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Abstract 

Parametric Modeling of APT Cutters and Accurate Calculation of their Area Moments of 

Inertia 

Guogui Huang 

Due to cutting forces and the flexibility of the tool and its holder, the tool (or end-mill) 

deflects when it is engaging with the workpiece; unfortunately, large deflections can cost 

part accuracy, even break the tool. To produce high-precision parts, it is important to 

predict the deflections with high fidelity and then greatly reduce them through 

compensation in CNC tool paths. For this purpose, many research works have been 

successfully conducted on cutting forces prediction; however, another critical factor, the 

area moment of inertia of the tool, is always approximated, significantly reducing the 

accuracy of estimated deflections. The main reason for this is that the 3-D geometric 

model of end-mills is difficult to construct. To find the moment of inertia, in this work, 

first, a parametric model of APT cutters has been established and implemented in the 

CATIA CAD/CAM system by using its API. Then, a system of calculating the area 

moment of inertia for end-mills is built. Finally, a detailed discussion on the moment of 

inertia of end-mills is provided, along with comparison of this work with the existing 

methods. The major contributions of this work include the parametric end-mill modeling, 

which can automatically render the 3-D geometric model of an end-mill in seconds, and 

accurate calculation of the moments of inertia of end-mills. This work can be used, 

together with an existing cutting force calculation method, to accurately predict cutter 

deflections during milling in order to compensate them in CNC tool paths. It can also 
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provide more precise 3-D solid models of end-mills for machining simulation by using 

finite element analysis. 
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Chapter 1 Introduction 

1.1 Introduction and Review of CAD 

1.1.1 Definition of Computer Aided Design (CAD) 

CAD is the abbreviation of Computer Aided Design, which originally meant Computer 

Aided Drafting, because, in the early days, CAD was really a replacement for traditional 

drafting boards. Now, CAD usually reflects the functions with which the modern CAD 

tools can do much more than drafting. It is the technology concerned with the use of 

computer systems to assist in creation, modification, analysis, and optimization of a 

design [Flute and Zimmers, 1984]. Thus any computer program, which embodies 

computer graphics and an application program facilitating engineering functions in a 

design process, is classified as CAD software. In other words, CAD tools can vary from 

geometric tools for manipulating shapes at one extreme, to customized application 

programs, such as those for analysis and optimization, at the other extreme [Zeid, 1991]. 

Each of the different types of CAD systems require the manipulator to think in a different 

way about how he/she will use them and he/she must design their virtual components in a 

different manner. Products under CAD design are convenient to FEM analysis for design 



optimization, and convenient to next engineering process, such as die/mould design and 

machining programming and simulation. 

1.1.2 CAD Background 

Initial developments of CAD were carried out in the 1960s within the aircraft and 

automotive industries in the area of 3-D surface modeling, construction and NC 

programming, most of which are independent of one another and often not publicly 

published at that time. It was not until much later, some of the mathematical description 

work on curves was developed by Isaac Jacob Schoenberg, Apalatequi (Douglas Aircraft) 

and Roy Liming (North American Aircraft). However, probably the most important work 

is the descriptions on polynomial curves and sculptured surface, which were done by 

Pierre Bezier (Renault) and Paul de Casteljau (Citroen). 

First commercial application of CAD was in large companies in the automotive and 

aerospace industries, as well as in electronics, since only large corporations could afford 

the computers capable of performing the massive calculations on graphics. One of the 

most influential growths in the development of CAD was the founding of MCS 

(Manufacturing and Consulting Services Inc.) in 1971 by Dr. P. J. Hanratty, who wrote 

the system ADAM (Automated Drafting and Machining). As computers became more 

affordable, the application of CAD and its application areas have gradually expanded. 

The development of PC is the impetus of the development of CAD software for almost 

universal application in all areas, and because of the development of PC, CAD 

implementations have grown dramatically since then. 



In the CAD development history, the key products were the solid modeling packages-

Romulus (ShapeData) and Uni-Solid (Unigraphics) based on PADL-2 and the release of 

the surface modeler CATIA (Dassault System). The next milestone was the release of 

Pro/Engineer in 1988, which mostly used feature-based modeling methods and 

parametric linking of the constraints and relations of features. Another importance to the 

development of CAD was the development of the Boundary-representation (B-rep) solid 

modeling kernels (engines for manipulating geometrically and topologically consistent 

3D objects) by Parasoid (ShapeData) and ACIS (Spatial Technology Inc.) at the end of 

the 1980s and beginning of 1990s, both inspired by the work of Ian Braid. This led to the 

release of mid-range packages CAD such as SolidWorks in 1995, SolidEdge (Intergraph) 

in 1996, and IronCAD in 1998. Today, CAD is one of the main tools used in designing 

products. 

1.1.3 Fields of CAD Application and Capabilities 

Thanks to development of PCs which can be afforded by most of the industries, not just 

for large industries anymore, and development of description works on curves and 

surfaces, CAD software products now are booming. 

The different application areas of CAD include: 

1. The AEC industry- architecture, engineering and construction 

• Architecture 

• Building engineering 
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• Civil engineering and infrastructure 

• Construction 

• Road and highways 

• Railroad and tunnels 

• Water supply and hydraulic engineering 

• Storm drain, wastewater and sewer systems 

• Mapping and surveying 

• Plant design 

• Factory layout 

• Heating, ventilation and air-conditioning 

2. Mechanical (MCAD) Engineering 

• Automotive - Vehicles 

• Aerospace 

• Consumer goods 

• Machinery 

• Ship building 

• Bio-mechanical system 

3. Electronic Design Automation (EDA) 

• Electronic and electrical (ECAD) 

• Digital circuit design 

4. Electrical Engineering 

• Power systems engineering 

• Power analytics 

5. Manufacturing Process Planning 

6. Industrial Design 

7. Software Application 
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8. Apparel and Textile CAD 

• Fashion design 

9. Garden Design 

The capabilities of modern CAD systems include: 

• Wireframe geometry creation 

• 3D parametric feature based modeling, solid modeling 

• Freeform surface modeling 

• Automated design of assemblies 

• Create engineering drawings from the solid models 

• Reuse of the design components 

• Easy to modify the model of design and the production of multiple 
versions 

• Automatic generation of standard components of the design 

• Validation/verification of designs against specifications and design rules 

• Simulation of designs without building a physical prototype 

• Output of engineering documentation, such as manufacturing drawings, 
and BOM to reflect the requirement building the product 

• Easy to exchange data within different software packages 

• Provide design data directly to manufacturing facilities 

• Output directly to a rapid prototyping or rapid manufacturing machine for 
industrial prototypes 

• Maintain libraries of parts and assemblies 

• Calculate mass properties of parts and assemblies 

• Aid visualization with shading, rotating, hidden line removal, etc... 

• Bi-directional parametric association (modification of any feature is 
reflected in all information relying on that feature: drawings, mass 
properties, assemblies, etc... and counter wise) 

• Kinematics, interference and clearance checking of assemblies 
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• Sheet metal design 

• Hose/cable routing 

• Electrical component packaging 

• Inclusion of programming code in a model to control and relate desired 
attributes of the model 

• Programmable design studies and optimization 

• Sophisticated visual analysis routines, for draft, curvature, curvature 
continuity. 

1.1.4 Advantages of CAD 

Today's industries cannot survive in the worldwide competition unless they introduce 

new products with better quality, at lower cost, and with shorter lead time. Accordingly, 

they have tried to use the computer's huge memory capacity, fast processing speed, and 

user-friendly interactive graphics capabilities to automate and tie together the 

cumbersome and separate engineering or production tasks. Thus this reduces the product 

cycle time and the cost of product development and production. CAD is one of the 

technologies tool used to serve this purpose during the product cycle. 

CAD demonstrates its advantages compared with conventional design in the following 

areas based on its solid model: 

• Reduction in design and product cycle time 

• Convenience for design modification 

• Convenient for die/mould design 

• Convenient for FEM analysis 

• Convenience for CNC programming 

• Convenience for data storage 

• Design in parametric method 
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1.2 Parametric Design 

1.2.1 Definition of Parametric Design 

When talking about CAD, we cannot neglect parametric design. Parametric design refers 

to using parameters to define relations which are actually in determining the design 

elements or features. The basis for the parametric design is a dimension-driven geometry, 

which means, in dimension-driven geometry, any changes in dimensions will generate 

changes in geometry. In parametric design, geometric elements of CAD models are 

connected with parameters. This approach may be used in explicit definition of the 

geometry of B-rep by replacing dimensions by variable parameters in implicit geometry 

definitions, such as Constructive Solid Geometry (CSG). 



1.2.2 Parametric Design 
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Engineering design can be described as a set of decision-making processes and activities 

which is involved in determining the form of an object product. Parametric design is one 

of the phases in the development of a product, these phases including: formulation, 

concept design, configuration design, parametric design, and detail design. What makes 

parametric design special and particularly challenging is that analytical and experimental 

methods are employed to predict and evaluate the behaviour of each design object. 

Parametric design usually requires following four steps: 

• Definition of a sketch 

• Definition of geometric constraints between design elements 

• Constraint solving 

• Generation of variations by changing parameters 

Most current CAD software chooses parametric method; in the past several years, Pro/E 

is the major CAD software which proves the success of parametric design and prompts 

other CAD provider to develop similar functions. A parameter is a variable to which 

other variables are related and by which these other variables can be obtained by means 

of equations defined. By this parametric manner, modification of design and creation of a 

family of parts can be performed in remarkably quick time compared with the redrawing 

required by non parametric design. Parametric design can be accomplished with a 

spreadsheet (or table sheet), script, or by manually changing dimension in the model. 

These characteristics can make fewer job-loads in the process of design and modification. 

For example, a family of parts, one of the important set in parametric design, which is 



described in same shape and feature of parts but constrained in different dimensions and 

relations, can be easily established by parametric design method with one model defined 

by a table of different dimensions or constraints in CATIA. 

It should be noted that, from an elementary view point, parametric design is widely used 

in industry to reduce the effort needed to change CAD model and to create design 

variants but there is no clear boundaries between what is called parametric design and 

what is called computer aided drafting or modeling since modern CAD software relies on 

parametric design method. 

1.3 Area Moment of Inertia 

The area moment of inertia is the second moment of area around a given axis. Its 

definition is Ix = \y2 • dA, when the section is symmetrical about the x or y axis. When 

this is not the case, the area moment of inertia around the y axis, Iv, and the product 

moment of area, Im, are required to obtain different area moment of inertia around 

different axis. It is a property of a sectional shape that is used to measure the resistance to 

bending and deflection. The SI unit of the second moment of area is m4. 

For accurate CNC machining, we need to calculate area moments of inertia of end-mills 

to predict machined errors and to simulate machined surfaces. Prediction accuracy and 

simulation results are depend on how accurate the moments of inertia are. Until now, the 

area moment of inertia of a cutting tool is still approximated as a cantilevered beam with 



an effective radius as 80% of the radius of the cutting tool. But in an actual cutting tool, 

with different cutting flutes, the section of the cutting tool may not be a symmetrical 

shape. For example, a two-flute cutting tool is not a symmetrical one, but the other end-

mills are. Their deflections caused by the cutting tool in a different axis direction are 

different. 

1.4 Literature Review 

Some published papers discussed about the generalized model for cutting tools, including 

mathematical and manufacturing models [1-9], Engin, and Altintas [1] describe a 

generalized mathematical model of most helical end mills used in the industry. The end 

mill geometry is modeled by helical flutes wrapped around a parametric envelope and the 

helical curve of a cutting edge is mathematically expressed, which can be applied to the 

parametric design and representation of varieties of end mills. Chen, et al. [2] present a 

comprehensive manufacturing model that can be used to produce a concave cone-end 

milling cutter on a 2-axis NC machine. Based on the given design parameters and 

criteria, the equation of the cutting flute and the curve of the cutting edge are derived. 

Chen, et al. [3] present a method for manufacturing concave-arc ball-end cutters using a 

2-axis NC machine. The models that are used to calculate the actually obtained flute and 

the computer simulation method are also introduced. Wang, et al. [4] present the 

geometrical and manufacturing models of the rake face and flank by introducing a sphere 

and helicoid model used to grind the rake face and flank of the cutter. Chen, et al. [5] 

develop a systematic method that integrates design, manufacturing, simulation, and 



remedy. Based on the envelope condition, approaches for solving the direct and inverse 

problems related to the manufacturing models are also presented. Lin, et al. [6] present a 

mathematical model for a ball-end cutter that can be used to design and manufacture by 

using a 2-axis NC machine. Tsai, et al. [7] propose an analysis method that integrates 

design, manufacturing and numerical simulation to obtain a manufacturing model of the 

design and NC manufacturing of a ball-end cutter. Furthermore, a helical curve of the 

cutting edge, the equation of the sectional flute, and the mathematical model of the cross 

section of the grinding wheel, are also presented. Chen, et al. [8] present a mathematic 

model of the helical curve of the cutting edge and cutting flute, the design of the grinding 

wheels used in the NC machining of toroid-shaped cutters with a concave-arc generator. 

Chen, et al. [9] build mathematical models to overcome the two major problems 

associated with the design and manufacturing of ball-end cutters. The first problem 

involves the inability to solve the mathematical description of the cutting edge at the top 

of the ball-end cutter, while the second problem relates to the description of the grinding 

wheel feeding speed approaching infinity in the same region. All the 9 papers are focused 

on NC manufacturing model, the envelope model without sectional cutting flute model, 

more than the CAD parametric design model. No CAD models of the cutting flute on the 

ball or bull head is developed. Liu, et al. [10] study the design of hob cutters for 

generating the multi-cutting angles (radial rake angle, relief angle, and clearance angel) 

of helical cutting tools on one hobbing process. This paper discusses manufacturing 

processes with a hob instead of a grinding wheel. 

Since this thesis is about CAD parametric design, some papers about CAD are reviewed 

[11-13]. Sheth, et al. [11], basically, present mathematical analysis for CAD/CAM 



system for the design and manufacture of components with helical flutes. The CAD 

system can help the user design the profile of the tool and the helical flute, and thereafter 

analyze the subsequent machining process. Kaldor, et al. [12] deal with geometrical 

analysis and development for the designing of the cutter and the grinding wheel profile. 

The "direct" and the "indirect" method allow for the prediction of the helical flute 

profiles and cutter profiles, respectively. KANG, et al. [13] propose an analytical 

resolution of helical flute machining through a CAD approach, and a generalized helical 

flute machining model, utilizing the principles of differential geometry and kinematics, 

has been formulated. These 3 papers discuss CAD, but do not deal with building the 

cutter model. One paper on calculating rotary inertia is reviewed [14]. Rincon, et al. [14] 

present a transverse vibration model for drill bits which includes the effects of gyroscopic 

moments and rotary inertia. The model is used to demonstrate the significance of these 

effects, and of complex drill geometries, on the natural frequencies of drill bit transverse 

vibration. This paper discusses the rotary inertia of drill bits, but not the milling cutters. 

1.5 Research Objectives 

Due to cutting forces and the flexibility of the tool and its holder, the tool (or end-mill) 

deflects when it is engaging with the workpiece; unfortunately, large deflections can cost 

part accuracy, even break the tool. To produce high-precision parts, it is important to 

predict the deflections with high fidelity and then greatly reduce them through 

compensation in CNC tool paths. For this purpose, many research works have been 

successfully conducted on cutting forces prediction; however, another critical factor, the 



area moment of inertia of the tool, is always approximated, significantly reducing the 

accuracy of estimated deflections. The main reason for this is that the 3-D geometric 

model of end-mills is difficult to construct. To find the moment of inertia, the objectives 

of this work are to establish a parametric model of APT cutters and implement in the 

CATIA CAD/CAM system by using its API, and to calculate the area moment of inertia 

for end-mills. This work can be used, together with an existing cutting force calculation 

method, to accurately predict cutter deflections during milling in order to compensate 

them in CNC tool paths. It can also provide more precise 3-D solid models of end-mills 

for machining simulation by using finite element analysis. 

1.6 Thesis Outline 

This thesis comprises of 7 chapters. Chapter one introduces some basic concepts of CAD, 

parametric design, area moment of inertia, literature review and thesis objectives. Chapter 

two and three presents the parametric representation of cutting edges and cutting flutes, 

respectively. Chapter four describes the calculation of the area moment of inertia based 

on the sectional flute model built in Chapter two and three. In Chapters five and six, some 

examples of cutting tool are presented and their area moment of inertia is calculated, the 

analysis of the difference of the area moment of inertia between the presented model and 

traditional way and some examples of the equivalent radius or calculated area moment of 

inertia is provided. Chapter seven describes the major work of this thesis and future work. 

In Chapter eight, some of the appendixes are introduced, which is applied by Chapter 

four. 
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Chapter 2 Parametric Representation of the Cutting 

Edges of APT Cutters 

2.1 Nomenclature 

a : The angle of the taper of an APT cutter 

J3: The angle of the conical surface at the APT cutter bottom 

6: The helical angle of the cutting edge of an APT cutter 

Rs: The radial distance between the fillet center S and the cutter axis 

rc: The corner (fillet) radius of the cutter 

/,: The axial length of the cutter taper 

l2: The axial length of the cylindrical shank 

/3: The axial length of the conical surface at the cutter bottom 

n : Teeth (or flute) number of the cutter 

/i: Rake angle of the cutting edge 

y2: Relief (or clearance) angle of the cutting edge 
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73: Angle of straight line DE to X-axis (Clearance angle) 

rx Radius of arc BC of flute 

r2 Radius of arc CD of flute 

r0 Radius of the annular land on the end cutting surface 

lEF Length of cutting edge strip EF 

S Parameter of the revolving surface 

zs Axial coordinate of the end mill 

zK Axial coordinate of the end mill 

2.2 Parametric Representation of the Envelopes of APT Cutters 

APT (or automatically programmed tool) milling cutters are in generic shape, which can 

represent the geometries of all end-mills used in industry. To build the solid models of 

end-mills for various purposes, an effective way is to conduct a parametric design of APT 

cutters, and then a specific end-mill model can be obtained by assigning its corresponding 

parametric values. Specifically, a parametric design of APT cutters includes the 

parametric formulations of the helical cutting edge and the flute profile. By sweeping the 

flute profile along the cutting edge, the cutter body, the complex shape of a cutter, can be 

generated, and, by adding the cylindrical shank, a solid model of a cutter is completed. In 

the beginning of this section, a brief introduction to APT cutters is provided. 
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With regard to the geometry of a generic APT cutter, its envelop of the helical cutting 

edge is shown in Fig. 2.1, together with all the geometric notations used in my research 

work. It can be seen from the schematic that this envelope includes a conic surface 

(between points J and K), a toroidal fillet (between points K and L), a taper (between 

points L and M), and a cylindrical shank surface (between points M and N) from bottom 

to top. Among these envelope surfaces, the fillet normally is tangent to the taper and the 

conic bottom surface, despite of non-tangency between them in some special cutters, 

which is not addressed in my research work. The cutting edge is a helix on the envelope 

with a constant angle between the tangents of the cutting edge and the envelope 

longitudinal curve. Due to variation of the surfaces geometries, the segments of the helix 

on the surfaces are different from each other, so are their parametric equations. Thus, in 

order to define the helical cutting edge, the envelope surfaces have to be formulated 

before hand. 

R 

Figure 2-1 Schematic of the envelope of an APT cutter in the tool coordinate system. 



17 

The generalized parametric model can define a variety of end mills used in industry. 

These seven geometric parameters, Rh,rc,Rs,zS,a,jB,ll, are independent of each other, 

but with geometric constrains to create mathematically realizable shape. 

Flat End Mill Ball End Mill Bull Nose End Mill 

RL*0,rc = 0,Rs=RL RL*Q,rc = RL,Rs =0 RL *0,rc±0,Rs # 0 

zS = 0,tf = /? = (),/, * 0 zS = 0,a = p = 0,ll*Q zS = 0,a = P = 0,li * 0 

Taper Flat End Mill Taper Ball End Mill General End Mill 

RLj±0,rc = 0,Rs=RL RL * 0,rc = RL,Rs = 0 RL *0,rc*0,Rs * 0 

zS = 0,a^0,p^0,ll^0 zS = 0,a = 0, /?*0, / ,*0 zS*0,cr*0,/?#(),/ , # 0 

Cone End Mill Rounded End Mill Inverted Cone End Mill 

RL*0,rc = 0,Rs =RL RL *0,rc*0,Rs = 0 RL * 0,rc*0,Rs * 0 

zS = 0,a*0,/3*0,ll*0 z S * 0 , a = /? = 0,/,*0 zS*0,a *0,/?*(),/, * 0 

To derive parametric equations of all the envelop surfaces, a tool coordinate system (X-

Y-Z) is first built for modeling the APT cutter shown in Fig. 2.1; the origin of the 

coordinate system is at point O, the Z-axis is directed upwards along the cutter axis, and 

the X- and Y-axes are on a plane perpendicular to the cutter axis. In this coordinate 

system, the parametric equations for different geometric shapes of the cutter envelope can 

be found in sequence, and the formulation details are provided in the following. 



18 

2.2.1 Parametric Equation of the Conic Surface 

For generality, the conic surface of the envelope on the bottom of an APT cutter is taken 

into account in this work, even though many flat end-mills without the conic surface are 

used in industry. Since the conic surface forms a non-zero angle /? with a horizontal 

plane, its radius at different height can be found as 

R(z) = (z-z.). 
v ; tan/? v i} 

(2.1) 

where z} = zK - /3, /3 = 7?K • tan /?, and 

\RK=Rs + rcsm/J 

1% =zs-re-cos0' 

Thus, the parametric equation of the conic surface is 

S
>K(Z>V/) = 

1 
tan/? 

1 

tan/? 

•(z-Zj)-cos^' 

•(z-Zj)-sin^/ , and 
z3<z<zK^ 

0<if/<2-7t 
(2.2) 

Where i// is a parametric angle starting from the positive X-axis, and z is a parameter of 

the z coordinate. 



19 

2.2.2 Parametric Equation of the Fillet 

The fillet of the envelope usually is the main portion of the cutter involved in stock 

material removing, and it is in toroidal shape. Since the radius of the circle on the fillet at 

a height can be computed with the equation 

R{z) = Rs+^rc
2-(zs-z)2, (2.3) 

the fillet can be represented with parameters if/ and z as 

S K L ( Z ^ ) = 

(*s +^jrc
2-{zs-z)2)-cosyf 

\Rs+\lro2-(zs-z)2)-sinW , and 
( zK < z < 0 ' 

0 < y < 2 ; r 
(2.4) 

2.2.3 Parametric Equation of the Taper 

The taper shape of a cutter can increase its rigidity and reduce vibration during 

machining. In terms of a z coordinate, the radius of any cross-sectional circle of the taper 

is found as 

R(z) = RL+z-tana, (2.5) 

where RL-Rs+rc -cosa . So, the taper equation in a parametric form is 

SIM(Z,V)-

(i?L+z-tanor)-cos^ 

(i?L + z • tan a ) • sin y/ 

z 

, and 
( 0 < z < / , "l 

0<y/ <2n 
(2.6) 



2.3 Parametric Representation of the Helical Cutting Edge 

To build geometric models of APT cutters, a tooth's cutting edge, which is a helical 

curve, have to be formulated. According to a popular definition of helix in industry, a 

helical angle at a point is between the tangent to the helix and a plane through the cutter 

axis. Mathematically, helical cutting edges are on the envelope surfaces, and a helical 

angle is between the tangents to the cutting edge and the surface longitudinal curve (or 

line). Usually, helical angles remain constant and equal to the specified value. This 

general definition covers helical curves on different revolving surfaces such as cylinders, 

cones, and torus. For a helix on a cylinder, since the tangent to a longitudinal line is 

parallel to the tool axis, a helical angle is between the tangent to the curve and the 

cylinder axis, which is a convention. However, for helixes on cones and torus, a helical 

angle at a point is not between the tangent to the curve and the cutter axis. Based on the 

parametric equations of the envelope surfaces, the formula of the tangents to the surfaces 

can be derived. Then, a differential equation of the helical segment on each envelope 

surface can be established, and this equation can be directly used to calculate points on 

the helical segment. By importing these points, the helical cutting edge can be plotted in 

CAD systems, such as the CATIA CAD/CAM system. 

2.3.1 Helical Segment on the Conic Surface 

A helical segment PJK (z) of the cutting edge on the bottom conic surface can be 

parameterized with its z coordinate; thus, each edge point can be represented as 
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SJK (z,y/) with y/ = y/{z), where y/ is called a lag angle of the. Therefore, the equation 

of the helical segment, PJK (z), can be expressed as 

P*W= 
x(z) 

y(*) = SJK(z,^(z)) = 

tan/? 
(z-Zj)-cos^(z) 

(z-z,)-shw(z) 
tan/? V 1J W 

(2.7) 

The tangent vector of the helix can be found with the first derivative of PJK (z) in terms 

of z, which is 

dPJK _ dSiK (z,v(z)) _ 8S]K+8S]K d¥ 

dz dz dz dif/ dz 
(2.8) 

Hence, the tangential vector dPJK is found as the following equation. 

, K W dz dy 
(2.9) 

According to the parametric equation of the conic surface above, 

dS JK 

dz 

1 

tan/? 

1 

tan/? 

•cos y/ 

•sin^ 

1 

(2.10) 

and 



dS, 

dif/ 

-1 

tan/? 

1 

tan/? 

•(z-z^-sin^/ 

(z-Zj)-cos^ 

0 

(2.11) 

are obtained. Therefore, the tangent vector of the helical segment is 

JKV ; tan/? 

cos^ ,-dz-(z-z J)-s in^-J^/ 

sin y/- dz + (z-z})-cosy/-dy/ 

tan/?-elk 

(2.12) 

and, the square of the module of the tangential vector, dP^ (z) is 

^ J =-A^{(dzf +(Z]-zf -cos2 fiid^2). (2.13) 
sin'/? 

A longitudinal line of the conic surface is a line on the surface, along which a point's 

parameter y/ is in-variant, independent of parameter z, so the parametric equation of a 

longitudinal line QJK (z) on this conic surface can be represented as 

QAzY 
x(z) 

y(z) 
z 

=sAz>v)= 

1 
tan/? 

1 

tan/? 

(z-z^-cos^/ 

-{z-Zj )-siny (2.14) 

The tangent vector of the longitudinal line is the first derivative of QJK (z) in terms of z, 

which is 



dQ}K_dSm(z,v)_dS}K 

dz dz dz 
(2.15) 

So, the tangential vector c?Q,K of the longitudinal line is 

dQ}K(z) = ^-dz = 

1 

tan/? 

1 

tan/? 

•cost//-dz 

•siny/-dz 

dz 

(2.16) 

The module of this tangential vector dQ is 

sin/? 
(2.17) 

due to /? normally is about positive ten degrees. By referring to the helix definition, the 

helical angle 9 is between the tangent vectors dQjK and d¥!K, it can be expressed with 

the following equation. 

cos# = (2.18) 

By simplifying the above equation, we can get 

c o s 2 9 •• 
(dzf 

(dz) +(zj-z) -cos2 fi-(dy/) 
2 ' (2.19) 

thus, the relationship between lag angle if/ and dz of the helix is found in a differential 

form. 
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{dy/)2 tmO 

cos/?-(zj - z ) 
•dz (2.20) 

From Eq. (2.20), it is known that dy/ can be positive or negative, which represents a 

right- or left-hand helix curve, respectively. For a right-hand helix curve cutting edge, the 

relationship between dy/ and z at the cone zone can be found as 

dy/ 
tan 0 dz 

cos/? {z-z}y 
(2.21) 

and, for a left hand helix curve cutting edge, the relationship between dy/ and z at the 

cone zone can be built as 

dy/ = 
tan 6 dz 

cos/? (z-Zj) 
(2.22) 

2.3.2 Helical Segment on the Fillet 

The helical curve PKL (z) is on the torus surface with its helical lag angle y/ related with 

the parameter z, hence, the helix curve equation is 

M*)= 
x(z) 

z 
= S K L ( Z > H Z ) ) : 

yk+v>;2 ~(zs ~ z ) 2 J-cos^(z) 

Us +Vrc2 " ( z s ~ZY J-sm^(z) (2.23) 

Since the first derivative of the helix is 
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dPKL_dSKh(z,^(z))_dSKL | dSKL d¥ 

dz dz dz dy/ dz 

the tangential vector dPKL of this curve is 

dPKh(z) = ^-dz + ^ - d v . KLV ; dz dy/ 

By substituting the following two equations, 

dS KL _ 

dz 

z 

V rc2-(ZS-Z)2 

1 

•cosy 

:-SHlf 

and 

as„ 
dy 

(#>+V^-(zs-z)2)-sW 

into Eq. (2.25), the tangential vector of the helix can be obtained. 

<*PKL = 

(2.24) 

(2.25) 

(2.26) 

(2.27) 

•cosi , ~^y/-dz-[R^+^r2 - ( z s - z ) \-siny/-dy/ 
V r c 2 _ ( z s _ z ) 

. • siny/• dz +IRg + yrc
2 ~{zs-z) 1-cosy-dy/ 

V r c 2 - ( z s - z ) 2 

(2.28) 

dz 
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Then, the square of the module of this tangential vector dP^ can be calculated as 

. f=£+2-z.z.-z.* 
lKL 

~S ~S 

izs-z) 
{dz)2

+^+ ^ r c
2 - ( z s - z ) 2 ) 2 • {d^f. (2.29) 

The longitudinal curve QKL (z) is on the torus surface with angle y/ fixed, thus the curve 

can be derived from the surface as 

Q K L W : y(z) 
z 

= SKL(z,^) = 

Rs+ylrc2-(zs-z) 2 ) -cos^ 

[Rs+irc2-{zs-z) j - s in^ (2.30) 

Since the first derivative of the longitudinal curve is 

^ Q K L =
< J S K L ^ ) = r g S K L 

dz dz dz 
(2.31) 

the tangential vector of the curve is 

dQKh(z)-
dS KL 

dz 
•dz, (2.32) 

Therefore, the tangential vector can be simplified as 

^ Q K L ( Z ) = 

Z-COSl// 

^rc
2-{zs-z)2 

z-siny/ 

4rc2-{zs~z)2 

dz 

•dz 

•dz (2.33) 
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The module of the tangential vector dQKh is 

z1 

K -{zs-z) 

The helical angle 6 of the cutting edge is between tangents dQ^ and dP^ , a equation 

of the helical angle is obtained. 

cos0 = ,dQia-'fPia'l. (2.35) 

Based on this equation, the relationship between the lag angle y/ and the z coordinate can 

be found. 

(*f- fr*2-*-?')--'' (^ . (2.36, 
( A , + ^ - ( z s - z ) ! ) - ( r , ! - ( z s - Z ) ! ) 

It is easy to understand that dy/ can be positive or negative to represent a right- or left-

hand helical curve of the cutting edge, respectively. For a right-hand helical curve, the 

lag angle dy/ can be calculated in terms of dz as 

lr
2 +2-_ 

dy/ = tan0-. V C * * =-dz, (2.37) 
( ^ + ^ - ( z s - z ) 2 ) > c

2 - ( z s - z ) 2 

and, for a left-hand cutting edge, the relationship between dy/ and Jz can be found as 
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dy/ = -tan0-
Vr c

2+2-z-z s-z s
2 

(W'e2-k-*)2)>e2-(*S-*)S 
•dz. (2.38) 

2.3.3 Helical Segment on the Taper 

The helical curve PLM (z) is on the taper with the curve lag as a function of z, y/ = y/(z), 

thus, the curve can be represented as 

P i -W = 

x(z) 

z 
•SLM(Z>V) = 

(7?L + z-tana)-cos^ 

(i?L + z • tan or) • sin y/ 

z 

(2.39) 

Due to the first derivative of this helix, 

^ L M _ ^ L M (z,v) _ dsLM ( asLM dw 
dz dz dz dy/ dz 

(2.40) 

the tangential vector of this helix curve is 

dPlM{z) = ^ - d z + ^-dVft 

dz dy/ 
(2.41) 

By substituting the following equations 

dS LM _ 

dz 

tanar-cosy 

tan a • sin y/ 

1 

(2.42) 



and 
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as LM 

dy/ 

-( /?L+z-tan«)-siny 

(RL + z • tan a ) • cos y/ 

0 

(2.43) 

into (2.41), the tangential vector of P ^ (z) can be found. 

^ L M = 

tan a • cos y/ • dz - (Rh + z • tan a) • sin y/ • dy/ 

tan or -smy/ • dz + (RL + Z •tanor)-cos^ • dy/ 

dz 

(2.44) 

The module of the tangential vector d¥UA is 

WP. LM + (Rh+z-tana)2-(dy/)2 

Vcosary 
(2.45) 

Similar to the longitudinal lines on the conical surface, a longitudinal line Q,^ (z) on the 

taper can be found as 

Q L M ( * ) : 

x(z) 

= SM(Z>V) = 

(/?L+z-tancr)-cos^ 

(i?L + z-tanor)-sin^ (2.46) 

The first derivative of this longitudinal curve is 

rfQuv, <®UA{Z>V) dS 
dz dz dz 

(2.47) 



so its tangential vector is 
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as, dQLM(z) = ^ - d z . 
dz 

(2.48) 

By simplification, the tangential vector is represented in the following equation. 

^ Q L M = 

tana-cosy/-dz 

tan«-sin^-Jz 

dz 

(2.49) 

The module of the tangential vector dQLM can be found 

\dQ LM 

dz 

cos a . 
(2.50) 

The helical angle 0 of the cutting edge is between tangents dQLM and dPlM , and can be 

formulated as 

cos# = (2.51) 

The lag angle of the helix can be calculated with the z coordinate in the following 

equation. 

(dy/f =tm20- (dz)1 

cos2 a • (Rh + z • tan a ) 
(2.52) 
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It is easy to understand that dif/ can be positive or negative for a right- or left-hand, 

respectively. Thus, for a right-hand helix, the relationship between diff and dz can be 

found as 

d\j/ - tan 9 • 
dz 

(7?L+z-tana)-cosor' 
(2.53) 

and, for a left-hand cutting edge, the relationship is as 

dy/ = - tan 0 • 
dz 

(RL + z • tan or) • cos a 
(2.54) 

In different zone, a series of representative equations of the differential helical lag angle 

have been established. Based on the equations, the helical lag angle can be calculated as 

y/j{z) = y/J_l(z) + dYj{z), (2.55) 

also, the radius of the section of the envelope of the cutting tool have been built, thus the 

helix curve can be calculated. 

x = r(z)-cos((//J(z)) 

\y = r(z)-sm(y/J(z)). (2.56) 

z = z: 



2.4 Non Tangential Conditions 

If cone zone JK is not tangential to arc zone KL at point K, then 
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RK=RS+^-{ZS-ZK)2 (2.57) 

l3=RK-tmfi = ^Rs+yjre
2-(zs-zK)2^tmfi, (2.58) 

zj ZK h' (2.59) 

if tapered zone LM is not tangential to arc zone KL at point L, then 

**=**+>/?"* 
zL=0 

(2.60) 



33 

Chapter 3 Representation of Cutter Flutes 

End-mills used in industry usually contain 2 to 4 teeth, between them are cutter flutes. 

The cross section of a cutter can be generated with a pattern of a flute profile, which is 

illustrated in Fig. 3.1, and the cutter teeth model can be formed by sweeping the cross 

section along the helical cutting edge. Each section of the flute consists of five segments. 

The straight line AB, which forms a rake angle yl with the JC axis, corresponds to the rake 

face. The circular arc BC with radius value rx is the section of the flute which blends the 

chip. The circular arc CD is the section of the flute which removes the chip smoothly. Let 

the radius of the arc CD be r2. Arc BC is tangent to the straight line AB at point B, and 

tangent to arc CD at point C. The straight line DE forms an angle yi with the tangential 

line at point F. The straight line EF, which forms a relief angle y2 with the tangential line 

at point F, corresponds to the strip. 
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,Y 

Figure 3-1 Sectional View of a Flute 

3.1 The Coordinates of the Intersection Points of the Profile of 

Cutting Flute 

Suppose an APT cutter has n teeth and the profile of a flute starts at point A (a tooth tip) 

on the X-axis and ends at point F (a neighboring tooth tip), as shown in Fig. 3.1. In this 

work, the central angle between two adjacent teeth is called a teeth spacing angle, which 

is shown in Fig. 3.1 as ZAOF, and a teeth spacing angle is equal to 2n/\\. The x- andy-

coordinates of points A and F can be found in the tool coordinate system. 

= X' 
0 

and 
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r F = 

X p 

7 F . 

J?L-cos — 
I n , 
(2^ 

Rh -sin 
V n 

(3.2) 

The angle starting from the positive X-axis to line FE is denoted as < F̂E, which can be 

found in terms of the relief angle y2, teeth spacing angle, and helical cutting edge 

direction. For a right-hand helical cutting edge, 

_7n _n _ 
' FE ~ ~~Z ~ Yl ' 

n 2 

(3.3) 

and, for a left-hand helical cutting edge, 

7.71 K 

n 2 
(3.4) 

According to point F, the coordinate of point E is calculated as 

rc = 
xE 

y* 

Ap 

J F 

+ 
cos^FE -sin^FE 

sin^FE C O S < F E . 

'FE 

0 

Xf + F̂E ' C O S h FE 

yF+^E-sin^FE. 

(3.5) 
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The coordinates of point G can be represented in two ways, and then can be found by 

solving a system of equations. 

ro = [*L -'AB - c o s r i - 1 -sin/, -/AB -sin/, +r, -cos ft] 

= [(r,+r0)-cos/7, (T; + r0)-sin77,] 
(3.6) 

which is 

\RL-lAB-cosrt-n -sinr, =(r, +r0)-cos?7G 
(3.7) 

By solving this equation, /AB and TJG are found as 

-bx±^bl -4-a,-c, 
PAB 

' A B < * L 

2-a, 

( 
TJG =arcsm 

^•cos^- / A B - s in^ 

1+ ro 

(3.8) 

where 

ax-\ 

6, = -2 • 7?L • cos 7, 

c, = ^ L ~2-RL -r, •sin;', -r0
2 -2-r0 •/; 

(3.9) 

Then, the coordinates of points B and G can be formulated as 

rB = 
Xr, 

y* . -^B-s in / i 
, and (3.10) 
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yo. 

xB-rl-smr, 

yB+r,-cosr, 
, respectively. (3.11) 

Similarly, the angle starting from the positive X-axis to line ED is denoted as < ÊD, and it 

can be formulated in terms of the clearance angle ;r3, teeth spacing angle, and helical 

cutting edge direction. For a right-hand cutting edge, 

_ 2n _ n _ 
*? ED — "T ^3 ' 

n 2 
(3.12) 

and, for a left-hand cutting edge, 

In n 

n 2 
(3.13) 

The coordinates of point H can be represented in two ways as in the following equation, 

with two unknown variables /ED and t]2. 

ru = 

* E + / E D - C 0 S C E D - r 2 - C 0 S 

fn ^ 
ED •+<r, 

yE +/ED - s i n ^ - r 2 -sin - + £ n 
'ED (3.14) 

^ o + ( , ; + r 2 ) - c o s , 7 H 

which is a system of equations 
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*E + 4D • cosCED -r2 • cosl - + CED J = xG + (r, +r2)• COSTJH 

jE+/ED-sinCED-^2-sinf^ + 4'EDl = jG+(r1+r2)-sin7H 

(3.15) 

By solving this equation, the variables /ED and rjn are found. 

_-b2±yjb2
2-4-a2-c2 

2-a, 

4D < Rh 
In 

n 

?7H = arcsm 
7 E + ÊD * S i n ^ED - r 2 * C O S ^ E D ~ ^G 

r.+r, 

(3.16) 

where 

a2 = 1 

Z>2 = 2-cos£ED (xE -x G +r2 •sinCED) + 2-sin^ED -(yE -yG -r2 - c o s ^ ) . (3.17) 

c2 = (xE -x G +r2 -sin^ED)2 + (yE -yG -r2 - c o s ^ ) 2 -{rx +r2f 

Thus, the coordinates of points H, D, and C are calculated. 

rH = 

r 

xH 

D ~ 

= 

*D 

7E 

= 

+ lm-cos<ZED+r2-

+ /ED-sin£ED-r2-

* E + ^ED ' C 0 S QED 

. y E
+ / E D - s i n ^ E D . 

sin^ED" 
cos^ED_ 

, and 

(3.18) 

(3.19) 
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7c 

ri-xn+r2-xG 

rX+r2 

r,-yn+r2-yG 

rx+r2 

, respectively. (3.20) 

3.2 Polar Equations of the Flute Segments 

Based on the geometric feature points (A, B, C, D, E and F) of the flute found above, the 

flute profile including three lines (AB, ED, and FE) and two arcs (BC and CD), can be 

represented with polar equations. First, the polar representations for points A(pA ,7A) , 

HPB'VB)' C(PC,TJC), D( /? D ,77 D ) , E( ,P E , ;7 E ) and F(pF ,%) can be found as 

pA=Rh mdrjA=0 (3.21) 

PB = \lxl+yl and % = arctan "^ 
KXB J 

(3.22) 

pc = y x£ + y2
c and rjc = arctan 

\XC J 
(3.23) 

Pu = A/̂ D + JD
 a n d % = 

;r + arctan ^- , xD <0 
KXD) 

arctan 
\XD J 

, x D > 0 

(3.24) 

Pj,=4xl+yl and7E=j 
n + arctan V 

V*E7 
, * E < 0 

arctan '2O 
, and 

,xE>0 

(3.25) 



pv = Rh and rjv = — 
n 

(3.26) 

For the centers G and H of arcs BC and CD, their polar coordinates representations 

G(pG,tjG) and H(pH,TJH) can be calculated as 

pG = r0 + r, and TJG = arctan 
VXG 

(3.27) 

and 

p»=4xl+yl ' a n d 7 7 H = 

7T + arctan — , xH <0 

arctan 
VXH J 

, x H > 0 

(3.28) 

respectively. 

Second, polar equations of the flute segments are derived one by one. To derive a polar 

equation of line AB, the algebraic equation of this line in the Cartesian coordinate system 

is adopted. 

y^tmrx-(x-xA) (3.29) 
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Since the Cartesian coordinates (x,y) of a point on this line are co-related with the polar 

, s. \x = p-cosTj 
coordinates (p,rj) of this point in an equation •{ , by substituting the 

I y = p • sin rj 

relationship, the above equation can be transformed into 

yO-(sin^, -cos77-cos/, •sinrj) = xA -sin/, (3.30) 

Hence, a polar equation of line AB is obtained after solving this equation. 

rl{p)~7\ -arcsin 
rxA-smy^ 

K P 
P&[PK PB]- (3.31) 

For a polar equation of circular arc BC, based on the equation of arc BC in the Cartesian 

coordinate system, ( x - x G ) + (y-yG) = r,2, a equation of polar coordinates of this arc 

is obtained as 

p2 -2 -p-p G -cos(/7-7G) + pi = r2 (3.32) 

By solving the above equation, a polar equation of arc BC is found as 

r?Bc(p) = %+aTCC0S 

7 7 B c(p) = ? 7 G - a r c c o s 

2-P-PG J 

( p2+pl-r^ 

2-p-p 

>Pt[ro Pc] 

,P*[PB ro] 

(3.33) 

G J 
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Similarly derived as circular arc BC, based on the equation of circular arc CD in the 

Cartesian coordinate system, ( JC-X H ) +(y~yH) =r2
2, a polar equation of circular arc 

CD is obtained as 

P2 -2'P-PH -COS(T7CD - 7 H ) + PH = ri (3.34) 

By solving the above equation, we can build the polar equations of circular arc CD. 

;7cD(p) = 7 7 H - a r c c o s 

77cD(/7) = 7 7 H + a r c c o s 

f 1 1 2 \ 
1 p2+p2

H-r2
2^ 

2-P-PH 

<' P2+Pl~r^ 

2-P-PH 

,pe[pc pn+r2] 

,p&[pH+r2 pu] 

(3.35) 

The function of the circular arc CD is the flute segment which removes the chips blended 

by circular arc BC smoothly. In practice design, rju > tjCD ( p ) , that is, 

77cD(/?) = 7 7 H - a r c c o s 

f 2 2 2 \ 

' p2+pl-r2^ 

2-P-PH 

,pt[pc Pv+r2]. (3.36) 

To derive the polar equation of line DE, the relationship of a point coordinates between 

polar and Cartesian coordinate system is substituted into this line equation in the 

Cartesian coordinate system, y = tan<^DE -(x-xD) + yD. This polar equation is found as 

P • (sin 77DE • cos ̂ DE - cos ?jDE • sin CDE ) = yD- cos £DE - xD • sin < D̂E. (3.37) 

To find a representation polar equation by solving the above equation, we have 



riDB(p) = aicsm yD-COSCDE~XD-sin^DE 1 

P 
+ £DE, pe[pD pE]. (3.38) 

The steps and methods used to find a polar equation of line DE can be similarly applied 

to derive the polar equation of Line EF. Based on the algebraic equation of line EF in the 

Cartesian coordinate system, y = tan ̂ EF-[x-xE) + yE, the polar equation of this line is 

founded. 

p • (sin 7/EF • cos <EF - cos ?7EF • sin CEF ) = yE- cos CEF ~ xE • sin £"E (3.39) 

Solving the above equation, a polar equation of this line is established. 

/7EF(/?) = arcsin ^ • o o s ^ - ^ - d n ^ V ^ j P F ] ( 3 4 0 ) 

V P J 

For different section, the size of the sectional flute profile is scaled due to sectional 

radius. When the two end points of this profile are aligned to the helical lag angle along 

the helix curve, the profile of the flute can be built. 

Pj=Srp 

(3.41) 

zfj=zj 

and the scale, S., can be decided. 



Sj=R(z)/Rh. (3.42) 

3.3 Program and the 3D Models of Cutting Tools 

Based on the equations of helix cutting edges and the cutting flute profile built in chapter 

2 and 3, parametric design in CAD of cutting tool can be done. By keying in the values of 

the parameters and clicking "Run" button shown in the bottom of Fig. 3.2, this program 

will run in CATIA V5 and 3D models of the cutting tools will be automatically produced. 

Since the transitionary section between cutting edges and shank is unpredictable, and it is 

decided by the shape of grinding wheel, the shape of the transition in the cutting tool is 

obtained by approximation. 
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Parameters on the left side of Fig. 3.2 are employed to describe the sectional cutting 

profile; and, parameters on the right side of Fig. 3.2 are used to describe the helix curve. 

The following pictures show the solid model of several cutters produced by this program. 

They are flat end mill, ball nose end mill, bull nose end mill and Apt cutting tool, which 

are the representatives of the cutting tools that are being frequently used in manufacturing 

industrial. For some special designed cutting tools, the mathematical model also can be 

employed. But they are not the representatives of the popular ones in industrial, only for 

special application purposes. 

Figure 3-3 Flat End Mill 
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Figure 3-4 Ball Nose End Mill 

Figure 3-5 Bull Nosed End Mill 
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Figure 3-6 Apt Cutting Tool 



Chapter 4 Accurate Calculation of Area Moments of 

Inertia of APT Cutters 

Increasing demand for better quality products and higher production rates requires a more 

complete understanding of the inertia of cutting tools. When predicting machining error, 

the area moment of inertia is one of the very significant effects in calculating deflection 

[16]. If the Ix and Iv are not accurate enough, the calculated result of the deflection will 

not be accurate enough either. In this chapter, a more accurate method for calculating the 

area moment of inertia will be introduced. 

In calculating the area moment of inertia, the cutting flute is considered as infinitesimal 

bands with the width, AR , and each infinitesimal band is divided into infinitesimal 

elements with an infinitesimal angle, drf. By calculating all the area moment of inertia of 

these infinitesimal areas and adding them together to obtain the area moment of inertia of 

bands, area moment of inertia of flute is obtained. The demonstration is shown in Fig. 

3.1, and this layer is taken as a reference one at z = 0. 



Figure 4-1 Diagram of one of the cutter flute. 

4.1 Representation of Polar Angle 

If the range of the polar radius between r0 and RL is divided into 1000 sections, then 

can calculate the increment of polar radius and middle polar radii for bands. 

nr = 1000, 

nr 

/ = l :nr , 

p = r 0 + ( / - 0 . 5 ) - M . 



Concerning the profile of one cutter flute, as polar radius changes, the polar angle of each 

point on the curve of this profile will be represented in different formula. All these 

formula would be deduced in this section regarding to the profile of Fig. 3.1. 

4.2 Difference of Polar Angle between Segments of Sectional 

Flute 

Based on the design practice, the five equations of the five segments which consist of 

cutter flute and the intersectional points between segments would be different. 

Considering the relationship among pB, pc and pD, three situations are established as 

polar radius changes from r0 to RL . 

4.2.1 \fpc<pD<pB 

If r0< p< pc, this p range covers circular arc BC only 

&rj(p) = r?Bc (P) ~ %c (/>) = 2 • arccos 
( P^Pl-r^ 

2-P-PG 
(3.43) 

if pc< p< pD, this range is surrounded by circular arcs CD and BC 

&V{P) = VCV{P)-V~BC{P) 

= TJH - ijG - arccos 
(P2+Pl~r^ 

2-P-PH 
+ arccos 

(f?+pl-r?\ (3.44) 

2-p-p( G J 



if pD<p<pB, this range is covered by line DE and circular arc BC 

51 

AT?(p) = rjm(p)-TjBC(p) 

(yD-cosCDE-xD-sinCl 
= arcsin 

V P 

+ ^ D E _ / 7 G + a r C C 0 S 

( 2 2 2 \ 
f P +PG-r> 

2-p-p( •a ) 

(3.45) 

if pB<p<pK, this range is surrounded by lines DE and AB 

A?7(P) = 7 D E ( P ) - ' 7 A B ( P ) 

= arcsm 
— x D • s in 4"D 

+77DE ~Y\+ arcsin 

P 

xA-sin7, 

P 

(3.46) 

if pE < p < pF, the two lines EF and AB form this range 

A ' 7 ( / ? ) = % F ( / 7 ) - 7 7 A B ( P ) 

= arcsin 
^ E - c o s ^ p - xE • sin^EF 

+ C E F _ / i + a r c s i n 

P 

xA • sin YX 

\ P 

(3.47) 

4.2.2 If pc<pB<pD 

If r0 < p < pc, this range includes circular arc BC only 



AV (p) = rj+
AB (p) - r?~AYi (p) = 2 • arccos 

f 2 2 2 \ 

2-p-p{ G J 

(3 

if pc < p < pB, this polar radius covers two circular arcs CD and BC 

AJ?(P) = VCD(P)-V~AB(P) 

= JJH-%- arccos 
(P2+pl-r2

2^ 
2-P-PH 

+ arccos 
fp2+p2

G-rx
2\ 

V 2-P-PG 

(3 

if pB < p < pD, this range is covered by circular arc CD and line AB 

^(P) = J7CD(P)-^AB(P) 

= rln~Y\~ arccos P +pH~r2 

2-P-PH 
+ arcsin 

rxA-siny^ (3 

if pD < p < yOE, this range is covered by the two lines DE and AB 

M{p)=Vm{p)-v^{p) 
Y-yp-cosCpE-^D-sinCi 

= arcsin 

+<£DE ~ Y\ + a r c s i n 
( xA-siny, 

V P 

(3 

if pE<p<pF, this range is surrounded by two lines EF and AB 

ATl{p) = rj¥P(p)-ijAB(p) 

= arcsm 
r^E-cos^E F-xE-sinCE F ' 

+^ E F - Yi+ arcsin 
K P , 

(3 



4.2.3 If pB</7 c <p D 

If r0 < p < pn, in the range of arc BC only 

A V {p) = 7BC (P) ~ %c (p) = 2 • a1"0008 

2-P-PG 
(3 

if / ? < / ? < p c , in the area between circular arc BC and line AB 

^v{p) = Vlc{p)-Vm{p) 

= 7G - X] + arccos 
/ 2 2 2 A 

2-P-PG 
+ arcsm 

' xA • sin Yx ^ 

y P , 

(3 

if /?c < p < pD, in the area between circular arc CD and line AB 

^V{p) = ri^{p)-l^{p) 

= T1H~Y\~ arccos 
/ 2 2 2 \ 

2-P-PH 
+ arcsin 

rxA-siny^ (3 

if pD < p < pB, in the area between tow lines DE and AB 

A J 7 ( P ) = 7 D E ( P ) - 7 A B ( P ) 

' yD • cos CpE-Xp-sin^ 
= arcsin 

+£DE-/ |+ a r C s i n 

(3 

if /7E < p < pF, in the area between two lines EF and AB 



A77(/>) = 7EF(/>)- '7AB(/ ?) 

= arcsin 
^E-cos£E F-xE-s inCE F (3.57) 

+CEF - ;K i+ a r c s i n 

rxA-siny^ 

The area moment of inertial of the first flute can be calculated based on the equations 

developed. By considering an area covered by At](p) and AR as a band and in each 

band, Arj(p) is divided into 100 elements, denoted as drj^p). 

na = 100, 

drj(p) 
Arj(p) 

na 

m = 1:na, 

dA = p-drj(p)-AR. 

The area moment of inertia of each element around the x axis of each element is 

ifp(l)<pB 

dl™ =y2 -dA = (p-smfec (p) + (m-0.5)-dTj(p))f -dA 

= p3-sm2((?j-c(p) + (m-0.5)-d7j(p))yd?j(p)-AR 
(3.58) 



else 

di: = y2 •dA = (p-sin(vAYi{p)Hm-Q.5ydti{p)))2 dA 

= P* • sin2
 ((J7AB {p) + (m- 0.5) • dtj (/?))) -dT](p)-AR 

By adding all the area moment of inertia around the x axis of each element, the area 

moment of one certain band around the x axis is calculated. 

AIl
x = ZdI™. (3.60) 

m=\ 

By adding all the area moment of inertia around the x axis of each band, the area moment 

of inertia around the x axis of first flute is obtained. 

i n 

4,=5X- (3-61) 
1=1 

The area moment of inertia of each element around the>> axis of each element is 

ifp(/)</>B 

dlm
y = x2 -dA = [p-cos(T]-c(p) + (m-0.5)-dTj(p))) -dA 

= p3 •cos2((TjBC(p) + (m-0.5)-drj{p))ydTj(p)-AR 
(3.62) 

else 
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di; =x2 •dA^(p-cos(tjm(p)+(m-0.5)-dTj(p)))2 -dA 

= p3 • cos2
 ((TJAB (p) + (m- 0.5)-drj (/?)))• dtj (p)-AR 

(3.63) 

The area moment of inertia around the y axis of one certain band is obtained by adding all 

the area moment of inertia around the y axis of each element, 

M'y = T,di;, (3.64) 

The area moment of inertia around thej; axis of the first flute is calculated. 

I l l 

4,=2>;. (3.65) 
i=\ 

The product moment of area of each element is, 

if p(l)<p 

dr=x-ydA 

= p • cos ((/7BC (p) + (m - 0.5) • dtj (/?))) 

•p • sin[(rjBC (p)+(m-0.5)-dr](p))ydA , (3.66) 

= p} -cos((/7BC (p) + (m-o.5)-dtj(/?))) 

•sin((i7BC(p) + (m-0.5)-di?(p)))-dT](p)-AR 

else 
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dlm
xy=x-ydA 

= p-cos((rjAB(p) + (m-0.5)-d?](p))) 

•psm((jjAB{p) + (m-0.5)-drJ{p))ydA . (3.67) 

= p3
 -COS{(TJAB (p) + (m-0.5)-drj(p))) 

• *™((nAB {p) + (m-0.5) d?](p))ydTi(p)-AR 

For the product moment of area of one certain band, by adding all the product moment of 

area of each element together, the product moment of area of one band is obtained, 

na 

A/;v = z < / / ; , (3.68) 
m=\ 

By adding all product moment of area of each band, we can have the product moment of 

area of the first flute. 

i n 

4_> y =IX. (3.69) 

Supposed the cutter has n flutes, thus, the area moment of inertia of each flute can be 

calculated by rotating an angle, Injn, from its previous one. Then, according to the 

theorem by Benham [1] in his Mechanics of solids and structures, the area moment of 

inertia and the product moment of area for a coordinate system rotated relative to the 

original coordinate system can be calculated [Appendix I]. Applying to the cutter flute 

case, the other area moment of inertia and product moment of area of each flute is 

obtained. 
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w -*flt x + Al ly , ^flt i ' f f ly [ ~ 2?T | • 
flAy-sin 2 

ln_ 

n J 
(3.70) 

Ti Jflt x T / f l t y J m x Jf l t y 
- ^ x y - s i n 

V n ) 
(3.71) 

T, * fit x J fit y • T
 Z 7 r 

2 V n J 

In 
+ 4iy-cos(^2- n (3.72) 

r =Tr 
;= i 

(3.73) 

-ffh_y Z - i 1t_y ' (3.74) 

/" = Y/' 
i=l 

Thus the area moment of inertia of the cutter can be calculated. 

(3.75) 

7T-R 
ctr_x ^ 

ctr_y ^ 

4r_„=0-

r 
1 flt_x ' 

-r 
iflt_y ' 

r 
•* fit xy -

(3.76) 

(3.77) 

(3.78) 

If dividing the cutting tool into layers along the tool axis, which has a layer thickness dz, 

for different layer, the area moment of inertia would be different due to the lag angle of 
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helix curve shape cutting edges. The area moment of inertia of different layer can be 

calculated by rotating the reference one an helix angle, y/ . 

%«_> - ^ { / c & - ^ / c , r - y + / c t r - X
2

/ c t r " - c o s ( 2 - ^ . ) + / c l r x y -s in(2-^ . ) j ) (3.79) 

JT _ C4 
7etr_y ~ *j 

' c t rx ctr_y c t rx c t ry 
COS {2^J)-Ic^y-sm(2.ifyj)\ (3.80) 

-'ctr.xy ~ Zj 
ctrx ctr_y •sin(2.^.) + /c t rxy-cos(2-^.) . (3.81) 
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Chapter 5 Analysis and Comparison 

5.1 Introduction 

The cutting flutes of an end-mill significantly affect its area moment of inertia; however, 

this was covered by a traditional method. To highlight the difference of the moment of 

inertia by using this new and the traditional methods, the area moments of inertia of 

several cutting tools with a different number of flutes will be calculated and the results 

will be compared. In the examples, the design parameters such as the rake, relief, and 

clearance angles, of the cutting tool are the same, except for the number of flutes. 

5.2 Influence of the Cutting Flutes 

Table 5.1 shows the data of flat end-mills with different diameters. The seven parameters 

from column 4 to 10 are the same for the same diameter. Column 3 shows the number of 

flutes and column 2 is the diameter. The traditional method of calculating the moments 

of inertia is used by computing an effective cutting diameter, that is Re=0.S-Rc. It is 

evident that results of the traditional and new methods are quite different. 
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Table 5-1 Area of Moment of Inertia of Different End-Mills 

Parameters of Cutting Flute 

Dia. 
(mm) 

6 

8 

10 

12 

14 

Flute 
No. 

2 

3 

4 

5 

6 

2 

3 

4 

5 

6 

2 

3 

4 

5 

6 

2 

3 

4 

5 

6 

2 

3 

4 

5 

6 

ro 

1.8 

2.4 

2.8 

3.5 

4.5 

ri 

0.6 

1 

1 

1.5 

1.5 

r2 

2.5 

3 

4 

5 

6 

W 

0.25 

0.3 

0.4 

0.4 

0.6 

Yx 

6 

6 

6 

6 

6 

Yi 

6 

6 

6 

6 

6 

r3 

45 

Moment of Inertia (mm4) 

Traditional 

26.06 

26.06 

26.06 

26.06 

26.06 

82.35 

82.35 

82.35 

82.35 

82.35 

201.06 

201.06 

201.06 

201.06 

201.06 

416.92 

416.92 

416.92 

416.92 

416.92 

772.40 

772.40 

772.40 

772.40 

772.40 

New 

Ix 

10.58 

19.61 

22.06 

23.53 

24.10 

38.99 

62.71 

69.10 

72.90 

73.32 

69.31 

140.95 

158.01 

166.98 

167.99 

157.70 

294.51 

330.11 

348.00 

346.66 

384.89 

629.50 

706.52 

757.71 

785.39 

ly 

19.89 

19.61 

22.06 

23.53 

24.10 

62.76 

62.71 

69.10 

72.90 

73.32 

144.14 

140.95 

158.01 

166.98 

167.99 

297.92 

294.51 

330.11 

348.00 

346.66 

638.76 

629.50 

706.52 

757.71 

785.39 

Effect 
Radius 

4.8 

6.4 

8 

9.6 

11.2 

Equivalent 
Radius 

4.47 

4.60 

4.68 

4.71 

5.98 

6.13 

6.21 

6.22 

7.32 

7.53 

7.64 

7.65 

8.80 

9.06 

9.18 

9.17 

10.64 

10.95 

11.15 

11.25 

From Figs. 5.1 and 5.2, apparently, the number of flutes affects the area moment of 

inertia of the cutting tool. Obviously, for a cutting tool, the area moment of inertia 

changes with the cutting flutes, the area moment of inertia increases with the number of 

flutes. For example, the area moment of inertia of a 3-fiute cutting tool is smaller than 



that of a 4-flute one. For a 3-flutes cutting tool, the area moment of inertia of the cutting 

tool can be very different from the approximate cutting tool because of the different 

design parameters of the cutting flutes. 

0.00 

AreaMomentOflnertia vs Flutes (Dia^S) 

area moment of inertia 
around x 
area moment of inertia 
around y 
approximateasa 
cantilever 

3 4 5 

Cutting Flutes 

Figure 5-1 Area Moment of Inertia vs. Flutes. 

1 

i 

AreaMomentOflnertia vs Flutes (Dia=8) 

3 4 

Cutting Flutes 

—•— area moment of inertia 
around x 

—-*—area moment of inertia 
around y 

—*— approximate as a 
cantilever 

Figure 5-2 Area Moment of Inertia vs. Flutes. 
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5.3 Influence of the Other Parameters 

In Section 5.2, a conclusion is made that the number of cutting flutes affects the area 

moment of inertia significantly. In this section, some other parameters will be considered 

as to how they affect the area moment of inertia. For example, the radius r0 of the 

annular land on the end cutting surface is taken into consideration. Table 5.2 shows the 

comparison. Two 2-flutes cutting tool with different radius r0 of the annular land on the 

end cutting surface are compared. With the change of the radius of the annular land, the 

area moment of inertia of the cutting tool changes too. The data for 3, 4, 5 and 6-flute 

cutting tools also shows the same result. To be clearer, the Fig. 5.3 illustrates the values 

in Table 5.2. The curves in blue and purple are the representations of area moment of 

inertia around the x axis and y axis, respectively, when r0 is 3.5, while the green and 

yellow curves are the representations of inertia around the x axis and y axis when r0 is 

4.0. Table 3 shows that the influences of the radius of arc BC rx, the radius of arc CD r2, 

length_EF, rake angle yl and relief angle y2 are minor, and not significant. 
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Table 5-2 Comparison of the Effect of the Radius of Annular Land r0 on the Inertia 

Parameters of Cutting Flute 

Dia. 
(mm) 

12 

Flute 
no. 

2 

2 

3 

3 

4 

4 

5 

5 

6 

6 

ro 

3.5 

4 

3.5 

4 

3.5 

4 

3.5 

4 

3.5 

4 

ri 

1.5 

1.5 

1.5 

1.5 

1.5 

r2 

5 

5 

5 

5 

5 

w 

0.4 

0.4 

0.4 

0.4 

0.4 

7x 

6 

6 

6 

6 

6 

r2 

6 

6 

6 

6 

6 

h 

45 

Moment of Inertia 

Traditional 

416.92 

New Method 

Ix 

157.69 

233.65 

294.51 

345.43 

330.11 

384.29 

348.00 

412.75 

346.66 

430.53 

iy 

297.92 

350.83 

294.51 

345.43 

330.11 

384.29 

348.00 

412.75 

346.66 

430.53 

Effect 
Radius 

9.6 

Equivale 
nt 

Radius 

8.80 

9.16 

9.06 

9.41 

9.18 

9.58 

9.17 

9.68 

The Effect of rO 

t: 
c 

1 
I 

500 

450 

400 

350 

300 

250 

200 

150 

100 

50 

* * • * • ™ * « " * a-;r-rr~| 

^ ^ * ~ ~ ~ 
umwHui.u).*),^^ JM^^-J- ,"",~"' 

' / 

/ 

-•-Arouncl x,r0=3.5 

-•—Aroundy, r0=3.5 

-t Aroundx, r0=4,0 

-»"-•Aroundy, ro=4.0 

Cantilever 

Cutting Flutes 

Figure 5-3 The Effect of r0 



Table 5-3 The Effect of r1f r2 and Rake Angle, , and Relief Angle 

Parameters of Cutting Flute 

Dia. 
(mm) 

12 

Flute 
no. 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

r0 

3.5 

3.5 

3.5 

3.5 

ri 

1.5 

1.5 

1.5 

1.8 

2.0 

1.5 

r2 

5 

5 

5 

6 

5 

4.5 

IEF 

0.4 

0.45 

0.4 

0.4 

0.4 

7i 

6 

6 

5 

6 

6 

72 

6 

6 

5 

6 

6 

r3 

45 

Moment of Inertia 

Traditional 

416.92 

New Method 

Ix 

330.11 

336.15 

330.11 

332.38 

330.11 

330.59 

331.16 

324.44 

330.11 

333.04 

iy 

330.11 

336.15 

330.11 

332.38 

330.11 

330.59 

331.16 

324.44 

330.11 

333.04 

Effect 
Radius 

9.6 

Equivalent 
Radius 

9.06 

9.10 

9.06 

9.07 

9.06 

9.06 

9.06 

9.02 

9.06 

9.08 

5.4 Along the Tool Axis, Different Position, Different Area 

Moment of Inertia 

For a symmetric section of a flat end-mill, at any position of the cutting edges along the 

tool axis, the area moments of inertia around the x and y axes are the same at the same 

layer. For example, for a 24 mm diameter cutting tool, r0 = 6, r, = 4 , r2 = 10, /EF = 1, 

Y\ = Yi = 6", and y2> = 45°, the area moments of inertia for at different positions are 

shown in Table 5-4. But for an asymmetric flat-end mill, not only is the area moment of 

inertia around the x axis different from around the y axis, but in the same direction, they 

are different at different position along the cutting tool axis. The curve shown in Figs. 5.4 

and 5.5 are better demonstration of the data in Table 5-4 



If consideration of the rotation of the spindle, for an asymmetric cutting tool, n=2, the 

area moment of inertia around x and y are repeated. In a cycle time, the area moment of 

inertia around x was covered by that around y, which are shown in Fig. 5.6. As shown in 

Table 5-5, for a symmetric section of an APT cutting tool, the area moments of inertia 

around the x axis equates to the area moments of inertia around the y axis, but obviously, 

for an asymmetric section of an APT cutting tool, the area moment of inertia around the x 

axis and y axis are not equal to each other. The curves in Fig. 5.7 and Fig. 5.9 are better 

demonstration of data in Table 5.5. Figs. 5.8 and 5.10 show the result of the area moment 

of inertia of an APT cutting tool when rotating the spindle. 
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Table 5-4 Data for Symmetric and Asymmetric Section Flat-End Mills 

z 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 
2.0 
2.1 
2.2 
2.3 
2.4 
2.5 
2.6 
2.7 
2.8 
2.9 
3.0 
3.1 
3.2 
3.3 
3.4 
3.5 
3.6 
3.7 
3.8 
3.9 
4.0 
4.1 

Symmetric Section (n=4) 

Helix Lag 
Angle 

0.0048 
0.0096 
0.0144 
0.0192 
0.0241 
0.0289 
0.0337 
0.0385 
0.0433 
0.0481 
0.0529 
0.0577 
0.0625 
0.0674 
0.0722 
0.0770 
0.0818 
0.0866 
0.0914 
0.0962 
0.1010 
0.1058 
0.1107 
0.1155 
0.1203 
0.1251 
0.1299 
0.1347 
0.1395 
0.1443 
0.1491 
0.1540 
0.1588 
0.1636 
0.1684 
0.1732 
0.1780 
0.1828 
0.1876 
0.1925 
0.1973 
... 

Area Moment of Inertia 
Around Ix=Iy 

4525.8109 
4525.8109 
4525.8109 
4525.8109 
4525.8109 
4525.8109 
4525.8109 
4525.8109 
4525.8109 
4525.8109 
4525.8109 
4525.8109 
4525.8109 
4525.8109 
4525.8109 
4525.8109 
4525.8109 
4525.8109 
4525.8109 
4525.8109 
4525.8109 
4525.8109 
4525.8109 
4525.8109 
4525.8109 
4525.8109 
4525.8109 
4525.8109 
4525.8109 
4525.8109 
4525.8109 
4525.8109 
4525.8109 
4525.8109 
4525.8109 
4525.8109 
4525.8109 
4525.8109 
4525.8109 
4525.8109 
4525.8109 

Asymmetric Section (n=2) 

Helix Lag 
Angle 

0.0048 
0.0096 
0.0144 
0.0192 
0.0241 
0.0289 
0.0337 
0.0385 
0.0433 
0.0481 
0.0529 
0.0577 
0.0625 
0.0674 
0.0722 
0.0770 
0.0818 
0.0866 
0.0914 
0.0962 
0.1010 
0.1058 
0.1107 
0.1155 
0.1203 
0.1251 
0.1299 
0.1347 
0.1395 
0.1443 
0.1491 
0.1540 
0.1588 
0.1636 
0.1684 
0.1732 
0.1780 
0.1828 
0.1876 
0.1925 
0.1973 
... 

Area Moment of 
Inertia Around Ix 

1828.6242 
1837.8823 
1847.2560 
1856.7446 
1866.3471 
1876.0628 
1885.8906 
1895.8297 
1905.8792 
1916.0380 
1926.3054 
1936.6803 
1947.1618 
1957.7488 
1968.4405 
1979.2358 
1990.1338 
2001.1333 
2012.2335 
2023.4333 
2034.7316 
2046.1273 
2057.6196 
2069.2072 
2080.8891 
2092.6642 
2104.5314 
2116.4897 
2128.5379 
2140.6749 
2152.8996 
2165.2108 
2177.6075 
2190.0884 
2202.6524 
2215.2984 
2228.0251 
2240.8314 
2253.7162 
2266.6781 
2279.7161 

Area Moment of 
Inertia Around Iy 

4346.7011 
4337.4431 
4328.0694 
4318.5808 
4308.9782 
4299.2626 
4289.4348 
4279.4957 
4269.4462 
4259.2873 
4249.0200 
4238.6451 
4228.1636 
4217.5766 
4206.8849 
4196.0896 
4185.1916 
4174.1920 
4163.0919 
4151.8921 
4140.5938 
4129.1980 
4117.7058 
4106.1182 
4094.4363 
4082.6612 
4070.7940 
4058.8357 
4046.7875 
4034.6505 
4022.4258 
4010.1146 
3997.7179 
3985.2370 
3972.6730 
3960.0270 
3947.3003 
3934.4939 
3921.6092 
3908.6472 
3895.6093 
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Table 5-5 Data for Symmetric and Asymmetric Section APT Cutting Tool 

z 

-3.7000 
-3.6000 
-3.5000 
-3.4000 
-3.3000 
-3.2000 
-3.1000 
-3.0000 
-2.9000 
-2.8000 
-2.7000 
-2.6000 
-2.5000 
-2.4000 
-2.3000 
-2.2000 
-2.1000 
-2.0000 
-1.9000 
-1.8000 
-1.7000 
-1.6000 
-1.5000 
-1.4000 
-1.3000 
-1.2000 
-1.1000 
-1.0000 
-0.9000 
-0.8000 
-0.7000 
-0.6000 
-0.5000 
-0.4000 
-0.3000 
-0.2000 
-0.1000 
0.0000 
0.1000 
0.2000 
0.3000 
0.4000 
... 

APT, Symmetric Section (n=4) 

Helix Lag 
Angle 

-1.8763 
-1.1947 
-0.8815 
-0.6782 
-0.5277 
-0.4082 
-0.3091 
-0.2245 
-0.1975 
-0.1807 
-0.1675 
-0.1564 
-0.1466 
-0.1377 
-0.1295 
-0.1218 
-0.1146 
-0.1077 
-0.1011 
-0.0947 
-0.0886 
-0.0826 
-0.0768 
-0.0712 
-0.0656 
-0.0602 
-0.0549 
-0.0496 
-0.0445 
-0.0394 
-0.0343 
-0.0293 
-0.0243 
-0.0194 
-0.0145 
-0.0097 
-0.0048 
0.0000 
0.0050 
0.0099 
0.0149 
0.0198 

Area Moment of Inertia 
Around Ix=Iy 

0.1948 
4.3670 
24.5901 
81.8781 
206.1858 
436.4088 
820.3834 
1282.0062 
1544.6397 
1754.6337 
1939.7869 
2109.1929 
2267.1407 
2416.0316 
2557.3538 
2692.0942 
2820.9393 
2944.3837 
3062.7934 
3176.4448 
3285.5502 
3390.2744 
3490.7470 
3587.0702 
3679.3253 
3767.5771 
3851.8773 
3932.2671 
4008.7796 
4081.4408 
4150.2715 
4215.2878 
4276.5023 
4333.9246 
4387.5620 
4437.4199 
4483.5020 
4525.8109 
4566.3694 
4607.1999 
4648.3036 
4689.6817 

APT, Asymmetric Section (n=2) 

Helix Lag 
Angle 

-1.8763 
-1.1947 
-0.8815 
-0.6782 
-0.5277 
-0.4082 
-0.3091 
-0.2245 
-0.1975 
-0.1807 
-0.1675 
-0.1564 
-0.1466 
-0.1377 
-0.1295 
-0.1218 
-0.1146 
-0.1077 
-0.1011 
-0.0947 
-0.0886 
-0.0826 
-0.0768 
-0.0712 
-0.0656 
-0.0602 
-0.0549 
-0.0496 
-0.0445 
-0.0394 
-0.0343 
-0.0293 
-0.0243 
-0.0194 
-0.0145 
-0.0097 
-0.0048 
0.0000 
0.0050 
0.0099 
0.0149 
0.0198 

Area Moment of 
Inertia Around Ix 

0.2009 
3.2362 
12.9842 
34.1126 
74.4953 
147.4094 
273.2662 
435.7785 
531.6326 
609.4271 
679.0123 
743.5496 
804.5113 
862.7121 
918.6504 
972.6518 
1024.9389 
1075.6683 
1124.9529 
1172.8749 
1219.4948 
1264.8568 
1308.9930 
1351.9265 
1393.6728 
1434.2420 
1473.6396 
1511.8674 
1548.9242 
1584.8066 
1619.5088 
1653.0238 
1685.3428 
1716.4561 
1746.3529 
1775.0215 
1802.4496 
1828.6242 
1854.6626 
1881.0870 
1907.9008 
1935.1072 

... 

Area Moment of 
Inertia Around Iy 

0.0649 
2.7225 
20.5683 
77.6075 
206.8387 
448.0566 
846.1209 
1313.4783 
1575.9792 
1784.7149 
1967.7654 
2134.3772 
2288.9303 
2433.8864 
2570.7777 
2700.6253 
2824.1433 
2941.8499 
3054.1315 
3161.2832 
3263.5342 
3361.0651 
3454.0205 
3542.5170 
3626.6498 
3706.4974 
3782.1247 
3853.5863 
3920.9284 
3984.1900 
4043.4050 
4098.6027 
4149.8089 
4197.0465 
4240.3363 
4279.6972 
4315.1466 
4346.7011 
4376.0036 
4405.2911 
4434.5620 
4463.8147 



71 

25 

15 

5 

0 

1 / 
1 

I 

1 

I 
I 

1 
7 

y 

i i 

! 
1 

1 

/ ] 

/ i 
/ i 

/ ! 
i 

i 

1 

1 

Ix-Z 
iy~z 
lshank~Z 

i 

4-tooth Apt 
Cutting Toe n 

t . . -

i t 

i t 

i > 

i i 

i i 

t i 

i • 

r ^ 

~i 

2 3 4 
Moment of Inertia x10 

Figure 5-7 Area Moment of Inertia ~ z 

30 

25 

20 

15 

10 

1 I ' I , 
1 1 r ' 1 
' 1 ' ' 1 
1 1 ! 1 ! 

Angle Rotated in one Complete Resolution i 
1 f I ' i 

1 f ' ' i 
1 i ' i , 
1 i ' i , 
[ i ' \ H _ 

/ ! 4toothApt | 
I/ : Cutting Tool ' 

--/i--4--!---
1 \ 1 1 

.___/__._: i i 

y : : : 
i ' i 
I ! 1 

1 1 

! 
2 3 4 

Moment of Inertia x10 

Figure 5-8 Area Moment of Inertia ~ z 



72 

30 

25 

20 

15 

10 

j y 

u \ 
I 

lx~Z 
Iy-Z 

Ishank-Z 

2-tooth Apt! 

! 
2 3 4 

Moment of inertia x10 

Figure 5-9 Area Moment of Inertia of a 2-tooth Apt Cutting Tool ~ z 

Angle Rotated in one Complete Revolution 

2-tooth Apt 

2 3 4 
Moment of Inertia x 10 

Figure 5-10 Area Moment of Inertia ~ z 



73 

Chapter 6 Results and Application 

6.1 Introduction 

In Chapter 5, we have concluded that the traditional way of considering the cutting tool 

as an approximate cantilever with an effective radius as 80% of the radius of the cutting 

tool is not accurate enough and showed some calculated area moments of inertia in the 

tables. To make these more convenience, in this chapter, an equivalent radius will be 

introduced. Equivalent radius means a virtual radius whose area moment of inertia 

equates to a certain cutting tool. 

6.2 Applications 

In this chapter, some of the equivalent radii and the area moments of inertia of cutting 

tools will be listed. All these data are based on the following assumptions. 

1. Neglect the effect of the rake angle and relief angle and suppose these two angles 

are equal and both of them are six degrees. We have already shown that, in 

chapter 4, the influence of the rake angle and relief angle is not significant. 



2. The declined angle of straight line DE (clearance angle) to the x axis yi is 45 

degrees. 

In the real design of cutting tool, the value of r0, r}, r2 and yi should be defined by an 

optimal method according to the usage of the cutter. 

Table 6.1, 6.2, and 6.3 are the area moments of inertia and their equivalent radii of some 

cutting tools which are frequently applied by the manufacturing industrial frequently. 

Also, the parameters of the sectional cutting flutes of the cutting tools are also listed for 

reference. 

Table 6-1 Equivalent Radius for 2-Flute Cutters 

Parameters of Flute 

Dia. 
(mm) 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

14 

16 

18 

20 
25 

Flute 
no. 

2 

rO 

0.60 

0.70 

1.00 

1.50 

1.75 

2.00 

2.20 

2.50 

3.00 

3.20 

3.60 

3.80 

4.90 

5.00 

6.00 
7.00 

rl 

0.25 

0.40 

0.55 

0.80 

1.00 

1.20 

1.40 

1.50 

1.60 

1.80 

2.00 

2.20 

2.80 

2.80 

3.50 
3.50 

r2 

0.70 

1.00 

1.30 

1.70 

2.00 

2.50 

2.80 

3.20 

3.40 

3.80 

4.00 

4.50 

5.50 

6.00 

7.00 
8.50 

IEF 

0.10 

0.15 

0.20 

0.25 

0.40 

0.40 

0.45 

0.50 

0.55 

0.60 

0.65 

0.70 

0.80 

0.90 

1.00 
1.00 

Yx 

6 

Yi 

6 

n 

45 

Moment of Inertia 

Traditional 

0.32 

1.63 

5.15 

12.57 

26.06 

48.27 

82.35 

131.92 

201.06 

294.37 

416.92 

772.40 

1317.68 

2110.67 

3216.99 
7853.98 

New Method 
Ix 

0.19 

0.56 

2.35 

8.15 

18.29 

26.47 

42.84 

67.25 

134.50 

176.58 

290.04 

444.78 

841.83 

1183.91 

1983.55 
3991.23 

iy 
0.27 

1.18 

3.90 

10.66 

23.41 

39.40 

65.60 

104.80 

174.51 

245.48 

363.66 

616.85 

1108.96 

1688.22 

2682.01 
5964.54 

Effect 
Radius 

1.60 

2.40 

3.20 

4.00 

4.80 

5.60 

6.40 

7.20 

8.00 

8.80 

9.60 

11.20 

12.80 

14.40 

16.00 
20.00 

Equivalent 
Radius 

1.41 

1.84 

2.63 

3.59 

4.39 

4.82 

5.44 

6.08 

7.24 

7.74 

8.77 

9.76 

11.44 

12.46 

14.18 
16.89 
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Table 6-2 Equivalent Radius for 3-Flute Cutters 

Parameters of Flute 

Dia. 
(mm) 

2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
14 
16 
18 
20 
25 

Flute 
no. 

3 

ro 

0.65 
0.70 
1.00 
1.50 
1.75 
2.25 
2.50 
2.70 
2.80 
3.20 
3.50 
4.00 
5.00 
5.50 
6.50 
9.00 

ri 

0.25 
0.40 
0.60 
0.80 
1.00 
1.20 
1.50 
1.70 
1.80 
2.00 
2.25 
2.50 
2.75 
3.00 
3.50 
4.00 

r2 

0.80 
1.20 
1.60 
2.00 
2.50 
2.80 
3.25 
3.60 
4.00 
4.50 
5.00 
5.00 
6.00 
7.00 
8.00 
11.00 

W 
0.10 
0.15 
0.20 
0.25 
0.40 
0.40 
0.45 
0.50 
0.55 
0.60 
0.65 
0.70 
0.80 
0.90 
1.00 
1.00 

h 

6 

Yi 

6 

n 

45 

Moment of Inertia 

Traditional 

0.32 
1.63 
5.15 
12.57 
26.06 
48.27 
82.35 
131.92 
201.06 
294.37 
416.92 
772.40 
1317.68 
2110.67 
3216.99 
7853.98 

New Method 
Ix 

0.28 
1.01 
3.40 
10.10 
21.55 
43.51 
71.69 
109.38 
153.36 
233.10 
330.01 
602.61 
1128.35 
1941.11 
2862.38 
9641.05 

iy 
0.28 
1.01 
3.40 
10.10 
21.55 
43.51 
71.69 
109.38 
153.36 
233.10 
330.01 
602.61 
1128.35 
1941.11 
2862.38 
9641.05 

Effect 
Radius 

1.60 
2.40 
3.20 
4.00 
4.80 
5.60 
6.40 
7.20 
8.00 
8.80 
9.60 
11.20 
12.80 
14.40 
16.00 
20.00 

Equivalent 
Radius 

1.55 
2.13 
2.89 
3.79 
4.58 
5.46 
6.18 
6.87 
7.48 
8.30 
9.06 
10.53 
12.31 
14.10 
15.54 
21.05 

Table 6-3 Equivalent Radius for 4-Flute Cutters 

Parameters of Flute 

Dia. 
(mm) 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

14 

16 

18 

20 

25 

Flute 
no. 

4 

rO 

0.60 

0.80 

1.00 

1.50 

1.75 

2.25 

2.50 

2.75 

3.00 

3.25 

3.50 

4.00 

5.00 

5.50 

6.00 

7.00 

rl 

0.25 

0.40 

0.60 

0.80 

1.00 

1.25 

1.50 

1.75 

1.80 

2.00 

2.25 

2.50 

2.75 

3.00 

3.75 

4.00 

r2 

0.80 

1.20 

1.60 

2.50 

3.00 

3.50 

4.00 

4.25 

4.50 

4.75 

5.25 

6.00 

7.00 

8.00 

9.00 

11.00 

W 

0.10 

0.15 

0.20 

0.25 

0.40 

0.40 

0.45 

0.50 

0.55 

0.60 

0.65 

0.70 

0.80 

0.90 

1.00 

1.00 

h 

6 

r2 

6 

h 

45 

Moment of Inertia 

Traditional 

0.32 

1.63 

5.15 

12.57 

26.06 

48.27 

82.35 

131.92 

201.06 

294.37 

416.92 

772.40 

1317.68 

2110.67 

3216.99 

7853.98 

New Method 

Ix 

0.28 

1.26 

3.66 

10.87 

23.02 

47.05 

77.27 

120.42 

178.96 

257.28 

357.52 

636.42 

1215.02 

1887.62 

2816.69 

7158.35 

iy 
0.28 

1.26 

3.66 

10.87 

23.02 

47.05 

77.27 

120.42 

178.96 

257.28 

357.52 

636.42 

1215.02 

1887.62 

2816.69 

7158.35 

Effect 
Radius 

1.60 

2.40 

3.20 

4.00 

4.80 

5.60 

6.40 

7.20 

8.00 

8.80 

9.60 

11.20 

12.80 

14.40 

16.00 

20.00 

Equivalent 
Radius 

1.55 

2.25 

2.94 

3.86 

4.65 

5.56 

6.30 

7.04 

7.77 

8.51 

9.24 

10.67 

12.54 

14.00 

15.48 

19.54 
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Chapter 7 Conclusions and Future Research 

7.1 Conclusions 

In this work, a parametric modeling of APT cutters has been constructed in order to 

automatically and efficiently build 3-D solid model for end-mills, and a accurate 

approach to compute the area moments of inertia of the end-mills. More specifically, the 

research work includes: (1) establishment of a mathematical model of a helix curve 

cutting edge, (2) establishment of a standard mathematical model of a cutting flute, and 

(3) calculation of the area moment of inertia of the cutting tool. The purpose of building 

the mathematical model of the cutting tool is that, in all the current CAD/CAM software, 

the cutting tool is always represented by a solid model without flutes. This makes: (1) the 

prediction of machined error and deflection inaccurate, and (2) when simulating the 

machined surface in CAM software, the displayed machined surface is not accurate 

enough. 

The data tables and figures are shown to clarify the difference of the area moment of 

inertia of the real design model of the cutting tool from the solid model without cutting 

flutes. The data tables and figures are clearly shown that the difference between the real 
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and the approximate models. Moreover, for more convenience, an equivalent radius 

conception is introduced and some of the equivalent radii of frequently used cutting tools 

in the manufacturing industrial with 2, 3, 4 flutes are listed. And, some other parameters 

of the cutting flutes are also listed. This work can be used, together with an existing 

cutting force calculation method, to accurately predict cutter deflections during milling in 

order to compensate them in CNC tool paths. It can also provide more precise 3-D solid 

models of end-mills for machining simulation by using finite element analysis. 

7.2 Future Research 

The following topics are suggested for a future work to expand the present research work: 

• Using the built mathematic model to predict cutting force 

In my current thesis, the mathematical model of cutting tool is built, which can be used in 

the visual machining and cutting force prediction. 

• Using the built mathematic model to predict analyze of the stress of cutting 

tool 

• The area moment of inertia can be applied into CAE software 

In current trend software, the area moment of inertia is calculated by approximating the 

cutting tool as a cantilever. It is hoped this numerical method can be applied in the 

commercial software to predict the machined error and deflection. 



Chapter 8 Appendix 

Appendix I 

This appendix is used to calculate the area moments of inertia around axes in a new 

coordinate system rotated relative to the original one. To calculate this, the product 

moment of area is required. 

The area moments of inertia in any coordinate system can be calculated as 

Ix = \y2-dA, (8.1) 

Iy = \x2-dA, (8.2) 

and, the product moment of area in the same coordinate system also can be calculated as 

Ixy = \x-ydA, (8.3) 

respectively. 
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Considering the new coordinate system that is rotated relative to the original one by an 

angle, S, then, the coordinates (x',y) in the new system can be calculated in terms of 

the coordinates (x, y) in the original one. 

x' = jc-cosi9-j>-smi9, (8.4) 

y' = x-sin.9+}>-coSi9. (8.5) 

Substituting Eq. (8.4) and Eq. (8.5) into Eq. (8.1) and Eq. (8.2), the area moments of 

inertia around x' axis and y axis can be obtained. 

Ix, = \y'2 -dA = f(x-sin,9 + y-cosS)2 -dA 

- J((j/-cosi9) +(x-sinI9) +2-x-ycos3-smS]-dA 

= cos23-Ix+sin23-Iy+2-Ixy-cosS-sm8 , (8.6) 

= ^ - ( l + cos(2.5)) + ̂ - ( l - c o s ( 2 - 5 ) ) + / v -s in(2-5) 

= ^ 1 L L + ^LZLLCOS(2-5) + / -sin(2.5) 
2 2 v v ' 

Iy = Jx'2 -dA = f(x'Cos(9)-ysm(S)f -dA 

= JI(x-cos«9) + (j/-sin«9) -2-x-y-cosS-sin&YdA 

= cos23-Iy+sm23-Ix-2-Ixy-cos3-sm3 , (8.7) 

= ^ - ( l + oos(2.5)) + ^ . ( l -oo8(2 . , 9 ) ) - / v . 8 in (2 .5 ) 

= ^-^.co3(2-S)-Iv-sin(2.S) 

Substituting Eq. (8.4) and Eq. (8.5) into Eq. (8.3), the product moment of area can be 

obtained. 



Ixy = \x'-y'-dA 

= J (x • cos 9 - y • sin 9) (x • sin 9 + y • cos 9) • dA 

= J((x2 -y2)-sinScosS + x-y (cos2 9 - sin2 9))-dA. (8.8) 

= J ^ ^sin(2-,9) + x-ycos(2-,9) 
2 

v 

^ • s i n ( 2 . , 9 ) + V c o s ( 2 - , 9 ) 

9 is the angle of rotation. 

Ix, I and / are the area moments of inertia and the product moment of area in the 

original coordinate system. 

Ix,, Iy. and IxV are the area moments of inertia and the product moment of area in the 

rotated coordinate system. 

Eq (8.9), (8.10)and Eq (8.11). were proved by Benham [15]. Apparently, they are the 

same expressions as Eq. (8.6), (8.7) and Eq. (8.8), respectively. 

' > ^ + ̂ c o s ( 2 . £ ) + V s i n ( 2 . £ ) (8-9) 

^ = ^ - ^ - c o s ( 2 - , 9 ) - v s i n ( 2 - ' 9 ) (8-10> 

rxy=-I-^-sm{2-9) + Ixy-cos(2-9) (8.11) 

^ is the angle of rotation. 
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Ix, / and / are the area moments of inertia and the product moment of area in the 

original coordinate system. 

/*, /* and 1*^ are the area moments of inertia and the product moment of area in the 

rotated coordinate system. 

Appendix II 

Appendix II is to prove that, when a tool size is scaled by S, the area moment of inertia 

and the product moment of area should be scaled by S*. 

The original width of the band is AR. 

p = Po+(l -0.5)- &R, (8.12) 

dA = p-dr](p)-AR. (8.13) 

Area moment of inertia of each element around the x axis is 

dlm
% =y2-dA = (p-sm(rj(p))f • dA 

= p3 -sin2 (rj(p))-drj(pyAR 
(8.14) 

/ , = 5 > ; - (815) 

Area moment of inertia of each element around the y axis is 



j/;=x2.^=(^-cos(7(p)))2-^^ ( g i 6 ) 

= p2, • cos2 (77 (/?)) dr}(p)-AR 

/ ,=E^;- (8-i7> 

The product moment of area can be calculated. 

dl™y =xydA = p-cos (rj(p)yp-sin (rj(p)ydA 
yo.lo) 

= p3-cos(Tj(p))-sm(7](p))-dT](p)-AR 

4=IX- (8-19> 

Supposing the tool size enlarged by S; after enlargement, the width of the band would be 

enlarged to AR', then 

AR' = S-AR, (8.20) 

p' = S-p, (8.21) 

At?(p') = Arj(p) (8.22) 

Mp>^M,^M = Mp), ( 8 . 23) 
na na 

dA' = p'-dTj(p)-AR', (8.24) 

Area moment of inertia of each element around the JC axis is 
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dl'x
m = y'2 -dA' = (p'- sin (7 (p')))2 • dA' 

= pn-Sm
2(tJ(p)ydT}{p)-AR' 

= (S-pf-sm2(7J(p))-d?J(py(S-AR), (8.25) 

= S4-(p3-sm2(7j(p))-d71(pyAR) 

= S4-dIm
x 

K = 5 > r = I > 4 • di:=s4 - j ; < = s 4 •/; • (8.26) 

Area moment of inertia of each element around the y axis is 

dl'y
m=x'2 •dA'=(p'cos(T}(p')))2 -dA' 

= p'3 • cos2 (rj(p))-d?j(p)-AR' 

= {S-pf-cos2(T?{p)ydrJ{p)iS-AR), (8.27) 

= S4-(pi-cos2(TJ(p)yd7J(PyAR) 

= s4-di; 

K=YdIT=Ts4 -di:=S4-Y,dIm
y=S4 •/;. (8.28) 

For product moment of area, we also can prove this relation. 

dl'£ = x' • y • dA' = p' • cos(7 (/?'))• p' • sin (7(/ / ))• dA' 

= p" •cos(ij(p))-sin(Tj(p)ydTj(p)-AR' 

= (S-pfcos(?J(p)ySm(7?(p)ydr}(py(S-AR), (8.29) 

= S4 • p3 cos(T](p)ysm(t](p)ydr}(p)-AR 

= s4-di; 

l'xy=TJdI':=YJS
A-dIl=S4-YjdIZ=S4-Il. (8.30) 
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