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Abstract

Avoiding State Enumeration in Dynamic Checking of Distributed
Programs

Eslam Al Maghayreh, Ph.D.
Concordia University, 2008

Distributed programs are particularly vulnerable to software faults. Bugs in these
programs are usually very hard to detect without automatic verification. The idea
of checking an expected property in a given distributed program run (also referred
to as runtime verification) has recently been attracting a great deal of attention for
analyzing execution traces to ensure the reliability and dependability of distributed

programs.

Due to concurrency, the number of global states of a distributed program run tends
to grow exponentially with respect to the number of program statements executed.
As a result, checking the satisfaction of a property in a given distributed program run
can incur significant overhead. This thesis introduces various ideas and exploits them
to develop efficient dynamic property checking algorithms. These include the use of
atoms, introducing and exploiting the notion of serialization and finally proposing a
methodology that exploits the concept of atoms and partial order semantics to specify
and to check properties of distributed programs.

The abstract specification of a distributed program can be mapped to the lower
level implementation by labeling the code blocks that belong to the abstract function-
alities of the program that are expected to be performed atomically. Each labeled

code block is called an atom. Dynamically, an atom includes all the events that
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result from executing the selected statements from the corresponding code block.
An efficient on-the-fly atomicity error detection algorithm has been developed. It is
shown that if a run of a distributed program is atomic then the required properties
can be checked on a reduced lattice, referred to as the atomic state lattice, which is

significantly smaller than the original state lattice.

Even with atomization, the number of global states can still grow exponentially in
the number of atoms executed. However, when a number of processes has to maintain
a property, we expect that each process will be, at some point in time, aware of the
events of other processes that may affect the property. Consequently, it is not neces-
sary to check the property in each state. Only synchronized states, where processes
have already exchanged the information necessary to maintain the property, need
to be considered. These states can be characterized by a synchronization predicate.
Serialization of synchronized states is the minimal avenue for a set of processes to
exchange the necessary information to maintain a property. Two efficient algorithms
to check the satisfaction of a property in a distributed computation in cases where

the synchronization predicate is conjunctive or disjunctive have been developed.

Finally, a methodology based on the concept of atoms and a partially ordered
multi-set (POMSET) model to specify and to check distributed programs properties
has been proposed. The POMSET model promotes the separation of two different
concerns in specifying and checking properties, namely, the ordering requirements and
the computational requirements. A methodology to specify and to efficiently check

the two requirements has been introduced.
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Chapter 1

Introduction

1.1 Motivation

Distributed programs are particularly hard to write and to reason about their correct-
ness due to their asynchronous nature where processes do not share any memory or
clock. Verification and validation of distributed programs and software fault-tolerance
are important ways to ensure reliability of distributed programs. Detecting a fault in
an execution of a distributed program is a fundamental problem that arises during the
verification process. A programmer, upon observing a certain distributed computa-
tion, can check whether the observed computation satisfies some expected properties

in order to detect bugs.

Traditional methods to detect bugs in concurrent programs include testing and
formal methods such as model checking and theorem proving. Testing is an ad hoc
technique that does not allow for formal specification and verification of the proper-
ties that the program needs to satisfy. Formal methods work on an abstract model

of the program. Consequently, even if a program has been formally verified, we



still cannot be sure of the correctness of a particular implementation. However, for
highly dependable systems, it is important to analyze the particular implementation

[GMS06, OBFRY6].

The idea of checking whether a distributed program run satisfies an expected prop-
erty (runtime verification) has recently been attracting a lot of attention for analyzing
distributed computations [GLMO07, GMS06, SLS05, Gar02, CG98, OBFR96, CG95].
Runtime verification is more practical than other verification methods such as model
checking and testing. Runtime verification verifies the implementation of the sys-
tem directly rather than verifying a model of the system as done in model checking.

It is also based on formal logics and provides formalism, which is lacked in testing

[OBFR96].

The execution of a distributed program involves the concurrent advancement of
multiple processes that work together to perform the necessary functions. Due to
concurrency, the number of global states of an execution can grow exponentially with
respect to the number of program statements executed. A set of n concurrent events
forms 2" states. As a result, deciding whether a distributed computation satisfies a
global predicate (property) can incur significant overhead. It has been proved that

the detection of a general property in a given distributed program computation is

NP-complete [CG98].

1.2 Research Goals

From the previous section we can see that analyzing a distributed computation is
essential to ensure reliability and dependability of such systems, and at the same

time is difficult due to the state explosion problem.



Researchers have introduced several ideas to overcome this problem. In [CG98],
the structure of the property to be checked in a given distributed program run is
exploited to develop efficient property checking algorithms. In [MGO1], the concept
of computation slicing has been introduced as an abstraction technique to facilitate
analyzing distributed computations. In [Lam90], Lamport has introduced an atom-
icity theorem that can be used to reduce the state space that needs to be considered
for property checking. Chapter 2 contains a more comprehensive discussion of the

above and other strategies used to tackle the state explosion problem.

This research continues the effort to tackle the state space explosion in global
property checking. In this thesis, we investigate various ideas to reduce the cost of
checking a property in an observed distributed computation. These include the use of
atoms, introducing and exploiting the notion of serialization and finally proposing a
methodology that exploits the concept of atoms and partial order semantics to specify

and to check properties of distributed programs.

Design time knowledge can be used to abstract a distributed program into a
set of atoms. Statically, each atom is mapped into a code block in the program.
Dynamically, an atom is mapped to the events resulting from the execution of the
corresponding code block. We have shown that the notion of atoms is effective in

reducing the state space that needs to be considered in property checking.

When a number of processes have to maintain a shared property, we expect that
each process should be, at some point in time, aware of the events of other processes
that may affect the shared property; otherwise it will be hard for these processes to
maintain the shared property. Based on this observation we have proposed a property
checking procedure that involves three steps: identifying the set of states where the

property needs to be checked, checking that these states form a sequence in which



each state is a proper subset of the next, and finally checking the property in each
identified state. We refer to the requirement in the second step as the serialization
requirement. This requirement guarantees that the number of states that need to be
considered in property checking will be bounded by the number of atoms executed.

Consequently, the cost of property checking will be significantly reduced.

A partial order model of a distributed computation represents concurrency ex-
plicitly as opposed to an interleaving model where concurrency is implicitly modeled
by commuting the corresponding events in separate linear traces. Therefore a partial
order model is a more realistic representation of concurrency. We have introduced
a methodology that combines the benefits of atoms and partial order semantics to
specify the properties of a distributed program in a way that can be efficiently checked
in a given distributed computation. The following section describes the contributions

of this thesis in more detail.

1.3 Contributions

There are different layers of abstraction relevant in considering the correctness of a
distributed program. In the lower layer associated with the coding platform, the
execution of each program statement is an atomic event. In the higher layer, each
process of a distributed program executes atoms. A code block can be statically
identified as an atom. At run time, an atom includes all the events that result from
executing the statements in the corresponding code block. The result of the events in
each atom should be as if they were executed in sequence without interleaving with
any event of any other atom. The work presented in Chapters 3 and 4 adopts the
use of design time knowledge to identify the set of atoms that can be executed by a

given distributed program.



Given the set of atoms and a distributed program run, we have defined what an
atomic run is, and developed an efficient on-the-fly algorithm to detect atomicity
errors. We have proved that if the run is atomic then a reduced state lattice exists,
referred to as the atomic state lattice. If the run is atomic then properties can
be checked on the atomic state lattice, which is much smaller than the original state
lattice and hence the cost of property checking can be significantly reduced [LMGO07a,
LMGOT7b].

A programmer may incorrectly or incompletely identify the set of atoms in a given
distributed program. We have studied the effects of this problem on the conclusions
about the atomicity of a run and the satisfaction of a property in the atomic state
lattice. Namely, we have answered the following questions: assuming that the pro-
grammer has incompletely or incorrectly identified the atoms, will the conclusion
about the atomicity of the run remain valid? Will the conclusion about the satisfac-

tion of a property in a given run remain valid? [LMGO7b).

Although the purpose of atomicity error checking is to ensure the atomicity of
the run and hence the existence of the atomic state lattice where properties can be
checked more efficiently, the presence of atomicity errors can also be an indication of

the presence of errors in the program that a programmer needs to locate and fix.

Even with atomization, it is still difficult to check certain properties in large
distributed programs. We have introduced and exploited the notion of serialization
to efficiently check general properties in large distributed programs. Processes that
have to maintain a shared property need to exchange the information necessary to
maintain the property. This indicates that it is not necessary to check a property in
every state. Only synchronized states, where processes have already exchanged the

necessary information to maintain the property, need to be considered in property



checking. These states can be characterized by a synchronization predicate.

However, the number of such synchronized states can be exponential and hence it is
still difficult to check general properties. To deal with this problem we have exploited
the following idea: instead of directly concentrating on checking the satisfaction of a
property in a given distributed computation, we will first try to answer the following
question: is it reasonable to expect that the distributed program will be able to
maintain the property under consideration? Earlier, we have mentioned that processes
that need to maintain a shared property have to be aware of the events of each other
that may affect the property, and hence if this requirement is satisfied then we can
expect that the program will be capable of maintaining the expected property. This
requirement can be guaranteed if the synchronized states are serialized; meaning that
each synchronized state is a proper subset of the next. The serialization requirement
guarantees that the number of synchronized states where a property needs to be

checked will be bounded by the number of atoms executed.

Based on the above ideas, we have introduced a property checking procedure that
involves three tasks. The first task is to identify the synchronization predicate that
characterizes the states where the property under consideration needs to be checked.
The second task is to check that all of the synchronized states satisfy the serialization
requirement, and the final task is to check the property in each synchronized state.
If the set of synchronized states is serialized and each state in it satisfies the property
that we need to check, then we can conclude that the given distributed computation
satisfies the expected property.

We have developed two algorithms to check the satisfaction of a general property
in a given distributed computation in the cases where the synchronization predicate

is conjunctive or disjunctive [LMO7b]. It is important to note that the above tasks



need not be accomplished in sequence; they can overlap as it will be illustrated later

in this thesis.

Finally, we have proposed a methodology that exploits the concept of atoms and
partial order semantics to specify and to check properties of distributed programs
efficiently. Atoms are used to simplify the analysis by compressing the events of a
distributed computation into a much smaller number of atoms. We have shown that
reordering of independent events in a process can be exploited to merge a sequence
of well-formed atoms into a larger well-formed atom. As a result, the atomization
will contain a smaller number of atoms leading to a reduction in the cost of mon-
itoring/checking. Moreover, since not every atom is directly relevant to a required
program property, we have introduced the notion of an atom slice. An atom slice con-

tains the smallest number of atoms that need to be monitored and checked [LMO07a).

Partial order semantics promotes the separation of two different concerns in spec-
ifying and checking properties of a distributed computation. The first concern is the
necessary ordering among atoms, and the second is the correctness of each atom. We
have adapted a POMSET automaton model to specify the ordering requirements that
a given distributed program must satisfy. Computational requirements are modeled
as a general predicate that needs to be satisfied at the minimal prefix of each atom. A
tool for checking distributed programs based on this methodology is currently being

implemented by other members of our research group.

1.4 Organization of the Thesis

The rest of this thesis is organized as follows: Chapter 2 reviews the background and
discusses the related work in the literature. Chapter 3 presents the model of atomicity

and explains in detail how atoms can be useful in reducing the state space that needs

7



to be considered in property checking. This chapter also presents an efficient on-the-
fly atomicity error detection algorithm along with its proof of correctness. Chapter
4 discusses the effects of incomplete and/or incorrect knowledge of atoms on the
conclusions made about the atomicity of a given distributed computation and the
satisfaction of a property in that computation. Chapter 5 introduces the concepts of
synchronized atoms and serialization and explains how it can be exploited to develop
efficient property checking algorithms. Chapter 6 presents a hierarchy of atoms that
can be used for the purpose of abstracting a distributed program computation. It also
proposes a methodology that exploits the concept of atoms and a partially ordered
multi-set (POMSET) model of a distributed computation to specify and efficiently
check the satisfaction of a property in a given distributed program computation.

Finally, Chapter 7 concludes the thesis.



Chapter 2

Background and Related Work

2.1 Introduction

Distributed programs are particularly vulnerable to software faults. These programs
often contain bugs, which are very difficult to detect without automatic verification.
Verification of distributed programs and software fault-tolerance are important ways
to ensure the reliability of distributed systems. Detecting a fault in an execution
of a distributed system is a fundamental problem that arises during the verification
process. A programmer upon observing a certain distributed computation for bugs

can check whether the observed computation satisfies some expected property.

The idea of checking whether a distributed program run satisfies an expected
property (also referred to as runtime verification) has recently been attracting
a lot of attention for analyzing execution traces [GLMO07, GMS06, SLS05, Gar02].
Runtime verification is more practical than other verification methods such as model
checking and testing. Runtime verification verifies directly on the implementation of

the system rather than on the system model as done in formal verification methods



such as model checking. It is also based on formal logics and provides formalism,
which is missing in testing.

The execution of a distributed program involves the concurrent advancement of
multiple processes that work together to perform the necessary functions. Due to
concurrency, the number of global states of an execution can grow exponentially
with respect to the number of program statements executed. A set of n concurrent
events forms 2" states. As a result, deciding whether a distributed computation
satisfies a global predicate (property) can incur significant overhead. In this chapter
we will present the theoretical background necessary for the proper understanding of
the following chapters and we will discuss several techniques introduced by different

researchers to handle the state space explosion problem.

The rest of this chapter is organized as follows: Section 2 presents a model of a
distributed computation. Section 3 presents the two main approaches used to verify
distributed programs. Section 4 explores some of the logics used to formally specify
the properties that a programmer may need to check. Section 5 briefly describes
the difficulty of observing global properties of distributed programs. Sections 6 to
10 are dedicated to review a variety of strategies for ameliorating the state explosion
problem that have been explored in the literature. These strategies include: exploiting
the structure of the property, atomicity, program slicing, partial order reduction and

exploiting partial order semantics.

2.2 A Distributed Computation Model

One of the important issues in reasoning about a distributed program is the model
used for a distributed computation. In this section, we will present a distributed

system model and a model for capturing the behavior of a distributed program.

10



2.2.1 A Distributed System Model

We assume a loosely-coupled message-passing distributed program without any shared
memory or global clock. It consists of n processes denoted by P, P, ..., P, and a set
of unidirectional channels. A channel connects two processes. The delay incurred in
sending a message through a channel is arbitrary but finite. The state of a channel
at any point is defined to be the sequence of messages sent along that channel but

not received.

2.2.2 The Happened-before Model of a Distributed Compu-

tation

An event marks the execution of a statement. It can be an internal computational
event or an external message event. Lamport [Lam78] has argued that, in a true
distributed system, events can only be partially ordered. Events are related by either
their execution order in a process or message send/receive relations across processes.
The traditional happened-before relation (—) between events applies to all events

executed [Lam78].

A run of a distributed program is an event structure (E, —) formed by the set

of events executed (E) and the happened-before relation (—) among these events.

A run of a distributed program can be viewed in terms of a two dimensional space
time diagram. Space is represented in the vertical direction and time in the horizontal
direction. Circles are used to depict events. Transmission of a message is represented
by a directed edge linking the send event with the corresponding receive event. The
space time diagram shown in Figure 1 depicts a distributed computation involving

three processes.

11



In a space time diagram, the events within a single process are totally ordered.
a — b if and only if there is a directed path from event a to event b. The happened
before relation is only a partial order on the set of events. Thus two events a and
b may not be related by the happened before relation, in this case we say that a
and b are concurrent (denoted by a || b). For example, in Figure 1, a || e because
—(a — €) and =(e — a).

A consistent cut C of an event structure (E, —) is a finite subset C' C E such

thatifee C A ¢ — ethene €C.

For each consistent cut C, there is a corresponding global state of the program
represented by the values of the program variables and channels states attained upon
completion of the events in C. For simplicity of presentation, we do not distinguish

between a consistent cut and the global state associated with it.

The set of global states of a given distributed computation endowed with set union
and intersection operations form a distributive lattice, referred to as the state lattice
[Mat89]. Based on this state lattice, one can check if the run satisfies the required
properties in program testing and debugging.

Figure 2 shows the state lattice L corresponding to the event structure shown in
Figure 1. Each state is identified by the most recent event executed in each process.
For example, (a, c, f) is the state reached after executing event a in P, event c in P,
and event f in P;. Only a subset of the events in Figure 1 and a subset of the states

in Figure 2 are labeled for future reference.
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Figure 1: An example of an event structure that represents a run of a distributed
program consisting of three processes.

Figure 2: The state lattice (L) associated with the event structure shown in Figure
1. The bold and dotted paths represent the set of all atomic state paths.
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2.3 Taxonomy of Approaches for Debugging Dis-

tributed Systems

2.3.1 Static Analysis

Static analysis approaches analyze the source code of a distributed program without
the use of any runtime information, and assume that all of the execution paths of the

program are possible [Lad01].

Some of the static analysis methods are based on traversing all the states that
the program may enter. These methods have, in general, exponential time and space
complexity.

Other static analysis methods use formal proof techniques. The main advantage

of these techniques is that they are accurate. However, their main disadvantages are:

1. They are expensive.
2. Formal proof techniques cannot be fully automated.

3. The proof must be repeated for each change in the program.

2.3.2 Dynamic Analysis

Dynamic analysis techniques collect information during the execution of the dis-
tributed program and analyze it. These methods instrument the program to collect

the required information during the execution [Lad01].

There are two main types of dynamic analysis:

1. On-the-fly: The program behavior is analyzed during its execution such that

errors are detected and reported as they occur during the run.
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2. Offline: These techniques collect a log of events that occur during a program’s
execution and post-process the log to detect errors. The main disadvantage
of these techniques is that execution logs can be very large for parallel and

distributed programs.

2.4 Specifying Properties of Distributed Systems

2.4.1 Propositional Logic and First Order Logic

Propositional and first order logics can be used to express properties of states [AP98].
Each formula represents a set of states that satisfy it. These formulas are considered
static in the sense that they represent a collection of states, but not the dynamic

evolution among them during program execution.

Modal logics [HC96] extend propositional and first order logics by allowing the
description of the relation between different states during the execution. This is
more suitable for specifying properties of distributed systems, where we are not only
interested in the relation between the values at the beginning and at the end of
the execution, but also other properties related to the sequence of states during the
execution. In the following subsection we will give a brief introduction to temporal
logic which is based on modal logics and has been widely used to specify properties

of distributed programs.

2.4.2 Temporal Logic

Temporal logics are based on modal logics [Eme90, Pnu79]. Modal logics were in-
troduced to study situations where the truth of a statement depends on its mode.

For example, an assertion P may be false now, but given a mode future, future P
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could be true. Pnueli suggested using temporal logics, in 1977, for formally specifying
behavioral properties of systems [Pnu77, Pnu79]. This view has been confirmed by
the extensive use of temporal logics in the last two decades.

Temporal logic formulas consist of the usual atomic propositional logic formulas
(non-temporal part), plus temporal operators. The non-temporal part specifies the
basic properties of states. The temporal operators specify temporal properties. Non-
temporal properties can be checked on each state based on the values of the variables
in that state, whereas verifying temporal properties requires the investigation of state
paths.

We will use the term atomic properties to refer to the basic properties of states
(non-temporal part). Given a transition system 7" = (S, I, R) where S is a set of
states, I C S is a set of initial states, and R C S x S is a transition relation, we
define AP to be the set of atomic properties of the system. We assume that we have
a procedure L : S X AP — {true, false} such that given a property p € AP and a
state s € S, procedure L can decide if si=p, i.e., sk=p if f L(s,p) = true.

Various temporal logics have been defined in the literature. LT L, CTL and CTL*
are the most commonly used temporal logics. All these logics use four temporal

operators G, F, U, X. The meaning of these operators can be described as follows:
Gp : Globally p, i.e., assertion p holds in every state.
Fp : Future p, i.e., assertion p will hold in a future state.
pUgq : p Until g, i.e., assertion p will hold until ¢ holds.
Xp : Next p, i.e., assertion p will hold in the next state.

In the following subsections we will give some details about LT L, CTL and CT L*.
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2.4.3 Linear Temporal Logic (LTL)

Linear time temporal logic (LT'L) is used to specify properties of interleaving se-
quences (i.e., paths). LT L uses the four basic temporal operators G, F, U, X. The
syntax of LTL is defined by the following grammar where terminals —, A, and V are
logical connectives; terminals X, and U are temporal operators; terminal ap denotes

an atomic property, (ap € AP); and nonterminal f denotes an LT L formula:

fe=aplf NFIFV FIRfIXFIFUS

We have the following equivalences for LT'L operators,
Fp = trueUp

Gp = —(trueU-p)

Based on the above equivalences, any LT L property can be expressed using only

symbols from the set {—, Vv, X, U} U AP.

More details about LT'L can be found in [Pnu79)].

2.4.4 Computation Tree Logic (CTL)

Computation tree logic CT'L is a branching time logic; meaning that the computation
starting from a state is viewed as a tree where each branch corresponds to a path
[Eme90]. The truth of a temporal formula in CTL is defined on states. A temporal
formula is true for a state if all the paths or some of the paths originating from that

state satisfy a condition.

CTL temporal operators are pairs of symbols. They talk about what can happen
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from the current state. The first member of the pair is one of the path quantifiers A or
E. Path quantifier A means “for all paths”, whereas E means “there exists a path”.

The second member of the pair is one of the basic temporal operators G, F, U, X.

The syntax of C'T'L is defined by the following grammar, where terminals -, A, and V
are logical connectives; terminals EX, EU and AU are temporal operators; terminal
ap denotes an atomic property, (ap € AP); and non-terminal f denotes a CT'L for-

mula:

fo=ap| fAFIFVII-fIEXf|fEUf|fAUf

We have the following equivalences for CT L operators,
EFp =true EUp

EGp = —(true AU-p)

AFp =true AUp

AGp = —(true EU-p)

AXp =-EX-p

The semantics of CT L is defined in Table 1. Based on the rules given in this table,
we can decide if a state in a transition system satisfies a CT L formula. The semantics
of the temporal operators EF, AF, EG and AG follow from the equivalences given

above and the rules given in Table 1.
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Table 1: CTL Semantics.

sEp it  L(s,p) = true where p € AP

sE=-p if notskEp

sEpPpAg iff sEpandskq

sEpPVg if skEporskgq

soEEXDp iff there exists a path (so, s1, S2,...), such that
S1 )=p

So =AX p iff for all paths (s, s1,82,...),81 E P

soEp EU q iff there exists a path (so, $1, S2,...), such that
there exists an 4, s; = ¢ and for all j < i,s; =
.

soEp AU ¢ iff for all paths (so,s1,$2,...), there exists an
i, s; = ¢ and for all j <1,s; = p.

24.5 CTL*

CTL* combines LTL and CTL into a single framework. There are two types of
formulas in CT'L*: path formulas and state formulas. A path formula is true or false
for paths (all LTL formulas are path formulas). A state formula is true or false for
states (all CTL formulas are state formulas). The truth set of a state formula is a set
of states, whereas the truth set of a path formula is a set of paths. All the formulas
in AP are state formulas. Every state formula can be considered as a path formula
with the interpretation that the truth of the formula depends only on the first state

of the path.

The formulas Gp, Fp,pUgq, and Xp are all path formulas. The path quantifiers
A and E can be used to generate state formulas from path formulas. Given a path
formula p, Ap and Ep are two state formulas. Ap is true in a state, if and only if,
for all paths originating from that state, p is true. Ep is true on a state, if and only
if, there exists a path originating from that state where p is true. For example, given

an atomic property p, Fp will be true for a path if there exists a state on the path
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that satisfies p. More details about CTL* can be found in [BBF*01].

2.5 Problems in Checking Global Properties

Many of the problems in distributed programs can be reduced to the problem of
observing a distributed computation to check whether it satisfies a given property or

not. Termination detection and deadlock detection are some examples [Gar(02].

The difficulties of observing a distributed computation to check the satisfaction
of a given property are due to the following characteristics of a distributed program

[Gar02]:

1. The lack of a common clock, which implies that the events in a given distributed

computation can only be partially ordered.

2. The lack of shared memory, which indicates that the evaluation of a global
property will incur message overhead to collect the necessary information to

evaluate it.

3. The existence of multiple processes that are running concurrently, which implies
that the number of global states that needs to be considered in property checking

will be exponential in the number of processes.

In general, the problem of detecting a global property in a given distributed pro-
gram computation is NP-complete [CG98]. The rest of this chapter will be mainly
dedicated to explore some of the work presented in the literature to efficiently check

the satisfaction of a property in a given distributed computation.
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2.6 Property Checking Approaches

The first approach to check the satisfaction of a global property in a distributed
computation is based on the global snapshot algorithm by Chandy and Lamport
[CL85, Bou87, SK86]. Their approach requires repeated computation of consistent
global snapshots until a snapshot is found in which the desired property (predicate)
is satisfied. This approach works only for stable properties, i.e., properties that do
not turn false once they become true. The Chandy and Lamport approach may fail
to detect a non-stable property because it may turn true only between two successive

snapshots.

The second approach to check the satisfaction of a global property in a given dis-
tributed computation was proposed by Cooper and Marzullo [CM91]. Their approach
is based on the construction of the state lattice [CM91, JMN95] and can be used for
the detection of possibly : ¢ and definitely : ¢. The predicate possibly : ¢ is true if
¢ is true for any global state in the lattice. The predicate definitely : ¢ is true if,
for all paths from the initial global state to the final global state, ¢ is true in some
global state along that path. Though this approach can be used to detect both stable
and unstable properties, the detection may be prohibitively expensive. This approach
requires exploring O(m™) global states in the worst case, where n is the number of

processes and m is the number of relevant local states in each process.

The third approach avoids the construction of the state lattice by exploiting the
structure of the property to identify a subset of the global states such that if the
property is true, it must be true in one of the states from this subset. This approach
can be used to develop more efficient algorithms, but it is less general than the second
approach. For example, [GW94, GW96] present algorithms of complexity O(n?m) to

detect possibly : ¢ and definitely : ¢ when ¢ is a conjunction of local properties
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(a local property is a property of a single process). [CG95, TG93] present efficient
algorithms that use this approach to detect Yx; < C where the x; are variables on

different processes and C' is constant.

In [SS95], a hybrid of the second and third approaches has been proposed to reduce

the size of the lattice that must be explored during detection.

It has been shown that the detection of a general property in a given distributed
computation is intractable [CG98|. Consequently, the class of the property must be
restricted to allow for efficient detection. In the following subsection we will give a
brief description of the classes of properties (predicates) that can be checked in a run

efficiently.

2.6.1 Property Classes

In this section we will describe four classes of properties for which efficient detection

algorithms have been developed.

2.6.1.1 Stable Properties

A stable property remains true once it becomes true. Termination detection is an ex-
ample of stable property detection. Stability depends on the system; some properties
are stable in some systems but not stable in others. The global snapshot algorithm
by Chandy and Lamport [CL85] can be used to check the satisfaction of a stable
property in a given distributed computation.

The value of an unstable property may change from time to time. There is very lit-
tle value in using a snapshot algorithm to detect a non-stable property—the property
may have held even if it is not detected. Many researchers have described algorithms

to detect stable and unstable properties [GW96, GW94, SM94, GW92, HW88|.
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2.6.1.2 Observer Independent Properties

Charron-Bost, et al., [CBDGF95] present a class of properties that they call ob-
server independent. This class includes all properties such that (Possibly : ¢) =
(Definitely : ¢). A disjunction of local properties is an observer independent prop-
erty. Any stable property is also observer independent, the proof of this fact can be
found in [CBDGF95].

The name “observer independent” originates from the notion of a set of observers
where each observes a different sequential execution of the distributed program. Each
observer can determine if ¢ becomes true in any of the global states observed by him.
If property ¢ is observer independent, then all observers will agree on whether ¢ ever
became true.

Observer independent properties can be detected efficiently because we need to
traverse only a single path of the state lattice to detect an observer independent
property ¢. If ¢ is true for any global state in the path, then Possibly : ¢ is clearly
true. On the other hand, if ¢ is false along that path, we know that De finitely : ¢
is also false. Since (Possibly : ¢) = (Definitely : ¢) for observer independent

properties, we conclude that Possibly : ¢ is also false for the lattice.

2.6.1.3 Linear Properties

A linear property is based on the notion of a “forbidden” state.
Let s be a local state, X and Y be two global states. X*¢ denotes the cut formed
by advancing X to the successor of s. A local state is a forbidden state with respect

to a property ¢ if its inclusion in any global state X implies that ¢ is not satisfied at
X. This can be defined formally as follows [CG98]:
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forbg(s, X)=VY : X CY:¢(Y)=>X°CY

This means that if ¢ is false in X and s is the forbidden state, then ¢ will remain

false until a successor to s is reached.

Conjunctive properties are linear. An efficient algorithm to detect conjunctive
properties can be found in [Gar02]. Some properties are linear in some systems but
not in others. For example, the property z; + x2 < ¢, where z; and zy are two
variables belonging to different processes and c is a constant, is linear in systems

where x; or xy is monotonically increasing.

2.6.1.4 Regular Properties

Let L be the state lattice of a distributed computation. A property ¢ is regular if

and only if for any two global states G and H,

¢(G) Np(H) = ¢(G N H) A¢(GU H).

That is, a global property is a regular property if the set of global states satisfying
the predicate forms a sublattice of the lattice of global states. A regular predicate is
also linear and hence easy to detect.

The property ¢ = “There is no outstanding message in the channel” is an example
of a regular property. This property holds on a global state X if for each send event
in X the corresponding receive event is also in X. Suppose ¢ holds on X and Y
(6(X) A @(Y)), it is easy to show that it holds in (X UY). To show that ¢ holds

in (X NY), consider a send event s € (X NY). Let r be the corresponding receive
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event. ¢(X) implies that 7 € X and ¢(Y) implies that » € Y. Thus r € (X NY).

Consequently, (X NY) and hence ¢ is a regular predicate [Gar02].

2.6.2 Temporal Predicate (Property) Detection

A number of algorithms have been developed in the literature to detect predicates
for distributed computations under the following temporal operators: possibly(EF)
[CM91, GW94, GMO1], definitely (AF) [CMI1, GW96, GMO1], controllable(EG)
[TG98, GMO01], and invariant(AG) [CM91, GW94, GMO1].

Sen and Garg [SG02] presented solutions to the predicate detection of linear and
observer-independent predicates under the EG and AG operators of CT'L. For lin-
ear predicates they developed polynomial-time predicate detection algorithms that
exploit the structure of finite distributive lattices. For observer-independent predi-
cates they proved that predicate detection is N P-complete under the EG operator
and co-N P-complete under the AG operator. They also presented polynomial-time

algorithms for a CTL operator called until (U).

Sen and Garg generalized an effective abstraction technique called computation
slicing [SG03]. They presented polynomial time algorithms to compute slices with
respect to temporal logic predicates from a “regular” subset of CTL, which con-
tains temporal operators EF, EG, and AG. Furthermore, they showed that these
slices contain precisely those global states of the original computation that satisfy the
predicate. Using temporal predicate slices, they gave an efficient (polynomial in the
number of processes) predicate detection algorithm for a subset of CT'L that they call

regular CTL. A brief description of the slicing concept will be presented in Section

2.8.
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2.6.3 Linked Predicates and Atomic Sequences

Predicates can be combined to describe a sequence of events. For example, a user
may want to halt a program and examine its state when a specified sequence of events
is observed during the execution of the program. Such predicates are called Linked
Predicates. In [GW94, GW96], the problem of detecting linked predicates has been

discussed.

In [HW88, HPR93|, the authors formally defined atomic sequences of predicates
and proposed a distributed algorithm to detect their occurrences. These global predi-
cates are defined for message-passing distributed programs only. They describe global
properties by causal composition of local predicates augmented with atomicity con-
straints. Atomicity constraints specify prohibited properties that must remain false
during the detection of the sequence. A sequence of local predicates satisfied by a
sequence of local states is a valid solution only if it is free of occurrence of forbidden

events; for this reason these sequences are called atomic sequences.

2.6.4 Channel Properties

The work on predicate detection presented earlier considers properties specified as
Boolean formula of local properties. However, many properties of distributed systems
use the state of channels. For example, the property, “there is no token in the system”
uses the state of the channels. This property is equivalent to “no process has the
token” and “no channel has the token”. The state of the channel is defined as the
set difference of the send events and the receive events on that channel. A channel
predicate is a Boolean function of the state of the channel, which will include all the

messages in transit.

In [GCKM97], Garg et al. introduced the concept of linear channel predicates and
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presented efficient centralized and distributed algorithms to detect any conjunction of
local and linear channel predicates. The time complexity of their detection algorithm
is O(mn?), the space complexity is O(mn?) and the message complexity is O(mn),
where n is the number of processes and m is the maximum number of messages

sent/received by any application process.

In [MI92], Manabe and Imase proposed a method for detecting predicates, in-
cluding channel predicates, using a replay approach. Their approach is restricted to
channel predicates that can be evaluated by a single process and requires two identical

runs.

2.7 Atomicity

In the previous section we have described some of the property classes for which
efficient checking algorithms can be found. However, if the property that we want
to check does not belong to any of these classes (general property), the checking will
incur significant overhead due to the exponential number of states that needs to be

considered.

The notion of atomicity can be exploited to reduce the number of states where
a given property needs to be checked. In this section we will describe some of the

related work in the literature that exploits the notion of atomicity for this purpose.

2.7.1 Lamport’s Atomicity Theorem

Lamport has developed a theorem in atomicity to simplify verification of distributed
systems [Lam90]. Lamport adopted the common approach of formally defining an

execution of a distributed algorithm to be a sequence of atomic actions. At the
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lowest level of abstraction each event result from executing any statement in the
distributed program can be considered an atomic action. Reducing the number of
atomic actions makes reasoning about a concurrent program easier because there are

fewer interleavings to consider. This is the main goal of Lamport’s theorem.

According to this theorem, a sequence of statements in a distributed program
can be grouped together and be treated as an atom under some stated conditions.
Informally, an atom may receive information from other processes, followed by at
most one externally visible event (for instance, altering a variable relevant to some
global property), before sending information to other processes. This theorem allows
a distributed program to be abstracted into a reduced distributed program with more
general and possibly larger atoms. As a result, the cost of program verification can

also be reduced.

Formally, consider a distributed algorithm A in which each process executes a
sequence of non-atomic operations. Each operation removes a set of messages from
the process’s input buffers, performs some computation, and sends a set of messages
to other processes. According to this theorem, the reduced version A’ of algorithm A
is one in which an entire operation is a single atomic action and message transmission
is instantaneous; this means that a message appears in the receiver’s input buffer
when the message is sent. In this case, algorithm A’ will not have any computation
state in which a process is in the middle of an operation or a message is in transit.
Hence, algorithm A’ is simpler than algorithm A and it is easier to reason about A’
than about A. In his work, Lamport defined six conditions and proved that if these
conditions are satisfied, then A satisfies a correctness property ¢ if and only if A’

satisfies ¢.
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2.7.2 Atomicity in Multithreaded Programs

Ensuring the correctness of multithreaded programs is hard due to the potential for
unexpected and nondeterministic interactions between threads. This motivated the
development of numerous static and dynamic analysis techniques for detecting race
conditions, a situation where two threads simultaneously access the same data vari-
able, and at least one of the accesses is a write [SAWS05, NM92, Net91]. However, the
absence of race conditions does not guarantee the absence of errors due to unexpected
thread interactions. Consequently, there has to be a property to ensure the correct-
ness of a program at a higher level of granularity, namely the atomicity of code blocks
[FF04]. If a code block is atomic, we can safely reason about the program’s behavior
at a higher level of granularity, where the atomic block is executed in one step, even
though the scheduler is free to interleave threads at instruction level granularity.

An atomicity violation occurs if the effect of a code block depends on the execution
order of concurrent threads that use a shared data structure. The atomicity of a code
block can be violated even if the data structure is protected through synchronization
and individual accesses do not create a data race [PG04].

The following are two examples of methods that are data race free but not atomic
[WS06a, WS06b].

Example 1:[WS06b]

Consider a graphics package with a Rectangle class that offers synchronized meth-
ods setX (int z) and setY (int y) and an unsynchronized method set XY (int z,int y)
whose body is simply {setX (x); setY (y); }.

Assume that there are two threads that share two variables x and y and that run
concurrently. Thread 1 calls setXY (100,100) and thread 2 calls setX'Y (200, 200).

The execution of the two threads can interleave in the following way:
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public class Vector extends ... implements ... {
public Vector{Collectionc) {
i cisvl, elementCount is the field of v2.
1 elementCount = ¢.size();
2 elementData = new Object{(int)Math min{(element Count” 110L)100,Integer MAX_VALUE)];
3 c.tofArrayelementData);
}

public synchronized int size() {retwn elementCount; }
public synchronized Object] ] toArrayObject af J) {
if {alength < elementCount) f i.e. v2length < v1 elementCount
i this branch will be takenif v1l.addis executed.
a={Object{ J}java langreflect Array newlnstance(
a.getClass().get ComponentType(), element Count);
System.arraycopyelementData, 0, a, 0, element Count);
if {alength > elementCount)
alelementCount] = null;
return a;

}
public synchronized void removeAllElements() {...}
public synchronized boolean add{(Object o) { ... }

}

thread 1 thread 2

Vector v2 = new Vector(vl); vl.removeAllR lements();

Figure 3: Part of the implementation of Vector in Sun JDK 1.4.2.

threadl.set X (100); thread2.setX (200); thread2.setY (200); threadl.setY (100);

The result is z = 200,y = 100. This is different from the result of any serial exe-
cution of the two calls. As a result, we can conclude that the concurrent invocations

of setXY are not atomic, even though this class is data race free [WS06b].
Example 2:

The following example (taken from [WS06a]) shows that the constructor of java. util.

Vector in Sun JDK 1.4.2 violates atomicity.

Figure 3 shows part of the implementation of Vector in Sun JDK 1.4.2. Consider
the following execution of the program at the bottom of the figure: thread 1 calls
the constructor for vector to construct a new vector v, from another vector v; with
k elements. Thread 1 yields execution to thread 2 immediately after statement 1
in the Vector constructor before the constructor completes. Thread 2 removes all

elements of vy, and then thread 1 resumes execution at statement 2. The result of
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this execution is that v, has k elements, all of which are null because the elementData

array of vy is allocated according to the previous size of v; [WS06a].

2.7.2.1 Static Detection of Atomicity Violations

C. von Praun and T. Gross have developed a static analysis technique that infers
atomicity constraints and identifies potential violations [PG04]. Their technique is
based on an abstract model of threads and data. A symbolic execution is used to
track object locking and access and to provide information that can be exploited to

determine potential violations of atomicity.

Their algorithm is neither sound, i.e., there can be underreporting, nor complete,
i.e., there can be overreporting. However, although the algorithm does not guarantee
to find all violations of atomicity, experimental results show that this method is
efficient and effective in determining several synchronization problems in a set of

application programs and the Java library.

2.7.2.2 Dynamic Detection of Atomicity Violations

Flanagan and Freund have developed a dynamic atomicity checker tool for multi-
threaded programs called Atomizer [FF04]. Their detection strategy is based on Lip-
ton’s reduction theorem [Lip75]. Wang and Stoller [WS06a, WS06b] also developed
a dynamic reduction based atomicity violation detection algorithm, which classifies
events based on commutativity and applies Lipton’s reduction theorem.

In addition to the reduction based algorithms, Wang and Stoller [WS06a, WS06b)]
developed a block based atomicity violation detection algorithm. This algorithm
decomposes the problem of checking atomicity of a set of transactions into a set

of smaller problems, each of which requires checking atomicity of two blocks. This
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algorithm is more complicated and more expensive but significantly more precise than

the reduction based algorithm.

One way to combine the two algorithms is to first run the reduction based al-
gorithm. If it indicates possible violations of atomicity, then run the block-based
algorithm, which is more expensive and more precise. If it also indicates possible

atomicity violations, then report the possible violations to the user.

2.8 Program Slicing

The concept of slicing arose from research on dataflow analysis and static program
analysis [Wei84]. The main goal of introducing this concept was to facilitate the de-
bugging and understanding of sequential imperative programs. A slice of a program
P with respect to a criterion C' (usually a program point) is a set of statements of
P, which are relevant to the computations performed in C. It has been extended in
various ways to deal with more complex program constructs, e.g., arrays, pointers,
and concurrency. Moreover, the concept of slicing has been extended to more mod-
ern formalisms, including Z specifications [WY04], and hierarchical state machines
(HW97].

In general, the basic idea behind program slicing is to remove details of the pro-
gram that are not relevant to the analysis in hand. For example, if we wish to verify
some property, slicing can be applied to eliminate parts of the program that do not
affect that property.

Computation slicing was introduced in [LRG04, SG03, GM01, MG01] as an ab-
straction technique for analyzing distributed computations (finite execution traces).

A computation slice, defined with respect to a global property, is the computation
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with the least number of global states that contains all global states of the original
computation for which the property evaluates to true. This is in contrast to tradi-
tional slicing techniques, which either work at the program level or do slicing with
respect to variables. Computation slicing can be used to eliminate the irrelevant
global states of the original computation, and keep only the states that are relevant
for our purpose. In [MGO1], Mittal and Garg proved that a slice exists for all global
predicates. However, it is, in general, N P-complete to compute the slice. They

developed efficient algorithms to compute slices for special classes of predicates.

2.9 Partial Order Reduction

Partial order reduction [God96, Pel96, Val91] is a technique to reduce the size of the
state space to be searched by a model checking algorithm by addressing a specific
reason behind the state space explosion, namely the existence of many potentially
equivalent execution traces. It exploits the commutativity of concurrently executed
transitions, which result in the same state when executed in different orders. These
techniques assume an interleaving representation of partial orders instead of working

with direct representations of partial orders.

Partial order reduction techniques analyze systems that are modeled as state tran-
sition graphs. Let S be the set of system states. A transition is identified with a
particular action that the system can execute and is given by a relation & € S x S,
which defines the pairs of states between which the action can be executed. A state
transition graph is a tuple M = (5,5, T, L), where Sy C S is a set of initial states, T
is a set of transitions @ C .S x S, and L : S — 247 is a labeling function that assigns
to each state a subset of the set AP of atomic propositions. A transition is enabled

in a state s if there exists a state s’ such that (s,s') € T .
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Figure 4: Execution of independent transitions.

Partial order reduction is performed by modifying the DF'S (Depth First Search)
used to construct the state graph. The search starts with the initial state and proceeds
recursively. For each state s, it selects only a subset (called ample(s)) of the enabled
transitions enabled(s) rather than the full set of enabled transitions as in the full state

space construction. The DF'S explores only successors generated by these transitions.

Partial order reduction exploits the commutativity of concurrently executed tran-
sitions, which result in the same state when executed in different orders, as depicted
in Figure 4. The commutativity condition proposes a potential reduction to the state
graph, for it does not matter whether « is executed before G or vise versa in order to
reach the state s3 from sq. Consequently, only one of the above two paths, needs to
be considered in model checking. However, the commutativity property might not be
enough to conduct this reduction because of the following reasons: (%) the checked
property might be sensitive to the choice between the states s; and ss, not only the
states sp and s3 (#2) the states s; and s, may have other successors in addition to ss,
which may not be explored if either is eliminated. Consequently, in order to be able
to ignore one of the two paths in the above figure they must satisfy an additional

condition, namely, they must be stuttering equivalent.

Two paths are stuttering equivalent when they can be decomposed into infinitely

many blocks, such that the states in the k" block of one are labeled the same as
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the states in the &** block of the other. The ample sets will be used by the DFS
algorithm to construct the reduced state graph so that for every path not considered

by the DF'S algorithm there is a stuttering equivalent path that is considered.

The procedure that calculates, at each state s, a suitable set ample(s) of transi-
tions to be explored is the key to apply partial order reduction efficiently. On one
hand, the ample set should be significantly smaller than the set of all enabled transi-
tions in order to effectively reduce the size of the state space. On the other hand, the
ample set must include in the reduced state graph at least one equivalent execution
sequence for each execution of the original model in order to preserve the correctness
of the verification result. Finally, the overhead for computing an ample set must be
reasonably small such that the verification time is not increased compared to full

state space search [God96, Pel96, Val91].

2.10 Partial Order Semantics versus Interleaving

Semantics

The interleaving model (the representation of concurrency by non-determinism) has
traditionally been a popular model for describing the possible behaviors of a concur-
rent program. This model has been successful, both because it is generally easy to
formalize and because many interesting properties of a concurrent program can be
expressed and analyzed using interleaved sequences [Bes90)].

The state-explosion problem is due, among other causes, to the use of the inter-
leaving model of concurrency, or, more precisely, to the exploration of all possible
interleavings of concurrent events. For example, the execution of n concurrent events

is analyzed by exploring all n! interleavings of these events [God96].
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Interleaving semantics ignore real asynchronous behaviors that actually exist: af|b
where a and b are atomic is represented by the same transition system as the non-
deterministic choice a then b or b then a. This fact creates problems due to the
fact that interleaving builds a huge number of uninteresting states, and hence the
verification cost will be significantly increased [Gou00].

It has been recognized that concurrency is not the same thing as non-determinism.
This observation has stimulated a fairly large body of work on “partial-order models”

of concurrency [Maz87, Pra86, Lam78].

To deal with the state explosion problem, partial order reduction, described in
the previous section, and methods that exploit partial order semantics have been
applied. These methods proved to be successful with systems with a high degree of

asynchronous parallelism.

The intuition behind partial-order methods is that concurrent executions are re-
ally partial orders and that using the set of all interleavings corresponding to such
a partial order is an inefficient way of analyzing concurrent executions. Instead,
concurrent events should be left unordered since the order of their occurrence is ir-
relevant. Hence the name “partial order methods”. However, partial order reduction
methods keep an interleaving representation of partial orders instead of working with
direct representations of partial orders. Partial order reduction methods attempt to
limit the expansion of each partial-order computation to just one of its interleavings,

instead of all of them [God96, Pel96).

Another problem with the interleaving model is that it imposes on the process a
global clock, by which all events are timed, but there is no such clock in distributed

systems. Different observers may see different temporal orders for the events. As a
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result, it is not reasonable to say that they occur in some interleaved order. Non-
interleaving models do not project events into a linear timescale. a||b means that

there is no information about the order relation between a and b [Gup94].

In the partial order model, causal dependency between events is considered. How-
ever, in the interleaving model, only the temporal behavior of the events of a run is

observable [MR97].

Researchers supporting the interleaving model rely on the following two points to

justify their choice [MRI7]

1. Specifications of concurrent systems ignore causal behavior and refer only to

the temporal behavior.

2. Interleaving semantics are much simpler than partial order semantics. Many
model checking algorithms have been developed based on the interleaving se-
mantics, but much less work has been done starting from partial order semantics

because it seemed technically hard to formalize.

The idea of avoiding the cost of modeling concurrency by interleaving in finite-
state verification has been discussed in [PL91b, McM92, Esp93]. In [PL91b], a method
based on a POMSET grammar description of the system is introduced. Also, in
[McM92, Esp93], a verification method that works by unfolding a Petri net description

of a concurrent system into a finite acyclic structure has been proposed.
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Chapter 3

Using Atoms to Simplify Checking

of Distributed Programs

3.1 Introduction

There are different layers of abstraction relevant in considering the correctness of
a distributed program. In the lower layer associated with the coding platform, the
execution of each statement of a program is an atomic event. In the higher layer, each
process of a distributed program executes atomic actions, or atoms in short. Each
atom can be a single statement or a sequence of statements. For example, a code
block in a program can be identified as an atom. Safety and progress properties of a
distributed program can be defined on the basis of this atomicity. These properties

are often expressed in temporal logic [Pnu77, Pnu79].

The execution of a distributed program may include millions of events, each corre-
sponding to the execution of a program statement. Due to concurrency, the number

of global states of an execution can grow exponentially with respect to the number
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of program statements executed. To reduce the cost of monitoring and checking a
distributed program run, atomization is an effective abstraction technique that can

be used.

The work reported in this chapter considers message-passing distributed programs
in which a code block can be identified as an atom based on design time knowledge,
similar to the shared memory counter-part. Without requiring Lamport’s conditions
on atomicity, we wish to check if a run of the program is atomic, i.e., its behavior is
equivalent to its behavior when the execution of each atom is instantaneous, without
being interfered by events from other atoms. It is our premise that global properties of
a distributed program are not asserted over all states, but over states corresponding
to the completion of atoms. Hence, a run must be atomic before such properties

should be checked.

3.2 Atomicity Model

In this chapter we advocate the use of design-time knowledge in identifying larger
pieces of code, called atoms. An atom can be viewed both statically in code space
and dynamically in the event space of a run. Statically, an atom is mapped to a code
block in the program and implements some operation that should have atomic effect
to the global properties of the program. Such global properties are interpreted as
the correctness requirements of the program. When viewed dynamically in a run, an
atom contains those events corresponding to the execution of the selected statements
from the code block.

Figure 5 shows the atomic abstraction of the run shown in Figure 1, the events
belong to six atoms, A, B,C, D, E and F. Rectangles are used to depict atoms. For

example, the events of process P, belong to two atoms, A and B.
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Figure 5: An example of an event structure with atoms, each rectangle represents an
atom.

With atoms as the basis in viewing a run, checking the satisfaction of a property
in a given distributed program run (runtime verification) involves two steps. First,
the atomicity of the run needs to be checked. If the run is not atomic, then there
is interference among the atoms associated with the program and debugging should
proceed with analyzing the source of this error. This error could arise due to inap-
propriate synchronization among the processes. Second, if the run is atomic, then

the application specific properties of the program can be checked.

Definition 1 Let C = (E, —) be a run of a distributed program and L be the corre-

sponding state lattice.

t. If there is a path in L in which the events of each atom appear consecutively

without interleaving with events of other atoms, then C is an atomic run.

1. The corresponding path in L is called an atomic state path.

For example, the state lattice in Figure 2 contains a path, shown in dotted lines,
in which the atoms are executed in the order (E; A; C; B; F'; D). This path traces a
sequence of states traversed such that the events of each atom are executed without
interleaving with the events of other atoms. From Definition 1, this path is an atomic

state path.
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Figure 6: The WG graph associated with the event structure shown in Figure 5.

Definition 2 Atom A is weakly ordered before atom B (denoted by, A — B), if

i. B is the atom that immediately follows A in the same process, or

#i. There exists a message send event in A and the corresponding message receive

event is in B.

For example, in Figure 5, A — B because B is the atom that immediately follows

. w . . .
A in process P;, and A — C because a message was sent in A and received in C.

It is important to observe that this weak-order relation between two atoms does
not require all the events in one atom to happen before all the events in the other
atom. Trivially, one can deduce that the weak-order relation among atoms is not

transitive. For example, in Figure 5, E — C and C —= B but not £ —— B.

Definition 3 The Weak-order Graph (WG) of a run is the directed graph (S, E),
where S s the set of atoms in the run and E is the set of edges corresponding to the

. w
weak-order relation — among these atoms.

Figure 6 shows the WG corresponding to the run shown in Figure 5. This weak-
order graph is the basis for understanding the necessary and sufficient conditions for
an atomic run and for constructing an efficient algorithm to detect atomicity errors.

A weak-order graph WG can be cyclic or acyclic. It is well-known that the reacha-

bility relation among nodes of an acyclic graph is a partial order relation: reachability
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is a transitive, reflexive and asymmetric relation in an acyclic graph. For any two
atoms A and B, we say that A — B if there is a path from atom A to atom B in
WG. An acyclic WG induces the partial order (S, ——) where — is the reachability

relation among atoms in S.

Definition 4 For an acyclic WG that induces the partial order (S,—), the set of
linearizations of (S, ——) is the set of total orders of all atoms in S that is consistent

with ——, i.e., atom A appears before B in a total order only if =(B —— A).

There are four possible linearizations of ({4, B,C, D, E, F'},—) induced by WG
shown in Figure 6. These linearizations are (A; E;C; F; B; D), (A; E;C; B; F; D),
(E; A;C, F;B; D), and (E; A; C; B; F; D) respectively. Each linearization corresponds
to an atomic state path in the state lattice shown in Figure 2. For example, the
linearization (E; A;C; B; F; D) corresponds to the atomic state path shown in dot-
ted lines. The set of all atomic state paths corresponding to the linearizations of

({A,B,C, D, E,F},——) is shown in bold, dotted and solid, lines in Figure 2.

Definition 5 We refer to the state lattice induced by the partial order (S,——) as
the atomic state lattice (L*). The nodes in the atomic state lattice represent the

global states reached by the execution of the atoms.

Figure 7 shows the atomic state lattice (L*) associated with the event structure
shown in Figure 5. Each node in this lattice represents a state that is identified
by the most recent atom executed in each process. For example, (A, C, F) is the
state reached after executing atom A in P, atom C in P, and atom F in P;. In
comparison, L* contains only 8 states and is much smaller than L, which contains 59

states, excluding the initial state.
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Figure 7: The atomic state lattice (L*) associated with the event structure shown in
Figure 5. The dotted path corresponds to the dotted path in the state lattice (L)
shown in Figure 2.

If a run is not atomic, then we infer that some coding error may exist, since every
state path in the run contains some atom whose events must be interleaved with some
events from other atoms, and hence the program state does not change as if each atom
has occurred “instantaneously” without the necessity of something else happening.
Figure 8 shows a distributed program run that is not atomic and has a cyclic WG
graph.

The absence of atomicity errors indicates that global properties can be checked
on the atomic state lattice rather than the much more complex state lattice corre-

sponding to all of the events in a run.

The following lemma establishes an interesting property of an atomic run.
Lemma 1 A run is atomic iff the corresponding WG is acyclic.

Proof. (Cyclic WG = the run is not atomic): Suppose otherwise, from the definition

of an atomic run, there is an atomic state path in the state lattice. In this path, the
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Figure 8: A non-atomic run and the corresponding cyclic WG. Atoms A, B and D
form a cycle in WG (A — B — D - A).

atoms in a cycle of WG must appear in some serial order, say (A4;...; B). However,
since these atoms form a cycle in WG, we know that A = ... =% B 5 A. From
the definition of the weak-order relation, B — A implies that some event in B hap-
pened before some event in A. Consequently, the above atomic state path (4;...; B)
can not exist in the state lattice.

(Acyclic WG =-the run is atomic): Since WG is acyclic, there is at least one lineariza-
tion of (S, —). Select an arbitrary linearization. Since a later atom cannot reach
an earlier atom in the linearization, the events associated with the atoms can occur
according to the ordering of these atoms. Hence, there is a corresponding atomic

state path in the state lattice. Consequently, the run is atomic. |

For each path in the atomic state lattice L*, there is a corresponding atomic state
path in the original state lattice L such that the ordering of atoms is the same in
both paths. Conversely, for each atomic state path of the state lattice L, there is a
corresponding path in the atomic state lattice L*. This follows immediately from the

fact that for each linearization of the atoms in WG, there is a corresponding path in

44



both the atomic lattice of (S, —) and the lattice of (E, —). For example, the dotted
path in the atomic state lattice shown in Figure 7 corresponds to the dotted path of
the original state lattice shown in Figure 2. There are only 6 states traversed in this
path in L*, compared with 19 states in the corresponding atomic state path in L.
Notice that for every state in the dotted path of L* there is a corresponding state in
the dotted path of L. For example, the state (B, C, F') in the atomic state lattice L*

corresponds to the state (b, c, f) in L.

3.3 A Probe Based Atomicity Error Detection Al-

gorithm

In this section, we will describe and prove an on-the-fly distributed algorithm for
detecting atomicity errors. We consider a weak-order graph WG = (S, E) where S is
the set of atoms and FE is the set of edges corresponding to the weak-order relation
among these atoms. During a run, this graph is constructed distributively as the
run unfolds. The associated kernel of each process keeps track of all the necessary
information about all of its atoms, and their inbound and outbound edges. For
space efficiency, the graph is periodically pruned (distributively) to remove processed

information.

For each process P;, there is an associated vector clock T;, which is initialized as
the zero vector. Let A; be an atom of process P,. The global timestamp associated
with atom A;, denoted as T'(A;), is an n-tuple (t1,t2,...,t;, ..., t,), where t; is the

local timestamp of atom A;. Both T; and T'(A4;) are updated as follows:

1. At the start of the execution of an atom A;, the current value of T; is updated

to (ti,ta,...,t; + 1,...,t,). As a result, the local timestamp of atom A; is
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Figure 9: An example illustrating the vector clock initialization and updating policy.

established as t; + 1.
2. At the end of the execution of an atom A;, the global timestamp T'(4;) is

assigned the current value of Tj.

3. Each outgoing (application) message from process P; is tagged with the current
value of T.

4. When an application message from process P; is received in P; tagged with
T;, update T; to max(T;,T;). The max function is applied to each pair of

corresponding elements in the vector timestamps.

Consider the example shown in Figure 9, the vector clock T; associated with each
process F; is initialized to zero. At the start of the execution of atom A, the current
value of T} is updated to (1,0,0), and at the start of the execution of atom C' the
current value of T, is updated to (0,1,0). When P, sends a message to P,, the
message will be tagged with the current 7;. When P; receives the message sent by
P, it will update T5 to maz(Ty,T3), and hence T, will become (1,1,0). At the end of
the execution of atom C, the global timestamp T'(Cs) is assigned the current value
of T, which is (1,1, 0).

Let us denote the j** element of the global timestamp of 4; by ¢;(4;). From the

previous discussion, we know that ¢;(A;) is the local timestamp of A;.
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Definition 6 Let A; and B; be two atoms in P; and P; respectively. Atom A; knows
atom Bj if and only if t;(A;) > t;(B;). A; knows B; is analogous to saying that B,

is known to A;.

The following property follows trivially from the vector timestamp protocol de-

scribed above.
Lemma 2 If A; knows B; then there is a path from B; to A; in the WG graph.

Proof. From the vector timestamp, if A; is not reachable from Bj;, then t;(4;) <

t;(B;). Hence A; does not know B; and the claim holds. |

It should be noted that the converse of Lemma 2 is not true, due to the non-

transitivity of —.

Definition 7 For any (node) atom A; in the WG graph, we define
i. The set of causal predecessors of A, Cp (A;) = {Bj|A; knows B;}.
1. The set of causal successors of A;, Cs (Ai) = {Ck|Ck knows A;}.

tit. The set of causally unconnected atoms of A;,

Cu(A:) = {Di| Dy & Cp (Ai) A Dy ¢ Cs (Ai)}-

w. The set of latest causal predecessors of A;, Cp (A;) = {En|En is an atom with

the largest local timestamp of atoms in P, that is known to A;} .
The following property also follows directly from the previous definitions.

Lemma 3 Bj S Cpl(Al) =+ tj(Ai) = tj(Bj).
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Algorithm 1 On-the-fly atomicity error detection algorithm

Goal: For a given atom A; in the WG graph, to determine whether there is a cycle
involving A;.

Initial step:
for each atom B; € Cp(A;) do
inform B; about T'(4;);
end for
This step is achieved by broadcasting a probe message containing 7'(4;) to all such
Bj’s. (From Lemma 3, A; knows Cp(4;)).

for each atom B; that receives a probe do
if Bj (S Cs(Ai) then
report a cycle; // Reporting step
else
for each atom Cj (in P;) with local timestamp ¢;(C;) such that t;(A4;) <
t;(C;) < t;(B;) do
if C; has received an (application) message from atom Dy, such that Dy ¢
Cy(A;) and C; has not propagated a probe to Dy, before then
C; forwards a probe to Dy; //Diffusion step
end if
end for
end if
end for

Proof. This immediately follows from the definition of C,(A;) such that t;(B;) is

the largest local timestamp of process P; known to A;. |

The abstract algorithm for atomicity error detection through dynamic cycle de-

tection in the WG graph (Algorithm 1) is discussed in the following.

It is assumed that the detection kernel periodically (or when instructed) checks
for cycles in the WG graph, and it starts with an atom A;. We will highlight the
algorithm with the following example.

In Figure 10, a partial run involving seven atoms is shown. For simplicity, only
the relevant interactions among these seven atoms are shown, without showing other

computational events and the interactions among these atoms and other atoms.
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From Definition 7, C,(A;) = {Ds, Bs, Cs, A; }; these atoms are causally known to
A;. C4(Ay) = {Es5,G5}; these atoms causally know A;. This causal knowledge is
maintained by the vector timestamp. On the other hand, C,(A;) = {F4}; Fy and
A; do not causally know each other. Also from Definition 7, Cpi(A4:) = {A1, Co, Ds};

specifically C5 is the most recent atom in process P, known to A;.

The detection algorithm starts with a broadcast of probe messages from A; to Cs
and Dj. Dj forwards the probe to Fj in the diffusion step. In turn, F, forwards the
probe to G5, whereupon G5 reports a cycle: Gy knows A; and has received a probe
emanating from A;. This reporting corresponds to the sequence of relations among
these atoms: A; — G5 — Fy — D3 — A;. Notice that the probe does not
actually traverse a cycle in WG. In terms of efficiency, a probe never traverses nodes

in Cp(A;) — Cpi(A;) (such as By) nor is it forwarded within C,(A4;).
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Figure 10: An example to demonstrate the algorithm developed to detect atomicity
errors.

Lemma 4 If atom B; receives a probe then there is a path from B; to A; in the WG

graph.

Proof. Every time a probe is sent from an atom, say Cj, to another atom B; (by

the initial step or the diffusion step), there is a path from B; to C. Since all probes
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originate from A;, the receipt of a probe by B; implies that there is a path from B;
to Al [ ]

Lemma 5 If atom B; receives a probe and B; € Cs(4;), then there is a cycle con-

taining A; and B; in the WG graph.

Proof. From Lemma 4, if atom B; receives a probe, then there is a path from B; to
A;. From Lemma 2 and Definition 7, B; € Cs(A;) implies that there is a path from
A; to B;. Consequently, when both conditions hold, there is a cycle containing both

Ai and Bj. [ |

The following lemma deals with an important property of a WG graph. For
simplicity of presentation, the subscript of an atom that identifies the process is

omitted.

Lemma 6 Every path A = B’ =5 ... =5 ' =5 A in WG can be rewritten into
a target sequence of relations involving both —— and —— of the form A — B —

.= C 5 A, such that:
i. B € Cs(A).
1. Each intermediate atom (between B and C) in the target sequence € C,(A).

iti. C € Cu(A).

Proof. The following steps show the construction of the target sequence A —

B - ...~ C -5 A with the required properties.

Let C be the earliest node in the sub-path B’ —= ... = "’ of the given path such
that C — A and C € C,(A). Such a node must exist since C” is such a node if none

other exists (since C' ~» A). Remove those nodes after C' in the sub-path C' —>
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. —5 C' from the original path to get the sequence A — B’ - ... =5 C 5 A.
We assert that C € Cp(A). If not, then the node immediately preceding C, say X,
in the sequence must be in C,(A), since X must be known to the node following C
in the same process of C, and hence must be known to A. This contradicts the fact
that C is the earliest node in the sub-path B’ —- ... == C’ such that C is known

to A.

Apply a similar elimination of nodes in the sub-path B’ =% ... 5 C. Let B be
the latest node in the sub-path such that A — B and B € C,(A). This node must
exist since B’ is such a node if none other exists. Remove those nodes after B’ in the

sub-path to get target sequence A — B — ... — C' — A. |

In the following lemma, we show that the algorithm will propagate probe messages

along the sequence of relations A —— B — ... = C —/ A.

Lemma 7 Referring to sequence A — B — ... = C —— A in Lemma 6, the
algorithm guarantees that atom B will ultimately receive the probe broadcast from A

and report a cycle.

Proof. From the initial step of the algorithm, A broadcasts a probe to C. In the
diffusion step, C forwards the probe to those atoms not in C,(A4) (i.e., CL(A)UC(A))
but have edges connected to C. The latter continue to forward the probe to its
connected nodes within C,(A) until an atom in C,(A) is reached. As a result, the

cycle in Lemma 6 is guaranteed to be traversed by these probes. |

Theorem 8 Algorithm 1 reports a cycle if and only if there is a cycle involving atom

A.

Proof. Follows directly from Lemmas 5 and 7. |
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3.3.1 Complexity Analysis

The message complexity of the algorithm can be easily analyzed. A probe is forwarded
from atom X to atom Y only if there is a message sent from Y to X. Moreover, a
probe is not forwarded from an atom unless the former is in Cp(A) U C,(A). Hence
the message complexity is bounded by the number of edges in the sub-graph of WG

whose nodes are in the set Cpi(A) U C,(A).

3.4 Checking Program Properties

After establishing that a run is atomic, one can proceed to check application-specific
properties associated with the run. In this section, we establish the relationship
between checking properties on the atomic state lattice L* and checking the corre-

sponding properties on L, and demonstrate the cost-effectiveness in using atoms.

From Section 3.2, we know that for every state in the atomic state lattice L* there
is a corresponding state in L. For example, the state (A,C, F) of L* in Figure 7
corresponds to the state (a, ¢, f) of L in Figure 2. L* contains many fewer states than

L; in the example, there are 59 states in L but only 8 states in L*.

In the following, we show that checking some required property ¢ on L* is equiv-
alent to checking some transformed property ¢’ on L. Interestingly, not only that
L* is smaller than L, but also the property ¢ is simpler than ¢’ and does not re-
quire program augmentation using auxiliary program variables in order to perform
the checking.

We first prove a simple result before moving on to more general temporal prop-
erties. Suppose ¢ is an invariant (denoted as AGyp in CTL), expressed as a global

predicate defined on the set of distributed variables, and async is a global predicate
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that is satisfied by every state in which at least one of the processes is not at the end
of an atom. For example, in the global state lattice L in Figure 2, all the unlabeled
states (altogether 51 of them) satisfy async since in each of these states, at least one

of the three processes is not at the end of an atom.

Definition 8 An atomic state is a global state in which all processes are at the end

of an atom.

In Figure 2, all the states that are labeled are atomic states, and all the states
that are not labeled are non-atomic states. Obviously, every state in an atomic state

lattice, such as the one shown in Figure 7, is an atomic state, as stated below.

Lemma 9 FEvery atomic state in L is a state in L*.

Proof. This follows from the definition of an atomic state. Since L* contains states

reached upon completion of atoms, every atomic state in L must also be a state in

L. |

Lemma 10 AGy holds in L* iff AGlasyncV ] holds in L.

Proof. (=): If ¢ holds in L* then ¢ holds in all atomic states. Since async holds in
non-atomic states and from Lemma 9, all atomic states in L are also in L*, (asyncV)
holds in L.

(<): If (asyncV @) holds in L, then ¢ must hold in all atomic states. Hence, ¢ holds
in L*. |

In interpreting Lemma 10, a global invariant, such as a general predicate ¢ =
x + 1y + 2z = k, can be asserted as a safety property of a program. We can check

the invariant in L* or L. For checking in L, the invariant becomes (async V ¢).
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In instrumentation, the program code of process P; needs to be augmented with an
async; flag, which is reset if process P; is not at the end of an atom. Globally,
async = asyncy V asyncy V...V async,. In comparison with checking in L*, checking
in L involves checking a more complex predicate (async V @) over all states in L,

which is also larger than L*.

Invariants are not enough to represent all required properties. In a distributed
program, a common safety property can arise in which whenever a state that satisfies
 is reached, then ¢ must continue to hold in all next states unless another predicate
1 is satisfied in the latter. This can be expressed as AG[p = AX(p V 9)]. We will
use this property to demonstrate the advantage of checking in L* against that in L.
Through this case study, we show the equivalence of checking properties in L* and L,
and the advantage of using a simpler temporal predicate in L*.

We start by assuming that using atoms to abstract a program run, the required
program properties can be represented by temporal predicates that need to be checked
at synchronized states where each process has just finished executing an atom. If we
want to check the above global property AGlyp = AX(¢ V v)] in the original state

lattice L, then the following predicate transformations are applied.
@' = [(masync A ) V held_g]

Y = (—async A\ )

Here held_p is an auxiliary predicate of the program. When the program enters
an atomic state, the predicate held_¢ is modified to become true or false, depending
on whether ¢ is satisfied at that state or not. The predicate held_p is unchanged at
a non-atomic state. For example, in Figure 2, suppose ¢ is satisfied in (b, ¢, e) and is
not satisfied in (b, ¢, f). The predicate held- is set to true at (b, ¢, e) and will remain

true in the states that lie between (b, c,e) and (b, ¢, f) in the lattice. It will be reset
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to false at (b, ¢, f) and will remain false until the state (b, d, f) is reached.

This transformation is required because the predicates ¢ and v should not be
checked at non-atomic states in the state lattice L. However, the satisfaction of ¢ in
an atomic state leads to a requirement to continue to check for ¢ and v in the next
atomic state in an atomic path in L. So held_¢ is a necessary condition that must be
maintained in a sub-path between these two atomic states. This leads to the more

complex transformed formula AG[¢’ = AX(¢' V ¢')] to be checked in L.

We need to show that checking the temporal predicate AG[p = AX(p V )]
in the atomic state lattice L* is equivalent to checking the more complex formula
AG[¢' = AX(¢' V)] on the usually much larger state lattice L. Hence, there is
potentially significant saving by using atomicity abstraction in terms of (2) the size

of the state lattice used, and (#2) simplicity of the formula and its instrumentation.

Lemma 11 AG[p = AX(p V)] holds in L* iff AG[¢' = AX(¢' V ')] holds in
L.

Proof. (=): Suppose AG[y' = AX(¢' V)] does not hold in L. We want to show
that AG[p = AX(¢ V)] does not hold in L*. The assumption asserts that there is
a state s in L in which ¢’ holds while (¢’ V1) does not hold in one of its next states,

say §'. There are four combinations of s and s

i. Both s and s’ are atomic states: Since s is an atomic state, —async is true at

s. ¢ = [(masync A ) V held_p] holds in s implies ¢ (and held_p) holds in s.
Similarly, (¢’ V') does not hold in s’ implies (¢ V) does not hold in s’. Hence,
¢ holds in s but (¢ V 9) does not hold in §’. From Lemma 9, s and s are also

states in L*. Consequently, AG[p = AX(p V ¢)] does not hold in L* as well.

i1. Both s and s’ are non-atomic states: This case cannot arise as is shown in the
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following. Since s is a non-atomic state, async is true at s. If ¢’ holds in s then
held_p must hold in s. Since s’ is still a non-atomic state, from the definition
of held_p, then it must continue to hold in s’. Consequently, this cannot be a

case where (¢’ V ¢’) does not hold in s'.

1i4. s is an atomic state and s’ is a non-atomic state: This case also cannot arise
as is shown in the following. Since ¢ holds in s and s is an atomic state, held_¢
will be set and will remain true in s’. Consequently, this also cannot be a case

where (¢’ V 9’) does not hold in ¢'.

iv. s is a non-atomic state and s’ is an atomic state: This is the non-trivial case.
As in case (1), since ¢’ holds in non-atomic state s, held_p must hold in s. So
there must exist a predecessor atomic state s” (that can reach s in the lattice
L) such that ¢ holds in s” (to set held_y). Now we have a situation similar to
that in (i) where s” and s’ are both atomic states. ¢’ holds in s” implies that ¢
hold in s”, and (¢’ V 9’) does not hold in s’ implies that (¢ V ¢) does not hold
in §'. Consequently, there is a state s” in L* in which ¢ holds but (¢ V ) does
not hold in its next state s’. Hence, AG[p = AX(p V ¢)] does not hold in L*

as well.

(<): Suppose AG[p = AX(¢ V 1) does not hold in L*. So there exists a state s
and one of its next states, say ', in L* such that ¢ holds in s but (¢ V 9) does not
hold in s’. From Lemma 9, s and s’ are also states in L. More specifically, there is a
path from state s through non-atomic states s1,..., s in L to reach state s’. Since
non-atomic states preserve held_y, we have arrived at a situation where ¢’ holds in
sk but (¢’ vV 1') does not hold in s’. Hence, AG[p' = AX(¢' V ¢’)] does not hold in

L as well. This completes the proof. |
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An important observation is that AG[p = AX(p V )] is a simpler predicate
than AG[¢' = AX(¢’' V)] in augmenting the program to be checked. In AG[y’ =
AX(¢' V1)), one has to introduce auxiliary variables (not in the original program),
which are used to support the setting and resetting of the auxiliary flag held_p in all

atomic states.

In comparison, for checking the property AG[p = AX(¢ V 9)], the instrumenta-
tion simply requires recording/detecting a local state at the end of an atom, and later
checking AGly = AX(p V 9)] on all atomic states in L*. The checking involves a
smaller lattice L*, as there is no checking required in the non-atomic states. A basic
premise is assumed: a distributed program consists of many parts that evolve asyn-
chronously through message passing. Until synchrony is reached by the completion
of atoms, there is no real reason to require specific program properties. Of course,
errors can occur in the form of improper synchronization among atoms. These errors
can lead to atomicity failure (Cyclic WG). When a run is non-atomic, the atomic
state lattice is non-existent and this indicates one possible form of program error. If
the run is atomic, safety properties such as AGlp = AX(¢ V )] can be checked on

the atomic state lattice L*.

3.5 Serialization

Section 3.3 discussed run-time monitoring for atomicity errors in a run of a distributed
program. Though ensuring atomicity of a run is a must for the existence of an atomic
state lattice and is a necessary condition for the correctness of the rum, it is not
a sufficient condition for correctness. When atoms share a common property, e.g.,
sharing resources or affecting a shared property or invariant, they must be serialized

in a run.
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As an example, consider a distributed constraint optimization program that arises
in an e-market application where three purchase agents are delegated to perform a
coordinated purchases of three different categories of items, say z, ¥y and z. A common
budget constraint is applied to their purchases. While optimizing the global return
from these purchases, the total budget is also a constraint. The system is designed
with the requirement that the purchases are decided at atoms X, Y and Z respectively
(corresponding to items z, y and z). For ensuring the global invariant asserted by the
common budget, these atoms must be serialized in a run. Error in serialization will
imply that at least two purchases are not ordered, leading to a potential violation of
the global budget constraint.

In the following discussion, we call such a set of atoms that affect a common
property or invariant a conflict set of atoms. Each atom belonging to the conflict set

is called a conflict atom. All other atoms are called trivial atoms.

Definition 9 The conflict atoms are properly serialized if they lie on a single path

in the WG graph. A sertalization error occurs if this condition is violated.

In the following section we will present an on-the-fly serialization violation detec-

tion algorithm along with its proof of correctness.

3.6 Serialization Violation Detection Algorithm

Though there can be several conflict sets in a run, for simplicity of discussion we
assume the existence of a single conflict set. The following discussion can easily be
generalized to cover multiple sets. The detection algorithm dynamically monitors if
conflict atoms lie on a single path during the run. To achieve this, each conflict atom

is dynamically assigned a sequence number that identifies its position in such a path.

o8



Existence of more than one path would imply that two or more conflict atoms may
have an identical sequence number. The serialization error is detected under three

scenarios discussed in the proof of Theorem 13.

In the detailed algorithm discussed below (Algorithm 2), each atom A is labeled
with a 2-tuple, label(A) = (owner, seq_no). In examining an acyclic WG graph, each
atom can be labeled with an integer, referred to as its seq.no, that identifies the
maximum number of conflict atoms lying on a same path leading to A. For example,
consider the labeled WG graph in Figure 11. The conflict atoms are the shaded atoms
{B,C,E,G, X,Y}. The seq-no of atom C is 3, indicating that the maximum number
of conflict atoms lying on a path ending at C is equal to 3. The owner denotes the
most recent conflict atom lying on that maximum path. Hence label(C) = (C, 3). For
a trivial atom, such as F, label(F') = (B, 2) indicating that the maximum number of
conflict atoms lying on a path ending at F' is 2 and the most recent conflict atom on

that path is B.

Figure 11: An example of a labeled W@G.

Atom A is an immediate predecessor of atom B if A % B; conversely B is the
immediate successor of A. Conflict atom A is the parent of conflict atom B if B is

reachable from A in the WG graph and seq_no of B = (seq-no of A) + 1; conversely,
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B is a son of A. A conflict atom with no son is a terminal conflict atom. Similarly
a conflict atom with no parent is an initial conflict atom. For example, in Figure 11,
B is the parent of both C and Y, F is an initial atom and G is a terminal atom, X

is both an initial and a terminal atom.

An atom, say A, knows that it does not have predecessor atoms if it is the first
atom in the process and no message is received in it. An atom knows its immediate
successors since it is assumed that the kernel tracks the processes to which it has sent

messages from within the atom.

As an illustration of the algorithm, referring to Figure 11, atom B sends an explicit
parent message (E) to atom E, after computing label(B) = (B, 2). Once E receives
this message, it knows that it has a son. Atom Y sends a parent message (B) to
atom B, but it does not send a parent message to atom X (because seq.no of Y #
(seq-no of X) + 1). As a result, X becomes a terminal atom. Atom G receives
messages (C,3) and (Y, 3) from its immediate predecessors. As a result, it reports
an error (error scenario 1). In this example there are two terminal atoms, G and X.

Hence, an error is also reported upon termination (error scenario 3).
Lemma 12 Algorithm 2 computes label(A) correctly.

Proof. We need to prove that the algorithm correctly computes label(A) = (owner,
seq-no) such that the maximum number of conflict atoms on a path leading to A is
equal to seqg-no and the most recent conflict atom on that path is owner. This can
be proved using an induction on the value of seq_no.

Base case: (seq.no = 1) : According to the initialization step of the algorithm, if A

is an initial conflict atom then it is labeled as: label(A) = (A4, 1).

Induction hypothesis: Suppose that the lemma holds for all atoms with seq.no =

k.
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Algorithm 2 On-the-fly serialization error detection algorithm

Initialization step:
For each atom A without predecessor, label(A) is initialized as follows:
if A is a conflict atom then
label(A) = (A, 1);
else
label(A) = (—, 0);
end if

Upon receipt of label (messages) from all immediate predecessors of A:
if two or more immediate predecessors have identical non-zero sequence numbers
but different owners then
report error; // Error scenario 1
else
//Compute label(A)
if it is a conflict atom then
label(A) = (A, 1+ maz(seq-no of immediate predecessors));
parent = the owner with maximum value of seq_no;
send a (parent) message to the process where parent is executed;
else
label(A) = label(B) where B is the immediate predecessor with the largest
seq_no;
end if
send label(A) to each immediate successor of A;
end if

Upon receipt of more than one (parent) message:
report error; // Error scenario 2

Upon process termination:

if a process has a terminal atom then
It will report it to a central monitor;
The latter reports error if more than one terminal atom has reported to it;
// Error scenario 3

end if
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Induction step: Now consider the case with seq_no = k£ 4+ 1. Consider an earliest
atom (in WQ@), say A, with seq-no = k + 1. This atom must be a conflict atom. We
show that label(A) will be computed correctly. In WG, there must exist at least one
atom, say B, which is the parent of A, such that label(B) = (B, k). The propagation
of labels in the algorithm ensures that the label of B will be forwarded by those
trivial atoms lying between B and A. Hence label(A) = (A, k + 1). Subsequently,
other trivial atoms reachable from A without traversing a conflict atom in between,

will be correctly labeled with (A, k + 1). This completes the induction step. |

Now we proceed to prove the correctness of the algorithm by showing that the
three scenarios of error report are both necessary and sufficient. In examining the

algorithm, we notice that an error is reported when:

t. An atom sees two distinct predecessors with identical seq_no.
#t. An atom is the parent of more than one son.

#14. The system terminates with more than one terminal atom.

Theorem 13 Algorithm 2 reports a serialization error if and only if it exists.

Proof. (=): Lemma 12 establishes that the algorithm computes the labels of the
atoms correctly. In reporting errors under scenario (), when atom A sees two pre-
decessor atoms with identical seq_no, then according to the definition of a label, it
implies that these two conflict atoms cannot lie on the same path. Similarly, in sce-
nario (4¢), when the algorithm discovers that two atoms (say sons of A) have identical
seq.no, the latter cannot lie on the same path. For the same reasoning, in scenario
(#22), the terminal atoms cannot lie on the same path. Hence the serialization error

report in each of the three scenarios is a correct report.
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(«<): We use contradiction. Suppose there is a serialization error but the algorithm
fails to report it. A serialization error involves two or more conflict atoms that cannot
lie on a single path in W(G. Take two such latest conflict atoms, say A and B. By
latest we mean conflict atoms reachable from A are also reachable from B and vice

versa. As a result, there are three possibilities:
i. A and B have a same son (both have a same seq_no seen by the same son), or
11. neither A nor B have a son and hence both are terminal atoms, or

#1t. A and B have different seq_no and one of them, say A, has a son while B does

not have a son.

In case (%), the son reports failure. In case (#%) failure is reported at termination. In
case (4¢), B is a terminal atom while A must eventually reach a terminal atom. Hence
failure is also reported at termination. A contradiction to the no-report assumption

is reached. [ |

3.6.1 Complexity Analysis
In analyzing the complexity of the algorithm, there are two types of explicit messages:

1. After an atom has computed its label, it forwards this information to its imme-
diate successors. The total number of such messages is bounded by the number

of edges |E| in the WG graph.

42. Subsequently, if it is a conflict atom then it sends an explicit message informing
its parent. The total number of such messages is bounded by the number of
conflict atoms.

Hence, the message complexity of the algorithm is bounded by |E}|.
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3.7 Summary

The execution of a distributed program generates a large state space, which needs
to be considered to check the satisfaction of a property in a given distributed com-
putation. Atoms are useful abstractions in reducing the state lattice of a distributed

computation, we refer to the reduced lattice as the atomic state lattice.

With atoms as the basis in viewing a run, checking the satisfaction of a property
in a given distributed program run (runtime verification) involves two steps. First,
the atomicity of the run needs to be checked. Second, if the run is atomic, then the

application specific properties of the program can be checked.

Using the atomic state lattice, one can check program requirements more easily.
First, the atomic state lattice is much smaller. Second, the checking does not require
expensive instrumentation in augmenting the code with additional auxiliary variables

and statements.
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Chapter 4

Consequences of Incomplete/

Incorrect Knowledge of Atoms

4.1 Introduction

In the previous chapter we have illustrated that the checking of a distributed program
run involves two steps: checking the atomicity of the run and then checking the
satisfaction of the application specific properties on the atomic state lattice. In both
steps, the conclusion may depend on whether the programmer/tester has identified
all the atoms of the program completely and correctly. For example, if only a subset
of the atoms is identified, or some atoms are incorrectly identified, will the conclusion
about the atomicity of a run remain valid? Will the conclusion about the satisfaction
of the required program properties remain valid? Section 4.2 addresses the first

question and Section 4.3 addresses the second question.
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Figure 12: A weak-order graph WG with incompletely identified atoms

4.2 Atomicity Checking with Incomplete/Incorrect

Knowledge of Atoms

We denote the sequence of events of an atom, say A, as {(ay, ..., ax) where k is the total
number of events in atom A. If A is not identified as an atom, then we can assume,
without loss of generality, that each of its events will be interpreted as an atom, and
hence, we will have k atoms instead of one. Consequently, for each run (E, —), there
are two possible weak-order graphs, WG = (S,W) and WG = (S, W'). WG is
the weak-order graph using the incompletely identified set of atoms S. WG’ is the

weak-order graph of the complete set of atoms.

For the example in Figure 5, if B is the atom that is not identified, then the
resulting WG graph will be as shown in Figure 12. In comparison with the weak-
order graph, say WG', shown in Figure 6, WG contains more atoms, since B is
now split into three atoms, Bj, B; and Bs. In general, if the atoms of a run are
incompletely identified, then some atom(s) in S’, say A, contains events (ai, ..., ax)

that are treated as individual atoms A;,..., A; in S.

Lemma 14 If a run is non-atomic with respect to an incomplete set of atoms S, then

it 1is also non-atomic with respect to the complete set of atoms S’.

Proof. As a consequence of Lemma 1, we need to show that if W@ is cyclic then WG’
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Figure 13: (a) A well-formed atom, (b) A non-well-formed atom.

is also cyclic. From the assumption on incompletely specified atoms, a node X in WG’
is either the same node X or a sequence of nodes (X1, X»,..., X)) in WG. If WG
contains a cycle that contains a sub-path 4 — X; — ... — it - B where
X; up to X;,, are part of the atom X in WG’, then according to the definition of the
weak-order relation(Definition 2) we can infer a similar sub-path A — X - B in
WG'. Hence a cycle in WG’ can be constructed from a cycle in WG. This completes

the proof. [ ]

Definition 10 An atom A = (ay, ..., ax) is well-formed iff whenever a; is a send

event, then a; (for all j > ©) is not a receive event.

Figure 13 shows an example of a well-formed atom and an example of a non-well-

formed atom.

Lemma 15 If a run is atomic with respect to an incomplete set of atoms S and
S’ — S contains only well-formed atoms, then the run is also atomic with respect to

the complete set of atoms 5.

Proof. Suppose the run is non-atomic with respect to the complete set of atoms

S’. Hence WG is cyclic (from Lemma 1). Next we show that WG must also be
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cyclic (if 8’ — S contains only well formed atoms). More specifically, given a cycle
A5 BS 0. Z 2 Ain WG, we can construct a cycle in WG as
follows. The cyclic path from A through B,...,Z and back to A traces a sequence
of atoms in S’. Without loss of generality, suppose B is an atom in S’ — 5. Let
A= {ay...,am), B = (by,...,b,) and C = (c1,...,¢;). In other words, there are
m events in A, n events in B and t events in C. In the sub-path A - B % C,
since B is a well formed atom, there must exist events a;,b;, b4, and cx in A, B
and C respectively such that a; — bj, bjy — cx and b; — b, (w>0). If B
is not identified as an atom, then the events in B will become individual atoms
in WG (i.e., b; becomes B; etc). Now we can construct a corresponding sub-path
A% B % ... By, — C in WG. By repeating this splitting process
iteratively on atom C (if it is in S" — S) and subsequent atoms on the cyclic path, we

can identify a cycle in WG as well. Hence, the claim holds. ]

From Lemmas 14 and 15, we can conclude that the result of checking the atomicity
of a run with an incomplete set of atoms remains valid as long as the unidentified

atoms are all well formed atoms.

Next we consider the scenario where atoms may be incorrectly identified. Suppose
the programmer/tester incorrectly identifies some atom by grouping the code blocks
that belong to multiple atoms into a single atom. As a result, at runtime an atom
may contain events that should have belonged to multiple atoms. Consequently, for
a given run, there are also two sets of atoms, S and S’ such that some atom in S is
formed of a sequence of atoms, all of which belong to the same process, in S’. For
example, in Figure 14, the four atoms By, Bs, By and By of a process are incorrectly
grouped into a single atom B. As a result, the WG corresponding to S contains B

instead of four separate atoms, B; to By, in the correct WG’ corresponding to S’.
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Figure 14: A sequence of well-formed atoms forming a well-formed atom.

Lemma 16 An atom B formed by a sequence of well-formed atoms (By, Ba, . .., By,)
is a well-formed atom iff there exists an i such that {B;|j < i} are atoms without

send events, and {Bx|k > i} are atoms without receive events.

Proof. This is immediate from the definition of well-formed atoms: B; is the only
atom that may contain both send and receive events and B; is well-formed. Hence,

all the receive events in B must happen at or before B;. n

Figure 14 illustrates a sequence of well-formed atoms that satisfies the condition
in Lemma 16. This lemma asserts the necessary and sufficient conditions for grouping

a set of well-formed atoms into a bigger well-formed atom.

In the next two lemmas, S’ represents the correct set of atoms and S represents

an incorrect set of atoms that is formed by grouping together some atoms in S’.

Lemma 17 If a run is atomic with respect to an incorrect set of atoms S, then the

run is also atomic with respect to the correct set of atoms S’.

Proof. Suppose that the run is non-atomic with respect to the correct set of atoms .S’
(WG is cyclic based on Lemma 1), we want to show that the run is also non-atomic
with respect to an incorrect set of atoms S.

If there is a cycle in WG’ that contains a sub-path that traverses a sequence of

atoms (B, Bs, ..., By,) that are incorrectly merged to form a bigger atom, say B in
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S, then the sub-path (By, Bs,. .., B,,) can be replaced by B to form a cycle in WG
corresponding to S. Cyclic WG implies non-atomic run with respect to the incorrect

set of atoms S. This completes the proof. |

Lemma 18 If a run is non-atomic with respect to an incorrect set of atoms S and
S — S’ contains only well-formed atoms, then the run is also non-atomic with respect

to the correct set of atoms S'.

Proof. This follows the same line of proof as that in Lemma 15. The details are

omitted. [ |

From Lemmas 17 and 18, we can conclude that if some atoms are incorrectly
grouped together in analyzing a run but these resultant atoms remain well-formed,

then the result of checking the atomicity of the run will remain valid.

4.3 Checking Properties with Incomplete/Incorrect
Knowledge of Atoms

In this section we will address the validity of property checking in the case where the
programmer has incompletely or incorrectly identified the atoms. In the following, we
assume that there are two distinct sets of atoms, S; and S,, of a run. Some atoms in S
are formed by merging some atoms in Sy. In particular, some atom X in S is formed
by merging a sequence of atoms (X7,..., Xy) in Ss. For simplicity of presentation,
we also use X (instead of X)) to represent the merged atom in S;. As a result of
this simplification, Sy — S contains {Xj,..., Xx_1} whenever {X1,..., X} in Sy is
merged to form a single atom in S;. For example, in Figure 15, S; = {A, X3, B} and

SQ = {A> X17X2aX3: B}
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Figure 15: An example of an atomized run.

As a result of the merging of atoms, there are more atoms in Sy than in Si, or
equivalently, there are more states in the atomic state lattice L3 associated with S,
than in L] associated with S;. In the case of an incomplete set of atoms, S; represents
the complete set and S5 represents the incomplete set. In the case of an incorrect set

of atoms, S; represents the incorrect set and S, represents the correct set.

Definition 11 An atom whose execution does not affect a global predicate ¢ is said

to be a p-tndependent atom. Hence, its occurrence will not affect .

We will focus on the same property used in the previous chapter AGlp = AX(¢V
¥))-

Lemma 19 Suppose the atoms in Sy —S1 are both p-independent and 1-independent.
AGlp = AX(o V)] holds in the atomic state lattice L} associated with Sy iff it

holds in the atomic state lattice L} associated with Sy.

Proof. (=): S; and Sy differ in that some atom(s), say X in Sy, is formed by
merging a corresponding set of atoms, say {Xi,..., Xy} in S,. Hence, for each path
in L7, there is a corresponding path in L3 such that the occurrence of X in L3 is
replaced by the occurrence of atoms in {Xi,..., X} in L. The reverse also holds.
We refer to this as the path-equivalent property.

Suppose AGlp = AX (¢ V ¢)] does not hold in L}, we want to show that it does not
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hold in L. Since the predicate does not hold in L3}, there is a path, say T3, in Lj that
traverses a state s and its next state s’ via executing an atom Xj such that ¢ holds
in s but (¢ V ¢) does not hold in §'. From the path-equivalent property, there is a
corresponding path, say 71, in L} that reaches s’ by executing the atom Xj. There

are two cases to be considered:

i. X in S is formed by merging {X,..., Xi} in S, and

#t. Xi in 57 is not formed by merging some atoms in Ss.

Trivially, in case (i), T} also traverses s and then s’ via atom Xj, representing
a violation of AG[p = AX(¢ V¥)] in L}. In case (¢), the relevant portions of the
paths T} and T3 involving X and {Xi,..., Xi} respectively are shown in Figure 16.
In Figure 16, there is a state s” in both path T} in L} and path 75 in L} such that s”
reaches s’ by executing X and { X3, ..., Xi} respectively. Since {Xj,..., Xx-1} arein
Sy —S1, from the condition stated in the lemma, each atom in {X3, ..., X;_1} must be
both ¢-independent and -independent. Hence ¢ must hold in s”, and subsequently
in each state traversed via the atoms from {Xi,..., Xx_1} in T5. Consequently, we
have identified a state s” in which ¢ holds in both L} and L}. But (¢ V 9) does not
hold in s’ which is the next state of s” in path T} in L%, as illustrated in Figure 16,
causing a violation of AG[p = AX(¢ V ¢)] in L3.
(«<): Referring to Figure 16 where s” changes to s’ by executing X} in L3, we can
apply the same argument as in the first part of the proof and establish that there

is a corresponding state in L% that reaches s, leading to a violation of AG[p =

AX(p V)]. Further details are omitted. [
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Figure 16: (a) A path in L} in which AG[y = AX(p V ¢)] does not hold, (b) The
corresponding path in Lj.

4.4 Summary

Atoms are useful abstractions in reducing the state lattice of a distributed computa-
tion. With incomplete or incorrect knowledge of atoms, it is still a viable approach to
conduct this reduction, provided that the atoms that are not identified or incorrectly
identified are all well-formed atoms. However, the maximum state space reduction

can only be achieved with a complete set of atoms.

The checking of program properties with an incomplete or incorrect set of atoms
remains valid provided that the mis-identified atoms do not affect the properties

concerned.
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Chapter 5

Using Synchronized Atoms to
Simplify Checking of Distributed

Programs

5.1 Introduction

In the previous two chapters we have shown that atoms are useful abstractions in
reducing the state lattice of a distributed computation. We have referred to the re-
duced lattice as the atomic state lattice. However, general predicates remain difficult
to check if they are asserted over all states. This chapter presents a formulation to

attack this problem involving the separation of two different concerns:
. Synchronization requirement
#1. Computational requirement

When a number of processes has to maintain a shared global property, we expect that

each process should be at some point aware of the changes that can affect the property,
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made by other processes; otherwise it will be hard for these processes to maintain this
property. This indicates that along with each computational requirement (property)
that a distributed program must satisfy, there is a synchronization requirement that
must also be satisfied. Consequently, a given property can be specified in a different
manner by separating its synchronization aspects and computational aspects. The
synchronization and the computational requirements will be specified by two different
predicates, synchronization predicate p and computation predicate g. In this case, we
do not need to check g in every state; instead we need to check it only on those selected
states where the relevant processes are synchronized, i.e., satisfy the synchronization

predicate p.

Serialization is the minimal avenue for a set of processes that must maintain a
global property to propagate the causal knowledge needed to maintain the global
property. This implies that each global state where a synchronization predicate p
holds (we call it p-state) must be a proper subset of the next p-state. Consequently,
the synchronization requirement can be modeled by the serialization of the p-states.
With this modeling assumption, the computational requirement (global property g)
needs to be checked only at each p-state. The serialization requirement guarantees
that the number of p-states will be bounded by the number of atoms executed, as will
be demonstrated in this chapter. Consequently, property g can be checked efficiently

even if it is a general property.

The rest of this chapter is organized as follows: Section 2 introduces synchronized
atoms, p-states and presents two examples to illustrate how the ideas described above
can be useful for efficient property checking in cases where the property of concern
does not belong to any of the classes described in section 2.6. In Section 3, two efficient

algorithms for checking a general predicate g, in the cases where the synchronization
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predicate p is conjunctive or disjunctive, are presented along with their proof of

correctness. Section 4 summarizes the results introduced in this chapter.

5.2 Atoms and Serialization

A message passing distributed program consists of processes, each of which owns a
set of local variables. The properties that a program must satisfy can be expressed
in terms of these variables. Each process performs local computations and exchanges
information with other processes through message passing. Atomicity of execution of
a sequence of statements in a message passing program can be modeled by its effect
on shared (global) properties. The effect of an atomic code block on a shared property
should be as if the statements in this code block were executed in sequence without

interleaving with the execution of any other statement.

The concepts of an atom and serialization can be used to simplify the checking
of distributed programs’ properties. In checking a run of a distributed program, we

separate two distinct concerns:
i. Synchronization among atoms
1. Proper computation dependency between atoms and within each atom

Figure 17 shows a simple distributed scheduling example illustrating these two
separate concerns with atoms as the basis. P, initiates a meeting request by sending
a proposed time z to P». In turn, P, examines its schedule with respect to z and
forwards a proposed time y > z to P5. Similarly, P; examines its schedule with respect
to y and forwards a proposed time z > y to P;. This token ring synchronization
among the atoms circulates around the three processes until each process has received

a proposed time that matches with the one that it has recently proposed.
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Figure 18: A simplified run of a distributed resource management system.

In Figure 17, the first atom of process P, contains the events that include the
receipt of a proposed time, checking it against the local schedule and deciding on a
proposed time to be forwarded to the next process. The notation z! associated with
an atom indicates that the atom modifies variable  one or more times. A proper
run contains atoms that are ordered in the form of a token ring. In addition, each
atom should compute its proposed time correctly. Specifically, upon completion of

each atom, the program state should satisfy the shared property z <y < z.

Figure 18 shows a simplified run of a distributed resource management system
that will be used in illustrating our model and checker algorithms. In this figure,
there are three processes Pj, P, and Pj, executing the respective atoms as shown.
The distributed resource management system involves the coordinator process P;
and two participating processes P, and P3. The actual use of resources is represented
by the local variables {u1, us, us} with the global constraint u; + uy + us < n where

n is a constant. Process P; will optimize the value of u; depending on other system
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conditions known to it. The set of local variables {x1, z2, z3} represents the resources
allocated to be locally managed by the corresponding processes. In general, it is

expected that u; < z; at all times.

Initially, the coordinator P; executes atom A;. In Ay, P, decides to use u; units
of resources and keep a total of x; units of resources to be managed locally. The rest
of the resources are distributed to processes P, and P3;. Upon notification, P, and
P; update their allocated resources x5 and z3 in atoms By and C respectively. Sub-
sequently, these processes locally manage the allocated resources while maintaining
the invariant u; < x;, within atoms Aj, By and Cy. Sometime later, process P, asks
P, for more allocation in atom B,. As a result, P; releases more resources to P via
atoms Az and Bs. Similarly P; can ask for more allocations, leading to the run shown

in Figure 18.

5.2.1 Well-formed Atoms

An atom is an identified sequence of events of a process such that the result of
executing these events will be as if they were executed without interleaving with any
event, of any other process. An atom A is a well-formed atom if every receive event
in A happened before every send event in A (Definition 10). The set of well-formed
atoms in (E, —) is denoted by Sg. In this section we will show how well-formed atoms
can be useful in reducing the state space that needs to be considered for property

checking.

For example, in Figure 18, A; is a well-formed atom that includes the events cor-
responding to the execution of the program statements in P; to (%) receive a request
from process P, (i) locally optimize u; and x;, and (#4%) send a new allocation

of resources x5 to P». Only a subset of these events is marked with small circles in
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Figure 18. In this chapter the term atom will be used to refer to a well-formed atom

unless otherwise specified.

Definition 12 Given two atoms A and B in Sg, atom A is causally ordered before
atom B (denoted by, A -5 B) if there exists an event in A that happened before an

event in B.

A run of a distributed program designed with well-formed atoms will have the

following nice property.

Lemma 20 If Sg contains only well-formed atoms, then their causal order relation

(—= ) induces a partial order (Sg, —).

Proof. We only need to prove transitivity and anti-symmetry of —.
Transitivity: Consider three well-formed atoms A, B and C in Sy such that A —
B and B — C. We want to show that A — C. From Definition 12, there must
exist some latest event a; in A and some earliest event b; in B such that a; — b;.
Similarly, there must exist some latest event b, in B and some earliest event ¢,
in C such that by — c,. To establish these happened-before relations, b; can be
either the first event (through program order) or a receive event (through message
interaction) in B. Similarly, by can be either the last event or a send event in B.
From Definition 10 on well-formed atoms, we must have b; happened before b;. This
leads to a; — b; — by — ¢;. This implies A = C.

Anti-symmetry: Suppose A — B and B —+ A. Then applying the previous
reasoning with A replacing C, we have a; — b; and by — a, and b; — b,. Continuing
further, a; is either the last event or a send event in A and ay is either the first event

or a receive event in A. So a, — a;, leading to a; — b; — by — ap — a;. This
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Figure 19: The atomic state lattice (L*) associated with the run shown in Figure 18.

contradicts the happened-before relation among the events in E. Hence (Sg, —) is

a partial order on well-formed atoms. ]

As a result of Lemma 20, the partial order (Sg, —) also induces a lattice; we
refer to it as the atomic state lattice L*. The atomic state lattice of the run in Figure
18 is shown in Figure 19. Some of the state transitions are labeled with the atoms

that cause them.

Lemma 21 L* is the sub-lattice of L consisting of all the states reached upon com-

pletion of the corresponding prefizes in the partial order (Sg, ——).

Proof. This is immediate: for every prefix of (S, —) whose execution leads to
state s in L* , there is a corresponding sequence of events in (E, —) whose execution

leads to the same state in L. |

The atomic state lattice L* of (S, —) is much smaller than the state lattice L of

(E,—). To illustrate the difference, consider the partial lattices shown in Figure 20.
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1. Initial state 8. <A, By,~>
2. <Ajy-> 9. <Az, By,->
3. <A;,--> 10. <A, B, Cp>
4, <A,Ci> 11, <Ay By, Cp>
5. <Ay~ Co> 12, <Ay, By, C>
6.<A1,,Cr>  13.<A,, By, C>
7-<A23'aC2>

Figure 20: Correspondence between (a) The Event State Lattice (L) and (b) The
Atomic State Lattice (L*).

Figure 20(b) reproduces the atomic state lattice of Figure 19 spanned by the minimal
prefix that contains the atoms {A, Ay, By, C1, Cy}. The corresponding state lattice
L is shown in Figure 20(a). In comparison, there are only 13 states in Figure 20(b)

as compared with 71 states in Figure 20(a).

Even with this significant reduction, the size of L* can still grow exponentially
with the degree of concurrency among atoms in a run. As a result, checking for the
satisfaction of a general predicate over L* would still require exponential time unless
some additional assumptions are made. One reasonable assumption is that general
predicates are asserted not on all states but only on those selected states where
the relevant processes are synchronized, as we have already demonstrated earlier in
this chapter. In our example, the coordinator atom Az must be ordered before the
participant atom Bg. If this is not satisfied, an ordering (synchronization) failure has
occurred. However, with proper ordering between Az and Bs, computational errors

could arise if A3z does not compute u; and x; correctly. The latter will appear as a
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failure to satisfy the required predicate in some synchronized state, as will be shown

later.

5.2.2 Synchronized Atoms (p-atoms) and Serialized p-states

For modeling synchrony in maintaining a general predicate g defined on a set of dis-
tributed variables belonging to k processes {Py, P,,..., P, ..., Py} relevant to the
general predicate g, we use a synchronization predicate p defined on a set of Boolean
synchronization auxiliary variables {synci, syncy, ..., syncg}. Process P, owns vari-
able sync;. In some applications the synchronization predicate can be defined in terms
of the application variables without the need for auxiliary variables. The system may
contain other processes, say {Pgy1,-- -, Pn}, which are irrelevant to the general pred-

icate g.

Definition 13 An atom in process F; is a p-atom if its execution results in sync; =

true. A state in L* is a p-state if
i. It satisfies the synchronization predicate p, and
ii. It is the minimal prefiz of (Sg, —) of the p-atoms included in that state.

Hence a p-state is reached by having just completed a set of p-atoms and includes only

those atoms that are causally ordered before these p-atoms (minimal prefiz).

In Figure 21, we have extended Figure 18 with an additional process P, that is
irrelevant to the property under consideration. This extension is done to reveal a
subtlety in condition (#2) of Definition 13. From understanding the design of the

distributed resource management system, there are atoms that synchronously modify
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Figure 21: p-states of the example distributed run.

the resource variables {z;, 22, x3} so that changes to these variables must be synchro-
nized in order to maintain the shared predicate ¢ = x; +xz2+x3 = n. Then internally,

process P; is responsible for maintaining the local predicate u; < z;.

The synchrony is represented by a synchronization predicate p = sync; A syncg A
syncs. EBach process P; owns an auxiliary variable sync;. These variables are initial-
ized to false at the beginning of each atom. When an atom in process P; modifies
the variable z;, it will set sync; to true. In Figure 21, there are seven p-atoms drawn
as shaded rectangles. These atoms leave the corresponding Boolean variables sync;
(¢ =1,2,3) in the true state. Abstractly, we can interpret the synchronization predi-

cate p to indicate that the variables {x1, s, 23} are globally in synchrony.

According to Definition 13, there are precisely three p-states, 5,52 and Ss, at
which (2) p = true and (4%) each is the minimal prefix of (Sg, —) for the corre-
sponding subset of p-atoms. S; contains p-atoms {A;, By, C1}, S2 contains p-atoms
{A1, As, By, B3, C1}, and S3 contains all of the p-atoms. For simplicity, we denote
each p-state by the most recent p-atom executed in each process. For example,

SZ = <A3a BB: Cl>
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Notice that there are more states than the three p-states identified that satisfy
p. For example, the state (A, By, Cy, D;) satisfies p, but is not a p-state, as it does
not satisfy the minimal prefix condition (4i) in Definition 13. The changes that may
affect g are all occurring in the p-atoms {A4;, B;,Cy}. D; can not influence any of
these changes as it is clear in Figure 21. Consequently, there is no need to consider
(A1, By, Cy, D) as a p-state.

In the above, we have illustrated how to identify whether a state is a p-state or
not. The next step is to see how we can check that these p-states are serialized,
i.e., each p-state is a proper subset of the next p-state. As we have demonstrated
earlier, serialization is a minimal avenue to propagate the causal knowledge needed

to maintain the global predicate g.

Definition 14 A run has serialized p-states if all the p-states of (Sg, —) lie on a

single path in the atomic state lattice L* of {Sg, —).

In Figure 19, the three p-states {51, S2, S3} are marked with black balls and they
lie on a single path (highlighted in bold lines) in L*. Hence this run has serialized p-
states. The significance of p-states is that at those states where synchrony is reached,

the general predicate g on the distributed variables {z1, x5, 23} must be satisfied.

Lemma 22 The set of serialized p-states of a run can be ordered as a sequence of
prefizes of (Sg, —) under the subset relation. In other words, they can be ordered

as S, C S, CS3C...CSp.

Proof. The set {Si,..., S} of serialized p-states of a run lie on a single path in
L*. Sy is reached from S; in L* by executing the sequence of atoms that form the
sub-path between them. Hence S; C S;. Repeating this argument inductively on S;

establishes the claim. [ |
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Definition 15 A run satisfies (g, p) if

1. It has serialized p-states, and

ii. g is satisfied in every p-state.

An intuitive justification can be provided for the requirement stated in Definition
15. The example has illustrated the relationship between synchronized atoms (p-
atoms) in the form of serialized p-states and the general predicate g that should be
satisfied at these states. For this to be feasible in a distributed system, generally we
expect that the changes to the variables of ¢ in a p-state should be known to some p-
atom(s) in the next p-state. If these p-states are serialized, from Lemma 22, they form
an ordered sequence of prefixes of (Sg, —). As a result, there is a corresponding
advancement from one causal cone (.S;) to the next causal cone (S;+;) and so on. This
is a minimal requirement for the changes to the predicate variables associated with g
in S; to be known to (S;41).

Figure 22 shows an erroneous run that differs from the one in Figure 18. This
error is caused by the omission of process P, to request more allocation from P; before
proceeding to increase its allocation. As a result, there are four p-states in this run,
namely So = (A1, By, C1), S1 = (A1, B2, C1), Sy = (As, By, Cs) and S3 = (A3, By, Cs),
these states are marked with black balls in the atomic state lattice shown in Figure
22. In particular, S; and S, cannot reach each other, these two states do not lie on
the same path in the corresponding atomic state lattice. As a result, p-states are not

serialized and hence (g, p) is not satisfied.
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Figure 22: A run without serialized p-states and the corresponding atomic state
lattice.
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5.3 Checker Algorithms for (g, p)

In this section, we will present and prove two checker algorithms for checking (g, p),
one for a conjunctive p and the other for a disjunctive p. The two can be merged for

checking more general forms of p, such as a disjunction of conjunctions.

5.3.1 Conjunctive p

Given a distributed computation (Sg, —), a general predicate g and a conjunctive

synchronization predicate p = sync; A syncg A ... A syncg, our task is to check:

1. The serialization of p-states.

1. The satisfaction of g in each p-state.

In Figure 22, the p-atoms are shown in shaded rectangles. As before, we identify a
p-state with the latest p-atom in each process. For two p-states S; and S; that satisfy
p, it has been proved that S; NS; (denoting the maximal prefix of (Sg, —) common
to both S; and S;) also satisfies p [Gar02]. As a result of this property, there must
exist a unique earliest p-state that can reach every p-state in the atomic state lattice
L*. The checker strategy proceeds by detecting this first p-state S. Successively it
moves forward by pruning this prefix from the current (Sg, i») and continues to
search for its successor p-state(s) in L*. Satisfaction of g is checked separately on

each identified p-state. Algorithm 3 shows the details of the checker.

In Algorithm 3, we have omitted the details of finding the next p-state of (Sg, —).

This is accomplished by Algorithm 4.

As an illustration of the checker algorithm, consider the run shown in Figure 22.

Initially Sy = (A1, By, Cy), which is a p-state. Omitting A; leads to Sy = (43, By, C3).
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Algorithm 3 The checker algorithm for (g, p) where p is conjunctive

Notation: A p-state is denoted by S = (p1,p2, ..., px) Where p; is the last p-atom
in process F; in §.

For a p-atom p; in process P;, next(p;) is the next p-atom after p; in process P; (if
it exists).

C(p) = {p'|p' in Sp and p’ — p}

//Notice that C(p) includes atom p.

S = the first p-state of (Sg, —);
if S does not satisfy g then
report a failure;
end if
repeat
St = Sk;
S'=S E;
fori=1to k do
Sy = Sp — Clneat(p,));
S; = the first p-state of (S, —);
if S; exists then
if S; does not satisfy g then
report a failure;
else
if S; ¢ S’ then
S’ = S;; //keep the earliest next p-state
Sk = Sg;
else
if ~(8" C S;) then
report a failure; //S" and S; cross-over
end if
end if
end if
end if
end for
S =95
until S, = §;
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Algorithm 4 Algorithm to find the first p-state of (S, ——)

Initially: For a given (Sg, —), (f1, fa, ..., fx) = minimal prefix in (Sg, —) that
contains {f;| f; is the first p-atom in P, =1,...,k}

repeat
S = <f17f2;" ')fk>;
if Ji : the last atom a; of P; in S differs from f; then
fi = the next p-atom in P;;
// fi = 0 if there are no more p-atoms in P;
end if
until (S is a p-state) or (Ji : f; = 0);
if 3i: fi =0 then
report no p-state found;
else
return S

end if

The checker replaces S’ with S,. Omitting B; leads to S1 = (Aj, Be,Cy). Since
=(S; € ') and —(S" C Si), the checker reports a failure of serialization between

p-states.

We proceed now to prove the correctness of the checker algorithm.

Lemma 23 If p-state(s) exist in (Sg, —), then the first p-state (not reachable by

another p-state) is unique.

Proof. This follows immediately from the property that if S; and S; are p-states,
then S;NS; is also a p-state. Hence if there are multiple first p-states, say, S; and S,

this is a contradiction: S; N S; is a first state that can reach both of them. [ ]

Lemma 24 If (Sg, L>> does not contain serialized p-states, the checker algorithm
reports the first failure represented by two successor p-states of a parent p-state and

these successor p-states cannot reach each other in L*.

Proof. From Lemmas 23, the checker algorithm detects the first p-state S = (p1, pa, .. ., D)
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of (Sg, —). There are at most k next p-states {Si,Ss,..., S} of S, such that S;
is the next p-state reached by having executed at least the p-atom after p; in P;. If
there are two successor p-states of S that cannot reach each other, they must be in
this set. In the for-loop of the algorithm, S7, Ss, ..., Sk are generated iteratively. In
iteration 1, it retains S; (if it exists) as the potential next p-state of S (coded also
as S’ in the algorithm). In iteration 2, it checks if S; can reach Sy or vice versa (via
S1 C 89 or Sy C S1). In the latter case, it retains Sy as the potential next p-state
of S. If neither holds, then a failure is correctly reported. By repeating this for all
k potential next states of the initial p-state S, the algorithm guarantees reporting of
failure if two successor p-states of S cannot reach each other. Furthermore, if none
is detected among the k potential next p-states of S, then the retained state in the
for-loop becomes the unique next p-state of S and the whole process repeats with
this new p-state as S until eventually either (Sg, —) contains serialized p-states or

the first failure will be reported. ]

Theorem 25 The checker algorithm (Algorithm 3) correctly reports a failure if a run

does not satisfy (g, p).

Proof. From Lemma 24, the checker reports serialization failure. In addition, the
algorithm also checks g in each p-state and reports a failure if it is not satisfied in

any p-state. |

The checker algorithm can be adapted into an online monitoring system in which
a run is checked for its satisfaction of (g,p). We will describe briefly some relevant
details of the adaptation. These include (a) use of vector time stamp to track ——
among well-formed p-atoms, and (b) forwarding of the time-stamp of each atom and
the value (v;) of the predicate variable z; associated with that atom to a checker

monitor that implements the checker algorithm dynamically, as (Sg, —) unfolds.

90



Associated with process F; is a monitor kernel that assigns a vector timestamp

(t1,t9, ... tiy. .., tk) to each p-atom executed by P;, with the following details:

Upon executing the first event in a p-atom:
(trytoy .oy tiye ety = (b1ytoy .yt + 1,000 tk)
Upon receiving a message tagged with (t|,... t}):
(t1,...,te) = (maz(ty, ty),. .., max(ty, t}))
Upon sending a message to process P;:
Tag (t1,ts,...,t) on the message if it was not done before.
Upon completing the last event of a p-atom:
Send ({t1,ta,...,tk),v;) to the checker monitor.
Using the above distributed monitors, the ordering among p-atoms can be es-
tablished by comparing the vector timestamps of each p-atom. Consequently, the
checker monitor can verify (g, p) by constructing (Sg, —) and applying the previous

algorithm.

5.3.2 Disjunctive p

Checking that the p-states are serialized where p is a disjunctive predicate p = sync;V
synca V...V syncy is rather straight forward. We will present a fully distributed on-
the-fly checker of (g, p). To support a fully distributed checker, we make a stronger

assumption on well-formed atoms and refer to this as strictly well-formed atoms.

Definition 16 A well-formed atom is strictly well-formed if every event that changes
a predicate variable associated with the atom happened before every send event in the

atom.
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The significance of a strictly well-formed atom lies in the fact that the effect of the
atom to a predicate variable, say z;, can be communicated to other p-atoms through
tagging the necessary causal information on application messages. Abstractly each
process maintains a vector (t,owner,v) that reflects (2) the owner process of the
most recent p-atom whose sequence number (in the serialization order) is ¢, and (2)
the values (v) of the variables relevant to the predicate g. Algorithm 5 shows the

details of the (g, p) checker where p is disjunctive.

Now we will proceed to prove the correctness of Algorithm 5.

Lemma 26 If a run contains p-states that are not serialized, then a failure will be

reported.

Proof. There are two cases: (%) the first p-state in L* is unique, and (42) there are
two first p-states S; and S, that cannot reach each other in L*.

Case (i): Consider the first p-state in L*, say S, which can reach two successor
p-states S7 and Sy but neither of the latter can reach the other. Because p is a dis-
junctive predicate, these three states are entered by the execution of three separate
atoms, say p;, p2 and ps respectively. Since S is a first such p-state and neither S;
nor S, reach each other, the following causal relations p; — pa, p1 — ps, —(pg SN
p3) and —(p3s —— py) must hold. With well-formed atoms and causal forwarding of
(t,owner,v), the monitors associated with the processes that execute py and p3 will
identify the process that execute p; as its parent and will send an acknowledgment to
the monitor associated with it. Hence a serialization failure will be reported by the
latter monitor.

Case (42): Since S; and S, are two first p-states, they have identical sequence num-
ber ¢t = 1. From the algorithm, both will identify P, as its parent and send an

acknowledgement to the monitor of P, who will report the failure. ]
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Algorithm 5 The checker algorithm for (g, p) where p is disjunctive.

Monitor/Checker Kernel at P;:
Initially:

owner = Py;

previous = 0;

t =0

Upon receipt of a message tagged with (t',j,v'):
if t <t then

(t, owner,v) = (¥, ,v);
end if

Before executing the first send event in a p-atom:
parent = owner;
previous = t;
(t,owner) = (t + 1, P,);
if —g(v) then
report a failure;
end if

Upon executing a send event to P;:
Tag the message with (t, owner, v) if it was not done before;

Upon completing the last event of a p-atom:
Send acknowledge(previous) to the process identified by parent;

Upon receipt of acknowledge(t'):

if acknowledge(t') has been received before then
Report a failure;

end if
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Lemma 27 If a run contains a p-state that does not satisfy g, a failure will be re-

ported.

Proof. Under strictly well-formed atoms assumption, the values of the predicate
variables associated with each p-state are correctly obtained by merging (Z) those
propagated from the parent p-state via causal forwarding, and (#%) those updated in
the current p-atom. Upon completion of the current p-atom, the general predicate g

will be checked in the new p-state and a failure will be reported if g is not satisfied.

Theorem 28 The checker algorithm (Algorithm §) correctly reports a failure if a run

does not satisfy (g, p).

Proof. Follows directly from Lemmas 26 and 27. |

5.4 Summary

We have presented a model using well-formed atoms as the basis in obtaining a
reduced state lattice L* for monitoring and checking a distributed program run. In
analyzing the relationship between a general predicate on local variables and synchro-
nization among the atoms executed, we postulate that synchronized states (p-states)
reached upon executing p-atoms must be serialized. Intuitively, this is justified by
the causal cone representing one p-state migrating to the causal cone representing the
next p-state (Lemma 22). Serialization is a minimal avenue for a set of atoms that
moves the system from one p-state to another p-state to propagate causal knowledge
needed to maintain the global predicate g.

We have developed two efficient algorithms for checking (g, p), where g is a general

predicate and p is a conjunctive or disjunctive synchronization predicate. The number
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of the states where a general predicate g needs to be checked will be bounded by the

number of atoms executed.

95



Chapter 6

Checking Distributed Programs

with Partially Ordered Atoms

6.1 Introduction

Partially ordered multi-sets (POMSETS) are attracting more attention in modeling
and analyzing distributed programs due to that fact that they model true concur-
rency [LRGO04, LL94, PL93, PL91b, PL91a, Pra86]. This contrasts with the implicit
modeling of concurrency in the interleaving model where concurrency is simulated
by commuting the corresponding events in separate linear traces. This gives rise to
additional complexity in analysis and checking in the interleaving model as has been
described in Section 2.10.

In Chapter 3 we have illustrated the effectiveness of exploiting design time knowl-
edge to identify a set of atoms that can be used to abstract a distributed program
computation [LMGO7a, LMGOT7b]. In this chapter, we address both the atomization

problem and the checking of program properties using a partially-ordered multi-set
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(POMSET) model of atoms.

Atomization can be performed with a hierarchy of conditions. The coarsest con-
dition simply requires the result of executing a sequence of events forming an atom to
be as if these events were executed in sequence without interleaving with any event
of any other process. This condition does not distinguish events that are relevant to
the required program properties from other events and hence will lead to the coarsest
granularity of atoms. By distinguishing relevant events from other events, stricter
characterizations of atoms will result. In particular, by considering the multiplicity
of relevant events and their ordering with respect to other events within an atom,
atomization can lead to well-formed mini or maxi atoms that are relevant in program

checking.

Atomization is a rather intuitively applicable technique for analyzing a distributed
program. For example, most of the agent protocols [FIP] can be easily atomized.
These can be abstractly viewed as protocols that execute a number of atoms. The
correctness of a protocol involves two aspects, the correctness of the order in which its

atoms are executed and the correctness of the computation performed by each atom.

Slicing is a filtering technique used to extract relevant entities for analysis, as used
in program comprehension and property checking [LRG04, MGO1, Wei84]. Since not
every atom is directly relevant to a required program property, an atomization can
also be sliced to create a simpler atom slice for checking, as will be illustrated in

Section 2.

The rest of this chapter is organized as follows: Section 2 contains the formulation
of the atomization model. In section 3, we present our order requirements specification
model and the checking procedure. In section 4, a simple example is presented to

illustrate the results stated in sections 2 and 3. In section 5 we use a POMSET
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automaton to specify ordering requirements. Section 6 presents some guidelines that
can help programmers to use the methodology introduced in this chapter, followed

by the summary in section 7.

6.2 Atomization

Atomization is an abstraction mechanism that can effectively compress all the events
of a run into a smaller number of atoms to simplify monitoring and checking the run.
There are many different layers of abstractions that can be used in creating atoms.
This section presents our structured abstractions and their respective properties, fol-
lowed by an interesting optimization using event reordering and a theorem relating

these abstractions.

6.2.1 Partial Order of Atoms

Following the notations used in [LRG04, PL91b, Pra86], a run of a distributed pro-

gram can be defined as follows:

Definition 17 A run of a distributed program is a partially ordered multiset (POM-
SET) o = (a,e,—, L) where

1. @ s the set of program statements.

)

1. € is the set of events each corresponding to the execution of a statement. An

event can be an internal event or a send/receive event.

1. — 1is the happened-before relation [Lam90] between events induced by program

order and send/receive order in message passing.
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. L: € — a is the mapping of events to program statements.

Figure 23 shows an example run with three processes. For simplicity, the event

labels are not explicitly shown in the figure.

We present below a hierarchy of different types of atoms. The base level is the

coarsest type of atoms that satisfy a simple condition defined as follows.

Definition 18 An atom E is a contiguous sequence of events (e1, ..., ex) of a process
that satisfies the following condition: if e; is a send event then e; (j > 1) must not be

a recewe event.

Intuitively, an atom is allowed to be influenced by other processes by receiving
messages before it sends any message that can influence other processes. Once it has
sent a message, a receive event of the same process will mark the beginning of the
next atom. Hence, once an atom has sent something that may affect others, it is not

allowed to perform a receive event that brings in new effects from other processes.

The run in Figure 23 is partitioned into five atoms {Fj, ..., Es}. Rectangles are
used to depict atoms, circles and black squares are used to depict events. According
to Definition 18, the events in process P, are split into two atoms: E; and E,, whereas

all the events in process P3 form a single atom Fs.

The casually ordered relation —— among atoms introduced in Definition 12 of
Chapter 5 is applicable to the set of atoms that satisfy the condition stated in Defini-
tion 18. As a result the set of atoms along with the causally ordered relation induces
a partial order among these atoms as we have proved in Lemma 20.

As a consequence of Lemma 20, atoms are effective abstractions of the events in
a run as the partially ordered set of atoms has a corresponding atomic state lattice

that can be significantly smaller than the state lattice of the original run, as we have
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L(E2,) = {x}, L(E4) = {u}, L(ES,) = {y.z}, L(ESy) = {2},
label of rest of atoms = {}

O Non-Relevantevent [l Relevant event

Figure 23: An example run and its resulting atoms/well-formed atoms.

Figure 24: (a) Partial order of the atoms shown in Figure 23 (b) Atomic state lattice.

demonstrated in Chapter 3. Figure 24(a) shows the partial order among the five
atoms of the run shown in Figure 23. The corresponding atomic state lattice contains
only 7 states and is shown in Figure 24(b).

Compressing the event space into atoms using the condition stated in Definition
18 alone may be too crude, leading to a partial order set of atoms that omits some
important details of the program that should be checked. To model these fine-grain
and important details, the notion of relevant variable associated with the required

program properties is needed.
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Definition 19 A program variable is a relevant variable if it is used in specifying
the ordering or the computational requirements of the distributed program. The set of
relevant variables is denoted by A. A relevant statement is a program statement
whose execution may change the value of a relevant variable. Correspondingly the
execution of a relevant statement is a relevant event. A relevant atom is an

atom that contains at least one relevant event.

For example, in Figure 23, black squares labeled with the corresponding relevant
variables are used to depict relevant events. The set of relevant variables is {z, u, y, z}
and the set of relevant atoms is { £y, Ey, E5}.

Relevant variables are used to identify fine-grain details represented by relevant
events that should not be overlooked in the abstraction of atoms. This leads to the
next restriction on an atom to become a well-formed atom. The following definition

extends Definition 10 by considering relevant events.

Definition 20 An atom E = (ey, ..., ex) is well-formed if it satisfies the following

conditions:
i. if e; is a relevant event then e;(k > j > i) cannot be a receive event.
1. if e; is a send event then e;(k > j > i) cannot be a relevant or receive event.

1it. E is mazimal in length: if E is extended by including either the event preceding
e1 or the event succeeding ey, in the same process then the extended sequence of

events is no longer a well-formed atom.

A well-formed relevant atom is called a mini atom if it contains at most one relevant

event. Otherwise it is called a maxt atom.
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For example, in Figure 23, F, is not a well-formed atom; there is a receive event
after the relevant event z. Hence, F, must be split into two well-formed atoms Fy,
and Ey, separated by a dashed vertical bar in the figure. Similarly, E5 must be split
into two well-formed atoms Es, and Fy,. Since Fs, contains two relevant events, it

is a maxi atom, whereas the rest of the well-formed atoms are mini atoms.

Intuitively, a well-formed atom has the following nice properties:

1. It has received all external influence through receive events before the occurrence

of any relevant event within the atom.

1. All relevant events have occurred before it sends any message that can influence

other processes.
i43. It includes a maximal (coarsest grain) number of events.

Hence a well-formed atom is as if it is instantaneously executed with respect to all
other processes: it has listened to others before doing the “relevant changes” and then
making some relevant results known to others. Restricting the number of relevant
variables within a well-formed atom to at most one allows further fine-grain details

to be examined, and it leads to the finest type of atoms called mini atoms.

In the remaining part of this chapter, it will be assumed that atoms are well-
formed, unless otherwise explicitly stated. Some interesting properties of well-formed

atoms are proved below.

Let E* denote the sequence of well-formed atoms in process P;.
Lemma 29 E* is unique.

Proof. Suppose there are two different partitions of the events in process P; into

sequences of well-formed atoms, say E* and E™. Suppose the first difference occurs
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Figure 25: A Maxi Atom = A Sequence of Mini Atoms (Es, = (Esq41, Esaz))-

at the 7 atom of these two sequences, say F and E*. Since the atoms preceding
E and E* are identical, £ and E* must start with the same event. If one of them
is shorter than the other, then the two atoms cannot be well-formed atoms without
violating the maximal length condition (Definition 20). Hence E and E* cannot be

different and the claim must hold. [ |

Lemma 30 A mazi atom E is equivalent to a sequence of mini atoms (Es, ..., E;),

where j is the number of relevant events in E.

Proof. Suppose the maxi atom E = (ey,...,e;) contains a sequence of j relevant
events €, €, ..., er;. From Definition 20, e;(¢ > ;) cannot be a receive event, and
e;(1 > r;) must be a send or a non-relevant event. Hence it can be directly verified
that By = (e1,...,€r,-1), B2 = (€ryy... €r3-1), ..., Ej = (&r;,...,€) are j mini

atoms equivalent to the maxi atom E. |

Figure 25 illustrates the equivalence of the maxi atom Es, and the two mini atoms

E5a1 and E5a2 .

From Lemmas 20 and 29, a run of a distributed program can be atomized and

represented by another POMSET defined as follows.

Definition 21 An atomized run is « POMSET ¥ = (24, E, -5 L) where

i. A is the set of relevant variables.
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Figure 26: (a) Atomized run (b) Atom slice.
ii. E is the set of well-formed atoms that partitions é.
#15. — is the causally-ordered relation between atoms in E.

w. L:E—>24isa labeling function that labels each atom with the set of relevant
variables associated with its relevant events. For example, L(Es,) = {y,z}. In

case an atom E is not a relevant atom, L(E) = {}.

Definition 22 The atom slice of a run is the projection of the atomized run ¥ =
(24, E, %, L) onto the set of relevant atoms E, and is denoted by ¥, = (24, E,, >

L)

Figure 26(a) shows the atomized run (POMSET) of the run shown in Figure 23.
Each node represents a well-formed atom and is marked with its label. Figure 26(b)
shows the corresponding atom slice, which contains the smallest number of atoms
that need to be monitored and checked.

A more restricted atomization of a run can be performed by decomposing each
maxi atom of the run into a sequence of mini atoms, according to Lemma 30. Hence

the following mini-atomized run can be defined.

Definition 23 A mini-atomized run is a POMSET %, = (A, E,,, —, L) where
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i. A is the set of relevant variables.

1. b, is the set of mini atoms that partitions €.
5. — is the causally-ordered relation between atoms in E,,.

. L:E, — (AU{}) is the mapping of mini atoms to relevant variables. In case

an atom E is not a relevant atom, L(E) = {}.

6.2.2 Event Reordering

Reordering of independent events in a process can be utilized to merge a sequence of
well-formed atoms into a larger well-formed atom. As a result, the atomization will
contain a smaller number of atoms. Consequently, the cost of monitoring/checking a

run will be reduced.

Definition 24 Two events e; and e;(j > i) of a process are independent if there is

no data or control dependency from e; to e;.

From dependency theory [KKP*81], it is known that the result of these events
will be the same if e; is executed before e;. Atomization can be further optimized by
reordering of independent events. Specifically, we allow reordering between relevant
events and send/receive events if they are independent so that a maxi atom can be

grown as much as possible.

Algorithm 6 makes use of event reordering to partition the sequence of events of
a single process into a sequence of well-formed atoms.

In Figure 27, by applying Algorithm 6, the top three well-formed atoms A;, A,
and As can coalesce into the bottom well-formed atom A. In the first iteration, the

Receive(x) event does not depend on the relevant event y = f(y, 2) and it is reordered
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Algorithm 6 Atomization with reordering of independent events.

Input: The sequence of events of a process {e1,...,€n).
Output: Equivalent sequence of well-formed atoms.

1 =1
repeat
detect the current well-formed atom E = (e;,. .., €;4x-1); //according to Defini-
tion 20.
if e;, is a receive event then
if e, and all the relevant events in E are independent then
reorder® e; ., before the latter;
else
=1+ k;
report E;
end if
else
if ;.1 is a relevant event then
if e;yr and all the send events in F are independent then
reorder® e; . before the latter;
else
i =1+k;
report E;
end if
end if
end if
until (i > m);

(*) Reorder of e; and e;(¢ < j) requires also moving before e; those events between
e; and e; that e; depends on. Hence if e; depends on events (€i1j,, €itjyy- - - €itiy)
then all the events in (€1, €i1j, - - -, €i1j,, €;) are reordered before e;.
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Figure 27: Event reordering to grow a maxi atom

before it. As a result of this reordering, the maxi atom has extended to the Send(y)
event. In the next iteration, reordering is possible between the independent events
Send(y) and z = h(z,w), leading to atom A in Figure 27. In the third iteration, since
the relevant event z = s(z) depends on the previous event Send(z), reordering is not
possible. Now the maxi atom A is reported and the event pointer 7 is advanced to

point to the event z = s(z) for the next maxi atom.

As a result, the atomization with reordering of independent events results in a
smaller set of atoms to be monitored and checked. The correctness of Algorithm 6

follows directly from dependency theory and will not be further elaborated.

6.2.3 Order Equivalence

As we have already demonstrated, there are two different granularities of atomization:
maxi atoms can involve multiple relevant events and mini atoms can involve only one
relevant event. Certainly, it is beneficial to consider the former that involves fewer
atoms. However, it is important to analyze what one can deduce using the former
rather than the latter. We will show an important order equivalence theorem here.

First we establish the following lemma.
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Lemma 31 Ife, and €., are two of the relevant events in well-formed atoms E and

E' respectively and E —— E', then e, — ¢€.,.

Proof. From Definition 12, E — E’ implies there exists e; in £ and e; in E' such
that e; — €;. In case multiple such candidates exist, take the latest such event in
E as e; and the earliest such event in F’ as e;. e; must be the last event or a send

event in E and e; must be the first event or a receive event in E’. Since FE and E’

are well-formed atoms, we must have e, — e; and e; — e,r. Hence e, — €/,. n

Consider two maxi atoms E and E’ and the sequence of mini atoms (E1, ..., Ex)
and (E1,...,E;) contained in them. The following order equivalence theorem is
established.

Theorem 32 £E - E' = F, - E]’ [i <kandj<kK].

Proof. (=): From Lemma 31, E — E’ implies the relevant events of any two mini
atoms in E and E’ are ordered under the happened-before relation —. From the
definition of —, the latter mini atoms are ordered under —-.

(<=): This follows immediately from the definition of —. [

The theorem asserts that ordering requirements between mini atoms can be checked
by examining ordering requirements between maxi atoms. This property is useful in

reducing the cost of checking the ordering requirements among atoms.

6.3 Property Checking

There are two separate aspects in modeling the correctness of an atomized run. One

aspect is related to the required synchronization (ordering) among the atoms in the
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run. The other aspect is related to the actual changes of the relevant variables in
each atom. We refer to the former as the ordering requirement and to the latter as

the computational requirement.

In this section we will present a simple model to specify ordering requirements and
an efficient algorithm to check the satisfaction of the ordering requirements in a given
atomized run. We will also present a model to specify and to check the correctness
of the computation performed by each atom. A more sophisticated model to specify

ordering requirements will be presented in Section 6.5.

6.3.1 Ordering Requirements Specification and Checking

In this subsection we will use a simple representation of a POMSET that is based on
a set of recurrent sequences S = {51, 59, ...,5,}. Each recurrent sequence S; is of
the form
(a) [Ay; Ag; .. Ag* or
(b) [Ay + Ay + ... + Ai]* where A4; is in 24.

Form (a) uses the sequence operators “;”. For any two atoms A and B, (4; B)
means that atom A should be causally ordered before atom B in any run (i.e., A -
B). The “*” denote the repetition operator; it indicates that the sequence can be

repeated any number of times.

Each A; corresponds to the label of an atom in the POMSET. Semantically,
[Ay; Ag; ... Ag]* represents the recurrent sequence Ay; Ag; ... Ag; Ar; .. Ak . .. ete
and the ordering in the sequence (denoted by *;”) corresponds to the causally-ordered
relation between atoms. Hence form (a) recurrence represents a fixed ordering among

a recurrent set of atom labels. In other words, all occurrences of atoms in the POM-

SET whose labels belong to the set {Aj, As,. .., Ax} must be ordered according to
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Form (b) recurrence [A; + Ag + ...+ Ax]* uses “+” as a dynamic choice operator
among the atoms whose labels belong to the set {A1, As,..., Ax}. As a result, all
occurrences of atoms in the POMSET whose labels are in {A;, Ag, ..., Ax} must be
serialized in arbitrary order. For example, A; = A3 — Ay — Ay — A;...is
a possible serialization. So “+” allows for dynamic ordering of atoms whereas “;”
allows for fixed ordering of atoms. It should be noted that A; need not be distinct.

For example, S; = [X;Y; X; Z]* is a valid recurrent sequence where atom X appears

two times.

We assume the following additional condition on the set of recurrent sequences S
to form the POMSET:
(e) If S; contains atom X then S; must generate all occurrences of atom X in the

POMSET.

Condition (c) is not a necessary condition but it allows for a simpler presentation

of the relevant ideas and procedures developed in this chapter.

Definition 25 An atomized run is an allowable run with respect to a set of recur-

rent sequences S if the ordering among its atoms satisfies the ordering specified by

~

S.

As an example, § = {$; = [X;AY;B; Y|, S, = [X;C;Y; D;Y]*} is satisfied by
both atom slices (POMSETS) shown in Figure 28(a) and (b). In both POMSETS, the
ordering among the atoms satisfies the requirements in S; and S, although the one
in Figure 28(b) contains more ordering (such as C —» A) than is required. However,
the atom slice in Figure 28(c) fails §; ¢ — Y is required by So but is not satisfied

by the slice.
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Figure 28: (a) An atom slice that satisfies S, (b) An atom slice that is stricter than
S, (c) An atom slice that fails S.

Algorithm 7 can be used to check if an atom slice &, = (24, E,, - L) is an
allowable run with respect to S.
In the algorithm, consistency between L(E) and current(S;) involves two condi-

tions:
i. L(E) = current(S;).

ii. E' — E in ¥, where E' is the atom that corresponds to previous(S;); the atom

before the current atom in S;.

As an illustration, consider the atom slice in Figure 28(c). The iteration proceeds

as follows:

i. B0 = {X} and X is consistent with both S; and S5. So advance S; and S, to
A and C respectively. Now current(S;) = A, and previous(S;) = X. X will be

removed from the atom slice along with all of its outgoing edges.

it. E? = {A,C}. Consider A first. A is not in Sy so we need to consider only

S1. Consistency is checked: (¢) current(S;) = A and (i) previous(S;) = X and
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Algorithm 7 Checking if an atom slice ¥, is an allowable run with respect to S.

~

Input: Atom slice &, = (24, E,, -, L) and a set of recurrent sequences S =

{54,...,5).

current(S;) = the first atom label in sequence S;;
A(S;) = the set of labels of atoms in S;
//L(E) is the label of atom E

repeat
ES = the largest subset of atoms in ¥, without any atom ordered-before them;
for each atom F in E? do
for each S; such that L(E) N A(S;) # ® do
if L(FE) is consistent with current(S;) then
advance S;;
else
report failure;
end if
end for
Y, = (24 E, — E%, 5 L);
end for
until %, is an empty set or a failure is reported;
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X -5 A. Advance S;. Similarly C is checked and consistent. Advance Sp. A
and C will be removed from the atom slice along with all of its outgoing edges.
iti. E° = {Y'}. (i) Y is equal to both current(S;) and current(S,). (ii) previous(Ss) =

C but (C —Y) is not satisfied. So a failure is reported.

6.3.2 Specification and Checking of Computational Require-

ments

If the atoms are properly ordered, errors can still occur if the computation performed
within an atom is erroneous. This aspect of an atom can be specified using an
invariant on the state reached upon execution of each atom, without taking into
account execution of other atoms that are not ordered-before it. This is our basis for
reasoning about the correctness of the coding of an atom, assuming that the ordering

between atoms is satisfied separately as modeled in Section 6.3.1.

The minimal state reached upon execution of an atom E is the state reached by
the minitmal prefix of the run ¥ = <25, E,~"», L) that contains E. This minimal
prefix is denoted by X and contains all the atoms that are causally-ordered before

atom E. These are formally defined as follows.

Definition 26 The minimal state associated with a relevant atom E is represented
by the values of the relevant variables attained at Yg. This minimal state is de-
noted by V(Xg). For example, in Figure 23, g, includes the minimal set of atoms
{E., E3, Es,, Esp} that are causally-ordered before Es, and V(Zg,,) = the values of

the relevant variables in {z,u,y, z} attained upon execution of these atoms.

The modeling of computational correctness of an atom is represented by an in-

variant that should be satisfied at each minimal state of each instance of the atom
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in the atom slice X, = (2"1, E,,—%»,L). The invariant I is represented by a general
predicate on A. For example, I(z,y,u,2) = (z+y < ¢) A (z = u = 2), and [ is
satisfied at X iff I(V(Zg)) = true.

It is rather apparent that the computational correctness of atoms can be checked
in simple polynomial time (with respect to the number of atoms in the run). Indeed, if
the (relevant) atom slice contains k relevant atoms, only k states need to be checked,
without any restriction on the property to be checked. Moreover, the number of
relevant atoms can also be much smaller than the number of atoms or events in a

run.

6.4 Example: Resource Management Application

In this section we will present a simple example to illustrate the model used to spec-
ify both of the ordering and computational requirements. This example involves
three processes, P, P, and P3. P is the main manager, P, and Fs are local man-
agers. The total number of resources under management is a constant (say c). A
simple request-acknowledge protocol is maintained between the main manager and
each local manager. A local manager can request a change of allocation and will
be acknowledged by the main manager at any time. The allocations to the three
managers are represented by local variables z,y and z respectively. Two additional
relevant variables, y.transit and z.transit, are needed for representing the change of
allocations to y and z sent by P, (and in transit through the corresponding message
channel). The system is represented by the set of relevant atoms described in Table

2.

Based on the above description of the application, the ordering requirements that

must be satisfied by a run are specified by two recurrent sequences of form (a) and
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Table 2: Relevant atoms executed by the resource management application.

Agent | Atom Purpose

(Relevant Variables)
P {z,y.transit} re-allocates = and y
P, {y} accepts change of y
P {z, z.transit} re-allocates z and z
Pj {z} accepts change of z

one recurrent sequence of form (b) as follows:

S = {[{x,y.transit}; y)*, [{z, z.transit}; 2)*, [{z, y.transit} + {z, z.transit}]*}

The recurrent sequence [{z, y.transit}; y]* requires that the change of allocation at
P is ordered before the corresponding change at P,. The dynamic recurrent sequence
{z,y.transit} +{=z, z.transit}]* requires that the changes of allocation at P, must be
serialized, one at a time. However, the serialization is decided at runtime, depending
on the requests arriving from P, and P;.

The computational correctness of each atom is specified by the satisfaction of the

following invariant at each minimal state:

I(z,y, z,y.transit, z.transit) = [z + y + 2z + y.transit + z.transit = c|.

This invariant simply asserts that upon completion of each atom, the sum of all
allocations (including those in transit) must be equal to c.

Figure 29 shows an atom slice of a partial run that satisfies the required ordering
in S. Only relevant atoms in the slice are depicted (rectangles). Events outside the

rectangles belong to non relevant atoms. In particular, the changes of allocation
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Figure 29: Resource management example.

at P; are dynamically serialized while the corresponding changes in P, and Pj are
properly ordered according to [{z,y.transit}; y|* and [{x, z.transit}; z]* respectively.
The checking of computational correctness of each atom can be performed by checking

the invariant I at each minimal state associated with each atom shown in Figure 29.

6.5 A POMSET Automaton to Specify Ordering

Requirements

In this section we will present a more sophisticated way to specify the ordering re-

quirements that a distributed program must satisfy.

In each execution of a given distributed program, there are necessary ordering and
unnecessary (accidental) ordering between atoms. A necessary ordering between two
atoms means that they must always occur in a certain order. An unnecessary ordering

between two atoms means that they can occur in any order or simultaneously.

As a result, a binary relation can be defined between two executions: two execu-
tions are related if and only if they do not differ in the necessary orderings among
the atoms in them. This binary relation is an equivalence relation (i.e., it is reflexive,
symmetric and transitive). This relation induces equivalence classes on the set of

possible executions of a distributed program. Each such equivalence class is called
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a behavior of the distributed program. Such a behavior is represented by a partial
order on the events, where the partial order represents the necessary ordering [LL94].
The formal tool for such a representation is a POMSET (partially ordered multiset)
[Pra86].

Definition 27 A behavior of a distributed program is represented by a POMSET

Y. = (A E,T,L) where
i. A is a set of relevant atoms.

1. E is the set of events. Fach event corresponds to the execution of a relevant

atom.

2. ' : E — FE is the partial order mapping among the events in E. T' can be viewed

as a set of pairs, a pair of events (Ey, Ey) € T if Ey = B,.

w. L: E — A is a labeling function that maps events in E to atoms in A, each

event in E is an instance of some atom in A.

There is an arrow from event e to event f in POMSET (A, E, T, L) if (e, f) € T.
The partial order I" is represented in a transitively reduced form, i.e., if there are
arrows from event e to event f and from event f to event g, then the arrow from
event e to event g will not be represented explicitly.

The specification of a distributed program is the set of behaviors (POMSETS)
of the distributed program.

To finitely represent the set of infinite behaviors of a distributed program, a POM-
SET generator, called POMSET automaton is used. In this section we adopt the

use of this automaton as a model of the ordering requirements that must be satisfied
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by a given distributed program. The tool developed by other members of our research

group accepts the ordering requirements specified by a POMSET automaton.

The POMSET automaton described here is an adapted version of a POMSET
generator called behavior machine introduced by Probst and Li [PL91b, PL91a, PL93,

LL94)].

The POMSET automaton has a finite number of slots. A non-empty subset of
these slots represents the set of initial slots. There are transitions that can be fired
when a certain subset of slots is satisfied and as a result a subset of slots will be
reached (satisfied). A slot represents a condition that must be satisfied before a
transition can be fired or will be reached (satisfied) when a transition is fired. Each
transition is a finite POMSET denoting the behavior of a distributed program when
there is a transition from the subset of slots preceding the transition to the subset of

slots following it.

A behavior of a distributed program is generated by concatenating transitions
(POMSETsS) of the POMSET automaton associated with the program, starting from
a transition following the initial subset of slots. A transition 7" can be concatenated
to a behavior b if a subset of the slots, say s, following the behavior b is the same as
the subset of slots preceding the transition 7. The subset of slots s is for expressing
causalities between events from the behavior b and events from the transition 7. If
event e in b precedes a slot L, and event f in T is preceded by slot L, then, after
concatenation, event e will precede event f.

The POMSET automaton of a given distributed program may have more than
one transition emanating from a subset of slots. Such a subset of slots is called a
choice subset. A transition ending at a choice subset can concatenate with any one

of the transitions following the choice subset. This property ensures that more than
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one behavior can be generated by the automaton.

We assume a further restriction: Let C' be the set of condition slots reached
any time during unfolding (behavior generation). The set C' will be partitioned into
disjoint subsets each of which owns a set of transition rules (possibly a singleton if
there is no choice in the transition and empty if no transition rule is applicable). We

refer to this assumption as the disjoint choice assumption.

Now we will present a simple example to illustrate the above concepts. A more

comprehensive example will be presented in the next section.

We will consider a simple distributed multi-agent application (product buyer)

that involves three agents, one buyer agent Buyer; and two seller agents Seller; and

Seller,.

Seller agents keep a catalogue of the products they are selling along with the
related information such as price, production date, etc. When the buyer wants to
buy a product, he will send a call for proposals to the seller agents and wait for a
reply from them. When a seller agent receives a call for proposals, he will reply to the
buyer agent with a message containing the product information or he will refuse the
proposal if he is no longer selling the required product. When the buyer agent receives
all the replies from the seller agents, he will apply his criteria to choose one seller. If
none of the seller agents’ proposals satisfy the criteria, the buyer will send again a
call for proposals to all of the sellers. When a seller agent is selected, the buyer agent
will send him a purchase order, the seller will receive the purchase order, and if the
product is still available, he will update his catalog and send a confirmation to the
buyer. Otherwise he will send a refuse message to the buyer. If the buyer receives
a refuse message, he will send again a call for proposals to all of the sellers. This

process will continue until the buyer agent buys his product.
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According to the above description, a buyer agent can execute one of the following

atoms:

1. Send a call for proposals (we will call it atom A).

2. Receive the replies from the sellers, process it and take the necessary action.
For example, if all the replies are “Refuse” messages, the buyer will send a call

for proposals (atom B).

3. Receive the reply of a purchase order, process it and take the necessary action

(atom C).

Each seller agent can execute one of the following atoms:

1. Receive a call for proposals, process it and send the suitable reply (Atom D).

2. Receive a purchase order, process it and send the suitable reply (Atom E).

Figure 30 shows an example run of the described multi-agent application.

Seller,

Buyer

Seller,

Figure 30: An example of an atomized run of a simple distributed multi-agent appli-
cation “product buyer”.

The ordering requirements of this application can be simply described by a POM-
SET automaton. Figure 31 shows the POMSET automaton that models the ordering
requirements of this simple application. We will use circles to depict slots and squares

to depict atoms. The arrows represent the necessary orderings among the atoms.
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Figure 31: The POMSET automaton used to model the ordering requirements of the
product buyer application.

There are two slots {S,5:} and three transitions {71,7»,T5} in the POMSET
automaton shown in Figure 31. S is a choice slot, when it is reached 75 or T3 can
be fired. The example run shown in Figure 30 can be produced by firing transition
Ty then transition 73. In general, a distributed program run ¥ = (A, E,I'|L) is
admissible by a POMSET automaton M if there exists a prefix ¥/ = (A', E/, IV, L)
of a behavior generated by M such that

. A=A,

. E=F/,
#it. IV C T, and

w. L=1

In other words, ¥ contains all the ordering of the prefix of a behavior ¥’ generated
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by M.

In this example we assume that the number of agents involved in the application
is fixed; however, it is not the case in real life applications. In the following sec-
tion we will present a more detailed example to demonstrate the property checking

methodology for distributed programs that has been introduced in this chapter.

6.6 Example Usage

To help the programmers quickly and effectively figure out how to use the methodol-
ogy presented in this chapter, this section will serve as a guideline on how to identify
atoms and to specify ordering and computational requirements of a given distributed
program. The methodology will be demonstrated through an illustrative example of
a multi-agent E-market application. The ultimate goal of this section is to give the
user of the checking tool an example of how he can prepare the input files necessary

to use the tool.

6.6.1 A Brief Description of the E-market Application

There are four types of agents {C, B, W, A} playing different roles in this application.

1. C : A client role is to conduct a purchase with the help of a broker and an

accounts manager.

2. B : A broker role is to broker a purchase for a client with a wholesaler.

3. W : A wholesaler is to sell an item through a broker and to inform the accounts

manager to complete the transaction (receipt of money and delivery of product).
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4. A : An accounts manager completes a transaction with the client, as instructed

by a wholesaler.

e Initially a client C' (who wants to purchase a product P) will send a call for

proposals to all of the brokers he knows (By, ..., By).

e When a broker receives a call for proposals from Client C', he will send a call

for proposals to all of the wholesalers he knows (W1, ..., W,,).

e When a wholesaler receives a call for proposal from a broker B, he will check
his catalogue to see if product P is available, if yes, the wholesaler will send
a propose message to the broker. Otherwise the wholesaler will send a refuse

message to the broker.

e If the broker receives a non empty set of proposals he will choose the best one
(minimum price) and send it in a propose message to the client C. Otherwise

he will send a refuse message to the client.

e If the client receives a non-empty set of proposals from the brokers known to
him, he will choose the best one and he will send a purchase order to the broker
who has sent him the best proposal. Otherwise the client will send another call

for proposals.

e When the broker receives a purchase order, he will forward it to the correspond-

ing wholesaler.

e When the wholesaler receives a purchase order, he will check his catalogue and

send an inform message to the accounts manager.

e When the accounts manager receives an inform message from a wholesaler,

he will send a bill to the corresponding client if the purchase order has been
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approved by the wholesaler, otherwise he will send the client a failure message.

e If the client receives a failure message from the accounts manager, he will send

another call for proposals.

e When the client receives a bill from an accounts manager he will send the

specified amount to the accounts manager.

e When the accounts manager receives the payments he will send a confirmation

to the client.

6.6.2 Input

Now we will start describing the required input that is needed in order to be able to

identify atoms and to specify ordering and computational requirements.

1. Design Time Knowledge: A set of interaction diagrams that capture the interac-
tion patterns between agents will be very helpful to the programmer to identify
atoms and ordering requirements. The starting point for developing the interac-
tion diagrams is a set of use-case scenarios that describe at a high level the steps
the application will follow to accomplish the desired functionality. Figure 32
shows the interaction protocols diagram for the E-market application described
in Section 6.6.1. This diagram can assist the programmer in identifying the
atoms and specifying the ordering requirements as it will be demonstrated in

this section.

2. We need the source code of the application; this will be used by the programmer
to identify the relevant variables. There will be two types of relevant variables in

a given application; variables relevant to the ordering requirements and variables
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Figure 32: The atomized interaction protocols diagram of the E-market application.

relevant to the computational requirements. Examples of ordering requirements,
computational requirements and relevant variables are presented later in this

section.

6.6.3 Process

Given the inputs described in the previous section, we will describe the steps that the
programmer will go through to identify atoms and specify the ordering and compu-

tational requirements.
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6.6.3.1 Step 1: Atomization

The programmer can identify the atoms that can be executed by an application
through constructing the atomized interaction diagram. This can be done based on
the description of the application given in section 6.6.1 and the interaction diagram.
The atomized interaction diagram for the E-market application is shown in Figure

32. Rectangles are used to depict atoms, each atom has a corresponding label.

Once this done, the programmer will have the set of all atoms that can be executed
by the application. Table 3 lists the set of atoms that can be executed by the E-market

application along with a brief description of the functionality performed by each atom.

Figure 33 shows an example of an atomized run of the E-market application. In
this run we have assumed that there are two brokers B; and Bs known to client C.
Broker B; can contact wholesalers W5 and W3, while broker Bs can contact all of the
wholesalers. In the first round of the run the client sent a call for proposals to the
brokers but he did not receive any proposal, so he sent another call for proposals, and
this time he has received some proposals, the client proceeded and sent a purchase
order. The run continued according to the described interaction protocols until the

client received the purchased product.

6.6.3.2 Step 2: Specification of Ordering Requirements

In this section we will specify the ordering requirements among the atoms, identified
in step 1, using the POMSET automaton model. The atomized interaction protocols
diagram shown in Figure 32 will assist the programmer in specifying the ordering
requirements properly. We assume that there are ¢ Brokers known to the client,
and for each broker there are j wholesalers known to him. The POMSET automa-

ton shown in Figure 34 specifies the ordering requirements that must be maintained
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Table 3: The set of atoms executed by the E-market application.

Agent

Atom

Description

Client

Sending a call for proposals to brokers.

Broker

The i** Broker receives the client call for proposals and
sends a call for proposals to wholesalers.

Wholesaler

The j™ wholesaler of the i broker receives the broker
request, if the product requested is available, the whole-
saler will send a proposal for the broker; otherwise he
will send him a refusal message.

Broker

In this atom, the i®* broker receives all the pro-
posal /refusal messages from the wholesalers and sends
a proposal/refusal message to the client accordingly.

Client

The client receives all the proposal/refusal messages
from the brokers and selects the best proposal if any.

Client

The client sends a purchase message to the broker who
has provided the best proposal.

Broker

The broker receives a purchase order from the client and
forwards it to the corresponding wholesaler.

Wholesaler

The wholesaler receives a purchase order from the bro-
ker, makes sure that the product is available, if yes he
will approve the purchase order, otherwise he will reject
it, in any case he will forward the result to the account
manager

Account
Manager
(AM)

The account manager will receive the purchase order,
if it is approved, he will send an invoice to the client,
otherwise he will send a Failure message to the client.

Client

The client receives a message from the AM, this mes-
sage can be an inform or a failure message. If it is a
failure message then the client will make another call
for proposals in the next atom. If the message is an
inform message, the client will pay the amount speci-
fied in the invoice and will send a proof of payment to
the AM. (The payment issues are not handled in the
application)

AM

The AM receives the payment proof and sends a con-
firmation to the client.

Client

The client receives the confirmation.
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Figure 33: An example of an atomized run of the E-



among the atoms executed by the E-market application. There are 8 transitions in
this POMSET automaton. The three vertical dots appearing in some of the transi-
tions indicates that some of the atoms or slots are not depicted in the transition. For
example, in transition 77, there are three vertical dots between atoms B; and B;, this
indicates that transition 77 will involve also atoms { B, ..., B;—1}. Moreover, there
is an edge between atom A and each atom B; € {B, ..., B;-1}, and there is an edge
from each atom B; € {Bs,...,B;_1} to aslot S}, as it the case for the two atoms B

and B; that are already depicted in transition 7.
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Figure 34: The POMSET automaton of the E-market application.
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6.6.3.3 Step 3: Identifying Relevant Variables

In order to be able to track at runtime which atoms are being executed we need to map
the abstract atoms of a protocol into the set of relevant variables (such as the “price”
and the “product type” in our E-market application) used in the source code. The
set of relevant variables used to label the atoms in this step represents the set of the
variables relevant to the ordering requirements. At runtime, the events triggered by
any modification to any of these variables will be used to identify the atom currently
being executed and report its label and timestamp to the monitor. The collected data
will be used later by the checker to check the ordering requirements specified in the

previous section.

6.6.3.4 Step 4: Computational Requirements Specification

In this step we need to identify the predicate that captures the correctness of the
incremental function performed by each atom. For example, at the end of each
instance of atom D, the selected proposal should be the one with the minimum price.
The set of variables used in these predicates represent the set of variables relevant to
the computational requirements. Any modification to any of these variables must be
reported to the monitor along with its time stamp and the new values of the relevant

variables that have been modified.

6.6.4 Output

After completing the process described above, the programmer we will have the follow-
ing items that are needed to check the ordering and the computational requirements

of a given application.
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1. The set of labeled atoms

2. The POMSET automaton that specifies the ordering requirements among rele-
vant atoms of a correct run that can be checked against the actual run of the

application

3. The atom predicates that specify the computational correctness of each atom

6.7 Summary

Atoms are useful abstractions in reducing the size of the state lattice of a distributed
computation. Maxi atom is a suitable abstraction whereby a process advances locally
as if its effect to everyone else occurs only upon completion of the atom. Relevance to
the required program properties is applicable to further abstract a run into an atom

slice for property checking.

Partially ordered multi-set (POMSET') models of distributed programs model true
concurrency, as a result they are attracting more attention in modeling and analyz-
ing distributed programs. This chapter proposes a distributed programs checking
methodology that views the distributed computation as a partially ordered multi-set

of atoms.

The POMSET model promotes the separation of two different concerns in check-
ing the correctness of a distributed computation. Firstly, the ordering between the
atoms needs to be specified and checked. Secondly, the correctness of the computa-
tion performed by each atom needs to be checked. In this chapter we have presented
a methodology to specify and to check both of the ordering and computational re-

quirements of a distributed computation.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

Checking whether a given distributed program computation satisfies a given property
or not is a fundamental problem that has applications in the testing and debugging
of distributed programs. However, due to concurrency, the number of global states
that need to be examined when checking the properties of distributed programs can
be exponential. In this thesis, various techniques have been proposed to alleviate the

state explosion problem in distributed programs dynamic property checking.

The concept of atoms has been proposed as an effective state space reduction
mechanism. It has been demonstrated through examples that atoms can significantly
reduce the number of states that need to be considered in property checking. This
idea has been illustrated by showing the difference between the number of states
in the atomic state lattice L* and its corresponding original state lattice L. An
efficient on-the-fly distributed algorithm to check the atomicity of a given distributed

computation has been presented along with its proof of correctness. The algorithm
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can detect atomicity violations without the need to propagate the probes through
all of the atoms involved in a cycle. Consequently, we conclude that it is a viable
approach to use atoms in reducing the state space for property checking. Property
checking in this case will involve two steps. First, the atomicity of the run will be
checked; if it is atomic then we can move to the second step where the required
properties can be checked on the reduced lattice. If the run is not atomic then we
conclude that the program contains some bugs, and hence the reported cycle can help
the programmer locate and fix the bug. Alternatively, we could conclude that the

programmer has incorrectly labeled the code blocks associated with some atoms.

A programmer may incompletely or incorrectly identify the set of atoms that
can be executed by a given distributed program. The consequences of incomplete
and/or incorrect knowledge of atoms on the conclusions made about the atomicity
of a distributed program run and the satisfaction of the desired properties has been
studied. We determine that the conclusion made about the atomicity of a run is not
affected by incomplete knowledge of atoms and the reduced state lattice can be used to
check the satisfaction of the desired properties by that run. However, the maximum
state space reduction can be achieved only with a complete set of atoms. If some
atoms are incorrectly identified, then the conclusion made about the satisfaction of a

property ¢ remains valid if all of the incorrectly identified atoms are ¢-independent.

Even with atomization, the size of the state space that needs to be considered in
property checking can still grow exponentially with respect to the number of atoms.
Some ideas for further state space reduction have been explored. When a set of pro-
cesses have to maintain a shared property, we expect that at some point in time,
processes in that set must be aware of the changes made by each other that may af-

fect the property concerned. We conclude that properties need to be checked only at
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synchronized states where the processes have already exchanged the information nec-
essary to maintain the property. We have illustrated the idea through some examples.
Synchronization can be modeled by a synchronization predicate. Serialization of the
synchronized states is the minimal avenue to ensure that the relevant processes have

exchanged the necessary information needed to maintain the concerned property.

Based on the above analysis, a property checking mechanism that involves three
tasks has been proposed. A given distributed computation satisfies a property ¢
if all of the synchronized states are serialized and g is true in each of them. Two
efficient algorithms to check the satisfaction of a property g in a given distributed
computation, where the synchronization predicate is conjunctive or disjunctive, have

been presented along with their proof of correctness.

Since not every atom is relevant to the properties concerned, we have introduced
the notion of an atom slice that contains the fewest number of atoms to be monitored
and checked. For further state space reduction, independent events that belong to
different atoms can be reordered to merge two or more atoms and consequently reduce
the number of states that need to be considered in property checking. An efficient
algorithm to atomize a distributed computation with reordering of independent events

has been developed.

Finally, the concept of well-formed atoms and a partially ordered multi-set (POM-
SET) model of a distributed computation have been exploited to propose a checking
methodology for distributed programs. According to this methodology, checking of
distributed programs involves the following two steps: checking that the atoms ex-
ecuted by the program are properly ordered, and checking that the computations

within each atom are performed correctly.

A POMSET automaton model has been used to specify the ordering requirements
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that the atoms executed by a given distributed program must satisfy. The compu-
tational requirement that must be satisfied by each relevant atom is specified by
a predicate that needs to be checked in the minimal prefix of each instance of the
atom in a given distributed program computation. An example has been presented

to demonstrate the methodology.

7.2 Future Work

Theses are never complete, however, at some point you just stop. Consequently, a

number of avenues for continuation of this work can be suggested.

In our work we have advocated the use of dynamic on-the-fly analysis to detect
atomicity errors, serialization errors, etc. As we have mentioned in Chapter 2, there
are other approaches for distributed programs analysis, such as static analysis and dy-
namic off-line analysis. On-the-fly analysis has the advantage of early error reporting
and avoiding the need for large trace files. However, it has the disadvantages of incur-
ring more space and time overhead during execution. Off-line analysis of distributed
programs does not incur significant space and time overhead during execution but
it has the disadvantage of generating very large trace files. The work presented in
this thesis can be extended by using the off-line analysis approach and comparing the

results with the on-the-fly analysis approach.

In this thesis we consider atoms that involve a sequence of events belonging to
a single process. This work can be extended to consider atoms that involve events
belonging to more than one process. This may result in a more significant state
space reduction. However, the atomicity error detection algorithm needs also to be

extended and the reduced state space has to be clearly defined.
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Finally, in Chapter 5 we have developed two algorithms to check the satisfaction
of a property g in a given distributed computation, where the synchronization pred-
icate p is conjunctive or disjunctive. The work in this chapter can be extended by

considering other classes of synchronization predicates.
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