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ABSTRACT

Optimally tuned secondary system with viscous damping for vibration
suppression in torsional systems

Juan Melchor BACA VASQUEZ

Dynamic vibration absorbers and dampers are used to reduce the vibration
responses of mechanical systems. A dynamic vibration absorber reduces
vibrations of a primary system over a desired frequency range by absorbing the
energy through responding with opposite phase to that of the force acting on the
primary system. A damper, on the other hand, is a device used for reducing the
magnitude of a shock or vibration by energy dissipation methods. The latter is
extensively used in automotive engines to reduce torsional oscillations and in
aircraft landing gears to damp out shimmy oscillations. This thesis aims to study
and understand an optimally tuned viscous torsional vibration damper which is a

combination of a dynamic vibration absorber and damper.

The primary system whose vibration is to be suppressed, along with the optimally
tuned viscous torsional vibration damper, will form a two-degree-of-freedom
system which will be studied for its dynamic behaviour. The analytical model
includes parameters such as primary inertia, damping and stiffness and
secondary inertia, damping and stiffness. Numerical determination of optimum

damping and stiffness for a secondary system is carried out and simulated

111



results are presented and discussed. Validation of some aspects of the analytical
studies is carried out with experimental investigation for the optimally tuned
viscous torsional vibration damper and viscous damper. The test results of the

two damping devices and the analytical investigations are compared.

In addition, the study is extended, applying the optimally tuned viscous torsional
vibration damper to a seven-degree-of-freedom torsional system namely to a
four-stroke six-in-line cylinder internal combustion engine. This numerical study
compares the engine response with and without damping. For both cases same
excitation torque per cylinder was applied. The optimally tuned viscous damper

reduces the vibrations.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

A vibration absorber or damper is a device mounted on vibrating mechanical
systems in order to suppress excessive vibrations and prevent discomfort,
damage or failure due to vibration. In the present study, we will be studying a

vibration absorber for torsional vibrations.

The torsional vibration absorber consists of an annular seismic mass, with a
counter bore to hold the springs, enclosed in a casing. The peripheral and lateral
gaps between the seismic mass and casing are filled with a viscous fluid. The
optimum values for the spring stiffness and for the viscous fluid damping are

determined from the dynamic analysis of the system behavior.

This new vibration absorber can be considered as the combination of two known
types of dampers: the viscous damper type, also known as Houdaille damper
and the spring damper type, also known as Frahm type. Further description of

the two known types is covered in section 1.2.



The four definitions given below by ISO 2041:1990 (British Standard 3015) [5]
are used for better understanding of the difference between a damper, an

absorber and a detuner, which will be referred to throughout the thesis.

A- Damper; absorber: In vibration applications, a device used for reducing the

magnitude of a shock or vibration by energy dissipation methods.

B- Dynamic vibration absorber: A device for reducing vibrations of a primary
system over a desired frequency range by the transfer of energy to an auxiliary
system in resonance so tuned that the force exerted by the auxiliary system is

opposite in phase to the force acting on the primary system.

C- Detuner: An auxiliary vibratory system with an amplitude-dependent frequency
characteristic which modifies the vibration characteristics of the main system to
which it is attached. Note: An example is an auxiliary mass controlled by a non-

linear spring.

D- Damping: The dissipation of energy with time or distance. Note: In the context
of vibration and shock, damping is the progressive reduction of the amplitude

with time.



1.2. Devices for controlling torsional vibrations [3]

In addition to the two types of dampers mentioned in section 1.1: viscous and
spring dampers, there are, friction, rubber and pendulum dampers. In
accordance with the definitions, there are also the dynamic vibration absorbers
(without damping or with damping) and pendulum detuners. The pendulum
damper is also considered as a rotating pendulum vibration absorber (without

damping or with damping).

1.2.1 Viscous damper

The viscous damper, also known as untuned viscous-shear damper, or Houdaille
damper, or torsional viscous-friction damper consists of an annular seismic mass
enclosed in a casing. The peripheral and lateral gaps between these two
members are filled with a viscous fluid, most commonly, silicone fluid [1]. As the
silicone fluid is non-Newtonian fluid, the effective viscosity in the actuation is

different from that in the operating condition with its complicated characteristics

2].

The viscous damper is considered untuned, since the seismic mass is acted
upon only by the viscous torque transmitted by the fluid, and the complex elastic
coupling member between the seismic mass and the casing is minimal or

disregarded. Unlike ‘tuned’ dampers, the untuned viscous damper does not



introduce any additional resonance, but lowers the value of the natural frequency

of the entire system while reducing the vibration amplitudes.

1.2.2 Spring damper

The spring damper is also known as tuned damper, because it is tuned to the
resonant frequency of the system to reduce the torsional vibrations, while at
other frequencies it may not be quite effective. The springs, due to the constant

tension and compression, have a short life just like the damper.

1.2.3 Friction damper

The friction damper is also known as Lanchester damper. The friction damper
absorbs energy when the torsional vibration force is greater than the static
friction force set between the surfaces of the damping mass and the vibrating

system.

1.2.4 Dynamic vibration absorber with damping

The tuning disk with damping or dynamic vibration absorber with damping is the
type of damper which has its seismic mass elastically and directly connected to
the crankshaft and for which the damping can be regarded as proportional to
vibration velocity; i.e., rubber dampers, and dampers of the viscous type (with

silicone fluid).



As a general rule, all such types of dampers require tuning. In contrast to tuning
disks without damping, those with damping do not necessarily fulfill all

requirements when tuned to the natural frequency of the original system.

1.2.5 Dynamic vibration absorber without damping
The tuning disk without damping is also known as tuning flywheel, harmonic
balancer or dynamic vibration absorber without damping. Where a resonance

peak occurs at speed N_in the running range of an engine, it is possible to

reduce the torsional vibration amplitude at this speed by mounting, at the front

end of the crankshaft, a disk with suitable moment of inertia.

Although the tuning disk eliminates the peak at engine speed N_, it also adds a

further possible mode of vibration to the engine system so that with the tuning

disk, two peaks are obtained on either side of the original resonance curve.

1.2.6 The pendulum damper or rotating pendulum vibration absorber

The pendulum damper or rotating pendulum vibration absorber or auxiliary
vibratory system (damped or undamped) is a device elastically connected to the
main system to modify the vibration characteristics of the main system to which it

is attached.



DAMPING FLUID

FLYWHEEL

ROLLER MASS RING MASS

Figure 1.1: Rotating pendulum vibration absorbers. (A) Roll form (damped) and (B) Ring form

(undamped)

The flywheel on figure 1.1 rotating at its natural speed N_, causes the system to

vibrate. Then, the roller or ring masses absorb the torsional oscillations by an

opposing torque.

1.2.7 Detuner

A detuner is one of the solutions for reducing the galloping [31] in overhead
conductors (bundles). Galloping on transmission lines (overhead conductors) is a
low frequency, large amplitude, wind-induced vibration of both single and bundle-

overhead transmission lines, with a single or a few standing waves per span [32]



(see figure 1.2 [33]). The ice formation in colder climates facilitates such

galloping motion [8].

This anti-galloping device is based on the fact that the torsional motion of the
bundle interacts dynamically with the vertical motion. The moderate cross-
blowing wind over the conductor with asymmetric cross section due to ice
formations produces the torsional motion. When this torsional motion tunes with
the frequency of the vertical movement, it produces instability. In order to
separate these frequencies from the vertical and torsional motion, a detuner (see

figure 1.3) is used in order to suppress the galloping phenomenon.

Figure 1.2: Vertical / horizontal galloping on overhead transmission lines [33]



Figure 1.3: Detuner for vertical / horizontal galloping

1.3 Shimmy damper

The shimmy damper is ancther type of torsional vibration damper used in landing
gears of aircraft. The surface irregularities on the runway for landing and takeoff,
tire non-uniformity, and worn landing gear components induce oscillatory motion
in small aircraft nose wheels during takeoff, landing, and taxiing. This oscillation,
called nose-wheel shimmy, is similar to a caster wheel wobbling on a shopping
cart. Instability results if the oscillation grows, and hence small aircraft nose gear
typically uses shimmy dampers to lessen oscillatory effects by reducing the

amplitude or preventing shimmy oscillations [10].

1.4 Survey of work done.

History
The use of torsional vibration dampers started around 1909. The main reason for

their use was to reduce the torsional dynamic twist in engine crankshafts in order



to prevent serious damage. It was found that this torsional dynamic twist was
severe when the engine was running near or at the resonant speed of the
crankshaft. Several types of dampers were being developed at around that time:

spring, friction, pendulum, rubber, pumper and viscous dampers [14].

Around 1930, George J. Dashefsky, developed a viscous damper similar in
construction to the later Houdaille damper. For the viscous medium he used

furniture glue, which made it quite successful [18].

The mathematical model for the viscous damper was developed by Bernard E.
O’Connor in 1947. This model showed the silicone fluid as efficient damping
medium. Therefore, the invention of this viscous damper is attributed to Bernard

E. O’'Connor[13].

Viscous damper
The viscous damper has been extensively investigated from different points of
view such as its manufacturing, dynamic characteristics, design, and test

experiments.

One of the manufacturing considerations for the viscous damper with regard to
the silicone fluid is the shear rate, which is a direct function of the speed, and
inversely related to the clearance between the casing and seismic mass of

damper. The shear rate will be relatively low and hence steel on steel using



silicone oil will operate satisfactorily. However, when the shear rate is high and
the quality of the silicone oil is poor, the rubber surfaces of the damper may gall
and eventually the seismic mass will weld onto the casing. Therefore, nickel or

cadmium is recommended for plating the surfaces when silicone oil is used [11].

The complicated dynamic characteristics of the silicone oil generally depend on
the temperature, frequency and strain rate effects. Theoretical and experimental
studies for these characteristics were carried out using the transfer matrix

method for three dampers with diverse viscosity of silicone oils [2].

One design consideration is the peripheral and lateral gaps between the seismic
mass and the casing. The gaps play an important role in the energy dissipation
by shear resistance of the silicone oil due to the relative velocity between the
seismic mass and the casing. Experiments were carried out with changes of the

viscosity and gap dimension [1].

Experiments on a viscous friction damper for vibrations in axial, torsional and two
lateral directions were carried out. The effects of these vibrations that
simultaneously occur in the crankshaft of a multi-cylinder engine fitted with a

viscous damper were investigated analytically and experimentally [12].

The desirable properties for the viscous fluid are that the fluid be stable and

noncorrosive at fairly high temperatures and have a relatively flat viscocity-

10



temperature curve over a wide range and furthermore, the viscosity should not
change appreciably with high rates of shear [18]. An undesirable property of
silicone oil is its lack of oiliness under thin-film conditions with certain
combinations of materials. Reference [34] gives a list of good, indifferent, and

poor combinations of metals using silicone oil.

Vibration absorbers

Early studies on the dynamic vibration absorbers considered springs for both
primary and secondary systems. The secondary one (auxiliary mass) tuned to
primary one at a suitable location and properly designed, reduces vibrations of
the machine. However, it creates two critical speeds in the machine system
making it suitable for constant-speed machinery only [6, 9, 19, 20, 24, 25, 30,

36].

For studies on a complete dynamic vibration absorber: spring for each, primary
and secondary systems were included, with damping for primary and secondary
systems as well. When there is damping in the primary system, there are no
points of intersection of all curves; however, there will still be a curve with two
minimum equal values of magnification factor that can only be determined
numerically [21, 22, 23, 24, 25]. An analytical solution using series was
performed up to certain limits with error and so far, an exact solution is probably

impossible [15, 16].

11



1.5 Objectives and scope of the thesis

This thesis aims to study a viscous vibration damper with elastic coupling
between the seismic mass and casing. The primary system whose vibration is to
be suppressed, along with the spring dashpot damper, will form a 2-DOFS which
will be studied for its dynamics. Numerical results will be presented and

discussed.

Results will be compared with those for conventional viscous dampers and the

analytical results will be validated using experiments.

In addition, the research is extended to the application on a 7-DOFS, four-stroke
six-in-line cylinder internal combustion engine for the comparison of two different

responses.

1.6 Organization of the thesis

In Chapter 1, an introduction to the spring dashpot vibration absorber, definitions
and a short description for some of each different type of damping device are
given. The literature review mentions references on the viscous damper, the
viscous fluid, and the dynamic vibration absorber. The application of the spring
dashpot damper in landing gears gives an insight into the research, motivation

and scope of the thesis undertaken.

12



In Chapter 2, a detailed mathematical model for the equation of motion is derived
from the 2-DOFS. Numerical derivation of optimum damping and stiffness for
secondary system is performed and simulated results are presented and

discussed.

In Chapter 3, the design and manufacture of main components for an actual 2-
DOFS are carried out for the experimental investigation to validate theoretical
results with two types of seismic mass allocated in the same casing. The two
types of seismic mass are used to compare the experimental results between

optimally tuned viscous damper and viscous damper.

In Chapter 4, we extend the study, applying some of those optimum values found
in Chapter 2, to a 7-DOFS: four-stroke six-in-line cylinder internal combustion
engine. The analytical study compares the response for two different cases. The
first case is the amplitude response of the engine without a damping device and
the second case is the response with the optimally tuned viscous damper. For

both cases, the same excitation torque per cylinder was applied.

In Chapter 5, conclusions of results are presented for the work undertaken, and

recommendations for future work are given.

13



CHAPTER 2

ANALYTICAL INVESTIGATION

2.1Introduction

In this chapter, a detailed mathematical model for the equation of motion is
derived for the 2-DOFS. Numerical derivation of optimum damping and stiffness
for secondary system is performed, and simulated results are presented and

discussed.

The new optimally tuned viscous damper with the elastic coupling K, and
damping c¢,, will also consist of an annular seismic mass enclosed in a casing.
The peripheral and lateral gaps between these two members are also filled with

silicone fluid. In addition, a counter bore on the outer periphery of the seismic

mass will locate the helical springs which are also immersed in the viscous fluid.

The optimally tuned viscous damper could be considered either as untuned,
since the seismic mass is freely floating in oil inside the casing and acted upon
by the viscous torque transmitted by the fluid, or as tuned since the seismic mass

is acting elastically, coupled by the torque transmitted.

14



2.2 Equations of motion

The two-degree-of-freedom system is excited by a torque T(t)=T0.ef‘”‘ on the

primary system as shown on figure 2.0.

PRIMARY
;7/ SYSTEM SECLNDARY
K2 SYSTEM
AAA
r~ WA
\\/ \/ \\/ ‘

TN
N U

Figure 2.1: Two-degree-of-freedom system with stiffness and damping on primary and secondary

systems.

1,6, +¢,6,+K, 0, +c,(6,-6,)+ K,(6,-6,)=T, &' (2.1)
7,8, +¢,16, -6,)+ K, (6, -6,)=0 (2.2)

Let the solutions for the angular amplitudes of the above equations be:

6,(t)=0,.¢" 0,(t)=0,.e""
0,(t)= 0i©, ™" 0,(t)=wi®,.e"" (2.3)
6,(t)=-0*0,°" 6,(t)=-0"0,."

15



Replacing equation 2.3 on equations 2.1 and 2.2 and rearranging the variables

we obtain:

(J,(~0° 0)) + ¢, (0i0)) + K,(O,)) + ¢, [0i(0, -0,)]+ K, (O, -0,)} &' =T,
(— J, 0" +c,.wi+ K, +c,wi+K, )G)] +(—c,wi-K,)0,=T, (2.4)
(J,(~0*0,) + ¢, [0i(0, -0)]+K,.(0,-0,)}e =0

(~c,0i—K,) O, +(- J,.0° + ¢, 0i +K,)®, =0 (2.5)
Expressing equations (2.4) and (2.5) in matrix form:

(g0 +(c, +c,)wi+K,+K,)  (-c,0i-K,)|[0,) [T,

= (2.6)
(-c,.wi—K),) (—Jz.a)2 +c2.a).i+K2) ®,; |0
Introducing the five following nondimensional variables:

_c
&= /2.J,.a)l

_c
€27 /Z.J2 0,
k=K,/K, (2.7)
u=J,1J,
x=w/o,

K K
where: o, = |~ and @, = _|—2%
\/ J, V7,

Substituting the nondimensional variables 2.7 in equation 2.6, expanding and

rearranging the variables we obtain:

(— xP+2.8.xi+2.8, Jpkxi+1+ k) (&, Jpkxi-k)|| T, 1

<

(2.8, sk xi—k) (— wx’ + 2.8,k xi+ k) 0, K, 0

(2.8)
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Solving matrix equation (2.8) using Cramer’s rule:

1 (2.6, pk xi—-k)

0,.K, 0 (—,u.x2 +2.8, A pkxi+k 2.9)
T, (~ X% +2.8,.x0+2.8, A pkxi+1 +k) (=2.8, ph xi—k)

(2 fihxi—k)  (cpx? + 2.8,k xi+k)

(— x* +2., .x.i+2.82.\/ﬁ.x.i+l+k) 1

0,.K, _ (2.6, pk xi-k) 0 (2.10)
Ty (— x*+2.6.xi+2.¢, .,/,u.k.x.i+l+k) (2.8, pk xi—k)

(2, Jpkxi-k)  (cpx?+2.6,iwkxitk)

Note that instead of the stiffness ratio #=K,/K,, we could have used the
frequency ratio f = o,/ w,. However, for the optimally tuned viscous damper, the
behavior of the elastic coupling is directly seen on the stiffness K, for the

secondary system through the stiffness ratio «.
2.3 Numerical analysis

The numerical analysis consists of the numerical evaluation of equation 2.9. The

amplitude ratio ®1‘K% is a function of five variables ( ¢, , &, , k , g, x) in
[

search of the optimum values for all the variables.

17



An exact analytical solution is practically impossible when primary damping ratio

g, is different from zero and the optimization method used in this numerical
evaluation is the H_ optimization which minimizes the dynamic magnifier ©, of

the primary system [15].

The equation 2.9 is solved and the numerical results are presented in two

sections: section 2.3.1 which corresponds to the primary damping ratio &, = 0,

and section 2.3.2, which corresponds to ¢, #0.
2.3.1 Numerical analysis when ¢, =0

This section presents plots when the primary system has no damping ¢, = 0,

which is the common case also studied and discussed in several papers.

Figures 2.2, 2.3 and 2.4 correspond to the plots in 2D space for equation 2.9,

QK% versus x for six different values for each ¢, , k£ and u.
[0}

A 3D representation of results of equation 2.9 is presented in figures 2.5, 2.8 and

2.11, GI'K% versus x and ¢, , k and u , respectively.
o

Figures 2.6 and 2.7 are side views for figure 2.5; 2.9 and 2.10 for 2.8; 2.12 and

2.13 for 2.11.
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O, K /To vs x with different &, , for given: g= 0, k= 0.0824 and p= 0.1

Amplitude ratio: @1,K1/To

1
b7 075 08 085 09 0.95 1 1.05 11 1.15 1.2
Frequency ratio: x

Figure 2.2 Plot of amplitude versus frequency, given: primary damping &, = 0, for different

secondary damping &, , stiffness & = 0.0826 and mass x =0.1

Figure 2.2 shows the plot of amplitude ratio QI'% vs frequency ratio x for

[0}
different secondary damping ratio ¢, =0, 0.05, 0.185, 0.3, 0.5, «; given the other

variables as constants: primary damping ratio ¢, = 0, stiffness ratio £ = 0.0826

and mass ratiou =0.1.
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All the curves pass by two fixed points P and Q. A curve with two equal peaks

passes through these two fixed points, where ¢,= 0.185 , ®1‘K% = 4.595 and,
o

x=0.848 and 1.06.

In the case where ¢,= 0, the system is undamped and the two natural

frequencies are obtained as the roots of the frequencies equation, which is the
denominator of equation 2.9 equated to zero, where the amplitude ratio is infinity
at x=0.8144 and 1.1160 . Figure 2.2 also shows that the amplitude ratio is zero
at point R when x= 0.9077, which is obtained equating the numerator of

equation 2.9 to zero.

When g,= =, there is only one natural frequency which corresponds to that in

figure 2.2 where the amplitude ratio is infinity, which occurs at x = 0.9535.
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@1.K1/To vs x with different k , for given: §= 0, &= 0.185 and pu=0.1

Amplitude ratio: @1.K1:'To

Frequency ratio: x

Figure 2.3 Plot of amplitude versus frequency, given: primary damping &, =0, for secondary

damping &, = 0.185, different stiffness £ and mass x =0.1

Figure 2.3 shows the plot of amplitude ratio G)l'l% vs frequency ratio x for
¢

different stiffness ratio k= 0, 0.06, 0.0826, 0.095, 0.12, «; given the other

variables as constants: primary damping ratio £, =0, secondary damping ratio

£,=0.185, and mass ratio 1z =0.1.

All the curves do not pass through any common fixed point nor are the curves

contained within the limits fork = 0 and &k = «; however, the curve with two equal

21



peaks has the same values for k= 0.0826, ®1'I% = 4.595 and, x= 0.848 and
(2]

1.06.

In the case where k= 0, there is only one maximum peak with ©, ’K% = 5000
o

(not shown in figure 2.3) at x= 1. When k= «, there is also only one maximum

peak with ®, I% = 12730 (not shown in figure 2.3) at x = 0.9535, which is the
(0]

same value obtained in figure 2.2.

G)M(,/To vs ¥ with different g, for given: = 0, £,= (.185 and k=0.0826

" ) ) ! ! T T 1 ! ! !

Amplitude ratio; @1.K1/T0

u}
07 075 08 0.85 09 0.95 1 1.05 1.1 1.15 1.2
Frequency ratio. x

Figure 2.4 Plot of amplitude versus frequency, given: primary damping &, =0, for secondary

damping &, = 0.185, stiffness & = 0.0826 and different mass .
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Figure 2.4 shows the plot of amplitude ratio ®1'K% vs frequency ratio x for
[

different mass ratio 4= 0, 0.07, 0.09, 0.1, 0.1, 1; given the other variables as
constants: primary damping ratio &, =0, secondary damping ratio £,= 0.185,

and stiffness ratiok = 0.0826.

All curves do not pass through any common fixed point nor are the curves

contained within the limits for u = 0 and x = 1; however, the curve with two equal
peaks has the same values for k= 0.0826, ©, I% = 4.595 and, x= 0.848 and
[e]

1.06, as shown in figure 2.2.

It is also seen in figure 2.4 that when u = 0, there is only one maximum peak with

®1'K% = 10000 at x= 1; and when u= 1, there is also only one peak with
[¢]

‘911% = 7.831 at x= 1.035.
(o]
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®1AK|fl'o vs x and g , for given: §= 0, k=0.0826 andp=0.1

.
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Amplitude ratio: o, .K]/To

Secondary system damping ratio: & Frequency ratio: x

Figure 2.5 Plot of amplitude versus frequency and secondary system damping, given: primary

damping &, =0, stiffness k& = 0.0826 and mass x=0.1.

Figure 2.5 shows a 3D plot of amplitude ratio ©,.K T VS frequency ratio x and
o

secondary damping ratio ¢,; given the other variables as constants: primary

damping ratio ¢, =0, stiffness ratiok = 0.0826 and mass ratio x=0.1.

In the case where ¢,= 0, the system is undamped and the two natural

frequencies are obtained as the roots of the frequencies equation, which is the

denominator of equation 2.9 equated to zero. These are also seen in figure 2.2
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and 2.5 where the amplitude ratio is infinity, which happens at x= 0.8144 and

1.1160.

When ¢,= «, there is only one natural frequency which corresponds to that in
figure 2.2 and 2.5 where the amplitude ratio is infinity, which occurs at x =

0.9535.

Amplitude ratio: @, K, /To

28

0 0.2 0.4 0B 0.8 1 12 1.4 16 18 2
Secondary system damping ratio: €,

Figure 2.6 Side view of 3D figure 2.5 projected over amplitude and secondary damping axis

Figure 2.6 is a side view of 3D figure 2.5 projected over the axis for amplitude

ratio ©, K% and secondary system damping ratio ¢, .
[¢]
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We can see an approximate location of the minimum amplitude ratio ®, K% =
o

4.595 at the secondary system damping ratio £, = 0.2 from the side view.

®1,K1IT0 vs x and &, , for given: §=0, k=0.0826 andp=0.1
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Figure 2.7 Front view of 3D figure 2.5 projected over amplitude and frequency axis

Figure 2.7 is the front view of 3D figure 2.5 projected over the axis for amplitude

ratio ®1‘K% and frequency ratio x .

0
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We can see the location of points P, Q and R; and that all the curves for different

values of secondary system damping ratio ¢, are contained inside the curves

when ¢, =0and ¢, = .

@1,K‘ﬂ'o vs x and k , for given: €=0,8=0.185 and 4= 0.1

350~

w
&
=]
l
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00-f T T

150~ o

Amplitude ratio: @1.K‘/T0

o0yt e

50-...

Stiffness ratio: k

Frequency ratio: x

Figure 2.8 Plot of amplitude versus frequency and stiffness, given: primary damping £, =0,

secondary damping &, =0.185 and mass £ =0.1.

Figure 2.8 shows a 3D plot of amplitude ratio ©, 'K% vs frequency ratio x and

(]

stiffness ratio % ; given the other variables as constants: primary damping ratio

g, =0, secondary damping ratio ¢, =0.185 and mass ratio ¢ =0.1.
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®1_K1ﬂ'o vs x and k |, for given: §= 0, &= 0.185 and p=0.1
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Figure 2.9 Side view of 3D figure 2.8 projected over amplitude and stiffness axis

Figure 2.9 is the side view of 3D figure 2.8 projected over the axis for amplitude

ratio ®, I% and stiffness ratio & .
(9]

We can see an approximate location of the minimum amplitude ratio ®1'K% =
[0

4.595 and the stiffness ratio &, less than 0.1 from the side view. Also seen in

this view are several peaks showing the resonance with change of stiffness.
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@1.K|/T0 vs x and k , for given: = a, &= 0.185 and p=0.1
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Amplitude ratio: @1_KlfT0
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Frequency ratio: x

Figure 2.10 Front view of 3D figure 2.8 projected over amplitude and frequency axis

Figure 2.10 is the front view of 3D figure 2.8 projected over the axis for amplitude

ratio ®, I% and stiffness ratio & .
4

The several peaks generated by the plot of the equation are more prominent in

this view and they are located over a small range of frequency ratios, from x =

0.93 to x = 1.02. As mentioned before, they show the change in resonance with

stiffness variation.
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®1.Klfl'0 vs x and W , for given €= a, &= 0.185 and k= 0.0826

1Ko

Amplitude ratio:

Mass ratio: b Frequency ratio: x

Figure 2.11 Plot of amplitude versus frequency and mass, given: primary damping &, =0,

secondary damping &, = 0.185 and stiffness & = 0.0826.

Figure 2.11 shows a 3D plot of amplitude ratio ©, I% vs frequency ratio x and

(¢

mass ratio pu; given the other variables as constants: primary damping ratio

g, =0, secondary damping ratio ¢, = 0.185 and stiffness ratio £ = 0.0826.

A small valley starting from the highest peak moves along the axis for mass ratio

4 and also moves apart from the bigger valley until it reaches a point where both

valleys tend to go parallel to each other.
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Figure 2.12 is the front 3D view of figure 2.11 projected over the axis amplitude

ratio QJ% and frequency ratio x .

o

Most of the higher amplitudes are around the frequency ratio x = 1 in the range

of x =08to x=1.2.

®1.K‘!Ta vsx and i, for given: §=0,£=0.185 and k= 0.0826

Amplitude ratio: ®1.K]:'Tn

Frequency ratio: x

Figure 2.12 Front view of 3D figure 2.11 projected over amplitude and frequency axis

Figure 2.13 is the 3D side view of figure 2.11 projected over the axis amplitude

ratio ®, [% and mass ratioy .
(%
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The minimum amplitude ratio ®1'I% = 4.5695 and the mass ratio i, close to 0.1
o

from the side view is prominent.

Also, amplitudes with mass ratio ¢ less than 0.1 are high in slope and amplitudes
with # more than 0.1 increase until z = 0.3 when the amplitudes gradually

decrease. The minimum for u is at a very sharp point, at 4 = 0.1

@1_I(|fro vs x and [, for given: &= 0, &= 0.185 and k=0.0826

Amplitude ratio:; @1-K|fT0

10
8
6
4
+ 17
H it i
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0 0.2 0.4 06 0.8 1 12 14 16 18 2

Mass ratio; 1

Figure 2.13 Side view of 3D figure 2.11 projected over amplitude and mass axis
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2.3.2 Numerical analysis when ¢, = 0

This section presents plots when the primary system has damping ¢, = 0.04.
. . . ®. K ;
Figure 2.14 plots in 2D space equation 2.9, ! %0 versus x for the same six

different values as for £, =0, foreach ¢, , £ and x.

A similar combination as in section 2.3.1 in 3D space for figures 2.15, 2.16 and
2.17 is presented for equation 2.9, GI'K%Oversus x and &, , k and u,

respectively.

Figures 2.18 is the only side view presented for figure 2.18.
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@1,K1ﬂ'o vs x with different g,  for given: €= 0.04, k=0.0824 and p=0.1

Amplitude ratio: o, .K1/T0

%,7 0.75 0.8 0.85 09 095 1 1.05 1.4 1.158 1.2
Frequency ratio: x

Figure 2.14 Plot of amplitude versus frequency, given: primary damping &, = 0.04, for different

secondary damping &, , stiffness &k = 0.0826 and mass x = 0.1

Figure 2.14 shows the plot of amplitude ratio @1,1% vs frequency ratio x for

]
different secondary damping ratios ¢,= 0, 0.05, 0.185, 0.3, 0.5, infinite; given the
other variables as constants: primary damping ratio ¢, = 0.04, stiffness ratio & =

0.0826 and mass ratio z =0.1.

The two former fixed points P and Q are not seen anymore and all the curves do

not pass through any common point.
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In figure 2.14, when ¢,= 0.04, there are two maximum peaks with ®1'K% =
o

16.35 and 11.21; and, x= 0.8144 and 1.1160, respectively. The frequency ratios

remain the same as in figure 2.2 for ¢,= 0 and the amplitudes for the maximum

peaks are the ones that change.

Also in figure 2.14, when ¢,= «, there is only one maximum peak with G)l'K%
0

= 13.12 and x= 0.9535. Here also, the frequency ratio remains the same as in
figure 2.2 for £,= 0, and the amplitude for the maximum peak is the only one that
changes. Point R remains in the same location even though £,= 0.04 and

0.9088 and all the curves are not

intersects the frequency x axis at x

contained within the limits of¢,= 0 and &,=  anymore.

In addition, although the amplitudes for &, = 0.04 in figure 2.14 have decreased
about half from whene = 0 in figure 2.2, in figure 2.14, it can be seen that the

amplitudes for £, = 0 have dropped significantly by more than half.
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@1.K1fro vs % and g, ,for given: g=0.04, k= 0.0826 andu=0.1

Arnplitude ratio: 8, .K‘/Tn

Secondary system damping ratio: & Frequency ratio: x

Figure 2.15 Plot of amplitude versus frequency, given: primary damping &, = 0.04, for different

secondary damping &, , stiffness &£ =0.0826 and mass x =0.1

Figure 2.15 shows a 3D plot of amplitude ratio G)I'I% vs frequency ratio x and

o

secondary damping ratio &,; given the other variables as constants: primary

damping ratio g, =0.04, stiffness ratiok = 0.0826 and mass ratio z=0.1.

Wheng, = 0, the two maximum peaks and point R are present. The curve with

g, = 0 intersects the frequency x axis at x = 0.9088.
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@1_K|/To vs x and k , for given: €=0.04, &= 0.185 and p=0.1
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Stiffness ratio: k
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Figure 2.16 Plot of amplitude versus frequency and stiffness, given: primary damping £, = 0.04,

secondary damping &, =0.185 and mass £ =0.1.

Figure 2.16 shows a 3D plot of amplitude ratio ©, I% vs frequency ratio x and

(4]
stiffness ratio & ; given the other variables as constants: primary damping ratio

£, =0.04, secondary damping ratio ¢, = 0.185 and mass ratio x=0.1.

The muiltiple peaks generated, as shown in figures 2.8, 2.9 and 2.11, no longer

appear on figure 2.16.
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@1,K‘/T0 vs X and W, for given: &=0.04,&=10.185 and k= 0.0826

Ampiitude ratio: @1.K'J’To

n,H‘
b

t

’1'

& u‘,’o,'
&, if

Mass ratio: b Freguency ratio: x

Figure 2.17 Plot of amplitude versus frequency and mass, given: primary damping £, = 0.04,

secondary damping &, = 0.185 and stiffness & = 0.0826.

Figure 2.17 shows a 3D plot of amplitude ratio ©, ‘K% vs frequency ratio x and

[

mass ratio u ; given the other variables as constants: primary damping ratio

g, =0.04, secondary damping ratio ¢,=0.185 and stiffness ratio £ = 0.0826.

As seen in figure 2.14: the small valley starting from the highest peak moves

along the axis for mass ratio ¢ and also moves apart from the bigger valley until

it reaches a point where both valleys tend to go parallel to each other.
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@1,K,/T0 vs x and |, for given: £= 0.04, £= 0.185 and k= 0.0826
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Mass ratio: p

Figure 2.18 Side view of 3D figure 2.17 projected over amplitude and mass axis

Figure 2.18 is the side view of 3D figure 2.17 projected over the axis for

amplitude ratio ©, K% and mass ratio i .
o

In the graph, we can see an approximate location of the minimum amplitude ratio

QK% and the mass ratio i, close to 0.1 from this side view. Similar results
(o]

were obtained in figure 2.16.
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Also as in figure 2.16, amplitudes with u less than 0.1 are high and amplitudes
with ¢ more than 0.1 increase untii ¢ = 0.3 when the amplitudes gradually

decrease. Again, the minimum for  is at a very sharp point.

2.4 Calculation of optimum values

The optimum parameters correspond to the minimum value of ®1'I% . The
o

optimization problem is stated as follows:

Objective function to be minimized: ©, I% i
o

Design variables: ¢, and k.

To obtain the optimum values numerically, the following steps were also used for

the Matlab program shown in appendix I:

Firstly, in equation 2.9, out of the five variables ¢, , # , k& , &, and x, constant

values are assigned to ¢, and u.
Secondly, vary each parameter £ and ¢,from O to 1 at intervals of 0.001. For

each pair of £ and g,, equation 2.9 becomes a one-variable equation with x.

With the given pair, vary x from 0 to 1 at intervals of 0.001 and find its maximum
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amplitude ®1’K% as shown in figure 2.19. Note that x is no longer in figure
o

2.19.

Thirdly, find the minimum of the maximum amplitude {®1'K1T] . For this
O dmin

corresponding [®1'K1T } there will be one pair of £ and &, which are £,
O Jmin

and ¢, , respectively .

Finally, repeat the above process for each ¢, =[0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,

0.71and u from 0 to 1 at intervals of 0.01 to find the curve for each ¢,.

Figures 2.19, 2.20, 2.21, 2.22 and 2.23 show a graphic representation of the

above steps.

Figure 2.19 shows a 3D plot of MAXIMUM amplitude ratio ®1'K% vs secondary
o

damping ratio ¢, and stiffness ratio k; given the other variables as constants:

primary damping ratio ¢, =0 and mass ratio 4 = 0.1.
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MAXIMUM ©, K, /To vs g and k , for given: €=0and u=0.1

g
!

5000~
4000~

MAXIMUM amplitude ratio: ®1AK':’T0

2000~ .

—
jom}
o
o
/

Stiffness ratio: k

Secondary system damping ratio: &,

Figure 2.19 Plot of MAXIMUM amplitude versus secondary damping and stiffness, given: primary

damping £, =0and g =0.1.

This 3D plot visibly does not show any minimum value for optimum secondary

damping and stiffness ratios.

Figure 2.20 shows a zoomed view in 3D of figure 2.17 for MAXIMUM amplitude

. 0K .
ratio ! %0 axis.
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MAXIMUM amplitude ratio: o, .KlfTo

0,k

MAXIMUM @1,I»(I/Tu vs & and k , for given: €=0andp=0.1
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Figure 2.20 Zoomed view of figure 2.19

This 3D plot shows the bottom surface where the minimum amplitude

for optimum secondary damping ¢,,, and stiffness &, ratios.

O Imin

Figure 2.21 is the back view of 3D figure 2.17 projected over the axis for

MAXIMUM amplitude ratio ®1'K% and stiffness ratiok .

o
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MAXIMUM ®1.K‘{T0 vs & and k , for given: §= Dand =01
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Figure 2.21 Back view of 3D figure 2.20 projected over MAXIMUM amplitude and stiffness axis

The optimum stiffness ratio k,, can be determined graphically from figure 2.19 to

be k_, =0.08 with its minimum amplitude ratio being [®I'K1 T ] = 4.5.
O Imin

opt =

Figure 2.22 is the side view of 3D figure 2.17 projected over the axis for

MAXIMUM amplitude ratio ©, I% and secondary damping ratioe, .

o
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MAXIMUM B, K /To vs € and k , for given: €= 0 and u=0.1
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Figure 2.22 Side view of 3D figure 2.20 projected over MAXIMUM amplitude and secondary
damping axis
The optimum secondary damping ratio ¢,,, is difficult to determine from the view

at this scale, but its minimum amplitude ratio is {61'](' } = 4.5,
O Jmin

Figure 2.20 is the 3D side view of figure 2.17 in log scale projected over the axis

for MAXIMUM amplitude ratio ©, ‘K% and secondary damping ratioe, .
o
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0 and u=0.1

MAXIMUM @1.K1/To ¥s &, and k , for given: &
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Figure 2.23 Log scale of figure 2.22
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2.5 Analysis of optimum values

As mentioned in section 2.3, the optimization method used in this numerical

evaluation is the H_ optimization which minimizes the dynamic magnifier ©, for
primary system [36] to minimize [®I'K% ] in order to obtain the optimum values
o

for k,, and ¢,,, .

For each pair of optimum values % 0,k

ot 1E20p » thETe corresponds a [

TO:]min that

was obtained in section 2.4 given g, and x as constant values.

In this section we will study and analyze the behavior of these optimum values

for different &, = [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7] and x = [0.01, 0.02 ...0.99,

1.

Figures 2.24, 2.26, 2.28 show the behavior of [®1'K1 T } versus u , &,,, and
O Jmin

k ,  respectively. And figures 2.25, 2.27 show the linear trend of

opt

[@rKlT } versus u and [@1.1{1 /- J versus ¢,,, , respectively.
O lmin o

min

2opt

Figures 2.29, 2.30 show the behavior of x4 versus ¢,,, and k respectively.

opt ?

And figure 2.31 shows ¢, versus k,, .
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Optimum minimum amplitude [@, K /To] - vs mass | for different primary damping €,
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Figure 2.24 Plot of optimum minimum amplitude ratio vs mass ratio for different primary damping

Figure 2.24 shows the plot of optimum minimum amplitude ratio [®1‘K% ] VS
O Jmin

mass ratio y for different primary damping ratios ¢, :

1 3[91"%} <2.for 06<u<1 and 0<g <1 (2.11)
O Jmin
@ K
1.1 s[ ! IT] < 17, for 0.01 <x <0.6 and 0 <&, < 0.4 (2.12)
O Imin

48



From the above relations it is evident that the mass ratio x4 has significant

influence on the amplitude for different values of primary damping ratio ¢,.

Also, for 4 < 0.6 we can limit our study to the range of curves ¢, of [0, 0.4]

where it shows a variable amplitude [G*'Kl T } since for the range of curves,
O _imin

g, of [0.4, 1] the amplitude can be approximated {®I'K1 T } = 1.
O Jdmin

According to figure 2.24, the best case is in the zone indicated by the relation

2.11; however, a system with u > 0.6 would not be economical in real situations.

Thus, relation 2.12 is required.
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Optimum minimum amplitude [®, K, /To] . vs mass | for different primary damping €,
T r T T T

g =0

min

Optimum minimum amplitude ratio: [@1 .K1fTo]

10° 10 0
Mass ratio:

Figure 2.25 Log scale plot for optimum minimum amplitude ratio vs mass ratio for different

primary damping

Figure 2.25 shows the log scale plot for optimum minimum amplitude ratio

.k, tio u for different primary damping ratio &,. On this |
.| vs mass ratio u for different primary damping ratio &,. On this log

scale we can see the linear trend relation between the optimum minimum

amplitude ratio [QI'K% } and mass ratio u for each g, curve.
O Imin
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Optimum minimum amplitude [®, K /To] . vs secondary damping for different primary damping ¢,
P 1 mir: 82 opt )
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Optimum secondary damping ratio: € opt

Figure 2.26 Plot of optimum minimum amplitude vs optimum secondary damping for different

primary damping ratios

Figure 2.26 shows the plot of optimum minimum amplitude ratio {®I‘K% } Vs
o

min

optimum secondary damping ratio &, fOr different primary damping ratios ¢,.

As expected, the increase of ¢, given &, , reduces the amplitude [GI'K% } :
0]

min

and also, the increase of ¢, given &, reduces [®1'1% } .
o

min
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Note that the ¢, , ranges from 0.02 to 0.50 for the different values of ¢,.
However, the optimum range that contains all ¢, curves for a given ¢,,, is [0.15,

0.45]. It is clear that out of this optimum range for ¢, ,, the amplitude change

would be unclear.

Also, for the given optimum range of €1 10-15, 0.45] a range for amplitude
[@I’K'T] = {1, 6] is obtained, which is given by the external damping ¢,
O imin

curves.

During the design stages in a real case situation, the external damping ¢, in a

system is difficult to calculate but, during testing of the manufactured system, it

can be measured. In contrast, the internal damping &0 (IN the optimum range

[0.15, 0.45] ) during the design stages is possible to calculate. Measurements

during testing will be directly related to the external damping &, .
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Optimum minimum amplitude [®,.K,/To} ., v secondary damping £ opt for different ptimary damping g

T, T T
]

min

Optimurm minirmum amplitude ratio: [@1.K1;’To]

Optimum secondary damping ratio: € opt

Figure 2.27 Log scale plot for optimum minimum amplitude vs optimum secondary damping for

different primary damping ratios

Figure 2.27 shows the log scale plot for optimum minimum amplitude ratio
[®I'K1 To] Vs optimum secondary damping ratio ¢,,, for different primary
damping ratios ¢,. On this log scale we can see the linear trend relation between
the optimum minimum amplitude ratio [GI'KI To} . and optimum secondary

damping ratio ¢, for each ¢, curve.

53



Optimum minimum amplitude [®, K, /To] . vs stifiness kopt for different primary damping e,

min

Optimum minirmum amplitude ratio: [@1.K14'T0]

Optimum stiffness ratio: kopt

Figure 2.28 Plot of optimum minimum amplitude vs optimum stiffness for different primary

damping ratios

Figure 2.28 shows the plot of optimum minimum amplitude ratio [®1'K1 T } VS
O Jmin

optimum stiffness ratio £, for different primary damping ratios &,.

Note the tendency of all &, curves to converge in a point. In this case the point

starts when g, = 0.7 and there is a linear relation between [Gl'Kl T ] and k,,
O dmin

for g, > 0.2.
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From figure 2.28 alone, it is difficult to establish a relation without the help of the

other figures.

Mass W vs secondary dampin for different primary damping &,
¥ PING € ot g &

! ! ! ) J J z !
=07 : : ; ; :
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Mass ratio: |
o 2
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T T

o
'S
T

03

0.1

4] 0.05 0.1 0.15 0.2 0.25 03 0.35 0.4 0.45 05
Secondary damping ratio: & opt

Figure 2.29 Plot of mass vs optimum secondary damping for different primary damping ratios

Figure 2.29 shows the plot of mass ratio 4 vs optimum secondary damping ratio

&,,, fOr different primary damping ratios ¢,.
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It is clear that the behavior of each ¢, curve is different from the others and that

these curves are not contained between curves &, = 0 to ¢, = 0.6; however, they

tend to agglomerate within a range.

For a given value of x, an approximate graphical range ¢,,, can be obtained.

le. for 4 = 0.5, the approximate graphical range for ¢,,, is [0.36, 0.43]. This

range can be narrowed down using the limitation from figure 2.24, where we

limited our study to ¢, =0, 0.1, 0.2, 0.3, 0.4 curves.

Also, for &, = 0.7 the value for ¢, , = 0, the physical meaning is that the external

damping ¢, is already high enough that it does not require internal damping &,,, -
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Mass | vs stiffness kopt for different primary damping ¢,
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Figure 2.30 Plot of mass vs optimum stiffness for different primary damping ratios

Figure 2.30 shows the plot of mass ratio u# vs optimum stiffness ratio k,, for

different primary damping ratios &, .

It is clear from figure 2.30 that the range for k,, is [0, 0.25]. This range for £, is

for curves ¢, in the range of [0, 0.7].

The value of £, =0 is for all the curves ¢, > 0.7. Physically, this means that the

system has a high external damping ¢,, and that an %_, is not required.

opt
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Also, for a given value of u, a specific value of k_, is found. This means that &,

is very sensitive with respect to u.

Secondary damping <, apt 'S stiffiness kopt for different-primary damping €,
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Secondary damping ratio; & ot
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005

Stiffness ratio: k‘th

Figure 2.31 Plot of optimum secondary damping vs optimum stiffness for different primary

damping ratios

Figure 2.31 shows the plot of optimum secondary damping ratio £,,,; VS Optimum

stiffness ratio &, for different primary damping ratios &,.
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In this scale, we do not see a linear relation; however, an approximation to a

linear relation could possibly exist for some curves: ¢, =0, ¢, =0.1and ¢, =0.2.
Also, in this figure we can see the optimum range of ¢, = [0.15, 0.45]

mentioned for figure 2.26, which gives a relation to £,, through curves ¢,.

Note the tendency of the ¢, curves to become more vertical than inclined with the
increase of the external damping ¢,, which, as similarly mentioned for figure 2.30

the k,, is very sensitive with ¢, , also.

We also see that for ¢, > 0.6 the optimum values ¢, ,= 0 and &, = 0. This

implies that the external damping ¢, is high enough that neither internal damping

nor stiffness is required.

In this chapter, we presented the mathematical model for the equation of motion
derived from a 2-DOFS. The numerical derivation of optimum damping and
stiffness for secondary systems was performed and simulated results were
presented and discussed. In Chapter 3, we will do the experimental and
theoretical investigation for a 2-DOFS for 2 different types, A and B, of seismic

masses J,, subject to a sinusoidal external variable torque

T(t)= 8, sin(w 1) =S, sin27 f1).
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CHAPTER 33

EXPERIMENTAL INVESTIGATION

3.1 Introduction

In Chapter 2 we did the analytical study for torsional vibration of a 2-DOFS
subject to an external variable torque T(t)="T,.e'°". Optimum values for internal
or secondary damping ¢,,, and stiffness £,, ratios were found for different
inertia-mass x and external or primary damping ¢, ratios. The optimization

method used was the H_ optimization [15] which minimizes the maximum

amplitude [G)' ‘K%OJ .

In this chapter, we will do the experimental and theoretical investigation for a 2-

DOFS for 2 different types, A and B, of seismic masses J,, subject to a
sinusoidal external variable torque, T(t)= S, sin(» t)= S, sin2z f'¢) . For type A,
the optimum theoretical values for internal or secondary damping ¢,,, and

stiffness £, ratios are found for 3 different inertia-mass u, and external or

opt

primary damping ¢, ratios. For type B, the optimum theoretical values for internal

or secondary damping ¢,,,, ratio is found for 3 different inertia mass x, and for

the same external or primary damping ¢, ratios. The frequency response for
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each seismic mass will be compared between theoretical and experimental

values.

3.2 Calculation of optimum values for seismic mass Type A

PRIMARY
SYSTEv o SECONDARY
e KD SYSTEM
A A 7\ ]
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o
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— e o~
( I [N
Sod N
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Figure 3.1 Free body diagram for type A seismic-mass system
5,8, +¢,0,+ K0, +c, {6, - 6,)+ K, (6, - 0,)=T(t)) =T, sin(@.r) = Im[T, ¢°']  (3.1)
1,0, +¢,(6,-6,)+K,(06,-6,)=0 (3.2)

Let the solutions for the angular amplitudes of the above equations be:

6,(t)=1m[®, e'*"] 6,(t)=Im[®, ¢'*']
6,(c)=Im[wi©, ] 0,(t)=mlwi®, '] (3.3)
6,(t)=Im[-0’ ©,&*"] 6,(t) = Im[-w? ©, ']

Substituting equations 3.3 in equations 3.1 and 3.2 and rearranging the

variables, we obtain the matrix form:
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(-J 0% +(c +e)wi+K, +K,)  (-c,0i-K,)|(®,] (T,

= (3.4)
(—c,.0i-K,) (—Jz.a)2+cz.a).i+K2) 0,; |0
Recalling the five following nondimensional variables from equation 2.7
F28 :C/
! 2J, o,
[
&,="72
2 2J,w,
k=K,/K, (3.5)
u=J,1J,
x=0/o,
where: o, = £ and o, = L5t
J, J,
and substituting 3.5 in equation 3.4, we get
0, K,
(— x? +2.6,x0+ 2.6, sk xi +1+k) (2.8, Jpukxi-k)|| T, 1
= (3.6)
(2.6, puk xi—k) (— px’+2.e, .,/,u.k.x.i+k) 9, X, 0
TO
Solving the matrix equation (3.5) using determinants we have
1 (2.6, Jpukxi—k)
0,.X, 0 (— pnx’ + 28,k xi+k (3.7)

To  |-x®+2.8xi+26, Jukxivi+k) (<28 Jpkxi-k)

(28, Jukxi-k)  (ux?+2.8, ik xivk)

With given values of inertia mass x4 and primary damping &, ratios and using

the optimization H_ method in this numerical evaluation as in section 2.3 [15],
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which minimizes the dynamic magnifier ®, of the primary system, we find the

optimum stiffness 4, and secondary damping ¢,,,, ratios shown in table 3.1.

The values for u, and ¢, are discussed in sections 3.6 and 3.12 respectively.

& 1 /I A kopt 82 Aopt

0.010 S:0.246 |0.157 | 0.263
0.010 M:0.179 |0.128 | 0.229

0.010 L:0.129 |0.100{ 0.217

Table 3.1 Optimum stiffness k@z and secondary damping ¢, ratios

Aopt

3.3 Calculation of optimum values for seismic mass Type B
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Figure 3.2 Free body diagram for type B seismic-mass system
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1,0, +¢.0,+ K0, +¢,(6,-6,)=T() =T, sin(w 1) = Im[T,, '] (3.8)
J,.0,+¢,(6,-6,)=0 (3.9)

Let the solutions for the angular amplitudes of the above equations be:

6,(t)=1Tm[®, ¢’} 6,(t)=Im[®, ¢™"]
6,(t)=1m[wi®, "] 60,(t)=Im[wi®, '] (3.10)
6,(t)=1Im[-0* ©,'*"] 6,(t)=Im[-0* 0, ']

Substituting equations 3.10 in equations 3.8 and 3.9 and rearranging the

variables we obtain the matrix form:

(~J,.07 +(c, +c, Joi+K,) (~c,0i)][0,] [T,

= (3.11)
(—c,.0.0) (— J, 0 +e, .a).i) 0,] (0
Introducing the four following nondimensional variables:
C,
g ="
! 2.J,.0,
=
©= 0o, (3.12)
u=J,1J,
x=w/o
and substituting 3.12 in equation 3.11, we get
0, K,
(— x* +2.6,xi+ 2.6, pxi+ 1) (2, uxi)|| T, 1
; = (3.13)
(=2.5,.p.x) (— ux’+2.e, .,u.x.i) 0,k 0
TO
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Solving the matrix equation (3.13) using determinants, we get

1 (—2.&,.pu.x.)
©,.K, _ 0 (— wx’ +2.8,. uxi (3.14)
1, —~x* +2.8,.xi+2.6,. x5+ 1) (—2.&,.u.xi)

(-2.,.11.x0) —uxt+2e, uxi
2 2

With given values of inertia mass x4, and primary damping ¢, ratios and using
the optimization H_, method in this numerical evaluation [15], which minimizes
the dynamic magnifier ®, of the primary system, we find the optimum secondary
damping ¢,,,, ratios shown in table 3.2. The values for 1, and ¢, are discussed

in sections 3.6 and 3.12, respectively.

& Hp &2 Bopt

0.010 | S:0.451 | 0.371
0.010 | M:0.327 | 0.399

0.010 | L:0.236 | 0.422

Table 3.2 Optimum secondary damping &,,,,, ratio
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3.4 Experimental 2-DOFS layout

The experimental layout of the 2-DOFS is shown in figure 3.3 with its
components: the shaker, signal analyzer, accelerometer input, accelerometer

output, pivot arm, rod, flywheels and flange.

The horizontal oscillating movement of the shaker is transformed into angular
oscillating movement through the mechanism over the pivot arm. The generator
inputs the voltage S, = 10 mV resulting in a sinusoidal torque of
T(1)=10sin(27 f ) and sweeps a range of frequencies from 4 Hz to 22 Hz for

all the experimental tests shown in figures 3.10, 3.11 and 3.12.

The rod with stiffness K, rests on 2 ball bearings. The pivot arm transmits the

oscillating motion through the rod to the flange and thus to the flywheels. For this
experimental investigation we used 3 different flywheel sizes: S, M and L; their

moments of inertia are presented in table 3.5.

The 2 linear accelerometers measuring the input and the output accelerations
are positioned at the same radial distance from the center line of the rod, as
shown. The accelerometer input located on the pivot arm records the tangential

acceleration from the pivot arm a, , and the accelerometer output located on the
flange records the tangential acceleration a, from the flywheel or the damper

(see figure 3.3).
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Figure 3.3 Experimental 2-DOFS layout

The technical specifications for the equipment and measuring devices used in

the experiment are:
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Shaker model:
Peak sine force
Displacement max
Armature weight

Armature diameter

: S 062

: 600 Ibs (2.67 kN)
: 2 inches (51 mm)
: 10 Ibs (4.5 kg)

: 7 inches (178 mm)

Amplifier model - TA 250
Signal analyzer : Type 2035
Accelerometers : Type 4370

3.5 Moment of inertia secondary system J,, and J,,

Since an existing model of damper was modified to suit the two seismic masses,
the cavity size was already given by the casing of the existing damper, and the

outer dimensions for the seismic masses correspond to it.

The first type, type A seismic mass J,,, has a solid steel donut shape but with a

counter bore on the peripheral diameter of the seismic mass. The counter bore
accommodates the four helical springs, two at the top and two at the bottom as

shown in figure 3.4; the bottom springs are not seen in figure 3.4. The moment of

inertia for type A seismic mass J,, =0.077 kg.m”.
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Figure 3.4 Type A seismic mass with counter bore to allocate four helical springs

The second type, type B seismic mass J,,, has the same shape as found in the

standard viscous damper; i.e., a solid steel donut, without a counter bore, as
shown in figure 3.5. The moment of inertia for type B seismic mass J,;, = 0.141

kg.m®.
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Figure 3.5 Type B seismic mass (without counter bore)

3.6 The primary system J,

The flywheel mounted on the back of the flange, the casing mounted on the front
part of the flange, the 6 spacers, the 6 C-clamps and the lid, constitute the
primary system J,. All those 5 components together without the respective

seismic mass constitute the moment of inertia for the primary system (see figure

3.6).
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Figure 3.6 Damper with seismic mass A or B assembled

Table 3.3 shows the moments of inertia of the primary system J, , and of the
secondary system, J,, and J,,, and their ratios x, and u,, respectively, for

the 3 different sizes of flywheels.
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S:0.313| 0.077| 0.141| 0.246| 0.451
M:0.431| 0.077| 0.141| 0.179 | 0.327

L:0.599 | 0.077| 0.141| 0.129| 0.236

Table 3.3 Inertia ratio for seismic mass A and B

3.7 Stiffness of primary system K,

The rod on figure 3.3 was prepared to the required stiffness of the 2-DOFS given
by:

G.J
K, = Lp =1925.7 N.m/rad

where:

L= 1.6764 m, rod length

D =0.0254 m , rod diameter

G = 79 GPa, modulus of rigidity of steel shaft in gigapascal.

1, =3%.D4 m*, rod polar moment of inertia
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3.8 Stiffness of secondary system K,

For type A, the stiffness of the secondary system is calculated using equation

3.5, K, =k, K,. where: k,, from section 3.2 and K, = 1925.7 N.m/rad from

section 3.7. Note that this is the stiffness of the secondary system and not the

stiffness of each helical spring.

The stiffness for each helical spring K, is calculated using the formula [4]:

K
K, =—"2 3.15
" 4.R? cos(A) (3.15)

where:

R =0.138 m, which is the distance from hook-end center to damping-device
center, as shown in figure 3.7.

The angle that the helical spring makes with horizontal axis is 4 = 20 ° (see

figure 3.7).

Jy k K, K, K ps

opt

kg.m’ -- Nm/rvad | Nm/rad | N/mm

S:0.313 0.157 1925.7 302.3 4.22
M: 0.431 0.128 1925.7 246.5 3.44

L: 0.599 0.100 1925.7 192.6 2.69

Table 3.4 Helical spring stiffness K ;¢ for type A seismic mass and for 3 different primary

moments of inertia
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The above formula for the linear stiffness calculation is used under the
assumption that all the torsional torque is transmitted through the helical springs,

disregarding the torque transmitted through the viscous fluid.

For the experimental investigation for the 3 different sizes of flywheels: S, M and
L, a commercial helical spring with the following calculated [72] characteristics

was chosen:

d,s =1.37 mm, wire diameter of helical spring
D, =14.43 mm, diameter of helical spring
K,; =0.342 N/mm, helical spring stiffness

N, =34, number of turns of helical spring

Figure 3.7 Type A seismic mass with counter bore and four helical springs
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It is clear that for type B seismic mass, with viscous fluid as the only torque-

transmitting media, the stiffness on the secondary system is K, = 0, as shown in

section 3.3.

3.9 Natural frequency of primary system o,, without damper

The natural frequency of the primary system «,, without a damper for this

experimental investigation is calculated as o,, = K, S where K, = 1925.7
N

N.m/rad from section 3.7, and J,, is the moment of inertia of each flywheel size

plus the moment of inertia of the flange only, as shown in figure 3.3. The

calculated natural frequencies are given in table 3.5.

Jin K, Dy Siv

Nm/rad | rad/s Hz

Sy:0.179 | 19257 103.7 16.5
M,:0.297 | 19257 80.5 12.8

L,:0.465 | 19257 64.4 10.2

Table 3.5 Natural frequencies primary system for each flywheel size: S, , M, and L,

75



3.10 Natural frequency of primary system o, with damper

The natural frequency of the primary system o, for both dampers is calculated as
o, = K% , Wwhere K, =1925.7 N.m/rad and J, is the moment of inertia of the
1

primary system of each flywheel size from section 3.4. The natural frequencies

are given in table 3.6.

J, K, o, b2
Kgm® | Nm/rad | radls Hz
S:0.313 | 19257 78.4 12.5
M:0.431 | 1925.7 66.8 10.6
L:0.599 | 1925.7 56.7 9.0

Table 3.6 Natural frequencies primary system for each flywheel size: S, M and L with damper

3.11 Natural frequency of secondary system o,

For type A seismic mass, the natural frequency of the secondary system is
®, = /KZ ;- where K, is from section 3.8 and J,, =0.077 kg.m* from section
24

3.5. The natural frequencies are given in table 3.7.
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I K, ko K, o, £
Kg.m N.m/rad e N.m/rad | rad/s Hz
0.077 1925.7 | 0.157 302.3 62.7 10.0
0.077 1925.7 | 0.128 246.5 56.6 9.0
0.077 1925.7 | 0.100 192.6 50.0 8.0

Table 3.7 Natural frequencies secondary system for each flywheel size: S, Mand L

Although it is possible to calculate the natural frequency of the secondary system
for type A theoretically, it is clear that in practice it is almost impossible to control

or measure the actual value, o, .

It is also clear, that for type B seismic mass, its natural frequency is @, =, as

shown in equation 3.12.

3.12 Damping of primary system ¢,

As mentioned in figure 2.26, during the design stage in a real case situation, the

primary damping or external damping ratio ¢,, is difficult to evaluate; however, it

is present and different from zero. In addition, according to the analytical

evaluation in sections 3.2 and 3.3, the primary damping ratio £, has a direct
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relation with primary damping ¢, through equations 3.5 and 3.12, respectively (

¢, =2¢J o).

For our experimental investigation we assume ¢, = 0.01.

3.13 Damping of secondary system c¢,, and c,,

For type A seismic mass, with viscous fluid and helical springs, the selection of

the proper viscous fluid depends on its viscosity v, which is calculated from the
optimum damping c,,, using the theoretical formula [4] below. From equation

3.5 ¢,,=2¢,,J,,0,,, where: ¢, =¢,,  from section 3.2, J,, = 0.077

kg.m’from section 3.5, and o,, = @, from section 3.11. The viscosity is given by

[4]:

1

def1-————
S R
Ro
v, = 3.16
0 1.019x10% 2.7.L, RO’ (3.16)
where:

Ro =14.834 cm, seismic mass outer radius

L, =0.70 cm , seismic mass width at peripheral outer radius, Ro

dc =0.052 cm , clearance
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Jy4 o, €2 opt (¢34) Cyy Ve,
kgm® | yad/s - kgm’rad/s | kgcemsirad | centistokes
S:0.077 | 62.7 | 0.263 2.538 25.871 793.0
M:0.077 | 56.6 | 0.229 1.995 20.340 623.5
L:0.077 | 50.0 | 0.217 1.671 17.036 522.2

Table 3.8 Secondary damping ¢, , and viscosity v, for type A seismic mass

The above formula is used under the assumption that all the torque is transmitted

through the viscous fluid only, disregarding the torque transmitted through the

helical springs. This assumption is not the real case in the system and it is used

for reference to determine the viscosity of the viscous fluid.

For type B seismic mass with viscous fluid only, the formula [4] is a good

approximation for the viscosity v, calculation, since it is assumed that the torque

is transmitted only through the viscous fluid. From equation 3.12, we have

C,p =2.8,5.J .0, Where: g, =¢,, , from section 3.3, J, from section 3.6, and o,

from section 3.10.

1

14 25
Ro

Cypde| 1—

SB

T 1.019x10° 2.7.L,, Ro®
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where:
Ro =14.834 ¢m, seismic-mass outer radius

Ly, =3.00 cm , seismic-mass width at peripheral outer radius Ro

dc =0.052 cm , clearance

Table 3.9 provides the damping ¢,, and the viscosity v, values.

J, o, € Bopt (¢25) Cyp Vg
kg.m’ rad /s kgm’radls | kgems/rad | centistokes
S:0.313 784 | 0.371 18.217 185.696 4435.4
M:0.431 | 66.8 | 0.399 22.990 234.351 5597.6
L: 0.599 56.7 | 0.422 28.665 292.201 6979.3

Table 3.9 Secondary damping c¢,, and viscosity V¢, for type B seismic mass

Note that the width L., = 0.70 cm for type A seismic mass is not the same as for

type B, Ly, = 3.00 cm. The difference in width between the two seismic masses

is due to the counter bore on the peripheral diameter of type A seismic mass to

accommodate the 4 helical springs.

For our experimental investigation we use commercial fluid lubricant, for both
types of seismic masses A and B, with viscosity system grade identification ISO

VG 680 [69]: SAE 10 W 40 with viscosity values: 86 centistokes at 40 °C and 13.8
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centistokes at 100 °C, measured with standard [71]. The viscosity value at 20 °C

is found with the formula [70]:

log(log(v +0.7)) = F — G.log(T) (3.18)
where:

F,G =constants

T = temperature in °K

1% = viscosity in centistokes

The constants F,G are found replacing the viscosity and temperature values
given: 86 centistokes at 40 °C and 13.8 centistokes at 100 °C in equation 3.18.

Then, with the found constants F,G , we find the viscosity of the lubricant oil SAE

10 W 40: v, = 224.6 centistokes at 293.15 °K = 20 °C, obtained from same

equation 3.18.

3.14 Clearance dc between seismic mass and casing

The clearance dc that contains the viscous fluid was not modified from the
original damper model which was used for this experimental investigation. It was
left at the original actual range between 0.019 in and 0.022 in, which is within

the theoretical value obtained with the formula [4}:

dc:o.010+o.01o.,/2£" = 0.021 in =0.52 mm (3.19)
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where:

Ro =5.891 in, actual seismic-mass outer radius.

3.15 Comparison of theoretical and experimental resulits

For type A and B seismic masses, following the approach in section 3.13 with

liquid lubricant, SAE 10 W 40 has the viscosity v, = 224.6 centistokes.

Consequently, the secondary damping ratios are obtained as ¢,, = 0.094 and

g,5 = 0.014, respectively.

For type A, the helical spring stiffness K,, = 0.342 N/mm corresponds to the

stiffness ratio k£ = 0.013, using the approach in section 3.8.
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Type A seismic mass optimum and non optimum cuives for: L, M and S inertia masses given €= 0.01
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Figure 3.8 Type A seismic-mass optimum and non-optimum curves for L, M and S inertia

masses given primary damping ratio &, =0.01

Figures 3.8 shows the theoretical frequency response for type A seismic mass of
equation 3.7 for the optimum values from table 3.1 for S, M and L inertia masses.
In the same figure, 3.8, we also have the frequency response for the
experimentél parameters ¢,, = 0.094 and k= 0.013 presented at the beginning

of section 3.15.

83



Type B seismic mass optimum and non optimum curwves for: L, M and S inertia masses given §= 0.01
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Figure 3.9 Type B seismic-mass optimum and non-optimum curves for L, M and S inertia
masses given primary damping ratio &, = 0.01
Figure 3.9 shows the theoretical frequency response for type B seismic mass of
equation 3.14 for the optimum values from table 3.2 for S, M and L inertia
masses. In the same figure, 3.9, we also have the frequency response for the

experimental parameter ¢,, = 0.014 presented at the beginning of section 3.15.

In figures 3.8 and 3.9, the theoretical frequency response for the flywheels of

type A and B follow the same trend. These results show that the response can be
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reduced up to 20% of the original value by using the optimum parameters. The

experimental results of figures 3.11 and 3.12 also follow the same trend.

Gain vs frequency response for natural fraquencies: L, M and 8 inertia masses
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Figure 3.10 Experimental natural frequencies f,, response for L, M and S inertia masses

Figure 3.10 shows the experimental frequency response for the system shown in
figure 3.3. The theoretical natural frequencies of this system are calculated in

section 3.9 and the comparison is shown in table 3.10.
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It is clear that the theoretical amplitude ratio G)IJ% = o for the 3 natural
o

frequencies of each S, M and L inertia masses; however, the experimental
Gain # o in figure 3.10. In addition, this Gain # « has a descending trend from L
to S inertia masses. The physical explanation is that the shaker, the 2 self-
aligning ball-bearing supports for the rod and the mechanisim between the

shaker and pivot arm, together are acting as primary or external damping ¢, for

the whole system (see figures 3.3 and 3.13).

Inertia mass | Theoretical f, | Experimental f,
- Hz Hz
S 16.5 16.1
M 12.8 12.7
L 10.2 10.2

Table 3.10 Comparison between theoretical and experimental natural frequencies f,, forL, M

and S inertia masses

Figure 3.11 shows the experimental frequency response for type A seismic mass

inside the casing, properly mounted on the flange for the test (see figure 3.6).
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Gain vs freguency respense for Type A seismic mass: L, M and S inertia masses
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Figure 3.11 Frequency response for type A seismic mass for L, M and S inertia masses

Theoretical
Experimental
s N7 :
Inertia mass T, f Gain
- Hz - Hz --
S 12.6 31.2 10.8 18.4
M 10.7 32.6 9.7 26.9
9.1 33.7 8.4 36.4

Table 3.11 Type A seismic-mass comparison between theoretical (Fig 3.8) and experimental (Fig

3.11) natural frequencies f for L, M and S inertia masses
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Gain vs frequency response for Type B seismic mass: L, M and S inertia masses
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Figure 3.12 Frequency response for type B seismic mass for L, M and S inertia masses

Figure 3.12 shows the experimental frequency response for type B seismic mass

inside the casing and properly mounted on the flange for test (see figure 3.6).
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Theoretical
Experimental
7 0, K, .
Inertia mass T, f Gain
-- Hz - Hz --
S 12.5 30.7 8.2 52.0
M 10.6 34.3 8.0 47.2
L 9.0 37.6 10.3 57.3

Table 3.12 Type B seismic-mass comparison between theoretical (Fig 3.9) and experimental (Fig

3.12) natural frequencies f for L, M and S inertia masses

Table 3.12 shows the comparison between the theoretical and experimental
natural frequencies, and the comparison of theoretical amplitude ratio and

experimental gain.

Table 3.13 shows the comparison between the theoretical and experimental

natural frequencies, and the comparison of theoretical amplitude ratio and

experimental gain for similar mass ratios, u, = 0.246 (S inertia mass) and u, =
0.236 (L inertia mass), or for practical considerations, y, = u, = 0.241. Note that

the experimental gain drops from 52 to 18.4, about 35%.
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Theoretical
Inertia Experimental
f 0, K/ .
mass | Inertia ratio T, S Gain
- - Hz - Hz --
S u, =0.246 12.6 31.2 10.8 18.4
L Hy =0.236 9.0 37.6 8.2 52.0

Table 3.13 Comparison between similar inertia ratios 2, =0.246 and 1, = 0.236 for theoretical

and experimental frequencies, amplitude ratio and gain.

3.16 Experimental bending vibration

On figures 3.10, 3.11 and 3.12, the bending vibration was present on each
experimental curve at the smaller peak. Physically, during the test to obtain each
curve, the rod could be seen vibrating vertically and horizontally, with the
respective flywheel presenting a gyroscopic effect at the frequency range from 13

Hz 1019 Hz.

The experimental results show that the amplitude response for the bending

vibration is also reduced from type B to type A as shown in figures 3.11 and 3.12.

To calculate the theoretical fundamental natural bending vibration frequencies,

we use the Rayleigh method and an assumed sinusoidal deflection curve.
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L
KE,=05M,,,.0]. [(b(x)} dx+05M o [b(L,)F
0

Lip
PE;=05.E,,.1,,. |(b"(x)) dx
0

b(x) = B.sin(x.zr/ L)

where:

b(x) : assumed sinusoidal deflection curve in m

Jj - index for mass size L, M or S

x : variable rod length in m , fromOto L,

B : amplitude constant (it will cancel out during calculations)

E . = 200x10° N/m’, modulus of elasticity of steel

1., = 2.0432x10"* m* , moment of inertia (not polar moment of inertia)

KE, : j kinetic energy in N.m

L = 1.6 m, rod length between self aligning ball bearing supports
(see figure 3.13).

L, =1.7 m, total rod length

M, : j flywheel mass in kg (not inertia mass)

M,, =6.7 kg, rod mass

PE, : j potential energy in N.m

f; :;)—; : j fundamental theoretical frequency in Hz
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Jo /, Theoretical M, f;Experimental
Kg.m? joa kg Hz
S,:0.179 14.5 Mg:13.8 18.9
M, :0.297 14.0 M, 235 17.6
L,:0.465 135 M,.37.3 16.3

Table 3.14 Comparison between theoretical and experimental (figure 3.10) bending natural

frequencies

Table 3.14 shows the comparison between theoretical and experimental (figure
3.10) bending natural frequencies. Although the values are not similar to the
corresponding inertia mass or mass j, we can see a trend of the difference

between each mass of 0.5 Hz for the theoretical, and 1.3 Hz for the

experimental frequencies.

92



3.17 Rod support and shaker armature vibration

Figure 3.13 Location of accelerometers on rod support and shaker armature, and self-aligning

bali-bearings

Figure 3.13 shows the location of accelerometers on rod support and shaker
armature, and self-aligning ball-bearings. The test for the rod support and shaker
armature vibration was performed for the natural frequencies of the primary

system as described in section 3.9.
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Shaker armature vibration acceleration vs frequency for L, inertia mass
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Figure 3.14 Rod support and shaker armature vibration for L, inertia mass
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Shaker armature vibration acceleration vs frequency for M, inertia mass
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Figure 3.15 Rod support and shaker armature vibration for M ,, inertia mass
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Shaker armature vibration acceleration vs frequency for 5, inertia mass
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Figure 3.16 Rod support and shaker armature vibration for S, inertia mass
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Jin f;(Shaker armature) M, S (Torsion)
Kgm Hz kg Hz
S,:0.179 14.7 Mg:13.8 16.1
M, :0.297 12.4 M, 235 12.7
L, :0.465 9.3 M,:37.3 10.2

Table 3.15 Comparison between experimental torsional (figure 3.10) and armature frequencies

The top plot of figures 3.14, 3.15 and 3.16 shows the armature frequency

response with higher amplitude at 9.3 Hz, 12.4 Hz and 14.7 Hz respectively.

The bottom plot of figures 3.14, 3.15 and 3.16 shows the rod support frequency

response with a sinusoidal trend for S, , M, and L, respectively. In addition

the trend for the amplitude is S, > M, > L, .

In table 3.15, we observe that the range for the peak frequencies for the shaker

armature and torsion are similar for the 3 sizes of J,,,, which means physically

that the shaker, as part of the system, was also vibrating, tuned with the vibration

of the flywheels.
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In this chapter, results of the experimental investigation were presented and
discussed. It was seen that the optimum damping parameters could reduce the
response of the primary system up to 20% of the original value. Note that this
experimental investigation showed the effect of these two damping devices in the

torsional and bending vibration of the primary system.

The next chapter will discuss the application of the damper in an IC engine shaft

to reduce its torsional vibrations.
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CHAPTER 4

ANALYTICAL STUDY ON AN IC ENGINE

4.1 Introduction

In Chapter 3, we did the experimental study for a 2-DOFS with the optimum
values from Chapter 2. In this chapter, we are going to extend the study by using
the damper in a four-stroke 6-in-line cylinder internal combustion engine, in order
to reduce the crankshaft torsional vibrations. A sketch of the crankshaft system is

shown in figure 4.1.

GUDGECN PIN

~RISTON

FDAMPER e . o
CASING L YWHEEL-
'SF}SMICZiA \\\
MASS P8/ CONNECTING ROB N

3 i /C;AMP;N /CRANKWUB /" CRANKSEAFT CTIURNA, ;
— - — — e - e
/ Y / \ 2 T / M // [ { \
[T - W DN Y 7 ! S g .
- 7 PR i 7 i ! i j
1 [ N S L B O R A I i JV VL’“V%‘ 1T 1T L [ i [
2 (/2 — 2 iz T TN - 2 — 7
3 4 Ro 5 E)
— - P &
' - JOURNAL el . :
N \ SUPPORTS L L b Les -
CAM SHAFT —Lie e
GEARS CRANKSHAFT CENTER LINE
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Figure 4.1: Engine crank throw showing parts for torsional vibrations study
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The analytical study corresponds to two different cases. The first case will be the
amplitude response of the engine without a damper and the second, with the
optimally tuned viscous damper similar to type A seismic mass described in
Chapter 3. In both cases, the same excitation torque per cylinder is applied with

its respective phase angle.

JE8
JEZ JE3 JE4 JES JE6 JE7
KE2 KEB KE4 KES KE6 KE7
A A N N e A
7 2 W w7 L .
z 4 P! & 7
Trr (1), 8

Figure 4.2: 7-DOFS equivalent system showing excitation torque, moments of inertia, internal

damping and stiffness

The equivalent 7-DOFS without damper is shown in figure 4.2. The addition of
the damper changes the 7-DOFS to a 8-DOFS shown in figure 4.3. As a
reference, we apply the optimum values found in Chapter 2 to size the damping
device; however, derivation for the actual optimum values for this 8-DOFS is

required as in Chapter 2 for a 2-DOFS.
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Figure 4.3: 8-DOFS equivalent system showing damper, excitation torque, moments of inertia,

internal damping and stiffness

For the numerical calculations we have considered the following engine data for

the crankshaft drive:

d = 76 mm , piston diameter

R, = 35 mm , journal or crank radius
L =123 mm , connecting rod length
M, = 0.363 kg, total piston mass

M. = 0.096 kg, total connecting rod mass
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The combustion gas pressure P, distribution vs crankshaft angle ¢ coordinates
are in Appendix Il and plotted in figure 4.4.

The moments of inertia for each cylinder are J,,=J,, =Jp, =Js=Jp=J =
18.64 Ikg.m® and for the flywheel J,, = 2655 kg.m’; the stiffnesses for each

crank throw are K,, =K., =K,, =K, =K,,= 22.82x10° N.m/rad and K,, =

19.21x10° Nm/rad .

4.2 Excitation torque

The crankshaft system in an internal combustion engine shown in figure 4.1 is
constantly under thermal and mechanical loads. In the present study, the thermal
loads are not considered. The mechanical loads generated by the combustion
gas and masses provide the excitation torque on the crankshaft system. The

combustion gas force produces the gas torque, 7, and inertial forces from the

piston, connecting rod, gudgeon pin and counter weight, produce the inertial

torque, 7,. Thus, the total excitation torque 7, =7, +7,.

In the present study, we are not including the additional vibration generated by
the camshaft on the gears and from other vibratory devices of the engine. Also,
the gyroscopic effect on the crankshaft due to the bending moments are not

considered in this torsional vibration study [66, 67, 68].
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4.2.1 Gas torque T

The gas pressure P, on the piston is variable in the working cycle of the engine
with respect to the crankshaft angle ¢ of rotation. Figure 4.4 shows 2 curves that
overlap each other. The solid line corresponds to the actual data from Appendix
Il and the dotted line curve corresponds to the Fourier series approximation using
Matlab in Appendix Il and from the data of Appendix Il for cylinder 1 with phase

angle ¢, .

Gas pressure F‘G (¢) inbars

300 400
Crankshaft angle ¢ in degrees

Figure 4.4: Gas pressure on piston versus crankshaft angle for one cylinder
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Consider the crankshaft derive mechanism shown in figure 4.5. The geometrical

relations and force diagram from figure 4.3 are

F,(¢) = P;(¢4).4 : gas force
F.. =F,(¢)/cos(p) : gas force component over connecting rod
F, =F,.sin(¢+¢) :tangential gas force perpendicular to crank

R,.sin(¢) = L.sin(¢)
The gas torque, T, = F;.R,, is obtained as

% .sin(@).cos(@)

To(#) = P, ($).AR,. +sin(g) (4.1)
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Figure 4.5: Geometrical relation and force diagram of the crankshaft drive
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4.2.2 Inertia torque T,

The inertial torque is produced by the inertial reciprocating and rotating forces
due to the accelerating masses. The reciprocating forces are from the piston, the
portion of the connecting rod (normally taken as that of the two-thirds of the
connecting rod lumped at the piston end), and the gudgeon pin; and the rotating
forces are from the portion of the connecting rod (normally taken as one third of
the connecting rod lumped at the crank tip) and the counter weight. These parts

accelerate and decelerate at every single rotation of the crankshaft.

The location of these masses that produce the reciprocating and rotating forces
are considered as if they were rotating around the crankshaft centerline with

radius R, [40]. However, at the actual location of each of these masses, there is

a variable inertia during rotation [41] not considered in the following kinematics

analysis.

2.M,

A standard procedure is to consider the reciprocating mass M, =M, + and

the rotating mass M, = —A%Q Thus, the total inertia torque 7, =T,, +T,.

Referring to figure 4.5, the reciprocating torque, 7,, is obtained by considering

the reciprocating torque as a reciprocating pressure at the piston and the force

transmitted through the connecting rod [40] as:
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% .sin(g).cos(¢p)

=]

T1o(9) = ~Pio(9)- AR, +sin(¢) (4.2)

The rotating torque T, is due to the one-third of the connecting rod and the

counter weight masses as they rotate around the crankshaft centerline and is

obtained as

Tr(p)=-Fr(P)-R, (4.3)

The physical interpretation of the negative sign on equations 4.2 and 4.3 is that

the inertial forces act in the opposite direction to that of the movement of the

piston.
where:
2M, . ..
(M, + 3 )3, (9)
P,(@)= y : reciprocating pressure in N.mm
. 2
Fr($) = &. (y” (¢)) : rotating force in N

3 R,

¥,(#) =Ry + L—[R,.cos(¢) + L.cos(p)]

Y,(#)=R,+L —{Ro.cos(¢)+L,[1 _(g%n(gé) } }

y,() = 4. Ro.sin(¢)+L.[(l—(&'_SIi_n_(ﬁ) J . (ELQ) .sin(¢).cos(¢)”
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R 2 -3/2 R 4
—1- ___RO.Szn(¢) (TO .sin’ (¢).cos’ (4)
R . 2 -1/2 R 2
J,(#) =93 Ro.cos($)+ L| —| 1- —"-S]%n—@ —-LQ .cos’ (¢) (4.4)
R . (¢) 2 -1/2 R 2
sin
N I [ At 4 | =2 | .sin?
7 7 sin” (@)
5“?5 T T T T T T T
To: Gas torque
PE AT — R PN NE———

Torque in N.mm

Ty E)ixcitation torque, TT=;=TG +T,

v
’ ' B . ‘ ' H
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d ¥ i v 0
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Figure 4.6: Plot of gas, inertial and total excitation torque for engine speed of 400 rad/sec
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Figure 4.7: Plot of gas, inertial and total excitation torque at 800 rad/sec engine speed

Figures 4.6 and 4.7 show gas torque 7, inertial torque 7, and total excitation

torque T, for 2 engine rotation speeds: é =400 rad/sec and ¢ = 800 rad/sec for

cylinder 1 with its respective phase angle J,=0.

4.2.3 Total excitation torque 7, =T, +7,
For the total excitation torque 7, =T, +T, per cylinder, we used the constant

engine speed of ¢=0Q = 400 rad/sec, which will be kept constant along the

numerical calculations.
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4.2.4 Total Fourier excitation torque 7,

The total Fourier excitation torque is the approximation of the total excitation

torque T, =T, +7,. The approximation to Fourier series of the total excitation

torque is possible since T, =T, + T, is a periodic function.

Tor (@) = Ay + 3[4, .cos(ng) + B, sin(ng)] (4.5)
where:
1 T
g = OJT #).d¢
A = % Oj .cos(n.$)dé
B, = -;- Oj sin(n.g)dg

T..(¢) : general Fourier series equation
¢ : crankshaft angle

n - number of terms of Fourier series

The six-cylinder engine has six different phase angles o6, for each piston that

depend not only on the order of firing but also on the geometry of the crankshaft.
In this particular case, the order of firing is shown in figure 4.8. Every 60° in figure
4.8 equals double the phase angle (i.e. 120°), since it is a four-stroke internal

combustion (IC) engine with period T =720°.
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Thus, we have

8,=0° 5,=480" = 8.11/3 5,=240° = 4.m/3

6,=600° =10.1/3 0,=120° = 2.1/3 J5,=360° = 2.

Figure 4.8: Firing order and angles for phase angles

In equation 4.5, we add the phase angle due to the firing order, and the total

Fourier excitation torque T, (¢), for any of each of the six cylinders of the engine

can be expressed as:

N J J J J
Ter (), = Ay + ). [A .cos(=.Qut — < .5,)+ B,.sin(= Qi — .6, )} (4.6)
S S S S

P
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A =
Bj ! j-th Fourier series coefficient
i
n=j Jj : Number of the harmonic
s=2 (for four-stroke engine and 1 for two-stroke engine)

¢=Qr=¢s Q=4¢:Excitation engine speed or engine running speed
i : Index for the number of terms in the equivalent system (see figure 4.10). Note

that it is not the index for the number of cylinders of the engine.

The total number of harmonics used are j =30 [46].

Rearranging and simplifying equation 4.6 we have:

[Aj .cos(L.8,) - B,.sin(Z .5,.)}. cos(L Q1)
S S S

30

Ty (1), = Ay +Z . . .
4 [Aj.sin(i 0,)+B;. cos(i .5,.)]. sin(i Q1)
s s §

30 . .
T.,(1), = Ay, + Z {a J.,..cos(i QH+b ji.sin(i .Q.t)} (4.7)
s s

J=t

where:
a, = 4,.cos(~.8))— B,.sin(£.5)
S N

b, = Aj.sin(i.c‘)',.)—!— Bj.cos(i.Si)
s s
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Figure 4.9: Total excitation torque with its respective Fourier approximation for engine speed of



4.3 Equivalent system

The basic equivalent system consists of a number of concentrated masses or
disks, situated at various points along an equivalent straight shaft of circular

cross-sections as shown in figure 4.10.

JE2 JE3 JE4 JES JE6 JE7 ‘
1 [ 1 — [ 1
P P |
1 Pl i
KE2 3 KE3 KE4 KES Lo KE() KE7
AU e e A e e s W e
o ‘ wn 77 2 w7 o
j I : |
i | i i
| IR
L - L ‘ L
L 1 : R
3 4 {77}; | T {77}, 6 7
T (1), &

Figure 4.10: 7-DOFS equivalent system showing state vectors, excitation torques, moments of

inertia and stiffness

4.3.1 Moment of inertia [4]

The standard procedure is to concentrate all the moments of inertia of each
crankthrow, rotating and reciprocating parts to a reference axis which is the
journal centre-line. The moment of inertia per cylinder is obtained by evaluating

the individual terms of the following expression (see figure 4.1):
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+J

balance—weight

J

cylinder

=J

Journal

+J +J

+ Jcrankpin + Jcrankweb(Zx) conecting—rod + piston gudgeonpin
The general formula above is for information only on how to determine the
moment of inertia on a crankshaft. For our analytical study, the values for the

moments of inertia are given in section 4.1.

4.3.2 Stiffness of crankshaft [4]

For a shaft with a more complicated shape, it is possible to determine its
stiffness: x=3/0, where 3 is the applied torque and ¢ is the torsional
deflection. Experimentally, the stiffness can be determined by clamping the shaft
at one end and applying a torque at the other end and measuring the overall
angle of twist 8. The theoretical way is to use the equivalent length method. To
be equivalent, the complicated portion of crankshaft length Lcs (see figure 4.1)

must be equivalent to a straight shaft Le, provided an equivalent diameter D, is
given:

4
7n.D,

G.I
k=—2>" where [ , =
Le i

To determine the equivalent length Le between points P and Q, which is the

actual length of the crankshaft portion Les (see figure 4.1), the total twist 6.,

between points P and Q is:

a P +2 'a crankweb

(] = Jjournal + acrankpin

Considering that the torque 3 is constant along the actual length Lcs between

points P and Q:
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o~ o~

3 3 3 3
Opp=—= + +2.
Ke K Jjournal Kcmnkpin Kcrankweb
Le Lj Le Lw
= J + + 2.
GlI pe Gl p-journal Gl p-crankpin G.I p-crankweb

Rearranging and replacing the inertia for each element:

Li Lc 093.Ro G
—t— | or K= -
Di* Dc¢*  LwB 5 2[ L, Le 0.93.R0J

Le=D! [ (4.9)

+
Dj* Dc*  LwB’

The above derivation and theoretical formula is for information only on how to
determine the stiffness of a crankshaft using the equivalent length method, and

for our analytical study the stiffness values are given in section 4.1.

4 .4 Vibration calculation

The governing equation of motion for torsional vibration of a multi DOFS with

external excitation torque is:

10+ IC b+ K v b =T ) (4.10)
where:

[/;] = inertia matrix of multi DOFS
[C.] = damping matrix of multi DOFS
[K ] = stiffness matrix of multi DOFS
{T,.} = total excitation torque vector

{w} = angular twist vector
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4.4.1 Vibration calculation for 7-DOFS without damping

With the equivalent system shown in figure 4.10, the equations of motion for a 7-

DOFS without damping, [C,] =0, are:

Sy W, +K52~(V/2 _‘//3)=T52

g3 W5 +K52~(‘//3 —‘/’2)+KE3-(‘//3 _‘//4):TE3
Jpa,y +KE3-(V/4 _W3)+KE4-(‘//4 "V/s):Tm
Jps s +KE4-(W5 _‘//4)+KE5'(V/S ~l//6): Ts
Jpe¥s +KE5‘(W6 _W5)+KE6'(W6 ""//7): Ty
J g1 W4 +KE&-(‘//7 _W6)+KE7‘(W7 ”‘/’s)z Ty,
J s Vs +KE7-(V/8 —l//7):TE8
where:
J,, 0 0 0 0 0 0]
0 J, 0 0 0 0 0
0 0 Jg, O 0 0 0
[Jgl={ 0O 0 0 J, O 0 0
0 0 0 0 J, O 0
0 0 0 0 0 J, O
0 0 0 0 0 0 Jg
I K —Kp 0 0
Kp K +Kp Ko 0
0 -K;, Ky +Kp, K,
[Kg]l= 0 0 —Kg, Ky + Kps
0 0 0 — K
0 0 0 0
i 0 0 0 0
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30 _] j
A, + {a j2-€08(= Q1) + b, .sin(> .Q.t)}
Jj=1 S N
30 . .
w Ay + {a 15-c08(L Q)+ b, sin(L .Q.t)}
Ty, Trr (D), 13 7)1 o s
T Ter (2)s Ay + Z {aj4 . cos(i Qn+b,. sin(i .Q.t)}
Tro| T A ; ;
{0} =T t =Ty ()5 p =4 Aos + D {ajs -€0S(2- €21) + bys.sin(:- .Q.t)}
j=1
T Ter ()5 50 j i
T,, T, (t), Ay + 2 {a jﬁ.cos(; QH+b j6.sm(; .Q.t)}
T, 0 3 . .
£ A, + {aﬂ.cos(—J- Qi)+ bﬂ.sin(i.m)}
=1 S S
0

4411 Mode shapes and natural frequencies, {T,}=0
For the mode shape vectors {I',} and natural frequency Q,_ calculation of the 7-

DOFS, we use the transfer matrix method [47]:

ikt =(TT0PL el Ji o

ks =) V) M ] [INT I ) IV [ L [N ) IV M L VL I L dnd, - 4.112)
L I
where:

)% = {‘”’}R - {"T/}R . Right side state vector with angular displacement y/,

and torque 7, (see figure 4.10)
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L L
il = {";’ } = {W} - Left side state vector with angular displacement

and torque 7, (see figure 4.10)

1 1/K,, 1 1/K
[M] = [O | E’} = [O | £ } : Field transfer matrix or field matrix
I 0 1 0 . .
V] =| = : Point transfer matrix
—Q2J, 1] |-, 1]
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where the boundary conditions known for equation 4.11b are:

T

T, =0, because to the left side of the mass J, there is no torque.

T, = 0, because to the right side of the mass J,, there is no torque either.
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w, = 1 radian, assumed angular displacement for mass J, .
¥ T, o, 1)
G w12
0 o, 0,0

From equation 4.12, o, has to be equal to zero in order to obtain zero torque to
the right side of J,, and at the same time o, is a function of Q, and thus we
find the natural frequencies {Q._} from plot in figure 4.11 . And we find the modes

{.} from the expanded terms of equation 4.11a

] S ............................................................................................................. -

T demeeneenas feomennoeees demmemeenes e bemmeneens R -
5 i i i i i i i i i i \

u] 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

Natural frequencies of the 7-DOFS: 0

Figure 4.11: Natural frequencies of the 7-DOFS
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{Qn} = {Qn‘l QnZ Qn} Qn4 QnS Qné Qn7}

[F] = [{F 1 }’ {rz }9 {F3 }> {r4 }> {rs }a {ré }’ {r7 }]

where:

{T.} : Modal vector T, for each natural frequency Q,

0000000

{F5}=<

=0
=264.15
=767.52
=1235.91
=1639.16
=1949.90
=2145.93

B e e e e e )
!
N
et

1.00000
-1.19468
-0.76742

1.34408

0.50576
-1.44254

0.00389

1.00000
0.94301
0.83227
0.67409
0.47750
0.25369
-0.02935

1.00000
-2.10567
1.32819
0.63713
-2.03265
1.61032
-0.00307

= V/ESf

l//cz
l//c3
(//c4

l//cé
(//07
WCS

1.00000
0.51882
-0.21201

=4 -0.84082

-1.06505
-0.77679
0.00966
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{[,}=14 -0.64482

1.00000
-0.24768
-1.18634

0.70123
1.17236
-0.00558]

1.00000 |
-2.76150
3.86439
-4.04564
3.26202
-1.70041
0.00268




4412 Forced vibration {7, }# 0

From the generalized equation 4.10 and without damping, [C,] = 0:

e Mt + K 1w =T (4.13)

Equation 4.13 will be solved using the normal mode analysis method which

provides a new uncoupled equation from inertia [J,] and stiffness [K,] matrices

of the system, the method is based on the orthogonality properties. The method

uses the mode vectors {I',} as modal coordinates as one of the possible solutions

for the response of the system among all other possible solutions for equation
4.13 [45]:

=iy} (4.14)
where:

{r}: Modal or principal coordinate vector

Placing equation 4.14 in 4.13 and multiplying all the terms by the transpose [I']’

of the mode shape matrix, we have

[T K+ ) 1k rly ) = [T 47} (4.15)
The orthogonality properties can be better visualized as a vector form than in a

matrix form as in equation 4.15. For a given cth modal vector {I,} and its
transpose {I'.}" and natural frequency Q,. we show the vector form in equation

bellow. Note that the excitation vector {7, } is not affected by the sub index c:
{rc }T'[JE ]'{rc }71: + {rc }T‘[KE ]{Fc }}/c = {rc }T {TE}
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Replacing equation 4.7 on the right end of the above equation, we have

.7€7€+fc.yc:28: {AO +Z{a cos( Qt)+b sm(J Qt)}:l (4.16)

Jj=1
where:
i : sub index for number of terms for 7-DOFS (see figure 4.10). Note that i is not

the sub index for the number of cylinders of the engine.

Then, the general solution for equation 4.16 for a specific mode {I’,} and natural

frequency Q _ is given by

8
Z AOI rtc 30
y, =22 + Z [z el cos( Qt) +ZFIC bﬂ sm(—— Q.t)}
. z[@zc - (i o) }
2
8
Z AOI FIC ;
V.= z +ZMIC O, cos(%.Q.t—fjc) (4.17)
where
Q)IC = fc
JC
\/( IC _]l ( ic* J‘)
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M, =— " (4.18)

(i eY
2°Q

4.4.1.3. Numerical analysis

The numerical analysis consists of the numerical evaluation of the components of
equation 4.17 when ¢ = 0. Note that 1 =0 is not when the engine starts running;
the engine is already running, and ¢ =0 is a selected instant to visualize the

behavior of the engine for study. See appendix V for Matlab program.

The total engine twist amplitude y, is composed of the engine static and dynamic

twist. For the purpose of our study, the static twist is neglected. We focus our

study on the dynamic twist: dynamic magnifier M . ; harmonic intensity, which is

je
the numerator of Q. ; and the critical speeds of the engine Q

nc-w*

Figure 4.12 shows the plot of equation 4.17, the engine dynamic twist amplitude

7, Vs engine speed Q for its natural speed Q ,= 264.2 rad /s and mode {T,}.

The 30 peaks shown in figure 4.12 correspond to the case when the dynamic

magnifier M, tends to infinity. This tendency happens when the engine speed
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Q passes by the critical speed Q,, , =—2—'9—’-’i,where w =1, 2, 3...28, 29, 30.

w

This critical speed Q ,  is at the natural speed of the engine Q,,. Some of the
critical speeds for Q ,= 264.2 rad/sare: Q,,,=5283, Q,,,=1057, Q,, =

528,Q,,.=352,Q ,=264,Q,..=211 and Q,, ,,= 17.6 rad/s.

Figure 4.13 shows the plot of equation 4.17, the engine dynamic twist amplitude

7, Vs engine speed Q for its natural speed Q,,=767.5 rad /s and mode {T,}.
The 30 peaks shown in figure 4.13 correspond also when the dynamic magnifier
M, tends to infinity. Some of the critical speeds for Q= 767.5 rad/s are:
Q,,=1535,Q,.,=307, Q,,,=15835, Q,,,=1023, Q,,=768, Q.=

614 and Q , ,,=51.2 rad/s.

Figure 4.14 shows the plot of equation 4.17, the engine dynamic twist amplitude

7. vs Q engine speed for its natural speed Q ,= 1235.9 rad /s and mode {T,}.
The 30 peaks shown in figure 4.14 correspond to the case when the dynamic
magnifier M, tends to infinity. Some of the critical speeds for Q ,= 1235.9
rad/s are: Q , =24718,Q , . =4944 Q6 =2472,Q ,,.=1648,Q,,, =

1236, Q,,.=89.9 and Q_, ,,= 82.4 rad/s.

It is clear from figures 4.12, 4.13 and 4.14 that there is no resonance at speeds

Q other than at the critical speeds Q for each figure. In addition, the engine

He-w
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dynamic twist amplitude y_ at each critical speed Q,_ varies considerably.

Engine dynamic twist amplitude vs engine speed for 7 DOFS for. (3, and T},
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Engine dynamic twist amplitude vs engine speed for 7 DOFS for. 02 4 amd I’y
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In real applications the engine dynamic twist amplitude does not reach infinity or
large values because there is always some damping involved. The damping is
introduced in the dynamic magnifier. Based on the research and on the
experimental results, we are going to use the dynamic magnifier [48] from

equation 4.19 for our 7-DOFS:

M, = (4.19)

This infinity or large value for the dynamic twist amplitude happens once among

the 30 harmonics for each critical speed Q . When the critical speed

ne-w

Q"c_wzz'g"“ is replaced in equation 4.18, we have the dynamic magnifier
w

independent from its natural frequency Q,:

M = (4.20)

l.e. for the natural frequency Q ,= 264.2 rad/s, the 1% critical speed Q,, =
528.3 rad/s(w = 1) and the 1% harmonic j = 1, M, = «; therefore, we use

equation 4.19. For the other 29 harmonics with M, # «, we use equation 4.20.
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For the same natural frequency Q,,= 264.2 rad /s, the 2™ critical speed Q,, ,=
264.2 rad/s (w = 2) and the 2" harmonic j = 2, M, = «; therefore, we use

equation 4.19. For the other 29 harmonics with M, # «, we use equation 4.20.

Harmonic intensity spectrum for 7 DOFS for modes: T, , Ty, Iy
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Figure 4.15: Engine harmonic intensity spectrum for a 7-DOFS for modes {Fz} . {F3} and {D}

Figure 4.15 compares the harmonic intensity for modes {I,} , {I;} and {T,}. The

maximum intensity for 2" mode is at harmonic j =3, for the 3 and 4" mode at

j=4.
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For the 2" mode, we observe that for every two harmonics there is a sudden

increase in the intensity, i.e. for harmonic j= 3 after 1 and 2, for harmonic ;=6

after 4 and 5 and so on.

For the 3™ mode, the intensity for harmonics from 1 to 6 is high and after

harmonic j =6, it gradually diminishes until harmonic ;j=30.

For the 4™ mode, the behavior of the harmonic intensity is random after the first

two highest ones.

The harmonic intensity depends on the modes, firing order, phase angles and
harmonic function; however, it is clear that the predominant variable is the mode
shape. In general the harmonic intensity power gradually diminishes with the
increase of the harmonic number.

Figure 4.16 shows the 30 critical speeds for Q on the horizontal axis with its

n2-w

corresponding experimental dynamic twist on the vertical axis. The line with the

triangles facing downwards corresponds to the first harmonic (j = 1) for all the
30 critical speeds. In other words, it corresponds to the first term of the

sumatorial of equation 4.17: M, .0, .cos(-¢,.)for every critical speed. Note that

the dynamic magnifier used for each critical speed is from equation 4.19.
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The line with the triangles facing upwards corresponds to the sumatorial of the 30

harmonics for each critical speed in equation 4.17.

The other 28 lines in figure 4.16 that cannot be clearly seen because some
overlap with each other forms an apparent thick line correspond to the partial

summation of the harmonics ; for each critical speed Q i..e., the second

n2-w?

line: M, .Q, cos(-¢,)+M,,.Q, cos(=£, ) for each critical speed; the third

line: M,,.Q,, cos(=¢,,)+ M,,.Q,, cos(=¢,. )+ M,,.0,. cos(=¢&;,) for each critical speed

and so on.

A trend similar to figure 4.16 is seen in figures 4.17 and 4.18.
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Engine dynamic twist amplitude vs critical engine speed for 7 DOFS and mode I,
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Figure 4.16: Engine dynamic twist amplitude y, vs critical engine speed €2 ,  fora 7-DOFS
and mode
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Engine dynamic twist amplitude vs critical engine speed for 7 DOFS and mode Iy

Engine dynamic twist amplitude A in rad

Critical engine speed (2 . inrad/s

Figure 4.17: Engine dynamic twist amplitude y, vs critical engine speed Q,, ,, fora7-DOFS

and mode {T3}
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5 Engine dynamic twist amplitude vs critical engine speed for 7 DOFS and mode I
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Figure 4.18: Engine dynamic twist amplitude y, vs critical engine speed Q,,  for a 7-DOFS

and mode {D}

4.4.2 Vibration calculation for 8-DOFS with damping
The 8-DOFS in this section is the 7-DOFS from section 4.4.1 with the addition of

the damping device at the opposite end of the flywheel. For the damping matrix,

we use the proportional damping [GE]: ao.[75]+ e, [EE]
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The damping device is the optimally tuned viscous damper derived in Chapter 2

and the type A seismic mass in Chapter 3.

J s
J s I3 s S s e g7
Jo - . - L
“ Ky, K, - K K, Kps K K,
P | NN N SN PN N RON
. — — 1 1 |
? i Vi , V2273 7 V24 V4 /4
s ‘ |
Zc, T 1 7 w
! T L ol B 1
> Co 3 Co oo G 5 G Cg 5 Cp
TFT (t)l ]

Figure 4.19: 8-DOFS equivalent system showing moments of inertia, damping and stiffness

The equations of motion for the 8-DOFS equivalent system with damping shown

in figure 4.19:
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I ‘/71+K52( W2)+C52( ‘//2) 0

J g2, + K, (‘//2 ‘//3)+K51 (‘/’2 ‘//1)+C52 (‘//2 W3)+CE] (Wz ‘//1) Trs
53‘/’3+K3(‘//3 ‘//)+K52('//3 ‘/’2)+C£3(‘//3 ‘/’4)+C52(‘/’3 ‘//2)“TE3
E4W4+K4(W4 V/)+KE3(W4 W3)+CE4(V/4 ’//5)+CE3(‘/’4 V}3):TE4
Jpss + Kps (‘//5 43 )+KE4'(1//5_(//4)+CE5 (‘//5 Ve ) 4(‘/)5_‘/)4)=T55
Eé-‘/’s+K56-(‘//6_‘//7)+K55-(‘/’6_‘//5)+C 6(‘/’6 W, )+C 5(‘/)6_1/]5)=T56
ez +KE7'(W7 _W8)+KE6'(W7 _W6)+ Ce, (l//7 l//s)"' Cs (V/7 _l/]s):TE
JES“/.j8+KE7‘((//8_(//7)+CE7'((/]8_(/)7):0

~

where:
'J, 0 0 0 0 0 0 0]
0 J, 0 0 0 0 0 0
0 0 J, 0 0 0 0 0
~ o 0 o0 J, O 0 0 0
VUel=l g 0 0 0 . 0 0 o
o 0 0 o0 0 J, 0 0
0 0 0 0 0 J, 0
0 0 0 0 0 0 0 Jg
K, -K,, 0 0 0 0 0
K, K,+K, -K, 0 0 0 0
0 K, K,+K, -Kg 0 0 0
- 0 0 K, K +K,, -K 0 0
K= 0 0 K, K, +K; K, 0
0 0 0 0 Ky, Ky +Ky; —Kg
0 0 0 0 0 ~-K,, K, +K,
0 0 0 0 0 0 -K,,
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G, ~C, 0 0 0 0 0
-G, Cy+C, -G, 0 0 0 0
0 —C,, Cn+Cy —Cg 0 0 0
1= 0 0 —Cy  Cu+C,y —Cy 0 0 0
£ 0 0 0 ~C,, CptCy  —Cy 0 0
0 0 0 0 ~Cpy  Cpu+Cy  —Cy 0
0 0 0 0 -C,,  Cu+C, —Cpy
0 0 0 0 0 0 -C,, Co |
0
S J J
Ay + Y 3a,,.c08(= Q1) + b, .sin(= Q1)
T, 0 % ’ ’
El 30 . .
j ]
T, T, (1), Ay + ; {aﬁ . cos(; Q1) +b;. sm(; .Q.t)}
T T (¢ 30 ; ;
sl (IO Je-cos(L Q) + b, sin(L Q)
{T }_ TE4 _ TFT(t)4 _ j=1 N S
ES T - - 3 > .
Tes| Ter@s) |y o {a o-c0s(L Q1)+ b, sin(L .Q.t)}
Ty Ter(t)s J=1 S §
30 . .
Ter| T @r| Nty + > {a o cos(f Qi)+ bjﬁ.sin(f .Q.t)}
T 0 -
30 - .
A, + {a 1y-cos(L Q) +b,,.sin(Z .Q.t)}
P Ky s
0

4.4.2.1 Calculation of J,, and K,

The damping device, the optimally tuned viscous damper, was derived in
Chapter 2 and tested with the type A seismic mass in Chapter 3. As a reference,
we use the theoretical values from table 3.1 in order to size the damping device

for an 8-DOFS. With the optimum stiffness ratio k,,=0.157 and mass ratio u, =

0.246 corresponding to a primary system damping ratio ¢, = 0.01, we obtain:
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= 5.9712x10° N.m/rad

Jo = 1T py + T gy +J gy +J s +J g +J ;) = 27.5126 kg.m?

Note that we are not including the flywheel moment of inertia J,, to calculate J,
because, in our model in section 2.2, the inertia for primary system are the 6

cylinders only and the inertia of the flywheel can be assumed to be J,; = «

since Jp >>J,.

It is clear that the addition of the inertia J,, and the stiffness K, adds another

natural frequency to the system, converting it into an 8-DOFS and changes the

natural frequencies from those of the 7-DOFS.
4.4.2.2 Mode and natural frequencies, {T, }=0

For the mode shapes and natural frequencies calculation of the 8-DOFS, we use

the transfer matrix method [47] used in 4.4.1.1.
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Figure 4.20: Natural frequencies of the 8-DOFS

Q, =0 | 1.0000 1.0000) 1.0000
Q , =135.05 : 0.1597 -2.7801 -26.5517
Q. , =286.43 : 0.1353 22,6926 1143038
Q. , =773.29 0.1089 -2.4248 4.9307
Q. =1238.70 =1 03=1 Gosoo (T2 Logas [ T0=) 217568
Q . =1640.55 1 0.0516 -1.4305 27.9561
Q. =1950.49 | 0.0217 -0.7706 20.5005
Q, =2146.07 -0.0142 0.0745 | ~0.2511
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N

1.0000 1.0000 1.0000 1.0000
-69.6973 -123.0073 -174.2892 22112064
15.8060 144.1677 362.7336 577.7996
81.4993 94.4038 -227.4499 -806.8768
=) 45.0475 .S 162.8078[ V=Y 1r0.sasa [ 1= 843.9178
- 47.8633 -062.0841 350.1927 -680.1068
-80.7860 175.2156 -277.0242 354.4308

| 03827 -0.4723 0.5278 -0.5576

4423 Forced vibration {T,}= 0

To solve the generalized equation 4.10, we continue with the modal coordinates

method. After replacing the modal coordinate vector, equation 4.14, and
multiplying the whole equation by the traspose [F ]T of the mode shape matrix

[T .7 r W+ T (Coalr it + ET (R ATy = [T A7) (4.20)

The orthogonality properties can be applied in equation 4.18 for the ¢th modal
vector {T'.}, its transpose {[.}' and natural frequency Q,. Note that the

c

excitation vector {T, } is not affected by the sub index c:

A T M7, + Y UGy, + Y KA Yy, = 0.} 4T, (4.21)

The orthogonality property can also be applied to damping matrix [EE] as it was

applied to the stiffness [I?E] and inertia [J,] matrices; in other words, the

damping matrix is proportional to the stiffness and inertia matrices:
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2Tl 0 0 0 0 0 0
0 20,5 0 0 0 0 0
0 0 270,45 0 0 0 0
~ 0 0 0 27 0 0 0
sl s
0 0 0 0 294 0 0
0 0 0 0 0 2JQ.Z 0
0 0 0 0 0 0 270,
0 0 0 0 0 0 0 2]
we obtain from equation 4.21:
~ ~ ~ 8
Jj.+Cy +K .y, =2 Ty (4.22)
i=l
where
"70 = {rc }T'[JE]'{FC}
50 = {Fc }T[GE]{ c} = 2'7c an é’c (423)
Ec = {rc }T[EE]{FC} = 70 lezc
¢ damping ratio
placing equation 4.7 in equation 4.22 and rearranging:
~ =~ = 8 30 j Jj
V. +C .+ K,y z oi Lic Z ZF,C a; cos( Qi)+ Zr,cbﬂ sin(= Qt)}
i=1 j=tL i=
= = = 8 [ i
J.y.+C.y.+K_ .y Z A, T, Z cjc.cos(é Q- é"jc)]
i=1 Jj=rL
=~ = (— =&, )
J 7. +C.7, +K Ve = ZA I +Rez C € (4.24)
i=1 Jj=1
where & =+/-1
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considering the solution of equation 4.24:

8
ZAi'ric Joarli
Ve="=— : +Rei{cﬁ .e(’g' )k} (4.25)
K

\.
La}
N [~
ixY
Ay
(s}

8 J
ZAOI‘FIC o . 'e[EQI~§I )k
Vo=l e—+Re) | — - (4.26)
K, s —76.%; Qz+56.% Qk+K,

In equation 4.26, the only unknown variable is C. =2.7.Q, ¢, , since we do not

know the damping ratio for the system. The damping ratio £ could assume
different values for the c¢th mode shape I', and natural frequency Q, . This

uncertain procedure could lead to many possible different responses for the

modes and natural frequencies.
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Using the Caughey series [50] in the established 8 by 8 damping matrix [CE] and

with the second term of equation 4.23:

Expanding the above equation for &, ¢=1, ...,8, we get

7
nc

9
ne

a
— 0 3 5 11 13
24, = +0,Q, +a,d +a, ) +a, +a, Q) +a, Q.

ne nc

+a L)

ne

There are 8 equations to find each «, given each damping value ¢ ; however, it

should be noted that the Rayleigh damping is given by the first two terms of the
above equations [49]. The Rayleigh damping has been checked in different real

structures with good results [51], thus:
(24

26, =—2+a,Q,, (4.27)
QIIC

The coefficients «,and «, are the coefficients used for the proportional damping

matrix [55}: ao.[75}+ a, [IZE]

Using the damping ratio from section 4.4.2.1 g =¢, =¢4,= 0.01, and with Q ,=
135.05 rad/s , Q,,=286.43 rad/s calculated in section 4.4.2.2, we obtain from

equation 4.27 «,=1.8355 and «, = 4.7452x10".

Then the other damping ratios using equation 4.27: £, = 0.0195, J, = 0.0301,

£ = 0.0395 ¢ = 0.0467, &, = 0.0513.
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Replacing equation 4.23 in equation 4.26 and rearranging, we obtain one similar

to equation 4.17:

8
Z Ay T, 30 (l Qr-g, ].IE

Y= s—+Red M, 0. (4.28)
Kc Jj=1
where:
QIIC = Ec
JC
8 2
. (erlc a]l] (z ic* 11]
Qjc - = Q2
8
Zric’bji
gjc :tgv] ’;1
Zl:ric a ;;
~ 1
M. = - (4.29)

Je 2
j Q ol
1-| L. 25 |+ |ig = |k
I: (2 QI}CJ [-] é/c Q”C}

4.4.2.4 Numerical analysis

Numerical evaluation of the components of equation 4.28 when =0 is carried
out. As mentioned in section 4.4.1.3, note that r=0 is not the time when the
engine starts running. The engine is already running and =0 is a selected
instant to visualize the behavior of the engine for study. Also note the similarity of

equations 4.18 and 4.29. See appendix VI for the corresponding Matlab program.
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The total engine twist amplitude y, is composed of the engine static and dynamic
twist and in the present study the static twist is neglected. We focus our study on
the dynamic twist: dynamic magnifier M > harmonic intensity, which is the
numerator of Qjc ; and the critical speeds of the engine Q

ne-w "

Figure 4.21 shows the plot of equation 4.28, showing the engine dynamic twist

amplitude y, (real) vs Q engine speed for its natural speed Q,,= 135.1 rad/s
and mode {I,}. There are 30 peaks in figure 4.21 corresponding to the dynamic
magnifier M . tending to infinity when the damping ratio ¢, = 0. This happens

2.0

when the engine speed Q passes the critical speed Q,, , =——"* where w =1,
w

n2-w

2, 3...28, 29, 30. This critical speed Q is excited by the natural speed of the

n2-w
engine Q_,. Some of the critical speeds for Q, ,= 129.6 rad/s are: Q,, = 270.2,
Q,.=50,Q,,=270, Q, =180, Q,,=135, Q, ;=108 and

Q,0=90rad/s.

The engine dynamic twist amplitude y, (real+imaginary) vs engine speed Q for
its natural speed Q,,= 135.1 rad/s and mode {[,} is also plotted in the same

figure 4.21. Note that the peaks for each critical speed have approximately the

same dynamic twist amplitude for y, (real) and y, (real+imaginary).
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Figure 4.21: Engine dynamic twist amplitude for an 8-DOFS (real and real+imaginary) and a 7-

135.1 rad / s and mode {T,}

DOFS (real) vs engine speed; for natural frequency € ,
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Figure 4.22 shows the plot of equation 4.28, the engine dynamic twist amplitude

v, (real) and y, (real+ imaginary) vs Q engine speed for its natural speed Q ,=
286.4 rad/s and mode {I,}. The 30 peaks in figure 4.22 correspond to the
dynamic magnifier M i tending to infinity when the damping ratio ¢, = 0. This

20,

n3-w ’

w

happens when the engine speed Q passes the critical speed Q

where w =1, 2, 3...28, 29, 30. This critical speed Q is excited by the natural

n3-w
speed of the engine Q ;. Some of the critical speeds for Q ,= 286.4 rad /s are:
Q,,=5729,Q,.,=1146,Q,, =573, Q,,,,=382,Q,,, =286, Q, =229
and Q.= 19.1 rad/s. Note that the peaks for each critical speed have

approximately the same dynamic twist amplitude for y, (real) and y, (real+

imaginary) and therefore the mathematical equation 4.25 used represents the

expected response.

The engine dynamic twist amplitude y, for 7-DOFS vs Q engine speed for its
natural speed Q,,= 264.2 rad/s and mode {I,} is also plotted in the same
figure 4.22. Although the natural speeds Q ,= 264.2 rad/s and Q ,= 286.4

rad /s are not the same, they are close. It is clear that the addition of the new

natural speed Q ,= 135.1 rad/s on the system shifts the critical speeds and
changes the modes from {I,,} of 7-DOFS to {I,} of 8-DOFS. Furthermore, the

response has been considerably reduced with the addition of the damper.
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Engine dynamic twist amplitude vs engine speed for 7 and 8 DOFS for. (2., T’y and ¢,
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Figure 4.22: Engine dynamic twist amplitude for an 8-DOFS (real and real+imaginary) and a 7-



Figure 4.23 shows the plot of equation 4.28, the engine dynamic twist amplitude

7, (real) and y, (real+ imaginary) vs Q engine speed at its natural speed Q,,=
773.3 rad/s and mode {I,}. The 30 peaks in figure 4.23 correspond to the

dynamic magnifier M . tending to infinity when damping ratio ¢, = 0. This

happens when the engine speed Q passes the critical speed Q,, , = ,

where w =1, 2, 3...28, 29, 30. This critical speed Q,, , is excited by the natural
speed of the engine Q,,. Some of the critical speeds for Q ,= 773.8 rad /s are:
Q,,=15466, @, ,=3093, @, ,,=1547, Q,,,.,=103.1, Q ,,,=773, Q,, ,. =

61.9 and Q , ,,=51.6 rad/s.

The engine dynamic twist amplitude y, for 7-DOFS vs Q engine speed for its
natural speed Q,,= 767.5 rad/s and mode {I,} is also plotted in the same
figure 4.23. Although the natural speeds Q,,= 767.5 rad/s and Q ,= 773.3

rad /s are not the same, they are close. It is clear that the addition of the new

natural speed Q, ,= 135.1 rad/s on the system shifts the critical speeds and

changes the modes from {T,} of 7-DOFS to {T,} of 8-DOFS.

The engine dynamic twist amplitude », (real) and y, (real+ imaginary) in
comparison with y, (real) and y, (real+ imaginary), respectively, for the 8 DOFS

is lower. With the results obtained for mode {T,}, the engine dynamic twist

amplitude can be neglected.
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Figure 4.23: Engine dynamic twist amplitude for an 8-DOFS (real and real+imaginary) and a 7-
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It is clear from figures 4.21, 4.22 and 4.23 that there is no resonance at other

speeds Q, other than in the critical speeds Q,__, in each figure.

Figure 4.24 compares the harmonic intensity of modes {[,} , {I,} and {[,} for
an 8 DOFS. The maximum intensity for 2" and 3" modes is at harmonic j= 3,

and at harmonic j = 4 for 4™ mode.

The intensity for mode {I',} exhibits very low values in comparison with the other
modes and it can be ignored; however, the engine dynamic twist amplitude y, for

the same mode {I,} is higher than the other modes. This is attributed to the

denominator of Qjc. The denominator is the product of the two expressions

7.0 where J. ={T.V.[7,1{[.} from equation 4.23 and it depends directly on
the modes; i.e., for mode {I,} with the square of its natural speed Q2, the
product is high and the quotient results are small; whereas for mode {I,} with the

square of its natural speed Q2, the quotient results are high. Note that mode

{r,} is quite different from the others.

It is clear from figure 4.24 that the harmonic intensity has a direct dependence
on the modes more than the firing order, phase angles and harmonic function.
Also, for the 8-DOFS, the harmonic intensity behavior gradually diminishes with

the increase of the harmonic numbers.
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Harmonic intensity spectrum for 8 DOFS for modes: 1"2 ) 1"3 .
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Figure 4.24: Engine harmonic intensity spectrum for an 8-DOFS for modes {T',} , {r,} and {T,}

Figures 4.25, 4.26 and 4.27 show the 30 critical speeds Q on the horizontal

ne-w

axis with their corresponding dynamic twist on the vertical axis. The line with the

triangles facing downwards corresponds to the first harmonic (j = 1) of the 30
critical speeds; in other words, it corresponds to the first term of the sumatorial of

equation 4.28: Re[#, .0, .e"%*] for every critical speed. The line with the

triangles facing upwards corresponds to the sumatorial of the 30 harmonics for

each critical speed in equation 4.28.
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The other 28 lines in the figure that cannot be seen clearly because some
overlap with each other and form an apparent thick line, correspond to the partial

summation of the harmonics ; for each critical speed Q , ,; i.e., the second line:
Re[M,,.0,..e 5 + 1,0, e 4*] for each critical speed; the third line:

Re[M,, 0,5 + M0, e 4% + i1, O, e 5] for each critical speed and so
on. Note that we are not plotting the total magnitude (real + imaginary) for each

dynamic twist y_, because as we saw from figures 4.21, 4.22 and 4.23, the peaks

for each critical speed have approximately the same dynamic twist amplitude for

7. (real) and y,_ (real+imaginary).

It is clear from figures 4.25, 4.26 and 4.27 that the dynamic twist y, diminishes

drastically after the 10™ harmonic (j = 10) for all modes.
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-3 Engine dynamic twist amplitude vs critical engine speed for 8 DOFS and mode I,

Engine dynamic twist amplitude Real ['7’2 ] inrad

Critical engine speed Q_,  in radfs

Figure 4.25: Engine dynamic twist amplitude y, vs critical engine speed () for an 8-DOFS

n2-w

and mode {[,}

From figures 4.16 and 4.26, the experimental maximum angular twist of
16.25x107° from figure 4.16 is lower than the maximum theoretical damped
angular twist of 3.6 x10~ from figure 4.26, even though the mode shapes {1"2} for
7-DOFS and {T,} for 8-DOFS and the natural speeds Q ,= 264.2 rad/s for 7-
DOFS and Q, ,= 287.8 rad /s for 8-DOFS, are close in value. The difference is

due to the experimental damping (equation 4.20) and the theoretical damping

(equation 4.27).
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4 Engine dynamic twist amplitude vs critical engine speed for 8 DOFS and mode I’y

Engine dynamic twist amplitude Real [yg] inrad

Critical engine speed Qn3_w in rad/s

Figure 4.26: Engine dynamic twist amplitude 7, vs critical engine speed €2 ,  for an 8-DOFS
and mode {F3}

From figures 4.17 and 4.27, the experimental maximum angular twist of 20 x10~

from figure 4.17 is higher than the maximum theoretical damped angular twist of

9x10™* from figure 4.27. Although the natural speeds Q ,= 767.5 rad /s for 7-
DOFS and Q,,=773.8 rad /s for 8-DOFS are close, the mode shapes {[,} for 7-

DOFS and {I,} for 8-DOFS are considerably different.
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8 Engine dynamic twist amplitude vs critical engine speed for 8 DOFS and mode r,

Engine dynamic twist amplitude Real | Yy ] inrad

Critical engine speed (), . inrad/s

Figure 4.27: Engine dynamic twist amplitude y, vs critical engine speed €2,  for an 8-DOFS

and mode {F4}
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CHAPTER 5

CONCLUSIONS

5.1 Summary

In Chapters 2 and 3, a two-dimensional mathematical model of a 2-DOFS under
torsional excitation on primary system was formulated, ignoring bending and
lateral deflections. The second order equations of motion were solved for
torsional twist amplitudes for various parameters. The torsional twist amplitudes
were plotted to obtain the minimum-maximum torsional twist amplitude, which
showed the optimum parameters subject to torsional excitation torque. A series
of experimental testing was performed on the actual model under various
excitation frequencies and amplitudes for certain theoretical parameters in order
to validate the mathematical model. Comparison of the analytical and

experimental results were also performed and discussed.

In Chapter 4, a two-dimensional mathematical model for a 4-stroke 6-in-line
cylinder internal combustion engine was studied ignoring thermal loads and other

types of excitations, except the one from the cylinders. First, the analytical study
was performed on a 7-DOFS engine and then for the same engine system with

the addition of the damping device, resulting in an 8-DOFS. The optimum
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theoretical and experimental parameters from Chapters 2 and 3 were introduced

as a reference to size the damping device.

5.2 Conclusions

1. The addition of the spring coupling in the conventional untuned viscous

damper (Houdaille) can reduce the response of the system significantly.

2. The mathematical model from this thesis work has been validated against
experimental results using non optimum parameters for the damper.
Hence, it can be concluded that the use of optimum parameters will

significantly reduce the response as predicted by the mathematical model.

3. In the experimental investigation, the spring dashpot damper has a
significant effect on the reduction of not only torsional vibrations but also

bending vibrations over the untuned viscous damper (Houdaille).

4. The engine dynamic twist is highly dependent on the dynamic magnifier,
harmonic intensity, mode shapes and the critical speeds of the engine for
the assumed mathematical model. Numerical solution of the mathematical
model shows a reduction in the dynamic twist response with the addition

of the damping device.
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5.3 Recommendations for future work

1.

In the present work, the two-dimensional mathematical model was
investigated and tested for the spring dashpot absorber. A mathematical
model and experimental investigation can be performed on a 3-DOFS as
shown in figure 5.1, which may be able to extend the frequency range of

application of the damper with a suitable choice of the secondary and

tertiary systems.

TERTIARY
SYSTEM
PRIMARY e
SYSTEM . SECONDARY
— K2 SYSTLM
- \\ /\ \ I
vV
!
J3 K1 J1
1 L
‘J _ L
cl *T C
|

Figure 5.1: Three-degree-of-freedom system with stiffness and damping on primary and

secondary systems
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2. The two-dimensional mathematical model gives the torsional angular twist
in one direction; however, the damper in a real application is subject to
excitation torques and forces in three directions. A three-dimensional
model considering gyroscopic effect and axial vibrations should be
included in order to have a clear understanding of the behavior of the

spring dashpot absorber compared with the viscous damper.

3. In the present work, a two-dimensional mathematical model for a 4-stroke
6-in-line internal combustion engine was studied for an instant when ¢ =0
and for a total number of harmonics of 30. The numerical study could be
extended for different instants ¢ 0 and a greater number of harmonics.
The t £ 0 case will include the behavior of the damper in the presence of

transient excitations.

4. In the results of the experimental investigation, for each curve it is noticed
that there is a smaller peak. Upon quick analytical investigation, it was
found that the small peak corresponds to the resonant frequency for

bending vibration which could be further studied.

5. Using the same setup, equipment and measuring devices, a pendulum
oil-immersed type damper in the untuned viscous seismic mass could be
studied analytically and experimentally with the proper arrangement for

the existing casing. This new type of damper could be designed and
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adapted for different pendulum devices or degrees of freedom (see figure

" \\@ C

5.2).

\

@g/ Py

Pendulum balls

Figure 5.2: Seismic mass showing possible layout of pendulum balls in seismic mass
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APPENDIX |

Program to find optimum parameters ¢,,, and k_,, chapter 2

opt

interval=0.001;
el=0.01;

x initial=0;

% final=2;

cu=0;
for u=.01:.01:1
cu=cu+l;

€2 initial=0;
e2_final=l;

k initial=0;
k final=1;

ck=0;
for k=k initial:interval:k final
ck=ck+1;
ce2=0;
for e2=e2 initial:interval:e2 final
celZ2=cel2+1;

cx=0;
for x=x initial:interval:x final
cx=cx+1;

mll=-x"2+(2*el*x}*i+(2*%e2*sqgrt (u*k)*x)*i+1+k;
ml2=-k-(2*e2*sqgrt (u*k)*x) *i;
m2l=ml2;
m22=-u*x"2+ (2*e2*sqrt (u*k) *x) *i+k;
Denominator=[mll, ml2;
m2l, m22]};
Numeratorl=[1,ml2;
0, m221;
ampl (cx)=det (Numeratorl) /det (Denominator) ;
modl (cx) =abs (ampl (cx) ) ;
end;
temp modl=-1;
for ind x=l:cx%loop calculates the x index
%at where the amplitud is maximum
if (temp modl<modl (ind x))
temp modl=modl (ind x):
temp ind x=ind X;
end;
end;
max_ampl (ck,ce2)=max (modl) ;
max ampl test(ck,cel)=temp modl;
max_ind x(ck,ceZ)=temp ind x;

end;
end;
temp max ampl test=Inf;%loop finds the optimum k and e2 indexes
for ind ck=l:ck %at where the amplitud is minimum
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for ind ce2=l:ce2
if (temp max_ampl test>max ampl_test (ind_ck,ind_ceZ2))
temp max ampl test=max _ampl test(ind ck,ind ce2);
opt ck=ind ck;
opt ceZ=ind ceZ;

end;
end;
end;
matrixfinal (cu,l)=el;
matrixfinal (cu, 2)=u;
matrixfinal{cu,3)=(opt ck-1)*interval+k initial;
matrixfinal (cu, 4)=(opt ceZ- 1)*1nterval+e2 initial;
)=

matrixfinal (cu,5 max_ind x(opt_ck,opt ce2)

1) *interval+x initial;
matrixfinal (cu, 6)=min (min(max ampl));
matrixfinal(cu,7)=max_ampl test (opt ck,opt_ce2);

end;

xlswrite ("matrixfinalxx',matrixfinal)};
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APPENDIX 1I

Gas pressure P, vs angle ¢ coordinates, figure 4.4

¢ Fs ¢ Fs

° bar ° bar

0 30.00 360 1.00
10 73.00 370 0.90
20 60.00 380 0.80
30 44 .00 390 0.70
40 31.00 400 0.60
50 22.50 410 0.50
60 17.50 420 0.40
70 15.00 430 0.30
80 11.00 440 0.20
90 9.50 450 0.10
100 9.00 460 0.20
110 8.00 470 0.30
120 7.00 480 0.40
130 6.00 490 0.50
140 5.00 500 0.60
150 4.50 510 0.70
160 4.00 520 0.80
170 3.50 530 0.90
180 3.00 540 1.00
190 2.50 550 1.47
200 2.00 560 1.33
210 1.50 570 1.50
220 1.00 580 1.66
230 1.00 590 1.83
240 1.00 600 1.99
250 1.00 610 2.16
260 1.00 620 2.33
270 1.00 630 2.50
280 1.00 640 3.00
290 1.00 650 3.50
300 1.00 660 4.00
310 1.00 670 5.00
320 1.00 680 7.50
330 1.00 690 12.00
340 1.00 700 17.50
350 1.00 710 22.50
360 1.00 720 30.00
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APPENDIX Il

Program for gas pressure P, vs angle ¢ with Fourier series, figure 4.4

total=xlsread('Appendix II_betal.xls');
presure=total(:,2); %pressure 1in bars
angle=total(:,1); % angle are in degrees
N=length(total);

T=angle (N)-angle(l); % period of curve: pressure vs angle
tN=angle (N) ;
tl=angle(l);

% Wn=n*2*pi/T, frequency of the fourier function presure
% n: number of harmonic

$iteration to find the slope m and b for each interval

% (inclined line) of the presure vs angle diagram

for h=1:1:N-1

m(h)=(presure (h+1l)-presure (h) )/ (angle (h+1l)-angle(h));

b (h)=presure (h)-m(h) *angle (h);

end

$this iteration is to find the A0 coeficient for the fourier series
A0=0;

for h=1:1:N-1

a0 =@(x) (m(h)*x+b(h));

A0 = AO0+quadl (a0, angle(h),angle(h+l));

end

A0=A0/T;

$this iteration is to find the An and Bn coeficient
%for the fourier series

NN=72;
for n=1:NN
n

An_sum=0;

Bn_sum=0;
for h=1:1:N-1
an=@ (x) (m(h)*x+b(h)).*cos(n*2*pi/T*x);
An_sum=An_sum+(2/T)*quadl(an,angle(h),angle(h+1));
bn=@ (x) (m(h)*x+b(h)).*sin(n*2*pi/T*x);
Bn_ sum=Bn sum+ (2/T)*quadl (bn,angle(h),angle(h+1));
end

An (n)=An_sum;

Bn(n)=Bn_sum;

end

%$this iteration is to obtain the curve with fourier series
counter=0;
for x=tl:1:tN

counter=counter+1;

sum=0;

for n=1:1:NN

sum=sum+An (n) *cos (n*2*pi/T*x)+Bn(n) *sin(n*2*pi/T*x);
end
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fourier presure (counter)=sum+A0Q;
fourier angle(counter)=x;
end

plot(angle,presure, ':k');

hold on

plot (fourier angle, fourier presure,'-k');
axis ([-20 740 0 751);

grid on

xlabel ('Crankshaft angle \phi in degrees');
ylabel ('Gas pressure P G ( \phi ) in bars');
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APPENDIX IV

Program for total torque T7,, with Fourier series, figure 4.8

$FIRST MUST RUN APPENDIX III PROGRAM
phase angle=input ('phase angle for cylinder = ');

Ro=35;% in mm, crankshaft radius

1=123;% in mm, conrod length

d=76;%in mm, piston diameter

A=pi*d”2/4;% in mm"2, piston area

W=800; %rotating speed of engine in rad/sec
Mp=.363; % kg, total piston mass

Mc=.096; % kg, total connecting rod mass
a=(Ro/L)"2;

%calculation of torque due to gas presure on crank shaft

for h=1l:1:length(fourier angle)
fi=fourier angle(h)-phase angle;
coef=sind(fi)+Ro/L*sind(fi)*cosd(fi)/sqrt (1-{Ro/L*sind(fi))"2);
torque (h)=fourier presure(h)*coef;%fourier presure is in bar

end

gas_ TORQUE=torque*A*Ro*.1;3%N.mm

plot (fourier angle,gas TORQUE, '-k');

hold on

$calculation of torque due to inertia forces on crank shaft
for h=1l:l:length(fourier angle)
fi=fourier angle(h)-phase angle;

constantl=-(l-a* (sind(fi))"2)"(-3/2)*(a*sind(fi)*cosd(fi))"2-(1-
a*(sind(fi))"2)~(~1/2)*a* (cosd(fi)) "2+ (l-a*(sind(fi))"2)" (-
1/2)Y*a* (sind(£fi))"2;
constant2=sind(fi)+Ro/L*sind(fi)*cosd(fi)/sqrt (1-
(Ro/L*sind (fi))"2);
inertia TORQUE IO (h)=-
{Mp+2*Mc/3) *W"2* (Ro*cosd (fi)+L*constantl) *constant2*Ro/1000; $N.mm

piston_speed=W* (Ro*sind (fi)+L* (1-a* (sind(fi))"2)"(~
1/2)*(a*sind (fi) *cosd(fi)));
inertia_TORQUE_TIR(h)=-Mc/3*piston speed”2/Ro;

inertiaﬁTORQUE(h)=inertia_TORQUE_IO(h)+inertia_TORQUE_IR(h);
end

plot (fourier angle,inertia TORQUE, ':k');
hold on

$final_ TORQUE=gas_TORQUE+inertia TORQUE

for h=1l:1:length(fourier angle)
final TORQUE (h)=gas TORQUE (h)+inertia_ TORQUE (h};
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end

plot (fourier angle,final TORQUE, '-b'};

grid on B

Nl=length (fourier angle);

T=fourier angle(Nl)-fourier angle(l); % period of curve: final TORQUE
vs angle

tN=fourier angle(N1l);

tl=fourier angle(l);

giteration to find the slope m and b for each interval

% (inclined line) of the final TORQUE vs angle

for h=1:1:N1-1
ml(h)=(final_TORQUE(h+1)—final_TORQUE(h))/(fourier_angle(h+l)—
fourier_angle(h));

bl (h)=final TORQUE (h)-ml(h)*fourier_angle (h};

end

$this iteration is to find the A0 coeficient
$for the fourier series of final TORQUE

AQOT=0;

for h=1:1:N-1

a0l =Q(x) (ml{(h)*x+bl(h)):

AOT = AO+quadl (a0l, fourier angle(h), fourier_angle(h+l));
end

AQT=ROT/T;%N.mm

$this iteration is to find the An and Bn coeficient
$for the fourier series of final TORQUE
NN1=30;
for n=1:NN1
n
An_sumT=0;
Bn_ sumT=0;
for h=1:1:N1-1
anl=@ (x) (ml(h)*x+bl(h)).*cos{(n*2*pi/T*x);

An_sumT=An_sumT+(2/T)*quadl(anl,fouriergangle(h),fourier_angle(h+1));
bnl=@(x) (ml(h)*x+bl(h)).*sin(n*2*pi/T*x);

Bn_sumT=Bn_sumT+(2/T)*quadl(bnl,fourier_angle(h),fourier_angle(h+l));
end

AnT(n)=An_sumT; TN.mm

BnT (n)=Bn_ sumT;3N.mm

end

%this iteration is to obtain the curve with fourier series
beta=[{0,8*pi/3,4*pi/3,10*pi/3,2*pi/3,2*pi];
counter=0;
for x=1:1:N1
counter=counter+l;
sum 1=0;
sum_ 2=0;
sum_3=0;
sum 4=0;
sum_5=0;
sum 6=0;
for n=1:1:NN1

o0C OO o o®

e
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sum_ l=sum_1+AnT(n)*cos(n*2*pi/T*x-

n*beta (1) /2)+BnT (n) *sin (n*2*pi/T*x-n*beta (1) /2);

end

fourier_TORQUEl(counter)=sum_1+AOT;
fourier_TORQUE(counter)=fourier_TORQUEl(counter)+fourier_TORQUE2(Counte
r)+fourier TORQUE3(counter)+fourier TORQUE4 (counter)+fourier TORQUES (co
unter)+fourier TORQUEG (counter);
end

plot (fourier angle, final TORQUE, '-b');
hold on
plot(fourier_angle,fourier_TORQUEl,'-r');

axis([-20 740 -3e+005 5e+005]);

title(['Cylinder 6, phase angle ', num2str (phase angle),’ degrees']});
xlabel ('Crankshaft angle \phi in degrees');

ylabel ('Torque in N.mm');

grid on

box on
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APPENDIX V

Program for 7-DOFS engine dynamic twist y_ vs engine speed Q, figures 4.12,
4.13 and 4.14

coeficients=xlsread('Harmonic coeficients.xls');3N.mm
coeficients=coeficients*10; %N.m

Aji2=coeficients(:,1);
BjiZ2=coeficients(:,2);

Aji3=coeficients(:,3);
Bji3=coeficients(:,4);

Ajid=coeficients(:,5);
Bjid=coeficients(:,6);

Ajib=coeficients(:,7);
Bjib=coeficients(:,8);

Ajié=coeficients(:,9);
Bji6=coeficients(:,10);

AjiT7=coeficients(:,11);
Bji7=coeficients(:,12);

delta=[0,0,480,240,600,120,360,0];

Gic=[ 1.00000000000000
-0.24768205424037
-1.18633565424764
-0.64481954814462

0.70122633640183
1.17236470505899
-0.005579740319857 ;

K2=22.82e6; %N.m/rad between J1 and J2
K3=22.82e6; %N.m/rad between J2 and J3
K4=22.82e6; %N.m/rad between J3 and J4
K5=22.82e6; %N.m/rad between J4 and J5
K6=22.82e6; %$N.m/rad between J5 and J6
K7=19.21e6; %N.m/rad between J6 and J7

J2=18.64; %kg.m"2 cyl
J3=18.64; %kg.m"2 cyl
J4=18.64; %kg.m"2 cyl
J5=18.64; %kg.m"2 cyl
Jé6=18.64; %$kg.m"2 cyl
J7=18.64; %kg.m"2 cyl 6

JB8=2655; %$kg.m”"2 flywheel

U W N

’

JE=[J2,0,0,0,0,0,0;
0,J3,0,0,0,0,0;
0,0,J4,0,0,0,0

’
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0,0,0,J5,0,0,0;
0,0,0,0,36,0,0;
0,0,0,0,0,37,0;
0,0,0,0,0,0,J8];

KE=[K2, -K2, 0, 0,0,0,0;
-K2,K2+K3,-K3,0,0,0,0;
0, -K3, K3+K4,-K4,0,0,0;
,-K4,K4+K5,-K5,0,0;
, -K5,K5+K6, -K6,0;
,0,-K6,K6+K7, -K7;
0,0,-K7,K71;

0,0
0,0,0
0,0,0
0,0,0

I 14

Jpc=Gic'*JE*Gic;
Kpc=Gic'*KE*Gic;
wn=sqrt (Kpc/Jpc) ;

t=0;
c w=0;

for w=0:.1:2500
c_w=c wtl;

for §=1:1:30

aji2 (3)=(Aji2(j) *cosd(j*delta(2)/2)-
Bji2(j) *sind(j*delta(2)/2));

bji2 (§)=(Aji2 () *sind (j*delta(2)/2)+Bji2 (i) *cosd(j*delta(2)/2));

aji3 (§)=(Aji3(j)*cosd(j*delta(3)/2)-
Bji3(j)*sind(j*delta(3)/2));

bji3 (§)=(Aji3 (j) *sind(j*delta(3)/2)+Bji3(j) *cosd(j*delta(3)/2));

=(Ajid (j)*cosd(j*delta(4)/2)-

ajid (j)
) )i

Bjid (j)*sind(j*delta(4)/2
bjid (§)=(Ajid (j)*sind(j*delta(4)/2)+Bjid (j)*cosd(j*delta({d)/2));

aji5(j)=(A3i5(j) *cosd (j*delta(5)/2)~
Bji5(j) *sind (j*delta(5)/2));

b3i5(§)=(Aji5(j) *sind(j*delta(5)/2)+BJji5(j) *cosd(j*delta(5)/2});

aji6 (§)=(Aji6(3) *cosd(j*delta(6)/2)-
Bji6 (j) *sind(j*delta(6)/2));

bji6 (j)=(Aji6(j)*sind(j*delta(6)/2)+Bji6(j)*cosd(j*delta(6)/2)}));

aji7(3)=(Aj1i7(3) *cosd (j*delta(7)/2) -
Bji7(3) *sind (j*delta(7)/2));

b317(3)=(A317 (3) *sind (j*delta(7)/2)+Bji7(j) *cosd(j*delta(7)/2));

178



sumGic_aji(j)=Gic(1)*aji2(§)+Gic(2)*aji3(3)+Gic(3)*ajid (3)+Gic(4)*aji5(
1) +Gic(5)*aji6 (§)+Gic (6)*aji7 () ;

sumGic bji(j)=Gic(1)*bji2(§)+Gic(2)*bji3(3)+Gic(3)*bjid (7)+Gic(4)*bIi5(
J)+Gic(5)*bji6(3)+Gic(6)*bIi7(3);

Qic(j)=sqgrt(sumGic_aji(j) 2+sumGic_bji(j)"2)/JIpc/wn"2;
eta jc(j)=atan(sumGic_bji(j)/sumGic_aji(j));
Mic(j)=1/(1-(3*w/2/wn)"2);

if (Mjc(j)==Inf) [l (Mjc(j)==-Int)
Mic(3)=3.8/Qjc(3)".25; end;

cos_f(j)=cos(j*w*t/2~eta jc(j));
end

$sum_gamc=Ao;

sum_gamc=0;

for h=1:1:30
sum_gamc=sum_gamc+Mjc (h) *Qjc (h) *cos_f£f (h);

end

gamc (c_w)=sum_gamc; %in radians
omega({c_w)=w;%in rad/sec
clear sum_gamc
end
plot (omega,gamc, "-k');
grid on

gama_c(:,1)=omega’;
gama_c(:,2)=gamc';

xlswrite('points gama omega eq 4 17 ¢ 4',gama_c};
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APPENDIX VI

Program for 8-DOFS engine dynamic twist y, vs engine speed Q, figures 4.21,
4.22 and 4.23

coeficients=xlsread(‘Harmonic_coeficients.xls');%N.mm
coeficients=coeficients*10; %N.m

Aji2=coeficients(:,1);
BjiZ2=coeficients(:,2):

Aji3=coeficients(:,3);
Bji3=coeficients(:,4);

Ajid=coeficients(:,5);
Bjid=coeficients(:,6);

AjiS=coeficients(:,7);
Bji5=coeficients(:,8);

Ajié=coeficients(:,9);
Bjio=coeficients(:,10);

AjiT=coeficients(:,11);
Bji7=coeficients(:,12);

delta=[0,0,480,240,600,120,360,0];

Gic=| 1.00000000000000,
.15966499569224,
.13529774698925,
.10891490329351,
.08090950239633,
.05169875409666,
.02171782482792,
.014281550839811;

OO O OO0

K1=5.9712e5; %N.m/rad between J1 and J2

K2=22.82e6; $N.m/rad between Jl and J2
K3=22.82e6; %N.m/rad between J2 and J3
K4=22.82e6; %$N.m/rad between J3 and J4
K5=22.82e6; %N.m/rad between J4 and J5
K6=22.82e6; %$N.m/rad between J5 and J6
K7=19.21e6; 3%N.m/rad between J6 and J7

J1=27.5126;

J2=18.64; %$kg.m”2 cyl
J3=18.64; %$kg.m"2 cyl
J4=18.64; %$kg.m"2 cyl
J5=18.64; %kg.m"2 cyl
J6=18.64; %kg.m™2 cyl
J7=18.64; %kg.m™2 cyl 6
J8=2655; %$kg.m"2 flywheel

s W N
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JE={J1,0,0,0,0,0,0,0;
0,J2,0,0,0,0,0,0;
0,0,33,0,0,0,0,0;
0,0,0,J4,0,0,0,0;
0,0,0,0,J5,0,0,0;
0,0,0,0,0,36,0,0;
0,0,0,0,0,0,37,0;
OIOIOIOIOIOI ;381

KE={[K1, -K1, 0, 0, 0, 0, 0, ©O;
-K1, Kl1+K2, -K2, 0, O, 0, 0, 0;
0, -K2, K2+K3,-K3, O, 0, 0, 0O;
0, 0, -K3, K3+K4,-K4, 0, 0, 0;
0, 0, 0, -K4, K4+K5, -K5, 0, O;
0, 0, 0, 0, -K5, K5+K6, -K6, 0y
0, g, 0, 0, 0, -K6, K6+K7,-K7;
0, 0, 0, 0, 0, 0, -K7, K71,

Jpc=Gic'*JE*Gic;
Kpc=Gic'*KE*Gic;
wnc=sqrt (Kpc/Jpc) ;
damping ratio=.01;

Cpc=2*Jpc*wnc*damping ratio;

for w=0:.1:2500
c_w=c_w+1;

for 3=1:1:30

aji2 (§)=(Aji2 (3) *cosd (j*delta(2)/2) -
Bji2(j) *sind(j*delta(2)/2));

bji2 (§)=(Aji2(j) *sind(j*delta(2)/2)+Bji2 (j)*cosd(j*delta(2)/2));

’

aji3(§)=(Aji3 () *cosd(j*delta(3)/2)~
Bji3 (j) *sind{(j*delta(3)/2))

bji3(3)=(AFi3 () *sind(F*delta(3)/2)+Bji3(]) *cosd(j*delta(3)/2));

ajid (3)=(Ajid (3)*cosd(j*delta(4)/2)-
Bjid4 (j)*sind(j*delta (4) /2));

biid (§)=(Ajid () *sind(j*delta(4)/2)+Bjid () *cosd(j*delta(4)/2));

aji5(3)=(Aji5(3)*cosd (j*delta(5)/2) -
Bji5 () *sind(j*delta (5)/2));

bji5(3)=(Aji5(j) *sind (j*delta (5)/2)+Bji5 (j) *cosd(j*delta(5)/2));
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aji6(§)=(Aji6(3)*cosd(j*delta(6)/2)-
Bji6(j)*sind(j*delta(6)/2));

b3i6(3)=(Aji6(3)*sind(j*delta (6)/2)+Bji6 (j)*cosd(j*delta(6)/2));

aji7(3)=(RAFi7 () *cosd (J*delta (7) /2) -
Bji7(3) *sind(3*delta(7)/2));

b3i7(3)=(Aji7 () *sind(j*delta(7)/2)+Bji7(J) *cosd(j*delta(7)/2));

sumGic aji(j)=Gic(2)*aji2 (J)+Gic(3)*aji3(j)+Gic(4)*ajid (j}+Gic(5)*ajib(
F)+tGic(6)*aji6(j)+Gic(7)*aji7(j);

sumGic bji (§)=Gic(2)*bji2 (§)+Gic(3)*bji3 () +Gic(4)*bjid (§)+Gic(5)*biji5(
§)+Gic(6) *b3i6(3)+Gic(7)*biiT(3);

Qjc (j)=sqrt (sumGic aji(3j)"2+sumGic bji(j)"2)/JIpc/wnc"2;
eta jc(j)=atan(sumGic bji(j)/sumGic_aji(j));

Mjc(3)=1/((1-
(3*w/2/wnc)~2)+(j*damping ratio*w/wnc)*i);

exponential (j)=exp ((j*w*t/2~eta jc(j))*i);

end

%$sum_gamc=Ao;
sum_gamc_real=0;
sum_gamc_abs=0;
for h=1:1:30

sum gamc_real=sum gamc_real+real (Mjc(h)*Qjc(h)*exponential (h));
sum_gamc_abs=sum_gamc_abs+{(Mjc (h) *Qjc (h) *exponential (h));
end

gamc_real (c_w)=sum_gamc real;%in radians
gamc_abs(c_w)=abs(sum gamc abs);%in radians
omega (c_w)=w;%in rad/sec

clear sum gamc real sum_ gamc_abs

end
plot (omega, gamc_real, '-k');
hold on
plot (omega, gamc_abs, '-r');
grid on
gama_c_real(:,1l)=omega’;
gama_c_real(:,2)=gamc_real';
xlswrite('points gama omega eq 4 24 real 2.xls',gama c real);
gama_c_abs{:,1l)=omega’;
gama c_abs(:,2)=gamc_abs';
xlswrite('points gama omega eq 4 24 abs 2.xls',gama_c abs);
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