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ABSTRACT

A Recursive Computation of the 2-D DCT: Algorithm, Architectures
and FPGA Implementation

Shaofeng An

The discrete cosine transform (DCT) is widely used in the area of signal and image
processing. The 2-D DCT has been used in image compression and become part of image
and video standards. The 2-D DCT computation involves a large amount of data. Many
applications require the systems to be in small volume and operate in real-time.
Designing such a system for 2-D DCT is a challenging task.

In this thesis, a new recursive algorithm and two types of circuit architectures are
presented for the computation of the 2-D DCT. The new algorithm permits to compute
the 2-D DCT by a simple procedure of the 1-D recursive calculations involving only
cosine coefficients. A recursive kernel for the proposed algorithm contains a small
number of operations. Also, it requires a smaller number of pre-computed data compared
to many of existing algorithms in the same category. The kernel can be easily
implemented in a simple circuit block with a short critical delay path. In order to evaluate
the performance improvement resulting from the new algorithm, an architecture for the
2-D DCT designed by direct mapping from the computation structure of the proposed

algorithm has been implemented on an FPGA board. The results show that the reduction
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of the hardware consumption can easily reach 25% and the clock frequency can increase
17% compared to a system implementing a recently reported 2-D DCT recursive
algorithm. For a further reduction of the hardware, another architecture has been
proposed for the same 2-D DCT computation. Using one recursive computation block to
perform different functions in each clock cycle, this architecture needs only
approximately one half of the hardware that is required in the first architecture, which has

been confirmed by an FPGA implementation.
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Chapter 1

Introduction

Image and video processing is gaining more importance in our daily lives because of
wide applications of such signals in the communication and security systems. The signal
of an image contains a large number of data. Image signal transmission, processing and
storage require a wide brand and large memory space. Thus, image compression is often
necessary to apply in the procedure in order to facilitate image transmission.

The objective of an image compression is to reduce the redundancy of image data.
There are two kinds of image compression, lossy and lossless ones. The lossless
compression is usually applied to images requiring high quality preservation, while a
lossy compression is widely used for natural images where minor loss of fidelity is
acceptable to achieve a substantial compression rate.

One of the most commonly-used lossy compressions is by means of the transform
coding. There are several transforms, such as the discrete Fourier transform (DFT), the
discrete cosine transform (DCT), the discrete Hadamard transform (DHT), and the
Karhunen-Loeve (KLT), used in the coding process. The DCT may be the most

commonly used transform for this purpose.



In this chapter, the important role of the DCT in the image compression will be
described. Then the motivation and objective of the work of this thesis will be presented.

The scope of the work and the organization of the thesis will also be presented.

1.1 DCT in Image Compression

As mentioned previously, transform coding is one of the most commonly-used
methods of lossy compression. Among the varieties of transforms, the discrete cosine
transform employs cosine function instead of complex exponential functions employed in
DFT. Therefore, the DCT has a computational complexity lower than that of the DFT by
almost a factor of 2. Besides, the energy of the signal information in most cases tends to
be concentrated on its low-frequency components, which matches the characteristic of
“low-pass” of the DCT. Hence, the 2-D DCT-based image coding has been adopted as a
standard in many applications, such as JPEG, MPEG-2, MPEG-4, and CCITT
Recommendation H. 26x [1].

The procedure of the 2-D DCT-based image compression is shown in Fig. 1.1. In
this procedure, the 2-D DCT provides the information of the signal in the spatial
frequency domain, and thus by carrying out the quantization in this domain, the amount
of information can be reduced, hence achieving a data compression. The quality of the
2-D DCT computation is very important in this compression of image signals. The 2-D
DCT deals with a large amount of uncompressed image data and its operation is

computationally intensive. Moreover, in many procedures where the image compression
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is used a speed for real-time processing is needed. With the requirements of the speed and
the large flow of data, it is very challenging to develop a system that is able to handle the
computation task at a fast pace. Moreover, if there is a restriction of space to allocate the

circuit of the 2-D DCT, the challenge will be even more critical.

A 4

> after
Encoder compression

Image signal
before DCT Quantizer

compression

| Entropy Image signal ‘

Fig. 1.1 Procedure of a DCT image compression [2].

1.2 Motivation and Objective of the Work

As mentioned in Section 1.1, the discrete cosine transform (DCT) is very important
and widely used in the application of image compression. Although the computation of
the 2-D DCT is well defined, its calculation procedure can be varied according to the way
of decomposing the 2-D computations into 1-D ones. Thus, the development of a 2-D
DCT algorithm becomes an important theme in this particular area of signal processing.
Also, a 2-D DCT algorithm can be implemented in different architectures and results in
different performance, which makes the rescarch on the 2-D DCT algorithms and
architectures significant.

The objectives of the work presented in this thesis have two aspects. The first is to
develop an efficient algorithm for the 2-D DCT computation. The algorithm needs to be

designed to have a small number of recursive cycles and simple calculations in each cycle.



In particular, each cycle should involve a reduced number of multiplications and
additions. The other objective is to design architectures for the recursive algorithm. A
circuit architecture needs to be built to implement the new algorithm to assess the
performance improvement resulting from it. Also, aiming at improving the performance
at the architecture level, new circuit structures are to be developed for recursive algorithm.
These structures will be implemented on FPGA boards to validate the results of the

research.

1.3 Scope and Organization of the Work

For this thesis work, the research on the development of a recursive 2-D DCT
algorithm will be based on non-row-column decomposition method, in order to have a
small number of recursive cycles. The design of the architectures has its emphasis on
reducing the circuit complexity for the 2-D DCT computation.

The thesis is organized as follows. In Chapter 2, the background for developing the
2-D DCT algorithm is presented. Also, some of the existing algorithms and architectures
relevant to this work are also presented. Chapter 3 is dedicated to the description of the
proposed recursive algorithm for the 2-D DCT. In Chapter 4, the designs of the
architectures implementing the proposed algorithm are presented. The FPGA
implementations of these architectures and the results are also described in this chapter.
Chapter 5 summarizes the work of this thesis and highlights its technical contributions to

the field.



Chapter 2

Background

In the imaging and video signals, a high degree of correlation exists between the
intensity values of adjacent pixels of an image. By removing such a large number of
redundant information, image compression can be achieved in the process. The discrete
cosine transform (DCT) is widely used in the applications for the compression of digital
image and video signals. Through the performance of the DCT operation, most of the
energy is found to be concentrated in the low frequency region. Thus, it is possible to
make the compression for the image signal by neglecting the high frequency components
of the DCT. At the receiving end, the image can be reconstructed by an inverse DCT
operation.

Because of the importance of the two dimensional (2-D) DCT/IDCT in digital image
processing, especially in video compression, different algorithms and architectures have
been presented for the calculation and implementation. Usually, there are two categories
for the 2-D DCT computation. The first category uses the techniques of matrix analysis
and decomposition [3] [4]. The second category employs the method of polynomials and

number theory [5] [6]. In these two categories, there are two groups to compute the 2-D



DCT. In the first group of algorithms, the row-column decomposition uses 1-D DCT
computation to compute the 2-D DCT computation [3] [6]. In the second group, the 2-D
DCT computation is carried out directly on the 2-D data [4] [5].

In this chapter, the background of the discrete cosine transform is presented. In the
first section, the definitions of the 1-D DCT/IDCT and the 2-D DCT/IDCT and the
row-column decomposition are introduced. Then in the second section the recursive
algorithms of the 2-D DCT computation is given. Especially, the recursive algorithm for
1-D DCT and the development of the recursive algorithm for 2-D DCT are introduced in

this section.

2.1 Discrete Cosine Transform

The computation of the discrete cosine transform is one of the processes of
transforming a block of data from the spatial domain to the frequency domain [7]. The
inverse process of restoring the spatial domain to the frequency domain is carried out

through the inverse discrete cosine transform.

2.1.1 One dimension discrete cosine transform (1-D DCT)

The one-dimensional (1-D) DCT of a sequence of input data with N elements is

defined as

2 2n+1
X(k) = Kf-.;u(k)cos( ;’; kﬂ}x(n) 2.1



where k=0, 1, ..., N-1, and «(0) = (1/2)", and u(k) = 1 for k * 0.

The 1-D inverse DCT of a sequence of N points can be expressed as

2 & 2k +1

x(n) = F-Z(;u(n)cos( SN mr}\’(k) (2.2)
wheren=0,1, ..., N-1.

As described before, 1-D DCT/IDCT is widely used in digital signal processing,
especially for the imaging and video processing. In many cases, 1-D DCT/IDCT
computation is the approach for computing the 2-D DCT/IDCT. As shown in (2.1) and
(2.2), both 1-D DCT and 1-D IDCT require N* multiplications and N(N-1) additions for
the straightforward computation. Because there is a large number of a data computation,

various approaches for the 1-D DCT/IDCT computation have been developed.
2.1.2 Two dimension discrete cosine transform (2-D DCT)

For a set of 2-D data x (n;, n)) with0 s n; S N - land0 S n, S N-1,the 2-D

DCT is defined as
) N-1 N-1
X (ki , k) = —N—u(kl)”(kz)z z x(n ,n,)
n=0mn,=0
2.3)
X cOs 27?(21’11 + l)k1 cos 27[(2712 + l)k2
4 N 4 N

where k;, k2 =0, 1,..., N-1, u(k) = 25D for k = 0, and u(k) = I fork # 0.

Then, 2-D inverse DCT can be expressed as



N -1

x(ny,n,) = —;—u(nl)u(nz)z_ N X (ky k)

ky =0 ky =0

(2.4)

(27 2k + Dy 27 (2k, + D,
4N 4N

X CO
where n,m,=0,1,2, ..., N-1.

As mentioned before, the 2-D DCT/IDCT computation is very important in the
signal and video compression. The 2-D DCT/IDCT computation needs a large number of
data computations and it requires N4 multiplications. Besides, the two dimension input
data is also a difficulty for the computation. The development of efficient algorithms for

computing the 2-D DCT is of great interest.

2.1.3 Row-column decomposition of the 2-D DCT

Because of the large number of 2-D data should be calculated in the 2-D DCT
computation, the decomposition is very necessary for the computation and
implementation of the 2-D DCT. A straightforward implementation of (2.3) requires N*
multiplications for the computation of the 2-D DCT. There are many different methods to
compute the two dimension DCT. These method can be divided into two categories, fast
algorithms which compute the 2-D DCT by means of the given 2-D data, and the
algorithms which use row-column decomposition approach in which the 2-D DCT is
implemented by using two one-dimensional DCT and a matrix transpose operation.

The row-column decomposition, which has the advantage of regularity for VLSI

implementation, is the most popular and effective approach of 2-D DCT computation in



image and video coding applications. The 2-D DCT is separated into a matrix form of
two 1-D DCTs (the row-column decomposition) as follows.

X=Ax A" (2.5)
where x =[x (1, /), ,j=0,1, ..., N-1, X=[X(,)),i,j=0,1,...,N-1]and 4 are N x N
arrays, representing the spatial input data, the frequency domain output data, and the
matrix with the cosine basis functions respectively. By using the virtue of the

orthogonality of 4, 4-A” = Iy, where I is an NxN identity matrix. For example, for N = 8,

we have
¢ ¢ a a a a a al
gy A ¢ - A -~y B
r ¢ -6 - -r -6 6 T
e y - - -A A f € -y 2.6)
a - a a a -a -0 o
A - € y -y - B -A
5§ - r -6 -6 I - §
e A 7 B B -y A -]
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_ .
COS—
4
COSE
A 16
B cos~
T 8
\/7 3 2.7)
7 |=.—1cos=—
A N 16
cos—s—zr—
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L€ ] 3z
cos —
8
T
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Using the row-column decomposition, X can be computed using two 1-D DCT

transforms given by
Y = Ax" (2.8a)
X =4Y" (2.8b)

where Y is an intermediate product matrix. The above decomposition to a matrix product
results in a reduction in computational complexity to 2N; multiplications and has been
used in the implementations of most the image compression algorithm.

The standard block diagram of computing the 2-D DCT using row-column

decomposition is shown in Fig. 2.1.

T . T
X 1-D DCT Y | Matrix Y* | 1-DDCT X
A Transpose A

A

Fig. 2.1 2-D DCT computation using row-column decomposition.

By using this row-column decomposition, the 2-D DCT can be computed by a simple and
regular structure. Because the 2-D DCT is decomposed into two 1-D DCTs, many 1-D
DCT computation algorithms can be used for this computation, such as the recursive

algorithm.

2.2 Recursive Algorithm for the DCT Computation

A recursive algorithm is a mathematic method to compute the output of a discrete



system by means of the returned value and the smaller index inputs. If a system is defined
recursively, a recursive algorithm to compute its members or values reflects the definition.
In this way, the computation for the system can be much simpler.

Considering the general form of an input-output relationship is
n M
y(n) == a(k)y(n—k)+)_b(k)x(n-k) (2.9)
k=1 k=0

Let us consider an example of (2.9) as y(n) = y(n - 1) — 0.25y(n - 2) + x(n), where the
input sequence x(n) = d(n), and the two initial conditions are y(-1) = 1.0, and y(-2) = 0.4.
Then y(n) can be computed in a recursive manner as follows: y(0) = y(-1) — 0.25y(-2)
+ x(0). Since x(n) =d(n), x(0) = 1 can be substituted and get y(0) = 1.0 — 0.25(0.4) + 1 =1.9.
Next, y(1) = y(0) — 0.25y(-1) + x(1). It is known that y(0) = 1.9 from the step shown above,
and also that x(1) = 0. So it can be obtained that y(1) = 1.9 — 0.25(1.0) +0 = 1.65. Next, for
n = 2, by substituting the known values from above, we can get y(2) = 1.65 - 0.25(1.9) + 0
= 1.175. We can continue to calculate the values of he output y(n) forn= 3,4, 5,6, ...

The calculation method mentioned above is known as the recursive algorithm. The
system with the function of (2.9) is defined recursively. The output of the system can be
calculated by the returned values and the smaller index inputs. In this way, the
computation procedure can be simple and for many cases it can provide a natural way to

carry out the computation system.

11



2.2.1 Recursive algorithm for the 1-D DCT

Because of the importance of the DCT computation in the digital processing,
particularly in video compression, there are different methods to compute the 1-D DCT.
In many of them, 1-D DCT computation can be obtained by direct factorization of the
DCT coefficient matrices. Normally, the factorization schemes fall into
decimation-in-time (DIT) or the decimation-in-frequency (DIF) [7]. When the
components of this factorization are sparse, the decomposition represents a fast algorithm.
However, the complicated index mapping of global interconnection from the input and to
the output data makes the hardware implementation difficult.

In addition to the algorithms mentioned above, there exist many other approaches to
compute the 1-D DCT. Using the recursive algorithms is one of them to reach good goal
of computation. Goertzel initially employs the periodicity of the finite trigonometric
sequence to reduce the computation of the discrete Fourier transform [8]. His recursive
structure not only simplifies the computation but also reduces the realization complexity.
A great amount of 1-D DCT algorithms featuring highly regular calculations can be
implemented in a small number of circuit blocks for it to be performed in a recursive
manner [9]-[13], which may help to achieve a low hardware cost. Usually, these recursive
algorithms can be grouped into two types: Chebyshev Polynomial recurrence and
Clenshaw’s recurrence formula.

One recursive algorithm for the DCT computation on the Chebyshev polynomial

12



factorization is presented in [12]. The following trigonometric identity can be used for the
Chebyshev polynomial.
cos(;/a):ZCosacos[(y—l)a]—cos[(y—2)a] (2.10)
If the scale factors of (2/N)"2u(k) is not considered during the computation, the

equation (2.1) can be reformulated as

N-1
X(k)=~Zcos(2n+1k7r}x(n) (2.11)
n=0 2N
Assuming P(k,n) = COSM = cosw , a=kn/N and
N-1 —_ N-1
A(km)y= Y x(n) cos@—ﬁ)—]—?— =Y x(n)P(k,n) (2.12)
n=0 n=0

the 1-D DCT can be computed by using the following Chebyshev polynomial recurrence:

P(k, -1) = P(k, 0) = cos(a/2) and

Pk, n+1) = 2cos(a)P(k, n) — P(k, n-1) (2.13)
A(k,-1)=0 and
A(k, n) = A(k, n-1) + x(n)P(k, n) (2.14)

where X(k) = A(k, N-1), k = 0, 1, ..., N-1. In this way, X(k) can be calculated in N
recursive steps from the input sequence x(r) by using (2.13) and (2.14). For an N-point
input of x(»), this recursive algorithm requires 2N(N-1) multiplications and additions.

Besides, the Clenshaw’s recurrence is another type of the recursive algorithm to

compute the 1-D DCT [13]. It needs a linear combination of the form



f(x)= }_:C(n)F (x,n) 2.15)

in which F(x, n) obeys a recurrence relation
F(x,n+1)=a(x,n)F(x,n)+ p(x,n)F(x,n-1) (2.16)
By using the functions a(x, ) and B(x, n), the sum f{x) can be computed as
f(xX)=c(N)F(x,N)- B(x,n)F(x,N-Dy(N-1)-F(x,N)w (N -2) (2.17)
where w(n) can be obtained by the following relationship:

w(-2)=y(-1)=0 and
w(n) =[w(n-2)-a@x,nwn-1)—c@)/ flx,n+1),n=1,2, ..., N-1 (2.18)
If we define

A =km/N and

F(A,,n) =cos|(n+1/2)kn/N]=cos|[(n+1/2)4,] (2.19)

the 1-D DCT can be expressed as

SR = X () = 3 K Gy, k=1,2,.., N-1 (2.20)

=0
Because of the identity
cos(n+3/2)4, )] = 2cos(4, ) cos[(n +1/2)4, )] - cos|(n - 1/2)4, )] 2.21)
the calculation of F(4,,#) can be made recursively as following:
F(A,,n+1)=2cos(A4,)F(A,,n)—F(A,,n—1) (2.22)
Comparing the equations (2.22) and (2.16), we can obtain that a(x, n) = 2cos(4x) and

B(x, n) = -1. Substitute (2.17) into (2.20), we can find



X (k) = x(N =1)F (A ,n~1)= F(A,n = Dp (N —2) ~ F(4,, N Dy (N =3)
= (=D)*[x(n-1)cos(4, /2)+cos(34, / 2)y (N —2)—cos(4, /2y (N-3)]  (2.23)
= (=1)* cos(4, /2) [y (N =)=y (N -2)]

where y(n) can be obtained from (2.18) as
w(-2)=yp(-1)=0 and
w(n)=2cos(A ) )y(n-1)-ywyn-2)+x(n),n=1,2, ..., N-1 (2.24)
In this way, w(n) can be generated from the input x(r) recursively. At the N step,
X(k) can be generated by the equation (2.22) for k£ = 1, 2, ..., N-1. For an N-point
sequence x(n), this recursive algorithm requires about N* multiplications and additions.
The recursive algorithm makes the 1-D DCT computation easy to be implemented
with relatively simple processing elements and simple interconnections among the
processing elements. Identical or similar processing elements in a hardware
implementation can greatly reduce the cost of the design and layout process and thus the

recursive algorithm for the 1-D computation is well suited for VLSI implementation.

2.2.2 Recursive Algorithm and implementation for the 2-D DCT

It is very difficult to compute the 2-D DCT due to the large number of the two
dimension data in the computation process. For an NXN point input sequence, the 2-D
DCT requires O(N*) multiplications and corresponding additions. Because of this, the
decomposition for the 2-D data is very necessary and various fast computational
algorithms and corresponding architectures have been proposed so as to improve the

efficiency of the 2-D DCT computation. As mentioned before, the algorithms of the 2-D
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DCT computation can be classified into two groups: one is called row-column
decomposition [14]-[16] which is described in Section 2.1.3, another is carried out
directly on the 2-D data [17] - [20].

The same as the two groups of the methods mentioned before, the recursive
algorithm can also be applied for the 2-D DCT computation in two categories. In the first
category, through the row-column decomposition, the 2-D DCT computation can be
decomposed into two 1-D DCTs by means of row-column-wise or column-row-wise
form. That is, it begins by processing the row (or column) elements of the input data
block as 1-D DCT and stores the results in an intermediate memory; it then computes the
transposed column (or row) elements of the intermediate results to further yield the 2-D
DCT results. Because the row-column decomposition can reduce the 2-D DCT
computation into two separate 1-D DCTs, the recursive algorithms for the 1-D DCT
mentioned in Section 2.2.1 can be applied to these 1-D DCTs [9]-[11]. In this way, the
2-D DCT computation can be calculated by the combination of row-column
decomposition and recursive algorithm.

The block diagram of the recursive algorithm for the row-column approach for the
2-D DCT is shown in Fig. 2.2. The row-column decomposition can be implemented in a

simple and regular structure.
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Data [Recursive filter for 1- Transposition Recursive filter for 1-| Data
—_— D N-point > operation » D N-point column [——
row DCT (memory) DCT

Fig. 2.2 Block diagram of the recursive algorithm for the row-column approach for
the 2-D DCT.

However, in the applications of the row-column decomposition for the 2-D DCT,
because the temporal results of the 1-D DCTs are required to stored during the
computation, large number of transposition memory is required to store those temporal
results. Meanwhile, a great number of recursive cycles are required to complete the 2-D
transformation by using 1-D recursive structures. To make a structure of low cost and
small circuit volume and smaller number of recursive number, many approaches are
proposed, which uses direct 2-D data and recursive algorithm for the 2-D DCT. In these
cases, the 2-D DCT computation is reformulated, by means of, e.g., conversions of
variables, into terms of 1-D DCTs and/or DSTs. It is important that the reformulated
computation keeps its regularity and modularity to facilitate the implementation.

In this category, through the division of the index variables, the 2-D DCT can be
grouped into several cases. Then in each case, the 2-D variables can be combined and

transformed into some 1-D variables. In this way, the 2-D DCT in each case can be
converted into several 1-D DCTs/DSTs. Then, these 1-D DCTs/DSTs can be calculated

by the recursive algorithm. The block diagram of the recursive algorithm for the direct



2-D data for 2-D DCT is shown as in Fig. 2.3.

Case 1: .
. Recursive
1-D variables computation »
Data Index for 2-D DCT Combination| Data

——» variable of the two p——>

division Case 2: i -
] Recursive
1-D variables computation
for 2-D DCT P

Fig. 2.3 Block diagram of the recursive algorithm for the 2-D data for 2-D DCT.

v

1

There are many different methods to implement the 2-D DCT computation. In the
two categories of the approaches for the 2-D DCT mentioned above, most of them are
implemented through directly mapping the computation algorithms. Two examples will
be introduced in these two categories as follows.

The architecture reported in [12] presented a 2-D systolic array of NxN basic cells
for computing the 2-D DCT, based on the use of the Chebyshev polynomial to generate
the transform kernel values recursively as mentioned in Section 2.2.2. The 1-D DCT
array is constructed by using the Chebyshev polynomial. The 2-D DCT array is based on
the row-column decomposition. The architecture is shown in Fig. 2.4. It can give a simple
and regular communication, and control structures. Thus it is well suited to VLSI
implementation. However the architecture in [12] makes an increase of time complexity

and chip area.
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Fig. 2.4 Implementation architecture of the 2-D systolic array for the 2-D DCT in
[12].

In the second category of the 2-D DCT computation, the latest computation structure
using the recursive algorithm is presented in [21]. In the recursive algorithm of [21], by

means of the prime-and-no-prime nature of the index variables, the 2-D DCT can be



| grouped into two cases. In these two cases, the terms with 2-D index variables can be
reformulated and simplified into terms with 1-D variables. In another words, it uses the
theory of pre-adding the data with the same transform base and characterizing the
periodicity of transform bases by means of the index separation method in [21]. In this
way, the 2-D DCT computation can be complete by terms of 1-D DCTs and 1-D DSTs,
and these 1-D DCTs/DSTs can be calculated by the recursive kernel. The implementation

structure is presented in Fig. 2.5.

X (m))

” . Condensed 1-D
o x) DCT/DST IR Filter| .y

cloc C 4,_[: e
addressy If 4 oMp b
- - k,
%(0,0) | bl LR i S
x0. D) Mod-4 4| Mod-4 4
- Condensed Index : Coumercz Counter 1<<~:clock CV“ v
Generator [ L—-—-—" 7 [ ; ]x}—»'\ (ky, k)
] ! Condensed Counter |
¥(3, 3) ' ; o TT
x(3, 3) 4—"’ x () x (1)
Data Buffer %0 .| Condensed 1-D
C K@) DCT/DST 1R Filter|
Y] ' x(3)
Recursive Input
Buffer

Fig. 2.5 Implementation structure of the recursive 4x4 2-D DCT in [21].

As shown in Fig. 2.5, because of the pre-addition procedure of the 2-D input signals,
the number of the recursive cycle can be reduced greatly and the circuit structure is very
simple and modular. Meanwhile, because there is no the temporal results required to

stored, no large number of transposition memories are needed in the architecture of [21].
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Meanwhile, because of the pre-addition procedure, the number of recursive cycle can be

reduced greatly.

2.3 Summary

In this chapter, some background material on the mathematical description of the
DCT algorithms, especially the recursive algorithm, has been proposed. In Section 2.1,
the definition of the discrete cosine transform and the representation of its inverse have
been presented. The row-column decomposition approach for the 2-D DCT computation
has been given. Section 2.2 describes the recursive algorithm for the DCT computation.
In this section, the definition of the recursive algorithm has been presented firstly. Then
the recursive algorithm for the 1-D DCT computation has been described and two types
of the recursive algorithms, which are Chebyshev Polynomial recurrence and Clenshaw’s
recurrence formula, have been given. Finally this section also presents the approaches of
computing the 2-D DCT by using the recursive algorithm. The two types of the
approaches of the recursive algorithm have been briefly described.

As mentioned in Section 2.2.3, the recursive algorithms can be used for computing
the 2-D DCT by means of the row-column decomposition or direct 2-D data
decomposition. The row-column decomposition requires a large number of transposition
memories to store the temporal results and the number of recursive cycle is great in this
row-column approach. In the direct 2-D data category, the recursive algorithm has been

proposed in [21] which groups the 2-D data into two cases by mean of
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prime-and-no-prime nature of the index variables. By means of the pre-addition
procedure of the data with the same transform base, the 2-D DCT can be converted into
two 1-D DCTs and two 1-D DSTs. In this way, the number of recursive kernel can be
reduced. However, all these implementations are direct mapping of the existing
algorithms of the 2-D DCT. In the next chapter, these problems will be solved and an
implementation which is not direct mapping will be proposed as a part of the

investigation undertaken in this thesis.
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Chapter 3

Proposed Recursive Algorithm for the 2-D
DCT Computation

In the preceding chapter, the development of the algorithms for the 2-D DCT
computation relevant to the thesis work has been summarized. Among the approaches
used in these algorithms, the recursive one can result in a small number of circuit blocks
in the implementation of the 2-D DCT calculation to achieve low hardware consumption.
Compared to a parallel processing, a recursive one may require more time, because the
computation task is completed by means of cycle-by-cycle calculations. However, the
penalty of such calculation cycles on the processing speed may not be sever if 1) the
number of calculation cycles is minimized, and ii) an optimized recursive kernel is
designed to minimize the time required for each cycle. A recursive algorithm can be
based on a row-column decomposition [22]-[25]. In such an algorithm, the 2-D DCT
computation is decomposed strait-forwardly to those of rows and columns. It can be
performed in a simple repetitive procedure. However, some recursive algorithms are
designed with a decomposition method that is less strait-forward than the row-column

ones, aiming at reducing the number of recursive cycles to meet the requirement of fast
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processing. The number of recursive cycles in the algorithm reported in [21] may be the
smallest among those in literature.

In this chapter, a recursive algorithm for the 2-D DCT computation is proposed
based on the algorithm in [21]. The proposed algorithm has a simpler computation
procedure, leading to a reduced number of multiplication and addition operations. Thus,
the complexity of the recursive kernel is expected to be simpler for an easy
implementation.

In Section 3.1, the background of the proposed algorithm is presented. Section 3.2,
the recursive computation of the algorithm is described in details and the new recursive

kernel is presented. Section 3.3 summarizes the work of the new algorithm.

3.1 Background of the Proposed Algorithm

Our algorithm is developed based on the condensed 1-D transform method reported
in [21]. With this method, the 2-D DCT computation is decomposed into 1-D DCTs and
1-D DSTs. The purpose of the decomposition, in general, is to separate a term of
calculations with 2-D index variables into two or more terms, each of which has only an
1-D index variable, and thus the 2-D computation can be performed as 1-D ones.
Normally, a non-row-column decomposition method is to group the terms with 2-D index
variables according to some characters other than the natural row or column
decompositions. In [21], they are regrouped into two cases, one for the index variables

being prime numbers and the other for non-prime numbers. Because of the periodical
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nature of the trigonometric calculations, the computation with a non-prime index variable
can be easily reformulated and simplified for the purpose of separating one term
involving two index variables into two or more 1-D index variable terms. Moreover, the
reformulated terms can be calculated, in terms of 1-D DCT or DST, in the main recursive
procedure and in the blocks of so-called pre-additions [21]. In this way, the 2-D DCT can
be converted to 1-D DCTs and DSTs calculated with the results of the pre-additions. The

computation procedure of the condensed 1-D transform method is described as follows.

As mentioned in the section 2.1.2, for a set of 2-D data x (n;, n)) with0 s n; s N

— Jland 0 S ny £ N- 1, the 2-D DCT is defined as

2 N-1 N-1
X (kyoky) = ——u(k)u(ky) ), D) x(ny,ny)
n =0 n,=0
3.1)
X Cos 2 (2n, + 1)k, cos 2 (2n, + 1)k,
4N 4N

where k;, ky = 0, 1,..., N-1, u(k) = 22 for k = 0, and u(k) = 1 for k # 0. By using

trigonometric identities, (3.1) can be developed and expressed as

N-1 N-I

Xk, k) =—;—ZZx(nl,n2)

m=0n,=0
27| (2m, +1)k, +(2n, +1)k, |
X < 4N 3

27| (2m +1) k= (2n, +1)k, |
4N )

r

COS

+ COS
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-

X <

-1 N -1
1 N

X (ki k) = ) z Z

x(n,,n,)
ny=0n,=0

cos " (n’k] * nzkz)cos i (kl i kZ)
N 2N
N 2N
+ Cos * (nlkl — nzkz)cos z (kl _ k2)
N 2N
_sin = (nlkl _ nzkz)sin 7 (k- kZ)
N 2N J
N-1 N-1

1

X (k ,k,)) = ?Z Z x(n,n,)

n=0n,=0

7 [(nk, +nyk,)mod N |

(-1)" cos

N
X GOS — (kzl; kZ)— (-*
Csin 4 I:(nlk‘ + n,k, )mod N]
N
x sin = (kZleI- £ ) +(=1)"
7 [ (nk, = nyky + 2N )mod N |
X COS
N
xcos— (kzll;; £:) - (-1)"
o [(nk =k, + 2N )mod N |
x sin
N
x sin " (kle\_] kz)

3

(3.2)

(3.3)
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where s; = [(mki + naka)/N]and s; = [(mk — naka +2N?/N]. To compute X (ki, k2), the
2-D DCT is divided into two cases according to the relationship of ki, k; and N, and k;

and k; are expressed as k; = djr*’ and k; = do*”.

Case 1: k; or k;is prime to N. Let p = min {p,, p2}, w; =d;, w, =d,and M = N.

Case 2: k; # 0and k; # 0, kj, k; and N have a common divisor » where p = min
{pn, p2}, w; = dir”, w; = dyrP? and M = Nr?.

In these two cases, two variables m; and m; are introduced and they are defined as
m; = wmy + wmn; mod M, and my = wn; - wany + 2M° mod M. In each case, because of
the separation of the variable index, the data with the same transform based can be

computed by a pre-addition process. The pre-addition operation with x (n;, ny) is then

performed to generate x, (m;) and x; (m;) defined as follows.

In Case 1:

x,(m)= > (=) x(n,,m,) 34)
x,(m,) = Z (=1)*x(n,,n,) (3.5)

where s; = [(wn; + wmz)/M), 52 = [(wmn; - wmy + 2MY/M), n = nyforp; = 0and n = n;

fOI'pz = 0.

In Case 2:
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M-1rP-1rF-]
x,(m)= Z Z Z("l)sn xx(m +iM,n, +i,M) (3.6)
n=0 ;=0 i,=0
M-1rP-1r7-
x,(m,) = Z Z Z( D)* xx(n +iM,n, +i,M) (3.7
n=0 §=0 j,=

where s, = [(w17n; + waPn)/M] + i ;0 + 2wz, 55 = [(Fn; - w"ny + 2MYM] + ij0,

+ iwz,n=mnyforp, =p, and n = n, forp, = p.

With (3.4) ~ (3.7), the computation of the 2-D DCT, without including the
normalization factor 2u(k;)u(k,;)/N, can be written as the summation of four condensed
1-D DCTs and 1-D DSTs multiplied by multiplication factors cos(w; + w;)/2M and

sin(w; £ w;)/2M, which is shown as follows.

f ( cos(mz/ M) cos((w, +w,)z/2M) ]
X
1| &7 | sin(mz/ M)sin (o, + @,)7/2M)
X(or”,0,r’)=—1 o0 (3.8)
2 Z m cos(mzzz/M) cos((@, ~w,)m/2M)
+) X,
o ) —sin(m,z / M)sin (e, -—(1)2)72'/2M)i)

In the approach described above, the computation of the 2-D DCT can be
reformulated into terms comprising 1-D DCTs and 1-D DSTs. The recursive kernel for
the computation is shown in Fig. 3.1. It can also be presented using a more compact
format as illustrated in Fig. 3.2. It shows that each computation cycle requires six
multiplications with the DST and DCT coefficients. The diagram of the structure of the

recursive algorithm in [21] is shown in Fig. 3.3. The 2-D DCT is carried out in parallel by
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two channels, each consisting of a pre-addition block and a 1-D recursive kernel shown

in Fig. 3.1. It would be desirable to further simplify the computation so as to reduce the

number of multiplications in the recursive kernel while removing the DST calculation.

2u(k, Ju(k,) 0 (@ taw,)

N sing/ St 2M R Xxx (601 ’ a)z)
N 2u(k)u(k,) (o tw,)
x(mzf_'_\ cosf N N Y] .

ch (a)l ’ a)2)
T
0=
M
Fig.3.1. Recursive kernel for 1-D DCT/DST [21].
PNACELY
siné M
2u(k; Ju(k,)
MAEN "
x(m) oos TAEAN
) cosf 2M\>\ ,
» + » + -\-1-/ >
X +X,_

Fig. 3.2. Recursive kernel for the computation of the 2-D DCT defined in [21].
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add | with factor (

Fig. 3.3. Structure of the 2-D DCT computation according to the algorithm of [21]. The
detail of the 1-D recursive kernel is shown in Fig. 3.2.

3.2 Proposed Algorithm for the 2-D DCT Computation

As mentioned in the preceding section, the 2-D DCT computation can be
reformulated to the pre-addition and 1-D transform. Through this reformulation, it can be
calculated by means of 1-D DCTs and DSTs. In this way, the number of the recursive
cycles will be reduced greatly. However, in the recursive kernel, both DCTs and DSTs are
needed in the computation and six multiplications are required in each recursive cycle. In
this section, further work on mathematic reformulation of the 2-D DCT computation is
presented. The objective of the work is to remove the DSTs in each recursive calculation
cycle and to simplify the computation procedure. A new recursive kernel is also proposed

to improve the hardware structure and eventually the operation speed.

3.2.1 Computation procedure for each recursive cycle

Based on the method described in Section 3.1, our work aims at developing a
computation algorithm for the 2-D DCT using 1-D DCT modules with a reduced number
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of multiplications. The equation (3.8) for the 2-D DCT computation involves multiple
sine and cosine terms. Totally six multiplications are required in each cycle. A further
simplification of the computation is to reduce the number of multiplications, and to make

the computation to contain only cosine (or sine) terms.

Observing the equation (3.8), it is easy to see that, using trigonometry identity cos(u
+ V) = cosu cosv — sinu sinv, the 2-D DCT computation shown in (3.8) can be expressed

as [26]

f)ca(m,)cos((m1 +4 ;wz)ﬂ/MJ

X(@r o) =] (3.9)

M-1

+”;xs(mz)cos((m2 4 ;wz )ﬂ/M]

o |

Comparing (3.9) and (3.8), one can see that, the equation containing four sine and
four cosine variables is reformulated to one of only two cosine ones by the sum
trigonometry identity. By this reformulation, the number of multiplications used in each
cycle of the recursive computation in (3.9) is evidently smaller than that in (3.8). Thus,
the recursive kernel of (3.9) can be made much simpler than that of (3.8). Moreover, as
(3.9) involves only 1-D DCTs terms, the generation of 1-D DSTs is not needed, which

permits a significant simplification of the pre-computation of the 2-D DCT.

Equation (3.9) can be written as the sum of X,.; and X,., defined as
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M-1
c;:),,a)2):Z:xa(ml)cos((m1 + 4 ;wz)zr/Mj

m =0

X, (@,0,)= MZ"xs(mz)cos((mﬁ "‘"ZWM)

my=0

(3.10)

(3.11)

Observing (3.10) and (3.11), one can find that they differ form each other only in the

angles (w; + w2)/2 and (w; - w;)/2. It is possible to use the same structure to implement

the computation of X,.; or X,.,. Also, the computation procedure should be designed in

such a way that this structure involves a minimum number of multipliers and requires

shortest delay for the computation.

3.2.2 Recursive kernel and computation structure for the proposed

algorithm

Assuming that w = (w; * w;)/2, m’ = M — 1 - m, and x, (m) or x; (m) is generalized as

x (m), (3.10) or (3.11) can be expressed as

a)ﬂ)

= x(M—l— ')cos(fr—

m'=0

& l+m'-®
—z x(M -1-m"cos| — =«
m'=0 M

M -1

X, (0,0,)= x(m)cos(

Ei
L&

l+m'-® ]
-
M

Making Y(w;, w;) = - Xgllwy, w3), j= M- 1and 6 = n/M, we have

(3.12)
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Y(w,0,)=-X, (0,w,)= m‘z:x(M—l—m')cos(H’Z_wnj
h (3.13)

=Zj:x(j—m')cos(1+m'—a))¢9

m'=0

As cos(m’ + 1)8 = 2cos6cosm '8 - cos(m’ - 1)6, (3.13) can be rewritten as

Y(w,,)= Zj:x(j——m’)cos(l+m'—a))6’

= i )C(j —m ')li
m'=0
[2cos 0[:cos(a)t9)x(j) +Y, (o, 602)]

=4 | cos(w+1)@x(j)+
| cos(@O)x(j-D)+Y,, (@, @,)

2cos @ cos(m'-w) 0}

—cos(m'-w—1)0

[[2cos 8 cos w8 - cos(w+ 18] x())
=4 —cos wfdx(j—1)

k+2 costY, (v, w,)-Y, (o, ,)

cos(w—1)0x(j) —cos wbfx(j—1)
+2c0s0Y,_ (o, w,) - Y, (@, @)

(3.14)

The transform function of the system for (3.14) is given as

Y((Cf)pwz),z) _ cos(w—1)8—cos w67~
X(z) 1-2cos8Z7'+2Z7

(3.15)

It should be noted that (3.15) is applicable for both X,.;(w;, ;) and Xaex(®w), @>) as w=

(w; £ wy)/2.
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Based on (3.15), we propose a recursive computation kernel as illustrated in Fig. 3.4.
The structure shown in Fig. 3.5 includes the proposed kernel and is for the same 2-D
DCT computation as that of Fig. 3.3. Comparing the kernel shown in Fig. 3.4 with that in
Fig. 3.2, one can see that the former needs only cosine coefficients, and involves four
multiplications and three additions, whereas the latter requires both cosine and sine
coefficients and employs six multiplications and four additions. It can be expected that
the proposed algorithm can be implemented in a simpler circuit structure with potentially

shorter clock cycle-time.

_ 2u(k)u(k,)
— N
G\ cos(w 1)9‘/_]_\

A
A 4

ac

Fig. 3.4. Proposed recursive kernel.
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Fig. 3.5. Computation structure of the proposed algorithm for the 2-D DCT using the
proposed recursive kernels

To verify the equivalence of the function of the recursive kernel illustrated in Fig. 3.2
and that in Fig. 3.4, simulations using Simulink have been done. The results, shown in
Figs. 3.6 and 3.7, are identical, conforming that the kernels can replace each other for the
same computation. The option of computing the 2-D DCT by the proposed recursive
operation illustrated in Fig.3.4 can lead to an effective reduction of the number of

multiplications and that of additions.

It should be mentioned that, similar to the recursive kernel reported in [21], the
proposed one can not only be used for the DCT, bet also in the computations of the

IDCT, the DST and the IDST, by means of different inputs and pre-addition procedures.
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Fig. 3.6. Simulation result of the recursive kernel shown in Fig. 3.4.
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Fig. 3.7. Simulation result of the recursive kernel shown in Fig. 3.2.
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3.3 Summary

In this chapter, a new recursive algorithm and the computation structure for the 2-D
DCT computation has been proposed. This algorithm is developed on the basis of the
condensed 1-D transforms for the 2-D DCT computation reported in [21], and the 2-D
computation is decomposed according to the prime-and-non-prime nature of the index
variables, instead of a straightforward row-column decomposition, to minimize the
number of the recursive cycles. The new algorithm aims at reducing the number of
multiplications and to remove the computation of sine terms to simplify the procedure in
each cycle. By using the trigonometry identity, the computation for the 2-D DCT is
reformulated. It is much simplified and can be calculated by means of only 1-D DCTs
instead of the computation involving both 1-D DCTs and 1-D DSTs in [21]. Also, the
simplification helps to reduce the number of input coefficients and the amount of
calculations.

Based on the new computation procedure of the 2-D DCT, a recursive kernel has been
presented. The proposed kernel involves only four multiplications and three additions,
whereas that in [21] needs six multiplications and four additions. The simulation results
using Simulink have confirmed that these two recursive kernels can perform the same
function and thus equivalent in the 2-D DCT computation. Therefore, the proposed kernel
can replace the one in [21] and the computation structure using the proposed kernel can

be made simpler than that of [21]. Further more, like the kernel reported in [21], the
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proposed one can also be used in the computation of 2-D IDCT, DST and IDST
calculations.

The next chapter is dedicated to the design of two architectures implementing the
proposed algorithm to demonstrate the effectiveness of the improvement in performance
resulting from the new algorithm. FPGA implementations for the architectures and that of

the algorithm in [21] are presented and the results are compared.
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Chapter 4

Proposed Architectures and the FPGA
Implementations

In chapter 3, a new 2-D DCT algorithm has been presented. The recursive kernel in
this algorithm requires only cosine computation terms and a smaller number of
calculations compared to that in [21]. Thus, the proposed algorithm can lead to a
reduction on the number of multiplications and input coefficients. To demonstrate the
effectiveness of the new algorithm, the 1-D DCT circuit block is designed by directly
mapping the proposed recursive kernel presented in Section 3.2.2, and by using this 1-D
DCT circuit block, two architectures for the 2-D DCT computation are developed. The
first architecture is designed in parallel by using two 1-D DCT circuit blocks. The other
one uses only one circuit block, which operates by time division, to compute the 2-D
DCT calculation. The FPGA simulations of these two architectures are done and the
simulation results will be compared.

In Section 4.1, the proposed 1-D DCT circuit block is presented. Section 4.2, the first
architecture is presented in details. Then the architectures using only one DCT circuit

block are described in Section 4.3. Section 4.4 summarizes the work of the hardware
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designs and implementations.

4.1 Circuit Block of the Recursive Kernel

The computation of the proposed recursive kernel, shown in Fig. 3.4, can be easily
mapped into a simple circuit block as shown in Fig. 4.1. This circuit does not need sine
coefficients and it is, in fact, a 1-D DCT block. Using the same mapping, another block
for the recursive kernel [21] is also built, illustrated in Fig. 4.2, for the comparison
purpose.

Comparing the structures of the two blocks shown in Figs. 4.1 and 4.2, one can have

the following observations:

» It is confirmed that the block shown in Fig. 4.1 requires four multipliers and three
adders, instead of six multipliers and four adders in that in Fig. 4.2. Thus, a significant

reduction of circuit complexity should be expected in the hardware implementation.

* Besides the inputs of x, and x; generated by the pre-computation modules, both
blocks receive other pre-computed inputs. The block of Fig. 4.2 needs six such inputs,
namely q, b, ¢, d, e and f, whereas in that of Fig. 4.1 only four are needed. Therefore, the
pre-computation operations required in the system using the block of Fig. 4.1 can be

made much simpler than that of Fig. 4.2.

* The length of the most critical delay path in a block determines the required

duration of the clock cycle. One can easily see that there are three multipliers in the
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critical path of the block of Fig. 4.2, and only two in that of Fig. 4.1. The delay in the
latter is obviously much shorter than that in the former. Also, taking the number of adders
in the critical paths of the two blocks into consideration, one can expect that the delay of
the circuit block of the proposed recursive kernel is at least 33% shorter than that of Fig.
4.2. The proposed algorithm can, therefore, lead to a significant increase of the clock

frequency.

Having a smaller number of operators such as multipliers and adders and fewer input
coefficients, the circuit block for the proposed recursive kernels can perform a smaller
number of operations for the same computation as that shown in Fig. 4.2. It can thus be
implemented with a smaller number of basic calculation units and shorter delay path to
improve both hardware efficiency and processing speed. The VLSI architectures for the
2-D DCT with the proposed block shown in Fig. 4.1 are presented in the following

sub-sections.

—mﬁ' ’7 X [+ X

> ac
i T
-1

2

Fig. 4.1. Structure of the circuit block for the proposed recursive kernel. In this
structure, the coefficient inputs are mapped from the kernel shown in Fig. 4, i.e. y =
cos(w-1)6, k = coswb, ¢ = -u(k))u(ky)/N, and { = 2cos6.
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Fig. 4.2. Structure of the circuit block for the computation kernel of [21]. In this structure,
the inputs, a = sinf, b = sin((wxwn/2M), ¢ = 2cos6, d = cosf, e = cos((w;xwz)n/2M, and f =
-u(ky)u(kz)/N.

4.2 Architecture-1 for the Proposed Algorithm

As mentioned in the previous sections, the 2-D DCT computation can be
implemented by using the proposed circuit block of the new recursive kernel shown in
Fig. 4.1. With this block, the computation structure shown in Fig. 3.5 can be easily
mapped into an architecture illustrated in Fig. 4.3. In this architecture, two identical
circuit blocks operate in parallel. However, it should be noted that one block receives the
inputs a = cos((w;+wy)/2-Na/M and y = cos((w;+wz)r/2M), while the inputs g =
cos((w-w2)/2-Na/M and 6 = cos((w;-w2)n/2M) are applied to the other block. Hence, the
former produces X,.; and the latter X,.,. The final output signal X (k;, k) is generated by

an addition of the two outputs of the blocks.
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Fig. 4.3. Proposed architecture for the new 2-D DCT computation. The structure of the
proposed 1-D DCT block is shown in Fig. 4.1. The inputs x,(m) and x,(m) are generated by a
pre-addition block.

Using a similar direct mapping, a circuit architecture implementing the algorithm of

[21] is obtained, as illustrated in Fig. 4.4. It includes two identical circuit blocks shown in

Fig. 4.2.
X, (m) .
Jow |1-ppcrmst| Ao
- block
abcdef Jr X(ksky)
abcde, f "
ol 1T
oLk | 1-;0 pCT /ST
CLK block X
ac,

Fig. 4.4. Architecture for the 2-D DCT algorithm of [21]. The structure of the 1-D
DCT/DST block is shown in Fig. 4.2.
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The architectures shown in Figs. 4.3 and 4.4 can be easily implemented with FPGA
technology. In this implementation, Virtex-II Pro Platform FPGA boards of xc2vp7 are
used. For the two architectures, the inputs and outputs are of 12-bit float-point signals.

The results are presented in Table I. One can note the following points.

» The architecture of the proposed algorithm requires only 75% of hardware
consumption compared to that of [21]. This results from the smaller number of

multiplications and additions in the proposed algorithm that involves only 1-D DCT

computation.

 Both architectures can be easily implemented in the FPGA board of xc2vp7.
Obviously, the hardware utilization of the architecture shown in Fig. 4.3 is much less
than that of Fig. 4.4, which means that the architecture of Fig. 4.3 permits the integration
of more logic functions in the same board. Furthermore, this architecture can also be
implemented in a small and low-cost board such as xc2vp4 that may not be suitable to

implement the one of Fig. 4.4.

* Because of the smaller number of operations in the critical path of the computation,
the required clock cycle duration of the architecture shown in Fig. 4.3 is only 83% of that

of [21], which implies a speed improvement resulting from the proposed algorithm. The
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reduction of the cycle time can be more significant if the algorithm is implemented in a

custom-designed integrated circuit.

» The power dissipation of the circuit architecture for the proposed algorithm is
almost the same with that of [21], proving that the proposed algorithm can save hardware

consumption and processing time without sacrificing the power efficiency.

* The throughput of the architecture shown in Fig. 4.3 is the same as that in Fig. 4.4,
which is one input sample per clock cycle. Both of them need N clock cycles to produce
an output sample if the dimension of the 2-D signal is NXN. The number of the cycles
may be further reduced in case of the architecture shown in Fig 4.3 by means of the
input-folding method [21], and this reduction is done at the expense of increasing the

hardware consumption.

It should be noted that when considering the pre-addition procedure in the hardware
implementation, because most are the simple adders in the pre-addition, the hardware
requirement of the pre-addition should be very small. The hardware consumption of the

proposed algorithm should be around 78% of that of [21].
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TABLEI
FPGA IMPLEMENTATION RESULTS OF THE ARCHITECTURES
SHOWN IN FIGS. 4.3 AND 4.4

Architecture Architecture
shown in Fig. 4.4 shown in Fig. 4.3

Slice Registers Number 272 217
Utilization 2% 2%

Occupied Number 4,008 2,997
Slices Utilization 81% 60%

4 Input LUTs Number 7,710 5,777
Utilization 78% 58%

Minimum Clock Cycle (ns) 9.103 7.611

In conclusion, the FPGA results agree with the expected performance of the circuit
architecture for the proposed algorithm. The improvement in terms of hardware

consumption and operation speed has been achieved at no expense of power efficiency.

4.3 Architecture-2 for the Proposed Algorithm

The architecture shown in Fig. 4.3 employs two circuit blocks to generate X,.; and
Xae2, respectively, for the 2-D DCT computation. The two blocks execute, in fact, the
same operation with partially different inputs. It is thus possible to use only one circuit
block for both two functions of X,.; and X,.,, and the matter is to select the right inputs

for the two functions. By examining the architecture shown in Fig. 4.3, it is easy to see

46



that the calculation of X,.; requires a = cos((w;+w;)/2-1)n/M and y = cos((w;+w2)n/2M),
while X,.; needs f = cos((w;-w5)/2-1)n/M, and 6 = cos((w;-wz)n/2M). One can use
simple multiplexers to select the input signals (a & y) or (8 & J) in order that the circuit
block produces the right output. In this way, the proposed algorithm can be implemented
in the circuit using only one circuit block for all the recursive operations, as illustrated in
Fig. 4.5, which can result in a significant reduction of the hardware consumption and

enable an even-lower-cost circuit implementation.

In the architecture shown in Fig. 4.5, the signal inputs via the multiplexers are
synchronized with the clock signal, of which each cycle consists of two phases. In the
first phase, i.e. CLK = ‘1’, x,, a and y are applied to the circuit block and during the
second phase, x;, f and J are selected to be applied. The two outputs of the circuit block
generated during the two phases are summed up to generate the final output signal X (%,
k). In this way, the computation of the 2-D DCT can be realized by only one 1-D DCT

block, instead of the two in Fig. 4.3.

The architecture in Fig. 4.5 can also be used for other computation tasks if the main
circuit block is replaced by another module. In many cases of signal processing, the
computation can be decomposed into two parts, one by processing cores and the other by
pre-computation blocks. It is possible to use only one processing core for different

functions during different phases, while applying different pre-computed inputs. In this
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manner, the required hardware can be considerably reduced, which leads to a reduction of

the circuit cost in a great scale.

A 4

Control

x,(m) = 05—*§ é’«—}/
¢—>{cLK £ i,_ o
\ 4 Xac,
v Proposed é >+ X(k1 s kz)
E 1-D DCT E >
x.(m) block & ol
7o [ 1 X,
—cLK
CLK E ¢

Fig. 4.5. Architecture for the 2-D DCT proposed for further improvement of hardware
consumption. In  this  structure, a=cos((w;+twy)/2-Du/M,  p=cos((w-w;)/2-1)x/M,
y=cos((w+wy)n/2M), 5=cos((w;-w3)n/2M), e=-u(k\)u(k,)/N, and {=2cosn/M.

The same method of using a single processing core can be easily applied to simplify
the structure implementing the algorithm of [21]. In the architecture shown in Fig. 4.4,
among the inputs a, b, ¢, d, e and f of each circuit block, b and e are not common for the
two blocks. By means of multiplexers, the structure in Fig. 4.4 is converted to that
illustrated in Fig. 4.6. It is evident that the conversion reduces the hardware to one half of

that used for Fig. 4.4, as only one processing block, instead of two, is included in the

circuit,
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Fig. 4.6. Architecture for the implementation of the 2-D DCT algorithm [21]. This structure
includes only one 1-D DCT/DST block. Its pre-computed inputs are a = sinf, b, =
sin((w;+wy)n/2M), by = sin((w-w)n/2M), ¢ = 2cos6, d = cosl, e; = cos((w;+w)n/2M). e; =
cos((w-wyn/2M), and f = -u(k )u(k;)/N.

The circuit architectures shown in Figs. 4.5 and 4.6 have been implemented in the
same kind of FPGA boards as that presented in Section |lI-B, i.e. Virtex-II of xc2vp7,
under the same conditions of 12 bits float-point signals. The FPGA results of the
architecture shown in Fig. 4.5, with the comparison to those of Fig. 4.3, are presented in
Table Il to illustrate the difference in hardware consumption between the two

architectures performing the same computation. Table Il shows the results of those of

Figs. 4.5 and 4.6.

From the FPGA results shown in Table |l and Table [ll, the following points can be

noticed.
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*The proposed method of using a single processing core helps to reduce significantly
the hardware consumption in all the aspects, including logic gates and memories. In the
case of implementing the two different 2-D DCT algorithms, the reduction of the

hardware is consistently at a rate of 43%.

» As the result of the reduced hardware requirement, the circuit architectures
designed using the proposed method can be easily integrated in a wide range of FPGA

boards.

« By using the proposed method, the recursive block used in each of the circuit
architectures shown in Figs. 4.5 and 4.6 operates to compute X,c; and X2 successively,
not simultaneously, in each clock cycle. Thus the duration of the cycle is expected to be
doubled, compared to that of the architectures shown in Figs. 4.3 and 4.4. However,
Table Il or Il shows that the required clock cycle of the architecture illustrated in Fig.
4.5 or 4.6 is about three times of that in Fig. 4.3 or 11, which may be due to some

redundant structure of the FPGA board.

« It should be mentioned that the throughput of the architectures shown in Figs.4.5
and Fig. 4.6 is the same as that of Figs. 4.3 and 4.4 and the number of the recursive cycles

is also the same, which is V.
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TABLE |l

FPGA RESULTS OF THE ARCHITECTURES SHOWN IN FIGS. 4.5 AND 4.3

Structures for the proposed algorithm

Architecture shown

Architecture shown

in Fig. 4.3 in Fig. 4.5
Slice Registers Number 217 148
Utilization 2% 1%
Occupied Slices Number 2,997 1,709
Utilization 60% 34%
4 input LUTs Number 5,777 3,241
Utilization 58% 32%
Minimum Clock Cycle (ns): 7.611 20916
TABLE lli

FPGA RESULTS OF THE ARCHITECTURES SHOWN IN FIGS. 4.6 AND 4.4

Architecture shown Architecture shown
Structures for the algorithm in [21]
in Fig. 4.4 in Fig. 4.6

Slice Registers Number 272 172

Utilization 2% 1%
Occupied Slices Number 4,008 2,207

Utilization 81% 44%
4 input LUTs Number 7,710 4,203

Utilization 78% 42%
Minimum Clock Cycle(ns): 9.103 25.592
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The FPGA results provide a good confirmation of the significant reduction of
hardware consumption by applying the one-processing-core method. This reduction
comes with some increase of processing time and is good to use if the speed is not a

critical issue. In any case, it provides a good trade-off of hardware and processing time.

4.4 Summary

In this chapter, the hardware implementation of the proposed algorithm has been
presented. By easily mapping the proposed recursive kernel, a 1-D DCT circuit block is
obtained to perform the recursive computation. The new block requires a smaller number
of multipliers and adders, i.e., four multipliers and three adders instead of six and four in
that of [21]. Also, it needs fewer pre-computed inputs. Besides, because of the simpler
structure of the circuit block, the length of its critical path is shorter than that of [21].
Applying this circuit block, two architectures for the 2-D DCT computation have been
designed and the FPGA implementation of these two architectures has also been carried
out. The architecture-1, designed by a direct mapping of the 2-D DCT computation
scheme, employs two 1-D DCT circuit blocks. Its implementation aims at a
demonstration of the effectiveness of the new algorithm. The FPGA results of the new
algorithm have resulted in a reduction of the hardware of 25% and that of the clock
duration of 17%. The architecture-2 has been proposed to provide a simple structure of
the 2-D DCT computation by using only one 1-D DCT circuit block. The computation of
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the 2-D DCT is carried by time division. In this way the hardware reduction is very
significant, while the computation time is extended. The FPGA results of the
architecture-2 have shown that by means of this one DCT block method, the hardware
consumption can be reduced consistently at a rate of 43%. Because of the time division,
the clock cycle is longer than that of the first design, which makes a trade-off with the

hardware efficiency.
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Chapter 5

Conclusion

5.1 Concluding Remarks

The work presented in this thesis is in the topic area of algorithms and architectures
for the 2-D discrete cosine transform (DCT). It also involves the hardware
implementation of the computation.

There are two objectives of the work. One is to develop a new recursive algorithm
for the 2-D DCT. The emphasis is on reducing the number of calculations, in particular,
that in each cycle. The other objective is to design architectures for the 2-D DCT
recursive algorithms, aiming at reducing the circuit complexity for low-cost
implementation.

To develop a new recursive 2-D DCT algorithm, a study of existing ones has first
been carried out. In order to have the minimum number of recursive cycles in the iterative
computation for the 2-D DCT, the study was focused on the non-row-column
decomposition methods. The new algorithm has been proposed based on the method of
using the condensed 1-D transform [21]. By means of mathematics reformulation, the

calculation procedure is simplified. The new algorithm requires, in its recursive kernel, a
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smaller number of calculations, i.e., only 2/3 of the multiplications and 3/4 of the
additions needed in [21]. Moreover, it does not include DST calculation and has fewer
input coefficients. Thus, it is expected that the new algorithm can lead to an improvement
of performance of the system where it is implemented. It should also be noted that the
recursive kernel of the proposed algorithm can be used in the computation of 2-D IDCT,
DST or IDST by means of different pre-addition procedures.

A circuit architecture for the 2-D DCT has been built by direct-mapping of the
recursive kernel of the proposed algorithm. It is to evaluate the performance
improvement resulting from the new algorithm. The reduction of the calculation in the
algorithm has made the circuit simpler, also the critical delay path shorter. The
architecture has been implemented by using the Xilinx Virtex-II Pro Platform FPGA
boards of xc2vp7. The FPGA results have shown that the new algorithm has contributed a
hardware reduction of 25% and shortened the clock duration by 17%. It is evident that,
by using the new algorithm, both space and circuit delay can be reduced significantly
without sacrificing other specifications.

A new architecture scheme to implement a recursive 2-D DCT algorithm has also be
proposed. It makes it possible to reduce very significantly the hardware resources for a
given 2-D DCT computation, while increasing the clock duration. Two 2-D DCT
algorithms have been implemented using the new scheme in FPGA boards. It has been
proved, by the FPGA implementation, that the new scheme results in a hardware

reduction of 43% in the cases of the two algorithms. The clock cycle in the circuit is
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expected to be doubled. However, by using the new algorithm, the time in each clock
cycle can be reduced to make the time loss in the new scheme less critical. The scheme

provides a good trade-off of the hardware-speed, enabling low cost applications.

5.2 Suggestions for Future Investigation

In the area of the 2-D DCT computation and its implementation, the way of
decomposing the computation determines the complexity of the implementation. Thus,
the methods of decomposition are worth research efforts. More studies will be conducted
to investigate the existing methods and to develop new non-row-column decomposition
algorithms. Also, research work is needed to find an optimal way of designing
computation process of the pre-additions.

In the work of this thesis, the circuit design has been focused on the architectural
level. The block for recursive kernel has been built by direct mapping. One may reduce
the length of the critical delay path by reorganizing the calculations in each recursive
cycle. Thus the operation speed can be further improved.

The 2-D DCT algorithm and architecture described in this thesis are for
general-purpose, i.e. without specifying a particular application. We can design a 2-D
DCT algorithm that is specifically tailored to a given system performing a particular

function. Research on the design of special-purpose 2-D DCT architecture is needed.
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