
Dialogue Games and Trust for Communicating Agents

Jihad Labban

A thesis

In

The Department

Of

Concordia Institute of Information Systems Engineering

Presented in Partial Fulfillment of the Requirements
For the Degree of Master of Applied Science (Quality systems engineering) at

Concordia University
Montreal, Quebec, Canada

© Jihad Labban, 2008

1*1 Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A0N4
Canada

Your file Votre reference
ISBN: 978-0-494-40930-5
Our file Notre reference
ISBN: 978-0-494-40930-5

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par Plntemet, prefer,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Canada

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract
Dialogue Games and Trust for Communicating Agents

Jihad Labban

Multi-agent applications are primarily based on agent interactions, which are

constrained by the trust of participating agents. Two important issues in these applications are

how agents can communicate in a flexible and efficient way and how an agent can authenticate

information conveyed by other agents in the system. In this thesis, we present a new

communication framework and trust model addressing these issues by considering three factors.

The first factor is about the flexibility, complexity, soundness, and completeness of the

communication protocol. The second factor is about the classification of agents from a trust point

of view using direct interactions. The third factor is related to the categorization of the agent's

chains through which the information is transmitted. Such a categorization is based upon the

reliability of the agents in the chain. The model aims to examine all available data in order to

determine the trustworthiness of agents as transmitters of information. This approach is the first

attempt in multi-agent systems towards classifying agents in order to accomplish trust. We also

propose a thorough set of criteria and policies to assign different degrees of trustworthiness to

each agent and consequently to the chains in which they appear. Agents are considered

autonomous and they interact flexibly using a set of logical rules called dialogue games.

Termination, soundness, and completeness results of the communication protocol are proven and

its computational complexity is addressed. The proposed approach is also evaluated.

Keywords: Trust, Dialogue Games, Multi-Agent Systems, Agent Types, Agent Characteristics,

Chain of Agents.

i i i

Acknowledgments

I would like to take this opportunity to acknowledge all those who helped me during this

thesis work. I would like to thank my supervisor Dr. Jamal Bentahar for introducing me to the

world of multi-agent systems, his valuable suggestions and guidance during the course of this

thesis work, as well as his patience in reviewing the manuscript.

I would also like to thank all the faculty and staff at the Concordia Institute for

Information Systems Engineering at Concordia University for their assistance during my master's

course-work. As for my fellow graduate students who offered great help during my study, I

would like to thank them all. I would also like to thank Ms Wei Wan for her precious help in the

implementation of the proposed model. Finally yet importantly, I would like to thank my parents

and wife for their endless support and encouragement.

IV

Table of contents
LIST OF FIGURES VII

LIST OF TABLES VIII

CHAPTER 1: INTRODUCTION 1

1.1 Context of the Research 1
1.2 Motivations 3
1.3 Technological Challenges 3
1.4 Objectives 4
1.5 Contributions 5
1.6 Thesis Overview 5

CHAPTER 2: MULTI-AGENT SYSTEMS: COMMUNICATION AND TRUST
CONSIDERATIONS 6

2.1 Introduction 6
2.2 What are Agents? 10
2.3 Agent Negotiation 11
2.4 Securing Agent Negotiation 12
2.5 What is the Meaning of Trust? 13
2.6 The FIRE Model 13
2.7 The Referral Model 18
2.8 Conclusion 20

CHAPTER 3: MULTI-AGENT INTERACTIONS USING FORMAL DIALOGUE GAMES... 21

3.1 Introduction 21
3.2 Overview22
3.3 Conceptual Framework 24

3.3.1 Theoretical Considerations 24
3.3.2 Architecture 26
3.3.3 Argumentation Framework 27
3.3.4 Computational Dialogue Games 29
3.3.5 Negotiation Dialogue Games 30

3.4 Formal Analysis 36
3.4.1 Termination, Soundness, and Completeness 36
3.4.2 Complexity Analysis 38

3.5 Implementation 40
3.6 Conclusion 42

CHAPTER 4: A TRUST MODEL BASED ON AGENT CATEGORIES 44

4.1 Background 44
4.2 Classification of Agents 47
4.3 Framework 51
4.4 Conclusion... 55

CHAPTER 5: IMPLEMENTATION 56

5.1 Platform 56
5.2 Model Architecture 58

v

5.2.1 Beliefbase 58
5.2.2 Goals 59
5.2.3 Plans 60
5.2.4 Events 60

5.3 Agent Environment 61
5.4 Algorithm 67
5.5 Results 69
5.6 Conclusion 69

CHAPTER 6: CONCLUSION 71

6.1 Discussions 71
6.2 Future Work 73

REFERENCES 74

APPENDICES 79

APPENDIX 1: AGENT DEFINITION FILE (ADF) 79

APPENDIX 2 MORE RESULTS (JADEX SCREENSHOT) 83

APPENDIX 3 ASKING AG6 FOR {Q} (JADEX SCREENSHOT) 84

GLOSSARY 85

vi

List of Figures

Figure 1 Development of Multi-Agent Systems 7
Figure 2 Structure of Multi-Agent Systems 9
Figure 3 Agent characteristics 10
Figure 4 The conceptual framework 27
Figure 5 The General Form of the Protocol 31
Figure 6. The System Data Structures 42
Figure 7 Chain Components . 51
Figure 8 Classification of Information Transmitted 53
Figure 9 BDI Architecture 57
Figure 10 Agent Architecture 58
Figure 11 Reasoning Architecture 61
Figure 12 Agent Communication Route 64
Figure 13 Askingy4g6 for {Q} 66
Figure 14 Screenshot of the Trust Implementation 83
Figure 15 Jadex Screenshot 84

vii

List of Tables

Table 1 Beliefbase Summary 59
Table 2 Goals Summary 59
Table 3 Plans Summary 60
Table 4 Events Summary 61
Table 5 Agent Environment 62

viii

Chapter 1: Introduction

This chapter introduces the research context, which deals with agent interactions and the

constraint related to these interactions, specifically the constraint of trust. Motivations,

technological challenges, objectives and contributions of the thesis are also presented.

1.1 Context of the Research

In recent years, multi-agent systems have attracted the attention of researchers from many

disciplines, arranging from computer science to philosophy to business. A multi-agent system is a

system where agents are allowed to freely enter and leave the system, thus making the

environment continuously changing. These agents have different resources and different skills

and need to communicate with each other to collaboratively perform some tasks. As a result,

these agent societies will become more and more similar to the human ones [1], and just as in real

societies, these agent societies will need to interact and overcome the obstacles associated with

these interactions. The major obstacle in such interactions is the trust aspect. The issue is how an

agent in a multi-agent setting can flexibly and efficiently interact with other agents in the system

and authenticate information conveyed by them.

Trust plays an important role in agent communication. The idea is how an agent can trust

another when the environment is highly dynamic. In order to build a virtual multi-agent society

that is more and more similar to a human society, we cannot assume that agents behave similarly.

Instead, just like in the human societies there are good, bad, and malicious agents.

1

In this thesis, we will focus on the ability of agents to interact and on the reliability of

these interacting agents within a multi-agent system. We are interested in the communication

mechanisms and in the properties of the agents involved in the interactions. The issue is to design

an interaction framework and check its soundness, as well as identify the agents' properties that

will allow the agent community to decide about the truthfulness of a given agent. This can be

done by verifying if the agent fulfills some requirements. These agents can reason about trust and

are equipped with interaction capabilities through a set of dialogue games they can play [15, 17].

In the proposed framework, dialogue games are specified as formal rules governing the

interactions between agents by specifying the allowed communicative acts (or the legal moves)

agents can perform in different situations.

There exist three types of interactions in agent-based computing:

Coordination: Coordination is a property of the multi-agent system performing some

activity in a shared environment. Cooperation is coordination among non antagonistic agents.

Collaboration: Collaboration means working together, and often refers to forms of high-

level cooperation that require a mutual understanding and a shared view of the task being solved

by several interacting agents [2].

Negotiation: Negotiation is a process involving dealing among agents, which are

intended to result in an agreement and commitment to a course of action.

Since the proposed model should be compatible with all forms of interactions, the general

term of "interaction" will be used throughout this thesis.

2

1.2 Motivations

To be able to interact flexibly in dynamic environments, agents need to use advanced

communication mechanisms and to achieve trust. The motivation is to find a way to help agents

reason about their communicative acts, combine them efficiently for complex interactions and

achieve the demanded trust. In order to reach that goal, we propose a framework for agent

communication based upon logical rules agents can combine to take part in complex interactions

such as negotiation. For trust consideration, the proposed model deals with the classification of

agents according to their level of truthfulness, which help agents to accept and authenticate the

information that is being transmitted through these agents.

Another motivation is to allow these agents to use their autonomous and reasoning

characteristics through an argumentation system helping them to argue about their trust within the

dialogue game-based communication framework.

1.3 Technological Challenges

Agent technology is growing with time particularly since Distributed Artificial

Intelligence (DAI) was introduced. As this technology advances, more challenges arise. Some of

these challenges are listed below:

1. Increase quality of agent systems to industrial standard.

2. Provide effective agreed standards to allow open systems development.

3. Provide flexible communication mechanisms for open agent communities.

4. Develop reasoning capabilities for agents in open environments.

5. Develop agent ability to adapt to changes in the environment.

6. Develop trust models for open agent societies.

3

In this thesis, interests are focused on the last five challenges, more specifically 3, 4, and 6. The

thesis will tackle two of these challenges, the third one by introducing an argumentation-based

model for agent communication using dialogue games (Chapter 3), and the sixth challenge will be

addressed by introducing a new trust model based upon agents' categories (Chapter 4).

1.4 Objectives

The first objective in this thesis is to develop an agent communication mechanism in

which agents can reason about their communicative acts and decide about next acts in a flexible

way instead of using rigid protocols like those utilized in networking. The second objective is to

achieve trust in any form of interaction between agents using the proposed communication

mechanism. These two objectives are accomplished by defining an agent communication

framework based on argumentative dialogue games and by distinguishing two factors that

influence trust. The first factor is how truthful is the information being transmitted, and the

second factor is how trustworthy are the agents transmitting this information. The proposed

communication mechanism is flexible because it is specified as a set of small logical rules that

can be combined in different ways, and not as a non-decomposable entity that agents should

execute.

The second objective is achieved by using two techniques, the first is based on the

classification of agents from a trust point of view using direct interactions. The second is about

the categorization of the agents' chains through which the information is transmitted. Such a

categorization is based upon the reliability of the agents in the chain. The transmitted information

in these interactions is composed of two parts: The information itself and the chain of agents by

which the information is obtained [37].

The model assumes that information may seem to be accurate and reasonable, but to be

accepted it needs an authentic chain with reliable agents. A chain represents the link between

4

different agents within a multi-agent system. This link is a result of direct interaction among

agents in the chain. For example Ag\ has interacted with Ag2, and Agl with Agi and so on until

the information is obtained. The classification of agents uses a rating system to classify the

agents' trustworthiness. The ratings are a result of successful direct interactions.

Many interesting results in the proposed communication framework such as termination,

soundness, completeness and complexity analysis are proved. This framework along with the

trust model is evaluated through a prototype implemented in agent-based programming using

Jadex [41].

1.5 Contributions

The thesis contributions are summarized in two points:

1. Introducing an approach for agent communication based on argumentative

dialogue games.

2. Proposing a new trust model based on agent Categorization.

1.6 Thesis Overview

The rest of the thesis is organized as follows. Chapter 2 presents the state-of-the-art. In this

chapter, the concepts of agents and multi-agent system are introduced. Agent communication and

trust in agent societies are also presented. Chapter 3 presents the first contribution: an agent

communication framework based on argumentation and formal dialogue games. Chapter 4

discusses the proposed trust model based on agent categorization. Implementation issues are

presented and discussed in Chapter 5. Chapter 6 concludes the thesis.

5

Chapter 2: Multi-Agent Systems: Communication and
Trust considerations

2.1 Introduction

For years, researchers in artificial intelligence (AI) have tried to make computer

resources 'learn', to simulate human intelligence processes by machines. These processes include

learning, reasoning, and self-correction. Examples of where AI is used include speech-recognition

technology. This is where software attempts to make decisions on the spelling of words based on

the context in which they are used. Anyone who has used speech-recognition technologies in a

business context will know that the result can be, at best, laughable. For example should one's

voice be changed by something like a cold, the whole thing will fall apart. In other words such

technologies do not always work as well as we would like. Modern technology however has

advanced since (AT) was first developed. A multi-agent system can have:

1. Anywhere from one to thousands or millions of agents.

2. Heterogeneous or homogeneous agents.

3. Cooperating or competitive agents.

4. Simple or complex agents.

5. Simple or complex goals.

6. System and local goals that vary or that are the same across agents.

In order to describe what an intelligent agent is, and from that explain what a multi-agent

system is and its usage, we have to examine the most powerful agent of all time-the human being.

We should be looking at what is called the "genius" behind any computer. Indeed, computers are

not very good at knowing what to do: every action a computer performs must be explicitly

anticipated, planned for, and coded by a programmer. From this introduction, we have to credit

6

the programmer for the success of a computer or an agent. Figure 1, presents all the different

factors that influence a multi-agent system.

MAS-Development

Tools

r \
Methodologies

1

Methods

1

f \
Modelling

^ J

(\
Implementation

L

r >

Testing
^ J

influence t build

Standards

influence

[Architectures

Multi -Agent Systems
1

o—o

d~6 J

realize

influence

Applications!

Figure 1 Development of Multi-Agent Systems

Methodologies are needed to systematically guide and support agent software engineers

through the various stages of system development. They therefore form the framework and define

the rules for the whole development process.

In each step of the development, the methodology proposes a certain method that

can be used to define the necessary system artefacts. To be able to build industrial-

strength agent oriented applications, sound methodologies, and methods are of great

importance [41].

Methodologies and methods are the necessary technical foundation for building

complex agent systems. Nevertheless, additional practical support is needed to enable a

developer to utilize the concepts from the methodology. Therefore, a continuous tool-

7

support considering all stages of the development is needed. The design artefacts created

at one step should be refined and reused in the following steps and should lead in a

natural way to an executable system specification. Tool support is necessary in different

phases of the development process. In the modelling phase an analysis and design model

of the problem domain should be produced. In the implementation phase the design

model is extended to executable code that runs on a multi-agent platform. The multi-

agent platforms decide on the transfer possibilities and dictate the MAS-internal and

social architectures that can be used. For a smooth transition, it is desirable to have the

same bundle of concepts at the design and implementation level. To enable the system

debugging, tool support is also necessary at the testing level. The various design artefacts

represent different views of the whole system and can be utilized to establish tools that

emphasize varying multi-agent aspects. Concrete multi-agent systems are built to realize

(components of) applications. Different application classes exist, ranging from enterprise

information systems to computer games, which highlight different aspects of the agent

paradigm (e.g. autonomy), and require different types of agents. On a more abstract level,

one can try to extract the general success factors for agent technology to provide generic

criteria, allowing selecting suitable agent-based solutions to problems of specific

application domains [41]. In Figure 2, the components of multi-agent systems are shown.

8

Figure 2 Structure of Multi-Agent Systems

Agents are social entities in the sense that they are often situated in an environment with

other agents. In order to fulfill its goals, an agent frequently has to delegate tasks to other agents,

because it has not all the needed capabilities to reach the goal solely by itself. Therefore, the

social structures in which an agent resides are important for the workflows in the completely

multi-agent system. Agents are social beings in the sense that they have the possibility to initiate

interactions with other agents. Research in the field of agent interactions covers the different

aspects of communication at varying abstraction levels [41].

Fields of interest are the agent communication foundations, conversations, and

cooperation. Agent communication takes place on a more abstract level compared to the case

with object-oriented communication. Agent communication is based on the speech act theory

[42]. Communication is treated as a way of acting, as certain kinds of natural language utterances

have the characteristics of actions (called speech acts). Speech acts will be discussed in Chapter

3.

9

2.2 What are Agents?

An agent is a software program capable of flexible, autonomous (problem-solving)

action, and situated in dynamic, open, and unpredictable environments. An agent has control over

its internal state and over its own behaviour. It experiences environment through sensors and acts

through effectors. These software programs communicate with each other and act in a multi-agent

setting to resolve some problems such as matching available resources to demand.

Agents are viewed in the multi-agent society as a metaphor for the design of complex and

distributed computational systems. The agent community is interested in the following aspects:

multi-agent planning, agent communication languages, coordination mechanisms, matchmaking

architectures, agent programming languages, auctions, negotiation, mechanism design, strategies,

and learning.

Weiss [2] defines an agent as "a real or virtual entity which is emerged in an

environment where it can take some actions, which is able to perceive and represent partially this

environment, which is able to communicate with the other agents and which possesses an

autonomous behaviour that is a consequence of its observations, its knowledge and its

interactions with the other agents". Fig 3 represents the other characteristics of an agent.

1 '
Reactivity

Flexible

i i

Pro-Activeness
i '

Social-Ability

Figure 3 Agent characteristics

Reactivity means that the agent is able to perceive its environment, and to respond in a

timely fashion to change, in order to satisfy designer's objectives.

10

Pro-activeness means that the agent exhibits goal directed behaviour, and is able to take

initiative actions.

Social ability means that the agent is able to interact with other agents in order to satisfy

designer's objectives.

Agent technology is used in many applications such as automatic negotiation, auctions,

contract dealing from the supply chain management point of view, simulation, network

management, e-business (e-commerce) and many more.

2.3 Agent Negotiation

Negotiation is an important type of interaction that is gaining increasing prominence in

the agent community. Agents with conflicting interests, but with a desire to cooperate, try to

come to a mutually acceptable agreement on the division of scarce resources [3, 4, 5, and 6].

Resources can be commodities, services, time, money, etc. Resources are scarce in the sense that

competing claims over them cannot be fully satisfied simultaneously. The problem of resource

negotiation via communication in a distributed setting is core to a number of applications,

particularly the emerging semantic grid computing-based applications such as e-science and e-

business. To allow agents to autonomously negotiate with each other, some researchers propose

to equip them with argumentation and logical reasoning capabilities [6, 12, 15, 17, 20, 25, and

26]. The idea is to use dialogue games as well as the fact that agents should have an

argumentative ability to facilitate their communication and negotiation. Dialogue games are rules

governing agent interactions by defining pre and post conditions of communicative acts, also

called dialogue moves [3, 9,26, and 40].

Agent communication is related to several disciplines: philosophy of language, social

psychology, artificial intelligence, logic, mathematics, etc. In order to be able to negotiate, solve

conflicts of interest, cooperate, find proofs, agents need not only exchange single messages, but

also take part in conversations with other agents. A conversation is defined as a coherent

11

sequence of utterances. The term "coherent" means that the information conveyed by an utterance

is related to the information conveyed by the other utterances in a conversation. For example, if p

is the information conveyed by an utterance, the information conveyed by the next one can be the

acceptance, refusal, challenge, attack, etc. of p. Indeed, if agents communicate by exchanging

isolated messages, the resulting communication is extremely poor and agents cannot participate in

complex interactions such as negotiations, which are formed by a sequence of utterances.

In the recent research into agent negotiation, flexible protocols based on dialogue games

are used [3, 9, and 40]. Specifying dialogue games using argumentation is being used to

overcome some of the negotiation issues. Simply put, argumentation is the process of building

arguments for or against some conclusion. Chapter 3 presents an argumentation-based dialogue

game protocol and shows how it contributes to the negotiation issues.

2.4 Securing Agent Negotiation

In multi-agent systems, negotiation takes place between two or more software programs.

The demand for security in such a context is increasing, particularly because multi-agent systems

are open in nature. Unlike network security issues, where digital credentials (e.g. credit, driver

licence, membership number etc...) can be used, in multi-agent systems, in order to secure a

negotiation involving software programs, one has to first make sure the agents trust each other

and then one will carry on the negotiation. The objective is to propose trust models in order to

implement a secure setting for automatic negotiation. Two of these models have been proven to

be efficient: the FIRE model and the Referral model. After defining the meaning of trust, these

two models will be discussed in this chapter. The proposed trust model presented in Chapter 4

uses some ideas from these two models.

12

2.5 What is the Meaning of Trust?

Trust is generally considered a nebulous term to define, but everyone has a threshold or

set of circumstances when he trusts some entity as well as when he does not.

The following definitions provide a useful starting point for defining trust:

• IETF: "Generally, an entity can be said to 'trust' a second entity when it (the first

entity) makes the assumption that the second entity will behave exactly as the first

entity expects. This trust may apply only for some specific function [33].

• Rob Brickman from IBM asserts that "trust can be defined as assured reliance on the

character, ability, strength, or truth of someone or something [34].

2.6 The FIRE Model

FIRE [35] is a trust and reputation model that integrates a number of information sources

to produce a comprehensive assessment of an agent's likely performance. FIRE incorporates:

Interaction trust (IT): models the trust that ensues from the direct interactions between two

agents. In more detail, consider a commercial transaction where agent a buys a particular product

from agent b. The outcome of the transaction may consist of the product price, product quality,

and the delivery date. From this outcome, agent a may give ratings about agent fe's service in

terms of price, quality, and delivery for that particular interaction.

Ratings are thus tuples in the following form: r = (a; b; i; c; v); where a and b are the

agents that participated in the interaction /, and v is the rating a gave to b for the term c (e.g.

price, quality, delivery). The range of v is [-1; +1], where -1 means absolutely negative, +1 means

absolutely positive, and 0 means neutral or uncertain.

In order to calculate IT from past experiences, an agent needs to record its past ratings in

a (local) rating database. When calculating the IT value for agent b with respect to term c, agent a

13

has to query its database for all the ratings that have the form {a, b, c, _, _) where the '_' symbol

can be replaced by any value. The set of those ratings is denoted by R(a, b, c). Then the IT

(denoted by F,) is calculated as the weighted mean of the rating values of all the ratings in the set:

T,{a,b,c)= X w(n) »v» (1)
neR(a,b,c)

Where v/ is the value of the rating r,- and wfc) is the weight corresponding to rt. The weight

H{r;) for each rating is selected such that it gives more weight to more recent ratings, with a

constraint that]T ci^f) ~ * • ^h*s 1S t 0 e n s u r e t n a t m e t r u s t value T,(a,b,c) is in the range

[-i;+i]-

In FIRE, each trust value comes with a reliability rating that reflects the confidence of the

trust model in producing that trust value given the data it took into account. This value is built

from the two following measures:

pN(a,b,c): Is the reliability measure based on the number of ratings that have been taken into

account in computing r,-. As the number of these ratings («) grows, the degree of reliability

increases until it reaches a defined threshold (denoted by m).

\n/m when n< m)
P»(ajb,c) , (2)

1 when n> m

Where n is the cardinality of the set R(a, b, c). The value of function n/m ranges from 0 to 1 for n

in [0; m]. Hence, the reliability pN(a,b,c) increases from 0 to 1 when the number of ratings n

increases from 0 to m, and stays at I when n exceeds m.

n (a,b,c): is the rating deviation reliability. The greater the variability in the rating values, the

more volatile the other agent will be in fulfilling its agreements:

pn (a, b, C) = 1 - £ (w(n) • |vi - Ti(a, b, c)\)/2 (3)
u ne R(aJ>,c)

Then, the reliability measure of IT (called J4TI (a; b; c)) is defined by the following formula:

14

O =0 • O (4)
/ ri(«A.c) IN ID v 7

Role-based trust (RT): models the trust resulting from the role-based relationships between two

agents (e.g. owned by the same organization or relationships derived from relationships between

the agents' owners in the real life such as friendship or relatives). Since there is no general

method for computationally quantifying trust based on this type of relationship, the authors use

rules to assign RT values. This means end users can add new rules to customize this component

to suit their particular applications. Rules are tuples of the following form:

ml = (rolea, roteb, c, vD, eo), which describes a rule that if rolea and roleb are the roles of agent a

and b respectively, then the expected performance of b in an interaction with a is vD (vD C [-1; 1])

with respect to the term c; eo G [0;1] is the default level of influence of this rule on the resulting

RT value. For example, possible rules may be:

rul\ = (buyer; seller; quality;-0.2; 0:3),

rul2 = (friend-buyer, friend-seller, quality.O, 0.6), and

rul$= (-> government-seller, quality, 0,0.9).

ml] expresses an agent's belief that an ordinary seller will usually sell a product of slightly lower

quality than agreed, but the reliability of this belief is low (0:3); ml2 is the belief that in a close

partnership the buying agent can expect the seller to do what is agreed in terms of product

quality; and this is also true for a governmental seller almost all of the time (ruli).

Each agent has its own set of rules which are stored in a (local) rule database. In order to

determine the RT with an agent b, agent a looks up the relevant rules from its rule database. Then

the value of RT is given by the following formula:

y
-.—, f L. \ * ruh G^«/e*(a . f r>c) t > Di

YR(a,b,c) = -^= (5)
£—1 ml) e.Rules(a,b,c)6Di

15

Where rulj = (roIea; rolei,; c; VK; eoi) is a rule in the set of Rules (a; b; c). This set is a subset of

the rule database in which only the rules that are relevant to the roles of a, the roles of b, and the

term c are selected. Since the rules for RT are specified by the agent's owner, the reliability of RT

also needs to be set by the agent's owner. The authors usep {a,b,c), with a range of [0, 1], to

denote this value.

Witness reputation The witness reputation (WR) of a target agent b is built on observations about

its behaviour by other agents (witnesses). In order to evaluate the (WR) of agent b, agent a needs

to find the witnesses that has interacted with agent b.

In this component, a variant of the referral system is used to find such witnesses. In this

system, agents cooperate by giving, pursuing, and evaluating referrals (a recommendation to

contact another agent). Each agent in the system maintains a list of acquaintances (other agents

that it knows). Thus, when looking for a certain piece of information, an agent can send the query

to a number of its acquaintances who will try to answer the query if possible or, if they cannot,

they will send back referrals pointing to other agents that they believe are likely to have the

desired information.

In this model, each agent has a measure of the degree of likeliness with which an agent

can fulfill an information query. This measure needs to be defined in an application specific

manner. An agent is assumed to know local agents (those who are near to it) better and so the

distance between an acquaintance and the target agent is used as the knowledge measure. Thus

the nearer to the target agent, the more likely the acquaintance is to know it. When an agent a

assesses the WR of an agent b with respect to a term c, denoted byrv(«Ac) , it sends out a query

for ratings of the form (-,b,-,c,-), to those acquaintances that are likely to have relevant ratings on

agent b and term c. These acquaintances, upon receiving the query, try to match it to their own

rating databases. If they find matching ratings, it means they have had interactions with agent b,

and they will return the ratings found to agent a. If they cannot find the requested information,

16

they will return referrals identifying their acquaintances that they believe are most likely to have

the relevant ratings to the query so that agent a can look further.

This process continues until sufficient witnesses are found or the lengths of its referral

chains reach a defined threshold (because the further the witness is from agent a, the less

reliable/relevant its information is to it). The general formula for WR is as follows:

Tw(a,b,c) = I.w(ri).vi (6)

Where Tw(fl,b,c) is the set of witness ratings found by agent a, w(r.) is the weight for each

rating and v,- is the rating value of rt. The reliability measure for WR (denoted by pr (a, b, c)) is

also defined from the ratings in rw(a,b,c).

Certified reputation (CR): is based on ratings presented by the rated agent (agent b) about itself

which have been obtained from its partners in past interactions. These ratings are certifications

(provided by the rating agents) of agent b 's past performance (somewhat like a reference when

applying for a job). They allow an agent to prove its achievable performance as viewed by

previous interaction partners.

Since agent b can choose which ratings it puts forward, a rational agent will only present its best

ratings. Therefore, we should assume that (CR) information possibly overestimates an agent's

expected behaviour. Thus, although it cannot guarantee agent b's performance in future

interactions, the (CR) information does reveal a partial perspective on agent b 's past behaviour.

The main benefit of this type of information is its high availability. With the cooperation of its

partners, agent b can have (CR) information from just a small number of interactions. Therefore,

(CR) is available to agents in most circumstances; even in situations where the other components

may fail to provide a trust measure. In more detail, the process of (CR) is as follows:

• After every transaction, agent b asks its partners to provide their ratings about its

performance, which is then stored in its databases.

17

• When agent a contacts agent b to express its interest in using b 's services; it asks agent b to

provide references about its past performance.

• As agent a receives the ratings of agent b from b. It assesses the ratings' reliability and

calculates a trust value for agent b. Specifically, the value of (CR),r c(a,b,c) , and its

reliability, pVc(a, b, c) , are calculated as per the (WR) component, however the input is the

set of ratings provided by the target agent b itself.

The authors combine the aforementioned trust/reputation values into a single composite

measure to give an overall picture of an agent's likely performance. Specifically, the weighted

mean method is used to calculate the composite trust value (T(a,b,c)) and its reliability

(pr(a,b,c)):

T(a,b,c) = I'kei''K-w-C)WkrkiaM (7)
2i6(/,«,r,c) wk

Where wk = Wk.pk(a,b,c) and Wi, WR, Ww, W c are the coefficients corresponding to the IT,

RT, WR, and CR components. These coefficients are set by end users to reflect the importance of

each component in a particular application.

2.7 The Referral Model

This model [36] considers a distributed system of software agents who cooperate in

helping their users to find services provided by different agents. The agents need to ensure that

the service providers they select are trustworthy. Because we are dealing with autonomous agents

and there is no central trusted authority, the agents should help each other to determine the

trustworthiness of the service providers they are interested in. This help is rendered via a series of

Referrals to other agents, culminating in zero or more trustworthy service providers being

18

identified. In order for agents to rate the trustworthiness of others, the referral model need to

identify a "Trust Network" which is a multi-agent system.

The referral model needs to define two operators, concatenation, and aggregation for

which trust ratings can be combined in a trust network. The referral system will try to establish

some important properties regarding these operators, thereby ensuring that trust can be combined

correctly.

Due to the uncertainty about quality and reliability of the product and services offered by

others in open multi-agent systems, it is crucial for agents to compute the trustworthiness of the

other agents before initiating any service request. Agents should be able to compute how much

trust to place in others with which they might have had no prior experience. The mechanism that

supports these findings on trust is what is known as the Reputation systems.

Collaborative filtering approaches select resources based on the relationships between

agents by the similarities or dissimilarity in their subjective judgments'.

The Referral system tries to maintain and use trust for recommendation, that is trust is

captured by the neighbourhood relation. This system uses a probabilistic theory to represent the

trust between agents which is based on referrals and the quality of service obtained. It will

attempt to use the operators mentioned above to determine trust between agents. Some of the

challenges that the referral system must take into consideration for an open environment are:

1. Agents may join and leave the environment arbitrary.

2. The agents might not be cooperative.

3. An agent may give biased information on itself.

4. Agents might refer witnesses that are biased.

19

2.8 Conclusion

In this chapter, agent-based computing from communication and trust points of view has been

presented. Agents are defined as autonomous and flexible entities, which form societies that

depend on mechanisms governing their interactions in order to achieve trust among them. Agent

negotiation is discussed and two trust models are introduced: the FIRE model and the Referral

model. The FIRE model is based on four types of information related to trust and reputation

(Interaction Trust, Role-based Trust, Witness Reputation, and certified Reputation). From this

information, trust and reputation of interacting agents are measured. The second model is based

on references from other agents when asked about a target agent. This model has the limit of

assuming that agents will tell the truth. This assumption defies the fact that there are malicious

agents in the environment.

20

Chapter 3: Multi-Agent Interactions using Formal
Dialogue Games

3.1 Introduction

Developers of software agent systems typically design the agents within the system to

perform changes in the state of the world. Whether the software agents represent human bidders

in an online auction or the system collectively manages some resource, (such as a utility

network), the agents usually need to initiate, maintain, or terminate actions in the world [7].

Agent interaction protocols, therefore, must be concerned with argument over actions: even if

agents in such systems are not concerned with sharing and reconciling one another's beliefs, these

protocols will still assist in sharing and coordinating their actions.

An important class of interactions between agents in multi-agent systems takes the form

of dialogues. There is a great variety of dialogues ranging from exchange of pre-formatted

messages to argumentation based dialogues.

Walton and Krabbe distinguish five types of dialogues [8] listed below:

Information seeking dialogue: are those where one agent seeks the answer to some

question(s) from another agent.

Inquiry dialogue: the agents collaborate to answer some question(s).

Persuasion dialogue: involve one agent seeking to persuade another to accept a proposition.

Negotiation dialogue: the agents bargain over the division of some scarce resource.

Deliberation dialogue: agents collaborate to decide what action or course of actions should be

adopted in some situation.

Formal dialogue games are being used by agent designers for structured agent

interactions. They are the basis of interaction between autonomous software agents, where

21

each agent moves by making utterances, according to a pre-defined set of rules [9]. A dialogue

game specification then consists of the following elements [10]:

Commencement Rules: are rules which define the circumstances under which a dialogue

commences.

Locutions: are rules which indicate what utterances are permitted.

Combination Rules: are rules which define the dialogical contexts.

Commitments: are rules which define the circumstances under which agents express

commitment to a proposition.

Termination Rules: are rules that define the circumstances under which a dialogue ends.

Various dialogue protocols can be found in the literature, especially for persuasion [11,

12, 15, 17], and negotiation [13, 14]. Multi-agent negotiation is based on two aspects, the first is

the way the negotiation is carried out, and the second focuses on trust issues. Formal dialogue

games is used to help with the negotiation procedure, (e.g. sending an offer, receiving counter

offers, etc...); trust is another issue that is of concern in multi-agent systems.

Formal dialogue games are defined as a set of small games used to represent a

negotiation, as if we have a big job to do, in order to accomplish it, we need to form a team and

assign small tasks to each member, at the end we get the result of each task and combine them to

get the final result. Negotiation is this big job, and formal dialogue games split the negotiation

into small games and then compile them to get the result of the more complex negotiation.

3.2 Overview

In this chapter, the proposed dialogue game-based communication framework in a

negotiation setting is presented. A formal description of this argumentation-driven negotiation

protocol between autonomous agents is shown. This protocol is designed to be computationally

efficient. Argumentation can be defined as a process for the interaction of different arguments for

and against some conclusion [21, 22, and 23]. Argumentation has been researched extensively in

22

the last decade, especially for inference, decision support, dialogue, and negotiation. Agents can

use argumentation in their communication in order to justify their negotiation stances and

influence other agents' negotiation stances. An important branch of argumentation is formal

dialectics [24, 25, 26, 21, 22, and 4]. In its most abstract form, a dialectical model is a set of

arguments and a binary relation representing the attack-relation (and indirectly the defence

relation) between the arguments in a dialogical process. Consequently, dialectical models are

relevant for automated negotiation, in which agents should persuade each other. In this thesis, we

propose to use dialectical argumentation to assist agents to reach a decision and convince each

other.

A single agent may use such an argumentation to perform its reasoning because it needs

to make decisions in highly dynamic environments, considering interacting preferences and

utilities. This argumentation can also help multiple agents to interact rationally, by giving and

receiving reasons for conclusions and decisions, within an enriching dialectical process that aims

at reaching mutually agreeable joint decisions. During negotiation, agents can establish a

common knowledge of each other's commitments, find compromises, and persuade one another

to make commitments.

Several computational frameworks for argumentative inferences have been developed in

the literature [24, 21, 3, 4, 23, 27]. However, only few proposals have considered the

implementation and application issues of argumentation-based negotiation. Another challenging

problem for automated negotiation that has not been deeply addressed is the security engineering.

The problem of securing negotiation systems in a distributed setting is of great utility for

a number of applications such as e-commerce, e-business, and Web services-based applications.

The objective of this chapter and the next one is to address the specification and security issues of

agent-based negotiation. We propose a new computational model for efficient (in this chapter)

and secure (in the next chapter) negotiation using an argumentation-driven framework and a trust-

based approach. The idea is to be able to participate in flexible negotiations and to trust

23

interacting agents within a multi-agent system. This is because in order to share resources and

allow mutual access, involved agents in e-infrastructures need to establish a framework of trust

that establishes what they each expect of the other. Such a framework must allow one entity to

assume that a second entity will behave exactly as the first entity expects.

3.3 Conceptual Framework

3.3.1 Theoretical Considerations

Agent communication is related to several disciplines: philosophy of language, social

psychology, artificial intelligence, logic, mathematics, etc. In this domain, in order to be able to

negotiate, solve conflicts of interest, cooperate, and find proofs, agents need not only exchange

single messages, but also take part in conversations with other agents. A conversation is defined

as a coherent sequence of utterances. The term "coherent" means that the information conveyed

by an utterance is related to the information conveyed by the other utterances in a conversation.

For example, if p is the information conveyed by an utterance, the information conveyed by the

next one can be the acceptance, refusal, challenge, attack, etc. of p. Indeed, if agents

communicate by exchanging isolated messages, the resulting communication is extremely poor

and agents cannot participate in complex interactions such as negotiations, which are formed by a

sequence of utterances.

To consider the conversational aspect of agent communication, action logic is used to

specify the communicative acts. In addition, to capture the formal semantics of such

communicative acts, the approach is based on the notion of "social commitments" [25, 28, 29]. A

social commitment (SC) is an engagement made by an agent (the debtor), that some fact is true or

that something will be done. This commitment is directed to a set of agents (creditors). A

commitment is an obligation in the sense that the debtor must respect and behave in accordance

with this commitment. Social commitments are a powerful representation to model multi-agent

interactions.

24

Commitments provide a basis for a normative framework that makes it possible to model

agents' communicative behaviours. This framework has the advantage of being expressive

because all speech act types can be represented by commitments [30]. Commitment-based

protocols enable the content of agent interactions to be represented and reasoned about [29].

In order to model the dynamics of conversations, speech act (SA) is interpreted as an

action performed on a commitment or on its content. A speech act is an abstract act that an agent,

the speaker, performs when producing an utterance (U) and addressing it to another agent, the

addressee. The game protocol for the negotiation dialogue introduced in section 3, the actions that

an agent can perform on a commitment are: Act e {Create, Withdraw}. Create means that the

agent is making an offer, and Withdraw means that the agent is withdrawing it. The actions that

an agent can perform on commitment content are: Act-content e{Accept, Refuse, Challenge,

Defend, Attack, and Justify}.

In the proposed framework, a speech act is interpreted either as an action applied to a

commitment when the speaker is the debtor, or as an action applied to its content when the

speaker is the debtor or the creditor [25]. Formally, a speech act can be defined as follows:

Definition 1 (Speech Act)

SA(Agh Ag2, U) = Act(Agl, SC(Agl, Ag2, p))

| Act-content(Agh SC(Agb Agj, p))

Where i,j e {1, 2} and {k = iork =j), p is the commitment content.

The definiendum SA(Agi, Ag2, U) is defined by the definiens Act(Agi, SC(Agj, Ag2, p)) as an

action performed by the debtor Agi on its commitment. The definiendum is defined by the

definiens Act-content(Agh SC(Agb Agj, p)) as an action performed by an agent Agk (the debtor or

the creditor) on the commitment content.

25

3.3.2 Architecture

The conceptual framework architecture of the model is characterized by capturing

simultaneously 1) the mental aspect of agents taking part in the conversation (beliefs, desires,

goals...), 2) the social aspect reflecting the context in which these agents communicate and the

social commitments and norms, and 3) the reasoning aspect which is essential to be able to take

part in coherent conversations. The reasoning part is based upon an argumentation system

enabling agents to justify the facts on which they are committed and to justify their actions on

commitments. The combination of these three aspects is necessary because producing social

commitments (i.e. public utterances) reflects the agents' mental states on which agents should

reason before committing in a conversation and during its unfolding.

The communication model consists of three layers: the conversation layer, the

argumentative layer, and the cognitive layer. This stratification in layers is supported by the

abstraction levels. The conversation layer is directly observable and highlights speech acts the

agents perform. These acts are not performed in an isolated way, but within a particular

conversation. The argumentative layer is used to correctly manage the social commitments and

arguments that are related to the conversation. Finally, the cognitive layer is used to take into

account the agents' private mental states, the social relations, and other elements that agents use

to be able to communicate. In this paper we focus on the second layer.

In order to allow negotiating agents to use suitably the communication model, this latter

must be compatible with the agent architecture. Thus, we propose a negotiating agent model

consisting of a mental model, a social model, and a reasoning model (Figure 4). The mental

model includes beliefs, desires, goals, etc. The social model captures the social concepts such as

conventions, roles, commitments, etc. Commitments that agents make public by communication

are related to the mental states via the reasoning model.

26

The negotiating agent architecture
f -N

Mental model
(Beliefs, desires, intentions, etc.)

c >
Social model

• (Powers, relations, conventions,
commitments, etc.)

V J

L Reasoning model
(argumentation system)

.

4 -

\

f The communication model \ .

Cognitive layer
Private mental states, social relations,

Argumentative layer

Conversation layer
Speech acts

V y

Figure 4 The conceptual framework

3.3.3 Argumentation Framework

The agents' reasoning model is specified using an argumentation system. Such a system

essentially includes a logical language L, a definition of the argument concept, and a definition of

the attack relation between arguments. The use of a logical language enables negotiating agents

to use a logic-based reasoning in order to effectively reason about arguments in terms of inferring

and justifying conclusions, and attacking and defending arguments. Hereafter the concepts that

will be used in the negotiation are defined. Here T indicates a possibly inconsistent knowledge

base with no deductive closure. "H" Stands for classical inference and "=" for logical

equivalence.

Definition 2 (Argument) An argument is a pair (H, h) where h is a formula ofL and Ha sub-set

ofT such that: i)His consistent, ii) H\- h and Hi) His minimal, so no subset of Hsatisfying both

i and ii exists. H is called the support of the argument and h its conclusion. We use the notation:

H = Support (Ag, h) to indicate that agent Ag has a support Hfor the conclusion h.

27

Definition 3 (Attack Relation) Attack relation is a binary relation between two arguments. Let

(Hj, hj) and (H2, h2) be two arguments, (H,, /*,) attacks (H2, h2) is denoted: (HA,hx)& (H2,h2).

In fact, before committing to some fact h being true (i.e. before making an offer by

creating a commitment whose content is h); the speaker agent should use its argumentation

system to build an argument (H, h). On the other side, the addressee agent must use its own

argumentation system to select the answer it will give (i.e. to decide about the appropriate

manipulation of the content of an existing commitment).

For example, an agent Agi accepts the commitment content h proposed by another agent if Agi

has an argument for h. TfiAgj has an argument neither for h, nor for -I/J, then it challenges h.

In the framework, we distinguish between arguments that an agent has (private

arguments) and arguments that this agent used in its conversation (public arguments). Thus, the

notation: S= Create Support (Ag, SC (Agi, Ag2,p)) is used to indicate the set of commitments S

created by agent Ag to support the content of SC(Agh Ag2, p). This support relation is transitive

i.e.:

(SC (Ag], Ag2,p2) e Create JSupport (Ag, SC (Agi, Ag2,pi))

A SC (Agh Ag2, pi) e Create JSupport (Ag, SC (Agi, Ag2, p0)))

=> SC(Agh Ag2, pi) e Create_Support(Ag, SC(Agh Ag2, po))

Surely, an argumentation system is essential to help agents justify their negotiation

stances and influence other agents' negotiation stances. However, reasoning on other social

attitudes should also be taken into account in order to explain the agents' decisions.

In the proposed approach, agents can reason about trust and use trustworthiness to decide,

in some cases, about the acceptance of arguments. This trust-based reasoning is essential for

securing negotiation settings.

28

3.3.4 Computational Dialogue Games

Agent communication protocols specify the rules of interaction governing a dialogue

between autonomous agents in a multi-agent system. These protocols are patterns of behavior that

restrict the range of allowed follow-up utterances at any stage during a dialogue. Unlike protocols

used in distributed systems, agent communication protocols must take into account the fact that

artificial agents are autonomous and proactive. These protocols must be flexible enough and must

also be specified using a more expressive formalism than traditional formalisms such as finite

state machines. Indeed, logic-based protocols seem an interesting way [26,31].

A computational dialogue game [26, 3, 32] aims at offering more flexible protocols. This

is achieved by combining different games to construct complete and more complex protocols.

Dialogue games are declarative specifications that govern communication between autonomous

agents. They are interactions between players, in which each player moves by performing

utterances according to a pre-defined set of rules. In this thesis, we propose to formalize these

games as a set of logical rules about which agents can reason in order to decide which game to

play and how to combine games. Indeed, protocols specified using finite state machines or Petri

nets are not flexible in the sense that agents must respect the whole protocol from the beginning

to the end. For this reason, we propose to specify these protocols by small computational dialogue

games that can be considered as conversation policies that can be logically put together.

Formally, a computational dialogue game is defined as follows:

Definition 4 (Computational Dialogue Game) Let ActionAgJ and ActionAg2 be two

communicative actions performed by Agi and Ag2 respectively, and let Cond be a formula from

the logical language L. A computational dialogue game is a logical rule indicating that if Agj

performs ActionAgi, and that Cond is satisfied, then Ag2 will perform ActionAg2 afterwards. This

rule is expressed as follows:

29

Action_Agi *Action_Ag2

Cond is expressed in terms of the possibility of generating an argument from an agent's

argumentation system.

3.3.5 Negotiation Dialogue Games

The negotiation protocol is specified as a set of computational dialogue games. In

accordance with our commitment-based approach, the game moves are considered as actions that

agents apply to commitments and to their contents (see Definition 1). Because we suppose that

we have always two agents Ag, and Ag2, a (SC) whose content i sp will be denoted in the rest of

this chapter SC (p). The notation: pOArgSys (Agi) is used to denote the fact that a propositional

formula p can be generated from the argumentation system of Agi denoted Arg_Sys {Agi). The

formula —i(p&Arg_Sys (Agi)) indicates the fact that p cannot be generated from Ag,'s

argumentation system. A propositional formula/? can be generated from an agent's argumentation

system, if this agent can find an argument supporting p. To simplify the formalism, the notation

Act' (Ag, SC (p)) is used to indicate the action that agent Ag performs on the commitment SC (p)

or on its content (Act' e {Create, Withdraw, Accept, Challenge, Refuse}). For the actions related

to the argumentation relations, we write Act-Arg (Ag, [SC (q)], SC (p)).

This notation indicates that Ag defends (resp. attacks or justifies) the content of SC (p) by

the content of SC (q) (Act-Arg e {Defend, Attack, Justify}). In a general way, the notation Act'

(Ag, S) indicates the action that Ag performs on the set of commitments S or on the contents of

these commitments, and the notation Act-Arg (Ag, [S], SC (p)) to indicate the argumentation-

related action that Ag performs on the content of SC (p) using the contents of S as support. The

notation Act-Arg (Ag, [S], 5") is used to indicate that Ag performs an argumentation-related action

on the contents of a set of commitments 5" using the contents of S as supports.

30

Two types of dialogue games are distinguished: entry game and chaining games. The entry game

allows the two agents to open the negotiation. The chaining games make it possible to combine

dialogue games during the negotiation. The negotiation terminates when the exit conditions are

satisfied (Fig. 5).

Entry game

Figure 5 The General Form of the Protocol

A Entry Game

The entry dialogue game describing the entry conditions in our negotiation protocol

about an offer represented by a propositional formula/? is described as follows {Specification 1):

<Accept(Ag2, SC(p)) — ^ Termination

Refase(Ag2, SC(p)) — > Negotiation

Where a; and bj are two conditions specified as follows:

a, =pbArg_Sys (Ag2)

b, = -,p&Arg_Sys(Ag2)

If Ag2 has an argument for p, then it accepts the offer p (the content of SC (p)) and the

conversation terminates as soon as it begins (Condition «;). The negotiation starts when Ag2

refuses the Agj's offer/? because it has an argument against/? (condition bf).

B Defense Game

Once the two agents opened the negotiation, the initiator must defend its point of view in

order to persuade the addressee. Consequently, a defense game should be played. Our protocol is

Chaining games Exit conditions (Termination)

31

specified in such a way that the negotiation dynamics starts by playing a defense game. We call

this type of negotiation persuasive negotiation.

This game is specified as follows (Specification 2):

jg Accept(Ag2, S,)

Defend(Ag,, [S], SC(p)) <T • Challenge(Ag2, S2)

w h e r e . "'^-AttackCAgtlSlSJ

S={sc(p)/i=0,...,n}, pi are prepositional formulas.

U/=i$ =S\JSC(p), Sif\Sj=0, i,j = \,..J&i*j

By definition, Defend (Agj, [S], SC (p)) means that Ag] creates S in order to defend the content of

SC (p). Formally:

Defend(Ag,, [S], SC (p)) = (Create (Agh S)AS = Create_Support (Ag,, SC (p)))

This definition is considered as an assertional description of the Defend action. Similar

definitions for Attack and Justify actions can be proposed.

This specification indicates that according to the three conditions (a2, b2 and c2); Ag2 can

accept a subset Sj of S, challenge a subset S2 and attack a third subset S3. Sets 5,- and Sj are

mutually disjoint because Ag2 cannot, for example, both accept and challenge the same

commitment content. Accept, Challenge and Attack a set of commitment contents are defined as

follows:

Accept(Ag2,S,) ± (Vi,SC(p.) eS,^Accept(Ag2 , SC(p,)))

Challenge (Ag2, S2) ± (Vi, SC fo) <=S2=> Challenge (Ag2, SC (p,)))

Attack (Ag2, [51, S3) ± Vi, SC fa) eS3=> 3S) c S', Attack (Ag2, [S'j], SC (p,))

Where: 5} = S'. This indication means that any element of S' is used to attack one or more

elements of S5.

The conditions a2, b2 and c2 are specified as follows:

32

a2 = Vi, SC (p,) e S] =>pMrg_Sys (Ag2)

b2 = Vi, SC (pd eS2=> (-y(pMrg_Sys (Ag2J) A-^{-yMrg_Sys (Ag2)))

c2 = Vi, SC (pt) eS3=> 3S'j c S', Content (S'J) = Support (Ag2, -,p.)

Where Content (S'j) indicates the set of contents of the commitments S).

C Challenge Game

The challenge game is specified as follows (Specification 3):

ChallengeiAg,, SC(p)) °3 » Justify(Ag2, [S], SC(p))

Where the condition a3 is specified as follows:

a? = (Content(S) = Support (Ag2, p))

In this game, the condition a3 is always true. The reason is that in accordance with the

commitment semantics, an agent must always be able to defend the commitment it created [30].

D Justification Game

For this game we distinguish two cases:

Casel. SC(p) gS

In this case, Agi justifies the content of its commitment SC (p) by creating a set of

commitments S. As for the Defend action, Ag2 can accept, challenge and/or attack a subset of S.

The specification of this game is as follows (Specification 4):

^fAccept(Ag2,Si)

Justifying,, [S], SC(p)) /b< » Challenge(Ag2, S2)

C4^Atlack(Ag2,[SlS3)

Where:

S={sC(p)/i=Q,...,n}, pi are prepositional formulas.

33

uUst=s\jscw> st nSj=0, uj=i,..,3&t*j

a4 = a2, b4 = b2, C4 = C2

Case2. {SCfo)} = S

In this case, the justification game has the following specification (Specification 5):

a 4
,Accept(Ag2,SC(p))

a A ^ -

JuStify{Agi,[S\,SC{p)) < ^

^•Refuse(Ag2,SC(p))

Agi justifies the content of its commitment SC (p) by itself (i.e. by p). This means that p is part of

Agi's knowledge. Only two moves are possible for Ag2: 1) accept the content of SC (p) if Agi is a

trustworthy agent for Ag2 (a'4), 2) if not, refuse this content (b'4). Ag2 cannot attack this content

because it does not have an argument against/?. The reason is that Agi plays a justification game

because Ag2 played a challenge game.

E Attack Game

The attack game is specified as follows (Specification 6):

Refuse(Ag2, S,) A Create{Ag2, SC(p 0)

Attac«Ag„ [S], SCip)) *-%-+> Accept(Ag* & A CreateiAg* SC(P T>

Challenge(Ag2, S3)

* Attack(Ag2,[Sl,S4)

Where:

S=[SC(p)/i=0,...,n}, pi are propositional formulas.

UUsi=S{JSC(p),Card(S])=\,Sif]Sj = 0 , i,j = l,...,4&i* j

The conditions as, b5, c5 and d5 are specified as follows:

a.5=3/, SC (p,) e CreateSupport (Ag2, SC (—>q))

Where S,= {SC(q)}

34

b5= Vi, SC (p.) e S2 =>pMrg_Sys (Ag2)

cs = Vi, SC (pd eS3=> (rnfaQArgJSys (Ag2)) A-n(-pMrg_Sys (Ag2)))

d5 = Vi, SC (p.) eS4^ 3S) c S',

Content (S'J) = Support (Ag2, —p$ A $k, SC (pk) G CreateJSupport (Ag2, SC (—>p,))

Ag2 refUses Agt's argument if Ag2 already attacked this argument. In other words, Ag2 refuses

Agi's argument if Ag2 cannot attack this argument since it already attacked it, and it cannot accept

it or challenge it since it has an argument against this argument. We have only one element in Sj

since a refusal move is considered as an exit condition. The acceptance and the challenge actions

of this game are the same as the acceptance and the challenge actions of the defence game. In the

case of refusal and acceptance, Ag2 can make a counteroffer/?' by creating a new commitment. In

this situation, Agj will play an entry game by accepting or refusing the counteroffer. Finally, Ag2

attacks Agj's argument if Ag2 has an argument against Agj's argument, and if Ag2 did not attack

Agj's argument before. In d$, the universal quantifier means that Ag2 attacks all Agj's arguments

for which it has an against-argument. The reason is that Ag2 must act on all commitments created

by Agj. The temporal aspect (the past) of a5 and d5 is implicitly integrated in CreateJSupport

(Ag2, SC (-.?)) and Create_Support (Ag2, SC (->pi)).

F Termination

The protocol terminates either by a final acceptance or by a refusal. A final acceptance

means that the two agents agree on a consensus. Because it is prohibited for the two agents to

play the same move during the negotiation, the termination of the protocol is ensured.

35

3.4 Formal Analysis

3.4.1 Termination, Soundness, and Completeness

In this section, the formal properties of the negotiation protocol are discussed from a

computational point of view. These properties are: termination (there is no deadlock in the

protocol), soundness (the protocol specification is correct), and completeness (the protocol is

complete with respect to the agents' knowledge bases).

Theorem 1 (Termination) For any set of dialogue games, the persuasive negotiation protocol

always terminates.

Proof

The persuasive negotiation protocol is defined by the chaining of a finite set of dialogue games

that can be played recurrently. Because the same move is prohibited during a conversation, and

the content of communicative acts is finite in term of size, challenge and attack games are finite.

In addition, because the agents' knowledge bases are finite and when an argument is justified by

itself, the addressee could only accept or refuse (case 2 of justification game), then justification

games are finite as well. Consequently, the protocol always converges toward executing either a

final refusal or final acceptance.

Theorem 2 (Soundness) If the protocol terminates by a final acceptance or final refusal, then the

outcome is in accordance with the union of the agents' knowledge bases.

Proof

According to the dialogue game specifications, if one of the participating agents plays the final

acceptance move, this means that it has an argument supporting the addressee's argument

advanced by playing a defence, attack, or justification game. Consequently, this agent has an

argument supporting the last offer made by the addressee. Having this argument in the knowledge

36

base means that agreement is achieved. In the opposite case, if an agent plays a final refusal, then

all the exchanged offers can not be supported by one of the two agents. This means that there is

no argument from the two agents' knowledge bases supporting one of the offers. Consequently an

agreement is not achieved.

The soundness property shows that the protocol is correct. However, what is important is to show

that if an agreement is possible given the two agents' knowledge bases, then the protocol

execution will achieve this agreement.

Theorem 3 (Completeness) If an agreement can be achieved from the agents' knowledge bases,

then the protocol execution will result in achieving this agreement.

Proof

Let us suppose that from the union of the two agents' knowledge bases, it is possible to build an

argument supporting a given offer p which is not attacked by another argument from the union.

Consequently, this argument is accepted by the two agents. Let us show how this argument can be

achieved when executing the protocol. We will use a proof by construction.

If p is the initial offer made, for example, by Agl, then Agl will accept it in the entry game. So

the agreement is achieved. If the initial offer is p ' (p and p ' are different but related because it is

about the same topic) which is refused by Agl, then Agl will defend it by proposing an argument.

Agl will probably accept a part of this argument, challenge a second part, and attack a third part

by possibly making a counter-offer. At this level, Agl can not completely accept the AgTs

argument because its knowledge base is consistent. If this counter-offer is p (which is possible

since Agl's argumentation system supports/?), we are done, because it will be accepted by Agl. If

not, Ag2 will justify the challenge part and plays an attack game by possibly making a new

counter-offer or refuse the attack and make a new counter-offer. If the counter-offer is/?, then we

are done. If not, Agl will play the same games. The process will continue until a counter­

argument/? is made by one of the two agents. There is a guarantee that/? will be made, because if

37

not, one of the two agents will play a final refusal since according to Theorem 1 the protocol

always terminates. This means that the final offer can not be supported by one of the two agents'

knowledge bases and this agent can not make a counter-offer, which is contradictory with the

initial hypothesis.

3.4.2 Complexity Analysis

It is proved that using first order logic and fully prepositional logic for argumentative

reasoning is not appropriate for automated negotiation since first order logic is semi-decidable

and prepositional logic is intractable (exponential time complexity) [44, 46]. Here it is proven

that the protocol is efficient because the reasoning procedures are polynomial. This is because the

logical language (Prepositional Horn logic) is simpler and the dialogue games are simple logical

rules. Because all these dialogue games are based on argumentation, and the decision parameters

(the conditions associated to the rules) that agents use to combine these dialogue games are

expressed in terms of the possibility of building arguments, the complexity of the protocol is

determined by the complexity of building arguments. The following propositions present the

different complexity results.

Proposition 1 Given a Horn knowledge base r , a subset H cT,and a formula h. checking

whether (H,h) is a non-necessarily minimal argument is polynomial.

Proof

From the linear time algorithms for Horn satisfiability in [45], it follows that the Horn implication

problem H f- h is decidable in 0(|#|x|A|) time. From the same result, it also follows that deciding

whether H is consistent is polynomial.

38

Proposition 2 Given a Horn knowledge base r , and an argument (H,h) over r . Checking

whether (H,h) is minimal is polynomial.

Proof

Let / be a literal. The following algorithm resolves the problem:

VleH, check if// - {/} h h.. Because the implication problem is polynomial, we are done.

Proposition 3 Let r b e a consistent Horn knowledge base, ha formula, and A the set of

arguments over T

Proof

If (H,h) is an argument where H is a set of Horn formulas under the form c or

pxvP2V...VpH->c where pup2,...,p„ are positive literals, then adding any Horn formula to

tf will result in a consistent set of formulas H'-.F^H'^H. Since H\-h, it follows that

H'l-h, hence the proposition.

Theorem 4 Given a consistent Horn knowledge base Tand a formula A. Building an argument

(H,h) from r is polynomial.

Proof

From Proposition 3, it follows that there is an argument supporting h iff (T,h)eA.by

Propositions 1 and 2, the theorem follows.

39

3.5 Implementation

In this section, a prototype implementation is described as proof of concept of the different

dialogue games. The prototype is implemented using the Jack™ platform [43]. This language was

chosen for three main reasons:

1- It is an agent-oriented language offering a framework for multi-agent system development.

This framework can support different agent models.

2- It is built on top of and fully integrated with the Java programming language. It includes all

components of Java and it offers specific extensions to implement agents' behaviors.

3- It supports logical variables and cursors. These features are particularly helpful when querying

the state of an agent's beliefs. Their semantics is mid-way between logic programming languages

with the addition of type checking Java style and embedded SQL.

Negotiating agents in the developed system are implemented as Jack™ agents, i.e. they

inherit from the basic class Jack™ Agent. Their knowledge bases are implemented as Jack™

beliefsets. Beliefsets are used to maintain an agent's beliefs about the world. These beliefs are

represented in propositional Horn logic and tuple-based relational model. The logical consistency

of the beliefs contained in a beliefset is automatically maintained. The advantage of using

beliefsets over normal Java data structures is that beliefsets have been specifically designed to

work within the agent-oriented paradigm.

The agents' knowledge bases (KBs) contain two types of information: arguments and beliefs.

Arguments have the form ([Support], Conclusion), where Support is a set of propositional Horn

formulas and Conclusion is a propositional formula. Beliefs have the form ([Belief], Belief) i.e.

Support and Conclusion are identical. The meaning of the propositional formulas (i.e. the

ontology) is recorded in a beliefset whose access is shared between the two agents.

To open a dialogue game, an agent uses its argumentation system. The argumentation system

allows this agent to seek in its knowledge base an argument for a given conclusion or for its

40

negation ("counter-argument"). For example, before creating a commitment SC(p), an agent must

find an argument for p. This enables us to respect the commitment semantics by making sure that

agents can always defend the content of their commitments.

Agent communication is done by sending and receiving messages. These messages are events

that extend the basic Jack™ event: MessageEvent class. MessageEvents represent events that are

used to communicate with other agents. Whenever an agent needs to send a message to another

agent, this information is packaged and sent as a MessageEvent. A MessageEvent can be sent

using the primitive: Send(Destination, Message). In our protocol, Message represents the action

that an agent applies to a commitment or to its content, for example: Create(Agi, SC (p)), etc.

Our dialogue games are implemented as a set of events (Message Events) and plans. A plan

describes a sequence of actions that an agent can perform when an event occurs. Whenever an

event is posted and an agent chooses a task to handle it, the first thing the agent does is to try to

find a plan to handle the event. Plans are methods describing what an agent should do when a

given event occurs. Each dialogue game corresponds to an event and a plan. These games are not

implemented within the agents' program, but as event classes and plan classes that are external to

agents. Thus, each negotiating agent can instantiate these classes. An agent Ag, starts a dialogue

game by generating an event and by sending it to the addressee Ag2. Ag2 executes the plan

corresponding to the received event and answers by generating another event and by sending it to

Ag). Consequently, the two agents can communicate by using the same protocol since they can

instantiate the same classes representing the events and the plans. Figures 5 illustrate snapshots of

the system.

41

Fto Edt VIM* Window H *

, & Project Nam*: Persuaaten_PistDcof
wjJDBBlanVtaws
$ Agent Model
5-©]Aj»nt Types

6 $ ConversationalJtgant
r " esjends Agent

^DocHmantlien
' ^Constructor
S £53 Belief Date
: i l l Capabilities
B {^External Events
i ffl boosts EvBnuoo«l_Per*u»d»ev_tfO0JJ>*nua(lB
! 19 ^hwtcBssEMrtjGoaJJtorsuade
; H A s a n a s EvenLCreate_Cpmmimwnt w_(
: B «&handlas Event jQa*eJfenw*ment
: B ascends EYont_Re*j8e_CommHmsnl av_jaftw_cow¥nlmwnt
: ffi ^handles E*«tJWuae_.C«oin*iiwnt
; E 4»handle» BentJWndjmadtjCwnntttmant
; ffl ^senteEvenCDeft^JWs^CommllmentBv.
• S- ajfrhandles EvertjaaJenp*_Cainniilment
; EB augends EvenLChsllange.CommRmenl ewS
; Bt aj^handles M M jkcceaftjCommltment
: Bt a$£sends EvanUUcepLCommHmentav.
1 B- ^handles B*ot_Ci»nnict_Pwoh«d
•" B «^s«nd*Evtf<.Ctmrtlrt_Resoh«dBW_e«*Wjeto»M«d
; 81 aS r̂ramfles EMMJMthdrawJ^nmtawnt

& aj&sends EvanCVWtnotaw^Commttment ev_eHPidraw_cii
0 ^ P l a n a

- - A u s e s Plm.evjHnljMnuMU
Abuses Pfan_ev_^reat«_conimltinenl

^usesPMnjevjiereadJutacftjcoranMlinaMt
A uses PlanuwjChaaWH^jConitwIlmawt

abuses Ptan_ev„ConflctJanoftml
Jtuses Ptan_ewJMIhrdaw_CommMnwnl

© £ • 3 Java
ffl © TruKJtodefJleenl
H3CapabllnVTypes
fjjn Plan Types
iaSl Event Types •88

Figure 6. The System Data Structures

To start the entry game, an agent (initiator) chooses a goal that it tries to achieve. This goal is

to persuade its interlocutor that a given prepositional formula is true. For this reason, a particular

event: BDI Event (Belief-Desire-Intention) is used. BDI events model goal-directed behaviour in

agents, rather than plan-directed behaviour. What is important is the desired outcome, not the

method chosen to achieve it. This type of events allows an agent to pursue long term goals.

3.6 Conclusion

Formal dialogue games are introduced as interaction games in which each agent plays a

move in turn by performing utterances according to a pre-defined set of rules. In this chapter, we

proposed an approach and a dialogue game protocol based upon persuasive argumentation for

agent communication. In this approach, the agents' reasoning capabilities are linked to their

ability to argue. The logical language used to specify the protocol has the advantage of being

computationally efficient and expressing the public elements and the reasoning process that

42

allows agents to choose an action among several possible actions. Termination, soundness, and

completeness properties of the proposed protocol are proven. Also, its computational complexity

is discussed.

43

Chapter 4: A Trust Model based on Agent Categories

In this chapter, a new trust model addressing the security issue in multi-agent systems is

introduced, by considering two factors. The first factor is about the classification of agents from a

trust point of view using direct interactions. The second is about the categorization of the agents'

chains through which the information is transmitted. Such a categorization is based upon the

reliability of the agents in the chain.

4.1 Background

As stated in the introduction, agents in multi-agent systems need to communicate with

one another in a seamless fashion just as in real societies. The research work presented in this

thesis is based on a real society model used in 25% of the world today. Indeed, this work is

inspired by a fundamental discipline in the Islamic faith known as "Ilm Al Hadith" or the

knowledge of the authenticated saying of the prophet (Praise Be upon Him "P.B.U.H"). Ilm al

Hadith is a form of investigation established by Muslim scholars in the 3rd century AH (9th

century AD) to determine the validity ofhadiths (sayings) of Muhammad's (P.B.U.H) statements,

actions, and approbations as reported by various authorities.

There arose a need to accommodate a great diversity of cultures in the Muslim

community, in the first two centuries of Islam, during the period of territorial expansion. The

hadiths (information) multiplied in number and were often fabricated in order to create a

normative past that could accommodate contemporary situations.

In the Islamic library, there exist six books that narrated the Hadiths (information) for

authenticity purposes. Two of them are considered the most authenticated ones. The first is by

Imam Bukhari (Sahih Bukhari) which is considered by far the most authenticated book after the

Quran.

44

Imam Bukhari was among the first Islamic scholars that started writing down the

prophet's (P.B.U.H) saying. He started his strict investigation on the narrators of such Hadiths

(information / sayings of the prophet). And the second is by Imam Muslim (Sahih Muslim). Imam

Muslim, the student of Imam Bukhari stated in the preface of his book (Sahih Muslim) that

"Narration from a reliable authority is mandatory in Islamic law and the science ofHadith in

order to eliminate any doubt of perjury in narrating knowledge from the holy prophet'. He also

stated in another chapter of the same book that "declaration of the fact that the chain of authority

is part of the deen (religion) and there should be no narration except from a reliable chain of

authority''' [37].

Imam Muslim took great pains in collecting 300,000 traditions, and then after a thorough

examination of them all retained only 4000; the genuineness of which is fully established. When

we say that Imam Muslim collected 300,000 Hadiths and included only 4,000 in his compilation,

it does not imply that he rejected the rest of the whole lot of the Prophet's sayings as being

unreliable. Instead, what this means is that the words and deeds of the Holy Prophet (P.B.U.H)

were transmitted to Imam Muslim through so many chains of transmission. Out of these many

chains of transmission, he selected only 4,000 chains as being the most authentic and narrated the

text on their authority [38].

Imam Ibn Sirin also states that "the science of chain of authority and narration ofHadith

is deen (religion) itself, you should check whomyouare receiving your deen (religion) from ".

Imam Muslim elaborated further from Imam Abdullah bin Mubarak, who says, "between

us and the people who receive from us are pillars of reliance and these are the chains of

authority" [37].

The Hadith is the text that contains the message of Islam and the teachings of the prophet.

It is the substance of the Shariah (Islamic jurisdiction), whereas the chain consists of

personalities. Reliance has been placed on the personalities over the actual content. Muslim

45

scholars attempted to determine forgeries or doubtful reports among the existing body of hadiths.

They were bound however in principle to accept any textually reliable Hadith and so had to

restrict themselves principally to the scrutiny of isnads—i.e., the chains of oral or written

transmission by which the reliability of hadiths were determined.

The scholars therefore declared that all acceptable hadiths fall into four general

categories: Category 1, Sahih (sound), those with a reliable and uninterrupted chain of

transmission and a matn (Information) that does not contradict orthodox belief; Category 2,

Hasan (good), those with an incomplete isnad or with transmitters of questionable authority;

Category 3, Da'if (weak), those whose matn or transmitters are subject to serious criticism and

Category 4, Mawdo (fabricated or forged).

Isnads (Chain of transmitters) are further evaluated according to the completeness of their

chains: they may be unbroken and reliable all the way back to Muhammad (musnad) yet very

short ('ali- high-), implying less likelihood of error; they may lack one authority in the chain of

transmitters or may be missing two or more transmitters (mu'dal) or may have an obscure

authority, referred to simply as "a man" (mubham).

The transmitters themselves, once established in the historical record as reliable men,

determine further categories; the same tradition may have been handed down concurrently

through several different isnads (mutawatir), indicating a long and sound history, or a Hadith may

have been quoted by three different trustworthy authorities (mashhur) or by only one (ahad) [39].

This knowledge of authenticating Hadith is a meticulous and strict set of rules that deal

with personalities, transmitters of Hadith. In multi-agent systems, the concern is how an agent can

trust another. The idea is to use the reasoning behind this knowledge to introduce some concepts

that serve the purpose of multi-agent interactions. The transmitted information in these

interactions is composed of two factors, the information itself, and the chain of agents by which

the information is obtained, similar to Ilm al Hadith.

46

4.2 Classification of Agents

In the proposed model, it is assumed that each agent in the environment has a network of

agents that he trusts based on past interactions. Such a trust is relative to a given field that we

denote by F. Each agent can then categorize the agents in his network according to the rate of

successful interactions denoted by R. We define this categorization as a function Cat mapping

two agents and a given field to a set of agent categories denoted by C. Let A be the set of agents,

we define this function as follows:

Cat:AxAxF->C

We distinguish four agent categories: strong trustworthy agents (STA), trustworthy

agents (TA), weak trustworthy agents (WTA), and untrustworthy agents (UA), and unknown agent

(A?).

Agents can use different policies to categorize other agents (in their network) using the

rate R, which can be computed in different ways. For example, let SIafi/ be the number of

successful interactions between two agents a and p about a subject / , and TIafif be the total

number of their interactions about the same subject, this rate can be simply defined as follows:

R _ o-Ptf

However, more complicated formulas can also be used, in order to give more importance

to some interactions. For example, agents can evaluate their interactions according to a scale of n

types numbered from 1 (the type of the most successful interactions) to n (the type of the less

successful interactions), such that the first m interaction types (m < ri) are successful. Examples

of interaction types are: very good, good, fair, and bad.het l'apf be the number of interactions of

type i between a and J3 about / , and wi be the weight associated to this type. The rate R

could be computed as follows:

47

Using the rate R, an agent a can define the category of another agent p as follows:

Ra,PJ>v^Cat{a,p,f) = STA

v2 ^ K J J <vi=>Cat(a,fi,f) = TA

v, < Rafif < v2 =* Cat{a,p,f) = WTA

Kfi,f <v>=> Cat(a,p,f) = UA

The values of the three variables y.(i = l,...,3) depend on agents and the underlying application.

For example, for some agents, these values could be instantiated as follows:

v, = 0.9, v2 = 0.8, vi = 0.5 That is for a y^o.9, this implies that the percentage of successful

interactions between a and /? is at 90 %.

Agent categorizations influence the reliability of conveyed information. According to

these categories, we distinguish four types of information: sound, good, weak, and forged. For

example, the information transmitted by the first agent's type (SX4) is expected to be sound

(trusted information) and the one transmitted by the fourth type {UA) is expected to be forged

(unaccepted information).

Let us consider the following predicates: Convey(/3,a,i) indicates that the agent /?

conveys the information / to the agent a, and f(i) indicates that the information i is related to

the field / . Let K." be the set of knowledge whose agent a is sure about their truth. The

following rules establish the relationship between the agent's type and reliability of conveyed

information:

Rule 1: (Sound Information) is represented as follows:

Convey{p,a,i) A f(i) A Cat(a, p, f) = STA A -,i 2 Ka

=> Sound (i,a)

48

Rule 2: (Good Information) is represented as follows:

Convey(/3, a, i) A / (I) A Cat(a, p, f) = TA/\ -./ e IC
=> Good(i,a)

Rule 3: (Weak Information) is represented as follows:

Convey(p,a, i) A f(i) A Cat{a, p,f) = WTA A -a £ K"
=> Weak(i,a)

Rule 4: (Forged Information) is represented as follows:

Convey(p,a,i) A f(i) A Cat(a, /?, /) = UAA -.i g "

=> Forged(i, a)

According to the first rule, if a considers /? as an STA agent in the field / , J3

conveys the information /, which is related to the field / , and -ii is not a part of the a's sure

knowledge, then the information i is considered sound by a. The other rules could be explained

in the same way.

In the model, information can be conveyed not only by one agent but also through a set of

agents under the form of chains. The idea is when an agent a asks another agent P in his

network about given information and if P does not have this information is his knowledge base ;

agent P will then contact agents in his network in order to find an agent that will be able to

convey the requested information. We have to take into consideration also that these agents could

have WTAs and UAs in their network. Hence, when /? sends a request for the information from

his network he will send it to all the agents in his network. The conveyed information if found via

his agents could be a result of a weak chain, since it might contain in it a WTA or a UA. Another

situation could be that the agent is unknown, no one knows him, and they have not dealt with and

as a result cannot rate him. Therefore, the chain will not be considered as conveyor of

information. We will present these conditions when we talk about the quality and weight of the

chain in question in later sections.

49

Let us first define the binary relation Ask.

Definition 1 (Ask relation): Let A be the set of agents, I be the set of information expressed in

a first order language, a and /J be two agents in A and i be a formula representing some

information in I —»c: AXAY.1 is a binary relation between agents about some information. This

relation is defined as follows:-> e a,J3,i iffagent a asks agent fi about information i-

In the rest oj'thepaper, we write a ^ p instead of —» e a,/3,i

Definition 2 (Chain of asking agents): A chain C^"2 "" of agents asking about information i

is a finite sequence of agents at,a2,...,an such that: V/ 1 < j <n: a} ->,. aJ+l.

We note that there is a temporal order in the chain of asking agents. To simplify the notation, this

temporal aspect is not represented in the formulations, but we suppose its existence.

The predicate Convey{an,C£fl a",0- indicates that agent an conveys information i to the

agents forming the chain C£Q ""'

Definition 3 (Chain of conveying agents): A chain C^"2 °" of agents conveying information i

is a chain C^"2 "" such that: Convey(an,C^y'"'a",i). a, is called the source of the chain, and

an its target.

Definition 4 (Length of a Chain of conveying agents): A chain of agents conveying information

J is a finite sequence of agents a^,a2,...,an such that: V/ 1 < j < n:a, -»(ahXand

Convey(an,an_x,i). ax is called the source of the chain, and an its target.

Informally, the source of a chain of agents conveying information ' is the agent that starts asking

about this information, and the target is the final agent in the chain that has the information.

Because many chains could support contradictory information, we need to order chains

according to their quality. To evaluate chain quality we should consider two factors: the weight of

the chain and its length. The weight of a chain is defined in terms of the agent types in it. For

50

example a chain containing just STAs is better than a chain containing STAs and TAs, and a chain

containing just TAs, is better than a chain containing some WTAs, even if it contains many STAs.

Quality of chain = (weight of chain, max-Iength of the chain)

To define the weight of the chain we have to define the weight of the agents in it:

Vo.eC"""' "• :
**y con,i

Weight(af) = mm(Cat(ak,anf))
J \<.k<j J

Weightier"') = rmviWeighUcCj))

The weight of a chain is a pair (bottleneck, max-Iength), for example, if a chain is formed of

STAs and one TA, the weight of the chain will follow the weight of the weakest link and in our

example it will follow the weight given to a TA.

4.3 Framework

The model suggests that if information is requested about a target agent (Agl), the agent

will ask all the agents in his network to search for the information requested, as a result we should

have different chains referring to the same information. The more chains the more reliable the

information. Our model is represented in Figure 7.

Components of the Chain
model

i r

Chain of Agents
^ r

Context of
Interactions

i r

First Agent in
the Chain

Figure 7 Chain Components

51

Chain of agents has an important and significant effect on the information transmitted; if

the chain is long the information will lose its credibility, and the possibility of error is larger. The

shorter the chain the better it is.

Let us assume that some information was transmitted from a chain formed by three

agents and the same information was obtained from a chain of six agents; the information

obtained from the three member chain will be chosen over the longer one.

Another importance is the fact that the chain carries some weight depending on the type

of agents in it. The stronger the agent the better the chain and the reliability of the information is

better as a result.

Context of the Interaction, it is important for the interaction purpose that the agent asked

to supply information, make sure that these referee are familiar with the context of the interaction,

otherwise, the information supplied by the agent will not gain credibility.

First agent in the chain is the asking agent. Its type will affect the chain, if the asking

agent is UA, which implies that the chain will be composed of agents of his type, and hence the

conveyed information is rejected. If on the other hand the asking agent is an STA or TA their

agent network will contain more of their kind and again will influence the weight of the chain.

Based on the Proposed Chain model, it will be able to classify the information requested

based on some conditions, such as the number of agents involved in the chain, the reliability of

agents, etc... Figure 8 represents the classification of information.

52

Classifications of Information's
Transmitted

According to

1. The Reference to a particular
Authority

2. Number of Agents involved in each
stage of the Interaction

4. Interrupted or uninterrupted
chain

3. Reliability of Agents

5. Nature of the text and Witnesses

Information obtained from a
trustworthy agent or in accordance to

thelC.

Addition by a reliable Witness.

Figure 8 Classification of Information Transmitted

As can be seen in the above figure, the five point accordance will give rise to further

classification of the information transmitted; the ones that were included in this thesis are Sound,

Good, Weak, and Forged. In future work more classes will be proposed, which could be

subclasses of the existing ones or simply new ones. The classification mentioned in the thesis

(STA, TA, WTA and UA) will result in information that is (Sound, Good, Weak or forged)

respectively. Those classes are under the reliability of agents. The other classes to be mentioned

in the future will be generated from 1,2,4, and 5 in figure 8.

A successful interaction is strongly associated with agents. The agents involved in an

interaction are introduced in a descending order of authentication or reliability:

• Strong trustworthy agent (STA).

• Trustworthy agent (TA).

• Weak trustworthy agent (WTA).

• Untrustworthy agent (UA).

53

Agents who have been unanimously described by the first two types contribute to sound

and good information respectively. Agents described by the last type are likely to contribute in

some fabricated or forged information and as a result an unacceptable source. The third type will

contribute to weak information. The model is interested in both the information transmitted and

the agents conveying information.

When for example an information is sound, we are not only talking about the information

in itself, but also talking about the chain of agents that got us the information, a chain that is

formed of only STAs that have dealt with each other and have significant amount of successful

interaction (i.e. Agt took an information from Ag2, with whom he had a high rate of successful

interactions, and in turns Ag2 takes his information from Ags with whom he had interacted

successfully).

Property 1:

If two different chains having the same weight and conveying conflict information, the

information is rejected unless a new chain support one or the other.

Example: Let us consider the two following chains having the same weight:

Chain\\Agx -» Ag2 -> Ag3 —» p

Chain2:Agu -» Ag^ -> Ag3i -> -p

In this case, p and —p are both rejected

Property 2:

When forming a chain, the classification of an agent (Ag,) depends on the precedent agent

(Agj.j). For example, Ag, could be classified as a TA with respect to his precedent agent. However,

he is classified as an STA with respect to 04gV-„). Hence the existence of other chains conveying

54

the same information and using some of the agents formed by the first chain but via a different

route could be found and could carry a better weight.

There exist a lot of scenarios or propositions that the system encounters and solve. The

model is to be used in any type of interactions especially in negotiation where trust plays an

important role.

4.4 Conclusion

In this chapter, a new trust model for communicating agents has been introduced. It is a

model based on a discipline found in the Islamic faith. The discipline is used to distinguish

between good narrated sayings of the prophet and the bad or forged ones. The system uses several

categorizations, one for the narrators themselves, another for the chain of narrators, another for

the information obtained from these narrations. The latter discipline was the inspiration to start a

categorizing system for interacting agents. The protocol distinguishes four categories of agents,

and then with the use of direct interactions and the rate of successful ones, four types of

interactions are introduced. Finally, these types of interactions influenced the types of conveying

information.

55

Chapter 5: Implementation

5.1 Platform

Software agent technology is in high demand, many software companies are directing their

attention on creating software that could be used for the creation of multi-agent environments.

Some of these programs include Jack, Jade, and Jadex. The software we used in implementing the

multi-agent environment is Jadex [41].

The Jadex system is based on the Belief Desire Intention (BDI) model and facilitates easy

intelligent agent construction with sound software engineering foundations. It uses both XML and

Java and can be deployed on different kinds of middleware such as Jade. In order for the creation

of agents to happen, agent architecture should take into account agent internal society, and

artificial intelligence concepts.

The Jadex project [41] accommodates these properties with an open research map that outlines

the areas of interest and the actual work in progress in these fields. The framework consists of an

API (Application Program Interface), an execution model, and a predefined reusable generic

functionality.

The API provides access to the Jadex concepts when programming plans commence, plans are

plain Java classes, classes could include information such as sending message, or waiting for

events. Jadex has included a special feature an intuitive OQL (Object Query Language are

computer languages used to make queries into databases and information systems). In addition to

the plans coded in Java, it provides an XML based Agent Definition File (ADF), which specifies

the initial beliefs, goals, and plans of an agent.

Michael Bratman, a philosophy professor was interested in what is known as the philosophy

of action. This action theory is concerned with conjectures about the processes causing intentional

human bodily movements of complex nature. This theory is the bases behind what is know in the

agent world as BDI.

56

The agent world is the environment by which a set of agents exist and communicate. BDI

stands for Beliefs, Desires, and intention. The Beliefs correspond to the knowledge or information

that the agent has about the world. Desires represent the information that needs to be

accomplished. Intentions are desires chosen for execution. In the execution phase, an agent

searches for a plan that satisfies the intension. In order for the plans to be executed, it has to

satisfy certain pre-conditions. These pre-conditions are checked against beliefs. The plans are

steps that do the actual work of the agent, these steps may alter the beliefs which in turns might

cause a change in the desires and will cause the desires to be unsatisfied; unsatisfied desires

become intentions. Figure 9 represents BDI architecture.

Data input
From sensors ^ Beliefs 4 te

Plans

J

1

Interpreter

i
1

i

r

Desires

* - • Intentions

Effector
commands

1 • •

Figure 9 BDI Architecture

In order to develop an agent application in Jadex, one has two create two types of files;

XML (extensible Markup Language) agent definition files (ADF) (see Appendix 1) and Java

classes for the plan implementations. Plans describes the actions that an agent undertakes, the

programmer needs to define the head and body of the plan. The head contains the conditions in

order for the plan to be executed, and these conditions are to be found in the agent definition files.

The body is the complete set of steps describing the actions to achieve a goal or reaction. The

agent definition file is an XML file that contains the beliefs, goals, and plans of an agent.

57

5.2 Model Architecture

Our model is implemented on the Jadex software and as a result it follows the same agent

architecture as the one presented in Figure 10. The figure shows how the execution on the agent

level takes place in order to produce a message from the plans. Figure 10, will now be described

specifically beliefs, goals, plans, and events.

JADEX Agent

^Message E y e n t s Q u Q u e

Select
Plans

New
Messages

•

Figure 10 Agent Architecture

5.2.1 Beliefbase

A beliefbase is a container that stores believed facts and is an access point for the data in

the agent. It provides more abstraction as compared to the attributes in object-oriented world and

represents a unified view of the knowledge of an agent. An example of an ADF (Agent Definition

File) program is shown in Appendix 1, that program contains information for the beliefs, goals,

and plans of an agent. The beliefbase contains strings that represent an identifier for a specific

belief. Table 1 shows the summary of the proposed model beliefbase [41].

58

Belief Summary:
Tuple

Agentldentifier

AgentCategorization

ChainOfAgent

Gui

Long

content of info
Agent has the set of content information
agent list
the set of all the agents in the community
agent categorization
the set of agent categorization (agent trust table)
Chains
the set of agent chain
Gui
The Graphic interface of the agent.
Time
system current time

5.2.2 Goals

Table 1 Beliefbase Summary

Goals are a central concept in Jadex; they are concrete, momentary desires of an agent.

Unlike traditional BDI systems, this treats goals as events. Agents will more or less directly

engage into suitable actions, until the goal is being reached. When a goal is adopted, it becomes

an option that is added to the agent's desire structure. Some goals may only be valid in specific

contexts determined by the agent's beliefs. When the context of a goal is invalid it will be

suspended until the context is valid again. An ADF program will include the content of an agent

goal (see Appendix 1) [41]. Table 2 shows the content of a goal that represents the model

suggested.

Goals Summary:
achievegoalref

performgoal

performgoal

achievegoal

achievegoal

ams_search_agents
search the agents in AMS
trust table init
Initialize the agent categorization
content info init
Initialize the content information of the agent "
search content
find the content in itself content table, if it is not in itself table, send
message to looking for it; if it is in itself table, send message to all chains
list tell the result.
send message

Table 2 Goals Summary

59

5.2.3 Plans

Plans describe the concrete actions that an agent may carry out to reach its goals. The

plan has a head and a body that the agent developer needs to define. The head contains the

conditions under which the plan may be executed and use is specified in the agent definition file

(ADF) appendix 1. The body of the plan is a procedural recipe describing the actions to take in

order to achieve a goal or react to some event, the body is written in JAVA. Table 3 shows the

content of a plan that represents our model.

Plans Summary:
Standard plan

Standard plan

Standard plan

Standard plan

InitTablePlan
The plan initiates the trust table and content table.
FindContentPlan
The plan finds if the content is in itself content table. If it is not in itself
table, send message to looking for it; if it is in itself table, print the
content, the value and the agentName.
Trigger: messageevenf'request content
DealRequestPlan
This plan will receive the message for asking some content information. If
it is not in itself table, send message to looking for it; it is in itself table,
send message to the first agent in the list tell the result.
Trigger: messageevent "requestagent"
PrintChainPlan
This plan will receive the message from the last agent in the chain and
print the all agent name in the chain, the content value, the chain rate,
which is the lowest rate in all the chain.
Trigger: messageevent "inform result"

Table 3 Plans Summary

5.2.4 Events

An important property of agents is the ability to react in a timely fashion to different

kinds of events; again these events are presented in the ADF program. There exist two types of

events, message events and internal events. Internal events can be used to denote an occurrence

inside an agent, while message events represent a communication between two or more agents.

Events are usually handled by plans [41]. Table 4 gives an event summary for our model

implementation.

60

Events Summary:
Message events

Message events

Message events

Message events

request_content
direction = "receive"
requestagent
direction="send-receive"
fmd_content
direction = "receive"
inform_result
direction = "send-receive"

Table 4 Events Summary

Figure 11 shows how the agent reason when the messages are received.

Agent

Reaction
Deliberation

Hands
Events

Capability

Ptora Plans

Hapatd)
(Sub-) Goals

Beliefs Goals

Messages

»•

Figure 11 Reasoning Architecture

5.3 Agent Environment

For the implementation purposes, an environment with eight agents is used, where each

agent has a network of agents that he considered reliable. Table 5 shows the characteristics of

each agent in the environment; we will describe what the table represents.

61

Ago

Agi

Ag2

Ag3

Ag4

Ags

Ag6

Ag7

Agg

Agent Network
Agi
Ag2
Ags

Ag2

Ag6
Ag7

Agg

Agi
Ag4
Agg

Agi
Ag6
Ag7

Ago
Ag3

Ag2

Agi
Ag7

Ag8

Afe
Agj

Ag7

Ago
Ag3
Ag2

Ago
Ag2

Ag7

Rate
90
85
75

Category
STA
TA
TA

95
85
85
45

STA
TA
TA
UA

90
35
40

STA
UA
UA

80
90
80

TA
STA
TA

90
85
75

STA
TA
TA

90
85
30

STA
TA
UA

90
85
75

STA
TA
TA

90
85
45

STA
TA
UA

90
85
45

STA
TA
UA

Content of information
R

Q,s,

R,S,T

Q,T

T,S

Q

T,S,P

T, S

Q,P

Table 5 Agent Environment

R
a,pj * vi => Cat(a,/3,f) = STA

v2<Ra>pj <Vj =*Cat(a,p,f) = TA

v3 < RafiJ < v2 => Cat(a,P,f) = WTA

R
a,p,f < v3 => Cat(a,/3,f) = UA

62

v,=0.9, v2=0.8 v3=0.5.

The categorization shown in table 5 follows the criteria given above. The content of the table tells

us the following: if we take a look at the first row we distinguish the following information:

Ago

Agent Network
Agi
Ag2
Ag5

Rate
90
85
75

Category
STA
TA
TA

Content of information
R,P,Q,s

This tells us that Ago has three agents in his network, Ag\, Ag2, Ag$, that he categorize them as

STA, TA, and TA respectively according to the rate of successful interactions, and that AgO has

in his beliefbase the information {R, P, Q, S}. The rest of the table can be explained the same

way. In order to explain how the protocol works, let us assume that the staring agent is Ago, and

the information requested is {T}. Let us also assume that the system will stop when the chain of

agents reaches five agents, and that the agent will only ask the agents in his network that he

considers as STA and TA, so that the information be considered authenticated and valid.

The information {T} is not in the content of Ag0, which implies that Ag0 will ask his STA and TA

agents to see if they have it in their content. From now on we will present their communication

with an arrow representation of the flow to get the information requested. Figure 12, shows the

routes that the agents took to get the requested information.

63

Figure 12 Agent Communication Route

From figure 12 we can deduce the following information:

Ten chains were found that could lead us to the information requested {T}:

1. Ago, Ag\, Ag2 this is a strong chain formed only by STA's

64

2. Ago, Ag\, Ag6 this is a good chain this it follows the bottleneck (TA)

3. Ago, Agu Ag7 this is a good chain

4. Ago, Ag2 this is a good chain

5. Ago,Ag2,Agi,Ag6 good chain

6. ^g0, 4̂g2, 4?i, Ag7 good chain

7. Ago,Ags,Agn good chain

8. Ago,Ag5,AguAg2 good chain

9. ^g0, ̂ g5, ^gi, Ag6 good chain

10. Ago, Ag5, Agu Ag7 good chain

These chains convey the information and are considered good chains. The strong chain (1) will be

a good witness chain to back up the information of the other chains, and as a result, the

information is authenticated and none of the chains are rejected.

The same procedure goes for any information that might be requested from the environment.

When we implement this agent environment using Jadex, Jadex picks the starting agent

randomly. In other word when the system is asked for the content {Q}, it will pick the starting

agent randomly, and in one of the trial it picked agent 6 as a starting agent. Figure 12 shows the

graphical representation of the route that Jadex will follow to get us the chains in this query.

65

ASKING Ag« FOR CONTENT {Q}

{*&. Afc,, Af£

I
FAIL

Figure 13 Asking Ag6 for {Q}

The implementation screenshot of figure 13 will be presented in appendix 3, Figure 15.

66

5.4 Algorithm

For the purpose of our implementation, and in order to avoid endless searches and loops,

we decided to limit the chain of agents to four agents, after reaching four agents and the

information is not obtained the searching process will end and the agent will look for another

chain. When the agent needs to ask his trust agent belief, it will only ask the agents that are STA

and TA as their ratings are high.

The following steps show how Jadex reason with the task on hand. How the program is

able to find the chain of agents that supplies the requested information and in the next section an

Agent Definition File (ADF) program of the implementation for the proposed model is shown:

Step 1:

The first step is to create an agent in Jadex. When the agent is asked for some content

(information), the first thing that the agent will attempt is to search for the information his own

belief bases (contentofjnfo), which are a tuple structure, content and value. This belief base

stores all the content the agent believe in and the value of that content. If the information is found

in his belief base, the process reaches termination. If the agent did not find the information we go

to step 2.

Step 2:

When the agent fails to find the information in his belief base, the agent will send a

message to its trust agents, who are found in the belief base named as "agentcategorizatiori" and

the type of trust is Strong Trustworthy (STA) and Trustworthy agents (TA), to require the

information about this content. The message information includes the chain of agents, which is

only the original agent right now, the agent chain length is 1 at this point, the content that it is

looking for, and the value of this content, which is "false" as default because the original agent

67

does not know the value of this content, and the status, which is "open" (open means that the

search is still on) at this time.

Step 3:

When the asked agent receives the message, it will first place itself in the chains last

position and the chain length adds 1. Then it will follow the same procedure as in step 1, by

comparing the content that other agents asked for from its own agent belief base.

If the content is in the agent belief base, the agent will send the final result message back

to the first agent in the chain, which is the original agent. The message will include information

(i.e. the chain of the agents, the chains length, the content, and value). The value of this content,

which is true or false based on the value found in the agent belief base tuple, and the status, which

will be "done" (done means the search is over).

If it is not in its belief base and the length of the chain is less than the maximum length

(four), this agent will forward the message to all the agents in its trust agent beliefset

(agentcategorization) belief base and the type of trust is ST A and TA.

If it is not in its belief base and the length of the chain has arrived maximum length

(four), then the agent will send final result message back to the original agent with status "fail"

(fail means one of two things, either the information is not found or the chain of agents reached

the maximum number).

Step 4:

The original agent gets the result messages and prints the results. In fact, the chain of

agent may be more than one, up to four agents is allowed in our implementation.

Final step:

According to the messages that the original agent receives, the agent decides about the

content and the value. Then agent will write the final result into its "content_of_info" belief base.

68

5.5 Results

From the screenshot (Appendix 2), we depicted three examples of the many results that

the system was able to detect, the following explains the findings:

Jadex was able to find a chain of three agents with a rate of 0.9 and the result is true and

done which signifies that the process is over. The query asked about content < Q > which was

found in the beliefset.

Again the query was for a content Q, that does not belong in the beliefset, so it continue

the search, however since for the purpose of the implementation we set a maximum for the agents

in a chain to be four, the chain found contained five agents and the search failed although the rate

is considered high at 0.84.

The last of these results shows that the system was not able to find the content Q, it failed

but did not stop the process, and a message of "open" means that the system is looking up with

other trust agents, the process will end eventually by either finding the content or reaching the

maximum number of agents.

5.6 Conclusion

The implementation of the model is carried out using a Java based system called Jadex.

The Jadex system is based on the Belief Desire Intention (BDI) model and facilitates easy

intelligent agent construction with sound software engineering foundations. To create agents,

internal agent architecture and its environment should be considered as well as several artificial

intelligence concepts. Since the model is based on direct interaction, when information is

requested, it will be transmitted to the environment and Jadex will randomly pick a starting agent.

69

The starting agent will check in his beliefset whether the information requested is there or not. If

not, the agent will ask his strong trustworthy agent and this will provide the chain of agents

transmitting the information. For the implementation purposes and to limit the complexity, we

have set the maximum chain to four agents, anything greater than the maximum is rejected and

we have to look for other chains. In a normal setting, we will get more than three chains that will

authenticate the requested information.

It is also assumed that the agent would only ask his STAs (Strong Trustworthy Agents)

and TAs (Trustworthy Agents). However, the system allows the agent to ask WTAs (Weak

Trustworthy Agents). For that purpose, some rules should be adopted to make the information

accepted.

70

Chapter 6: Conclusion

6.1 Discussions

In this thesis, a new dialogue game approach and protocol for agent communication and a

comprehensive trust model allowing agents to authenticate information conveyed by peers in the

system have been proposed. The dialogue game protocol has the advantage of being

computationally efficient and theoretically sound and complete. Unlike traditional agent

communication protocols specified as finite state machines, the proposed protocol is flexible and

compatible with agent autonomy.

In terms of trust, some trust models that are mainly used in open multi-agent systems,

such as the FIRE, and Referral models have been introduced. In this chapter, we compare and

present the pros and cons for each of these models and then compare them with our results.

The trust models presented in the second chapter lack the fulfillment to accomplish trust.

They suggest a mathematical way assuming that agents are able to communicate and therefore

they base their findings on assumptions. The referral model does not take into account that agent

might lie. Instead, it assumes that agents will behave with honesty, which is not the case, because

the existence of malicious agents defies the model. The FIRE model introduced the Certified

Witness (References provided by other agents about the target agent's behaviours) similar to

references needed when applying for a job. It could include reports from past interactions. The

only advantage of certified witness is its availability. The setback of this is that the agent can

choose which reference to use. In other words, an agent can ask the other agent to rate him

according to the way he conducted the interactions with him. These ratings could be good while

at the same time they might contain some bad ratings. Due to the fact that agents are autonomous

and rational, they can choose whatever rating they want to serve their future interactions with

other agents.

71

Any kind of interaction, whether it is between humans or software agents depends on two

factors. The first factor is that negotiators need to trust each other, while the second factor is to

find a language of communication between them. In the proposed model, we were able to

combine both factors and to achieve the trust via agent categorization and chain of agents which

resulted in the authentication of the information been transmitted.

The model suggests that any information (j) being transmitted depends on single or

multiple agents, the agents need to be trusted or categorized in a way that the information would

be accepted. Information may seem to be accurate and reasonable, but it needs an authentic chain

with reliable agents to be acceptable. Sound information is the one which has a continuous chain,

made up of trustworthy agents and which is found to be free from irregularities (i.e. in the text) or

defects (i.e. in the chain). Good information is the information that does not contains disparaged

agents in its chain, and which is transmitted through more than one chain. Weak information in

most cases will not be considered unless it serves the interaction purposes and it is supported by

witnesses. Forged information reflects the presence of untrustworthy agents (UAs) in the chain.

This type of agents is to be avoided. Like in human societies, our model gives great importance to

the chain of transmitters (agents).

The second factor, which is the communication language, is accomplished via the use of

formal dialogue games. Once the trust is accomplished between different agents, dialogue games

followed the rules set in the proposed trust model to carry on the negotiation.

The task of separating genuine information from apocryphal (of doubtful authenticity)

information is as necessary as is that of removing weeds from a flower bed; as in the case of

weeds, their identification and removal is not an easy task. Just as weeds cannot be left to flourish

untouched, apocryphal information cannot be left in the system as they threaten the genuine

information itself.

In this thesis, the proposed model will be able to pick up bad or untrustworthy agents

from a pool of agents, much similar to finding weeds in a flower bed. By the use of agent

72

categorization we were able to prove whether the information is acceptable or not. We were also

able to classify the chain of agents (similar to a list of referral agents) as being a strong or weak

chain, which in turn resulted in accepting or rejecting the transmitted information.

From the implementation point of view, a prototype has been implemented as proof of

concepts using agent-based programming. Jack and Jadex have been used to implement the

dialogue games protocol and the trust model.

6.2 Future Work

As future work, we plan to investigate game theory and mechanism design to tackle the

problem of agent lying. Combining trust and game theory is challenging from theoretical and

practical point of view. The issue is how to use game theory notions such as equilibrium in trust

settings. Using algorithmic mechanism design for trust purposes is also challenging particularly

when there is no incentives in the environment. Another plan for future work is applying the

proposed communication and trust model in real applications such as e-business and Web

services. Computational complexity considerations in this case should be addressed.

Furthermore, to improve the agents' negotiation abilities in the proposed agent

communication framework, agents can reason on the relevance of their offers and on the chance

that their arguments can be accepted by the others. The idea is to go beyond the existing

argumentation systems aiming simply to build an argument supporting a conclusion. The

challenge is how to build a strong argument, ideally the stronger one. The idea we are

investigating is to use a relevance-based reasoning in order to allow agents to optimize both their

negotiation stances and the achievement of an agreement not only by justifying their choices, but

by selecting the best choice that could be justified. Using rhetoric techniques combined with

game theoretic and mechanism design strategies and some heuristics based on relevance theory

seems a promising way. Agents can be equipped with "good" strategies enabling them to achieve

their goals using an advanced reasoning on the utilities and the preferences of the other agents.

73

References

[1] R. Falcone, B.S. Firozabadi. The challenge of trust. Knowledge Engineering Review, vol.

14(1): 81-89, (1999).

[2] G. Weiss. Multi-Agent Systems: A Modern Approach to Distributed Artificial Intelligence,

MIT Press, (1999).

[3] M. Dastani, J. Hulstijn, and L.V. der Torre, Negotiation protocols and dialogue games.

Artificial Intelligence Conference, pp. 13-20, (2000).

[4] N.C. Karunatillake, N.R. Jennings, I. Rahwan, T.J. Norman,. Argument-based negotiation in

a social context. AAMAS Conference, pp. 1331-1332, (2005).

[5] Li, C , Giampapa, J.A., Sycara, K.P. Bilateral negotiation decisions with uncertain dynamic

outside options. IEEE Transactions on Systems, Man, and Cybernetics, Part C 36(1): 31-44,

(2006).

[6] I. Rahwan, L.Sonenberg, N.R. Jennings, P. McBurney. STRATUM: A methodology for

designing heuristic agent negotiation strategies. Applied Artificial Intelligence, vol. 21(10): 489-

527, (2007).

[7] M. Luck, P. McBurney, and C. Preist. Agent Technology: Enabling Next Generation

Computing. A Roadmap for Agent Based Computing. AgentLink II, pp. 94, (2003).

[8] D. N. Walton and E. C. W. Krabbe. Commitment in Dialogue: Basic Concepts of

Interpersonal Reasoning. SUNY Press, (1995).

[9] P. McBurney and S. Parsons. Dialogue Games in Multi-Agent Systems. Informal logic.

Special Issue on Applications of Argumentation in Computer Science, vol. 22(3): 257-274,

(2002).

74

[10] P.McBurney and S.Parsons. Games the agents play: a formal framework for dialogues

between autonomous agents. Journal of Logic, language and Information, vol. 11(3): 315-334,

(2002).

[11] S. Parson, M. Wooldridge, and L. Amgoud. On the outcome of formal inter-agent dialogues.

AAMAS Conference, pp. 616-623, (2003).

[12] H. Prakken. Relating protocols for dynamic dispute with logics for defeasible argumentation.

Synthese, pp. 187-219, (2001).

[13] E. Alonso. A formal framework for the representation of negotiation protocols. Inteligencia

Artificial, vol 3: 30-49, (1997).

[14] L. Amgoud, S. Parson, and N. Maudet. Arguments, dialogue, and negotiation. In Proc.

ECAI, pp. 338-342, (2000).

[15] P.McBurney, S.Parsons, and M.Wooldridge. Desiderata for Agent Argumentation Protocols,

AAMAS Conference, pp. 402-409 (2002).

[16] D. Hitchcock. Some principles of rational mutual inquiry. In F. van Eemeren et al., editor,

2nd International Conference on Argumentation, pp. 236-243, (1991).

[17] F. H. van Eemeren and R. Grootendorst. Argumentation, Communication and Fallacies: A

Pragma-Dialectical Perspective, (1992).

[18] M. Wooldridge. Semantic issues in the verification of agent communication languages. J.

Autonomous Agents and Multi-Agent Systems, vol 3(1): 9-31, (2000).

[19] J. Forester. The Deliberative Practitioner: Encouraging Participatory Planning Processes.

MIT Press, (1999).

[20] L. Amgoud, S. Belabbes, and H. Prade, A Formal General Setting for Dialogue Protocols.

AIMSA, pp. 13-23, (2006).

[21] G. Brewka, Dynamic argument systems: A formal model of argumentation processes based

on situation calculus. Journal of Logic and Computation, vol. 11(2): 257-282, (2001).

75

[22] M. Elvang-Goransson, J. Fox, and P. Krause, Dialectic reasoning with inconsistent

information. In 9th Conference on Uncertainty in Artificial Intelligence, pp. 114-121, (1993).

[23] S. Kraus, K.P. Sycara, A. Evenchik, Reaching agreements through argumentation: a logical

model and implementation. In Artificial Intelligence, vol. 104(1-2): 1-69, (1998).

[24] L. Amgoud, L., Maudet, N., and Parsons, S. Modelling dialogues using argumentation. In

Proc. of 4th Int. Conf. on Multi Agent Systems, pp. 31-38, (2000).

[25] J. Bentahar, B. Moulin, and B. Chaib-draa.. Commitment and argument network: a new

formalism for agent communication, Agent Communication Languages, vol. 2922 of LNAI,

pp. 146-165, (2004).

[26] J. Bentahar, B. Moulin, and B. Chaib-draa. Specifying and Implementing a Persuasion

Dialogue Game using Commitment and Argument Network. Argumentation in Multi-Agent

Systems, vol. 3366 of LNAI, pp. 130-148, (2005).

[27] H. Prakken,. Relating protocols for dynamic dispute with logics for defeasible

argumentation. In Synthese (127): 187-219, (2001).

[28] C. Castelfranchi,. Commitments: from individual intentions to groups and organizations.

International Conference on Multi Agent Systems, pp. 41-48, (1995).

[29] N. Fornara, and M. Colombetti. Protocol specification using a commitment based ACL. In

Advances in Agent Communication, LNAI 2922, pp 108-127, (2003).

[30] J. Bentahar, B.Moulin, J-J. Ch. Meyer, and B. Chaib-draa, A logical model for commitment

and argument network for agent communication (extended abstract). In 3rd Int. J. Conf. on

Autonomous Agents and Multi-Agent Systems AAMAS, pp. 792-799 (2004).

[31] U. Endriss, N. Maudet, F. Sadri, and F. Toni, Logicbased agent communication protocols.

In Advances in Agent Communication, LNAI 2922, pp. 91-107, (2003).

76

[32] P.McBumey, and S. Parsons, Games that agents play: A formal framework for dialogues

between autonomous agents. In Journal of Logic, Language, and Information, vol. 11(3): 1-22,

(2002).

[33] Itu-t recommendation x.509. Information Technology. Open systems

interconnection-the directory: Public-key and attribute certificate frameworks, (2000).

[34] C. Daly, IBM Corporation. A Trust Framework for the DoD Network-Centric

Enterprise Services (NCES) Environment, (2004).

[35] T.D. Huynh, N.R. Jennings and R. Nigel, FIRE: An integrated trust and reputation model

for open multi-agent systems, ECAI: pp. 18-22, (2004).

[36] B. Yu and M. P. Singh. Searching social networks, International Joint Conference on

Autonomous Agents and Multi-Agent Systems, pp 65-72 (2003).

[37] Imam Muslim in the Introduction to his Sahih. Sahih Muslim (ed. M.F. "Abdul Baqi,

vol. 1:15,(1955).

[38] www.sunnah.org/history/Scholars/Imam_muslim

[39] 'Jim Al-Hadith." Encyclopaedia Britannica online,(2008).

[40] J. Bentahar, J. Labban. An Argumentation-Driven Model for Autonomous and Secure

Negotiation. GDN Conference, pp. 5-18, (2007).

F41] Jadex User Guide http://vsis-www.informatik.uni-hamburg.de/proiects/iadex/

[42] J. R. Searle. Speech Acts: an Essay in the Philosophy of Language. Cambridge University

Press, (1969).

[43] The Agent Oriented Software Group. Jack 4.1. www.agent-software.com/ (2005).

[44] J. Bentahar, Z. Maamar, D. Benslimane, and Ph. Thiran,. "An argumentation framework for

communities of web services". In IEEE Intelligent Systems, vol. 22(6): 75-83, (2007).

[45] W. Dowling, and J. H. Gallier, "Linear-time Algorithms for Testing the Satisfiability of

Propositional Horn Theories". In Journal of Logic Programming, vol. 1(3): 267-284, (1984).

77

http://www.sunnah.org/history/Scholars/Imam_muslim
http://vsis-www.informatik.uni-hamburg.de/proiects/iadex/
http://www.agent-software.com/

[46] S. Parsons, C. Sierra, N. Jennings, "Agents tat reason and negotiate by arguing". In Journal

of Logic and Computation, vol. 8(3): 261-292, (1998).

78

Appendices

Appendix 1: Agent Definition File (ADF)

<!--
<H3> Simulation for protocols for Agent Categorization and Trust in MAS. </H3>

—>
<agent xmlns="http://jadex.sourceforge.net/jadex"

xmlns:xsi="http://www .w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://jadex.sourceforge.net/jadex

http://jadex.sourceforge.net/jadex-0.96.xsd"
name="Trustl" package="targetagentl ">

<imports>
<import>jadex.adapter.fipa.SFipa</import>
<import>jadex.runtime.*</import>
<import>jadex.runtime.impl.*</import>
<import>java.util.*</import>
<import>jadex.planlib.*</import>
<import>jadex.adapter.fipa.AgentIdentifier</import>
<import>targetagent3. *</import>

<import>j adex.util. *</import>
</imports>

<capabilities>
<capability name="procap" file="jadex.planlib.Protocols"/>
<capability name="dfcap" file="jadex.planlib.DF"/>
<! —capability name="amscap" file="jadex.planlib.AMS"/—>

</capabilities>

<beliefs>
<belief name="time" class="long" updaterate="1000">

<fact>System.currentTimeMillisO</fact>
</belief>

<! —belief name="max_chain_Iength" class=" String">
<fact> "4" </fact>

</belief->

<beliefset name="content_of_info" class="Tuple">
<fact>newTuple("R","true")</fact>
<fact>newTuple("P","true")</fact>

<!~fact>InitTablePlan.getContentTableO</fact~>
</beliefset>

<belief name="agent_list" class="AgentIdentifier[]">
</belief>

19

http://jadex.sourceforge.net/jadex
http://www
http://w3.org/2001/XMLSchema-instance
http://jadex.sourceforge.net/jadex
http://jadex.sourceforge.net/jadex-0.96.xsd

<beliefsetname="agent_categorization" class="AgentCategorization">
<! —fact evaluationmode="dynamic"/~>

</beliefset>

<beliefset name="chains" class="ChainOfAgent">
<!~fact evaluationmode="dynamic"/—>

</beliefset>

<beliefrefname="cnp_filter"class="IFilter">
<concreteref="procap.enp_filter"/>

</beliefref>
</beliefs>

<goals>
<achievegoal name="send_request" recui="trae" recurdelay="10000">
</achievegoal>

Ochievegoalref name="df_register">
<concreteref="dfcap.df_register,7>

</achievegoalref>

<acbievegoalref name="de_deregister">
<concrete ref="dfcap.df_deregister'7>

</achievegoalref>

<achievegoalrefname="df_search">
<concrete ref="dfcap.df_search"/>

</achievegoalref>

<performgoal name="trust_table_init" retry="true" exclude="never">
<contextcondition>

$beliefbase.agent_categorization==null
</contextcondition>

</performgoal>

Ochievegoal name="find_content" recur="trae" recurdelay="10000">
<parameter name="chain" Glass="ChainOfAgent">
</parameter>

<targetcondition>ChainOfAgent.DONE.equals($goal.chain.getStateO)</targetcondition>
<failurecondition>$beliefbase.time

>$goal.chain.getDeadline().getTime()</failurecondition>
</achievegoal>

</goals>

<plans>
<plan name="trust_table_plan">

<body class="InitTablePlan"/>
<trigger>

<goal ref="trust_table_init"/>

80

</trigger>
</plan>

<plan name="find_content_plan">
<body class="FindContentPlan7>
<trigger>

<messageeventref="request_content'7>
</trigger>

</plan>

<plan name?="find_chain_plan">
<body class="FindChaintPlan"/>
<trigger>

<messageevent ref="request_agent"/>
</trigger>

</plan>
</plans>

<events>
<messageevent name="request_content" type="fipa" direction="receive">

<parameter name="performative" class=" String" direction="fixed">
<value>SFipa.REQUEST</value>

</parameter>
<parameter name="content-start" class="String" direction="fixed">

<value>"looking for content"</value>
</parameter>
<parameter name="conversation-id" class="String">

<value>SFipa.createUniqueId($scope.getAgentName())</value>
</parameter>

</messageevent>

<messageevent name="request_agent" type="fipa" direction="send_receive">
<parameter name="performative" class="String">

<value> SFipa.INFORM</value>
</parameter>
<parameter name="conversation-id" class="String">

<value>
SFipa.createUniqueId($scope.getAgentName())</value>

</parameter>
</messageevent>

<!~messageevent name="inform" type="fipa" direction="send_receive">
<parameter name="performative" class="String">

<value> SFipa.INFORM</value>
</parameter>

</messageevent~>
</events>

<expressions>
<expressionname="search_agent_list"/>

81

<expressionname="query_content">
select one $wordpair.get(l)
from Tuple $wordpair in $beliefbase.content_of_info
where $wordpair.get(0).equals($eword)
<parameter name="$eword" class="String"/>

<!~select one $wordpair.get(l) from Tuple $wordpaire in
$beliefbase.content_of_info

where $wordpair.get(0).equals($content)
<parameter name="$content" class="String"/~>

</expression>

</expressions>

<properties>
<property name="trust_service">

SFipa.createAgentDescription(null,SFippa.createServiceDescription(null>"trust_service",
null))

</property>
</properties>

<configurations>
Configuration name="default">

<goals>
<initialgoal ref="df_register">

<parameter ref="description">

<value>SFipa.createAgentDescription(null,SFipa.createServiceDescription("basic","trust
_service","Wei"))

</value>
</parameter>

</initialgoal>

<!~endgoalref="de_deregister"/~>
</goals>
<plans>

<initialplan ref="trust_table_plan"/>
</plans>

</configuration>
</configurations>

</agent>

82

Appendix 2 More Results (Jadex Screenshot)

end to ;flg4eangular looking f o r conten t Q
t h i s content; Q i s not in «y b e l i e f s e t .
I w i l l ask »y t r u s t agent ifigrS
content i s : looking for chain <lg4 1 () U f a l s e open
I w i l l wait f o r they r e p l y .
Waiting f o r wss-age . FindChainPlan
ftgp4 1 Ag3

t h i s con ten t Q soiwone asked.s»e i s not i*t-. WW belief***-.
I w i l l ask My £*>*««% ag**** Hg2
content i s : l o o k i n g f o r eba i«. *for4 ##3' '2v<$ 8.8$ f a l s e open
I w i l l wait f o r they r e p l y .
Ua i t in s fey »e«sage . FiindChainPlan
ftg4 «»S 2 flfr2

t h i s con ten t Q soMeon« asked M i s not in wy be l i e f s e t .
I w i l l a sk «y t r u s t agent flgi
on t e n t i s : looking fo r chain (8^4 <*»3 <*$»& 3 <| 0-86 f a l s e open

I w i l l wait fop they r e p l y .
Waiting for n s s s u s e . FindChainPlan
ft«4 ft»3 «<i2 3 « s i

<* 0.86
t h i s 'content <Q gpneonn ««k*fl' •»*•• i s no t in **w be: l i e f set.*
content is!• lo».kf*i« for- eh*: to «sf4 »&3 ft$Z: *I«I'' 4'' Q ®.86' f a l s e f a i l
I w i l l wait' f o r they r e p l y .
Waiting f o r eesaag*'- FindChaiinFian
»»4 flg3 fig2 ftgl 4 ft®4

9 8.86
th i s , content-, 4 .Sow****'*., .asked' -mm- is- '.hot:" I&
ontent i s - loo k ins f o r chain ft<gf4 fl»3 <k^2"fl.'

send t o :Ag9©«nsruIar the content: ^^ > i s
al«e i s trwe
looking fo r con ten t Q
send t o :ftsr2@angulat* looking f o r conten t <Q>
t h i s content Q ** . not in «y bel ief '##*.
I w i l l avk My t r a s t ag*** Sail
content is-s looking f o r chain ifig2 1 0 1 .8 f a l s e open
I w i l l wait f o r they r e p l y .
Waiting for «essa.ge. PindChaiaFian
»S2 1 ftgl

9 i . B
t h i s con ten t <i sene-one asked «e i s not lit my b e l i e f s e t .
I w i l l ask ny t r u s t agent Ug®
content i s : l o o k i n g for chain a«2 ftgl 2 § 8.9 f a l s e open
Waiting f o r wessage. FindChaiiiFlan
*sr2 Agrt 2 «0®

<i « .?
the content <<d > soaeone asked »e i s in. ray bel ief -se t and the' value
content i s r the resm.lt is 6gr2 iigi fl^S 3 Q S.9 t r u e done
I w i l l wa.it f o r they r e p l y .
I w i l l wait f o r they r e p l y .

:b»li*#£e*;.-
% 4 5 Q 8.84 f a l s e f a i
ray a.grent< G«f0 > bel ief !

Figure 14 Screenshot of the Trust Implementation

83

http://resm.lt
http://wa.it

Appendix 3 Asking Ag6 for {Q} (Jadex Screenshot)

KS2J22j3Kl*!Wt!Ht=ZJ^£l5

fWwJlAMW^ ' lUWVKEW* -

'"ra­

lly ktJUts't . ") ;

J .fttAfnt (}. fetLocaUhna i •) ;

.Isl.

Figure 15 Jadex Screenshot

84

Glossary

A

ACT: A plan content language structured to be shared between independent plan generation and

plan execution subsystems.

Actors (agent): Autonomous, interacting computing elements, which encapsulate a behaviour

(data and procedures) and a process, and communicate by message-passing.

Agent: An autonomous, reactive, pro-active computer system, typically with a central locus of

control, that is at least able to communicate with other agents via some kind of communication

language.

Agent Architecture: A particular methodology for building agents. More generally, the term is

used to denote a particular arrangement of data structures, algorithms, and control flows, which

an agent uses in order to decide what to do. Agent architectures can be characterized by the nature

of their decision making.

Agent Oriented Programming: An approach to building agents, which proposes programming

them in terms of mentalist notions such as belief, desire, and intention.

Autonomy: Generally, autonomy means "under self-control."

B

BDI Architecture: A type of agent architecture containing explicit representations of beliefs,

desires, and intentions. Beliefs are the information an agent has about its environment, which may

be false; desires are those things that the agent would like to see achieved, and intentions are

those things the agent is either committed to doing (intending to) or committed to bringing about

(intending that).

85

c

Cognitive Concepts: Concepts applied in DAI that are inspired from folk psychology. These

include the three BDI concepts, but also others such as know-how and commitments.

Coherence: The property or state of acting as a unit. A measure of how well a system behaves as

a unit. Evaluation criteria for coherence are, e.g., efficiency, solution quality, and graceful

degradation in the presence of failure.

Collaboration: Generally, "working together." Collaboration often refers to forms of high-level

cooperation that require (the development of) a mutual understanding and a shared view of the

task being solved by several interacting entities.

Commitments: Pledges by an agent to undertake a specified course of action.

Communication: How information is exchanged among agents but discount incidental

interactions through the environment.

Content Language: The language in which the contents of message structures are encoded.

Coordination: Refers to the state of a community of agents in which actions of some agents fit in

well with each other, as well as to the process of achieving this state.

D

Dialogue: Same as conversation.

Distributed Artificial Intelligence (DAI): Is the study and construction of systems composed of

interacting, intelligent entities.

F

FD?A: Foundation for Intelligent Physical Agents; a consortium that is developing standards for

agents.

86

G

Goals: A mutually consistent set of desires.

Group: A multi-agent system, especially one that is viewed (or acts or is intended to act) as a

single agent.

I

Intentions: Goals that the agent is currently working on, i.e., those leading to the agent's actions.

Interaction: Generally, is everything that occurs "between" agents, (agent-agent interaction), and

(agent-environment interaction).

K

KQML: Knowledge Query and Manipulation Language.

L

Learning (Distributed): Broadly speaking, learning refers to self-improvement of future behavior

based on past experience. "Distributed" means that several entities (agents) are involved in the

same learning process, where each entity contributes to the solution of the overall learning task

according to its individual abilities or preferences.

Locution: The surface form of a speech act; that which is actually transmitted.

M

Modal Logic: The logic of necessity and possibility. This forms the basis of a number of the

logics of BDI concepts.

Multi-Agent System: A system composed of multiple, interacting (see) agents. See also

interaction.

N

Negotiation: Interaction among agents based on communication for the purpose of coming to an

agreement. Negotiation has much to do with distributed conflict resolution and decision making.

87

o
Ontology: Generally, A specification of the objects, concepts, classes, functions and relationships
in an area of interest.

P

P.B.U.H: Praise Be Upon Him

Predicate Logic: Propositional logic enhanced with variables and quantifiers to make statements

about all or some objects in a given domain of discourse.

Protocol: A structured exchange of messages leading to some defined outcome. The rules of the

interaction that describe what actions each agent can take at each time.

R

Rational: To behave in a way that is suitable or even optimal for goal attainment.

Reactive: (Of agent behaviour) Capable of maintaining an ongoing interaction with the

environment, and responding in a timely fashion to changes that occur in it.

S

Social Ability: The ability to interact with other agents, typically by exchanging information via

some language.

Software Agent: An agent that is implemented in software. See also interface agent. [GW]

Speech Act: A communication viewed as a combination of its locution.

Speech Act Theory: The view of natural language as actions. The basic claim is that utterances

are an action that result in (or are intended by the speaker to result in) changes in the internal state

a hearer.

T

Temporal Logic: Propositional logic augmented with operators to make claims about the

truth of different conditions at different times. [2]

88

