is 

198m/s (90% of the maximum velocity under nominal conditions), and its sensor range 
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is 80 meters, the Minimum Team Cost of the team of two vehicles is always lower than 

that of the team of three vehicles. 

To understand these results, one has to observe the effect of the actuator fault in 

Tables 4.2 and 4.5, and the sensor fault in Tables 4.8 and 4.9 on the performance of the 

team of three vehicles. In Table 4.5, it has been shown that when UAV1 is operating 

under an actuator fault with its maximum velocity reduced to 90% (198m/s) of the 

nominal value, 220m/s, the team of three vehicles is better suited to perform the mission. 

We have seen that this happens because the distance to be covered by each vehicle in the 

two vehicle team (UAV2: 3010 km, UAV3: 3010 km) is 1000 km more than that of each 

vehicle in the three vehicle team (UAV1: 2010 km, UAV2: 2010 km UAV3: 2010 km). 

Hence, for the team of two vehicles, a greater distance translates into an increase in fuel 

cost and surveillance mission time, which lead to an increase in the individual vehicle 

costs. Table 4.9 shows that when UAV1 is operating with a perfectly functioning 

actuator but a reduced sensor range of 80 meters, the team of two healthy vehicles is the 

better option. Here, a reduced sensor range of UAV1 leads to an increase in its 

surveillance distance, which leads to an increase in the mission cost of UAV1, and 

ultimately the team cost. However, an increased team cost for the team of three vehicles 

does not necessarily mean that this cost will always be higher than that of the team of 

two UAVs. For the given case (i.e., the results in Tables 4.12 and 4.13), the overall 

search distance of the team of three vehicles (UAV1: 2510 km + UAV2: 2010 km + 

UAV3: 2010 km = 6530 km) is greater than that of the team of two vehicles (6020 km) 

and as the results in the previous section (sensor fault) have shown, the team with the 
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overall lower surveillance distance is the one that incurs the lower Minimum Team cost 

for a = 0.1 to 0.9. 

Given the aforementioned results, one would expect and the results show that for 

all values of a , the minimum team cost values for the three vehicle team in Table 4.13 

would be lower than those in Table 4.9 (sensor fault) but higher than those of Table 4.5 

(actuator fault). While the surveillance distance of UAV1 (for the results in Tables 4.12 

and 4.13) is the same (equal to 2510 km) as in the reduced sensor range scenario in 

Tables 4.8 and 4.9, its maximum velocity is lower (equal to 198 m/s), which leads to a 

decreased average fuel cost but an increased average surveillance mission time (as 

compared with the results in Table 4.8). Hence, the value of J3 (the scaling factor in 

Equation (4.6)) is lower, which leads to a decreased Minimum Surveillance Mission cost 

of UAV1 for a = 0.1 to 0.9. This can be seen when the results showing the Minimum 

Surveillance Mission costs of UAV1 in Table 4.8 (sensor fault) and Table 4.12 (sensor 

and actuator fault) are compared. As for the actuator fault, the Minimum Surveillance 

Mission costs of UAV1 are lower than the sensor and actuator fault case due to UAV1 's 

lower search distance (2010 km). 

However, even knowing that the Minimum Team costs for the three vehicle team, 

where one vehicle is suffering from a simultaneous actuator and sensor fault, are lower 

than the case involving the sensor fault, and higher than the case involving the actuator 

fault, one still cannot predict that the Minimum Team cost values of the three vehicle 

team in Table 4.13 will be higher than that of the two vehicle team. 
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To see if further lowering the velocity of UAV1 will have any impact on the 

overall team cost of the three vehicle team, we gradually decrease UAVl's maximum 

velocity. The next sets of simulation results show the effect of lowering the velocity of 

UAV1 to 80% (176 m/s), 70% (154 m/s), 60% (132 m/s), and 50% (110 m/s) of its 

nominal maximum velocity, 220 m/s. 

4.6.1.2 Velocity Range: UAV1: 89-176 m/s, UAV2: 89-220 m/s, UAV3: 89-220 m/s 

The results tabulated in Table 4.14 show, for a =0 .1 to 0.9, the Minimum 

Surveillance Mission cost, the fuel cost, and the surveillance mission time of UAV1 

when it is suffering from a simultaneous sensor and actuator fault. Here, as in Table 4.12, 

the sensor range of UAV1 is limited to 80 meters, whereas the maximum velocity of 

UAV1 is further reduced to 80% of its nominal value (176 m/s). For UAV2 and UAV3, 

the results for case I are recorded in Table 4.3 whereas those of case II are recorded in 

Table 4.4. Table 4.15 compares the Minimum Team Cost values of the three vehicle 

team with those of the two vehicle team. 
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Table 4.14: Minimum Surveillance Mission costs of UAV1 when its maximum velocity 

is at 80% and its sensor range is at 80% of the nominal values. 

alpha ( a ) 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

v l 
(m/s) 

89 
89 
89 
91 
104 
119 
138 
165 
176 

min_J5W] 

24.4373 
28.9929 
33.5484 
38.0682 
41.5694 
43.5773 
43.8779 
41.8994 
37.5565 

Jfuelx 

(km3/sec2) 
19.88 
19.88 
19.88 
20.79 
27.15 
35.54 
47.80 
68.33 
77.75 

(hours) 
7.834 
7.834 
7.834 
7.662 
6.704 
5.859 
5.052 
4.226 
3.961 

Table 4.15: Comparison of Minimum Team Cost values for case I and case II when the 

maximum velocity of UAV1 is 176 m/s and its sensor range is 80 meters. 

alpha (a) 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

N 
min ĵT Jsm (Minimum Team Cost) 

i=\ 

Case I (N = 3) 
69.6338 
87.5435 
105.3633 
120.7080 
131.8105 
138.1761 
139.1293 
132.8562 
117.2279 

Case II (N = 2 ) 
67.68 
87.68 
107.54 
123.76 
135.14 
141.66 
142.64 
136.20 
119.30 
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4.6.1.3 Velocity Range: UAV1: 89-154 m/s, UAV2: 89-220 m/s, UAV3: 89-220 m/s 

The results tabulated in Table 4.16 show, for a = 0.1 to 0.9, the Minimum 

Surveillance Mission cost, the fuel cost, and the surveillance mission time of UAV1 

when it is suffering from a simultaneous sensor and actuator fault. Here, as in Tables 

4.12 and 4.14, the sensor range of UAV1 is limited to 80 meters, whereas the maximum 

velocity of UAV1 is further reduced to 70% of its nominal value (154 m/s). For UAV2 

and UAV3, the results for case I are recorded in Table 4.3 whereas those of case II are 

recorded in Table 4.4. Table 4.17 compares the Minimum Team Cost values of the three 

vehicle team with those of the two vehicle team. 

Table 4.16: Minimum Surveillance Mission costs of UAV1 when its maximum velocity 

is at 70% and its sensor range is at 80% of the nominal values. 

a 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

vl 
(m/s) 

89 
89 
89 
89 
95 
109 
127 
153 
154 

m i n _ ^ W l 

22.9463 
26.0108 
29.0754 

32.1399 
34.9876 
36.6771 
36.9297 
35.2647 
32.2335 

J fuel] 

(knrVsec2) 
19.88 
19.88 
19.88 

19.88 
22.65 
29.82 
40.48 
58.76 
59.53 

(hours) 
7.834 
7.834 
7.834 
7.834 
7.339 
6.397 
5.49 
4.557 
4.527 
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Table 4.17: Comparison of Minimum Team Cost values for case I and case II when the 

maximum velocity of UAVI is 154 m/s and its sensor range is 80 meters. 

alpha (a) 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

N 
min ^ Jsm. (Minimum Team Cost) 

Case I (N = 3) 
68.1428 
84.5615 
100.8902 
114.7797 
125.2287 
131.2759 
132.1812 
126.2215 
111.9049 

Case II (N = 2 ) 
67.68 
87.68 
107.54 
123.76 
135.14 
141.66 
142.64 
136.20 
119.30 

4.6.1.4 Velocity Range: UAV1: 89-132 m/s, UAV2: 89-220 m/s, UAV3: 89-220 m/s 

The results tabulated in Table 4.18 show, for a = 0.1 to 0.9, the Minimum 

Surveillance Mission cost, the fuel cost, and the surveillance mission time of UAV1 

when it is suffering from a simultaneous sensor and actuator fault. Here, as in Tables 

4.12, 4.14, and 4.16, the sensor range of UAV1 is limited to 80 meters, whereas the 

maximum velocity of UAV1 is further reduced to 60% of its nominal value (132 m/s). 

For UAV2 and UAV3, the results for case I are recorded in Table 4.3 whereas those of 

case II are recorded in Table 4.4. Table 4.19 compares the Minimum Team Cost values 

of the three vehicle team with those of the two vehicle team. 
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Table 4.18: Minimum Surveillance Mission costs of UAV1 when its maximum velocity 

is at 60% and its sensor range is at 80% of the nominal values. 

alpha ( a ) 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

v l 
(m/s) 

89 
89 
89 
89 
89 
100 
116 
132 
132 

min-Jsmi 

21.6975 
23.5132 
25.3290 
27.1447 
28.9605 
30.3530 
30.5621 
29.2650 
27.4563 

Jfuelx 

(km3/sec2) 
19.88 
19.88 
19.88 
19.88 
19.88 
25.10 
33.77 
43.73 
43.73 

(hours) 
7.834 
7.834 
7.834 
7.834 
7.834 
6.972 
6.011 
5.282 
5.282 

Table 4.19: Comparison of Minimum Team Cost values for case I and case II when the 

maximum velocity of UAV1 is 132 m/s and its sensor range is 80 meters. 

alpha (a) 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

N 

min 2 ] Jsm. (Minimum Team Cost) 
i=l 

Case I (N = 3) 
66.8940 
82.0638 
97.1438 
109.7845 
119.2016 
124.9517 
125.8135 
120.2218 
107.1278 

Case II (N = 2 ) 
67.68 
87.68 
107.54 
123.76 
135.14 
141.66 
142.64 
136.20 
119.30 
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4.6.1.5 Velocity Range: UAV1: 89-110 m/s, UAV2: 89-220 m/s, UAV3: 89-220 m/s 

The results tabulated in Table 4.20 show, for a = 0.1 to 0.9, the Minimum 

Surveillance Mission cost, the fuel cost, and the surveillance mission time of UAV1 

when it is suffering from a simultaneous sensor and actuator fault. Here, as in Tables 

4.12, 4.14, 4.16, and 4.18, the sensor range of UAV1 is limited to 80 meters, whereas 

the maximum velocity of UAV1 is further reduced to 50% of its nominal value (110 

m/s). For UAV2 and UAV3, the results for case I are recorded in Table 4.3 whereas 

those of case II are recorded in Table 4.4. Table 4.21 compares the Minimum Team Cost 

values of the three vehicle team with those of the two vehicle team. 

Table 4.20: Minimum Surveillance Mission costs of UAV1 when its maximum velocity 

is at 50% and its sensor range is at 80% of the nominal values. 

alpha (a ) 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

v l 
(m/s) 

89 
89 
89 
89 
89 
89 
105 
110 
110 

min_/SW| 

20.6716 
21.4615 
22.2513 
23.0412 
23.8311 
24.6155 
24.7849 
24.0558 
23.2664 

Jfuely 

(km3/sec2) 
19.88 
19.88 
19.88 
19.88 
19.88 
19.88 
27.67 
30.37 
30.37 

(hours) 
7.834 
7.834 
7.834 
7.834 
7.834 
7.834 
6.64 
6.338 
6.338 
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Table 4.21: Comparison of Minimum Team Cost values for case I and case II when the 

maximum velocity of UAV1 is 110 m/s and its sensor range is 80 meters. 

alpha (a) 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

N 
min ^ Jsm. (Minimum Team Cost) 

/ = 1 

Case I (N = 3) 
65.8681 
80.0121 
94.0662 
105.6810 
114.0722 
119.2143 
120.0364 
115.0125 
102.9378 

Case II (N = 2 ) 
67.68 
87.68 
107.54 
123.76 
135.14 
141.66 
142.64 
136.20 
119.30 

Contrary to the results of Table 4.13, Tables 4.15 and 4.17 show that when the 

maximum velocity of UAV1 drops to 176 m/s and 154 m/s, the Minimum Team cost of 

the three vehicle team is lower than that of the two vehicle team for all values of a 

except a = 0.1. For the last two cases, where in one the maximum velocity of UAVI is 

132 m/s (Table 4.19), and the other, the maximum velocity of UAV1 is 110 m/s (Table 

4.21), the Minimum Team cost of the three vehicle team is always lower than that of the 

two vehicle team. Hence, for these two cases, the team of 3 vehicles is always better 

suited to perform the surveillance mission than the team of 2 vehicles. These results 

show that the Minimum Surveillance Mission cost of the team of three vehicles is lower 

than that of the team of two healthy vehicles if the sensor fault in a single vehicle (in the 

three vehicle team) is limited and its maximum velocity is low (i.e., there is an increased 

degradation in the performance of its actuator). 
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The results of Simulation Set 1 have shown that when the maximum velocity of 

UAV1 drops down to 60% (132 m/s), and 50% (110 m/s) of its nominal value, the 

minimum team cost of the three vehicle team is always lower than that of the two 

vehicle team. However, for the first set of simulations, the sensor fault is limited (i.e., 

the sensor range of UAV1 is assumed to be 80 meters as compared with 100 meters, 

which is the sensor range of the two healthy vehicles, UAV2 and UAV3). Hence, the 

goal of simulation set 2 is to determine the impact of further decreasing the sensor range 

of UAV1 on the performance of the three vehicle team. To this end, the maximum 

velocity of UAV1 is decreased to 132 m/s and 110 m/s, and its sensor range is limited to 

50 meters. 

4.6.2 Results of Simulation Set 2: Sensor Range: UAV1: 50 meters, UAV2: 

100 meters, UAV3: 100 meters 

As stated in the previous section, the goal of simulation set 2 is to determine the 

impact of further decreasing the sensor range of UAV1 on the performance of the three 

vehicle team. Hence, in the second set of simulations, the sensor range of UAV1 is 

assumed to be limited to 50 meters. For this sensor range, the maximum velocity of 

UAV1 is reduced to 60% (132 m/s), and 50% (110 m/s) of the nominal maximum 

velocity, 220 m/s. 
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4.6.2.1 Velocity Range: UAV1: 89-132 m/s, UAV2: 89-220 m/s, UAV3: 89-220 m/s 

The results tabulated in Table 4.22 show, for a =0 .1 to 0.9, the Minimum 

Surveillance Mission cost, the fuel cost, and the surveillance mission time of UAV1 

when it is suffering from a simultaneous sensor and actuator fault. Here, the sensor 

range of UAV1 is limited to 50 meters, whereas the maximum velocity of UAV1 is 

limited to 60% of its nominal value (132 m/s). For UAV2 and UAV3, the results for 

case I are recorded in Table 4.3 whereas those of case II are recorded in Table 4.4. Table 

4.23 compares the Minimum Team Cost values of the three vehicle team with those of 

the two vehicle team. 

Table 4.22: Minimum Surveillance Mission costs of UAV1 when its maximum velocity 

is at 60% and its sensor range is at 50% of the nominal values. 

alpha ( a ) 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

vl 
(m/s) 

89 
89 
89 
89 
89 
100 
115 
132 
132 

mMi-^rn, 

34.6641 
37.5649 
40.4658 
43.3667 
46.2676 
48.4922 

48.8263 
46.7540 
43.8645 

Jfuelx 

(knrVsec2) 

31.76 
31.76 
31.76 
31.76 

31.76 
40.10 
53.03 
69.87 
69.87 

si 

(hours) 
12.52 
12.52 
12.52 
12.52 
12.52 
11.14 

9.686 
8.439 
8.439 
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Table 4.23: Comparison of Minimum Team Cost values for case I and case II when the 

maximum velocity of UAV1 is 132 m/s and its sensor range is 50 meters. 

alpha (a) 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

TV 

min ]jr Jsm. (Minimum Team Cost) 
/=1 

Case I (N - 3) 
79.8606 
96.1156 
112.2807 
126.0065 
136.5087 
143.0910 
144.0777 
137.7108 
123.5359 

Case II (N = 2 ) 
67.68 
87.68 
107.54 
123.76 
135.14 
141.66 
142.64 
136.20 
119.30 

From Table 4.23, it can be seen that when the maximum velocity of UAV1 is 

132 m/s, and its sensor range is 50 meters, the minimum value of team cost of the three 

vehicle team is always higher (i.e., for all values of a ) than that of the two vehicle team. 

However, it can be seen from Table 4.25 that when the maximum velocity of UAV1 is 

110 m/s, and its sensor range is 50 meters, the minimum team cost of the three vehicle 

team is lower than that of the two vehicle team for all values of a except a - 0.1 and 

a = 0.2. These results show that if a greater emphasis is placed on minimization of the 

surveillance mission time as compared with the fuel cost of UAV1, i.e., a higher value 

of a is chosen for UAV1, the minimum team cost of the team of three vehicles is lower 

than that of the team of two vehicles. 
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4.6.2.2 Velocity Range: UAV1: 89-110 m/s, UAV2: 89-220 m/s, UAV3: 89-220 m/s 

The results tabulated in Table 4.24 show, for a - 0.1 to 0.9, the Minimum 

Surveillance Mission cost, the fuel cost, and the surveillance mission time of UAV1 

when it is suffering from a simultaneous sensor and actuator fault. Here, the sensor 

range of UAV1 is limited to 50 meters, whereas the maximum velocity of UAV1 is 

limited to 50% of its nominal value (110 m/s). For UAV2 and UAV3, the results for 

case I are recorded in Table 4.3 whereas those of case II are recorded in Table 4.4. Table 

4.25 compares the Minimum Team Cost values of the three vehicle team with those of 

the two vehicle team. 

Table 4.24: Minimum Surveillance Mission costs of UAV1 when its maximum velocity 

is at 50% and its sensor range is at 50% of the nominal values. 

alpha ( a ) 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

vl 
(m/s) 

89 
89 
89 
89 
89 
89 
104 
110 
110 

min_^m, 

33.0251 
34.2870 
35.5490 
36.8109 
38.0728 
39.3260 
39.5966 
38.4317 
37.1705 

Jfuelx 

(km3/sec2) 

31.76 
31.76 
31.76 

31.76 
31.76 
31.76 
43.37 
48.52 
48.52 

(hours) 
12.52 
12.52 
12.52 

12.52 
12.52 
12.52 

10.71 
10.13 
10.13 
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Table 4.25: Comparison of Minimum Team Cost values for case I and case II when the 

maximum velocity of UAV1 is 110 m/s and its sensor range is 50 meters. 

alpha (a) 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

N 
min V Jsm. (Minimum Team Cost) 

Case I (N = 3) 
78.2217 
92.8377 
107.3638 
119.4506 
128.3139 
133.9247 
134.8481 
129.3885 
116.8420 

Case II (N = 2 ) 
67.68 
87.68 
107.54 
123.76 
135.14 
141.66 
142.64 
136.20 
119.30 

The results in Table 4.25 show that when the sensor range of a single vehicle in a 

three vehicle team is limited to 50% of its nominal value, the team cost of the team of 

three vehicles (two healthy and one operating under a sensor and an actuator fault) 

would only be lower than that of the team of two healthy vehicles if the following 

conditions are satisfied: 1) The maximum velocity of a single vehicle (UAV1) is 

reduced to 50% of its nominal value (110 m/s), and 2) A value of a = 0.3 or higher is 

chosen for each vehicle in both team configurations. However, as shown in the 

Appendix A, if the sensor range is further reduced to 25% of its nominal value, then the 

team of two healthy vehicles is better suited to perform the surveillance mission, for it 

incurs a lower cost for all the values of a . 
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4.7 Conclusions 

In this chapter, the multiple UAV Surveillance problem has been investigated 

using a scenario involving a UAV team tasked to monitor a region of known dimensions 

along a border between two countries. The goal of the UAVs is to cover the entire 

surveillance region, while minimizing the team cost, which is a function of each 

vehicle's fuel consumption and mission time. 

It has been assumed that the three vehicle team is operating under either an 

actuator fault (Loss of Effectiveness), or (a Multiplicative type) sensor fault, or a fault in 

both the sensor and the actuator of an individual vehicle. The goal of the central 

controller (mission designer or ground operator) is to determine which team 

configuration is better suited for performing the surveillance mission i.e., either a three 

vehicle team or a two vehicle team. Hence, in the simulations, using velocity, sensor 

range, and a combination of velocity and sensor range of the vehicles as fault variables, 

the performance of a team of three vehicles is compared with a team of two normally 

functioning vehicles to determine which team is better suited for the mission and under 

what conditions. 

In the first set of simulations, velocity has been used as a fault variable to 

simulate an actuator fault in a single UAV. The results show that even when the 

maximum velocity of a single vehicle in a three vehicle team is reduced from 90% to 

50% of its nominal value, the team of three vehicles incurs a lower cost than the team of 

two healthy vehicles. 
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In the second set of simulations, sensor range has been used as a fault variable to 

simulate a sensor fault in a single UAV. The results show that for the three cases of a 

reduced sensor range of 80 meters, 50 meters and 25 meters, the minimum team cost of 

the team of two vehicles is always lower than that of the team of three vehicles, thus 

making the team of 2 healthy vehicles a better choice for performing the surveillance 

mission. The explanation for these results is that as the sensor range of the affected 

vehicle decreases, its surveillance distance increases, leading to an increase in its fuel 

cost and mission time, which in turn lead to an increase in its mission cost, and hence 

the overall mission cost of the three vehicle team. The conclusion drawn from these 

results is that the team whose surveillance distance is lower should be chosen to perform 

the mission. 

In the third set of simulations, both sensor range and velocity have been used as 

fault variables to simulate a sensor and an actuator fault in a single UAV. To simulate 

these two faults simultaneously, three sets of simulations have been carried out. In the 

first set, the sensor range of UAV 1 is assumed to be limited to 80 meters, whereas that 

of UAV2 and UAV3 is 100 meters. The maximum velocity of UAV 1 is then reduced to 

90% (198 m/s), 80% (176 m/s), 70% (154 m/s), 60% (132 m/s), and 50% (110 m/s) of 

its nominal maximum velocity, 220 m/s. The velocity range of UAV2 and UAV3 

remains between 89 m/s and 220 m/s for the duration of the mission. In the second set of 

simulations, the sensor range of UAV 1 is assumed to be limited to 50 meters, and the 

maximum velocity of UAV 1 is reduced to 60% (132 m/s), and 50% (110 m/s) of the 

maximum velocity, 220 m/s. For the third set of simulations, the sensor range of UAV 1 
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is assumed to be limited to 25 meters, and the maximum velocity of UAV1 is reduced to 

HOm/s. 

For the first set of simulations, when the maximum velocity of UAVI is 198 m/s, 

and its sensor range is 80 meters, the minimum team cost of the team of two vehicles is 

always lower than that of the team of three vehicles. However, when the maximum 

velocity of UAV1 drops to 176 m/s and 154 m/s, the minimum team cost of the three 

vehicle team is lower than that of the two vehicle team for all values of a except 

a = 0.1. For the last two cases, where the maximum velocity of UAVI is reduced to 132 

m/s and 110 m/s respectively, the minimum team cost of the three vehicle team is 

always lower than that of the two vehicle team. Hence, for these two cases, the team of 

three vehicles is always better suited to perform the surveillance mission than the team 

of two vehicles. These results show that the minimum surveillance mission cost of the 

team of three vehicles is lower than that of the team of two healthy vehicles if the sensor 

fault in a single vehicle (in the three vehicle team) is limited and there is an increased 

degradation in the performance of its actuator (which limits the affected vehicle's 

maximum velocity, and hence its fuel cost). 

The objective of the second set of simulations is to determine the impact of 

further decreasing the sensor range of UAVI on the performance of the three vehicle 

team. To this end, the maximum velocity of UAVI is decreased to 132 m/s and 110 m/s, 

and its sensor range is limited to 50 meters. The results show that when the sensor range 

of a single vehicle in a three vehicle team is limited to 50% of its nominal value, the 
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team cost of the team of three vehicles (two healthy and one operating under a sensor 

and an actuator fault) would only be lower than that of the team of two healthy vehicles 

if the following conditions are satisfied: 1) The maximum velocity of a single vehicle 

(UAV1) is reduced to 50% (110 m/s) or lower of its nominal value, and 2) A value of 

a = 0.3 or higher is chosen for each vehicle in both team configurations. 

Finally, for the third set of simulations (see Appendix A), the results show that if 

the sensor range is decreased to 25 meters, then the team of two healthy vehicles is 

better suited to perform the surveillance mission, for it incurs a lower minimum team 

cost value for all values of a . 
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Chapter 5 

Conclusions and Future Work 

Due to the complexities of modern warfare, autonomous systems such as UAVs 

are being employed at an ever increasing pace by the military, which has utilized these 

vehicles for surveillance and strike missions in operations in Iraq and Afghanistan. Thus 

far, military organizations have only employed single vehicles operated by ground 

controllers for completing given missions. However, to enhance its capability of using 

these vehicles more efficiently, the military is shifting its focus from single vehicle 

missions to multiple vehicle missions. To this end, researchers in both the military and 

civilian domains have turned their attention to developing strategies that will allow a 

group of vehicles to work together to achieve common goals. 

In this thesis, we have addressed the problem of employing multiple vehicles for 

carrying out two disjoint missions, i.e., Coordinated Strike and Multiple UAV 

Surveillance. In Chapter 2, we have given an overview of the Coordinated Rendezvous 

and the Multiple UA V Search and Surveillance problems. A brief literature review on 

the topic of fault detection and identification of sensor and actuator failures has also 

been included. 
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The area of cooperative control is relatively new and to date, no unified 

framework has been developed for categorizing cooperative control problems. Due to 

this reason, it is difficult to compare different cooperative control algorithms, which are 

developed for a unique set of problems. In Chapter 3, the cooperative control problem 

has been illustrated through a simulated Coordinated Rendezvous {Coordinated Strike) 

mission. The objective of the mission is for a team of multiple UAVs to simultaneously 

arrive at a single high priority target to carry out a coordinated strike. While traveling to 

the target, the team must minimize its combined exposure to multiple radar sites, and 

conserve fuel. We have used the coordination strategy based on coordination variables 

and coordination functions, originally developed by Chandler et al ([8], [9], [10], and 

[15]) and Beard et al ([4], [5], [6], [7], and [16]). While the aforementioned authors have 

only tested their strategy under nominal conditions for the rendezvous problem, we have 

extended it to include an actuator fault in single as well as multiple vehicles in order to 

determine the effect of faults on the performance of the coordination strategy. 

In Chapter 4, we have developed a hypothetical Multiple UAV Border 

Surveillance Mission, wherein the goal of the UAVs is to cover the entire surveillance 

region, while minimizing the team cost, which is a function of each vehicle's fuel 

consumption and mission time. It has been assumed that the three vehicle team is 

operating under either an actuator fault (Loss of Effectiveness), or (a Multiplicative type) 

sensor fault, or a fault in both the sensor and the actuator of an individual vehicle. The 

goal of the central controller (mission designer or ground operator) is to determine 

which team configuration is better suited for performing the surveillance mission i.e., 
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either a three vehicle team or a two vehicle team. Hence, in the simulations, using 

velocity, sensor range, and a combination of velocity and sensor range of the vehicles as 

fault variables, the performance of a team of three vehicles is compared with a team of 

two normally functioning vehicles to determine which team is better suited for the 

mission and under what conditions. 

5.1 Future Work 

Since the ultimate goal of research into multiple UAVs is to develop 

coordination algorithms for teams of UAVs performing a wide variety of missions, a 

possible direction for further research could be to develop a coordination strategy for the 

combined problems of coordinated strike and multiple UAV search and surveillance. To 

this end, the environment of operation can be altered to include multiple UAV teams 

with differing capabilities, multiple hostile (stationary and mobile) targets, and threats, 

and no-fly zones. To assess the robustness of the coordination strategy, the effect of 

communication constraints on the performance of multiple UAV teams should be 

explored. Communication constraints may include a limited range of communication, 

availability of incomplete or partial crucial information to vehicles, and a transmitter or 

receiver fault in a single and/or multiple vehicles. We have utilized a distributed 

architecture for the coordinated strike problem. However, for completeness, 

performance measures should be developed to compare the centralized and distributed 

architectures. Finally, robust and efficient algorithms for path planning, trajectory 

generation, and target assignment (resource allocation) must be developed. 
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5.2 Thesis Contributions 

In this thesis, two disjoint missions, i.e., Coordinated Rendezvous and Multiple 

UAV Surveillance have been investigated. The Coordinated Rendezvous problem has 

been studied under nominal conditions by Chandler et al ([8], [9], [10], and [15]) and 

Beard et al ([4], [5], [6], [7], and [16]). We have extended the Coordinated Rendezvous 

problem to include an actuator fault in single as well as multiple vehicles in order to 

determine the effect of actuator faults on the performance of the coordination strategy. 

The type of actuator fault simulated in this thesis is the Loss of Effectiveness (LOE). 

Velocity has been used as the fault variable to simulate an actuator fault in single and 

multiple UAVs. The extent of the actuator fault has been simulated through gradual 

reduction of the maximum velocity of the UAV. In response to the actuator fault, all 

UAVs re-generate and share coordinating information with one another in order to re-

plan their routes to the target. However, if the degradation in a UAVs actuator is to 

such an extent that it can no longer rendezvous with the other vehicles at the target, a 

resource allocation problem is solved in order to determine which vehicles should 

engage the target. 

We have investigated the Multiple UAV Surveillance problem by developing a 

hypothetical Border Surveillance Mission, wherein a (three vehicle) UAV team is tasked 

to monitor a region of known dimensions along a border between two countries. The 

goal of the UAVs is to cover the entire surveillance region, while minimizing the team 

cost, which is a function of each vehicle's fuel consumption and mission time. To 
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emulate real world situations, where a fault in one or more of the vehicles in a team can 

occur at any time, we have simulated three cases of faults in different sub systems of a 

single vehicle in a team in order to determine the effect of the faults on the performance 

of the team. The affected vehicle is assumed to be suffering from a fault in either its 

actuator or sensor or both its actuator and sensor. As in the Coordinated Strike mission, 

the type of actuator fault simulated here is the Loss of Effectiveness (LOE). The type of 

sensor fault simulated here is called the Multiplicative-type sensor failure. The sensor 

range (sensor output) has been used as the fault variable to simulate the sensor fault in a 

single UAV. Despite the presence of either the Loss of Effectiveness actuator fault 

and/or the Multiplicative-type sensor failure, the goal of the surveillance mission 

remains the same, which is minimization of the team cost. However, a fault in either the 

sensor, or actuator or both requires the mission designer to address a resource allocation 

problem, i.e, whether to carry out the mission using all the three vehicles or two healthy, 

perfectly functioning vehicles. The team chosen to perform the surveillance mission is 

the one that incurs the minimum cost for performing the mission. 
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Appendix A 

Simulation Results for the Surveillance Mission 
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Results for the Actuator Fault 



Velocity Set 2: UAV1: 89-176 m/s, UAV2: 89-220 m/s, UAV3: 89-220 m/s 

Case I: Two healthy vehicles, 1 faulty vehicle performing surveillance 

Table A.l: Minimum Surveillance mission costs of UAV1 when its maximum velocity 

is at 80% of the nominal value, 220m/s. 

a 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

v l 
(m/s) 

89 
89 
89 
92 
104 
119 
138 
166 
176 

mhi-^m, 

19.57 
23.22 
26.87 
30.48 
33.29 
34.90 
35.14 
33.55 
30.08 

J fuel, 

(knrVsec2) 
15.92 
15.92 
15.92 
17.01 
21.74 
28.46 
38.28 
55.39 
62.26 

s\ 
(hours) 
6.273 
6.273 
6.273 
6.069 
5.369 
4.692 
4.046 
3.363 
3.172 

Table A.2: Comparison of Minimum Team Cost values for case I and case II when the 

velocity range of UAVI is: S9m/s<v] <\16mls. 

alpha (a) 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

N 
min ̂  Jsm. (Minimum Team Cost) 

Case I (N = 3) 
64.77 
81.78 
98.69 
113.12 
123.53 
129.50 
130.40 
124.51 
109.76 

Case II (N = 2 ) 
67.68 
87.68 
107.54 
123.76 
135.14 
141.66 
142.64 
136.20 
119.30 



Note: The results for UAV2 and UAV3 for case I and case II are given in Tables 4.3 and 

4.4, respectively. 
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Figure A.l: Surveillance Mission Costs of UAVI for the velocity range: 

$9m/s<vi<n6m/s. 
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Velocity Set 3: UAV1: 89-154 m/s, UAV2: 89-220 m/s, UAV3: 89-220 m/s 

Case I: Two healthy vehicles, 1 faulty vehicle performing surveillance 

Table A.3: Minimum Surveillance mission costs of UAV1 when its maximum velocity 

is at 70% of the nominal value, 220m/s. 

a 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

(m/s) 

89 
89 
89 
89 
95 
110 
127 
151 
154 

m i n _A w , 

18.37 
20.83 
23.28 
25.74 
28.02 
29.37 
29.57 
28.24 
25.81 

(km3/sec2) 
15.92 
15.92 
15.92 
15.92 
18.14 
24.32 
32.42 
45.83 
47.67 

si 

(hours) 
6.273 
6.273 
6.273 
6.273 
5.877 
5.076 
4.396 
3.698 
3.626 

Table A.4: Comparison of Minimum Team Cost values for case I and case II when the 

velocity range of U AVI is: 89m/s<v} <\54m/s. 

alpha (a) 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

N 
min V Jsm (Minimum Team Cost) 

Case I (N = 3) 
63.57 
79.39 
95.10 
108.38 
118.26 
123.97 
124.83 
119.20 
105.49 

Case II (N = 2 ) 
67.68 
87.68 
107.54 
123.76 
135.14 
141.66 
142.64 
136.20 
119.30 
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Note: The results for UAV2 and UAV3 for case I and case II are given in Tables 4.3 and 

4.4, respectively. 
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Figure A.2: Surveillance Mission Costs of UAV1 for the velocity range: 

S9m/s<vl <\54mls. 



Velocity Set 4: UAV1: 89-132 m/s, UAV2: 89-220 m/s, UAV3: 89-220 m/s 

Case I: Two healthy vehicles, 1 faulty vehicle performing surveillance 

Table A.5: Minimum Surveillance mission costs of UAV1 when its maximum velocity 

is at 60% of the nominal value, 220m/s. 

a 

0.1 
0.2 
0.3 
0.4 _^ 
0.5 
0.6 
0.7 
0.8 _J 
0.9 

v l 
(m/s) 

89 
89 
89 
89 
89 
99 
116 
132 
132 

min-J
sm] 

17.37 
18.83 
20.28 
21.74 
23.19 
24.31 
24.47 
23.43 
21.99 

J fuel\ 
(km3/sec2) 

15.92 
15.92 
15.92 
15.92 
15.92 
19.70 
27.05 
35.02 
35.02 

si 

(hours) 
6.273 
6.273 
6.273 
6.273 
6.273 
5.64 

4.813 
4.23 
4.23 

Table A.6: Comparison of Minimum Team Cost values for case I and case II when the 

velocity range of UAV1 is: 89m/s<vi <132m/s. 

alpha (a) 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

N 
min ]jr Jsm (Minimum Team Cost) 

i = l 

Case I (N = 3) 
62.57 
77.38 
92.10 
104.38 
113.43 
118.91 
119.73 
114.39 
101.67 

Case II (N = 2 ) 
67.68 
87.68 
107.54 
123.76 
135.14 
141.66 
142.64 
136.20 
119.30 
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Note: The results for UAV2 and UAV3 for case I and case II are given in Tables 4.3 and 

4.4, respectively. 
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Figure A.3: Surveillance Mission Costs of UAV1 for the velocity range: 

%9mls<vx <132m/s. 
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Results for the Sensor Fault 
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Sensor Range: UAV1: 25 meters, UAV2: 100 meters, UAV3: 100 meters 

Case I: Two healthy vehicles, 1 faulty vehicle performing surveillance 

Table A.7: Minimum Surveillance mission cost of UAV1 when its sensor range is at 

25% of the nominal value, 100 meters. 

a 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

(m/s) 

89 
89 
91 
105 
121 
138 
160 
193 
220 

min_^ m ] 

90.06 
116.66 
143.09 
164.66 
179.81 
188.49 
189.79 
181.23 
158.75 

J fuel, 

(km3/sec2) 
63.45 
63.45 
66.33 
88.31 
117.3 
152.5 

205.10 
298.40 
387.7 

(hours) 
25 
25 

24.45 
21.19 
18.39 
16.12 
13.91 
11.53 
10.11 

Table A.8: Comparison of Minimum Team Cost values for case I and case II when the 

sensor range of UAV1 is 25 meters. 

alpha (a) 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

N 
m i n ^ V ^ (Minimum Team Cost) 

/=1 
Case I (N = 3) 

135.25 
175.22 
214.91 
247.30 
270.05 
283.09 
285.05 
272.19 
238.43 

Case II (N = 2 ) 
67.68 
87.68 
107.54 
123.76 
135.14 
141.66 
142.64 
136.20 
119.30 



172 

Note: The results for UAV2 and UAV3 for case I and case II are given in Tables 4.3 and 

4.4, respectively. 

400 

0.14 0.16 
velocity (km/sec) 

0.22 

Figure A.4: Surveillance Mission Costs of UAV1 for a sensor range of 25 meters. 
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Results for the Sensor and the Actuator Faults 
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Velocity Range: UAV1: 89-110 m/s, UAV2: 89-220 m/s, UAV3: 89-220 m/s 

Sensor Range: UAV1: 25 meters, UAV2: 100 meters, UAV3: 100 meters 

Table A.9: Minimum Surveillance Mission costs of UAV1 when its maximum velocity 

is at 50% and its sensor range is at 25% of the nominal values. 

a 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

(m/s) 

89 
89 
89 
89 
89 
90 
105 
110 
110 

mm_Jsmx 

65.9679 
68.4886 
71.0093 
73.5300 
76.0507 
78.5538 
79.0945 
76.7676 
74.2484 

Jfueh 
(km3/sec2) 

63.45 
63.45 
63.45 
63.45 
63.45 
64.88 
88.31 
96.92 
96.92 

(hours) 
25 
25 
25 
25 
25 

24.72 
21.19 
20.23 
20.23 

Table A. 10: Comparison of Minimum Team Cost values for case I and case II when the 

maximum velocity of UAV1 is 110 m/s and its sensor range is 25 meters. 

alpha (a) 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

N 
min ̂  Jsm. (Minimum Team Cost) 

Case I (N = 3) 
111.1644 
127.0392 
142.8241 
156.1697 
166.2918 
173.1526 
174.3459 
167.7244 
153.9198 

Case II (N = 2 ) 
67.68 
87.68 
107.54 
123.76 
135.14 
141.66 
142.64 
136.20 
119.30 


