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ABSTRACT

Damage Tolerance Analysis using the eXtended Finite Element Method
Mahmoud Rababah

While the regular Finite Element Method (FEM) is well developed and robust, it is
not particularly well suited to model evolving discontinuities, since the construction of a
discontinuous space requires the element topology to be aligned with the geometry of the
discontinuity. This in turn requires regeneration of the mesh as the discontinuity evolves,
resulting in projection errors and a significant computational cost.

The eXtended Finite Element Method (XFEM) is a new technique which was
developed recently to account for the evolving discontinuities in the crack growth
problems. In XFEM, special functions (discontinuous and near tip functions) are added to
the regular FEM to model the discontinuities without regenerating the mesh. Using this
property in XFEM, and assuming Linear Elastic Fracture Mechanics (LEFM) concept,
the damage tolerance analysis to determine the time or the number of loading cycles
required for a smaller pre-existent crack to grow to critical size can be accomplished
more efficiently than that in the regular FEM.

The derived XFEM-formulation has been effectively implemented and in-house
computer code has been developed to find the stress intensity factors and to model the
crack growth efficiently without re-meshing the structure. Numerous benchmark 2-D
problems with cracks located at different locations and inclined in different angles have
been investigated and the results are validated with those available in the literature.

Finally, the potential application of XFEM in damage tolerance analysis has been

demonstrated.
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CHAPTER ONE

INTRODUCTION

1.1 Motivations

High deformation, instability and fracture are examples of structural failure
mechanisms. Fracture is a potentially catastrophic failure mechanism, characterized by
un-stable and extremely fast crack growth. The starting point is often a small flaw in a
region of stress concentration, which may develop into a crack. If the structure is
submitted to cyclic loads then the crack grows, initially at very low rates, in a process
known as fatigue crack growth. Stable and slow fatigue crack growth will take place until
the crack reaches a critical length. At this moment, the structure is no longer capable of
withstanding the service loads and fracture occurs.

In the late 1960s and for few years later, a number of aircraft structural failures
occurred both during testing and in-service. Some of these failures were attributed to
flaws or defects that were either inherent or introduced during the manufacturing and
assembly of the structure. The presence of these flaws was not accounted for in design.
The design was based on a “safe-life” fatigue analysis, where the mean life predictions
were based upon fatigue test data and a conventional fatigue analysis for materials with
no flaws or pre-existent cracks.

In order to ensure the safety of the aircraft structure the damage tolerance design was
adopted in 1970s to replace the conventional fatigue design approach, and later many
industrial fields adopted the damage tolerance analysis that shift the design concept from

the crack initiation life to the crack propagation life. This approach is based on setting



inspection intervals required for a crack to grow from a detectable size to a critical size.
These intervals are determined from the knowledge of the number of loading cycles

Although Finite Element Method (FEM) can be used to perform numerical crack
growth analysis based on Linear Elastic Fracture Mechanics (LEFM) concepts, the design
must start with the creation of complex discretized model representing the structure and
great care should be considered when creating such a model. Due to the presence of the
cracks, the model contains stress singularities at the crack tips and therefore the
discretization around the crack tips has to be fine, usually requiring a large number of
elements. Moreover, in a crack propagation analysis, it is generally necessary to re-mesh
large portions of the problem domain in order to accommodate the changes to the
position of the crack tips.

The boundary Element Method (BEM) has been introduced to fracture mechanics
problems since the early 1970s. The main difference between the BEM and the FEM is
that in the BEM, an analytical approach towards the solution is taken by the adoption of
the fundamental solutions which satisfy the governing equation. In most cases a
formulation is obtained which does not contain integrals over the problem domain, and
consequently, does not require domain discretization. Therefore, only the boundary of the
problem needs to be discretized into elements. But a fine discretization is still required
near singularities. The BEM simplify the discretization requirements in the problem by
incorporating into its formulation some knowledge about the solution of the governing
equation in the form of fundamental solutions. As a consequent, the technique can only

be applied for governing equations for which fundamental solutions are available.



Since FEM and BEM are not well suited to account for evolving discontinuities, the
need arose to develop new techniques that require no re-meshing when the discontinuities
evolve. As a result for these needs, several new techniques have been developed in the

last few years to model cracks and crack growth without re-meshing.

1.2 Literature Review

The element-free Galerkin (EFG) method [1] is a recently developed method for
fracture and crack growth. The interpolant in this method is described in terms of a set of
nodes and surfaces of the model. This class of methods is often called meshless methods.
The advantage of meshless methods is that it is possible to model arbitrary growth of
cracks without re-meshing and adaptive refinement at the crack tip is easily
accomplished. However, it is awkward and expensive to refine the array of nodes around
a crack tip adequately to obtain sufficient accuracy.

Belytschko and Black [2] introduced new method to model cracks and crack growth
by finite element with minimal re-meshing. By this method a crack arbitrarily aligned
within the mesh can be represented by means of enrichment functions. The essential idea
in this method is to add tip enrichment functions to the approximation which contains a
discontinuous displacement field. The same span of functions developed by Fleming et
al. [3] for the enrichment of the element-free Galerkin method is used. The method
exploits the partition of unity property of finite elements which was noted by Melenk and
Babuska [4, 5], namely that the some of the shape functions must be unity.

Since the crack tip enrichment functions alone are not readily applicable to long
cracks or three dimensions, an improvement by Moes et al. [6] has been done by

incorporating a discontinuous field across the crack faces away from the crack tip. As a



result, this enrichment method, also called eXtended Finite Element Method (XFEM),
combines both the discontinuous enrichment function and the near-tip enrichment
functions to the approximation of the finite element.

Modeling quasi-static crack growth in 2-D problems for isotropic and bimaterial
media using XFEM is described in Sukumar and Prevost [7] in which the implementation
of the crack growth using the XFEM within a general purpose finite element code is also
described. The numerical applications are performed in Sukumar et al. [8].

New enrichment schemes are introduced in Bechet et al. [9] by proposing a
geometrical enrichment which bears the characteristic of a constant enriched area within
a prescribed geometry. These enrichment schemes allow more layers of elements to bear
the complete enrichment basis (i.e. the size of enrichment area is no longer proportional
to the element edge length and the accuracy is independent on the position of the crack
tip).

In the particular case where the extent of the crack approaches the support size of the
nodal shape functions, the asymptotic near tip functions for each tip may extend beyond
the length of the crack, resulting in a non-conforming approximation. This particular case
was solved in Bellec and Dolbow [10] by proposing a set of adjustments and
modifications for the near-tip asymptotic functions.

A 2-D numerical model of micro structural effects and quasi-static crack propagation
in brittle materials using XFEM is presented in Sukumar et al. [11]. Modeling of cracks
with multiple branches, multiple holes and cracks emanating from holes are presented in
Daux et al. [12]. The implementation is based on using the same enrichment functions for

the cracks (discontinuous and tip functions) and the enrichment scheme is developed



based on the interaction of the discontinuous geometric features with the mesh. Whereas
for holes, new enrichment function is introduced.

Modeling 3-D planar cracks by XFEM was first introduced in Sukumar et al. [13],
who solved several planar crack mode-/ problems and showed that the method compared
well with analytical solutions. Moes et al [14] extended the methodology to handle
arbitrary cracks in three dimensions. This was performed by describing the crack
geometry in terms of two signed distance functions. The 3-D crack propagation was
simulated in Sukumar et al. [15].

At this point, it should be emphasized that XFEM is still in its early stages, and more
investigations are needed to use this promising technique in different fields; as it is still

limited to model cracks and crack growth in structural geometries.

1.3 Objectives of the Study

The primary objective of this study is to validate the eXtended Finite Element
Method for two dimensional problems containing cracks located at different locations
and inclined in different angles and study the effect of the mesh type (quadrilateral and
triangular), the mesh refinement and the radius of enrichment on the output results.

The second objective is to model the crack growth using the XFEM for edge and
central cracks, and to predict the life time of structure with pre-existent crack to reach

critical length using the damage tolerance analysis.

1.4 Organization of the Thesis

Chapter two provides brief review about the fracture mechanics; the concept of

Linear Elastic Fracture Mechanics (LEFM) and when it can be adopted; the near tip



asymptotic fields; the loading modes and their interactions; the stress intensity factor and
its relation with the plane stresses; fatigue and the crack growth and its direction.

Chapter three provides detailed description on how to perform the XFEM analysis
and the difference between XFEM and the regular FEM; what nodes should be selected
for the enrichment and how the enrichment will be performed; how to find the stiffnesses
for the elements especially the elements that cut by the crack.

Chapter four provides full implementation details for the XFEM from programming
point of view and how to find the first and second modes of the stress intensity factor
with detailed description on how to implement this task. It also discusses some problems
for cracks located at different locations and inclined with different angles and gives the
full comparison between the results from the XFEM and the exact solutions.

Chapter five starts with defining the safe-life design and the damage tolerance design
and explains the two approaches used in damage tolerance design with considering some
catastrophic accidents happened in the past. It also discusses some studies for crack
growth starting from pre-existence crack length to critical crack length. Prediction of the
crack path and the life time before the crack grows to critical length is also investigated.

Finally chapter six summarized the work and provides some recommendations for

the future work



CHAPTER 2

FRACTURE MECHANICS

2.1 Introduction

This chapter discusses some of the fundamental concepts in the fracture mechanics
starting from the concept of the Linear Elastic Fracture Mechanics (LEFM) and its
limitations, and then presents the asymptotic crack tip fields in LEFM for two
dimensional structures. The concepts of fatigue and crack growth are also discussed.

Finally the failure criterion for the mixed-mode problems is derived.

2.2 Linear Elastic Fracture Mechanics (LEFM) and its
Limitations

The Linear Elastic Fracture Mechanics theory is based on the principles of the
linear elastic theory, in which the bulk of the material behaves according to hook’s law. If
the zone of yielding around the crack tip is small compared to the dimensions of the
problem (small scale yielding) then LEFM theory is applicable. Thus small scale yielding
can be considered as a criterion for the LEFM and can be represented as the radius of the
plastic zone circle r, a head of the crack tips as shown in Figure 2.1. For the structure
loaded by pure mode-/ with initial crack length a, the radius of the plastic zone can be

described as [16]:

2
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where o,

s 18 the Yield stress and K is the stress intensity factor associated with mode-/.

Now if a >> 7, , it can be considered that LEFM theory is applicable. Practically a >10r,

would be a good criterion for the application of LEFM.

Plastic
Zone

e

Figure 2.1: Crack tip plastic zone

It should be noted that for most industrial applications, neglecting plastic work is
conservative since the development of plasticity in the crack tip region consumes energy
that would, in an elastic material, be available to contribute to the crack advance. Thus,
through all problems in this thesis, to be more conservative for the life time estimation of

the crack propagation, the LEFM concept is assumed.

2.3 Numerical Fracture Mechanics

Numerical fracture mechanics is widely used in welded structures, pressure vessels,
aircraft fuselage, bridges, ships and more other applications in which the fracture of the

component in the system may lead to catastrophic results. The most concern issue when



studying these structures is the life time prediction that helps in preventing the
catastrophic failure before it occurs. When the analytical methods fail to produce closed-
form solutions for complex structures or flaws with complex geometries, the numerical
methods become necessary, and obtaining the fracture parameters such as the Stress
Intensity Factors (SIFs) numerically will be unavoidable. However still obtaining such
fracture parameter remains a challenging problem.

The difficulties encountered when simulating crack growth is linked to the fact that
computing the state of stress in a cracked body necessitates dealing with the
discontinuities in some of the mechanical fields created by the cracks. In the regular
FEM, this difficulty is solved making the elements edges aligned with the crack faces.
However, this requires a costly mesh generation and regeneration, making the regular
FEM cumbersome, especially for complex three-dimensional problems encountered in
industry. One more difficulty is the singularity nature of the asymptotic crack tip fields
that requires high mesh density in the tip region. Due to these difficulties, it is
computationally very expensive to find the fracture parameters.

The boundary Element Method (BEM) has been applied to fracture mechanics
problems since the early 1970s. The main difference between the BEM and the FEM is
that in the BEM, an analytical approach towards the solution is taken by adopting the
fundamental solutions which satisfy the governing equations. In most cases a formulation
is obtained which does not contain integrals over the problem domain, and consequently,
does not require domain discretization. Therefore, only the boundary of the problem
needs to be discretized into clements, but, a fine discretization is still required near

singularities.



From the preceding discussion, it is basically known that the BEM simplify the
discretization requirements in the problem by incorporating into its formulation some
knowledge about the solution of the governing equation in the form of fundamental
solutions. The technique can only be applied for governing equations for which
fundamental solutions are available.

Cruse [17] showed that existence of coinciding boundary nodes in opposite crack
surfaces causes singular matrix in direct application of the BEM. This is because the
nodes have the same coordinates, and the integrals are calculated along the same paths. In
order to avoid modeling the crack, Synder and Cruse [18] proposed the use of a special
fundamental solution, known as the crack green’s function, which identically satisfies the
boundary conditions for a traction free crack in an infinite plate. Although the technique
1s accurate, it is limited to two dimensional straight cracks. For more literature regarding
developments of the BEM and its use in some structural problems it can be referred to
Salgado [19].

The eXtended Finite Element Method (XFEM) has recently considered as a
powerful alternative numerical approach in fracture mechanics, it overcomes the two
shortcomings associated with discontinuity of the displacement field across the crack
faces and with singularity of the stress field at the crack tip. Also, the close similarity
between XFEM and the regular FEM allow the easiness of merging the XFEM with the

commercial finite element packages.
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2.4 Crack Tip Asymptotic Fields in LEFM

The crack is defined as line of discontinuity in two dimensions and surface of
discontinuity in three dimensions. The crack could be loaded in three different ways as
shown in Figure 2.2 known as opening, shearing and tearing modes.

Generally, the crack tip stress, strain and displacement fields may be represented as

a linear combination of these modes.

|~
p -~ <«
‘ //"
Opening (Mode I} Shearing (Mode IT) Tearing (Mode III)

Figure 2.2: Modes of crack tip deformation

Each deformation mode shown above can be expressed in terms of stress developed
at the crack tip asymptotic field using suitable functions. Moreover, for each mode, the
magnitude of the stress field is defined by a scalar coefficient called the Stress Intensity
Factor (SIF). There is only one stress intensity factor for each loading mode that will be
referred to as K for the opening mode, Kj; for the shearing mode and K for the tearing
mode. A crack is said to be loaded in mixed-mode when more than one stress intensity

factor is necessary to represent the crack tip asymptotic fields.
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During this work, only two dimensional problems are considered; so the tearing

mode is not accounted for in this work and only the first two modes of the Stress

Intensity Factor (SIF) are considered. The crack tip asymptotic field for mode-/ and

mode-// can be written as [20]:

Mode I:

K
u, 2uN2r

where K; is the mode-/ stress intensity factor defined as

coS 0 (1—sin o sin ﬁ)
2 2 2

cos Q (1+sin Q sin EQ)
2 2 2

30

COS—Sin— Ccos —
2 2 2

cosg[x—l+25in2 Q}
2 2

sing{ierl—Zcos2 Q:|
2 2

K, =2nr hrrol o, (r,0)

Mode-II:

Ml Ky | r
u, 2u N 27

where Kj; is the mode-// stress intensity factor defined as

—sin 9 2+ cosg cos ﬁ)
2 2 2
.0 6 3
sin —CcoS —Cos —
2 2 2

cos 4 (1—-sin Q sin —3—3»)
2 2 2

sing[chrlJr%:os2 Q}
¥ 2 2
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(2.2)

(2.3)

(2.4)

2.5)

(2.6)
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K, =~2nrr lﬁing 7., (r,0)

(2.7)

Where 4 is the shear modulus and « =(3—-0)/(1+v) for the plane stress condition

and x =3—4v for the plane strain condition. r,6 are the local polar coordinates at the

crack tips as shown in Figure 2.3.

Figure 2.3: Crack local coordinates at the crack tips

In 2-D mixed-mode loading, mode-/ and mode-I/ are necessary to represent the

crack tip asymptotic fields which can be written as [20]:

cos g (1—sin 9 sin ﬁ)
2 2 2

= cosg(l+singsin 3—)
2 2 2

Txy 6.0 360
COS—SIn —CoS—
27272

—sin—e— 2+ cosg cos ﬁ)
2 2 2
30

Sin — €cOS— COS —

2 .0 . 30
cos—(1—sin—sin—)
2 2 2

(2.8)
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— (2.9)
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2.5 Fatigue

Relating the crack growth to the LEFM parameters such as the stress intensity factor
makes it possible to predict the crack growth rate under cyclic loading. Thus the structure
life time or the number of cyclic loading required for a crack to grow from its initial
length up to the critical length causing catastrophic failure can be determined. Paris and
Paris [21] proposed a law for fatigue crack growth relating the increment in crack
advance da to the increment in number of cycles dN and the stress intensity factor range

AK as:
= -C (AK)M” (2.10)

Where C, and m, are material constants, determined experimentally by standard

fatigue tests and AK =K __ —K . isthe stress intensity factor range.

In literature, different fatigue crack growth equations have been developed based on
the curve fitting techniques using computer programs. Two of these equations are
provided below [22, 23]:

Forman Equation:

da ~ Cp (AK )m,,

= 2.11)
dN  (1-R)K.-AK
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Walker Equation:

%va— =C, [K (1-R)"™ ] (2.12)

where R is the stress ratio defined as R = —mn
o

max

There are three stages characterizing fatigue crack growth as shown in Figure 2.4.
Stage-/ begins with a threshold value of stress intensity factor, AKesn04- Before this

stage no crack propagation occurs. This stage continues until the curve becomes linear.
X . . . da .
Stage-/I represents the zone in which the relationship between lnaﬁ and InAK is

linear. In this stage, fatigue crack growth is governed by the Paris law. The life of many
cracked engineering structures may be considered solely in this range since the
allowances are made for the minimum crack length that can be inspected, which is
normally related to the limitations of the inspection techniques used. For instance, the
parameter that is controllable in practical situations is the inspection interval (i.e. the time
interval between two successive nondestructive evaluations of the structure of interest).

Stage-/1] exhibits a sharp slope, where a small increment in the stress intensity factor
. . da .
range 4K leads to a large increment in crack advance per cyclegj—\?. The material

behavior in this stage is complicated where the plastic zone becomes to be large

compared to the structural geometry.
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Stage 1

Stage IT Stage 111

Threshold In(AK)

Figure 2.4: Fatigue crack stages

For mixed-mode problems, the stress intensity factor 4K can be replaced by

equivalent one, 4K,, which can be described as [24]:

AK, =\AK]+2AK} (2.13)

2.6 Crack Growth

The crack growth considered in this work is quasi-static crack growth, where the
inertia effects are neglected. Modeling crack growth requires (besides knowing the
increment of the crack) knowing the direction, in which the crack will extend. Many
criteria have been used to determine the crack growth direction such as the maximum
energy release rate criterion [25], the minimum strain energy density criterion [26] and
the maximum principal stress criterion [27].

Since the maximum principle stress criterion is one of the most commonly used, it is
adopted during all the crack growth analysis done in this thesis. It states that the crack

will propagate from its tip in a direction& = €, , such that the circumferential stress &, is

maximum. The usual polar coordinate system related to the crack tip is used to describe

16



the crack propagation direction. Since o, is principal stress in the direction of crack

propagation, the crack will propagate in the direction such that the shear stress is zero.
Setting the shear stress to zero in the expression for the asymptotic crack tip fields of
LEFM allows the determination of the value of the crack propagation angle. The
derivation 1s performed as follow:

First, the stress transformation is performed as shown in Figure 2.5 to transform the

stresses from the Cartesian xx-yy coordinates to the polar coordinates -0 as:

¥y »

Figure 2.5: Near tip asymptotic field transformation

o-rr Tr@ _ T O-x.r Txy T T
B . (2.14)
Tvo Ouo xy ¥

. _ ) cos sind
where T is the transformation matrix defined as T = ) and
—-sin@ cosd

xx ?

o, ,0, and 7 are obtained from Eq. (2.8). Now using Eq. (2.14), we can write:
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1

27y

a1 : 1 ‘
T,g= COSE[EK' sm6’+EK,, (30059—])} (2.15)

The crack will grow in direction where the shear 7,4 is zero. Thus setting 7,, =0 yields:
K,sinf +K, (3cos8 ~1)=0 (2.16)

Solving this equation for 6. gives:

2
0 =2t 1| Koy [K_] s @17
4 Kll Kll

The sign () in Eq. (2.17) can be chosen based on the fact that if K;; = O then

6. =0 (pure mode-/) and ifK,, >0, thend <0, and ifK, <0,then 4. >0 .

2.7 Fracture Failure Criteria

In pure mode-/ loading, the fracture occurs when the stress intensity factor K;
developed in the crack tip field reaches critical value K¢ called the fracture toughness.

The fracture toughness is a material property obtained experimentally. The principal

stress at fracture, o) , can be obtained from Eq. (2.2) by replacing K, by K. and setting

ol = e (2.18)

In mixed-mode fracture, assuming that the crack growth occurs according to the

maximum principle stress criterion, then &, can be obtained from Eq. (2.14) as:

o o .6
Oy = cos’ EI:K' COS—2——-3K” sin 5} (2.19)

1
N2y

then the value of the maximum principal stress can be obtained by replacing € with &, :
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g, =

6 0
cos’ —C-[K, cos—=—3K , sin 0—6} (2.20)
2 2 2

1
N2zr
It is postulated that in mixed-mode, fracture takes place when the maximum

principal stress o, reacheso, in pure mode-/. Equating Egs. (2.18) and (2.20), one may

obtain:

o 0 . 0
K, =cos’ —20—[K, cos;c—3K” sm;‘l (2.21)

The term in the right hand side of Eq. (2.21) is refereed to K leg - Thus in summary,

the fracture in mixed-mode condition occurs when:

K, 2K, (2.22)
where

7 0 .
K,, =cos’ —5—[1(, cos;c—B»K” sm%} (2.23)

2.8 Conclusion

The regular FEM is not well-suited for geometries with evolving discontinuities as
it requires re-meshing as the discontinuity evolves. Also, it requires high mesh density in
the crack tip region due to the singularities which cause high computational cost.

On the other hand, BEM requires some knowledge about the solution of the
governing equation in the form of fundamental solution. Thus, the technique can only be
applied for governing equations for which fundamental solutions arc available and it fails
for three dimensional complicated geometries with kink cracks. The XFEM is well-suited
for such problems that contain evolving discontinuities as there is no need for re-meshing

the domain as the discontinuities evolve.
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The LEFM can be employed to evaluate the stress intensity factor as it provides
non-coasting time results. Also Paris law can be effectively used to determine the life
time of a specimen by calculating the number of cycles required for a crack to grow from
its initial length to the critical length.

Finally the criteria for the crack growth directions and fracture failure for mixed-

mode problems were established.
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CHAPTER THREE

EXTENDED FINITE ELEMENT METHOD-
FORMULATION

3.1 Introduction

This chapter discusses the XFEM technique used to model two dimensional
mechanical structures with pre-existent cracks, where the cracks are located at different
locations and inclined in different angles. First the XFEM approximation solution 1is
derived followed by the enrichment scheme for the nodes in the background mesh.
Modeling the cracks in 2-D domain, the procedure to obtain the element stiffness matrix
and the extra degrees of freedom resulted from the nodes enrichment are fully described.

Two types of background mesh namely isoparametric quadrilateral element mesh
and the constant-strain triangular element mesh are used to discretize the domain. Results
obtained from XFEM for both types are compared with analytical results to validate the

formulation.

3.2 Extended Finite Element Method

In the FEM the crack is modeled explicitly by conforming the crack faces to the
elements edges. Thus, re-meshing the domain each time the crack grows is unavoidable.
On the other side, in the XFEM the domain is first discretized, then the crack is modeled
implicitly by enriching the nodes in the crack region by the enrichment functions. The

nodes are enriched through enrichment scheme discussed in this section.
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3.2.1 Crack modeling using XFEM

Before modeling the crack using XFEM, the domain should be discretized. This can
be performed using the regular finite element discretization. Two types of discretization
are considered in this study; the quadrilateral element mesh and the constant-strain
triangular element mesh. However, it is possible to combine both types in one
discretization model. Using higher order elements mesh with the XFEM is still in its
early stages and no much work has been done in this trend.

The approximation solution containing the discontinuous enrichment function (also
called Heaviside function) is first introduced by Moes et al. [6]. Moes introduced the
notation of the Heaviside function enrichment by considering a simple case for crack
aligned with the edges of the elements in the mesh and the crack tip exactly coincide with
one of the nodes as shown in Figure 3.1. The finite element approximation for this case

18:
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Figure 3.1: Heaviside elementary case [6]

22



10
u’ :Zuf¢; 3.1
i

where u; is the displacement at node i and ¢, is the bilinear shape function associated

with node i. Defining parameters a and b as:

a=te Mo o, Uyt (3.2)
2 2
One can express u, and u,, as:
u,=a+b, wu,=a-b 3.3)
Now substituting 1, and u,, into Eq. (3.1) yields
\ 8
u' = w0, +al,+9,) +b(@, + ¢ )H (x) (3.4)

i=l
Where H(x) is referred here as a discontinuous function (Heaviside function), and is

defined in the local crack coordinate system as shown in Figure 3.1 as:

1 y >0

H(x,y)={_1 b <0 (3.5)

Considering this and referring to Figure 3.1 in which the crack is aligned with the
element edge, H(x) is equal to 1 on element 1 and -1 on element 3. Eq. (3.4) can also be

rewritten in the following form:
; 8
u' = Zuiwf +uy,, +bo H(x) (3.6)
i=1

where ¢, =@, +¢,, and u,, =a
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The first two terms on the right-hand side of Eq. (3.6) represent the classical finite
element approximation, whereas the last term represents the addition of a discontinuous
enrichment.

In the case when the crack does not aligned with the element edges, the issue will be
the selection of the appropriate nodes to be enriched, and the form of the associated
enrichment function. It should be noted that in more general case where the crack is not
aligned with the element edges and the crack tip does not coincide with the element edge,
the discontinuity can not be described using only the Heaviside function.

For seamlessly modeling the entire discontinuity along the crack, the nodes belong to
the element that contains the crack tip should be enriched by near-tip asymptotic
functions. Considering this, the discretization approximation in XFEM can be described

as [4]:

w' =D+ b H (x)+ Y 9 [Zc,ﬁ‘F,’ (x ))+ > o (Zc;ZF,Z (x )] (3.7)

iel jeJ kek, 1=1 kek, =1

where

(1) = {Fin] ) o ) Fin & i) o 2 Jinto)| .

where » and 6 are the local polar coordinate at the crack tips; / is the set contains all the
nodes in the mesh; J is the set that contains the nodes enriched by the discontinuity
function (Heaviside function); K; and K are the sets that contain the nodes enriched by

the near-tip asymptotic functions for crack tip 1 and tip 2, respectively as shown in Figure

3.2
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Figure 3.2: Nodal sets enrichment

This enrichment scheme mentioned above has the drawback that the accuracy
depends on the position of the crack tip (for instance close to a node or an edge), and this
is because there is only one layer of elements bears the complete enrichment basis, (i.e.
the size of the enriched area is proportional to the element edge size 4.). An improvement
on the enrichment scheme is studied by enriching not only the nodes that belong to the
elements that contain the crack tip, but also all the nodes that located inside a geometrical
area using the same enrichment functions [9]. Figure 3.3 shows that all nodes located
inside the circle of enrichment that has the crack tip as its center will be enriched by the
asymptotic near-tip functions. The radius of the circle can be selected based on the

geometry of the sample and the crack.
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Figure 3.3: Modified nodal sets enrichment

3.2.2 Nodes enrichment scheme

The domain considered is two-dimensional domain. Extending the domain to three-
dimensions is straight forward but it involves more implementation complications. Also
in this work, the crack is considered as piecewise linear segments.

After establishing the background mesh (domain discretization) which can be

performed using regular finite element mesh generator, each node is checked to see if its
. - .. A, 4.
support area is cut by the crack. If it is cut, then the area criterion j— >1x10" will be

checked. If this criterion is not satisfied, the node is excluded from the enrichment and
treated as regular finite element node (4, is the smallest area resulted when the crack

passes the support area of the node and A4 is the total support area). If the area criterion is
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satisfied, the node will be enriched by the discontinuity function. The support area @, of

the node / as shown in Figure 3.4 is defined as the area of all the elements that share that

node.

Figure 3.4 Support area @, for node L.

As mentioned before, the crack tip enrichment is performed based on geometrical
enrichment scheme. The geometrical enrichment field is considered as circle centered at
the crack tip with radius of enrichment R,,,;.;. If the node is located inside the circle, it

will be enriched by the tip enrichment functions.

3.3 Element Stiffness Equation

Consider the 2-D domain Q2 bounded by the boundary I" as shown in Figure 3.5
where the boundary 1" is composed of I',, I', and I', . The prescribed displacements are

imposed on the boundary I' , the tractions are imposed on the boundary I', and the crack

line I, is assumed to be traction-free.

27



Figure 3.5: 2-D Domain boundaries

The equilibrium equations and the boundary conditions for linear elastic isotropic

domain can be written as:

Vo+b=0 inQ (3.9-a)
o.n —¢ onl’ (3.9-b)
on=0 onl, (3.9-¢)
ocn=0 on FC_ (3.9-d)
w=u onTl (3.9-¢)

u

where #n is the unit outward normal, o is the stress tensor and b is the body force per

unite volume. The strain-displacement relation can also be written as:
e=Vu (3.10)
where V_ is the symmetric part of the gradient operator. The stress-strain relation can be

written as:
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c=C:¢ 3.11)
where C is the Hooke tensor. By substituting the XFEM approximation in the linear

elasto-static weak form [2], the discrete system of linear equations is obtained as:
[K){d}={f~} (3.12)

where d is the nodal displacement vector, K is the global stiffness matrix and /“ is the
external nodal force vector. The stiffness matrix and the force vector are computed on an

element-by-element basis. Considering quadrilateral e¢lement, its contribution to K and

1 can be written as:

IANARAELAL
kel [kS] (k5] [kS]
[k3el] [k§2] [k3e3] [k3e4] (3-13)
IARARYNA]

ke

where each sub-matrix in Eq. (3.13) contains:

(ki1 [ki] [k2]
[ko1={Tk] (k2T k] (3.14)
[k)'] [kX] [k

where 1, j = 1, 2, 3 for triangular elements and i, j = 1, 2, 3, 4 for quadrilateral elements,
the u represents the regular degrees, a represents the discontinuity enrichment and b
represents the tip enrichments. The matrix in Eq. (3.14) can be obtained using the

equation [4]:

[k;1= [(B/Y C BjdQ r.s =u,a,b (3.15)
g

in which

29



i i,y (316-3)
¢i ¥ (01 X
(QiH),x O
Bf=| 0 (pH), (3.16-b)

(pH), (pH),

(p.F). 0 (pF), 0 (. F), 0 (pF), 0
Bl=| 0 (9.F), 0 (0.F,), 0 0 F), 0 (0,F,), (3.16-c)
(0F), (oF), @F), (oF), @F), (@F), (@®F), (@F),

and
. (O 0 . (0. 0) .
F = \/;sm(a), F, =\/;cos(—2—), F,= \/;SIH(EJSII](Q) and F, = ﬁcos(;)sm(@) (3.17)

It is noted from Egs. (3.15) and (3.16) that [k ], [k}"], [k;*]and [k;"] are2x2
sub-matrices, [k;”]and [k;"] are 2x8 , [k,*] and [k;"] are 8x2 and [k ] is 8x8 sub-

matrix. Now if for instance the first node in the element is regular finite element node,

then we have:

ki) [ 11 1]
[kpd=i0 10 11 ] orsimp]y[klel]z[klulu (3.18)
[ 10 111

this is because B° and B® are empty matrices, also if the node is enriched by the

discontinuity function, then [£|;] can be written as:

k] eyl []
[kle]]: [kla]“] [klala] [ ] (3.19)
[ T [ 111
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where [ ] indicates an empty sub-matrix. And if the node is tip enrichment node, then

[k|;] can be written as:

el [1 [k95]
kel=0 10 110 1 (3.20)
kX1 [ 1 k2]

The element force vector for the quadrilateral element can be represented as:

ra=lrey v s vy (3.21)

each sub-vector 7 in Eq. (3.21) 1s composed of [4]:

RV ST B A BT BT Bt 1 (3.21)

where

vii= 00" o AT+ .[2 ¢bd Q2

{ffa} - .LQ” OO i HidT + .[7 ¢, Hbd Q) (3.22)
U0V [ s AFMAT+ [ 9 FbdQ a=1-4

it should be mentioned that for the traction-free crack {f“} and {f,”}are empty vectors

and {f} =1/}

3.4 Types of Elements

Two types of domain discretization are considered using constant-strain triangular
elements and isoparametric quadrilateral elements. In both types the same enrichment
scheme is followed. This means that the node will be enriched if its support is cut by the

crack or if it is located inside the geometrical enrichment field for tip 1 or tip 2 as shown

31



tn Figure 3.6. The same distinctions for the nodes (regular or enriched by discontinuity
function or tip enrichment functions) are applied. Moreover the same distinctions for the
elements (regular elements, these containing extra degrees of freedom or these cut by the

crack) are applied.

AVAVAVAVAVAYAYANANN

NN NN
Kg Tip 2 Enrichment Nodes
/N\/

-K;, Tip | Enrichment Nodes

V4 1‘\/ VARV
A
L N \ /\

W/ IVAVAY,
\/\ /\ /\/ \/J Heaviside
/\\ /VEnnchmem Nodes

Figure 3.6: Enrichment nodes sets for constant-strain triangular mesh

The only difference between these discretization models rely on the fact that the
constant-strain triangular element stiffness will be calculated for points defined in the
global coordinates, while the quadrilateral element stiffness is calculated using the natural
coordinate system, which should be subsequently mapped into the global coordinate

system.
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3.5 Stress and Displacements

For the quadrilateral element mesh, the regular elements as well as the elements
containing at least one enriched node but not cut by the crack contain regular distribution

of the Gaussian integration points (2x2, 3x3, ...). However for the elements cut by the

crack more integration points are used to accurately integrate the stiffness along the edges
of the discontinuity. More details regarding the Gaussian points for the elements cut by
the crack are explained in Section 4.2.3.

The stress will be found for each Gaussian point in the mesh and then saved in one
matrix along the global values of the Gaussian points. Since the element stiffness matrix
will contain the extra degrees of freedom beside the regular degrees of freedom, the
global stiffness matrix will contain all the degrees of freedom including the extra ones.
Thus the displacement obtained will also contain the values of displacement for the extra
degrees of freedom beside the regular degrees of freedom.

For example, when all the nodes in the quadrilateral element are regular then the

displacement at any point inside the element will be:

U=UQ T UyQ, TPy + U@, (3.23-a)
VEVQ V0, T V05 +V,0, (3.23-b)
where ¢, is the shape function for node /.

But if the element contains the first node (node 1) enriched by the Heaviside

enrichment function and this node is located below the crack, the displacement will be:

u :u1¢1 +u2¢2 +u3¢3 +u4¢4 -4, ¢)1 (3.24—8.)

v :v1¢| +V2(02 +V3(p3 +V4¢4 _ay &, (324-b)
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where a, and a, are the values obtained in the displacement vector which are referred to
the extra degrees of freedom for this node. As another example, if the first node is
enriched by the near tip 2 enrichment functions, then the displacement inside the element

can be obtained as:

U= +u,0, uyp, tu,p, +bl _Flo +b2 F,p +b3 Fip +b4 F,p, (3.25-a)
v=v0 +v,0, +v,0, + v, +bl Flo, +b2 F,p, +b3 F,p +b4 Fip  (3.25-b)

where bl,, b2, b3, b4, bl, b2, b3, and b4, are the values obtained from the

displacement vector along the extra degrees of freedom that belong to the node.

3.6 Conclusion

It can be concluded that XFEM is basically regular finite element with enrichment
functions that are required to be added to some nodes in the mesh to account for the
discontinuities. Thus it can easily be formulated in the framework of regular finite
element method.

In XFEM, the mesh is generated before locating the discontinuities and thus there is
no need to align the elements’ edges along the crack faces or to use high density mesh in
the crack tip region. The element partitioning is a good approach for the elements that
were cut by the crack in order to accurately integrate the discontinuities along the two

faces of the element.
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CHAPTER FOUR

EXTENDED FINITE ELEMENT METHOD-
IMPLEMENTATION

4.1 Introduction

As mentioned before, XFEM is a numerical technique for modeling discontinuities
within the frame work of the standard finite elements by introducing discontinuous
enrichment and crack tip enrichment functions. One is able to model the crack in
isotropic linear elasticity problem using XFEM without the need to align the mesh with
the crack surfaces which is the case in the regular finite element where the crack is
required to be explicitly modeled. Using XFEM, quasi-static crack propagation can be
handled without re-meshing.

This chapter discusses some of the key issues regarding computer implementation of
XFEM. First the two-dimensional domain discretization before locating the crack is
described. Then modeling the crack in two-dimensions implicitly by selecting the nodes
for enrichment is discussed. Obtaining the stiffness matrix for the enriched elements is
also explained. Finally the procedure for obtaining the first and second modes of the
stress intensity factor is described.

Numerical examples including plate with crack located at different locations and
inclined in different angles and cracks initiated from holes are provided to demonstrate
the robustness of the XFEM. It has been shown the excellent agreement between the
stress intensity factors obtained using XFEM and those obtained from exact analytical

solutions.
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4.2

Computer Implementations

The schematic diagram regarding implementation of the XFEM is shown in Figure

4.1. As it can be observed, numerical simulation using XFEM requires the following

main components:

Discretize the domain using regular finite element program.

Obtain the global stiffness matrix and the global force vector.

Locate the crack geometry (the crack is considered as a piecewise linear
segment).

Select the nodes for enrichment using the nodal enrichment scheme.

Distinct the elements into regular elements, enriched elements not cut by the
crack and elements cut by the crack.

Obtain the element stiffness for the enriched elements and the elements cut by the
crack.

Assemble only the extra degrees of freedom from these elements into the
previously obtained global stiffness matrix.

Calculate the displacement vector (the displacement vector contains the extra

degrees of freedom as well as the regular ones).
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Figure 4.1: Schematic diagram for the XFEM technique

This Chapter describes in detail the issues regarding discretization of the domain
using regular finite element mesh generator; selecting the nodes for enrichment through
enrichment scheme; distinction of the elements into regular or enriched; and the
procedure to obtain the stress intensity factor. Both quadrilateral elements and constant-
strain triangular elements are used in the numerical examples. Here the implementation
1s described for the quadrilateral elements for sake of brevity. The same concepts are

applicable for the triangular elements.

4.2.1 Domain discretization

As in XFEM the crack is not required to be explicitly aligned with the mesh, the
mesh can be generated regardless of the crack location. The two-dimensional domain can

be discretized using regular finite element mesh generator. When the domain is
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discretized, the global stiffness matrix [KK | and the force vector {ﬁ } are obtained using

the regular finite element method.

4.2.2 Enrichment scheme

When the domain discretization is performed, the crack location is specified
through its tip 1 and tip 2 coordinates; as the crack is considered as piecewise linear
segment. Since the crack is arbitrary located and not aligned with the mesh, it is modeled
implicitly by enriching the nodes that their support area is cut by the crack. To implement
this task, the intersection points between the crack and the supports of each node are
calculated. This 1s performed by exploiting the equations that represent both; the crack
and the support edges.

To perform the enrichment scheme and to distinct the types of elements, two
vectors are created. The first vector is called nodes ID and its length is equal to the
number of nodes in the mesh. The index for each element in the vector represents an
equivalent node in the mesh and the value assigned to each element in the vector
spectfies the type of the equivalent node in the mesh. For instance, if nodes ID(25) = 1
this means that the node 25 in the mesh is located above the crack and enriched by the
discontinuity function. The list of the values and what they represent for the vector
nodes_ID are itemized below:

0  Regular finite element node.

1 Node located aBove the crack and enriched by the discontinuity function.
-1 Node located below the crack and enriched by the discontinuity function.
10 Node located on the crack and enriched by the discontinuity function.

11 Node located in tip 1 field and enriched by the tip 1 enrichment functions.
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22 Node located in tip 2 field and enriched by the tip 2 enrichment functions.

The second vector is called Elements ID and its length is equal to the number of
elements in the mesh. In similar the index for each element in the vector represents an
equivalent element in the mesh and the value assigned to each element in the vector
specifies the type of the equivalent element in the mesh. For instance, Elements _1D(43) =
I means that the element 43 in the mesh is cut by the crack. Here is the list of the values
and their representation for the vector Elements ID:

0  Regular finite element
10 Enriched element and not cut by the crack
1 Element cut by the crack.

The enrichment scheme as shown in Figure 4.2 can be implemented by checking all
the nodes in the mesh. The node 7 will be enriched by tip 1 or tip 2 enrichment functions
if it is located inside the geometrical enrichment field (i.e. if it is located inside circle
centered at the crack tip and has the radius R....r). Then the appropriate value will be
assigned to the element / in the vector nodes_ID, that is nodes ID( /) = (11 or 22). This
is performed simply by checking the distance between node 7 and the tip. If this distance
is less than the radius of enrichment R,,,.;, then it will be enriched.

The radius of enrichment is recommended to be related to the element edge length
heas 1.5h, <R _ .. <4.5h,.For smaller R...cx, the results will not be accurate since fewer
elements will bear the complete approximation solution, and for large R.,..», €xcellent
accuracy can be achieved, however this will increase the final degrees of freedom in an

accelerated manner causing high computational cost. This is explained further in Section

4.5.
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Figure 4.2: Flowchart for nodes enrichment

If the node / is not enriched by the tip enrichment functions, the support area o,

will be checked. If the support area is not cut by the crack, the node 7 will be regular
finite element node and an appropriate value will be assigned to the element / in the

vector nodes ID (nodes ID( /) = 0). If the support area is cut by the crack and the area
LA 4. ) . . .

criterion A—‘ >1x107" is met (4, is the smallest area after the intersection and A is the

total support area) then the node I will be enriched by the Heaviside discontinuity
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function and an appropriate value will be assigned to the element / in the vector
nodes ID based on the node / location (above, below or on the crack). If the area
criterion is not satisfied, the node / will be treated as regular finite element node and an
appropriate value will be assigned to the element / in the vector nodes_ID.

Checking if the node 7 is located above, below or on the crack can be easily executed

using the following equation:

A=, =x)y,=y) =, =x)¥,~y) (4.1)
where (x;,y,) 1s the first intersection point of the nodal support and (x,,y,) is the second
one, x and y are the coordinates of node /. Now if A > g, the node / is located above the

crack, if A <—¢, the node [ is located below the crack and if —£ <A<¢g, the node I is

located on the crack. Here ¢ is a tolerance value usually set at 1x10°° of the element edge
length.

When the enrichment scheme is performed, it is possible to distinct the type of elements
in the mesh (regular or enriched). The element M is treated as regular finite element if all
its nodes are considered as regular finite element nodes, in this case the value 0 will be
assigned to the element M in the vector Elements ID. If the element M has at least one
enriched node, provided that it is not cut by the crack, the element is treated as enriched
element and the value 10 will be assigned to the element M of the vector Elements ID.
Finally, if the element M is cut by the crack, the value 1 will be assigned to the element

M of the vector Elements ID.
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4.2.3 Element stiffness matrix and element partitioning

As mentioned in the previous section, three types of elements exist in a domain with
pre-existent crack. Different procedure is required to find the element stiffness matrix for
each type. For the regular finite elements, it is not required to evaluate the element
stiffness matrix as it has already been calculated and assembled to the global stiffness
matrix. This has already been performed before locating the crack using the regular finite
element framework.

For the elements that contain at least one enriched node, the contribution in the
stiffness matrix due to the classical degrees of freedom as well as the extra degrees of
freedom are evaluated, both contributions are stored in a single element stiffness matrix.
For this type of elements the discontinuity enrichment function H is related to the node
itself. If the enriched node is located above the crack then the enrichment function H for
this node will be 1, and if the enriched node is located below the crack, then the
enrichment function H for this node will be -1. But if the enriched node is located on the
crack, the value of the enrichment function A will be 1 when calculating the stiffness for
the element located above the crack and -1 when calculating the stiffness for the element
located below the crack.

The elements cut by the crack require more Gaussian points to accurately integrate
the discontinuities along the two faces of the element. Here the element cut by the crack
is divided into sub-elements that have the triangular shapes where the crack is aligned
with the edge of one triangle for the upper part of the element and with the edge of

another triangle for the lower part. This technique is called the element partitioning.
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Figure 4.3 shows the sub-triangles and the Gaussian points for an element cut by the

crack.

Crack

Segment

--""""'—- -

Figure 4.3: Gaussian points for the partitioned element

Depending on the crack location, the sub-elements are established for the elements
cut by the crack. Each sub-element contains 7-integration points which are defined in the
local coordinates of the sub-elements (triangles). Thus mapping is required to convert the
integration points from the local coordinates of the sub-elements to the global coordinates
and then back to the local coordinates of the parent element. The function that
implements this mapping is presented in Appendix B.

It is good to emphasize at this point that the value of the enrichment function H for
the elements cut by the crack is dependant on the location of the integration points and
independent on the location of the node itself (i.e. above or below the crack). In other
words, if the integration point is located above the crack, all the nodes of the element will

be enriched by 1 even if some of these nodes are located below the crack.
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4.2.4 Assembly procedure

In the regular finite element method, the assembly procedure is straight forward
since the index used to assemble the element stiffness matrix to the global stiffness
matrix 1s related to the number of the node and the domain dimension (2-D or 3-D). For
example, the node 50 in two-dimensional mesh can have the index 99 for its x-coordinate
and 100 for its y-coordinate.

In the XFEM, the enriched nodes will contain extra degrees of freedom. These
degrees of freedom are dependant on the enrnichment function. That is, the node enriched
by the discontinuity function will contain two extra degrees of freedom, while the node
enriched by the tip enrichment function will contain eight extra degrees of freedom.
Hence, each element in the mesh will contain different total degrees of freedom
depending on the number of the enriched nodes and their enrichment functions. If the
quadrilateral element has only one node enriched by the tip enrichment function and the
rest are regular, the total degrees of freedom for the element will be 16 consisting of 8
regular degrees of freedom and 8 extra degrees of freedom resulted from the enriched
node.

For assembly purposes in XFEM a vector called index XFEM is established. The
purpose of this vector is to give an index for the extra degrees of freedom, while the
regular degrees of freedom will be indexed using the same procedure in the regular finite
element. Using this vector, it can be assured that the global stiffness matrix with the extra
degrees of freedom is properly assembled. This global stiffness matrix can be recalled as

needed in the case of the crack growth problems.
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After indexing the extra degrees of freedom in the mesh, the assembly procedure is
continued for the second and third type of elements (enriched elements not cut by the
crack and elements cut by the crack) by incorporating only the extra degrees of freedom
to the global stiffness matrix of the regular elements in the background mesh. Appendix
B contains two developed Matlab programs that can be used to obtain the total degrees of
freedom for the element and the indexing values for the extra degrees of freedom,

respectively.

4.3 Evaluation of the Stress Intensity Factor (SIF)

The stress intensity factor is a linear elastic fracture mechanics parameter that relates
remote load, crack size and structural geometry. Exact solutions for the stress intensity
factors are available for many crack geometries and can be used to validate the stress
intensity factor evaluated numerically using XFEM.

The numerical solution for the stress intensity factors are computed using XFEM for
different problems, and the results are compared with available analytical solutions to
validate the accuracy of the XFEM for modeling the cracks and the crack growth in the
mechanical structures. In this work, the stress intensity factors are computed using the
domain forms of the interaction integral [28-31]. It is assumed that the plastic zone
around the crack tip is very small and linear elastic fracture mechanics concept is valid.

The interaction integral is obtained from the J-integral which is defined as the line
integral defined around a contour I as shown in Figure 4.4 and characterizes the stress-
strain field around the crack front. If the LEFM is applicable, then the J-integral
represents the energy release rate at the crack tip during the crack growth. In general the

J-integral can be written as:
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Figure 4.4: J-integral contour

_ 1 B o, )
J_J[2(G”)(g"')5‘f €)% ]”fdr (42)

1

where o is the stress tensor, &, is the strain tensor, u, is the displacement vector and
n, is unit vector outward normal to the contour I'. For general two-dimensional mixed-

mode case the relationship between the J-integral and mode-/ and mode-I7 of the stress

intensity factors can be written as [28]:

2
J=Ec B (4.3)

where E” is defined in terms of E (Modulus of elasticity) and v (Poisson’s ratio) as:

E Plane stress

E'=!{ E , (4.9)
Plane strain

1-0?

Two states of a cracked body are considered. State 1 (a,”,;”,u;") corresponds to

the present state and state 2 (o', & ,u®) is an auxiliary state which will be chosen as

g %y M
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the asymptotic fields for pure mode-I or mode-/I. The J-integral for the sum of the two

states is:

o +u®
T = [[2(&”+a<2>)(g<”+g,§2>)5I (o 1 o) M HT) ):lnjdr (4.5)

r xl

Now expanding the terms, the J-integral for the sum of the two states will be written as:

JED =g W4 g® 4 (4.6)
where
ou® out’
7 (L2) _ W (1, 2)5 i('l) i —O'.(.Z) i n dl—' (47)
Toox Y ox /
T 1 1
in which
(12) _ [O.(l)gm +0(2) (1) O.mg(z) _ O.(Z)gm (4.8)

is the interaction strain energy from the two states. Based on Eq. (4.3) the J-integral for

the sum of the two states can also be represented as:

o KK (KK DY 49
E E

rearranging the terms in Eq. (4.9) yields:

JED =W 4 gy Ez—,;(K,“)K,‘Z) +K KD (4.10)
now equating Eq. (4.6) and Eq. (4.10) leads to the following relationship:

1 = %(K,‘”K,‘” +K K (4.11)

The contour integral in Eq. (4.7) is not in a form well suited for finite element
calculations. Therefore, it is recasted into an equivalent domain form by multiplying the

integrand by smooth weighting function g(x) which takes the value of unity on the crack
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tip and vanish on a prescribed contour C. Assuming the crack faces are traction free and
straight in the region A that is bounded by the contour C, the interaction integral can be

rewritten in the domain form using the divergence theorem as [30, 31]:

(2) (n
109 = [l ot Ou, to? O, -w 25, a_qu (4.12)
) aXl axl axj

If the auxiliary state 2 is considered as pure mode-/ asymptotic fields, then K =1 and

K P =0. Subsequently using Eq. (4.11), the first mode of the stress intensity factor K;

can be obtained as:

*

) =71“’M" & (4.13)

K

and the stresses and displacements for state 2 can be obtained from Eq. (2.8) and (2.9) as:

0 .0 . 30
cos—(1—sin—sin—)
) 2 2 2
1 0
o) = cos-—(]+sin€sinﬁ) (4.14)
) 27zr 2 2 2
o4 € . 0 30

€OS — Sin — COS —
2 2

(4.15)

e
o cos—{:rc—lJrZSin2 Q}
{u[ }_ 1 [ 2 2

“ou\2x
H N Sin—g—{K‘-Fl—-ZCOSZ g}
2 2

(2)
U,

where pis the shear modulus and x =(3-v)/(1+v) for plane stress and x =3—4v for

plane strain.
In similar way, to obtain the second mode of the stress intensity factor Kj; it is

required to set the auxiliary state 2 as pure mode-/I asymptotic fields. This is achieved by
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setting K| =1 and K =0. Then using Eq. (4.11), we can obtain the second mode of

the stress intensity factor Kj; as:

*

K” :%I(I,Mode—]]) (4.16)

and the stresses and displacements for state 2 in this case can be obtained from Egs. (2.9)

and (2.10) as:

.0 e 30
—sin—(2+cos—cos—)
e 2 2 2
p 1 .0 0 30
o= N> sin - cos— cos —3—2— (4.17)
@ zr

Xy

cos Q (1-sin 9 sin 3‘2)
2 2 2

Sing{:K+l+2COSQQ

@ / 2 2
{ulm}:i r - (4.18)
“2 2u N2 9[K—1—2sin2—€}
2

~COS —
2

now expanding each term of Eq. (4.12) yields:

1" = fhda (4.19)
A

where

h=h+h +h +h,+h+h —h —h (4.20)

The terms 4,,..., hg for both plane stress and plain strain conditions are derived in
Appendix A.

More discussion of methods and solution techniques for finding the stress intensity
factors for different type of problems may be found in Rooke [16], Broek [32] and Parker

[33].
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4.4 Illustrative Examples

Numerous examples including plates with edge crack, centered crack, two centered
cracks initiated from hole and crack inclined in different angles are studied using both
quadrilateral and constant-strain triangular element mesh. The main objective in this
section 1s to validate the numerical results obtained by XFEM. For this purpose, stress
intensity factors for different problems will be obtained using XFEM for both
quadrilateral and triangular element mesh and compared with the exact solutions
available. Once this objective is achieved and the XFEM is validated, the crack growth
problems will be simulated for different problems using XFEM.

In all problems investigated in this section, the thickness of the plate is selected as ¢ =
5 mm (except Section 4.4.2) and the material used is 304 Stainless Steel with modulus of
elasticity £ = 190 GPa, modulus of rigidity G = 73.1 GPa and Poisson’s ratiov = 0.305.

The yield strength for the stainless steel is o, =276 MPa , the fracture toughness where
the failure occurs is K ,. = 66 MPa~m and the threshold stress intensity factor is

K esios = 4.6 MPa~/m . Plane stress conditions and linear elastic fracture mechanics

are assumed.

4.4.1 Plate with edge crack under uniform tensile loading

Consider a rectangular plate with dimensions 10x20cm and thickness of 5 mm as
shown in Figure 4.5. The plate has a crack with length a = 5 cm located at the mid height

and is subjected to uniform tensile stress of 10 MPa.
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Figure 4.5: Plate with edge crack under tensile loading

The exact solution for the first mode stress intensity factor can be written as [34]:
K, =Covarn 4.21)

where
2 3 4
C :1.12—0.231(ij+10.55(ij - 21.72(1) +30.39(ij =2.8264 (4.22)
w w w w
a is the length of the crack, and W is the width of the plate.

Using provided dimensions, stress intensity factor for mode-/ can be found as:

K, =2.8264x10v/5x107 x 7 =11.202 MPa~/m (4.23)
Table 4.1 provides the normalized first mode stress intensity factor K; obtained
numerically using XFEM with respect to the exact solution for different element mesh

types and sizes and different enrichments’ radiuses on the crack tip.
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Table 4.1: Normalized K for plate with edge crack under uniform tensile loading

Radius of

. 1.5h, 2.5h, 35h,
nrichment

Mesh Quad | Tri | Quad | Tri Quad Tri

SDOF Quad=462
SDOF Tri= 468 0.9592 | 0.9125 | 0.9680 | 0.9288 | 0.9731 0.9401

SDOF Quad = 1722
SDOF Tri= 1724 0.9851 | 0.9412 | 0.9893 | 0.9520 | 0.9915 0.9578

The SDOF stands for the total system degrees of freedom for the background mesh.
As it can be realized for comparable SDOF, the quadrilateral elements (Quad) provide
more accurate results compared to the triangular elements (Tri). Also, it can be seen that
the accuracy generally increases when the radius of enrichment increases. However this
will increase the enrichment degrees of freedom which may increase the computational
cost. For instance, for the quadrilateral elements in the second row of Table 4.1 the final
degrees of freedom including the enrichment increases from 1812 for the radius of
enrichment R.,icp = 1.5 h, to 2032 for Repricn = 3.5 h.. Figures 4.6 shows the tensile stress
distribution in the plate along y direction resulted from the XFEM solution for the
quadrilateral element mesh for the second row in Table 4.1 with radius of enrichment 3.5

he.
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Figure 4.6: Tensile stress distribution for plate with edge crack under uniform tensile

loading (units in m)

4.4.2 Plate with edge crack under uniform shear loading

The plate with dimensions 7x16in. (17.78x40.64 cm ) and thickness of 7= 1 in.
(2.54 cm) has a crack with length of @ = 3.5 in. (8.89 cm) located in the mid height of the
plate as shown in Figure 4.7. The plate is under uniform shear stress of 1 psi (6.89 kPa)

acting on the upper edge.
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Figure 4.7: Plate with edge crack under shear loading

The exact solution for stress intensity factor for mode-/ and mode-/1/ is [28]:
K, =34.0 psiin =37.335 kPax/m, K, =455 psi~lin = 4.996 kPa\lm (4.24)

The discretization model is obtained using quadrilateral element mesh (14x32
elements), with a total system degrees of freedom 990. Different radiuses of enrichments
are performed. The XFEM simulations are normalized with respect to the exact solution

and are presented in Table 4.2 for both the first and second modes of the stress intensity

factor.
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Table 4.2: Normalized results for K; and K, for plate with edge crack under uniform

shear loading

Radius of

Enrichment 1.5h, 25h, 35h,
Normalized
K] and K]]
Normalized K; 0.9796 0.9860 0.9897
Normalized K, 0.9838 0.9854 0.9865

It can be realized that the accuracy increases as the radius of enrichment increases.
However as mentioned before, this will increase the enrichment degrees of freedom
causing more computational time. For this problem the total system degrees of freedom
including the enrichment ones increases from 1074 for radius of enrichment 1.5 4, to
1294 for radius of enrichment 3.5 4. Figure 4.8 shows the shear stress distribution in the

plate resulted from the XFEM simulation for the radius of enrichment 3.5 4.

“ 2 3 ‘4 5 ' 7
Figure 4.8: Shear stress distribution for plate with edge crack under uniform shear

loading (units in in.)
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4.4.3 Plate with central crack under uniform tensile loading

The plate for this problem has similar dimensions and thickness of problem 4.4.1 and
is under the same tensile loading of 10 MPa. However in this problem the crack of half

length @ = 2 cm is located at mid height and 3 cm away from the edges as shown in

Figure 4.9.
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Figure 4.9: Plate with central crack under uniform tensile loading

For this case the stress intensity factor for mode-/ 1s [35]:

K, =Com (4.25)

where

2
1-052 4+ 0.326(")
b b

C= (4.26)
hoa
b

56



where a 1s the half crack length, 5 is the half width of the plate. Substituting the
dimensions of the plate and the geometry of the crack into Eq. (4.25), we can find:
K, =1.1001x10§7 x2x107 =2.7575 MPav/m (4.27)

Table 4.3 provides the normalized first mode stress intensity factor K, obtained using
XFEM for different mesh refinements and different geometrical enrichment radiuses for

both quadrilateral and triangular elements with respect to the analytical solution.

Table 4.3: Normalized K| for plate with central crack under uniform tensile loading

Radius of

nrichment 1.5 h, 25h, 3.5h,

Quad Tri Quad Tri Quad Tri
Mesh

SDOF Quad=462
SDOF Tri= 468 | 0.9861 | 0.9327

SDOF Quad =

1722 1.001 | 0.9708 | 1.002 | 0.9744 1.003 0.9815
SDOF Tri=1724

As it can be seen from this table, again more accurate results can be obtained from
XFEM using quadrilateral elements compared to triangular elements. Also, as expected
the accuracy increases by increasing the radius of enrichment, but this subsequently
increase the enrichment degrees of freedom which consequently increase the
computational cost. It should be mentioned that it is not possible to increase the radius of

enrichment R > 2 cmto prevent the tip enrichment overlapping between tip 1 and tip

enrich

2, the reason why some cells in Table 4.3 are left empty. For the quadrilateral element in

the second row of the Table 4.3 the final degrees of freedom including the enrichment
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ones increases from 1876 for radius of enrichment of 1.5 A, to 2316 for radius of
enrichment of 3.5 A,. Figure 4.10 shows the tensile stress distribution in the plate along y
direction for the quadrilateral element mesh for the second row in Table 4.3 with radius

of enrichment 3.5 A,.

012

0.02 0.04 0.06 0.08

Figure 4.10: Stress distributions for plate with central crack under uniform tensile loading

(units in m)

4.4.4 Plate with two cracks initiated from central hole under uniform
tensile loading

In this problem similar plate studied in section 4.4.3 is considered. However the plate
is under uniform tensile loading of 45 MPa and has a central hole with radius of 2.5 cm

and two cracks with length a = 4 cm. as shown in Figure 4.11
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Figure 4.11: Plate with two cracks initiated from central hole under uniform tensile

loading

The exact stress intensity factor for this problem is K, =Co+7a in which C is

geometrical coefficient found from Figure 4.12 as C = 2.2. Considering the provided

dimensions, we obtain:

K, =2.2x45V7x4x107 =35.095 MPavm (4.28)

Triangular element has been used to mesh the plate as shown in Figure 4.13. Using
XFEM the result for stress intensity factors found to be K, =33.4 MPa+/m which is in

close agreement with the analytical result (error ~ 4.83% ). Figure 4.14 shows the tensile

stress distribution in the plate along y direction.
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Figure 4.12: The geometrical coefficient C for plate with two cracks initiated from central

Figure 4.13: Background mesh for plate with central hole



x 1000 MPa

Figure 4.14: Stress distributions for plate with two cracks initiated from central hole

under uniform tensile loading (units in m)

4.4.5 Plate with crack inclined with angle # under uniform tensile
loading

This section discusses the problems in which the crack is inclined in different angles.
This will further confirm the robustness and validation of the XFEM since arbitrary
locations for the crack tips require arbitrary nodal enrichments.

The plate for this problem has the dimensions of 20x20 ¢cm and thickness of =5

mm with half crack length of @ = 1.5 cm centered in the plate and inclined with angle S

as shown in Figure 4.15. The plate is under uniform tensile loading acting on the upper
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edge resulting in stress of magnitude of o, =10 MPa. The domain is discretized using

the quadrilateral elements.

T 10 MPa

a=15cm

a )
\f/ﬂ)f/n : 20 cm

Only Fixed in Y Direction
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I em |

¢

Figure 4.15: Plate with crack inclined with angle S

As the plate dimensions are large in comparison to the crack length, thus the
analytical solution given for infinite plate for the first and second modes of the stress

intensity factor can be used [28]:

K, =o+macos’(f)

K, = o masin(f)cos(f)

(4.29)

Tables 4.4 and 4.5 provide the normalized values for the first and second modes of
the stress intensity factor obtained using XFEM with respect to the analytical solution for

different angles S, respectively. The radius of enrichment is considered constant for all

cases (Reprich = 1 cm).
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Table 4.4: Normalized K; for plate with crack inclined at different angles # under

uniform tensile loading

Mesh B =15" B =30° B =45 B =60°
SDOF = 882 0.9711 0.9783 10.9733 0.9869
SDOF = 3362 0.9861 0.9880 1.008 1.008

Table 4.5: Normalized Kj; for plate with crack inclined with different angles # under

uniform tensile loading

Mesh B =15° B =30° B =45° B =60°
SDOF = 882 0.9368 0.9393 0.9433 0.9453
SDOF=3362 | 579, 0.9572 0.9895 0.9825

As it can be realized from Tables 4.4 and 4.5, more accurate results can be achieved
using finer mesh. Also, it should be emphasized again that it is not possible to use radius
of enrichment greater than the half length of the crack to prevent the tip enrichment
overlapping between the enrichment fields of tips 1 and 2.

Figures 4.16 shows the tensile stress distribution in the plate along y direction for

angle of f=45".
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Figure 4.16: Stress distribution in plate with central crack inclined at B =45" under

uniform tensile loading (units in m)

Figure 4.17 shows the comparison between stress intensity factors for mode-/ and
mode-I// obtained numerically using XFEM and analytical results for different crack

inclined angles with fixed crack half length a = 1.5 cm.
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Figure 4.17: SIFs for plate with fixed crack length inclined in different angles
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Figures 4.18 and 4.19 also show the comparison between stress intensity factors
obtained numerically using XFEM and analytical results for crack with inclined angles of

15° and 45° respectively and different crack half length.
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Figure 4.18: SIFs for plate with different cracked half lengths a (in cm) inclined in 15°.
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Figure 4.19: SIFs for plate with different cracked half lengths a (in cm) inclined in 45°.
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As it can be realized from these figures, very good agreement exists between SIFs
obtained using XFEM and analytical results confirming the robustness and accuracy of

the developed XFEM formulation.

4.5 Radius of Enrichment and System Degrees of Freedom

Relationship

As noted from the results for the problems discussed in section 4.4, the accuracy of
the results increases as the radius of enrichment increases. However this will increase the
enriched degrees of freedom in the system in an accelerated manner. The magnitude of

the radius of enrichment is related with the element edge length 4, used in the mesh and

1s recommended to be 1.54, <R, .. <4.5h , as described below.

For the lower limit of the radius of enrichment, let us assume the crack tip is in the

position shown in Figure 4.20. To enrich the four nodes of the element containing the

crack tip the radius of enrichment R, should be R . fo?jhe ~1.414h,. Thus

R, .. 21.5h, 1s good approximation.

/.Y\a!mme

Figure 4.20: Radius of enrichment lower limit
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As mentioned in section 4.2.4, each node in two-dimensional domain enriched by the
tip enrichment functions will add 8 degrees of freedom to the total degrees of freedom,
whereas the node enriched by the discontinuity function will add only 2 degrees of
freedom. Thus, any node selected to be enriched by the tip function when the radius of
enrichment increases will add 8 degrees of freedom to the total degrees of freedom.
Figure 4.21 shows relationship between the radius of enrichment and the final degrees of
freedom for the problem discussed in section 4.4.1 where the initial degrees of freedom

before selecting the nodes for enrichment are 1722.
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Figure 4.21: Final degrees of freedom versus radius of enrichment

It can be realized that the total degrees of freedom increase exponentially with the

increase of the radius of enrichment. This comparison is for plate with edge crack and

thus only one tip is involved in the tip enrichments. For central crack where both tips are
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involved and for three-dimensional problems, the final degrees of freedom will increase

even faster as the radius of enrichment increases causing high computational cost.

4.6 Conclusion

The computer implementation for modeling cracks in XFEM is performed using a
vector to define the nodal types (enriched or regular finite element node) and another
vector to define the type of elements ( regular or enriched elements). For elements cut by
the crack, the element partitioning is used to accurately integrate the discontinuities along
the two faces of the element.

The problems presented in this chapter provide an idea about the robustness and
validation of the XFEM where less than 2% of error is achieved when appropriate mesh
refinement is used. Also it is clear from the problems presented that the structured mesh
(quadrilateral elements) provides more accurate results with respect to the unstructured
mesh (triangular elements) for the same degrees of freedom and this is because the
triangular elements are constant strain c¢lements while the quadrilateral elements are
bilinear strain varying elements.

The radius of enrichment R,,,;.; is a very important parameter in XFEM, as increasing
its value will increase the final degrees of freedom drastically without any significant
improvement in accuracy. The magnitude of the radius of enrichment is basically related

to the element edge length /. and it is recommended to be1.54, <R, ., <4.5h, .
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CHAPTER FIVE

DAMAGE TOLERANCE ANALYSIS

5.1 Introduction

In this chapter, a brief overview of the safe life design and how the need arises for
improving the design methodology to shift the emphasis from crack initiation life to
crack propagation life are discussed. Some catastrophic events were reported to show
these needs, and the damage tolerance design is defined and its approaches are discussed.

The crack growth for different plates with hole and crack located in different
locations and under different types of loading are simulated using XFEM formulation
derived in chapter three. Using XFEM, there is no need to re-mesh the domain while the
crack grows thus reducing the computational time drastically. Finally, using the concept
of damage tolerance analysis, the life of the component is predicted using XFEM.

Many cases studies are investigated in this Chapter including rectangular plate with
initial edge crack, plate with hole inside and the crack located in different locations and
plate with two holes and the crack emanating from one hole under different types of

loading such as tensile, transverse and shear loadings.

5.2 Safe-Life Design

In 1954 there were two catastrophic accidents involving the newly developed comet
jet airlines. The comet jet was the first jet propelled passenger aircraft in the world to
enter into scheduled service. Subsequent investigations and pressure cycle testing of a

comet fuselage revealed that the accidents were caused by a structural failure of the
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pressure cabin due to metal fatigue cracking [19]. The probable sites of fatigue initiation
were identified as fastener holes located in highly stressed regions near the corners of the
cabin windows. The comet accidents introduced metal fatigue cracking into the aircraft
structural designers’ agenda.

As a result, safe-life design was introduced in aircraft engineering following the
comet jet accidents. The safe-life approach is based on the number of loading cycles
before crack initiation (i.e. failure is assumed when cracks are first formed). The fatigue
life was estimated by combining a service stress description with basic fatigue properties
obtained from laboratory experiments. The safe life approach is based on the number of
loading cycles before crack initiation (mean life). A great deal of uncertainty is associated
with the laboratory determination of that quantity. Therefore, the mean life is then
divided by a safety factor (from 3-5). The safe-life approach led to several inadequate
aircraft design in 1960s [37] such as F-111 (the safe-life for this aircraft was determined
to be 4000 flight hours, however one aircraft was lost due to fatigue after only 105
hours), KC-135 (the safe-life for this transport aircraft was determined to be 13000 flight
hours, however there were 14 cases of unstable cracking in lower wing skins that
occurred between 1800-5000 hours), F-5 (the safe-life design predicted 4000 flight hours,
however one of these fighters failed by fatigue cracking in the lower wing skins after

1900 flight hours).

5.3 Damage Tolerance Design

To overcome the shortcoming of the safe-life design, damage tolerance design was
introduced. The damage tolerance design shifts the emphasis from the crack initiation life

to crack propagation life. It is defined as the ability of the structure to resist fracture from
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pre-existent cracks for a specified time of period. The initial crack size is usually based
on inspection limits and is expected to be a conservative assumption. There are two
approaches for the damage tolerance that guarantee that the structure does not fail within
the life time: slow crack design, fail-safe design.

The slow crack growth approach is based on selection of the materials and the stress
field so that the pre-existent crack will not grow to the critical length during the service
time as shown in Figure 5.1. To be more conservative, the prediction time is divided by
factor of safety, usually value of 2 is used. Thus, there will be two opportunities to

discover the crack before it grows to the critical length.

€— Service Life —

Fracture
~
Crack
Length
Preexistence
Crack
Time

Figure 5.1: Slow crack growth approach

The Fail-Safe approach is based on using multi-load paths, so that failure of single
component in the structure does not lead to immediate loss of the whole structure. The
load carried by the broken member is immediately picked up by the adjacent structure,

and the total fracture is avoided. It is very important for the structure to be repaired since
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the extra load carried by the remaining members will shorten their fatigue lives as shown

in Figure 5.2.
1T 1T T
(! i L]
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Figure 5.2: Fail safe design

As mentioned in Chapter two, there are many models for the crack growth, one of
the most common used is Paris law. It is used to predict the life time for the structure

with pre-existence crack to grow to critical length. Fore the sake of clarity, the relative

equations are rewritten here as:

da m
—=C (AK) " 5.1
N ,(AK) (5.1)

integrating Eq. (5.1) yields:

= - (5.2)
c, I [AK @]
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which provides explicit equation to evaluate the life time of the structure with pre-

existent crack.

5.4 Damage Tolerance Analysis using XFEM

As shown in Chapter four, the XFEM has been validated using many problems with
cracks located at different locations and less than 2% of error has been obtained where
appropriate mesh refinement is used. Considering this, XFEM provides a reliable tool to
simulate the crack growth accurately and to predict the life time for different types of
structures.

Different types of problems are implemented in this section including initial edge
crack growth inside rectangular plate under tensile or shear loading, crack growth in plate
with centered crack and inclined crack, crack growth in plate with one crack initiated
from a hole and two cracks initiated from a hole. The problems are implemented using
the quadrilateral or triangular element mesh and the life time is predicted using the Paris
law.

In all problems, plate made of stainless steel with modulus of elasticity £ = 190 GPa
and Poisson’s ratio v =0.305 is used. The modulus of rigidity for the plate is G = 73.1

GPa and the yield strength is o,; =276 MPa . The fracture toughness for the stainless
steel 1s K, =66 MPaxym and the stress intensity factor threshold is

K, =46 MPaym . Paris Equation coefficients used are m,6 =36,

MN . e .
C, = 4.77x107" —lm . The plane stress condition is also assumed during the
cycle

simulation of the crack growth in all problems and the LEFM concept is maintained.
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In all problems, the crack growth rate Aa is considered to be constant. Its value is

selected based on the elements edge length 4  used. It is mentioned that the radius of

enrichment R, 1s recommended to be limited by 1.5/, <R <4.5h, . Here the radius

enrich —
of enrichment used in all problems is selected to be 1.54,.. It should be mentioned that
having accurate crack growth simulation requires the crack growth rate to be greater than

the radius of enrichment (Aa>R_ ., ) and this is to represent the tip enrichment

enric

functions accurately along the crack segment faces.

5.4.1 Plate with initial edge crack at g =0 under cyclic tensile loading

The plate with dimensions of 10x10 cm and thickness of 7 = 5 mm has initial crack
length of @ = 1.8 ¢cm located at the edge of the plate as shown in Figure 5.3. The uniform

cyclic loading applied in y-direction results in repeated tensile stress with

o™ =0,0"" =45 MPa .

y

a=18m
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Figure 5.3: Plate with edge crack at f# =0° under uniform tensile loading
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The mesh is performed by discretization the domain into 40x40 quadrilateral
elements (SDOF = 3362). The crack growth is simulated by Paris fatigue law and the
maximum principle stress criterion is employed to find its direction. The XFEM
technique is used to simulate the crack growth, where no re-meshing is performed during
the crack growth simulation and the radius of enrichment is assumed to be Reicn = 1.5 Ae.
It is noted that the crack is not necessary to be aligned with the edges of the elements in
the mesh.

The crack growth increment is considered for this problem as Aa =5 mm . The
analysis shows that the crack will grow in 8 iterations before the equivalent stress
intensity factor K, reaches the fracture toughness K¢ (see Eq. (2.23)) and resulting in
sudden failure. Eq. (5.2) is used to calculate the life time of the plate before the failure
occurs and is found to be 5.818x10° cycles. Figure 5.4 shows the simulation results for

the crack path before fracture occurs.

10r

Inittal Crack Fracture ocours

6} M

Figure 5.4: Crack growth in plate with edge crack under uniform ténsile cyclic loading
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Table 5.1 provides X and Y coordinates of the crack tip at each iteration cycle and

the estimated first and second modes of the stress intensity factor.

Table 5.1: Tip positions and SIFs for edge crack growth in plate under uniform cyclic

tensile loading

Xiip Yip K; Ky Kieq

.
Iterations 2%
cm. cn. M Pa\[}; MPax/;a— MPa\/—m— a °

Initial 6ip | 4 0500 | 50000 | 16.6328 | -05903 | 16.6642 | 3.2233

location
1 2.2987 | 5.0354 18.4832 0.2031 18.4865 3.1044
2 2.7982 | 5.0597 22.2207 -0.6111 22.2458 3.6927
K] 3.2955 | 51115 27.0538 -0.2325 27.0568 4.6349
4 3.7918 | 51718 32.7616 -0.1633 32.7628 5.9017
5 4.2875 | 5.2371 39.4320 -0.2787 39.4349 7.5561
6 47823 | 5.3093 47.4573 0.0864 47.4575 9.8033

7 5.2773 | 5.3797 | 58.0689 0.1087 58.0692 13.2928
Failure 5.7726 | 54483 | 71.8376 0.4984 71.8428 18.5926

As it can be realized, K; is much larger than K;; confirming the fact that mode-/ is
dominant. The value of K, increases as the length of the crack increases, while the value
of Kj; fluctuates around the zero. This can be referred to the fact that the maximum
principle stress criterion assumes that the crack grows in direction perpendicular to the
maximum principle stress in the near tip asymptotic field (i.e. the shear is assumed to be
zero in this region, and thus mode-/I does not exist).

The crack grows in path not exactly perpendicular to the tensile loading, this can be
explained by the existence of small developed shear and transverse stresses in the crack
tip field that affect the direction of the principle stress and as a consequent, affect the

crack growth direction.
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The last column in Table 5.1 represents the ratio between the radius of the crack tip
plastic zone r, and the crack length a. As it can be realized, this ratio is almost less than

10% for all crack growth iterations. This confirm the applicability of the LEFM concept.

5.4.2 Plate with initial edge crack at £ =0 under cyclic shear loading

In this problem, the plate dimensions, thickness, initial crack length and orientation

are similar to problem in Section 5.4.1 except that the plate is under shear cyclic loading

in which ™" = 0,7 =20 MPa as shown in Figure 5.5

xy s “xy

— e - —— e P —— - ——

a=138 cm.

T 10 em

Sem

Only Fixed in Y Direction

v (@ 1N ® N © M @ N @ B &

VA A A A B A M T
1 10 cm |

Figure 5.5: Plate with edge crack under cyclic shear loading

Same discretization model 1s performed in this problem as that in previous problem.
Constant crack growth rate of Aa=5mmis also assumed with same radius of
enrichment. The analysis using XFEM shows that the crack will grow in 9 iterations

before the equivalent stress intensity factor Ky, reaches the fracture toughness Kjc
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resulting sudden failure. Figure 5.6 shows the crack path during the load cycling. It is
noted the crack bends down from its initial direction in a certain angle confirming the
mixed-mode effect in the crack tip field. Thus the magnitudes of o, ,0, and 7, will

affect the magnitude and the direction of the principle stresses and as a consequent, the

direction of the crack growth.
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Figure 5.6: Crack growth in plate with edge crack under uniform shear cyclic loading

Table 5.2 provides X and Y coordinates for the crack tip at each iteration cycle and
the estimated first and second modes of the stress intensity factor. It is interesting to note
that even for this case mode-/ is the dominant deformation mode at the initial tip before
the crack grows, this leads to the fact that the dominant stress in the near tip asymptotic
fields is the tensile stress. Similar to the previous example the value of Kj; is insignificant

compared with K; during iteration cycles due to applying the maximum principle stress
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criterion. The life estimation time of the plate in term of number of cycles is found to be

7.271x10°.

Table 5.2: Tip positions and SIFs for edge crack growth in plate under shear cyclic

loading
R X;; Y, K; Ky K.

Iterations CI;’lp. CItI’lp. MPaxtw | MPavm MPa\q/n_q
Ilnoigi:(:;p 1.8000 | 5.0000 | 16.1042 | 2.0089 | 16.4704
1 22855 | 4.8807 | 17.8777 | 02312 | 17.8822

2 27679 | 47488 | 211749 | 08206 | 21.2225

3 32385 | 45801 | 249785 | 02115 | 24.9812

4 37063 | 4.4035 | 289795 | 0.3064 | 28.9844

5 41702 | 42171 | 336236 | 0.1597 | 33.6247

6 46324 | 40262 | 392967 | -0.1347 | 39.2974

7 50958 | 3.8385 | 46.2433 | -0.2364 | 46.2451

8 55611 | 3.6556 | 55.1588 | -0.4666 | 55.1647
Failure | 6.0295 | 34805 | 665373 | -0.6768 | 66.5476

5.4.3 Plate with initial edge crack inclined at angle S =15 under cyclic
tensile loading

The same plate discussed in section 5.4.1 is studied again. However in this plate the

initial crack is inclined at angle S =15". The plate is under cyclic tensile loading with

o™ = 0,0, =45 MPa as shown in Figure 5.7.
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Figure 5.7: Plate with edge crack inclined at g =15°

The plate is discretized with 40x40 quadrilateral elements resulting in SDOF =
3362. The crack growth rate is assumed to be Aa =5 mm . The analysis results using
XFEM shows that the crack will grow in 8 iterations before the equivalent stress intensity
factor Ky, reaches the fracture toughness Kjc. The life of the plate in term of number of
loading cycles is found to be 5.815x10* cycles. Figure 5.8 shows the crack path during
the load cycling up to the fracture point.

Table 5.3 provides X and Y coordinates for the crack tip at each iteration and the
estimated first and second modes of the stress intensity factor.

It is noted that K, in the initial location of the crack tip is considerable due to initial

angle of f=15". Once the crack starts growing, the K, reduces to very small value

(close to zero) due to applying the maximum principle stress criterion
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Figure 5.8: Crack growth in plate with initial edge crack inclined at =15 under

uniform tensile cyclic loading

Table 5.3: Tip positions and SIFs for crack growth in plate with initial inclined edge crack

Iterations Xiip Yip K K Kiey

cm. cm. MPam | MPaJm | MPaJm

Ilno'ct:z(::]p 1.7387 5.4659 14.2699 1.8052 14.6034
2.2386 5.4747 18.3006 | -0.8224 | 18.3558

2 27357 5.5281 223946 | -0.0236 | 22.3946

3 3.2327 55826 | 27.3350 | -0.4320 | 27.3452

4 3.7278 56528 | 33.1337 | -0.4201 | 33.1417

5 4.2209 57355 | 397253 | -0.4503 | 39.7330

6 4.7120 58293 | 47.8679 | -0.2100 | 47.8693

7 5.2023 59275 | 58.3431 01420 | 58.3436
Failure | 5.6930 6.0233 | 719713 | 01283 | 719716
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5.4.4 Plate with initial central crack at = 0° under uniform cyclic
tensile loading

In this problem, the plate has similar dimensions and thickness as the previous

problems with a central crack length of 2a = 1.5 cm. The plate is again under uniform

tensile cyclic loading with cr;"i“ =0,0," =100 MPa as shown in Figure 5.9.
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Figure 5.9: Plate with central crack at g =0’

The domain is discretized using triangular elements with element edge length A, = 2
mm. The Background mesh degrees of freedom is 3816 and the crack growth increment
1s again assumed to be Aa =5 mm with radius of enrichment Re,;., = 4.5 mm. The crack

growth simulation is accomplished for 7 iterations as shown in Figure 5.10 before the
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equivalent stress intensity factor Kj., reaches the fracture toughness K¢ and results in

sudden failure.
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Figure 5.10: Crack growth in plate with initial central crack at £ =(’

The tip 1 and tip 2 coordinates and the first and second modes of the stress intensity
factor at each iteration are provided in Table 5.4. It can be seen that Ky, fluctuates around

zero causing the kinking nature for the crack growth. The life time is predicted using

Paris law to be 3.812x10°.
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Table 5.4: Tip positions and SIFs for crack growth in plate with initial central crack

Iterations Xiipt | Yipr | Xip2 | Yip2 K; K Kieq
em. | em. | em. | em. | MPaJm | MPam | MPam
Initial tip |, 005 | 50000 | 5.7500 | 5.0000 | 15.0000 | -0.0880 | 15.0908
location
1 3.7500 | 4.9942 | 62500 | 4.9941 | 203700 | 01960 | 20.3728
2 3.2500 | 4.9979 | 6.7500 | 4.9979 | 25.2600 | -0.0250 | 25.2600
3 2.7501 | 5.0007 | 7.2499 | 5.0006 | 31.0100 | 04360 | 31.0192
4 22503 | 5.0175 | 7.7497 | 5.0173 | 37.3000 | 01570 | 37.3010
5 17508 | 5.0385 | 8.2492 | 5.0383 | 46.3700 | -0.3390 | 46.3737
6 1.2510 | 5.0522 | 8.7490 | 50521 | 59.1100 | 04920 | 59.1161
Failure | 0.7515 | 5.0743 | 9.2486 | 5.0740 | 77.7600 | -1.0870 | 77.7828

5.4.5 Plate with initial central crack at S =45’ under uniform cyclic
tensile loading

In this problem similar plate dimensions and thickness are used with initial crack of

length 2a = 1.5 cm located at the center of the plate and inclined at f =45°. The plate is

min

under uniform tensile cyclic loading with &

=0,0," =100 MPa as shown in Figure
5.11.

The discretized model, crack growth rate and radius of enrichment are similar to that
of previous section. The XFEM simulation expects the failure after 7 iterations where the
fracture toughness is reached to the equivalent stress intensity factor. The crack growth

path is shown in Figure 5.12.
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Figure 5.11: Plate with central crack inclined at f =45°

Initial crack Fracture

Figure 5.12: Crack growth in plate with initial central crack at # = 45° (units in cm)

The tipl and tip 2 coordinates and the first and second modes of the stress intensity

factor are provided in Table 5.5. The life time for the plate with the central crack inclined

at =45 is found to be 7.545x10’ cycles.
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Table 5.5: Tip positions and SIFs for crack growth in plate with inclined central crack

Tterations Xipr | Yipr | Xipz | Yip2 K; Ky Kieq
cm. cm. cm. cm. MPa\/f_n_ MPax/; MPa\/Z
Initial tip | | oo7 | 44607 | 55303 | 55303 | 7.9132 76568 | 13.8787
location
1 3.9741 | 45360 | 6.0262 | 54663 | 156541 | -0.3699 | 15.6631
2 3.4759 | 45789 | 6.5248 | 54282 | 23.3668 | -0.351 23.3679
3 2.9767 | 46067 | 7.0244 | 54093 | 294247 | -0.118 29.4207
4 24773 | 46306 | 75242 | 5.4226 | 34.6233 | 00235 | 34.6200
5 1.9779 | 4.6552 | 8.0238 | 54426 | 433120 | -0.1639 | 43.3109
6 1.4783 | 46760 | 85234 | 54632 | 54.0311 | 08539 | 54.0502
Failure | 0.9797 | 47125 | 9.0223 | 5.4967 | 67.3281 | -1.1675 | 67.3504

At the initial crack tips the exact first and second modes of the stress intensity factor
are K, =K, =7.675 MPa which are in good agreement with the results in the first row
of the Table 5.5 obtained by XFEM. The small difference between the exact solution and
the solution obtained using XFEM for the mode-/ stress intensity factor can be minimized
by increasing the tip radius of enrichment. It is noted that when the crack starts growing
the value of Kj; is reduced to very small values compared to K; confirming the dominant

of mode-/ during the crack growth.

5.4.6 Plate with central hole and two emanating cracks

In this problem, hole with radius of R = | cm is located in the center of plate which
has the dimensions of 10x10 cm and thickness of # = 5 mm. The hole has two cracks

emanating from its circumference with ¢ = 1.5 cm as shown in Figure 5.13. The plate is

under uniform tensile loading with o7’ "=, o, =100 MPa
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Figure 5.13: Plate with central hole and two emanating cracks

The domain discretization, radius of enrichment and crack growth rate are similar to
the previous section where the triangular elements are used in the background mesh with
total degrees of freedom of 3816. The XFEM is used to model the crack growth where
the analysis shows that the crack will grow in 5 iterations before the failure occurs.
Figure 5.14 shows the path of the crack growth from its initial up to fracture point.

The tip locations for crack 1 and 2 and the first and second modes of the stress
intensity factors are provided in Table 5.6. The life time is predicted as 934 cycles before

the fracture occurs.
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Figure 5.14: Crack growth in plate with central hole and two emanating cracks

(units in cm)

Table 5.6: Tip positions and SIFs for cracks 1 and 2 growth in plate with centered hole

. X1, Y1 | X2, Y2, K; Ky K.
Iterations cntl’p cntnlf, cntllf, cn;‘.D MPa\/Z MPa\/; MPa\h;
Ilnolcti]“:;p 3.5000 | 5.0500 | 6.5000 | 5.0500 | 25.2752 | 0.0101 25 2752

1 3.0001 | 5.0601 | 6.9999 | 5.0603 | 30.1255 | 0.0288 301255

2 25012 | 5.0932 | 7.4994 | 5.0828 | 37.2457 | -0.0287 37 2457

3 2.0014 | 5.1073 | 7.9990 | 51017 | 453251 | 0.0563 453957

4 15034 | 51522 | 8.4973 | 5.1430 | 53.4452 | -0.0245 53 4452
Failure | 1.0045 | 5.1858 | 8.9964 | 5.1733 | 66.6654 | 0.0827 66,6656

Examination of Table 5.6 reveals that the values of K; and K in the initial crack
location show mode-/ is the dominant mode which cause the crack to grow horizontally.

It is noted that K increases as the crack length increases while Kj; fluctuates around zero.
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5.4.7 Plate with two holes and single crack emanating from the left hole
subjected to tensile cyclic loading
The plate has dimensions of 10x10 cm and thickness of t = Smm is used in this

problem. The plate has two holes with radius of R = 1.25 cm. The center of the holes is

located 2.5 cm away from the edges of the plate. One crack is initiated from left hole with

initial length of @ = 5 mm, and inclined at angle of =15 as shown in Figure 5.15. The

plate is also under uniform cyclic tensile loading with O')'f’i“ =0,0," =45 MPa .

| | [ l |
A
R=12Z5cm  Initial Crack R=1.25em
% 10 cm
—2.5 em 2.5 cm—]
Scm
Y
4 A\ 4 Y.
OIE®) () () OO
/i I T 7 7 7 77 |
l 10 em |
X

Figure 5.15: Plate with two holes and single crack emanating from the left hole subjected

to tensile cyclic loading
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The domain is discretized using triangular element mesh with variable density as
shown in Figure 5.16. The crack growth increment is set to Aa =3.5 mm . The growth is
simulated for 5 iterations where the crack reaches the right hole, and the prediction time
is found to be 9.348x10*. Figure 5.17 shows the crack growth path. As shown, the crack

grows from its initial location and continues to the second hole in the plate.
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Figure 5.16: Domain discretization of plate with two holes

10

Initial Crack

Figure 5.17: Crack growth path in plate with two holes and crack emanating from the left

hole (units in cm)
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Table 5.7 provides X and Y coordinates of the crack tip at each iteration and the

estimated first and second modes of the stress intensity factor.

Table 5.7: Tip positions and SIFs for crack growth in plate with two holes and single

crack emanating from the left hole

. Xiip Yip K; Ky K.,
Iterations
cm. cm. MPaNm | MPaJm | MPaJm
Initial tip |, o 5.1204 13.5729 2.0530 13.6496
location
1 45823 5.1203 8.0095 -0.7454 8.1088
2 4.9282 5.1742 8.3508 0.9174 8.4213
3 52776 5.1534 10.2602 -0.6060 10.2998
4 5.6270 5.1737 243257 0.8719 243418
5 5.9769 5.1689 15.0849 0.7055 15.1332

The K;; has considerable value at the initial crack before it grows; this is because the
crack is iitially inclined at angle # =15°. The analysis shows that the crack initiated

from the first hole under the uniform tensile loading reaches the circumference of the

second hole.

5.5 Conclusion

The damage tolerance design is more conservative than the safe-life design. It deals
with predicting the life time for a structure with pre-existent crack to grow to the critical
length. This shifts the concepts for designers from the crack initiation life to the crack

propagation life. Using the Paris law, it is possible to predict the life time for the
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structures, provided that the stress intensity factors are known and the crack path is
known during the growth of the crack from its initial length to the critical length.

The full analysis and simulation of the crack growth can be accomplished accurately
and efficiently using the XFEM, where no re-meshing is required each time the crack
grows and there is no need for the crack to be aligned with the elements edges in the
mesh.

Through numerous illustrative examples, it has been shown that XFEM can be used
in damage tolerance applications to predict the life of the components accurately and

efficiently.
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CHAPTER SIX

CONCLUSIONS AND FUTURE WORK

6.1 Summary

The regular FEM is not well-suited for geometries with evolving discontinuities
since there is a need for re-meshing each time the discontinuity evolves. Besides the need
for high mesh density in the crack tip region due to the singularities, regular FEM
requires re-meshing when the crack grows thus increasing the computational time
drastically. Different from the regular finite element where the crack is modeled
explicitly by aligning the crack faces with the edges of the elements in the mesh, the
crack in XFEM can be modeled implicitly in the mesh, thus no re-meshing is required
each time the crack grows.

The crack modeling using XFEM is discussed and implemented by selecting the
nodes beside the crack to be enriched by the discontinuity and the tip enrichment
functions. The nodes selection is performed through special enrichment scheme.

The XFEM formulation is presented and it is concluded that the XFEM is the natural
extension of the regular finite element as it combines the regular degrees of freedom
resulted from FEM and the extra degrees of freedom obtained from the enrichment
functions. Thus the XFEM can be joined easily with the finite element packages to
account for the discontinuities.

The XFEM implementation procedure is explained starting from discretizing the
domain and obtaining the global stiffness matrix. This has been done using regular finite

element mesh generator. The procedure continued until obtaining the nodal
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displacements, the elements stresses and the stress intensity factors in mixed-mode
problems. This has been conducted through comprehensive investigation on the XFEM.
A formulation that creates the enriched approximation from the interaction of crack
geometry with the background mesh 1s derived. This allows the entire crack to be treated
independently without addressing the mesh.

As mentioned in XFEM, the extra degrees of freedom are resulted from the
enrichment functions. Two types of enrichment functions are used in the technique. The
first function accounts for the discontinuities along the crack faces and far from the crack
tip, two degrees of freedom for 2D domain will be added to the global degrees of
freedom for each node selected to be enriched by this function. The second function is the
tip enrichment function, where eight degrees of freedom for 2D domain will be added to
the global degrees of freedom for each node selected to be enriched by the tip enrichment
functions.

Difterent examples are studied to show the XFEM validation and robustness. This is
accomplished by comparing the stress intensity factors resulted using XFEM with the
exact solutions. It has been demonstrated that the structural mesh (quadrilateral elements)
provides more accurate results than the unstructured mesh (triangular elements) and even
for course mesh the results obtained can be considered as acceptable results when
comparing with the exact solutions.

The importance of the radius of enrichment and its effect on the accuracy of the
XFEM especially for course mesh and on the final degrees of freedom are discussed. It is
shown that the radius of enrichment should not be less than 1.54, to ensure that at least

one layer of elements bear the exact XFEM solution. It is also shown that when the radius
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of enrichment increases the accuracy of the XFEM solution increases. Thus it is
recommended that the radius of enrichment does not exceed a certain limit.

The crack growth is simulated using XFEM for plate with different cracks located at
the edges, the center or initiated from holes located in the plate. It is shown that the crack
growth takes place regardless of the discretized domain and the locations of the nodes
and elements in the background mesh. It has been shown that the XFEM is a reliable tool
to predict the service-life for the cracked structures, since no re-meshing is required.

Finally, the potential application of XFEM in damage tolerance analysis has been

demonstrated.

6.2 Future Work

To simplify the enrichment scheme, more advanced and efficient searching
algorithms should be established in the XFEM code to find the nodes that are required to
be enriched quickly and easily.

Using the higher order elements is still in its early stages and more work is required
to investigate its efficiency. This can be accomplished by using the higher order elements
in the background mesh instead of the quadrilateral or the triangular elements. Also the
enrichment scheme can be performed by selecting all the nodes that their supports are cut
by the crack and should be enriched by the enrichment functions.

The enrichment geometry is selected as a circle with the center at the crack tip. More
investigations are required to obtain more efficient geometries that give more accurate
results with less extra degrees of freedom. The predictable shape of the plastic zone
developed around the crack tip for both plane stress and plane strain conditions can be

good start for such investigations.
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XFEM is basically designed to model cracks. More efforts are still needed to expand
the technique into different engineering fields such as civil engineering structures,
automobile, heat transformation and the biomedical engineering.

Modeling holes and inclusions is also possible using the XFEM by developing new
enrichment function and considering special enrichment scheme for the nodes that their

supports are cut by the inclusion geometry.
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APPENDIX A

702 _ II: (1) aZ + (2) aZ Wﬂl)a":’—q{i‘dA (A.1)
4 7 aZ] J a}(l ! a;(j
12 LM o0.0 | p0,.07 2 5040 2 50,0
W —2[ g +o,'8; } o,¢ =o€,

Expanding each term in equation (A.1) give

(2) ., (2)
o0 6 » oq oW Oz, 5q g 65,(2 a_quU) 6252) 6_q+o_(l) 622 5q

0 (A2)
Y 6)(] ox; "oy, ox, ? dy, oy, ' 8x, 0y, 2 oy, ox,
o % 0 _ 0% 0 0% % 0% 0 0,
ij 1l ) 21 2 *
oy 9, o o, o O o o % K,
w g, 91 a<2>—az'“)+0—(z>(5z(1)+52_5”}+a;§>6 Waq (A4)
i 11 .
"ox, o, o, ox %, |ox
Then
2 ( (2
702 _ f;)az Y og Ml(zuazl() oq +G§11)8222)5_q+0_§12)622)3_q 4
i Ox ox, ox o1, ox, Ox, 0% 0%, (A5)
1) (1 " (1) '
A ZL R s a2l |,
; % O o ox, x> oK, ox, Ox,
Using the stress-strain relation
1" = [ndA where h =i, +h, +hy+h,+h;+h,~h, —h, (A.6)
A
For plane stress
(1) (1 )
h, = Ez[éz, v JGZ' 9 (A.7-a)
1 o, %, ) Ox o
0 (1 2)
h, = E [Gz] +V622 ]621 0q (A.7-b)
2(1+v)\ oy, oy, ) oy, oz,
1 (1) (2)
h, = £ %) +V622 o5 % (A.7-c)
2(1+v)\ oy, oy, | ox, oz,

101



U] 1) (2)
h, = E ZLVaZl +822 )522 Oq (A7-d)

l-v aZl 5){2 al] alz
oz a
h :O.(2) T A7-
5 12 oz, ox, ( e)
oz 4
h o= ()92, 99 Al7-
6 2 oy, ox, ( D
oz a
h :O'(Z) 1 __q_ AT-
7 12 oy, ox, ( g)
o o
hg"—’ g;) 622 “9 (A.7-h)
X, Ox,
For plane strain,
0] (1 (2)
- E {(1_‘/)521 v }azl Y (A.8-a)
(1+v)(1-2v) oy, o, | Ox, ox,
0 {1) 2)
h, = E 0z, +622 0z,” oq (A.8-b)
2(0+v){ ox, ox, ) ox, ox
1 (1 (2)
hy = E Oz, +822 dz,” dq (A.8-c)
20+v){ 0, Ox ) on ox
0] O] (2)
h, = £ v & +(1~v)azz %, o (A.8-d)
(1+v)(1-2v)| oy ox, | Ox, Ox,
oz o
b o0 0 A.8-
5 12 a/l/] axz ( e)
oz a
h =O'(2) . 99 A.8-
6 22 azl ze ( f)
oz o
hy=ol) L (A8-9)
X, Ox,
oz &
ol 0 (A.8-h)
X, Ox,

102



APPENDIX B

Triangle-Rectangle mapping
The Gaussian points that obtained from the elements that arte cut by the crack after the
partitioning are obtained using this function

function
[g s,g tH,weight]=Triangle rectangle map(xcoord,ycoord,X1,X2,COEFF ele size)
%X1 : tipl x-coordinate
%X2 : tip2 x-coordinate
%COEFF: the coefficients that represent the crack as y=COEFF(1)*X+COEFF(2)
%?xcoord: the x-coordinates for the nodes of the bilinear element
%ycoord: the y-coordinates for the nodes of the bilinear element
%ele_size : the element edge length.
[Enriched ELEMENT INTERSEC]=Element Crack Intersection points(xcoord,ycoord
,X1,X2,COEFF,ele_size);
X_center= sum(xcoord)/4;
y_center= sum(ycoord)/4;
X1=Enriched ELEMENT INTERSEC(1);
Y 1=Enriched ELEMENT INTERSEC(2);
X2=Enriched ELEMENT INTERSEC(3);
Y2=Enriched ELEMENT INTERSEC(4);
Area_Element=ele size"2;
negative _count=1;
positive count=1;

for j=1:4
x = xcoord(j);
y = ycoord(j);

delta = (X1-x)*(Y2-y)-(X2-x)*(Y 1-y);
if delta > le-6*ele_size
H()=1;
elseif delta < -1e-6*ele size
HG)=-1;
else
H(G)=10;
end
end
for j=1:4
if H(j) ==
pos_vertex x(positive count)=xcoord(j);
pos_vertex_y(positive_count)=ycoord(j);
positive_count=positive _count+1;
elseif H(j) == -
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neg_vertex_x(negative count)= xcoord(j);
neg_vertex y(negative count)= ycoord(j);
negative_count=negative count+1;
end
end
pos_vertex_x(positive_count)=Enriched ELEMENT INTERSEC(1);
pos_vertex y(positive _count)=Enriched ELEMENT INTERSEC(2);
pos_vertex x(positive_count+1)=Enriched ELEMENT INTERSEC(3);
pos_vertex_y(positive_count+1)=Enriched ELEMENT INTERSEC(4);
neg_vertex x(negative count)= Enriched ELEMENT INTERSEC(1);
neg vertex_y(negative count)= Enriched ELEMENT INTERSEC(2);
neg_vertex x(negative count+1)= Enriched ELEMENT INTERSEC(3);
neg_vertex y(negative count+1)= Enriched ELEMENT INTERSEC(4);
[pos_k,pos Area] = convhull(pos_vertex x,pos_vertex y);
[neg k,neg Area] = convhull(neg vertex x,neg vertex y);
[max_vall inter pos]=max(pos_k);
I inter pos=I inter pos-1;
[max vall inter negl=max(neg k);
0 mm e e e e
X_pos_center= sum(pos_vertex_x)/length(pos_vertex x);
y_pos_center= sum(pos_vertex_y)/length(pos_vertex y) ;
Xx_neg center= sum(neg_vertex x)/length(neg vertex Xx);
y_neg_center= sum(neg_vertex y)/length(neg_ vertex y);
for j=1:length(pos_vertex_ x)
sub_tri_pos(j,1)= pos_vertex x(pos_k(j));
sub_tri_pos(j,2)= pos_vertex y(pos_k(j));
sub_tri_pos(j,3)= pos_vertex x(pos_k(j+1));
sub_tri_pos(j,4)= pos_vertex_y(pos_k(j+1));
sub_tri_pos(j,5)= x_pos_center;
sub_tri_pos(j,6)= y pos_center;
end
for j=1:length(neg_vertex x)
sub_tri_neg(j,1)= neg_vertex x(neg k(j));
sub_tri_neg(j,2)= neg_vertex_y(neg k(j));
sub_tri_neg(j,3)=neg vertex x(neg k(j+1));
sub_tri_neg(j,4)= neg_vertex y(neg k(j+1));
sub_tri_neg(j,5)= x_neg_center;
sub_tri_neg(j,6)= y_neg center;
end
for i=1:length(pos_vertex x)
x1=sub_tri_pos(i,1);
yl=sub_tri_pos(i,2);
x2=sub_tri_pos(i,3);
y2=sub_tri_pos(i,4);
x3=sub_tri_pos(i,5);
y3=sub_tri_pos(i,6);
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child weigth=2*abs(x1*y2+x2*y3+x3*yl-x1*y3-x2*y1-x3*y2)/Area_Element;
al1=0.797426985353;b1=0.101286507323;a2=0.059715871789;
b2=0.470142064105;w1=0.225;w2=0.125939180544;w3=0.132394152788;
L1=[1/3 al b1 bl a2 b2 b2];L2=[1/3 bl al bl b2 a2 b2];
L3=[1/3 bl bl al b2 b2 a2];W=[wl w2 w2 w2 w3 w3 w3];
for j=1:length(W)
N1=L1G);
N2=L2();
N3=L3(j);
x_glob(length(W)*(i-1)+j)= NI*X1+N2*x2+N3*x3;
y_glob(length(W)*(i-1)+j)= N1*yl1+N2*y2+N3*y3;
weight(length(W)*(i-1)+j)=child_weigth*W(j);
H(length(W)*(i-1)+))=1;

end
end
% —
base = length(x_glob);
for i=1:length(neg vertex x)
x1=sub_tri_neg(i,1);
yl=sub_tri neg(i,2);
x2=sub_trt_neg(i,3);
y2=sub_tri neg(i,4);
x3=sub_tri_neg(i,5);
y3=sub_tri_neg(i,6);
child_weigth=2*abs(x1*y2+x2*y3+x3*yl-x1*y3-x2*y1-x3*y2)/Area_Element;
al=0.797426985353;b1=0.101286507323;a2=0.059715871789;
b2=0.470142064105;w1=0.225;w2=0.125939180544;w3=0.132394152788;
L1=[1/3 al bl bl a2 b2 b2];1.2=[1/3 bl al bl b2 a2 b2];
L3=[1/3 bl bl al b2 b2 a2];W=[w1 w2 w2 w2 w3 w3 w3];
for j=1:length(W)
N1=LI(j);
N2=L2(});
N3=L3(j);
x_glob(baset+length(W)*(i-1)+j)= N1*x1+N2*x2-+N3*x3;
y_glob(baset+length(W)*(i-1)+j)= N1*yl+N2*y2+N3*y3;
weight(base+length(W)*(i-1)+j)=child_weigth*W(j);
H(base+length(W)*(i-1)+j)=-1;
end
end

for i=1:length(x_glob)
g s(1)=(x_glob(i)-x_center)*(2/ele_size);
g t(1)=(y_glob(i)-y_center)*(2/ele_size);
end
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Element degrees of freedom

function [edof]=Element_dof(Node type)
%Node_type is obtained from nodes ID
edof=0;
for i=1:length(Node type)
if Node type(1)==0
edof = edof+2;
elseif Node type(i)==1 || Node type(i)==-1 || Node type(i)==10
edof=edof+4;
elseif Node type(i)==11 || Node_type(i)==22
edof=edof+10;
end
end

The extra degrees of freedom index

Function [index XFEM]=get index(nodes_ID,sdot)
% sdof : is the regular system degrees of freedom
count=sdof;
index XFEM (:,1)=0;
for i=1:length(nodes ID)
if nodes ID(i)==1 || nodes ID(i)==-1 || nodes ID(i)==10
index XFEM (i)=count;
count=count+2;
elseif nodes ID(1)==11 || nodes ID(i)==22
index XFEM (i)=count;
count=count+8§;
end
end
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