An Exact Algorithm for
First Order Probabilistic Logic

Razia Sultana

A Thesis
n
The Department
of

Computer Science and Software Engineering

Presented in Partial Fulfilment of the Requirements for
the Degree of Master of Computer Science at
Concordia University

Montréal, Québec, Canada

December 2007

© Razia Sultana, 2007

3

Library and Bibliothéque et

Archives Canada Archives Canada

Published Heritage Direction du

Branch Patrimoine de I'édition

395 Wellington Street 395, rue Wellington

Ottawa ON K1A ON4 Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 978-0-494-40954-1
Qur file Notre référence
ISBN: 978-0-494-40954-1

NOTICE: AVIS:

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,

publish, archive, preserve, conserve,

communicate to the public by

telecommunication or on the Internet,

loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theéses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protege cette thése.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canad;

Conformément a la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thése.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

ABSTRACT
An Exact Algorithm for First Order Probabilistic Logic
Razia Sultana

Human beings often have to reason and make decisions based on uncertain knowledge of
real world problems. Therefore, many artificial intelligence (AI) applications, such as expert
systems, must have the ability to understand the way human beings reason from uncertain
data or knowledge in order to reach a conclusion. Several approaches have been proposed
in this respect to deal with various kinds of uncertainty in AI. Among these approaches,
probabilistic theory is used in many research areas such as knowledge-based systems, data
mining, ete. Nilsson revisited in 1986 the early work of Boole (1854) and of Hailperin (1976)
on logic and probability. He proposed a generalization of logic in which the truth values
of sentences are probability values. The main problem addressed by Nilsson is the proba-
bilistic satisfiability (PSAT) for both propositional and first-order logic: debermine, given a
set of sentences (i_.e., clauses) and probabilities that these sentences are true, whether these
probabilities are consistent. Since first-order logic is used in many AT applications due to
its expressiveness to represent knowledge over propositional logic, our thesis proposes an
extension of the mathematical modeling of PSAT to first-order logic, FOPSAT for short. We
next propose an exact algorithm based on delayed column generation technique, to check
consistency and, if consistency holds, to entail new probability values for an additional logi-
cal sentence to be true and such that the augmented set of sentenceé remains consistent. We
illustrate the proposed algorithm on an example, and discuss its potential to solve medium

size FOPSAT instances.

il

Acknowledgement

This research work could not be accomplished without the guidance and sincere support
from a lot of individuals. I would like to express my heart felt gratitude to all of them and
mention the following people especially for their contributions.

First of all, I would like to thank my supervisor Dr. Brigitte Jaumard for her invaluable
guidance, advice, support and criticism since from the beginning of my work. Undoubtedly she is
one of the best supervisors as well as individuals that I have ever worked with. She was always
encouraging, patient and gave me enough time for the better understanding of the problems and
guided me through the way of research. It is because of her, my graduate studies became
meaningful and I ended up with a successful completion of my thesis in time.

I would also like to express the deepest appreciation to my committee chair Dr. Clement
Lam, the examiners Dr. Nematollaah Shiri and Dr. Peter Grogono for their valuable suggestions
and corrections for maintaining the quality of the thesis.

My sincere gratitude goes to Professor Monty Newborn, School of Computer Science,
and McGill University for helping me with ‘Theo 2006’ the automated theorem-proving program
and his kind response to the e-mails. I also would like to thank Dr. Geoff Sutcliffe, department of
Computer Science, University of Miami for providing help and information regarding Thousands
of Problems for Theorem Provers (TPTP) and a few tips for formulation of our instances.

Sincere appreciation goes to all of my lab members for their effective help and
suggestions. Special thanks go to my friends who have helped me with their expert advice when I
was stuck. Last but not the least, I do convey my heart felt thanks to my parents and siblings for

their love, affection and support throughout the journey.

iv

Dedicated
To My Friends and Family

Table of Contents

List of Tables
List of Figures

1 Introduction

1.1 Motivation e e e e e
1.2 Thesis Contribution e e
1.3 Thesis Organization

2 Introduction to Probabilistic Logic

2.1 Propositional Probabilistic Logic
2.1.1 Decisionform
2.1.2 Optimization form
2.1.3 Extensions e

2.2 Firsf—Order Probabilistic Logic
221 Decisionform e e

vi

ix

10

2.2.1.2 First-order concepts 21

2.2.1.3 Resolution refutation 24

2.2.1.4 Strategies and simplification methods for resolution 29

2.2.2 Optimization form 31

3 Literature Review 32
3.1 Reasoning under Uncertainty Models 33
3.1.1 Fuzzy logic and fuzzy sets33
3.1.2 Bayesianmnetwork L Lo oo o 36

3.2 Analytical Solution of PPL 37
3.2.1 Boole’s algebraicmethod L. 37
3.2.2 Polyhedral methods 41

3.3 Numerical Solution of PPL 43
3.3.1 Linear programming modeling 43
3.3.2 Column generation solution 44
3.3.3 ADPSAT and AD-SOLFOPL 49
3.3.4 Variable neighborhood search 51

34 PFirst-Order Logic e e e e 51
3.4.1 Reasoning under uncertainty models with probabilities 52

2.2.1.1 Decidability, 20

vii

3.4.1.1 Halpern’s semantics for probabilistic logic 52

3.4.1.2 Probabilistic logic programming 54

3.4.1.3 Bayesian logicor BLOG 55

3.4.2 Practical and scalable procedures for satisfiability 56

3.4.21 Paramodulation 57

3.4.22 Saturation L 58

3.4.2.3 Adaptive strategies 59

4 First-Order Probabilistic Logic Problem 61
4.1 Statement of the FOPL Problem 61
4.2 Mathematical Modeling 62
4.3 Outline of the Solution 64
4.4 Solution of the Pricing Problem 66
4.5 Another Solution for the Pricing Problem 72
4.6 Satisfiability Checkingo Lo, 75
4.7 An Illustrative Example 77
4.8 Straightforward LP Solution 78
4.9 A Scalable LP Solution I 79

5 Numerical Results | 86
51 Algorithm Analysis 86

5.1.1 SOLPRICING branching scheme
5.1.2 SOLPRICING? branching scheme

5.2 Programming Environment

c
oo

Efficient Implementation

5.4 Experimental Results.

5.4.1 Building the test instances

5.4.2 Comparison of the SOLFOPL and SOLFOPL™

6 Conclusion and Future Work

Bibliography

Appendix

ix

...........

104

114

115

List of Tables

10

11

Column generation process oo it 48
Algorithm SOLFOPL. 68
List of possible/impossible worlds 85
Initial node structure 92
The data structure considering the first three nodes 93
Snapshot of the dual values 94
Data structure associated with possible world [00111]. 95
Results of SOLFOPL using SOLPRICING algorithm. 100
Results of SOLFOPLY using SOLPRICINGt algorithm. 101

Results of SOLPRICING and SOLPRICING™ algorithm with respect to number

of nodes in the last solution of the pricing problem (min). 101

Comparison of SOLFOPLT and AD-SOLFOPL. o . v v v . 103

List of Figures

1 Resolution proof for the dead dogproblem 26
2 An abstract view of the branching strategy used in SOLPRICINGT 90
3 Nodestructure e 92
4 Heap and corresponding array representation for first three nodes 94
5 Tree structure: possible world [00111] considering PFOENTAR = = | 96
6 Tree structure: possible world [11011] considering PFOENTAIL .. 97
7 Problem llabeling 98

8 Comparison graph of SOLPRICING and SOLPRICINGT for number of nodes

with respect to number of columns for instance 2pl11x25x3p. 102

9 Comparison graph of SOLPRICING and SOLPRICING™ for number of null dual

variables with respect to number of columns for instance 2p11x25x3p. . . . 103

X1

Chapter 1

Introduction

1.1 Motivation

Human being has an excellent capability of reasoning and drawing conclusions from un-
certain information and environment. Therefore, any method which is designed to mimic
human reasoning must possess such capability to reason with uncertain data. Due to in-
completeness of our real world knowledge, models may not capture the uncertainty whereas
collected data may be partial, ambiguous, erroneous, or imprecise. Reasoning under un-
certainty plays an essential role in many artificial intelligence applications, e.g., in expert
systems, where many of the rules and data are obtained from experts or users with some
degree of uncertainty. It is also applicable in automated theorem proving, testing of com-
binational circuits and reliability. Therefore, various generalizations of logic dealing with
uncertainties were studied by many Al researchers. Pearl (see [61], p.2-4) classified them into
three categories logicist, neo-calculist and neo-probabilist. Researchers dealing with uncer-

tainty using non-numerical techniques are categorized as logicist by Pearl [61]. Neo-calculist

uses numerical representations with an entirely new calculi, such as Dempster-Shafer cal-
culus, fuzzy logic or certainty factors, whereas, neo-probabilist handles uncertainty with
traditional probability theory associated with computational facilities needed to perform
AT tasks. Pearl [61] also mentioned another category of researchers who handle uncertainty
in an ad-hoc way. For instance, an uncertainty factor has been incorporated in a heuristic
fashion in most early systems such as MYCIN [6] or PROSPECTOR [44]. According to
semantical point of view in various approaches, Pearl [61] also compares extensional vs.
intenstonal approaches. In an eztensional approach, used, e.g., in production systems or
rule-based systems or procedure bqsed systems, uncertainty is handled by assigning truth
values to férmulas. Moreover, the uncertainty of a new formula is deduced as a function of
the uncertainties of its sub-formulas which is “computationally convenient but semantically
sloppy” [61]. Whereas, uncertainty is assigned to “state of affair” or subset of possible worlds
in the intensional approach which is “semantically clear but computationally clumsy” [61].

This extensional and intensional approaches are related to the proof theory vs. model theory.

In this thesis, our focus is on reasoning under uncertainty models where uncertainty is
captured using probability values. The earliest works are due to Boole (1854) [5] and later
on, to Hailperin (1976). Hailperin [26] revisited the works of Boole with a first attempt
to use the linear programming tools in order to solve the mathematical models. In 1986,
Nilsson [56] published a seminal article on the so-called probabilistic logic where he discussed

probabilistic logic not only for propositional formulas but also for first-order formulas.

Nilsson addressed two forms of the probabilistic logic problem [56] namely, the decision

form and the optimization form. The decision form corresponds to the so called probabilistic

PPSAT

satisfiability or problem, i.e., it deals with the consistency of logical sentences together

with their probabilities of being true. For instance, assume the sentences, Bangladesh wins
today’s match, Bangladesh wins today’s match => Bangladesh is champion, and Bangladesh
s champion have probability 0.8, 0.6 and 0.3 respectively. Are these probabilities consis-
tent? Now let us assume that the above set of sentences together with the set of probabilities
is consistent; let Bangladesh wins today’s match = Bangladesh celebrates be a new sentence
with an unknown probability. The optimization form leads to the so called probabilistic
entailment or PPENTAL problem that deals with what is the tightest range of probability'
values for this additional sentence such that the overall augmented set of sentences remains

consistent.

The PPAT problem can be formally expressed as follows. Let S1,Ss,...,S,, be propo-
sitional sentences obtained from the logical variables x1,z2, ..., z, with the usual boolean
operators V, A, —. Let my, mo, ..., ™y be the probabilities that these sentences are true.
Are these probabilities consistent? Assume that the system with S1, Sa,..., S, of m sen-
tences to be consistent; let Sy, 11 be an additional propositional sentence with an unknown
probability 7,41. The PPENTA problem considers finding the best possible lower and upper

bounds on the probability m,,+1 such that the overall augmented system remains consistent.

Before answering how to solve Nilsson’s probabilistic logic problem, let us recall two
well known problems in Al inference, namely satisfiability and logical consequence problems.
Recall first that, an interpretation I of a set of propositions is the assignment of a truth
value, either T (true) or F (false), to each propositional symbol ([49], p. 50). If a given
set of probositional sentences Si,952,...,5m i8 T under an interpretation I, then we say
that I satisfies the set, or the set is satisfied by I If a sentence S; is T in an interpretation

I, we say that I is a model of S; or I satisfies S; ([7], p. 11). A set of propositional

sentences S1, 52, ..., Sy, is said to be satisfiable (or consistent) if and only if there exists an
interpretation I, such that the set of sentences is evaluated to T in I. Now let us consider
a set of sentences S1,S52,...,Sn, and an additional sentence Sp41. Smq1 is said to be a
logical consequence of S1,S2,...,Sm (or Smt1 logically follows from Sy, So,...,Sy,) if and
only if for every interpretation Jin which S1 ASa A+ A Sy, is T, Sp41 is also T [7]. For
example, if (P = Q) and (Q = R) are given, then (P = R) is a logical consequence of

(P=Q)A(Q=R).

In order to solve the probabilistic logic problem, one needs to develop a model for both
the decision and optimization forms. If we exclude the probability issues, Nilsson’s decision
or PPSAT problems can be reduced to the satisfiability problem whereas, the optimization
or PPENTAIL ¢an be reduced to the logical consequence problem. However, it is to be noted
that, not all the models which have been proposed in the literature for reasoning under
uncertainty deal with both problems. For instance, in fuzzy logic, only logical consequence

is addressed but not the satisfiability.

Nilsson’s two forms of the probabilistic logic problem can be formulated as a mathe-
matical model (sée section 2.1.1). A straightforward way to solve this model is by linear
program tools using the simplex or the revised simplex algorithm (see, e.g., Chvatal [10],
p-97). Unfortunately, such a solution becomes intractable even for a moderate size problem.
However, there are some tools in operation research which can efficiently deal with large

scale problems, namely the column generation techniques (see [10], p.198).

First-order logic has more expressive power than other representations, like propositional
calculus. Moreover, its primitive semantic features are very closely related to the manner

in which we perceive our environment [3]. Human beings identify individual objects and

classify them according to their properties. First-order logic is built up similarly from a
collection of individual objects, and from grouping together individuals into sets who share
some common properties. The primitive semantic functions which serve to build up complex
assertions are equally transparent [3]. First-order logic is used in many Al applications due
to its expressive power and transparent semantics to represent knowledge. Therefore, we are
interested in generalization to first-order from propositional logic. The goal of this thesis is
to develop and implement a well defined scalable exact algorithm to solve medium size first-
order probabilistic logic or FOPL instances. The column generation methods proved to be
efficient for propositional probabilistic logic or PPL sentences. Therefore, we are interested
in investigating column generation methods for FOPL. The models for reasoning under
uncertainty as well as algorithms for entailing new information in first-order logic have
been discussed in several papers (see, e.g., Lukasiewicz [50, 51], Page and Srinivasan [59],
Halpern [28], Ng and Subrahmanian [55]) but the proposed algorithms are heuristic and

not always scalable when there is a large number of predicates and formulas.

1.2 Thesis Contribution

In this thesis, the first contribution is a mathematical modeling for the first-order probabilis-
tic logic or FOPL. We started from the mathematical model for propositional probabilistic
logic [39] or PPL, based on a column generation formulation. While in propositional cal-
culus, the underlying considerations are only with propositional variables and symbols, in
first-order logic, it is mandatory to handle quantifiers, predicates and functions. Therefore,
it is more difficult to provide a mathematical model for first-order probabilistic logic than

for propositional probabilistic logic. Still, we managed to generalize the PPL mathematical

programming formulation for the FOPL problem. It is also based on a column generation

formulation. This has already been published in [38].

As the second contribution, we have developed a solution scheme for the FOPL mathe-
matical model. While it can be solved by linear programming using the simplex or revised
simplex algorithms [10], the approach is limited to small instances as the number of variables
grows exponentially in the number of predicates. However, as for PPL, by using column gen-
eration techniques (see Chvatal [10], p. 195), these limitations can be overcome. Moreover,
it is much faster than the classical simplex algorithm for solving linear programs since it is
not required to consider explicitly all the possible worlds to guarantee an optimal solution.
A possible world is a truth assignment on the set of sentences such that the set of sentences
is satisfiable for that truth assignment. A possible world corresponds to a column in the
column generation model. Column generation begins with taking a small, manageable part
of a problem (few of the possible worlds), solves that part, then analyses its partial solution
to determine an additional small subset of worlds (one or more possible worlds) to be added
to the model, and then solves the enlarged model. This column-wise modeling repeats this

process until it satisfies an optimality condition for the problem.

More formally, the column generation method relies on a decomposition of the initial
linear program into a master and a pricing problem. At each iteration, we consider only a
restricted master problem, i.e., the master problem with only a small number of variables,
~ i.e., a small subset of possible worlds being considered. The pricing problem corresponds
to the mechanism of generating possible worlds which improve the value of the current
solution and which are added in the restricted master problem. Therefore, in order to solve

the FOPL, we need an algorithm for both the restricted master problem as well as for the

pricing problem.

Usually solving the restricted master problem is easy but solving the pricing problem is
more difficult. The pricing problem is an optimization problem. Therefore, it is defined by
an objective and a set of constraints. The objective of the pricing problem is to find a world
with an imposed (negative or positive) sign for the reduced cost such that it will improve
the current solution. The reduced cost is a metric that is used to check the optimality of a
solution of an LP [10]. The set of constraints corresponds to the rules associated with the
definition of a possible world. In PPL, a world is a possible or valid truth assignment over the
sentences, i.e., it is possible if there exists a truth assignment on the variables that leads to
that truth assignment on the sentences. Finding a possible world is easy in PPL, indeed, the
truth assignment or number of interpretations of a propositional sentence is finite. Whereas,
in FOPL, it is more difficult to obtain a possible world. Let us recall from Chang and Lee
([7], p. 31), an interpretation for a first-order formula F consists of two things, namely, a
nonempty domain D aﬁd an assignment of values to each constant, function symbol and
predicate symbol occurring in F. In order to emphasize the domain D, it is often considered
as an interpretation of the first-order formula over D. Fbr instance, evaluating the truth
value of a first-order formula in an interpretation over domain D, (Vz) is interpreted as
“for all elements x in D” and (3z) is interpreted as “there is an element in D” ([7], p. 31).
Therefore, the number of interpretations of a first-order formula is infinite ({7], p. 35). The
definition of satisfiability problem for ﬁrst-.order logic and propositional calculus is same.
However, the definition of interpretation is different as we ’just discussed. Finding a feasible
solution of the pricing problem can be reduced to the well known satisfiability problem of

first-order logic which has been studied for a long time. In order to solve this satisfiability

problem we have used a package named Theo-2006. This package [54] reaches a decision by
searching for contradiction or inconsistency rather than satisfiability using the resolution
refutation principle (see Section 2.2.1.3). However, solving the satisfiability problem is only
one piece of our pricing problem, corresponding to the search of a feasible solution. We still
have to meet the objective of finding a negative reduced cost in order to reach the optimal

solution. This problem can be solved by using a branch and bound method.

As a third contribution of this thesis, we have devised an algorithm for solving the pricing
problem. Our proposéd algorithm is an ezact algorithm. An exact algorithm guarantees to
ﬁnd an optimal solution if there exists one. Our algorithm is a scalable one as it can solve
medium size first-order instances. It is to be noted that, to the best of our knowledge, so far,

it leads to the first exact algorithm for solving the first-order probabilistic logic problem.

The final contribution is, we have implemented this algorithm successfully. The experi-

ments and the analysis of the results are discussed in Chapter 5.

1.3 Thesis Organization

An introduction to probabilistic logic problem and its mathematical programming formu-
lations are given in Chapter 2. In Chapter 3, review a variety of the models for reasoning
under uncertainty in the propositional case and first-order models with probabilities. In
addition, a review on analytical and numerical solutions of probaﬁilistic logic problems
and some practical and scalable first-order theorem provers are also discussed in Chapter
3. The mathematical model for FOPL and our proposed algorithms for solving the model

are explained in Chapter 4. An example is also provided in the same chapter to illustrate

the SOLFOPL algorithm. Moreover, we discuss its efficiency for solving medium size FOPL
instances in this chapter. The numerical results are presented in Chapter 6 on different
medium size FOPL instances with up to 26 formulas, 11 predicates and 3 variables. We

conclude the thesis in Chapter 6, outlining suggestions and scopes for future work.

Chapter 2

Introduction to Probabilistic Logic

2.1 Propositional Probabilistic Logic

Uncertainty is a common factor that is dealt in many artificial intelligence applications.
Probabilistic inference is one of the perspectives that has been studied in order to reason
under uncertainty for, e.g., in expert systems. To deal with probability of logical sentences
in either propositional or first-order logic, Nilsson [56] proposed a stringent framework in
1986. Moreover, he considered two related forms of probabilistic logic problem, namely the

decision and the optimization forms.

Recall from Chapter 1, given a set of sentences with their associated probabilities, the
decision form of the probabilistic logic problem which corresponds to the probabilistic sat-
isfiability or PPSAT problem answers the question: Are these probabilities consistent? Now,
assume that, the given set of sentences with the associated probabilities is consistent. The
optimization form of probabilistic logic problem which corresponds to the probabilistic en-

tailment or P"®"™ problem finds the best possible probability value or interval for an

10

additional logical sentence to be true such that the augmented set of sentences remains con-
sistent together with its probabilities. In other words, the probabilistic entailment problem
determines the range of values of the probability associated with a new logical sentence such

that the overall augmented set of sentences remain consistent.

Jaumard et al. [39] extended Nilsson’s model [56] and the approach of Georgakopoulos
et al. [20] by considering intervals of probability values and conditional probabilities for
the sentences to be true. Moreover, their extensions can also determine minimum changes
in the probability values or intervals in order to restore consistency in the case where the

initial probabilities are inconsistent.

2.1.1 Decision form

The probabilistic logic problem in decision form P*T is defined in [39] as follows: consider
a set of m logical sentences S = {51, S2,...,Sm} defined on n propositional (boolean) vari-
ables X = {x1,x2,...,z,} with the usual Boolean operators. These variables correspond to
elementary propositions which are either true or false. Assume probabilities 1,72, ..., Tm

for these sentences to be true are given. Are these probabilities consistent?

In propositional calculus, a literal is either a propositional variable or its negation, e.g.,
y; and g; are positive and negative literal respectively. Let us consider sentences from the
propositional calculus and let us also assume, as in most expert systems, that sentences S;’s

are logical implications of the form:

Si i =Yy (1)

11

@i the antecedent or premise of the implication
where

1; the consequent
are boolean functions. In propositional calculus, a clause is a disjunction of literals, e.g.,
Yj V ¥y An example of conjunction of literals is y; Ag;,. Let us introduce two normal
forms of clause representation, the Disjunctive Normal Form or DNF and the Conjunctive
Normal Form or CNF. A sentence is in DNF if it is a set of disjunctions of conjunctions
of literals, whereas, a sentence is in CNF if it is expressed using a set of conjunctions of
disjunctions of literals. For instance, ((y; A Y;) V (¥; Ayjr)) and ((y; V) A (T V y50))
are examples of DNF and CNF respectively. If the @i‘are written in CNF and the %; are

written in DNF, then S; in (1), is a DNF expression:

Nvi=V (2)

jeEA jec

=V a)v(Vw). 3)

JEA jec
Usually, sentences are represented in clausal form as shown above in (3).
Nilsson [56] defines a world as any truth assignment w over S. A world w is possible if

there exists a truth assignment over the set X of variables which leads to w over S, and the

world is ¢mpossible otherwise. From now on, we will only deal with possible worlds.

Let p = (p1,p2,-..) be a probability distribution on W. Assume we are also given,
probabilities 1,79, . .., mm, one for each logical sentence. The probability distribution sat-

isfies the set of logical sentences together with the probabilities if: for each sentence S;

12

(i =1,2,...,m), the sum of all p;’s over all truth assignments w; which satisfy S; equals

e

Let A be an mx | W | matrix such that:

1 if wj; satisfies S;
aij = 4

0 otherwise.

The Probabilistic satisfiability PP5*T can be mathematically defined as follows: Is there a

probability distribution p such that the following system admits at least one solution?

1.p=1
(PPSAT) S Ap =7 (5)

p=0,

\

where 1 is a &k unit row vector and k < 2™. The value of k is 2™ in the worst case, but in
practice it is smaller due to the fact that (i) not all worlds are feasible and (ii) two different
value assignments on the variables may lead to the same world. Let p and 7 denote the

column vectors (p1,p2, ..., pn)T and (my, 72, ..., mm)7T respectively.

Example 1: Consider the set of sentences from the introductory example, with 1 =

Bangladesh wins today’s match, and zo = Bangladesh is champion.

13

S1 =1 m = 0.8
So =T1 V12 7o = 0.6

S3 = 9 3 =0.3.

Denote by 1 the 22 unit row vector [1 1 1 1], and let

yal 7 []

m 0.8
p2

p= sy T=1mq9|™ (0.6
p3

3 0.3

| P4 | o -

Now let us show how to find the set of possible worlds W from the possible assignments on
variables z; and z2. For instance, let us assign the values (1, 1) to the variables (z1, x2).
Compute the values of sentences (S1, S2, S3), we find a first possible world, wy= (1, 1, 1).
Similarly, by considering the assignments (1, 0), (0, 1) and (0, 0) for the variables and then
computing the resulting values for the sentences, we find three more possible worlds (1, 0,

0), (0, 1, 1), (0, 1, 0) respectively. The matrix A is then

wyp w2 w3 w4

- -

St 1100
(6)
S2 1 011

S3 1010

The PPS*T mathematical program associated with this example can be written as follows:

14

p1
P2
1-p=[1111] x = p1 + p2 + p3 + pa,
Pp3
P4
_ . n o
1100 0.8
P2
Ap=m= |1 0 1 1| % = 106>
p3
1 010 0.3
| | i) R
P1
P2
>0
P3
_p4-
i.e., it reduces to find p such that:
p1+p2 +p3t+p=1
p1+ p2 = (.8
P1 +p3+ps =06
P2+ p3 =0.3
pJZOa]:172’3,4

or show that there is no such p.

Building a possible world is easy as it amounts to computing the values of a set of

sentences, for given values assigned to the variables. Checking whether a world is possible

15

is however NP-complete as it reduces to the SAT problem.

2.1.2 Optimization form

Consider an instance of the PPSAT problem (S,7) that is consistent. Let S,,4+1 denote an
additional logical sentence which is deduced possibly from S with an unknown probability
Tm+1. LThe probabilistic entailment or PPEN™ problem of Nilsson [56] determines the lower
and upper bound [7,1, Tm+1] of the probability 7,41 which is associated with Sy41,
such that (S U Sm+1, (7, Fms1)) remains consistent. In order to solve the PPENTALL problem,

let us consider the objective function Ag,+1 P, where Apt1 = (amt1,5),7 =14,2,... and

1 if Syyq1 is true for the possible world w;
Am+1,5 =~ (7)

0 otherwise.

We next determine 7,y = min Ay, 1P and Tpmy1 = max Am41 P subject to constraints
(5). Note that it is possible that S,,+1 may contain some variables which do not appear in
the logical sentences of S. No matter what, due to the addition of a new sentenée, the set
of possible worl(is might remain the same or double in the worst case. The mathematical

formulation of the probabilistic entailment problem can be written as follows:

 min (max) Am41p

(PFENTALY subject to: S Ap=m ®)

16

Example 2: Let us again consider Example 1, setting 73 to 0.5 to obtain consistency. Add

a new logical sentence Sy = Bangladesh wins today’s match = Bangladesh celebrates, i.e.,

S4 = z1 — x3 with 3 = Bangladesh celebrates. As there is a new logical variable x3 which

was not present before in the sentences of S, there are now eight truth assignments on X,

and six possible worlds, i.e., (1, 1, 1, 1), (1, 0, 0, 1), (0, 1, 1, 1), (0, 1, 0, 1), (1, 1, 1, 0) and

(1, 0, 0, 0). The third one corresponds to the truth assignments (0, 1, 1) and (0, 1, 0) over

X and the fourth one to the truth assignments (0, 0, 1) and (0, 0, 0). The matrix A is then

51

Sa

S3

S4

w1 W W3 W4 Wy We

1

0

We want to find the probability range for m4 associated with Sys so that the system S| J{Ss}

remains consistent. The mathematical formulation of the corresponding probabilistic en-

tailment or PPENTAL problem is:

min (max) w4 =

pr+p2+p3s+pa

17

subject to:

p1+p2+ps + patps +ps =1

p1+ D2 +ps +ps = 0.8
p1 +p3 + patps =06
D1 +p3 +ps =0.5
pj >0, §j=1,2,3,4,5,6.

Its optimal solution yields [r,, 74] = [0.2, 1].

2.1.3 Extensions

It is often more realistic to use probability intervals rather than single point probability
values, as already observed by Hailperin [25], in order to také into account uncertainty on
the sentences. The P"S”“T problem, with given probability intervals for the truth of sentences,
is then defined as Is there a probability distribution p such that the system (S, w) admits at

least one solution? In terms of a mathematical program, it leads to:

(
1-p=1
p=0.

18

The optimization form, PPENT problem can be written as follows:

min(max) Apn41p
4

1-p=1
(PPENTAIL) Subject to: T S Ap S 7 (11)
p=0.

2.2 First-Order Probabilistic Logic

So far we described the probabilistic logic model in the context of propositional logic. In
this section, we will introduce the probabilistic logic model in the context of first order logic

which is the main focus of this thesis work.

2.2.1 Decision form

Consider a set of ¢ logical predicates P = {P1, Pa,..., Py} defined on a set of n variables

X = {x1,%2,...,2n}. Let F be a set of m formulas in prenex normal form defined as

follows:
F = {F = (Qiz1)(Qz2) ... (Qhan)(M) :
M;=Si(P, Py, ..., P, i=12,...,m} (12)
where (Qj»xj),j = 1,2,...,n is either (3z;) or (Vz;), and S; is a logical sentence that

contains no quantifier and is built on the set of predicates using the logical connectives

—, A and V. (Q4x1)(Qbz2) ... (Qixy) is called the prefix and M; is called the matrix of the

19

formula F}, i = 1,2,..., m. For instance, Vx3y[P(z,y)VQ(y)] is a first-order formula, where

P(z,y) and Q(y) are predicates, z is universally quantified and y is existentially quantified.

The decision form of first-order probabilistic logic problem, or P47 for short, is defined
as follows: given a set F of m formulas in prenex normal form, and a probability vector

7 = (71,72, ..., Tm) associated with these formulas, is the set (F,) consistent?

We define a world as any truth assignment w over F, as in Nilsson [56]. A world is
possible if there exists a truth assignment over the set of predicates and a value assignments

over X which leads to w over F, and the world is impossible otherwise.

Building a possible world amounts to considering possibly severél truth assignments on
the set of predicates, i.e., one value assignment for an existentially quantified variable, but
two value assignments for a universally quantified variable. If we assume the number of
variables and predicates occurring in a formula to be bounded, it is polynomial. However,
in the general case, it is NP-complete. On the other hand, checking whether a world
is possible amounts to checking whether a set of first-order formulas is satisfiable: it is

therefore NP-complete.

2.2.1.1 Decidability

Before we discuss the solution for the PFO%AT problem, let us have a closer look at the
specific difficulties of first-order logic. Unlike the propositional calculus, first-order logic is
undecidable, provided that the language has at least one predicate with at least 2 variables.

Let us recall the following two fundamental results.

Theorem 1. (Church [9], Turing [70]). The satisfiability problem for first-order logic is

undecidable.

20

Theorem 2. (Trakhtenbrot [69], Craig [11]). The satisfiability problem for first-order logic

on finite structures is undecidable.

In spite of these negative results, i.e., no sound and complete proof system for valid-
ity even on finite structures, several studies were conducted in order to explore decidable
first-order fragments. A survey by Hustadt et al. [37] provides references of the known de-
cidable first-order fragments. Indeed, there are several well identified decidable first-order
fragments, eg, the AEA class consists of all the relational (i.e., without function symbols)
first-order sentences with guantifier prefix of the form V3V [23], (see, e.g., Dreben and Gold-
farb [15] and Aspvall et al. [2]), or the two-variable fragment (see, e.g., Gradel et al. [23]).
From now on, we will only consider set of formulas belonging to some decidable first-order

fragments.

2.2.1.2 First-order concepts
In this section, we describe some first-order logic concepts for better understanding.

e Atomic formula ([49], p. 56): An atomic formula or atom is a predicate constant
of arity n, followed by n terms, t1, s, .t,, enclosed in parenthesis and separated by
commas. For example, friends(nazma, istiaque) is a atomic formula. Truth values are

also atoms.

e Literal ([49], p. 517): A literal is an atomic expression or the negation of an atomic

expression.

e Clause ([7], p. 48): A Clause is a finite disjunctions (or V) of zero or more liter-

als. For example, (=lily(X) V flower(X)) is a clause with two literals —lily(X) and

21

flower(X).

e Empty clause ([7], p. 48): An empty clause (0) can be attained by creating
contradiction between two sets of literals. For instance, flower(X) and —flower(X)

results a null or empty clause (O).

e Function ([49], p. 53): A function denote a mapping of one or more elements in a
set (called the domain of the function) into a unique element of another set (the range
of the function) where elements of the domain and range are objects in the world of
discourse. Every function has an associated arity, indicating the number of elements
in the domain mapped onto each element of the range. For instance, father(rusmi)
denotes a function of arity 1 that maps people onto their (unique) male parent and
plus(2, 8) is a function of arity 2 that maps two numbers onto their arithmetic sum

5.

e Term ([49], p. 54): A term is either a constant, variable or function expression
which is used to denote objects and properties in a problem domain. For example,

cat, mother(sadaf), etc.

e Predicate ([49], p. 55): A predicate names a relationship between zero or more ob-
jects in the world where the number of objects so related is the arguments of the predi-
cate. An example of predicate with 2 arguments is likes(X, jane) where, X is a variable
and jane is a constant. The arguments of a predicate may include terms which are
constants, variables or function expressions. For example, friends(fatherof(rusmi), fa-
therof(raika)) is a predicate describing a relationship between two objects in a domain

of discourse. If the function expressions (fatherof(rusmi) is istiaque and fatherof(raika)

22

is rejaul) are evaluated, the expressions become friends(istiaque, rejaul).

Interpretation ([7], p. 31): An interpretation for a first-order formula F consists of
a nonempty domain D, and an assignment of values to each constant, function symbol

and predicate symbol occurring in F.

Satisfiable ([7], p. 34): A formula F is satisfiable (consistent) if and only if there
exists an interpretation I such that F is evaluated to T in L. If a formula F is T in an

interpretation I, we say that I is a model of F and I satisfies F.

Logical consequence ([7], p. 34): A first-order formula F,, ;1 is a logical con-
sequence (logically follows) of (from) set of formulas Fy, Fs, ..., F, if and only if for

every interpretation I, if F; A Fo A --- A F,, is true, then F,, 1 is also true in L.

Inference rules ([49], p. 65): An inference rule for both the propositional and
first-order logic can be defined as a formal way of generating a new formula which is

a logical consequence of a given set of existing formulas.

Sound ([49], p. 66): An inference rule is sound if every formula produced by the

inference rule from a set F of formulas also logically follows from F.

Complete ([49], p. 66): An inference rule is complete if, given a set F of formulas,

the inference rule can infer every formulas that logically follows from F.

Refutation complete ([49], p. 529): An inference rule is refutation complete if,
given an unsatisfiable set of clauses, the unsatisfiability can be established by use
of this inference rule alone. Every resolution based automated theorem prover uses

refutation proof procedure for first-order formulas ([49], p. 517).

23

e Proof procedure [49], p. 66): The proof procedure is a combination of an inference
rule and an algorithm for applying the inference rule to a set of formulas. In first-order
logic, a formula that logically follows from a given set of formulas can be produced
by using proof procedures. The modus ponens is a sound (but not complete) inference
rule for first-order logic. There are two kinds of proof procedures namely, direct proof
and refutation proof. Consider a set of formulas Fy, F», ..., F,. Direct proof showed
that a new formula F,,; is a logical consequence. That means direct proof shows
that (Fy AFa A--- A Fy) — Fpqq leads to consistency. Whereas, refutation proof adds
the negation of the new formula —F,, 11 and proves that (Fy AFaA--- A Fiy A=Fypy1)

leads to an inconsistency. Refutation proof is sound and refutation complete.

o Substitution ([7], p. 75): A substitution is a function of the form {t1 /v1, ..., tn/vn},
where every v; is a variable, every ¢; is a term different from v;, and v; # vj, for ¢ # j.
The following two sets are substitutions: {f(z)/z,y/z} , {a/x, 9(y)/y, f(g(b))/z}, ie.,

a substitutes z.

e Unification ([7], p. 76): A substitution = {t;/v1,...,tx/vn} is called a unifier
for a set qf expressions {E,,..., E,} if and only if E160 = Fo8 = --- = Eif. The set
{E1,...,Eg} is said to be unifiable if there is a unifier for it. For example, the set
{P(a,y), P(z, f(b))} is unifiable since the substitution 6 = {a/z, f(b)/y} is a unifier

for the set.

2.2.1.3 Resolution refutation

In first-order formulas, we have to deal with quantifiers, predicates and functions, conse-

quently, possible worlds for first-order logic cannot be obtained as in propositional logic.

24

Determining the set of possible worlds from a set of decidable first-order formulas amounts
to checking whether a set of first-order formulas is consistent. In practice, it is done using
the resolution refutation method. This section briefly explains the rules followed by this

method for better understanding.

The resolution refutation ([49}], p. 517) proof procedure answers a query or deduces a
contradiction out of the set of clauses where contradiction is represented by the null clause
(O0). The contradiction is produced by using the modus ponen rule for resolving pairs
of clauses from the database. If resolution fails to produce a contradiction directly, then
the resolvent clause produced by the resolution is added to the database of clauses and
the process continues. More precisely, in a refutation proof procedure, the new formula
is negated and added to the set of formulas (axioms) that are known to be true. Then,
it uses the resolution rule of inference to show that this leads to a contradiction. If the
theorem prover shows that the negated goal is inconsistent with the given set of formulas,
it follows that the original goal is consistent. A strategy is complete if it guarantees to
find contradiction using refutation-complete inference rule whenever a set of formulas is
unsatisfiable ({49], p. 529). Resolution refutation proofs involve the following steps ([49],

p. 517):

1. The formulas or axioms are transformed into clause form.

2. Goal is negated in clause form and added to the set of axioms.

3. Clauses are resolved together, pljoducing new clauses that logically follow from them.
4. Contradiction is produced by generating the empty clause.

5. The aim of the substitutions is to produce a clause whose truth value is opposite to

25

the negated goal which results in an empty clause.

Binary resolution is the most common form of resolution which is applied between two
clauses when one contains a literal and the other one its negation ([49], p.517). Unification
is needed if these literals contain variable to make them identical. Eventually, the resulting
new clause comprises of the disjuncts of all the predicates in the two clauses minus the
literal and its negative instance, having been resolved away. The resulting clause undergoes
the necessary unification and substitution which make sure the predicate and its negation
are equivalent. For example, the knowledge base for the dead dog problem ([49], p.518) may

be represented in clause form as:
(mdog(X) V animal(X)) A (manimal(Y)) V die(Y)) A (dog(fido)).

To this expression we add (by conjunction) the negation of our goél which is —die(fido).

The resolution proof for this is shown in Figure 1.

—dog(X) vammal(X) -anmal(Y) v die(Y)
YX}

dog(fdo) —dog(Y) v die(Y)

die(fido) ~die(fido)
/

i

Figure 1: Resolution proof for the dead dog problem

Transforming formulas into clause form requires 8 steps which are given below ([7], p. 37):

26

1. Use the following laws to eliminate the logical connectives < and —.

FoG=(F-G)A(G— F). (13)

F—-G=-FVG. (14)

2. Repeatedly use the following laws to bring the negation signs immediately before

atoms.
—-(-F)=F. (15)
De Morgan’s laws
-(FVG)=~FA-G. (16a)
—~(FAG)=-FV-G. (16b)
and the laws
~((VX)F(X)) = BX)(-F(X)). (17a)
~(EX)F(X)) = (VX)(-F(X)). (17b)

3. Rename variables so that no two quantifiers bind the same variable.

4. Use the following laws to move the quantifiers to the left of the entire formula to

27

obtain a prenex normal form.

(QX)F(X)V G = (QX)(F(X)V G). (18a)
(QX)F(X)A G = (QX)(F(X) AG). (18b)
(VX)F(X) A (VX)H(X) = (vX)(F(X) A H(X)). (192)
(EX)F(X) Vv BX)F(X) = 3X)(F(X) v H(X)). (19b)

(I X)F(X)V(QX)H(X) = (1 X)(Q22)(F(X) Vv H(Z)) (20a)
(QsX)F(X) AN (QuX)H(X) = (Qs X)(QuZ)(F(X) AH(Z)) (20b)

For instance let us obtain a prenex normal form for the following formula:

(vX)(vY)((E2)(p(X, 2) Ap(Y, Z)) — (V)q(X,Y,U)).

Using (14), we get: (VX)(VY) (~((32)(p(X, Z) Ap(Y, Z))) Vv (3U)g(X,Y,U)).
Using (17b) and (16a), we get: (VX)(VY) (VZ)(~(p(X, Z)v—-p(Y, Z))V(IU)q(X, Y, U)).
Using (18a), we get: (VX)(VY)(VZ)BU)~(p(X,Z) V —-p(Y, Z) Vv ¢(X,Y,U)).

So, we obtain the last formula as a prenex normal form of the first formula.

5. Replace each existentially quantified variable by a skolem constant or skolem function

28

and remove the quantifier 3.

Let us assume variable z is existentially quantified.

case ba. If z is not universally quantified, replace x by unique, fresh skolem constant.
For example: 3Xp(X) is skolemized to p(a). Similarly,
AXVYp(X,Y, X) = VY p(b,Y,b) and

3X3YVZp(X,Y, Z) = VZp(a, b, Z).

case 5b. If the predicate has more than one argument and the existentially quantified
variable is within the scope of universally quantified variables, the existential
variable must be a function of those other variables. For example:
3IXVYVZIUVVIWP(X,Y,Z, U, V,W) =

VYVZYVp(a,Y, Z, f(Y, Z),V,g(Y, Z,V)).
. Remove all universal quantifiers as there is no conflicts between the variables.

. Convert the expression to the CNF form. This requires using the associative and

distributive properties of vV and A.

. Rewrite as a set of clauses, where “A” is considered to be default between clauses.

For instance, (p(X,Y) V(X)) A ¢(Y) is written as (p(X,Y) vV r(X)) and ¢(Y).

2.2.1.4 Strategies and simplification methods for resolution

Resolution is a search problem whose complexity is exponential. Therefore, we have to

apply heuristic strategy for large problems. A strategy is complete if by using it with a

refutation-complete inference rule, it is guaranteed to find the refutation whenever a set of

clauses is unsatisfiable ([49], p. 529). Let us discuss some of the strategies used in resolution.

29

e Breadth-first strategy ([49], p. 529): In breadth-first search an exhaustive clause
comparison is done. Therefore, it guarantees to find the shortest solution path. It is
also a complete strategy in the sense that if it continues to search long enough, it is

guaranteed to find a refutation if one exists.

e Set of support strategy ([49], p. 530): Set of support of Wos and Robinson [72]
is a good strategy for large clause space. In this strategy, a subset T is specified from
a set of input clauses S for resolution. It can be proved that, if S is unsatisfiable and
S — T is satisfiable, then this strategy is refutation complete. It is complete only if

the right subset is chosen.

e Unit preference strategy ([49], p. 531): The unit preference strategy usually
resolves with shorter clauses specially, clauses with one literal, called unit clauses
whenever they are available. It guarantees that the resolvent is smaller than the
largest parent clause. Unit resolution is a related strategy that requires that one
of the resolvent always be a unit clause. However, it is an incomplete strategy. The
combination of unit preference and set of support strategy can produce a more efficient

complete strategy.

e Linear input from strategy ([49], p. 531): Linear input from strategy directly use
negated goal and the original set of formulas. It takes the negated goal and resolves
it.-with one of the formula at a time. This process repeats until the empty clause is

produced. This is an incomplete strategy.

We can use some simplification methods in order to reduce the search space and speed

up the resolution-based problem solver for finding a solution. Let us describe few of them

30

below:

¢ Elimination of tautological clauses ([49], p. 533): Any tautological clause need
not be considered as it will never be falsified. Therefore, it is not useful in a solution

attempt.

e Subsumption ([49], p. 533): Subsumption is a complete strategy in which more
specific clauses are removed, e.g., if § contains predicates father(X, Y) then we can

remove father(istiaque, rushmi).

2.2.2 Optimization form

In his paper on probabilistic logic, Nilsson [56] also discussed the optimization form of FOPL
that can be stated as follows: Given a set F of m formulas in prenex normal form, and a
probébility vector 7 associated with these formulas, such that the set (F,w) is consistent.
Let us consider an additional formula F,,;. How to compute bounds on the probability
of Fiuy1 so that the system (F U Fy,11,7) remains consistent. We next discuss in detail
the FOPL problem, how to express this problem in mathematical program and its possible

solution schemes in Chapter 4.

31

Chapter 3

Literature Review

According to Smithson [68], uncertainty is a subjective measure of certainty of something
(e.g., occurrence of some events) therefore, it can be modelled in terms of a quantitative
measure, i.e., a numerical value between 0 and 1 where 0 denotes falsity and 1 denotes truth.
Klir and Yuan ([43], p.267) showed reasoning under uncertainty is a well recognized issue
in several theories, for instance, probability theory [18, 17], fuzzy set theory [73], possibility
theory [74, 16], etc. In this chapter, we will briefly discuss about few uncertainty based
models in Al for propositional, as well as for first-order logic. Focus will be on the proba-
bilistic logic model (equivalent to Nilsson’s [56] probabilistic satisfiability and probabilistic

entailment problems) and its extensions.

This chapter is organized as follows., In Section 3.1, we briefly describe some models
~ which treat uncertainty by different means other than probability. Analytical and numerical
solutions to probabilistic logic problem are discussed in Section 3.2 and Section 3.3 respec-
tively. In Section 3.4, we focus on first-order logic. There are two parts in this section. In

the first part of Section 3.4, we provide a review on reasoning under uncertainty models

32

with probabilities in first-order logic. In the second part of Section 3.4, we focus on some
key features of some recently used practical and scalable theorem provers, along with some

of their adaptive strategies.

3.1 Reasoning under Uncertainty Models

In artificial intelligence, reasoning under uncertainty has long been studied with different
perspectives. It has been argued that probability theory is not sufficient to deal with
uncertainty in AI [75]. Fuzzy sets [73, 14], possibility theory [74, 16] were few alternative
proposed models. Besides thesé alternative formalisms, for combining uncertainty measures
or estimates, many specific rules were also elaborated, e.g., the certainty factor of MYCIN
[6]. Few papers have been published in defense of such disbelief and alternate solutions
[8, 60]. Successful model by Nilsson’s [56] paper on “Probabilistic Logic” and Lauritzen
and Spiegelhalter’s [47] paper on local computation on Bayesian networks stimulated a
return in favor of probability logic. We will discuss fuzzy logic and fuzzy sets, Bayesian

logic briefly in this section.

3.1.1 Fuzzy logic and fuzzy sets

Theory of Fuzzy sets was proposed in 1965 by Lotfi Zadeh at the University of California,
Berkeley 73] and fuzzy logic is a consequence [43]. Fuzzy sets theory provides the basis for
fuzzy logic where each proposition (or formula) is assigned a value between 0 and 1 which
is called the degree of fuzziness or membership degree (1 means full membership, 0 means

no membership and anything in between, e.g., 0.5 is called intermediate membership). In

33

classical logic, a truth value is either 0 or 1 assigned (0 represents false and 1 represents

true) to a formula.

Uncertainty is expressed differently in fuzzy logic and in probability. In probability
theory, probability is usually defined in a likelihood of some events or conditions to occur
in a set (i.e., how probable do I think that a variable is in a set).‘ Whereas, fuzzy truth
represents membership in vaguely defined sets (i.e., how much a variable is in a set). For
example, if a climber climbs 600 ft of a 1000 ft hill, then, two fuzzy sets, Bottom and Top
can be defined. One might define the height climbed by the climber as being 0‘.4 Bottom and
0.6 Top. As the concept of height is linguistic, the definition of height (Top and Bottom)
will be depend on the observer or the designer. Another observer might equally consider a
set membership function Where the hill would be considered Top for all values above 500 ft.
On the other hand, in probabilities, at first, a variable for the height of the hill would be
defined, and second, distributions describing the probability that someone would call the

hill as Top given a specific height level.

Fuzzy logic also allows set of membership values in its linguistic term, imprecise concepts
like slightly, quite, very, etc. Specifically, it allows partial membership in a set. In other
words, linguistic terms can be modified by using some special linguistic terms which are
called linguistic hedges (or simply hedges) in fuzzy logic (see [43], p.229). For example, if a
fuzzy proposition z is F and a hedge H are given we can conclude z is HF, where HF is the
fuzzy set obtained by applying H to the given set F. Any hedge H is usually interpreted as
a unary operation h on the interval [0, 1] (sqe [43], p.230). For example, hedge very is often
interpreted as h(a) = a® whereas, fairly interpreted as h(a) = /a (a € [0, 1]). These hedges

are called modifier (see [43], p.229). Assume, John is 26 and fuzzy set YOUNG(26) = 0.8.

34

Then we can say VERY YOUNG(26) = (0.8)% = 0.64.

For fuzzy inference, fuzzy logic use their own fuzzy rules, usually IF-THEN rules. Based
on the fuzziness of a set of given formulas, the degree of fuzziness of a new formula is
computed by using fuzzy set operators, fuzzy logical functions and fuzzy rules. For example,
it is possible to approximately generalize the classical inference rule modus ponens to fuzzy
inference. If the banana is ripe, then the color of banana is yellow and the banana is very

ripe are given, by fuzzy inference we can conclude the color of banana is very yellow.

Fuzzy inference properties depend on the choice of fuzzy logical functions [14] such as
minimum, different triangular norms, involved in composition of formulas. This choice is
made more or less arbitrarily in many applications of fuzzy logic. These arbitrariness of
fuzzy choices, caused by the lack of clear semantics, is identified as the major drawback
of fuzzy logic by Diez et al. [14]. According to their observation, there is no clear way of
determining which membership degree to use in building a specific real world application
even though there are several definitions of membership degrees. All fuzzy systems assign
‘numbers between 0 and 1 but the semantics and the way of assigning those numbers vary
significantly in different applications. Moreover, it is not clear how fuzzy logic justifies
whether a given set of formulas with their degree of membership values are consistent or
not. Besides these drawbacks, due to the simplicity of modeling and fast decision making
ability, fuzzy logic has become extensively useful in automatic control and widely used in
industry from small appliances to large systems. Fuzzy logics are also extended by adding
universal and existential quantifiers in a manner similar to the way that first-order logic is

created from propositional calculus [48].

35

3.1.2 Bayesian network

A set of variables and their probabilistic dependencies are represented by a graphical model
named Bayesian network (or a belief network). For example, the probabilistic relation-
ships between diseases and symptoms can be represented by a Bayesian network. Given
some symptoms associated with probabilities, the network can be used to compute the
probabilities of the presence of various diseases. More formally, in a Bayesian network [61],
G = (V,U) where vertices or nodes v; € V are associated with simple events (or logical vari-
able z; € X having only two possible outcomes, either true or false), whereas the directed
arcs (v;,v;) are used to represent probabilistic dependency among the nodes or variables.
In other words, Bayesian networks are usually directed acyclic graphs [61] whose nodes
represent random variébles, and whose arcs represent conditional dependencies among the
variables. Two directly connected nodes have pareﬁt—child relationship {13] where parent
has influence on the child node. i.e., the probability that a variable is true depends on
its immediate predecessor variables. Initiélly, each node is specified with an unconditional
probability distribution which is often called the belief function or evidence of that node.
When a new piece of information or a new finding arrives, the belief functions attached to

all relevant nodes in the network are updated.

In Bayesian networks, the general probabilistic inference problem of finding the proba-
bility of an event, given a set of prior evidence, can be solved by sequential applications of
Bayes Theorém.‘ Unless the immediate predecessors are outnumbered, this leads to an easy
way to ;:ompute the probabilities of events. Models and examples of performing inference
in Bayesian networks are provided by Pearl [61], Lauritzen and Spiegelhalter [47]. However,

to define a unique point probability distribution, they assumed that sufficient information

36

for all the predecessors of a node is provided.

Anderson and Hooker [1] examined how to relax some of these assumptions by combining
Bayesian networks with probabilistic satisfiability and proposed a more complicated model.
It has been shown by Hansen et al. [35] that, the usual computation in Bayesian networks

can also be mapped into probabilistic entailment problem with probability intervals (11).

3.2 Analytical Solution of PPL

In this section, we present studies on analytical solution for Propositional Probabilistic Logic
problem or PPL in short. At first, we will discuss Boole’s analytical solution [5] in algebraic
form to PPL problem. Later on, we will discuss about Hailperin’s extensions of Boole’s
method. Hailperin was one of the first who invesfigated Boole’s analytical solution. He
pointed out that there is a way to find an analytical expression for the solution using the
enumeration of the extreme points of a particular polyhedron. Let us start with Boole’s

algebraic method.

3.2.1 Boole’s algebraic method

To solve the decision and optimization forms of probabilistic logic problem analytically,
Boole outlined some algebraic manipulations in his book in 1854 [5], and in several of his
contemporary and subsequent papers which are similar for both cases. The simplest and

most efficient method carries on as follows [32] :

Step 1. All m logical sentences are expressed as sum of complete products, i.e., products

of all variables in direct or complemented form.

37

Step 2. Associate each of these products with an unknown probability p;, write linear
equations such that for each associated logical sentence) p; = m; for S; to be true.
J

Noted that j < 2™, because not all the products are valid and some of the products

may be duplicated. Add constraints stating that Z p; = 1 and each p; is non-negative.
J

Step 3. Eliminate as many p; as possible from the so obtained equalities and inequalities

(we will see in an example later).

Step 4. From the inequalities obtained in the previous steps eliminate the remaining
probabilities p; as well as 7,41 by considering all upper and lower bounds on one of
them, stating that each lower bound < upper bound, removing redundant constraints

and iterating.

Thus we obtain relations involving 71, ma, . . . ,w;n which are called conditions for feasible
experience by Boole. Moreover, these relations involve m,,41 which gives the best possible
bounds on the probability of the additional logical sentence. This is known as the solution
to Boole’s general problem. Let us see an example to solve a problem by using the above

steps 1 to 4.

Example 1 (Boole [4]) Find the best possible bounds on the probability of Sg = x3

considering the following:

38

prob(S1 =) = m

prob(Sz = x9) = o
prob(Ss = r1z3) = 73
prob(Sy = xox3) = my

prob(Ss = T1Tax3) = 0.

Step 1, gives

T1 = X1Z223+T122T3+X1T223+L1T2T3
Tg = T1X2T3+T1T2T3+T1X2X3+T122T3
123 =T122x3+T1T27T3

Xox3 =T1X2L3+T1T2X3.
Set p1 = prob(z1z223), p2 = prob(z122T3), p3 = prob(x1Z2x3), p4 = prob(z1T2T3), ps =

prob(Z1z2x3), pe = prob(T1x2%3), p7 = prob(T1T2x3), ps = prob(T17T2x3). Step 2 yields the

following equalities and inequalities:

39

p1+p2 +ps+ps =m

p1+p2 +ps + e =2

Y4l +p3 =73

4 +ps =Ty
+p7 =0

p1+p2 +p3s+patps +petpr+ps =1

P1,P2,--- D8 >1

Eliminating successively the variables p7, ps, p3, ps, ps, p1 and p2 yields, at the end of

Step 3, the bounds

max{ns, 74} < mg <min{l—m+mr3,w3+m4,1-mw2+74}

and the consistency conditions

m <73 and 7o > ma.

Eliminating mg yields the additional condition

m1—m3+mg < 1.

Hailperin [27] extended and provided a systematic treatment for Boole’s algebraic method

to deal with conditional probabilities. Hailperin showed [27] that, the extensions can be

40

done in two ways, either using conditional probability in the objective function or using

conditional probability in the constraints.

3.2.2 Polyhedral methods

This method has been contrived for obtaining an analytical solution of probabilistic logic
problem which is different from Fourier-Motzkin elimination. It is based on the study of

dual polyhedra for (8). Let us consider the following two linear programs (LP!, LP?):

min yp + Ty

subject to: Iyo + Aly > Al .

max yo + TY
LP? = (21)

subject to: 1y + Aly < A? ;.

It can be observed that, the polyhedron defined by (21) includes the vector (1, 0)((0,0))
respectively, therefore, the corresponding polyhedra are non empty. In order to obtain the
condition under which the probabilities are consistent, consider the dual of the probabilistic
satisfiability problem in decision form (5), with a dummy objective function, Op, to be

maximized:

min Yo + 7wy

subject to: lyg + Aly < 0. (22)

Hansen, Jaumard and Poggi de Arago, [33] showed that:

41

Theorem 1. The probabilistic satisfiability problem (5) is consistent if and only if

(1,m)r <0 (23)

for all extreme rays r of (22).

Using the duality theorem of linear programming, Hailperin [25] showed that:

Theorem 2. The best lower bound for mwm,41 is given by the following convex piecewise
linear function of the probability assignment:

Tm+1 (ﬂ-) - j=1 21131?}{’6 (17 7T)t:l/]'r.n,az (24)

where yfnax for all j represent the kpay extreme points of (21).

The best upper bound for mm41 is given by the following concave piecewise linear function
of the probability assignment:

Fma(m) = min (1 m) (25)

where for all j represent the kmin extreme points of (21).

min

This result provides best possible bounds on m,,,,; and Tp41. Both theorems 1 and 2
readily extend to the case of probability intervals (11) but not to the case of conditional

probabilities [32].

42

3.3 Numerical Solution of PPL

Numerical methods are needed to assess the solution of the Propositional Probabilistic Logic
problem (or PPL in short) in practice as analytical solution can be used only for very small
instances. Numerical solution methods for PPAT and PP®™N™IL can be categorized into two
types namely, exact and heuristic methods. Let us briefly describe what are these exact

and heuristic methods.

An ezact algorithm guarantees to find the best optimal solution if there exists one
whereas, a heuristic algorithm usually only finds a good or near optimal solution without
any information on how far it is from the optimal solution. However, it may take too much
time to solve large sized PPL problems using exact method. Therefore, one might need to

use heuristic method in order to find a solution in a reasonable amount of time.

In the subsequent sections, we will discuss about the linear programming solution with
simplex or revised simplex algorithm ([10], p.97) and the linear programming solution with
column generation technique ([10], p.195}, both of them correspond to exact method. Next,
ADPSAT or AD-SOLFOPL (based on anytime deduction) and variable neighborhood search
which fit into the category of heuristic solution methods are also discussed. Linear pro-
gramming and column generation methods can solve PPL problem comprised of instances

of conditional and unconditional probabilities.

3.3.1 Linear programming modeling

It has been already shown in Chapter 2 that, the probabilistic satisfiability or the proba-

bilistic entailment problem can be reformulated as a linear program. The simple method

43

for solving (5), (8), (11), (30), (31), (32) and (33) problems include firstly searching for the
overall set of possible worlds (see chapter 2), and secondly, solving the resulting linear pro-
gram. We can solve the linear program by using simplex or revised simplex algorithm [10].
Although simple, this method can be used only for small instances since the size of the input
grows exponentially with the increase of the number of logical variables x1,z2,...,2,. In
view of the enormous size of these programs (about 10'8 columns for min{m, n} = 60, where
m is the number of sentences and n is the number of logical variables in these sentences),
it is impossible to solve large sized probabilistic satisfiability or probabilistic entailment
problem using this method. This led Nilsson [57] to suggest looking for heuristic solution

methods only. Such a view is overly pessimistic as we will see in the next section.

3.3.2 Column generation solution

When linear programs cannot be solved using the simplex or revised simplex algorithm,
tools from large scale optimization come to rescue. In operations research, there exist some
tools, namely the column generation which deals with solving linear programs with a huge
number of variables. In this section, we will see how column generation technique works

using a description from [40].

Column generation starts by solving a small, manageable part of a problem (few of the
possible worlds), by analyzing this partial solution it determines an additional small subset
of the worlds (one or more possible worlds) to be added in the model, and then solves
the enlarged model. This column-wise modeling repeats this process until it satisfies an
optimality condition for the problem. More formally, column generation technique extends

the revised simplex algorithm (see e.g., Chvatal [10], p.97), in which only a small number

44

of columns are kept explicit, by determining the entering column through the solution of

an auxiliary subproblem:.

To describe the general principle of column generation technique, let us assume, without
the loss of generality, a linear program (26) for a minimization problem in order to get lower

bound in the optimal solution:

min cz

4 Az > b (26)
subject to:

x>0

The variable x of the equations of (26) form the columns of the matrix A. Therefore, vari-
ables and columns are used with the same meaning. By using either the simplex algorithm
or the column generation technique, the optimal solution (which provides a lower bound)
of equation (26) can be obtained. However, when the number of variables is very large, it

is better to use the column generation methods.

In column generation methods, the initial linear program is decomposed into a restricted
linear program and é pricing problem. The restricted linear program is called the restricted
master problem which corresponds to a linear program associated with a restricted matrix
A’ such that, A’ is a sub-matrix of A. In principle, if there exists an optimal solution for the
restricted linear program, it may also be an optimal solution for the initial linear program.
However, it depends on the ;signs of the reduced costs of the missing columns, i.e., columns

which are not explicitly considered in equation (26).

Column generation methods proceed as follows: the linear program corresponding to a

sub-matrix A'(= A’) of dimension m x n; of the original matrix is solved by using CPLEX,

45

and an feasible solution J’:i p is obtained. Note that, the columns of A is denoted by ¢!

which is a sub-vector of c.

(27)
subject to: 0 < x < 1

z € R™.

\
Does there exist a column a/ € A\A! such that ; < 0 ? i.e., can we find a column of the
matrix A\A' for which the reduced cost is negative? If the answer is 10, then the feasible
solution x} p is optimal for equation (26). If the answer is yes, we must add one or more
columns to the matrix A' in order to find the optimal solution. Therefore, we need to solve
the following system 2 p:

min ¢’z

A’z >0

. (28)
subject to: 0 <z < 1

z € R™.

\
with A2 = A' U {a’} such that ¢; < 0.
This process is repeated until a column j with a negative reduced cost is found, i.e.,

¢; < 0. However, if no more iteration is possible, we conclude that we have obtained an

optimal solution for equation (26).

Now in order to find if there exists a column with a negative reduced cost one has
to solve the so-called pricing problem. Considering the master problem, e.g., (27), let us

assume that we want to find if there exists a column a’ with a negative reduced cost. So,

46

we must solve the pricing problem according to:

‘

min ¢(a’)

with constraints on the component of (a) (29)

in order to guarantee thatA2 C A,
\

where A? is the concatenation of A! and a’ : A% = (A! | of).

For the master problem, the reduced cost is defined in the matrix form as follows:

where v is the vector of the dual variables associated with equation (26). For the master

problem, we obtain:

¢ =c; —vlal = c]'(aj) —ol.qd
for the column j where ¢; is the reduced cost of the column j, v! is the optimal dual vector

obtained when solving equation (27).

Solving the pricing problem is equivalent to solving the following problem:

¢ = min{¢(a) = c¢(a) —va : a € A},

where A = {a € R™: (A' | a) is a sub-matrix of A} and ¢ is the best known reduced cost.
The column generation process is summarized in Table 1.

The pricing problem (29) is often a NP-complete problem which is very difficult to solve.

However, it is not mandatory to solve the pricing problem exactly at each iteration. In order

47

Table 1: Column generation process

Create an artificial solution

Solve the restricted master problem

WHILE (there exists a column a; with a negative reduced cost)
Include a’ to the restricted master problem
Solve the restricted master problem

to ensure an iteration of the revised simplex algorithm to take place, it is enough to find a
column with a negative reduced cost. Therefore, a heuristic algorithm can be designed for
finding such a column. If a feasible solution is obtained heuristically, the decision form of
the probabilistic logic problem is solved. However, finding no feasible solution by choosing
the entering column in a heuristic way cannot guarantee that none exists. Therefore, when
no more column with negative reduced cost is obtained heuristically, it is necessary to turn
to an exact algorithm to prove that, there is no feasible solution for the decision form of
the probabilistic logic problem. In addition, also to prove that, there exists no feasible
solution which gives a better bound than the incumbent one for the optimization form of
probabilistic logic problem. The detailed expression for the solution of the pricing problem
in optimization form of the first-order probabilistic logic problem is described in Section

4.4.

To find an approximate optimal solution, Steepest-Ascent-Mildest-Descent (SAMD) or
Tabu search heuristic by (Hansen and Jaumard [31}, Glover [21, 22]) may be used which is
a proven meta-heuristic optimization method. Whereas to find an exact optimal solution,
a variant of the Basic algorithm of Hammer et al. [29], Hammer and Rudeanu [30], or the

Basic algorithm revisited of Crama et al. [12] may be used.

In order to start the column generation technique either a feasible solution or an artificial

48

solution is needed. Usually it starts with an artificial solution which can be generated in
an insignificant time. The artificial solution corresponds to a set of columns (tiny compare
to the number of variables), which constitute a square matrix as large as the number of
constraints. It is to be noted that, in order to minimize the objective function, the algorithm
needs a negative reduced cost, but if the aim is to maximize the objective function, then a

positive reduced cost is required.

3.3.3 ADPSAT and AD-SOLFOPL

Alternative solution methods have been also proposed in order to solve the two basic prob-
lems of probabilistic reasoning namely, the probabilistic satisfiability and the probabilistic
entailment problems. For instance, anytime deduction by Frisch and Haddawy [19] is one of
such proposed solution method which proceeds by computing increasingly narrow probabil-
ity intervals that contain the tightest probability interval. This approach is deductive as it
can derive final bounds sequentially. In addition, it is called anytime because we can get a
partial solution (not necessarily the optimal one) any time we stop (before the final step).
However, Frisch and Haddawy [19] neither provide an explicit and well defined procedure
to perform this deduction nor discuss the consistency issue. Hansen et al. [34] proved that,
their procedure could not detect inconsistency. Moreover, another drawback of anytime
deduction [19] is that, it often does not provide the tightest probability interval bounds

when solving the probabilistic entailment problem.

Jaumard and Parreira [41] proposed an explicit deductive procedure, called ADPSAT,

using their previous work [33] on the analytical solution of Nilsson’s [56] probabilistic logic

49

problem. In ADPSAT, only a small subset of logical sentences (typically one or two) to-
gether with the interval probability values of a small subset of variables (typically one to
four) are considered at each step to determine the probability interval values of either a
selected variable or a selected sentence. Afterwards, another subset of sentences is consid-
ered to compute the probability interval values and the newly computed probability value
is compared with the previously computed probability values. By repeating this deductive

mechanism, the final tight probability interval value is determined.

ADPSAT is capable of checking inconsistency of a given set of sentences very quickly
but it does not always guarantees to do so. However, in practice, ADPSAT is able to ﬁnd
very often the tightest probability bounds, for instance, usually when the sentences contain
two variables. The entailment is achieved using a sequential deductive approach. Finally,
ADPSAT has solved, by far, some of the largest instances with 1000 variables and 2500

sentences for a reasoning under uncertainty model based on probability theory.

In their approach [41], the authors have used an ordered set of well thought combinations
of small number of sentences and variables which they call primitives. When this approach
is used to solve PPL instances with at most three variables, only a small number of primitives

are needed here.

It is to be noted that, the ADPSAT was aimed to solve propositional instances of large
size which has now also been extended to the case of first-order logic, called AD-SOLFOPL
[67]. ADPSAT and AD-SOLFOPL are both heuristic solution methods whereas, our proposed
approach to solve probabilistic reasoning problems is an ezact solution method (which is an
extension of PSATCOL for propositional to first-order logic) where we use column generation

techniques. Therefore, computational experiments have been conducted to compare the

50

proposed algorithm of AD-SOLFOPL with our proposed algorithm, both with respect to the

range of probability interval values and the computing times.

3.3.4 Variable neighborhood search

Variable Neighborhood Search, or VNS in short, was introduced by Mladenovié and Hansen
[53]. VNS is a meta-heuristic which helps escaping when the search process is trapped in
a local optima by changing the neighborhood structures systematically. Initially, a set of
neighborhood structures is preselected, a stopping condition is determined and an initial
local solution is found. In the main loop of the method, it search for a better solution by
changing the neighborhood structures using three process (i) shaking, (ii) local search and
(iii) move or not. It moves to a new solution from the current best known solution if the
new one is better or it may accept a worse solution with certain probability in order to

escape the local optima and move towards the global optima.

For solving the probabilistic logic problem, Jovanovié et al. [42] suggested using VNS
based heuristic. Hansen and Perron [36] use VNS to generate multiple columns (or possible
worlds [56]) with negative reduced cost simultaneously at each iteration of the column
generation method. Adding multiple columns at each iteration instead of only one column

reduces the number of iteration and speeds up the algorithm [36].

3.4 First-Order Logic

In this section, we will focus on first-order logic. We divide our review for first-order logic

into two parts. In the first part, a review is given based on reasoning under uncertainty

51

models with probabilities. In the second part, we briefly describe some procedures and
strategies that are adapted in several present-day theorem provers for efficient satisfiability

checking in first-order logic.

3.4.1 Reasoning under uncertainty models with probabilities

In this section, we will review some first-order models with probabilities. Several papers
have been published on the first-order probabilistic logic [28, 55, 50, 59]. We will discuss a
few of those models which are related to our work on models for reasoning uncertainty with
probabilities. In the subsequent sections, we will cover Halpern’s (28] degrees of belief and
chance setup, Lukasiewicz’s [50] probabilistic logic programming and Milch and Russell’s [52]

Bayesian logic or BLOG.

3.4.1.1 Halpern’s semantics for probabilistic logic

Halpern [28] provided semantics to first-order logics for two different approaches of prob-
abilistic reasoning. One of them deals with the probability in the domain or at the level
of statistical information which is illustrated with the statement “Thé probability that a
randomly chosen bird flies is greater than 0.9”. The other one deals with uncertainty at
the level of possible outcomes or worlds (Nilsson [56]). Halpern illustrated the second one
_ with the statement “The probability that Tweety (a particular bird) flies is greater than
0.9”. The first approach of Halpern is also called “chance setup” [24] while the latter one is

called “degrees of belief’ [3]. A similar type of semantics was also studied by Bacchus [3].

For the probability on domain, Halpern [28] assumed that there is a given first-order

language for reasoning about some domain. If a formula ¢ in logic is given, formulas of

52

the form w;(p) > 1/2 are also allowed which can be interpreted as “the probability that a
randomly chosen z in the domain satisfies ¢ is greater than or equal to 1/2”. For instance
(28], wg(Son(z,y)) describes the probability that a randomly chosen x is the son of y,
whereas wy(Son(z,y)) describes the z is the son of randomly chosen y. Halpern extended
this to allow arbitrary sequences of distinct variables in the subscript by providing the
syntax and semantics of a two classified languages. The function and predicate symbols,
and a limited class of object variables 2°,4°, ..., in the ¢ are considered in the first class
which describe the elements of the domain of reasoning. The second class defines syntax
for binary function symbols + and x, constant symbols 0 and 1, and limited class of field
variables 27, y/,..., with the intention of ranging over the real numbers. Halpern [28]
allowed only two field functions + and x in his syntax and did not consider Bacchus’s [3]

measuring functions which map object terms into field terms.

In the semantics of chance setup, Halpern [28] gave a probability structure called type
1, where probability functions are defined over the domain. These probability functions are
standard real-valued and countably additive which make them significantly different from
the semantics of Bacchus [3] where n0ﬁ~standard probability functions are considered which

take values in arbitrary ordered fields and are only finitely additive.

The syntax and semantics for degrees of belief is essentially the same as in the former
approach except for few cases. Among them, probability is defined over the set of states or
possible worlds. [56] instead of taking over domain. The functions or predicates might have
different meaning for different states. The probability structure called type 2 is defined
for reasoning about possible worlds. Some simplifying assumptions were also made for the

representation of probability on possible worlds. For example, all functions and predicates

53

can take fixed or flexible structure. Moreover they also assume that there is only one domain

and only one predicate measure on the set of states.

Halpern [28] used a deductive mechanism to infer new information for chance setup
and degrees of belief. Deductive mechanism (e.g., modus ponens) usually concludes a new
information from a given certain premises. Halpern [28] used an axiom system which is
sound, but is complete only for bounded sized domains. For instance, in order to provide
complete axiomatization, problems are restricted to unary predicates for the probability on
domain. However, there is no straightforward way to capture statistical information from
degrees of belief or vice-versa. Therefore, in order to simultancously reason about statistical
information and degrees of belief, these two approaches are combined by Halpern [28] in

one framework.

3.4.1.2 Probabilistic logic programming

Similar to Halpern’s [28] semantics to formulas that describe degrees of belief, Ng and
Subrahmanian [55] proposed a new approach called probabilistic logic programming where
uncertainty is handled by defining probability distribution over the set of possible worlds
[56]. It was further investigated by several authors, see e.g., [45, 46], and more recently by
Lukasiewicz [50]. In order to deduce a tight probability bounds for an additional clause,
Lukasiewicz proposed two solutions. As a first solution, he [50] showed that it is possible
to compute the tight bounds by using straightforward linear program. However, he also
proved that when the number of variables (or possible worlds) increases, the solution grows
exponential. Therefore, Lukasiewicz [50] proposed another solution technique to genecrate

linear programs that generally have a much lower number of variables. For this purpose, he

54

partitioned the probabilistic logic program (7P) into a set of logical program clauses (£) and
a set of purely probabilistic program clauses (P\L) and finally solve them using two linear
programs. This linear programming approach for probabilistic deduction shows efficient
results only in restricted cases. Whereas, there is no clause level division in our case, i.e.,
we kept the clauses intact. Moreover, to increase scalability, we use column generation
method which relies on a decomposition of the initial linear program into a master and

pricing problem (see Section 3.3.2).

3.4.1.3 Bayesian logic or BLOG

Milch and Russell [52] pointed out that in order to express the real world problem, propo-

sitional probabilistic languages such as Bayesian network or BN are inadequate.

This inadequacy of BN results from the fact that a fixed set of random variables as well
as dependencies and probability distributions for each of the variables must be specified
individually. Real world problems often involve many objects and their dependent objects
which are unknown or uncertain in nature. So, to define uncertainty using a fixed set of
random variables and a fixed dependency structure is not sufficient. For example tracking
multiple people from a video sequence, is very difficult to define using a fixed set of variables

and structures as the number and the types of people are unknown in advance.

Milch and Russell [52] proposed a new probabilistic modelihg language, called Bayesian
logic or BLOG which can model large families of random variables compactly by abstract-
ing over objects and mapping between objects and observations. The’ authors [52] define
probability distribution over relational structures with varying sets of objects. For a par-

ticular scenario, BLOG specifies certain non-random aspects which is handled by a typed

55

first-order language and the remaining aspects are specified with a probability model. The
probability model describes a generative process for constructing a possible world in two
steps. At the first step, boolean functions are assigned values to evaluate some objects. In

the second step, new objects are added to their world.

In order to infer, Milch and Russell [52] use a sampling-based inference algorithm which
proved to be too slow for many tasks. Therefore, they are still working on improving their

inference mechanism.

3.4.2 Practical and scalable procedures for satisfiability

In first-order logic, automated theorem provers are used to prove the satisfiability of a
set of formulas. In order to serve our puri)ose of checking satisfiability of a set of given
first-order formulas, we were searching for a suitable and efficient theorem-prover. We
decide to focus on the theorem provers which participated in the CADE ATP System
Competition. Among them, Vampire, SPASS, Theo are the most well reputed theorem
provers in the international competitions. Next, we go through their underlying assumptions
and strategies. For example, vampire uses saturation with resolution and paramodulation;
SPASS combines saturation with superposition (a variant of demodulation), conventional
splitting with branching and backtracking; and Theo uses resolution refutation. More detail

of Theo is presented in Section 4.6.

We have already discussed refutation proving, some strategies and simplification meth-
ods for resolution proving in Section 2.2.1.4. In order to make resolution more efficient,
several sophisticated inference rules have also been developed and applied in the efficient

theorem provers. In this section, we will discuss two of such techniques: paramodulation

56

and saturation. Moreover, some recent adaptive strategies that are used to improve the
performance of resolution based first-order theorem provers are also discussed in the last

section.

3.4.2.1 Paramodulation

Control of equality is one of the important and difficult issues in designing an automated the-
orem prover. Mathematical facts and relationships are often represented in multiple forms
which can be obtained by applying associative and communicative laws. For example, (3 + 6
+ 9) can also be represented as (3 + (6 + 9)) or (3 + (6 + 0) + 9). Demodulation (see [49], p.
548) is the process which rephrases or rewrites expressions such that they automatically take
on a chosen canonical form. The canonical form means reducing to the simplest and most
significant form possible without the loss of generality. The unit clauses which are used to
reduce the set of expressions to its canonical form is called demodulators. The task of these
demodulators is to specify equality relations of different expressions, so that, an expression
can be transformed into its canonical form. Therefore, demodulators can be thought of as a
pre-processor which turn the set of clauses into a simple and reduced format before placing
them into the clause space. For example (see [49], p. 548), let us consider a demodulator
equal(father(father(z)), grandfather(z)) and the new clause age(father(father(nazma)), 70).
By applying the demodulator before adding this new clause to the clause space we can
add age(grandfather(nazma)), 70) instead. Therefore, the equality problem here was in the

naming. Similarly, other family relationships such as brother(father(y)) can be represented

by uncle(y) (see [49], p. 548).

Paramodulation (see [49], p. 548) is a generalization of equality substitution at the term

57

level. For example (see [49], p. 548), for a given expression older(mother(z), z)) and the
equality relationship equal(mother(sadaf), papia) we can conclude older(papia, sadaf). Note
that this is a term level matching and replacement of {sadaf/z} and mother(sadaf) for papia.
There are few restrictions on demodulation. First, the equality clause of demodulation
must be a unit clause. Therefore, we cannot do demodulation if the clause was {f(f(z)) =
g(z),r(x)}. Second, when we unify the clauses, we can only perform the substitution on the
unit equality clause. Paramodulation relaxes these restrictions. Paramodulation allows a
nontrivial replacement of variables in both the arguments of the equality predicate and the
predicate into which the substitution is made. Note that, by using paramodulation once,
one can get an expression into its final form whereas to achieve the same final form multiple
demodulators may be needed (see [49], p. 548). Obviously, demodulation is not complete
because if we have any non-unit clauses with equality, we would not be able to prove some

facts that are in fact entailed.

3.4.2.2 Saturation

Saturation procedure, also known as given-clause algorithm, was introduced by Overbeck
[58] in 1974. In this procedure, a participating clause is selected to enable the inferences
between this clause and the other selected clauses so far. In a saturation state, all the
set of clauses are maintained. These clauses are divided into two sets namely, active and
passive sets. Clauses from the active set are available for deduction inferences. Clauses
in the passive set are only available for simplifications. Passive clauses are waiting their
turn to become active. At each step of the saturation process, a deduction inference is

selected, which can be made from some clauses in the active sets and a participating clause

58

from the passive set. As a result, a new set is generated. Saturation [62] can be viewed
as a way of searching in the space of all derivations from the initial clause set. There are
two ways we can reduce the search space. In the first one, by deriving an empty clause
using simplification rule, we can reduce the size of the search space to be explored. By
abandoning some search directions in this way we can conclude that a solution lies in the
remaining search directions. Redundant search directions can be removed by identifying
some redundant clauses from the active set and excluding them from consideration. This
clause redundancy [62] can be checked by using subsumption (see Section 2.2.1.4). Another
way of reducing search space depends on identifying redundant inferences [62]. This is done

by imposing some restrictions on how resolution and paramodulation are applied.

3.4.2.3 Adaptive strategies

Several strategies are used to enhance the performance of first-order theorem provers.
Among them Limited Resource Strategy (LRS) of Riazanov and Voronkov [62, 64]
greatly improves the effectiveness of saturation algorithm. This strategy addresses the prob-
lem of reasoning in limited time. According to the authors, LRS is an adaptive strategy as
it can dynamically adjusts the limit on some weight of clauses. This dynamic adjustment

is bascd on the collected statistics on the earlier stages of proof searching.

The cost of backtracking is usually very high as it may contain several hundreds or
thousands of clauses, literals. In order to prevent this problem, Riazanov and Voronkov
suggested another strategy Splitting Without Backtracking (SWB) in [63]. The SWB
is an intelligent backtracking that contains the splitting history. Therefore, by analysing

the history, it is easy to identify the path of splitting to reach a contradiction. For instance,

59

consider, a set S of clauses where C; and Cs are two new clauses. Now to refute the set

S U{C1V C2} we can split it as SU{C1} and S U {C2} and check refutation.

Riazanov and Voronkov also shown in [65], the use of demodulation in two different
modes, forward demodulation and backward demodulation. In forward demodulation, ac-
cording to the unit equalities that already exists in the current clause set, newly derived
clauses are re-written. While in the backward demodulation, old set of clauses are rewritten
based on the positive unit equalities of the newly derived clauses. One need a technique to
retrieve instances in order to re-write the subset of clauses with unit equalities. The authors
[65] have introduced Path Indexing technique for smooth instance retrieval. Consider ev-
ery instance ¢ of a term ¢ contains all paths from ¢. From the index of the set of terms,
the candidate clause set which contains all the terms, i.e., contains maximal path can bé

extracted.

60

Chapter 4

First-Order Probabilistic Logic

Problem

4.1 Statement of the FOPL Problem

The first-order probabilistic logic or FOPL problem has been formally defined in Section
2.2.1. The decision form of FOPL (P*AT for short), is deﬁhed as follows: given a set F of
m formulas in prenex normal form, and a probability vector m = (71, w2, ..., T,) associated
with these formulas, is the set (F,) consistent? The optimization form of FOPL (PFOENTAL
for short) also formally defined in Section 2.2.2, can be stated as follows: given a set F of m
formulas in prenex normal form, and a probability vector 7 associated with these formulas,
such that the set (F,) is consistent, considering an additional formula F;, 1, what are the

probability values for F,;1 to be true so that the system (F U Fy,41,7) remains consistent.

61

4.2 Mathematical Modeling

Let (F,n) be a system of formulas in prenex normal form with probabilities. Recall from
Section 2.2.1 that, a world is defined as any truth assignment w over F, as in Nilsson
[66]. A world is possible if there exists a truth assignment over the set of predicates and a
value assignments over X which leads to w over F, and the world is impossible otherwise.
Indeed, a possible world can be equivalently defined as the set of truth assignments over
the set of formulas which lead to the same truth assignment w over F, see Section 2.2.1
where we discuss the definition of a possible world. Let W be the set of possible worlds
and let p = (p1,p2,...) be a probability distribution on W. The probability distribution
satisfies the set of logical formulas together with their probabilities if: for each formula F;
(i =1,2,...,m), the sum of all p;’s over all truth assignments w; which satisfy F; equals

.

Let A be an m x [W| matrix such that a;; is equal to 1 if w; satisfies F;, and equal to
0 otherwise. The PF°%T problem is defined as follows. Is there a probability distribution p

such that

(PFOSAT) é Ap — (30)

has at least one solution?

Assume now that the answer to the PF*" problem defined by (F,) is positive. Let
Fp,+1 denote an additional logical formula, possibly deduced from F. The PFOENTAL problem

as defined by Nilsson [56] consists in determining the range [, 7] of values of the probability

62

Tm+1 associated with Fi,41 such that (F U {Fpn41}, (7.7m+1)) remains consistent. This
last problem can be solved by considering an objective function A,, 1P where A,,41 =
(@m+1,4),7 = 1,2,... and amy1,5 is equal to 1 if F,4q is true for the possible world w; and

equal to 0 otherwise, and determining

(PEOENTAIL T = Max{App1p: 1-p=1 Ap=m,p > 0} (31)
(PEOENTAIL Tms1 = min{Ap41p: 1-p=1Ap=n,p > 0}. (32)

Similar to PPL, the two forms of FOPL problem, namely the decision and the optimization

forms correspond to the consistency and entailment problems respectively.

Again, it is easy to extend the models with single point probabilities to models with prob-
ability intervals and also to introduce some conditional probabilities for situations where
knowledge is known only when some conditions hold. As shown in [39] for the PPL math-
ematical models, the above models for FOPL can readily be extended to include both the
probability intervals and the conditional probabilities. For instance, for probability inter-

vals, the probabilistic entailment model become:

min{max) Ap41p

4
I-p=1
(Prin(max)) subject to: T <Ap<7T (33)
p=>0

Recall from [32, 39], the probabilistic entailment model for probability intervals (33) can be

reduced to a single inequality in which the number of constraints remains equal to m + 1

63

and the model become :

min(max) Am41p

(PEOENTAILY - subject to: (34)

min{max)

" where, s denotes slack variables of a revised simplex method. A slack variable is usually

added to a constraint of a simplex method to turn the inequality into an equation.

4.3 Outline of the Solution

A straightforward method for solving the FOPL problem consists in searching firstly for the
overall set of possible worlds, and secondly, solving the resulting linear program. However,
the search for possible worlds is very tedious in first-order logic. Indeed, one needs to
use, e.g., the resolution principle to check whether a world is possible or impossible. The
reader can also refer to the book of Chang and Lee [7] for a thorough review of the various
resolution methods for first-order logic. Although simple, this method is not scalable as
checking whether a world is possible is NP-complete. Moreover, the number of possible
worlds very quickly becomes very large as the number of predicates and number of formulas
increases. As for the solution of the probabilistic logic problem, it would be better to use
column generation techniques, i.e., to consider explicitly only a subset of possible worlds

while considering implicitly the overall set of possible worlds when solving the FOPL problem.

64

The linear program being solved is decomposed into two problems: the master problem
and the pricing problem. At each iteration of the column generation method, we only
consider a restricted master problem, i.e., the master problem with only a subset of possible
worlds, i.e., a small number of variables explicitly. The pricing problem is a new one created
to generate a possible world, i.e., a column or a new variable which will be added in the
restricted master problem at each iteration of the solution process. The objective function
of the pricing problem is the reduced cost of the new variable (or possible world) and the

constraints correspond to the definition of a possible world.

Assuming we are minimizing, the column generation process works as follows. The
restricted master problem is solved. From its optimal solution, we are able to obtain dual
values for each of the constraints in the restricted master problem. This information is then
utilized in the objective function of the pricing problem. The pricing problem is solved. If
the objective value of the pricing problem is negative (assuming we are minimizing), a new
possible world with negative reduced cost has been identified. This world is then added to
the restricted master problem, and the augmented restricted master problem is re-solved.
Re-solving the restricted master problem will again generate a new set of dual values, and
the process is repeated until either there exists no possible world or there exists a possible
world with a negative reduced cost is found. In such a case we can conclude that the optimal

solution of the restricted master problem is the optimal solution of the master problem.

65

4.4 Solution of the Pricing Problem

We discuss how to solve the pricing problem associated with the FOPL column generation

model. Without loss of generality for the (PESENTAL) problem, it can be written as follows:

(Pf{girclmc) 5]%1‘?/ ¢(w) (35)

where t(w) =clw) —up —w-u (36)

where ¢(w) denotes the reduced cost of w, c(w) is the entailed cost of w associated with
the truth value assignment of the additional formula Fy,,11, i.e., ¢(w) = am41 of (33), up € R
is the dual variable associated with the first constraint of (PESENTAIL) of (33) and u € R™ is
the optimal dual vector associated with the second set of constraints of (PESENTAIL) of (33)
and W is the set of possible worlds. Note that, as each world component takes only 0-1

values, we have

0<ec(w) <L (37)

We propose to use a branch-and-bound algorithm to solve the pricing problem because it
is NP-complete. We therefore need bounds on é(w). Let €0 and éyp denote the lower and

upper bounds on ¢(w) respectively:

Cro < ¢(w) < Cyp. ’ (38)

66

First straightforward bounds are:

m
ELO = —ug — Zw’i X maX{O,’U.i}, (39)
i=1
Top=1—ug — Zwi x min{0, u;}. (40)
i=1

As we are only interested in possible worlds with a negative reduced cost, we therefore

search for a possible world w such that g(w) < 0.

In order to solve (Prricing) pProblem, we propose to use the following branch-and-bound
algorithm named SOLPRICING. The algorithm is designed with the aim to find a possible
world with the most negative reduced cost ‘if one exists. However, it includes the option to
stop as soon as a possible world w with a negative reduced cost has been found, even if it
is not the most negative one. Note that, in order for the column generation algorithm to
iterate it is enough to have at hand a column with a negative reduced cost, even if it is not
the most negative one. At each iteration of the SOLPRICING algorithm, we calculate the G0
and Cyp bounds on the reduced cost, i.e., at each node of the search tree. Then, we select
and branch on the node with the smallest @yp, i.e., we use the classical node selection in a
branch-and-bound in order to reduce as quickly as possible the uncertainty interval (i.e., the
width of the interval where the optimal value lies). Branching is done by selecting a formula
F; and defining two branches, one associated with the value assignment F; = true, the other
one with F; = false. Moreover, we also want the world to be possible. Therefore, at each
node of the search tree we check Whether the partial world, made of a su‘bset of formulas

with an assigned true/false value, is possible. The outline of the algorithm SOLFOPL for

67

solving the FOPL problem is given in Table 2, it is following be a detailed description of the

SOLPRICING procedure.

Table 2: Algorithm SOLFOPL.

Step 1: Solve the restricted master problem;
Step 2: Solve the pricing problem;
If a column with a negative reduced cost is found then go to step 1;

Else STOP.

Without any loss of generality, we describe the SOLPRICING procedure for the solution
of the (PLo"N™) problem below. Here, F,, .1 denotes the additional formula for which the
objective function is defined. Moreover, when assignments of truth value to all the formulas
is not yet accomplished, we denote a world as a partial world, otherwise, it is denoted as a
world which might be a possible world. However, we will keep this possible world based on

the sign of the reduced cost .

Procedure SOLPRICING
Initialization

L « {£°) where L is the set of m formulas at current node which are not assigned
with truth values yet. Initially, £° «— {F}. But the size of £ decreases, as at .
each iteration, one formula is assigned a truth value. We have as many £F as
the number of nodes and the number of nodes increases as we develop the search
tree.

D «— {ug,u} where D is the ordered set of dual values (decreasing order) ug is
the dual variable associated with the first set of constraint of (36) and u is the

m-vector of dual variables associated with the second set of constraints of (36).

68

N « {N°} where N is the set of nodes of the search tree. It is initialized with N°,

i.e., the root of the search tree.

w « {wp} where w denotes, at a current iteration, the partial world made of the
set of formulas with an assigned true (false) value. At the beginning, none of
the formulas has been assigned a truth value, (hence wp = (). However, as we
iterate with the separation and branching steps, we add to w, formulas which
are assigned truth values. We have as many wj, as the number of nodes and the
number of nodes increases as we develop the search tree. w corresponds to a
possible (but not possibly only partial) world only if all the formulas with the
associated truth values belongs to w (i.e., have been assigned a truth value) and

the associated reduced cost is negative.

Initial bounds on reduced cost

m
2y — —up — Z'wi x max{0, u; }; (41)
i=1
m
58,, -1 —ug— Zwi x min{0, u;}; (42)

i=1

¢ « 400 where ¢ is the best known value for the reduced cost associated with a

possible world (not partial world).
Newrrent — NO where NUe™ is the current node.
W +— W, Cuo « Cop, Cup « Cop-
FSB or Formula Selection and Branching (at node N*)

Select a formula F¥ from £ with the largest dual value. In case of ties select the

69

formula with smallest index. Delete F¥ from £.

Define and add to N, the following two nodes or subproblems:

N — N U{N¥} with N* derived from N* with F¥ = True

and NV — N U {N*"} with N¥ derived from N* with F¥ = False
Define the following two partial worlds:

W — @ U {FF = True}

and Wy — W U {F¥ = False}

_k/ —’C, —k” —k"
Calculate ¢y, Tip, Gros Cop-

PSR or Problem Selection and Relaxation

Select and delete a node N* € A based on the smallest ¢f, on the reduced cost
associated with all the nodes. Break the ties with the smallest ¢F, and if there

are still some ties, select the node with the largest index.
Set Newrrent — Nk get 5« @) and £ — CF.

If (£ =0), i.e., If all formulas of w have been assigned a truth value, go to Stopping

Condition.
PC or Pruning and Contradiction (at node N¥)

If (¢&, > min{¢*, 0}), prune the branch and go to Step PSR.
If (contradiction) is found, prune the branch and go to Step PSR.

Otherwise, go to Step FSB.
Stopping Condition

For each truth value (v) of Fy,41, do the following:

70

Compute reduced cost ¢ and check if a contradiction can be found (i.e., whether

W is a possible world).
If (¢ > min{e*, 0}) or contradiction is found, discard the node.
Otherwise, if (¢ < min{¢*,0}), update ¢* « min{c*, ¢} and
W e WU {Fpmy1 =v}.
End For

If (M # 0), go to step PSR.

If (¢* < 0), w* «— w is the possible world with the most negative reduced cost.

STOP.

Otherwise, there is no possible world with a negative reduced cost. STOP.

The SOLPRICING algorithm is given assuming we are looking for the possible world with
the most negative reduced cost. However, we have the option to stop as soon as we obtain
a possible world with the first negative reduced cost (which may not be the most negative
one). In order to stop with the first negative reduced cost, in stopping condition, instead
of checking (¢ > min{¢*, 0}), we compare the reduced cost with 0, i.e., (¢ > 0) and check if
there exists a contradiction. The algorithm stops as soon as we find a possible world with

a negative reduced cost.

The SOLPRICING algorithm is similar for (PLos""™") problem except in the steps FSB,
PSR and PC. In step FSB, we select a formula Ff from £ with the smallest dual value.
Break the ties using smallest formula index. In step PSR, we select a node N* based on the

largest E{jp on the reduced cost associated with all nodes. Break ties using first the largest

er,, and then the largest node index. In step PC, if (¢¥, < max{e*, 0}) and/or contradiction

71

is found we prune the branch.

4.5 Another Solution for the Pricing Problem

In this section, we propose another algorithm named, SOLPRICING™ for solving the pricing
problem efficiently. This is an attempt to get more quickly an accurate estimation of the

reduced cost.

As before, the ultimate goal is to reduce the search space of the tree in order to get a
possible world with negative reduced cost as quickly as possible. If we can prune branches
at an early stage, the tree size will be smaller. In SOLPRICING, when a partial world is in
consideration, we prune by computing the bounds (with associated sign) on the reduced
cost of a node or checking the contradiction. Therefore, it is sometimes possible to prune
nodes early and reduce the tree size. Most often, we do not have the option to compute
the exact value of the reduced cost before we reach the leaf nodes of the tree. However, it
is known that very often when column generation is used, the number of zero dual values
increases as we i_1.;erate. In other words, if several dual variables are equal to zero, it offers
the opportunity to compute exactly the value of the reduced cost before we reach a leaf

node. This is the opportunity that we want to explore in the SOLPRICING™ algorithm.

In the SOLPRICING* algorithm, the branching process is similar to the SOLPRICING
except that we first I;Grform separation and branching on formulas such that the associated
zero dual variable values is non zero. Before zero dual values come across, we can compute
the reduced cost (36) before further branching, even if the current world is a partial one. We

observed from the equation (36) that, if a formula is associated with a null dual variable, its

72

value has no impact on the value of the reduced cost. Therefore, by computing the reduced
cost as soon as we encounter formulas with zero dual values, we may be able to prune some

branch at an earlier stage due to positive reduced cost if there is any.

We propose below another exact algorithm named, SOLPRICING™ for solving the pricing

problem.

Procedure soLPRICING™T

Initialization

Same as SOLPRICING except the ordering of the dual values. Dual values are organized

as positive first, then negative and zeros at the end.

FSB or Formula Selection and Branching (at node N¥)

If (u; # 0),
Select a formula F¥ from £ with the largest non zero dual value. In case of ties
select the formula with smallest index. Delete F¥ from £.

Else select and delete a formula Ff from L in lexicographic order.

Define and add to N, the following two nodes or subproblems:
N — N U{N¥} with N*" derived from N* with F¥ = True
and N — N U{N*"} with N*" derived from N* with F¥ = False
Define the following two partial worlds:
Wr e Wk U {FF = True}-
and Wy « Wy U {FF = False}
If (u; = 0), compute reduced cost and set ¥, = ¢k, =¢F = ek =, goto PSR.

73

[W N A W /]
Else calculate ¢F,, ¢k, & ek,

PSR or Problem Selection and Relaxation
Same as SOLPRICING.
PC or Pruning and Contradiction (at node N*)

If 3 a formula F; such that u; # 0
If (2F, > min{z*,0}), prune the branch and go to Step PSR.
If (contradiction) is found, prune the branch and go to Step PSR.

Else, go to Step FSB
Stopping Condition

Same as SOLPRICING

SOLPRICING™ algorithm is also given assuming we are looking for the possible world
with the most negative reduced cost. Therefore, similar to the SOLPRICING algorithm, we
stop as soon as we obtain a possible world with the first negaﬁve reduced cost (which may

not be the most negative one).

Let us describe how we select a formula at each iteration. We ordered the formulas in £
according to the associated dual values. The dual values are ordered as positive first, then
negative and zeros at the end. Let us illustrate with an example how a f(;rmula is selected at
each iteration. Consider, we have a set of formulas (Fy, F, F3, Fy, Fs, Fg) with the associated
dual values (10, 15 ,—30, 0, —1, 0). After orderying the dual values in D we have (15, 10,

—1, =30, 0, 0). Therefore, in (£) we have the formulas ordered as (Fy, Fi, Fs, F3, Fy, Fg).

74

Note that, In case of same dual values, formula with the smallest index is considered first.
Now when formula with zero dual value comes in consideration, formula selection is done

in lexicographic order.

4.6 Satisfiability Checking

In order to check the satisfiability of a set of formulas in the SOLPRICING algorithm we
use the package [54] Theo-2006. It is an open source code, implemented in C. It runs
under FREEBSD and LINUX. It is a resolution refutation theorem prover for first-order
logic where a theorem consists of a set of axioms and a conjecture (goal clause). In first-
order logic, the theorem might be presented as a satisfiable sct of first-order formulas in
clausal form and an additional formula also in clausal form. According to the resolution
refutation principle (see Section 2.2.1.3), the goal (conjecture) should be negated before
being submitted to the theorem prover. If a contradiction is found using the set of inference
rules and reduction-simplification techniques, one can conclude of the satisfiability of the

original set of formulas.

Theo works more or less in a similar fashion than what we mentioned earlier in Section
3.4.2. Formulas are fed into Theo in conjunctive normal form (CNF) and inside Theo they
are first converted into clausal form and the conjecture is negated. Basically the inference
operations [54] in Theo are binary resolution, binary factoring, substitution by constant
or variable, instantiation of one or two variables in a clause (see Section 3.4.2). Theo
also performs subsumption (see Section 2.2;1.4) and redundant term elimination for further

simplification.

75

Originally it was called The Great Theorem Prover. Theo uses a large hash table (16
million entries) to store clauses which are derived from the initial ones using different mech-
anisms. This permits complex proofs to be found, some as long as 500 inferences. Theo
uses what might be called a iteratively deepening depth-first search looking for a contradic-
tion while storing information about clauses in its hash table. Similar to other first-order
theorem provers, e.g., SPASS, Theo-2006 also works only on decidable first-order instances
[23], i.e., Theo-2006 can indirectly prove the satisfiability of a set of decidable first-order
instances in finite time, whereas it will run for an indefinite time for undecidable first-order

instances.

Theo was not the best theorem prover among those we have studied but we choose
this one for its fairly simple structure, ease of use, and above all it serves our purpose for
medium size formulas. Theo has a limitation of dealing with a maximum of 16 predicates
in a single formula. The operations performed by Theo use three parameters, maximum
number of predicates in a single formula, maximum number of different variables in a single
formula, maximum number of different predicates in a single formula. One of the largest
instance with 100 formulas, 6 predicates and 174 variables solved by Theo in the order of
376 seconds [54]. The main aim of Theo-2006 is to ‘search for contradiction in finite time.
It can not directly prove the satisfiability. In order to conclude on the satisfiability of a set

of given decidable formulas with a conjecture we proceed as follows:

e We check the contradiction of a given set of decidable formulas with negating the
conjecture. If any contradiction found on a finite time limit we decide on the given
set of formulas with a conjecture to be satisfiable. If no contradiction is found on a

finite time limit then we are forced to STOP the SOLPRICING as we cannot conclude

76

due to excessive CPU time.

4.7 An Illustrative Example

Let us consider the following example with 5 formulas defined as follows. The set made of
the first four formulas along with their probability values is consistent and we are interested
to find the probability values that can be assigned to F5 such that the augmented set of

formulas remains consistent.

4

Fr=vxzdy [Plz,y)VvQy)l 0.9
F, =3z [-R(x)] 0.6
Fy=3y [-Q(v)] 0.6 (43)

Fy=VxVy [-P(z,y) vV R(z) v Q(y)] 0.7

Fs =323y [-P(z,y)] [z, 7]

\

Identifying the set of possible worlds might be a tedious task. Let us, for instance,
check whether the world 11110 is possible or not given 1111 is a possible world. Using
the resolution principle for first order logic, it is equivalent to check whether the sys-
tem {Fy, F», F3, Fy, F5} is inconsistent if it is a possible world, and whether the system
{Fi1, F», F3, Fy, F5} is inconsistent if it is an impossible world. Let us show that the world

11110 is impossible. We therefore need to show that we can generate a contradiction out of

77

{F1, F», F3, Fy, Fs}. Let us apply the Skolemization (see Section 2.2.1.3), we obtain:

S1= P(z, (f(z)) v Q(f(2))
So = ~R(A) A is a skolem constant
Ss = -Q(B) B is a skolem constant (44)

Sy = -P(z,y) vV R(z) vV Q(y)

S5 = P(x,y).

Combining S4 with Ss leads to S¢ = ~P(z, B) V R(z). Combining Sg with Sy leads to

S7 = - P(A, B). We then conclude that there is a contradiction out of S5 and S.
We therefore deduce that 11110 is an impossible world.

Reiterating the same process on all potential worlds leads to the results described in
Table 3, i.e., the list of possible (P) and impossible (I} worlds. Possible worlds are indexed

in order to simplify the subsequent exposure.

4.8 Straightforward LP Solution

Assuming we do search first for the whole set of possible worlds, the FOPL problem leads to

solve the following linear program.

min (max) 75 = p1 + p2 + p3 + ps + pr + po + p11 + P12

78

subject to:

P1+ p2+p3 + patps + pe+p7 + pst+pg + pro+pi1 +piz =1

+ pa-+ps + pet+p7r + ps+po + pro+p1z + p12 = 0.9

+p2+p3 + ps+pg + pro+p11 +p12 = 0.6
p1 +p2+p3 + pe+pr + prot+pi1 +pi12 =06
fl +p3 -+ patps + pe+pr + ps+po +p12=07
pj 20, j=12...,12

where each column is associated with the truth value assignments of first 4 formulas. In
addition, the truth value assignments of the additional formula is the cost of the objective
function, together which leads to a possible world, see Table 3. Using the simplex algorithm,
one obtains: 75 = 0.1, s = 1. Solving the linear program for a sample small test problem is
casy, however, as the number of worlds grows exponentially with the number of predicates,

it very rapidly become intractable to solve FOPL problems with the simplex algorithm.

4.9 A Scalable LP Solution

Let us now solve the same example using column generation. Let us first consider the

(Peon ™) problem. Assume worlds to be indexed as follows: w; = (w, W25, W3j, W45, Ws;)-

We first introduce 5 artificial worlds a1, a9, o3, og, s in order to start with a feasible
basis without the need to search for an initial set of possible worlds. Note that in this

example, worlds associated with the artificial worlds are (10000), (01000), (00100), (00010),

79

(00001) and are all non possible worlds. The first linear program is therefore:

5
(P'R-MASTER) min 1000 (45)
g=1
)
a1 =0.9
oz = 0.6
&3 = 0.6
subject to: (46)
ag = 0.7
as =1
;>0 i=1234,5.
\

Solving (P'R-MASTER) leads to a = (0.9,0.6,0.6,0.7,1) and « = (1000, 1000, 1000,
1000, 1000). Using algorithm SOLPRICING, we identify wis = (11111) as a first world with
a negative reduced cost: €12 = —4999. We next solve problem (P?R-MASTER) that can be
stated as follows:

5

(P?R-MASTER) min 1000 Z a; + pi2 (47)

i=1

80

4

o1 +piz =09
a2 +pi2 =06
as+pi2 =0.6

subject to: (48)

ag+pi2 =07

as+pr2 =1

;>0 §=1,2345

p12 2 0.

\

The optimal solution is o = (0.3,0,0,0.1,0.4), p12 = 0.6,

= (1000, —3900, 1000, 1000, 1000).

As oy is now a non basis column, we can eliminate it. Using algorithm SOLPRICING, we
identify we = (10110) as a new world with a negative reduced cost: ¢ = —4000. Let us

solve problem (P, P%—MAS’TER)‘

(Powaster) min1000(a; + a3 + aq + as) + pr2 + pe (49)

81

;

a1 +pi2+pe =09
P12 = 0.6

az+pi2+ps =006

subject to: ¢ (50)

agt+pi2t+ps =07
a5 +p2+ps =1

a; >0 i=1,34,5

pe, p12 = 0.
\

The optimal solution is o = (@3, a3, a4, as5) = (0.3,0,0.1,0.4), p12 = 0.6, ps = 0 and oy is

now a non basis column. In the subsequent iterations, we have:

e Iteration 3. wg is added, and a3 leaves the basis
e Iteration 4. wyq is added, and a4 leaves the basis

e Iteration 5. w3 is added, and oy leaves the basis

Tteration 6. w; is added.

Iteration 7. wy is added.

We then conclude to the optimality of the solution of (PEENTAIL) after the addition of 7

possible worlds (i.e., computation of 7 possible worlds), leading to 7 = 0.1.

In order to solve the (Prot""™) problem, we can either start again with a set of arti-

ficial worlds, or from the optimal basis of the (PLI™NT) problem. Note that, before start

solving (Pgoi ™) problem using the optimal basis of the (PFENTAL) problem we check

82

the satisfiability of the remaining artificial variables (if there exists any). Using this last

initialization, we reach the optimal solution after 2 iterations and the addition of two more

possible worlds, leading to 7@ = 1.

To reflect probability intervals instead of fixed point probability the above example can

be modified as follows:

Using SOLPRICING algorithin we find the optimal solution of (

/

Fy=vVz3dy [Plx,y)VQ(y)]

F,=3dx [-R(z)]

\B=3y [-QW)

Fs=3xz3y [-P(z,y)]

\

Fy =VzVy [-P(z,y)V R(z)V Q(y)]

[0.85,0.9]
[0.55,0.6]
[0.55, 0.6] (51)
[0.65,0.7)

[, 7]

PFOENTAILY after the addi-

tion of 6 possible worlds in 6 iterations, leads to # = 0.1. In the subsequent 6 iterations,

we have:

Iteration 1.
Iteration '2.
Iteration 3.
Iteration 4.
Iteration 5.

Iteration 6.

wi2 is added.

wy is added, and a9 leaves the basis

wg is added, and a4 leaves the basis

we is added, and o3 leaves the basis

wig is added, and a3 leaves the basis

w; is added, and ag leaves the basis

83

The solution of (P;oN™™) problem is found after 5 iterations and the addition of four more

possible worlds, leading to 7 = 1.

e Iteration 1. wyo is added.

e Iteration 2. wg is added.

Tteration 3. wr is added.

Tteration 4. ws is added.

Iteration 5. wi; is added.

Although it is a small example, we can already observe that only a fraction of the possible
worlds need to be identify in order to solve the (PLOFNTAIL) and (PEOENTAM) problems. In
practice, only a-small fraction (e.g., some hundreds) of the overall set of possible worlds
needs to be computed even when the overall number of worlds is over several hundreds of

millions.

84

Table 3: List of possible/impossible worlds

P : world w;

P : world wsy

P : world ws

P : world wy
P : world wsg

P : world wy

P : world wg

P : world w1y

P : world wjo

So S3 Si4 Ss

S1

1

1

0

1

0

1
1

1

0 | P: world ws

1

1

1

0 | P: world wg

1

1

0 | P : world wig

0
0

1

1

1

85

Chapter 5

Numerical Results

In this chapter, we first analyse the two proposed algorithms SOLPRICING and SOLPRICING™.
Next we discuss the key data structures that have been used in order to implement them ef-
ficiently. We then present the plan and the results of the experiments for the two algorithms

on a series of first-order instances. Finally, we discuss the numerical results.

5.1 Algorithm Analysis

Let us analyze the differences between the SOLPRICING and SOLPRICING™ algorithms. Both
of them use a branch-and-bound method with a best-first search strategy in order to
find a possible world with a negative reduced cost. Both of the SOLPRICING and the
SOLPRICING™t are exact algorithms which finds a optimal solution if there exists one. How-
ever, SOLPRICING™T algorithm is more efficient than SOLPRICING. The major difference
between these two algorithms lies in their branching scheme. So, in this section, we will

discuss about their respective branching scheme.

86

5.1.1 SOLPRICING branching scheme

In the SOLPRICING algorithm, several selection criteria are possible in Step Formula Selection
and Branching for selecting a new formula with a truth assignment. The choice of selection
criteria depends on whether the goal is to prune quickly the branch and therefore deduces a
contradiction, or whether the first goal is to exhibit a possible world with a negative cost. It
should be based on some hints whether the current pricing problem is likely to be infeasible
or to obtain a feasible solution (i.e., a possible world) with negative reduced cost. However,

how to get an intuition on which situation is most likely to occur is difficult.

For selecting a new formula, we use the set of dual values. Formulas are serialized in £
according to their associated dual values. The dual values are ordered in decreasing order,
assuming we are minimizing the objective function, with an attempt to obtain a negative
reduced cost quickly. By keeping the formulas serialized based on the associated dual values
saves us from searching for a formula with‘ the largest dual value each time we are selecting
a new formula, i.e., we can select a formula serially from £ as it is ordered based on the
dual values. In case of maximization, dual values are organised in ascending order with an

attempt to obtain a positive reduced cost quickly.

Once a formula is selected, two new nodes or subproblems are added to A for each truth
value assignment of the selected formula. Additionally, two partial worlds are also added to
w for each truth value assignment of the selected formula. Then bounds are computed on
the reduced cost for both of these nodes. Assuming the goal is to minimize the objective,
the next node to be investigated is the node in A/ with the smallest upper bound. If there
are ties, we go for the node with the smallest lower bound and if there are still some ties, we

select the node with the largest node index. The selected node is set as the current node.

87

Similar to branch-and-bound, in SOLPRICING algorithm, we use two schemes to prune
the node in order to keep the tree size smaller. In the first scheme, when a partial world is
in consideration, we prune by computing the bounds (with associated sign) on the reduced
cost of a node or checking the contradiction. Therefore, it is sometimes possible to prune
nodes early and reduce the tree size. In the second scheme, when a world (not partial)
is in consideration, i.e., all the formulas are assigned with true or false values, we prune
by computing the exact value of the reduced cost (with associated sign) or checking the
contradiction at the leaf node. Most often, we do not have the option.to compute the
exact value of the reduced cost before we reach a leaf node of a tree. However, it is
known that, when column generation is used, very often the number of zero dual values
increases as we iterate. Therefore, if several dual variables are equal to zero, it offers the
opportunity to compute the reduced cost before we reach a leaf node. So, we are interested to
investigate this opportunity in the SOLPRICING™ algorithm. Moreover, average traversing
at each iteration is usually high in SOLPRICING algorithm which can be solved by using

SOLPRICINGT.

In order to select the formula with a true/false value assignment, several other possible

criteria could have been used. Examples are as follows.

e If there is a formula with a single predicate, select it.

e If there exists more than one formula with a single predicate, select the formula
associated with the predicate, say P, that has the largest number of occurrences in
the other formulas, with the most balanced number of occurrences in terms of P vs

-P.

88

Other parameters that would be useful to be taken into account are the fact that, in the
selected formula, at least one of the predicate appears both negated and non negated in the
previously or forthcoming selected formulas. This helps to ensure that several consensus will
or can be generated. While selecting a unit formula is useful for the first selected formula,
the priority for the subsequent choices should be more toward the identification of a possible
world with a negative reduced cost, and therefore, subsequent selections have to be done only
with respect to the values of the dual variables and the “sharing” for the new formulas of
many predicates under different forms (negated vs non negated) with the previously selected
formula. Similarly, several selection criteria are possible in Step Problem selection and
Relazation in order to select the next problem (P% .) to be examined. We use the classical
selection criterion that is used in branch-and-bound methods in Operations Research, i.e.,
the sub-problem with the smallest upper bound when we minimize the objective and largest

upper bound when we maximize the objective.

5.1.2 SOLPRICING* branching scheme

In order to reduce the average traversing at each iteration and speed up SOLPRICING, we
proposed SOLPRICING™ algorithm as a solution for the pricing problem. As shown in Figure
2, we divide the branching tree for SOLPRICING™T into two parts. In the upper part of the
tree, we branch in the usual way as long as dual values are non-zero. For this part, we
prune and branch by checking both the reduced cost and satisfiability criteria. However,
once we encounter zero dual values, we go on pruning and branching based on satisfiability
checking only, as reflected in the lower part of the tree. Note that, in the lower part of

the tree, formula selection for branching is done in lexicographic order. It would have

89

been possible to use other strategies, for instance, branching on weighted formulas (see the
previous section). The lexicographic order may not be the best selection strategy but it is
a simple one. As a result, traversing is reduced on formulas which have their corresponding
dual values as zero. So, by using SOLPRICINGT we are able to find the exact solution with

improved efficiency and less traversing.

Fi:m£ 0

Both reduced cost
and satisfiability
checking

Fi:u=0
Only satistiability
checking.

Figure 2: An abstract view of the branching strategy used in SOLPRICINGT

The steps used by the procedure SOLPRICING™ are almost same as that of SOLPRICING.
The formula is selected same way as SOLPRICING based on the ordered dual values. However,
the dual values are ordered differently, for instance, they are ordered in decreasing order as
most positive, then most negative and zeros at the end. Break the ties by selecting the for-
mula with smallest index. However, in formula selection and branching, the SOLPRICINGT
algorithm follows the same process as long as formulas with non-zero dual values are en-
countered. Once a formula with a zero dual value comes in consideration, SOLPRICING™
algorithm use lexicographic order to select a formula. Next, SOLPRICINGT will compute the
reduced cost using equation (36) on the node even though the world might be a partial

one. Therefore, no need to calculate the bounds on the reduced cost at the node as the

90

computed reduced cost corresponds to the bounds in the subsequent iterations.

Assuming we are solving ProPN™ if the current reduced cost is positive, the branch is
pruned, otherwise satisfiability is checked on the partial world. If a contradiction is found,
the branch is pruned, else a new formula (with zero dual values) is selected in a lexicographic
order. This time, further branching is decided only by checking the satisfiability or con-
tradiction on the partial world. When all the formulas are assigned with true/false values
and there remains no node in A/, SOLPRICING™T algorithm checks if there is a contradiction.
SOLPRICING™ stops as soon as it finds a first possible world with a negative reduced cost.

Otherwise, it searches for a world with a negative reduced cost as long as AV is not empty.

5.2 Programming Environment

We have implemented the two proposed algorithms, SOLPRICING and SOLPRICINGT in C++.
The supported compilers are gcec 3.4.4 and higher versions. It contains about 5000 lines of
code, Tuns under Linux Red Hat 3.4.4-2. We use ILOG CPLEX 10.1.1 tool to solve the
linear programs. We run our test instances in computers with AMD dual processors, cpu

speed 2392.132 Mhz, RAM 15.6 GBs.

5.3 Efficient Implementation

For efficient implementation we choose a priority queue data structure, the binary heap (see
Sahni [66] and Weiss [71]). Let us now explain how we map our data into a heap. The
structure of each node is shown in Figure 3. It stores the truth values of a set of formulas,

the lower and upper bounds on the reduced cost at each node.

91

Node|F1,F2, Fm [Lower bound| Upper bound

Figure 3: Node structure

In the node structure of Figure 3, the formula fields F; is set with three different values.

0 if False
F; = 1 if True (52)

2 if Not yet assigned with a truth value

The ¢¥, and ¢k, are computed using the set of equations in (39) and (40) respectively.
Two issues related to node status that need to be considered, (i) if a node is pruned then
we delete it, (il) we store the current node in a special dummy structure.

Considering the objective is to minimize, the data structure is initialized at root node
Np as illustrated in Table 4. As the value of all the formulas is not yet assigned with a

truth value, 2 is assigned for all the formulas. The EI’f;, and ¢k, are computed as &%, and &3,

respectively.

Table 4: Initial node structure

N F F, F3 .. F, c, ¢,
No 2 2 2 . 2 & &,

Now, we have to compute the bounds and check the contradiction at each node based
on the truth values assigned to the formulas belonging to their associated partial world .
We continue on branching by selecting a formula based on the associated dual value. For

each truth value assignment of F}, two nodes are added to the node list A/, Ny with F; =

92

true and Ny with F; = false. Moreover, two partial worlds w; with F; = true and Wy F; =
false are also defined at the current node. Then we compute the upper and lower bounds
on the reduced cost of each of these two nodes and the node which has the smallest upper
bound on the reduced cost is selected. Say, Ns has the smallest upper bound on its reduced
cost, therefore, we will modify the node status of Ny as current. Next, contradiction will be
checked at node N2 based on the truth value assignments of the formulas defining partial
world ws. On the other hand, if there is no contradiction found at N,, we continue on
branching by selecting next formula based on the associated dual value. For this particular
case, we still do not check the contradiction as both of the nodes have only one formula.
Therefore, we will continue branching.

Considering the illustrative example in Section 4.7, the Corre‘spo‘nding data structure
and the tree structure of first three nodes while obtaining the possible world [00111] for
minimization is shown in Table 5 and Figure 4 respectively. This process is repeated until

all the formulas with their truth value assignments are considered. The associated dual

values are given in Table 6.

Table 5: The data structure considering the first three nodes

N Fi F Fy Fy Fs Efo —C'ﬁp
Ny 2 2 2 2 2 —1000 1
Ny 2 1 2 2 2 —1000 1
N> 2 0 2 2 2 —1000 1

Moreover, considering the same example the heap data structures of all the nodes and '
their corresponding values to find the possible world [00111] by using the SOLPRICING algo-
rithm is shown in Table 7. Figure 5 shows the aséociat_ed tree structure for possible world
00111 considering PLO"NTAL and Figure 6 shows the corresponding tree structure for possible

world 11011 considering the PEOENTAL T Table 6, the dual values associated with possible

93

NO| N1 | N2

Figure 4: Heap and corresponding array representation for first three nodes

worlds 00111 and 11011 are also provided.

Table 6: Snapshot of the dual values

Possible world wuw; w2 wu3z us us

goi1r -1 0 O O 1
11011 -1 1 0 1 O

It then leads to the possible expression for the reduced cost: for each truth value assign-

ment on the additional formula, by computing the reduced cost and checking if there is a

contradiction we can obtain whether there exists a possible world with a negative reduced

cost. Note that in Table 7, the lower and upper bounds on reduced cost of the three nodes

Ng, Nig and Ng are set to x to show that they are pruned.

5.4 Experimental Results

In this section, we evaluate the performance of SOLFOPL with the two algorithms SOLPRICING

and SOLPRICING™. For simplicity, we name the combined solution of the restricted master

and SOLPRICING as SOLFOPL, and the restricted master and SOLPRICINGt as SOLFOPL*.

94

Table 7: Data structure associated with possible world [00111].

N Fi F» F3 Fy Fj cr crp
No 2 2 2 2 2 —1000 1
M 2 1 2 2 2 -1000 1
No 2 0 2 2 2 -1000 1
Ny 2 0 1 2 2 -1000 1
Ny 2 0 0 2 2 -1000 1
Ns 2 0 0 1 2 -1000 1
Ng 2 0 0 0 2 X X
N 1 0 0 1 2 -1000 1
Ng 0 0 0 1 2 X X
No 2 0 1 1 2 —1000 1
Nio 2 0 1 0 2 X X
N1 1 0 1 1 2 -1000 1
No 0O 0 1 1 2 -1000 -999

5.4.1 Building the test instances

The test instances are generated randomly similarly to that was proposed in Jaumard et al.
[39]. The logical formulas correspond to clauses (disjunction of predicates) with at most 3
predicates. Formulas with 1, 2, 3 predicates are distributed uniformly as well as positive or
negative ‘predicates, i.e., each predicate have a number of positive occurances equal to the
number of negative occurances. We keep at most two variables in each predicate in order

to build decidable instances [23]. Moreover, there are at most 3 variables in each formula.

In order to associate consistent probability values for first-order formulas we generate
randomly O or 1 values which leads to a world. Then we check with Theo if it is possible
world or not. If the world is possible we keep it otherwise, we reject it. By following this we
generate p possible worlds for m first-order formulas. Next, equal probability distribution
(1/p) is assigned over each possible world. Then by summing up the probability distri-

butions on each formula a fixed probability value is generated. By subtracting 0.02 and

95

Figure 5: Tree structure: possible world [00111] considering PEOFNTAIL,

adding 0.08 to the fixed probability value, we finally generate the lower and upper proba-
bility values respectively (i.e., probability interval values) for each formula. Then we check
the consistency of these first-order formulas with the associated interval probability values
by using CPLEX. Instances which are formed incounsistent are discarded. An illustration of
generating consistent probability values for a test instance with 7 first-order formulas (for

12 randomly created possible world) is shown in the Appendix.

96

Figure 6: Tree structure: possible world [11011] considering PEOENTAIL,

5.4.2 Comparison of the SOLFOPL and SOLFOPL*

The programs were implemented in C++ and tested on a computer with characteristics
described earlier (see P. 91). We evaluate the efficiency of the two proposed exact algorithms,

SOLFOPL and SOLFOPL* with a heuristic algorithm AD-SOLFOPL [67] (see Section 3.3.3).

Results of SOLFOPL and SOLFOPL™ are given in Table 8 and in Table 9 respectively on
a set of consistent FOPL instances. The structure of instance labeling for the first instance
is shown in Figure 7. The first instance consists of 4 formulas (except additional formula)
with 3 distinct predicates, each formula has at most 3 predicates; the additional formula is

a unit one. The other instances can be described similarly. Each formula contains at most

97

(e] ;
1p3x4x3p
Maximum # of predicates /formulas
of fonmulas,

of distinct predicates.

of predicates in objective.

Figure 7: Problem labeling

3 variables.

In Table 8 and 9, we provide the lower and upper (7 and 7) probability values, computing
times for master and pricing problems, number of columns, average number of nodes in the
search tree when solving the pricing problem. Moreover, in Table 10, the number of nodes
in the search tree when solving the last pricing problem is also provided. It is observed
that, number of columns required for minimization is higher than that of maximization.
For minimization, instead of searching for an initial set of possible columns we start from
scratch, i.e., with artificial columns in order to start with a feasible basis. At each iteration,
an artificial column is deleted from the basis and a column (i.e., possible world) is entered
in the basis. Hence, many columns are added to the restricted master problem in order
to delete all the artificial columns from the basis. Therefore, we need to generate more
" columns to obtain an optimal basis for the minimization. On the other hand, we begin with
the optimal basis obtained from the optimal solution of the minimization when solving
the maximization problem. In spite of providing a good solution, it at least provides a

feasible solution and avoids the use of artificial variables. Therefore, a smaller number of

98

columns is required to obtain the optimal basis for maximization. However, there are few
exceptional cases, such as in 3p8x15x3p instance where for minimization the number of
columns is smaller than for maximization for both the SOLFOPL and SOLFOPL™ algorithms.
The number of columns needed to solve each instance also depends on the complexity of
problem structure, i.e., it also depends on the number of predicates, variables, etc used in
a particular instance. If an additional formula has a higher number of predicates it is more

likely to be difficult to solve.

For all solved instances, SOLFOPL and SOLFOPLT manage to find an optimal solution
where SOLFOPL takes longer than SOLFOPL™. Moreover, in SOLFOPL™, the number of nodes
in the search tree is much less than that of SOLFOPL. The reason for this has already been
explained in Section 5.1.2. In order to evaluate and exhibit the performance of SOLPRICING
and SOLPRICING™, a graph is given in Figure 8. In this graph, we consider finding the lower
bound of a particular pricing problem when solving the 2p11x25x3p instance. It is clear
from the graph that, to obtain a possible world at each iteration the number of nodes is
higher in SOLPRICING than that of SOLPRICING™. In other words, by evaluating this graph,
we can conclude about their efficiency and performance. For this solved instance, along the
x-axis, number of columns for reaching the optimal solution is considered whereas number
of nodes needed to find each of these columns is given along the y-axis. We see from the
graph that, in the last iteration SOLFOPLY traverses less nodes than SOLFOPL as expected.
Therefore, within a s}iorter period of time, we find a possible world with a negative reduced

cost in SOLFOPL™.

In Figure 9, another graph is given for the same problem instances in order to show

the benefit of computing reduced cost as soon as we encounter null dual variables. This

99

graph can be evaluated for instance, when the number of columns along the x-axis is 18 the
number of null dual variable along the y-axis for SOLPRICING is 16 (Figure 9) which visit
or traverse 224 nodes (Figure 8) in order to obtain a possible column. Whereas, in case of
SOLPRICINGT, the number of null dual variables is 13 and it visited only 26 nodes to obtain
a possible world. The number of null dual values, i.e., zero dual values in SOLFOPL™ is 11

and for SOLFOPL it is 15 at the last iteration.

In Table 11, a computational compariskon is made between SOLFOPL™ and AD-SOLFOPL
on a number of consistent instances. We choose SOLFOPL™ over SOLFOPL because it is more
efficient. We provide the probability interval (z and %) found by each algorithm and the
total computing time. We can claim from the comparison that, even though AD-SOLFOPL
finds a probability bound in a much shorter computing time than SOLFOPL™, AD-SOLFOPL
usually could not obtain the tightest probability bounds. By using SOLFOPL™ we can achieve

the tightest probability bound.

Table 8: Results of SOLFOPL using SOLPRICING algorithm.

Instances

Probability CPU time (sec) # Column Average # nodes

s i Master Pricing Min Max Min Max

1p3x4x3p 0.100 1.000 < 1072 0.08 6 5 7.571 4.33

2p4x7x2p 0.125 1.000 < 1072 0.39 7 6 23.75 7.14
3p4x8x3p 0.412 1.000 < 1072 0.66 11 4 23.08 11.80

2p5x10x3p 0.349 1.000 0.02 1.25 9 8 41.40 20.56
3p8x15x3p 0.255 0.967 <1072 11.23 10 18 172.09 142.58
2p10x20x3p 0.300 1.000 <1072 33.29 6 10 1193.86 1955
2p11x25x3p 0.900 1.000 0.02 47.57 29 2 396.43 17.67

One decisive drawback of the algorithms. is its computing time. It takes significant
amount of time to find an optimal solution when the number of formulas grows large. This

is because it is a NP-complete problem and it has to traverse through a large number of

100

Table 9: Results of SOLFOPLT using SOLPRICING™ algorithm.

Probability CPU time (sec) # Column Average # nodes

Instances T 7 Master Pricing Min Max Min Max
1p3x4x3p 0.100 1.000 0.01 0.08 12 4 4.92 5.60
2pdx7x2p 0.125 1.000 0.01 0.20 12 6 7.85 7.14
3p4x8x3p 0.412 1.000 0.03 0.34 14 4 10.80 19.20
2p5x10x3p 0.349 1.000 0.01 0.35 11 9 10.67 11.00
3p8x15x3p 0.255 0.967 0.02 2.33 12 20 15.00 52.14
2pl0x20x3p 0.300 1.000 0.02 1.33 23 9 20.33 19.10
2p11x25x3p 0.900 1.000 0.02 5.27 35 1 69.11 2.00

Table 10: Results of SOLPRICING and SOLPRICINGY algorithm with respect to number of
nodes in the last solution of the pricing problem (min).

Instances SOLPRICING SOLPRICING™

1p3x4x3p 20 3
2p4x7x2p 50 6
3p4x8x3p 9 3
2p5x10x3p 108 3
3p8x156x3p 38 3
2p10x20x3p 8064 3
2p11x25x3p 8614 1385

nodes while looking for a possible world with negative reduced cost. For instance, for 10
formulas, in the worst case it will traverse (2! — 1) nodes which grows exponentially as
the number of formulas becomes large. For‘bigger instances this becomes painfully slow
when waiting for all the iterations to complete. It also occupies a good amount of memory
because of the nodes that it has to check before finding a p(;ssible world with a negative
reduced cost. It is to be noted in our implementation, instead of going for the most negative
reduced cost we stopped as soon as we got the first negative reduced cost with a possible

one.

101

Minimization

1600
1400
1200 A
(]
g I
8 1000 / \
5 800 — SOLPRICING
& / ‘ -— SOLPRICING+
E
=
=

600 1 \
400

200 //"\ ‘ /X/ t /

o——/+—7 7V T TV r T T T "7 T T T 7T T T T 7T 1T T T T T T T

ST e R SRR IE S0 S-S

Number of columns

Figure 8: Comparison graph of SOLPRICING and SOLPRICINGT for number of nodes with
respect to number of columns for instance 2p11x25x3p.

The implementation part of this thesis was quite challenging as the algorithms did not
get into details about a lot of key issues that is essential from programming point of view.
It was very intriguing to reduce the exponential time complexity in the search tree. We
spent countless hours on debugging. The solution schemes of the overall process was not
so easy to understand. The algorithm was not easy to break into pieces for programming

purposes.

102

Minimization

30

™ :\ / \\ |
15 /fﬁ \K—/\ / \“ /\ — SOLPRICING

//f / ~ /_/—\/‘\\/\ / % | — SOLPRICING+
10 / / ‘\f

Number of null dual variables

— T T T T T T T T T T T
~ Ler] w P~ » b o~ w0 M~ (2] — D 0 e~ N - o) wy

At -~ ~ - -~ (e ™~ <~ [a\] o [32] [ep]
Number of columns

Figure 9: Comparison graph of SOLPRICING and SOLPRICINGT for number of null dual
variables with respect to number of columns for instance 2p11x25x3p.

Table 11: Comparison of SOLFOPLT and AD-SOLFOPL.

SOLFOPL™ AD-SOLFOPL

Instances Probability Probability
s 7 CPU time(sec) T 7 CPU time(sec)
1p3x4x3p 0.100 1.000 0.09 0.100 1.000 <1072
2pdxTx2p 0.125 1.000 0.21 0.083 1.000 <1072
2p5x10x3p 0.349 1.000 0.36 0.134 1.000 <1072
3p8x15x3p 0.255 0.967 2.35 0.040 1.000 < 1072
2p10x20x3p 0.300 1.000 1.35 0.000 1.000 <1072
2pl11x25x3p 0.900 1.000 5.29 0.330 1.000 <1072

103

Chapter 6

Conclusion and Future Work

The focus of this thesis was on reasoning under uncertainty models with first order logic
where uncertainty is captured by probability values. We proposed a new mathematical
modeling with a column generation formulation, i.e., a linear programming modeling for
large scale and highly combinatorial problems. We showed that it allows the solution of

small to medium size instances of probabilistic logic instances.

There is room improvement in the column generation algorithm proposed for solving the
linear programming model, in particular with the algorithm for solving the pricing problem.
By better exploiting on the one hand the order in which the formulas are selected and
assigned truth values and on the other hand the observation that several dual variables are
equal to zero, we believe that it is possible to increase significantly the size of the instances
that can be solved in a reasonable amount of time. Another direction for improvement is to
consider a “hot start” rather than a “cold start” for the column generation algorithm using,
e.g., heuristic algorithms such as some anytime deduction type algorithms. It will reduce

the number of times we need to solve the pricing problem, and as it is the most costly part

104

with respect to the computing time, it can also contribute significantly to solve much larger

instances.

Time should also be spent on defining benchmark decidable instances. Many criticisms
were made to probabilistic models toward the fact that when the size of the instances
increase, if randomly generated, there are likely to be inconsistent. Is it related to the

model or to the generation of the instances? There is not yet a clear answer.

With respect to generalization of the proposed mathematical model, as for probabilistic
propositional logic, it will be easy to generalize it in order to handle the case of conditional
probabilities. We also believe that the proposed mathematical model could be very useful
in order to design new linear ‘programming solution scheme for the classical second-order
logic, often called @QBF. Up to now, most of the QBF satisﬁabiiity checkers are based on
Davis-Logemann-Loveland (DLL) algorithm. It would be interesting to incorporate the

DLL based satisfiability checkers into our implementation.

Very few comparisons have been made among the different models for reasoning under
uncertainty as it is quite difficult. There is no well accepted fair basis for comparison
when uncertainty is captured using different means, see, e.g., probabilities vs. qualitative
values in fuzzy sets. It would be therefore of great interest to investigate how to establish
comparisons and compare the various models for reasoning under uncertainty in terms of
expressiveness but also in terms of easiness for solution. The best model of expressiveness
might be impossible to solve, and therefore compromise has to be made between those two

objectives.

105

Bibliography

[1] K.A. Anderson and J.N. Hooker. Bayesian logic. Decision Support System, 11:191-210,

1994.

[2] B. Aspvall, M.F. Plass, and R.E. Tarjan. A linear-time algorithm for testing the truth

of certain quantified boolean formulas. Information Processing Letters, 8(3):121-123,

1979.

[3] F.Bacchus. Representing and Reasoning with Probabilistic Knowledge. The MIT Press,

Cambridge, Massachusetts, 1990.

[4] G. Boole. Proposed question in the theory of probabilities. The Cambridge and Dublin

Mathematical Journal, 6(186), 1851.
[5] G. Boole. The Laws of Thoughts. Dover Publications, 1854.

[6] B.G. Buchanan and E.H. Shortliffe. Rule-Based Ezpert Systems The MYCIN Experi-

ments of the Stanford Heuristic Programming Project. Addison-Wesley, 1985.

[7] C.L. Chang and R.C. Lee. Symbolic Logic and Mechanical Theorem Proving. Academic

Press, 1973.

106

[8] P. Cheeseman. In defense of probability. In Proceedings of the 9th IJCAI, Los Angeles,

volume 9, pages 1002-1009, 1985.

[9] A. Church. An unsolvable problem of elementary number theory. American Journal

of Mathematics, 2:345-363, 1936.

[10] V. Chvatal. Linear Programming. W.H. Freeman and Company, 1983.

[11} W.L. Craig. Incompatibility, with respect to validity in every finite nonempty do-
main, of first order functional calculus. In Proceedings of the International Congress

of Mathematicians, 1950.

[12] Y. Crama, P. Hansen, and B. Jaumard. The basic algorithm for pseudo-boolean pro-

gramming revisited. Discrete Applied Mathematics, 29:171-186, 1990.

[13] P.S. de S. Andrade, J.C.F. da Rocha, D.P. Couto, A. da C. Teves, and F.G. Cozman. A
toolset for propositional probabilistic logic. Encontro Nacional de Inteligncia Artificial,

Rio de Janeiro, RJ, pages 1371-1380, 2007.

[14] F.J. Diez and M.J. Druzdzel. Reasoning under uncertainty. Encyclopedia of Cognitive

Science, Nadel, L.(Ed.) London: Nature Publishing Group, pages 880-886, 2003.

[15] B. Dreben and W.D. Goldfarb. The Decision Problem: Solvable Classes of Quantified

Formulas. Addison-Wesley, 1979.

[16] D. Dubois and H. Prade. Possibility Theory. Plenum Press, New York, 1988.

[17] De Finetti. Theory of Probability Volume 2. Wiley Interscience, first edition, 1990.

[18] De Finetti. Theory of Probability Volume 1. Wiley Interscience, first edition, 1991.

107

[19] A.M. Frisch and P. Haddawy. Anytime deduction for probabilistic logic. Artificial

Intelligence, 69(1-2):93-122, 1994.

[20] G. Georgakopoulos, D. Kavvadias, and C.H. Papadimitriou. Probabilistic satisfiability.

Journal of Complexity, 4:1-11, 1988.
[21] F. Glover. Tabu search - part I. ORSA Journal on Computing, 1:190-206, 1989.
[22] F. Glover. Tabu search - part II. ORSA Journal on Computing, 2:4-32, 1990.

[23] E. Grédel, P.G. Kolaitis, and M.Y. Vardi. On the decision problem for two-variable

first-order logic. The Bulletin of Symbolic Logic, 3:53-69, 1997.

[24] 1. Hacking. Logic of Statistical Inference. Cambridge University Press, Cambridge,

UK., 1965.

[25] T. Hailperin. Best possible inequalities for the probability of a logical function of

events. Monthly American Mathematics, 72:343-359, 1965.

[26] T. Hailperin. Boole’s logic and probability: Critical exposition from the standpoint of
contemporary algebra, logic and probability theory. Number 85 in studies in Logic and

the Foundations of Mathematics Elsevier, 3(25):198-212, 1976.
[27] T. Hailperin. Boole’s Logic and Probability. North-Holland, Amsterdam, 1986.

[28] J.Y. Halpern. An analysis of first-order logics of probability. Artificial Intelligence,

46(3):311-350, December 1990.

[29] P.L. Hammer, I. Rosenberg, and S. Rudeanu. On the determination of the minima of
pseudo-boolean functions (in romanian). Studii si Cercetari Matematice, 14:359-364,

1963.

108

[30]

[31)

321

33]

34]

(35]

[36]

P.L. Hammer and S. Rudeanu. Boolean Methods in Operations Research and Related

Areas. Springer-Verlag, New York, 1968.

P. Hansen and B. Jaumard. Algorithms for the maximum satisfiability problem. Com-

puting, 44:279-303, 1990.

P. Hansen and B. Jaumard. Probabilistic Satisfiability, Handbook on Algorithms for
Uncertain and Defeasible Management Systems, pages 321-368. J. Kohlas and S. Moral

(eds.), Springer, Dordrecht, 2000.

P. Hansen, B. Jaumard, and M.P.de Aragdo. Boole’s conditions of possible experience

and reasoning under uncertainty. Discrete Applied Mathematics, 60:181-193, 1995.

P. Hansen, B. Jaumard, M.P.de Aragédo, and C.C. de Souza. Correctness of anytime
deduction for probabilistic logic. Les Cahiers du GERAD G-97-02, Groupe d’Etudes

et de Recherche en Analyse des Decisions, 1997.

P. Hansen, B. Jaumard, G.B.D. Nguetsé, and M. P. de Aragao. Models and algorithms
for probabilistic and bayesian logic. In Proceedings of the 14th IJCAI-95, volume 2,

pages 1862-1868, 1995.

P. Hansen and S. Perron. Merging the local and global approaches to probabilistic

satisfiability. to appear in International Journal of Approximate Reasoning.

U. Hustadt, R. A. Schmidt, and L. Georgieva. A survey of decidable first-order frag-
ments and description logics. Journal on Relation Methods in Computer Science, 1:251—

276, 2004.

109

[38]

[40]

[41]

[42]

[43]

[44]

[45]

B. Jaumard, A. Fortin, I. Shahriar, and R. Sultana. Logic and algebraic languages
for interoperability in multidatabase systems. Fuzzy Information Processing Society,

NAFIPS 2006, Annual meeting of the North American, pages 341-346, 2006.

B. Jaumard, P. Hansen, and M.P.de Aragdo. Column generation methods for proba-

bilistic logic. ORSA Journal on Computing, 3(2):135-148, 1991.

B. Jaumard and A. Nongaillard. Automated mechanism design: using column genera-
tion for the design of multi-agent exchanges. Web Intelligence and Agent Systems: An

International Journal, To be printed, 2007.

B. Jaumard and A. Parreira. An anytime deduction algorithm for the probabilistic
logic and entailment problems. Fuzzy Information Processing Society, 2006. NAFIPS
2006, Reprinted: submitted to Elsevier, Annual meeting of the North American.(3-

6):347-354, 2007.

D. Jovanovié, N. Mladenovié, and Z. Ognjanovié. Variable neighborhood search for the
probabilistic satisfiability problem. In The 6th Metaheuristics International conference,

MIC 2005, August 2005.

G.J. Klir and B. Yuan. Fuzzy Sets and Fuzzy Logic Theory and Applications. Prentice

Hall PTR, first edition, 1995.

K. Konol. An inference net compiler for the prospector rule-based consultation systems.

In Proceedings of the IJCAI volume 6, pages 487-489, 1979.

L.V.S. Lakshmanan and F. Sadri. On a theory of probabilistic deductive databases.

Theory and Practice of Logic Programming, 1(1):5-42, 2001.

110

[46]

[47]

[49]

[50]

[51]

[52]

53]

(54]

L.V.S. Lakshmanan, F. Sadri, and I.N. Subramanian. Logic and algebraic languages
for interoperability in multidatabase systems. The Journal of Logic Programming,

33(2):101-149, 1997.

S.L. Lauritzen and D.J. Spiegelhalter. Computation with probabilities in graphical
structures and their application to expert systems. Journal of the Royal Statistical

Society B, 50(2):157-224, 1988.

K-S. Leung and M-F. Tse 1. King. Ff99: A novel fuzzy first-order logic learning system.

IEEE, 5:178-184, 1999.

G.F. Luger. Artificial Intelligence Structures and Strategies for Complex Problem Solu-

ing. Pearson Education, fourth edition, 2002.

T. Lukasiewicz. Probabilistic logic programming. In 13th Biennial European Confer-

ence on Artificial Intelligence, pages 388-392, 1998.

T. Lukasiewicz. Probabilistic logic programming with conditional constraints. ACM

Transactions on Computational Logic, 2(3):289-339, 2001.

B. Milch and S. Russell. First-order probabilistic languages: Into the unknown. In
Proceedings of the 16th International Conference on Inductive Logic Programming.

Berlin: Springer, 2007.

N. Mladenovié and P. Hansen. Variable neighborhood search. Computational Opera-

tions Research, 24(11):1097-1100, 1997.

M. Newborn. Automated theorem proving: Theory and practice. Springer, 2005.

111

[55]

[56]

[57]

[58]

[59]

[61]

[62]

[63]

[64]

R.T. Ng and V.S. Subrahmanian. Probabilistic logic programming. Information and

Computation, 101(2):150-201, 1992.
N.J. Nilsson. Probabilistic logic. Artificial Intelligence, 28(1):71-87, 1986.
N.J. Nilsson. Probabilistic logic revised. Artificial Intelligence, 59(1-2):39-42, 1993.

R. Overbeck. A new class of automated theorem-proving algorithms. Journal of the

ACM, 21:191-200, 1974.

D. Page and A. Srinivasan. ILP: a short look back and a longer look forward. Journal

of Machine Learning Research, 4:415-430, 2003.

J. Pearl. How to do with probabilities what people say you can’t. In Proceedings of
2nd IEEE Conference on AI Applications, Miami, FL, 6-12, December 1985. Also in
Charles L. Wesibin (Ed.), Al Applications, Amsterdam: North-Holland, 6-12, 1988,

pages 6-12, 1985.

J. Pearl. Probabilistic- Reasoning in Intelligent Systems: Networks of Plausible Infer-

ence. Morgan Kaufmann, San Mateo, California, 1988.

A. Riazanov and A. Voronkov. Adaptive saturation-based reasoning. In PSI: fth
International Andrei Ershov Memorial Conference, Revised Papers, volume 2244, pages

1-12, 2001.

A. Riazanov and A. Voronkov. Splitting without backtracking. In IJCAI volume 1,

pages 611-617, 2001.

A. Riazanov and A. Voronkov. Limited resource strategy in resolution theorem proving.

Journal of Symbolic Computation, 36:101-115, 2003.

112

[65]

[66]

[68]

[70]

[71]

[72]

73]

[74]

A. Riazanov and A. Voronkov. Efficient instance retrieval with standard and relational
path indexing. In 19th International Conference on Automated Deduction, volume 199,

pages 228-252, 2005.

S. Sahni. Data Structures, Algorithms and Applications in Java. McGraw-Hill, first

edition, 2000.

M.I. Shahriar. Analytical solution for first-order probabilistic logic. Master’s thesis,

Concordia University, Montreal, Canada, on-going.

M. Smithson. Ignorance and Uncertainty: Emerging Paradigms. Springer Verlag, New

York, first edition, 1989.

B. Trakhtenbrot. The impossibility of an algorithm for the decision problem for finite
models. Dokl. Akad. Nauk SSSR, 70:596-572, 1950. English translation in: AMS

Transl. Ser. 2, 23(1063):1-6, 1950.

A.M. Turing. On computable numbers, with an application to the entscheidungsprob-

lem. In London Mathematical Society, volume 43, pages 544-546, 1937.

M.A. Weiss. Data Structures and Problem Solving using Java. Addition Wesley, second

edition, 2002.

L. Wos and G. Robinson. Paramodulation and set of support. In IRIA Symposium on

Automatic Demonstration at Versailles, France, 1968.
L. Zadeh. Fuzzy sets. Information and Control, 8:338-353, 1965.

L. Zadeh. Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems,

1:3-28, 1978.

113

[75] L. Zadeh. Is probability theory sufficient for dealing with uncertainty in Al A neg-
ative view. In Proceedings of the 1st Annual Conference on Uncertainty in Artificial

Intelligence 4 North Holland, pages 103-106, 1986.

114

Appendix

Generated Problem corresponds to the used example in Section 4.7 (equation (51)).

fPOSITIVE FORMULAS}

fof{f_1,axiom, o

C L IX]': 7 [Y] @ € big_p(X,¥) | big_q(¥)))).
fof{f_2.,axiom,

(7 [X]': ~ big_ro)).

fof(f_3,axiom

(7 [¥]1 : ~ big_q(¥)).

fof(f_34, axion, .

¢ 1 [x Yl : O~ bigp0X.Y) | big_r0Q | big_q(¥) 2.
fof{f 5 axiom,

7 [X,¥] : ~ b1g_§(X,Y)).

{NEGATIVE FOR‘MULAS

fof{f_1,axiom,.

7 [XE : Uyl - (~ bigp(X,Y) & ~ big_qg(Y) 3.
fof(f , axion, !

¢ [X3 : big_r(xX) JJ.

fof{f ,axiom,

¢ 1 Iyl @ big_g(Y))).

fof(f_4,axiomn,

2 [x,YJ': C big p(X,¥) & ~ big_r(x) & ~ big_q(¥y2 J))J.
fof(f_5,axiom,

C ! [X,¥] : big_pCGLY) D).

{PROBABILIT‘!]

0.8 0.9

0.55 0.6

0.55 0.6

0.65 0.7

1.0 1.0

FEND]

Screen shot of a problem file 1p3x4x3p

An illustration of generating consistent probability values for a test instance with 7

first-order formulas.

115

260=21/1X11= 1 I I o I I I 1 1 1 T 1 4
L90=Cc1/1x8= I I T o 0o o 1T o0 1 1 1 1 %Y
¢L0=2cl/1x6= 1 I I o o 1 1 1 o0 1 1 1 %
8GO0 =CI/1X .= 0 I 0 o o 1 1 1 1 0 1 1 %
8GO0 =CqI/1X .= 1 0 I 6 o o 1T 1 I o0 1 1 &
050 =21/1x9= I 1 o o o0 T T 0 0 0 T 1 Y
r0=2gl/1Xg= 1 0 6 0 o0 1 1T 0 o0 o0 1 1 Yy
oufeA ANpiqeqold M M ™M M oM M M M T M M

‘sanres £)[iqeqold Jua)sIsuod JO UOI eIsuar)

116

