FORMAL COMPOSITION OF PARTIAL SYSTEM BEHAVIORS

RABEB M1ZOUNI

A THESIS
IN
THE DEPARTMENT
OF

ELECTRICAL AND COMPUTER ENGINEERING

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
For THE DEGREE OoF DOCTOR OF PHILOSOPHY
CONCORDIA UNIVERSITY

MONTREAL, QUEBEC, CANADA

DECEMBER 2007

© RaABEB Mi1zOuNI, 2008

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 978-0-494-37755-0
Our file Notre référence
ISBN: 978-0-494-37755-0
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

Formal Composition of Partial System Behaviors

Rabeb Mizouni, Ph.D.

Concordia University, 2008

Modeling the behavior of a system under development has shown to be a very effective way
to ensure that it will have better chance to be constructed correctly. With the growing com-
plexity of systems, building this model has become a major task that requires a significant
time investment and a high level of expertise. Incremental approaches that help construct a
system model from partial behavioral descriptions have been widely adopted. The challenge
in such approaches lies in finding both the adequate behavioral formalism that fits the needs
of the analyst as well as the formal composition mechanism that facilitates the generation
of the expected behavioral model and produces a verifiable model.

Within this framework, use case approaches have been accepted in the industry because
they make the process of requirements engineering simpler. In the first stage of their devel-
opment, use cases have been associated with requirements gathering and domain analysis
since they allow the partial description of system behavior in a more intuitive manner.
During the last decade, their use has been expanded to include all phases of the lifecycle.
Consequently, the model representing use cases has an increasing importance.

Although use case approaches present benefits in terms of improving the communication

among stakeholders, permitting incremental construction of the system specification, and

iii

improving the requirements traceability, such approaches have some drawbacks in relation to
their lack of formality. In fact, it is difficult to validate and verify use cases for completeness
and consistency.

This thesis addresses the problem of modeling use cases and their composition based on
formal models in order to generate a system specification that can be used for validation and
verification. We tackled the problem of both composing overlapping use cases that share
partial similar behaviors, and composing non overlapping use cases according to additional
criteria.

We experimented with different formal models of use cases having different levels of
expressivenesses to develop an approach for use case composition. All use case models we
tackled are state-based models. We first started by proposing an approach for composing
use cases expressed as extended finite state machines with variables that characterize their
states. The use case model allows the definition of explicit loops. The state characterization
is used as the criterion of composition. It allows the detection of common states between use
cases that have to be merged in the overall system model. When composing, we proposed an
approach that protects the user-defined loops from unexpected scenarios that may threaten
their behavior.

As a second step, we proposed to compose use cases based on the interactions they are
making between each other. In this context, an interaction is defined as an invocation of a
use case by another. Unlike the first approach, use cases are no more considered overlapping.
When composing, we developed an approach that avoids unexpected scenarios.

Finally, we proposed a general approach for composing system behaviors where partial

system behaviors are defined as state based model using imperative expressions. Each

iv

use case describes a certain system concern. The imperative expression represents the
composition criterion. In fact, it defines the semantics of the composition to perform. Qur
approach is fully automated and provides the advantage of generating a state based model
that meets the intended behavior without allowing unexpected scenarios. The approach is

formalized in the case of finite state machines and extended finite state machines.

Acknowledgments

Many people were involved in the production of this thesis, and I wish to express my grat-

itude toward them.

I would like to show my gratitude to Rachida Dssouli, my supervisor. I have been most
fortunate to enjoy her wisdom, experience, guidance, and also her warm encouragement
when needed the most. I also want to thank my co-supervisor, Aziz Salah, for his support,
discussions, feedbacks, permanent help, and availability he offered me during this thesis. I
extend my thanks to my committee, Dr. Patrice Chalin, Dr. Mourad Debbabi, Dr. Ferhat
Khendek, and my external examiner, Dr. Nadia Tawbi, for gracefully accepting to review
and comment this work.

I thank my colleague, Siamak Kolahi, who did the implementation of the tool. His col-
laboration in validating the approach was of a great help. I thank my friends, Abdelghani
Benharref and May Elbarrachi, for the several discussions we had, for sharing their technical
knowledge and their humor with me. I am indebted towards Adel, Dalia, Lamia, Salam,
Syrine, Yousser, Zaki... for supporting me in the hard moments and for being my family in

Montreal.

vi

My deepest thanks want to my beloved husband, Anis, for the sacrifices he did in order
to allow me finishing this work. Without his help, confidence, permanent encouragements,
and belief in me I would never finish this thesis. Finally, I want to thank my sons, Haroun

and Adam, for the moments of happiness they offered me. I love you all!

vii

Contents

List of Figures
List of Tables

1 Imtroduction

1.1 Motivation

1.2 Problem Statement

1.3 Thesis Contributions

1.3.1 Implicit Composition of Overlapping Use Cases

1.3.2 Explicit Composition with Implied Scenario Removal

1.3.3 Explicit Composition of Use Cases using Imperative Expressions . .

1.3.4 List of Publications

1.4 Thesis OQutline

2 Notations

2.1 Imtroduction

viii

xiv

xviii

11

12

13

13

15

17

19

2.1.3 Why formal methods? 25

22 UseCaseNotations 27
221 Abstract Notations 28
2.2.2 State Based Notations 34
2.2.3 Use Case Composition Notations 40

23 Summary . . o.o.o.L Lo e 42

State of the Art 43

3.1 Imtroduction. 43

3.2 Notation Improvement 44
3.2.1 Non-automated Approaches 44
3.2.2 Automated Approaches 49

3.3 Imtegration Improvement, 50
3.3.1 Non-Automated Approaches 50
3.3.2 Automated Approaches 52

3.4 Summary 54

Implicit Composition of Use Cases with Variable-based State Character-

ization 57
4.1 Introduction. 57
42 UseCase Description 60

4.2.1 Preliminaries 60

422 TheUseCaseGraph 63
4.3 Use Case Graph Transformation 64
4.4 Use Cases Integration, 70

ix

4.5 Application of the Composition Approach to the Alternating Bit Protocol . 72

4.6 Summary e 74
Explicit Composition of Use Cases using Interactions 78
5.1 Imtroduction. 78
5.2 Use Case Acquisition : Model Presentation 80
5.3 Imtegration Approach 81

5.3.1 State-Based Synthesis Patterns of Use Case Interactions 82

5.3.2 Use Case Interaction Graph 82
5.4 Application on an e-Purchasing System 86
5.5 Summary 88

5.6 Strengths and Weaknesses of the Proposed Use Case Model and Composition

Approach, 90

Explicit Composition of Use Cases: A Novel Methodology using Impera-

tive Expressions 92
6.1 Introduction. 92
6.2 Approach Description 93
6.2.1 Incremental Process Definition 95
6.2.2 Approach Assumptions 96
6.3 Composition Expression 97
6.3.1 Operator Definition L. 99
6.3.2 Extension Point Definition. 102
6.4 Summary, 104

7 Formalization of the Approach in the Case of Use Case Automata 106

71 Imtroduction. 106
7.2 Use Case Model Definition 107
7.3 Composition Expression : Syntax and Semantics 107
7.3.1 Composition Expression Syntax 107
7.3.2 Formal Definition of the Composition Operators 109
7.4 Composition of UCAs in the Case of a Unique Extension Point 114
7.4.1 Concept Description 116
7.4.2 Base Builder Generation 117
7.4.3 Referred UCA Builder Synthesis 124

7.4.4 Label Matching Composition and the evaluation UCA of the compo-
sition expression generation 125

7.5 Generalization of the Composition Approach in the Case of Multiple Exten-

sionPoints Lo 131
7.5.1 Composition Description when Multiple Extension Points 132
7.5.2 Clone Generation 134
7.5.3 Base UCA Builder Synthesis 136
7.54 UseCase Generation 137
7.6 Summary L. e .. 139

8 Formalization of the Approach in the Case of Use Case Extended Au-

tomata 142
8.1 Imtroduction. 142
8.2 System Specification Model in the Case of UCEAs 144

xi

8.3

8.4

8.5

8.6

8.7

Use

9.1

9.2

9.3

9.4

9.5

8.2.1 Use Case Model Definition 144

8.2.2 Label Matching Based Composition of two UCEAs 146
Composition Expression in the Case of UCEAs 148
8.3.1 UCEA Composition Expression Syntax 148
8.3.2 Approach Overview 151
UCEA Composition Approach 151
8.4.1 Builder Generation 152
8.4.2 Intermediate UCEA Generation 155
8.4.3 Final States Determination 156
8.44 begin and end Transitions Removal Algorithm 156
Application to Multiple Extension Points in the Case of UCEAs 160
Executability of the Resulting UCEA from Composition 161
Summary 162
case Modeling And Composition Tool 164
Introduction L 164
UMACT Tool Overview 165
9.2.1 Specification Interface 166
9.2.2 Composition Engine 168
9.2.3 Model Verification L. 168
Traceability 169
e-Purchasing System Specification in UCA Model 171
e-Purchasing System Specification in the case of UCEAs 176
9.5.1 UCEA vs. Specification Variables 179

xii

9.6 Summary 181

10 Conclusion 183
10.1 Contributions 183
10.1.1 Implicit Composition of Use Cases 183

10.1.2 Explicit Composition of Use Cases with Interactions. 184

10.1.3 Explicit Composition of Use Cases using Composition Expression . 185

10.2 Discussion on Future Work 186
10.2.1 Application of the Approach in the Case of Statecharts 186

10.2.2 Use Case Decomposition 187

10.2.3 Approach Application 188

A Equivalence of "BEFORE a state” and " AFTER a state” as Extension

Point 192
B Formal Definition of the Composition Operator 198
C Synthesis Rules of Base Builders 202

D Final States Specification in the Case of Multiple Extension Points 211

E Rules of Builders Synthesis in the case of Use Case Extended Automata214

Bibliography 224

xiii

List of Figures

10

11

12

13

14

15

16

17

Implicit Vs. Explicit Composition
Generating Test Cases from Use Cases [114]
The Abstraction Level of Different Scenario Notations
UML Use Case Diagram: Example [3]
Basic Notations of Use Case Maps {100]
Exampleof Use Case Maps
MSC Specification L
Notions of Sequence Diagrams
Example of Universal LSCs [29]
Example of Existential LSCs {29]
Example of a Statechart,
Exampleof an LTS [66]
SDL Specification
HMSC Specification
Example of Process Divergence and Non-Local Choice in HMSC [36]
Dependency Chart

Use Case Syntax v i

xiv

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

Use Case Graph 63

Transform._1 algorithm: Transforms a graph into a SCN graph 67
SCN Graph Derivation 68
Transform_2 algorithm: Loop protection of SCN graph 69
The Automaton Generation Process 71
Original Described Use Case Graphs 73
Automaton of the Use Case Corrupted and Non-corrupted Data Reception 73

Automaton of Use Case Integration 75
Use Case model with interactions 80
State-Based Synthesis Patterns of use case Interactions 83
Inter and Intra-Implied Scenarios Resulting from Use case Merging 84
Overview of the Interaction-Based Integration Approach 86
The Interaction-Free Automaton of the Register_Order Use Case 87
The Use case Interaction Graph of the e-Purchasing Use Cases 88
The e-Purchasing System Automaton 89
Approach Ovérview in Requirements Engineering 94
Composition Approach Overview 95
Different Increments in Building a Specification 98
Expected Behavior from Composing Use Cases with the Different Composi-

tion Operators. 100
Extension Point Query with Model Checking 104
Expected Result from Composition 108
Approach Description in the Case of a Unique Extension Point 116

XV

40

41

42

43

44

45

46

47

48

49

30

51

52

53

54

35

56

57

58

IHustration of the Composition Concept
Base Builder for Extend_ with Operator and State Extension Point
Base Builder in the Case of Include Operator and a Transition Extension
Point with BEFORE Qualifier
Base Builder in the Case of Alternative Operator and a Transition Extension
Point with AFTER Qualifier
Referred Builder Example
Builder Generations Example
Label Matching Result from Builders in Figure 45
Example of final state Determination in the case of Include and one of the
final states of the base use case is an extension point
Final State Determination in the Case of Extend_with and a Final State
Extension Point
Case of Alternative Operator with a Final State Extension Point
Case of Alternative Operator without a Final State Extension Point

UCA Generated from the Label Matching in Figure 46
Expected Behavior in the Case of Multiple Extension Points
Base Builders in the Case of Multiple Extension Points
Composition Overview in the Case of Multiple Extension Points
Example of Referred Builder
Composition with Multiple Extension Points

Example of Composition in Multiple Extension Points

Example of a UCEA

xvi

122

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

System Specification Synthesis: Approach Description 151
Base Builder in the Case of UCEA with Graft Operator. 154

Example of a Referred Builder in the Case of UCEA and with Graft Operator156

Constraints Propagation L. 158
begin and end Removal Algorithm in the Case of UCEA 159
Example of a Non-executability of a Resulting UCEA from Composition . . 162
Tool Component Architecture [55] 165
UMACT Tool Interface 166
e-Purchasing System UCAs 172
Prod_Select.1 UCA 173
Order 1 UCA e 173
Order2UCA 174
Order 3UCA 175
Product_Select.2 UCA 176
Some UCEAs of an e-Purchasing System 177

Illustration of Base and Referred Builders of the e-Purchasing in the Case of
UCEAs e 178
The Derived Y UCEA by composing Prod_Selection and Printing UCEAs 179
Use Cases of the e-Purchasing System in the Case of Local Variable Specifi-

cation e, 180

Examples of Builders for ’"BEFORE s” and "AFTER s” 192
Examples Base Builders Generation 210

xvil

List of Tables

10

11

Composition approaches comparison
Use Case Actions of Corrupted and Non-Corrupted Data Reception

Actions of the Acknowledgment Reception Use Case
Use Case Actions of Corrupted and Non-Corrupted Data Reception after
Transform_i and Transform 2
UCEA Variables of the e-Purchasing Use Cases
Builders Rules Synthesis for UCA in the case of state extension point
Builders Rules Synthesis for UCA in the case of transition extension point
with the qualifier BEFORE
Builders Rules Synthesis for UCA in the case of transition extension point
with the qualifier AFTER
Builders Rules Synthesis for UCEA in the case of state extension point
Builders Rules Synthesis for UCEA in the case of transition extension point
with the qualifier BEFORE
Builders Rules Synthesis for UCEA in the case of transition extension point

with the qualifier AFTER

xviii

76

180

202

205

207

214

217

Dedications

A Ma mére qui m ’a poussée & réaliser ce réve...

A mon pére qui m’a offert le support moral et affectif tout au long de mes études...

Chapter 1

Introduction

1.1 Motivation

Requirements engineering and design remain the critical phases in system development
process. They are the phases where the needs of the customers have to be unambiguously
specified in order to ease the process of getting the right system. Use-case based approaches
are one of the techniques used in requirements engineering. Over the years, they have gained
a lot of importance in the system development life cycle to become a widely used method
in the industry for elaborating requirements of reactive systems.

Behavior modeling plays an important role in the engineering of software systems. It
allows the development of systematic approaches to requirements capture, specification,
design, simulation, code generation, testing, and verification. Several notations, techniques,
and tools that support behavior modeling already exist for simple aspects.

However, as systems are becoming lz;rger and more complex, systematic generation of a
formal behavioral model from informal requirements has become a crucial and challenging

task. A faulty model can lead to a low-quality system and can increase considerably the cost

of the system. Many studies have been conducted in order to formalize this model generation
process [39, 51, 11, 12, 109, 105, 95]. They aim at generating a state based model of the
overall system behavior. This model is intended for the validation and the verification of
the user requirements. Moreover, incremental approaches seem to be appropriate for the
generation of a formal behavioral model of the system. They help not only in the process of
building the system behavior in an iterative way but assist also in the process of validating
and verifying the user requirements. To accomplish this goal, use case and scenario based
approaches have been well received and have a wide acceptance in the industry.

Intuitively, a use case is a sequence of actions performed by the system to yield an
observable result of value to a particular user, and a scenario is an execution of a use
case. In such approaches, the system functionalities are described by a set of use cases
that are more or less independent of each other. Primarily, use cases have been associated
with requirements elicitation and domain analysis. However, the scope of use cases has
broadened to include modeling constructs at all steps. Due to this expanded scope, the
representation of use cases has an increasihg importance.

Use case approaches have many advantages. In fact, partially describing the reactive
system behavior is less difficult than specifying it as a whole. It makes the requirements elic-
itation more intuitive and the communication between stakeholders more straightforward.
In addition, use case approaches promote the incremental construction of the behavioral
model and help in its maintenance because they facilitate the traceability of the require-
ments in any phase of the system’s development lifecycle.

Despite these advantages, use case approaches present some drawbacks that are closely

related to the lack of formality. Use cases are descriptions that are expressed in most cases

using informal languages, which are usually ambiguous and error prone. In addition, such
informal descriptions are difficult, not to say impossible, to use in a systematic approach
for synthesizing an overall system specification that can be validated and verified against
completeness and consistency. To accomplish this task, the dependencies among use cases
must be analyzed before their composition. This last activity is complex and may be
facilitated by the usage of formal methods based on a formal model of use cases such as

state based models.

1.2 Problem Statement

Nowadays, the specification of individual use cases is achieved in natural languages such
as English, which provides ample room for miscommunication and misunderstandings. Use
cases provide a much less formal specification of their instances (i.e., individual usage sce-
narios), a fact that makes the relationships defined among them (provided by extends and
uses associations in the case of UML) not well defined.

While everything may seem clear in the highest level of abstraction, the translation of
use cases into design and code at lower levels of abstraction is based on informal human
understanding of what must be done, which makes such activity error prone. It also causes
problems when it comes to utilize use cases for the specification of acceptance tests and
for the validation and verification, becaﬁse the criteria for passing those tasks may not
be adequately and unambiguously defined. Consequently, formal models with well defined
semantics to represent use cases have been suggested. Approaches [12, 62, 102, 89, 26] and
tools [93, 18, 4, 82, 100] that support the description of use cases and their composition for a

construction of a system specification have been developed. Such approaches have different

models of use cases with different level of expressiveness. The generation of a system
specification is achieved in different level of automation. It can insure the correctness of
the derived model by construction when the process is fully automated or by additional
verification when the process is semi-automatic or manual.

To overcome the informality of use cases, many studies have suggested describing use
cases as state based models [39, 109, 92]. Such modeling concentrates on the internal
states of individual components. State-based formalisms are widely used in requirements
engineering, particularly in distributed and real-time system design. In many cases, these
formalisms are the basis for rigorous automated analysis (such as model checking), laborious
analysis, and formal verification of the proposed system’s behavior. Despite the benefit of
having such models early in the development lifecycle, the direct use of state-based models is
not widespread in the industry. Use cases must be modeled as FSM/EFSM then composed
to derive the model representing the overall system, a demanding and challenging task that

depends on several factors:

e The use Case Model Expressiveness:
The choice of the use case presentation is a decisive step in any approach of use case
composition. It illustrates the level of details about the system functionalities available
at the time of modeling, but it is also where the complexity of the composition is
implicitly decided. Having an expressive model for the description of partial system’s
behavior helps the analyst to describe a more realistic specification, that is closer
to the design phase. Depending on the application and the phase of development
lifecycle where the validation and verification are performed, the expressiveness of the

use case model plays an important role in the validation and the verification tasks.

However, it makes the composition harder. In the opposite, having a simple use case
model makes the composition simple but generates a high-level specification, a fact
that decreases the guarantees of correctness [106]. Consequently, there is a trade off
to make in order to balance between the model expressiveness and the composition

complexity, depending on the intended use of the generated model.

The Automation Level of the Composition Approach:
Automation is another challenge that faces the generation of a system specification
from use cases. Very often, during the requirements engineering phase, the require-
ments are not well defined and subject to modifications. Having an automated ap-
proach at this stage makes the task of the modeler much easier. In addition, a re-
alistic and reliable specification of the overall behavior cannot be obtained unless
performing several increments. Many researchers [86, 13, 12, 57, 101] have opted
for an automatic generation, others choose the semi-automatic or the interactive
[32, 88, 23, 23, 38, 98, 97] generation of system’s specification. Each has advan-
tages and limitations. But the choice will mainly depend on the objectives of such
composition. If we take the case of generating code for rapid prototyping, then the
automation will be a more appropriate way since the prototype itself will be improved
progressively [46]. Nevertheless, such approach seems inadequate if the purpose is to
7 detect or to avoid the implied scenarios, inconsistencies and completeness of the spec-
ification. In such case, interactivity with the user will give the potential of accepting
(or not) an implied scenario and hence completing the specification by possible but

forgotten scenarios.

e The Formality Level of the Model Representing the Partial Behavior:
Formal methods are mathematically-based techniques for the specification, develop-
ment and verification of software and hardware systems [27]. Formal methods may
be used to give a description of the system to be developed in the desired abstraction
level. This formal description can be used to guide further development activities. In
use case based approaches, having a formal model of the requirements allows their
validation and verification. It also allows to define automated approaches for use case

composition as specified previously.

The application of formal methods is considered as the basis of rigorous systems
development. However, the effective exploitation of these methods encounters several
problems that may be explained by the increasing complexity of the applications,
the lack of users with appropriate skills and background, etc. Usually, the formal
representation of use cases is not not always intuitive and easy to understand by the
different stakeholders. It requires an expertise from the stakeholders which explain

their limited use in industry.

The difficulty in formalizing informal use cases lies in defining a formal but still in-
tuitive use case model to benefit from the advantages the formality brings to the
composition approach, without making the specification of the initial set of use cases

a hard task for the modeler.

¢ Conformity to Initial Behavior:
When composing use cases, it is frequent that some scenarios that are not expected
appear in the resulting global model. They are in fact scenarios that were not specified

in the original use cases and appeared because of the use case composition. We

call them ¢mplied scenarios. These scenarios may result from inconsistencies in the
specification, but also may show possibly desired but forgotten scenarios. In the
latter case, implied scenarios are considered as a positive behaviors since the system
is supposed to exhibit them. Undesired implied scenarios are considered as negative

behaviors and have to be removed [102].

Classification of Composing Partial Behaviors:
Since use cases are in fact designed and written independently, it is not always easy

to merge them. In the following, we present some composition approaches.

1. Implicit Composition: in this approach, sccnarios are integrated without any
additional constraints. It allows the definition of overlapping use cases. This
overlapping is in fact used as point of merger where the use cases will be com-
posed. Often, implicit composition uses the characterization of the states in
different use cases in order to detect the points of merger. In addition, a scenario
(which represents a use case run) represents a scenario of the system, starting
from an initial state until reaching one of the final states of the system, as shown
in Figure 1. Hence, the system behavior is described as a set of traces. The
advantage of this method is the optimization of the possibilities in each system
state. It means that for each represented state, the specification gives all the
possible behaviors that the system may execute from that state. However, this
approach increases the number of implied scenarios (resulting from the compo-
sition).

2. Explicit composition (also called composition-based approaches [63]): not only

use cases are given but also the order in which they should be composed is

specified. IHence, in such an approach, use cases can be sequential, alternative,
parallel or iterative. The usage of composition notations is a way to express the
desired order of use cases with the possibility of constraining the execution of
use cases with pre-conditions. We also note that this mode of composition has
the advantage of protecting individual use cases by reducing the risk of having

implied scenarios to the connection points where the use cases are grafted.

It has been noticed that explicit integration of use cases is a more efficient way
of modeling than implicit integration [63], because of the human effort necessary
to identify the same states in the latter one. It also presents a different way
of modeling the system behavior. While in the first case, overlapping between
use cases is allowed, in this case it is not tolerated. Use cases has to represent
different requirements with well defined functionalities. In fact, it encourages
the separation of concerns into distinct features that overlap in functionality as
little as possible. A possible system trace in this case would result from the

composition in the specified order of some use case traces.

Using one of the composition scheme imposes some additional constraints. As an
example, when using the explicit composition mode, Glinz [33] has imposed that
all the scenarios should have one initial place and one final place. This is not the
case when composing implicitly scenarios. However, while the first mode may reduce
the number of implied scenarios, the second may deteriorate the desired behavior by
introducing a large number of unspecified behaviors, and then algorithms for detecting

them have to be developed.

e Traceability:

\(/6\
samestate \r

V) SRR e D -/,
-~ ? (\JJ System Trace $m£an>
©)

O Q) O
MTPHEH COMPOSIHON e ee e et e s e e eme et
Explicit Composition

Figure 1: Implicit Vs. Explicit Composition

Since at early stages of the system requirements, the needs of the user may change, it
is important to reflect these changes on the overall specification. Such modifications
have to be made with the minimum cost. Traceability of requirements is defined as:
“ the ability to describe and follow the life of a requirement, in both a forward and
backward direction, i.e. from its origins, through its development and specification,
to its subsequent deployment and use, and through periods of ongoing refinement and
iteration in any of these phases.” [35]

Use-case driven approaches can provide a natural vehicle that assures the traceability
of functional requirements [87]. When functional requirements are both traceable
and visible throughout essential development activities, the likelihood that required
functionality will be accommod’ated in the delivered system as well as the quality
of the software are improved. Hence, when composing use cases, it is of interest to
have a parallel mechanism that keeps track of the original requirements from where a

behavior is derived. Changes of the original use cases are then easier to reflect on the

10

system specification in one hand. Moreover, the back-tracking of the requirements to
change, if the resulting system behavior is different from the modeler expectations, is

more straightforward.

1.3 Thesis Contributions

Current use case composition approaches suffer from a lack of use case expressiveness and
rigorous formality. Often, the model used for use cases does not handle data. Finding both
an adequate model covering the needs of the analyst and a formal composition mechanism
serving the generation of the expected overall behavior is challenging. Within this thesis, use
cases are defined as state based models. Different formal state-based models are considered
in order to study the expressiveness, the complexity, and the applicability of the composition
in each model.

Our objective is to define a formal and automated approach to compose use cases taking

into account these criteria:

e The model of use cases must capture the system requirements in a comprehensive
manner. Hence, it needs to be intuitive and easy to use and to understand. Addition-
ally, the model needs to give more expressiveness power to the analyst comparing to

what already exists in the state of the art by handling data information.

e The model of use cases has to be formal in order to achieve the automation of the

approach.

e The approach should help generating the overall state-based system specification at

an early stage of the system development lifecycle.

11

o Implied scenarios may harm the behavior of the overall system. Often, when compos-
ing manually use cases, an interaction with the analyst is allowed in order to make
decision about implied scenarios. In our case, we advocate an automated approach,
fact that makes such interaction impossible. Hence, we target to reduce implied sce-

narios when composing use cases.

e The approach should support incremental elaboration of a formal system specification

because the requirements are prone to change.

o The approach should help the maintenance of the system specification because changes
are possible at this level of system description. Hence, the traceability of the require-

ments is of particular interest.

This thesis offers a set of contributions in terms of formal and automated partial be-
havioral description and composition, mainly related to implicit composition and explicit

composition of use cases.

1.3.1 Implicit Composition of Overlapping Use Cases

Beyond simple models, the difficulty is to take into consideration variables in the composi-
tion, for which no composition approaches exist. We target the use of a state based model
to represent use cases. However, a search for an appropriate model (new variant of models)
that helps the issue of composition is essential. In a first stage, we tried to define a formal
model of use cases based on a variable characterization of the states. The use cases are rep-
resented by a variation of EFSM (Extended Finite State Machines). We mainly enriched
the model in [91] to handle loops and variables. We considered the explicit specification

of loops in the description of use cases, which is different from the other approaches in the

12

state of the art [10, 109, 101, 91]. Use cases may contain loops that have to be protected
while composing in order to avoid destroying their behavior by the introduction of implied

scenarios.

1.3.2 Explicit Composition with Implied Scenario Removal

As a second step, we tackled the problem of explicit composition of use cases. By explicit we
mean the use of interactions in order to compose use cases rather than using the characteri-
zation of the states. Use cases are defined as a variation of EFSM enriched with interactions.
An interaction is defined as a call of a use case to another use case when performing an
action. Consequently, we have allowed the specification of an interaction within the specifi-
cation of the label of a transition. Each of these interactions defines a pattern that reflects
the semantics of the interaction in the state-based model. After defining the different use
cases, we generate the overall system specification using these state-based patterns applied
directly to the set of use case in the form of a cut and paste operation. In order to avoid
implied scenarios, we propose to generate a graph of interaction of the overall defined use
cases. From this graph, we determine the possible interferences between use cases that lead
to implied scenarios. Finally, additional constraints are added to the generated state-based

model in order to remove such implied scenarios.

1.3.3 Explicit Composition of Use Cases using Imperative Expressions

Inspired by programming languages, we defined a new approach of explicit composition of
use cases based on the definition of imperative expressions. These expressions allow the
separation between the definition of use cases and the definition of interactions and specify

the semantics of the composition the modeler asked for. We applied our approach in the

13

cases of finite state automaton and extended finite state automaton. This approach has the
advantage of defining a formal mechanism of composition that replaces the cut and paste

mechanism we proposed previously in section 1.3.2.

1. Composition Approach with Imperative Expressions
The approach consists of specifying explicitly and incrementally composition expres-
sions, rather than defining the interactions within the use cases, as we proposed pre-
viously. Each composition expression specifies the use cases to merge, the operator
to use, as well as the place where to merge (called extension point). The result of the
composition expression is a new behavior. It is derived from the merging of the two
use cases, according to the semantics of the composition operator. Our approach is
applicable for any state based model representing use cases. It allows the generation
of a system specification in the same state based model of the original set of use cases.

The different steps for such composition are described.

2. Use Case Automata Composition
The formalization of the composition approach with imperative expressions in the
case of Use Case Automata (UCA) is given. UCAs are finite state automata. They
represent an intuitive and expressive way to describe partial system behaviors. An
extension point can be either a state or a transition. Qur approach handles the fact

of inserting a use case in multiple extension points.

3. Use Case Extended Automata Composition
The more detailed is the specification, the greater are the guarantees of correctness,
[106] . Therefore, it is interesting to generalize our approach in the case of Extended

Finite state machines. Hence, we propose to formalize the approach of composing use

14

cases using imperative expressions in the case of EFSM, we call Use Case Extended
Automata (UCEA). In such specification, we distingnish between two kinds of vari-
ables: UCEA and specification variables. The first are considered local to the UCEA
where they are defined, while the second they are global, shared by the set of use

cases defining the specification.

1.3.4 List of Publications

1. Rabeb Mizouni, Aziz Salah, Siamak Kolahi, and Rachida Dssouli: Composition of
partial system behaviors, IET Software Journal (formerly IEE Proceedings Software),

Volume 1, Issue 4, August 2007.

2. Rabeb Mizouni, Aziz Salah, and Rachida Dssouli: Using Formal Composition of Use
Cases in Requirements Engineering, The Nineteenth International Conference on Soft-

ware Engineering and Knowledge Engineering SEKE’07, Boston, USA.

3. Rabeb Mizouni, Aziz Salah, Rachida Dssouli, and Siamak Kolahi: Incremental Fz-
tended Use Case Composition , Tth International Conference on New Technologies of

Distributed Systems Morocco, Marrakesh, June 4-8, 2007.

4. Rabeb Mizouni, Aziz Salah, Siamak Kolahi, and Rachida Dssouli. Composition of
Use cases using Model Checking and Synchronization 26th IFIP WG 6.1 International
Conference on Formal Methods for Networked and Distributed Systems, Springer-

Verlag, Paris, France 2006

15

10.

Rabeb Mizouni, Aziz Salah, Siamak Kolahi, and Rachida Dssouli. Automated Ap-
proach for Use Case Composition, MCSEAT'06: 9th Maghrebian Conference on In-

formation Technologies, Agadir, Morocco, December 2006

. Rabeb Mizouni, Aziz Salah, Rachida Dssouli, and Siamak Kolahi. Roles of variables in

Use Case Composition. New Technologies for Distributed Systems (NOTERE’2006),

Toulouse, France 2006.

Rabeb Mizouni, Aziz Salah, and Rachida Dssouli. Interaction-Based Scenario Integra-
tion. Workshop on Model Design and Validation, ACM/IEEE Models/UML, Jamaica

2005

. Aziz Salah, Rabeb Mizouni, Rachida Dssouli, and Benoit Parreaux, Formal Com-

position of Distributed Scenario, International Conference on Formal Techniques for
Networked and Distributed Systems (FORTE 2004), pp. 213-228, Madrid Spain,

September 2004

Rabeb Mizouni, Aziz Salah, Rachida Dssouli, and Benoit Parreaux, Integrating Sce-
narios with Explicit Loops, New Technologies for Distributed Systems (NOTERE

2004), Essaidia Morocco, June 2004

Aziz Salah, Rabeb Mizouni, and Rachida Dssouli, Communication Abstraction and
Verification in Distributed Scenario Integration, Workshop Communication Abstrac-

tion for Distributed Systems, ECOOP, Oslo Norway, June 2004

16

1.4 Thesis Outline

This thesis is structured as follows.

In Chapter 2, we present the different notations used nowadays for representing use
cases. For each notation, we present its characteristics and their applicability in the system
development process. We classify them according to their level of abstraction.

In Chapter 3, we describe the different approaches for composing use cases. For each
approach, we describe its advantages and its limitations. We classify them according to
their level of automation. A comparison between them according to some criteria is also
presented.

In Chapter 4, we present our approach of composing overlapping use cases, where use
cases are a variant of extended finite state machines. The variable characterization of the
states in different use cases is used as a composition criterion. The steps of the composition
are described and illustrated by an example.

In Chapter 5, we describe the explicit composition of the same model enriched with
interactions. Interactions describe the semantics of the composition. In this case, use cases
do not overlap. A cut and paste operation is performed in order to interpret the different
interactions described within the use cases to obtain the overall system automaton. In a
second step, implied scenarios afé detected and removed by adding additional constraints
to the system automaton.

In Chapter 6, we define a novel approach of composing use cases using imperative
expressions. In this chapter, we give an overview of the proposed approach, the underlaying

assumptions, and its main advantages in requirements analysis phase.

17

In Chapter 7, we present the formalization of the approach of composition using imper-
ative expressions in the case of finite state automaton. The approach is presented first in
the case of composing two use cases in a unique extension point, then in multiple extension
points.

In Chapter 8, we present the formalization of of the composition using imperative ex-
pressions in the case of extended finite state automaton. The approach is presented first
in the case of composing two use cases in a unique extension point, then in multiple ex-
tension points. Issues related to variables such as the definition of global variables to the
specification vs. the definition of local variables to the use cases are discussed.

In Chapter 9, we present the tool implemented in order to validate our composition
approach. A specification of an e-Purchasing system is used to illustrate the approach in
each of the proposed use case model.

Finally, in Chapter 10, we summarize the thesis contributions, discuss the obtained

results in each of them, and give a list of topics for future research directions.

18

Chapter 2

Notations

2.1 Introduction

Requirements engineering is the first activity in the life cycle of system development. It
consists of an iterative process that encompasses discovering, analyzing, and validating the
system requirements. This involves all activities devoted to the identification of user re-
quirements, their analysis in order to derive additional requirements, the documentation of
the requirements as a specification, and finally the validation of the documented require-
ments against user needs. Therefore, requirements engineering is critical for the success of
the project. It is the phase where what to build is determined. Any forgotten behaviors,
miscommunication with users, and undetected faults lead to considerable changes in the
obtained system with high costs.

In the first phase, stakeholders collaborate together to define the user requirements. A
requirement is in fact a description of what the system is expected to do. It captures the
intended behavior of the system. This behavior may express services, tasks or functions

the system is required to perform. According to Young [112], each individual requirement

19

should be:

o Necessary: If the system can meet prioritized real needs without the requirement, it

is not qualified as necessary.

o Feasible: The requirement can be accomplished within reasonable cost and schedule.

o Correct: The facts related to the requirement are accurate and it is technically and

legally possible.

o Clear: Written in a not confusing way.

e Concise: The requirement is stated simply with appropriate words in a brief and a

succinct way.

e Unambiguous: The requirement can be interpreted in only one way. For this reason,
the language used to write the requirement is critical for its understanding. For in-
stance, the natural language is usually misleading while a formal language is uniquely

interpreted but requires stakeholder expertise.

e Complete: All conditions under which the requirement applies are stated and it ex-
presses a whole idea or statement. Completeness is hard to achieve and to check

too.

o Consistent: Not in conflict with other requirements.

e Verifiable: Implementation of the requirement in the system can be verified.

e Traceable: Can trace back to the source of the requirement and it can be tracked
throughout the system (e.g., to the design, code, test,...). It is a very important

characteristic that, when verified, helps the maintainability.

20

¢ Design independent: Does not impose a specific implementation solution.
e Non-redundant: Not a duplicate requirement.

Usually at the first stage of development, requirements are still not stable and will have
to change when their inconsistencies are discovered in the analysis phase. The latter ends
up with the derivation of the overall system specification.

The final product of requirements engineering is a requirement document. The format
and composition of this document vary from one methodology to another. The requirement
document may contain different types of descriptions that vary in their formality and level
of details. It may contain a general system description, a list of functional and nonfunctional
requirements, a textual description of scenarios, a definition of the different actors, a list of
prescribed system components, etc[22]...

A requirements specification is a complete (as much as possible) description of the behav-
ior of the system to be developed. It includes a set of functional requirements that describe
all of the interactions that the users will have with the system, and a set of nonfunctional
(or supplementary) requirements which impose constraints on its design or implementation
(such as performance requirements, design constraints...).

At this level, having formal specifications is particularly useful because they are precise,
clear, unambiguous, and may be verifiable. These properties help to discover bugs early in
the system lifecycle. The earlier a fault is detected, the cheaper it can be removed. For this
reason, formal specification methods can improve productivity and quality.

Finally, validation is concerned with demonstrating that the requirements define the
system that the customer really wants. Validation activity is very important because it

allows the detection of requirement errors. The properties to check are :

21

e Validity: Does the system provide the functions which best support the customers

needs?
¢ Consistency: Are there any requirements conflicts because of contradictory constraints?
e Completeness: Are all functions required by the customer included?

¢ Realism: Can the requirements be implemented given available budget, schedule and

technology?

e Verifiability: Can the requirements be checked? Does the delivered system meet the

requirements?

Consistency and completeness of the specification have to be established. Usually, com-

pleteness is more problematic and hard to validate.

2.1.1 Use Case Definition

Use Cases have proved to be an effective mechanism for the capture of requirements. The
notion of use case has been proposed first by Ivar Jacobson [47]. Over the years, many
definitions have been given to use cases, let’s cite some examples: Jacobson in [47] has
defined use cases as :

a narrative document that describes the sequence of events of an actor (an external agent)
using a system to complete a process.

Larman in [60] defined them as stories or cases of using a system. Use cases are not exactly
requirements or functional specifications, but they illustrate and imply requirements in the
stories they tell. They represent narrative descriptions of domain processes in a structure

prose format.

22

According to Booch [21], a use case is A description of set of sequences of actions, including
variants, that a system performs that yield an observable result of value to an actor. It is
a way to capture the intended behavior of the system without having to specify how that
behavior is implemented...In addition, use cases serve to help validate your architecture and
to verify your system as it evolves during development.

Finally, in a more recent book [48], Ivar Jacobson specified that A use case models the
behavior of a system. A use case is a sequence of actions performed by a system, which yields
an observable result that is typically of value for one or more actors or other stakeholders
of the system. During this thesis, we adopt this definition of use case, which we believe to

be a more general one.

2.1.2 Why Use Cases?

Use cases are a model to capture software requirements. They facilitate the description of
the system requirements by applying a ”divide and conquer” strategy, since describing a
part of the system is simpler than describing it as a whole. Use case approaches offer several

practical advantages :

e Use case modeling (including the writing of use case specifications) is generally re-

garded as an excellent technique for capturing the functional requirements of a system.

o Use cases are usually easy to describe and to understand by the different stakeholders.
They have proved to be easily understandable by business users, making them an

excellent bridge between software developers and end users.

e Use cases are design independent. Hence, they avoid early design decisions.

23

Use cases help the traceability of the different requirements throughout the design

and implementation.

Use cases are scalable in that the behavior of a large system can be described as a

collection of independent but complementary use cases developed incrementally [61].

Use cases can serve as the basis for estimating, scheduling, and validating effort.

Use cases are reusable within a project. They can evolve at each iteration from a
method of capturing requirements, to development guidelines to programmers, to a
test case and finally into user documentation. For instance, test cases (System, User
Acceptance and Functional) can also be directly derived from the use cases. As shown
in Figure 2, Zielczynski [114] has proposed the pyramid of needs where he defines the
traceability of requirements. On the top level are stakeholder needs. Features define
supplementary specifications. The further down, the more detailed are the require-
ment. Use cases describe functional requirements, and supplementary specifications
(Supp/Spec) describe non-functional items. In addition, every use case maps to many
scenarios, where a scenario is a possible execution of a use case. Scenarios map to test

cases in a one to many relationship.

Use cases are useful for scoping. They make it easy to take a staged delivery approach
to projects; they can be relatively easily added and removed from a software project

as priorities change.

Use case specifications can be written in a variety of styles to suit the particular needs
of the project. They can be expressed in any language ranged from natural language

to formal language.

24

Needs

Features.

Use Cases/ Supp Spec

Scenarios

Test Cases

Figure 2: Generating Test Cases from Use Cases [114]

Despite these advantages, use case approaches suffer from a couple of major drawbacks:

e Use cases are often stated in natural languages, lacking formal syntax and semantics.

This may make them ambiguous and hard to analyze.

e The dependencies and the relationships among the different use cases are usually hard

to analyze. Currently, there is no systematic approaches to determine them [61].

e Inconsistency and incompleteness between use cases are hard to detect before for-

warding to design phase.

o Use Cases are often unable to describe non-functional requirements.

e Distribute use cases in order to derive the behavior of the different components is also

a challenging task.

2.1.3 Why formal methods?

Many techniques can be used for validating and verifying the user requirements, we cite
testing and simulation. Testing has the advantage of having immediate relevance. How-

ever, since tests are applied on the product, errors may be detccted late and hence the

25

cost to correct them may be high, in addition to the fact that diagnosis needs complete
observability. In contrast, simulation can be performed through design but simulators can
be significantly slower than real systems. Both techniques can not be applied exhaustively,
and they can only show the presence of bugs, but never prove their absence. Formal meth-
ods are complementary techniques to testing and simulation. They emerged to overcome
their drawbacks and to allow the exhaustive testing of a user requirements. They provide a
set of tools and notations with a formal semantics that allow the unambiguous specification
of requirements, their verification against some properties, and the prove of correctness of
an implementation with respect to that specification.

Use of formal methods does not a priori guarantee correctness. However, they can greatly
increase our understanding of a system by revealing inconsistencies, ambiguities, and in-
completenesses that might otherwise go undetected [28].

Formal methods have been proved to be efficient when the complexity of the system to
build is high. They also have a wide acceptance in concurrent systems, distributed systems,
and fault tolerant systems. While in the past the use of formal methods in practice seemed
hopeless because of the complexity of the models used, success of the application of formal
methods in specification and verification have been shown in the last decade [28].

In specification, the use of precise models allows a deep understanding of the system
being specified, offering the possibility of discovering design inconsistencies and incomplete-
ness. In verification, two well established approaches are nowadays widely used, which are
model checking and theorem proving. They are used to analyze a system for desired prop-
erties. Model checking is a technique that relies on building a finite model of a system and

checking that a desired property holds in that model. It performs an exhaustive exploration

26

of the state space of the given model. In contrast, theorem proving is a technique where
both the system and its desired properties are expressed as formulas in some mathematical
logic. Then, a proof has to be conducted, interactively. During this thesis, our main con-
cern is to generate a verifiable specification of the system behavior starting from a set of
requirements. Since formal methods help the definition of precise requirements, and they lie
on well defined semantics, they provide a framework for developing an automated approach

of requirements composition.

2.2 Use Case Notations

Since use case approaches have a wide acceptance in the industry, dozens of notations have
emerged in order to define them. Use case notations may describe the set of scenarios as
Message Sequence Charts (MSCs) [2], UML Sequence Diagrams (SD) [1], Life Sequence Di-
agrams (LSCs) [39], state-based notations (such as the behavior section of the Specification
and Description Language (SDL), statecharts [37], finite state machines)...

These notations have different levels of abstractions, which make them particularly useful
for adding details to an outlined requirements description. In the first stage of requirements
engineering, one needs a notation with high level of abstraction since it’s mainly used to
describe the functionalities of the desired system but not how these functionalities have to
be implemented. When forwarding to the implementation level, these notationé have to be
refined to allow the expression of more details.

The most intuitive use case descriptions are unfortunately the informal ones, where the
user represents the desired behavior of the system in his own language. The problem with

this kind of representation appears when it comes to interpret the specification since the

27

natural language may lead to ambiguities. Thus, to benefit from the expressive power given
by the natural language and to resolve its constraints, many rescarchers [96] restrict the
considered language to a predefined subset.

Semi-formal or formal language [12, 33] are also widely used for scenario descriptions.
The latter can be automated easily but they may be less understandable for stakeholders,
while the former have more expressiveness power but difficult, almost impossible, to auto-
mate. Using the appropriate notation to serve the desired level of abstraction is always a
decision to make when describing use cases. In what follows, we propose a summary of the
most used notations in use cases with respect to the classification abstraction and formality

(cf. Figure 3).

Informal Use Case Transition

Description Diagrams UcM MSCs systems SDL j i Abstract

Figure 3: The Abstraction Level of Different Scenario Notations

2.2.1 Abstract Notations
UML Use Case Diagrams

The UML Use Case Diagram [1] is a semi-formal language for system specification. It allows
defining an abstract view of the system that models the interactions between the system
and its actors. An actor represents a user or another system that will interact in a way or
another with the system, while a use case is an external view that represents some actions
an actor may perform to achieve a task.

Use Case Diagrams are very useful in the first stage of the software development because

they help the description of the requirements in an abstract manner. However, they should

28

be refined in a latter stage because they omit all details to understand how a task will
be performed. Figure 4 shows an example of a UML diagram. It depicts a system where
students are enrolling in courses with the potential help of registrars. Professors input the
marks students earn on assignments and registrars authorize the distribution of transcripts

(report cards) to students.

imm 5 ‘W s
wmw *\
v \1
%
e l ol
)

Registrie

Figure 4: UML Use Case Diagram: Example (3]

UML provides some relationships to describe the dependencies among use cases, we
cite Include, Extend, and Generalization. Include depicts the fact that one use case
includes the behavior of another use case, while Extend means that one use case is extended
to another use case so that it has the behavior of the former in addition to its own. Extension
can only be done at extension points of the use case being extended. While with Include,
the inclusion of the behavior is mandatory, with Extend, it is optional. Generalization
depicts the fact of inheriting parent behavior, adding and overriding with the child’s own

behavior.

29

Use Case Maps

Use Case Maps (UCM) [5] are a use case based software engineering technique most useful
at the early stages of software development, first introduced by Burh [26]. The notation
can be applicable to use case capturing and elicitation, use case validation, as well as high-
level architectural design and test case generation. They represent a graphical models that
describe the functional requirements and high-level design with causally linked responsibil-
ities [13]. The notation allows representing use cases as sets of causal paths, specifying the
way the system can evolve without specifying any message details. UCM are very abstract,
which promotes flexibility. Hence, many MSCs can be valid according to a same UCM. For
this reason, they are very useful in the first stage of requirement elicitation where details
are not yet available.

A UCM scenario starts with a triggering event that corresponds to a precondition and
ends with resulting events that represent the post-conditions. The components are deter-
mined according to the role they are playing and they are optional. UCM notation has the
possibility to express alternative and concurrent sub-scenarios. Moreover, the UCM offer
an explicit notation for the scenario integration.

Use Case Navigator (UCMENav) [82] is a tool that edits and analyzes UCMs. UCMNAV
is used for creating and navigating UCMs and for storing them as XML file. However, the
UMC spéciﬁcation presents several problems, mainly a problem of maintainability because
the tool was developed in a ad-hoc manner. In addition, the user interface is not very
friendly. Hence, it was replaced by the jJUCMNav tool. jUCMNav [100] is an Eclipse plug-in
project which uses both the Graphical Editing Framework (GEF) and the Eclipse Modeling

Framework (EMF). In addition to editing and analysing UCMs, jUCMNav is augmented to

30

o sivmsafimnnens &« & HESPOANDIIY {Guaidp {£3} vie mes
& drmrme e .« DGO ATOW

) ANDFok J—oe o4 AND-doiei
St St JUNENI AN -
RN R VOU S
7

Start Path £ng L2 i OR-Join,
point & IPoim ORFore QIT > S

oy » Chnamic Sty
sm“.?m Wap. I EOuTY Post A Switch Post B
o X AT I
Figure 5: Basic Notations of Use Case Maps
[100] Figure 6: Example of Use Case Maps

produce scenario files in XML and to generate MSCs out of them [12]. In [49], jUCMNav
has been linked to Telelogic DOORS [4], which is a requirements management system that
supports various types of requirements objects, attribute types, and traceability links. The
tool allows UCM scenario models to be imported in DOORS and linked to other types of

requirements.

Message Sequence Charts MSCs

Message Sequence Chart (MSC or basic MSC, bMSC) is one of the most popular and used
scenario specification languages that describes the interaction between a number of inde-
pendent message passing instances. It allows both graphical and formal representation of
scenarios, thing that makes it very practical. It supports complete and partial specification
and it could be used to express both desired and forbidden behavior. A message can be as
simple as a signal and as complex as a data packet. Two events are associated to messages:
send and receive. Timers can be inserted to model time constraints. In addition, this lan-
guage is widely applicable to various application domains [2]. The MSC language allows
formulating compositions within the MSC by mean of inline ezpressions. They can express
weak sequential composition, alternative composition, optional composition, parallel com-

position and finally Joops with bounded number of iterations. An MSC example of a timed

31

communication between an Entity A and an Entity B is shown in Figure 7.

[Entity A] | Entity B
T
A_statub=ldle and A_status = Igle D Condition
- send_data(A) X Timer
An Alternative Composition
Al send_ack(A)

Instance head

Instance End

e
________ send_data(A)] | |

Figure 7. MSC Specification

Many trials aimed at extending the semantics of MSCs. Zheng and Khendek [113]
extended the timed MSCs with instance delay in order to enhance its expressiveness. Sen-
gupta and Cleaveland [94] extended MSCs to express conditional scenarios by differentiating

between triggers and actions, and between ”extensible” and ”complete” partial scenarios.

UML Sequence Diagrams (SDs)

UML sequence diagrams are similar to the MSCs notation. UML sequence diagrams are
commonly used for both analysis and design purposes. They represent one of the most
popular UML artifact for dynamic modeling, which focuses on identifying the behavior
within the system.

One of the primary uses of sequence diagrams is in the transition from requirements
expressed as use cases to the next and more.formal level of refinement. VUse cases are often
refined into one or more sequence diagrams.

UML sequence diagrams focuses less on messages themselves and more on the order in
which messages occur. Nevertheless, most sequence diagrams will describe what messages

are sent between system’s objects as well as the order in which they occur. The messages sent

32

“Object! l [:Object2 l ' :Object3 object

;
simple call | ,

' '
active H
'
'
H '
' Synchronous message +
H '
S —
y 1
'

'
'
v Asynchronous message

'
'
 lifetime
'

alt,
i mt 1

' o alternative

v
'
:
' J
! ><Deletion
Return

Figure 8: Notions of Sequence Diagrams

and received can be synchronous (a stick arrowhead) or asynchronous (a solid arrowhead).
SDs allow the specification of alternatives, loops and options. Alternatives are used to
designate a mutually exclusive choice between two or more message sequences. Options
are used to model a sequence that, given a certain condition, will occur; otherwise, the
sequence does not occur. Loops model a repetitive sequence. Figure 8 shows an example of

a sequence diagram.

LSCs: Live Sequence Charts

LSCs has been proposed as an extension of message sequence diagrams [29]. They extend
MSC by the nofion of liveness. LSC distinguishes between the possible and the necessary
behavior by the introduction of universal chart, where the chart should be executed in all
the runs of the system, and existential chart, where it should be executed at least in a
run. Forbidden scenarios can be specified. Figure 9 shows an example of a universal chart.

It describes a car departing from a terminal. The instances participating in this use case

33

i

;mEage

; N
: i
$ 1
5 prosSemsor entiser or carHaniter t
£
: ;
i
3
eiiser catHandler H ; :
: amvReq s
; H
i
Mﬂ 1 .
3 i AtivA H
; H
Qepanck K 3
3
' eriSiop '
'
tart !
v
discogage !
P i iS00 v
staned :
|
¥
s
t
H
¢
‘
¥
'
]

&

Figure 9: Example of Universal LSCs [29] Figure 10: Example of Existential LSCs [29]

are cruiser, car, and carHandler. SetDest is a simple kind of activation condition (an
activation message).

Figure 10 shows an example of an existential chart, depicted by dashed borderlines. The
chart describes a possible stopping of a car at a terminal. This chart has to be satisfied
in at least one run. LSCs do not have a high level view like HMSCs, but Bontemps et al.
[20] have extended the notation with composition operators and defined their semantics in

terms of w-regular traces.

2.2.2 State Based Notations

Petri Nets (PN)

Petri Nets [85] are formal, graphical, executable techniques for the specification and analysis
of concurrent, discrcte-cvent dynamic systems. A Petri nct is assembled from places and
transitions. Places, depicted as circles or ellipses, represent resources that can be available

or not. The availability of a resource is shown by a black dot inside the circle. When

34

resources are available, we also say that the place is marked. Individual resources are
abstractly referred to as tokens. Transitions, depicted by rectangles or squares, are the
active elements of a net. A transition that occurs (or fires) can remove tokens from some
places and insert tokens into other places. In order to denote the tokens that are moved by a
transition, arrows, so-called edges, are drawn from places to transitions and from transitions
to places. Each arrow can be annotated by a number that indicates the number of tokens

that are moved by this edge. Formally, a Petri Net is defined as follows [81]:

Definition 1. A Petri net is a 5-tuple (S, T, F, My, W), where:

e S is a set of places.

o T is a set of transitions.

o F is a set of edges known as a flow relation. The set F is subject to the constraint

that no edge may connect two places or two transitions, or more formally: F C

(SxT)u(T'xS) .

o My : S — N is an initial marking, where for each place s € S, there are ny, € N

tokens.

e W :F — N7 is a set of edge weights, which assigns to each edge f € F some n € Nt
denoting how many tokens are consumed from a place by a transition, or alternatively,

how many tokens are produced by a transition and put into each place.

PNs are used to capture sequential, alternative and concurrent scenarios. Like UCMs,
the ordering of actions in PNs is based on the causality. Efforts are being made to extend

the PNs with time considerations.

35

Finite State Machines

Finite state machines (FSM) have become a standard model for representing system behav-
ior. Numerous specification notations are based on the concept of FSMs. UML and SDL
incorporate FSM notations. An FSM is defined by the following: a finite set of states, a
finite set of events, and a set of transitions that map some state-event pairs to other states.
Actions are normally associated with transitions. Since the level of FSM specifications
is pretty low, Harel introduced hierarchical statecharts in order to reduce the size of the
specifications. State machines can be constructed from regular expressions. More formally,

Definition 2. An FSM is a 5-tuple M = (Q, 3, qu, 4, F)

o (Q is the finite set of states.

o X is the set of input events.

e §:Q XX — Q is the transition relation.

e gy € Q@ is the initial state.

F C Q is the final or accepting states.

Transition relation are defined according to the current state, the input that allows the
firing of the transition, and the next state of the machine.

Extended FSM (EFSM) model describes a module process as an FSM extended with
variables. In an extended finite state machine model, the transition can be expressed by an
“if statement” and associated with a set of enabling conditions. When all of the conditions
are satisfied, the transition is fired. It brings the machine from the current state to the
next state and and may update the values of the variables by performing the specified data
operations [30].

36

Statecharts

Statecharts are finite state machines that model the behavior of systems. They were intro-
duced first by Harel [37] and have a widespread usage since a variant has become part of
UML. They extend the conventional state transition diagrams with hierarchy, concurrency,
and communication. The first notion is obtained by embedding one statechart in the state
of another statechart. While the second notion, called orthogonality by Harel, is obtained
by parallel statechart composition. Statechart are state-event driven diagrams. To capture
system behavior, each scenario will be represented by a closed statechart having a single

initial state and a single final one.

v

v

Figure 11: Example of a Statechart

The advantage of using statechart in use case description and analysis is mainly the
hierarchy they are offering because in the case of other plain state automaton, the state

explosion problem raises when the specification deals with parallel scenarios.

Labeled Transition System : LTS

LTS [50] is very simple specification formalism for describing the behavior of a system

component. It is used to represent the behavior of a component, which has a finite number

37

receive_to_approval

assess_to_approval receive_to_spproval invoke approver_spprove

assess_to_approval

Figure 12: Example of an LTS [66]

of possible values for its state and a finite number of operations. No operation parameters
are considered; only the order of the operations is specified. An LTS is represented by
a state diagram, where transitions are labeled by the operation. An LTS may be either

deterministic or non deterministic. Formally, an LTS is:
Definition 3. An LTS is a tuple (S, L, A, so) where:

e S is the set of states

o L is the set of labels; L = a(P) where a(P) is the set of communicating alphabet of

P.

o A:S xL— S is the transition function

sg 18 the initial state.

The semantics of LOTOS (Language Of Temporal Ordering Specifications) [19] for ex-
ample, one of the formal description techniques, is based on the LTS model. Figure 12

depicts an example of an LTS.

Specification Description Language: SDL

SDL [17] is a formal specification language widely used in telecommunications. SDL covers

different levels of abstraction from a broad overview down to detailed design level. SDL

38

language is used to describe the structural and architectural properties of the system as

well as its behavioral properties. Hence, an SDL specification covers three aspects:
e The structure of the system in terms of processes and interconnections.

e The dynamic behavior of each process, its interactions with the other processes and

with the environment.
e The data structures manipulated by the processes.

The two first aspects of the system are architecture oriented (c.f. Figure 13). The com-

munication between processes is asynchronous, with a FIFO queues. The semantics of the

System Level Processl

EnvToBlock

Blockl

BlockToEnv.in BlockToEnv.out

Block Level

4

[543

[=3

o R1 R5 Si

E Process1 Process2 -
]
|53}

R2 R3 R4
BlockToEnv.in BlockToEnv.out

Figure 13: SDL Specification

language is based on extended finite state automata that have been augmented with features

for specifying abstract data types.

39

2.2.3 Use Case Composition Notations

In order to compose use cases explicitly, some notations have been developed to specify the

relationships between the different use cases.

HMSCs : High-Level MSCs

One of the techniques to compose basic MSCs is the High-Level MSCs (HMSCs). They
provide a graphical representation to combine MSCs together in order to describe alter-
native, sequential, iterating, and non-deterministic execution of scenarios in an attractive
graphical layout. An HMSC consists of a collection of components, enclosed by a frame.
The components are thought of as complex MSCs that operate in parallel. Every component
consists of a number of nodes and a number of arrows that imply an order on the nodes

[67]. In Figure 14, we show an example of HMSC.

Figure 14: HMSC Specification

The HMSCs are facing the problem of process divergence and the non-local branching
choice. These problems were tackled by Ben-Abdallah et al. [36]. It is mainly due to the
asynchronous interpretations of HMSCs. The first problem depicts the case when a process
is sending messages to another, and the latter is not consuming them. Figure 15 (a) shows

such problem. The second problem happens when there is an alternative choice between

40

mse MSCY

Mi P M2

(&) {h)
Figure 15: Example of Process Divergence and Non-Local Choice in HMSC [36]

two MCSs. The system may not evolve in the same MCSs because the first events in all
the MSCs (of the branching point) are not sent by the same process. Figure 15 (b) depicts
such problem. We notice that These problems raise the problem of HMSC realizability.
Realizability depicts the existence of an implementation that exhibits the same behavior of

the HMSC.

Dependency Chart

Since the current integration methods have limited support for abstraction and decomposi-

tion, the authors proposed in [88] a new diagram called dependency chart. It is a notation

that :

o allows a clear understanding of the system high-level dependencies and connections

between scenarios.
e facilitates hierarchical decomposition.

o helps in scenario reuse and testing.

41

Tteration T

(Src 3 and Scr 4 :Strict Sequence)

Alternative N C
with condition oneurrency

Scr5 has to start after Scr 4 started

Figure 16: Dependency Chart

The notation they are proposing offers to express abstraction, causal, and temporal
dependencies (Figure 16). The dependency charts depict mainly the static relations between

scenarios.

2.3 Summary

In this chapter, we presented the most used notations in use case based approaches. These
notations differ in their level of abstraction, expressiveness and formality level. The choice
of one of these notations depends mainly on the stage of the lifecycle where the notation
is used, the formality level of the composition approach, and the automation level of the
composition approach. In the next chapter, we will overview the different approaches of use

case composition in the state of the art.

42

Chapter 3

State of the Art

3.1 Introduction

Use Cases are usually used in order to derive formal specification of the intended system
that is conforming to the requirements of the user. In all cases, same questions have to be

answered:

1. How to represent use cases? As explained before, many notations with different levels

of abstraction are currently used.
2. How to compose use cases? Based on what criteria use cases will be integrated?
3. What is the target model the composition algorithms will derive?
4. What is the level of automation of the synthesis approach?

5. How to validate the overall specification? Decisions on the previous questions will

affect the approach undertaken for validation.

43

Many approaches have been developed during the last decade to compose use cases and
generate, usually, a state-based model. State-based models are needed to validate and verify
the user requirements in order to detect problems as soon as possible. These approaches

are different in many aspects:

e The identification of the system state is usually done on a trace [39, 57, 58] or variable
identification [97, 104, 109] bases. In the latter approaches, a variable state vector is

defined and it is used in the generation of state based models.

¢ Often, the generated state model is either a statechart [109, 32, 58, 68] or an automaton

97, 38].

e Some researches have been conducted to improve the model used by timing aspects

[92, 31].

In the next sections, we will overview a set of these approaches. We categorize them to two
kinds: approaches that target the improvements of the notations used to express use cases,
and approaches that target the improvements of the composition mechanism itself. These

approaches are classified according to their level of automation.

3.2 Notation Improvement

3.2.1 Non-automated Approaches

Glinz [32] uses statecharts to formally model use cases. His objective is to integrate different
use cases with respect to two conditions. The first one is that the resulting model shows
the relationship between the use cases and keeps their internal structure unchanged. The

second condition is to detect inconsistencies between use cases.

44

The proposed approach allows only the composition of disjoint use cases. When it comes
to overlapping ones, the author proposes either to decompose them or to use them such
that we obtain a single disjoint use case. The author defined four constructors to build a
use case from elementary ones: the sequencing constructor, the alternative constructor, the
iteration constructor and the concurrency constructor.

The method has the advantage of detecting deadlocks when mapping the generated
statechart of the composition to a flat one. However, when it comes to use this approach
in a practical way, the resulting statechart from the integration of many use cases becomes
unreadable, reason for what in the ADORA project [34], they used the Jackson-style dia-
grams [111]. Glinz is presenting a notation, rather than a methodology, that can clarify the
relationships between use cases.

As an extension of Glinz’s work, Ryser [88] introduces a new kind of charts and notations
to model dependencies among use cases. The motivation of this work is that usually a single
use case models an aspect of the system. A system is modeled by more than one scenario.
So, it is useful to have a notation that captures clearly these inter-scenarios dependencies.

This work is closely related to the one of Glinz [32], however it is more general since it
offers more operators. It also provides more dependencies than the UML use case relation-

ships (generalization, Include, Extend).

Hsia et al. [46] proposed an approach where they start from scenarios elicitation to
reach scenarios verification. In the first phase, the analyst constructs a scenario tree ac-
cording to a user view. Scenarios consist of a set of events that change the system state,

trigger another events or do both. At the end of this phase, the user has a scenario schema.

45

The second phase takes care of scenario formalization where the scenario tree is converted
into grammar and the latter is used to construct the conceptual state machines. Both
the grammar and the conceptual state machine represent the abstract formal model of the
system behavior. In the third phase, the abstract model is verified against inconsistencies,
redundancies, and incompleteness. In the next phase, the verified formal model is used
to generate automatically scenarios, from which a prototype is generated to construct the
expected system. Finally, the prototype is used to validate scenarios and demonstrate their
validity. The advantage of this method is the fact of ending up with complete, determin-
istic and consistent scenarios when seen individually. However, there is no guarantee that
problems of inconsistency between scenarios and undesired behavior will not arise when

integrating these scenarios.

Bordeleau et al. [23, 24] propose to use UCMs at the requirements definition level in
order to derive from them detailed interaction diagrams, and to proceed from them hier-
archical state machines for each component using patterns. They define two steps for the
generation of hierarchical state machines. The first one is to map a role to the behavior of
an object in a particular scenario (for all the scenarios they have), to which they design a
state machine. The second step consists of integrating the different roles of the component
existing (in all the scenarios they are dealing with) on a hierarchical state machine with
respect to the temporal and the logical ordering of the roles. They propose a catalog for
integration patterns for specific development contexts. The pattern takes into account tem-
poral and logical relationship when integrating a scenario (a role) with the already handled

roles of components. The catalog provides the patterns for both Scenario Partitioning and

46

State Machine Integration. The challenging part of this approach is how to recognize pat-

terns and how to combine their semantics.

Harel [38] argues the possibility of generating code from requirements. The approach
consists of playing-in and playing-out the requirements using as input LSCs [29]. The
Play-in concept is high-level user-friendly graphical interface (GUT) that allows the user to
capture the requirements of the target system or an abstract version thereof. It consists
of describing the sequencing of the model messages as desired by the user. The second
concept, play-out, consists of executing the requirements interactively, without building the
model or writing the code. During this phase, the role of the user will be limited to an
“end-user” and environment actions only.

Using this model, a Play-in/Play-out Engine is implemented. During the Play-in, the
Play engine will generate automatically the LSCs of the user requirements entered interac-
tively using the GUI. During the Play-out [40], the user will play the GUI application as he
would have done when simulating a system model. A BDD model checker is used to verify
that, always, at least one of the universal chart is active. The tool translates the play out
task into the corresponding model, runs the model checker and then injects the obtained
counterexample into the play engine. Since the model checker they use are BDD-based, the
variable ordering is crucial to the verification task. Currently, they don’t generate the order
automatically; instead they use structural information from the LSC specification in order
to derive a good variable ordering. The tool can specify asynchronous models. However,

the LSC semantics requires that objects be synchronized while iterating during loops. In

47

the verification of the play-out scenarios, the model checker is used just to verify the ac-
tion done by the user and the consequences it produces. They end up with no exhaustive

verification. Hence, some implied scenarios can remain undetected.

Somé et al. [98, 97] proposed an algorithm towards the synthesis of parametric timed
automata [9] from structured textual scenarios or extended MSCs. In order to derive the
desired behavior, they presented an incremental algorithm that merges scenarios with re-
spect to timing constraints. In this approach, each state is characterized by the condition
that holds in it expressed in terms of variable valuations. The first state of each partial
run over a use case includes the use case pre-condition. Hence, when merging a new use
case, an algorithm first checks the existence of such state. In the case of positive answer,
the algorithm, starts to insert transitions while in the opposite situation, omissions in the
original scenarios are detected.

Solving these problems needs the user assistance. The algorithm has the advantage of pre-
serving the temporal constraints associated with the scenarios, which is seldom the case
of other semi-automated synthesis techniques. This work was extended [92] with improved
support for automation. The authors explored the implicit integration of scenarios rather
than the explicit one. An algorithm for optimizing the obtained timed automata has been

also developed.

Giese [31] also presented an approach towards the synthesis of parametric timed au-
tomata from scenarios. UN-timed scenarios are first derived according to existing ap-

proaches like the one of Uchitel et al. [104], then the timing constraints are added in

48

an incremental manner as time boundaries. The approach detects all the timing conflicts
that can occur when integrating different scenarios, and hence can be adjusted. Contrarily

to the approach in [97], Giese is synthesizing more than one automaton at the same time.

3.2.2 Automated Approaches

Robert et al. in [86] have proposed a tool for linking MSCs to SDL specification,
MSC2SDL. Starting from a set of MSCs and an SDL architectural model, an SDL specifi-
cation is derived. During the SDL synthesis, the compatibility of the MSCs architectural
commitments and the SDL architecture has to be verified. Later on, Khendek et al. [52]
proposed an approach for the incremental construction of SDL specification from an exist-
ing SDL model and a set of newly specified MSCs. An extension of this work has been
presented in [25] in order to translate MSC and UML specifications automatically into a
full SDL specification. UML is used to specify the architecture of the system while MSCs

are used to give the different scenarios.

Amyot et al. [13] proposed an approach where the designer focuses on the main
functional aspects of the system to be specified. This means that scenarios are described
in terms of causality and responsibilities, allowing a higher-level of abstraction then the
diagrams where the message sequence exchange is specified. They utilize Use cases Maps
(UCM) for the definition of different scenarios, leading to a formal specification of the system
from where they can generate functional tests. Hence, a scenario is seen as a sequence
of responsibilities (events and activities) that occur internally or externally, and that are

regrouped together, in a causal manner, to serve certain functionality. The advantage of

49

this view is that they do not focus on architectural issues early in the process. However,
they do not give any idea about the verification of the completeness and the consistency of
the scenarios that are provided.

Recently, they presented a work that aims to automatically generate MSCs from UCM
specification [12]. They presented a two-step generation process: the first step extracts in-
dividual scenarios from UCMs and store them as XML files, while the second step consists
of transforming the latter to MSCs using XSLT (eXtensible Stylesheet Language Trans-
formation). Their approach decouples the traversal of UCMs from the generation of the
target scenarios. The output is a collection of scenarios where sequences and concurrency
are preserved if all the UCMs are well nested [12]. Finally, a work is under progress [42]
to derive an SDL specification from UCMs. The idea is to derive from UCMs MSCs and
HMSCs using the UCM navigator tool, UCMNav, and to adopt the output to be submitted

to MSC2SDL tool [25].

3.3 Integration Improvement

3.3.1 Non-Automated Approaches

Alur et al. [10] presented an algorithm that checks the completeness and detects un-
specified scenarios that are implied from the combination of different finite MSCs. In their
work, they define two kinds of realizability: safe and weak. An MSC is realizable if there
exist concurrent automata which implement precisely the MSC. If the obtained automata
arc deadlock free, the MSC is said to be safe realizable, else it is called weak realizable.
In the second case, the algorithm they are proposing produces missing implied (partial)

scenarios to help guide the designer in refining and extending the specification. Moreover,

50

they have applied this approach on different communication architectures (asynchronous
and synchronous ones, FIFO, Non FIFO, message buffering...).

In addition, the developed algorithm refers to the designer when an implied MSC is
detected, and it generates automatically the state machines from MSCs in the case of safe
realizability. They also come up with a formal verification of the algorithm that they are
using. However, the proposed approach is only applicable to finite state machines, which
is not always the case in the practical word. In the same range of idea, the decidability
and the realizability of HMSCs have been studied [64, 11, 80]. It has been proven that
synchronous HMSC are decidable while asynchronous ones are decidable only under some

restrictions.

Mdkinen et al. [68] presented an algorithm (MAS : Minimally Adequate Synthesizer)
which synthesizes UML statechart diagrams from sequence diagrams in an interactive man-
ner. The algorithm interacts with the user to guide the process in the critical points in order
to eliminate the undesirable generalization. In addition, it detects inaccurate or incomplete
sequence diagrams. Hence, the designer plays the role of the teacher and the algorithm
plays the one of the learner. When the designer rejects a query, he gives a counterexample.
A counterexample could be positive, means additional information are given to the algo-
rithm, or negative, which means the corresponding path is forbidden. The methodology
used for the generation of the statechart consists of transforming the sequence diagrams
describing the scenarios on traces of string. The latter are transformed to an observation
table where all the traces of the sequence diagram, inferring to states in the automaton,

are described and compared according to some criteria. This algorithm ends up with an

ol

automaton accepting the desired language.

Muccini, in [78], proposed an algorithm to detect implied use cases without construction
of the Labeled Transition System (LTS) model, contrarily to [101]. Non-construction of the
LTS model will save time and prevent from state space explosion. In addition, the designer
will not need to put in parallel the synthesized components LTS. He proposed an algorithm
to identify implied scenarios in specification composed by MSC and HMSC notations. The
approach is based on the enriching of possible but not specified behaviors. Therefore, for
each pair of components in an enriched node, if they are communicating using enriched
events, an implied scenario is detected.

When the author applied this algorithm to the example in [103], he detected more
implied scenarios, which can be considered as a positive point for the proposed approach.
However, the author did not yet verify the completeness and the correctness of the algorithm.
Formal description of the algorithm has to be provided. As an extension of this work, the
author proposed in [79] to detect implied behaviors from the synthesis of non-local branching

choices in HMSC graphs.

3.3.2 Automated Approaches

Koskimies et al. [57] proposed a synthesis algorithm that integrates scenario diagrams.
"The algorithm takes as input extended MSCs, and generates automatically OMT (Object
Modeling Techniques) statecharts as output. In the SCED [56] tool they have proposed,
the FSMs are generated from traces by detection of identical states in a way that makes

the final output FSM deterministic. However, this is a very restrictive condition. Since

52

no informational semantics are used in this detection, errors of identification may occur.
Both works [56, 68] were improved by providing a compression algorithm [99] that reduces
automatically the size of the statechart by decreasing the number of states and transitions
in the diagrams wihle preserving their semantics. However, they don’t guarantee that the

algorithm they are using for the composite state generation produces the optimal solution.

Uchitel et al. in [103] and later in [101] proposed to use MSC and OCL to describe the
system specification. They presented a tool that builds a labeled transition systems (LTS)
behavior model describing the implementation of HMSCs specification. They presented in
addition an algorithm that detects implied scenarios. They have integrated these procedures
into the Labeled Transition System Analyzer, which allows the model checking and the
simulation of the behavior model.

In a later work [104], the appraoch has been extended to capture implied scenarios us-
ing partial labeled transition system. They define an MSC language with sound abstract
semantics in terms of labeled transitions systems and parallel composition. This language
contains the assumptions on how to integrate scenarios explicitly by using HMSCs. They
use state labels to add specific domain information, making both the integration and the
split of scenarios easier for the stakeholders. Labeled Transition System Analyzer (LTSA)
is used to verify the specification against deadlock, safety, and liveness properties. However,
the numbers of states will grow exponentially with respect to the number of components,

which makes the method vulnerable to the well-known state space explosion problem.

53

Whittle et al. [109] presented an algorithm for automatically generating UML state-
charts from the combination of UML Sequence Diagrams (SDs) with a set of pre and post
conditions given in UML OCL (Object Constraint Language). Their work stresses the im-
portance of obtaining a readable, well understood and modifiable specification. They use
state characterization as a composition criterion. In fact, the evaluation of states is used
to detect loops within the same instance and to merge states within different SDs. When
conflict is detected, the error is reported to the designer and the algorithm should start
again.

The generated statecharts benefit from the hierarchy and the orthogonality properties,
however it can be non-deterministic. It is true that the algorithm they propose reduces
the number of states however no clear semantics are defined for that. As a result, explicit
knowledge may be lost within the synthesis algorithm producing misleading synthesis re-
sults. In a more recent work [110, 108] , the authors presented a case study that synthesizes
UML statecharts from scenarios of the Air Traffic Control domain. The study consists of
comparing the synthesized statecharts and the existing manually developed ones for evalu-
ation. They applied the algorithm in [109] to the weather control logic subsystem of CTAS
(Center TRASCON Automation System) which is responsible for advising the other sub-

system of the weather forecast updates.

3.4 Summary

Table 1 presents a comparison of the different approaches. It summarizes the source no-

tations of each of the approaches, the used criteria for composing the different use cases,

54

Authors Initial Use | Type of Synthesized | Automation | Incremental | Tool Implied
Case Composition | Model Degree Support Scenarios
Notations Detection

Bordeleau MSC HMSCs Automaton | Manual Yes No N/A

et al. [23]

Uchitel MSCs HMSCs LTS Full No LTSA-MSC [101] | Yes [104]

et al. [105]

Harel LSC Implicit Automaton | Manual No Yes Yes

et al. [39] SStatecharts

Alur MSCs Implicit CFSMs ¢ Manual No No Yes

et al. [10]

Maikinen SD implicit Statecharts | Semi No MAS Yes

and Systéa

Leue MSCs HMSCs ROOM? Full No MESA [18] Yes®©

et al.[62]

Whittle SD Implicit Statecharts | Full No Yes Condition

et al. [109] Conflict

Amyot et al. [12] | UCMs No Lotos [65]7 | Manual No No No®

(SPEC-VALUE)

Salah Tree Operators Timed Full No SCENA No

et al. [91] Automata

Glinz 32} Statecharts | Operators Statecharts | Manual No No Yes 7

Ryser [88] Statecharts | Dependency | Statecharts | Manual No No N/A

Charts

Somé Text Operators Timed Manual Yes No Temporal

et al. {97] Automaton Conflicts

Koskimies Trace Implicit State Full No SCED93] No

et al. [56] Diagrams Machine

Hsia Tree implicit State Semi No Prototype No ¥

et al. [46] Model

Giese LTS implicit/ Timed Full Yes No Temporal

[31} explicit Automata Conflict

“Communicating Finite State Machines

*Real-time Object Oriented Modeling

“Non-local choice, Process divergence, and timing inconsistencies

“Language of Temporal Ordering Specifications

“Verification is performed in order to detect undesired behaviors

/The approach is able to detect unconsistencies between use cases
¢Only individual scenarios are verified against inconsistencies, completeness, and redundancies.

Table 1: Composition approaches comparison

55

the generated notations, the automation level, the incremental aspect of the approach, the
tool implemented to validate the approach, and finally the generation or not of implied

scenarios. We draw the attention to some limitations:

e The models used to define use cases do not support variables when the approach has
a support for composition. Timing constraints [97, 92, 31] or conditions on use case

execution [109] may be added.

o All the presented approaches play with use cases as blocks if they are performing an

explicit composition.

e Most of the approaches are not incremental (from the constructed state model, we
cannot add another use case and construct a new state model). However, the require-
ments of the user in an early stage of the development process are incremental because

they are usually prone to changes.

¢ Implied scenarios are hard to detect and remove in most of the cases, especially if the

type of composition used is the implicit one.

56

Chapter 4

Implicit Composition of Use Cases
with Variable-based State

Characterization

4.1 Introduction

Requirements engineering encompasses activities ranging from requirements analysis and
elicitation to specification and validation. Even a single activity such as requirements
elicitation, is likely to deploy multiple participants who will have multiple perspectives.
Models play a key role in many aspects of requirements analysis and design. Developers
build models of the problem domain to understand the relationships between stakeholders
and their goals and build models of the system under development to reason about its

structure, behavior, and function [90].

'Published in [73] and presented in [74]

o7

When describing the system functionalities, the stakeholders describe a set of actions,
usually related by a sequencing order. The set of actions represent in fact a system use
case. Each execution of the use case is a system trace. When specifying real application
using such modeling approach, it is hard to keep the use cases independent. Usually, this
activity will end up with the obtention of a set of overlapping use cases.

Obtaining overlapping use cases may have two different causes:

e It may show the fact that the two described functionalities of the system share a
common behavior. A classical example of this case is the activity of withdrawing or
depositing money in an ATM (Automatic Teller Machine). The client will have to
insert his card, pass an identification step, and then collect his card after finishing the

operation he asked for (withdraw or deposit money).

e It may denote the fact that the two use cases are different views of the same require-
ment. For complex systems, use cases are usually constructed and manipulated by
distributed teams, each working on a partial view of the overall system. When re-
grouping these use cases to construct the overall system behavior, such views have to

be merged and integrated in a consistent one.

In order to merge a set of possible overlapping use cases, a composition approach that
detects the common behavior and composes according to that behavior has to be provided.
In such approach, use cases are not composed as blocks. A search in the internal struc-
ture of the use cases and a detection of the places where to merge have to be processed.
Consequently, a criterion of composition has to be defined.

To achieve this goal, we present a language to describe use cases by sequences of actions.

58

We assume a scenario to be an execution of a use case. Our model is based on a variable-
based state characterization where we distinguish between two kinds of variables: control
and loeation variables. Control variables are used to define predicates that guard the
transitions, while location variables are used to characterize the locations of the automaton.
Location variables have the advantage of reducing the locations number of the automaton.
The state variable characterization is our criterion for merging. In other words, two states
are merged (either belonging to different use cases or to the same one) if they have the same
state characterization.

From the textual description, a use case graph is constructed. The latter passes through
several transformations before obtaining the use case automaton. The designer can define
textually or graphically the set of use cases. A template of the textual specification is given
in order to automate the process of generating an overall specification. If the designer
enters a textual description, a parsing operation is achieved in oder to generate the graph
representing this textual expression. The overall behavior of the system is obtained by
integrating different use case graphs.

This chapter is organized as follows.

e Section 4.2 presents the use case textual and graphical descriptions.

e Section 4.3 describes the approach we are proposing to transform the use case graph.

Section 4.4 assembles the puzzle and shows how to obtain an automaton from use

CasEs.

Section 4.5 presents the Alternating Bit Protocol as an example to illustrate our

approach.

59

4.2 Use Case Description

A use case describes a part of system behavior. It is composed of different scenarios. Each
one is represented by a sequence of actions that meets the requirement of the functionalities
the user specifies.

Our approach aims at defining a formal but friendly representation of use cases. So, a
use case is described with a set of actions. Each action describes the system state evolution.

To preserve the causality between the actions, their sequencing is also explicitly indicated.

4.2.1 Preliminaries

The modelization of systems requires the definition of the set of labels and a set of discrete
state variables. The labels are representing the events on which the objects of the distributed
system synchronize. In practice, state variables have symbolic names. However, we will use
here a vector-based notation because it is more convenient to present the general case. The
state of the system is represented by a state vector V = (v, vs, .., v) where v; is the value
of state variable V{i] and k is the number of state variables.

The execution of each action will be associated with state variable conditions. These
conditions express constraints on the variable values that, if they are satisfied, they allow
the execution of the action. We call them partial pre-condition and partial post-condition.
Those conditions are qualified to be partial because they have to be completed by the fact
that this action takes place before and after specific actions in the use case.

Contrarily to previous work [92], we differentiate here between two kinds of state vari-
ables: the control and the location variables. Consequently, we split the state vector V into

two components which we call control vector V4, and location vector Vj,.. How to decide

60

whether a state variable will belong to the control vector or the location vector is the task
of the analyst. As mentioned earlier, a use case is described by a set of actions. Let’s give

the definition of actions:

Definition 4. An action a is a structure a = (ppre_loc, ppre_ctrl, lab, ppost.loc, ppost_ctrl)

where:

e a.ppreloc and a.ppost_loc are partial pre and post conditions on location vector vari-

ables,
o a.lab is a label representing a synchronization event

e a.ppre_ctrl and a.ppost_ctrl are partial pre and post a condition on control vector

variables

An action is enabled by the action preceding it in the use case. To execute action a, the
state vector should fulfill both a.ppre_loc and a.ppre_ctrl. At that moment, the event a.lab
is observed. Afterward, the system moves into a state which verifies both a.ppost_loc and
a.ppost_ctrl.

The syntax of a.ppreloc and a.ppost_loc is defined by a conjunction of elementary
constraints in the form (V[i] = v) where v is a constant in dom(V[i]). However, a.ppre_ctrl
accepts a more expressive syntax where elementary constraints are (V[i]#c) assuming that
denotes a binary relations. In contrast, a.ppost_ctrl is defined “ & la Z” and constraints
the relation between the control vector state Vi before the execution of a and V/,; the
state afterward. Thus, a.ppost_loc is a conjunction where elementary constraints are either
(V'] = v), (V'[i] = V[i] op w), or (V'[i] = V[i]). We denote by Pre_Const(Vey)

(respectively Post_Const(Vy,)) the set of conditions respecting the syntax of a.ppre_ctrl

61

(respectively a.ppost_ctrl) on variables of the vector! V.

To describe a use case, one has first to define mainly two parts: the system application
domain and the set of the use case actions. The application domain consists of giving the
state variable vectors and their respective possible values. At this stage, the analyst has to
decide about the choice of the location variables and the control ones. Then, s/he expresses
her/his use cases. We will describe the syntax of use cases in the next subsection.

We recall that our goal is to synthesize from the use cases an extended automaton which
represents the behavior of the distributed system. Such automaton should be compatible

with the description of use case actions given in definition 4:
Definition 5. An extended automaton is a structure A = (Loc, Locg, Var, Labels, T') where:

e Loc is the set of locations of the extended automaton,

Locy C Loc is the set of initial locations,

Var is the set of variables,

Labels is the set of labels,
e T C Locx Pre_Const(Var)x Labels x Post_Const(Var) x Loc is the transition relation.

An extended automaton behaves like a classical one, except that firing a transition is
enabled by a precondition from Pre_Const(Var). Afterward, the system moves to the target
location of the transition, and variables of the automaton are modified according to a post

condition from Post_Const(Var).

1a vector is considered as set of variables

62

4.2.2 The Use Case Graph

The syntax of use case is shown in Figure 17. Use cases may enclose loops for which an

optional maximum number of iterations may be specified.

In order to treat the textual use case description for deriving an automaton, we propose

an intermediate form represented as use case graph (cf. Figure 18) constructed by pars-

ing the use case textual description. The use case graph is composed of fictitious nodes

connected by actions. <Path> in a node represents different alternatives while <Loop>

is translated into a cycle in the use case graph. Finally, the initial node of the graph

corresponds to the initial state of the use case. Formally, a use graph is defined as follows:

Definition 6. A use case graph is a directed graph structure G = (N, Ny, E, A, action)

where:

o G.N is the set of nodes,

e G.Ny C G.N is the set of initial nodes

e G.E C G.N x G.N is the set of edges,

G.A is the set of the use case actions

<use_case> :: = begin_use.case <case_.id>
{<Path> | <Loop>)+
end.use_case
<Path> :: = begin_Path
<Action>+ (<Path> | <Loop>)*
end.Path
<Loop> :: = begin_loop {INTEGER}
<Action_loop>+
end_loop
<Action_Loop>:: = begin_Act_Loop
<Path>* <Action>
end_Act_Loop
1t = begin_Action
ppre.loc = <LOC_PRE_.COND>
ppost.loc= <LOC.POST_COND>
lab= <LABEL>
ppre-ctrl =<CTRL.PRE_.COND>
ppost.ctrl=<CTRL_POST.COND>
end.Action

<Action>

Figure 17: Use Case Syntax

N

P N
o

S

Figure 18: Use Case Graph

O

e G.action : G.E + G.A is a bijection that associates an action from G.A to each edge

in the graph.

The use case syntax in Figure 17 says that the analyst-described use case has only a
single initial node, but a use case may be transformed as we will see later into a graph
which may have many initial nodes. Thus, definition 6 covers both cases. Since the syntax
of use cases allows the explicit specification of loops, we define a loop structure which can

be filled from the textual use case description.

Definition 7. A loop L = (id, iteration, init_node, actions_list) is a structure where: L.id
is the loop identifier, L.init_node is the starting node of the loop, L.iteration, if specified, is
the mazimum number of successive allowed iterations, and L.actions_list is a list of actions

representing the body of the loop.

4.3 Use Case Graph Transformation

It could be obvious to see that actions that are connected to a same node in a use case graph
G should be sharing some conditions on location variables. However, this is not always the
case because the user could have specified inconsistent information. In such situation, the
system will never move forward from the inconsistent node. The problem is how to find a

way that can help to point out such situation.

To this end, we define the context of a node as:
e Initial Nodes:

G.Context(n) = v G.action(n,n’).ppre_loc
(n,n')EE

64

e Intermidiate Nodes:

G.Context(n) = v G.action(n’,n).ppost_loc
(n';n)eE

A \/ G.action(n,n’).ppre_loc
(n,n')EE

e Leaf Nodes:

G.Context(n) = G.action(n’,n).ppost_loc

These formulas show that the context of the node preserves the conditions of its ingoing
actions. The latter may be followed at least by one of its outgoing actions since the conjunc-
tion should not be empty. In the same way, the context of a node preserves the conditions
of its outgoing actions that may be preceded at least by one of the ingoing actions to that
node.

The context of a node can always be normalized in the form C; VCyV ---V C), where
C; matches a single location vector. However, our syntax does not allow disjunction in the
location constraints. To that purpose, we introduce the notion of Strongly Connected Node.
This notion concerns the initial node of the use case as well as its intermediate nodes but

not leaf nodes because each has only one ingoing action and no outgoing actions.

Definition 8. In a use case graph G, a node n € G.E is said to be a Strongly Connected

Node (SCN) iff: Y(n',n) € G.E,¥(n,n") € G.E,
o If n is an initial node then:

G.Context(n) = action(n',n).ppre_loc

65

e If n is an intermediate node then:

G.Context(n) = G.action(n’, n).ppost_loc = G.action(n,n”).ppre_loc

A node n is SCN means that its context coincides exactly with both the partial location
pre-conditions of its outgoing actions and, the partial location post-conditions of its ingoing
actions. We observe that not all the nodes in the original user-described use case graph
are SCN. Consequently, the graph G has to be modified by replacing all the non SCN nodes
with a set of nodes that are SCN.

Figure 19 describes the algorithm of such transformation. The input of the transforma-
tion is a non SCN graph, and the output is a graph where all its nodes are SCN. Applying
such transformation to the use case graph of Figure 20.(a) may result on the obtention
of the same graph (Figure 20.(b)), the duplication of actions like in Figure 20.(c), or the
elimination of those which can not be executed in such node (Figure 20.(d), and Figure
20.(e)). Duplication of actions will not cause any problems while the elimination may result
in the introduction of some disconnectivities in the graph. Nevertheless, we believe that
disconnectivies should be kept so that they have the possibility to be grafted in other use
cases in the composition phase. Hence, their elimination may result in loss of information
at this stage.

It is clear that an action can belong to at most one loop while a node can be shared by
more than one since we do not accept the specification of embedded loops. The next step
is to augment the current use case graph with the information of the remaining loops.

Originally, the loops are explicitly specified by the user, but by removing some actions,
a specified cycle may be altered, and by duplication of actions loops can also be duplicated.

Here, two solutions are to consider:

66

Input: a use case graph G and a non SCN node n
output: a use case graph G’ where node n is replaced by SCN ones
Let G’ be an empty use case graph
Let Context(n) = C, VCy V - - - V Cp where C; matches a single location vector
For each C; in Context(n) do
Let n; be a new node
For each n’ such that (n',n) € G.E do
G'N:=G'.NU{n;}
If C; A action(n’,n).ppost_loc = C; then
G'.N =G Nu{n'}
G .E:=G . EFu{(n,n)}
G .action(n’,n;).ppre_loc := G.action(n,n;).ppre_loc
G .action(n’,n;).ppost.doc := C;
G’ .action(n’,n;).lab := G.action(n’,n).lab
G .action(n', n;).ppre_ctrl := G.action(n’,n).ppre_ctrl
G’ .action(n’, n;).ppost.ctrl .= G.action(n',n).ppost ctrl
G A= G .AU{G action(n',n;)}
done
For each n' such (n,n') € G.E do
if Ci A action{n,n’).ppost_loc := C; then
G'N:=G .Nu{n'}
G .E =G .Eu{(n;,n)}
G .action(n;,n').ppre_loc == C;
G’ .action(n;,n').ppost_loc := G.action(n,n').ppost_loc
G .action(n;,n').lab := G.action(n;, n).lab
G’ .action(n;,n).ppre_ctrl .= G.action(n',n).ppre_ctrl =
G'.action(n;,n').ppost_ctrl := G.action(n’, n).ppost_ctrl
G A =G AU{G action(n;,n')}
done
/* For the other nodes */ :
If (n # ') and (n # 1) then
G'N:=G' NU{n' € G.N|(n',n) ¢ G'.E and (n,n")-~ € G'.E}
G'E=G .Eu{(n,n") € G.N|(n# n') and (n # n”)}
For all n’ and n” such that (n # n’) and (n # n”) and (n’,n") € G.E do
G'.A:=G'.AU{G.action(n',n")}
G'.action(n’,n”) := G.action(n’,n")
done
if n € G.Ny then
G'.Np := {ny,ng,...,np}
m G,.NO = GNO

Figure 19: Transform.1 algorithm: Transforms a graph into a SCN graph

67

(a)

(L]
(a) stays the same when
a,post_loe=b.pre_loc
=c.pre_loc

Initially, a.post_loc = nult
It is identified to
b.pre_loc and c.pre_loc

«@)
only a.post_loc and
b.pre_loc coincide :
a.post_loc = b.pre_loc or

©
ouly a.post_loc and
c.pre_toc coincide
a.post_loc = c.pre_loc

Figure 20: SCN Graph Derivation

1. either we suppose that all the user-specified loops are consistent, which means that
none of their respective actions will be eliminated. Hence, we will find all the user-

specified loops in the SCN graphs.

2. or we suppose that loops may be altered, an operation of retrieving the rest of these
loops in the remaining ones has to be developed in consequence. It has as objective
to make the bond between original loops and the ones in the SCN graph. When a loop
in G'.L; is the same then the loop G.L;, the G'.L; inherits the iteration number of

G.L;

Finally, as specified by the language, the loop information is not integrated in the
definition of different actions and since loops are explicit, it is important that the automaton
preserves the integrity of each loop. If we think in terms of behavior protection, leaving
a loop in a non-expected manner, because of implied scenarios, may represent a failure in
the system. From this view, we propose to protect all the originally specified loops. The
algorithm for loop protection is described in Figure 21. Its input is a SCN graph where the
loops are not decorated and the set of initially specified loops. It generates the same graph
with protecting the loops by tagging the nodes that belongs to loops with the identifier of

the loop.

68

Input : - G’ = (N, Ny, E, A, action) the use case graph where all nodes are SCN
- L' = (id, init_node, action_list) a loop having a maximum number
of iteration in the graph G’
Output : - modifies G’.A
Let a = G’ .action((L' . Init_Node),n’)
such that G’.action({L'.Init_Node),n’} € L' .action_list
/* a is the first action of the loop*/
a.ppredoc := a.ppre_loc A (Tag_Lp = null)
a.ppost loc := a.ppost_loc A (Tag_Lp = L' .id)
a.ppre_ctrl := a.ppre_ctrl A (iter[L' .id] < L' .iteration)
a.ppost_ctrl = a.ppost_ctrl A (iter’[L’ 4d] := iter[L'] + 1)
Let tmp_action_list = L'.action list
tmp._action_list := tmp_action list — {a}
Update(n', L' .action list, (Tag-Lp = L' .id))

For each n' such that (n', L'.Init_Node) € G'.E
and G'.action{n', L' Init_Node) ¢ L' .action list do
Let a = G'.action(n’, L’ .Init_Node)
a.ppreloc == a.ppre_loc A (Tag-Lp = null)
a.ppost_loc := a.ppost_loc A (Tag_Lp = null)
a.ppost_ctrl == a.ppost_ctrl A (iter’[L'.id] = 0)
done

Let a € L'.action list such that a = G'.action(n’, L' Init_Node) € G'.E
/* a is the last action of the loop*/

a.ppreloc := a.ppre_loc A (Tag-Lp = L'.id)

a.ppost_loc := a.ppost_loc A (Tag_Lp = null)

tmp_action_list := tmp_action_list — {a}

For each (n,n') € G'.E and G’ .action(n,n') € tmp_actionlist do
/* the remainder of the action list */

Let a = G.action(n,n")

a.ppreloc := a.ppreloc A (Tag_Lp = L'.id)

a.ppost loc := a.ppost_loc A (Tag_Lp = L'.id)

Update(n', L' .actionlist, (Tag-Lp = v)
done

For each (n,n’) € G'.E do
Let a = G’.action(n,n’)
/*(Tag_Lp = null) is neutral if Tag_Lp has already been set to another value*/
a.ppreloc := a.ppre_loc A (Tag-Lp = null)
a.ppost_loc := a.ppost_loc A (Tag_Lp = null)
done

Where Update(n, Act.List, cond) means
For each (n,n’) € G'.F such that G’.action(n,n’) ¢ Act_List do
Let a = G'.action(n,n’)
a.ppre.loc := a.ppre_loc A cond
a.ppost_loc := a.ppost_loc A (Tag-Lp = null)
done

Figure 21: Transform 2 algorithm: Loop protection of SCN graph
69

4.4 Use Cases Integration

Let’s now assemble the pieces of the puzzle. Our goal is to synthesize an automaton from
given use cases. As shown in Figure 22, the synthesis of the automaton begins by treating
the nodes on the original graph use case so that they obey to the syntax of the language
by making them SCN. Next, the information on the loops has to be integrated in the action
specification. Now, the graphs resulting from each use case at this stage are merged together.
Let Gy and G2 be two use cases graphs having the structure (N, Ny, E, A, action). The

union graph of G, and G3 is defined by:
. (Gl UGQ).N =Gi.NUGy.N
. (Gl U GQ).NO = G1.Ng UG5.Ny

e (G1UG:).A=G1.AUG,.A

(Gl U GQ)E =G1.EUG..E

(G1 U G2).action is defined by:
Gi.action(n,n’) if(n,n') € G1.E
(G1 U Gq).action(n,n/) =
Ga.action(n,n’) if(n,n') € G3.E
At this stage the synthesis of an automaton from use cases becomes straightforward. In
order to get the overall behavior of the system, one has to integrate many use cases. Let G

be the union graph of the given use cases. A = (Loc, Locg, Var, Labels, T) the automaton

of those use cases derived from G is defined by:
e Loc = {G.context(n)ln € G.N}
e Locy = {G.context(n)n € G.Ny}

70

o Var = Vi
e Labels = {a.labla € G.A}
o T = {(a.ppre_loc, a.ppre_ctrl, a.lab, a.ppost_ctrl, a.ppost loc)|a € G.A}

We notice that all the node in G are assumed to be SCN. This is due to the fact that the
composed graphs are originally SCN. Consequently, we have (G.context(n) = a.ppre_loc =
a.ppost_loc).

We consider that the initial locations of the automaton are the initial nodes of all the use
cases because the analyst would not commit at the first stage to a specific choice. However,
she/he may decide later which ones to keep. As our goal is to synthesis from use cases an
automaton, the latter may contain inconsistencies that reflect the behavior of the given use
cases. For instance, the automaton may be disconnected. Such anomaly may happen due
to either a contradiction or an omission in the specified use cases. In addition, since loops
are explicitly specified, we have protected them so that no implied scenarios will interfere
with their behavior. We notice that we can apply the same approach to protect interference

between use cases.

Graph of use case 1 Graph of use case 2

SCN Graph SCN Graph
Decorated SCN Graph Decorated SCN Graph

Use case graph merge

Automaton generation

Figure 22: The Automaton Generation Process

71

4.5 Application of the Composition Approach to the Alter-

nating Bit Protocol

The Alternating Bit Protocol (ABP) is used to guarantee correct data reception between a
sender A and a receiver B using a channel that loses or corrupts messages. The approach
consists of extending messages with one bit, which will be alternated only when messages
are correctly received by the other side.

Hence, A assumes that the data is successfully received by the other side provided that
it receives an acknowledgment with the expected bit value. A sends the same message
again if the received acknowledgment is corrupted or after a timer expiration. In contrast,
B acknowledges the reception of a message if the checksum of the data is valid. We also
assume that a message cannot be sent more than three times. After what, the channel is
supposed to be down.

The ABP V), is composed by the Sender State Variable St_A, the Receiver state variable
St_B and the bit value when sending the message Bit. The control vector is composed by
the timing out variable To, the acknowledgment variable Ack, and the checksum variable
CheckSum. We describe the behavior of the previous protocol when the bit is set to 0 by
two use cases. The first one is shown in Figure 23.a and treats the reception of corrupted and
non-corrupted data in side B. Figure 23.b represents the use case of the acknowledgment
reception. The actions set of the two use cases are respectively given in Tables 2 and 3.

We can see in use case Table 2 that the checksum variable was not initiated because
it could not be known before sending the information. There is an action in the receiver
side that verifies this checking and according to it the system will move to one of the two

directions. To apply the approach described above, variables iter and Tag_Lp are added

72

Figure 23: Original Described Use Case Graphs

to the state variable vector to take into account loops. The actions in Table 4 represent
the ones from which the use case automaton is derived. The latter is shown at Figure
24. Without the tagging we are doing, the two dashed automaton locations would be
merged. This introduces an implied scenario that shows that a verification of a checksum
can be repeated indefinitely causing a multiple acknowledgment sending for the same data,

annoying the loop behavior specified by the user.

St_A=Idke A
S1_B= Idle_B
Bit=null, Tag Lp =null

St A=ldle A
St_B= dle_B
Bit=0, Tag_Lp=nul}

StAsldle A
StB=die B
Bit=1, Tag_Lp =nul}

St_A=Timing out A,
$t_B=1dlc_B,
Bi-0, Tag Lp=Lp!

S1_A=Wait_A,
St_B=Unreceived B,
Bit=0, Tag Lp=tpl

SL_A=Wait_A
St B=Sending_B
Bit=0, Tag_Lp=null

St A=Wait_A,
S1_B=Verif ChickSum B,
Bit=0, Tag Lp=Lpl

Figure 24: Automaton of the Use Case Corrupted and Non-corrupted Data Reception

The overall system automaton is shown in 25.

73

Table 2: Use Case Actions of Corrupted and Non-Corrupted Data Reception

{ Actions ppreloc ppre_contr] lab } ppost contr ppost_loc
ap St_A =Idle. A A To = false A Initiate_Data_0_send To= false A St.A =Wait_A A
St.B =Idle.B Checksum = null St_B =ldle B
A Bit=null CheckSum=null A Bit= 0
[St.A =Idle. A A To= false A Send.Data To= false A St.A = Wait_A A
St.B =Idle.B CheckSum =null CheckSum=null St.B =ldle.B
A Bit=0 A Bit=0
ap St.A =Idle.A A To=false Alternate.Bit To= false A CheckSum=null St_A = Idle.A A
A Bit= 0 A CheckSum=null A Bit=1
St B =Idle.B CheckSum=null St_B =Idle B
a3 St.A = Wait_ A A To= false Receive_Data To= false A St_A = Wait_ A A
A Bit= 0 A CheckSum=null CheckSum=null A Bit= 0
St.B = Idle B St.B =Verifying B
4 St.A = Wait A A To= false Verify .Checksum To= false St.A = Wait_A A
A Bit= 0 A CheckSum=null A CheckSum= True A Bit=0

St_B = Verifying B

St.B =Sending B

as

St.A =Wait A A

To= false

Verify CheckSum

To= false A

St.A = Wait_A A

A Bit=0 A CheckSum=null CheckSum=: false A Bit= 0
St_B =Verifying.B St_.B =Unreceived_B
ag St_A = Wait. A A To= false Send_Ack To= false St.A = Wait A A
A Bit= 0 A CheckSum=True A CheckSum= nult A Bit=0
St_B =Sending. B St.B =Idle.B
ay St.A = Wait_A A To= false Time Out To= true St.A = Timing out_A A
A Bit=0 A CheckSum= false A CheckSum= null A Bit= 0
St_B =Unreceived B St B =Idle B
ag St_A = Timing.out_A A To= true Initiate_Send To= false St.A =Idle.A A
A Bit= 0 A CheckSum=false A CheckSum= null A Bit=0
St.B =Idle.B St B = Idle.B

4.6 Summary

In this chapter, we presented a model for use case deécription based on actions and an
approach for implicit composition of use cases. It consists of enriching the model in [91]
with control variables and explicit loops, fact that gives the language more expressiveness.

From the textual description of the use case, we generate its representative graph. The
latter has to be modified so that the location condition of each action enables its execution,
eliminating hence the (semantically) incoherent ones. Second, we ensure the implementation
of the loop information in the concerned actions of the graph. This implies systematically
the protection of loops, which preserves their integrity when merging different use cases. At
the end, the automaton of the use case composition is derived.

This approach is very interesting when it comes to the specification of overlapping use

74

Table 3: Actions of the Acknowledgment Reception Use Case

Rules pre_loc pre_contr lab post_contr post_loc
[(St A= Wait_A A (To= false A (Receive_Ack) {To= false A (St_A= Verifying A A
(A Bit=0) (A ack==Null) (A ack=Null) (A Bit=10)
St B= Idle_B) CheckSum= True) (CheckSum= Null) St_B= Idle.B)
by (St_A= Verifying A A (To= false A {Verify_Ack_} {To= false A { St_A=Idle A A
(A Bit= 0) (A ack=Null) (A Ack=True) (A Bit=1)
St_B= Idle B) CheckSum= Null) CheckSum=Null) St.B= Idle.B)
by (St_A=Verifying A A (To= false A (Verify_Ack_) (To= false A { St_.A=Idle. A A
{A Bit= 0) (A ack=Null) (A Ack=false) {A Bit=0)
St.B= Idle B) CheckSum= Null) CheckSum=Null) St_B= Idle.B)

St_Asidle A
StB=idl€_B
Bit=null, Tag Lp=mil

Initiate_Data_0_Send

Ahemate_Bit

St A=Wk A
St B=idie B
Bir=t, Tog Lp=null

Initiate_Send

St A=Verifying A,
St_B=1dic_B
Bit=0.Tag_Lp =null

Verify_Ack

St A=Wait_A,
St _B=idle B
Bit=0, Tag Lp=Lp}

S1_A=Timing_oui_A,
St_Beldie_B,
Bir=0, Tag_Lp=Lpt

Receive_Data

Bit=0, Tag_Lp=nult

StA=Wait A,
St_B=Unreceived B,
Bi=0, Tag_Lp=Lp!

Verify_Checksum

St_A=Wait_A
St B=Sending B
Bit=0, Tag_Lp=null

St A=Wait A,
$t_B=Verif CheckSum B.

Bit=0, T; =Lpl
Verify_Checksum e P72

Send_Ack

Figure 25: Automaton of Use Case Integration

cases. Designers can provide requirements which are not necessary independent. When
composing implicitly use cases, the overlapped parts will be merged. It is a way to generate
an overall system behavior but also to complete the views of the different stakeholders.

Despite the expressiveness the approach gave, the composition of use cases presents

some limitations, mainly:

e The non assurance of the connectivity of the resulting automaton :
Because of the transformations we are processing before composing, the connectivity
of the resulting automaton is no more guaranteed. In fact, some connected actions
may become unconnected because of the context of the reached state. It is a matter
of having a certain consistency with what the modeler has described. We assumed

that a disconnected parts can be connected in another stage of composition since the

75

Table 4: Use Case Actions of Corrupted and Non-Corrupted Data Reception after

Transform_1 and Transform_2

St_B =Verifying.B

Actions ppre_loc ppre_conir lab ppost_contr ppost_loc
ag St.A =Idle A A To = false A Initiate.Data_0_send To= false A St_A =Wait_ A A
St B =Idle B Checksum = pull St_B =Idle B
A Bit= null A CheckSum=null A iter'[Lp}=0 A Bit=0 A
Tag Lp= null Tag_Lp= null
@) St.A = Idle.A A To= falseA Send Data To= false A St.A = Wait_ A A
St B =ldle B CheckSum =null St.B =Idle.B
A Bit=0 A Aiter[Lp)] < 3 CheckSum=null A iter’[Lp;|=iter[Lp}+1 A Bit= 0
Tag_Lp= pull Tag_Lp= Lp;
a2 St_A =Idle. A A CheckSum=nul} Alternate_Bit To= false A St A =IdleA A
St B =Idle.B CheckSum=null St.B =Idle.B
A Bit=9 A A CheckSum=null A Bit=1 A
Tag_Lp= null Tag_Lp= null
a3 St_A = Wait_ A A To= false Receive_Data To= false A St_A = Wait A A
St B =1dle B St_B =Verifying B
A Bit=06 A A CheckSum=null CheckSum=null A Bit=0 A
Tag-Lp = Lpy Tag-Lp= Lp;
as St_A = Wait_ A A To= false Verify_Checksum To= false St_A = Wait_A A
St_B = Verifying B St_B =Sending B
A Bit=0 A A CheckSum=null A CheckSum= True A Bit= 0 A
Tag-Lp = Lp, Tag-Lp= null
a5 St.A =Wait A A To= false Verify_CheckSum To= false A St_A = Wait_ A A

St.B =Unreceived_B

A Bit=0 A A CheckSum=null CheckSum= false A Bit= 0A
Tag_Lp= Lpy Tag-Lp= Lp;
ag St_A = Wait. A A To= false Send_Ack To= false St_A = Wait_ A A
St_B =Sending B St.B =Idle.B
A Bit= 6 A A CheckSum=True A CheckSum= null A Bit=0 A
Tag_Lp= null Tag_Lp= null
a7 St.A = Wait. A A To= false Time_Out To= true St.A = Timing_out_ A A
St_B =Unreceived B St.B =ldle B
A Bit=0 A A CheckSum= false A CheckSum= null A Bit=0 A
Teg-Lp=Lp: Tag-Lp=Lp;
ag St_A = Timing out_A A To= true Initiate_Send To= false St.A = Idle. A A
St.B =Idle.B St B = ldle B
A Bit=0 A A CheckSum=false A CheckSum= null A Bit= 0 A
Tag-Lp= Lp; Tag-Lp= null

integration is based on merging the states having the same characterization. However,
at the end, some parts may still be disconnected, which may denote an inconsistencies
in the whole specification. This problem can be solved when we consider the case
where the analyst describes consistent use cases. Consistent use case denotes here the

fact that all the ingoing actions to a state are executable on that state.

Implied scenarios:
As mentioned earlier, implicit composition may lead to the appearance of implied
scenarios. We are not escaping to this rule with the approach we are proposing. By

protecting the loops when composing, we are reducing the number of implied scenarios.

76

However, we are not eliminating all of them. As a solution, a tagging of the actions

with the identifier of the use case they belong to can be made.

While the proposed approach is suitable for overlapping use cases, it is not the case when
the designer needs to explicitly specify the relationships between use cases. In the next
chapter, we will enrich the same model of use cases in order to handle explicit composition.

The overlapping behavior will no more be considered as a criterion of composition.

77

Chapter 5

Explicit Composition of Use Cases

using Interactions

5.1 Introduction

Nowadays, separation of concerns is at the core of software and system engineering. It refers
to the ability to identify, encapsulate, and manipulate parts of software that are relevant
to a particular functionality, task, or purpose. As specified in [54], separation of concerns
is one of the most common techniques in the software/system engineering. Concerns are
the primary motivation for organizing and decomposing software/system description into
smaller and comprehensible parts, each of which addresses one or more concerns.

Use cases is one of the techniques used to express concerns [54]. In the opposite to what
was presented in the previous chapter, when modeling, the analyst will not think in terms
of system traces to merge, but in terms of (1) What concerns should I model, (2) How can

I separate them, and (3) How should I compose them.

"Published in [69] and in [76]

78

In this chapter we present a composition approach for merging use cases based on
the interactions they are making between each other. Our main objective is to make
the composition easier by synthesizing automatically an automaton of the system without
introducing any implied scenarios starting from a set of use cases that represent different
concerns. Use cases are not manipulated as blocks. A new level of granularity is defined,
where each use case can be inserted within another use case according to some semantics.

Our model of use case is an extended automaton enriched with interactions, where an
interaction is an invocation of a use case by another. Using state-based patterns, inter-
actions specified within the use case are translated into a state-based model, connecting
the respective automata of the interacting use cases. In this context, a pattern defines the
state-based semantics of a use case interaction. To avoid implied scenarios, we propose to
build a use case interaction graph from system use cases. It is used to detect the potential
implied use case interactions, which we call interferences. Additional constraints, expressed
in terms of variables, are added to the system automaton to eliminate such interferences.

The chapter is structured as follows.

® Section 5.2 gives an overview of the use case model we are using.

e Section 5.3 describes the synthesis of the overall automaton of the system based on

the interactions between use cases.

e Section 5.4 presents an application of our approach on use cases of an e-Purchasing

system.

Section 5.5 summarizes the chapter.

Finally, Section 5.6 gives the motivation of having such composition approach.

79

oS!

a, Extepd(UCy, cond) d

O O

b, Alternative(U Cy, cond) .

O O

ey UG,

Figure 26: Use Case model with interactions

5.2 Use Case Acquisition : Model Presentation

In order to describe the functional requirements of a system, the designer needs to specify
a set of use cases and interactions which exist between use cases. Offering a notation that
gives the possibility to express these interactions simplifies the specification of use cases
and promotes reusability, which is one of the main goals of scenario-based approaches. In
fact, when a specific behavior is needed and referenced by different use cases, a separate
use case can be specified to encapsulate this behavior. This use case will be invoked within
the other use cases each time the behavior is required, which helps avoiding redundancy in
the specification.

In order to specify interactions within the use case description, we extend the model
given in chapter 4 section 4.2 with interactions. The analyst will have the possibility to
associate an interaction with the label of an action, as shown in Figure 26. Hence, the
model of use cases will be an extended finite state automaton with interactions.

In this chapter, we present the two most needed interactions between use cases, namely

Extend, and Alternative.

e Extend(uc,cond) specifies an optional invocation of a use case uc after firing the

transition where the interaction is specified. Hence, when a use case uc; specifies

80

an invocation of the use case uc with the Extend interaction, uc will be executed
only when cond is satisfied. uc is effectively an alternative course of the use case uc;
after the transition to which it is associated. After finishing the execution of this

alternative, the system resumes back and executes the rest of uc;.

Furthermore, Extend (uc, true) specifies a mandatory invocation of a use case uc since
the condition cond will always be satisfied, and hence the base use case will always
invoke the use case uc. We denote it by Include(uc) in order to distinguish this case.
Finally, we note that if Include(uc) invocation is done at the end of a use case, then

it simply expresses the sequential concatenation.

Alternative(uc, cond) specifies an interrupting use case uc. It is used to state
explicitly the actions where an interruption of the current use case can be performed.
Unlike the previous interactions, Alternative does not resume back the execution of

the base use case after the execution of the interrupting one.

An interaction between use cases is expressed in the base use case in the form (a, interaction)

where interaction € { Include(uc), Alternative(uc,cond), Extend (uc,cond) }, and a

represents the action preceding the interaction. A unique interaction can be specified with

a given action.

5.3 Integration Approach

We define a two-step automated approach to produce an automaton modeling the overall

behavior of the system from a set of use cases, avoiding unintended behaviors. The first

step consists of translating the use case interactions into a state-based model. It is achieved

by means of state-based patterns for each interaction type. Hence, the structure of the

81

obtained automaton reflects the behaviors from specified interactions. The second step
consists of deriving a use case interaction graph, used to detect cycles and interferences

between use cases and their interactions.

5.3.1 State-Based Synthesis Patterns of Use Case Interactions

Interaction patterns serve the automated merger of the use case automata into an overall
system automaton. They provide the join points between the use case automata during their
integration. Figure 27 shows the integration patterns of Include, Extend, and Alternative
invocations. For automaton minimization, and since a transition with false condition will
never be fired, we represent the pattern of Include (Figure 27). Transformations are applied
to the automaton of the base use case: transitions are added to refer to the initial and final
locations in the use case specified in the interaction. start_uc and return_uc are two new
special labels used to connect use cases together. The condition given within an Extend or
an Alternative interaction is a precondition of the added transition start_uc. Additional
pre conditions may be added to the actions labeled with start_uc and return_uc according
to the use case interaction graph as we will show later on. An e-transition is also added and
controlled with the negation of the condition the interaction specifies. It is fired when the
condition of the invocation is not verified and the excecution should not go through the called
use case. The derived automaton after interpretation of the use case interaction is called

Interaction-Free use case automaton since its edges are no more labeled by interactions.

5.3.2 Use Case Interaction Graph

During the specification of the use cases, the designer has defined different interactions

within the use cases. However, since it is difficult to have the big picture at this stage, it

82

C = {a, Include{ucy)) C = (a, Extend(ucy, cond)) C = (a, Alternative{ucy, cond))

ucy

start_ue .’ \
— .
7
. \
; \
; \
i \
; \
.
'

© *7 “//

Figure 27: State-Based Synthesis Patterns of use case Interactions

could happen that the specified use case interactions generate interferences which may lead
to unexpected scenarios in the overall system behavior.

Let’s consider the case of two use cases making an Include invocation to the same use
case (c.f. Figure 28 (a) and (b)). After the application of the state-based synthesis pattern,
the system may eventually run through (a, uc;, d). The same anomaly appears when a use
case makes multiple invocations to the same use case (c.f. Figure 28) in different states.

In order to detect such behaviors, we propose to synthesize and analyze a use case
interaction graph which is a directed graph with nodes representing use cases and edges
linking together two interacting nodes of use cases. The edges are labeled with the type of
the interactions that the base usc case is performing as well as the number of occurrence
of each invocation. The label (Include,2) in Figure (28 (c)) indicates that the use case

ucy interacts twice with the use case ucg. Unlike the UML use case diagram, our use case

83

interaction graph is build from the set of use case automata specified by the designer and

models their interactions within their structure.

ucy
ucz ucy
C a
l (e, Include(uc,)) l T
b start_ne =" TTTTAA :
'
(base_uc :=ue2) m'niI base_uc x“"_s
(id_occurrence:=1) 1
o ; :
B '
\ '
ucy ' '
'
° o’ " e ’ |
'
(base_uc :=uc2) and . '
id_occurrence:=2) ! ,
{c, Indlude(ucy)) . . (id_¢ H H
i Use Case Relationship Graph (base_ue ~uc2) gnd
. start we (idoccwrvenee=l) _ i N/ [/ _\ _____
. (base_uc—uc2) and
{d, Fnchudefucy)) (id_eccurrence=2)
, e{ucy
return_ue
@

Figure 28: Inter and Intra-Implied Scenarios Resulting from Use case Merging

Forbidden Cycle Detection

The first step is based on using the use case interaction graph to detect potential problematic
interactions in the original use case specification. Situations like a self call in a use case or
a mutual calls between two use cases may lead to disconnected or non-executable part of
the automaton in the system specification. Such situation indicates an eventual omission
of some use cases or/and interactions or errors, which should be prevented. It is clear that
a cycle where the edges are labelled only with the Include interaction are not intended in
any use case specification. It results automatically to a non-executable part in the system
automaton. In our approach, we propose to verify the existence of such cycle and revising
the original specification consequently. In addition, the designer may specify some other

forbidden cycles from the beginning. We propose to have an acyclic use case interaction

84

graph before the generation of the use case automaton which guarantees the prevention of

disconnections in the final system automaton.

Interference Detection

The second step is based on detecting and eliminating implied scenarios arose from inter-
ferences between interactions. For this purpose, we propose to over-constrain the system
automaton when composing the use cases with conditions on variables. We distinguish two

cases where variables have to be added to the automaton of the system:

e when a use case is referred by many distinct use cases, independently from the type of
the interaction, inter-implied scenarios may occur. A new variable such as base_uc,
is added to the automaton. base. uc is set by transition start_uc to the identifier of
the base use case (c.f. Figure (28 (d)). The return_uc transition will check the value

of the base_uc variable.

e when a use case is referred more than once within the same use case, intra-implied
scenarios may occur. A new variable such as id_occurrence, is added to the automa-
ton. id_occurrence is set with the identifier of the occurrence in the base use case
by the transition start_uc. In the same way, the return_uc transition will check the

value of the id_occurrence variable (c.f. Figure (28 (d)).

Interaction Alternative is an exception to the previous rules: if a use case is only
referred through Alternative, no implied behavior would be added as there is no return
to the base use case. Therefore, the number of variables added to prevent implied scenarios

depend on the existing interactions between the original use cases.

85

After the application of the state-based synthesis patterns and the addition of constraints
to avoid implied scenarios, the composition of the interaction-free use case automata would
represent the final automaton of the system (c.f. Figure 29). The initial states of the

automaton of the system need to be specified by the user.

User Specification

— Use Case Synthesis Interaction—Free
Textual Use Case P ‘a;'\"“ automata Patterns Use Case Automata
Textual Use Case (2

Textual Use Case

Use Case
Interaction Graph
Constraints

Forbidden Cycle Detectwn

Cycle Display System Automaton

Figure 29: Overview of the Interaction-Based Integration Approach

5.4 Application on an e-Purchasing System

We apply our interaction-based integration approach to synthesize the specification of
an e-Purchasing system. The functional requirements of an e-Purchasing system include
many use cases. We focus particularly on these use cases: “Register_Order”, “Login”,
“Verify-Inventory”, “Print_Out”, and “Cancel_Order”.

The use case “Register-Order” invokes use case “Login” in order to perform the authentica-
tion of a user when the user wants to make an order. Use case “Register_Order” also makes
an optional interaction with use case “Print.Out” whenever the user requests to print out
his order or the inventory. C¢l, pr, inventory and attempt are the variables of the system.
The two first ones are used for the conditional execution of the two use case “Cancel_Order”

and “Print_Out” respectively. The third one shows the availability of the product while the

86

fourth one counts the number of attempts to login. We present in Figure 30 the extended
use case automaton of “Register_Order”. The label RO indicates that the location belongs
to the automaton of use case “Register_Order”. The same notations are used for the other
use cases. Hatched locations represent locations added to insert start_uc and return_uc

transitions.

{a3,0) return_uc

(empty, include(Login))

ay
SR
’ Pasterns)
Ccl=false
(alinterrupt(cancel—order, Ccl=true)) {) . start_uc

RO, CO
; . 3
(a5, 8) (3, Incnde (Veri fy_inventory)) Application

"z

RO» start_uc

(ad,extend(print—out,pr=true)) “

s retum_uc
ROs vi3

. return_uc
(empty,extend(print—out,pr=true)) viz
ay

ROS &@M‘l
start_uc
{pr=false) ht

POy

return_ue
ROy PO3
‘ .
=

-

«

(pr=false)

as return_uc
ros

Figure 30: The Interaction-Free Automaton of the Register Order Use Case

Figure 31 shows the use case interaction graph of the e-Purchasing system. We note that
there is no Include cycle. Hence, no revision of the original specification is needed. How-
ever, interferences do exist. “Print_Order” is called twice in the use case “Register_Order”.

Furthermore, it is called by two different use cases “Register_Order” and “Cancel_Order”.

87

According to the use case interaction graph, we need to add constraints on two vari-
ables, entering_po and id_call. As “Print_Out” can be called by “Register_Order” and
“Cancel_Order”, variable entering_po serves to keep track of the base use case. Variable
id_call keeps the location from which “Register_Order” called “Print_Out”. The automaton
of the whole specification is given in Figure 32. Locations with identical labels are the same,

but have been duplicated for clarity.

(Extend,2)

(Interrupt, 1}

(Include, 1}

Figure 31: The Use case Interaction Graph of the e-Purchasing Use Cases

5.5 Summary

In this chapter, we have presented an approach that automatically generates a state-based
model of the system from a set of use cases and their interactions. Instead of traditional
composition methods based on the well-known constructors such as sequencing, alternative,
and iterations, we proposed a composition approach based on inter-use case interactions.
For this purpose, we have developed a two-step composition approach. The first step con-
sists of generating an interaction-free use case automata using the state-based synthesis
patterns of the different interactions. The second step analyzes the interactions between
use cases in order to detect inconsistencies and implied behaviors in the specification. We

proposed to synthesize a use case interaction graph for this purpose. Since the existence of

88

I

(inventory = false)

return_uc

RO
ays J

inventory = true

Bilt_Orde

(true)
. <3 {(prtrue)

(pr=false)

¢

|-

start_uc

Vi

Teturn_uc

2

]

id_call:=1)
(entering_po="RO")

PO,
Rre=(id‘call=l)
return_uc (entering_po="RO"}
RO,

Register_Order

Sy e
\\% start uc Xd,cau?z)
— (entering_po:="RO")
(pr=false)
‘ PO;3

iEi_call?Z) RO

Record_Orde return_uc entering_po="RO"
COY rder, (7 Q’sﬁ |

check_Inventory
inventory := true

Vi,

B start_uc
S
(inventory := null A attempt := 0) LO;
LOs
retum_uc start_ue
Order_Abord ROy
hoose_produet s .
(entering,_por="CO™ return_uc Initiate_Operation
(Ccl=true) 8_po: (entering_po="CQO") inventory := null
attempt :== 0
(Cel=false) start_uc Cro) (Po) {0)
: COy Cancel_Order
RO,
Order _quantity
start_uc vh
S, true e

check_Inventory
inventory := false

Vi

Verify_Inventory

POy

{enterin; =nul)A
(id_gca F=null)

Prepare_Bill
CPo:)

Print_Bill

P)

Print_Out

Lo)
(attempt < 4,
Enter User Name

@)

Enter User_Pwd

LOs

Verify_Database

(attempt + +)

Fail_Login|

LOy
Succes_Login

LOs

Login

Figure 32: The e-Purchasing System Automaton

cycles within the graph expresses potential inconsistencies in the specification, we prevented

cycles of the include interaction. To avoid interferences in the specification, we have added

variables to the system automaton. The number of added variables is determined according

to the interaction graph.

89

5.6 Strengths and Weaknesses of the Proposed Use Case

Model and Composition Approach

On the opposite to what we have proposed in the first chapter, we are concentrating on
the composition of independent use cases. The interactions specified within the use cases

themselves are considered as the composition criterion.

This approach has many advantages:

o Tirst, it promotes a modeling that separates the different concerns of the system, one

of the commonly used technique in requirements analysis.

e Second, the interactions are specified within the use cases themselves while the tra-
ditional approaches use conventional operators -such as sequential, alternative, and

iterations- that specify how use cases are linked together.

e Third, interferences between use cases are detected. We use variables in order to
avoid implied scenarios (due to interference) generated by composition. In order to
add new functionalities, the designer will not worry about the overall picture of the
system structure, focusing on partial behaviors while our approach will take care of

the verification of their interactions with the existing ones.
Despite the interesting results we obtained, our approach still needs some improvements:

e Update of use cases:
As described, an interaction is related to an action. Hence, once the specification

of use cases is achieved, there is no way to add new interactions between use cases

90

unless by re-describing the existing set use cases. Hence, our approach does not yet
facilitate the maintainability of the overall specification, one of the main objectives
of this thesis. Although the approach is fully automated, it is not incremental, as it
is supposed to be in the requirements engineering phase. A change in the needs of
the stakeholders requires the redefinition of some use cases and another run of the

composition approach.

e Control variable number :
By removing the implied scenarios, we are increasing considerably the number of

variables of the system automaton, especially with a large number of use cases.

e Dependency between use cases:
By composing two use cases, a link is set between these two use cases. The addi-
tion of transition labeled by start_uc and return_uc links forever the two use cases.
Consequently, the original use cases do no more exist. Only the generated use case
is kept because of the cut and paste operation we are performing. Such approach is
not always desirable. Keeping the original use cases for further composition may be

useful.

In the next chapter, we present a novel composition approach that overcome these short-
comings. It represents a formalization of the presented approach along with an improvement

of the composition limitations discussed previously.

91

Chapter 6

Explicit Composition of Use Cases:
A Novel Methodology using

Imperative Expressions

6.1 Introduction

In the literature, identification of common states in different partial behaviors is commonly
used as a criterion of composition [39, 101]. However, this criterion has the drawback of
assuming that the designer has a deep understanding of the system’s behavior. S/he should
have an overall view of the intended behavior so that she/he is able to accurately define
the naming of states in different use cases. This is a very demanding task if we consider
the incremental nature of the definition of the system behavior itself. In addition, use cases

are supposed to be defined independently and not necessary by the same designer. The

"Published in [75]

92

set of use cases may represent a collection of use cases described by different modelers.
Composing use cases using explicitly defined relationships is more adapted to be used in an
incremental process of generating a system specification from a set of use cases.

As stated in the previous chapter, specifying the relationship between a use case and
another within the description of the use case itself imposes some limitations. Adding new
relationships needs the redefinition of the use case. Defining independent composition oper-
ators that have specific composition semantics would facilitate the incremental elaboration
of the overall system behavior.

In this chapter, we propose a new methodology for specifying and composing use cases.
It is based on the definition of a set of use cases and composition expressions that shows
the way use cases has to be composed.

The chapter is structured as follows:

e Section 6.2 gives an overview of the approach in the frame of requirements elicitation

process.

o Section 6.3 presents the composition expression syntax as well as the different opera-

tors we are defining.

6.2 Approach Description

To formalize the informal aspects of use cases, we developed an automated and incremen-
tal approach for elaborating a state based model of the intended system behavior. From
informal requirements, the modeler has to generate formal use cases. These use cases are
composed in a formal and incremental way in order to generate the system specification

expressed as a state-based model. This model can be checked against consistency using

93

model checking and/or simulation, as shown in Figure 33.

the user has to choose ene product Manual Synthesis o O
from a cataologue or by seraching ... o O Q
Informal Requirements Use Cases as State—based model
change Automatic Synthesis
change
ModelChecker/Simulator an %
O
Validation and Verification System specification as

State—~Based Model

Figure 33: Approach Overview in Requirements Engineering

Our approach of composition consists of three main steps. First, the analyst provides
a set of use cases where each one defines a partial system behavior. Then, in an incre-
mental way, the modeler can define new behaviors using composition expressions. These
expressions are in fact used to construct the intended behavioral model instead of explicitly
describing it. The evaluation of a composition expression leads to the construction of a new
behavior, which results from the composition of two existing use cases. Each composition
expression specifies the use cases to be composed. We call them the base and the referred
use case, respectively. The base use case represents the location where the new behavior
will be added, and the referred use case represents the additional behavior to be inserted
within the base use case behavior. Moreover, these expressions provide the composition op-
erators that define the semantics of the behavioral merging, as well as the extension points
where the insertion will be performed. As shown in Figure 34, the composition engine will

automatically generate the new behavior.

94

Base Use Case
—_—]

Refereed Use Case
—_—

X . new Behavior
Extension point

Composition Semantics
—_—|

Figure 34: Composition Approach Overview

6.2.1 Incremental Process Definition

In an incremental process, the system specification (a model representing the overall set
of requirements) gradually increases over iterations. The idea is to start from a set of
elementary use cases to generate, increment by increment, “bigger” use cases, representing
less partial behaviors. The process ends when all system requirements have been addressed
in a single use case that represents the complete system functionality.

The process starts by defining the set of elementary use cases, each represents ideally
a unique functionality. Then, new relationships between use cases are defined through the
specification of composition expressions. When these expressions are evaluated, we add
resulting use cases to the set of elementary ones. The obtained set is in fact the set of use
cases that can be used in the next increment of the system specification generation.

The composition expressions are used not only to define new use cases but also to modify
existing ones. This is achieved by adding a new behavior to an existing use case (either as

sequencing or as alternative to a certain action), or by refining an existing use case with

another use case.
Beside using expressions to define or modify use cases, the modeler can decide to remove

an existing use case, or to add a modification to a use case by modifying its structure (add

95

a scenario to a use case, remove a certain action from a use case ...). Such modifications
have an impact on the overall specification. In fact, when modifying a use case, all the
constructed use cases (defined by composition expressions) have to be revised according to
this change. Hence, tracking back these changes in a consistent manner is required in order
to revise the system specification. As we will see in chapter 9, the composition expression
order will play an important role in use case traceability.

We consider the modification of an internal structure of a use case as an incremental
modification because it reflects the change of a requirement over time. When a use case is
modified, all its depending use cases will be re-constructed to reflect this modification in the
same increment of the specification. The next increment will be using the newly generated

use cases.

6.2.2 Approach Assumptions

The synthesis of a formal specification of the system starts by specifying a certain number
of elementary use cases. We do the assumption that the elementary use cases are correct
and valid, and hence no verification and validation tasks are required for them.

However, when starting composing use cases, the generated use cases (by composition
expression evaluation) may not respond to the needs of the modeler. Hence, a validation and
verification task may be necessary before forwarding in the system specification synthesis.
The V&V task can be performed in each iteration of the system specification, according to
the needs of the modeler. For this reason, we choose to link our tool of use case composition
to a model checker. In the case of non conformance to the modeler needs, two solutions are
possible: either the use cases may be changed or the composition expression is revised.

Let’s consider the example of specification built in Figure 35. When starting building the

96

system specification, the modeler defined two elementary use cases A and B. S/he defined
two other use cases Y and Z by composition expression. These two use cases are built in
the second increment and added to the original use cases A and B. Use case Y and Z may
need a validation and verification task. The second increment defines the use case C, D and
E using use cases A, B, Y, and Z. We note that in the third increment, no new use case is
defined by composition expression. The use case D has been modified using a composition
expression, evaluated in the fourth increment. The set of use cases from the third to the
fourth increment did not change.

The second assumption we consider is that the set of elementary use cases are not
overlapping. Indeed, each use case represents a certain requirement. They do not represent
the same requirement with different views, a possible option in the case of chapter 4. Hence,
with this approach, we cannot do a view consolidation. If two use cases represent an
overlapping, two possibilities are to consider: cither the two behaviors will still considered
independent according to our mechanism of composition; or, similarly to the approach in
[33], the modeler has to merge them in a single one before starting the construction of the
system state based specification. Such merger can be achieved using a synchronization-like

mechanism on the overlapping part, as we will show in the next chapter.

6.3 Composition Expression

For the system to work, we have to compose use cases into a consistent whole in order to
validate and verify its behavior. We need to define a mechanism for composing use cases
according to the behavioral weaving the modeler needs. The idea is to find a way where

the merging could occur between any two use cases of the specification according to some

97

Exse case Aj (use case B) [use case A) @se case B)

Ese case Y’ l use.case Z

Exse case A) &e case a
‘ use.case y ’ use case Z
use c/asq € [ﬁse Eaﬁe D .

1se case B

use case A use case B
[use case Y) ﬁsve case Z }

use case C usecase)

usecase E

Third Increment Fourth Increment

Figure 35: Different Increments in Building a Specification

semantics given by the modeler. To achieve this goal, we propose the notion of composition
expressions. A composition expression is an expression that defines a new behavior resulting
from the composition of two existing ones according to a composition operator.

The main advantages of theses expressions are :

1. the iterative aspect of the composition, which means that rather than specifying the
possible extensions when describing the use case itself, an extension can be specified

independently.

98

2. the non classification of use cases into different sets as mentioned in other works [48].
In fact, a use case can play different roles in different expressions. It can be a referred
use case in an expression and a base use case in another, a fact that gives more freedom

to the modeler in order to synthesize the intented whole behavior.

The syntax of the composition expression will differ according to the use case state based

model being used.

6.3.1 Operator Definition

Operators define templates of use cases’composition. They allow the derivation of a new
behavior from two existing ones. We have identified six operators: Include, Extend_with,

Alternative, Graft, Refine, and Interrupt.

Include Operator

With the Include operator, the resulting use case is composed from the behavior of the base
use case where we insert the behavior of the referred use case at the extension point. With
this operator, some traces of the base use case may be modified. These traces represent the
set of traces that pass by the extension points and where the traces of the referred use case
are inserted. Fig. 6.3.1(b) shows the expected behavior from composing two use cases A
and B with the operator Include. We note that the inclusion of the referred behavior in

the base behavior is mandatory.

Extend_with Operator

In the case of the Extend_with operator, the resulting use case is composed of the behavior

of the base use casc and the behavior of the base use case where we have inserted the behavior

99

) Finol Sute
\. Extension point
O Initial state

CaaOna®

UCAB

@)

®)

Figure 36: Expected Behavior from Composing Use Cases with the Different Composition

Operators.
(a) the original use cases A and B. (b) The expected behavior with Include operator.

(c) The expected behavior with Extend_with operator. (d) The expected behavior with
Alternative operator. (e) The expected behavior with Refine operator. (f) The expected
behavior with Graft operator. (g) The expected behavior with Interrupt operator.

of the referred use case in the extension points. With this operator, all of the traces of the
base use case are kept and augmented by the set of traces obtained by inserting the referred
use case traces into the base use case traces passing by the extension points. Fig. 6.3.1(c)
shows the expected behavior from composing two use cases A and B with the operator
Extend with. We note that the two traces a.b.c and a.tr(B).b.c, where tr(B) is a trace
of the use case B, are two possible behavior of the new generated use case. Hence, the

inclusion of the referred behavior in the base behavior can be qualified as optional.

100

Alternative Operator

In the case of the Alternative operator, the resulting use case is composed of the behavior
of the base use case and the behavior of the referred use case as an alternative behavior in
the extension points. This operator could be called Branching. With this operator, all the
traces of the base use case are kept and augmented by the set of traces where the traces
of the referred use case are inserted into the traces of the base use case in the extension
points. Fig. 6.3.1(d) shows the expected behavior from composing two use cases A and
B with the operator Alternative. We note that the inclusion of the referred behavior in
the base behavior in this case is optional. Unlike the other operators, the base use case

behavior cannot resume from the extension points.

Refine Operator

Refine is an operator used to refine a transition. In other term, when using Refine, a
transition is replaced by a use case in the resulting new behavior. The starting point of
the use case is the outgoing state of the transition. The ending point of the use case is
the ingoing state of the transition to be replaced. This operator is used with transition
extension point. We draw the attention that refining before the transition or after the

transition leads to the same behavior since we remove the transition being refined.

Graft Operator

Graft operator is used in order to add an alternative behavior to a segment of transitions.
Contrarily to the previously presented operators, Graft needs the specification of an exten-
sion and an ending point. The extension point is where the new behavior would start and

the ending point is where it finishes. If the extension and the ending points are the same,

101

Graft will have the same semantics than Extend_with.

Interrupt Operator

This operator is equivalent to having an Alternative where the extension points are all the
states of the base use case. It is used when the modeler specifies a possible interrupting
event from anywhere in the base use case. Figure 6.3.1 (¢), (f), and (g) shows the semantics
of Refine, Graft, and Interrupt respectively.

This thesis presents our approach considering these operators only. However, our ap-
proach is not limited to them. The modeler can easily define new operators.

We draw the attention to the fact that Extend_with, Include and Alternative are
similar to the ones previously defined in chapter 5. However, they are no more defined as

interactions, specified with conditions of the user.

6.3.2 Extension Point Definition

Extension point is a state or transition of the base use case. In order to accommodate all the
operators we have defined, the syntax of extension point has to handle states, transitions,
couples, and an ALL qualifier. Hence, the syntax will be:
Extension_Points := IN State
| quali fier Transition
| IN{(State, State)

| (qualifier Transition, qualifier Transition)

| ALL

qualifier .= BEFORE| AFTER

102

When the extension points are transitions, the qualifiers BEFORE and AFTER are
necessary to identify unambiguously the point where the composition is to be performed.
This is not applied when the extension points are states.

The couple is used with Graft operator. As said previously, the semantics of Graft is
the same as Extend_with when the elements of the couple are identical. In the implemen-
tation of our approach, the tool verifies automatically that the two elements of the couple
are different, otherwise it will mention it to the designer. The ALL qualifier is used in order

to specify that the set of extension points is in fact all the states of the use case.

Extension point Query with model checking

Rather than pointing out the extension points, it is possible to determine them automatically
using a model checker. When the modeler specifies the composition expression, s/he may
define a property that should be verified by the extension points. More formally, in this
case the extension points will be defined as the set of states of the base use case that verify
a property P.

After the definition of the composition expression, the property as well as the base use
case is sent for model checking. A kripke structure [59] is generated from the use case as
shown in Figure 37. As stated before, this property is used to find the set of states on which
the composition should be performed. Since model checkers return only true or false with
a counterexample, a way to detect the states of the base use case where the property is
verified has to be developed. As we know, a positive answer from the model checker means
that the property is verified in the initial state. Hence, for each state of the base use case,

we run the model checker as if it was the initial state of the base use case. If it returns

103

true then the property holds in that state, if it returns a counterexample, then the property
does not hold in that state and is not a member of our extension point set. The resulting

set of states would act as the places where the composition should be done.

v
1 Extension Point Determination
'

Property

v i i S
Base Use Case : Kriphe Souctire Gomerator <.

Kripke Structure

Extension peiises : ’Iniri'aiﬂmﬁ‘q»erqur" i

True/False

Figure 37: Extension Point Query with Model Checking

As a result of the model checking step, the extension point set could be empty or not.
In case of empty set, the base use case will never verify such property and no new use case
can be generated from the evaluation of the composition expression. Therefore a revision
of either the property or the use cases is needed. On the other hand, when the resulting
extension point set contains more than one state, the composition of the two use cases

should be done in all these states.

6.4 Summary

The motivation of this approach comes from the need to formalize use case composition
along with making easier the process of generating a formal model of the intended system
behavior. We advocate an automated and incremental approach for the generation of such

model. Incremental generation is a key issue in use case approaches. The fact that use

104

cases are used early in the lifecycle process requires an approach where modifications can
be made easily. Using iterations is very helpful.

In our approach, the analyst starts by defining a set of partial behaviors. Then, using
composition expressions s/he generates new ones, and so on until the overall behavioral
model is generated. To accomplish this, we have introduced composition operators that
have well-defined semantics. Unlike other use case composition approaches, our operators
offer the opportunity to insert use cases inside others, which gives another level of granularity
to the use case composition. The extension points can be states or transitions of the base
use case.

In this chapter, we have described the overall view of our approach. It has as a source
notation of use cases a state based model. After composition, it generates, a new behavior
in the same state based model. The approach uses expressions in order to define a new
behavior, which differ from previous approaches and also from the composition model we
proposed in chapter 5. Use cases are kept independent from the composition specification
itself, fact that helps the incremental aspect of the approach. In the next chapter, we will

define the formal semantics of such approach in the case of an automaton.

105

Chapter 7

Formalization of the Approach in

the Case of Use Case Automata

7.1 Introduction

In order to illustrate the novel approach of use case composition described in the previous
chapter, we start by presenting it in the case of finite state automaton. In this chapter, we
define a use case as a finite state machine we call Use Case Automaton (UCA). Our choice
of state based model to represent use case is based on the importance of the generation
a state based model of the system for the validation and the verification step of the user
requirements before forwarding in the system lifecycle.

In this chapter, we propose to formalize our approach. Since the composition may be
done in a single extension point or in a multiple extension points, we will first present the
approach in the case of one extension point. Then, we will focus on the general case.

This chapter is composed as follows:

'Published in [77] and in [71]

106

Section 7.2 presents the state based model of use cases.

Section 7.3 presents the syntax of the composition expression as well as the formal

definition of the operators in the case of UCA.

Section 7.4 presents the composition approach in the case of a unique extension point.

Section 7.5 presents a generalization of the composition approach in the case of mul-

tiple extension points.

7.2 Use Case Model Definition

A UCA is defined as a 5-tuple (5,s%, S/, L, E), where S is the set of states, s° € § is the
initial state, S¥ C S is the set of final states, L is the set of labels, and £ C S x L x S is the
set of transitions. For a transition (s,l,s’) € E, we write s L /. A scenario is a possible
trace of this use case. More specifically, a scenario is a word of the language of the use case
automaton that starts at the initial state of the UCA and finishes in one of its final states.

Figure 38 (a) shows a use case X where z; is the initial state, x3 and x4 are the final states,
and {a,b,c,d} is the alphabet of X.
7.3 Composition Expression : Syntax and Semantics

7.3.1 Composition Expression Syntax

Composition expressions are used to specify the composition information necessary to com-

pose two UCAs. They follow this syntax:

107

N
{ Specified Behaviors) New behavior

(@) UCAX MUCA Y \Olnitial State
Z:=Extend_with (X,Y) IN {x1} F inal State
M Highlighted State

Figure 38: Expected Result from Composition

Z := Composition_Operator(X,Y)Extension_Point

where Composition_Operator is one of the composition operators. X is the base use
case where to add the new behavior. Y is the referred use case (the behavioral to add to
the base one). Z is the resulting UCA from the composition. As said previously, when the
extension point is a state, the qualifier Before and After are not needed. In Appendix A,
we prove that BEFORE a state and AFTER a state lead to a trace equivalent automata.

Figure 38 shows an example of a given user model behavior: the two UCAs, X and Y,
as well as a composition expression. The new UCA Z results from the extension of the base
UCA X by the referred UCA Y in the extension point z1. UCA Z is expected to be a trace
equivalent with the automaton in Figure 38 (b). Since we aim to insert complete traces of
the use case Y in the extension point, this implies that during the composition, at the level

of the initial and the final states of the referred use case, we have to somehow guarantee

that when the execution of the referred use case starts, it continues until reaching one of
its final states. Traces such as e.f.a.c are considered as unexpected behaviors and we have

to avoid them. This is shown in Figure 38 (2) by highlighting the two states z; and z3.

108

7.3.2 Formal Definition of the Composition Operators

Before giving the formal details of the composition approach, we propose to present a formal
definition of the composition operators in the case of use case automaton. For that purpose,
we will consider the case of a unique extension point.

We use operational semantics for such definitions. The equation

A; B
——(Cond 1
L= (Cond) (1)
means that A and B implies C. Cond is the condition of the applicability of the rule.
Let’s formally specify the semantics of the composition in an extension point ep. Let

A= (q1,8, S{,Ll,El) be the base use case and B = (qg,sg,Szf,Lg,Eg) the referred use

case. C = (q,s°, Sf L, E) is the use case resulting from their composition.

Definition 9. Let A = (q,5°,57,L,E) be a UCA. An ezecution of A is a sequence of
transitions € = qo.q1.92....qn-1 Where g; = (s;,1;, 8i+1), si € Q, and l; € L such that sg = s°,

Vi, 0<i<n-—1, (s;,li,841) € E, and gn_1 = (Sn_1,1n, 8n) € E where s, € ST .

Let ex(A) = {ele is an execution of A} as the set of executions of the UCA. We define
the set ex(A, ep) be the set of executions of A passing by the extension point ep. In order
to define this set formally, we have to distinguish the case of state extension point and the
case of transition extension point. In the case of state extension point,
ex(A, ep) = {e € ex(A)le = go.q1.q2..-gn-113(ep, Ui, si41) or @i = (54,15, ep) }.

It represents the set of executions where the state ep appears as an ingoing state of a tran-

sition, or an outgoing state of a transition. In the case of transition extension point,

109

ex(A, ep) = {e € ez(A)le = go-q1-q2---9n—1|34; = ep}.
It represents the set of executions where ep appears as a transition in the execution.
Finally, we define the set of prefixes Pref(A,ep) (respectively postfixes Post(A,ep))
as the set of prefixes (respectively postfixes) of the executions of the UCA A passing by the

extension point ep. More formally, let e = ¢g.91.93...gn_1 an execution of UCA A.
{
pref = go.q1.---g; if (ep € S and ¢; = (s, li, ep))

pref € Pref(A,ep) = \ pref = qo.qigin if (ep € Sandg; = (ep,li, 5:41))

{ pref =qo.q1....gi—1 if (ep € T and ¢; = ep)

and

post = Git1-.gn-1 if (ep € S and g; = (si, li, ep))
post € Post(A,ep) = { post=g...qu_1 if (ep € S and q; = (ep, i, si41))

Ppost = gj.....qp_1 if (ep € T and g; = ep)

Consequently, an execution e € ex(A,ep) can be written as : e = wu.r where u €
Pref(A,ep) and r € Post(A, ep). Let ex(A) and ex(B) the executions of the UCA A and
B respectively. The following rules define the set of executions of the UCA C, ex(C), in

the case of each operator.

e Case of Include(A, B) and state extension point

110

e € ex(A)\ ex(A,ep)
e € ex(C) 2)

(e € ex(A, ep));
(u,7 | e = u.r where u € Pref(A,ep), r € Post(A,ep));

(es € ex(B))

3)

u.ep.r € ex(C)

The first equation shows that all the executions not passing by the extension point
remain unchanged. The second equation shows that the executions passing by the
extension point in the UCA A are extended with the executions of the UCA B in the

extension point and results in an execution of the UCA C.

e Case of Extend_with(A, B) and state extension point

e € ex(A)
e € ex(C) ()

(e € ex(A,ep));
(u,r | e = u.r where u € Pref(A,ep), r € Post(A,ep));

(es € ex(B))

(®)

u.ep.r € ex(C)

The first equation shows that all the executions (passing or not by the extension point)
remain executions of the UCA C. The second equation shows that the executions
passing by the extension point in the UCA A are extended with the executions of the

UCA B in the extension point and results in an execution of the UCA C.

e Case of Alternative(A, B) and state extension point

111

e € ex(A)
e € ex(C) ©)

(e € ex(A, ep));
(u,r | e = u.r where u € Pref(A,ep), r € Post(A, ep));

(ep € ex(B))
u.ep € ex(C) ™

The first equation shows that all the executions (passing or not by the extension
point) remain executions of the UCA C. The second equation shows that only the
prefixes of the executions passing by the extension point in the UCA A are kept and
they are augmented with the executions of the UCA B in the extension point to
form executions of the UCA C. Alternative(A, B) in an extension point s can be
interpreted as the possible interruption of the execution of A when reaching the state

s and the start of the execution of B.

e Case of Refine(A, B) and transition extension point t = (s,a,s')

e € ex(A) \ ex(A, ep)
e € ex(C) ®)

(e € ex(A,ep));
(u,7 | e = u.t.r where u € Pref(A,t), t.r € Post(A,t));

(ep € ex(B))

(9)

u.ep.r € ex(C)

The first equation shows that all the executions not passing by the extension point

112

transition remain executions of the UCA C. The second equation shows that ¢ is re-
placed by an exccution of the use case B in all the executions passing by the extension

point.

e Case of Interrupt(A, B)

e € ex(A)

e € ex(C) (10)

(e € ex(A));
(Vs € S1,Ve = u.r where u € Pref(A,s), r € Post(A, s));

(ep € ex(B))

(1)

u.ep € ex(C)
The first equation shows that all the executions (passing or not by the extension point)
remain executions of the UCA C. The second equation shows that all the prefixes of
the executions passing by each state in the UCA A are kept and they are augmented
with the executions of the UCA B to form executions of the UCA C. Interrupt(A, B)
can be interpreted as the possible interruption of the execution of A in any state s

and the start of the execution of B.

e Case of Graft(A, B)IN(s1,s2)

e € ex(A)

e € ex(C) (12)

113

(e1 € ex(A, s1)|Fus, r1 | e1 = ur.ry where uy € Pref(A,s1), r1 € Post(A4, sy));
(€2 € ex(A, s2)|Fug, 72 | e2 = ug.7y where ug € Pref(A, ss2), r2 € Post(4, s2));

(es € ex(B))

1
uy.ep.r2 € ex(C) (13)

The first equation shows that all the executions (passing or not by the extension
points) remain executions of the UCA C. The second equation shows that the new
executions of the use case C, that are not executions of the use case A, are formed by
inserting an execution of B between the two extension points. In fact, this rule covers
the cases where the two extension points are connected (the execution of use case A

is passing by both extension points), and not connected.

The rest of the formal definition of the operators with transition extension point are

presented in Appendix B.

7.4 Composition of UCAs in the Case of a Unique Extension

Point

In order to compose UCAs, we advocate an automated and formal mechanism. For this
purpose, we define the notion of label matching composition. The label matching compo-
sition is a composition mechanism of 2 UCAs. Such mechanism will be used later in order

to build the UCA resulting from the evaluation of a composition expression.

Definition 10. We define the label matching based composition of two UCAs
Ur = (S1,5°1,8{, L1, E1) and Uy = (Ss,5%, 58,12, E3) as a UCA U = (S,s°, 5/, L, E)

such that :

114

o S C St x Sy such that all the states of S are reachable from s°,
o s°=(s°,5%) €S,

o 8F C (871 x Sa)U(S) x §75)

o L C(L1ULy),

e ECSxLxS, where E and S are inferred by the following rules:

((s1,82) €5); (31 teLa\lL2) sy € Ey)

: (14)
((s1,82) — (s, 52) € E); ((s7,52) € 5)

(51,52) € 8); (52" 5} € By) 15)
((s1,82) = (51, 8) € E); ((s1,}) € S)

(s1,52) € 8); (1“5 o) € By); (2“0 o) €) (16)

(s1,52) = (54, 54) € B); (s}, 83) € 5)

Rule 14 and Rule 15 state that when a label belongs to only one UCA, then the transition
tagged with this label can be fired. Rule 16 shows that when a label belongs to two UCAs,
these UCAs synchronize to fire simultaneously the transition tagged with this label.

It is important to note that the label matching based composition is very similar to
the well known synchronized parallel composition of labeled transition systems (LTS) [15].
However, our purpose is different from LTS since we aim at merging a UCA with another
one, as it will be presented later. We are dealing with sequential system only.

In addition, the final states of the obtained automata are not necessarily the composite
states of the final states of the original use cases, as it is the case in synchronized parallel
composition. In our case, they represent a subset of the set of the composite states that

contain at least one final state of the base and/or referred UCAs, as mentioned in the

115

Figure 39: Approach Description in the Case of a Unique Extension Point

definition. This subset will be determined according to the semantics of the composition
operator used and the extension point, as we will see later on. The best illustrative example
of our decision is the sequential concatenation of two UCAs A and B, where A is the base
UCA and B is the referred one. The final states of the generated UCA would be the final
states of the referred UCA B. The final states of A are no longer the final states of the

generated overall behavior.

7.4.1 Concept Description

In order to evaluate a composition expression, we propose to derive from the referred use
case and the base use case state based models that handle the semantics of the composition
expression in the extension point. These state based models are called builders. They
reflect in fact the semantics of the composition operators in the extension point. The label
matching mechanism is then used in order to compose these builders and generate the
evaluation behavior of the composition expression (c.f. Figure 39).

Let’s consider the case of the use case A and B in figure 40. The designer wants to
include the behavior of the use case B in the use case A after the first transition a. S/he is
expecting to obtain after composition the UCA that exhibits the trace a.x.y.b.

To derive such behavior automatically, we first derive the builders as shown in figure

116

’: y)l'llustranonof?fﬁncp .

Figure 40: Nlustration of the Composition Concept

40(b). On the one hand, two transitions have been added after the transition a, begin and
end. These transitions reflect the starting point of the insertion of the behavior of the use
case B and the ending point of this insertion, respectively. On the other hand, a transition
is added at the beginning of the use case B labeled with begin and a transition is added at
the end of the UCA B labeled with end. begin and end play the role of a synchronization
labels between the two builders when applying the label matching. The builder generated
from the base use case is called base builder while the builder generated from the referred
use case is called referred builder.

Since we aim to generate automatically the evaluation UCA of a composition expression,
we propose to automate the generation of the base and referred builders. In what follows, we

present the synthesis rules of the builders in the case of the different composition operators.

7.4.2 Base Builder Generation

From a behavioral point of view, use case composition implies that the traces of the referred

UCA are inserted within the trace of the base use case in the extension point with respect

117

to the semantics of the composition operator of the composition expression.

As we may note, it is the structure of the base builder that changes in function of the ex-
tension point and the semantics of the operator. The referred builder is in fact independent
from the composition expression. Since the synthesis rules of base builders depend on the
operator as well as the extension point, Include, Extend_ with and Alternative require the
distinction of nine templates. They are generated depending on the qualifier used with the
operator and the type of extension point (“before a transition”, “after a transition”, and
“in a state”). We define a set of synthesis rules for each. Refine operator is only applied
in the case of transition extension point. Refine before a transition or after a transition
is equivalent since the transition itself is removed. Interrupt is defined for all the states of
the base use case. Graft builders are defined in the case of states and transitions.

Let’s consider the synthesis rules of some builders:

e Base builder of Eztend_with operator and state extension point

Let
Z := Extend with(X,Y) IN {s}

be the composition expression, where s is a constant that represents the state ex-
tension point and X = (9,s°, 87 L, E) is the base use case. The base builder

Xp =(Q,q°% Q7, L U {begin, end}, T) generated from X is defined as follows:

{9, 4}=Q\S a7)

gr=gr¢ %5 (18)

118

(0,4} =Q\S);(¢ 4 ¢ €T)

a=sruy o)
=50
(x5 2 €E); (z#)
zba el
(e, 4} =Q\ 9);

(Bq - ¢’ € T suchthat a € LU {begin, end});

(Bq = q € T suchthat a € LU {begin, end})

(s qeT) (¢ ™ ¢ eT)

({9:4'} =@\ S);
(s 2 2’ € E);

@254 eT)

(s> e€T)(d o' eT)

119

(19)

(20)

2y

(22)

(23)

Rule 17 defines the set of the states of the builder UCA. ¢ and ¢/ are new states added
in order to specify the transitions labeled with begin and end. Rule 18 defines the
set of final states of the generated base builder, which represents the same set of final
states of the base UCA if the extension point is not one of the final states of the UCA.
Rule 19 defines the set of final states of the generated base builder in the opposite
case (s is a final state of the UCA). Tt shows that the extension point of the obtained
builder as well as the added state ¢’ belong to the set of final states. Rule 20 defines
the initial state of the base builder as the initial state of the base use case. Rule 21

shows that all the transitions that are not outgoing from s are labeled with the same

Legend

@ Initial State
@ Final State

Added States or Transitions

Use Case X Base builder ~ Z:=Extend_with (X,Y) IN{x1}

Figure 41: Base Builder for Extend_ with Operator and State Extension Point

label in the base UCA. Rule 22 demonstrates that transitions labeled with begin and
end are added in the extension point s. Finally, rule 23 shows that all the outgoing
transitions of the extension point s are duplicated in order to handle the resumption

of the base UCA after the insertion of the behavior of the referred UCA.

Figure 41 (b) gives an example of such a base builder generated from the UCA in
Figure 41 (a). Y represents the referred UCA. The rules of synthesis of its builder are
explained in the next section. x; is the extension point. The generation of the base
builder is independent from the referred use case. Dashed lines indicate additional
transitions and states we added to the structure of the base UCA in order to handle
the semantics of the operator. We note that b; and by are two additional states needed

to draw transitions labeled with begin and end.

Base builder of Include operator and a transition extension point with BEFORE
qualifier

Let

Z = Include(X,Y) BEFORE {t = (s1,a,52)}

120

be the composition expression, where ¢ is a constant that represents the transition
extension point and X = (S,s°, S/, L, E) the base UCA. The base builder X; =

(Q,4°,Q7, L U {begin, end}, T generated from X is defined as follows :

wa}=Q\s 24
oT= 57 (25)
(x L &' € E where (z,1,2') # t)
: (26)
(x=>a2€T)
(a4} = Q\S); (51 5 55 € E); (¢ X q ¢ T)
(27)

(5120 geT); (¢ 2 ¢ €T); (¢ < s0€T)

Rule 24 defines the set of the states of the builder UCA. ¢q and ¢ are two new states
added to the base builder in order to specify the transitions labeled with f;(begin)
and fi(end). Rule 25 defines the set of final states of the generated base builder. Rule
26 shows that all the transitions other than transition (s, a, s2) remain unchanged in
the i);lilder. And finally Rule 27 states that the transition (s1,a,s2) is preceded by
the new transitions labeled with begin and end that are needed to match the referred

builder transitions.

Figure 42 gives an example of such a base builder generated from the UCA in Figure
41 (a). BEFORE {t = (x1,a,72)} is the extension point. b; and by are the two

additional states needed to draw the transitions labeled with begin and end.

¢ Base builder of Alternative operator and a transition extension point with AFTER

qualifier

121

s N
Base builder Z:=Include (X,Y)BEFORE {t=(x1,a,x2)}

Figure 42: Base Builder in the Case of Include Operator and a Transition Extension Point
with BEFORE Qualifier

Let

Z = Alternative(X,Y) AFTER {t = (s1,a,52)}

be the composition expression where t is a constant that represents the transition
extension point and X = (9,s°,57 L, E) is the base use case. The base builder

Xy = (Q,¢% Q7, L U {begin, end}, T) is generated as follows:

{0.4,9"} =Q\ S (28)

({a,d,0°} = Q\ 9); (s1 25 g e T);
(@2 eT); (d ¢ €T) »
Q@ =STUu{a)) (29)

(z L &' € E where (z,1,z') #1)
(30)

(m—l>x’€T)

122

(g0} =Q\S); (s1 > 52 € B); (¢ "&9 g2 1)

(31)

begin

(s1 2 80€T); (51 > q€eT); (¢ 25 ¢ €T);
(qlﬂqneT)

Rule 28 defines the set of the states of the builder UCA. q, ¢/, and ¢” are three
new states added to the base builder in order to specify the transitions labeled with
begin and end. Rule 29 defines the set of final states of the generated base builder
as the set of final state of the base use case and the added state ¢”. This is due to
the semantics of Alternative since there is no resumption to the base use case after
executing the behavior of the referred one. Rule 30 shows that all the transitions
other than transition (s;,a,s2) remain unchanged in the builder. And finally Rule
31 states that the transition (si,a, sg) is followed by the new transitions labeled with

begin and end that are needed to match the referred builder transitions.

Figure 43 gives an example of such a base builder generated from the UCA in Figure 41
(a). AFTER{t = (z1,a,x2)} is the extension point. by, by, and b are the additional

states needed to draw the transitions labeled with begin and end.

~
Base builder Z:=Alternative(X,Y) AFTER {1=(x1,ax2)}

Figure 43: Basc Builder in the Case of Alternative Operator and a Transition Extension
Point with AFTER Qualifier

123

7.4.3 Referred UCA Builder Synthesis

We recall that the synthesis of the referred builder is independent of the operator and
the extension point. Each referred builder is synthesized from a referred UCA using the
following rules. Let A = (S, s%, S/, L, E) be the referred use case. The referred builder X,

is a use case UCA X, = (Q,q° Q7, L U {begin, end}, T) such that:

W=q\s)
{a} =Q\S
@ =) (0= (@) (33)
{Z} = Q\S; (34)
(g =5 50 ¢ T)
L
s —: seF (35)
r—2eT
(g} =Q\S); (se8)) (36)
’ (s end geT)

Rule 32 defines the set of states of the referred builder as the set of states of the referred
use case increased with a new state ¢. Rule 33 defines the initial and the final states of the
referred builder as the added state g. According to rule 34 , a transition is specified from the
initial state of the builder to the corresponding state of the initial state of the referred use
case clone. This transition is labeled with begin. Rule 35 implies that the builder evolves
as the use case. Finally, rule 36 reflects that all the final states of the referred use case clone
transitioned to the unique final state of the builder ¢ with the label end. Figure 55 shows

the referred builder gencrated from a referred use case the presented rules.

124

(@)
Legend

o)
Initial State
Final State

Figure 44: Referred Builder Example

7.4.4 Label Matching Composition and the evaluation UCA of the com-

position expression generation

When builders are generated, the label matching composition is applied. It results on a

new UCA where:

e The final states are not yet defined. According to the definition of label matching, the
final states are a subset of the composite states labeled with one of the final states of
the base or/and referred UCA. They have to be defined more specifically according

to the composition expression from where the UCA is resulting.

e Some transitions are labeled with begin and end. These transitions have to be removed

because they do not belong to the set of labels of the two original UCAs.

Final State Definition

Let’s consider the case of the two UCAs in Figure 45. From each use case, we have generated
the corresponding builder according to the semantics of Include after the transition (1, a, 2).
The label matching application gives the UCA in Figure 46. In the UCA, we highlighted

the composite states that are labeled with one of the final states of the base or the referred

125

Include(UC, UC,) AFTER {(1,8,2)}

Figure 45: Builder Generations Example

use case, namely states 6, 7, 10, 11, 14, and 15.

As we may note, considering the state 6 and 7 as final states of the resulting UCA does
not meet the semantics of Include. In fact, when including a behavior within another, the
final states of the resulting behavior have to remain the same final states of the base use
case. The trace a.begin.z.y.z cannot be considered as a trace of the new behavior since the
base behavior is not yet finished. Consequently, only the states 10, 11, 14, and 15 could be
considered as final states of the new behavior. They represent the set of composite states
that contain a final state of the base UCA.

Let’s define the rules of determining the final states of the resulting UCA according to
the composition expression.

Let S7 the set of final states of the resulting UCA from label matching D = ($,s% S/, L;U
L2 U {begin,end}, E). Let A; and As be the base and the referred use cases respectively.

The final states are defined with respect to the composition operator specified between A;

126

7 end

Label Matching

Bave Bailder

Figure 46: Label Matching Result from Builders in Figure 45

and Az and the extension point. We distinguish four cases:

1. Include, Graft, and Refine composition operators:

'The set of final states of the new use case represents all the states labeled by one of

the final states of the base use case, which are the final state of the base builder.

((s1,82) € S); (51 € S{)

((s1,52) € 57) (37)

Figure 47 illustrates the case of Include operator. (a) shows the use cases to compose

as well as the extension point. State 3 represent a final state and the extension point.

Eztend with composition operator: case of none of the final states of the
base use case is an extension point:
The set of final states of the new use case represents all the states labeled by the final

states of the base use case, which are the final states of the base builder.

((s1,52) € S); (s1 €)

f
(sr.s) €8y (P #51) (38)

127

UseCase Y

Z:=Incinde €X,Y) T {3} Builders Label Matching Result

] &) ©

Figure 47: Example of final state Determination in the case of Include and one of the final
states of the base use case is an extension point

3. Eztend_with composition operator and the extension point is a final state
of the base use case
This implies that the extension point is also a final state of the resulting UCA aug-
mented by the final states of the referred UCA. This is reflected in the construction of
the base builder. Consequently, the set of final states of the base use case are different
from the final state of its builder. Hence, we will be using the set of final states of

the generated base builder in order to determine the set of final states of the obtained

UCA.

Let By = (Ql,q(l),Q{ ,L1,T1), base builder generated from the base use case. Let

By = (Q2,43, Qg ,L2,T5) is the referred builder generated from the referred use case.

((s1,52) € 8); (51 € QF); (52 € QF)

((51,52) € S7) (ep € 57) (39)

The set of final states of the new use case represents all the states labeled by the final

states of the base builder and final state of the referred builder.

128

Figure 48 illustrates such case. (a) shows the use cases to compose as well as the
extension point. (b) shows the generated base and referred builders. (c) shows the

intermediate use case after determining the final states.

UseCase Y

Z:= Extend_with (X,Y) In {3} Builders Label Matching resait

{2y ®) fc)

Figure 48: Final State Determination in the Case of Extend_with and a Final State Exten-
sion Point

4. When Alternative operator:
Let B, = (Ql,q?,Q{,Ll,Tl) be the base builder and By = (Qg,qg,Qg,Lg,Tg) be the

referred builder. Therefore, the set of the final states in this case follows the rule:

((s1,52) € 8); (s1 € QF U {ep}); (52 € QF)
((31732) € Sf)

(40)

Figure 49 shows an example where the extension point is a final state. We notice that
the final states are the composite states formed by the final states of the base use case

builders and the final states of the referred use case builders (3, ¢),(4,¢) and (¢, q).

Figure 50 shows an example where the extension point is not a final state. We notice
that the final states are those labeled by the final state of the referred use case, as it
is the case of state (2, ¢), and the states labeled by the final state of the referred and

base use case builder, as it is the case of state (3,q) and (4, q).

129

i

Use Case Y
Z:= Altemative (X,Y) In §3} Builders Label Matching Result
() by fe}

Figure 49: Case of Alternative Operator with a Final State Extension Point

N

b

Use Case X

l b
Use Case ¥ Ve
Z:= Altermative (X.Y) In {2} Builders Label Matching Result
{a)) e}

Figure 50: Case of Alternative Operator without a Final State Extension Point
begin and end Transition Removal

After determining the final states of the resulting UCA from label matching, we still need
to process the UCA in order to remove the begin and end transitions. These transitions
are added for composition purpose but they were not specified in the original behavior of
the base and referred use cases. To do so, we propose to consider them as e-transitions,
and remove them with the e-transition removal algorithm in [45]. The algorithm generates
a trace equivalent automaton to the one obtained by label matching. This UCA is the

evaluation UCA of the composition expression. Figure 51 shows the resulting algorithm

130

after the final state determination and the begin and end transitions removal.

Figure 51: UCA Generated from the Label Matching in Figure 46

7.5 Generalization of the Composition Approach in the Case

of Multiple Extension Points

When the extension point set is not a singleton, the composition of two UCAs, as specified
by the expression, is done in each extension point (state or transition). This means inserting
the referred use case in each of the extension points. Figure 52 shows the expected behavior
from such composition. Since we have two extension points, state 1 and state 2, we expect to
insert the behavior of the referred UCA after state 1 and after state 2, without introducing
any implied scenarios. The trace d.e.a.d.e.b is the only accepted trace that should be
generated, as shown in Figure 52 (a). In contrast, deriving the UCA in Figure 52 (b) is not
expected. Despite the fact that this UCA exhibits the desired behavior d.e.a.d.e.b, it also
introduces implied scenarios such as d.e.a.d.e.a.d.e.b.

In order to avoid such implied scenarios, we propose to insert a copy of the referred use

case in each of the extension points. For this reason, we define the notion of use case clone.

131

D

o
{ ™
LA

@O
o =

WPV
a

O

Use Case Y

Z:= Include (X,Y) In {1,2} (a) Expected Behavior {b) Non Expected Behavior
.

Figure 52: Expected Behavior in the Case of Multiple Extension Points

A clone of a use case is a copy of that use case that exhibits the same structure but where
the transitions are relabeled according to a renaming function so that the set of labels of
the use case and its clone are disjoint. Each clone is in fact inserted in a distinct extension
point.

More formally, a clone of a UCA is defined as follows:

Definition 11. Let X = (8,s%, 5/, L, E) a UCA. The clone of X with respect to a renaming

function rename is a UCA X' = (S,8°,87, L', E') such that :
e LNL =90

o Ve = (s1,l,52) € E <= 3¢’ = (s1,rename(l), s2) € E'

7.5.1 Composition Description when Multiple Extension Points

In order to evaluate a UCA expression, there exists two alternatives. The first is to per-
form the composition in an incremental manner. This means that we first compose the two

UCAs in one extension point. Then, the resulting UCA from the first iteration is used for

132

T
begin
end
Use Case X 2 a
129
) '\2~"‘
b begin
d
@ end
b
)
)
Use Case Y %‘
Z:= Include (X,Y) In {1,2} (a) Base Builders

Figure 53: Base Builders in the Case of Multiple Extension Points

composition in another extension point and so on, until all the extension points have been
considered. This approach leads to the problem of state traceability, since the resulting
states from the first iteration are no longer the states present in the base use case. The
second solution generates builders that take into account the semantics of the composi-
tion expression on the different extension points and then derive, by composition, the new
behavior of the composition expression.

The fact that we have multiple extension points leads to the generation of more that
two builders. Each builder reflects the semantics of the composition operator at a given
extension point. Hence, as shown in Figure53, we have to generate two base builders: one
in state 1 and one in state 2. In each extension point, we insert a clone of the referred use
case. Hence, we end up with four builders that are composed in a further step.

In a first step, as shown in Figure 54, a set of referred use case clones are generated
by a label renaming mapping procedure. Each clone will be inserted in an extension point

of the base use case. Then, a set of builders is generated from both the clones of the

133

X Y Automated Composition
@ B T T TR T T
H Referred UCA Clones " N
Composition expression | of Generation S Builders Generation
—_——]
: l
H Label Matching
N Composition
:
z H
1
. Label Recoverin, Intermediate UCA
newUCA ! g D Generation
'

Figure 54: Composition Overview in the Case of Multiple Extension Points

referred use case and the base use case. They are synthesized automatically and handle the
semantics of the operator used in the composition expression. These builders are composed,
which results in a new state based model from which we extract an intermediate use case
by determining the set of its final states. This set depends on the final states of the base
and referred builders. The use case is qualified as intermediate because some of its label
are obtained by cloning (renaming of the labels). The new behavior from the expression

valuation is obtained by recovering the original labeling of the referred use case.

7.5.2 Clone Generation

Clones of a UCA are generated using a renaming function for re-labeling the transition
of the original UCA. In fact, for each extension point ep € EP, where EP is the set of
extension points, a clone of the referred use case must be generated for two reasons: (1) fo
differentiate clones during the label matching and hence avoid deadlock caused by common
labels, and (2) to identify the starting and the ending locations of the insertion of the
referred use case clone in the cxtension points.

In order to automate the synthesis of the clone UCA, we define a renaming function that

modifies the labeling of the UCA. It makes use of the extension point (state or transition)

134

where the clone will be considered for composition. Let 4; = (81,301,5{ , L1, E1) and
Az = (82,8%,875, Ly, E3) be two UCAs such that A; is the base use case and As the
referred one. Let EP be the set of extension points. The renaming function for an extension

point ep € EP is:

fep :L2 U {begin, end} — LiF U {begine,, endep} (41)
VI € Ly, fep(l) = lep (42)
Jep(begin) = begine, (43)
Jep(end) = end,,, (44)

The generated clone of UCA Ay with the renaming function f., is the UCA A =
(S2,8%, 8%, LY, ESP). Observe that only LSP and ESP are not the same as in the original
use case.

We have already defined the mechanism of label matching in the case of two UCAs.

However, with multiple extension points, we end up with n UCAs to compose.

Definition 12. We define the label matching based composition of n UCAs

U; = (Si,s"i,Sf,Li,Ei),i =1..n as an UCEA U = (S,s°, 57, L, E) such that :
e §C 81 x 82 x ... xSy such that all the states of S are reachable from s°,

o %= (5%,8%,..,8%) €S,

ST C (871 % Sy x oo x Sp) U (81 x 83 x . x 8,) U(S) x Sz % ... x $7})

LC(L1ULyU...UL,),

e ECSxLxS, where E and S are inferred by the following rule:

135

((s1,82,-..,8n) € S);

(si - s € Eili € J where J = {i € {1,2,..,n}|s; — s} € E;})

(45)
((s1, 82, -+, 5n) LR (81, 85, ..., 8'n) € E|(s; = ssifi ¢ J));

((s}, 8%, -, Sp) € 5)
Rule 45 states that when a label belongs to a single UCA, then only this UCA may fire

the transition. However, when a label belongs to more than one UCA, then these UCA

transitions are fired simultaneously.

7.5.3 Base UCA Builder Synthesis

For each ep € EP, we construct a base builder from the use case A; with respect to the
renaming function f.,. The synthesized base builder is a UCA A; = (Sl,sol,S{ , L U
{fep(begin), fep(end)}, EiP) that reflects the semantics of the composition operator as well
as the extension point ep. The labels of the base use case are not renamed in the base
builder, only two labels fc,(begin) and f.,(end) are added which serve as the common label
indicating the start and the end of the insertion of the referred use case clone within the
base one.

In Appendix C, we present three tables that cover the different synthesis rules for each
composition operator. Table 6 contains the synthesis rules for the builders on extension
points specified as states. Table 7 presents the synthesis rules when the BEFORE qualifier
is used with a transition extension point. The synthesis rules of base builders using an

AFTER qualifier with a transition extension point are presented in Table 8.

136

(a) (b)

Figure 55: Example of Referred Builder

Let Agf one = (52, 99,875, L3P, E5P) be the UCA of the referred use case clone synthe-
sized from Ay using the renaming function f.,. The referred builder AP of with the same
renaming fep is a use case UCA AF = (Sy, 5%, 575, LY U { fep(begin), fop(end)}, ESP) that
follows the synthesis rules 32, 33, 34, 35, 36. Only the labels begin and end are replaced
by fep(begin) and fep(end). Figure 55 (a) illustrates a clone of a referred use case with a
renaming function fs and (b) illustrates an example of a synthesized referred builder using
these rules.

We note that in the case of multiple extension points, each base builder has its corre-
spondent referred builder generated from the refereed use case clone as illustrated in Figure
56. The renaming function fe, builds the link between the base and referred builders while

applying the label matching composition.

7.5.4 Use Case Generation

When builders are synthesized, we apply the matching label composition to generate an
intermediate UCA. During this label matching, none of the labels of the referred builders

will match together because of the different labeling we impose on the clone generation step.

137

ep, ep, Ce ep,

Renaming Function Renaming Function Renaming Function

—& —

used for used for used for

!p) (begin)and !,, | (end1 Referred Use case g’p 2(begin)and gp z(end Referred Use case gpk(begin)and efv . (end Referved Use case

Caleulation Clone Generation Calculation Clone Generation Calcutation Clone Generation
Base Builder Referred builder Base Builder Referred builder Base Builder Referred builder
Generation in ep} Cloned with fep‘ Generation in ep2 Cloned with fep2 Generation in epk | | Cloned with fopk

Pa— /

Figure 56: Composition with Multiple Extension Points

In addition, referred and base builders have to match only on f.,(begin) and f.,(end) for
an extension point ep. Hence, we assume that L) N (UvepeppLep) =0 .

The resulting automaton still does not represent the final use case since some of its
transitions are labeled by fc,(begin) and fep(end), where ep € EP. These transitions
cannot be removed by a simple state merging. This may threaten the assumption that
our composition approach has no implied scenario generation {only complete traces of the
referred use case are inserted in the extension point of the base use case). Hence, we
consider them as e—transitions and we later remove them. An example of a synthesized
UCA representing the UCA after e-transition removal is illustrated in step (4) of Figure 57.

By recovering the original labeling of the referred use case, the final use case would
be retained. Let A4; = (51,59, S{,Ll,El) be the base use case and {A;Zone,ep € EP}
the set of the referred use case clones where EP is the set of extension points. Let C =
(Q,¢° Q7 , L, U(UepE gp L), T) be the intermediate generated use case. The obtained use
case is intermediate since it still holds the renaming of labels used to generate the different

clones of the referred use case. Consequently, we have to restore the original labeling to

138

obtain the final use case. For this purpose, we define a renaming function ¢ such that:

Gep IL] U (UepeEPL;p) - L1 U L2 (46)
Vi€ Ly, gep(l) =1 (47)
Vi€ L¥ ep € EP,g(fop)(1) =1 (48)

The label restoration of the intermediate use case results in a new use case as shown in
step (5) of Figure 57.

An example of the overall process of the composition is shown in Fig. 7. It addresses
the case of composition in multiple extension points. An example of the overall process of
the composition is shown in Figure 57. It addresses the case of composition with Include
operator in multiple extension points, state 1 and 2 of the base use case. State 1 is also
an initial state of the base use case. Two clones of the referred use case are generated
using a renaming function f; and f; respectively. As a third step, the different builders are
generated. We notice that the initial state of the first builder is different from the initial
state of the base use case. This is due to the fact that the extension point is an initial state
of the base use case. In the fourth step, we have applied the label matching composition as
well as the final state determination. The transition removal is achieved in the fifth step.

And finally, we have recovered the original labeling of the referred use case in the sixth step.

7.6 Summary

In this chapter, we have presented a formalization of our composition approach when use

cases are specified as use case automata. We tackled the composition in the case of a unique

139

Use Case X Use Case Y

Generation

@

Transition Removal

(©)

Builder

Generation endl

Base Builder in state 1 Base Builder in state 2
beginl

Clonel Clone2
Z:=Include (X,Y) In {1,2}
(b)
(a)
begin2
€21bbbyl>)
f1 dt
be,y2, 1,105 Label Matchi Referred Builder of Clone] Referred Builder of Clone 2
(<be,y2,1,b>)
et hi 1 endl h end)
(Bey31.6) Eheya.Lb>)
endl end]

Composition

Recovering

(c}

)

Figure 57: Example of Composition in Multiple Extension Points

140

extension point and of multiple extension points. For this purpose, we have presented:

e The formal definition of the use case model.

e The formal definition of the label matching algorithm, which represents the algorithm

of use case composition.

e The formal definition of the composition operators in term of trace composition. And

e The formal definition of the different base builders that represent the semantics of

the composition according to the operator and the extension point, and the referred

builders.

In the next chapter, we present the formalization of our approach in the case of use case

extended automata.

141

Chapter 8

Formalization of the Approach in
the Case of Use Case Extended

Automata

8.1 Introduction

In a conventional FSM, the transition is associated with a set of input Boolean conditions
and a set of output Boolean functions. Such model is not always suitable for the specification
of reactive systems, where conditions have to be verified before firing transitions. In an
EFSM model, the transition can be expressed by an if statement. If trigger conditions are

all satisfied, the transition is fired, performing the specified data operations and bringing
the machine from the current state to the next state.

In this chapter, we apply the approach presented in chapter 6 in the case of a variant of

'Published in [70} and in [72]

142

the extended finite state machine, called Use Case Extended Automaton (UCEA). States of
UCEAs are extended by variables, and transitions are guarded by pre-conditions and have
assignments to update these variables.

Introducing variables allows to fold many transitions into a single transition of the
UCEA. Consequently, requirements represented as UCEA would be more concise and scal-

able. However, it raises two issues:

1. In an ideal situation, use cases are supposed be developed independently. Introducing
variables in the model of use cases implies a decision about the scope of these variables:
should these variables be shared between the set of use cases or defined locally to each

use case.

2. Contrarily to FSMs, a problem of executability may arise with EFSMs. It comes from
the fact that when inserting a behavior in an extension point, we can not predict if

the condition of the execution of that behavior will be satisfied or not.
The remainder of this chapter is organized as follows.

o Section 8.2 presents the formal definitions of the UCEA model and the label matching

based composition of two UCEAs.

o Section 8.3 shows the composition expression syntax adapted to the model of UCEA.

e Section 8.4 describes the formal composition method in the case of unique extension

point.

e Section 8.5 describes the composition appraoch in the case of multiple extension

points.

e Section 8.6 discusses the issue of use case executability.

143

8.2 System Specification Model in the Case of UCEAs

In this section, we present the model of use cases. We also modify the label matching

composition in order to adapt it to the model with variables.

8.2.1 Use Case Model Definition

Finite state machines are not sufficient to represent use cases in a realistic way. They
represent the control part of the system behavior but they don’t handle data. Hence, using
such models, we may end up with non realistic representation of the system. In order
to formally model the system behavior with a high level of expressiveness, we propose to

extend our use case model with variables. Formally, a UCEA is defined as follows:
Definition 13. A UCEA is a 7-tuple (S,s°,587,L,V,I,E) such that:

e S is the set of states,

o

o s is the initial state,

ST C 8 is the set of final states,

e L is the set of labels,

V is the set of variables,

e I CV is the set of input variables;

e EC SxCxLxAxS is the transition relation such that: C groups the set of pre-
conditions on variables and A the set of variable assignments. The pre-condition of a
transition has to be true before the transition is enabled and its variable assignments

play the role of a post-condition

144

The set of input variables represents the variables that can be initialized when inserting
the UCEA into another. A transition (s,c,l,a,s’) € E is also written as s A s e B
As defined in the chapter 4, we define C as a set of (v;#c) where v; € V,¢ € dom(v;),
and # is a binary relation. In contrast, a is defined as a list of assignments that can be
either (v; := v;), (vi := v; op const), or (v; := const), where v; and v; are variables. Once
the system is in s, if the precondition ¢ is true, the transition s obs s’ is fired, and then
the variables are updated by the execution of the assighments in a. The default value of
any variable in V' is null (null denotes the fact that at this stage, the variable is not yet
initialized).

Figure 58 shows a UCEA of authentication to a bank account. We have defined three
variables: pin, check, and v. pin is an integer, check is a Boolean that returns the result
of the pin check, and v is an integer that counts the number of attempts to enter the pin
number. At the beginning of the use case, pin and check are not initialized, while v is set
to 0. The user is allowed to have 3 attempts to login to the system. sg is the initial state of
the UCEA. s4 and s5 are the final states. There is no input variable specified for this use
case.

As mentioned before, when extending the model with variables, decisions about the
scope of these variables have to be made. Consequently, the set of variables V may contain
two types of variables: UCEA wvariables and specification variables. The latter represent
the set of shared variables between all the UCEAs that define the specification, while the
former represents the set of local variables to the UCEA itself. By analogy to programming
language, UCEA variables play the role of local variables while specification variables play

the role of global variables to the program.

145

{{pin= pul).{v =0),check=null]
Ingert Card

Fnter Pinip
{pinc=p; vi=vei]
i

frim=powviy]

Be-enterPin{g Chede Pingd

i3 foheckefaloa ke
[{v<3h, (check=false}] A 73 Y:E 4, (chick=false)]

[{check=true}}

Provess nperation Fake-card

Figure 58: Example of a UCEA

We denote by 3.v a specification variable, where X is the name of the specification, and

by U.v the UCEA variable where U represents the name of the UCEA.
Definition 14. A specification ¥ is a couple (u,v) such that:
o 1t is the set of UCEAs defined by the user (either originally or by composition)

o v the set of specification variables.

8.2.2 Label Matching Based Composition of two UCEAs

In order to handle variables information, the previous definition of label matching has to be
extended. It takes into account the input variables, the set of variables, and the conditions

and assignments used to decorate the use case transitions. The definition is as follows:

Definition 15. Let ¥ = (u, V) be a specification. We define the label matching based com-
position of two UCEAs Uy = (81, %1, S{, Ly, V1, I, Ey) and Us = (Sa, 5%, Szf,LQ, Va, I, E)

where Uy € p, Uz € p, and ViNVa € v as an UCEA U = (8,s°,87, L, V,1,E) such that :

146

o S C Sy x Sy such that all the states of S are reachable from s° in the graph of the

resulting composed UCEA,

ICLUL

LC (Ll ULQ),

V=(WuW),

= (801, 802) S S,

ng_(sfleS'z)U(SlXsz)

e ECSxCxLxAxS,

where E and S are inferred by the following rules:

« X=(uUU,v)

cl,a

((s1,52) € S); (51 228 & € By); (52 2% 8, € By)

((s], 55) € S); ((s1,82) <5 —> (s1,85) € 9)

C, a

((31,82) (S S) (81 — 57 € El) (82 c_a) SI2 ¢ Ez)

(55, 52) € 8); ((51,52) 5 (5}, 52) € S)

cl.a cla ,

((s1,52) € S); (s1 == 51 g E1); (s2 — S5 € E5)

(51, 85) € E); ((51,52) 25 (s1,8)) € §)

(49)

(50)

(51)

Rule (49) states that when the labels, the pre-conditions and the assignments of two

transitions of the UCEAs are the same, these two transitions are merged into a single

transition of the resulting composed UCEA. Otherwise, as stated in rules (50) and (51),

each transition is represented separately in the composed UCEA. The final states of the

resulting UCEA as well as its input set of variables will be determined later on. They

147

depend on the role the composed UCEAs play in the composition expression, as it was the

case of UCAs.

8.3 Composition Expression in the Case of UCEAs

As mentioned earlier, a UCEA composition expression specifies the way a new behavior (a
UCEA) is synthesized by composing two existing UCEAs. The previously defined syntax
for the composition expression is no more sufficient. Conditions on the composition may
be added contrarily to the case of UCAs. In what follows, we will present the syntax of the

composition expressions as well as an overview of the composition in the case of UCEAs.

8.3.1 UCEA Composition Expression Syntax

A UCEA composition expression is formed from six elements: two UCEAs, an extension
point, a composition condition, and an input and output sets of assignment of variables. The
composition condition is a condition that constrains the behavior of the referred use case
when merging the two behaviors. Finally, since we consider that some variables are defined
as local variables in the use case, it seems necessary in some cases to define a correspondence
between the variables of the base and the referred use cases. This is specified within the
UCEA expression in the Input_Var_Assign and the Qutput_Var_Assign fields. The UCEA
composition expression follows the syntax:
Z = Composition_Operator (X,Y) Extension_Point
Composition_Condition

Input_ Var_Assign Output Var_Assign

Z represents the UCEA generated from the evaluation of the composition expression. X

is the base use case and Y is the referred one. Composition_Operator represents one of the

148

previously mentioned composition operators, Include, Extend_with, Alternative, Refine,
Graft, and Interrupt.

Composition_Condition is a user specified condition used when composing the behavior
of the referred use case into the base use case one. This condition follows the syntax of
the pre-condition on variables when specifying the transition relations in any UCEA. It will
constrain thé execution of the referred use case. It may specify conditions on any variables
of the base use case, and/or the system variables of the specification but not on variables
of the referred use case. It is because at that point, the values of the local variables of the
referred use case may be not initialized yet.

Input Var_Assign follows this syntax:

Input Var_Assign := [Input.Var_Ass_Elt]

|Input Var_Ass_Elt :: Input_Var_Assign

H

Input Var_Ass_Elt ::= (Input_var_Referred := var_Base)
|(Input_var_Referred := C)
|(var_Spec := C)

|(Input_var_Referred := var_Spec)

It represents a list of assignments where an input variable of the referred use case is
being assigned a value of one of the variables of the base use case, a constant that belongs
to its domain, or the value of one of the specification variables. The two variables specified
in the assignment have to be of the same type. Only the input variables of the referred
UCEA can be initiated by these assignments. All the other variables are considered as local

to the referred use case and remain unchanged. If no assignment is required during the

149

composition, Input.Var_Assign is set to [].

We remind that for four of the proposed composition operators, namely Include, Extend_with,
Graft, and Refine, the execution flow resumes back to the base use case. Variable assign-
ments are, thus, also needed to update some variables of the base use case. They follow the

syntax:

Output Var_Assign = [Output_Var_Ass_Elt]

|Output.Var_Ass_Elt :: Qutput_Var_Assign

I

Output Var_Ass_Elt := (var_Base := var_Referred)
[(var_Base := C)
|(var_Spec := C)
|(var_Base := var_Spec)

The Output_Var_Assign is a list of assignments where a variable of the base use case
is being assigned a value of one of the variables of the referred use case, a constant that
belongs to its domain, or to the value of one of the specification variables. The two variables
specified in the assignment have to be of the same type. If no assignment is required during
the composition, Qutput_Var_Assign is set to [].

We note that during the specification of the composition expression, either in the input
assignment or in the output assignment, the analyst may specify a new value to a speci-
fication variable. If no assignment is made, and since specification variables play the role
of global variables shared between the different use cases, the referred use case is going to

consider the value of the specification variable in the extension point.

150

Composition

Use Case A Use Case B Use Case A Use Case B Use Case C

(a) Specification Current Increment (b) Specification Next Increment
C:= Include(A,B) IN (2) [e1] [a1] [ad)

Figure 59: System Specification Synthesis: Approach Description

8.3.2 Approach Overview

Let’s consider the example in Figure 59 of composing UCEAs. The modeler starts by
specifying two use cases A and B, as well as a UCEA expression C. C is a use case where
the behavior of the UCEA B is included in the behavior of the UCEA A in state2 with
the composition condition ¢;, the input variable assignment a; and the output variable
assignment ag. The UCEA C that we aim to generate automatically is represented in
Figare 59 (b). In UCEA C, ¢; and a; have to be considered before starting the execution
of the behavior of the referred use case B. In the same way, a4 has to be considered before

resuming back to the execution of the base behavior A.

8.4 UCEA Composition Approach

As explained in the previous chapter, the composition approach consists of three steps:
builders generation, label matching composition, and final states determination and e-
transition removal. In this section, we explain the modifications we have performed to

the formal definition of these steps in order to adapt them to the UCEA model.

151

8.4.1 Builder Generation

For the extension point ep, we construct a base builder from the use case. The synthesized
base builder is an UCEA that reflects the semantics of the composition operator in the

extension point ep.

Base Builder Generation

Let X = (S, s°, Sf LV, I, E) be the base use case of a composition expression. We present
in Appendix the synthesis rules of the base builders. Tables 9, 10, and 11 define the synthesis
rules in the case of state extension point, transition extension point with the qualifiers
BEFORE, and transition extension point with the qualifier AFTER, respectively. Let’s
consider the case of Graft operator with state extension point.
Z = Graft(X,Y) IN {(IN s, IN s3)} Cond_comp Input_assgn Out_assgn

where Input_assgn and Out_assgn are conditions. s; is a constant that represents starting
point of the referred UCEA and s; is the ending point such that s; # ss.

The base builder X, = (Q,q°% Q7, L U {begin, end}, V}, I, T) is derived such that :

{gd=Q\s
=5 (53)
D=5 (54)
(z % o ¢ E) (55)

(x e T)

152

(52)

{g} =@\ 95); (s2€ 9)

(true,end,_O_qit_assign 59 € T) (56)
(g} = Q\8)i (g "B 5 € T); (s1 € 9) &)

Cond_comp,begin, Input_assign

(81 — qe T)
Rule 52 defines the set of states of the base builder as the set of states of the base use

case increased with a state q. Rule 53 defines the final state of the base builder as the
final states of the base use case. Rule 54 defines the initial state of the base builder as the
initial state of the base UCEA. Rule 55 implies that the builder evolves as the use case
for all the transitions. According to Rule 56, a unique transition is specified between the
added state g and the ending state s. This transition is labeled with end and has as post
condition the Qutput_assign specified in the expression. Moreover, Rule 57 shows that a
unique transition is specified between the starting state s; and the additional state q. This
transition is labeled with begin and has as pre-condition the Cond_comp specified in the
expression and as post-condition the Input_assign specified in the expression.

We notice that the set of variables of the generated base builder is obtained by the
union of the set of variable of the base use case and the set of variables of the referred use
case used in the specification of the composition condition, input assignment, and output
assignment.

Figure 60 shows an example of the construction of such builder. We note that vy, v, and
v are the set of variables of the builder. This is due to the fact that the input assignment

affects the value of v to vs, which is a variable of the referred use case Y.

153

| C= GraftfX, 1) IN{s, s, vi>3 [vg:=val 01

Use Case X:
Variables: vi, vz

Baseé Builder:

Variables:vi, vayvy

Input variables: v1, v2
y ’ Input variables; v1; v

Use Case ¥:
Variables: vg
Inpat variables: v3

Figure 60: Base Builder in the Case of UCEA with Graft Operator
Referred Builder Generation

Let X = (5,89 8/, L,V,I,E) the UCEA of the referred use case. The referred builder is a

use case UCEA X, = (Q,q°, @7, LU {begin,end}, V;, I, T) ! such that:

W=a\s (58)
({a} =Q\S)

(Qf =4q); (¢°=19q) (59)

(z % &' € E) (60)

.7l7
(z 5 2 €T)

Cond_comp,begin,input_assign
(pibegin,input-assign o -

(g} =Q\S); (ze &)

true,end,Out_assign
(z ST g e T)

(62)

tCond_comp, Input_assign, and Out_assign used in the synthesis rules are specified in the UCEA com-
position expression.

154

Rule 58 defines the set of states of the referred builder as the set of states of the referred
use case increased with a new state ¢. Rule 59 defines the final state and initial state of the
referred builder as the new added state q. Rule 60 implies that the builder evolves as the
use case. According to Rule 61, a transition is specified from the initial state of the builder
to the corresponding state of the initial state of the referred use case. This transition is
labeled with begin. It has as a pre-condition Cond_Comp as specified in the expression and
as a post-condition In_assign. Finally, Rule 62 reflects that all the final states transitioned
to the unique final state ¢ with the label end and the post-condition Out_assign.

In this case too, the set of variables of the builder is obtained by the union of the set of
variable of the referred use case and the set of variables of the referred use case used in the
specification of the composition condition, input assignment, and output assignment.

Figure 61 presents an example of referred builder generated from a UCEA Y. Any
variable added to the set of variables of the original referred UCEA will be considered as
an input variable of the referred builder. This is due to the semantics of input variables,
variables that are not initialized within the use case itself. In addition, such decision will
not affect the result of the composition because builders are intermediate UCEAs and do
not represent the final behavior of the composition. The input variables of the resulting

behavior will be decided based on the base and referred use cases, not their builders.

8.4.2 Intermediate UCEA Generation

Let A; = (S1,5%, 8], L1, Vi, Ih, E1) and Ay = (S, 3, 84, La, Vi, I, E) be the base and re-
ferred UCEAs, and B; = (Q1, 40, Qf, LiU{begin, end}, Vs, I, T1) and By = (Q3, 43, Q4, LU
{begin, end}, V,, I, T») their respective generated builders. Let C = (@,q°, Qf, LU LyU

{begin,end}, ViU Vs, I, T) the UCEA obtained from the label matching based composition

155

UsaCase X Referred Builder:

Variables: vi,v2 Variables: v1, v3
Input variables: vz, va Tnput variables: vi, vy
Use CaseY;
Varahles: v3

Input vaniables: vy

Figure 61: Example of a Referred Builder in the Case of UCEA and with Graft Operator

of By and B;. Within the label matching based composition, referred and base builders
have to match only on the two labels begin and end because of the assumption L; N Ly = 0.

The final UCEA would contain all traces of the referred use case UCEA within the base
use case UCEA with regard to the specified composition operator and the conditions and
assignments specified in the composition expression. The final UCEA is derived by stating

the set of final states and removing the begin and end transitions.

8.4.3 Final States Determination

The determination of the final states of the UCEA obeys to the same rules we developed
in the case of UCAs. This is due to the fact that variables are used as decoration to the

transitions and do not intervene in the determination of such states.

8.4.4 begin and end Transitions Removal Algorithm

The obtained automaton after determining the final states still contains some ¢—transitions

due to the composition mechanism we proposed. We offer to the modeler the possibility

156

of removing such transitions by post processing the obtained UCEA. We cannot use the
same algorithm used in the case of UCAs. This is due to the fact that e-transitions are now
decorated with conditions and assignments that have to be taken into consideration before
removing the transitions.

We propose a two step approach. In the first step, we remove the pre-conditions and the
post-conditions of the e—transitions by propagating them on some other transitions. In the
second step, we propose to apply on the derived UCEA (with non constrained e—transitions)
the e-transitions removing algorithm in [45].

Within the first step, we start by propagating forward the pre-condition of the e—transitions
in the transitions that are outgoing from the ingoing state of the e—transitions. In contrast,
the propagation of the post-condition is done backward, in the ingoing transitions of the
outgoing state of the e—transitions. To do so without harming the data flow of the UCEA,
we add some states to the UCEA as shown in Figure 62 in order to avoid over-constraining
the obtained behavior. Let’s consider the case of propagating c¢;. ¢; should be verified only
the first time when firing the transition s4 nbige s5, but not after looping and returning back

. s Act,b,
to the state s4. For this reason, we added the state s4; and the transition sq > —"? s.

. . " €0,a,a0 Cs5,€,a5
In the same way, in order to propagate a; in transitions s; ——>= s and s3 =5 $9, We

have to take into account that the assignment a; should be done only in the case of traces

€0,a,20;01
)

passing by state sy;. Hence, we add the state s3; and two transitions s; s91 and

S3 e 821 over constrained by the post-condition of the e—transition a;.
At this level, we can remove the e—transitions with having the behavior in the UCEA in

Figure 62 (c). Due to the fact that pre-conditions have to be propagated forward and post-

conditions have to be propagate backward, it is necessary to verify that the pre-condition

157

(c) a1 Propagation

Figure 62: Constraints Propagation

and the post-condition of any e—transition are independent before processing to this step
(e—transition removal).

However, the algorithm of begin and end transitions Removal cannot be applied in all
cases. There is some restrictions related to the composition itself. In fact, when the outgoing
transition of begin is an initial state of the base use case. Since the assignment specified in
the composition expression has to be verified before starting the behavior of the base use
case, we have no way to propagate backward the input assignment of the begin transition.
In this case, either the modeler is advised in order to keep the begin transition and rename
it with different labeling, or s/he has to change the composition expression with no input
assignment. We believe that choosing one of the solutions is up to the needs of the modeler
and the application. For instance, when the referred use case needs the initialization of
some input variables, the first solution is the only applicable one if the modeler needs to
remove the e—transitions.

We draw the attention that when removing begin or end transitions, we are duplicating

some states and transitions (Figure 63 line(13,23)) . However, we are not duplicating any

158

(1) Input: a UCEA A = (5, s% S7, LU {begin, end},V, I, E) with begin and end transitions
(2) output: a UCEA A’ = (§',s°, 5 L, V,I, E')

(B)Let S'=5;87 =8/ E=E

(4) For each £ = (s1,¢1,8,¢3,82) € E such that a € begin, end do

(5) If a = begin then

(6) If IngoingToState sy # {t} then

(N /* there exists a transition different than t that is an ingoing transition to s */
(8) sy = Duplicate s2

{9) If s, € S/ then

(10) St =87us)

(11) done

(12) S =8"Ush

(13) Reconstitute_IngoingTransitions of sz in s

(14) E’ = E U AddedTransitions — {t}

(15) /* Added transitions for the reconstitution of cycles in s} */

(16) If IngoingT oState s; # () then

(17) /* there exists a transition different than t that is an ingoing transition to sy */
(18) si = Duplicate s;

(19) Ifs: e St then

(20) S = 8'fus)

(21) done

(22) S =8Ud

(23) Reconstitute_IngoingTransitions of sy in s}

(24) E’' = E U AddedTransitions

(25) /* Added transitions for the reconstitution of transitions in s} */
(26) MoveBackward a; in IngoingTransitions s}

(27) done

(28) M oveBackward ay in IngoingTransitions s}

(29) done

(30) If @ = end then

(31) MoveForward ¢; in OutgoingTransitions so

(32) done

(33) E'=E' Ut = (s},true, ¢, true, s2)

(34) done

Figure 63: begin and end Removal Algorithm in the Case of UCEA

159

transition labeled with begin and end. This is due to the composition itself. The outgoing
state of end and the ingoing state of begin are never the same. The first is labeled with
the state of the base builder where we start the insertion of the referred behavior while the
second is labeled with the state of base builder where we finish the insertion of the referred

behavior.

8.5 Application to Multiple Extension Points in the Case of

UCEAs

We presented our approach in the case of a single extension point. However, we can extend
it to consider the case of specifying multiple extension points, as explained in the case of
UCAs. Here again, a pre-processing of the UCEAs has to be made before generating the
builders. This pre-processing generates clones of the UCEAs that will be used to generate

the different builders. In this case, a clone of a UCEA is defined formally as follows:

Definition 16. Let X = (8,5 8/, L,V, 1, E) an UCEA. The clone of X with respect to a

renaming function rename is an UCEA X' = (S,s%, 8/, I/, V', I'| E') such that :
e LNL =0
o Ve = (s1,c1,1,82,¢2) € E, 3e’ = (31, c1,rename(l), ca, 52) € E'
o Vo e V,30' € V'/v' = rename(v)
e Vie 1,3 € I' /i’ = rename(i)

It denotes that a clone of a UCEA is a UCEA that has exactly the same behavior with a

renaming of the labels and the variables, which differ from the definition of clone in the case

160

of UCA. Variables have been renamed because when inserting different clones of the same
UCEA in different extension points, the clones are considered as independent. Renaming
the variables preserve this independence, while in the opposite, values of a variables given

in a clone can be used when executing a second clone.

8.6 Executability of the Resulting UCEA from Composition

When inserting a UCEA in an extension point, there is no guarantee that this UCEA will
be executable in that point. By executable, we mean that all the transitions of the UCEA
are cxecutable. This comes from the fact that the conditions of the UCEA that appear
in the outgoing transitions of the use case initial state may never be true in the extension
point. Mainly, this non execution results from the possible values of the different variables
specified in the base use case when reaching the extension point.

To illustrate this, let’s consider the UCEAs of figure 64. The variable z is an integer.
We note that both UCEAs are executable. By executable, we mean that it exists values of
x where all the transitions of the UCEA are executable. In the first UCEA, = = 0 as input
will lead to the execution of the trace F.G, while z = 3 as input will lead to the execution of
the trace F.H. Hence, we can conclude that the UCEA X is executable. & = 4 as input to
the UCEA Y will lead to the exécution of the trace A.B. Consequently, Y is considered as
executable. However, resulting UCEA from composition is not. This is due to the fact that
the condition > 3 will never be satisfied in state zp. When reaching zo, = will be equal
to 0, 1 or 2. Consequently, the transitions (2,2 > 3, A,true, z4) and (24, true, B, true, zs)
will never be executed.

In our approach of composing, we believe that the resulting UCEA needs verification of

161

| C:= Include(X,Y) IN{x2} [1 111

e CageX

UseCase O

Use-{aseY

Figure 64: Example of a Non-executability of a Resulting UCEA from Composition

its executability. We propose to do it using the model checker. Such verification will help

the analyst in building a more concise specification of the system.

8.7 Summary

In this chapter, we extended our formal and incremental approach for composing different
user requirements expressed as extended finite state automaton. The introduction of vari-
ables in the description of use cases in the form of UCEA provides a concise, expressive,
and scalable use case model. It also allows the generation of a more realistic specification
of the overall system specification.

The variables can be defined either globally to the specification, as specification vari-
ables, or locally to the use cases, as UCEA variables. This distinction between variables

contributes in making easier the task of writing the composition expressions, and allows the

162

reduction of the variables used in the description of the system. By adding another degree
of expressiveness to our approach, we had to redefine the rules of generating builders. In
addition, the composition expression had to manipulate the value passing between the local

variables of the referred and base use cases, respectively.

163

Chapter 9

Use case Modeling And

Composition Tool

9.1 Introduction

In order to validate our approach of composition, a tool has been developed by Siamak Ko-
lahi, a master student at Concordia University, that implements the composition approach
we presented so far. It is a tool for modeling, composing, and verifying use cases. Formal
behaviors are designed through a visual graphical design layer, composed within the com-
position engine, verified on the model checking module and possible violations are parsed
and visualized as a use case trace.

UMACT allows the description of use cases as UCAs or UCEAs. The composition engine
is based on the label matching mechanism we presented. Definition of new behaviors is done
through the specification of composition expressions that are evaluated. The resulting use

case would be added to the existing set of use cases, serving as a new behavior in the system

164

specification. Evaluation of each list of composition expressions forms an increment of the
system specification. Newly generated use cases are subjected to verification within a model
checker that is linked to our tool.

In the first part of this chapter, we will give an overview of the tool, that is completely
described in [55]. In the second part, we will use the tool in the generation of a state-based

specification of the e-purchasing system using the UCA model first, and then using the

UCEA model.

9.2 UMACT Tool Overview

The UMACT tool is implemented in Java and it consists of three layers. Each of the three
steps of modeling, composition and verification is implemented in a certain layer, with
distinct interfaces for future extensions of the platform and features for applying the theory
of approach on real-life specification problems. Figure 65 shows the different layers of the

tool and their components.

Specification Interjoce Composition Engine, §
A - Prapugatos Praensie
Mikipags F
[: 1
1 Mew VA ; Ssns
£ Compinent
Crnpouton
Exprossion:
Ediny -
'y Yerification Interface ;
Liner O LCAProncta i 2 Progurey
Mokl irepeny Pessiumont Faser Buser
R R) B I
+ ‘ SPIN hatesfiace
Statcs St
XML Sctews: [Viotation Trad ? i T
Parer M
™ State Debagore
Drescrmincy e iice Pursicd

Figure 65: Tool Component Architecture [55]

165

9.2.1 Specification Interface

In the first layer, the specification of the requirements of the system in each increment
is edited by the analyst. This includes adding new use cases to the set of existing ones,
specifying the list of new composition expressions to compose new behaviors, editing the
existing use cases and verifying recently created ones during the evolution of the system

requirements specification. The tool interface is shown in Figure 66.

Seah-praduct:

T enlerusarhanie

G > faxiipe™
b atomie, - The list et stalpgsss
resefrseieciad; R
resetieutherveify:) AFESCatte
;gssxnsrmw; «HEO T

<Enalh
*gteley

.
s ¥uervigsioni s Masleckcatdlogus 4

SELECTION

InPRY

Figure 66: UMACT Tool Interface

The graphical view of the automata design component is based on JFLAP [8], a pack-
age of graphical tools which can be used as an aid in learning the basic concepts of Formal
Languages and Automata Theory. JFLAP was customized for our model of use cases. An
XML code is generated from graphical structure for the use in the composition and in the

model checking phases.

166

The tool provides a multi-page editor of the specification layer, offering useful editing
features such as creating automata from a set of words, minimizing created automata, and
behavioral trace highlight for validation of each scenario of the partial requirements. An
automata animator is also provided. It offers an interactive environment for animating the
behavior of the automaton by stepping through certain sequences of actions. These features
help the analyst to visualize more the behavior s/he specified in the different use cases.

A list of composition expressions can be defined interactively through the specification
interface. A generic abstraction of the operators has been implemented which should be
refined and overwritten for each composition semantics. This abstraction provides a com-
mon ground for deriving future user-defined operators with intended customized semantics,
and gives the flexibility for updating the semantics of the existing ones. So far, we have
defined six operators in the tool, named as Include, Extend with, Alternative, Graft,
Interrupt, and Refine. Moreover, the tool provides an XML schema in order to introduce
new builders.

Finally, in order to facilitate the work of the anyalsyt, a coloring feature is implemented
in the tool. When editing the use case, a color is assigned to it that will be used to color its
states. When the use case is used in a composition expression, this color is maintained in
the newly generated behavior. It a way to make the analyst retrieve the base behavior and
the referred behavior in the new one. In addition, this feature cém help in the validation

task. It may help the analyst to retrieve the origin of a non desired behavior.

167

9.2.2 Composition Engine

The steps of the composition in each increment are performed within the composition engine
of the tool. After specifying an increment for requirements specification, the composition
engine is triggered and processes the increment by evaluating the list of composition ex-
pressions.

Each expression is evaluated within an instantiation of an expression evaluator compo-
nent called composer. The semantics of the composition of each expression is implemented
on these composers. This include the generation of the referred and base builders. The
merger component provides the implementation of the merging algorithm based on the
label matching mechanism. The result of the composition of builders is an intermediate
automaton which needs further refinements to form the new partial behavior. The UCA
processor component performs the post processes on the intermediate automaton: the de-
termination of the final states which is done according to the semantics of the composition,
the recovering of transition labels which were renamed during the cloning, and the begin
and end transitions removal. The automaton product of the UCA processor component is
the new model which is to be added to the existing set of use cases and serving as the new

behavioral requirement for the specification.

9.2.3 Model Verification

Verification of behavioral models is achieved with the model checking layer of the UMACT
tool. This interface is deployed for two distinct purpose: verification of model compliance
over temporal properties and specifying the states of the model holding certain properties

for the use as the extension points of the composition.

168

The UMACT has been interfaced with the SPIN model chercker [7] for verifying use
cases. Temporal properties are specified as Linear Temporal Logic (LTL) formalism. As
the first step, the use case is parsed to a proper Promela model for SPIN using the UCA-
Promela parser component. Furthermore, the desired LTL property is specified through a
property manager component and some predefined property templates. The SPIN is then
triggered and the debugger component performs the analysis on the output. When the
property is not verified, the counterexample given by SPIN is parsed back as a trace of the
use case model, and is visualized on the respective use case in the specification layer, giving
the possibility to the analyst to visually track the failure scenario.

Model verification is also used for determining states as extension points for the com-
position expression. Given a specified temporal property, the state determiner component
of the tool determines the set of states holding that property using a surfing algorithm of
checking the model over each state for the property. The state determiner communicates
with the verifier component for each state, and determines if the state satisfies the intended
temporal property, and builds a set of such states of the model. This set would form the
extension points of the expression in the specification interface and would be evaluated in

the composition engine for the builder generation process.

9.3 Traceability

While the two behaviors are composed and a whole new behavior is produced, tracking the
generating behaviors would be a useful feature for further study of the requirements in the
compound models. This feature would specifically be useful for tracking the changes in the

basic requirements and their effect in the compound behavioral requirements.

169

Once a UCA is composed and added to the existing set of UCAs, it becomes a part of
the specification as a new partial requirement of the system. However, this use case is not
a basic one, it results from a composition operation. Accordingly, the set of UCAs in the
specification in each increment can be categorized to two classes of use cases: user-defined
use cases, we call atomic use cases, and the ones composed of others, we call dependent
use cases. The structure of dependent use cases is in fact dependent on their precedences,
which is not the case for atomic use cascs.

Different increments in the specification create a hierarchy of composed use cases, which
are dependent on each other. In fact, each use case in the specification may be composed
of two use cases, each of them in turn may be composed from other use cases. In order to
trace changes in the requirements, it is necessary to take into consideration such dependency.
The tool implements this dependency in a Hierarchical Dependency Chart. The hierarchical
dependency chart is formed in the first increment of composition, and is updated during
each increment. After the evaluation of each composition expression, the new use case is
inserted into the hierarchy, and updated forward and backward.

The hierarchical dependency chart is used in order to change dependent use cases when
one of its depending use cases has been changed. This means that any change in the struc-
ture of a use case through the automata design interface can affect the behavior of all the
forward depending use cases as well. This feature is called forward propagation of change
in the specification. Forward propagation is presented as an optional feature in the tool
which means the analyst can choose to propagate the change, or to destroy the dependency

relationship of the changed use case and have it as an atomic one.

170

9.4 e-Purchasing System Specification in UCA Model

We apply our approach on generating a behavioral model for an e-Purchasing system. We
first modify the specification in order to make it fit the model of use cases we presented in
chapter 7. e-Purchasing systems cover a wide range of use cases representing purchasing
activities. We still focus on use cases that emphasize activities representing the behavior
of the system from the purchaser’s side. Use cases related to other sections such as catalog
maintenance and report managing are not considered.

Let’s consider this informal specification:

e-Purchasing requires a number of activities to be performed. First the buyer has to
select a product. She/he either consults the catalog list or makes a search with the name
of the product in the available catalogs, and then selects the product. After logging in and
placing an order, the customer has to specify the information about the delivery, may print
a quote, and eventually make the payment.

Figure 67 shows some UCAs that represent certain functionalities of the e-Purchasing
system. Each UCA focuses on a single functionality. As it was the case in chapter 5,
Login UCA describes the authentication of the client in order to be able to place an order.
Prod_Select UCA shows the scenarios for choosing a product. Delivery UCA describes
the scenario of entering information about the client address. Order UCA depicts the fact
of placing an order by giving the quantity the client desires as well as the verification of
the availability of this product in the inventory. Printing UCA expresses the printing of a
quote to the client. Finally, Price_Calculation UCA determines the price of the order the
client made.

It is to note that the sets of labels of the different use cases are disjoint. When it is not

171

—
Pricc-questioa

Product-quantity

Vs

search—product select—catalogue

%m:h—process%} (Ctlg«sclect@

view—catalogue

view—list

(List—viewed) CCtlg—viewed)

select—product select—product

Init }

enter—quantity

Quantity—entered | o

choose—-payment—mode

Modc—emere@

enter—payment—info

info-emerca

verify—info

N
Logged—off |
T
enter—user_name .
Printerreadg
Name—entere
(Name-cniereq repare
enter—user—id
. Bill-ready
Pwd—entered) Yerify—
print
verify—database
Bill-printed)
{ Logged-in
Printing
Login
S

(Init

enter—address

Address—entered

choose—delivery—mode

Del-Mode—entered)

enter—date—info

Date—entered)

process—cost

Cost—diplayed

verify—info u
Product-selected add-cost
look—for—product @@ T:ozta: e
Prod-Select Order Delivery

Figure 67: e-Purchasing System UCAs

172

(2ok:for-progiie

et-product-guantity

Figure 68: Prod_Select_1 UCA Figure 69: Order_1 UCA

the case, the use cases are pre-processed in order to make the sets disjoint. After composing,
a recovering of the original labeling is consequently needed. Let’s construct incrementally a
possible overall behavioral UCA of the described e-Purchasing activities. According to the
given informal description, we will proceed to three increments. In the first, we create two

new UCAs: Prod_Select_1 and Order_1 using the following expressions:

Prod_Select_1 := Alternative(Prod_Selection, Login) IN {Prod_Selected} (63)

Order_1 := Include(Order, Price_Calculation) AFTER {t}
(64)
where t = (Init, enter_quantity, quantity_entered)

These two composition expressions form the first increment of the overall system syn-

thesis. We draw the attention to the fact that they are independent. It means that they

173

can be evaluated in any order. Figure 68 shows the generated UCA using the composi-
tion expression 63. ¢; is in fact the state where the login UCA has been inserted with
Alternative semantics. It expresses the fact that, after selecting a product, a user has the
choice to proceed to the login to the system or to reselect another product. We notice that
the final states of the obtained UCA are the union of the final state of the base UCA and
the referred one.

Figure 69 shows the generated UCA using the composition expression 64. It includes
after the first transition the use case Price_Calculation. The final states of the obtained

UCA are those of the base UCA.

P
=4
£
=
o
E
=i
&
o

)
@
0
=]
=]

S

snterdati-info

Figure 70: Order 2 UCA

In the second increment, we generate the UCA that takes into account the customer’s
delivery information before making the payment. We use UCA Order_1. As illustrated in
Figure 70, (¢6, check_price, q7) is the extension point transition of Order_1 UCA where we

want to include Delivery UCA.

174

Order_2 := Include(Order_1, Delivery) AFT ER{(¢6, checkyrice, q7)} (65)

Finally, we generate two UCAs during the third increment, Order_3 and Prod_Select_2.
The first, shown in Figure 71 allows a possible printing of the purchasing quote before
making the payment and the second includes the behavior of Order.3 after the login in

Prod_Select_1.

Order_3 := Extend with(Order_2, Printing) IN {q3} (66)

Prod_Select 2 := Include(Prod_Select_1,Order_3) IN {q4} (67)

Figure 71: Order_3 UCA

Prod_Select_2 models the steps to buy a product. The output of the UMACT tool is
shown in Figure 72. We note that the Prod_Select_2 UCA does not represent a complete
model of the overall system behavior. More increments still have to be made to take into

account other behaviors. We draw the attention that an increment could contain only a set

175

9.5

of expressions that are independent from the constructed UCA in that increment. In fact,

in order to write the composition expression of the UCA Order_3, we need to have Order_2

constructed because of the specification of the extension points.

processcost: \fr;\ add-cost
e

enter-datesnfiy

: 1 o
choose-dalivery-mode \qjj‘ enteraddress

verify-database o enter-guantity N petproduct

Figure 72: Product_Select 2 UCA

e-Purchasing System Specification in the case of UCEAs

Let’s now modify the specification of the e-Purchasing in order to make it more intuitive.

In what follows, we present the same specification of the e-Purchasing using the extended

model with variables (c.f. Figure 73).

We consider four use cases: Prod_Selection, Prod_Availability, Printing, and Exit.

Since we are differentiating between specification variables and UCEA variables, we define

176

S~({Prod Seletion; Prod_Avaitabiy; Printing; Exi, 14},

(50 (5
select-product(select-product(c)
[@d=0)] =)}

P&k

(Id<mll)}
cit-order

E
ex
exie
[(d:

=null),

Tauthorization=te)}
-card
. Prod-Selection- - : aet i S l
}Aﬁ {(databasc_npdated:=true}]
1

[(database_updated:=false)] | [Ad=mil}
updete—inventory

(availsblc_qity <0)

Prod-Availability

[avaitable_grty=q),
{available_gtty — ordered_qty)]

Tlavailible_qtty >=0)]

-

[{ld<>mall),
(l(’mnmg_kdgnujl)]

j Use Case [Variables I Input Variables [
Prod_Selection {quantity, 0
authorization}
Prod_Availability {available_quantity, } {ordered_quantity}
database_updated, ordered_quantity}
Printing {qtty} {qtty}
Exit] 0

Figure 73: Some UCEAs of an e-Purchasing System

a specification variable Id. It defines the identifier of the product the customer has chosen.
The first use case describes the activity of selecting a product from a list of a catalog. The
variable quantity stores the quantity of the product the customer is ordering. authorization

is a Boolean variable which keeps track whether the quantity asked by the customer is

available in the inventory or not.

Prod_Availability UCEA checks for the availability of the product in the inventory.
It has three variables: available_quantity returns the quantity that figures out in the
database, ordered_quantity is a variable that indicates the quantity needed, and finally

database_updated is a Boolean variable that indicates if the quantity in the database has

177

been updated by the new available quantity. Ezit use case specifies the cancellation of the
ordering. The Printing use case prints a quote for the customer. It has one input variable

qtty that indicates the quantity of the product asked by the user.

Yy

[fauthorization:=mull),
(d=rmall),
(quantity;=null)}

[tautherization:=pull),
(1d:=null),
{quantity:=null)]

select-produckc) select-product(c)
fftd= c)] [d=:c)}

{{authorization=true)}

begin
[tordered_quantity:=quantity)]

{a)Prod-Selection builder for Z J {b) Prod—Selection builder for W
<
= S
3
fanthosization:=null), [tid=nuil)] Tanthorization=true)]
(ldz=nolD, 8 segin
Cquantity:=nuli)]
view—cataloged - [qtty=quantity)]
search_again-product D?m,o“m,
(d<>noll))
prepare
=
velzcr—quunmyu)
adi—card [4 quantity:=q)} print
[tauthorization=truc)]
Tlauthorization=truc)]
begin [R) e
[tarry:=quantity)]
{c) Prod-Selection builder for Y {d) Printing Referred Builder
UCEA. Expressions
Z = Include(Prod. Selectian,Prod_Availabz'lity)IN S 1
[(Prod_Availability.ordered_quantity := Prod_Selecti tity)}
[(Prod_Availability.authorization = Prod_Avazlalnhty database-up«iate)]
Y= Extend with(Prod_Selection, Printing) BEFORE

(36, (authorization = true), add_card, true, s7)(Prod_Selection.authorization = true)
[(Printing.qtty := Prod_Selection.quantity)} [}
W= Alternative(Prod_Selection, Exzit) AFTER (Sg,true, select_quantity, (quantity := q), 57) |] 1A

Figure 74: INustration of Base and Referred Builders of the e-Purchasing in the Case of
UCEAs

Figure 74(a) illustrates an example of a synthesized base builder for the use case
Prod_Selection using the expression of Z given in the bottom of the figure 74. Figure

74(b) and (c) shows examples of base builders in the case of Extend_with and Alternative

178

operator, respectively. Figure 74(d) illustrates an example of a synthesized referred builder
for the use case Printing using the expression of Y.
Figure 75 shows the newly generated use case Y after removing the e—transitions. It

can be further used in the description of other UCEA expressions.

{(Id=nuil)}
select-catalogue

[{authorization:=null),
(Id=null),
(quantity:=null)}

view—catalogue

view—list

umk ,4““

select-quantity(q)
ity:=q}, (qtty:=quantity}}

search—again_produ

Hatynul), (authorization=truc),
(1d<>mid)}
prepare

Figure 75: The Derived Y UCEA by composing Prod_Selection and Printing UCEAs

9.5.1 UCEA vs. Specification Variables

While specification variables are shared between UCEAs of the specification, UCEA vari-
ables play the role of local variables to the use case. Despite the dependency the specification
variables create between use cases, they are actually needed in order to reduce the number
of pass of the frequently-used variables throughout several UCEAs. They also permit the
reduction of the total number of variables in the system specification.

As an example, let’s consider the case of e-Purchasing system by the specification of
UCEA variables (no specification variables is defined).

In the first use case, we had to define three variables. prod_Id defines the identifier
of the product the customer has chosen. The variable quantity stores the quantity of the

product the customer is ordering. Finally, authorization is a Boolean variable which keeps

179

= . (£ - fquy<>
{fauthorization:=null), “P""t““-‘d‘"““V [tproduct_d: ';““71 sxir-order [%:ﬂ‘ﬁ-}] (Printing Id<>m|||}]
(product_ld:=null), [* ;
(quentityuntl] print prepare
N exit
view—catatogue

\ / Exit } Printing
[¢product_ld=:id)] {(product_td=id)] b = [idatabase_updated:=true)}
3
inve
ai 2l -

[tavailable_qtty=q),
(available_gtty -= ondercd_qtty)}

search—prodwct

Prod-Selection { Prod-Availability

A

Figure 76: Use Cases of the e-Purchasing System in the Case of Local Variable Specification

| Use Case | Variables | Input Variables |
Prod_Selection {prod_Id, quantity,]
authorization}
Prod_Availability {1d, available_quantity, } {1d, ordered_quantity}
database_updated, ordered_quantity}
Printing {qtty, Printing_Id} {qtty, Printing_Id}
Exit]]

Table 5: UCEA Variables of the e-Purchasing Use Cases

track whether the quantity asked by the customer is available in the inventory or not.
Prod_availability UCEA has four variables: Id represents the identifier of the product
for which availability would be checked, available_quantity returns the quantity that figures
out in the database, ordered_quantity is a variable that indicates the quantity needed, and
finally database_updated is a Boolean variable that indicates if the quantity in the database

has been updated by the new available quantity.

The Printing use case has two input variables, qtty and Printing_Id, that indicate the
identifier and quantity of the product asked by the user, respectively. Hence, in total, we
defined ten UCEA variables against six UCEA variables and one specification variable in

the specification in Figure 76. In order to define the equivalent composition expression of

180

the UCEA Y, we have to write now:

Y :=Ezxtend_with(Prod_Selection, Printing) BEFORE
(s6, (authorization = true), add_card, true, s7)
[(Printing Id := prod_Id), (qtty := quantity)] ([])

This equation passes the values of the product identifier as well as the asked quantity
of the product as Input_Var_Assign. However in the equation of Y in Figure 74 with
specification variables we had to pass only the product quantity asked. Consequently,
the specification variable I'd has made the task easier for the modeler since she/he has to
manage less variable passing and therefore reduced the complexity of writing the appropriate

composition expressions.

9.6 Summary

To validate our approach, we have implemented the UMACT tool. It is a tool for editing
and composing use cases based on the concepts of expressions, label matching, and builders.
In addition, UMACT provides some features that facilitate the process of generating the
system behavioral model. It allows to graphically edit UCAs and UCEAs, to track the
depending UCA (UCEAs), and to reflect changes of a UCA (UCEA) in all of its depending
UCAs (UCEAs)- an especially useful feature for the maintenance of the behavioral model.
This traceability feature is basically allowed because of the incremental nature of the speci-
fication generation. In fact, the order in which the expressions of composition are evaluated
tracks the dependency between the different use cases, an interesting feature in requirements
gathering and analysis.

UMACT has also an interface with the model checker SPIN in order to validate and

181

verify the obtained use cases by composition against their correctness. We used this tool for
the construction of a formal specification of an e-Purchasing system. We have experimented
with the construction of the specification using UCA and UCEA models.

While with UCEAs the use cases were more realistic, variables may complicated the pro-
cess of generating a system specification. First, decision about the type of each variable has
to be made. Second, composition expressions have to specify the assignments between local
variables of the UCEAs. Despite this difficulty, we believe that the obtained specification is

closer to design and can be used for more reliable verification of the system requirements.

182

Chapter 10

Conclusion

As described in section 1.3, this thesis addresses the problem of defining a formal use case
model as well as an automated composition approach that helps the generation of a formal
system specification. In this chapter, we summarize the main contributions of the thesis,

discuss their applicability, and give a list of directions for future research.

10.1 Contributions

We have presented in this thesis many contributions related to the formal composition of

use. cases.

10.1.1 Implicit Composition of Use Cases

In a first contribution, we have tackled the problem of composing use cases using the state

characterization. Use cases are represented as variant of extended finite state machines.
We differentiate between the location variables, used to characterize the states of the use

case, and control variables, which describes the control part of the use cases. The use

183

cases are overlapping. The overlapping parts are merged in the composite automaton.
Contrarily to what exists in the literature, our use case model is expressive. It allows the
description of explicit loops. These loops are protected during the composition in order to
avoid introducing on their bodies implied scenarios that may threaten their overall behavior.

In implicit composition, the modeler needs to have a certain expertise and a deep un-
derstanding of the overall system in order to specify the adequate characterization of the
states in the different use cases. This characterization is in fact crucial in obtaining the right
system behavior. While composing overlapping use cases may help the generation of the
system automaton in certain applications where traces of the overall system are described,
this approach of modeling is against the tendency of separating the different concerns of

the system early in the system lifecycle.

10.1.2 Explicit Composition of Use Cases with Interactions

In a second contribution, we have considered the explicit composition of use cases by means
of interactions. An interaction is an invocation between two use cases.The interactions that
a use case makes with the other use cases in the specification are specified within the use
case itself. When composing, a state based model interpreting the specified interactions
within a use case is generated. The obtained state-based models are then merged together.
In order to avoid implied scenarios, a graph of interactions is generated from the specified
use cases in order to discover interferences. Interferences are non specified interactions
between use cases. When interferences are discovered, control variables are added to the
obtained system state model in order to remove them.

The approach presented has the advantage of helping the separation of concerns. It also

has the advantage of being fully automated and does not introduce any implied scenario

184

in the generated overall system state based model. However, depending on the number
of interferences, it may add a lot of additional variables, which contributes making the
validation and the verification of the behavior harder. In addition, the fact that interactions

are described within the use cases themselves constrains the modeling of the use cases.

10.1.3 Explicit Composition of Use Cases using Composition Expression

In a third contribution, we have proposed a novel approach of use case composition based
on imperative expressions. These expressions are in fact representing the semantics of the
composition operation the analyst wants to perform. Our approach of composition consists
of three main steps. First, the analyst provides a set of use cases where each one defines a
partial system behavior. Then, in an incremental way, the modeler can define new behaviors
using composition expressions. These expressions are evaluated to derive new behaviors.
Each expression specifies the two behaviors to merge, the composition operator, as well as
the extension points. If the model is enriched with variables, conditions and assignments
between variables of different use cases may be defined.

We have presented a formalization of the approach in the case of use cases modeled
as a variant of finite state machines and variant of extended finite state machines. A tool
implementing the approach has been developed. It offers a support that helps the designer
modeling, composing, validating, and verifying use cases expressed as state based models.

The approach has the advantage of being fully automated and incremental -two impor-
tant features in the requirements analysis phase, where the user-needs are prone to change.
The use of composition expressions to define new behaviors makes the task of the modeler
easier since he can experiment with many compositions until reaching the desired behavior.

By construction, the composition does not introduce any implied scenarios, without over

185

constraining the model.

Introducing variables to the model of use cases has added a new expressiveness level.
However, it also made the composition expressions more difficult to write. When experi-
menting with the two models (finite state machines and extended finite state machines) with
the e-Purchasing specification, we had to make decisions about the scope of each variable,
which needs a deep understanding of the requirements. Local variables make the description
of the use cases easier since they can be described independently from each other, however
they complicate the composition expressions. Global variables have to be managed properly
in different use cases since they are shared, however they make easier the definition of the
composition expressions. We believe that a trade off has to be made in order to keep the

composition expressions as intuitive as possible.

10.2 Discussion on Future Work

10.2.1 Application of the Approach in the Case of Statecharts

As presented in this thesis, we have applied our method in the case of finite state machines
and extended finite state machines. State Machine modeling is concerned with modeling the
system which it describes as a collection of discrete sates. The model transitions from one
state to another system state when stimuli are received. However, such a model represents
some limitations such as the complexity of the state diagram and the lack of support of
concurrency. In fact, The complexity of the model increases dramatically as the number of
possible states increases. The state machine model then becomes unreadable and hard to
use. Traditional state machine modeling is based on sequential transitions from one state

to the next. Concurrent systems cannot be modeled in this manner as various aspects of

186

the system may be in different states. Statecharts overcome such limitations.

We plan to extend our approach in order to handle statecharts as use case formal model.
In this way, we allow the description and the verification of the concurrent systems. We
believe that the composition will still be based on imperative expressions. However, the
label matching as well as builders may be revised because systems are no more considered

as sequential.

10.2.2 Use Case Decomposition

Usually, a system is composed of a set of objects and use cases have to show the interactions
among these objects in order to exhibit the expected system behavior. When use cases are
described in a distributed way, the modeler needs to generate an FSM per object.

The FSMs of objects are assumed to be communicating FSMs. Each FSM object is
autonomous and can communicate with other FSMs by means of message exchange. When
an FSM object sends a message to another FSM, the latter is assumed to be ready to receive
this message. The behavior of the overall system is represented by the parallel composition
of the communicating FSMs. The verification will be performed regarding the interactions
of the different communicating FSMs. It will allow the detection of common bugs such
as the unspecified reception, service denial, and deadlocks that may have uncontrolled
consequences on the behavior of the distributed system. When no such bugs are detected,
the design of the system is validated with respect to the set of use cases originally specified
by the modeler (and hence the overall system behavior described by the use case obtained
after applying several composition increments).

As a future direction of our work, we propose to distribute our use cases according to

an architecture. After composing, the generated use case representing the overall system

187

behavior has to be distributed according to the different objects. We propose to verify these
communicating FSMs according to the original non distributed FSMs. Problems related to
the distribution, such as the well known problems of deadlocks and unspecified receptions,
have to be solved in order to obtain an equivalent behavior.

Having an FSM per object gives us the opportunity to link our tool to other modeling
tools such as SDL (Specification and Description Language). SDL has already several tools
that are linked to it. And hence the generated specification can be tested and verified within

them. Moreover, code can be generated.

10.2.3 Approach Application

As a future work, we propose to apply our approach to several areas:

o Application in Aspect Oriented Software Development
In addition to use cases approaches, aspect-oriented software development (AOSD)
may be related to our work. Most of the resecarch done in the area of AOSD has
concentrated on developing methodologies that help the separation of aspects dur-
ing the design and implementation phase. However, the separation of crosscutting
concerns has to be supported across the development lifecycle at different levels of
abstraction. Baniassad and Clarke [16] proposed the Theme approach that supports
aspect-oriented development at the level of requirement and design. The direct map-
ping they are defining between the level of requirement and the level of design allows
the maintenance of the traceability. In addition, the approach is based on the concept
of a Theme which represents a collection of structures and behaviors that represent

one feature. The notion of Themes is loosely similar to the notion of functionalities

188

identified by use cases.

Rashid et al. [84, 83] presented an Aspect-Oriented Requirement Engineering (AORE)
model that supports the definition and composition of aspects through XML schemes.
Similar to our approach, they are composing aspectual and nonaspectual requirements
in order to constrain the behavior of the latter, using composition rules. The require-
ments are defined in a different abstraction level of our use case model. They are using
an XML while we are using a formal model for use case which making the resulting

use case easily validated using any formal validation approach.

As presented in the related work chapter, Arajo et al. [14, 107] presented an ap-
proach that focused on representing aspects during use case modeling. Two different
models are used to describe aspects and nonaspectual scenarios: Interaction Pattern
Specification and UML sequence diagrams. The composition is directed by merging
directives and is done in the state-based model using the algorithms presented in
[110]. Since we have extended the model of use cases with variables, we believe that
our composition mechanism can offer a definition of the semantics of the weaving done

in aspects.

As part of our future work, we are planning to define the semantics of AspectJ [53]
with the operators we have defined since we have extended the model with data.
A mapping between the advice weaving and the operators we are proposing when
extending the model with data has to be developed. The validation of the weaving

will be achieved through the validation of the automaton obtained by composition.

Application in Service Composition

With the growth of Internet, web services have gained a lot of popularity. It is usual

189

that the implementation of a service involves the composition of several other ser-
vices. The validation and the verification of the composed services are mandatory to
understand their exhibited behavior. Models that represent web services and method-
ologies that compose them are needed. In addition, tools that support the verification
of properties to confirm expected results from the viewpoints of the designer are re-
quired. The way of composing web services to generate composite services can be used
in order to generate test cases for the verification of web services composition. Gen-
erating a state based model of the composite web services helps the testing and the
verification of these web services. Patterns of composition in the state based model
can be developed. They should represent the possible interactions between web ser-
vices. We believe that introducing concurrency in the model will help the modeling of
web service interactions. In addition, using variables in the modeling of web services

can model some quality of service metrics.

Application in Program verification

Every program implicitly asserts a theorem to the effect that if certain input con-
ditions are met then the program will do what its specifications says it will. The
ability to prove mathematically that a program correctly implements its specification
is increasingly important in ensuring that high integrity computer-based systems for

security and safety-critical applications perform correctly.

One of the methods used to formally verify software is to map the implementation
level description of the software artifact mechanically to the description language of
an existing verification tool [43]. The application is rewritten to match the input of

a given verification tool. Java Pathfinder tool [6], the Bandera toolset [41], and the

190

FeaVer toolset [44] have been developed in order to verify programs using the SPIN

model checker by generating from a program a SPIN input.

In a similar way, we aim at verifying programs using the composition approach pre-
sented so far. Since our tool is already linked to SPIN, we plan to extend the model
of EFSM in order to be able to define all the entities that a program specifies. With
the existing model, we have defined three type of variables: integer, boolean, and enu-
merations. Using these types, we can verify the call of certain functions. However, we
are not able to handle more complex paradigms of object oriented programming, such
as objects. Extension of the model in order to handle such paradigms is considered

as part of our future work.

191

Appendix A

Equivalence of "BEFORE a state”
and ” AFTER a state” as Extension

Point

We want to show that in our case, ”AFTER a state” and >BEFORE a state” lead to trace
equivalent automata. To do so, we have to prove that the base builders generated in both

cases (c.f. Figure77) are trace equivalent. Let’s consider the case of Include operator.

e ¢)
State s in base builder A1 State s in base builder A2

(State s in Use case A R \ \

3 Y 3
@
\ J (o 2

/I\ /\

Figure 77: Examples of Builders for ’BEFORE s” and "AFTER s”

.

192

Definition 17. Let A = (Q,s% S/, L, T) the base UCA for the two automata builders

generated for state sep. A1 = (Q1, 8%, S{ ,L1,Ty) is the builder automaton generated AFTER

the state sep, whereas:
4 Ql = Q U {Sbs Se}
*s5=35

$f c 8FU{se}

Ly = L U {begin, end}

Ty : Qy x Ly — @y such that:

(51,1, 82) € Ty (82 # Sep) A (51,1, 82) € Th) (68)
V(81 = Sep Al = begin A s3 = sp)) (69)

V(si=sp ANl =endA sg = sp)) (70)

V (51 = 8¢ A (Se, 1, 82) € Th) (71)

(72)

Definition 18. Let A = (Q,s% 57, L,T) the base UCA for the two automata builders
generated for state sep. Az = (Q2, 83, S'g y L2, 1) is the builder automaton generated AFTER
the state scp, whereas:

L4 Q2 = Q) {3b7 Se}

e s)=40
o 8§ c SFU{se}

e Ly = LU {begin, end}

193

o Th: (s x Ly — Q9 such that:

(52,1, 52) € Ty :(52 # Sep) A (51,1, 82) € Ty (73)
V(s1 = sy Al =begin A sy = s¢) (74)
V(s1=8c Al =end A sy = sep) (75)
V (82 = Sep A (Sep, 1, $2) € Th) (76)

You can see these two automata in Figure 77, where A; is the builder automaton after
state s and A, is the same automaton before the state s.

For the language of A, L(A), we define two sets of pref(L) and post(L) to be the set of
prefixes and postfixes of the L(A), respectively. Based on these two sets, we define two other
sets of pref(L.s) and post(L.s) as the set of prefixes and postfixes of the words passing by
the state s. It is clear that for every word w € L(A) passing by a state s, w can be written

w = u.v, u € pref(L.s) and v € post(L.s).

Definition 19. Let w = lp,l1,1s, ... be a word, and L a set of alphabet. The projection of w
onto L, which we denote as wyy, is the result of eliminating from the word w all the elements

li in L. We call wyy, as the free word from the alphabet L.

Definition 20. Let A; and As two automata such that Ly = Ly U {begin, end}, and ey =
41, qn such that q; = (s;,1,s;41). Let Ly, = {begin,end} be an alphabet. Therefore,
e2 = ¢4.99-q),_; € Ex(A2) is called Execution projection equivalent of e;, denoted as

ez = e; if and only if e3 = €1)Lpe-

Literally, es is the same execution of automaton as of e;, removing begin and end labeled

transitions from its relevant word.

194

Definition 21. For two automata A; and Ay, L(A;) is the Language Projection Equivalent
to L(Az) if for every wy € L(A,), there exists wo € L(Az2) such that wy = wy. We denote

itasleLg.

Lemma 1. Let A be the base automaton used to generate the builder, and A, the builder
automaton generated after the state sep, according to Definition 18. The two languages of

L(A) and L(A,) are language projection equivalent.

Proof. First we want to show that for every w; € L(A;), there exists a w € L(A) such that
w = wy.

Suppose wy = u.v such that u € pref (L1.5¢p) and v € post(L1.ep) as S¢p the state of
the composition. We can write w; as wy = uy.(uz.begin.end.vy) vy with (ug2.begin.end.vy)
as the loop passing by state sep, u1,u2,v1, and vy are free of begin and end, and i the
number of iteration of this loop. Therefore we have u;.ug € pref(L;) and ve.v; € post(Ly)
which does not contain transitions labeled as begin and end. We will show that it exists a
w € L(A)such that w = w;. Let e; the execution of wy.

€1 = 0-q1---Gn-(Gnt1---Gm-Qb-Ge-Gm+1---Q1)*-qi41.--gp Where:

db = (sepa beginr Sb)y de — (Sb,e’fld, 36)7 and qi = (Siyli) 3i+1) € Tl,O S] S p

We show ey)y, , projection of e; onto the alphabet L = {begin, end} as follow.
Since uy,uz, vy, and vy are free of alphabet Laccording to Definition 18 ,
€L = 90-q1---Gn-(@n+1--Gm-Qpy1--@) - Q41---Gp Where @iy = (Sepslm,5me1) € T and
¢ = (8i,1i,5041) € T,0 < i # (m + 1) < p Therefore, we have
w=lo,l1,.;lny (ot 15 s by bny 1, -, 1), g1, -, Iy € L(A) such that :

w = uwy

195

Now we want to reversely show that for every w € L(A), there exists a w; € L(A;)
such that w = w; , or in other word, for every w € L(A) there exist u € pref(L), v €
post(L), gy = (sep, begin, sp) € Ti, and g = (s, begin, s.) € Ty such that w = w.v, wy =
u.begin.end.v € L{A;) , and w; = w.

Suppose w = g1.93...q,.

For every ¢; = (si,l;, siy1 € T), there is two cases. If s; # Sep, we have u = w € pref(L)
and v = @ € post(L) in which obviously w; = w.v € L(A4;). Otherwise we should have
had git1 = (Sep,!';si41) € T and therefore since g, = (sp,end,s.) € T, we can have
u =lly..lep € pref(L), and v = l;.1l;41....1, € post(L) which gives us w; = u.begin.end.v €

L(Ay). 0

Lemma 2. Let A be the base automaton used to generate the builder, and A the builder
automaton generated before the state sep, according to Definition 17. The two languages of

L(A) and L(Aj3) are language projection equivalent.
Proof. Same proof as the previous lemma. O

Theorem 1. Let Ay and Az the two base builders generated after and before the state Sep
of the base use case A according to Definition 18 and Definition 17, respectively. L(A;) and

L{As) are eguivalent.

Proof. First we show that L(A;) C L(As).
Let wy € L(A;) such that wy = uy.(uz.begin.end.vy) vy in which uy.ug € pref(Ly.sep)
and v2.v1 € post(L;.sep) are free prefix and postfixes of the word w; on the alphabet

{begin, end}, and the i is the number of iteration of the loop passing the state s¢,. Therefore,

196

from the Lemma 1, we know that there exist w = uy.(ug.v9)".u2 € L(a) such that w = w;.
Having w € L(A), from Lemma 2, we conclude that there exist wy = uy.(ug.begin.end.vp) vy €
L(A2) such that u).uy € pref(Ly.sep) and v2.v1 € post(Ly.sep), in which w = ws .
Accordingly, we can show that L(Ay) C L(Ay). Similarly, for every wy € L(A2) ac-
cording to Lemma 2, there exist such w € L(A) that w = we. And from w € L(A) and
according to Lemma 1, we conclude that there exists wy € L(A;) such that w; = w .

From L(Az) € L(A;) and L(A,) C L(Az), we have Ly = Ly . O

We have proved the trace equivalent in the case of Include operator. Same approach is

applied to prove the case of Alternative and extend_with operators.

197

Appendix B

Formal Definition of the

Composition Operator

¢ Case of Include(A, B) and ”after transition” extension point

e € ex(A)\ ex(A, ep)
e € ex(C) (77)

(e € ex(A, ep));

(u,r | e = u.ep.r where u € Pref(A,ep), ep.r € Post(A, ep));

(ey € ex(B))
u.ep.ep.r € ex(C) (78)

* Case of Include(A, B) and "before transition” extension point

198

e € ex(A) \ ex(A,ep)
e € ex(C)

(e € ex(4, ep));
(u,r | e = u.ep.r where u € Pref(A, ep), ep.r € Post(A, ep));

(e € ex(B))

u.ep.ep.r € ex(C)

e Case of Extend with(A, B) and ”after transition” extension point

e € ex(A)
e € ex(C)

(e € ex(A, ep));
(u,7 | e = u.ep.r where u € Pref(A,ep), ep.r € Post(A,ep));

(ep € ex(B))

u.ep.ep.r € ex(C)

e Case of Extend with(A, B) and ”before transition” extension point

e € ex(A)
e € ex(C)

(e € ex(A,ep));
(u,7 | e = w.ep.r where u € Pref(A,ep), ep.r € Post(A, ep));

(es € ex(B))

u.ep.ep.r € ex(C)

o Case of Alternative(A, B) and ”after transition” extension point

199

(79)

(80)

(81)

(82)

(83)

(84)

e € ex(A)

e € ex(C) (85)

(e € ex(A, ep));
(4,7 | e = u.ep.r where u € Pref(A,ep), ep.r € Post(A, ep));

(e € ex(B))

u.ep.ep € ex(C) (86)

e Case of Alternative(A, B) and ”before transition” extension point

e € ex(A)

e € ex(C) (87)

(e € ex(A, ep));
(u,7| e = u.ep.r where u € Pref(A,ep), ep.r € Post(A,ep));

(ep € ex(B))

u.ep € ex(C) (88)

e Case of Graft(A, B) and "BEFORE transition” extension points ep; and eps

e € ex(A)
e € ex(C)

(89)
(e1 € ex(A, ep1));

(u1,71 | €1 = uy.epr.r; where uy € Pref(A,ep1), ep1.r1 € Post(A,ep));
(e2 € ex(A, ep2));

(u2,72 | €2 = uy.epa.ro where uy € Pref(A, eps), epy.ry € Post(A, eps));

(ep € ex(B))

90
uj.ep.epa.ro € ex(C) (90)

200

e Case of Graft(A, B) and " AFTER transition” extension points ep; and ep;

e € ex(A)
e € ex(C)

(91)
(e1 € ex(A, ep));

(u1,71 | €1 = uy.ep1.ry where uy € Pref(A,ep1), epy.r; € Post(A, ep1));
(e2 € ex(A, eps));

(u2,72 | €2 = ug.epa.r2 where us € Pref(A, ep2), epe.ro € Post(A, eps));

(ep € ex(B))

92
uy.epj.ep.rg € ex(C) (92)

201

Appendix C

Synthesis Rules of Base Builders

Table 6: Builders Synthesis rules for UCA in the case of state

extension point

Z := Include(X,Y) IN {s} @

X =(8,s°,8/,L,E), Xp = (@, 4", @/, LU { fs(begin), fs(end)}, T)

“s is a constant that represents the extension point (state)

@dI=Q\S 93)
=5 (94)
P 50(3 # %) (95)

202

(@ " sem)

=4 96
(¢ =q) (=27 (96)
(zhae E); (2 #s)

: (97)

(z—2)eT

({a,d} =Q\ S); (Bg - ¢ € T |a € LU{f,(begin), f,(end)});
(Ad —> q € T'|a € LU{f.(begin), f,(end)}) %8)
@ "5 g em); (¢ P s em)
(0.4} =Q\S); (z — s € B);
(¢ g em)

a (99)

(x—4q€eT)

Z := Alternative(X,Y) IN {s} @
X =(5,8°,57,L,E), X, = (Q,¢°, QF, LU { f(begin), fs(end)}, T)
“s is a constant that represents the state extension point.

100
(@ =a\9) (100
@ =5707) 1oy
= (102)

(z5 2 €E)
— (103)

(x—>2'eT)

203

({g,d} = Q\S); (Bg — ¢ € T|a € LU{f,(begin), fs(end)});

(Bd - q € T|a € LU{f,(begin), fs(end)})

(104)
" g emy; (@M g e
Z := Interrupt(X,Y) IN {ALL}
=(5,5%87,L,E), X, = (Q,4°, @7, LU {f.p(begin), fop(end)}, T)
(7Y =a\5) (105)
QT =5Tug) (106)
T (107)
Lo s
(z —; z' € E) (108)
(x—>2' €l

({94} =Q\S)
« Feplend) 7 eT) (109)
({0,d} = Q\ S;(s € §)) (g ™5V ¢ e 1) (110)

(s fep(begin) qeT)

Z :=Graft(X,Y)IN {(IN s1, IN s3)} @

= (S’ 507 Sf7 L) E)7 Xb - (Q7 q07 Qf7 L U {fep(begin)a fElp(end)}7 T)

“s1 is a constant that represents starting point of the referred UCEA and s, is the ending point such

that s; # sa.

({g} =Q\S)

204

(111)

=5 (112)

= 509 (113)

L
elven .

({g} =Q\ S); (s2 € 5)
(g fep(ﬂd) sy €T)

(115)

(ig = @\ 8): (¢ "

(51 fep(b—egm) qeT)

S9 € T); (81 S S)

(116)

Table 7: Builders Synthesis rules for UCA in the case of

transition extension point with the qualifier BEFORE

Z = Extend with(X,Y) BEFORE {t = (s1,a,s2)} @

X = (Sa SO,Sf,L, E)aXb = (Q,qO, Qf’L U {ft(begq'n)7 ft(end)}aT)

*t is a constant that represents the transition extension point.

{@.d1=0\9 (17)

o =5h (118)

205

(@5 o € {E\t})

119
(z Lae T) 19
a fi(begin
(0.4} = Q\ S); (s1 - 52 € B); (¢ "%V g ¢ 1)
(120)
(51 5 52 € T); (32 U5 g e T (¢ 9 ¢ e 1)
(¢ = s2€T)
Z = Alternative(X,Y) BEFORE {t = (s1,a,s2)} ¢
X = (Sa 807 Sf7 L7 E)7Xb = (Q7 QO’ Qf7 Lu {ft(begzn)7 ft(end)}7 T)
“t is a constant that represents the transition extension point.
121
{e,.4,9"}=Q\ S (121)
({e,4,4"}=Q\ S);
(5 %8V g e 1) (oM ¢ e),
(d S q €T)
(122)
@ =5"u{q})
(x5 2 € {B\t})
; (123)
(x—a2'eT)
a t{begi
(0.4} = Q\9); (51 -5 85 € BY; (¢ "5V g ¢) (124)
124

fi(begin)

(51 s € T);(s17 — qeT)(q ft(e—nii) q

€T);

(ql i) q” GT)

206

Z = Refine(X,Y) BEFORE {t = (s1,¢1,0a,c2,82)} ¢

X =(8,5°, 8, L, E), Xp = (@, 4", @, L U{ fep(begin), fep(end)}, T)

“t is a constant that represents the transition extension point.

—_— (125)
({a} =Q\9)
({g} =Q\S)
126
@ = ST (@ =) (129
Lo
(x—>2'eT)
a
(0) =0\5) 0~ o< 29
(517" g e) (¢’ s, €T
Table 8: Builders Synthesis rules for UCA in the case of
transition extension point with the qualifier AFTER
Z = Include(X,Y) AFTER {t = (s1,a,s2)} ©
X =(8,8° 8/, L,E), X = (Q,¢°, Q, LU { fi(begin), fi(end)},T)
“t is a constant that represents the transition extension point.
129
[@d}=Q\5) (129)
(130)

207

(z 5 o' € {E\t})
l (131)
(x =2 €T)
(0a} = Q\ 9); (51 - s2 € B); (¢ "9 ¢ 1) (132)
. 132
(@8 ¢ e 1y (¢ M sy € T); (51— q€eT)
Z = Extend_ with(X,Y) AFTER {t = (s1,a,s2)}*
X =(8,8°87,L,E), Xy = (Q,¢°, QF, LU { fi(begin), fi(end)}, T)
“t is a constant that represents the transition extension point.
133
@ a1 =a\9) (133)
- 134
@ =37 134
(@5 o' € {E\t})
l (135)
(z—>2'eT)
(0,4} =Q\S); (51 - sy € E): (¢ "9 g ¢ 1)
(136)
(51 -5 53 € T); (51 - g T); (¢ "0 ¢ e 1)
(" sy e 1)

Figure 78 shows a set of base builders generated from UCA X with the consideration of
a single extension point. Each builder is derived according to the semantics of the operator

specified in the expression.

We draw the attention to two facts.

208

o First, in the case of Alternative operator and a transition ¢ as extension point, we
need to add three states, in contrast to the rest of the builders where we had to add
only two states. This is due to the fact that with Alternative we have to duplicate
the transition ¢ and add two other transitions labeled with begin; and end;, as shown

in (f).

e Second, in the case of Extend_with operator associated with a state extension point
z1, as shown in (e}, the outgoing transitions of x; have to be duplicated in order to
preserve the set of traces of the original UCA. The additional behavior will form an

alternative set of new traces to the outgoing transitions of 1.

209

Use Case X

Legend

\GD Initial State
@ Final State

(2)

Added States or Transitions

(Base builder for the expression
Z:=Include (X,Y)IN {x1}

\fBase builder for the expression
Z:=Include (X,Y)BEFORE {t=(x1,a,x2)}

\ ®)

©

Base builder of the expression
Z:=Extend_with (X,Y) AFTER {t=(x1,a,x2)}

Base builder for the expression
Z:=Extend_with (X,Y) IN{x1}

A

— « 4 <
Base builder for the expression Base builder for the expression
W:=Alternative(X,Y) AFTER {t=(x1,a,x2)} W:=Alternative (X,Y) IN{x1}
" bl ~ =~ b1y
begin , 'r end :
1T o
\bl}/ \bz 1
end, S .
¢
b3
P, (g) y

Figure 78: Examples Base Builders Generation

210

Appendix D

Final States Specification in the

Case of Multiple Extension Points

Let’s determine the set of final states S/ of the generated UCA from label matching in the
case multiple extension points. Let 4; and As be the UCAs to compose. The final states
are defined with respect to the composition operator specified between A; and A, and for

the set of extension points. We distinguish four cases:

1. Include, Graft, and Refine Operator:
The set of final states of the new use case represents all the states labeled by one of

the final states of the base use case, which are the final state of the base builder.

((817527 sn) c S), (Vsl € Shsi c Sif)
((s1,82,...5n) € ST)

(137)

2. Eatend with composition operator: case of none of the final states of the
base use case is an extension point:

The set of final states of the new use case represents all the states labeled by the final

211

states of the base use case, which are the final states of the base builder.

(51,52, ...8n) € S); (Vs; € S1,8 € S
(81,82, Sn) e §f

)(Vep €EPep¢ S (138)

Extend_with Operator: case of at least one of the extension points is a
final state of the base use case
In this case, the set of final states of the base use case are different from the final
state of its builder. Hence, we will be using the set of final states of the generated
base builders in order to determine the set of final states of the obtained UCA. Let
By, = (Qli,q?i,Q{i,Lli,Tli),O < ¢ < m where m is the number of base builders
generated from the base use case. Let By, = (Qy,,4),, Qi_, Ly, T5,),0 < i < m where

m is the number of referred builders generated from the referred use case.

((s1,52,...8n) € 8);

(Vsi € Qu;r 5 € QL); (Vsi € Qa5 € Q)
(81, 82, Sn) e Sf

(Bepe EP,ep € S{) (139)

The set of final states of the generated use case represents all the states labeled by

the final states of the base builders and final states of the referred builders.

. When Alternative and Interrupt operator:

Let By, = (Qli,q?i,Q{i,Lli,Tli),O < 2 < m where m is the number of base builders
the set of generated builders from the base use case. Let By, = (Q2,, qgi, Qgi, Ly, T3,),0 <
t < m where m is the number of referred builders the set of generated builders from

the referred use case. Therefore, the set of the final states in this case follows the rule:

212

((s1,52,...8n) € S); (Vs; € Qu,,8 € Q{i UEP); (Vs; € Qy,,8; € Qgi)
((s1,82,...8n) € ST)

(140)

We note that the fact that final states may also be specified as extension points does
not affect the final states of the new UCA, an outcome related to the semantics of
Alternative. We note also that with Interrupt operator, the set of extension points

is the set of states of the base use case.

213

Appendix E

Rules of Builders Synthesis in the
case of Use Case Extended

Automata

Table 9: Builders Synthesis rules for UCEA in the case of

state extension point

Z = Include(X,Y) IN {s} Cond_comp Input_assgn Out_assgn °

X = (S7 307 Sfa L7 V7 -[7 E)7Xb = (Q7q07 Qf7 Lu {begin7 end}7 ‘/ba Ib7 T)

*Input_assgn and Out_assgn are conditions. s is a constant that represents the extension point (state)

@I =a\9) (141)

T =sn (142)

214

(s # ")

@ = &0

Cond_comp,begin, Input_assign , ; true,end,Out_assign
(q — 7); (g — 5)

(¢°=q)

cl.a

(z 2 ' e E); (v #3)

(@ b e T)

({q, q/} — Q \ 5)7 (Ziq Cmd.comp,b%!nput_assign q, c T),

Cond_comp,begin, Input_assign
(Ad PO PRI 4 e T)

(s = ")

Cond_comp,begin,Input_assign true,end,Out.assign
(RN —

g e€T); (¢

cl,a

({24} =Q\ S); (s =5 s € E); (g

Cond_comp,begin,Inpui_assign
Sy

e

¢ eT)

1
(a:fiﬂqu)

(143)

(144)

(145)

(146)

(147)

Z = Extend with(X,Y) IN {s} Cond_comp Input_assgn Out_assgn °

X =(8,5%8/,L,V,ILE), X, = (Q,4°,Qf, L U {begin, end}, Vi, I, T)

“Input_assgn and Out_assgn are conditions. s is a constant that represents the state extension point.

{e,4}=Q\S

or=s7 ¢

_————Qf:SfU{q,}(sESf)

215

(148)

(149)

(150)

(151)

cla

(z = 2 € E); (x # s)

e (152)
(z 2 € T)
Cond_comp,begin,Input_assign true,end,Qutput_assign
{a.d}=0Q\S); (s — a¢T) (g — 7¢T) (153)
(S Cond.comp,be_g_)in,lnput_assign g€ T), (l] true,end_,_?_u;t_assign q, c T)
’ c,la
(a4 =Q\S)i(z > s € E);
(S C’ond-comp,be_g’i_n’,Input_assign ge T), (q true,end,%mtﬁssign q, g T) ()
154

cl,a c,la

(sZ5 2 el (¢ S 2eT)

Z = Alternative(X,Y) IN {s} Cond_comp Input_assgn Out.assgn ®

1X = (Sv 3078f7L7‘/aI’E)7Xb = (Q7q07 QfaLU {beginv end}a‘/baIbaT)

*Input_assgn and Out_assgn are conditions. s is a constant that represents the state extension point.

({9:4} =Q\S) (155)

QT =57uq) (156)

(¢° =59 (157)

({g,d) = Q\ §); (¢ “eompregnylnputassion | g py 59

Cond_comp,begin,Input_assign
(s el

true,end,Out_assign
q€T); (q — ¢ eT)

216

Z = Interrupt(X,Y) IN {ALL} Cond_comp Input_assgn Out_assgn ®

X= (Sa 30’ Sf7 L» ‘/a Iv E)7 Xb = (Q’ qu ny Lu {begm, end}, ‘/ba Ibv T)

“Input_assgn and Out_assgn are conditions.

{e,d'} =0\ S
(@ =Sfug)

(z by e E)

(x oy e T)

{4} =Q\9)

true,end,Out_assign
(¢ LS g e T

d,0 5%,
({q’ q,} — Q \ S), (q true,en. Jt.asszgn q, c T); (S c S)
(.S‘ Cond_comp,be_g—z;vz),l nput_assign ge T)

(160)

(161)

(162)

(163)

(164)

(165)

Table 10: Builders Synthesis rules for UCEA in the case of

transition extension point with the qualifier BEFORE

217

Z Include(X,Y) BEFORE {t =

i

(s1,¢1,8,¢2, 52)} Cond_comp Input_assgn Out_assgn ®

X = (S7SO,Sf,L, V’I7 E)va = (Q7q07 Qf7LU {beginyend},‘/bthT)

“Input.assgn and Out_assgn are conditions. t is a constant that represents the transition extension

point.

- 166
{g.d'} =@\ S (166)
cla ,

E\t

(x 32’ eT)
({q’ q,} - Q \ 5)7 (81 cl,a_,gz 9 € E); (q, C’ond-comp,be_gﬂ),lnput_assign q g T) (169)

(81 Cand_cmnp,beiz__)n,lnput.asszgn ge T); (q true,endﬂt_asszgn q, c T), (q, Cﬂz s € T)

Z = Extend_with(X,Y) BEFORE {t =

(s1,¢1,@,¢2,32)} Cond_comp Input_assgn Out_assgn ®

X = (53 807 Sfa L,V, Iv E)7Xb = (Q7 1107 Qf7L U {begm, end}, ‘/b)Iba T)

*Input_assgn and Out.assgn are conditions. t is a constant that represents the transition extension

point.

{6, ¢} =Q\S (170)

Qf = Sf;qo = g0 (171)

218

(=5 2’ € (B\t})

T (172)

({q’ q,} _ Q \ S); (81 €L3,C2 s9 € E); (q, Cond-comp,b%]nput_assign q ¢ T) (173)
(31 cﬂz 55 € T); (81 C’md-cmnp,b%]np’ut.assign g€ T); (q true,endﬂt.&ssign q, c T);
W)

Z = Alternative(X,Y) BEFORE {t =

(s1,¢1,0,¢2,82)} Cond_comp Input_assgn Out_assgn ®

X = (Sy SO,Sf,L, ‘/117 E)yXb = (Q,qov vaL U {begm, end}, ‘/;)7Ib7T)

*Input_assgn and Out_assgn are conditions. ¢ is a constant that represents the transition extension

point.

174
{.4,4"} =@\ S (174
({Q’ q,7 q”} = Q \ S) (175)
(81 Cond_comp,bei)'n,l nput.assign q T); (true,endﬂt_assign q, c T);
(@ = ¢ eT=Q =5Tu{g"}); (¢ =)
cla ,
i
(z = lx € {E\t}) (176)
(X' 2’ eT)
,8,C Cond._ Jbegin, Input_assign
(0.} = Q\8) (1 ¥ sy € B (g OIS g gy

€1,a,¢2 Cond_comp,begin,Input_assign true,end,Out_assign
(s 25 55 € T); (51 it q€T); (q — q

€T)

(o 25 g e 1)

219

Z = Refine(X,Y) BEFORE {t =
(81,¢1, 8,3, 82)} Cond_comp Input_assgn Out_assgn ®

X = (57 30, Sf7 L7 V;Iy E)aXb = (Q’ q07 Qfa Lu {beginv end}, ‘/baIb)T)

* Input.assgn and Out_assgn are conditions. ¢ is a constant that represents the transition extension

point.

Ao =0\9 (178)
(@QF = 87); (¢ =59) (179)
= l-)la;, Seay (180)
(z 2 eT)
({g} = Q\ S); (s1 **" s, € B) as)

Cond_comp,begin,Input_assign true,end,Out_assign
— q€T); (g —

(s1 so €T)

Table 11: Builders Synthesis rules for UCEA in the case of

transition extension point with the qualifier AFTER

Z := Include(X,Y) AFTER {t = (s1,c1,0,¢2,82)} Cond_comp Input_assgn Out_assgn

a

X = (S, 307 Sf7 L,‘/a I; E)7Xb = (Q7 qO’ vaL U {beginv end}a V;thvT)

“Input_assgn and Out_assgn are conditions. t is a constant that represents the transition extension

point.

220

(182)

{e.4'}=Q\S
18
Qf:Sf;qO—-_—go (3)
ela ,
4
(™ o ¢ (B\i) (184)
(xS ¢ eT)
({q, q,} — Q \ S), (81 cl,a_,fz 9 € E), (q, Cond_comp,be_gliz,lnput_assign q g T) (185)
(q Cand.comp,b%]nput_assign q, c T); ((]’ true,endLO_u>t_assign sy € T); (81 clf_f" g T)
Z = Extend with(X,Y) AFTER {t =

(s1,€1,a,c2,82)} Cond_comp Input_assgn Out_assgn ©

X = (8,887, L,V,I,E), Xy = (Q,4° @, L U {begin, end}, V;, I, T)

*Input_assgn and Out.assgn are conditions. ¢ is a constant that represents the transition extension

point.

- 186
a1 =Q\5 (186)
Qf = Sf; qo = 50 (187)
(z ¥’ € (B\1}) (188)
(z e T)
€1,0,C Cond_comp,begin,Input_assign
(0,4} =Q\S); (52 " s € B); (¢ PRI GET))

(31 CM_'_’_? sp € T); (31 cl_,{z_,gg g€ T); (q Cond-comp,beg;z}n,lnput_asszgn q, c T)

7

; true,end,Qut_assign
(g —

SQGT)

221

Z

Alternative(X,Y) AFTER {t = (s1,¢1,a,c2,52)} Cond_comp Input_assgn Out_assgn

a

X = (57 507 Sfa L7 ‘/7 Ia E)7Xb = (Qa q07 Qf7L U {beg'l'n7 end}v Vb) Ib7 T)

*Input_assgn and Out_assgn are conditions. ¢ is a constant that represents the transition extension

point.

{9.4,"} =Q\ S
({q, q/’ q,,} _ Q \ S), (51 Cond_comp,beiilz),Input_assign g€ T);

true,end,Out_assign
(— q

€T); (¢ =" q" €T)

@ =87 u{g}); (" =5

(e ™' 2’ ¢ (E\W})
(z M e T)

1@y Cond._ begi wi t_assi

€1,a,C2
—

(51 s2 € T); (51

y true,end,Out_assign ,,
(— q

c1,a,c2 Cond_comp,begin,Input.assign
=5 g eT); (g 5 "¢ eT);

(190)

(191)

(192)

(193)

Let’s consider, for example, the case of Include operator in a state extension point.

Rule 141 defines the set of states of the base builder as the set of states of the base use case

increased with two states ¢ and ¢’. Rule 142 defines the final state of the base builder as

the final states of the base use case. Rule 143 defines the initial state of the base builder as

the initial state of the base UCEA if the extension point is different from initial state of the

222

base UCEA. In the opposite case (the extension point is the initial state of the base UCEA),
the initial state of the base builder is the added state q, as specified in Rule 144. Rule 145
implies that the builder evolves as the use case for all the transitions that are different from
the ingoing transitions of the extension point s. According to Rule 146, a unique transition
is specified between the two added states q and ¢'. This transition is labeled with begin and
has as pre-condition the Cond_comp specified in the expression and as post-condition the
Input_assign specified in the expression. Moreover, a unique transition is specified between
the two states ¢’ and s (s being the extension point). This transition is labeled with end
and has as post condition the Output_assign specified in the expression. In addition, all
outgoing transitions from s in the base UCEA are outgoing transitions from ¢’ in the base
builder. Rule 147 specifies that all the ingoing transitions to the state s in the base UCEA
are ingoing transitions to ¢ in the base builder.We notice that the set of variables of the
generated base builder is obtained by the union of the set of variable of the base use case
and the set of variables of the referred use case used in the specification of the composition

condition, input assignment, and output assignment.

223

Bibliography

[1] OMG (2002) UML Resource Page, www.omg.org/uml/.

[2] Message Sequence Chart (MSC). ITU Communication Standardization Sector (ITU-

T. Z120 Recommendation for MSC-2000), 2000.

[3] http://www.agilemodeling.com/artifacts/usecasediagram.htm, Access Date:

04,/2007.

[4] Telelogic AB: DOORS/ERS. http://www.telelogic.com/products/doorsers/, Access

Date 04/2007.
[5] Use Case Map, http://www.usecasemaps.org/index.shtml, Access Date: 04/2007.
[6] http://javapathfinder.sourceforge.net/, Access Date July 2007.
[7] http://spinroot.com/spin/whatispin.html, Access Date July 2007.
(8] http://www.jflap.org/, Access Date July 2007.

[9] R. Alur and D. L. Dill. A Theory of Timed Automata. Theoretical Computer Science,

126(2):183-235, 1994.

[10] R. Alur, K. Etessami, and M. Yannakakis. Inference of Message Sequence Charts. In

22nd International Conference on Software Engineering, pages 304-313, 2000.

224

[11]

[13]

[14]

[17]

R. Alur and M. Yannakakis. Model Checking of Message Sequence Charts. In Proc.

10th Intl. Conf. on Concurrency Theory, pages 114-129. Springer Verlag, 1999.

D. Amyot, D.Y. Cho, H. He, and Y. He. Generating Scenarios from Use Case Map
Specifications. Third International Conference on Quality Software (QSIC’03), pages

108-115, 2003.

D. Amyot, L. Logrippo, and R. J. A. Buhr. Spécification et Conception de Systémes
Communicants: une Approche Rigoureuse Basée sur des Scénarios d’Usage. In G.
Leduc (Ed.), CFIP 97, Ingénierie des protocoles, Litge, Belgium, pages 159-174,

1997.

J. Araujo, W. Whittle, and D. Kim. Modeling and Composing Scenario-Based Re-
quirements with Aspects . In The 12th IEEE International Requirements Engineering

Conference (RE 2004), Kyoto, Japan, September 2004.

A. Arnold. Finite Transition Systems. 1994: Prentice-Hall.

E. Baniassad and S. Clarke. Theme: An Approach for Aspect-Oriented Analysis and

Design. ICSE, 0:158-167, 2004.

F. Belina and D. Hogrefe. The CCITT-Specification and Description Language SDL

. In Computer Networks and ISDN Systems, volume 16, pages 311 — 341, 1989.

H. Ben-Abdallah and S. Leue. MESA: Support for Scenario-Based Design of Con-
current Systems. In Tools and Algorithms for Construction and Analysis of Systems,

pages 118-135, 1998.

225

[19]

(20]

[21]

[22]

[24]

B. Bolognesi and E. Brinksma. Introduction to the OSI Specification Language LO-

TOS. In Computer NEtworks and ISDN Systems, volume 14, pages 2559, 1987.

Y. Bontemps and P. Heymans. Turning High-Level Live Sequence Charts into Au-
tomata. In Proc. of "Scenarios and State-Machines: Models, Algorithms and Tools”
(SCESM) Workshop of the 24th Int. Conf. on Software Engineering (ICSE 2002),

Orlando, FL, May 2002. ACM.

G. Booch, L. Jacobson, and J. Rumbaugh. Unified Modeling Language Users Guide.

Addison Wesley Longman, Inc. Reading, MA, 1999,

F. Bordeleau. A Systematic and Traceable Progression from Scenario Models to Com-
municating Hierarchical State Machines. PhD thesis, Department of Systems and
Computer Engineering, Faculty of Engineering, Carleton University, Ottawa, Ontario,

Canada, 1999.

F. Bordelééu and J.-P. Corriveau. From Scenarios to Hierarchical State Machines: A
Pattern-Based Approach. In In Proceedings of OOPSLA 2000 Workshop on Scenario-

based round-trip engineering, Minneapolis, Minnesota, October 2000.

F. Bordeleau and J.-P. Corriveau. On the Need for ”State Machine Implementation”
Design Patterns. In Proceedings of ICSE 2002 Workshop on Scenarios and state

machines: models, algorithms, and tools, May 2002.

S. Bourduas, F. Khendck, and D. Vincent. From MSC and UML to SDL. In the
Proceedings of IEEE Annual International Conference on Computer Software and

Applications (COMPSAC’2002), Oxford, UK, August 26-29, 2002.

226

[26]

[27]

(28]

[29]

[31]

[32]

[33]

R.J.A. Buhr. Use Case Maps: A New Model to Bridge the Gap Between Requirements

and Detailed Design. OOPSLA’95 Real Time Workshop, October, 1995.

R. W. Butler. What is Formal Methods?, 08/2001, Access Date 05/2007.

E. M. Clarke and J. M. Wing. Formal methods: State of the Art and Future Direc-

tions. ACM Comput. Surv., 28(4):626-643, 1996.

W. Damm and D. Harel. LSCs: Breathing Life into Message Sequence Charts. Formal

Methods in System Design, 19(1):45-80, 2001.

R. Dssouli, K. Saleh, E. Aboulhamid, A. En-Nouaary, and C. Bourhfir. Test Devel-
opment for Communication Protocols: Towards Automation. In Computer Networks,

Volume 31, Issue 17, pages 1835-1872, June 1999.

H. Giese. Towards Scenario-Based Synthesis for Parametric Timed Automata. In
Proc. of the 2nd International Workshop on Scenarios and State Machines: Models,

Algorithms, and Tools (SCESM), Portland, USA (ICSE 2003 Workshop 8), May 2003.

M. Glinz. An Integrated Formal Model of Scenarios Based on Statecharts. In In
Proceeding of the Fifth European Software Engineering Conference , pages 254-271.

Springer Verlag, 1995.

M. Glinz. An Integrated Formal Model of Scenarios Based on Statecharts. In In Schfer,
W. and Botella, P. (eds.) (1995). Software Engineering - ESEC ’95. Proceedings of the
5th BEuropean Software Engineering Conference, Sitges, Spain. Berlin, etc.: Springer

(Lecture Notes in Computer Science 989)., pages 254-271, 1995.

227

[34]

(36]

37]

[38]

[39]

[40]

[41]

M. Glinz, S. Berner, S. Joos, J. Ryser, N. Schett, and Y. Xia. The ADORA Approach
to Object-Oriented Modeling of Software. In Conference on Advanced Information

Systems Engineering, pages 76-92, 2001.

0.C.Z. Gotel and A. C. W. Finkelstein. An Analysis of the Requirements Traceability

Problem. pages 94-101, 1994.

H. Ben-Abdallah and S. Leue. Syntactic Detection of Process Divergence and Non-
local Choice in Message Sequence Charts. In E. Brinksma, editor, Tools and Algo-
rithms for the Construction and Analysis of Systems, pages 259-274, Enschede, The

Netherlands, 1997. Springer Verlag, LNCS 1217.

D. Harel. Statecharts: A Visual Formalism for Complex Systems. Science of Computer

Programming, 8(3):231-274, June 1987.

D. Harel. From Play-In Scenarios to Code: An Achievable Dream. Lecture Notes in

Computer Science, 1783:224-, 2000.

D. Harel and H. Kugler. Synthesizing State-Based Object Systems from LSC Speci-

fications. Lecture Notes in Computer Science, 2088:1-33, 2001.

D. Harel, H. Kugler, R. Marelly, and A. Pnueli. Smart Play-Out of Behavioral Require-
ments. Proc. 4th International Conference On Formal Methods in Computer-Aided

Design (FMCAD’02), Portland, Oregon, 2002.

J. Hatcliff and M. Dwyer. Using the Bandera Tool Set to Model-Check Properties of

Concurrent Java Software. Lecture Notes in Computer Science, 2154:39-58, 2001.

228

[42] Y. He, D. Amyot, and A. Williams. Synthesizing SDL from Use Case Maps: An

Experiment. In: 11th SDL Forum (SDL’03), LNCS, 2708:117-136, 2003.

[43] G. J. Holzmann. Trends in Software Verification, 2003.

[44] G. J. Holzmann and M. H. Smith. Automating Software Feature Verification. Bell

Labs Technical Journal, 5(2):72-87, - 2000.

[45] J.E. Hopcroft, R. Motwani, and J.D. Ullman. Introduction to Automata Theory,

Languages, and Computation. 3/E ed. 2007: Addison-Wesley.

[46] P. Hsia, J. Samuel, J. Gao, D. Kung, Y. Toyoshima, and C. Chen. Formal Approach

to Scenario Analysis. In IEEE Software, volume 11, pages 33-41, 1994.

[47] 1. Jacobson, M. Christerson, P. Jonsson, and G. Overgaard. Object-Oriented Software
Engineering: a Use Case Driven Approach. ACM Press; Wokingham, Eng.; Readings,

Mass. Addison-Wesley, 1992.

[48] 1. Jacobson and P.-W. Ng. Aspect-Oriented Software Development With Use Cases

(Addison- Wesley Object Technology Series) . Addison-Wesley , 2 edition, 2004.

[49] J. Kealey, K. Yongdae, D. Amyot, and G. Mussbacher. Integrating an Eclipse-Based
Scenario Modeling Environment with a Requirements Management System. In FElec-

trical and Computer Engineering, Canadian Conference , pages 2432-2435, May 2006.

[50] R. M. Keller. Formal Verification of Parallel Programs. Comm. ACM 19, (7):371-384,

1976.

[51} F. Khendek and G. Bochmann. Merging Behavior Specifications. Formal Methods in

System Design, 6(3):259-293, 1995.

229

[52]

[53]

[54]

[55]

[56]

[58]

[59]

[60]

F. Khendek and D. Vincent. Enriching SDL Specifications with MSCs, June 2000. In:
2nd Workshop of the SDL Forum Society on SDL and MSC (SAM2000), Grenoble,

France.

G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold. An

Overview of Aspect]. Lecture Notes in Computer Science, 2072:327-355, 2001.

T. Kishi and N. Noda. Analyzing Concerns used in Analysis/Design Techniques.
Workshop on Advanced Separation of Concerns in Software Engineering at ICSE 2001,

2001.

S. Kolahi. Composition and Verification of Behavioral Models. Master’s thesis, De-

partment of Computer Science, Concordia University, 2007.

K. Koskimies, T. Méannistd, T. Systd, and J. Tuomi. SCED: A tool for dynamic
modeling of object systems. Technical Report A-1996-4, Department of Computer

Science, University of Tampere, Finland, 1996.

K. Koskimies and E. Mdkinen. Automatic Synthesis of State Machines from Trace

Diagrams. Software - Practice and Ezperience, 24(7):643-658, 1994.

J. Koskinen, T. Mannistd, and T. Systd. Minimally Adequate Synthesizer Tolerates

Inaccurate Information during Behavioral Modeling. In SCASE2001, 2001.

Kripke Structure Definition. http : //en.wikipedia.org/wiki/kripke_structure, Ac-

cess Date 04/2007.

C. Larman. Applying UML and Patterns: An Introduction to Object-Oriented Analysis

and Design. Prentice Hall. Upper Saddle River, NJ, 1998.

230

[61]

[62]

(64]

[65]

(66]

(67]

[68]

W. J. Lee, S. Deok Cha, and Y. R. Kwon. Integration and Analysis of Use Cases
Using Modular Petri Nets in Requirements Engineering. IEEE Trans. Softw. Eng.,

24(12):1115-1130, 1998.

S. Leue, L. Mehrmann, and M. Rezai. Synthesizing ROOM Models from Message
Sequence Chart Specifications. Technical Report 98-06, ECE Dept., University of
Waterloo, Canada, April 1998. Short paper version in: 13th IEEE Conference on

Automated Software Engineering, Honolulu, Hawaii, October 1998.

H. Liang, J. Dingel, and Z. Diskin. A Comparative Survey of Scenario-Based to
State-Based Model Synthesis Approaches. ICSE 2006 Workshop on Scenarios and

State Machines: Models, Algorithms, and Tools , 2006.

M. Lohrey. Realizability of High-Level Message Sequence Charts: Closing the Gaps.

Theoretical Computer Science, 309(1):529-554, December 2003.

LOTOS. http://wwwtios.cs.utwente.nl/lotos/, Access Date 04/2007.

LTS Example. http : [/www.doc.ic.acuk/hfl/phd/thesis/html/index.html?

a_complete_example.htm, Access Date 04/2007.

S. Mauw and M. A. Reniers. High-level Message Sequence Charts. In Proceedings of

the Eighth SDL Forum (SDL’97), pages 291-306, 1997.

E. Mdkinen and T. Systé. MAS - An Interactive Synthesizer to Support Behavioral

Modeling in UML. In ICSE 2001, Toronto, Canada, pages 15-24, 2001.

231

[69]

[71]

[72]

73]

[74]

[75]

R. Mizouni, A. Salah, and R. Dssouli. Interaction-Based Scenario Integration. In
Workshop on Model Design and Validation, ACM/IEEE Models/UML, Jamaica,

2005.

R. Mizouni, A. Salah, and R. Dssouli. Using Formal Composition of Use Cases in
Requirements Engineering. In The Nineteenth International Conference on Software

Engineering and Knowledge Engineering SEKE’07, Boston, USA, 2007.

R. Mizouni, A. Salah, R. Dssouli, and S. Kolahi. Automated Approach for Use Case
Composition. In MCSEAI'06: 9th Maghrebian Conference on Information Technolo-

gies, Agadir, Morocco, December 2006.

R. Mizouni, A. Salah, R. Dssouli, and S. Kolahi. Incremental Extended Use Case
Composition. In 7th International Conference on New Technoljogies of Distributed

Systems Morocco, Marrakesh, June 4-8, 2007.

R. Mizouni, A. Salah, R. Dssouli, and B. Parreaux. Integrating Use Cases with
Explicit Loops. In In Proceedings of Nouvelles TEchnnologies de la Rpartition

(NOTERE’04), Saidia, Marocco, June 2004.

R. Mizouni, A. Salah, R. Dssouli, and B. Parreaux. Integrating Use Cases with

Explicit Loops, June 2004.

R. Mizouni, A. Salah, S. Kolahi, and R. Dssouli. Composition of Use Cases Using Syn-
chronization and Modcl Checking. In E. Najm, J. F. Pradat-Peyre, and V. Donzeau-
Gouge, cditors, FORTE, volume 4229 of Lecture Notes in Computer Science, pages

292-306. Springer, 2006.

232

[76]

[77)

(78]

[79]

[80]

[82]

R. Mizouni, A. Salah, S. Kolahi, and R. Dssouli. Roles of variables in Use Case Com-
position. In New Technologies for Distributed Systems (NOTERE’2006), Toulouse,

France , 2006.

R. Mizouni, A. Salah, S. Kolahi, and R. Dssouli. Composition of partial system
behaviors. IET Software journal (formerly IEE Proceedings, Software), 1:143-160,

2007.

H. Muccini. An Approach for Detecting Implied Scenarios. In Proc. ICSE 2002
Workshop on "Scenarios and State Machines: Models, Algorithms, and Tools”, May

2002.

H. Muccini. Detecting Implied Scenarios Analyzing Non-local Branching Choices . In
Proc. Int. Conf. on Fundamental Approaches to Software Engineering (FASE 2003),

ETAPS2003, Warsaw, Poland, April 2003. LNCS., 2003.

A. Muscholl and D. Peled. Message Sequence Graphs and Decision Problems on
Mazurkiewicz Traces. In Tomasz Wierzbicki Miroslaw Kutylowski, Leszek Pachol-
ski, editor, Mathematical Foundations of Computer Science 1999, 24th International
Symposium, MFCS’99, Szklarska Poreba, Poland, September 6-10, 1999, Proceedings.,

volume 1672. Springer, 1999.

J.L. Peterson. Petri Net Theory and the Modeling of Systems. Englewood Cliffs, New

Jersey: Prentice Hall, Inc., 1981.

D. C. Petriu, D. Amyot, and C. Murray Woodside. Scenario-Based Performance
Engineering with UCMNAV. In R. Reed and J. Reed, editors, SDL Forum, volume

2708 of Lecture Notes in Computer Science, pages 18-35. Springer, 2003.

233

[83]

[84]

(8]

(87]

[89]

[90]

A. Rashid, A. Moreira, and A. Arajo. Early Aspects: A Model for Aspect-Oriented

Requirements Engineering. In Requirements Engineering, pages 199-202, 2002.

A. Rashid, A. Moreira, and A. Arajo. Modularisation and Composition of Aspectual
Requirements. In Aspect Oriented Software Development Conference, pages 11-20,

2003.

W. Reisig. Petri Nets: An Introduction. In EATCS Monographs on Theoretical

Computer Science, Volume 4. Springer Verlag, 1985.

G. Robert, F. Khendek, and P. Grogono. Deriving an SDL Specification with a Given
Architecture from a Set of MSCs. In A. Cavalli and A. Sarma (editors), SDL’97 :

Time for Testing - SDL, MSC and Trends, Proceedings of the eight SDL Forum, 1997.

R. F. Roggio. Use Cases and Traceability: a Marriage for Improved Software Quality.
In 16th Annual NACCQ, Palmerston North, New Zealand, July, 2003 (eds) Mann, S.

and Williamson, A., 2003.

J. Ryser and M. Glinz. Dependency Charts as a Means to Model Inter-Scenario
Dependencies. In In G. Engels, A. Oberweis and A. Zndorf (eds.): Modellierung 2001.
GI-Workshop, Bad Lippspringe, Germany. GI-Edition - Lecture Notes in Informatics,

volume P-1, pages 71-80, 2001.

S. Uchitel and J. Kramer and J. Magee. Behavior Model Elaboration using Partial

Labeled Transition Systems . ESEC/FSE 2003, 2003.

M. Sabetzadeh and S. Easterbrook. View Merging in the Presence of Incompleteness

and Inconsistency. Requirements Engineering, 11(3):174-193, 2006.

234

(9]

[92]

(93]

[94]

[95]

[96]

(98]

A. Salah. Génération Automatique d’une Spécification Formelle & de Scénarios Temps

reél. PhD thesis, Univesité de Montréal, Faculté des études supérieures, 2002.

A. Salah, R. Dssouli, and G. Lapalme. Implicit Integration of Scenarios into a Reduced

Timed Automata. Information and Software Technology, 45, Issue 11:715-725, 2003.

SCED tool. http://www.cs.tut.fi/ tsysta/sced/, Access Date 04/2007.

B. Sengupta and R. Cleaveland. Triggered Message Sequence Charts. In ACM Press,

editor, In SIGSOFT2002/FSE-10, Charleston, SC, USA , November 2002.

S. Somé. Dérivation de Spécification & partir de Scénarios d’Interaction . PhD thesis,

Univesité de Montréal, Faculté des études supérieures, June 1997.

S. Somé. Beyond Scenarios: Generating State Models from Use Cases. In Proceedings
of ICSE 2002 Workshop on Scenarios and state machines: models, algorithms, and

tools, 2002.

S. Somé and R. Dssouli. An Enhancement of Timed Automata generation from
Timed Scenarios using Grouped States. Electronic journal on Network and Distributed

Processing, 6, 1998.

S. Somé, R. Dssouli, and J. Vaucher. From Scenarios to Timed Automata: Building

Specifications from Users Requirements, 1995.

T. Systa, K. Koskimies, and E. Mikinen. Automated Compression of State Machines
Using UML Statechart Diagram Notation. In Information and Software Technology,

volume 44, pages 565-578, 2002.

235

[100] J. Kealeyand E. Tremblay, J.-P. Daigle, J. McManusand O. Clift-Nol, and D. Amyot.

[101]

[102]

[103]

[104]

[105]

[106]

jUCMNav: New platform for the edition an the analysis of UCM . K. Adi, D.
Amyot and L. Logrippo (editors) Proceeding of the 5th conference of new Distributed
technology (les Nouvelles Technologies de la Rpartition NOTERE 2005, Gatineau,

Canada), pages 215-222, 2005.

S. Uchitel, R. Chatley, J. Kramer, and J. Magee. LTSA-MSC: Tool Support for Be-
haviour Model Elaboration Using Implied Scenarios. In Ninth International Confer-

ence on Tools and Algorithms for the Construction and Analysis of Systems (TACAS),

2003.
S. Uchitel and M. Chechik. Merging Partial Behavior Models. SIGSOFT’04/FSE ,
2004.
S. Uchitel, J. Kramer, and J. Magee. Detecting Implied Scenarios in Message Se-

quence Chart Specifications. In In proceedings of the 9th European Software Engineer-
ing Conference and 9th ACM SIGSOFT International Symposium on the Foundations

of Software Engineering (ESEC/FSE’01). Vienna, Austria. September 2001, 2001.

S. Uchitel, J. Kramer, and J. Magee. Modeling Undefined Behavior in Scenario Syn-

thesis. In ICSE’03, 2003.

S. Uchitel, J. Kramer, and J. Magee. Synthesis of Behavioral Models from Scenarios.

In IEEE Transactions on Software Engineering, volume 29:2, February 2003.

J. Whittle. The Use of Proofs-as-Programs to Build an Analogy-Based Functional

Program Editor. PhD thesis, University of Edinburgh, 1998.

236

[107] J. Whittle and J. Arajo. Scenario Modeling with Aspects. IEE Proceedings - Software,

151(4):157-172, 2004.

[108] J. Whittle, R. Kwan, and J. Saboo. From Scenarios to Code: An Air Traffic Con-
trol Case Study . In International Conference on Software Engineering (ICSE2003),

Portland, Orego, 2003.

[109] J. Whittle and J. Schumann. Generating Statechart Designs from Scenarios. In

International Conference on Software Engineering, pages 314-323, 2000.

[110] J. Whittle and J. Schumann. Statechart Synthesis From Scenarios: An Air Traf-
fic Control Case Study . In International Conference on Software Engineering

(ICSE2002), 2002.

[111] R. Wieringa. A survey of Structured and Object-Oriented Software Specification

Methods and Techniques. ACM Comput. Surv., 30(4):459-527, 1998.

[112] R. Young. The Requirements Engineering Handbook. Artech House, 2004.

[113] T. Zheng and F. Khendek. An extension to MSC-2000 and its application. In Proceed-
ings of the International Workshop on SDL and MSC (SAM), Aberystwyth, Wales,

volume Lecture Notes in Computer Science 2599. Springer Verlag, June 2002.

[114] P. Zielczynski. Traceability from Use Cases to Test Cases, http://www-

128.ibm.com/developerworks/rational /library/04/r-3217/, Access Date: 04/2007.

237

