Modeling and Analysis of Real-Time Software Systems using UML

Abdelouahed Gherbi

A Thesis

m

The Department

of

Electrical and Computer Engineering

Presented in Partial Fulfilment of the Requirements
for the Degree of Doctor of Philosophy at
Concordia University

Montreal, Quebec, Canada

December 2007

(© Abdelouahed Gherbi, 2007

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 978-0-494-37752-9
Our file Notre référence
ISBN: 978-0-494-37752-9
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliothéque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des théses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette thése.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

In compliance with the Canadian Conformément a la loi canadienne

Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thése.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

ABSTRACT
Modeling and Analysis of Real-Time Software Systems using UML

Abdelouahed Gherbi, Ph.D.
Concordia University, 2007

Real-Time Systems (RTS) should not only function correctly but should also satisfy time
constraints. RTS include embedded systems, which are used nowadays in a variety of appli-
cations. These are, for instance, house appliances, automotive, aeronautic/aerospace, and
health monitoring systems, to mention just a few. The design of such systems is complex
and challenging. In order to cope with the complexity of RTS, there is shift in their devel-
opment to follow a model-driven approach, such as the Model Driven Architecture (MDA),
which relies on using models of high level of abstraction. The Unified Modeling Language
(UML) is the Object Management Group (OMG) standard modeling language to support
MDA. UML is appropriate for software systems because it allows for a multi-view modeling
approach through its multitude of diagrams covering the structure, the behavior and the
deployment architecture. Moreover, UML is also used in the domain of real-time software
systems. This is achieved through its profiles, including, the OMG standard profile for
Schedulability, Performance and Time (UML/SPT) or the upcoming standard UML Profile
for Modeling and Analysis of Real-Time and Embedded Systems (MARTE). However, UML
modeling faces some challenging issues such as model consistency. This issue becomes worse
in the context of real-time software systems because additional aspects should be taken into
consideration, including time, concurrency and schedulability. In this thesis, we address
several issues related to modeling and validation of RT'S with UML. We focus in particular
on the consistency of UML/SPT models. We adopt an incremental approach to check the
consistency of these models by distinguishing the syntactic and semantic levels. The lat-
ter is further decomposed into behavioral, concurrency-related and time consistency. Our
contributions in this thesis are fourfold. First, we leverage the extensibility mechanisms
of UML to propose an extension to UML/SPT. This extension enables the modeling of
multicast communications, which is required for the description of the behavior of cer-

tain real-time protocols. Second, we propose a formalization of the concurrency modeling

il

capability in UML/SPT using timed automata. This formal semantics allows for apply-
ing well-established model checking techniques to check concurrency related consistency
in UML/SPT models. Third, we propose an MDA-compliant approach to enable schedu-
lability aqalysis of UML/SPT models. We present a proof of concept for this approach
through a prototype implementation using the Atlas Transformation Language (ATL) and
XMIl.-based technologies. Finally, we use the schedulability analysis ‘applied to UML/SPT
models in order to check the time consistency of a system design modeled by means of a set
of state machines with respect to time constraints modeled using a set of sequence diagrams

annotated with UML /SPT time stereotypes.
Keywords: Real-time systems, Model-driven Architecture, UML, UML/SPT, Model trans-

formation, ATL, XML, XSLT, Consistency, Concurrency, Model Checking, Schedulability

Analysis.

iv

ACKNOWLEDGEMENTS

I would like to express my deep gratitude to my thesis director, Dr. Ferhat Khendek.
Personally, I thank him for giving me the opportunity to make my Ph.D dream come true
and for being there for me in moments of need. Professionally, his always frank, strong
and sound comments and feedback on the different issues relevant for this thesis guided me
throughout my research work.

I would like to thank the examining committee: Dr. H. Sahraoui (external examiner from
Département d’informatique et de recherche oprationnelle, Université de Montréal), Dr. R.
Dssouli from CIISE, Dr. J. Rilling (Computer Science & Software Engineering), and Dr.
P. Gohari (Electrical and Computer Engineering). Their excellent comments and feedback
contributed to enhance the quality of this thesis.

I would like to thank Dr. M. Debbabi for his support when I was doing my research work
for my Master at Université de Constantine and for giving me the chance to join the LSFM
research group in Université Laval and the Computer Security Laboratory at CIISE, where
I spent the first period of my PhD program.

I would like to thank Dr. R. Dssouli from CIISE, Concordia University; Dr. R. Boutaba
from Waterloo University; and Dr. M. Mejri and Dr. N. Tawbi from Université Laval for
their help and support.

During my PhD journey I met and interacted with different people who made this PhD
experience humanely enriching and interesting. These are my colleagues: R. Karunamurthy
and A. Ntozi from the Telecommunication Software Engineering Lab; H. Yahyaoui, C. Talhi,
S. Zhioua, and L. Ketari from the LSFM group; Ahmed Gario, Marc-André Laverdiére and
Nadia Belblidia from the CSL research group and Andreas Rasche from Operating Systems
and Middleware Group at Hasso Platner Institut.

My thoughts and deep gratitude go straight to my mother and my father. I thank them
endlessly for bringing that disabled little boy to school! T would like them to know that
I am eternally indebted to them. Finally, I reserve a special word for Thsan, a woman of
an extraordinarily courage, intelligence and a great heart. Thank you very much for your

tremendous support.

Table of Contents

List of Acronyms

List of Figures

List of Tables

1 Introduction

1.1 Motivations . . . v v v v v e

1.2 Issues

.......................................

1.3 Contributions v v v o e e e e e e e e

1.4 Thesis Organization

2 Background: MDA and UML for Real-time Systems

2.1 Model Driven Engineering Approach

2.2 The Unified Modeling Language
2.21 UML Metamodel e e
2.2.2 Multi-view Modeling Approach

2.2.3

224

Extensibility Mechanisms L0000

UML Profiles« e e e e e

2.3 The UML Profile for Schedulability, Performance and Time

2.3.1
2.3.2
2.3.3
234

Resource Modeling in UML/SPT
Time Modeling in UML/SPT
Concurrency Modeling in UML/SPT
Schedulability Analysis Modeling in UML/SPT

vi

xii

xvi

[S 2B L

N |

24 UML Proﬁle for MARTE o
2.5 Other UML Profiles for Real-time Systems
2.5.1 UML Profile for Quality of Service
252 UMIL-RTProfile e
253 TURTLE Profile
2.5.4 SDL Combined With UML
2.5.5 The OMEGA UML Profile
256 OCLProfile.........00,
2.6 UML Profile for System Engineering
2.7 UML Profile for Systems-On-Chip

2.8 Conclusions o e e e e e

An UML/SPT Extension for Multicast Communications

3.1 Multicast Communication Extension for UML/SPT
3.1.1 The extension Domain Model
3.1.2 Domain Model Semantics
3.1.3 Multicast Extension Stereotypes,

3.2 Application: RMTP2 Behavioral Requirement Modeling
3.2.1 Heartbeat Packets 0.
3.2.2 Parent Failure Detection
3.23 Join Algorithm

3.3 UML/SPT-based vs. MSC-based RMTP2 requirement modeling

34 Related Work e

3.5 Conclusion e e

Timed-automata Semantics and Analysis of UML/SPT

Models with Concurrency

4.1 Concurrency Modeling using UML/SPT
4.2 Semantic Domain: Timed Automata
4.3 Timed Automata-based Semantics of UML/SPT Concurrent Models

4.3.1 Concurrent Unit Timed Automata

vii

35
36
36
38
39
40
41
42
42
43
47
49

51
92
56
97

44

4.5
4.6
4.7

43.2 Service Instance Mapping L oL 60
4.3.3 Time Constraints Mapping oo v i vt 62
An Example of Transforming a UML/SPT Model with Concurrency into

Timed Automata L e 62
Model Checking UML/SPT Models with Concurrency 65
Related Work oo L 69
Conclusion I 72

From UML/SPT Design Models to Schedulability Analysis: Approach

and Implementation 73
5.1 MDA-compliant Schedulability Analysis 74
5.2 From UML/SPT to Schedulability Analysis: Approach 76
5.2.1 Source Metamodel o L. 76
5.2.2 Target Metamodel, 7
5.2.3 Model Transformation 80
5.3 Model Transformation Prototype 82
5.3.1 Implementation using ATL 83
5.3.2 Metamodel Definition in KM3 85
5.3.3 Model Transformationin ATL 85
5.3.4 XML-based Implementation 92
5.3.5 ,XML Schema for the Metamodels 92
5.3.6 Model Transformation using XSLT 93
5.4 Implementation Applied on an INustrative UML/SPT Model 96
5.4.1 Using the ATL Transformation 101
5.4.2 Using the XML-based Transformation 101
5.4.3 Schedulability Analysis Tool. 101
55 Related Work L 106
56 Conclusion 108
Consistency of UML/SPT Models 110
6.1 Railroad Crossing System Model using UML/SPT 111

viii

6.2 Framework for Incremental Consistency of UML/SPT Models 112

6.2.1 Syntactic ConsiStEncy o v vt 114

6.2.2 Semantic Consistency 115

6.3 Formal Notation and Definitions 117
6.4 UML/SPT Time Consistency 119
6.4.1 Logical Time Consistency Validation 120

6.4.2 UML/SPT Model Generation 121

6.4.3 Schedulability Analysis Phase 123

6.4.4 Application to Railroad Crossing Model T 124

6.5 Related Work e 124
6.6 Conclusion e 129

7 Conclusion and Future Work 131
71 Contributions L 132
72 Future Work 134
Bibliography 136

ix

List of Acronyms

ATL Atlas Transformation Language

CTL Computation Tree Logic

DSL Domain Specific Languages

INCOSE International Council on Systems Engineering
MDA Model Driven Architecture

MOF Meta Object Facility

MARTE UML Profile for Modeling and Analysis of Real-Time and Embedded Systems
MSC Message Sequence Charts

KM3 Kernel MetaMetaModel

OCL Object Constraint Language

OMG Object Management Group

OMT Object Modeling Technique

OOSE Object-Oriented Software Engineering

PIM Platform Independent Model

PSM Platform Specific Model

QVT Query Views Transformations

ROOM Real-time Object Oriented Methodology

RTMP2 Reliable Message Transport Protocol

SDL Systems Description Language

SOC System On Chip

SysML System Engineering Modeling Language

TURTLE Timed UML and RT-Lotos Environment

UML Unified Modeling Language

UML/SPT UML Profile for Schedulability, Performance and Time
UML-RT UML Profile for Real-Time

UML/QoS UML Profile for Quality of Service and Fault Tolerance Characteristics and

Mechanisms
UPPAAL UPPsala and AALborg universities
XML eXtensible Markup Language
XMI XML Metadata Interchange
XSL eXtensible Style Sheet

XSLT XSL Transformations

xi

List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
29
2.10
2.11
2.12
213
2.14
2.15
2.16
217
2.18
2.19
2.20
2.21

3.1

Model Driven Architecture 8
UML Interaction Metamodel 11
UML Diagrams 0 v it e e e e e e e 12
Stereotype Definition oL o 13
Stereotypein Use e e 13
Example of a Partial Domain Model of a Profile 14
The Structure of UML/SPT Profile. 15
General Resource Domain Model 16
Causality Domain Model 17
Model of Analysis Domain Model 18
Dynamic Usage Domain Model 0. 18
Resource Taxonomy Domain Model 19
Time Modeling in UML/SPT 20
UML/SPT Timing Mechanisms Domain Model 21
Sequence Diagram Annotated with UML/SPT Stereotypes 21
UML/SPT Concurrency Domain Model 22
UML/SPT Schedulability Analysis Domain Model 23
UML/SPT Schedulability Analysis Model 24
The Structure of UML Profile for MARTE 25
UML and SysML Relationship, 30
Taxonomy of SysML diagrams 31
Multicast Extension Package e e e e e e e 37

xii

3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

4.1
4.2
4.3
4.4
45
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17

0.1
5.2
5.3
54

Multicast Extension Metamodel 37

UML/SPT Multicast Extension Example 40
RMTP2 Tree Structure i ittt 41
Heartbeat Packets Requirement Model 42
Parent failure Requirement Scenarios 43
Parent failure Requirement Model 44
Scenarios for Tfee Connection o 45
Tree Connection Requirement Model 46
Concurrency Domain Model of UML/SPT 53

A Computational Model corresponding to the Concurrency Model in UML/SPT 55

Concurrent Periodic Event One associated Behavior 63
Concurrent Periodic Event Two associated Behavior 63
Concurrent Unit A Timed Automata 64
Concurrent Unit B Timed Automata 64
Concurrent Unit C Timed Automata 64
Timers Timed Automata 65
Deadlock Scenario in UPPAAL 66
Periodic Event One with Time Constraints 67
Periodic Event Two with Time Constraints 67
Concurrent Unit A Timed Automata 68
Concurrent Unit B Timed Automata 68
Concurrent Unit C Timed Automata 68
Shared Resource Timed Automata 69
Timer Timed Automata 69
Concurrent Unit A Deadline Miss Scenario in UPPAAL 70
MDA-compliant Schedulability Analysis Approach 75
MDA-based Approach for Schedulability Analysis 76
Schedulability Analysis Sub-profile Metamodel 78
Schedulability Analysis Metamodel 80

xiii

5.5

5.6

5.7

5.8

5.9

5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
9.21
5.22
5.23
5.24
5.25
5.26

6.1
6.2

6.3
6.4
6.5
6.6
6.7

ATL Transformation Pattern o v v v v i i s it 83

Source Metamodel in KM3 Lo oo 86
Target Metamodel in KM3, 87
Source and Target Metamodels in Ecore 88
Scheduling Job to Transaction Transformation Rule 89
SAction to Action Transformation Rule 90
ATL Helpers e e e e e 91
XML-based Transformation Process, 92
XML Schema for the Source Metamodel 94
XML Schema for the Target Metamodel 95
Model Transformation XSLT Templates 97
UML/SPT-annotated UML Collaboration Diagram 98
UML/SPT-annotated Deployment Model 99
Transaction 1 Model e e e 99
Transaction 2Model e e e e e 100
Transaction 3 Model 100
Source Modelin Ecore oo 102
Generated Model in Ecore oL, 103
XML Document for Source Model 104
Generated XML Document for the target Model 105
Schedulability Analysis Model 105
Schedulability Analysis Results e e 106
Generalized Railroad Crossing System 111
Generalized Railroad Crossing Time Constraints 111
Generalized Railroad Crossing Structure View 112
Entering Train Scenario L e 113
TrackHandler Timed Behavior 113
Gate Closing Scenario e 113
Gate Opening Scenario e 113

Xiv

6.8

6.9

6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21

TrackHandler State Machine 113

TrackController State Machine e e 113
GateController State Machine 113
Gate State Machine o o o oL, 113
Consistency of UML/SPT Models 114
Track Controller with Sequential Track Handlers 116
UML/SPT Model Time Consistency oo 120

Compiled Domain Model supporting Schedulability Analysis from UML/SPT 121

Causality Domain Model, 122
Actions Induced by SeqD1 L 125
Actions Induced by SeqD2 e 126
Actions Induced by SeqD3 o 127
End-to-End Transactions Induced by the Sequence Diagrams 128
Generated UML/SPT-based Schedulability Model I 128

XV

List of Tables

2.1
2.2

3.1
3.2
3.3
34
3.5

5.1
9.2

UML/SPT Common Stereotypes for Schedulability Analysis 23
UML Profiles for Real-Time Systems 34
OCL Specification of Joingroup, 38
OCL Specification of Leavegroup 38
OCL Specification of Multicast Message Sending 39
Multicast Communication Extension Stereotypes 39
MSC vs UML/SPT Behavioral Modeling Summary 48
Schedulability Analysis Metamodel Constraints 81
SAProfile and the Schedulability Analysis Metamodel Concept Mapping . . 82

Xvi

Chapter 1

Introduction

1.1 Motivations{

Real-Time Systems (RTS) are commonly defined as systems which are required not only to
carry out their functionality correctly but to also satisfy a set of time constraints [121]. Most
of RTS are embedded systems nowadays and are used in a wide variety of applications, such
as consumer electronics (e.g. DVD and MP3 players), automotive (e.g. ABS), aircrafts (e.g.
flight control systems), telecommunic@tion systems (e.g. mobile phones), medical systems,

military applications, and smart buildings to mention just these examples [76].

Real-time software systems have several characteristics. They are reactive and concurrent
systems because they often interact with the physical world where different events can hap-
pen concurrently. They should react to many events concurrently. Moreover, such reaction
should often satisfy some time constraints. Furthermore, as suggested by the aforemen-
tioned list of applications, real-time systems are often also safety-critical systems. They
have severe dependability requirements in order to preserve life and/or property wherever
these systems are used. These characteristics contribute to make the design of real-time

systems complex and challenging.

In order to address the real-time software design complexity, there is a need to shift from
ad hoc optimization techniques to high level abstractions, models and model-based devel-
opments methodologies [25][42] [70] [113] [114]. Model-Driven Development (MDD) is a
software development approach, where models are first-class artifacts. The basic idea un-
derlying MDD is that a software system can be developed starting with a high-level abstract
model, which is then successively refined /enriched until, eventually, reaching a concrete im-
plementation [77]. Model-Driven Architecture (MDA) [78] is an example of MDD promoted
by the OMG. MDA separates the business/application logic from the underlying technol-
Ogy used for its implementation. The key concepts in MDA are Platform Independent
Model (PIM), Platform Specific Model (PSM), and model transformation. The OMG sup-
porté MDA by defining a set of standards, which include the Unified Modeling Language
(UML)[92].

UML is the de facto standard modelihg language for software-intensive systems. UML is
successful because it presents many features. It is a visual language [48], which makes it
very intuitive for the user. It is a multi-view modeling language allowing to cover sepa-
rately different aspects of a system (structure, behavior and deployment) using a variety
of diagrams. This feature is very important to deal with the system’s complexity. Finally,
UML is customizable to the particularities of different domains through its extensibility
mechanisms and profiles. The success of UML led to a surge of interest in using UML by

system engineering community [52], [95] and System-On-Chip community [76] [96].

UML has been used in the context of embedded and real-time software systems first as a
backbone for some development methodologies including ROOM [114], COMET/UML [42]
and ROPES [25]. UML has then been the focus of many research initiatives as a mod-
eling language for embedded and real-time software systems [70]. UML is adapted to the
specifics of this domain through a variety of profiles developed in academia and the industry
[38]. The most important UML profile for embedded and real-time software systems is the '
OMG standard called UML profile for Schedulability, Performance and Time [91] denoted

UML/SPT throughout this thesis. This profile is in the process of a major revamp to define

the UML profile for Modeling and Analysis of Real-Time and Embedded systems (MARTE)
[97]. UML/SPT is a general framework for the modeling and analysis of real-time designs.
It enables the modeling of resources and quality of service; time concept and time-related
mechanisms; and concurrency. As for model analysis, UML/SPT supports schedulability
and performance analysis. It provides the end-user with a set of stereotypes and tagged
values that can be used to annotate UML design models with quantitative information.
This enables the prediction of key properties in the early stages of a software development

process using quantitative analysis techniques (schedulability and performance analysis).

1.2 Issues

We have identified several issues related to the usage of UML and UML/SPT for the model-

ing and analysis of real-time software systems. These issues can be summarized as follows:

e Limitations in the UML/SPT expressiveness with respect to some real-time require-
ments modeling needs. Specifically, UML/SPT does not allow to model multicast

communication required for some distributed real-time systerms.

e UML/SPT is defined like UML itself using the metamodeling approach. UML/SPT
metamodel is composed of a set of domain models where the semantics of the different
concepts is defined informally in English. This lack of formal semantics hinders au-
tomatic manipulation of UML/SPT models either for verification or implementation

synthesis purposes.

e UML/SPT is designed to support schedulability analysis of UML design models in the
early stages of the development process. There are several schedulability analysis tech-
niques in the literature. There is, however, a semantic gap between UML/SPT models
and the task models expected/used by well-established real-time analysis techniques
such as schedulability analysis. It is important to bridge this semantic gap in order
to enable the application of these techniques for the validation of the schedulability
property of UML/SPT models.

e As mentioned earlier, UML supports a multi-view modeling approach. It provides
a multitude of diagrams to cover the structure, the behavior, and the deployment
architecture of the system under consideration. This is very advantageous to cope
with software complexity. Howéver, these different views may be inconsistent. In
addition, when UML is also used to model real-time systems using its profiles for
real-time, UML/SPT for example, new aspects are faken into consideration. These
include mainly concurrency, time constraints, and schedulability. These aspects may

contribute to worsen the consistency issue.

1.3 Contributions

We have investigated the different issues listed above and developed different techniques and
methods for addressing them. The main contributions of this thesis can be summarized as

follows:

e We have surveyed the different UML profiles used to model real-time systems proposed
in the academia as well as in the industry. We have established an assessment of
their capabilities and limitations with respect to a variety of criteria such as formal

foundation, tool support, etc. [38].

e UML is defined using the metamodeling approach and it has been designed with
built-in extensibility mechanisms. These are used to define different domain-specific
versions of UML, the UML profiles. We have used this approach and leveraged UML
extensibility mechanisms to define an extension of UML/SPT. This extension enables
to model multicast communications necessary to capture the behavioral requirements
of protocols used in distributed real-time systems, such as the Reliable Message Trans-
port Protocol (RMTP2). We have established a comparison with a similar extension

for MSC [36].

e We have proposed a formal definition of the semantics of the concurrency domain

model of UML/SPT using the formalism of timed automata. This formal semantics

enables applying model checking techniques using tools such as UPPAAL in order to

verify the concurrency-related consistency of a UML/SPT model [41].

e We have investigated appropriate schedulability analysis techniques for UML/SPT
models [35]. In particular, we have focused on a schedulability analysis technique
used for object oriented design of real-time systems [111], [112]. We have defined an
MDA-compliant approach to bridge the semantic gap between the task model used
by this schedulability technique and UML/SPT models [37]. We have implemented
a proof of concept for this approach as a prototype implementation using both ATL

transformation language and XML technologies [40].

e We have defined a consistency framework for UML/SPT models. This framework
addresses incrementally the various aspects of consistency including syntactic, seman-
tic, concurrency-related and time consistency. In this framework, we introduced an
approach for checking time consistency between statecharts and sequence diagrams

using schedulability analysis [39].

1.4 Thesis Organization

This thesis is composed of an introduction, five chapters and a conclusion. In Chapter 2, we
set the background for this thesis by reviewing the MDA framework, UML and UML profiles
while focusing more on UML/SPT. We present in Chapter 3 an extension to UML/SPT
to enable the modeling of multicast communications. We define a metamodel encapsulat-
ing the main concepts involved in multicast communications, we specify the semantics of
the concepts using OCL, and we map these concepts to UML using new stereotypes. In
Chapter 4, we investigate the semantics of concurrency in UML/SPT and present a formal
specification using timed automata. This allows for using automata-based model checking
techniques in order to validate UML/SPT models with respect to the concurrency-related
consistency. Chapter 5 is devoted to present our MDA-based approach to bridge the gap

between UML/SPT models and well-established schedulability analysis techniques. This

allows to validate the schedulability property of UML/SPT design models. In Chapter 6,
we present a framework for the definition of the consistency of a UML/SPT model. In this
framework , (1) we build on the established syntactical and behavioral consistency verifica-
tion approaches; (2) we use our approach to verify the concurrency-related issues using our
timed automata semantics of UML/SPT concurrency; (3) we propose an approach based
on using schedulability analysis to verify the time consistency of a set of statecharts with
respect to time constraints expressed using sequence diagrams annotated with UML/SPT
time stereotypes. In Chapter 7, we review the main conclusions of this thesis and outline

future work.

Chapter 2

Background: MDA and UML for

Real-time Systems

In this thesis, our ma.ln research interest is about the modeling and analysis of real-time
software systems. The design models of these software systems are expressed using UML
profile for real-time systems. The formal verification of these design models using formal
analysis techniques require to use models suitable for these analysis. Model-driven approach
is used as a general framework for closing the semantic gap between UML real-time design
models and those used by formal analysis techniques. The objective of this chapter is to
present an overview of the main concepts used throughout this thesis, namely the model-

driven development approach, UML, and UML profiles for real-time systems.

2.1 Model Driven Engineering Approach

Model-Driven Development is a software development approach, where models are first-class
artifacts. The main idea underlying this apporach is that a software system can be developed
sté,rting with a high-level abstract model, which is then successively refined/enriched until
eventually, a concrete implementation in a deployment environment is obtained [77].

MDA [78] is a software development framework promoted by the OMG. It is the OMG’s
incarnation of the MDD approach. The objective of MDA is to enhance the productivity of

portable, inter-operable, maintenable and well-documented software [63]. In order to achieve

these goals, MDA separates the business/application logic from the underlying technology
used for its implementation. The key concepts in MDA are, as illustrated in Figure 2.1, a

PIM, a. PSM, and model transformations:

Platform Independent
Model
(PIM)

Model Transformation

Platform Specific Model
(PSM)

Code Generation

y

Application Code

Figure 2.1: Model Driven Architecture

e A PIM is an abstract specification of a software business logic expressed using a

modeling language. This is generally UML or one of its profiles.
e A PSM is a more refined model involving details of the implementation platform.

e A model transformation is a mapping of the concepts involved in a PIM into the
corresponding ones in a PSM. In addition to the OMG’s standardized model transfor-
mation language, QVT [88], several other languages have been used, including, OCL

[18], XSLT [125], MTrans [73], Scripting languages [102] and ATL [59].

The OMG defines a sct of standards to support MDA, including the standard modeling
language UML [92], the standard meta-modeling language, Meta Object Facility (MOF)
[93], the standard for the serialization and the exchange of models, XML Metadata Inter-
change (XMI) [89], and the standard for model transformation languages QVT [88]. In
the following section, we focus on the UML modeling language and its profile for real-time

systems.

The automation in MDA is not limited to the derivation of implementations from high
level design models. MDA can also be used as a framework for an automatic generation of
models suitable for specific analysis from the design models. In this case MDA is used as a
framework for bridging the semantic gap between UML design models and models used in
formal analysis. In this thesis, we use MDA for the derivation of task models suitable for

the schedulability analysis of UML/SPT models.

2.2 The Unified Modeling Language

UML [92] is nowadays the de facto standard software modeling language. UML is used
to specify, visualize, construct, and document the artifacts of a software system [110].
Originally, UML is the result of the unification of the main object-oriented development
methods, namely the Object Modeling Technique (OMT) [109], Booch method [14], and
Object-Oriented Software Engineering (OOSE) method [58]. This brought the version 0.9
of the UML language. UML became an industrial standard once it was adopted by the
Object Management Group (OMG) in 1997. This corresponds to the version 1.0 of the
language. Within the OMG, UML has then been updated with the main milestones being
UML 1.3 [84] and UML 1.4 [85] to eventually reach UML 2.0 [92]. In the following, we focus
on the main features of the UML language and highlight the main issues related to UML

modeling.

2.2.1 UML Metamodel

UML is an object-oriented graphical modeling language. Considering the advantages of
visual formalisms [48], UML modeling is very intuitive. This is probably behind the wide
popularity of this modeling language. As a visual language, UML’s concrete syntax con-
sists of a set of visual elements including lines, arrows, boxes used to form different kind of
diagrams. The abstract syntax of UML is defined by its metamodel.

Generally, a metamodel is a model of a model. The metamodeling approach used to define
certain languages such as UML consists in using a part of the language to specify /define the

- very same language. UML abstract syntax is defined using this approach. UML metamodel

is then a model representing the main concepts of UML and their relationships. This model
(i.e. the metamodel) is expressed using the concepts provided by UML class diagrams such
as class, associations, multiplicities etc. Figure 2.2 shows a snapshot of the interaction
metamodel in UML 2.0. OMG defines a standard language used to express metamodels,
including UML metamodel. This standard is the Meta Object Facility [93]. In addition,
UML metamodel is complemented with a set of constraints expressed in the Object Con-
straint Language (OCL) [94]. These constraints form a set of well-formedness rules, which
can be used to validate the syntax of UML models.

The semantics of the modeling elements provided by UML is defined informally using En-
glish. This leads to many ambiguities and inconsistencies. In addition, several parts in UML
are left intentionally open to interpretation. These are formally called semantic variation
points [30] [117]. This supports the notion of UML as a family of languages [19], which
makes it very flexible and widens UML application domains. The lack of formal semantics
issue in UML is, however, contributing to the consistency issue in UML models, which is

one of the issues considered in this thesis.

2.2.2 Multi-view Modeling Approach

UML supports a multi-view modeling approach. To this end, it provides a multitude of
diagrams. UML 2.0 offers the user 13 different diagrams as shown in Figure 2.3. These
diagrams cover the different activities in the software development process. Use cases and
sequence diagrams can be used, for example, in the analysis stage to model the system
requirements while the class diagrams, state machines, activity diagrams can be used in the
design stage and deployment diagrams are used in the implementation stage. In addition,
these diagrams allow the user to consider different aspects such as its structure, its behavior,
and its deployment. This approach is very important in dealing with the increasing com-
plexity of software systems. On the other hand, this approach presents the risk of obtaining

inconsistent UML models.

10

Operation | 1)
(from Kernel) SendOperationEvent
Signal 1 v '
(trom Communications) SendSignalEvert
+fowner
od MessageEvent
(from Communications)
Element NamedElement
" |firom Kemel) (from Kemel)
+owned
Eloment 0.1 Name: Stiing [S
Visthily: VisibiiyKi
HownedComment | *) MessageQccurrence Execution
- ? Specification Specification
Comment
{from Kernel) TypeEloment | *WPE | fype .
(fromKeme) | 0.4 ‘|(fromKemel) & .
H 4starl | +finish
£
o
MessageEnd)
ComectableBlemert ComecarEnd ExecutionOccurrence
onnectableElement | « onnectorEnt -
(from Infrastructures) | | (from InfraStructures) 0. 0.1 Speciicaton
. +Hecele | 4send
0.1 2 Evenl | Event
0.1
+represenis
Message
Connegtor * , , ¥
|——1 /messageKind: MessageKind
. {trom InfraStructures) (g1 Sort Sot
Lifeline mesgefor esig Occurrence
Specification
. +argument
Connector . :
{from InfraStructures)
1 1
Event
{from Communications)

Figure 2.2: UML Interaction Metamodel

11

Class Diagram Package Diagram Timing Diagram

Use Case Diagram Object Diagram

Sequence Diagram Cgrir;gt::;m
Activity Diagram Deploymen
Diagram

Statechart Diagram Communication

Diagram

Composite Interaction
Structure Diagram Overview Diagram

Figure 2.3: UML Diagrams

2.2.3 Extensibility Mechanisms

UML is designed with built-in extensibility mechanisms. These mechanisms allow UML
users to attach some dornain-specific semantics to existing UML model elements. The

extensibility mechanisms in UML are:

e Stereotype: A stereotype is basically a new modeling element obtained by specializ-
ing an existing model element defined in the metamodel, a metaclass. The stereotype
is rendered with its name between a pair of guillemets. It can also be represented
by a new graphical notation or icon. Figure 2.4 shows the definition of a stereotype
<task>, which attaches to the UML metaclass Class the semantics of an operating

system task.

e Tagged values: These are pairs (tag, value), which represent some specific properties
of the newly introduced stereotype. This allows to extend/refine the meta-attributes
of the metaclass refined by the stereotype. Figure 2.5 shows the stereotype <task>

with some specific tagged values.
e Constraints: These enable to restrict further the semantics of the newly introduced

12

Class

T

<<stereotype>>
task

<<tags>>
Period: int
Deadline:double
Priority: signed int
isPeriodic: boolean

MyTaskSeq

<dasko>
{Period={10, ms’;
Dearling={10, ms');
Prigrity=15;
isPeriodic=rug)

Figure 2.4: Stereotype Definition Figure 2.5: Stereotype in Use

stereotype, its tagged values or its relationship with other concepts. The constraints

are often expressed using OCL but can also be simple textual constraints.

The extensibility mechanisms in UML can be combined to define an important specializa-

tions of (a subset of) UML. Such UML specializations are formally called UML profiles.

2.2.4 UML Profiles

A UML profile is a special version of UML tailored to the specifics of a particular domain,
like the real-time domain, or a particular activity, like system requirement modeling. There
are several UML profiles in the literature that are either results of different research activities
or adopted as OMG standards [38]. However, very few are designed with a sound UML
profile design method, which makes many of them less valid or of a poor quality.

An approach for defining a UML profile comprises two steps: the definition of a domain
model and the mapping of the domain model to UML [118]. The OMG standard UML
profile for real-time systems, which is used throughout this thesis and which we will present

in the next section, is defined following this approach.

e The Profile domain model: This is the metamodel of the profile. It specifies
the concepts relevant to the domain, the relationships between these concepts and
the constraints that determine the valid models. It includes also a definition of the
semantics of the different concepts introduced. This is generally specified in English.
The domain model is generally expressed using MOF, where the basic concepts are
captured using MOF classes and attributes and the relationships are represented by

MOF associations. The constraints are often expressed using OCL.

13

+Cpu +task Task

Processor 1 .
+state

1 ’+cpu N +task
+scheduler 0.1 +queue
+scheduler +queue TaskQueue
Scheduler .
1 . +priority-integer

Figure 2.6: Example of a Partial Domain Model of a Profile

e Mapping of the domain model to UML: The main concepts introduced in the
domain model are mapped to the UML using stereotypes and tagged values. In order
to do this, the appropriate UML metaclasses (i.e. having the closest semantics to
the considered concept) are determined to be used as base class of the corresponding

stereotype.

Example: In order to illustrate this approach, we consider an example of a profile for mod-
eling multi-tasks operating systems [118]. The main concepts involved include for example
tasks, processors, priorities, etc. A partial domain model for this profile is shown in Figure
2.6. The Processor concept in this domain model can be mapped to UML using the Node

metaclass in UML as base class and can be rendered using the stereotype <processor>>.

2.3 The UML Profile for Schedulability, Performance and
Time

UML/SPT [91] is a framework for modeling and analysis of real-time software systems.
It enables the modeling of resources and quality of service; time concept and time-related
mechanisms; and concurrehcy. In addition, UML/SPT supports schedulability and perfor-
mance analysis. From the end-user standpoint, UML/SPT is a set of stereotypes and tagged
values that can be used to annotate UML design models with quantitative information. This
enables the prediction of key properties in the early stages of a software development process

using quantitative analysis (schedulability and performance analysis). UML/SPT definition

14

is based on UML 1.4 [85] and it is currently undergoing a major revamp that will lead to a
new UML profile for MARTE [97], which is inline with UML 2.0 [92].

The structure of the UML/SPT profile is shown in Figure 2.7. It consists of a number of

General Resource Modeling Framework
1
<<profile>>
RTresourceModeling
T T <<j rt>>
N impo
<<import>>| H p
— — |
<<profile>> <<profile>>
RTconcurrencyModeling RTtimeModeling
1 T T
i 1 +
<<j rt>>| t 8 |
import>>i e — | :
—l: : <<import>> l<<import>>
|| Analysis Models !
| 1 I
<<profile>> <<profile>>
SAProfile PAProfile
|
<<import>>|
|
I
<<profile>>
RSAprofile

Figure 2.7: The Structure of UML/SPT Profile

sub-profiles. The core of the profile represents the General Resource Model framework. This
is further partitioned into three sub-profiles: RTresourceModeling for the basic concepts of
resource and quality of service; RTconcurrencyModeling for concurrency modeling; and RT-
timeModeling for the time concept and time-related mechanisms. Furthermore, UML/SPT
is composed of extensible analysis sub-profiles, including: PAprofile for performance analy-
sis modeling and SAprofile for real-time schedulability analysis modeling. In the following,
we are going to focus the main parts of UML/SPT that are used throughout this thesis.
We are going to follow the profile definition method in our presentation. For each package,
we give and describe the domain model and then its mapping to the UML in terms of

stereotypes and tagged values.

15

+ype

Instance Descriptor

A A
0.r +instance +type
' 0." 1. Resource o
1. +offeredService |1..*
vice | +instance +Hype ,

Instance 0r T ResourceService

0. 0.

0.* | +offeredQos 0."

+offeredQos sinstance +type +offeredQaS

o QoSVelue o 1| Qosch istic [~ =

Figure 2.8: General Resource Domain Model

2.3.1 Resource Modeling in UML/SPT

An important property of a resource is that it is finite. For example, software cannot be in-
finitely fast because it is always limited by the number and the speed of the available CPUs
and the amount of information transferred is also limited by the bandwidth. Consequently,
in UML/SPT, a resource is modeled as a server providing one or more services to its clients
and the Quality Of Service (QoS) attributes are used to capture the physical limitation of
a resource [115]. These attributes express either how well a service can be done, the offered
QoS, or how well the service should be done, the requested QoS. The basic idea behind
quantitative analysis, such as schedulability analysis, is to determine whether the offered
QoS meets the requested QoS.

These concepts are captured in the domain model shown in Figure 2.8. In this model a
distinction is made between descriptors which are specifications of run-time entities such as
Class, Association and Action and instances of these descriptors, which are run-time entities
such as Object, Link and ActionExecution. The analysis methods are often instance-based,
which means that they operate on models that describe particular situations involving in-
stances.

UML/SPT defines the causality model used as a basis for dynamic modeling. This model

16

EventOccurence

?

+Cause seflect

StimulusGeneration | | 1.’

Stimulus

Instance |srecoiver |
+effect| 0" {romCore 10,4 0.
ResourceModel) 1 | scause
1.5] +execulionHost
1 | +cause 0.* | +executionHost
+Cause +effect Scenario
i o
StimulusReception -
+fiect

0.1

Figure 2.9: Causality Domain Model

captures the cause-effect chain of behaviors of run-time instances. The causality domain
model is shown in Figure 2.9.

In order to support model analysis, UML/SPT defines the concept of analysis context. This
concept captures a particular configuration of the system resources used according to some
competing and concurrent scenarios to respond to the workload on the system. It is a
starting point for the analysis tools within a design model. The conceptual model of an
analysis context is shown in Figure 2.10. This concept is further refined to adapt it either to
the schedulability or performance analysis. Figure 5.3 illustrates how the analysis context
conceptu‘al model is refined for schedulability analysis and is called a real-time situation.
UML/SPT defines the concept of ResourceUsage to capture the details of how the resources
are used by the clients in an analysis context. A ResourceUsage can be static or dynamic.
In the latter case, it describes a scenario detailing the order in which the clients use the
resources, the type of access, the holding time, etc. Figure 2.11 shows the dynamic usage
domain model.

Finally, UML/SPT allows the modeling of different kinds of resources. The general taxon-

omy of resources defined is shown in Figure 2.12.

17

UsageDemand

1 o
< AnalysisContext [°>—
1
1 iy ,
0.
ResourceUsage 7 Resourcelnstance

K 0. ;

usedService| 1. 1.k

StaticUsage DynamicUsage ResourceService

‘ y g Instance

Figure 2.10: Model of Analysis Domain Model

+successor

DynamicUsage

i

Scenario

o.*

Resourcelnstance

{ordered}
+step| 1.* 1.
+usedServices
ActionExecution 1.» | ResourceService
Instance
o.* [0.
+predecessor
+requiredQos 0. [+offeredQos
QoSvalue

Figure 2.11: Dynamic Usage Domain Model

18

Resourcelnstance

(from CoreResourceModel)
protectionKind[r ﬁX ? activenessKind
ProtectedResource | | UnprotectedResource PassiveResource { | ActiveResource
purposeKind
Device Processor CommunicationResource

Figure 2.12: Resource Taxonomy Domain Model

2.3.2 Time Modeling in UML/SPT

The time domain model supported in UML/SPT is shown in Figure 2.13. In this model
time is abstractly captured as a partial order on events. Physical time is a continuous and
unbound progression of physical time instants. Using a periodic clock, time progress is
measured by counting the number of expired cycles. The count associated with a particular
instant is its measurement. TimeValue class represents a time measurement, which can be
represented using the Integer data type for a discrete time model or the Real data type
for a dense time model. Timelnterval class models a duration, which is the expired time
between two instants. Since a duration is also a time value, Timelnterval is a subclass of
TimeValue. Moreover, UML/ SkPT defines also a domain model for the time mechanisms,
including clocks and timers. This is shown in Figure 2.14.

UML/SPT maps these domain models to UML using stereotypes. It provides a set of stereo-
types and associated tagged values that the modeler could apply to UML models to spec-
ify time values «RTtime’>, time-related mechanisms such as «RTclock>», <RTtimer:>,
<RTtimeout>> or timing constraints <RTdelay>>, <«RTintervale>>. For example, Fig-
ure 2.15 illustrates a UML sequence diagram modeling the behavior of an elevator control

system in reaction to the arrival sensor event. This sequence diagram is annotated with

19

PhysicalTime k----—-—------———- Clock

-

ReferenceClock

{ordered} | « *

TimeValue

. méasur ement
Physicallnstant

»
-

Kind:{discrete, dense}

start {1 1| end start | 1 1| end

measurement .
Duration - < Timelnterval

Figure 2.13: Time Modeling in UML/SPT

UML/SPT stereotypes to model the periodicity of the event, the time constraints on the

actions of the different components of the system, etc.

2.3.3 Concurrency Modeling in UML/SPT

The package RT'concurrencyModeling encapsulates a domain model for concurrency mod-
eling. This model is expressed using the class diagram shown in Figure 2.16. The main
entity in the concurrency domain model is a Concurrent Unit. 1t is deﬁned as an active re-
source instance that executes concurrently with other concurrent units. An active resource
is defined in RTresourceModeling package as an entity capable of generating stimuli without
being prompted by an explicit stimulus as opposed to a passive resource, which does not
generate its own behavior but reacts to stimulus [91]. As shown in Figure 2.16, a concur-
rent unit owns one or more service resource instances through a composition relationship.
It also owns one or more stimulus queue to hold stimuli that arrive while the concurrent
unit is busy. The response to such stimulus is deferred until the concurrent unit is ready.
In addition, each concurrent unit is associated with a main scenario. During this scenario,
the concurrent unit may execute either an explicit receive action, a synchronous invoke or
an asynchronous invoke. The execution of a receive action triggers the appropriate method

in the corresponding service instance. Moreover, a service request has a property called

20

Resource Instance
{from CoreResourcelnstance)

T

TimingMechanism
Statbility
+ currentValug o Drift origin
“= skew TimedEvent
TimeValue 1 R (from TimedEvents)
(irom TimeModel) | 0..n| Set{time:TimeValue i
+ maximalValue Get():Timevalue
0.0 Reset()
Start()
0.0 payyse()
1 |+ resolution X
0
Timelnterval (Té
{from TimeModel) 5
= +imeStamp | 4 o
sacouracy| ¢ +offset| 1 on L3 :
Timer +duration TimeValue
Clock :
o isPeriodic: Bookean |y , 4| (rom TimeModel)
0.n
1 1
+generatedinterrupts | 0..n +generatedTimeout| g_pn
clockinterrupt Timeout
(from TimeEvents) (from TimeEvents)

Figure 2.14: UML/SPT Timing Mechanisms Domain Model

{Rtduration=(2, ms’);
Saworstcase=$W1}

<<SAAction>>
{Rtdurafion=(5, ms’);
Saworstcase=5W2}

<<SASituation>>
<<SASchedRes>>
Avival Sensor Avival Sensor EgAScrhedRes»r lpvalorStalusPlan
Interface

: <«<SATrigger>> ll : :
: {Saschedulable=$S1; } : :
y Rai=(Periodic' 25, ms)} I I
! Input) J o <ShBenb> | :
| ApproachFloor()) :
}
| |
| / checkThisFloor() |
: // , »nl
i / /
1| <<SAResponse
)
|
I
I
|

Figure 2.15: Sequence Diagram Annotated with UML/SPT Stereotypes

21

ResourceServicelnstance | 1." AcfiveResource ResourceProtected
(from Core Resource Model) 3 (from Resource Types) (from Resource Types)
! [A
0.* | methodExeution
Scenarip |
| |ImmediateService 1 .
DeferredService Ew———,
ConcurrentUnit
step | 1.7
ActionExecution
{from Dynamic Usage
Model) 1.4
isAfomic: Boolea I
e Sonean StimuliQueue
cause Stimulus
MessageAction ; (from Causalty
Model)
st | StimuludGeneration
Asynchronousinvoke [| Synchronousinvoke (ftom Causaity
1 Mode!)

Figure 2.16: UML/SPT Concurréncy Domain Model

threading, which may be local or remote. In the former case, the receiving instance spawns
a local thread of execution to handle the request while in the later case, it assumes the

availability of an existing thread.

2.3.4 Schedulability Analysis Modeling in UML/SPT

The main concepts involved in schedulability analysis modeling are encapsulated in the
SAProfile domain model as depicted in Figure 2.17. The RealTimeSituation concept repre-
sents a specific analysis context. It is a specific configuration of resources including Fzecu-
tionEngine to model processors, SResource to model passive resources and SchedulableRe-
source to model threads or tasks; and different entities, scheduling jobs, contending for these
resources. A scheduling job is composed of a Trigger modeling an external event having an
arrival pattern that could be periodic for instance and a Response. The latter is the root
action of a sequence of actions, SAction, separately schedulable. It is worth mentioning that

SAction is also a nested construct as, according to the Dynamic Usage Model Package of

22

+
H
2
SAction 7
o
Priori H
o.n| oty fon Time § SResource g
Delay time 0.0 o.n ~ 2 1.n
‘é Preempted Time " Capacity Fd
£| Blacking Time Acquisition Time | & ExecutionEngine
8] Deadtine Deacquisition time g
=l isAtomic isCi i -
g ™ <> PriorityRange
o-n Priority Ceiling o.n 0.1| ProcessingRate
isPreemplible Context Switch Time
Utilisation
<<deploys>> +host| In..n +host | isPreemptible
17 r«uephm»
0.n
Response 1
Capacity SchedulingPolicy
Acquisition Time
e 0.n 1.n
Deacquisition time
isCor 1 N
Priority Ceiling 1)
isPreemptible SchedulingJob
+effect | 1

| T
1
+cause
Trigger

|||||

Figure 2.17: UML/SPT Schedulability Analysis Domain Model

Steriotype Real-time Concept UML Model Element
<« SASituation>> | Real-time situation | Collaboration, Sequence diagrams
<K SATrigger> Event Message, Stimilus
<« SAResponse>> Response Method, Action
< SAAction> Action Method, Stimilus, Action
<« SASchedulable>> Task, Thread Instance, Object, Node
< SAResource>> Resource Instance, Class, Node
<SAEngine> CPU, Processsor Object, Class, Node

Table 2.1: UML/SPT Common Stereotypes for Schedulability Analysis

the General Resource Model Package of UML/SPT, SAction is a subclass of the metaclass
Scenario.

Correspondingly to these concepts, a set of stereotypes and their associated tagged values
is defined in UML/SPT. A sample of these is presented in the Table 2.1. The application

of these stereotypes on a collaboration diagram is illustrated in Figure 2.18.

2.4 UML Profile for MARTE

The OMG has issued an RFP in order to replace UML/SPT with a new profile in line with
UML 2.0 [97]. The new UML profile is called UML profile for Modeling and Analysis of Real-

Time and Embedded Systems. The beta adopted specification [90] is now made available

23

<<8ATrigger>>
{SAschedulable=$51, . !
RTAT={periodic,25, ms’} <<SASituation>>
<<SAResponse>>

{SAAbsDeadline~(25,ms)} <<Shaction>>
arrival sensor Input() ApproachFioor()
Arrival — —>
Sensor 2<SASchedulabler> Ficor Buttons
‘ArivalSensoririertace Elevator <<Shaction>>
controller L CheckNextDestination()
I—-—T U <<SATrigger>>
$53
{SAPriority=1, Spe {SAschedulabla=$53,
i AL {SAPriority=4, :Eigvator StatusPlan RTAT=(periodic,100,'ms")}
RTDU'Z‘::((Z'"'S” RTDuration=(5,'ms"} <<SAR o <<SAResponse>>
) main() —L—MLSA] {SAAbsDeadline=(100, ms)) ‘
gl _I oy arrival sensor input()
<Shaction rylnheritance’l
ElevatorBution <<SAation>>
N T UpdatePlan(} _ stons>
<<SAaction>> Selecttrorator) * <<Shadtions>
ElevatorFequester(} ~icoRequoso)
ssSASchedulablez>
< <<SASch .
Elovator Butons
U Interiace :Elsvator M; r Scheduler ace
<<SATrigger>> -
RTAT(periodic,100,ms")} T j SchedulerRequoste t t
<<BAResponsex> SAR e
{SAAbsDeadina=(100 ms)} _<SAResponse>> “oAmior s <<SAResponse>> A hanee>>
arrival sensor input(} APriority— {SAPriority=5, Priofiyot {SAPriority=6,
{SAPriority=2, RTOu P {SAPriorily=6, p
: e ration=(6,'ms")} i e RTDuration=(2,'ms")}
RTDuration=(3,'ms")} main() RTDuration=(2,'ms’)) maing)
main{) maln{)

Figure 2.18: UML/SPT Schedulability Analysis Model

for the public to submit issues related to the specification for the MARTE Finalization Task

Force. The structure of MARTE is shown in Figure 2.19. The profile is designed (1) to

model the features of real-time and embedded systems (the MARTE design model package)

and (2) to annotate the models in order to support the analysis of systems properties

(MARTE analysis package). These two packages refine the MARTE foundations package,

which includes:

e The Non-Functional Properties (NFPs) package provides a general framework for

annotating UML profiles with NFPs.

e The Time package defines a general framework for representing time and time-related

concepts and mechanisms that are relevant for modeling real-time and embedded

systems.

e The Generic Resource Modeling (GRM) package defines the concepts necessary to

model a general platform for executing real-time embedded applications.

e The Generic Component Model (GCM) defines concepts necessary to address the

modeling of artifacts in the context of real-time and embedded systems component

based approaches.

MARTE design model package is composed of the RTE Model of Computation and Commu-

nication (RTEMoCC) package, which provides high-level concepts to model the real-time

94

MARTE foundations |

<<profile>> | <<profiles> I

NFPs Time

<eprofiles> L <eprofiles> l <<profiles> |

GRM GCM Alloc

™ 7
1 I
[} i
i . |
| I
| |
| I
| |
L (

|
I

MARTE design model |

MARTE analysis |

Detailed Resource Modeling '

<<profie>> <<profiles> <<prot||s>>] profik | <profil | profil
RTEMoCC HRM SRM GQAM SAM PAM

MARTE annexes |

ofil il il
<p <pi <pi

VSL RSM MARTE_ModelLibrary

Figure 2.19: The Structure of UML Profile for MARTE

and embedded systems features, and the Detailed Resource Modeling (DRM), which pro-
vides specific modeling artifacts for the description of both software and hardware execution
supports. MARTE analysis package defines a framework for generic quantitative analysis
and specifically supports the modeling of schedulability (SAM) and performance (PAM)

analysis.

2.5 Other UML Profiles for Real-time Systems

In this section, we give a brief overview of the other UML profiles for real-time systems in

the literature.

2.5.1 UML Profile for Quality of Service

The UML profile for modeling Quality of Service and Fault Tolerance Characteristics and
Mechanisms (UML/QoS) is an OMG standard UML profile [87]. This profile aims at
capturing the concept of quality of service in general. It allows the definition of an open

variety of quality of service requirements and properties [24].

25

UML/QoS is relevant for real-time software modeling because it is defined to complement
UML/SPT. However, while UML/SPT is tailored to fit performance and schedulability
analysis, UML/QoS allows the designer to define any set of quality of service requirements
and carry out a corresponding analysis that could be relevant for the safety-critical aspect
of real-time software. This was shown in [10], where a quality model has been defined to
drive a dependability and performability analysis of an embedded automation system.
Similarly to UML/SPT, UML/QoS can be used to annotate UML diagrams. In contrast to
UML/SPT, UML/QoS proposes a procedure that consists of three steps:

e Definition of QoS characteristics: The new user-defined QoS characteristics could
leverage, through specialization, the general QoS characteristics catalogue defined
in this profile. This catalogue Vcomprises the following categories: Performance,
Dependability, Security, Integrity, Coherence, Throughput, Latency, Efficiency,
Demand, Reliability and Availability. In particular, the Latency QoS category
can be used in the real;time context. The QoS characteristics are templates classes

having parameters. The later have to be instantiated in the next step.

e Definition of the quality model: The QoS characteristics parameters should be assigned
actual values. This is done through the definition of quality characteristics bound
classes and template bindings. The UML model containing the binding information

and the bound classes is called the Quality Model.

o The last step is the UML models annotation using quality of service requirements.

2.5.2 UML-RT Profile

UML-RT is a UML real-time profile developed by Rational Software [116]. It uses the UML
built-in extensibility mechanisms to capture the concepts defined in the Real-time Object
Oriented Modeling (ROOM) methodology [114]. UML-RT allows the designer to produce
models of complex, event-driven and possibly distributed real-time systems. However, it
does not support time constraints modeling. UML-RT is supported by a CASE tool called

RationalRT that allows for automatic code generation by compiling the models and linking

26

them with a run-time system. UML-RT includes constructs to model the structure and the

behavior of real-time systems:

e Structure Modeling: UML-RT provides the designer with entities called capsules,
which are communicating active objects. The capsules interact by sending and re-
ceiving messages through interfaces called ports. Furthermore, a capsule may have
an intema.l structure composed of other communicating capsules and so on. This

hierarchical decomposition allows for modeling complex systems.

o Behavior Modeling: The behavior is modeled by an extended finite state machine,
and it is visualized using UML state diagrams. These state machines are hierarchi-
cal since a state could be decomposed into other finite state machines. A message
reception triggers a transition in the state machine. Actions may be associated with

transitions or the entry to and/or the exit from a state.

2.5.3 TURTLE Profile

TURTLE stands for Timed UML and RT-LOTOS Environment. It is a UML profile for
the formal validation of complex real-time systems [4]. TURTLE uses UML’s extensibil-
ity mechanisms to enhance UML structuring and behavioral expressive power. It has a
strong formal foundations. TURTLE extensions semantics is expressed by a mapping to
RT-LOTOS. This enables a formal validation as well as a simulation of the UML models.
TURTLE essentially allows the description of the structure/archtecture as well as the be-
havior of the system using an extension of the UML class/object and activity diagrams.

The main extensions brought by TURTLE are the following:

e Structural Extensions: TURTLE introduces the concept of TClass, which has
special attributes called Gates. These are used by TClass instances, TInstances, to
communicate and are specialized into InGate and OutGate. In addition, TURTLE
introduces stereotypes called composition operators. These are used to explicitly

express parallelism, synchronization, and sequence relationships between TClasses.

e Behavioral Extensions: The behavior of a TClass is expressed using activity dia-

grams extended with logical and temporal operators. These operators allow express-

27

ing synchronization on gates with data exchange. In addition, TURTLE enables the
expression of temporal non-determinism and different sorts of delays (deterministic,

nondeterministic).

TURTLE is supported by a toolkit composed of TTool [123] and RTL [108]. These are
used by the designer to build a design, to run the simulation and to perform a reachability
analysis for the validation of the system.

Finally, TURTLE was extended to fit the requirements of distributed and critical systems.
The objective is to enable defining components and their deployment and to study their
properties at early stages of the software development process. This is done using a formal
definition of the deployment diagrams, which are the most suitable for distributed architec-
ture description. Therefore, TURTLE has been extended to take into account deployment
diagrams. The obtained profile is called TURTLE-P [5], which addresses the concrete de-
scription of communication architectures. TURTLE-P allows the formal validation of the

components and deployment diagrams through its foundations in RT-LOTOS.

2.5.4 SDL Combined With UML

This is the title of the ITU-T recommendation Z.109 [56] [80]. It is a UML profile for SDL
since it defines a specialization of a subset of UML and a one-to-one mapping to a subset
of SDL. Thus, Z.109 has SDL as a formal semantics. This profile provides the designer
with a combination of UML and SDL. Essentially, Z.109 defines a UML model for the main
concepts of SDL, the domain model, and offers a corresponding set of stereotypes. In the

following, we highlight the main concepts defined in Z.109:

e Agent An SDL system is composed of agents connected through channels. Each agent
has a state machine and an internal structure composed hierarchically of other agents.
In addition, an agent can be a process, a bloc or a system. In particular, an agent

type is mapped into a class of active objects and its kind is stereotyped <«system>>,

< block™> or < process>>.

e Gates and Interface: The agents communicate through gates by sending signals

or requesting a procedure, which together, the signals and procedures, compose its

28

interface. The latter is mapped into a UML interface and the former are stereotyped

<signal> and <procedure>>.
e State Machine: An SDL agent state machine is mapped to a UML state machine.
e Package: UML packages are used to represent SDL packages.

Finally, this profile has been implemented in the Telelogic CASE tool Telelogic TAU 3.5
[122].

2.5.5 The OMEGA UML Profile

This profile [44] is part of the OMEGA project [120]. It is a framework for UML-based
real-time modeling. It enables the analysis and verification of time and scheduling aspects.
It provides a set of timed-events primitives and the semantics of these primitives is formally

expressed using timed automata with urgency.

2.5.6 OCL Profile

This profile is based on an extension of OCL 2.0 metamodel [29]. It allows for the spec-
ification of real-time constraints using OCL. The semantics of this profile is given by a
mapping to time-annotated temporal logic formulae expressed in CTL. This enables formal

verification of different system properties.

2.6 UML Profile for System Engineering

UML proved to be a very successful modeling language for software-intensive systems. It has
very interesting features, which appeal to the system engineering community. However, it
falls short to cover the needs of a wide range of engineering applications such as automotive,
aerospace, communication in addition to information systems. This led the International
Council on Systems Engineering (INCOSE) [54] to define the UML profile for system engi-
neering. It is defined as a modeling language for system engineering applications and used
to support the specification, analysis, design, verification and validation of a broad range of

complex systems. These systems may include hardware, software, information, processes,

29

SysML
extensions to

Figure 2.20: UML and SysML Relationship

personnel, and facilities [95].
SysML reuses a subset of UML 2.1 and extends it by additional diagrams and new concepts
as it is shown in Figure 2.20. In the following, we summarize the main concepts introduced

by SysML to enable system engineering modeling.

e SysML diagram taxonomy is shown in Figure 2.21. In system engineering, requirement
modeling is of paramount importance. UML does not allow to represent the trace of
the informal requirements specification to the system design elements. Generally
UML Use Cases are used to understand the expected system functionalities but the
requirements are traced to the use cases and not to the design. With this regard,
SysML brings a major enhancement through the requirement diagrams. These allow
to represent the requirements and many relationships among them as well as their

relationship with the system architecture and design elements.

e SysML improves also UML structural modeling capabilities. It defines the concept
of blocks and defines two new kind of diagrams to model a system structure: The
Block Definition Diagram and the Internal Block Diagram. The former defines the
features of a block in terms of properties/operations and the relationships between
blocks such as associations, generalizations and dependencies. The latter captures the

internal structure of a block in terms of properties and connectors between properties.

30

SysML

Diagrams
[T
| Requirement |
! Diagram |
Behavior Structure
Diagrams Diagrams
\
. Activity | Sequence State Use Case | : Block 1 Internal Package
" Diagram | Diagram Machine Diagram | Definifon Block Diagram
RS : Diagram | |. ... Diagram - : | PT?”.‘.”.
Same as UML2 f-=—d--
" ! Parametric 1
................ Modified from UML2 | Diagram |
|, I
_______ New diagram type

Figure 2.21: Taxonomy of SysML diagrams

e SysML introduces the concept of allocation as a more abstract form of a deployment
in UML. It is a design-time relationship between model elements such as linking the

requirements and design elements.

e Another important feature of SysML is the introduction of additional models of com-
putation. It extends the behavior of UML activity diagrams so that the control of
execution of a running action can be disabled. It is also extended to enable the
modeling of continuous and probabilistic systems. Finally, SysML supports also the

modeling of energy and material flows.

2.7 UML Profile for Systems-On-Chip

System-On-Chip refers to the integration of computing and communications components
into a single chip. SoCs are incorporating more processors and software. The success
of UML in the software community has led to a surge of interest in using UML in the
SoC design flow [75]. In this context, the focus is put on how to customize UML so that

it can be used as a System Level modeling language in the SoC design flow. Therefore,

31

many of these customizations are UML profiles for SystemC [55], which is a C++ based
systemm-level language used in SoC design flows [81]. The OMG standardized profile for SoC
[96]k is defined to support the modeling and specification of SoC designs. In particular, it
introduces the SoC structure diagrams. In additon, the profile defines a set of stereotypes
to represent modules, connectors, channels, ports, clocks, processors, protocols, data types,

and controllers.

2.8 Conclusions

We have studied the main UML profiles for real-time and drawn a comparison between them
using some criteria, including formal foundation, expressiveness and tool support [38]. This
comparison is summarized in Table 2.2. In the following, we discuss the salient points of

this comparison and focus on the research issues related to UML/SPT.

e As for the formal foundation, we can distinguish two groups of pfoﬁles. The first
group of profiles presents some formal semantics such as RT-LOTOS for TURTLE
and SDL for Z.109. The second group includes UML/SPT, UML/QoS and UML-RT.
These profiles lack formal foundations. In particular, UML/SPT is defined using the
metamodeling approach, where the semantics of the main concepts is given informally

in English.

e With regards to the profiles expressiveness, we notice that OMG’s profiles, namely
UML/SPT and UML/QoS, introduce models for the concepts of time, resource and
quality of service characteristics respectively using stereotypes to apply annotations to
UML design models while the others; UML-RT, TURTLE and Z.109; do not express
explicitly time constraints but introduce new modeling elements and constructs such

as capsules in UML-RT, TClass in TURTLE to build the model itself.

e The objective of UML profiles for real-time is to use UML in an integrated framework
for the design, analysis and synthesis of real-time software. While several tools are
available to support some of the aforementioned profiles, a full integrated framework

is however still lacking. This is particularly true for the OMG standard UML/SPT,

32

whose implementation is very limited.

UML/SPT is a modeling language and not a methodology. The standard does not

specify how to use the profile.

UML/SPT uses also a multi-view modeling approach, where different UML diagrams
are used to capture different perspectives of the system. In addition, aspects relevant
to real-time modeling such as time, concurrency and schedulability through appropri-
ate stereotypes cross-cut through the UML design model. This contributes further to

the consistency issue of such models.

Finally, there is a semantic gap between design models using UML/SPT and models
suitable for quantitative analysis such as schedulability. This gap needs to be bridged

in order to use such analysis for the validation of UML/SPT design models.

33

SJUIeI)SUOD swe)sAq T a[goid
LD QwWI}-TRoY TOT)ROYLIOA oLIeua3 QUON RIUISPBOY 100
Loualin yum 3urmpatog su1a)sAg Jo8 [00}
BIBWOINE patl], SIU8AS Pl Surmty, sw-Tesd YOINO BIUIBPRIY TH-VOHNO
SWIRSAG 1RO g'g ney, I-NLI
1as sydaouod 7S ON TOI}ROTUNUITI00D[A], o180797a], Ansnpuy 60T'Z
s1ojerado sAefep swagsAg (RO TIH .
SOLOT-TH sp[rered ‘youig ON PoInqrIIsiq 10011 BIWBPRIY HTTEAL
sa3esso JUASY SUI9)SAS aUIT)-Tea1 Teuotrey /INGI
ON sy10d ‘semsden | Ayqempeatyog UALIP-JUBAD Jyreuonjey] Axysnpuy IH-TNN
O1)S1I930BIRY) SUI9)SAS SUIl}-[Bal (OWo)
ON So0) peuyap-19sn) pue olreusd suoN Anysnpuy SOO/TNN
AousLImouo)) Aqenpenag | smejsds euiry-Teal (wesnay) opni§ 1Y (ONO)
oN oomosoy ‘ewrl], | eouewrIoPJ pU® JLIaTar) (o18019191,) Aposdeyy Axysnpug LdS/TINO
SOIJUBUISG [RULIO] | SSoUSAlSsaidxsy sIsApey u1e)sAg 110ddng 1007, Jonssy

Table 2.2: UML Profiles for Real-Time Systems

34

Chapter 3

An UML/SPT Extension for

Multicast Communications

Expressive, flexible, and customizable specification/modeling languages are necessary to
capture complex behavioral requirements of distributed real-time systems. Message Se-
quence Charts (MSC) is a well-established specification language for high-level behavioral
requirements modeling. It is widely used for telecommunications software systems. MSC
has evolved through successive versions to enable the expression of time constraints, object
orientation, data, and scenario composition [57]. However, the extensibility of MSC is hin-
dered by a lengthy standardization process. This has led to ad-hoc extensions (e.g., [66],
[128], [130]) that need to go through the standardization process before being accepted and
effective. On the other hand, UML/SPT is designed using UML built-in extensibility mech-
anisms to capture the concepts necessary for the modeling of resource, concurrency and
time. Moreover, UML/SPT inherits this extensibility, which allows for simple and natural
extensions.

In this chapter, we present an UML/SPT extehsion, which enables the modeling of mul-
ticast communications [36]. Such extension is required to model multicast protocols such
as RMTP2 {100]. Our main goal while researching this extension was to demonstrate the
easiness of extending UML/SPT in comparison to languages such as MSC. The main con-

tribution is an extension of UML/SPT for the modeling of multicast communications.

35

In order to achieve this, we extended UML/SPT with a domain model to capture the main
concepts involved in multicast communications. As for the semantics of the introduced do-
main model, we give a declarative definition of the concepts required for the extension using
OCL constraints. We mapped the domain model into the UML using new stereotypes. As
a case study, we model the main requirements of the RMTP2 protocol using the extended
UML/SPT. Finally, we compare our extension and the RMTP2 modeling exercise with the

ones conducted in [51] using MSC.

3.1 Multicast Communication Extension for UML/SPT

We describe the multicast communication extension for UML/SPT using the profile defini-

tion approach [118], outlined in Chapter 2.

3.1.1 The extension Domain Model

- The extension presented here allows to model multicast communications, which are impor-
tant for communication protocols such as the protocol RMTP2. In order to do so, we present
a metamodel capturing the main concepts in multicast communications. The package en-
capsulating this metamodel and its relationship with the structure of UML/SPT profile are
illustrated in Figure 3.1.

A multicasting resource is a specialization of the metaclass ActiveResource. The latter
is defined in UML/SPT resource type metamodel, illustrated in Figure 2.12;, as an au-
tonomous and concurrent entity able to generate stimuli independently. The multicasting
resource is composed of a dynamic group of instances. An instance is defined in the core
resource model of UML/SPT. Each message targeting a multicasting resource is implicitly
forwarded to all the group members by the multicasting resource. The configuration of
this group is dynamic where the instances could join and leave at will using Joingroup and
LeaveGroup actions, derived from ActionEzecution. The latter is defined in the dynamic
usage model of UML/SPT. Figure 3.2 illustrates this metamodel extension and how it is
linked to UML/SPT metamodel.

36

—

General resource Modeling Framework

RTConcurrencyModeling

RTtimeModeling

1
<<profile>>

RTresourceModeling

] 7;‘ ’l'\ <<import>>
<<import>>: P T 1

| <<import>>) i

| L | I

<<profile>> <<profile>>

1

<<profile>>
MulticastPkg

Figure 3.1: Multicast Extension Package

targst

ActiveResource
(From ResourceType)

T

(From SD)

receiver . receiver

[Joingroup J r LeaveGroup J

I

ActionExecution
(From Dynamic Usage
Model)

Instance
(From Core Resource
Model)

group

MulticastResource e Member

]

Figure 3.2: Multicast Extension Metamodel

37

package MulticastPkg

context Joingroup

pre: self.receiver.group— > select(i : Instance]
i = sel f.executionHost)— > isEmpty

post: sel f.receiver.group— > select(i : Instance]
i = sel f.executionHost)— > isNot Empty

Table 3.1: OCL Specification of Joingroup

package MulticastPkg

context Leavegroup ,

pre: self.receiver.group— > select(i : Instance]
i = sel f.executionHost)— > isNotEmpty

post: sel f.receiver.group— > select(i : Instance|
i = sel f.executionHost)— > isEmpty

Table 3.2: OCL Specification of Leavegroup

3.1.2 Domain Model Semantics

We give a declarative specification for the main metaclasses introduced in our UML/SPT
extension using OCL [94]. The OCL constraints in Table 3.1 and Table 3.2 define respec-
tively the metaclasses Joingroup and Leavegroup representing respectively the actions of
joining and leaving a multicasting resource.

The expression in Table 3.1 ensures that the instance joining a multicasting resource does
not belong to it before the action is executed and that it does after the action is executed.
Reciprocally, the expression in Table 3.2, specifies that an instance does no more belong to
a multicasting resource after the execution of the action of leaving it. In these two OCL ex-
pressions, we use executionHost, which is the role of the instance in its association with the
ezecutionAction as defined in the Causality Model Package of UML/SPT shown in Figure
2.9, to identify the instance executing the action.

A message sent to a multicasting resource is expressed by a metamodel transformation
whose platform independent contract [18] is specified using OCL as illustrated in Table 3.3.

This expression specifies that for each message targeting a multicasting instance, a message

38

package MulticastPkg

context SD::Message

let mcast : Multicast Resource

pre: self.alllnstances— > forAll(m : SD :: Message|
mcast = m.receive Event.covered.represents.
OclAsKind(Multicast Resource) in:

mcast.group— > notEmpty)

post:

mcastQpre.group— > forAll(gm : Member|

SD :: Message.alllnstance— > exists(ml : SD :: Message

(mQpre.signature = ml.signature) and

(ml.sendEvent.Covered.represents = mcast@pre) and

(ml.receiveEvent.Covered.represents = gm)))

Table 3.3: OCL Specification of Multicast Message Sending

Stereotype UML Model Element

< Multicast>> Object
< Joingroup>> Message, Stimilus
< Leavegroup>> Message, Stimilus

Table 3.4: Multicast Communication Extension Stereotypes

having the same signature is sent to all the instances member of this multicasting resource.
In this OCL expression, we use UML modeling elements related to message exchange such
as message, sendFvent, receiveEvent, and lifeline. These are specified in the UML sequence

diagram metamodel [92].

3.1.3 Multicast Extension Stereotypes

We introduce three new stereotypes as illustrated in Table 3.4. They correspond to the
main concepts introduced in our extension, and that are used to annotate UML models to
express multicast communication requirements such as joining a multicast group, leaving a

multicast group, and/or sending a message to a multicast group.

39

SD Example /

A B <<Multicast>> c
G
<<JoinGroup>>,
<<JoinGroup>>
M1
+<LeaveGroup>?
M2

Figure 3.3: UML/SPT Multicast Extension Example

Example

The example illustrated in Figure 3.3 shows a UML sequence diagram annotated using these
stereotypes. According to the semantics of our extension, the message M1 will be received
by both A and B since they both joined the multicast group, but M2 will be received by B

only because A has left the multicast group.

3.2 Application: RMTP2 Behavioral Requirement Modeling

The main features of RMTP2 [79], [100] are guaranteed reliability, high throughput, and
low end-to-end delay regardless of the underlying network. RMTP2’s reliability is achieved
through acknowledgments, but the network congestion that would be caused by a growing
number of direct ACKs is avoided using a tree-based organization of the network.

The sender node, the top of the global multicast tree that spans all the receivers, multicasts
the data on the data channel. The receivers are grouped into local regions with a special
control node. The control node could be: (1) an aggregate node which maintains the re-
ceivers membership, and aggregates the acknowledgements from the receivers to the sender
and forwards missing packets; (2) a designated receiver node which keeps a copy of the data
and retransmits it to the subtree below. Eventually, the acknowledgments are aggregated

at the top level control node, which retransmits them to the sender node.

40

S: Sender

TN: Top Node
. AN: Aggregator Node
______ DR: Designated Receiver
RN: Receiver Node

Figure 3.4: RMTP2 Tree Structure

We have used the extended version of UML/SPT to model the main requirements of the
protocol RMTP2. We haveﬂ used the UML éequence diagrams for the basic interactions.
The latter are composed using UML interaction overview diagrams, and the real-time re-
quirements are captured using the extended UML/SPT profile. In the following, we present
the UML/SPT models for heartbeat packets, parent failure detection and join algorithm

behavioral requirements of RMTP2.

3.2.1 Heartbeat Packets

The nodes cooperate to maintain the multicast tree integrity. Parent nodes send periodic
heartbeat messages to notify their liveliness to the child nodes. This enables the child
nodes to detect the parent failure and join another parent. This requirement calls for
periodicity and multicast communication modeling. We use a periodic timer modeled using
the stereotype <<RT'Timer>> from the time sub-profile of UML/SPT to model periodicity
and our < Multicast>> stereotype to model multicast communication. Figure 3.5 illustrates
how this requirement could be described using UML Sequences Diagrams and UML/SPT

stereotypes.

41

SD SetHeartBeatTimer

<<RTTimer>> <<CRConcurrent>>
T_Heartbeat Control Node

<<RTSet>> {(RTTimePar=$Thb}

SD HeartBeat

<<RTTimer>>

{RTPeriodic, <<CRConcurrent>> <<Multicast>>
RTDuration=$Thb} Gontrol Node Ghildren
T_Heartbeat
<<RTTimeout>>

HeartBeat

Figure 3.5: Heartbeat Packets Requirement Model

3.2.2 Parent Failure Detection

If a child node does not receive his parent heartbeat for a time interval specified by F xThb,
where F is a failure threshold constant, a parent failure is detected. Figure 3.6 illustrates the
different scenarios modeling this requirement and Figure 3.7 is a UML overview interaction

diagram composing these scenarios

3.2.3 Join Algorithm

A receiver node must join a multicast tree in order to be able to send acknowledgments
or ask for retransmissions. The receiver node sends a Joinstream packet to its parent node
and waits a period of time of T_joinstream for the response. This is specified with the
UML/SPT annotated sequence diagram SD Join in Figure 3.8. The parent node sends as
response either a JoinConfirm packet or a JoinAck in the case where it cannot handle the
request immediately. The behavior of the receiver node in both cases is specified respectively
in the SD Confirm and SD JoinAck in Figure 3.8. If no response is received upon receiving
a T_join timeout, the receiver node retransmits the JoinStream request (SD JoinFuail)

in Figure 3.8. This is repeated for a maximum of RJoin times before reporting parent

42

SD SetHeartBeatTimer / SD THBTimeout /
<<RTTimer>> <<CRConcurrent>> <<RTTimer>> <<CRConcurrent>>
T_Heartbeatresponse Child Node T_Heartbeatresponse Child Node
<<RTSet>> {RTTimePar=§F*$Thb} <<RTTimeout>>
Parent Failed
SD HeartbeatReceived /
<<RTTimer>> <<CRConcurrent>> <<CRConcurrent>>
- T_Heartbeatresponse Child Node Control Node
Heartbeat

<<RTReset>>

Figure 3.6: Parent failure Requirement Scenarios

unreachable error (SD Can_Not_Reach) in Figure 3.8. In the case where a receiver node
gets a JoinAck from its parent node, it keeps transmitting JoinStream requests with waiting
times growing exponentially. This is modeled with the sequence diagram (SD JoinAck) as
illustrated in Figure 3.8. The whole join connection algorithm is specified by composing the

different scenarios using a UML interaction overview diagram as illustrated in Figure 3.9.

3.3 UML/SPT-based vs. MSC-based RMTP2 requirement

modeling

We compare the extension and modeling exercises using UML/SPT with the ones presented
in [51] using MSC. The main criteria used for this comparison are: the language built-
in constructs, the time-related mechanisms, the multicast communication extension, the
extension approach, and the notation used for the extension. This comparison is shown in

Table 3.5 and can be summarized as follows:

¢ Language built-in constructs: MSC and UML are comparable in terms of expres-

siveness to model behavioral requirements [49]. Both languages provide constructs

43

“Ref

SetHeartbeatTimer
J/ N l
Ref Ref
HeartBeatreceived THBTimeout

Figure 3.7: Parent failure Requirement Model

allowing for the expression of control flow, basic scenarios and their composition. In
[51], bMSCs have been used to model the basic scenarios and HMSC have been used to
compose them. We have used simple UML sequence diagrams for basic scenarios and
interaction overview diagrams ’go compose them expressing more complex behavior as

in the join algorithm requirement.

Time-related mechanisms: MSC-2000 allows for expressing time constraints as well
-as time-related mechanisms such as timers. UML/SPT is probably more expressive in
this regard. It is easier, for instance, to express periodicity, which is useful for periodic
behavioral requirement such as the heartbeat packet requirement of RMTP2. With
UML/SPT, periodicity can be modeled using a periodic timer (using the < RTtimer>>
with the tag value RTperiodic). With MSC, this can be modeled, as this was empha-
sized in [51], using either a time interval inside a loop or a loop composition of two
basics MSC using an HMSC. On the other hand, the instance delay concept intro-

duced in [130] can also be used to express process periodicity in general.

44

SD JoinAck

<<RTTimer>> <<RTTimer>> t«w
T T_loin Node

<<RTReset>>

<<CRCK

Parent

JoinAck

<<RTSet>> {RTDuration=3T_Jack}

<<RTTimeout>>

<«<RTSel>>
{RTDuration=$ Joinresponse}

T_dack=T_Jack2

JoinStream

SD Join
<<RTTimer>> k<CROH < ’Pgarem t>:
T_Join Node ‘_.._
JoinStream
<<RTSet>>
{RTTimePar=8T_Joinresponse}
SD Confirm
<<RTTimer>> [<CRCoricurrent>> <<0Rgg;:nutrem>fl
T Join Node
JoinConfirm
<<RTReset>>

SD JoinFail

<<RTTimer>> <<CRConcurtent>
T_Join Node

<<RTTimeout>>

Nbfailures++

§D Can_Not_Reach

<<CRConcusent>>'
Node

OPT [Nbfailures=RJoin}

Unreachable
Parent

SDRetylon /

<RTTimer>>
T Join

Node

<«CRConcurren>>

<<CRConcurent>>
Parent

0PT

[NbFailures<Rjoin]

JoinStream

<<RTSeb>>
{RTDuration=$oinresponse}

8D RloinExceeded
<<RTTimer> <«CRConcurent>| [<<CRConcument>>)

T_Jdoin Node Parent
op7 /1 INGFalures=Rjon]

JoinStream
NbFadures:=
<<RTSe>>
(RTDuration=$loinrespanse}

Figure 3.8: Scenarios for Tree Connection

45

Ref

Join

1 |

Ref Ref

Joinack JoinFait

s
G0

Ref Ref Ref
RejoinExceeded RetryJoin

A
Ret Y

Confirm Rer

¢

Ref
RetryJoin

1

JoinFail

Ref
Can_Not_reach

.

Figure 3.9: Tree Connection Requirement Model

46

e Concurrency: RMTP2 behavior involves the interaction of concurrent communi-
cating entities. These are modeled in [51] by MSC instances which are implicitly
concurrent. UML/SPT, on the other hand, allows a more explicit modeling of con-
currency. We have used the < CRConcurrent>> stereotype to identify the concurrent

entities.

e Multicast communication extension: Both MSC and UML/SPT needed to be

extended to model multicast communications.

e Approach: In [51], a formal semantics has been proposed for the multicast com-
munication extension. We have defined our extension through a metamodel with

constraints expressed in OCL.

e The extension notation: In [51], an MSC instance representing a multicast group
is indicated by a simple note attached to the instance. We have proposed new stereo-
types to model multicast communications. Stereotyping is the UML’s standard way

to introduce new and specific modeling elements.

3.4 Related Work

MSCs have been extensively used to capture the high-level behavioral requirements in
telecommunication software engineering. In addition to the official extensions of MSC
through the successive versions MSC’92, MSC’96 and MSC’2000, several other extensions
have been proposed in the literature including [66], [128], [130]. In particular, Hélouét
presented in [51] an MSC-based model for the requirements of the RMTP2 protocol. In
order to model multicast communication, Hélouét proposed an extension of his semantics

for MSC. For this extension as well as the aforementioned ones to be effective, they should

47

sjuatmale Surspow

dnoas jseorynu
® Furpopow aouB)SuUL

MO BONPOIIUT O sad 41001918 OGN TR 03 payoelje uoryejou
Kem prepue)s TN MAN a9ou aydung pasnpoayuy
ANqIsua)xs pIEpUR)S o3 JO
agr)uBApR SY€) JN([BUIIO] [1¢] sonjuemes
JOU S| UOISUAIX IT() "PAzIPIRPUR]S JOU IN(SJUTRIISUOD THO) Teur1o} yoeoaddy
TRuLIO] ST [1g] ur uoIsTRIXa DS [epowejeN dATIRITUST,
UOTISTIXd 91}
$9)BJI[I9B] SWISIURYISW :omwnwﬁmw
ur-9{Imq TN Suisn [eInjeu pue Ases pezIprepuels J0N STOT)edTUNIUIOD
Aymqsueyxe 148/TINA PapseN PopasN SN
Furepouwr £oUa1Imou0d < JUBIINOUONY YY) >> Suijepot MuexInouod Apytorydut Aousaanouo))
jorpdxe smofre 1.4S/TINA Aouarmouod yorjdxy ale seouRISUT HSIN
Aytorporrad ‘sjureIlsuod suIl) 21porad Ly
sseadxe 0} 10188 anfea 8e) + KISWn I Ioyeiado doop DSIN + SIUTRIISUOD ST, STISTURYDIUL

St 91 1S/ TINQ 9UM

I9WIL], OTPOLISJ

uonsodutod dooy HSIWH + IO,

payefaa-awl],

[67] suoryoRIeur TN

s1oyerado TOTIRIGWI] TN

s10ye1ado HQIN

000Z-DSIA TaamIaq ‘Se1(] MOIAIBA() UOIIORIU] TINN DHSINT 1ONIISU0D
ssauaalssardxy siqriedwon) surei8ei(eouanbag TN DSING ur-j[mnqg

aSenSuer]

SjULIIo) PPOIN Peseq-I.dS/TINN I9POIAl Paseq-HSIN UorI9jiIy

Table 3.5: MSC vs UML/SPT Behavioral Modeling Summary

48

be integrated to the standard.

Our proposal for an extension of UML/SPT is inspired by Hélouét’s extension of MSC. It
is, however, easier and more natural because of the built-in extensibility mechanisms pro-
vided by UML. Moreover, the UML/SPT model for RMTP2 presented in this chapter takes
advantage of the time concepts and time-related mechanisms offered by UML/SPT profile.
For instance, expressing periodicity, which is necessary to model the heartbeat requirement,
is simply modeled using a periodic timer < RTTimer> { RTperiodic, RTDuration=value}
such as in the basic scenario SD Heartbeat in Figure 3.5, while this required either the

introduction of a non standard notation and a loop or an HMSC loop composition in [51].

Several other proposals of extensions to UML/SPT using UML extensibility mechanisms
have been presented in the literature. Cortellessa et al. presented in [20] a similar approach
to extend UML/SPT to represent the concepts used in the reliability analysis domain. A
metamodel for these concepts was presented and their relationship to UML/SPT metamodel
was illustrated. A set of new stereotypes was introduced as well. Rodrigues et al. defined
in [107] a profile for reliability analysis. It is also an approach to bridge the gap between
- UML/SPT models and MSC enabling early reliability prediction. Addouche et al. pre-
sented in [1] a UML profile called DAMRTS aiming at adding stochastic and probabilistic
information to real-time systems models to enable their dependability analysis. This profile
is an extension for UML/SPT, but neither its metamodel was extended nor new stereotypes

were presented.

3.5 Conclusion

In this chapter, we motivated and presented an extension of the UML/SPT profile to enable
multicast communications modeling. This extension was defined using the profile definition
method. Specifically, we presented a metamodel encapsulating the main concepts involved
in multicast communications. We specified the semantics of the concepts introduced in

the domain model using OCL constraints to give declarative definitions for these concepts.

49

We mapped the domain model concepts to the UML with new stereotypes. We illustrated
the application of this extension with the modeling of the main behavioral requirements of
RMTP2 protocol. We have used the UML sequence diagrams to express the basic scenarios
and the UML interaction overview diagrams to compose those scenarios. The extended
version of UML/SPT has been used to model the time-related mechanisms, concurrency
and multicast communication requirements of the protocol. Finally, we have contrasted
this exercise with the extension of MSC for the modeling of RMTP2 [51].

There is an interesting issue related to the metamodeling approach used for defining UML
profiles in general as well as for their extension. The concepts required for a given domain
could be modeled in a variety of manners, which lead to different metamodels. For instance,
two different metamodels have been proposed in [20] and [107] for the reliability prediction
domain and used to extend UML/SPT metamodel. Therefore, it is necessary to assess the

consistency between the different profiles and extensions.

50

Chapter 4

Timed-automata Semantics and
Analysis of UML/SPT

Models with Concurrency

As mentioned before, UML supports a multi-view modeling approach. This is very impor-
tant to cater with software complexity. The system behavior, for instance, can be modeled
using state machines and sequence diagrams. The former describe the individual behavior
of the system components while the latter capture the interactions/collaborations between
these components. However, such modeling approach faces the issue of consistency [53].
Each view or diagram of the system has to be internally consistent as well as-consistent
with the other views and diagrams. This issue of consistency becomes more challenging for
UML/SPT models. Indeed, UML/SPT models are in addition enriched with other aspects
such as time constraints and concurrency using the appropriate stereotypes. These enrich-
ments complicate the behavioral consistency of UML/SPT models.

In this chapter, we focus on the concurrency dimension of UML real-time design models.
We capture the semantics of the concurrency domain model of UML/SPT using timed au-
tomata [3]. We provide an abstract definition of a UML/SPT concurrent model and we
define the semantics of a such model in terms of timed automata. This mapping allows for

the validation of the behavioral consistency of UML/SPT models with concurrency using

51

existing model checking techniques.

4.1 Concurrency Modeling using UML/SPT

The package RTconcurrencyModeling encapsulates a domain model for concurrency model-
ing. This model is expressed using the class diagram shown in Figure 4.1. The semantics of
the main concepts introduced in this domain model is informally described in English [91].
This description contains some ambiguities, which need to be clarified in order to enable a
rigorous analysis of models. Our aim is to use a formal language like timed automata as
a semantic domain onto which models using this concurrency domain model are mapped.
Therefore, we need to make some semantic choices for the aspects that are open to inter-
pretation.

The main entity in the concurrency domain model is a Concurrent Unit. It is defined as an
active resource instance that executes concurrently with other concurrent units. An active
resource is defined in RTresourceModeling package as an entity capable of generating stimuli
without being prompted by an explicit stimulus as opposed to a passive resource, which
does not generate its own behavior but reacts to stimulus [91]. It is interesting to mention
the similarity between the concept of concurrent unit and the active class/object defined in
UML 1.4 on which UML/SPT is based. The standard specification [91] does not, however,
make any link between these two concepts.

The standard specification states that all the behavior in a system is carried out by the
concurrent units executing the actions of the different scenarios. Consequently, we infer the

following assumption:

Assumption 4.1 Concurrent units are the only support of scenario executions in the sys-

tem.

This assumption means that any scenario should have the thread associated with a concur-
rent unit to proceed. Therefore, the only threads of control available at run-time are those
associated with the different concurrent units. The rational behind this interpretation is
that it gives the designer a full control over the different sources of concurrency in a design

model. We argue that this helps in making the design choices in terms of concurrency and

52

ResourceServicelnstance
(from Core Resource Model)

L

ActiveResource ResourceProtected
(from Resource Types) (from Resource Types)
A

0.> | +methodExecution
Scenarip [*man
: | | immediateService 1 1
DeferredServioe Threading:{remote, local}
ConcurrentUnit
+sfep | 10
ActionExecution
{from Dynamic Usage
Model) 1!
isAtomic: Boolean .
StimuliQueue
+cause Stimulus
MessageAction ; {from Causaiity
Model)
j sefiet | 1.7
+cause] 1
sefit StimulusGeneration
Asynchronouslvoke [| Synchronousinvoke {from Causality
1 Mode)

Figure 4.1: Concurrency Domain Model of UML/SPT

53

allows for the analysis of the design model to validate concurrency-related properties.

As shown in Figure 4.1, a concurrent unit owns one or more service resource instances
through a composition relationship. It also owns one or more stimulus queues to hold stim-
uli that might arrive while the concurrent unit is busy. The response to such stimuli is
deferred until the concurrent unit is ready. This kind of services are referred to as deferred
service in the standard specification [91].

In addition, each concurrent unit is associated with a main scenario. During its main
scenario, the concurrent unit may execute either an explicit receive action, a synchronous
invoke or an asynchronous invoke. The execution of a receive action triggers the appropriate
method in the-corresponding service instance. The standard states that during the service
method execution, the main scenario may be blocked or may proceed concurrently. This is
another ambiguity in the standard which needs to be resolved. Indeed, if a service instance
may execute concurrently with the main scenario of the concurrent unit, this means it has
a thread of control different from the one associated to the main scenario. This is clearly
in contradiction with the previous assumption 4.1.

Moreover, a service request has a property called threading which may be local or remote.
In the former case, the receiving instance spawns a local thread of execution to handle
the request while in the latter case it assumes the availability of an existing thread. This
statement is also ambiguous and needs to be clarified. It is not clear from the standard
specification what the receiving instance is. Is it the concurrent unit receiving the service
request from the stimulus queue? Or the service instance which will be triggered to execute
the service? What does it mean exactly for the receiving instance to create a thread of
execution? And, finally, which thread of execution should be assumed to be exisﬁing? Is
it the thread of control associated with the concurrent unit that has executed the message
action to request‘the service?

Answering the aforementioned questions requires to make some semantic choices. Our
choices are based on the assumption that the only threads of control in the underling run-
time environment are the ones associated with the concurrent units. Our motivation is to
give the designer a full control over the concurrency sources and to enable the analysis of

the design model in terms of concurrency.

54

Concurrent
Unit Stimulus Queus

Main Scenario
i

Y
Instance
/ T

Stimulus Queus

-
Service Servica
Instance instance

Stimulus Queue

’,/” Main Scenario

Main'Scanario

Figure 4.2: A Computational Model corresponding to the Concurrency Model in UML/SPT

Therefore, we consider the local threading to mean that the service instance will use the
thread of control associated with its concurrency unit and the concurrent unit main scenario
is then blocked during the execution of the service. Remote threading means that the service
instance will use the thread of control associated with the concurrent unit that requested
the service. Consequently, the concurrent unit and the service instance may proceed con-
currently while the requesting concurrent unit is blocked waiting for service response.

The computational model corresponding to this semantics is depicted in Figure 4.2. It is
worth mentioning that this model is very similar to the concurrency model based on the
concept of activity group [82], which is composed of one active object and a set of passive
objects. The only concurrency is between the different activity groups while within an ac-
tivity group the behavior is sequential. This concurrency model has been defined formally
in [22], [23] and implemented in [82] using the IF environment [15]. We will discuss this
further in Section 4.6. The difference with the computational model we are considering is
that behavior within a concurrent unit can be concurrent but using the thread of control

of the caller concurrent unit.

55

4.2 Semantic Domain: Timed Automata

The theory of timed automata was introduced by Alur and Dill [2] [3]. It is now a well-
established formal model for real-time systems. This formalism provides concepts such as
time through clocks, parallel composition of timed automata, and synchronization through
channels. This makes it suitable to capture the dynamic and concurrent behavior of systems.
Consequently, we propose to use timed automata as a semantic domain to express formally
the semantics of the concurrency domain model defined in UML/SPT.

A timed automata is a non-deterministic finite state machine extended with real-valued
clocks. The states, called locations, may have invariants. These are conditions on clocks of
the form z ~ ¢ where = is a clock, ¢ is an integer constant and ~€ {<, <}. The transitions
may be labeled using triples composed of a guard, an action and clock reset operations. The
guard of a transition is a conjunction of timing constr.aints of the formz ~corz—y~c
where z and y are clocks, ¢ is an integer constant and ~€ {<,<,>,> =}.

Formally, let Act be a set of actions, C a set of real-valued clocks, and B(C) is the set of
the conjunctions over conditions of the form z ~ ¢ or £ — y ~ ¢ where x and y are clocks, ¢

is an integer constant and ~€ {<,<,>,>,=}.
Definition 4.1 A timed automata over Act and C is a tuple (L,ly, E) where

e L is a finite set of locations.
e [y is the initial location.

e EC Lx B(C)x Act x 29 x L is a set of edges between locations. O

Initially, all the timed automata clocks are set to zero. These clocks progress when the
automata is in a certain location. A transition may be instantaneously fired if its clocks
values satisfy the guard.

At the semantic level of timed automata, the state of a system of timed automata is a pair
composed of a control location and a clock valuation. Execution traces of timed automata
are infinite sequence of system states‘which satisfy the invariants. The transitions between
the system states are labeled either by instantaneous actions or positive real numbers rep-

resenting time delays. This is expressed in the following formal definition:

56

Definition 4.2 Let V = {v : C — Rx>g} be the set of clock valuations. The semantic
state of a timed automata (L,ly, E) is the pair (I,u) composed of a location I € L of the
automaton and a clock evaluation u € V. The semantics is defined by a labeled transition

system (S, s, —) with two types of transitions:

e Delay transitions: (I,u) L u+ d)

e Action transitions: (L,bu) % (I',u) if | 225V € E and gF w and o' = [r — OJu
Where:

eut+deV andVre C: (u+d)(z) =ulz)+d

e Vr CC andVx €r: [r— 0u(z) = 0,u(x) otherwise O

We use in particular the UPPAAL model checking tool [69] to verify properties of interest
in the system’s model. In UPPAAL, a system is modeled as a hetwork of timed automata
extended with synchronization primitives. These may be of the form a! to initiate a syn-
chronization using the channel a or a? to accept it. UPPAAL allows, in addition, for the
declaration of integers variables and one-dimension integer arrays. Constraints on these
variables and arrays could be used in the transitions guards and assignment to the variables
could also be used in the actions. Integer variables and clocks are however incompatible

and thus cannot be compared neither be assigned to each other.

4.3 Timed Automata-based Semantics of UML/SPT Con-

current Models

In this section, we formally define the semantics of the UML/SPT concurrent domain model
using timed automata as a semantic domain. We then present a mapping of a UML/SPT

concurrent model to timed automata.

Definition 4.3 A UML/SPT concurrent design model Mconc 15 a set of concurrent units.
Each concurrent unit is a tuple CU =< MS, Q, ST > composed of its main scenario MS,

its stimulus queue Q and its service instance set ST. |

57

Definition 4.4 The semantics of Mcone is defined as the parallel composition of timed au-
tomata corresponding to the main scenario, the stimulus queue and the set service instances

of the concurrent units in the model: X

di , . . .
[Mconcl éfﬂcue Moone (T AMainScenariocy || TAQueuvecy) ||jecu.sz TAService;)

O

In the following sections, we present and discuss a mapping of the main components of a
concurrent unit into timed automata. In order to simplify the presentation, we use the

following notations:
e Main scenario: MS =< a; > where ¢ = L..m¢y
e Basic actions: a; = synchInvoke | asynchInvoke | receiveAct

e Given an automaton transition £, we denote its synchronization part t.synch, its guard

t.guard, and its action t.a.

4.3.1 Concurrent Unit Timed Automata

Each concurrent unit is mapped to a set of corresponding timed automata according to
Algorithm 1 shown below. The first timed automata will capture the behavior of the main
scenario of the concurrent unit. The second one implements the behavior of the stimulus
queue associated with the concurrent unit. This allows to capture the asynchrony of the
stimulus arrivals while the concurrent unit is busy and implicitly captures the notion of
deferred service. In addition, a set of automata are built for the different service instances
as will be discussed later in Section 4.3.2.

The timed automata corresponding to the stimulus queue, denoted T'AQueuecy, captures
the asynchrony of the stimulus arrivals. It synchronizes with the other concurrent units
timed automata that request services from the concurrent unit owning the queue through
synchronization channels. Each one of these corresponds to a specific service instance of
the concurrent unit. In addition, T AQueuecy synchronizes with the timed automata cor-

responding to the main scenario, denoted T'AM ainScenariocy, for the receive actions.

58

Algorithm 1 Concurrent Unit Corresponding Timed Automata
for all CU € Mcone do
Build a TA TAMainScenariocy for CU.MS
Build a TA T AQueuecy for CU.Q
for all s € Cl{.ST do
Build a TA TA,
end for
end for

Algorithm 2 is used to build the timed automata T'AQueuecy; where UPPAAL integer and
array integer data types are used. Indeed, each service instance is identified using an inte-
ger identifier and T AQueuecy uses a local array integer as an underlying structure to store
the services requests. In addition, T'AQueuecy and T AMainScenariocy share an integer
variable CU _service used by T AQueuecy to indicate the service corresponding to the next
stimulus in the queue when the TAM ainScenariocy executes a receive action.

The timed automata T AMainScenariocy is constructed to capture the behavior dictated

Algorithm 2 Concurrent Unit Queue Timed Automata
CU _service: int {integer variable shared between T'AQueuecy and T AMainScenariocy }
{Q: Queue that holds the integer identifier of each service waiting and manipulated
through the helper functions put() and next()}
let I'nitial:location
let tg:transition
tg —< Inital, Inital >
to-synch < CU _receive?
to.a « CU_service := Q.next()
for all s € CU.ST do
let t:transition
t «< Inital, Inital >
t.synch « s?
{identifier() is a helper function that returns the service instance integer identifier}
t.a «+ Q.put(identifier(s))
end for

by the main scenario of the concurrent unit. If the action under consideration is a message
action of the type SynchronousInvoke, T AMainScenariocy synchronizes with the target
concurrent unit timed automata, actually with its stimulus queue automata, through a syn-
chronization channel having the requested service name. Then it stays in an intermediate
location waiting for the response to the service. This is modeled by a transition whose syn-

chronization uses a channel corresponding the service response from the called concurrent

99

unit timed automata. If the action is an asynchronous invoke, the timed automata synchro-
nizes with the called concurrent unit timed automata to send the service request but does
not synchronize with the called concurrent unit for service achievement. If the action is an
explicit receive action, the generated timed automata synchronizes with the timed automata
representing the service instance. Two cases are distinguished here: if the service threading
is local, then the TAMainScenariocy synchronizes with the service instance’s automata
waiting for the service to finish. If the threading is remote, which means that the service
instance will execute using the thread of control of the caller concurrent unit as discussed
in Section 4.1, then the timed automata will continue the execution of its scenario without
waiting. Consequently the generated timed automata does not synchronize with the service
instance timed automata to wait for the service achievement. We emphasize here that this‘
accounts for our semantic choice where the only threads of control underlying a real-time
application designed using UML/SPT are those associated with the concurrent units. The
motivation of this choice is to have a full control on the concurrency mechanism. This time

automata generation is depicted in Algorithm 3.

4.3.2 Service Instance Mapping

The service instances associated with a concurrent unit are passive objects. They do not
have a thread of control of their own and should rely on the concurrent unit’s thread of
control to carry out their behavior. This behavior is generally specified using UML state
machines, which can be transformed into timed automata as it is already done and reported
in the literature [64]. We assume that these established results can be used to generate the
timed automata associated with the service instances. The concurrent unit timed automa-
ton TAMainScenariogy synchronizes with each of its service instancés timed automata
through specific channels s to trigger their execution upon receiving the corresponding ser-
vice request. In the case of a local threading, the service instance will be executed using
the thread of control of its concurrent unit. The latter is then blocked waiting for the
service instance to finish using a synchronization through the channel s_return. Otherwise,
i.e. the threading is remote, TAM ainScenariocy does not wé,it for the service instance

timed automaton as this will use the requesting concurrent unit’s thread of control and can

60

Algorithm 3 Concurrent Unit Main Scenario Timed Automata

let Initial,l: location {Initial location of TAMainScenariocy }
l := Initial
for all a; € CU.MS do
if a; == synchlnvoke then
let {":location and let t1: transition
t —<l,l' >
t1.synch «— a;!
let ty: transition
to —< U, >
to.synch «— return_a;?
else
if a; == asynchInvoke then
let t:transition
te—<l,l>
t.synch «— a;!
else {a; == receiveAct}
let switch:location and let t:transition
t «—< I, switch >
t.synch — CU_receive!
for all s € CU.ST do
if s.threading == local then
let s.unning:location and let #;:transition
t1 < switch, Srunning >
t1.guard «— CU _service == identi fier(s)
t1.synch « s!
let tq:transition
lg < srunm'ngal >
ty.synch «— s_return?
else {s.threading == remote}
let t;:transition
t1 «< switch,l >
t1.guard « CU _service == identifier(s)
ty.synch « s!
end if
end for
end if
end if
end for

61

proceed in parallel. This scheme is shown in the innermost ¢ f-then-else control structure

of Algorithm 3.

4.3.3 Time Constraints Mapping

Real-time systems should carry out their functionality while satisfying the associated time
constraints. These time constraints reflect requirements that are generally dictated by the
systems’ environment. Using UML/SPT, the time constraints are modeled using stereotypes

defined in the time modeling package. The main stereotypes are:

e & RTevent > provides the RTat tag, which can be used to represent specific instants

of an event occurrence.

e < RT'stimulus >> provides the couple of tags (RT'start, RTend) that can be used to
model the occurrence times of a stimulus send and reception events, respectively, and
the RTduration tag to model the time required for a message to be transmitted over

communication media.

e < RTaction > has the same tags as <« RT stimulus > to model time constraints on

some action or computation at some level of abstraction.
e < RTtimer >> is used to model a timer.

The time constraints specified using the aforementioned stereotypes are captured in the
timed automata formalism through constraints on clocks associated to the timed automata.
The examples in the next two sections illustrate these stereotypes usage to model time

constraints and how they are represented in the generated timed automata.

4.4 An Example of Transforming a UML/SPT Model with

Concurrency into Timed Automata

In this section, we illustrate our proposal to capture the concurrency semantics in UML/SPT
through a mapping into timed automata. The analysis of this example using model checking

is presented in the next section.

62

We consider a system that expects two concurrent and periodic events from its environment.
The behavior of the system is carried out by the collaboration of three main concurrent
components. The design model is given by sequence diagrams annotated with stereotypes
from UML/SPT as depicted in Figure 4.3 and Figure 4.4.

The timed automata corresponding to the concurrent units used in the concurrent design

<<(’;err';::rc” > <<CRConcurrent>> <<GRConcurrent>> <<CRConcurrent>>
RTDuration=10} A i

getBServt
’ getCServl

<<CRSynch>> ﬁ <<CRSynch>> B‘

Figure 4.3: Concurrent Periodic Event One associated Behavior

<<$;Ti:)md;r» <<CRConcufrent>> <<CRConcurrant>>
Riduration=12}
getCServ2 |
getAServ2
<<RTEvent>> j / _ _ _ _ L<<CRSynch>> ﬁ
‘_ ____________

Figure 4.4: Concurrent Periodic Event Two associated Behavior

above are depicted in Figure 4.5, Figure 4.6 and Figure 4.7. These timed automata were
built using the algorithms presented in the previous section but have been simplified. For
example the timed automaton associated to the main scenario of the concurrent unit B,
TAM ainScenarioB, depicted in Figure 4.6, has only one service so the test on the value
of the B_service integer variable has been removed and the timed automaton does not
synchronize with any service instance as these are not explicit in the model and hence they

were abstracted away. The timed automata corresponding to the stimulus queue have been

63

simplified also. The timed automaton T'AQueueB corresponding to the queue associated
with the concurrent unit B, for example, does not use the local array integer . This is
because there is only one kind of service associated with B so there is no need to queue
their identities in @. In addition, the location Wait in the three automata is an instance
of the location Srunning used in Algorithm 3 where a timed automaton waits for its service
instance to finish. Since there is no explicit modeling of the service instances in this example,
| handling a service, such as getAServl for A for example, is simply calling synchronously
another concurrent unit and waiting for its response. Finally, two special timed automata
are used corresponding to the timers that will generate the service stimuli continuously as

depicted in Figure 4.8.

getAServ1? Q.put(1) retumB_servi?

getAServ2?
Q.put(2)

A_receive? '

A_service:=Q.next(

W
A senvice==1 getBSent! a

Aseriice==2 _returA, servlf

Figure 4.5: Concurrent Unit A Timed Automata

getBServ1?
relumB_gervi!

B_recsive?

geiCServi? Q.put(1)

Walt
C_service==2 gatAServ2!

getcServ2?
Qput(2)
C_receive?

C_service:=Q.next(}

feturnA_serv2?

Figure 4.7: Concurrent Unit C Timed Automata

64

C:=0 C:=0
getAServi! getCServ2!
C==10 C==12

Figure 4.8: Timers Timed Automata
4.5 Model Checking UML/SPT Models with Concurrency

Using timed automata as a semantic domain to interpret the concurrency domain model
used in UML/SPT confers a formal semantics to this important part of the UML profile
for real-time modeling. In addition, this allows for the analysis of concurrent design mod-
els. This analysis can be achieved through model checking. Indeed, concurrency related
issues such as deadlocks, livelocks and the impact of concurrency design choices on time
constraints can be analyzed through the validation of appropriate properties, expressed in
temporal logic. Model checking tools such as UPPAAL [69] and IF environment [15] have
now reached a certain maturity and are very effective despite the difficult problem of state
explosion. \
Let us consider again the model presented in the previous section. A scenario where the
concurrent unit C receives an external event requesting its second service getCServ2 right
after A has received an external event requesting its first service getAServl, may lead to a
problematic state of the system. This scenario may lead into a state where the three con-
current units are waiting for each other since each one has executed a synchronouslnvoke
action. This is a deadlock situation. The CTL expression 4.1 describes this situation and
it is checked using the verifier of UPPALL. The scenario where this property holds is illus-
trated in Figure 4.9 output by the UPPAAL simulator. Therefore, the system may reach a

deadlock state.

AO(TAMainScenarioA.Wait and TAMainScenarioB.Wait and TAMainScenarioC.W ait)
(4.1)

Some design decisions related to concurrency could be flawed when we take into account

the time constraints. Conditions on the clocks in the timed automata corresponding to the

65

| TaGueunh TAGustnt TiManSconarion TAGubdC. TAMaISCenatoe. Thmert Timer?

ot

yrdheun

Figure 4.9: Deadlock Scenario in UPPAAL

UML/SPT concurrent models can be used to express such time constraints. This allows for
checking whether these constraints may be violated. The technique we use is inspired by
the technique of observer timed automata [28]. In the following, we present an example that
illustrates how time constraints in a concurrent design model are captured and checked.

The sequence diagrams in Figure 4.10 and Figure 4.11 describe the behavior of a system
composed of three concurrent components. The concurrent unit A is in charge of servicing
a periodic external event. A uses the services of the concurrent unit B to achieve its service,
which in turns uses the resource R. The system should also deal with a second periodic
event for which the concurrent unit C is in charge of the corresponding service. C' uses
for its service the resource R shared with the concurrent unit B. A and B are required to

accomplish their services with a deadline of 8ms and 7ms, respectively.

66

The timed automata capturing the semantics of the sequence diagrams with the stereotypes

<<CRConcurrent>> <<CRConcurrent>> <<SAResource>>

<<RTTimer>> A 8 R

<<RTEvent>>
{Periodic, Riat={10,ms}} .
getAServi getBServi >

g <<RTaction>> P J]
f ’ {RTduration={4,ms}} getResource
<<SAaction>> ’ F——————
{SADeadline=Bms}
/ /
<<CRSynch>> .’ <<RTaction>> /
’ {RTduration=(3,ms}}
<<CRsynch>>

Figure 4.10: Periodic Event One with Time Constraints

from UML/SPT concurrency package are shown in Figure 4.12, Figure 4.13 and Figure
4.14. We only show and focus on the main scenario timed automata since the stimulus
queue timed automata are straightforward. The timed automaton corresponding to the
concurrent unit A uses a clock ¢ and a condition on the clock expressed using the invariant
¢ < 8 associated with the location Wait. The location TAM ainScenarioA.DeadlineMiss
is reached through a transition with the guard ¢ == 8. This happens in case the result from
the concurrent B does not arrive in time and A misses its deadline. The same scheme is used
in the timed automaton corresponding to the concurrent unit C. The timed automaton SR
captures the behavior of the shared resource. The integer variable pr shared between the
timed automata T AMainScenarioB, TAMainScenarioC and SR is used to ensure the

mutual exclusion, i.e the synchronization with SR using the channel release respects the

<<CRConcurrent>> <<SAResource>>

<<RTTimer>> c R

<<RTEvent>>
{Periodic, Riat={11,ms}} .|
getCServ1 getResource

<<RTaction>>
{RTduration=(3,ms}}

| <<CRsynch>>
<<BAaction>> e e
SADeadling=7ms| ~
¢ } =

Figure 4.11: Periodic Event Two with Time Constraints

67

order of the resource acquisition.

retumB_senvi?

Figure 4.12: Concurrent Unit A Timed Automata

relumB_servt!

Figure 4.14: Concurrent Unit C Timed Automata

The generated set of timed automata has been checked using the UPPAAL to verify if a
deadline could be missed. This is achieved using the property 4.2 expressed in CTL. This
property holds in the model and Figure 4.17 shows a scenario that the UPPAAL simulator

generated. Therefore, the deadlines may not be met.

AG(T AMainScenarioA.DeadlineMiss or TAMainScenarioC.DeadlineMiss) (4.2)

68

gelResouree? C:=0,i=pr

C=3

C:=0 C:=0
getAServi! getCServ1!
C==10 C==11

Figure 4.16: Timer Timed Automata

4.6 Related Work

UML/SPT has been defined for UML 1.4 [85]. The latter includes in its metamodel provi-
sions for concurrency modeling, e.g. active object, concurrent composite state, concurrency
meta-attribute of the operation metaclass [33] [34]. Ober outlines in [83] the concurrency
modeling features in UML 1.4 and their anomalies. It is worth mentioning here that despite
some similarity between the concept of concurrent unit in UML/SPT and the active object
in UML 1.4, the relation between them has not been addressed in the standard.

Damm et al. define in [22] a subset of UML called krtUML covering concepts used for
real-time applications such as active object and synchronous/asynchronous communica-
tions. The semantics of krtUML is described formally using symbolic transition systems.
Regarding concurrency, the UML concept of active object is generalized to the concept of
component, which is a group composed of one active object and a set of passive servers. The
active object acts as an event handler to the associated passive objects within a component.
The semantics of krtUML enforces that there is just one thread of control active in one
component. The concept of component is very similar to the concept of concurrent unit
and its service instances defined in UML/SPT. The semantic choice of a single thread per
component is also similar to our choice in terms of concurrency within a concurrent unit

and its service instances, which is not clear in the UML/SPT standard.

69

" TAGusoek TAMaRSConon 1AGHeurd . 1AManScenton 1AQUeNEC. LAManStaatat Tt The2 | i

ﬁﬁwt

Figure 4.17: Concurrent Unit A Deadline Miss Scenario in UPPAAL

70

Ober et al. propose in [82] a model checking technique to validate UML models. The
focus is on a subset of UML concepts used to define an operational view of a system. This
work focuses on the implementation of the formal semantics defined in [22] and described
previously. This implementation is based on a mapping to communicating extended timed
automata in the IF format [15]. The time requirements are modeled using the time exten-
sions defined in [44]. In addition, this work presents a property description language called
observer object similar to observer automata and expressed using UML state machines. The
concurrency model assumed in this work is based on units of concurrency called activity
groups that are synonymous to the component concept defined in [22]. The semantic choice
in terms of concurrency is such that the different activity groups run concurrently and the
objects within an activity group run sequentially.

Madl et al. use in [74] timed automata as an underlying computation model called DRE
Semantic Domain for tasks with time—triggéred and event-driven interactions on a non-
preempti\;‘e distributed platform. The objective is to check the schedulability of these tasks.
The schedulability problem is translated to a reachability problem where a system of tasks
is schedulable if a predefined error state is not reachable by any of the tasks’ corresponding
timed automata.

Finally, the transformation of the UML artifacts used to model the dynamic behavior into
timed automata for purposes of verification has been the focus of several researches includ-
ing [28], [64]. Firley et al. consider in [28] an approach to transform sequence diagrams
with time constraints to observer timed automata. Knapp et al. address in [64] the issue of
consistency between the main UML artifacts used to model the real—timé system dynamic
behavior: timed state machines and sequence diagrams with time constraints. The former
express the detailed design of the system and the latter specify the main scenarios. This
work proposed a technique for the verification of the consistency between the two views
based on UPPAAL timed automata. The timed state machines are compiled into timed
automata and the sequence diagrams annotated with time constraints are transformed to
observer timed automata. The latter transformation is a slight extension to the technique
proposed in [28]. The model checker UPPAAL is then used to verify the timed automata

with respect to the observer timed automata. This technique is embodied in a prototype

71

tool called HUGO/RT. This work focuses however on the timing aspect of real-time and

does not address the concurrency aspect in real-time UML models.

4.7 Conclusion

Real-time systems should not only compute their value correctly but should also satisfy
prescribed time constraints. In addition, real-time systems are designed as concurrent com-
ponents that collaborate to achieve the overall functionality. Consequeﬁtly, a modeling
language should support the mordeling of the main features of real-time systems, including
concurrency and time requirements. The UML profile for real-time, UML/SPT, defines
domain models that encapsulate the concepts necessary for real-time modeling. In order
to model the concurrency aspect of real-time systems, UML/SPT defines the concurrency
domain model.

We have presented in this chapter a formalization of the concurrency domain model. We
use the formalism of timed automata as semantic domain because it provides concepts such
as concurrency, synchronization and time. We have reviewed the main concepts introduced
in the concurrency domain model of UML/SPT and have made semantic choices to resolve
some ambiguities in the standard. We have proposed a mapping of the concepts in the con-
currency domain mode] into the timed automata formalism. A straightforwafd application
of this formal semantics is the usage of the automata based model checking technique. In
particular, concurrency-related properties such as deadlock or the impact of some design
decisions in terms of concurrency on the time constraints requirements, can be validated at

the model level. We have illustrated this validation with examples using UPPAAL.

72

Chapter 5

From UML/SPT Design Models to
Schedulability Analysis: Approach

and Ifnplementation

There are several kinds of models which are often involved in the development of a software
system. Some of these models are used to define the different aspects of a software system.
These include UML class/object diagrams, which are used to specify the software system
structure, and UML state machines or UML sequence diagrams, which are used to model
the system behavior. In addition, other models are used to support the analysis and valida-
tion of software nonfunctional properties. These include, for example, performance models,
such as, queuing networks (e.g., QN, EQN, and LQN) used for performance analysis [7]
and tasks models used for schedulability analysis [68]. A software development framework
should enable the seamless integration of the different types of models used throughout the
software development process.

There is an increasing interest, as demonstrated in several research papers, such as [21],
[46], [119], [124], in using MDA as a framework for integrating different models involved
in the software development process. This is the motivation behind our MDA-compliant
approach that aims at bridging the gap between UML/SPT models and the task model

used in the schedulability analysis technique presented in [112].

73

In this chapter, we discuss this approach and we present a proof of concept for the proposed
transformation. This consists of a prototype implementation of the transformation process
using both a mature model transformatiqn language, ATL, as well as a low-level implemen-
tation using XML-based technologies. The first implementation consists of the specification
of the schedulability analysis domain model defined in UML/SPT [91] and our metamodel
for schedulability analysis, respectively, using KM3 metamodel specification language [60].
We specify the model transformation using ATL [59] [62]. As for the XML-based imple-
mentation, we provide XML schemas corresponding to the source and target metamodels.
These schemas are used to define valid XML documents representing the models manipu-
lated by the transformation. We describe an implementation of the model transformation

using XSLT template rules.

5.1 MDA-compliant Schedulability Analysis

There are now several well-established analysis techniques dedicated to the verification
of non-functional properties of software systems. The challenge is how to bridge the gap
between these well-established techniques and the software UMIL-based design models. Con-
sidering the relevant research initiatives, MDA emerges as an interesting approach to address
this challenge.

We propose an MDA-compliant approach that aims at validating real-time software models
using a well-established real-time schedulability analysis technique [111] [112]. Our approach
consists of transforming a software PIM to another PIM more suitable for schedulability
analysis, which then feeds back the results of this analysis to the design PIM. The design
PIM can thus be validated before transforming it into a PSM and then generating code. Our
approach is depicted in Figure 5.1. Our objective is to shift the schedulability analysis of
object-oriented real-time models to the level of UML/SPT modecls. We define a rule-based
transformation allowing for the derivation of schedulability analysis models from UML/SPT
design models. The generated models are then analyzed for schedulability. The feedback
from the analysis to the design model helps the modeler to make design-level decisions.

It is very useful to perform the analysis at the PIM level. This corresponds to the early

74

Mod'el Transformation

Platform independent | e————
Mode!
(PM) D

Analysis

Feedback

Schedutabilty Analysis
PIM

Model Transformation

Y

Platform Specific Model
(PSM)

Code Gengration

Y

Application Code

Figure 5.1: MDA-compliant Schedulability Analysis Approach

stages of the development process and hence helps in the early detection of flaws. However,
this approach suffers from a lack of platform/implementation-dependent information. In
terms of schedulability analysis, some key information such as event arrival patterns (e.g.
periodicity) and priorities are platform independent. This information is often extracted
from the system requirement analysis. It is true, however, that certain information cannot
be available at this level - such as the actions’ computation times. In realistic software
engineering settings, this information can be estimated based on previous projects. On the
other hand, schedulability analysis can also be performed at the PSM level, taking advan-
tage of the availability of more information and providing more accurate analysis. However,
PSMs correspond to late stages in the development process and consequently many design
decisions should already have been made, which could seriously impact the implementation.
Alternatively, another interesting approach would be to perform an incremental analysis.
At the PIM level, the analysis uses the available/estimated information to guide the devel-
oper in making design decisions and then this analysis is refined along with the availability

of more platform-dependent information at the PSM level.

75

5.2 From UML/SPT to Schedulability Analysis: Approach

The main concepts used in the approach we use to enable applying schedulability analysis
to UML/SPT models using the MDA framework are shown in Figure 5.2. In the following,

we give the details of the different steps of our approach.

1 1
Meta Model
Level . - .
Transformation Schedulability Analysis
Design Metamodel Specification Metamodel
~ LS
T T
InstanceOf | | InstanceOf
| |
Model . Transformation Schedulability
Level Design Model | ------ Execuon " Analysis Model
\ Schedulability
Analysis

Figure 5.2: MDA-based Approach for Schedulability Analysis

5.2.1 Source Metarhodel

The inputs to our model transformation are UML/SPT models, which are UML models
enriched with information relevant for real-time context. The system structure is modeled
using UML class diagrams and the behavior may be specified using UML state machines
and UML sequence diagrams, for instance. UML sequence diagraimns specify the different
end-to-end behaviors of the system.

We are interested in validating the schedulability property of real-time design models. The
schedulability-related information is captured using specific stereotypes. The main concepts

underlying this information are captured in a domain model defined in the schedulability

76

analysis sub-profile, 4 Profile, of UML/SPT [91].

The source metamodel to our transformation is depicted in Figure 5.3. This metamodel is
a compilation of the main domain models defined in UML/SPT to support schedulability
analysis. Its main components are the dynamic usage domain model defined in the General
Resource Modeling framework of UML/SPT, some concepts from the concurrency domain
model defined in RTconcurrencyModeling package, and the schedulability analysis domain
model defined in the SAProfile package.

In this metamodel, the RealTimeSituation concept represents a specific analysis context.
It is a specific configuration of resources including EzecutionEngine to model processors,
SResource to model passive resources and SchedulableResource to model threads or tasks;
and different entities, SchedulingJobs, contending for these resources. A SchedulingJob is
composed of a Trigger modeling an external event having an arrival pattern that could
be periodic, for instance, and a Response. The latter is the root action for a sequence of
actions, SAction, separately schedulable. It is interesting to observe that an SAction is a
nested construct. As depicted in Figure 5.3, an SAction is a subclass of Scenario. Scenario
is in turns composed of a sequence of ActionFzxecution, which are also subclasses of Scenario.

This allows all of the behavior compositions to be captured.

5.2.2 Target Metamodel

The schedulability analysis presented in [111], [112] is basically a busy-period response
time analysis adapted to a real-time object-oriented model. The computations involved in
this analyéis are specified in [111], [112] through a set of quite elaborate equations that
are not necessary to understand the metamodel. We do not reproduce these equations
in this chapter but we recall the main elements required for a better understanding of the

metamodel we are proposing to capture the concepts involved in this schedulability analysis.

A set of external events is given: £ = {E;} where i = 1..n. Each event instance E; triggers an
end-to-end transaction, which is a sequence of actions in the system. An action is a run-to-

completion processing unit composed of a sequence of sub-actions, i.e. 4; = (a;;),j = 1..my,

7

[Scenario

i)
l | L |
3
g
SAction 3
o
g
0.n| Priority g
— Worst-case completion Time 2 SResource § n
31 Delay time 0.0 08 Gapacity ;
| Preempted Time Acuisition Time 8 E i i
npied xecutionEngine
8 Blocking Time Deacguisition time E g
*| DeadlineisAtomic isCt PricrityRange
U.n Priority Ceiling on ? ProcessingRate
isPrembpible - " { Context Switch
Time
<<deploys>> +host n +host U Lﬂlsaliole~
Sehoditahl b isF
11> "% | <cdoploys>> | isSchedulable
U..
Response
Capacity
Acuisition Time .
Deacquisition time n -n
isConsumable
sorsune <
Fnumy Cglhng 1 SchedulingJob
isPrembpible chedulingJo
seffect |1
1
4cause
Trigger
. " 1
0.n | 77

Figure 5.3: Schedulability Analysis Sub-profile Metamodel

78

representing primitive actions limited for the sake of simplicity to call, reply and send sub-

actions.

In this model, actions could be triggered asynchronously or synchronously. In addition, each
action is characterized by a nominal priority m(A;), which is inherited from its triggering
event. An action executes in the context of an active object O(A;) and it is assigned to
a thread I'(4;). Furthermore, each sub-action a;; is characterized by a computation time

Ci;. The computation time of an action is the summation of its sub-actions’ computation

times, i.e. C(4;) =3, Cy;.

The concept of synchronous set is defined in [111], [112] for the schedulability analysis
purpose and used to compute the worst-case response time of the different actions. The
synchronous set of A; denoted YT(A;) is a set of actions that includes A; and, recursively,
each action called synchronously by any action in T(A4;). A; is called the root of T('Ai).

The cumulative computation time of all the actions in T(A4;) is denoted C(Y(4;)).

The concept of preemption threshold [127], is used to bound the blocking factor suffered by
an action: in addition to the nominal priority of an action and given the ceiling priorities of
each object Q(O(4;)) and each thread Q(I'(4;)), each action A; is assigned a preemption

threshold «(A;) satisfying the following constraint:

7(4i) > maz(Q(O(4i)), T(4))) (5.1)

We define a metamodel that encapsulates the main information required for the schedula-
bility analysis as described previously. This metamodel is represented by the UML class
diagram shown in Figure 5.4. We define some constraints on this metamodel to reflect the
main constraints and assumptions introduced in [111], [112]. These constraints are specified

using OCL and shown in Table 5.1. The OCL expression between Line 21 and Line 27,

79

Transacfion

SynchronousSet

—<
J—-?ﬁ GumuiTime
! f fnehSet.

Event Action
. Enum
Perd NomPrirty SubAcionType
ThreshioldPri
call
CompTime

send

0__1? ' reply

trigger

belongsTo deployedOn 1‘ * ordered}

Object Thread SubAcfion
o CompTime
ThreshiokdPri ThreshioldPi Kind

Figure 5.4: Schedulability Analysis Metamodel

for example, specifies the constraint on the preemption threshold of an action expressed in
Equation 5.1. The implementation of the model transformation, which is defined in the next
section, generates an instance of this metamodel. Such instances are task models expected

in input by the schedulability analysis tool.

5.2.3 Model Transformation

In this section, we define a model transformation allowing for the derivation of models
used for schedulability analysis from UML/SPT models. This transformation is essentially
a mapping of the main concepts and information defined in the source metamodel to the
concepts in the target metamodel. This mapping is outlined in Table 5.2. The main features

of our model transformation are the following;:

e The concept of SchedulingJob encapsulates a pair composed of a Trigger and the
system Response to this trigger. This corresponds to a system transaction as defined
in the target schedulability analysis metamodel. Consequently, each instance of a

SchedulingJob is mapped into an instance of a Transaction.

e The SchedulingJob metaclass has a composition relationship with a pair consisting of

a trigger and a system response. These are mapped to a corresponding instance of

80

package SAMM
context Action inv:
sel f.alllnstances— > forAll(a : Action|
let np:int =a.NomPriority in:
a.SubAction— > forAll(sa : SubAction|
- sa.kind = #call
implies
np = sa.trigger.NomPriority))
9 context Action inv:
10 self.alllnstances— > forAll(a : Action|

00 3 O T i W N+

11 let np:int =a.NomPriority in:
12 a.SubAction— > for All(sa : SubAction|
13 np >= sa.trigger.NomPriority))

14 context Action inv:
15 self.alllnstances— > forAll(a : Action|

16 let thr : Thread = a.deployedOn in:
17 a.SubAction— > forAll(sa : SubAction
18 sa.kind = #call '

19 implies

20 thr = sa.trigger.deployedOn))

21 context Action inv:
22 self.alllnstances— > forAll(a : Action|

23 (a.ThresholdPri >

24 a.blongsTo.ThresholdPri)

25 and

26 (a.ThresholdPri >

27 a.deployedOn.Threshold Pri))

Table 5.1: Schedulability Analysis Metamodel Constraints

81

SAProfile Schedulability Analysis

Concept Concept
RealTimeSituation Transaction Set
Trigger Event

Response Action

SAction Action
ActionExecution SubAction
Scheduling Resource Thread
SAPriority tag Nominal Priority

Ceiling Priority tag Threshold Priority

Table 5.2: SAProfile and the Schedulability Analysis Metamodel Concept Mapping

the concept Event and an instance of the concept Action in the target model. This
Action instance is the root action of the system transaction as defined in the target

metamodel.

e SAction is a behavior characterized by its own required QoS characteristics. Each

instance of SAction in the source model is mapped to an Action in the target model.

e As shown in Figure 5.3, Response is a subclass of SAction which is, in turn, a subclass
of Scenario. Consequently they are composed of a sequence of ActionEzecutions. The
nested ActionFzecutions are mapped to SubAction of the Action corresponding to

their enclosing SAction or Response.

e An instance of the SynchronousSet is created for each created Action. It contains a
sequence of references to its corresponding Action as well as to each Action instance

called synchronously.

5.3 Model Transformation Prototype

We present here a proof of concept for the model transformation discussed in the previous
section. We provide, respectively, an ATL- and an XML-based prototype implementation

of the model transformation.

82

MOF

Ecore
conforms fo ! conforms to
conforms to

MMa ATL MMb

A A A

conforms to
conforms to conforms to
MaToMb.atl
Ma Mb

Figure 5.5: ATL Transformation Pattern

5.3.1 Implementation using ATL

The ATLAS Transformation Language (ATL) [59] [62] is a model transformation language
and it is a part of the Atlas Model Management Architecture (AMMA) platform [13]. ATL
was developed in response to the OMG MOF2.0 /QVT RFP [86]. ATL is used in the trans-
formation pattern shown in Figure 5.5. According to this pattern, ATL allows to transform
a source model Ma, that conforms to a source metamodel MMa, into a target model Mb,
that conforms to a target metamodel MMb. The transformation is also a model conforming
to ATL metamodel. The different metamodels conform, in turn, to a metametamodel such
as MOF [93] or Ecore [17].

ATL is a hybrid language allowing a mixture of declarative and imperative programming
styles. In addition to the specification of mappings between source and target model ele-
ments, ATL provides imperative constructs, which help in specifying some mappings that
are difficult to express in a declarative fashion. In the following, we give a succinct overview

of the main features of ATL:

o ATL Units: ATL provides the developer with three kinds of units. ATL modules
are the main ATL units and allow to specify model-to-model transformations. In
addition, ATL allows to compute a primitive data type value from a model using ATL
Queries. Finally, ATL allows to develop ATL libraries, which enable modularity and

code reuse in ATL development. ATL libraries can be imported from the different

83

ATL units.

Rules: These are the main constructs of an ATL model transformation. ATL offers
two kinds of rules correspondingly to its two programming styles. The first kind of
rules are called matched rules and correspond to the declarative style. The matched
rules specify a mapping between a source model element (source pattern) and the
corresponding target model element (target pattern) as well as how the latter is ini-
tialized. The second kind of rules are called rules and correspond to the imperative
style. Called rules have, optionally, parameters and do not have a match source model.
Called ruleS should be explicitly called from the imperative code section of another

rule.

Helpers: These are ATL subroutines and are used to factorize and reuse the code: they
are defined once and used throughout the transformation. Since target models are
not navigable in ATL, helpers can only be defined on an OCL type or a source model
element type. This is the helper context. ATL helpers can be either operation helpers
or attribute helpers. They both have a context, a name, input parameters (except for
the attribute helpers) and return type. OCL expressions are used to specify the value

returned. Helpers can be recursively defined.

Within Eclipse open development platform [26], ATL is an Eclipse project and it is part

of the Model-to-Model (M2M) eclipse project [106]. M2M is a subproject of the eclipse

top-level Eclipse Modeling Project [105]. ATL Integrated Development Environment (IDE)

is an Eclipse plug-in build on top of Eclipse Modeling Framework (EMF) [17]. ATL IDE

allows diverse operations including the injection operation between different metamodels

in addition to the traditional operations of edition, execution and debugging. We have

used the Eclipse ATL IDE to develop our prototype implementation for the transformation

discussed in the previous section. It consists mainly in a specification of the source and

target metamodels using KM3 and an ATL module specifying the model transformation.

These are presented in the following section.

84

5.3.2 Metamodel Definition in KM3

The Kernel MetaMetaModel (KM3) is a domain specific language used for the specifica-
tion of metamodels [45] [60]. KM3 provides a text-based concrete syntax that is used to
code metamodels. It is a simple and Java-like syntax, which simplifies writing metamodel
specifications. Such KM3 specifications can then be injected into Ecore using the Eclipse
ATL IDE tool. We have specified the source and target metamodels using KM3. These
specifications are shown in Figure 5.6 and Figure 5.7, respectively. We have then used the
KM3 to Ecore injection facility provided in the ATL IDE to transform these specifications
to the EMF format (.ecore) based on the Ecore Metamodel [17]. Figure 5.8 (a) and Figure
5.8 (b) show, respectively, the source and target metamodels using Ecore and which are

manipulated by the ATL rules.

5.3.3 Model Transformation in ATL

The model transformation is implemented by an ATL module, which is composed, mainly,

of the following two matched transformation rules and helper operations:

e SchedJob2Transaction: This ATL rule, shown in Figure 5.9, maps an instance
of the SchedulingJob concept to a corresponding Transaction instance and creates
an instance of Fvent and Response. The bindings allow to initialize the features
(attributes, references, etc.) of the created instances using the values of the features
in the corresponding instance in the source model. An instance of the SynchronousSet
is created and initialized. The imperative block of the rule computes the computation
time of the system root action and completes the synchronous set using the helper

operation getSynchSet().

e SAction2Action: This rule, shown in Figure 5.10, creates an instance of Action for
each SAction instance in the source model and maps its nested ActionEzecutions to

SubAction. This rule creates also the corresponding SynchronousSet for the Action.

e We define four ATL helper operations used in the previous matched rules, which

are shown in Figure 5.11. The helper getActionEzecutions() returns the sequence

85

package UMLSPT{
abstract class Scenario{
attribute name : String;
reference step[l-*] container: ActionExecution;

class ActionExecution extends Scenariof
attribute rtDuratien : Integer;
reference predecessor[0-*] : ActionExecution oppositeOf successor;
reference successor[l1-*] : ActionExecution oppositeOf predecessor;
reference effect [0-1]: SAction;

class MessageAction extends ActionExecution {}
class SynchronousInvoke extends MessageAction {}
class AsynchronousInvoke extends MessageAction {}
class Reply extends MessageAction {}

class SAction extends Scenario {

attribute priority : Integer;

attribute wcct : Integer;

attribute blocking : Integer;

reference usedResources [*] : SResource;
| reference host : SchedulableResource;
class Response extends SAction {

attribute priorityCeiling : Integer;

class Trigger {
attribute name : String;
attribute period : Integer;

class SchedulingJob {
attribute name : String;
reference response[l-1] container: Response;
reference trigger[1-1] container : Trigger;

class ExecutionEngine {
reference ownedResources[0-*] container : SResource;
reference schedRes[0-*] : SchedulableResource;

class SchedulableResource {
reference host : ExecutionEngine;

class RealTimeSituation {
reference sreg[0-*] container: SResource;
reference exeengine[l-*] container : ExecutionEngine;
reference schedJob[l-*] container : SchedulingJob;

class SResource |

}

package PrimitiveTypes |
datatype Integer;
datatype Boolean;
datatype String;

Figure 5.6: Source Metamodel in KM3

86

1 package SA {

2 class Transaction {

3 attribute name : String;

4 reference act[1-1] container : Action;

5 reference evt[1-1] container : Event;

6

7 class Action {

8 attribute name : String;

9 attribute nomPriority : Integer;
10 attribute ThresholdPri : Integer;
11 attribute compTime : Integer;

12 reference synchSet : SynchronousSet;
13 reference belongsTo : Object;
14 reference deploysOn : Thread;
15 reference subActs[*] container : SubAction;
16 }

17

18 class Event {

19 attribute name : String;

20 | attribute period : Integer;

21

22 class SynchronousSet {

23 attribute name : String;

24 attribute cumulTime : Integer;
25 reference acts{[*] : Action;

26

27

28 class Object

29 attribute thresholdPri : Integer;
30

31

32 class Thread {

33 attribute thresholdPri : Integer;
34

35

36 class SubAction {

37 attribute name : String;

38 attribute compTime : Integer;

39 attribute kind : SubActionType;
40 reference trigger[0-1] : Action;
41 }

42

43 enumeration SubActionType{

44 literal call;

45 literal send;

46 literal reply;

47 literal computation;

48

49 '}

50

51 package PrimitiveTypes {

52 datatype Integer;

53 datatype String;

54

Figure 5.7: Target Metamodel in KM3

87

% e Siring
¥ “?‘act Action

vt s Event

& Adon

BT pare 1 St
1

i

i1

5 nomPrioiity § Tnbeger

5 ThiestuddPrl | Erdeger

R pempTine Integer)

f‘f o M@ssageman-mm»em i® %* synchet.: SynetronousSet
£ Synchwonoustvoke <> Massacenciion : o

5 pame s SHnG.
2 pericdt Integer
el Syncmmsat
55 name s String
& % curtltine | Iritisger
WOE ackx s Ackibn
#- 5 Object

E Thead
@,mcﬁm

-1 Executionngie
5 Schedublenesourcs
%5} RealTamaStuation
Ul eperourer

e PrimitiveTypes:

- B8 integer frull)

e 8 Sering il

(@) (b)

Figure 5.8: Source and Target Metamodels in Ecore

88

rule schedJob2Transaction {
from
s:UMLSPT!SchedulingJdob

to
t:SA!Transaction
(name <- s.name ,
evt <-ev,
act <-ac),

ev:SA!Event
(name <-s.trigger.name,
period <-s.trigger.period),

ac:SA!Action
{name <- s.response.nanme,
nomPriority <-s.response.priority,
subActs <-subac,
synchSet <-syncset),

subac: distinct SA!SubAction foreach{e in s.response.
getActionExecutions()) (

name <- e.name,

compTime <- e.rtDuration,

kind <-e.getSubActionKind(),

trigger <-e.effect),

syncset: SA!SynchronousSet (
name <-'SS '+ac.name ,
acts <- syncset.acts->including(ac),
cumulTime <- 0

)

do {
ac.compTime <- s.response.getCompTime();
for(e in s.response.getSynchSet()){
syncset.acts <- syncset.acts->including(thisModule.
resolveTemp (e, 't'));

Figure 5.9: Scheduling Job to Transaction Transformation Rule

of ActionEzecution composing a Scenario. The helper getSynchSet() computes the
synchronous set associated with each Action. The computation time for each Action
instance based on its SubActions is computed using the helper getCompTime(). Fi-
nally, getSubActionKind() is used to determine the kind of the SubAction depending

on the type of the ActionFEzecution used in the source model.

89

rule SAction2Action {
from
s1:UMLSPT!SAction (sl.oclIsTypeOf (UMLSPT!SAction})

to
t:SAlAction
{ name <- sl.name,
nomPriority <-sl.priority,
subActs <-subac,
synchSet <- syncset},

subac: distinct SA!SubAction foreach{e in sl.getActionExecutions(}) (
name <- e.name,
compTime <- e.rtDuration,
kind <-e.getSubActionKind(),
trigger <- e.effect),

syncset: SA!SynchronousSet (
name <- 'SS '+t.name,

acts <- syneset.acts->including(t) --t
)
do {
t.compTime <- sl.getCompTime();
for(e in s1.getSynchSet(}){
syncset.acts <- syncset.acts->including{thisModule.
| resolveTemp(e, 't'));
}

Figure 5.10: SAction to Action Transformation Rule

90

OO~ Oy U WD

10

helper context UMLSPT!SAction def : getCompTime() : Integer =
self.getActionExecutions()->iterate(e; sum : Integer = 9|
if true
then sum + e.rtDuration
else sum + 0
endif

)I

helper context UMLSPT!SAction def : getSynchSet() : Sequence (UMLSPT!
SAction) =
self.getActionExecutions()->iterate(e; list : Sequence (UMLSPT!SAction)
= Sequence!}
if (e.oclIsTypeOf (IMLSPT! SynchronousInvoke)
then (list-sincluding(e.effect))->union{e.effect.getSynchSet())
else list-»excluding(e.effect}
endif);

helper context UMLSPT!Scenario def : getActionExecutions() : Sequence |
UMLSPT!ActionExecution) =
self.step.asSequence(} ;

helper context UMLSPT!ActionExecution def : getSubActionKind() : SA!
SubActionType =
if self.oclIsTypeOf (UMLSPT!SynchronousInvoke)
then #call
else if self.oclIsTypeOf (UMLSPT!AsynchronousInvoke)
then #send
else if self.oclIsTypeOf (UMLSPT!Reply)
then #reply
else #computation
endif
endif
endif;

Figure 5.11: ATL Helpers

91

SAProfile

Schedulability Analysis
XML-based Schema

XML Schema

A A
| |
| |
| }
! |
|

UML design Model
+ —> —» —>
UMLSPT XML Document XSLT Templates’ XML Decoument
Stereotypes

Object
Schedulability
Analysis Tool

Figure 5.12: XML-based Transformation Process

5.3.4 XML-based Implementation

In this section, we overview our prototype implementation of the transformation process
using XML-based technologies. We give an XML schema for the source metamodel and an
XML schema for the target metamodel. We specify the model transformation using XSLT
template rules, allowing for the transformation of XML documents valid with respect to
the source XML schema to XML documents valid with respect to the target XML schema.
The latter can then be accessed and manipulated by the schedulability analysis tool. This

prototype implementation is outlined in Figure 5.12.

5.3.5 XML Schema for the Metamodels

We have defined an XML schema that corresponds to this compiled metamodel. This
schema, shown in Figure 5.13, defines the different XML elements and XML attributes that
a valid XML document representing a model as input to our transformation may have. We
have included one type for each entity in the compiled metamodel that is relevant for the
transformation detailed in the next section. The type SchedulingJobType corresponds to

the concept of SchedulingJob in the metamodel. An XML element of this type should con-

92

tain two corresponding child XML elements, TriggerType and ResponseType, respectively.
The type ScenarioType defines the XML elements corresponding to the SAction concept.
An XML document using this schema will be presented in Section 5.4. This schema has
been validated using W3C’s XML schema validation tool, XSV 2.10-1 [126].

We use the XML schema shown in Figure 5.14, which corresponds to our target metamodel.
This schema is used by XML documents representing models that are input to the ’schedu-
lability analysis tool. The schema defines mainly the types for XML elements and XML
attributes corresponding to the entities and information in the metamodel. For instance,
the type TransactionType corresponds to the metaclass Transaction in our metamodel.
An XML element of this type should contain two child XML elements of type EventType
and ActionType corresponding to the metaclasses Fvent and Action, respectively, in the
metamodel. An example of an XML document using this schema, is given in Section 5.4.

This schema, has been validated using XSV.

5.3.6 Model Transformation using XSLT

Given the XML schemas corresponding to the source and target metamodels, the trans-
formation rules can be expressed using XSL Transformation (XSLT) [125]. We use the
templates rules defined in the XSL stylesheet given in Figure 5.15. The template rules are
used to transform an XML document, representing the schedulability analysis information
and valid with respect to the XML schema presented in Section 5.3.5, into XML documents
representing task models as anticipated by the schedulability analysis, i.e valid with respect

to the schedulability schema presented in Section 5.3.5.

The stylesheet specifies how to translate the XML elements defined in the name space
http://SAProfileSchema into XML elements defined in the http://SchedAnalysis name
space, which are defined in the XML schemas presented in Section 5.3.5. The first template
rule, for example, specifies how the XML element SchedJob should be transformed into a
Transaction XML element, and recursively, that its child XML elements SATrigger and
SAReponse and its descendant XML elements SAction should be transformed using the

corresponding templates rules. These are specified in the same stylesheet. The template

93

WE-J0nu bW

<?xml version="1.0" encoding="UTF-8"7?>

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://SAProfileSchema"
xmlns:sap="http://SAProfileSchema">

<!--SATriger-->
<xs8d:complexType name="TriggerType">
<xsd:attribute name="name" type="xsd:string"/>
<xsd:attribute name="Period" type="xsd:integer"/>
</xsd:complexType>
<l -->

<xsd:simpleType name="MessageActionType">
<xsd:restriction base="xsd:string">
<xgd:enumeration value="syncInvoke"/>
<xsd:enumeration value="asyncInvoke"/>
<xsd:enumeration value="reply"/>
</xsd:restriction>
</xsd:simpleType>

<x8d:complexType name="ActExecType">

<xsd:attribute
<xsd:attribute
<xsd:attribute
<xsd:attribute
<xsd:attribute

name="id" type="xsd:ID"/>

name="name" type="xsd:string"/>
name="RTduration" type="xsd:integer"/»
name="succ" type="xsd:IDREF"/>
name="matype" type="sap:MessageActionType"

use="optional"/>

<xsd:attribute

</xsd:complexType>

name="effect" type="xsd:IDREF"/>

<xsd:complexType name="ScenarioType">

<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element name="ActionExec" type="sap:ActExecType"/>

</xsd:choice>

<xgd:attribute
<xsd:attribute
<xsd:attribute
<xsd:attribute

</xsd:complexType>

name="id" type="xsd:ID"/>
name="execHost" type="xsd:string"/>
name="name" type="xsd:string"/>
name="priority" type="xsd:integer"/>

<xsd:complexType name="ResponseType">

<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element name="ActionExec" type="sap:ActExecType"/>
<xsd:element name="SAction" type="sap:ScenarioType"/>

</xsd:choice>

<xsd:attribute
<xsd:attribute
<xsd:attribute

name="id" type="xsd:ID"/>
name="execHost" type="xsd:string"/>
name="name" type="xsd:string"/>

<xsd:attribute name="priority" type="xsd:integer"/>
</xsd:complexType>

<xsd:complexType name="SchedulingJobType">
<xsd:sequence>
<xsd:element name="SATrigger" type="sap:TriggerType"/>
<xsd:element name="SAResponse" type="sap:ResponseType"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string"/>
</xsd:complexType>

<xsd:element name="SchedJob" type="sap:SchedulingdobType"/>

</xs8d:schema>

Figure 5.13: XML Schema for the Source Metamodel

94

1 <?xml version="1.0" encoding="UTF-8" ?>
2 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema”
targetNamespace="http://SchedAnalysis" xmlns:sa="http://SchedAnalysis">

3 <xsd:complexType name="SAObjModelType">
4 <xsd:choice minOccurs="0" maxOccurs="unbounded">
5 <xsd:element name="Transaction"
sa:TransactionType" />
6 lement name="SynchronousSet"
type="sa:SynchronousSetType" />
7 <xsd:element name="Object" type="sa:0bjectType" />
8 <xsd:element name="Thread" type="sa:0bjectType" />
9 </xsd:choice>
10 </xsd:complexType>
11 <xsd:element name="SAObjModel" type="sa:SAObjModelType" />
12 <xsd:complexType name="TransactionType">
13 <xsd:sequence>
14 <xsd:element name="Event" type="sa:EventType" />
15 <xsd:choice minOccurs="0" maxOccurs="unbounded">
16 <xsd:element name="Action"
type="sa:ActionType" />
17 </xsd:choices
18 </xsd:sequence>
19 <xsd:attribute name="name" type="xsd:string" />
20 <xsd:attribute name="id" type="xsd:ID" />
21 </xsd:complexType>
22 <xsd:complexType name="EventType">
23 <xsd:attribute name="name" type="xsd:string" />
24 <xsd:attribute name="Period" type="xsd:integer"
use="optional" />
25 </xsd:complexType>
26 <xsd:complexType name="subActionsType">
27 <xgd:choice minOccurs="0" maxOccurs="unbounded">
28 <xsd:element name="subAct" type="sa:subActionType"
/> -
29 </%xsd:choice>
30 </xsd:complexType>
31 <xsd:complexType name="ActionType">
32 <xsd:choice minOccurs="0" maxOccurs="unbounded">
33 <xsd:element name="subAction"
type="sa:subActionType" />
34 </xsd:choices>
35 <xsd:attribute name="id" type="xsd:ID" />
36 <xsd:attribute name="name" type="xsd:string" />
37 <xsd:attribute name="NomPri" type="xed:integer" />
38 <xsd:attribute name="synchSet" type="xsd:IDREF"
use="optional® />
39 <xsd:attribute name="belongsTo" type="xsd:IDREF"
use="optional” />
40 <xsd:attribute name="deployedOn" type="xsd:IDREF"
use="optional" />
41 </xs8d:complexType>
42 <x8d:complexType name="synchSetElementType">
43 <xsd:attribute name="ref" type="xsd:IDREF" />
44 </xsd:complexType>
45 <xsd:complexType name="SynchronousSetType">
46 <xsd:choice minOccurs="0" maxOccurs="unbounded">
47 <xsd:element name="action"
type="sa:synchSetElementType" />
48 </xsd:choice>
49 <xsd:attribute name="name" type="xsd:string" />
50 <xsd:attribute name="id" type="xsd:ID" />
51 <xsd:attribute name="CumulTime" type="xsd:integer" />
52 </xsd:complexType>
53 «<xsd:simpleType name="subActionKindType">
54 <xsd:restriction base="xsd:string">
55 <xsd:enumeration value="call® />
56
57 <xsd:enumeration value="reply" />
58 <xsd:enumeration value="computation" />
59 </xsd:restrictions>
60 </xsd:simpleType>
61 <x8d:complexType name="subActionType">
62 <xsd:attribute name="name" type="xsd:string" />
63 <xsd:attribute name="trigger" type="xsd:IDREF"
use="optional® />
64 <xsd:attribute name="compTime" type="xsd:integer" />
65 <xsd:attribute name="kind" type="sa:subActionKindType" />
66 </xsd:complexType>
67 <xsd:complexType name="ObjectType">
68 <xsd:attribute name="name" type="xsd:string" />
69 <xsd:attribute name="id" type="xsd:ID" />
70 <xsd:attribute name="ThresholdPri" type="xsd:integer"
use="optional" />
71 </xsd:complexType>
72 <xsd:complexType name="ThreadType">
73 <xsd:attribute name="name" type="xsd:string" />
74 <xsd:attribute name d" type="xsd:ID" />
75 <xsd:attribute name="ThresholdPri" type="xsd:integer"
use="optional" />
76 </xsd:complexType>
77 </xsd:schema>

Figure 5.14: XML Schema for the Target Metamodel

95

rule matching the SAResponse, for example, generates an Action XML element. The
information held in the attributes associated with the generated XML elements are extracted
from the initial XML elements using XPath expressions. The XPath expression @priority,
for example, is used in the SAResponse template rule to extract the value of thé priority

attribute and assign its value to the NomPri attribute associated with the Action element.

5.4 Implementation Applied on an Illustrative UML/SPT
Model

In order to illustrate the model transformation presented in this chapter, we consider an
example system, which was introduced in [111] [112]. We provide a UML model for this
system. This model consists mainly of: (1) a UML collaboration diagram representing the
overall behavior of the system and the synchronization between the actions in the different
interacting objects, (2) a deployment diagram showing the object-to-thread allocation, and
(3) sequence Vdiagrams detailing the end-to-end transactions in the system in response to
each external event. As for the real-time requirements and schedulability information, we

use different UML/SPT stereotypes to represent them.

The overall dynamic behavior of the system is modeled by the UML collaboration dia-
gram annotated with UML/SPT stereotypes shown in Figure 5.16. This diagram shows
the different objects composing the system and their communications. It shows also that
the system reacts to three external and periodic events, which are represented using the
stereotype <SATrigger>>. For example, the external event that triggers the action A1() is
stereotyped with <SATrigger>>, which has the tagged value {RAT=(periodic,60,’ms’)}
to indicate a period of 60 ms. The actions are modeled using the stereotype < SAaction>>
and their priorities are modeled using the tag SApriority. The priority of the action
A1() is given using {SApriority =10} tag value. These different stereotypes are defined in
the schedulability analysis sub-profile, SAProfile. We use the stereotypes <CRsynch>> and
< CRasynch>> from the concurrency sub-profile, RT concurrencyModeling, to distinguish be-

tween synchronous and asynchronous actions, respectively. For example, the action A5()

96

(SN

[y
OWOIAWUL W

11
12
13
14

15

16
17
18
19
20
21

22
23
24
25
26
27
28
29
30
31
32

33
34
35

36
37
38
39
40
41
42

43
44
45

46
47
48
49
50
51
52
53

54
55
56
57

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet version="1.0"

xmlns:xgl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:pix="http://SAProfileSchema"
xmlns:pox="http://SchedAnalysis">

<xsl:template match="pix:Scheddob">
<pox:Transaction name="{@name}">
<xsl:apply-templates select="SATrigger"/>
<xsl:apply-templates select="SAResponse"/>
<xsl:apply-templates select="//SAction"/>
</pox:Transaction>
</xsl:templates>

<xsl:template match="SATrigger">
<Event name="{@name}" Period="{@Period}" />
</xsl:templates

<xsl:template match="SAResponse">
<Action id="{@id}" name="{@name}" NomPri="{@priority}"
belongsTo="{@execHost }">
<xsl:apply-templates select="ActionExec"/>
</Action> -
</xsl:template>

<xsl:template match="ActionExec">
<xsl:choose>
<xs8l:when test="@effect">
<xsl:choose>
<xsl:when test="@matype = 'asyncInvoke'">
<gubAction id="{@id}" name="{@name}"
compTime="{@RTduration}" trigger="{@effect}"
kind="send" />
</xsl:when>
<xsl:when test="@matype = 'syncInvoke'">
<subAction id="{@id}" name="{@name}"
compTime="{@RTduration}" trigger="{e@effect}"
kind="call"/>
</xsl:when>
</xsl:choose>
</xs81:when>
<xsl:otherwise>
<xsl:choose>
<xsl:when test="ematype = 'reply'">
<subAction id="{@id}" name="{@name}"
compTime="{@RTduration}" kind="reply"/>
</xsl:when>
<x8l:otherwise>
<subAction id="{@id}" name="{@name}"
compTime="{@RTduration}" kind="computation"/>
</xsl:otherwise>
</x8l:choose>
</xsl:otherwise>
</xsl:choose>
</xsl:template>

<xsl:template match="SAction">
<Action id="{@id}" name="{@name}" NomPri="{@priority}"
belongsTo="{@execHost } ">
<xsl:apply-templates select="ActionExec"/>
</Action>
</xsl:template>
</xsl:stylesheet>

Figure 5.15: Model Transformation XSLT Templates

97

<<SATrigger>>

{Rat=(periodic,60,'ms")} <<SAAction>>

<<CRsynch>>

<<SAResponse>> iority="
{SApriority=10} {SAProry=10}
1:A10) 1.2:A5()
—_— R
01 03
(Ra.:(::ﬁ‘:.:gﬁs?ms'» <<CRasynch>> *1‘3:/\6() ::CRsyr;::::
e <<SAAction>> {SAPriority=6} {SAPriofity=10}
<<SAResponse>> <<CRasynch>> 1.1:A4()
{SApriority=8} {SAPriority=7} —_—
2:A2(0 2.2:A8()
i g 04
e 02
3:A3() 2.3:A9()
<<SATrigger>> <<SAAction>>
{Rat=(periodic,1000,'ms’)} <<CRsynch>>
<<SAResponse>> SAPriority=9]
{SApriority=8} Shrery=ay .06 3-——>‘2:ABO 0t
A <<SAAction>>
<<GRsynch>> e <<CRusy
{SAPriority=0} 3.1:AA0 {SAPriority=5}
2.1 :A7()‘ <<SAAction>>
<<CRsynch>>
{SAPriority=8}
05

Figure 5.16: UML/SPT-annotated UML Collaboration Diagram

executed by the object 08 is annotated with the <<CRsynch>> stereotype. This means that
it is executed following a synchronous message sent by the object O as a result of the
execution of the action A1() as shown in Figure 5.16. The resulting action A6() executed
by the object 04 is also synchronous, stereotyped with < CRsynch™>. Consequently, using
the concepts defined in Section 5.2.2, the actions Al1(), A5() and A6() are the elements of

the synchronous set of A1().

The deployment diagram, depicted in Figure 5.17, shows the assignment of the different
objects to the concurrent threads and the deployment of the latter on the CPU. This is rep-
resented by a node annotated with the stereotype <SAEngine>, and the different threads
are represented by the stereotype «SASchedRes>>. Both stereotypes are defined in the
schedulability analysis sub-profile, SAProfile. The ’deployment of the threads on the CPU
is modeled using the stereotype <«GRMdeploys>> defined in the UML/SPT General Re-

source Model framework. The assignment of the objects to the threads is modeled using a

relationship stereotyped with <SAusedHost>>, defined in the SAProfile sub-profilc.

There are three end-to-end transactions in the system corresponding to. the three external
events. These transactions are described using the UML sequence diagrams annotated with

UML/SPT stereotypes, and are shown in Figure 5.18, Figure 5.19 and Figure 5.20. For

98

il 3 04 1 02 || 05 || 06 || O

T T
[S
o, <<SAusedHost>>

T
<<SAusedHost>> L B
<<SAusedHost>>I SAusedHost>>

T T
1 |
i I
V] Vi

<<BAEngine>>

{SAschedulingPolicy: .
FixedPriority} |

Figure 5.17: UML/SPT-annotated Deployment Model

<<SATriger>> o
RTa={periodic, B0, ms) |

<«<SAAtion>> <<ShAcion>,
<<SAdtion>> " {RDuration=1} ¥ "M" 4 <<SAACtion>>
RMDuration=5) J/ a12 T {RTDuratior=S}
a > N adt
N H =
gl
’ -
4 —»
p 4 ~ {RTDuration=3}
{BAPriority=10} <<SARcton
A (SAProy=0} >~ {RTDveaton=4)
o ~ <<SAAtion> - 51
SProy=10) [y T
’ AB
L <<SAAdion! i Th<
S RiDuratoret} }/ N «sMctpn»
<<SAAdioe ¢ a2 R TDuration=1}
RiDwatoret) | g mmTmm T ~. - ab2
a3 YRTOweatore 1}
53

(=]

L=]

~

Figure 5.18: Transaction 1 Model

example, the sequence diagram shown in Figure 5.18 models the transaction associated
with the first external event. This is modeled using the stereotype <SATrigger>> and its
arrival pattern (periodicity) is modeled using the tag value {RAT=(periodic,60, ’ms’)}.
The stereotypé <« SAResponse>> is used to model the root action in the transaction while
< SAaction’®» is used to model the subsequent actions ahd/or any of their nested actions
(sub-actions). The priorities of the actions are modeled using the tag value SAPriority
while the computation time of an action is modeled using the tag value RTDuration from

the RTtimeModeling sub-profile of UML/SPT.

99

<<GATrigger>>

{RTat=(periodic, 300,ms}} i €2

]

<<SAACtion>
{RTDurstor=1)

{

<<ShAction>

{RTDwation=5)
all

& y=3t

<<GAAction>:
{RTDuration=3} -

<<8AAction>!
{RTDuration=1}

<<SAAction>
{RTDuration=1}

i

<<SAActipn>!
{SAPriority=T} «

1

(=] [[a]

<<SAAction>
{RTDuration=10}

<<SAResponse:
{SAPriority=8} ’
A2

L

<<SAACtion>
{Rtdurafion=1}

<<SAAction>:
(RTDuration=4}

)

Figure

-

<<SAAction> DN
RTDuration=60} [

5.19:

<<SATrigger>>

{RTat={periodic, 1000,ms}} Q2

<<SAAction> et
{RTDuratior=4}
a3l

<<SAAction>>
{ROuration=1)

Transaction 2 Model

{RTDuration=4}

<<5AResponse:
{SAPrionity=8}

ail

<<ShAction>
{SAPriorty=5}
A

{SAPrity=8}
M

<<Shhgtion>s)

{RTDuration=1}
afl

/

<<Shactior N,
{RTDuretion=}
a3

<<SAAction>:
[RTDuration=1}
g

<«SARTEIPIN
{RTDuration=1}
a2

{<<SAAction>!
RTDuration=5}
aA3

~
N

’

’

Figure 5.20: Transaction 3 Model

100

5.4.1 Using the ATL Transformation

The model showed in Figure 5.21 is in the Ecore format. It represents the schedulability
analysis information in our example system. This model is valid with respect to the source
metamodel described in the previous section. The transformation is then run using an ATL
launch configuration in the Eclipse ATL IDE. The execution of the model transformation
generates model shown in Figure 5.22. We highlight the different actions along with their

sub-actions corresponding to the first transaction and the corresponding synchronous set.

5.4.2 Using the XML-based Transformation

The XML document that gathers the schedulability analysis information corresponding to
the first end-to-end transaction of the previous model is shown in Figure 5.23. This XML
document has been validated against the schema defined in Section 5.3.5 using the open
source Xerces XML parser from the Apache XML project [104].

We have used the Xalan XSLT processor [103] to execute the transformation. Xalan is
an open source Java tool that takes as input the previous XML document and the XSLT
stylesheet and generates a new XML document. This is valid with respect to the target
schema presented in Section 5.3.5. Figure 5.24 shows the XML document generated by the
XSLT processor. This XML document represents the model which is expected as input
by the schedulability analysis tool. - The UML object diagram shown in Figure 5.25 is a
graphical representation of a part of the model corresponding to the transaction triggered
by the first external event, where the synchronous set, objects, and threads are omitted for

simplicity.

5.4.3 Schedulability Analysis Tool

The model represented by the XML document is then provided as input to the schedulability
analysis tool. This tool is a Java implementation of the multi-threaded version of the
schedulability analysis technique presented in [112]. The output for example is given in

Figure 5.26. The results show that the end-to-end response times associated with each

101

£5 UONT YOO B¢ wssaong SRS
rme wenaw UG 4
156 U Usg 2 euL sl 4
e e £E% UOGAIET LY 4y
T ZER BPOMT HOUTAIAG 4y |
169 UOHRISKIURY.
culy esuodisy &
1S QOL BuEpIDE i
evuomYS ¢
L e
LYNoNS o
st e
$29 opIRg LY
42 BOM] FRIOUPUAS
£26 DAL SPOUGRIIASY 4
R USRI ORI
128 PO SOOUORPIIAS
UL ssuodsey &
25 qor Bgnpaes 1
> oV UOYS 4
o didie Lo
T oA ORI
15% BOFDRRE WDy
S UG -
- FOLODNG 8
e
< ETE wOAL 9000 .

Figure 5.21: Source Model in Ecore
102

Y55 W5 SIS e -
0 BOUI
GRS SR IAS
YooY b
55 W5 SRR gy
LR
BYLE G WONRIAE
Y UNDY. 80
4 55 WG SRANAS
L UG e T
SYTSE P SMBIIAS e

ZULETES 1S SHOUTAPUAS e
Tyl wal G

SR UONY O
LV Uy 5
220 VDY G5, e
17O P NS S
THLHUOY
8 UDNDeRURL g

Figure 5.22: Generated Model in Ecore

103

<?xml version="1.0" encoding="UTF-8"?>

<sap:SchedJob name="Jobl"
xmlns:sap="http://SAProfileSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaliocation="http://SAProfileSchema SAProfileSchema.xsd">

<SATrigger name="Trl" Period="60"/>

<SAResponse name="R Tri" id="RTrl" priority="10" execHost="0l">
<ActionExec name="all" id=" all" RTduration="5" succ=" al2"/>
<ActionExec name="al2" id=" al2" RTduration="1" succ="_al3"
matype="asyncInvoke" effect=" A4"/>
<ActionExec name="al3" id=" al3" RTduration="1" succ="_al3"
matype="syncInvoke" effect="_A5"/>

<SAction name="A4" id=" A4" priority="6" execHost="04">
<ActionExec name="a4l" id="_a41" RTduration="5"/>
</SAction>

<SAction name="A5" id=" A5" priority="10" execHost="03">
<ActionExec name="a51l" id=" a51" RTduration="2" succ=" a51"/>
<ActionExec name="a52" id=" a52" RTduration="1" succ="_a53"
matype="syncInvoke" effect=" A6"/>
<ActionExec name="a53" id="_a53" RTduration="1" watype="reply"
/>

</SAction>

<SAction name="A6" id=" A6" priority="10" execHost="04">
<ActionExec name="a6l" id=" a6l" RTduration="4" succ=" a62"/>
<ActionExec name="a62" id="_a62" RTduration="1" matype="reply"
/> '

</SAction>

</SAResponse>
</sap:SchedJob>

Figure 5.23: XML Document for Source Model

104

1 «<?xml version="1.0" encoding="UTF-8" ?>
<pox:Transaction xmlns:pox="http://SchedAnalysis"

2

> o

11
12
13
14
15
16
17
18
19

20
21

xmlns:pix="http://SAProfileSchema" name="Jobl">

<Event Period="60" name="Trl" />
<Action belongsTo="01" NomPri="10" name="R Trl" id="RTrl">
<subAction kind="computation" compTime="5" name="all"

id=" all" />

<subAction kind="send" trigger="_A4" compTime="1"
name="al2" id=" al2" />
<subAction kind="call" trigger="_A5" compTime="1"
name="al3" id="_al3" />

</Action>

<Action belongsTo="04" NomPri="6" name="A4" id=" A4">
<subAction kind="computation" compTime="5" name="a4l"

id="_a4l" />
</Action>

<Action belongsTo="03" NomPri="10" name="A5" id=" A5">
<subAction kind="computation" compTime="2" name="a51"

ig=" a51" />

<subAction kind="call" trigger="_A6" compTime="1"
name="a52" id=" a52" />
<subAction kind="reply" compTime="1" name="a53" id="_a53"

/>

</Actions

<Action belongsTo="04" NomPri="10" name="A6" id=" A6">
<subAction kind="computation" compTime="4" name="a61"

id=" a6l" />

<subAction kind="reply" compTime="1" name="a62" id="_a62"

/>
</Actions
</pox:Transactions

Figure 5.24: Generated XML Document for the target Model

1.Transaction

el.Event
Period=60 i
al1l:Subaction
Kind = #other :
— - Ad:action
— CompTime=s 41:Subaction
Al:action - vigger | NomPriority=6 <
212:Subaction Kind = fother
NomPriority=10 ComTime=5
Kind = #send
ComTime=1 Ab:action
i
- W= NomPriority=10
a13:Subaction
Kind = #call
CompTime=1 T
a51:Subaction 252:Subaction 253:Subaction
Kind = #other Kind = #call Kind = #reply
CompTime=2 CompTime=1 CompTime=1
trigger 61:Subact
N Kind = #other
AB:action CompTime=4
NomPriority=10 262-Subacti
Kind = #reply
CompTime=1

Figure 5.25: Schedulability Analysis Model

105

Transaction Jobl
Instance | Arrival | Finish | Response E2E Response
Time Time

Al 1 0 28 28 28
A4 1 0 161 161

2 60 166 106 161

3 120 171 51
AS 1 0 21 21 21
A6 1 0 15 15 15
Transaction Job2
A2 1 0 59 59 59
A7 1 0 49 49 49
A8 1 0 161 161 161
A9 1 0 108 108 108
Transaction Job3
A3 1 0 156 156 156
AlQ 1 0 146 146 146
All 1 0 836 836 836

Figure 5.26: Schedulability Analysis Results

transaction.

5.5 Related Work

In this section, we discuss the main related research work. We can distinguish’ three groups
of research. The first group is directly related to the idea of using MDA as an integrating
framework for the models used for software design and the models used for the analysis of
nonfunctional properties. The second group is focussed on the schedulability analysis of
object-oriented design models. The third group includes works on model transformation in

general and the languages used to express these transformations.

A significant research work uses MDA as an integrating framework for software modeling,
validation and testing. The commbn objective is to use MDA to bridge the gap between
UML design models and several models used by analysis techniques. Gu et al. [46] pre-
sented an XML-based transformation of UML models annotated with UML/SPT stereo-
types for performance to LQN performance models. Verdickt et al. [124] presented an MDA-
based approach where high-level middleware-independent UML models are transformed into

middleware-aware UML models. Skene et al. [119] introduced an MDA-based approach

106

leveraging the UML profiling mechanisms to allow for the derivation of performance anal-
ysis models, such as LQN, from UML design models. D’Ambrogio [21] presented a model
transformation framework for the validation of software system performance throughout
the development cycle. This framework enables transforming software models into layered
queuing network models. This approach relies on the principles of the MDA and makes
use of the related standards such as MOF, QVT and XML to achieve the objectives of
high automation, inter-operability, and finally software system quality. Other MDA-based
approaches have been proposed in order to shift traditional testing techniques to the model
level [9], [129].

The integration of object-oriented design using UML-RT [116], which is a UML profile that
extends UML with concepts defined in ROOM methodology [114], and real-time schedula-
bility analysis has been addressed by Saksena et al. [111] [112]. Gu et al. [47] presented
an approach geared to the automatic synthesis of a UML-RT model and its schedulability
analysis. The motivation behind these approaches was mainly the application of object-
oriented methodologies to manage the increasing complexity of embedded real-time software
systems. Although these approaches showed how to adapt and/or apply schedulability anal-
ysis techniques on object-oriented models, they did not address the issue of how the task
models used in these schedulability analysis techniques could be derived from UML-based
design models.

Finally, model transformation is a cornerstone activity in the model-driven devélopment
approach and MDA. Many languages can be used to express model transformation, includ-
ing OCL, scripting languages, XSLT, etc. The object constraint language (OCL) [94] is an
integral part of UML that is used to specify constraints on UML models and metamodels.
OCL has also been used to express platform independent model transformation [16], [18],
[32], [65]. Poress [102] presented a scripting language for model manipulation. This is an
extension of Python for the manipulation and transformation of MOF-based models. XML
is a common means to represent models mainly through the XMI standard. Poon et al. [101]
used XML as an interchange format for real-time data and proposed an XML repository
for real-time data in the form of XML documents. This is important for inter-operability

between diverse real-time applications. In this work, the premises of a Real-Time Mark Up

107

language were outlined. This language is defined through an XML schema corresponding to
the time-related mechanisms and timed stimulus domain models defined in the time pack-
ages of UML/SPT. Consequently, XSLT is an effective way to transform models expressed
with XML. XSLT has some drawbacks, however, such as its verbosity, expertise requirement
in MOF [93] and XMI [89] and lack of user-friendliness. Peltier et al. [73] presented a model
transformation framework, called MTrans, which relies on XSLT to transform models but
provides higher abstractions to alleviate XSLT shortcomings. Model transformation tech-
nology is maturating with the adoption of OMG QVT standard [88]. ATL it was designed
in response to the OMG MOF2.0 /QVT RFP [86]. Although ATL evolved in parallel to the
OMG standardization process, it is aligned with the standard [61]. ATL is used in different
approaches addressing a variety of isksues including model checking [12], model consistency

checking [43], architecture migration [8] and web services [11] [98].

5.6 Conclusion

Model-driven architecture is a software development approach that advocates the separation
of the business/application logic from the underlying technology used for its implementation.
This helps to overcome the complexity in the problem domain and in the technology domain
separately. MDA aims at achieving this goal using two key concepts, models and model
transformations. In terms of models, MDA distinguishes platform independent models and
platform specific models . Model transformations are defined and used to (automatically)
generate PSMs from PIMs. Several languages have been proposed and used to express

model transformations including OCL, XSLT and QVT.

MDA allows to bridge the semantic gap between the concepts in the problem domain and
in the technology domain. This same framework is useful to address the challenging issue
of closing the gap between the design modeling concepts and the analysis-specific concepts,
which has driven several researchers to use MDA as an integrated framework for software
modeling and analysis. Most of this research has been on performance analysis. Our ap-

proach targets schedulability analysis, which is important for the validation of real-time

108

designs. The advantage of an MDA-based approach is to create a tool chain that masks
the inherent difficulties of the formal methods used in software validation to the software

engineer and consequently helps to increase software quality.

In this chapter, we have discussed a model transformation allbwing for the derivation of
a task model, suitable for a schedulability analysis technique, from an UML/ SPT model.
As a proof of concept, we have presented a prototype implementation of this transforma-
tion using ATL and XML. The ATL-based implementation consists in a specification of
the involved metamodels using KM3 language and the specification of the transformation
rules using ATL. As for the XML-based implementation, we have proposed XML schemas
corresponding to the metamodels and specified the transformation rules using XSLT. We
have illustrated the transformation process with an example using Eclipse ATL IDE for the
first implementation and open source tools for the XML-based one.

The solution we have presented in this chapter presents some limitations, however, which

can be summarized as follows:

e The transformation takes as input the information modeled using UML/SPT stereo-
types. These stereotypes are not models on their own but afe closely linked and
represented in a UML design model. We assume that the information needed by the
transformation is extracted from the UML design model. Very few tools, however,
implement the UML/SPT stereotypes, but we expect this to change in the near future
with the new UML profile, MARTE [97].

e The feedback given by the schedulability analysis tool is limited to determining if an
end-to-end transaction is schedulable or not. This is useful, but a more fine-tuned
diagnostic such as which object-to-thread allocation is the cause of a missed deadline
would be more informative. In addition, the only way to reflect the results of an
analysis into the original design model is through some variables in the UML/SPT

stereotypes, which is a UML/SPT intrinsic limitation [10].

109

Chapter 6

Cohsistency of UML/SPT Models

UML provides a multitude of diagrams, which can be used to model the structure, the be-
havior and the deployment of the system under consideration. This is very advantageous to
cope with software complexity. On the other hand, these different views may lead to incon-
sistencies. Moreover, when UML is used to model real-time systems through its profiles for
real-time such as the OMG standard, UML/SPT [91] and MARTE [97] for example, new
aspects need to be taken into account, namely concurrency, time constraints and schedula-
bility. These aspects may contribute to worsen the consistency issue.

UML’s built-in consistency mechanisms are limited to a set of well-formedness rules ex-
pressed in the metamodel using OCL. Higher level consistency concepts are, however, not
accounted for at the language level. Considering the complexity of a UML/SPT model,
Which is composed of several UML diagrams and which captures in addition aspects such
as concurrency and time constraints using appropriate stereotypes defined in the profile, it
is difficult to provide one definition of consistency. An incremental approach to consistency
of UML/SPT models, which distinguishes, respectively the syntactic and semantic levels,
is more appropriate. The semantic consistency can be further decomposed into behavioral,
concurrency-related and time consistency.

In this chapter, we focus particularly on inter-diagram consistency in a UML/SPT model.
First, we present a consistency framework for UML/SPT models. In this framework, we
define the consistency of UML/SPT models in terms of syntactic consistency and semantic

consistency. The latter is defined further in terms of behavioral consistency, concurrency-

110

) ORI

—+
n
L

e Crificat Section ~-~~~~---~-- > D et Critical Section - -~ ~~~---~--- >

Figure 6.1: Generalized Railroad Cross- Figure 6.2: Generalized Railroad Cross-
ing System « ing Time Constraints

related consistency and time consistency. Second, we focus on time consistency of behavioral
diagrams of UML/SPT models, namely statecharts and sequence diagrams. We introduce
an approach that relies on schedulability analysis. In order to do so, we show how a
UML/SPT-based schedulability analysis model is generated from statecharts and sequence
diagrams. Our model transformation approach presented in Chapter 5 is then used to enable
appropriate schedulability analysis techniques and consequently check the time consistency

of the model.

6.1 Railroad Crossing System Model using UML/SPT

In this section, we introduce a UML/SPT model for the Generalized Railroad Crossing Sys-
tem (GRCS) [50], which we will use throughout this chapter. This system controls a gate in
a critical region to protect a railroad crossing as depicted in Figure 6.1. A set of trains can
traverse the crossing in parallel using different tracks. The system uses sensors to detect an
entering/exiting train to/from the critical region. The GRCS should satisfy certain time
requirements as depicted in Figure 6.2. The fastest train takes tapproacn to reach the gate
after entering the critical section and it takes tcrossing t0 cross the gate section. A closed
gate takes ty, to open fully while an open gate takes tgoum to close completely.

Structure View: The class diagram in Figure 6.3 shows the static structure of the design.
The system is composed of two concurrent entities TrackController and GateController,
which are annotated with the stereotype <CRconcurrent>>. They use the passive objects,
TrackHandler and Gate, respectively. Clock is a timer, annotated with the stereotype

< RTtimer:>, and it is used by the TrackHandler entities to keep track of the time progress.

111

<<RTtimer>>
clock

1

1

N
<<CRConcurrent>> TrackHandler
TrackController :

=

Sensor

1

1

<<CRConcurrent>>

K
GateControfler Gate

Figure 6.3: Generalized Railroad Crossing Structure View

The entity Sensor represents the Sensors.

Behavior View: The most important interactions between the entities defined in the
system structure along with their time requirements are given in the sequence diagrams
shown in Figure 6.4, Figure 6.5, Figure 6.6 and Figure 6.7. The detailed design is modeled
using UML statecharts. These describe the internal behavior of each entity. The state-
charts corresponding to the TrackController, TrackHandler, GateController and Gate

are depicted in Figure 6.9, Figure 6.8, Figure 6.10 and Figure 6.11, respectively.

6.2 Framework for Incremental Consistency of UML/SPT
Models

An UML/SPT design model of a real-time system is an UML model that captures in ad-
dition concurrency and time constraints. As such, it is composed of several UML diagrams
annotated with stéreotypes to describe concurrency and time constraints. It is not straight-
forward to provide a single and comprehensive definition for consistency of UML/SPT
models. The consistency issue of these models can be summarized as shown in Figure 6.12.
We distinguish between intra-diagram and inter-diagram consistencies. Intra-diagram con-

sistency concerns one type of diagrams, also called one view of the system. For such kind of

112

<<Creoncument>>
GataControllr

<<Groncuttont>» I

TrackHandier I TraskGanirober

<<RTrewTimes>
[S)
<<RTimer>
dock

<<RTavants>
{RTal={azronotgraues 13}
JerEvont]

<<RTsgb>
(BTimerParf o ms)

<<Creoncurment>>
‘TrackControfler

l TrackHandler ‘

Sensor

<<HTavort>
{RTat=l e me)
J tinerEvont2
inputSensor

<<ATab>
{RTtimerPar={tome, M}

enter

<<RTevenit>>
(ATat={lacum, M)}

/ . c<RTaets>
 <<RTaction>> = (nm;v...u._,,m-))
Haggroac* oo, 16)}
chse

exit

<<HTevant>>
(RTat={looswra me)t
Yrwcvertd

Figure 6.4: Entering Train Sce- Figure 6.5: TrackHandler Timed Behavior
nario

<<Crooncurent>»
I TraokHander I l GakContmllr | Gate J

closs. open
<<RTaction>> «<<RTattion»>
goDnwn {Riuraliofe{lom, M5 golp {Rdurabions(ty, M8}

Tm;kcnnlmhr—l | GatsContoter | l Ll l

Figure 6.6: Gate Closing Scenario Figure 6.7: Gate Opening Scenario

<<RTnBeTimen> ™
| et s IS
/ d {RTTimerPare{tp,msj}
ll /I
’ (’
e Ty a— PEUS A
{RTTimarPar={tamn M8} sensorinpuifiti)/
(o) . o
e frackHi1ri].enter
P
{RTTimerPer={tomrg, ms'H

T ~ao_ timerEventd
7 ®archCrossing,
ol

timerEvent2

watchimminence” sonsorinpuiirky
noTrains+,

trackHd{utrig enter

[nbTrain==0j / open

Figure 6.8: TrackHandler State Machine Figure 6.9: TrackController State Ma-~

chine
o
<<RATaction>>
{RTDUBON= (lsomer MS')}
I’l
Yy
it QoDown / Mavebown —
Chse/GoDown up Down

Golp / Mova\Up

\
. <<RTaction>> L
(Riduration=(tw, Ms")}

Figure 6.10: GateController State Ma- Figure 6.11: Gate State Machine
chine

113

Are the diagrams behaviorally consistent? Are the diagrams behaviorally consistent?
Are they time consistent? :

Are they semantically consistent? Set of Statecharts
Set of Sequence Diagrams < « Behavioral consistency > [Well-formedness]
[Wel-formedness} « Goncurrency-related consistency
+ Time consistency
Syntactic Consistency

Set of Class Diagrams

[WelHormedness]

Figure 6.12: Consistency of UML/SPT Models

consistency we are concerned for instance with the well-formedness of the diagrams, which
can be checked using UML well-formedness rules expressed in the metamodel using OCL.
These rules help in obtaining UML diagrams that are well-formed with respect to the ab-
stract syntax. The semantic consistency of each view is important. This is usually referred
to as (semantic) correctness, and is particularly imporﬁant in the case of behavioral diagrams
like sequence diagrams or statecharts. This kind of consistency is well studied by formal ver-
ification community that investigated thoroughly the behavioral correctness and the timing
correctness of such diagrams. Similarly to intra-diagram consistency, inter-diagram con-
sistency, can be syntactic or semantic. Semantic consistency includes, in addition to the

behavioral consistency, concurrency-related consistency and time consistency.

6.2.1 Syntactic Consistency

This consistenéy includes the well-formedness of each individual diagram in the model,
which can be checked using UML built-in well-formedness rules. In addition, syntactic con-
sistency is an inter-diagram static property. The syntactic elements used in the overlapping
diagrams should be coherent and compatible. For instance, it can be defined for sequence
diagrams and statecharts composing a UML model [67]. Several approaches in the literature

[563] address the consistency of a UML model at the syntactical level.

114

Example

The model described in Section 6.1 is not syntactically consistent. In the sequence diagram
depicted in Figure 6.6, TrackHandler sends a message close to GateController. This
requires a link between two instances of these classes to enable this communication. There
is no association between these classes in the class diagram. Consequently, the class diagram

and the sequence diagram in Figure 6.6 are syntactically inconsistent.

6.2.2 Semantic Consistency

The semantic consistency is a dynamic property. We distinguish the behavioral consistency
for general-purpose UML models from concurrency-related consistency and time consis-

tency, which are specific to UML/SPT models.

Behavioral consistency

Behavioral consistency is defined for the diagrams used to describe the dynamic behavior
of systems. These are mainly the sequence diagrams and statecharts, which capture two
different perspect’ives of the system behavior. Indeed, a sequence diagram describes a partial
behavior of the system, which is a particular run/execution of the system. On the other
hand, a statechart is a comprehensive description of the behavior of a single object/class.
Consequently, a set of sequence diagrams and statecharts model a consistent behavior if
the interactions modeled by each sequence diagram can be generated by a particular run
of the statecharts associated with the objects involved in the sequence diagram. This can
be checked for example by mapping the statecharts and the sequence diagrams to a timed

automata formalism [64].

Concurrency-related Consistency

It comes on top of behavioral consistency to capture issues specific to concurrency in
UML/SPT models. It is related to the concurrency choices that are expressed in UML/SPT
models. Concurrency design choices are important to use efficiently the system resources

in order to satisfy time constraints. However, concurrency is likely to lead to issues such

115

openl nimain==}

iraint

TC_senvice ==2 erferTrack2!

Figure 6.13: Track Controller with Sequential Track Handlers

as deadlock and other race conditions. Concurrency modeling with UML/SPT is done
with stereotypes defined in the RTConcurrencyModeling package. The semantics of these
stereotypes is defined by the concurrency domain model. We have given a formal defini-
tion for this domain model using timed automata in Chapter 4 and have shown how this
enables the usage of model checking techniques for detecting concurrency related problems
in UML/SPT models.

Example. Let us consider the model discussed in Section 6.1 with two tracks. Figure 6.13
shows the timed automaton corresponding to the class TrackController. This timed au-
tomaton is generated using the techniques introduced in Chapter 4. UPPAAL [69] shows

that the CTL expression 6.1 is satisfied.

A0((TrkHd1l1.Crossing or TrkHd1l1.Crossing) and gt.Up) (6.1)

This expression models the possibility that a train is crossing the gate section while the gate
is open. This problem is due to a flawed concurrency design choice where TrackHandler en-
tities are passive objects. They use the thread of control of their associated concurrent unit,
TrackController, to proceed and meanwhile the latter is blocked (i.e. in the wait sate).
Any inputsensor received is then missed and conseqilently the train can cross the gate after
the TrackController has send an open message to the GateController. TrackHandler

should then be concurrent.

116

Time Consistency

It comes on top of behavioral and concurrency related consistencies. It is related to time
constraints expressed using UML/SPT time stereotypes. We distinguish two kinds of time
consistency in UML/SPT models: The logical time consistency of sequence diagrams and

the detailed design time consistency. We elaborate on time consistency in Section 6.4.

6.3 Formal Notation and Definitions

We present in this section a formal notation for the UML behavioral diagrams, sequence
diagrams and statecharts. Similar ones have been presented in the literature [67] [71]. We
use this notation to define formally the behavioral consistency between a set of sequence

diagrams and a set of statecharts.

Definition 6.1 A sequence diagram SeqD is a tuple <O, E, V, Label> where:

O is the set of objects.

o E = SUR is the set of events.

eV C SxR

Label : V — M Names is a labeling function and MNames is a set of messages names.

A sequence diagram describes a sequence of message events. Each message m is associ-
ated with two causally ordered events, a send event, send(m) € S, and a reception event,
receipt(m) € R, respectively. Semantically, a sequence diagram is seen as a partially or-
dered set of events. In the following Object : E — O is a function mapping an event to the

object on which it occurs.

Definition 6.2 The semantics of a sequence diagram SeqD <O, E, V, Label> is defined

by the structure (E, <) where < is defined as follows:
oV (ei,ej) EV = e < e;
e Ve;,e; € E and Object(e;) = Object(e;) and t(e;) < tle;) = €; 2 g5

117

We define the function Hf D . pr x O — E* as the projection of the sequence of events
induced by a sequence diagram SeqD on an object 0 € SeqD.O. This function yields a
totally ordered set of events because all the events associated to one object are ordered.

In the following, we consider a formal definition of a simple statechart. This definition omits,

for the sake of simplicity, other features of statecharts such as sub-states, pseudo-states, etc.

| Definition 6.3 A statechart SC is a tuple <8, E, A, T> where:
e S is the set of states.

e FE is the set of events.

e A is a set of actions.

e T:Sx ExA— S a transition relationship.

The operational semantics of a statechart is defined informally in the UML metamodel [92].
Moreover, there are several proposals in the literature for the formal description of the UML
statecharts semantics [99]. In the following, we assume that the predicate IsARun(sc, se) is

true if the events sequence se corresponds to a valid transition sequence of the statechart sc.

Using the previous notation, we can define the behavioral consistency between a sequence

diagram and a set of statecharts as follows:

Definition 6.4 A sequence diagram SeqD and set of statecharts SC = {o.sclo € SeqD.O}

model a consistent behavior if and only if:
YV o€ SeqD.O, IsARun(o.sc, Hosqu):Tme

Consequently, the behavioral consistency between a set of sequence diagrams and a set of

statecharts can be defined as follows:

118

Definition 6.5 A set of sequence diagrams SEQD = {SeqD1, SeqDs, .., SeqD,} and a set
of statecharts SC = {Scy, Sc, ..., Scm} define a consistent behavior if and only if each se-
quence diagram SeqD; € SEQD and the set of statecharts SC' = {o.sc € SC|o € SeqD;.0}

define a consistent behavior.

6.4 UML/SPT Time Consistency

In this section, we present an approach for the verification of the time consistency of UML
statecharts with respect to a set of sequence diagrams capturing the time constraints. We
assume that each sequence diagram models a system end-to-end transaction in response to
an external event. The main idea underlying our approach is to use schedulability anal-
ysis as a means to check the time éonsistency. Indeed, a sequence diagram captures an
interaction subject to a specific time constraint. As a result, a sequence diagram induces a
sequence of state transitions in each statechart. This transition sequence involves a sequence
of computations/actions. The statecharts are consistent with a set of sequence diagrams if
and only if all the computations executed by the statecharts and induced by the different
sequence diagrams are schedulable in the context of a particular deployment environment.
This means that in such a deployment environment, in the worst-case scenario, all these
computations can be completed within the deadlines resulting from the time constraints.

Our abproach is to rely on an appropriate schedulability analysis technique. In order to
do so, we generate a UML/SPT-based schedulability analysis model from the statcharts,
“the sequence diagrams and a deployment model. The latter describes platform-dependent
information such as CPU characteristics, shared resources, threads, priorities, etc. This in-
formation allows to determine the worst case execution time (WCET) of the different actions
in the deployme‘nt environment using techniques such as [27]. The generated UML/SPT
model is an instance of the schedulability analysis domain model defined in the SAprofile
package of UML/SPT. This model captures the system externalkevents and the correspond-
ing system responses. These are composed of the actions executed by the different objects
and that are allocated to the different available threads. This model can then be supplied

for schedulability analysis. We have defined in Chapter 5 an approach for transforming

119

UML Sequence

Diagrams
+ Time constraints

UML Statecharts
(detailed design)

Time Constraints
Validation

Model Generation - Deploymlent
Procedure . Mode

\

UML/SPT-based
Schedulability
Model

Schedulability
Analysis

Figure 6.14: UML/SPT Model Time Consistency

UML/SPT models into task models suitable for schedulability analysis. In the following,

we elaborate on the main parts of our approach, which is outlined in Figure 6.14

6.4.1 Logical Time Consistency Validation

The time constraints captured using sequence diagrams should be logically consistent. This
is necessary otherwise no behavior would satisfy contradictory time constraints and hence
no possible implementation. The techniques proposed in [131] can be used for this step.
These techniques allow for checking time consistency in MSC specifications. These can
be adapted to check the consistency of UML/SPT time constraints modeled with UML

sequence diagrams.

120

Scenario]

i
ActionExecution
MessageAction |
| | [] []
£
4
SAction H
g
g
0.n| Priority 2 S
— Worst-case completion Time = SResource % 1.0
{ Delay time " 0" | Gapacity F]
&) Presmpted Time Acuisition Time g ExecutionEngine
8 B|ock|pgT|me) Deacquisition time | &
* DeadlineisAtomic isGCi bl 8 PriorityRange
Tn Priority Ceiling o % P ingRate
isPrembpible Context Switch
Time
<<pioys>> +host o *host iu‘,'.hsa"ml.
v edulabieR b isP
[| <<geptoys>> | isSchedulable
D..
Response
Capacity
Acuisition Time L 1
Deacquisition time l -n
isCi
Priority Ceiling 10 .
isPrembpible SchedulingJob
+effect | 1 -
| ?
1
+cause
Trigger

isSchedulable 1

Figure 6.15: Compiled Domain Model supporting Schedulability Analysis from UML/SPT

6.4.2 UML/SPT Model Generation

In this section, we focus on the step of UML/SPT-based schedulability model generation.
The generated model is an instance of the domain model illustrated in Figure 6.15. We
have compiled this domain model from the dynamic usage model, the concurrency model
and the schedulability analysis domain model defined in UML/SPT standard [91].

Our general procedure to generate this model is outlined in Algorithm 4. The objective
of Step 1 is to determine the set of computation units executed by the statecharts and
triggered by the reception of an event. These computation units are composed of all the
actions executed by the statechart in a run-to-completion step. These actions include those
executed in entry of a state, the exit of a state and the transition. In order to do so, the set

of events in the sequence diagram is partitioned using the projection function Hfqu defined

121

EventOccurence

?

+effect
+0AUSe
StimulusGeneration . "
1 L1 stimulus
Instance +receiver
seffect] 0.0 (romCore {g.4 0.0
ResourceModel) 1 | scause

11| sexecutionHost

+0ause 0. | +executionHost

scause seffect Scenario
i

0.

StimulusReception
+effect

0.1

Figure 6.16: Causality Domain Model

earlier. This yields a totally ordered set of events per object, tr,,. This set is then restricted
to the reception events as these are the computations triggering events, trg. The set of
computations units per object, Action,,, is then determined using these reception events
by a function get R2C(Statechart, event), which computes for each statechart the different
actions executed at the reception of an event. These computation unit‘s correspond to the
class SAction in the domain model shown in Figure 6.15. The corresponding stereotype
provided by UML/SPT is <SAction>>. In Step 2 and Step 3, the relationship between the
determined computation units is established. This relationship is either a sequentiality or
a causality relationship. The sequentiality relationship captures the sequence of ActionFx-
ecutions within a Scenario/SAction as shown in the domain model in Figure 6.15. This
is determined using the order of the reception events associated to one object trg. The
causality relationship corresponds the causality domain model defined in UML/SPT and
shown in Figure 6.16. This is determined using the order relation between the send event
and reception event. We assurhe that the predicate gen(a,e€) is true when the execution of
the action a generates the event e and the predicate trigger(e,a) is true when the event e
triggers the execution of the action a. The final step, Step 4, in this procedure integrates
the deployment information in the generated model. This information is provided by a

deployment model and includes for example the worst case execution time, the priority of

122

each action, the deployment of the actions on the available threads.

Algorithm 4 UML/SPT-based Schedulability Model Generation
Input:
let SeqD <O, E, V,Label> be a sequence diagram
let SC = {0;.sc|Vo; € O} be a set of associated statecharts
Step 1: Actions determination
for all o; € O do
Step 1.1: Event partition
let tro, — M52 = {e,.., €ours -os €0irn }
Step 1.2: Event restriction to receptions
let trR —tro, N\R = {e}, ,e€l ,.., o }
Step 1.3: Run to completion steps
let Actiono, <« Uj<k{getR2C(0;.5c,¢€5,;)}
end for
let Actions = U,,ecoAction,,
Step 2: Sequentiality relation
€ ={(aj,ax)la;j, ax € Actions AJo; € O A ey, e;, € trl A € = €05t
Step 3: Causality relation
¢ = {(ai,aj)|ai,a; € Actions A Je,e’ € E A (e,€e') € V A gen(a;,) Atrigger(e,a;)}
Step 4: Deployment information integration ’
for all q; € Actions do
let (a;.weet, a;.priority, a;.thread, ...) «— deploys(a;)
end for

6.4.3 Schedulability Analysis Phase

In Chapter 5, we have defined a metamodel based transformation. This transformation
allows to derive a task model expected by the schedulabilityr analysis technique defined in
[112] from a UML/SPT model. For this step of our approach, we use this model transfor-
mation to enable the schedulability analysis. The analysis allows for computing the worst
case response time for each action in each end-to-end system transaction. The design model
is schedulable if all the response times satisfy the deadlines. In such a case the statecharts
are consistent with the time constraints expressed in the sequence diagrams assuming the

deployment environment provided by the deployment model.

123

6.4.4 Application to Railroad Crossing Model

As an example to illustrate the application of Algorithm 4, we consider three important
scenarios, which are the arrival of a train to a critical section (sequence diagram SegD1),
a train reaching a point where the gate has to be closed (SeqD2) and a train exiting the
section (SeqD3). Figure 6.17, Figure 6.18 and Figure 6.19 show, respectively, the process of
determining the actions executed by the different statecharts and induced by the sequence
diagrams. Figure 6.20 shows the results of the causality and sequentiality relationships and
the obtained end-to-end transactions in the system. The obtained UML/SPT model after
integration of deployment information is shown in Figure 6.21. This model is then supplied
for schedulability analysis [112], after its transformation into a suitable task model using
our approach defined in Chapter 5, in order to check the time consistency of the design

model.

6.5 Related Work

Consistency is an important issue in the context of UML modeling. This led to an extensive
research work [6], [63]. A classification of the consistency issues in terms of horizontal/ intra-
model and vertical/inter-model in UML modeling has been pointed out in [31] and in [53].
The closest work to ours is probably [67], which distinguishes syntactic and semantic con-
sistency and singles out temporal consistency as a particular case of semantic consistency.
The focus in this work was put on the time constraints although the modeling language
considered, UML-RT, does not have any provision for expressing time constraints. In [72],
an approach was presented to check the consistency of real-time system specifications using
sequence diagrams. This approach is based on a linear programming algorithm to check
the consistency of time constraints in a sequence diagram and a composition of sequence
diagrams. Time consistency in MSC based on a formal semantics for MSC has been inves-
tigated in [131].

The transformation of UML artifacts used to model dynamic behavior into timed automata
for purposes of verification and consistency checking has been the focus of several research

works including [28], [64]. Firley et al. consider in [28] an approach to transform sequence

124

{((4ewe)puss‘++ures | qu)}

*A._mE_l—lmﬂmm‘_OVW = J8jjouoDyoelt
= bm_U:meu»m_._.—Dummwco.;O< = 4 —Dvwmwco_u0<
nzZy1eb Ocy1eb

3 A

= 09} = JBI0AUeDNE!,
{ta} = wwuerpeL) {ca} = Ll

A 4

(2o} = Pueropeit) | {1509} = soBUOONERL) |

A A

ABIPUDHYODLL
abas HIH

43j0duOYODLL.

abas L1

plusazBw ! | o
es0p = ! I | boogimuonenpml
“BuiSSOIOUIBM_) { | <<UOIR | H>>
[>TELETETT S - ! L t'e 4
E (5w, Bn=sedouniiy) [esie] ado / fo==uje11qu) “ za) Jows " __
<<qas|H>>
SUBUILILED [{ | Josuaginduy
7 zwaagiewp “ 5] H SUW 0005
e gz ule1 ON ‘ orpouad)=jeId}
- oGO -
{(5wPB)=rmdsmL 11} pority - N “+UBILQU) -4 - <quenapy>>
7 viveazipun . Nnduosuss
L //awe JsjuabilipHdeL Forgndl Je|pueHyaRL), ‘SHQUOOHOBIL losuag
P ; “rHURLL QU <<UBLINUOIIG>>

{(sw, nb)=recuatu| 11}
<<IOELH>>

/ : Olinduposuas ,
=nB-g)m e |4} —. D Umm

Actions Induced by SeqD1
125

Figure 6.17

{{lumogob)puss}

= fajjonueoelen
Nocmmm:o_ﬂo<

{{(esoj0)pu

os'(Buissoinyorem))puss)}
= hm_ucwzv_om_._.mmuwwm:o.:g

i

Deyieb

{umoganop}
= %F0, 1 asSUOIIOY
Ozyieb
[[}
Sneaon / 3nco
UMD(IBAO / UMDQ0D) il

UmoC10B/esol0

*wmwumﬁc 11
E) 2] = JeipuBHpe.
ﬁmw JofpUeHy; ._._.mh._.

» % {08} = _m_v.m:,_um_._.m i

{ra} = o9y {ta'Za} = *tomooveD) | {ra%8} H e

e/
Al

{{ s, Bi)mrediorun 11}

<<REIH>>

22[j04UOJDD). Lajpuppny],
Ssmﬂ sl gLl
-t - sa.s__n_%i
I | 1= <UOJIRLH>>
b ekt al
|11 umoqgob ! _
el T asop
| u. gluaAZown
=-! {su’'o00y
oﬁo_sn =1eld}

<<JUBAS .Evv

alen Jsganucoeies AC»EPEVV
<<UBLNOUCAY>> IgjpueKyRIL

Nogm

Actions Induced by SeqD2

Figure 6.18

126

dnenow / doe

{dnBuiron}

|G
= R0 <SUOIOY

t

UMOGSADW / UMOQOD w

OgHiab

UMIGAB/SO0

lesia]

d
’ “H4UIRIL AU
iaqus PP /o1 indujiosuas

“++uel qu
/btgnnduyosuas

ado / [p==ures1qu]

ueAgiewsy
50
Bussarouotem
CT S
(s, B)mseqaw| L 1u}

<<qes1y>>

»7 zweaziewn

yorouddyyorem
1 nueiewy

{sw,'pB
-pb-Eljreqewi |6}

: {(dnoB)puas}
= .w._o:coomumwm nvwwwco_ﬂu(
% {{{uado)pues
- JE (p==uresjqu)y ‘--upes j qu)}
. = 1BjOIIUOONIBI L Juwwm:o_uo/\
{(uxe)puas}
_ ozeh = E.v:m:xom#mocm gSUoOY
5 t
OgHieb
{ta} = oﬁwmh.r {8a} = i_EERuEnwx._;_. {ea} = .n__o::oOqu.rx_.r {os} = E_u_.mxxom._»m_._.
. o%ﬂ.:. ('sa) = i.o%hoosmoh 1 {re'te} = Lo._u%ooxunf " {+a'0a} n4 apuEERIL) |
E P — oLy | 5 s LT ‘

! uado

ssuLIReR

{{sw,
os)=uopainp L}
<<UONORLE>>

pluaAZIEWN

flsw,'a00t
“ oipoued,J=1end}
<QUBADLH>>

_ BjERLOOBIED _ h.%s:ooxus» _ _’_m_ucmrxuﬁ._. _
O’ 10

<<BULLE>>

A0

eabag

Induced by SeqD3

0ons

Act

Figure 6.19

127

ACHONSyackconrater = {(NDTrains-+; send{enter)), (nbTrain--; (ifinbTrain==0) send{open))))

ACtioNSrracandeser = {(CreateTimer), |

10SSing);) lmmlm(im)
» ActionScasconer = {(send{goDown)), (send{GoUp)} }
Actionsgas = {{MoveDown), (MoveUp) }
Actions = ACHONS rrckcontmier W ACHONS Trcittandier U ACONSGatsControter W ACHDNS 5ae
inputSensor Al

A2
creats Timer

B.2
Send{GoDown)

ALl Al2
nbTrain++, end(enter)

TimerEvent3

B3
MoveDown

_ TimerEventd4

ci1 o c3 C4
Send(exit) bTain; Send{GoUp) MoveUp
lfnbiTrain==0) Send{open)

Figure 6.20: End-to-End Transactions Induced by the Sequence Diagrams

<<SAaction>> <<SATrigger>>
{SApriority=2; {SAschedulable=$R3, SAaction
RTduration={(15,ms')} RTat={periodic’ 500, me’)} TEhproriye
A.2: createTimer <<SAresponse>> RTduration=(600, ms')}
SAabsDeadline=(450, ms’)} C.4: Movelp
<<SAaction>> C: timerEvent4 ,
<<RTTimer>> {SApriority=1;
" RTduration=(20,'ms')}
B.1.1: watchCrossing <<SAaclions> E <<SAResource>>
{SApriority=1; GGate
RTduration=(400,
<<SASchedRes>> ms’)}
TrkHdl: TrackHandler B.3: MoveDown) =
»> T <<SAaction>> E
{SApriority=1; A e
<<5ATriggers> — RTduration=(20,ms)] & Eg =]
{SAscheduiable=$R2, S 8.2:GoDown T £518
i e =1; Seq
RTat=("periodic’,500,'ms")} RTduration=(20,ms)] g ‘%ﬁ z
<<SAresponse>> . : Y 50
{SAabsDeadline=(650, s} ccShaciion>> B2 Close M-
B ti E‘ 13’ {SApriority=3; E
- Umerven Rtduration=(20,'ms’ AC
<<SAactionss CA: exit <<CRConcurrent>>
GC:GateConiroller
{SApriority=2; T
RTduration=(20,'ms’)}
Ad.2:enter
<<SAaction>>
T {SApriority=3;
RTduration=(20,'ms"}}
S:Sensor <<SASchedRes>> C.2.2: open
- TrkGH:Track
<<SATrigger>>
{SAschedulable=$R1,
RTat=periodic’,500,'ms")} A A
<<SAresponse>>
{SAabsDeadline=(3000,'ms')} . <<SAaction>>
AinputSensor ?;i?ﬁ::gl;’ {SApriority=3;

RTduration=(20,'ms")}
C.2.1: nbTrain—;
If{nbTrain == 0)

RTduration=(10,'ms")}
A1 nbTrain++

Figure 6.21: Generated UML/SPT-based Schedulability Model

128

diagrams with time constraints to observer timed automata. Knapp et al. address in [64]
the issue of consistency between the main UML artifacts used to model the real-time system
dynamic behavior: timed state machines and sequence diagrams with time constraints. The
former express the detailed design of the system and the latter specify the main scenarios.
This work proposed a technique for the verification of the consistency between the two views
based on UPPAAL timed automata. The timed state machines are compiled into timed
automata and the sequence diagrams annotated with time constraints are transformed into
observer timed automata. The latter transformation is a slight extension to the technique
proposed in [28]. The model checker UPPAAL is then used to verify the timed automata
with respect to the observer timed automata. This technique is embodied in a prototype

tool called HUGO/RT.

6.6 Conclusion

UML Model consistency is a challenging issue. It becomes worse when aspects such as
concurrency and time constraints are taken into account. We presented in this chapter a
framework for an incremental definition of the consistency in UML/SPT models. Within
this framework, we address respectively the syntactic and semantic consistency, which in-
cludes in addition to behavioral consistency, the concurrency-related consistency and time
consistency as these are important features of UML/SPT models. Considering the time
consistency of UML/SPT models, we focused on the consistency of a set of statecharts with
respect to time constraints modeled using sequence diagrams. Our approach to address this
issue is to use schedulability analysis techniques. We showed how to generate UML/SPT
model supporting such schedulability analysis techniques from statecharts and sequence
diagrams. This model can then be further transformed té appropriate task model using
techniques such as those we presented in Chapter 5.

The approach based on schedulability analysis for checking time consistency between stat-
echarts and sequence diagrams provides however a limited feedback to the designer. There
are other important questions that need to be addressed in future work. Indeed, when

the analysis shows that a design model is not time consistent, what can be done to fix

129

the inconsistency? Is it possible to provide more fine-grained feedback in pointing out the
origin of the inconsistency? What changes can be operated on the design model and/or the
deployment environment that might fix the problem? These remain open questions in this

thesis.

130

Chapter 7

Conclusion and Future Work

Real-time software systems are depioyed nowadays in many applications, including home
appliances, automotive, avionics, military applications, to mention just a few éxamples.
These systems should be logically correct and should satisfy a set of time constraints. In
addition, they are reactive and concurrent in order to handle the different concurrent events
that come from the environment in which these systems are deployed. Such characteristics
make the design of real-time softwaré systems complex and challenging.

Modeling is an important engineering activity, which relies on using models to raise the
abstraction level. This widens the engineers visibility and increases their control over the
complexity of the systems they are building/managing. The model-driven approach is
therefore adequate to address the complexity issue of real-time software systems.y It is very
advantageous to use models with rigorous semantics. This enables the verification and the
validation of designs and potentially the automatic synthesis of implementations. Taking
advantage of the models in the design of systems in general and real-time software systems
in particular requires two components of paramount importance: a modeling language and
a model-based development methdology/process.

The Unified Modeling Language is the de facto standard modeling language for software-
intensive systems. UML is successful because it is a visual language and therefore it is intu-
itive; it is a multi-view modeling language addressing different aspects of a system which is
very importance to deal with systems complexity; and finally, it is adaptable. Indeed, UML

is custornizable to different domains through its extensibility mechanisms and profiles. The

131

success of UML led to a surge of the interest in using UML by system engineering commu-
nity, system-on-chip community, and the real-time software systems community. UML is
adapted in these domains through specific and standard profiles such as the UML profile for
system engineering (SysML) [95] and the UML profiles for systems—on—chip [96]. The most
important UML profile for embedded and real-time systems is the OMG standard called
UML profile for schedulability, performance and time [91]. This profile is in the process of
a major revamp to lead to MARTE [97].

7.1 Contributions

In this thesis we have focused on the following issues:

e Limitations in UML/SPT expressiveness with respect to some real-time requirements

modeling needs.

e Lack of formal semantics which limits the possibility of automatic manipulation of
UML/SPT models. The domain models of this profile (i.e. its metamodel) have their

semantics defined in English.

e UML/SPT is designed to support schedulability analysis of real-time software systems.
There is however a semantic gap between UML/SPT models and the task models
expected /used by well-established real-time analysis techniques. It is then important
to close this semantic gap in order to enable the application of these techniques for

the validation of the schedulability property of a UML/SPT model.

e While the fact that UML provides a multi-view approach, through a multitude of
diagrams, is advantageous to cope with software systems complexity, this, on the other
hand, may lead to inconsistencies. Moreover, using UML/SPT to model real-time
systems, new aspects are taken into account, namely concurrency, time constraints,

and schedulability. These aspects may contribute to worsen the consistency issue.

Considering the complexity of a UML/SPT model, which is composed of several UML di-

agrams and which captures in addition aspects such as concurrency and time constraints

132

using appropriate stereotypes defined in the profile, it is difficult to provide one straightfor-
ward definition of the consistency of a UML/SPT model. We adopt an incremental approach
to the verification of the consistency of UML/SPT models. We distinguish, respectively the
syntactic and semantic levels. With regard to semantic consistency, we further decompose
it into behavioral, concurrency-related, and time consistency.

QOur main contributions in this thesis can be summarized as follows:

e A survey of the different UML profiles used to model real-times systems proposed in
the academia/industry and an assessment of their capabilities and limitations with
respect to a variety of criteria such as formal foundation, supported analysis and tool

support.

o A definition of an extension of UML/SPT using the UML extensibility mechanisms
and the profile definition methodology. This extension enables to capture in a UML/SPT
model multicast communications, which are required to model the behavior of proto-

cols used in distributed real-time systems, such as RMTP2.

e A formalization of the semantics of UML/SPT concurrency domain model using the
formalism of timed automata. This formal semantics enables using model check-
ing techniques in order to verify the concurrency-related consistency of a UML/SPT

model.

e A definition of an MDA-compliant approach to bridge the semantic gap between task

models used by schedulability analysis techniques and UML/SPT models.

e A prototype implementation of this approach using both a high level model trans-
formation language (ATL) and a low-level implementation using XML technologies

(XML schema and XSLT).

e A definition of an incremental framework for the verification of the consistency of
UML/SPT models. Within this framework we address the semantic consistency of
UML/SPT models. Concurrency-related consistency is checked using our timed au-

tomata semantics for the concurrency domain model. The verification of the time

133

consistency is enabled through our schedulability analysis approach of UML/SPT

models.

7.2 Future Work

Several issues are left open in this thesis. They can be summarized as follows:

e The metamodeling approach used for the definition of UML profiles in general and
| which we used for the extension of UML/SPT presents an interesting issue. Indeed,
the concepts required for a certain domain could be modeled in a variety of manners,
which leads to different metamodels. For instance, two different metamodels have been
proposed in [20] and [107] for the reliability prediction domain and used to extend
UML/SPT metamodel. Therefore, it is necessary to assess the consistency between

the different profiles and extensions.

e The feedback given by the schedulability analysis tool is limited to determining if an
end-to-end transaction is schedulable or not. While this is useful, a more fine-tuned
diagnostic, such as, which object-to-thread allocation is the cause of a missed deadline
would be more informative. In addition, reflecting the results of an analysis into the
original UML/SPT design model is limited in UML/SPT to some variables in the
UML/SPT stereotypes. This is however a UML/SPT intrinsic limitation [10].

¢ Our implementation of the model transformation takes as input the information mod-
eled using UML/SPT stereotypes. These stereotypes are not models on their own but
are closely linked to the UML design model. We assume that the information needed
by the transformation is extracted from the UML design model. Very few commercial
tools, however, implement the UML/SPT stereotypes, but we expect this to change
in the near future with the new UML profile, MARTE [97].

e Our approach on using schedulability analysis to verify the time consistency of a set of
statecharts with respect to a set of sequence diagrams with time constraints provides
a limited feedback to the designer. There are other important questions that need

to be addressed such as when the analysis shows that a design model is not time

134

consistent, what can be done to fix the inconsistency? Is it possible to provide more
fine-grained feedback in pointing out the origin of the inconsistency? What changes
can be operated on the design model and/or the deployment environment that might

fix the problem?

Finally, modeling, metamodeling, UML and its profiles are definitely the key con-
cepts of an effective MDD /MDA-based approach to the development and analysis of
software systems including real-time software systems. In this context, the different
profiles standardized by the OMG, including, the UML profile for system engineer-
ing (SysML), the UML profiles for systems-on-chip and the UML profile for real-time
(UML/SPT or MARTE), and the upcoming ones, form a UML-based modeling ecosys-
tem of domain specific languages. It is interesting to investigate a coherent framework
using all these different languages for a particular system requiring their modeling ca-

pabilities.

135

Bibliography

[]

[2]

3]

[5]

Nawal Addouche, Christian Antoine, and Jacky Montmain. UML Models for De-
pendability Analysis of Real-time Systems. In Proceedings of the IEEE International
Conference on Systems, Man & Cybernetics, pages 5209-5214, The Hague, Nether-
lands, 10-13 October 2004. IEEE.

R. Alur and D. Dill. Automata for Modelling Real-time Systems. In Proceedings of
ICALP’90, volume 443 of LNCS. Springer, 1990.

R. Alur and D. Dill. A Theory of Timed Automata. Theoretical Computer Sciences,
126(2):183-235, 1994.

Ludivic Apvrille, Jean-Pierre Courtiat, Christophe Lohr, and Pierre de Saqui-Sannes.
TURTLE: A Real-Time UML Profile Supported by Formal Validation Toolkit. IEEFE
Trans. Software Eng., 30(7):473-487, 2004.

Ludivic Apvrille, Pierre de Saqui-Sannes, and Ferhat Khendek. TURTLE-P: a UML
Profile for the Formal Validation of Critical and Distributed Applications. Software

and Systems Modeling (SOSYM), 5(4):449-466, 2006.

Egidio Astesiano and Gianna Reggio. An Attempt at Analysing the Consistency
Problems in the UML from a Classical Algebraic Viewpoint. In Martin Wirsing,
Dirk Pattinson, and Rolf Hennicker, editors, Recent Trends in Algebraic Development
Techniques, 16th International Workshop, WADT 2002, volume 2755 of LNCS, pages
56-81. Springer, 2003.

136

[7]

[10]

[11]

[12]

[13]

[14]

Simonetta Balsamo, Antinisca Di Marco, Paola Inverardi, and Marta Simeoni. Model-

Based Performance Prediction in Software Development: A Survey. IEEE Trans.
Software Eng., 30(5):295-310, 2004.

Sven Weber Bas Graaf and Arie van Deursen. Model-driven Migration of Supervisory
Machine Control Architectures. Avwailable online 28 June 2007 in the Journal of

Systems and Software, 2007.

Gabor Batori and Domonkos Asztalos. Using TTCN-3 for Testing Platform Indepen- |
dent Models. In Ferhat Khendek and Rachida Dssouli, editors, Testing of Communi-
cating Systems, 17th IFIP TC6/WG 6.1 International Conference (TestCom 2005),
volume 3502 of LNCS, pages 289-303. Springer, 2005.

Simona Bernardi and Dorina C. Petriu. Comparing two UML Profiles for Non-
functional Requirement Annotations: the SPT and QoS Profiles. In SVERTS, Lis-
bone, Portugal, October 2004.

Jean Bézivin, Slimane Hammoudi, Denivaldo Lopes, and Frédéric Jouault. Applying
MDA Approach for Web Service Platform. In Proceedings of the Fighth IEEE In-
ternational Enterprise Distributed Object Computing Conference, (EDOC’0/), pages
58-70. IEEE Computer Society, 2004.

Jean Bézivin and Frédéric Jouault. Using ATL for Checking Models. Electr. Notes
Theor. Comput. Sci., 152:69-81, 2006.

Jean Bézivin, Frédéric Jouault, Peter Rosenthal, and Patrick Valduriez. Modeling in
the Large and Modeling in the Small. In Uwe ABimann, Mehmet Aksit, and Arend
Rensink, editors, Model Driven Architecture, Furopean MDA Workshops: Founda-
tions and Applications, MDAFA 2003 and MDAFA 2004, volume 3599 of LNCS,

pages 33—46. Springer, 2005.

Grady Booch. Object-Oriented Analysis and Design with Applications. Benjamin—
Cummings, Redwood City, Calif., 2nd edition, 1994.

137

[15]

[16]

[17]

[18]

[21]

Marius Bozga, Susanne Graf, and Laurent Mounier. IF-2.0: A Validation Environ-
ment for Component-Based Real-Time Systems. In Ed Brinksma and Kim Guld-
strand Larsen, editors, Computer Aided Verification, 14th International Conference,

(CAV’2002), volume 2404 of LNCS, pages 343-348. Springer, 2002.

Lionel C. Briand, Yvan Labiche, and Y. Miao. Towards the Reverse Engineering
of UML Sequence Diagrams. In Arie van Deursen, Eleni Stroulia, and Margaret-
Anne D. Storey, editors, 10th Working Conference on Reverse Engineering (WCRE
2003), pages 57-66, Victoria, Canada, 13-16 November 2003. IEEE Computer Society.

Frank Budinsky, David Steinberg, Ed Merks, Raymond Ellersick, and Timothy J.
Grose. Eclipse Modeling Framework : a Developer’s Guide. The eclipse series.

Addison-Wesley, 2004.

Eric Cariou, Raphaél Marvie, Lionel Seinturier, and Laurence Duchien. OCL for the
Specification of Model Transformation Contracts. In In the Workshop OCL and Model
Driven Engineering of the Seventh International Conference on UML, pages 69-83,
October 2004.

Franck Chauvel and Jean-Marc Jézéquel. Code Generation from UML Models with
Semantic Variation Points. In Lionel C. Briand and Clay Williams, editors, 8th In-
ternational Conference Model Driven Engineering Languages and Systems (MoDELS
2005), volume 3713 of LNCS, pages 5468, 2005.

Vittorio Cortellessa and Antonio Pompei. Towards a UML Profile for QoS: a Contri-
bution in the Reliability Domain. In Proceedings of the 4th international workshop on
Software and performance (WOSP’04), pages 197-206, New York, NY, USA, 2004.
ACM Press.

Andrea D’Ambrogio. A Model Transformation Framework for the Automated Build-
ing of Performance Models from UML Models. In Proceedings of the Fifth Inter-
national Workshop on Software and Performance (WOSP’05), pages 75-86. ACM,
2005.

138

[22]

[23]

[24]

[25]

[26]

27

[28]

[29]

Werner Damm, Bernhard Josko, Amir Pnueli, and Angelika Votintseva. Understand-
ing UML: A Formal Semantics of Concurrency and Communication in Real-Time
UML. In Formal Methods for Components and Objects, First International Sympo-
stum, FMCO 2002, pages 71-98, 2002.

Werner Damm, Bernhard Josko, Amir Pnueli, and Angelika Votintseva. A Discrete-
time UML Semantics for Concurrency and Communication in Safety-critical Applica-

tions. Sci. Comput. Program., 55(1-3):81-115, 2005.

Miguel A. de Miguel. General Framework for the Description of QoS in UML. In
IEEE Computer Sociéty, editor, Sizth IEEE International Symposium on Object-
Oriented Real-Time Distributed Computing (ISORC’03), pages 61-70, Hakodate,
Hokkaido, Japan, May 2003.

Bruce Powel Douglass. Real Time UML: Advances in the UML for Real-Time Systems.
Addison-Wesley Professional, 2004.

Eclipse. Eclipse Official Web Site. http://www.eclipse.org/.

E. Erpenbach. Compilation, Worst-Case Ezecution Times and Schedulability Analysis
of Statecharts Models. Phd thesis, Department of Mathematics and Computer Science

of the University of Paderborn, April 2000.

Thomas Firley, Michaela Huhn, Karsten Diethers, Thomas Gehrke, and Ursula Goltz.
Timed Sequence Diagrams and Tool-Based Analysis - A Case Study. In Robert B.
France and Bernhard Rumpe, editors, UML’99: The Unified Modeling Language -
Beyond the Standard, volume 1723 of LNCS, pages 645—660. Springer, 1999.

Stephan Flake and Wolfgang Mueller. A UML Profile for Real-Time Constraints
with the OCL. In Jean-Marc Jézéquel, Heinrich Hussmann, and Stephen Cook, edi-
tors, UML 2002 - The Unified Modeling Language. Model Engineering, Languages,
Concepts, and Tools. 5th International Conference, Dresden, Germany, Septem-

ber/October 2002, Proceedings, volume 2460 of LNCS, pages 179-195. Springer, 2002.

139

[30]

[31]

[32]

[33]

[34]

[35]

[36]

Robert B. France, Sudipto Ghosh, Trung T. Dinh-Trong, and Arnor Solberg. Model-
Driven Development Using UML 2.0: Promises and Pitfalls. IEEE Computer,
39(2):59-66, 2006.

L. Groenewegen G. Engels, J. M. Kiister and R. Heckel. A Methodology for Specifying
and Analyzing Consistency of Object-oriented Behavioral Models. In Volker Gruhn,
editor, Proceedings of the 8th FEuropean Software Engineering Conference (ESEC),
page 186195. ACM Press, 2001.

Vahid Garousi, Lionel C. Briand, and Yvan Labiche. Control Flow Analysis of UML
2.0 Sequence Diagrams. In Model Driven Architecture - Foundations and Applications,
First European Conference, ECMDA-FA 2005, volume 3748 of LNCS, pages 160-174,

Nuremberg, Germany, November 7-10 2005. Springer.

S. Gérard and F. Terrier. UML for Real-Time: Which Native Concepts to Use?
In Luciano Lavagno, Grant Martin, and Bran Selic, editors, UML for Real Design
of Embedded Real-time Systems, pages 17-51. Kluwer Academic Publishers, Norwell,
MA, USA, 2003.

Sébastien Gérard and Ileana Ober. Parallelism/Concurrency Specification within

UML. In Workshop on Concurrency Issues in UML, 2001. White paper.

Abdelouahed Gherbi and Ferhat Khendek. On the Design and Schedulability Analysis
of Distributed Object-Oriented Real-time Systems. In Proceedings of the WiP session
of 17th Euromicro Conference on Real-time Systems, ECRTS 2005, Also available as
IRISA Internal Publication number 1726, Palma de Mallorca, Balearic Islands, Spain,
2005.

Abdelouahed Gherbi and Ferhat Khendek. Distributed Real-Time Behavioral Re-
quirements Modeling Using Extended UML/SPT. In Reinhard Gotzhein and Rick

‘Reed, editors, System Analysis and Modeling: Language Profiles, 5th International

Workshop, SAM 2006, volume 4320 of LNCS, pages 34—48. Springer, 2006.

140

[37]

[38]

[39]

[40]

[41]

Abdelouahed Gherbi and Ferhat Khendek. From UML/SPT Models to Schedulability
Analysis: a Metamodel-Based Transformation. In #F IEEE International Symposium
on Object-Oriented Real-Time Distributed Computing (ISORC 2006), 24-26 April
2006, Gyeongju, Korea, pages 343-350. IEEE Computer Society, 2006.

Abdelouahed Gherbi and Ferhat Khendek. UML Profiles for Real-Time Systems and
their Applications. Journal of Object Technology, 5(4):149-169, May-June 2006.

Abdelouahed Gherbi and Ferhat Khendek. Consistency of UML/SPT Models. In
E. Najm E. Gaudin and R. Reed, editors, 13th System Design Language Forum, SDL
Forum 2007, volume 4745 of LNCS, page 203224. Springer, 2007.

Abdelouahed Gherbi and Ferhat Khendek. From UML/SPT Models to Schedulability
Analysis: Approach and a Prototype Implementation using ATL and XML. Revision

Submitted to Automated Software Engineering Journal, 2007.

Abdelouahed Gherbi and Ferhat Khendek. Timed-Automata Semantics and Analysis
of UML/SPT Models with Concurrency . In 10?* IEEE International Symposium

| on Object and Component-Oriented Real-Time Distributed Computing (ISORC’07),

42

[43]

44

[45]

pages 412-419. IEEE Computer Society, 2007.

Hassan Gomaa. Designing Concurrent, Distributed, and Real-Time Applications with

UML. Addison-Wesley Professional, 2000.

Bas Graaf and Arie van Deursen. Model-Driven Consistency Checking of Behavioural
Specifications. In Fourth International Workshop on Model-Based Methodologies for
Pervasive and Embedded Software (MOMPES’07), pages 115-126. IEEE Computer
Society, 2007.

Susanne Graf, Ileana Ober, and Iulian Ober. Timed Annotations with UML. In

SVERTS, San Francisco, USA, October 2003.

ATLAS group. KM3: Kernel MetaMetaModel Manual - version 0.3 -, 2005.

141

[46]

[47]

[48]

0]

[50]

[61]

[52]

[53]

[54]

Gordon P. Gu and Dorina C. Petriu. From UML to LQN by XML Algebra-based
Model Transformations. In WOSP '05: Proceedings of the 5th International Workshop
on Software and Performance, pages 99-110. ACM Press, 2005.

Zonghua Gu and Zhimin He. Real-Time Schéduling Techniques for Implementation
Synthesis from Component-Based Software Models. In George T. Heineman, Ivica
Crnkovic, Heinz W. Schmids, Judith A. Stafford, Clemens A. Szyperski, and Kurt C.
Wallnau, editors, Component-Based Software Engineering, 8th International Sympo-
situm, CBSE 2005 Proceedings, volume 3489 of LNCS, pages 235-250, St. Louis, MO,
USA, 2005. Springer.

David Harel. On Visual Formalisms. Communication of the ACM, 31(5):514-530,
May 1988.
(Aystein Haugen. Comparing UML 2.0 Interactions and MSC-2000. In System Analysis

and Modeling, 4th International SDL and MSCWorkshop, (SAM’ 2004), volume 3319
of LNCS, pages 6579, Ottawa, Canada, June 2005. Springer.

Constance L. Heitmeyer and Nancy A. Lynch. The Generalized Railroad Crossing: A
Case Study in Formal Verification of Real-Time Systems. In Proceedings of the 15th
IEEE Real-Time Systems Symposium (RTSS °94), pages 120—131, San Juan, Puerto
Rico, 1994. IEEE Computer Society.

L. Hélouét. Distributed System Requirements Modeling with Message Sequence
Charts. International Journal of Information and Software Technology, 45:701-714,
2003.

Jon Holt. UML (Unified Modelling Language) for Systems Engineering. Institution

of Engineering and Technology, 2004.

Zbigniew Huzar, Ludwik Kuzniarz, Gianna Reggio, and Jean-Louis Sourrouille. Con-
sistency Problems in UML-Based Software Development. In UML Satellite Activities,

volume 3297 of LNCS, pages 1-12. Springer, 2004.
INCOSE. http://www.incose.org.

142

[55]
[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

The Open SystemC Initiative. SystemC. http://www.systemc.org.
ITU-T. SDL Combined with UML. 2000. ITU-T recommandation Z.109.

TUT-T. Message Sequene Charts (MSC-2000). ITU-T Recommendation Z.120,
November 1999.

Ivar Jacobson. Object-Oriented Software Engineering: a Use Case-driven Approach.

Addison-Wesley, Wokingham, England, 1995.

Frédéric Jouault, Freddy Allilaire, Jean Bézivin, Ivan Kurtev, and Patrick Valduriez.
ATL: a QVT-like Transformation Language. In Companion to the 21th Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications, (OOPSLA 2006), pages 719-720. ACM, 2006.

Frédéric Jouault and Jean Bézivin. KM3: A DSL for Metamodel Specification. In
Roberto Gorrieri and Heike Wehrheim, editors, Formal Methods for Open Object-
Based Distributed Systems, 8th IFIP WG 6.1 International Conference, FMOODS
2006, volume 4037 of LNCS, pages 171-185. Springer, 2006.

Frédéric Jouault and Ivan Kurtev. On the Architectural Alignment of ATL and QVT.
In Hisham Haddad, editor, Procéedz'ngs of the 2006 ACM Symposium on Applied
Computing (SAC’06), pages 1188-1195. ACM, 2006.

Frédéric Jouault and Ivan Kurtev. Transforming Models with ATL. In Jean-Michel
Bruel, editor, Satellite Fvents at the MoDELS 2005 Conference, MoDELS 2005, vol-
ume 3844 of LNCS, pages 128-138. Springer, 2006.

Anneke Kleppe, Jos Warmer, and Wim Bast. MDA Ezxplained: The Model Driven
Architecture: Practice and Promise. Object Technology. Addison-Wesley, 2003.

Alexander Knapp, Stephan Merz, and Christopher Rauh. Model Checking - Timed

UML State Machines and Collaborations. In Werner Damm and Ernst-Riidiger

Olderog, editors, Formal Techniques in Real-Time and Fault-Tolerant Systems, 7th
International Symposium (FTRTFT 2002), volume 2469 of LNCS, pages 395-416.

Springer, 2002.

143

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

Jana Koehler, Rainer Hauser, Shane Sendall, and Michael Wahler. Declarative Tech-
niques for Model-Driven Business Process Integration. IBM Systems Journal, 44(1),
2005.

Ingolf Kriiger, Wolfgang Prenninger, and Robert Sandner. Broadcast MSCs. Formal
Aspects of Computing, 16(3):194-209, 2004.

Jochen Malte Kiister and Joachim Stroop. Consistent Design of Embedded Real-Time
Systems with UML-RT. In 4** International Symposium on Object-Oriented Real-
Time Distributed Computing (ISORC 2001), 2-4 May 2001, Magdeburg, Germany,
pages 31-40. IEEE Computer Society, 2001.

Sha L., Abdelzaher T. F., Arzén K. E., Cervin A., Baker T. P., Burns A., Buttazzo
G.C., Caccamo M., Lehoczky J. P., , and Mok A. Real Time Scheduling Theory: A
Historical Perspective. Real-Time Syst., 28(2-3):101-155, 2004.

Kim G. Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a Nutshell. International
Journal on Software Tools for Technology Transfer, 1(1-2):134-152, 1997.

Luciano Lavagno, Grant Martin, and Bran Selic, editors. UML for Real: Design of
Embedded Real-time Systems. Kluwer Academic Publishers, Norwell, MA, USA, 2003.

Xuandong Li and Johan Lilius. Timing Analysis of UML Sequence Diagrams. In
Robert B. France and Bernhard Rumpe, editors, UML’99: The Unified Modeling
Language - Beyond the Standard, Second International Conference, volume 1723 of

LNCS, pages 661-674. Springer, 1999.

Xuandong Li and Johan Lilius. Checking Compositions of UML Sequence Dia-
grams for Timing Inconsistency. In 7" Asia-Pacific Software Engineering Confer-
ence (APSEC 2000), 5-8 December 2000, Singapore, pages 154-161. IEEE Computer
Society, 2000.

Peltier M, J Bzivin, and G Guillaume. MTRANS: A General Framework based on
XSLT for Model Transformations. In Proceedings of the Workshop on Transformations
in UML (WTUML’01), Genova, Italy, 2001.

144

[74] Gabor Madl, Sherif Abdelwahed, and Douglas C. Schmidt. Verifying Distributed
Real-time Properties of Embedded Systems via Graph Transformations and Model
Checking. Real-Time Systems, 33(1-3):77-100, 2006.

[75] G. Martin and W. Muller, editors. UML for SOC Design. Springer, 2005.

[76] P. Marwedel. Embedded System Design. Springer-Verlag New York, Inc., Secaucus,
NJ, USA, 2006.

[77] Stephen J. Mellor, Anthony N. Clark, and Takao Futagami. Guest editors’ introduc-
tion: Model-driven development. IEEE Software, 20(5):14-18, 2003.

[78] Miller and J. Mukerji. MDA Guide Version 1.0.1. OMG Document: omg/2003-06-01,
June 2003.

[79] T. Montgomery, B. Whetten, M. Basavaiah, S. Paul, N. Rastogi, J. Conlan, , and
T. Yeh. The RMTP2 Protocol IETF Draft. IETF (Internet Engineering Task Force),
April 1998.

[80] Birger Megller-Pedersen. SDL Combined with UML. Telektronikk, 4:36-53, 2000.

[81] W. Mueller, A. Rosti, S. Bocchio, E. Riccobene, P. Scandurra, W. Dehaene, Y. Van-
derperren, and Ku Leuven. UML for ESL Design: Basic Principles, Tools, and Appli-
cations. In ICCAD ’06: Proceedings of the 2006 IEEE/ACM international conference
on Computer-aided design, pages 73-80, New York, NY, USA, 2006. ACM Press.

[82] Iulian Ober, Susanne Graf, and Ileana Ober. Validation of UML Models via a Map-
ping to Communicating Extended Timed Automata. In Susanne Graf and Laurent
Mounier, editors, Model Checking Software, 11th International SPIN Workshop, vol-
ume 2989 of LNCS, pages 127-145. Springer, 2004. ’

[83] Iulian Ober and Ileana Stan. On the Concurrent Object Model of UML. In Patrick
Amestoy, Philippe Berger, Michel J. Daydé, Tain S. Duff, Valérie Frayssé, Luc Giraud,
and Daniel Ruiz, editors, Furo-Par ’99 Parallel Processing, 5th International Furo-

Par Conference, volume 1685 of LNCS, pages 1377-1384. Springer, 1999.

145

[84] OMG. Unified Modeling Language (UML) 1.3 Specification. version 1.3 formal/01-
09-67, March 2000.

[85] OMG. Unified Modeling Language (UML) 1.4 Specification. version 1.4 formal/01-
09-67, September 2001.

[86] OMG. MOF 2.0 Query / Views / Transformations RFP. OMG Document: ad/2002-
04-10, April 2002.

[87] OMG. UML Profile for Modelling Quality of Service and Fault Tolerance Character-
istics and Mechanisms. OMG Adopted Specification, ptc/2004-06-01, June 2004.

[88] OMG. Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification.

Final Adopted Specification ptc/05-11-01, November 2005.
[89] OMG. MOF 2.0/XMI Mapping Specification, v2.1. formal/05-09-01, September 2005.

[90] OMG. UML Profile for Modeling and Analysis of Real-Time and Embedded systems
(MARTE). Request For Proposals OMG Document: realtime/05-02-06, Fubruary
2005.

[91] OMG. UML Profile for Schedulability, Performance, and Time Specification. OMG
Adopted Specification Version 1.1, formal/05-01-02, January 2005.

[92) OMG. Unified Modeling Language: Superstructure. version 2.0 formal/05-07-04,
August 2005.

[93] OMG. Meta Object Facility (MOF) Core Specification. OMG Available Specification
Version 2.0 formal/06-01-01, January 2006.

[94] OMG. Object Constraint Language. OMG Available Specification Version 2.0
formal /06-05-01, May 2006.

[95] OMG. OMG Systems Modeling Language (OMG SysML) Specification. Final Adopted
Specification ptc/06-05-04, May 2006.

[96] OMG. UML Profile for System on a Chip (SoC). Awailable Specification Version 1.0
formal/06-06-01, June 2006.

146

[97]

[98]

[99]

[100]

[101]

[102]

[103]
[104]

[105)

[106]

[107]

OMG. A UML Profile for MARTE, Beta 1. Adopted Specification OMG Document:

ptc/07-08-04, Auguste 2007.

Guadalupe Ortiz and Juan Herndndez. Service-Oriented Model-Driven Development:
Filling the Extra-Functional Property Gap. In Asit Dan and Winfried Lamersdorf,
editors, 4th International Conference on Service-Oriented Computing - ICSOC 2006,
volume 4294 of LNCS, pages 171-185. Springer, 2006.

Ivan Paltor and Johan Lilius. Formalising UML State Machines for Model Checking.
In Robert B. France and Bernhard Rumpe, editors, UML’99: The Unified Modeling
Language - Beyond the Standard, Second International Conference, volume 1723 of

LNCS, pages 430—445. Springer, 1999.

Sanjoy Paul, Krishan K. Sabnani, John C.-H. Lin, and Supratik Bhattacharyya. Re-
liable Multicast Transport Protocol (RMTP). IEEE Journal On Selected Areas In
Communications, 15(3):407-421, April 1997.

Polly M. S. Poon, Tharam S. Dillon, and Elizabeth Chang. XML as a Basis for
Interoperability in Real Time Distributed Systems. In 2nd IEEE Workshop on Soft-
ware Technologies for Future Embedded and Ubiquitous Systems (WSTFEUS 2004),
Vienna, Austria, 2004. IEEE Computer Society.

Ivan Porres. A Toolkit for Model Manipulation. Software and System Modeling,
2(4):262-277, 2003. ’

Apache XML Project. Xalan Java Version 2.7.0. http://xml.apache.org/xalan-j .
Apache XML Project. Xerces2 Java Parser. http://xerces.apache.org/xerces2-j/.

Eclipse Modeling Project. Eclipse Modeling Project Web site.

http://www.eclipse.org/modeling,.
M2M Project. Eclipse M2M Project Web site. http://www.eclipse.org/m2m/.

Genana Nunes Rodrigues, David S. Rosenblum, and Sebastian Uchitel. Reliability
Prediction in Model-Driven Development. In Proc. ACM/IEEE 8th Int’l Conf. on

147

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

Model Driven Engineering Languages and Systems, volume 3713 of LNCS, pages 339-

354, 2005.

RTL. Software and Tools for Communicating Systems. http://www.laas.fr/RT-
LOTOS/.

James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy, and William
Lorensen. Object-Oriented Modeling and Design. Prentice-Hall, Englewood Cliffs,
NJ, 1991.

James Rumbaugh, Ivar Jacobson, and Grady Booch. Unified Modeling Language
Reference Manual, The (2nd Edition). Pearson Higher Education, 2004.

M. Saksena, P. Karvelas, and Y.Wang. Automated Synthesis of Multi-Tasking Imple-
mentations from Real-Time Object-Oriented Modéls. In 8rd International Symposium
on Object-Oriented Real-Time Distributed Computing (ISORC 2000), pages 360-367,
Newport Beach, CA, USA, March 2000. IEEE Computer Society.

Manas Saksena and Panagiota Kervelas. Designing for Schedulability: Integrating
Schedulability Analysis with Object-Oriendted Design. In The 12th Euromicro Con-

ference on Real-Time Systems, June 2000.

Manas Saksena and Bran Selic. Real-Time Software Design- Sate of the Art and

Future Challenges. IEEE Canadian Review, pages 5-8, Summer 1999.

B. Selic, G. Gullekson, and P.T. Ward. Real-Time Object-Oriented Modeling. John
Wiley and Sons, 1994.

B. Selic and L. Motus. Using Models in Real-Time Software Design. IEEE Control
Systems Magazine, 23(3):31-42. |

B. Selic and J. Rumbaugh. Using UML for Modeling Complex Real-Time Systems.

March 1998. Whitepaper Available from www.objectime.com.

Bran Selic. On the Semantic Foundations of Standard UML 2.0. In Formal Methods

for the Design of Real-Time Systems, International School on Formal Methods for the

148

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]
[126]

[12%]

Design of Computer, Communication and Software Systems, SFM-RT 2004, volume
3185 of LNCS, pages 181-199. Springer, 2004.

Bran Selic. A Systematic Approach to Domain-Specefic Language Design Using UML.
In 10** IEEE International Symposium on Object and Component-Oriented Real- Time
Distributed Computing (ISORC 2007), pages 2-9. IEEE Computer Society, 2007.

James Skene and Wolfgang Emmerich. A Model-Driven Approach to Non-Functional
Analysis of Software Architectures. In 18th IEEE International Conference on Au-
tomated Software Engineering (ASE 2003), 6-10 October 2003, Montreal, Canada,
pages 236-239. IEEE Computer Society, 2003.

OMEGA ST. Project. http://www-omega.imag.fr/.

John A. Stankovic. Misconceptions About Real-Time Computing. IEEE Computer,
21(10):10-19, 1988.

Telelogic. Telelogic Products. http://www.telelogic.com/products/.

TTool. A Toolkit for Editing and Validating TURTLE Diagrams.
http://www.eurecom.fr/ apirrille /TURTLE/index.html.

Tom Verdickt, Bart Dhoedt, Frank Gielen, and Piet Demeester. Automatic Inclu-
sion of Middleware Performance Attributes into Architectural UML Software Models.

IEEE Trans. Software Eng., 31(8):695-711, 2005.

W3C. XSL Transformations (XSLT) Version 1.0 W3C Recommendation 16 November
1999. http://www.w3.org/TR/xslt, 1999.

W3C. Validator for XML Schema REC (20010502) version.
http://www.w3.0rg/2001/03/webdata/xsv, 2005.

Yun Wang and Manas Saksena. Scheduling Fixed-Priority Tasks with Preemption
Threshold. In 6th International Workshop on Real-Time Computing and Applications
Symposium (RTCSA ’99), 13-16 December 1999, Hong Kong, China. IEEE Computer

Society.

149

[128] Gwang Sik Yoon and Yong Rae Kwon. Extending MSC for Reactive Systems. In
IEEE CS International Symposium on Human-Centric Computing Languages and
Environments (HCC’2001). IEEE Computer Society, 2001.

[129] Justyna Zander, Zhen Ru Dai, Ina Schieferdecker, and George Din. From U2TP
Models to Executable Tests with TTCN-3 - An Approach to Model Driven Testing.
In Ferhat Khendek and Rachida Dssouli, editors, Testing of Communicating Systems,
17th IFIP TC6/WG 6.1 International Conference(TestCom 2005), volume 3502 of
LNCS, pages 289-303. Springer, 2005.

[130] Tong Zheng and Ferhat Khendek. An Extension for MSC-2000 and Its Application. In
Edel Sherratt, editor, Telecommunications and beyond: The Broader Applicability of
SDL and MSC, Third International Workshop, (SAM 2002), volume 2599 of LNCS,
pages 221-232. Springer, 2003.

[131] Tong Zheng and Ferhat Khendek. Time Consistency of MSC-2000 Specifications.
Computer Networks, 42(3):303-322, 2003.

150

