Automatic Generation of Transactors in SystemC

Tareq Hasan Khan

A Thesis
in
The Department
of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Applied Science (Electrical & Computer Engineering)
at
Concordia University

Montréal, Québec, Canada

September 2007

(© Tareq Hasan Khan, 2007

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A ON4

395, rue Wellington
Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 978-0-494-34700-3
Our file Notre référence
ISBN: 978-0-494-34700-3
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliothéque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

In compliance with the Canadian Conformément a la loi canadienne

Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thése.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

ABSTRACT

Automatic Generation of Transactors in SystemC

Tareq Hasan Khan

System-on-chip (SoC) is a major revolution taking place in the design of inte-
grated circuits due to the unprecedented levels of integration possible. To specify,
design, and implement complex SoC systems, the need arises to move beyond exist-
ing register transfer level (RTL) of abstraction. A new modeling method, transaction
level modeling (TLM) has been proposed recently to fulfil this need. TLM modules
communicate with each other through function calls and allow the designers to focus
on the functionality, while abstracting away implementation details. At the RTL,
however, different modules communicate through pin level signaling. SoC design
methodologies involve the integration of different intellectual property (IP) blocks
modeled at different levels of abstraction. Therefore a special module or channel
is needed in order to link modules, IPs, designed at different levels of abstraction.
This module, called transactor can be modeled using a finite state machine (FSM)
providing a functional specification of the protocol’s behavior. In this thesis, we pro-
pose to specify TLM-RTL transactor behaviors using the Abstract State Machine
Language (AsmL). Based on AsmL specification, we have developed a methodology
and tool that automatically generates SystemC code for the transactors. SystemC
is a system level description language, which became IEEE standard recently. Along
with the AsmL specification approach, we also proposed another approach where
the transactor behavior can be described by drawing FSMs graphically and the tool
will then generate SystemC code from the graphical FSM description automatically.
The proposed approaches have been implemented and applied on several case studies

including an UTOPIA standard protocol.

iil

ACKNOWLEDGEMENTS

I would like to start by praising Allah, the creator and the sustainer of the
universe. I feel fortunate and grateful working with my thesis supervisors Dr. Sofiene
Tahar and Dr. Otmane Ait Mohamed who not only helped me to overcome the
difficulties, but also taught me how to think critically. I would like to give special
thanks to Dr. Ali Habibi at MIPS Technologies who came up with the idea of this
thesis and helped me to get started by his close supervision. Thanks also to Dr.
Ghiath Al Sammane for his suggestions and constructive critics. The Hardware
Verification Group (HVG) members were very nice and friendly. I would like to give
thanks to Haja, Essam, Saleem, Suliman, Bahador, Naeem, Osman and Kamran
for their help and support. I am grateful to my honorable parents, sweet and
caring sisters, brother, and my oldest friend Ashraf Zaman for their enthusiasm and

inspiration.

iv

To My Parents

TABLE OF CONTENTS

LISTOF TABLES e e
LIST OF FIGURES e e
LIST OF ACRONYMS

1

2

Introduction

1.1 Motivation
1.2 Methodology
1.3 Related Work o
1.4 Thesis Contributiono oL
1.5 ThesisOQutline.

Preliminaries

2.1 Abstract State Machines (ASM)
2.1.1 States
212 Terms e
2.1.3 Locations and Updates
2,14 Transition Rules,
2.1.5 Abstract State Machine Language (AsmL)

2.2 SystemC
2.2.1 SystemC Language Structure
2.2.2 SystemC Simulator

2.3 Register Transfer Level Modeling

2.4 Transaction Level Modeling

Specifying Transactors
3.1 Specifying Transactor in AsmL
3.1.1 AsmL Subset

vi

10

11
11
11
12
13
13
15
16
17
18
20
21

3.1.2 Hardware Data Typesin AsmL
313 TheStepRule.
3.1.4 Guidelines for Specifying Transactor
3.1.5 Limitationsof AsmL
3.2 Translation from AsmL to SystemC
3.2.1 Data Type Mapping
3.2.2 Semantic Translation
3.2.3 Syntax Translation
3.3 Specifying Transactor in Graphical FSM
3.3.1 Guidelines for Specifying Transactors in Graphical FSM
3.3.2 FSM Representation in ASF Format
333 FSMObjects e

3.3.4 AsmL Code Generation

SystemC Transactor Generator Tool

4.1 Input Interface e
411 TLM Interface.
412 RTL Interface,
413 CodeSettings

4.2 Generating Transactor from AsmL
4.2.1 AsmL Template Generator
4.2.2 XML to DOC conversion and vise versa
4.2.3 AsmL to SystemC Translator
4.24 Integrator e e e

4.3 Generating Transactor from Graphical FSM
4.3.1 FSM Drawing Template
4.3.2 FSM to AsmL Code Generator

4.4 Generating Transactor Code Template

4.5 Library Generation e e e

vii

5 Case Studies
5.1 UTOPIA Transactor
5.1.1 Signal Description
5.1.2 Protocol Description
5.1.3 Modeling in SystemC
5.1.4 Generating SystemC Transactor
5.1.5 Test Case Generation
5.1.6 Simulation of the Generated Code
5.1.7 Experimental Results

5.2 Memory Interface Transactor and Library Generation

6 Conclusion
6.1 Summary e

6.2 Discussion and Future Work

A1l AsmL Code for UTOPIA
A.2 SystemC Transactor Code
A.3 SystemC Transactor Template
A4 AsmL Code for Memory Access o oL

Bibliography

viil

62
62
62
64
64
65
68
69
72
74

77
7
78

79
79
80
85
86

87

3.1
3.2
3.3
3.4
3.9
3.6
3.7
3.8
3.9
3.10
3.11

4.1
4.2

5.1
5.2
5.3

LIST OF TABLES

Subset of AsmL Data Types 24
AsmL Data Type Mapping with SystemC 30
Translation of AsmL Variable to SystemC 32
Translation of AsmL Update Semantic to SystemC 33
Translation of Conditional Statements 34
Translation of Iteration Statements 35
Translation of Assertion Statements 35
Translation of Symbols and Operators 36
Translation of Assignment Statements 37
Translation of Enumeration and Constant Declarations 38
Translation of Blockso L. 40
Analyzed AsmL lineID o oL 57
Analyzed AsmL token ID Lo o oL 58
UTOPIA Interface Signals (optional signals are not listed 63
TLM Functions Called by the ATM Module 65
Experimental Results 73

ix

1.1
1.2

2.1
2.2

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14

4.1
4.2
4.3
4.4
4.5
4.6

LIST OF FIGURES

TLM-RTL Transactor 3
Methodology for Transactor Generation and Verification 6
SystemC Language Structure 17
SystemC Simulation Methodology 19
AsmL Subset L 25
Hardware Data Typesin AsmL 25
Hardware Constants in AsmL 26
Binary String to Decimal and Vise-Versa Conversion Functions 26
Binary String to Decimal Conversion Algorithm 27
Decimal to Binary String Conversion Algorithm 27
Variable in C language o 31
Variable in AsmL oo 31
Variable in SystemC Lo oo o 32
Algorithm for Generating Block 39
A Sample Graphical FSM (Snapshot from State Editor) 41
ASF Format 43
FSM Objects o o 44
AsmL Code Generation Algorithm 45
Block Diagram of SystemC Transactor Generator Tool 48
SystemC Transactor Generator Tool GUI 49
TLM Interface Input Window 50
Data Structure for TLM Functions 51
RTL Interface Input Window 52
Data Structure for RTL Ports 53

4.7
4.8
4.9

5.1
5.2
5.3
5.4
9.9
5.6
5.7
5.8
5.9
5.10

Al
A2
A3
A4

Format for Writing TLM function 55

SystemC Transactor Generation 59
Adding Transactor Library 61
UTOPIA Transactor 63
Graphical FSM Specification of the Function GetCell() 67
Test Case Generation by the AsmL Tester 69
Scenario 1: Simulation Timing Diagram 70
Scenario 2: Simulation Timing Diagram 71
Scenario 3: Simulation Timing Diagram 72
Relationship between AsmL and SystemC linesof code 73
Memory Access Transactor 74
Graphical FSM for the function mem_write() 75
UTOPIA Transactor after Adding Memory Access Protocol Library . 76
AsmL Code for function SendCell() 80
Automatically Generated SystemC Code 84
Automatically Generated SystemC Code Template 85
AsmL Code for function mem.read() 86

x1

AHB
AMBA
ASCII
ASF
ASM
ATM
AsmL
BCA
CPU
DLL
EDA
FIFO
FSM
GUI
GNU
HDL
IEEE
12C
Ip
00
PHY
PSL
PV
RTL
SERE
SoC

LIST OF ACRONYMS

Advanced High-performance Bus

Advanced Microcontroller Bus Architecture
American Standard Code for Information Interchange
Active HDL State machine Format
Abstract State Machines

Asynchronous Transfer Mode

Abstract State Machine Language

Bus Cycle Accurate

Central Processing Unit

Dynamic Link Library

Electronic Design Automation

First In First Out

Finite State Machine

Graphical User Interface

GNU’s Not Unix

Hardware Description Language

Institute of Electrical and Electronics Engineers
Intelligent Interface Controller

Intellectual Property

Object Oriented

PHisical laYer

Property Specification Language
Programmer’s View

Register Transfer Level

Sequential Extended Regular Expressions

System-On-Chip

xii

SVA
TLM
VCD
VHDL
UTOPIA

System Verilog Assertions

Transaction Level Modeling

Value Change Dump

VHSIC Hardware Description Language

Universal Test and Operations PHY Interface for ATM

xiii

Chapter 1

Introduction

1.1 Motivation

When systems were composed primarily of discrete parts such as microprocessors,
memory chips, analog devices, and application specific integrated circuits (ASICs),
the design process usually started with one or two system design experts who would
partition the functionality into hardware and software, and further partition the
hardware part to standard parts and ASICs.

In contrast, modern era system-on-chip (SoC) may contain one or more proces-
sors including 32-bit microcontrollers and digital signal processors (DSPs) or special-
ized media processors. On-chip memory, accelerated hardware units for dedicated
functions, and peripheral control devices, linked together by a common complex
on-chip communication network that incorporates on-chip buses. Software and its
architecture, layering, and complexity are inherent in such a design [19].

To specify, design, and implement such complex systems, incorporating func-
tionality implemented in both software and hardware forms, the need arises to move
beyond existing register transfer level (RTL) of abstraction. The new modeling
method transaction level modeling (TLM) [42] has been proposed recently to fulfil

this need. TLM allows the designers to focus on the functionality of the design,

while abstracting away implementation details that will be added at lower abstrac-
tion levels [13]. Transaction level models use software function calls to model the
communication between blocks in a system. This is in contrast to hardware RTL and
gate level models, which use signals to model the communication between blocks.
For example, a transaction level model would represent a burst read or write trans-
action using a single function call, with an object representing the burst request
and another object representing the burst response. An RTL hardware description
language model would represent such a burst read or write transaction via a series of
signal assignments and signal read operations occurring on the wires of a bus [46].

SoC design methodologies involve the integration of different intellectual prop-
erty (IP) blocks communicating between each other modeled at different levels of
abstraction. The ultimate goal in developing an SoC is to find a perfect match
between all system blocks in order to satisfy a set of predefined requirements (cost,
power, performance, etc.). In this process, it is inescapable to face the problem of
integrating IPs designed at different levels of abstraction. This, however, creates a
major concern about the communication mechanisms among the system elements.
For example, data transfer between an un-timed block and a clocked module requires
the definition of an explicit interface. In order to be able to link modules modeled at
different levels of abstraction, the notion of transactor has been recently introduced
[8, 11]. A TLM-RTL transactor as shown in Figure 1.1 would have two interfaces,
one at TLM side and another at RTL side. The TLM interface consists of virtual
declarations of the TLM functions. The RTL interface consists of the declaration
of the RTL ports. The implementation of each TLM function is done inside the
transactor module. When a TLM function is called from the TLM module, signal
activities take place between the transactor and the RTL module. To accomplish
the task of a TLM function on the RTL side, there can be a finite state machine

implemented inside the transactor [42].

clk/reset

A
]—’@) any

TLM Transactor RTL

A

Figure 1.1: TLM-RTL Transactor

Inside a TLM-RTL transactor, we need to implement one or more RTL hard-
ware protocols to accomplish a particular task on the RTL module. These protocols
are generally specified by the protocol designers in natural languages such as in
English texts. But natural languages are often incomplete and ambiguous. Also,
informal specification causes verification problems which stems from the fact that
there is no mathematical means to prove its correctness. Moreover, a naturally ex-
pressed specification cannot be executed or simulated in different relevant scenarios
thus creating the problem of validation. These problems may cause more bugs and
faults in the product, delays for time to market, etc.

On the other hand, if we write the transactor in a hardware description lan-
guage such as VHDL or Verilog or even SystemC [29], we will not have the feasibility
to use high level abstract constructs to specify the protocol early. In this thesis, we
propose to create formal models of the transactor protocol taking the natural lan-
guage text as reference. We will use the Abstract State Machine Language (AsmL)
[37] as a formal means for specification and communication and then translate it to
SystemC. The main advantage of using AsmL and translating it to SystemC instead
of using directly SystemC is the possibility to specify the transactor on a very high
level of abstraction enabling the customer and the design team members to under-
stand the specification. AsmL models are precise, concise and readable to a wide
range of people who have different areas of expertise due to its simple and intuitive

language constructs [12]. This model removes the language and communication

problem of natural languages and also provides efficient ways of verification and
validation. So, once the AsmL model is completed and verified, it can be used to
automatically generate the transactors in other languages. In this work, we have
generated SystemC code from AsmL specification according to developed syntax
and semantic translation rules developed in this thesis.

An AsmlL specification presents the following advantages [12]:
e Precise at appropriate level of detailing yet flexible and modifiable

e Simple and intuitive to be understandable by people of different background,

culture and expertise

e Concise specification which replaces hundreds of pages of tedious specification

expressed in natural languages
e Verifiable model using model checking, mechanized or manual proofs

e Validation can be done for different scenarios due to the machine executability

of AsmL models

ASMs (Abstract State Machines) [12] are used to specify both software and
hardware. In hardware circuits, simultaneous multiple operations like sending sig-
nals to different pins, may occur during a single clock cycle. ASM supports this kind
of parallelism due to its update semantic feature [12]. A TLM-RTL transactor deals
with transaction level model where the model is described from the programmer’s
point of view (PV) and also with register transfer level where the model is described
from hardware design point of view. Thus ASM fits properly to specify transactor
as it has the ability to describe both points of view.

Inside a TLM-RTL transactor, the hardware protocol can be modeled as a
finite state machine. ASM languages like AsmL (Abstract State Machine Language)
[37] provide powerful constructs and language features to model finite state machines

such as step, update semantics, etc. which are very useful in modeling transactors.

4

Along with the AsmL specification, we also provide another approach where
the behavior of the transactor can be described by Finite State Machines (FSM)
graphically. Graphs are frequently used in computer applications as a general data
structure to represent objects and relationships between them [16, 26]. They are
used to implement hierarchies, dependency structures, networks, configurations,
data flows, etc. Usually graph visualization tools support the following options: di-
rected, undirected, and mixed graphs, hyper graphs, hierarchical graphs and graph-
ical representations [47|. Hardware designers are familiar with graphical FSM and
thus it removes the overhead to learn a new specification language. Furthermore, a
visual representation of FSM simplifies the access of the protocol description. Graph-
ical FSMs are intuitive, easy to follow, and understand. After the FSM specification
is drawn, we translate it to AsmL according to an AsmL code generation algorithm.
Finally, the AsmL code is translated to SystemC according to the translation rules
proposed in this thesis.

It may be required to specify the transactor directly in SystemC if the speci-
fication writer is unfamiliar with ASM language or graphical FSM. In that case to
help the specification writer to ease the job, we provide another approach where a
SystemC template is automatically generated by our proposed transactor generator
tool. The specification writer can use the template to write the transactor directly

in SystemC manually.

1.2 Methodology

In the proposed methodology shown in Figure 1.2, we create a formal model of
the transactor protocol in AsmL based on natural language text. It can play a
significant role among the SoC design team members as an unambiguous, precise,
and concise specification. Syntax and semantics of AsmL is formalized and thus it

gives us the opportunity to verify formally the transactor protocol at an early stage of

Transactor
Specification in
Text

Simulation
by Execution

A

Graphical FSM
Specification

Validation ﬁ
Asml Specification
- Verification I

AsmL Tester
OR

1

* [

]

]

SystemC !
Transactor ' '
Generator Tool : :
' Model Theorem |1
v | Checking Proving :
1 (SMV, MDQG), (PVS) H
) 1

SystemC L T T T)
Transactor

Figure 1.2: Methodology for Transactor Generation and Verification

the SoC design process. AsmL specifications are executable, thus can be validated
by simulation for different scenarios using the asmlc compiler [37]. Using the
Microsoft’s AsmL Tester (Asmlt) tool, the FSM of the AsmL model can be generated
[37]. The generated FSM can be verified formally using model checking tools such
as SMV [14] or MDG [18]. Manual or mechanized theorem proving of ASM models
can be done by tools like PVS [17, 41] and Isabelle [31]. These formal verifications
will enhance the confidence in the correctness of the finally generated transactor.
Moreover, the AsmL Tester can generate test cases which can be used to simulate
the transactor model for different scenarios. Once the AsmL model is completed and
verified, it can be used as input to the proposed SystemC Transactor Generator Tool
to automatically generate the SystemC transactor. Another approach to specify the
transactor is by drawing Finite State Machine graphically. The FSM description
will be drawn in a State Diagram Editor and then the FSM description will be given
as input to the SystemC Transactor Generator Tool. The tool at the first stage
will generate AsrﬁL code from the FSM description and then at the next stage, the

AsmL code is translated to SystemC.

In the methodology shown in Figure 1.2, the blocks inside the dashed line (i.e.
formal verification of the Asml, models by model checking and theorem proving)
are not implemented in this thesis. The remaining blocks of the methodology are

implemented and discussed in the rest of the thesis.

1.3 Related Work

Regular expressions and temporal logic [39] are the two main formalisms that have
been used for formal interface specifications. Both formalisms can be expressed with
finite-state automata [27]. More recently, standard languages have been proposed to
specify system properties (in particular, the Property Specification Language (PSL)
[3] and the System Verilog Assertions (SVA) [30]. These languages are based on
temporal logic, but both of them also include a capability to specify regular expres-
sions. In PSL, such an extension is called Sequential Extended Regular Expressions
(SEREs). Balarin et al. [8] proposed to specify TLM-RTL transactors using PSL.
They took advantage from the SEREs aiming at generating synthesizable transac-
tors. This approach is limited by the expressivity of SEREs and by the fact that the
final transactor has to be synthesized. Hence, it presents a critical limitation of the
use of transactors in the SystemC design flow only at RTL. Many commercial tools
include features to generate SystemC transactors, for example: SystemC Transactor
Generation Wizard from Aldec’s Active HDL [4], Catapult C from Mentor Graphics
[33], TransactorWizard from Structured Design Verification [45], and Cohesive from
Spiratech [44]. The Cohesive tool uses the CY language as transactor specification.
In Active HDL v7.1, the SystemC Transactor Generation Wizard creates the inter-
faces and a template for the transactor. Then the users have to write the transactor
code in SystemC by hand. In contrast to above related work, we do not restrict

our method to certain abstraction level. We also propose a tool that automatically

generates SystemC codes for transactors.

We will now discuss some related work on the graphical representation of
FSMs. Different formats have been proposed as input to visualization tools. They
usually consist of a language core to describe the structural properties of a graph
and a flexible extension mechanism to add application-specific data. In our work,
we used the new and rich Active HDL State Machine Format (ASF) to represent
FSMs. The Active HDL tool uses the ASF format to store graphical information
to textual form and vise-versa. It also generates VHDL and Verilog code from
the FSM. Similar visualization tools include the daVinci graph visualization [15]
program and the VCG tool [48] which automatically computes the most optimal
way to view the finite-state automaton by minimizing the number of crossing edges.
Another visualization tool is AiSee [2], which is a part of the Absint static analyzer
tool suite and was developed initially to visualize the internal data structures found
in compilers. Today it is widely used in many different areas including visualizing
FSMs. AiSee automatically calculates a customizable layout of graphs specified in
GDL (graph description language) [15]. This layout is then displayed, and can be
printed or interactively explored. Xilinx company provides a commercial tool for
the rapid prototyping of an FSM design directly from the state diagram. Xilinx ISE
tools [49] include an editor, named StateCAD, which allows users to graphically
input state diagrams and translated them into a Verilog behavioral HDL model.
In [1], the authors implemented a tool that takes dot FSM format, then converted
it to Kiss format [40] and then generated VHDL code. In this work, we have
developed a tool that takes FSM description in ASF format and generates AsmL
code. This AsmL code is then used to automatically generate SystemC codes for

the transactors.

1.4 Thesis Contribution

In this thesis, we have developed a methodology and implemented a tool to auto-
matically generate SystemC transactors both from AsmL specifications and from
graphical FSMs. We have also done several case studies.

In summary, the thesis contributions are as follows:

1. We have defined a subset, rules and guidelines to specify transactors in AsmL.
Also, we have defined hardware data types and constants in AsmL to declare

RTL ports and to represent hardware oriented information.

2. We have defined a set of semantic and syntax translation rules to translate

AsmlL specification to SystemC.

3. We have defined a set of rules to specify transactors by graphical FSM and
developed an algorithm to generate AsmL code from graphical FSM descrip-

tion.

4. We have developed a SystemC Transactor Generator Tool for automatic gener-
ation of SystemC transactors both from AsmL specification and from graphical
FSM description. The tool consists of Graphical User Interface (GUI), FSM
to AsmL Code Generator, AsmL to SystemC Compiler and other necessary
modules. The tool also provides features to generate transactor libraries for

standard protocols.

5. We have done a case study with the UTOPIA transactor. We wrote AsmL
specifications and also drew graphical FSMs to specify the transactor. Then
we generated the SystemC transactors using our developed SystemC Trans-
actor Generator Tool. We also modeled a TLM ATM module and an RTL
PHY module in SystemC. A transactor library for memory access was also

generated.

1.5 Thesis Outline

This thesis is made up of six chapters. In Chapter 2, we provide an overview of
ASM, AsmL, SystemC, RTL and TLM modeling. This chapter lays a foundation
for better understanding of the thesis. In Chapter 3, we discuss the method for
specifying transactor in AsmL and its syntax and semantics translation to SystemC.
Also, specifying transactor using graphical FSM and algorithm for generating AsmL
code from FSM description is discussed. In Chapter 4, we describe different modules
of the SystemC Transactor Generator Tool. In Chapter 5, we discuss the case study
of UTOPIA transactor and transactor library generation. In Chapter 6, we provide
a summary of the thesis, some concluding discussions and future work hints. Finally,

Appendix A contains some AsmL and SystemC source codes for the case studies.

10

Chapter 2

Preliminaries

In this chapter, we give a brief insight into ASM, AsmL, SystemC, RTL and TLM
modeling. This chapter would provide a good foundation for the understanding of

the rest of the thesis.

2.1 Abstract State Machines (ASM)

Abstract State Machines (ASM) is a specification method for software and hardware
modeling, where a system is modeled by a set of states and transition rules which
specifies the behavior of the system [12]. Transition rules specify possible state
changes according to a certain condition. The notation of ASM is efficient for

modeling a wide range of systems and algorithms.

2.1.1 States

An ASM model consists of states and transition rules. States are given as many
sorted first-order structures, and are usually described in terms of functions. A
structure is given with respect to a signature. A signature is a finite collection of
function names, each of a fixed arity. The given structure fixes the syntax by naming

sorts and functions, and provides carrier sets and a suitable symbol interpretation

11

on the carrier sets, which assigns a meaning to the signature. So a state can be
defined as an algebra for a given signature with universes (domains or carrier sets)
and an interpretation for each function symbol.

States are usually described in terms of functions. The notion of ASM includes

static functions, dynamic functions and external functions.

e Static functions have a fixed interpretation in each computation state: that
is, static functions never change during a run. They represent primitive op-
erations of the system, such as operations of abstract data types (in software

specifications) or combinational logic blocks (in hardware specifications).

e Dynamic functions which interpretation can be changed by the transition oc-
curring in a given computation step, that is, dynamic functions change during
arun as a result of the specified system’s behavior. They represent the internal

state of the system.

e External functions which interpretation is determined in each state by the
environment. Changes in external functions that take place during a run are
not controlled by the system; rather they reflect environmental changes which

are considered uncontrollable for the system.

e Derived functions which interpretation in each state is a function of the in-
terpretation of the dynamic and external function names in the same state.
Derived functions depend on the internal state and on the environmental sit-
uation (like the output of a Mealy machine). They represent the view of the

system state as accessible to an external observer.

2.1.2 Terms

Variables and terms are used over the signature as objects of the structure. The

syntax of terms is defined recursively, as in first-order logic:

12

e A variable is a term. If a variable is Boolean, the term is also Boolean.

e If f is an r- ary function name in a given vocabulary and ¢;...t, are terms,

then f(t;...t,) is a term. The composed term is Boolean if f is relational.

2.1.3 Locations and Updates

States are described using functions and their current interpretations. The state
transition into the next state occurs when its function values change. Locations and
updates are used to capture this notion [21, 22, 23].

A location of a state is a pair of a dynamic function symbol and a tuple of
elements in the domain of the function. For changing values of locations the notion
of an update is used. An update of state is a pair of a location and a value. To
fire an update at the state, the update value is set to the new value of the location
and the dynamic function is redefined to map the location into the value. This
redefinition causes the state transition. The resulting state is a successor state of
the current state with respect to the update. All other locations in the next state

are unaffected and keep their value as in the current state.

2.1.4 Transition Rules

Transition rules define the changes over time of the states of ASMs. While terms
denote values, transition rules denote update sets, and are used to define the dynamic
behavior of an ASM. ASM runs starting in a given initial state are determined by
a closed transition rule declared to be the program. Each next state is obtained by
firing the update sets at the current state. Basic transition rules are skip, update,
block, and conditional rules.

The skip rule is the simplest transition rule. This rule specifies an “empty

step”. No function value is changed. It is denoted as

13

skip

The update rule is an atomic rule denoted as

f (tl, tz,tn) =1

It describes the change of interpretation of function f at the place given by
(t1, ta2,...t,) to the current state value of t.

A block rule is a group of sequence of transition rules. The execution of a
block rule is the simultaneous execution of the sequence of the transition rules. All
transition rules that specify the behavior of the ASM are grouped into a block indi-

cating that all of them are fired simultaneously.

block
R1
R2
endblock

In conditional rules a precondition for updating is specified.

if g then
R1
else
R2
endif

where g is a first-order Boolean term. RI and R2 denote arbitrary transition rules.
The condition rule is executed in state S by evaluating the guard g, if true R1 fires,

otherwise R2 fires.

14

2.1.5 Abstract State Machine Language (AsmL)

Abstract State Machine Language (AsmL) [37] is an executable specification lan-
guage based on the theory of ASM. It is fully object-oriented and has strong math-
ematical constructs in particular, sets, sequences, maps and tuples as well as set
comprehension, sequence comprehension and map comprehension. ASMs steps are
transactions, and in that sense AsmL programming is transaction based. Although
the language features of AsmL were chosen to give the user a familiar programming
paradigm, the crucial features of AsmL, intrinsic to ASMs are massive synchronous
parallelism and finite choice. These features give rise to a cleaner programming style
than standard imperative programming languages. Synchronous parallelism and in-
herently AsmL provide a clean separation between the generation of new values and
the committal of those values into the persistent state.

AsmlL is integrated with Microsoft’s software development environment includ-
ing Visual Studio, MS Word, and Component Object Model (COM), where it can
be compiled and connected to the .NET framework. Microsoft is distributing AsmL
with MS Spec Explorer [36] recently. AsmL effectively supports specification and
rapid prototyping of different kinds of models. The AsmL tester [37] can also be
used for FSM generation or test case generation.

An AsmL model (or program) is defined using a fixed vocabulary of symbols
of our choice. It has two components: the names of its state variables and a fixed
set of operations of an abstract state machine [34]. Values are simple, immutable
elements like numbers and strings. State can be seen as a particular association of

variable names to values, in the style of a dictionary: (namel, vall), (name2, val2),

A run of the machine is a series of states connected by state transitions. Each
state transition, or step, occurs when the machine’s control logic is applied to an
input state and produces an output state. “Control logic” is a synonym for the

machine’s set of operations.

15

The program consists of statements. A typical statement is the conditional
update “if condition then update.” Each update is in the form “a := b” and indicates
that variable name a will be associated with the value b in the output state.

The program never alters the input state. Instead, each update statement
adds to a set of pending updates. Pending updates are not visible in any program
context, but when all program statements are invoked, the pending updates are
merged with a copy of the input state and returned as the output state.

An inconsistent update error occurs if the update set contains conflicting infor-
mation. For example, the program cannot update a variable to two different values

in a single step.

2.2 SystemC

SystemC, one of the proposals of the electronic design automation (EDA) community
has become the IEEE standard (IEEE1666-2005) [29] for system level design [32].
SystemC aims at bridging the gap between hardware and software design flows.
Furthermore, it promotes the integration of different levels of abstraction in a unique
design process. SystemC permits to model a system at different levels of abstraction:
functional untimed, functional timed, transactional, behavioral, bus cycle accurate
(BCA) and register transfer level. SystemC provides hardware-oriented constructs
within the context of C++ as a class library implemented in standard C++. Its
use spans design and verification from concept to implementation in hardware and
software. SystemC provides an interoperable modeling platform which enables the
development and exchange of very fast system-level C+4 models. It also provides

a stable platform for development of system-level tools.

16

2.2.1 SystemC Language Structure

The SystemC language architecture is shown in Figure 2.1. The language is built
on top of standard C++. The layer above it is the so called core layer (or layer
0) of the standard SystemC language. It contains constructs and data types for
simulating hardware oriented features. It also contains an event driven simulation
kernel. Then the layer above the kernel layer is the layer 1 of SystemC; it comes
with a predefined set of interfaces, ports and channels. Finally, the layers of design
libraries above the layer 1 are considered separate from the SystemC language. The
user may choose to use them or not. Over time other standard or methodology
specific libraries may be added and conceivably be incorporated into the standard
language.

SystemC has a notion of a container class, called module, that provides the

ability to encapsulate structure and functionality of hardware/software blocks for

Standard Channels for Various Methodology-Specific Channels
Models of Computation

Kahn Process Networks, Master/Slave Library, etc.
Static Dataflow, etc.

Elementary Channels
Signal, Timer, Mutex, Semaphor, FIFQO, etc.

Core Language Data-Types

Modules 4-valued logic types (01XZ)
Ports 4-valued logic vectors
Processes Bits and bit-vectors

Events Arbitrary-precision integers
Interfaces Fixed-point numbers
Channels C++ user-defined types

Event-Driven Simulation Kernel

C++ Language Standard

Figure 2.1: SystemC Language Structure

17

partitioning system designs. A system is essentially broken down into a containment
hierarchy of modules. Each module may contain variables as simple data members,
ports for communication with the outside environment and processes for performing
modules functionality and expressing concurrency in the system. Three kinds of
processes are available: method processes, thread processes, clocked thread processes.
They run concurrently in the design and may be sensitive to events which are notified
by channels. A port of a module is a proxy object through which the process accesses
a channel interface. The interface defines the set of access functions (methods) for a
channel, while the channel provides the implementation of these functions to serve
as a container to encapsulate the communication of blocks. There are two kinds
of channels: primitive channels and hierarchical channels. Primitive channels do
not exhibit any visible structure, do not contain processes, and cannot (directly)
access other primitive channels. A hierarchical channel is a module, i.e., it can have

structure, it can contain processes, and it can directly access other channels [10, 19)].

2.2.2 SystemC Simulator

The simulation kernel for SystemC follows the evaluate-update paradigm that is
common in HDLs. The concept of delta cycles, where multiple evaluate-update
phases can occur at the same simulation time, is supported [19]. A simplified

version of the simulation algorithm is as follows:

1. Initialization: Execute all processes to initialize the system.

2. Evaluate: Execute a process that is ready to run. Iterate until all ready
processes are executed. Events occurring during the execution could add new

processes to the ready list.

3. Update: Execute any update calls made during any step.

18

4. If delayed notifications are pending, determine the list of ready processes and

proceed to Evaluate phase (step 2).

5. Advance the simulation time to the earliest pending timed notification. If no
such event exists, the simulation has finished, else determine ready processes

and proceed to step 2.

Figure 2.2 illustrates a generic simulation methodology in the SystemC en-
vironment. The SystemC model can be written at different levels using C/C++
augmented by the SystemC class library. The class library serves two important
purposes. First, it provides the implementation of many types of objects that are
hardware-specific, such as concurrent and hierarchical modules, ports, and clocks.
Second, it contains a kernel for scheduling the processes. The design’s SystemC code
can be compiled and linked together with the class library with any standard C++
compiler (such as GNU’s gee, Microsoft Visual C++), and the resulting executable
serves as the simulator of the user’s design. The testbench for verifying the correct-

ness of the design is also written in SystemC and compiled along with the design.

SysternC Models:

+System Level sateimnC T :
-Behavioral RT Level [SystamO Testhionches

RT Level

C++ Compiler

h 4

Exacutabia
{Simulation) .~

o i s s i . T

E
[od 2 3
Debugger

4

Trace Files

g S ol o v d S e R

Figure 2.2: SystemC Simulation Methodology

19

The executable can be debugged in any familiar C++ debugging environment (such
as GNU’s gdb). Additionally, trace files can also be generated to view the history
of selected signals using a standard waveform display tool.

The import of a traditional software development environment into the hard-
ware design and system design scenario entails some powerful advantages. The
sophisticated program development infrastructure already in place for C/C++ can
be directly utilized for the SystemC verification and debugging tasks. For hardware
designers traditionally used to view simulation data in the form of waveform dis-
plays, the trace file generation facility provides a familiar interface. Conceptually,
the most powerful feature is that the hardware, software, and testbench parts of the
design can be simulated in one simple and unified simulation environment without

the need for clumsy co-simulations of disparate modeling paradigms.

2.3 Register Transfer Level Modeling

The Register Transfer Level (RTL) is a modeling style that corresponds to digital
hardware synchronized by clock signals. This modeling style is widely used within
languages such as Verilog and VHDL, and it is widely supported by commercial
hardware synthesis tools. In the RTL style, all communications between processes
occur through signals. Processes may either represent sequential logic, in which
case they are sensitive to a clock edge, or they may represent combinational logic, in
which case they will be sensitive to all inputs. RTL modules are pin accurate. This
means that the ports of an RTL module directly correspond to wires in real-world

implementation of the module. RTL modules are also cycle-accurate [19].

20

2.4 Transaction Level Modeling

Transaction level modeling (TLM) is becoming a usual practice for simplifying ar-
chitecture exploration and system-level design. It allows designers to focus on the
functionality of the design, while abstracting away implementation details that will
be added at lower abstraction levels [13]. Transaction level models use software
function calls to model the communication between blocks in a system. This is in
contrast to hardware RTL and gate level models, which use signals to model the
communication between blocks. For example, a transaction level model would rep-
resent a burst read or write transaction using a single function call, with an object
representing the burst request and another object representing the burst response.
An RTL HDL model would represent such a burst read or write transaction via a
series of signal assignments and signal read operations occurring on the wires of a
bus [46].

Complexity management, particularly at the highest level of design, has led
to the emergence of TLM. The primary goal of TLM is to dramatically increase
simulation speed, while offering enough accuracy for the design task at hand. The
increase in speed is achieved by the TLM abstracting away the number of events and
amount of information that have to be processed during simulation to the minimum

required. In summary, the benefits of Transaction Level Modeling are as follows

[13]:

Allows to tackle complexity by hiding implementation details

e Faster simulation (up to 1000x) than RTL

System level design exploration and verification are simplified

Early platform for software development can be quickly developed

Deterministic test generation is more effective and less tedious than at RTL,

21

since tests are written without taking care of the communication protocol

between components

22

Chapter 3

Specifying Transactors

Inside a TLM-RTL transactor, we need to implement one or more RTL hardware
protocols to accomplish a particular task on the RTL module. These protocols are
generally specified by the protocol designers in natural languages such as in English
texts. According to the proposed transactor generation methodology described in
Section 1.2, we create a formal model of the transactor protocol taking the natural
language text as reference. The formal models can be either in AsmL or in graphical
FSM.

In this chapter, we will describe how to specify transactors in AsmL and its
translation to SystemC. Also, specifying transactor in graphical FSM and AsmL

code generation from FSM is also discussed.

3.1 Specifying Transactor in AsmL

We propose to create formal models of the transactor in AsmL based on the natural
language text specification. AsmL models are precise, concise and readable to a
wide range of people who have different areas of expertise due to its simple and
intuitive language constructs. Also, syntax and semantics of AsmL is formalized

and thus it gives us the opportunity to verify formally the transactor protocol at

23

early stage of the SoC design process. This verification will enhance the confidence
in the correctness of the finally generated transactor. So, once the AsmL model
is completed and verified, it can be used to automatically generate the transactors
in other languages such as in SystemC. The AsmL specification is translated to

SystemC based on our proposed syntax and semantics translation rules.

3.1.1 AsmL Subset

We have chosen a subset of AsmL for transactor specification. The subset contains
constructs and symbols that can be used for RTL hardware protocol specification.
Figure 3.1 shows the chosen subset of AsmL keywords for transactor specification.
Enumeration declaration, variable declaration, constant declaration, comment lines,
step statements, iteration statements, conditional expressions, assignment state-
ments, assertion statements, mathematical and logical symbols, etc. are included in
the subset. Non-deterministic and high level software specification related keywords
are not handled. To specify transactor in AsmL, we choose the data types shown in

Table 3.1.

Table 3.1: Subset of AsmL Data Types

Data Type Meaning

Boolean The type containing the values true and faise
Byte 8-bit unsigned integer type

Short 16-bit signed integer type

Integer 32-bit signed integer type

Long 64-bit signed integer type

Char

Unicode character type. Used to represent a single bit
which consist of ‘1°, ‘0°, ‘X’ or ‘Z’

String Unicode string type. Used to represent bit vectors
which consist of 1°, ‘0’, ‘X’ and ‘Z’

The type of all sequences formed with elements of

type &

Seq of A

24

= : and not

<= < as or

<> = const otherwise
>= > else public
(// elseif | require
) r= enum skip

* ensure false step

+ result if then

’ return import | true

- var match until

/ ref mod while

Figure 3.1: AsmL Subset

3.1.2 Hardware Data Types in AsmL

AsmL is mostly designed for software specification and it lacks hardware related
data types to specify hardware. As we are proposing to describe RTL protocols in

AsmL, we need to add data types, constants and functions to specify hardware in
AsmL.
We declare the data types for RTL ports as shown in Figure 3.2

_Set4Val = {'1',)0",’X",'Z’}

public type Logic = Char where (value in __Set4Val)
public type Lv_2 = String where (Size (value) <= 2)
public type Lv_4 = String where (Size (value) <= 4)
public type Lv_8 = String where (Size (value) <= 8)
public type Lv_16 = String where (Size (value) <= 16)
public type Lv_32 = String where (Size (value) <= 32)
public type Lv_64 = String where (Size (value) <= 64)

Figure 3.2: Hardware Data Types in AsmL

29

For instance, we have declared Logic type as an alias of Char type to represent
single wire RTL port. Here, we have put a type constrain so that variables declared
as Logic type can only have the value ‘1’, ‘0’, ‘X’ or ‘Z’. These letters are used
to represent 4 valued data type as logic 1, logic 0, unknown and high impedance,
respectively. To represent logic vectors, we have used String types which are groups
of characters. We also put length constraints on the String types according to the
port bus-width. For example, variables declared as type Lv_2 can hold information
for 2 bit width RTL port. Assigning a string of length larger than 2 with the variable
will cause a constrain violation error.

The constants shown in Figure 3.3 are also declared for assigning them with

single bit RTL ports.

public const LOGIC 0 ="0’
public const LOGIC_1 ="1'
public const LOGIC X ="X'
public const LOGIC Z ="'Z'

Figure 3.3: Hardware Constants in AsmL

We also declare two functions (toInt and toLv) to convert binary strings com-
posed of ‘1’, ‘0, ‘X’ and ‘Z’ to their equivalent decimal value and vice-versa namely.
These functions are frequently used inside a transactor specification because they
deal with both binary strings for the RTL ports and decimal values for the TLM
function parameters.
public tolnt (s as String) as Integer

public toLv (n as Integer) as String

Figure 3.4: Binary String to Decimal and Vise-Versa Conversion Functions

26

The algorithm for binary string to decimal and vise-versa conversion functions

are shown in Figures 3.5 and 3.6, respectively.

Procedure tolnt (S: null terminated string consist of characters ‘1°, ‘0°, X or Z’) as
Integer
N:=0
L :=Length(S)
Forl:=0toL-1
If(S[L-1-1]=XorS[L-1-1]= Z")then
ShowMsg (“Cannot Convert to Decimal”’)

Exit Procedure
Else
N:=N+S[L-1-I] *(2~1)
Return (N)
End Procedure

Figure 3.5: Binary String to Decimal Conversion Algorithm

Procedure toLv (N: Integer containing Decimal value) as String
I:=0
Q:=0
Do
S[1] :=ToChar (Q mod2)
Q:=Qdiv2
I:=1+1
Loop until Q =0
ReverseString (S)
Return (S)
End Procedure

Figure 3.6: Decimal to Binary String Conversion Algorithm

3.1.3 The Step Rule

In AsmL, we describe the behavior of a system in a step-by-step correspondence. So,

to describe an RTL protocol in AsmlL, the steps to perform the task are determined

27

first. We define “each step corresponds to one clock cycle. It means the codes between

two consecutive steps are considered to be executed in a single simulation clock cycle

in SystemC”. We will refer to this rule as the step rule.

3.1.4 Guidelines for Specifying Transactor

L.

AsmL, as the name implies is a state machine. So, when we want to describe
an RTL protocol in AsmL, the first task is to find the distinct steps or states to
perform the operation and then assign state names with them. An enumerated
data type with the state names can be declared as a type for state variables

(say, CurrentState). Then initialize the state variable with Initial State.

If there is more than one clock signal port then specify the clock name which
will be used as the clock signal for the state machine using the function Set-

ClockSignal (< ClockSigName:Logic>, < isPosEdge:Boolean>).

The step rule must be followed when writing the specification. The keywords
and constructs used in the specification must be in the AsmL subset defined

in Section 3.1.1

. Sometimes it is necessary to repeat a segment of code for a specific number

of times. To do this, a state containing the segment of code is made and a
variable is declared for counting the number of times that the state machine
has reached that state. The state machine will come to the same state, repeat
the segment of code and increment the counter variable. When the counter

variable reaches its final value then we update the state variable to next state.

. In SystemC simulation, the transactor is connected with an RTL unit. The

RTL unit responses, according to the requests from the transactor ports. But
in AsmL specification, the transactor’s RTL port are not connected with any

RTL unit. So, for proper execution of the AsmL specification, we can use

28

standard input (i.e. keyboard), to give RTL responses or use a response file
from where the transactor will read the RTL responses. It also gives us the
opportunity to run the specification for different scenarios. For debugging
AsmlL specification, we can use standard output (i.e. display), or output file
where different values of the transactor variables will be shown or stored for
different states. These standard input/output or file operation functions that
are used for giving responses and debugging are removed when the specification

is translated to SystemC.

3.1.5 Limitations of AsmL

1. AsmL supports only one dimensional array (sequences) and the array elements
cannot be modified at run time. At run time they can only be read, but can

not be updated with new values.

2. AsmL does not support function parameters to pass by reference. Though
AsmL has a keyword ref, but it is not yet implemented for passing function
parameters by reference. In AsmL, a function parameter can only be read.
Assigning any value with function parameter (which is normally done when it
is passed by reference) in the body of the function will generate an error. But
in SystemC, we use pass by reference frequently and assign values to it when

its value needs to be read by the caller function.

3.2 Translation from AsmL to SystemC

The translation from AsmL to SystemC is done based on several rules so that the
original behavior of the AsmL code is preserved in the translated SystemC code.
Ali Habibi [24, 25] proposed some rules for AsmL to SystemC translation. We
have expanded and in some cases modified some of these rules according to our

definitions.

29

3.2.1 Data Type Mapping

AsmL basic data types are mapped to their equivalent SystemC data types as shown

in Table 3.2
Table 3.2: AsmL Data Type Mapping with SystemC
AsmL SystemC Comments

Boolean bool

Byte unsigned char

SThoTt Short Dat.a types for wuser defined
variables

Integer int

Long long

Char char

Logic sc_logic

Lv_n (where, n=2,4,.,64) | sc_lv < n > Data types for user defined
hardware orientated variables.

3.2.2 Semantic Translation

The execution semantics of a language defines how and when the various constructs
of a language should produce a program behavior. For example, the semantics may
define the strategy by which expressions are evaluated to values, or the manner in
which control structures conditionally execute statements. Semantics of a program-
ming language tell how the program is executed. AsmL program executes differently
compared to other sequential languages due to its update semantics. On the other
hand, SystemC has its own semantics for simulating hardware like process schedul-
ing, simulation timing, etc. In the following sections, we will discuss some aspects

of the semantic translation from AsmL to SystemC.

AsmL Variable

In sequential languages like C/C++, when we assign a value with a variable, it is
assigned immediately. If we read the variable in the next statement, we get the

assigned value [28] as shown in Figure 3.7.

30

// C code
int a = 1;
a=2;

printf (‘‘a=\%i’’ , a) ; // prints a=2

Figure 3.7: Variable in C language

In contrast, variables declared in AsmL, behave different from sequential pro-
gramming languages. If we assign a value with an AsmL variable then read it in
the same step, we will get its old value, not the newly assigned value. Whenever
there is a step statement, the variables are updated with the newly assigned values

as shown in Figure 3.8.

// AsmL code

Var a as Integer =1

step

a =2

WritelLine (‘‘a=’’ + a) //prints a=1
step

WriteLine (‘‘a=’’ + a) //prints a=2

Figure 3.8: Variable in AsmL

In SystemC, the signals declared as sc_signal <type> also behave similarly
to the AsmL variable. If we write a value to a SystemC signal, it is not updated at
that simulation (§) cycle. If we read that signal at the same simulation cycle, we
will get its old value, not the newly written value. For thread process, the signals

are updated with newly written values whenever the program reaches a wait ()

31

statement as shown in Figure 3.9

// SystemC code

sc_signal <unsigned int> a ;

a.write(1) ;

wait (SC_ZERO_TIME)

a.write (2)

cout << ‘‘a=’’ << a.read() << endl ; //prints a=1

wait (clk->posedge_event());

cout << ‘‘a=’’ << a.read() << endl ; //prints a=2

Figure 3.9: Variable in SystemC

So, we found that there is a semantical similarity between AsmL variable and

SystemC signals. We translate variable declaration in AsmL to SystemC as shown

in Table 3.3

Table 3.3: Translation of AsmL Variable to SystemC

AsmL

SystemC

Comments

Var a as Integer

sc_signal <int> a ;

Variable Declaration

Var x as Short =

4

sc_signal <short> x ;

X.write (4) ;
wait (SC_ZEROQO_TIME) ;

Variable Declaration with Initial
Value

sc_signal cannot be declared inside a member function of a SystemC mod-

ule. To solve this problem, we declare all the local AsmlL variables globally in the

SystemC class using the naming convention: <FunctionName>_< VariableName>.

This naming convention solves the problem of multiple declarations of variables

which have the same name in different member functions.

32

Update Semantics and Step Statement

In AsmL, all variables are updated whenever the program reaches any step state-
ment. In SystemC, all signals are updated whenever the program reaches a wait ()
statement.

We translate AsmL step in SystemC to wait (clk->posedge_event()) where
clk is the clock signal name and posedge_event indicates the positive edge event
of the clock signal. This translation satisfies the update semantics and also respects
the step rule as this wait statement will cause the SystemC scheduler to increment
its simulation time by one clock cycle [19].

For transactors that communicate with cycle accurate RTL models through
request-grant protocols, sometimes it is necessary for them to update the RTL ports
a little time (setup time) before the clock event occurs. In that case, we put a
statement wait (fps) before the wait(clk->posedge._event()) where tps = T -

tsw [T=Clock period, ts, = setup time]

Table 3.4: Translation of AsmL Update Semantic to SystemC

AsmL SystemC

step Update () ;

where, Update ()

{ wait (tps) ;

wait (clk—->posedge_event()); }

3.2.3 Syntax Translation

The syntax of a language describes the possible combinations of symbols that form
a syntactically correct program. The meaning given to a combination of symbols
is handled by semantics. Each programming language has its own syntax and it
describes how a program statement or construct can be written. For instance, se-
quential languages like C and Pascal, both have different syntax for integer variable
declaration, but their semantics are the same. AsmL has its own syntax for writ-

ing code. SystemC has similar syntax like C++. In the following sections, we will

33

discuss syntax translation from AsmL to SystemC.

Conditional Statement

Conditional statements allow the execution of a statement or a block of statements
depending upon conditions which truth value may change while the program is
running. The mapping between AsmL and SystemC conditional statements is shown

in Table 3.5

Table 3.5: Translation of Conditional Statements

AsmL SystemC Comment
if (condition_1) then if (condition_1)
statement_1 {
elseif (condition_2) then statement_1 ; condition is a 1% order Boolean
statement_2 } . int
else statement 3 else if (condition 2) expression or an integer
{ expression. The block is executed
statement_2 ; if the condition is evaluated as
} true or any non-zero value.
else If the condition is evaluated as
{ Jalse or zero, the else block is
statement_3 ; executed.
}
match (exp) switch (exp) exp is an integer expression.
val_l: { Val 1,Val 2 are integer
statement_l1 case val_l: constants. If the evaluated exp
val_2: statement_1; .
X matches with the case constants
statement_2 break;) X
otherwise listed, then the corresponding
statement_3 case val_2: case block is executed.
statement_2; Otherwise, default block is
break; executed. The break statement is

used to execute the blocks in a

default: mutually exclusive manner.

statement_3;

Iteration Statement

Iteration is the repetition of a statement or a block of statements in a program. The

mapping between AsmL and SystemC iteration statements is shown in Table 3.6

34

Table 3.6: Translation of Iteration Statements

AsmL

SystemC

Comment

step while (condition)

statement_1

statement_n

while (condition)
{

statement_1 ;
statement_n ;

Update () ;
}

where,
Update ()
{
wait (tps) 7
wait (clk-posedge_event();

}

condition is a Boolean
expression or an integer
expression. The loop is

executed if the condition is
evaluated as #frue or any
non-zero value.

step until {(condition)
statement_1

statement_n

while ! (condition)

{
statement_1 ;

statement_n ;

Update () ;
}

The loop is executed if the
condition is evaluated as
Jalse or zero.

Assertion Statement

AsmL supports both pre-condition and post-condition assertion statements. We

translate them to SystemC as shown in Table 3.7

Table 3.7: Translation of Assertion Statements
AsmL SystemC Comment
require (condition) assert (condition) ; Pre-condition assertion

statement. The assertion fails and
generates exception message if
the condition
false.

is evaluated as

ensure (P (result))

assert (P(ret_val

))i

Post-condition
statement.
propositional
result
return value of a function. In
SystemC, resuit is replaced by the
return expression (ret_val) of
the function.

assertion
P (result) is a
function where
keyword contains the

35

Symbols and Operators

Different symbols are used in a programming language to represent special meanings.
Operators are symbols that operate on one or more expressions and thus produce a
value. The mapping between AsmlL and SystemC symbols and operators are shown

in Table 3.8

Table 3.8: Translation of Symbols and Operators

Symbols
AsmlL SystemC Comment
{ (or Opening bracket,

[translated to ‘[* for arrays
)) or Closing bracket,

] translated to ‘]* for arrays
/! // Comment
Arithmetic Operators
AsmL SystemC Comment
+ + Add
- - Subtract
* Multiply

Division

Conditional Operators
AsmL SystemC Comment
= == Is equal to
<> != Is not equal to
> > Is greater than
< < Is less than
>= >= Is greater than or equal to
<= <= Is less than or equal to
Logical Operators
AsmL SystemC Comment
and && Logical AND
or |l Logical OR
not ! Logical NOT

Assignment Statement

In AsmL, assignment of a value with a variable is done by using the assignment

¢ 7

operator “:='. Inside a transactor, there are several kinds of variables. Some are

36

TLM function parameters, some are RTL ports and some are user defined AsmL
variables. When an RTL port variable value needs to be assigned with a TLM
function parameter or any user defined Integer type variable, it must be converted
to its corresponding decimal value using the function tolnt. In the same way, when an
Integer type variable needs to be assigned with an RTL port, it should be converted
to its corresponding binary string using the function toLv. The translation for
assignment statements between different variables to SystemC is shown in Table

3.9

Table 3.9: Translation of Assignment Statements

AsmL SystemC Comment

Where a, b are TLM

a :=b a=>b; .
! function parameters

Where,

a is TLM function
parameter,

b is RTL port or user
defined variable

toInt (b) a = toInt(b.read()) ;

o
I

Where,
a is RTL port or user
defined variable;

toLv (b) a.write (tolv (b)) ; b is TLM function parameter

s
I

Where a, b are RTL ports or
a :=b a.write(b.read()); user defined variables

Enumeration and Constant Declaration

Enumerations are user defined integer types which instance objects can be assigned
with constants declared as the enumerators. Constants are objects which values do
not change while the program runs. The mappings between AsmL and SystemC

enumeration and constant declarations are shown in Table 3.10

37

Table 3.10: Translation of Enumeration and Constant Declarations

AsmL SystemC Comment
enum typeName enum typeName
Zﬁﬁﬁ‘;;gtgg { Em_lmerated type declaration. The
enumeratorl = 0 , variables of the user defined type
enumuratorN enumurator2 , typeName can only have the
values of the enumerators listed.
enumuratorN

b

const X as Integer = 4

const int X = 4 ; Constant declaration

In SystemC, enumeration declaration cannot be done inside member function
of a module. So, we declare enumerations and their enumerators globally in the
class module using naming convention <ZFunctionName>_<Enumuration> and <
FunctionName>_< Fnumurators>. This naming convention solves the problem of
multiple declarations of enumerations and their enumerators which have the same

name.

Generating Blocks

AsmL, in contrast to other programming languages does not use braces or keywords
like begin or end to specify a block. AsmL uses appropriate number of white space
at the left of the line to determine a block. Blocks can be nested. We have developed
a stack based algorithm to generate blocks in SystemC as shown in Figure 3.10.

If an AsmL line starts more to the right than its previous line then we push
its number of left white space and a reason ID which indicates the previous AsmL
line. If an AsmL line starts more to the left than its previous line then the previous
block or blocks should be closed first. Here we start popping the number of left
white spaces from the stack and depending on the reason ID we close blocks until
the popped number of left white space is aligned with the current line number of

left white space. Table 3.11 shows an example of block generation.

38

NoOfLeftWs: Holds the number of white space character at the left of an AsmL line

GetNoLeftWSs () as Integer: Returns the number of left white space of the next AsmL line

PrevNoLeftWS: Stores the number of left white space of the previous AsmL line

Push (x, y): Push data x, y to stack

AsmLReason: Holds information about the AsmL line whether it is an if statement, step, loop statement, etc.
PrevAsmLReason: Holds AsmLReason for the previous AsmL line

OpenBlock (AsmLReason, NoLeftWs): Put “{‘or block starting characters based on AsmLReason

Pop (x, y): Pop data to x, y from stack

CloseBlock (AsmLReason, NoLeftWS): Put ‘}* or block ending characters based on dsmLReason

Do
NoLeftWsS = GetNoLeftWs ()

If (NoLeftWS > PrevNoLeftWS)
Push (PrevAsmLReason, NoLeftWs)
OpenBlock (PrevAsmLReason, NoLeftWs)

If (NoLeftWS < PrevNoLeftWs)
Do
Pop (AsmLReason, PopedNoLeftWs)
If (NoLeftWS < PopedNoLeftWsS)
. CloseBlock (AsmLReason, PopedNoLeftWs)
Else Push (AsmLReason, PopedNoLeftWSs)
While (PopedNoLeftWs > NoLeftWS and Stack Not Empty)
PrevNoLeftWS = NoLeftWsS
Loop until (End of Specificaion)

CloseAllBlocks()

Figure 3.10: Algorithm for Generating Block

39

Table 3.11: Translation of Blocks

AsmL SystemC
if (a.read() == 1)
if a = 1 Then {
1= 2
; .= 38 X.write (20) ;
else y.write (30) ;
x := 50 }
if a = 2 then else
y = 60 (
z := 10 x.write (50) ;
// z is out of the block of else if (a.read () == 2)
// as it started aligned with {
// the else statement

y.write (60) ;

}
}

z.write (10) ;

3.3 Specifying Transactor in Graphical FSM

An FSM can be represented graphically, which would help the designer to visual-
ize and design in a more efficient way. In this section, we will discuss specifying
transactor behavior by drawing graphical FSMs. We propose to create a formal
model of the transactor protocol by drawing FSMs based on the natural language
text specification. After the protocol is drawn, we translate the FSM description to
AsmL using our developed AsmL code generation algorithm.

Figure 3.11 represents an FSM for an UTOPIA transactor protocol. The
detailed protocol description is done in Chapter 5. The gray circles represent state.
The state label is shown in the middle of the circles. The triangular ending arrow
indicates the initial state as shown in state S_CheckCellAvailable. A state may have
action statements. They are shown in white boxes which contain the actions of the
assigned state. The arrows are the transition lines. It tells us about what is the
next state in the successive clock cycles. A transition line may have a guard or a
Boolean condition associated with it. In that case, the transition only occurs if the

guard is evaluated as true. We can also set transition line priorities if more than one

40

Tx Data
szoc

wEn_

TxClav Rx$0C RxClic
Tx Clk RxEn_
RxData RxClav

public SendCell { StartCellNo as integer, EndCellNo as Integer, SrcCell as Seq of Integer)

{ycon
OBn

$_Ch

TxEn_ = LOGIC_D

if { Bn < 53)then
Bn :=Bn+1
else
Bn =1

if { Bn = 1)then
TxS0C = LOGIC_1
else
Tx$0C = LOGIC_O
TxData :=tolv (SrcCell ((Cn - 13753 + Bn))

if ¢ B = 53 Ythen

Cn:=Cn+1

TxEn_ = LOGIC_1
TxData := “}0000000]

Figure 3.11: A Sample Graphical FSM (Snapshot from State Editor)

transition line comes out from a state as shown in state S_CloseTzWindow. This

sets the order in which the transition conditions will be evaluated.

We can also set a state as trap state. It is the state that the machine will reach

if the variable which contains the information of the current state is assigned with

any illegal value. default state is the state which the machine will reach next, if all

the next state transition condition for a state is evaluated as false.

3.3.1 Guidelines for Specifying Transactors in Graphical FSM

An FSM drawing consists of states, actions, transition lines, conditions, etc. Our

code generation algorithm imposes that the following rules and guidelines must be

followed when specifying a transactor protocol using FSM.

41

. The FSM is drawn using state, action, transition line, condition or guard
components in the Active HDL State Editor tool. The graphical description
is saved in (Active HDL State Machine Format) ASF format [4]

. The initial state is indicated with the Initial State Indicator component.

. Variables of integer type can be declared using the variable/signal component.

Also, integer constants can be declared using the constant component.

. The action statements in a state must be written in the syntax of AsmL. They
are executed simultaneously according to the update semantics. If any state

has no action, a “skip” statement is written as an empty action.

. State transition occurs after one clock cycle and updates of the variables and

ports are fired.

. The conditions of the transition lines must be also in the syntax of AsmL.
If more than one transition line come out from a state, we assign priority
to each transition line. This priority sets the order in which the transition
conditions will be evaluated. An unconditional transition line must have the

least priority.

. Unlike other FSMs, an FSM inside a transactor must terminate when the
operation on the RTL side is completed. So, we indicate the state at which

the FSM will terminate by setting it as trap state.

. The graphical FSM approach should be used if the protocol of the transactor
is simple and small. If the protocol is large, the FSM drawing can get messy

and difficult to understand.

42

3.3.2 FSM Representation in ASF Format

We used Active HDL State Editor to draw the FSM which outputs a textual repre-
sentation of the FSM in ASF format. The ASF format is a new and reach file format
to represent FSM in textual from. A portion of the format is shown in Figure 3.12
State:
S [ID] [isDefStat|isTrapState]
Label:
L [ID] [ObjectID] ... [Label Description]....[Label]
Action:
A [ID] [StatelD] [Action Statement]
Transition Line:
W [ID] [Priority] [SrcStatelD] [DstStatelD]

Condition:
C [ID] [TranLinelD]....[Condition Expression]

Figure 3.12: ASF Format

In the State object, the information whether it is set as Default state or Trap
state is stored in LSB 2 bits in the [isDefStat|is TrapState] Field. The LSB bit stands
for isDefState and its next bit stands for isTrapState.

In the Transition Line object, the priority information is stored in 12 bits starting

from LSB in the [Priority] field.
A sample line in the ASF file looks like the following:
A 25 10 4 TEXT ” Actions” |94596,185504 1 0 0 ”D=0;"
An ASF file contains each object’s graphical information. They are used to

show the FSM graphically in the Active HDL State Editor. But they do not have

any use in generating code. So, we ignore that information.

43

3.3.3 FSM Objects

The basic FSM objects are states, actions, transition lines, conditions, etc. These

objects are read in data structures from the ASF file as shown in Figure 3.13

State

Action

ID: Integer

Label: String
isDefState: Boolean
isTrapState: Boolean

ID: Integer
StateID: Integer
Statement: String

Condition

TransitionLine

ID: Integer
TransitionLineID: Integer
Expression: String

1D: Integer
SrcStateID: Integer
DstStatelD: Integer
Priority: Integer

UserVariable UserConstant
ID: Integer ID: Integer
Name: String Name: String

isInitialized: Boolean

Value: Integer

InitValue: Integer

Figure 3.13: FSM Objects

3.3.4 AsmL Code Generation

We generate AsmL code by reading the FSM objects according to the algorithm
shown in Figure 3.14. Graphical FSM is a discrete structure consisting of vertices
and edges like directional graph. The algorithm is developed with the flavor of
directional graph traversing [43].

An enumerated type state variable CurrentState is used to hold the present
state. A step while block [34] is generated with the condition that the loop will
terminate if the CurrentState is evaluated as the trap state. The core FSM code is
generated in a match block [37] which is used to switch to different states depending

on the CurrentState. For a State, the code generator writes its Label followed by a

44

FSM_Drawing: It is an FSM drawing for the transactor protocol.
Write (s: string): Write string s to the code generation file

Jor each UserConstant in FSM_Drawing
Write (“const " & UserConstant Name & “ as Integer” & “ = " & UserConstant.Value)

Jor each UserVariable in FSM_Drawing
Write (“var ”" & UserVariable.Name & “ as Integer” & “ = ” & UserVariable.InitValue)

Write (** step while (CurrentState <> " & State(TrapStatelndex).Label & ")")
Write (“match CurrentState”)

Jfor each State in FSM_Drawing
Write (State.Label & “:”)
for each Action in FSM_Drawing
if Action.StatelD = State.ID then
Write (Action.Statement)

for each TransLine in FSM_Drawing
if’ TransLine.SrcStatelD = State.ID

new MultyTransLine

MultyTransLine. Priority := TransLine. Priority

Multy TransLine.DstStateLabel:= GetLabel(TransLine.DstStateID)

Sfor each Condition in FSM_Drawing

if Condition.TransLinelD = TransLine.ID then

MultyTransLine.Expression := Condition. Expression
MultyTransLine.isConditional : = true

if Condition not found
MultyTransLine.isConditional := false

Sort MultyTransLine objects on Priority in Ascending order

Jor each MultyTransLine
if MultyTransLine.isConditional= true then
Write ("if " & MultyTransLine.Expression & then”)
Write (“ CurrentState := "& MultyTransLine.DstStateLabel)
else Write ("CurrentState := "& MultyTransLine.DstStateLabel)

if there exist DefState in State and (For all (MultyTransLine.isConditional) = true) then
Write ("else CurrentState := " & DefaultState.Label)

if there exist TrapState in FSM_Drawing

Write ("otherwise:")
Write (" CurrentState := " & TrapState.Label)

Figure 3.14: AsmL Code Generation Algorithm

45

colon 2. Then the Action Statements associated with the state are written. There-
after, the code generator gathers all the transition line and condition information
of that state. If there are more than one TransLine coming out from the state, then
TransLine is sorted based on the assigned priority in ascending order. Then the
conditions for determining the next state are written using if or else if statements.
If any state is set as default state and there exists no unconditional transition line
then assigning default state as the next state is done using an else statement. To
handle any illegal assignments of states, the trap state is assigned as next state in
the otherwise section of the match block.

After the AsmL code is generated from the graphical FSM and it is executed
and verified, it is then translated to SystemC according to our developed semantics

and syntax translation rules described in Section 3.2

46

Chapter 4

SystemC Transactor (zenerator

Tool

We have developed the SystemC Transactor Generator Tool for automatic genera-
tion of SystemC transactors both from AsmL specification and from graphical FSM
description. The tool consists of a Graphical User Interface (GUI), an FSM to AsmL
Code Generator, an AsmL to SystemC Compiler and other necessary modules. The
tool also provides features to generate transactor libraries for standard protocols.

The tool is developed for the Microsoft Windows environment. We have used
Microsoft Visual Basic 6.0 [9] to develop the tool. The coding method is Object
Oriented (O0). OO programming makes the tool (which consists of approximately
10,000 lines of codes) modular, easy to manage, maintain and debug.

The SystemC Transactor Generator Tool consists of several modules as shown
in Figure 4.1

The tool takes as input the TLM Interface which is the declarations of the TLM
functions of the TLM module and the RTL Interface which is the declarations of
RTL ports of the RTL module. In Code Settings, the transactor generation method,
the clock period & setup time, library generation information, etc., are specified.

Then the tool generates an AsmL template which can be edited in the MS Word

47

% SystemC Transactor Generator Tool

TLM ®

interface | | T
D Reverse Ports I | 3
Interface AsmL to SystemC Translator

Code AsmL Template |[Cloan AsmL Gode | \SmL Lexer] | SystemC
Settings Generator
y

A
Cod -|
Gen?ar:tor Integrator
lYMLto Doc ”Doc to XML I

Analyzer

A
FSM to AsmL Translator
AsmL Code ¢ Object 11- ASF File |
|__Generator | |__Lexer
e ——
TMSWordy ™™ """ 77T T]TTTT Y iActive HDL E SystemC
i AsmL AsmL N Graphical ' Transactor
E Template | | Specification i i FSM '
1 1t !

___________ % -7’_

Figure 4.1: Block Diagram of SystemC Transactor Generator Tool

environment. The specification writer then writes the transactor specification in
the AsmL template. This specification can be executed and used for validation and
verification purposes. Then the specification is given as input to the tool. The
tool then extracts unformatted ASCII AsmL code text from it and passes it to the
AsmL to SystemC Translator. This module translates the AsmL specification to
SystemC. Also, the tool supports another approach where the transactor protocol
is drawn as graphical FSMs in Active HDL State Editor and the ASF files are
given as input to the tool. The FSM to AsmL Translator generates AsmL code
from the FSM descriptions. The generated AsmL code is then passed to the AsmL
to SystemC Translator to generate SystemC code. The integrator integrates the
translated SystemC code for all TLM functions and adds other necessary SystemC
codes to generate the complete transactor.

The (GUI) consists of menus, toolbars, a status bar, text boxes, check boxes,

48

buttons, etc. A screen shot of the tools GUI is shown in Figure 4.2. To work with
a transactor, the user will first create a transactor project with a project name and
path. A folder with the project name is created in the specified path. Inside the
folder, a project file (*.tp) and three folders /Input , /Temp, /Output are created.
The Input folder contains the information of the TLM interface, RTL interface,
Code Settings, AsmL specification, ASF files for graphical FSM etc. Inside the
Temp folder intermediate files are generated when the tool generates the SystemC
transactor. The Output folder contains the generated SystemC transactor (*.cpp,
*.h) files. This file system makes any transactor project portable, without losing its

dependencies.

"

= UTOPIA - SystemC Transactor Gengrator vl 0

Figure 4.2: SystemC Transactor Generator Tool GUI

49

4.1 Input Interface

To specify a transactor, we need to give as input the TLM interface, the RTL

interface and the protocol to perform the task.

4.1.1 TLM Interface

The TLM interface is the declaration of the TLM functions of the TLM module.
A function has return type, function name and its parameters. The information of
the TLM functions is taken using the user interface as shown in Figure 4.3. User
can Add, Edit, or Remove functions from the project by clicking the corresponding

button.

wa UTOPIA - SystemC Transactor Generator v1.0

" (unsigried char DstCell]} o
[constunsigned int StartCellNo, const unsigned int End...

-

nb_GetCel {unsigned char DstCell [bool & isCompleted)

Figure 4.3: TLM Interface Input Window

a0

We used the data structure shown in Figure 4.4 to store the TLM functions
information. Arrays of objects of class clsTIm_Func are instantiated to hold the

function’s information.

clsParameter cIsTim_Func
ParaType: String FuncName: String
ParaTypelD: Integer RetType: String
ParaPassBy: String RetTypelD: Integer
ParaPassByID: Integer Parameter(MAX_PARAMETER) : cisParameter
ParaName: String TotalParameter: Integer
isParaConst As Boolean ASF_FTitle: String
isParaArray As Boolean isASF_FileAssigned: Boolean
isLibrary: Boolean

Figure 4.4: Data Structure for TLM Functions

4.1.2 RTL Interface

The RTL interface is the declaration of the RTL ports of the RTL modules. An
RTL port has a name, direction, bus width, initial value, etc. The information of
the RTL ports is taken using the user interface as shown in Figure 4.5. The user can

Add, Edit, or Remove ports from the project by clicking the corresponding button.

51

Figure 4.5: RTL Interface Input Window

We used the data structure shown in Figure 4.6 to store the RTL port’s
information. Arrays of objects of class clsRtl.Sig are instantiated to hold the port’s

information.

52

cisRtl_Sig

HDType: String
HDTypelD: Integer
BusWidth: Integer
SignalName: String
Direction: String
DirectionID: Integer
InitVal: String
isClk: Boolean
isLibrary: Boolean

Figure 4.6: Data Structure for RTL Ports

4.1.3 Code Settings

The tool provides three approaches to generate the transactor. They are the AsmL
specification approach, Graphical FSM approach and creating a transactor template
in SystemC. In Code Settings, the user will tell the tool in which approach the user
want to generate the transactor. Also, some other information like clock period,
setup time, library transactor generation information, author’s information is also

taken as input from here.

4.2 Generating Transactor from AsmlL

4.2.1 AsmL Template Generator

To help the specification writer to write the AsmL specification of the transactor, the
SystemC Transactor Generator Tool creates an Asml Template. The specification
writer will then use the template for writing the specification. The AsmL template

consists of several namespaces. They are briefly described below.

53

Namespace for Declaring Hardware Data Types: nsHardwareDatatype

This namespace contains data types for declaring RTL ports in AsmL. Also, con-
stants for 4 valued hardware data type, binary string to decimal and vise-versa
conversion functions are declared here. A detailed discussion on it is done in Chap-
ter 3. This namespace must be added to all AsmL specifications. It is also possible
to make a compiled dynamic link library (DLL) of this namespace and link it at

compile time when executing the specification using the asmlic compiler.

Namespace for Declaring RTL Ports: nsRTL

We declare the RTL ports of the transactor in this namespace. We also import the

namespace nsHardwareDatatype here so that we can use the hardware oriented data

types.

Namespace for specifying the TLM functions: ns<FunctionName>

We specify each TLM function in a separate namespace in an AsmlL specifica-
tion. For each TLM function, a namespace ns<FunctionName> is created by the
AsmL template generator. We also import the namespaces nsHardwareDatatype
and nsRTL here. In the template, some comments are included so the specification
writer can specify the function protocol in an organized format. The format is shown

in Figure 4.7

54

namespace nsFunctionName
import nsHardwareDatatype
import nsRTL

//Declare Enumeration here

//Declare function here
public FunctionName (varl as typel, var2 as type2 ...)

//Declare Constants here
//Declare Local Variables here
//Specify the RTL Clock Signal

//Start writing the State Machine from here

Figure 4.7: Format for Writing TLM function

Namespace for Calling TLM functions for execution: nsMain

A namespace nsMain is declared, from where the functions are called. This names-
pace is used only for execution and debugging of the AsmL specification.
The AsmL specification can also be used to generate transactors in languages

other than SystemC.

4.2.2 XML to DOC conversion and vise versa

To make the AsmL template editable and executable using Microsoft Word, the
SystemC Transactor Generator Tool converts the template from XML format to
DOC format using the tool wordgenerator which is distributed by Microsoft with
the AsmL distribution package. The reverse work is needed, when the AsmL spec-
ification in the DOC format is given as input to the tool. The tool extracts ASCII

texts from the DOC format using wordextractor, which is also supplied with the

%)

AsmL package.

4.2.3 AsmlL to SystemC Translator

This module translates the AsmL code to SystemC. It has three sub-modules: AsmL
Lezer, Analyzer and SystemC Code Generator. They are briefly described below.

Asml: Lexer

Lexical analysis is the processing of an input sequence of characters (such as the
source code of a computer program) to produce, as output, a sequence of symbols
called “tokens” or “words”. In our tool, we have developed a lexer to tokenize an
AsmL line of code to words. One or more white spaces, double character symbols
(<= >= <> := //), and single character symbols (< > =) (+-*/:) are
used as punctuator between words. White spaces are not considered as tokens or
words, they only act as punctuator. Symbols are considered as tokens as well as
punctuator between words. Here, the grammar checking is omitted because it is

done once when the AsmL specification is executed by the asmic compiler [37].

Analyzer

After tokenizing, the Analyzer is used to recognize the AsmL line. According to our
AsmL subset, the analyzer returns an analyzed ID of the AsmL line as shown in

Table 4.1.

96

Table 4.1: Analyzed AsmL line ID

Analyzed AsmL line ID Comments

ASML_UNRECOGNIZED Unrecognized line, Error message is
generated

ASML BLANK Blank line consists of one or more white
spaces

ASML IF if statement block

ASML ELSEIF elseif statement block

ASML ELSE else statement block

ASML STEP step Statement

ASML STEP WHILE step while loop

ASML STEP UNTIL step until 100p

ASML VAR DECLARATION Variable declaration statement

ASML CONST DECLARATION Constant declaration statement

ASML ENUM TYPE DECLARATION Enumerated type declaration

ASML ENUMURATOR DECLARATION | Enumerator declaration

ASML COMMENT Comment line

ASML MATCH match block

ASML CASE Cases for match block

ASML OTHERWISE Default case for match block

ASML SKIP skip Statement

ASML SET CLK SIG Specify Clock Signal statement

ASML ASSIGNMENT Assignment statement

ASML NAMESPACE Declaration of namespace

ASML IMPORT Import external namespace

ASML FUNC DECLARATION TLM function declaration

ASML REQUIRE Pre-condition assertion statement

A token in an AsmL line is also recognized as one of the following categories

as shown in Table 4.2

57

Table 4.2: Analyzed AsmL token ID

Analyzed AsmL Token ID Comments

ASML WORD UNRECOGNIZED | Unrecognized word, Error message is generated
ASML WORD TLM VAR Function parameter of the TLM function

ASML WORD RTL VAR RTL port

ASML WORD ASML VAR User defined AsmL variable

ASML WORD CONST » Numeric Constants. (Example: 19, 25 etc.)

= String Constants (Example: “1X10Z” etc.)

® 4 valued data type constants (LOGIC_0,
LOGIC 1, LOGIC X, LOGIC 7Z)

» AsmlL Constants: true, false

= User defined AsmL Constants

= User defined AsmL Enumurators

ASML‘_‘WORD”SYMBOL "<H’ |l>||, "<="’ ">=", "<>"’ "=", ")", "(", ||+"’ "_",
"*"’ "/"’ "mod"’ "and"’ "or"’ "not"

ASML WORD TO INT 4 valued binary string to decimal and vise-versa

ASML WORD TO LV conversion functions

SystemC Code Generator

After analyzing and recognizing AsmL line and its words, the SystemC Code Genera-
tor module translates the AsmL line of code to SystemC according to the discussions
made in Section 3.2. Here, the grammar or syntax checking of the source AsmL
code is omitted because it is done once when the AsmL specification is executed by

the asmlc compiler.

4.2.4 Integrator

The integrator integrates the translated SystemC codes for all TLM functions and
adds other necessary SystemC codes such as setting the initial value of the RTL
ports, SystemC representation of the 4 valued binary strings to decimal and vise-
versa conversion functions, etc. to generate the complete transactor. A screen shot

of the tool after generating a transactor is shown at Figure 4.8

98

Generate SystemnC Transactor

AUTOPIAADutputtran_aic.h
AUTOPIANO utput trayrgw. .

reating C:\UTOPIA\Outputitran.h File...Done!
reating C:\UTOPIA\Outputlitran.cpp File.. .Done!

ransactor Generation Completed!
Erroris), 0 Warning(s)

Figure 4.8: SystemC Transactor Generation

4.3 Generating Transactor from Graphical FSM

4.3.1 FSM Drawing Template

The SystemC Transactor Generator Tool generates templates for each TLM function
for specifying the transactor protocol by FSM graphically. It contains the declaration
of a TLM function and the declaration of the RTL ports. The template is opened
with the Active HDL State Editor. The specification writer then draws the FSM
for each TLM function in the template and then gives the ASF files as input to the

SystemC Transactor Generator Tool.

59

4.3.2 FSM to AsmL Code Generator

The ASF File Lexer tokenizes the ASF file contents to words. A single white space
is used in the ASF format as a punctuator between words. After tokenizing, the
information of the FSM objects like State, Label, Action, Transition Line, Condition
etc. is read in data structures and analyzed by the Object Analyzer. Then the
AsmL Code Generator generates AsmL code according to the algorithm described
in Section 3.3.4.

After the AsmL code is generated, it is then passed to the AsmL to SystemC
Translator to generate SystemC code. The Integrator then adds other necessary

codes with it and generates the complete transactor.

4.4 Generating Transactor Code Template

The SystemC Transactor Generator Tool can generate a transactor template in Sys-
temC. The template contains RTL ports declaration and TLM functions declarations
without any implementation code. The specification writer can use the template to

specify the transactor writing directly in SystemC.

4.5 Library Generation

The SystemC Transactor Generator Tool also supports the feature of generating
transactor libraries. We can create libraries for the standard protocol transactors
like AMBA [6], AHB [5], UTOPIA [7], I2C [38], etc. and then use them in
any project without rewriting the protocol again. To generate a library, the tool
archives the information containing the TLM interface, the RTL interface, and the
generated SystemC code for the transactor in a single file. The transactor libraries
can be distributed independently and can be added to any new transactor project

as shown in Figure 4.9. When a library is added to a new transactor project, the

60

TLM interface and the RTL interface is added with the new transactor. Also, the
protocol code for the library transactor is added. Thus user can generate transactors

with the help of libraries without rewriting the protocol.

Add Transactor Library

UTOPIA L

Figure 4.9: Adding Transactor Library

61

Chapter 5

Case Studies

In this chapter, we will discuss our experiments on the generation of transactors for
two case studies, namely UTOPIA protocol [7] and Memory Interface [11]. The

latter case study is shown as an example of library transactor.

5.1 UTOPIA Transactor

UTOPIA is a standard protocol used to connect devices implementing ATM and
PHY layers. We have modeled the ATM layer at TLM and the PHY layer at RTL
in SystemC. These two models are connected through a TLM-RTL transactor as

shown in Figure 5.1

5.1.1 Signal Description

By convention, the interface where data flows from ATM to PHY layers is labeled
the Transmit Interface, and the interface where data flows from PHY to ATM layers
is labeled the Receive Interface. Table 5.1 describes the essential UTPOIA interface
signals. All signals are active high, unless denoted via a trailing “*” after the signal

name. Optional signals are not listed.

62

TLM

ATM

Transactor

TxClk
TxClav

RTL

TxEnb

TxData R
TxSoC ,

PHY
RxClav

—

RxEnb
RxData

[

RxSoC
RxCIk

Figure 5.1: UTOPIA Transactor

Table 5.1: UTOPIA Interface Signals (optional signals are not listed

Transmit Interface Signals

Signal Direction Description

TxData[7:0] ATM to PHY 8 bit Data bus

TxSOC ATM to PHY Start of Cell

TxEnb* ATM to PHY Enable data transfers
TxClav PHY to ATM Cell buffer available

TxClk ATM to PHY Transfer/interface byte clock
Receive Interface Signals

Signal Direction Description

RxData[7:0] PHY to ATM 8 bit Data bus

RxSOC PHY to ATM Start of Cell

RxEnb* ATM to PHY Enable data transfers
RxClav PHY to ATM Cell available

RxClk ATM to PHY Transfer/interface byte clock

63

5.1.2 Protocol Description
Transmit Protocol

The protocol for transmitting one or more cells (each cell consists of 53 bytes) from
ATM to PHY in Cell Level Handshake mode can be briefly described by the following
procedure. The PHY module indicates that it can accept a whole cell by asserting
the TzClav. Then during a time period termed the transmit window, the ATM
module drives data on to TzData and asserts TxEnb. TxSoC is asserted during the
transfer of the first byte of the cell. In this way, 53 bytes are sent in the successive
53 cycles of TxClk. If the PHY module becomes unable to accept more cells, it
deasserts TzClav at least 4 cycles before the end of a cell. The ATM module ends

its transmission by deasserting TxEnb.

Receive Protocol

The protocol for receiving one or more cells from PHY to ATM in Cell Level Hand-
shake mode can be briefly described by the following procedure. The PHY layer
indicates it has a complete cell by asserting RzClav. The ATM layer indicates that
it wants to read PHY data by asserting RxEnb. The ATM layer may assert and
deassert RxEnb at any time. The cycles during which RzFEnb is asserted constitute
a read window. During a read window the PHY layer reads data from its internal
FIFO and presents it on RxData/RxSOC on each low-to-high transition of RzClk.
Asserting RxEnb while RxClav is deasserted is not an error but the value of RzData

is undefined.

5.1.3 Modeling in SystemC
ATM Module

The ATM module was modeled at TLM in SystemC. It connects with the transactor
with a port having a TLM interface. The TLM functions that the ATM module

64

calls are shown in Table 5.2

Table 5.2: TLM Functions Called by the ATM Module

TLM Function Description

void SendCell (const unsigned int StartCellNo, BlOCkil’lg. Transmits one or more cells to

const unsigned int EndCellNo, const char SrcCell []) PHY module.

void GetCell (char DstCell []) Blocking. Receives one cell from PHY
module

void nb_SendCell (const unsigned int StartCellNo, Non_Blocking‘ Transmits one or more

const unsigned int EndCellNo, const char SrcCell [1],
bool & isCompleted) cells to PHY module.

void nb_GetCell (char DstCell [I, Non-Blocking. Receives one cell from
bool & isCompleted) PHY module
PHY Module

The PHY module was modeled at RTL in SystemC. It connects with the transactor
through RTL ports. The model is a clock cycle accurate, but not synthesizable.
It has a FIFO buffer modeled into it. The transmit interface and receive interface
signals are used to write into or read from the FIFO, respectively. In this model,
only Cell Level Handshake mode is supported.

The clock frequency for both TzClk and RzClk is set as 25 MHz with 50%
duty cycle. So, the clock period T = 40ns. Setup time for other RTL ports is set to
10mns.

5.1.4 Generating SystemC Transactor

We used our developed SystemC Transactor Generator Tool to generate the UTOPIA
transactor. In the tool, we created a transactor project named UTOPIA. Then we
inserted the TLM interface of the ATM module and RTL interface of the PHY

module into the tool.

65

Transactor Generation from AsmL Specification

To specify the transactor protocol in Asml, the tool generates an AsmL template
for the UTOPIA transactor. We used the template to write the specification of the
four TLM functions. The AsmL specification for the SendCell() is shown in Figure
Al

From the ATM module, when the TLM function SendCell () is called, the
transmit protocol must be followed by the transactor to complete the task. We
can express the entire procedure of sending cells in three states namely WaitFor-
CellAvailable, TransmitCell, and Close Tx Window.

At first, the state machine enters the initial state WaitForCellAvailable. If
TzClav is asserted then it sets the next state as TransmitCell. At the state Trans-
mitCell, the transactor opens the transmit window by asserting TrEnb. TzSoC is
asserted when transmitting the first byte of the cell. It also drives TzData with the
corresponding byte of the SrcCell array. Here two user defined variables Bn and
Cn are used to keep track of byte and cell numbers, respectively. When the last
byte of the cell is sent, it checks the TzClav whether any more cell (if required)
can be transmitted. If PHY is unable to accept more cells then it sets the next
state as CloseTtWindow. At the state CloseTrWindow, TrEnb is de-asserted and
thus the transmit window is closed. If all cells are transferred, then the state ma-
chine breaks and the SendCell function ends. Otherwise it sets the next state as
WaitForCellAvilable and so on.

After the AsmlL specification is written, we can execute it using the asmlc
compiler and run for different scenarios, thus we can do validation. Also verification
of the specification is possible by model checking and theorem proving.

Once the AsmL specification is executed and verified, we give the specifica-
tion as input to the SystemC Transactor Generator Tool to generate the complete
SystemC transactor. We also set different code settings like transactor generation

method as AsmL, timing information, etc. A portion of the automatically generated

66

SystemC code by the tool is shown at Figure A.2

Transactor Generation from Graphical FSM

Another way of specifying transactor is the graphical FSM approach. The SystemC
Transactor Generator Tool generated template for drawing FSM using the Active
HDL State Editor. An FSM drawing for the GetCell() function is shown in Figure
5.2

We then gave the ASF files as input to the tool and generated the SystemC

transactor. We got almost a similar code as shown in Figure A.2

public GetCell (DstCell as Seq of Integer)

— yxData - —TxClav RxClk
szuc T:-c Clk
TuEn_ & RxData
O Bn if (RxClav = LOGIC_1 Jthen
RxEn_ = LOGIC_D

ety = LWI0 Y

if (ReSOC = LOGIC_D and Bn = 1)then
Bn =1

else
Br := Bn + 1

DstCeall {Bn) := toint (RxData)

if Bn = 52 Ythen
RxEn_:= LOGIC_1

Figure 5.2: Graphical FSM Specification of the Function GetCell()

67

Transactor Template Generation

The tool can also generate a transactor template where the protocol can be described
directly in SystemC. A template for the UTOPIA transactor generated by the tool

is shown in Figure A.3

5.1.5 Test Case Generation

We have used the AsmL Tester (asmlt) to automatically generate function parame-
ters for the TLM functions. The AsmL Tester tool checks the pre-condition require
statement for generating function parameters. A detailed discussion on generating
parameters can be found in [35]. In asmlt, we specified the domain of each function
parameters and the maximum number of test parameters to be generated. Then
the tool generated test function parameters that satisfy the pre-condition require
statement. For the UTOPIA SendCell() function we wrote a pre-condition require
(StartCellNo > 1 and StartCelliNo < 10 and EndCellNo > 1 and EndCellNo < 10
and EndCellNo > StartCellNo) which tells the AsmL Tester to generate the function
parameter values for StartCellNo and EndCellNo in such a way that their range is
between 1 to 10 and EndCellNo is greater than or equal to StartCellNo. A snapshot

of the parameter generation of asmlt is shown in Figure 5.3

68

Figure 5.3: Test Case Generation by the AsmL Tester

The test parameter values were stored in an ASCII text file. In SystemC
simulation for the UTOPIA model, the ATM module took input from the generated
parameter file when calling the TLM function SendCell(). We have successfully
simulated the UTOPIA model for all the generated function parameters.

5.1.6 Simulation of the Generated Code

After generating the SystemC transactor, we verified the code by SystemC simula-
tion. We placed the generated SystemC transactor between TLM ATM and RTL
PHY modules in SystemC as shown in Figure 5.1.

In the ATM module, we declared an array of 530 bytes as the source cell array.
Each cell consists of 53 bytes. So, the declared array can hold 10 cells. We initialized
all 53 bytes of the first cell (i. e. array index 1 to 53) with ’1’, all 53 bytes of the

second cell (i. e. array index 54 to 106) to '2’ and so on.

69

In the PHY module, a FIFO buffer was modeled which can hold maximum 5
cells.

We simulated the UTOPIA model for different scenarios to check whether the
automatically generated transactor is performing correctly or not. Some scenarios
are described below.

Scenario 1: The ATM module called the SendCell() function to transmit
cells from 1 to 2 to the PHY module. After 5000ns, the ATM module calls the
function GetCell() to receive a single cell from PHY. We generated Value Change
Dump (VCD) traces of the UTOPIA RTL signals and used a standard waveform

viewer [20] to get the simulation timing diagram as shown in Figure 5.4.

T B —

Systat. bl

oSO8

SystenC.TxClav .

| SystenC: TxEn I |

Systent. Tuatal7:0] [[80T [0z [$xX

Systeac.tse I N

SystenC.RiClk..

T, s HAORMHID L Lt ['

SystenC RxEn. |

Systent:RuData[7:0] {301

SystenC.Rx0C J

Figure 5.4: Scenario 1: Simulation Timing Diagram

In Figure 5.4, we see that the ATM module sent the two cells to the PHY
module consecutively and then closed the transmit window following to the transmit
protocol of UTOPIA. At 5000ns, the GetCell() got activated and it started to receive
a cell from the PHY module. After receiving a cell, it closed the receive window
maintaining the accurate receive protocol {7].

Scenario 2: In this simulation, the ATM module calls the SendCell() function
to transmit cells from 1 to 6 to the PHY module. After 12000ns, the GetCell()

function gets activated. The simulation timing diagram is shown in Figure 5.5

70

—

Tlme) ST ‘354:n$s.s PTETTTY ;;610;90nsx: F T 91491113%(YT 5121599118‘ R ”1524[]1}5 [

SystenC. TxClk

Systext Ty bz NI U R L e | KRR FRh At naead el el a1

[Systenc. 2n f T I

fsystenc Tavata [7:0] 501 502 303 [0z 05 Toxx 506

foystenc e] 1] 1 1
Systerc.Riclk - | ‘ ‘ ‘ NI (T T RS] T

e . | o

Systenc. Rxgn | |

SystenC:RxData(7: 0] T o e —

Systent; RS0 : |l -

Figure 5.5: Scenario 2: Simulation Timing Diagram

In Figure 5.5, we see that after sending five cells, the PHY FIFO buffer got
full and it became unable to receive the remaining cell. The SendCell() function
was modeled as blocking nature which means that the function will not return to
the caller until it finishes its task completely. So, the SendCell() function waited
until there is any empty space in the FIFO to send the remaining cell.

After 12000ns, the GetCell() function got activated and it started to receive
a cell from the PHY module. After the PHY module sent a complete cell, then an
empty space in the FIFO buffer became available. The PHY module then asserted
the cell buffer available signal and the waiting SendCell() function sent the remaining
cell to the PHY.

Scenario 3: In this simulation, the ATM module calls the non-blocking
nb_SendCell() function to transmit cells from 1 to 6 to the PHY module. After
12000mns, the GetCell() function gets activated. The simulation timing diagram is

shown in Figure 5.6

71

M L e A T

2

SystenC:vClay]

SystenC. Txn -]

Systenc. TxData(7:0] 501 [g02 303 [304 [$05 [8xx

Systenc.TxS0C .] I 1 N]
S‘}'st‘errC.RXCIkm~ e T T L SRR TR TFI R TR 1 AR TR

[SystencC. RiClav

SystenC. Refin-

SystenC, RxDatal7: () N

1
SystenC. RxSO¢ -]

Figure 5.6: Scenario 3: Simulation Timing Diagram

In this scenario, the nb_SendCell() function was modeled as non-blocking in
nature which means that the function will return to the caller whenever it is unable
to complete its operation. Non-blocking functions may or may not complete their
task which is generally indicated by a boolean return value of the function. So,
when the FIFO got full, the nb_SendCell() became unable to send the remaining
cell. Due to its non-blocking nature, it returns to the caller indicating that it did
not complete its task.

After 12000ns, the GetCell() function got activated and it started to receive a
cell from the PHY module. After the PHY module sent a complete cell, an empty
space in the FIFO buffer became available. But although there is now an empty
space, we see that the nb_SendCell() function did not send the remaining cell.

We also did simulations with blocking and non-blocking GetCell() functions
and got expected simulation results which verified the correctness of the automati-

cally generated transactor.

5.1.7 Experimental Results

Table 5.3 shows the number of AsmL lines and the number of lines in the automat-
ically generated SystemC code for different functions of the UTOPIA transactor.
It shows that AsmL specifications can be more concise (about 50%) than SystemC

code yet preserving the accurate transactor behavior.

72

Table 5.3: Experimental Results

Transactor Transactor No. of Lines Time for 1 Cell
Generation Function in SystemC
Method AsmL | SystemC | Simul. | CPU
s ms
SendCell 37 74 140
AsmL nb_SendCell 38 75 2.2 148
Specification GetCell 27 56 78
nb_GetCell 31 62 2.2 785
SendCell 41 82 25 148
Graphical FSM nb_SendCell 42 83) 156.5
GetCell 32 66 20 70
nb_GetCell 38 78 : 78

The number of SystemC lines grows linearly with AsmL lines as shown in

Figure 5.7. This linear relationship promises expected CPU execution time.

AsmL vs SystemC lines of code

Number of SystemC lines

25 27 29 3t 33 35 37 39
Number of AsmL lines

Figure 5.7: Relationship between AsmL and SystemC lines of code

Table 5.3 also shows the simulation time for sending and receiving 1 cell (53
bytes) from ATM to PHY. This simulation time depends on the UTOPIA models
clock frequency and the protocol. The clock frequency for TxClk and RzClk for
was made 25 MHz. So, the clock period becomes 40ns. To send 53 bytes in each
clock cycle, it takes 40 * 53 = 2120ns. Additional two more clock cycles (40 * 2
= 80ns) are required to accomplish the request-grant handshaking. So, in total, it

takes 2.2us to send a cell.

73

The CPU time is the time required for a particular PC (Personal Computer)
or workstation to execute the transactor functions. It depends on the processor
speed and the available memory of the PC. The higher the processor speed and
also the higher the memory, the lesser the CPU execution time. We conducted the
experiments on a Pentium Mobile processor (1.8 GHz) with 512 MB of memory.

5.2 Memory Interface Transactor and Library Gen-
eration

In this section, we discuss another case study with a memory access protocol trans-

actor [11] as shown in Figure 5.8, where we also made the transactor as a library.

Clk

TLM RTL

___]_> AddressBus
RD_DataBus
WR_DataBus

B

r wb
Enable MEM

Transactor

rr
Ack

Figure 5.8: Memory Access Transactor

The TLM module is a test bench which calls the functions mem_read() and
mem_write() to read data from and write data to the RTL memory. The RTL
module is a memory block having an AddressBus, a separate DataBus for read and
write, read and write control signal, Fnable signal, Acknowledge signal and Error

signal. We modeled the TLM test bench and the RTL memory block in SystemC.

74

We then wrote the transactor protocol both in AsmL and in graphical FSM. The
AsmL specification of the mem.read() function is shown in Figure A.4 and the

graphical FSM of the function protocol mem_write() in shown in Figure 5.9

public mem_write { adr as Integer, data as Integer, err as Boolean)

vAddressBus

R DataBis

‘RD_.DataBus

AddressBus = tol
WWR._DataBus =
b = LOG]
Enable = LOGIC ¥

Figure 5.9: Graphical FSM for the function mem_write()

The memory write protocol is as follows. At state S_OpenWrite Window, the
address is placed on the AddressBus, data is placed on the WR_DataBus. In addition,
the control signals R_Wb is de-asserted and Enable is asserted. At the positive edge
of the Enable signal, the RTL memory starts its operation. Then at the next state
S_Ack, the transactor waits for the Ack signal from the memory which will indicate

the end of the memory operation. Once the Ack signal is received, the state machine

75

enters the state S.Close Write Window. Then Enable is de-asserted and the Err signal
is read.

We used the SystemC Transactor Generator Tool to generate the transactor
from the specifications. In the Code Settings of the tool, we choose to generate a
library file for the transactor. The tool then generated the transactor library for the
memory access protocol.

After the library has been generated, we opened the UTOPIA transactor
project again and then added the memory access transactor library to it. Then
the tool generated the transactor which can be used to access IP blocks which use
both UTOPIA and memory access protocol as shown in Figure 5.10. In this way,
we can generate transactor libraries and once the library is made, we can add them

in projects without re-writing the protocol again.

TLM RTL

UTOPIA
Interface

PHY

/]———[\ RTL
Memory Access
\j‘lnterface / M E M

Figure 5.10: UTOPIA Transactor after Adding Memory Access Protocol Library

Transactor

76

Chapter 6

Conclusion

6.1 Summary

In this work, we have developed a methodology to generate SystemC transactors
from specifications given in AsmL and also from graphical representation of FSMs.
We have defined a subset, rules and guidelines to specify transactors in AsmL. Also,
we have defined hardware data types and constants in AsmL to declare RTL ports
and to represent hardware oriented information. A set of semantic and syntax
translation rules were developed to translate the AsmL specification to SystemC.
To specify transactors by graphical FSMs, we have defined a set of rules and also
developed an algorithm to generate AsmL code from graphical FSM description. A
SystemC Transactor Generator Tool for automatic generation of SystemC transac-
tors both from AsmlL specification and from graphical FSM description has been
developed. The tool consists of GUI, FSM to AsmL Code Generator, AsmL to
SystemC Compiler and other necessary modules. The tool also provides features to
generate transactor libraries. We conducted case studies with UTOPIA and mem-
ory interface transactors. We wrote AsmlL specifications and also drew graphical
FSMs to specify the transactors. Then SystemC transactors were automatically

generated using our developed SystemC Transactor Generator Tool. We have also

7

modeled TLM ATM module and an RTL PHY module in SystemC and simulated
them using the generated transactor. We have made library for the memory inter-
face transactor and added it with the UTOPIA transactor. From the experimental
results, we found that AsmL specifications are more concise (approximately 50%)
than automatically generated SystemC code. Also, the number of automatically

generated SystemC lines of code grows linearly with that of AsmL code.

6.2 Discussion and Future Work

Some of the limitations of this work are as follows:

e Synthesis of SystemC designs are difficult. The transactor codes generated by
the SystemC Transactor Generator Tool is not restricted to the synthesizable
subset of SystemC. So the generated code is not directly synthesizable, it can

only be used for simulation.

e Asml is mostly used for software specification and it needs more language

support to specify hardware oriented systems.

Our future work includes the followings:

Formal verification of AsmL models. It can be done by model checking or

theorem proving.

Generating synthesizable transactor code.

Generating transactor code in languages other than SystemC, such as Sys-

temVerilog [30].

SystemC transactors can be interfaced with RTL modules that are written in

VHDL, inside a SystemC-VHDL co-simulation environment.

78

Appendix A

A.1 AsmlL Code for UTOPIA

The AsmL specification for the UTOPIA transactor for the TLM function Send-
Cell() is shown in Figure A.l

namespace nsSendCell
import nsHardwareDatatype
import nsRTL

// Declare Enumeration here
enum typeState
S_CheckCellAvailable
S_SendCell
S_CloseTxWindow
S_End

// Function Declaration
public SendCell (StartCellNo as Integer, EndCellNo as Integer,SrcCell as Seq
of Integer)

// Declare Local AsmL Variables here

var C_State as typeState = S_CheckCellAvailable
var Cn as Integer StartCellNo

var Bn as Integer 1

// Specify the RTL Clock Signal here
SetClockSignal (TxClk , true)

// Start writing State Machine from here
step while (C_State <> S_End)

match (C_State)
S_CheckCellAvailable:
//next state

if (TxClav = LOGIC_1) then
C_State := S_SendCell

79

S_SendCell:
//open tx window
TxEn_ := LOGIC_O
//increament byte no
if (Bn < 53)} then

Bn := Bn + 1
else

Bn := 1
//TxS0OC

if (Bn = 1) then
TxSOC := LOGIC_1
else
TxSOC := LOGIC_O
//TxData
TxData := tolv (SrcCell ((Cn - 1) * 53 + Bn))
//end of sending a cell
if (Bn = 53) then
Cn :=Cn + 1
//close tx window if all cell sent or no space in phy fifo
if ((Cn = EndCellNo) or (TxClav = LOGIC_0)) then
C_State := S_CloseTxWindow

S_CloseTxWindow:
//close tx window
TxEn_ := LOGIC_1
TxData := "XXXXXXXX"

//next state

if (Cn = EndCellNo + 1) then
//all cell sent
C_State := S_End

else
//all cell not sent, wait for TxClav
C_State := S_CheckCellAvailable

Figure A.1: AsmL Code for function SendCell()

A.2 SystemC Transactor Code

The automatically generated SystemC code from the AsmL specification for the
UTOPIA transactor is shown in Figure A.2. Among the four TLM functions
SendCell(), GetCell(), nb_SendCell(), and nb_.GetCell(), only SendCell() function

implementation is shown.

80

/***‘************

——————————————— Transactor Header File --—-——————————~

Title: UTOPIA Transactor

Author: Tareq Hasan Khan

Company: HVG

Date: Tuesday, Jun 12, 2007 @ 12:59:07 PM

This file is automatically generated by
SystemC Transactor Generator vi.0

***/

#ifndef _TRAN_H_
#define _TRAN_H_

#include "tran_aic.h"

//Transactor Class
class clsTran : public sc_module, public clsTranAIC

{
public:

//TLM Function Declaration

void SendCell (const unsigned int StartCellNo, const unsigned int EndCellNo,
const unsigned char SrcCell []) ;

void GetCell (unsigned char DstCell []) ;

void nb_SendCell (const unsigned int StartCellNo, const unsigned int
EndCellNo, const unsigned char SrcCell [], bool & isCompleted) ;

void nb_GetCell (unsigned char DstCell [], bool & isCompleted) ;

//RTL Port Declaration

sc_out <sc_lv <8> > TxData ;

sc_out <sc_logic> TxSOC ;

sc_out <sc_logic> TxEn_ ;

sc_in <sc_logic> TxClav ;

sc_in <bool> TxClk ; //Clock Signal
sc_in <sc_1lv <8> > RxData ;

sc_in <sc_logic> RxSOC ;

sc_out <sc_logic> RxEn_ ;

sc_in <sc_logic> RxClav ;

sc_in <bool> RxClk ; //Clock Signal

//Constructor

clsTran (sc_module_name name } : sc_module (name}

{
//Initialize RTL Output Ports
TxData.initialize ("XXXXXXXX") ;
TxSOC.initialize (SC_LOGIC_0) ;
TXEn_.initialize (SC_LOGIC_1) ;
RxEn_.initialize (SC_LOGIC_1) ;

private:

//TLM-RTL Type Conversion Functions

81

unsigned int toInt { sc_lv <64> temp } //64 is the MAX bus width
{

assert (temp.is_0l1 () == true) ;

return (temp.to_uint{()) ;

}

char * toLv (unsigned int tn)
{

static char s [65] ;

_itoa (tn, s, 2) ;

return (s) ;

}

// Update Function Declaration
void SendCell_Update (void) ;
void GetCell Update (void) ;
void nb_SendCell_Update (void)} ;
void nb_GetCell_Update (void } ;

// Declare Enumeration here
enum SendCell_typeState

{
SendCell_S_CheckCellAvailable, SendCell_S_SendCell, SendCell_S_CloseTxWindow,

SendCell_S_End
bi

// Declare Local Asml Variables here

sc_signal <SendCell_typeState> SendCell_C_State ;
sc_signal <unsigned int> SendCell_Cn ;

sc_signal <unsigned int> SendCell_Bn ;

// Declare Enumeration here
enum GetCell_typeState

{
GetCell_S_CheckCellAvailable, GetCell_S_DoNothing, GetCell_S_GetCell,

GetCell_S_End
}i

// Declare Constants here

// Declare Local AsmL Variables here
sc_signal <GetCell_typeState> GetCell_C_State ;
sc_signal <unsigned int> GetCell_Bn ;

// Declare Enumeration here
enum nb_SendCell_typeState

{
nb_SendCell_S_CheckCellAvailable, nb_SendCell_S_SendCell,

nb_SendCell_S_CloseTxWindow, nb_SendCell_S_End
}i

// Declare Local AsmL Variables here

sc_signal <nb_SendCell_typeState> nb_SendCell _C_State ;
sc_signal <unsigned int> nb_SendCell_Cn ;

sc_signal <unsigned int> nb_SendCell_Bn ;

// Declare Enumeration here
enum nb_GetCell_typeState

{
nb_GetCell_S_CheckCellAvailable, nb_GetCell_S_DoNothing, nb_GetCell_S_GetCell,

nb_GetCell_S_End

82

bi

// Declare Local AsmL Variables here
sc_signal <nb_GetCell_typeState> nb_GetCell_C_State ;
sc_signal <unsigned int> nb_GetCell_Bn ;

}og

#endif

[k KKk ek ke ok K K K kR R Kk Rk R K ek ok R Rk Rk ok k ok kR ok ARk ok ok ok kK ok ok ok

———————————————— Transactor C++ File —--~-———r—oemeem

Title: UTOPIA Transactor

Author: Tareq Hasan Khan

Company: HVG

Date: Tuesday, Jun 12, 2007 @ 12:59:07 PM

This file is automatically generated by
SystemC Transactor Generator v1.0

**************************‘k**************************/

#include <systemc.h>
#include "tran.h"

/***

Tranasactor TLM Function Implementation
***/

void clsTran :: SendCell_Update (void)
{

wait (30, SC_NS) ;

wait (TxClk->posedge_event ()) ;
}

void clsTran :: SendCell (const unsigned int StartCellNo, const unsigned int
EndCellNo, const unsigned char SrcCell [])
{
SendCell_C_State.write (SendCell_S_CheckCellAvailable) ;
SendCell_Cn.write (StartCellNo } ;
SendCell_Bn.write (1) ;

wait (SC_ZERO_TIME) ;

// Start writing State Machine from here
while ((SendCell_C_State.read () != SendCell_S_End))

{

switch ((SendCell C_State.read ()))
éase SendCell_S_CheckCellAvailable :
}/next state
if ((TxClav.read () == SC_LOGIC_1) }
éendCell_C_State.write(SendCell_S_SendCell) ;
} éreak ;

case SendCell_S_SendCell
{

83

//open tx window
TxXEn_.write{ SC_LOGIC_O0) ;
//increament byte no

if ((SendCell_Bn.read () < 53))
{
SendCell_Bn.write(SendCell_Bn.read () + 1) ;
}
else
{
SendCell_ Bn.write(1) ;
}
//TxSOC
if ((SendCell_Bn.read () == 1))
{
TxSOC.write(SC_LOGIC_1) ;
}
else
{
TxSOC.write(SC_LOGIC_O0) ;
}
//TxData
TxData.write (toLv (SrcCell [(SendCell_Cn.read() - 1)*53+SendCell_Bn.read()]})) ;
//end of sending a cell
if ((SendCell_Bn.read () == 53))
{
//increment cell no
SendCell_Cn.write(SendCell_Cn.read () + 1) ;
//close tx window if all cell sent or no space in phy fifo
if (((SendCell_Cn.read ()} == EndCellNo) || (TxClav.read () == SC_LOGIC_0)))
{
SendCell_C_State.write(SendCell_S CloseTxWindow) ;
}
}
} break ;

case SendCell_S_CloseTxWindow

{

//close tx window

TxEn_.write(SC_LOGIC_1) ;

TxData.write ("XXXXXXXX") ;

//next state

if ((SendCell_Cn.read () == EndCellNo + 1))
{
//all cell sent
SendCell_C_State.write(SendCell_S End) ;
}

else
{
//all cell not sent, wait for TxClav
SendCell_C_State.write(SendCell_S_CheckCellAvailable) ;
}

} break ;

}
SendCell_Update () ;
}

Figure A.2: Automatically Generated SystemC Code

84

A.3 SystemC Transactor Template

The automatically generated SystemC transactor template for the UTOPIA trans-

actor is shown in Figure A.3

/***

———————————————— Transactor C++ File —-———-———oommm—m—m

Title: UTOPIA Transactor

Author: Tareq Hasan Khan

Company: HVG

Date: Tuesday, Jun 12, 2007 @ 01:37:46 PM

This file is automatically generated by
SystemC Transactor Generator v1.0

***/

#include <systemc.h>
#include "tran.h"

/**‘k********

Tranasactor TLM Function Implementation
:k—****/

void clsTran :: SendCell (const unsigned int StartCellNo, const unsigned int
EndCellNo, const unsigned char SrcCell [])
{

void clsTran :: GetCell (unsigned char DstCell [])

{

}

void clsTran :: nb_SendCell (const unsigned int StartCellNo, const unsigned int
EndCellNo, const unsigned char SrcCell [}, bool & isCompleted)

{

}

vold ¢lsTran :: nb_GetCell (unsigned char DstCell [], bool & isCompleted)

{

Figure A.3: Automatically Generated SystemC Code Template

85

A.4 AsmL Code for Memory Access

The AsmlL specification for the memory access transactor for the TLM function

mem._read() is shown in Figure A.4

namespace nsmem_read
import nsHardwareDatatype
import nsRTL

/7 Declare Enumeration here
enum typeState
S_OpenReadWindow
S_Ack
S_CloseReadWindow
S_End

/7 Function Declaration

public mem_read (adr as Integer, data as Integer, err as Boolean)
/7 Declare Local Asml Variables here
var C_State as typeState = S_OpenReadWindow

/7 Specify the RTL Clock Signal here
SetClockSignal (clk , true)

/7 Start writing State Machine from here
step while (C_State <> S_End)

match (C_State)

S_OpenReadWindow
AddressBus := toLv (adr)
r_wb := LOGIC_1
Enable := LOGIC_1
/7 next state
C_State := S_Ack

S_Ack :
1f Ack = LOGIC_1 then
C_State := S_CloseReadWindow
else
C_State := S_Ack

S_CloseReadWindow :
Enable := LOGIC_O
data := toInt (RD_DataBus)

if Err = LOGIC_1l then
err := true

else
err := false

/7 next state
C_State := S_End

Figure A.4: AsmL Code for function mem _read|()

86

Bibliography

[1] A. T. Abdel-Hamid, M. Zaki, and S. Tahar. A Tool Converting Finite State
Machine to VHDL. In Proc. Canadian Conference on Electrical and Computer
Engineering, volume 4, pages 1907-1910, Niagara Falls, Canada, May 2004.

[2] Absint Inc. http://www.absint.com/aisee.html, 2007.

[3] Accellera Organization. Accellera Property Specification Language Reference

Manual, version 1.01, http://www.accellera.org, 2007.
[4] Aldec Inc. Active-HDL Tool, version 7.1, http://www.aldec.com, 2007.

[5) ARM Limited. AMBA AHB Specification, rev. 2.0,
http://polimage.polito.it/lavagno/esd /ihi0011a_amba_spec.pdf, May 1999.

[6] ARM Limited. AMBA Specification, rev 2.0,
http://polimage.polito.it/lavagno/esd /ihi0011a_amba_spec.pdf, May 1999.

[7] ATM Forum Technical Committee. Utopia Level 2, wversion 1.0,
http://www.mfaforum.org/ftp/pub/approved-specs/af-phy-0039.000.pdf, June
1995.

[8] F. Balarin and R. Passerone. Functional Verification Methodology based on
Formal Interface Specification and Transactor Generation. In Proc. Design

Automation and Test in Furope, pages 1013-1018, Munich, Germany, 2006.
[9] F. Balena. Programming Microsoft Visual Basic 6.0. Microsoft Press, 1999.

87

[10]

[11]

[12]

[13]

[15]

[16]

[17]

[18]

J. Basker. A SystemC Primer. Start Galaxy Publishing, 2002.

D. C. Black and J. Donovan. SystemC: From the Ground Up. Kluwer Academic
Publishers, 2004.

E. Boerger and R. Stark. Abstract State Machines: A Method for High-Level
System Design and Analysis. Springer Verlag, 2003.

N. Bombieri, F. Fummi, and G. Pravadelli. On the Evaluation of Transactor-
based Verification for Reusing TLM assertions and Testbenches at RTL. In
Proc. Design Automation and Test in Europe, pages 1007-1012, Munich, Ger-
many, 2006.

G. D. Castillo and K. Winter. Model Checking support for the ASM high-
level language. In Tools and Algorithms for the Construction and Analysis
of Systems, Lecture Notes in Computer Science, volume 1785, pages 331-346.

Springer Verlag, 2000.

M. Frohlich and M. Werner. Demonstration of the interactive Graph Visualiza-
tion System daVinci. In Graph Drawing, Lecture Notes in Computer Science,

volume 894, pages 15-22. Springer Verlag, 1995.

E. R. Gansner, E. Koutsofios, S. C. North, and K. P. Vo. A Technique for Draw-
ing Directed Graph. IEEE Transactions on Software Engineering, 19(3):214—
230, 1993.

A. Gargantini and E. Riccobene. Encoding Abstract State Machines in PVS. In
Abstract State Machines: Theory and Applications, Lecture Notes in Computer
Science, volume 1912, pages 303—-322. Springer Varlag, 2000.

A. Gawanmeh, S. Tahar, and K. Winter. Interfacing ASMs with the MDG tool.
In Abstract State Machines - Advances in Theory and Applications, Lecture
Notes in Computer Science, volume 2589, pages 278-292. Springer Varlag, 2003.

88

[19] T. Grotker, S. Liao, G. Martin, and S. Swan. System Design with SystemC.
Kluwer Academic Publishers, 2002.

[20] GtkWave. VCD Waveform Viewer, http://www.cs.man.ac.uk/apt/tools/gtkwave,
2007.

[21] Y. Gurevich. Evolving Algebra 1993: Lipari Guide. In Proc. Specification and
Validation Methods. Oxford University Press, 1995.

[22] Y. Gurevich and N. Tillmann. Partial Updates: Exploration. Journal of Uni-
versal Computer Science, 11(7):917-951, 2001.

[23] Y. Gurevich and N. Tillmann. Partial Updates Exploration ii. In Abstract
State Machines, Lecture Notes in Computer Science, volume 2589, pages 57—

86. Springer Verlag, 2003.

[24] A. Habibi and S. Tahar. Design for Verification of Systemc Transaction Level
Models. In Proc. Design Automation and Test in Europe, pages 560-565, Mu-
nich, Germany, 2005.

[25] Ali Habibi. A Framework for System Level Verification: The SystemC Case.
Ph.D. thesis, Concordia University, Montreal, Canada, September 2005.

[26] M. Himsolt. Graphed: A Graphical Platform for the Implementation of Graph
Algorithms. In Graph Drawing, Lecture Notes in Computer Science, volume

894, pages 182-193. Springer Varlag, 1995.

[27] J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages and
Computation. Addison Wesley, 1979.

(28] J. Hubbard. Programming with C++. Schaum’s Outline Series, 1996.

[29] IEEE Standards Association. IEEE Std 1666TM Open Systemc Language Ref-
erence Manual, http://standards.ieee.org/, 2005.

89

[30] IEEE Standards Association. IEEE Std 1800TM, SystemVerilog: Uni-
fied Hardware Description and Verification Language (HDVL) Standard,
http://standards.ieee.org/, 2005.

[31] Isabelle. http://isabelle.in.tum.de, 2007.

[32] K. Keutzer, S. Malik, R. Newton, J. Rabaey, and A. Sangiovanni-Vincentelli.
System Level Design: Orthogonalization of Concerns and Platform-Based De-

sign. IEEE Transactions on Computer-Aided Design, 19(12):1523-1543, 2000.
[33] Mentor Graphics Corp. Catapult C Synthesis, http://www.mentor.com/.

[34] Microsoft Corp. Introducing AsmL: A Tutorial for the Abstract State Machine
Language, available at http://research.microsoft.com/fse/asml/, 20086.

[35] Microsoft Corp. Parameter Generation, available at

http://research.microsoft.com/fse/asml/, 2006.

[36] Microsoft Corp. Spec Explorer, available at
http://research.microsoft.com/projects/specexplorer/, 2007.

[37] Microsoft Corporation. Asml:: Abstract State Machines Language,
http://research.microsoft.com/fse/asml/, 2007.

[38] Philips Semiconductors. The I2C Bus Specification, version 2.1,
http://www.nxp.com/acrobat_download/literature/9398 /39340011.pdf, Jan-
uary 2000.

[39] A. Pnueli. The Temporal Logic of Programs. In Proc. Symposium on the
Foundations of Computer Science, pages 46-57, Rhode Island, USA, 1977.

[40] C. Pruteanu. Kiss to Verilog FSM Converter, http://codrin.freeshell.org, 2007.

[41] PVS. http://pvs.csl.sri.com, 2007.

90

[42] A. Rose, S. Swan, J. Pierce, and J.M. Fernandez. Transaction
Level Modeling in SystemC, available at open systemc initiative website:

http://www.systemc.org, 2006.

[43] K.H. Rosen. Discrete Mathematics and Its Applications. Tata McGraw-Hill,
2001.

[44] SpiraTech Ltd. Cohesive, http://www.spiratech.com/, 2006.

[45] Structured Design Verification Inc. TransactorWizard,
http://www.sdvinc.com/, 2007.

[46] S. Swan. SystemC Transaction Level Models and RTL Verification. In Proc.
Design Automation Conference, pages 90-92, San Francisco, California, USA,

2006.

[47] F. van Ham, H. van deWetering, and J. J. vanWijk. Interactive Visualization of
State Transition Systems. IEEE Transactions on Visualization and Computer

Graphics, 8(4):319-329, 2002.
[48] VCG tool. http://rw4.cs.uni-sb.de/ sander/html/gsvegl.html, 2007.

[49] Xilinx ISE Tools. http://www.xilinx.com /ise/design tools/, 2007.

91

