
Enabling Architectures for QoS Provisioning

Kim-Khoa Nguyen

A Thesis

in

The Department

of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy in Electrical Engineering at

Concordia University

Montreal, Quebec, Canada

February 2008

© Kim-Khoa Nguyen, 2008

1*1 Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A0N4
Canada

Your file Votre reference
ISBN: 978-0-494-37756-7
Our file Notre reference
ISBN: 978-0-494-37756-7

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par Nnternet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Canada

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

Enabling Architectures for QoS Provisioning

Kim-Khoa Nguyen, Ph.D.
Concordia University, 2008

Nowadays, new multimedia services have been deployed with stringent

requirements for Quality of Service (QoS). The QoS provisioning is faced with the

heterogeneity of system components. This thesis presents two research: on architectures

for QoS management at the application layer, fulfilled mainly by software components;

and on distributed software architectures for routing devices providing desired QoS at the

underlying communication layer.

At the application layer, the QoS architecture we propose, based on the Quality

Driven Delivery (QDD) framework, deals with the increasing amount of QoS information

of a distributed system. Based on various QoS information models we define for key

actors of a distributed system, a QoS information base is generated using QoS

information collecting and analysis tools. To translate QoS information among different

components, we propose mechanisms to build QoS mapping rules from statistical data.

Experiments demonstrate that efficient QoS decisions can be made effectively regarding

the contribution of all system components with the help of the QoS information

management system.

At the underlying layer, we investigate distributed and scalable software

architectures for QoS-enabled devices. Due to the huge volume of traffic to be switched,

the traditional software model used for current generation routers, where the control card

of the router performs all the processing tasks, is no longer appropriate in the near future.

in

We propose a new scalable and distributed architecture to fully exploit the hardware

platforms of the next generation routers, and to improve the quality of routers,

particularly with respect to scalability and to a lesser extent to resiliency and availability.

Our proposal is a distributed software framework where control tasks are shared among

the control and line cards of the router. Specific architectures for routing, signaling

protocols and routing table management are developed. We investigate the challenges for

such distributed architectures and proposed various solutions to overcome them. Based

on a general distributed software framework, an efficient scalable distributed architecture

for MPLS/LDP and different scalable distributed schemes for the routing table manager

(RTM) are developed. We also evaluate the performance of proposed distributed schemes

and discuss where to deploy these architectures depending on the type of routers (i.e.,

their hardware capacity).

IV

Acknowledgements

I would like to acknowledge the help of many people during my doctoral study.

First, I would like to thank my supervisor, Professor Brigitte Jaumard, for her invaluable

directions and support throughout my study. Her directions with regard to the

developments of my academic thinking, problem solving and technical writing were

inspiring and will be very helpful in my future work and study.

I also would like to express my warmest thank to my co-supervisor, Professor

Brigitte Kerherve, who kindly allows me to begin my work in her lab. She has helped me

greatly in the hardest years and has always been extremely supportive and nice to me. It

was only her great help that I got the chance to initiate and complete this thesis.

I am grateful to the Departement d'Informatique at Universite du Quebec a

Montreal, Departement d'Informatique et de Recherche Operationelle (IRO) at Universite

de Montreal, Department of Electrical and Computer Engineering at Concordia

University, and Concordia Institute for Information Systems Engineering (CIISE) for

their generous support throughout my research.

This work was financially supported by grants from Canadian Institute for

Telecommunication Research (CITR), MITACS network (Mathematiques des

Technologies de l'lnformation et des Systemes Complexes) and the former HyperChip

Inc. I would particularly like to thank Marc Lanoue for discussion and guidance in the

development of router architectures.

I would like to acknowledge Dr. J. William Atwood and Dr. Pierre Rolin for

reviewing this manuscript. Their valuable comments improved the manuscript notably.

I am also thankful to all current and former members of the ORC lab for their

support and assistance.

Last but not least, I sincerely thank my parents and my sister, for their love and

encouragements during the past years. Without them all I have achieved would not have

been possible.

VI

TABLE OF CONTENTS

List of Acronyms xii

List of Figures xiv

List of Tables xviii

Introduction 1

Part I: QoS Information Management Architectures 3

Part II: Next Generation Scalable and Distributed Router Architectures 6

Contributions of the PhD Thesis 9

Outline of the PhD Thesis 12

PART I. QoS Information Management Architectures 14

Chapter 1 QoS Provision at the Application Level 14

1.1 Distributed Systems and Applications 14

1.2 QoS Issues 17

1.3 QoS Provisioning 20

1.4 Review of Current QoS Management Frameworks 23

1.5 Motivation 30

1.6 Chapter Conclusions 31

Chapter 2 QoS Information Management 33

2.1 QoS Management Activities 33

2.2 QDD Framework 38

2.3 Basic Notions 41

2.4 Modeling QoS Information 43

2.5 Collecting QoS Information 46

vii

2.6 Mapping QoS Information 51

2.6.1 Classification of QoS Mappings 52

2.6.2 Building QoS Mapping Rules 55

2.7 Chapter Conclusions 60

Chapter 3 Applications and QoS Decisions 62

3.1 Video Streaming Delivery and QoS Decisions 62

3.2 Examples of QoS Information Models and QoS Mapping 69

3.3 Running Screenshots 72

3.4 Chapter Conclusions 77

PART II. Scalable and Distributed Software Architecture for Next Generation

Routers 79

Chapter 4 Architectures of Routers 79

4.1 Motivation 80

4.2 Key Functions of a Router 84

4.2.1 Compute Best Routes 84

4.2.2 Forward Data Packets 85

4.2.3 Service Function 86

4.3 Evolution of Hardware Architectures of Routers 87

4.3.1 First Router Generation: Bus-based with Single Processor Architecture. 87

4.3.2 Second Router Generation: Route Caching Architecture 89

4.3.3 Third Router Generation: Switch-based Architecture 90

4.4 Next Generation Routers 92

4.5 Review of Software Architectures of Routers 98

vin

4.5.1 Monolithic Software Architecture 98

4.5.2 Current Distributed Software Architectures 102

4.6 Chapter Conclusions 105

Chapter 5 Proposal for Distributed Software Architecture for Next Generation

Routers 107

5.1 Generic Distributed Architecture for Routing and Signaling 109

5.1.1 Routing 113

5.1.1.1 Current Centralized Architecture for Routing Protocols 114

5.1.1.2 Proposed Distributed Architecture for Routing Protocols 115

5.1.1.3 Distributed vs. Centralized Architecture for Routing Protocols 116

5.1.2 Signaling 118

5.1.2.1 Current Centralized Architecture for Signaling Protocols 118

5.1.2.2 Proposed Distributed Architecture for Signaling Protocols 119

5.1.2.3 Distributed vs. Centralized Architecture for Signaling Protocols ..121

5.1.3 Advantages of a Distributed Architecture 122

5.2 Case Studies 124

5.2.1 Routing: A Distributed OSPF Architecture 124

5.2.1.1 Overview of Centralized OSPF Architecture 124

5.2.1.2 A Distributed OSPF Architecture for Next Generation Routers 126

5.2.2 Case Study for Signaling: A Distributed MPLS/LDP Architecture 129

5.2.2.1 Overview of Centralized MPLS Architecture 129

5.2.2.2 Towards A Distributed MPLS/LDP Architecture for Next Generation

Routers 133

IX

5.3 Chapter Conclusions 138

Chapter 6 A Distributed MPLS/LDP Architecture 140

6.1 Overview of LDP 140

6.2 LDP Architecture 145

6.3 Challenges and Their Solutions 155

6.3.1 Synchronization Mechanisms 156

6.3.2 Label Provisioning and Data Recovery 168

6.4 MPLS Data forwarding & Table Management 170

6.4.1 MPLS Tables 170

6.4.2 Data Forwarding 173

6.5 Performance Evaluation 177

6.5.1 Qualitative Analysis 177

6.5.2 Quantitative Analysis 179

6.6 Chapter Conclusions 185

Chapter 7 Distributed RTM Architectures 187

7.1 Distributed architecture for RSVP-TE 187

7.2 Current RTM Architecture 191

7.2.1 Overview of RTM 191

7.2.2 Current RTM Architecture for Next Generation Routers 194

7.3 Proposals for Scalable and Distributed RTM Architectures 197

7.3.1 Scheme 1: Basic Distribution of RTM 198

7.3.2 Scheme 2: Distribution of Routing Protocols 199

7.3.3 Scheme 3: Distribution of LC-RTMs on Line Cards 204

x

7.3.4 Scheme 4: Distribution of Best Route Computation Algorithms 207

7.4 Performance Evaluation of the Proposed Distributed Schemes 209

7.4.1 Number of Messages Going Through the Switch Fabric 211

7.4.2 CPU Consumption 213

7.4.3 Memory Consumption 216

7.4.4 Observations 218

7.5 RTM Distribution and Added Values for Path Computation 222

7.6 Implementation of the Distributed RTM Architecture 227

7.7 Chapter Conclusions 235

Conclusions 237

Contributions of the Thesis 240

Lessons Learned 242

Future Work 244

Bibliography 248

Pending Patents 260

XI

LIST OF ACRONYMS

ATM

BGP

CLI

CORBA

CSPF

eNP

eTM

FEC

FIT

FTN

GIF

ICMP

IDL

ILM

iNP

IP

IS-IS

iTM

JMF

JPEG

LAT

LDP

LER

LIB

L-ROUTE

LSP

Asynchronous Transfer Mode

Border Gateway Protocol

Command Line Interface

Common Object Request Broker Architecture

Constrained Shortest Path First

Egress Network Processor

Egress Traffic Manager

Forwarding Equivalence Class

Forwarding Information Table

FEC-To-NHLFE

Graphic Interchange Format

Internet Control Message Protocol

Interface Description Language

Incoming Label Mapping

Ingress Network Processor

Internet Protocol

Intermediate System-to-lntermediate System

Ingress Traffic Manager

Java Media Framework

Joint Photographic Experts Group

Label Allocation Table

Label Distribution Protocol

Label Edge Router

Label Information Base

Local Route Base

Label Switch Path

LSR

MIB

MIPS

MOS

MPLS

NHLFE

OC

OSPF

PPP

PSNR

QDD

QoS

QoSIB

RDL

RIB

RSVP

RSVP-TE

RTCP

RTM

RTP

SNMP

SPF

SS

TCP

FIT

UDP

VP

Label Switch Router

Management Information Base

Millions of Instructions Per Second

Mean Opinion Score

Multi-Protocol Label Switching

Next Hop Label Forwarding Entry

Optical Carrier

Open Shortest Path First

Point-to-Point Protocol

Peak Signal Noise Rate

Quality-Driven Delivery

Quality of Service

Quality of Service Information Base

Resource Description Language

Routing Information Base

Resource ReSerVation Protocol

RSVP Traffic Engineering

Real-Time Control Protocol

Routing Table Manager

Real-time Transport Protocol

Simple Network Management Protocol

Shortest Path First

Streaming Server

Transmission Control Protocol

Forwarding Information Base

User Datagram Protocol

Video Provider

LIST OF FIGURES

Figure 1-1: QoS Layers of a Multimedia Distributed System and the Corresponding

Components of a Video Delivery Application 5

Figure 2-1: QoS Activities within a Service Distribution Session 34

Figure 2-2: Architecture of a Video Streaming System 35

Figure 2-3: QDD Steps 40

Figure 2-4: Components of a Video Delivery System 40

Figure 2-5: QoS Information and the Corresponding Models 44

Figure 2-6: Quality Information Models 45

Figure 2-7: Collect QoS Information 47

Figure 2-8: QoS Mapping Rule Building Process 52

Figure 2-9: Available Mapping Schemes in a Distributed System 54

Figure 2-10: Classification of User Requirements 57

Figure 2-11: Clustering the System Offers 58

Figure 2-12: A QoS Mapping Rule 59

Figure 3-1: Video Streaming Delivery Application 64

Figure 3-2: Making QoS Decisions in the QDD Architecture 67

Figure 3-3: Quality Information Models for Video Streaming Delivery System 70

Figure 3-4: Video Administrator and Video Provider Screenshots 73

Figure 3-5: Video Player Screenshots 74

Figure 3-6: Streaming Server Screenshots 75

Figure 4-1: Replacing a Cluster of Mid-Size Routers with a Large-Capacity Scalable

Router [Chao07] 81

xiv

Figure 4-2: First Generation Router with a Single Central Processor and a Shared Bus . 88

Figure 4-3: Second Generation Router with Route Cache Architecture 89

Figure 4-4: Third Generation Router with Switch Based Architecture 91

Figure 4-5: Components of a Typical Line Card 92

Figure 4-6: Components of a Typical Control Card 93

Figure 4-7: Sample of a Four-Plane Switch Fabric Interconnecting Router Cards 95

Figure 4-8: Architecture of Next Generation Router 97

Figure 4-9: Software Architecture of First and Second Router Generations 99

Figure 4-10: Software Architecture of the HyperChip PBR 1280 100

Figure 5-1: Current Centralized Routing Model 114

Figure 5-2: Distributed Routing Model 115

Figure 5-3: Current Centralized Signaling Model 119

Figure 5-4: Signaling Model 120

Figure 5-5: A Centralized OSPF Architecture 125

Figure 5-6: Distributed OSPF Architecture 127

Figure 5-7: MPLS Architecture 130

Figure 5-8: Centralized Architecture of MPLS /LDP 135

Figure 5-9: Overview of MPLS Distribution Architecture 137

Figure 6-1: Components of LDP and Connection with MPLS 142

Figure 6-2: LDP Packet and Message Structures 144

Figure 6-3: Distributed MPLS/LDP Architecture 151

Figure 6-4: Ingress and Egress Line Card of an LSP 157

Figure 6-5: Label Request Handled by Ingress and Egress Line Card 158

xv

Figure 6-6: Processing LDP Mapping for Previous LDP Request (Solicited Mode) 161

Figure 6-7: Synchronization between IP Routing Table and MPLS LIB 166

Figure 6-8: Forwarding Multiple Sources to the Same Destination 169

Figure 6-9: LATs in the Distributed Architecture 171

Figure 6-10: FEC-TO-NHLFE (FTN) Table Structure 172

Figure 6-11: ILM Table Structure 173

Figure 6-12: Using Distributed LIBs 174

Figure 6-13: Label Swapping in a Centralized Architecture 175

Figure 6-14: Label Swapping in the Proposed Distributed Architecture 175

Figure 6-15: Data Packet and Control Message Processing in the Proposed Distributed

Architecture 176

Figure 6-16: LDP Performance in the Centralized and Proposed Architectures 184

Figure 7-1: Distributed MPLS Architecture with a Centralized RTM 189

Figure 7-2: Update Routing Database and Select Best Routes 192

Figure 7-3: RTM in a Non-Distributed Routing Architecture 193

Figure 7-4: Current RTM Architecture: Distribution on Protocol Basis 195

Figure 7-5: Basic Distribution of RTMs 199

Figure 7-6: Domains and Clusters of Line Cards 200

Figure 7-7: Distribution of Routing Protocols 201

Figure 7-8: Messages Exchanged between a Proxy and a Regular Line Card for the

Second Distribution Scheme (Distribution of Routing Protocols) 202

Figure 7-9: Distribution of LC-RTMs 205

xvi

Figure 7-10: Message Exchange between the Master and a Regular Line Card for the

Third Distribution Scheme (Distribution of LC-RTMs) 206

Figure 7-11: Distribution of Route Computation Algorithms 208

Figure 7-12: Comparison of CPU Consumption between the Centralized and the

Proposed Distributed Architectures 220

Figure 7-13: Memory Requirements in the Centralized and the Proposed Distributed

Architectures 221

Figure 7-14: Overview of the Proposed RTM Architecture 226

Figure 7-15: Distributed RTM Architecture 227

Figure 7-16: Architecture of G-RTM on the Control Card 229

Figure 7-17: Architecture of LC-RTM on a Line Card 230

xvn

LIST OF TABLES

Table 1-1: QoS Characteristics Considered by Different Organizations 19

Table 1-2: Comparison of QoS Architectures 28

Table 2-1: Sample QoS Information of a DBMS 48

Table 2-2: Sample QoSIB for Network Component 50

Table 2-3: Mapping from MOS (User Model) to Bandwidth (Network Model) 56

Table 3-1: Mapping from Content Display Quality to Network and Encoding Dimensions

71

Table 6-1: Scenario Parameters 180

Table 7-1: Performance Comparison of the Centralized and the Distributed RTM

Architectures 219

Table 7-2: Qualitative Comparison between the Centralized and Proposed Architectures

for RTM 235

xvin

Introduction

Due to the evolution of distributed applications, systems and user requirements over the

last ten years, we have seen an emergence of QoS architectures to provide end users with

services of required quality level. QoS architectures have been implemented on different

parts of the systems; sometimes they can cover the whole system from providers to users.

Critical parts of the systems where QoS architectures have been mostly deployed are

distributed system platforms, operating systems, transport subsystems and networks.

End-to-end QoS provisioning has also been already explored in several studies. Although

end-to-end QoS is one of the most emergent research trends for distributed systems, no

standard model has yet been approved. QoS mechanisms used in commercial products

are quite diversified according to the different objectives of providers and users.

QoS architectures are built using QoS-enabled components, which can be software or

hardware based. We view the QoS provisioning as consisting of five main activities

[Nguy_05]: specification, mapping, negotiation, adaptation, and monitoring. The QoS

specification aims at configuring the QoS in different layers of the system; it is done

using a specification language. The QoS mapping performs the translation of QoS

representations into different system layers, in a way transparent to end users. The

negotiation activity is an iterative process where one attempts to meet user requirements

while taking into account the possibly limited resources of the system. Within a

communication session, renegotiations may be invoked when the QoS manager detects a

QoS violation or when users want to have a better quality level. A negotiation is only

possible if QoS information from user and system is semantically comprehensible by the

1

involved system components. This is done with the help of the mapping activity. The

QoS adaptation is required to maintain as long as possible the quality agreement

established at the negotiation phase. Finally, monitoring is used to determine the

available system offers and to detect the degradation of quality during communication

sessions. The monitoring is also often used to update a QoS information base [Nguy05].

The QoS enabled components allow the QoS management activities to be properly

conducted. For example, user bandwidth levels can be specified by router configuration.

The QoS negotiation can be done with the help of specific protocols. The QoS

monitoring can be achieved by server or communication device features. In general,

critical services are usually provided with the help of a QoS architecture implemented on

top of QoS enabled devices [WangQ4], Thus, regarding the evolution of applications and

hardware components, we believe that QoS architectures need to be studied on both

sides: at the application layer and at the underlying layer, in order to improve the quality

and efficiency of the user-oriented services.

This thesis presents a two-pronged research: on architectures for QoS management at

the application layer, fulfilled mainly by software components; and on distributed

software architectures for routing devices in order to provide desired QoS at the

underlying communication layer. At the application layer, the QoS architecture we

propose deals particularly with the increasing amount of QoS information related to the

various components of a distributed system. At the underlying communication layer, we

propose a new scalable and distributed architecture that is able to fully exploit the

hardware platforms of the next generation routers, and to improve the quality of routers,

particularly with respect to scalability and to a lesser extent to resiliency and availability.

2

Part I: QoS Information Management Architectures

The first part of the PhD thesis deals with the increasing amount of QoS information

related to the different components of a system, which entails the need of a management

approach. The diversity and heterogeneity of QoS information are the main challenges

for QoS provisioning. In addition, existing QoS architectures focus principally on

network and performance parameters, which are no longer sufficient nor efficient in order

to take into account the new requirements from users and providers. For example, current

users are longer interested in the data content itself instead of the networking

performance. It recently appears that QoS should be considered from a broader

perspective [Kerh06, Abde03] so that the contribution of all system components can be

taken into account in order to provide the QoS. For example, providers are usually using

resource allocation methods (i.e., upgrading their network connection capacity) in order

to deal with increasing user quality requirements. This solution is costly and is not

practical in some given situations, such as for mobile users whose capacity is rather

limited by user devices. When QoS is considered at a larger scale, including user

requirements and system capacity, a more appropriate solution can be adopted; for

example, video data can be pre-compressed at the server side before the transmission, and

then decompressed at the client side when it is received, so that the traffic volume can be

smaller. The latter solution is less costly than the first one, however additional

information about user devices (i.e., available decompression software and memory

buffer for temporary storage), system capacity (i.e., processing resource for performing

compression) is needed. There are also alternative solutions such as data prioritization,

modality transformation, data transcoding, purpose classification or resource adaptation

3

which can be used efficiently to deal with QoS provisioning. These solutions require

information on the clients and servers, as well as on the cooperation between users and

providers.

In order to support QoS sensitive applications, system-specific QoS mechanisms such

as operating system (OS) scheduling mechanisms and network reservation protocols need

to be controlled. This crosscuts the distribution transparencies offered by the middleware

layer and reduces the portability and interoperability of applications. In order to deal with

this challenge, distributed services should offer abstractions for QoS management and

control mechanisms at the system level. A middleware layer seems a natural place for

brokering between QoS requirements of applications and the QoS capabilities of

operating systems and networks. Interfaces to applications, OS, resources and additional

protocols are expected to appear in such a layer in order to deal with a changing run-time

environment such as system and network load which influences the QoS capabilities.

Let us consider an example of a video streaming delivery service over the Internet. This

service is composed of geographically separated components: servers and clients; the

server accepts data input as rough image and audio captured by cameras and

microphones. After being processed by acquisition devices, these data are sent to the

client over the Internet platform. The client receives, then displays video clips to users

[WuOJJ. In such a system, the quality perceived by the user is depending on many

factors. First, acquiring video by camera and microphone may introduce distortions due

to optics, noise, etc. Digitalizing the image and the audio before transmission then may

alter the original signal and produce distortion. The transmission channel may also add

some noise to data and finally, the display device may introduce distortion, such as low

4

resolution, bad calibration, etc. A QoS management system should therefore provide an

interface allowing users to specify their requirements in a simple way. For example, users

can express their requirements in terms of four human-comprehensible levels "excellent",

"good", "fair" and "bad". This information should be mapped into a corresponding range

defined for example by MOS or PSNR metrics [ATIS01]. Corresponding encoding

techniques will be selected in order to satisfy these MOS or PSNR values. A negotiation

process will be launched to allocate the underlying resources supporting the video

encodings (Figure 1-1).

(User

(Applic

(System QoS)

User

QoS) I
Application

ation QoS)

System

Resource

(R :sour

t
1

i. • ^ ^

'
Resource

ce QoS)

Resource

User, operator

*
Video streaming

application

Operating system,
TCP layer, DBMS

•
Servers, routers, cameras, microphones,

material devices

Figure 1-1: QoS Layers of a Multimedia Distributed System and the Corresponding Components of

a Video Delivery Application

The variety and diversity of QoS information lead to the necessity of having a QoS

information base (QoSIB) to support the QoS management achieved by a middleware

layer. The role of QoS information is decisive because it is essential for user specification

and resource management and should be considered in the system architecture and design

[Nguy04~|, Considering the QDD (Quality-Driven Delivery) approach where the end user

is positioned at the center of a service delivery model [Gerb03], a QoS information base

should be provided with storing, accessing, transferring, producing and analyzing

5

capabilities. The main advantage of a QDD approach is that we can use alternatively

different management mechanisms (i.e., resource allocation or content adaptation) in the

underlying system to provide QoS support. Located at the heart of the QDD approach, the

QoS manager performs a complicated task of matching the user specification to system

offer. QoS information management is therefore required to permit the management

activities to access independently to a QoS information base, and also to transform

different types of QoS information into a format the requiring component can understand.

Therefore, our research aims at proposing an architecture which will be able to improve

the QoS provisioning based on QoS information management. Information models,

mapping rules and decision making mechanisms are developed in order to provide the

QoS according to user requirements.

Part II: Next Generation Scalable and Distributed Router

Architectures

A core router is one of the most critical devices which are deployed to provide QoS in

distributed systems. In the second part of the PhD work, we aim at proposing a new

distributed software architecture that is able to fully exploit the new router hardware

platforms and to improve the quality of routers, particularly with respect to scalability

and resiliency. In order to achieve this goal, we investigate distributed and modular

designs, where the routing software components can run independently on the same or on

distinct CPUs and interact with each other regardless of their respective physical location.

Such a design leads to a robust router which is not vendor specific and which can use

modules developed by different component suppliers.

6

A router, especially a core router, should scale both in terms of the number of ports

which can be connected to the router and in terms of the data forwarding capacity.

Scalability means being able to add modules when capacity requirements increase,

without impairing the switching performance. A router is resilient if it ensures that a

failure of one software non-routing component does not affect the behavior of other

independent routing software components. Availability is mainly due to two factors.

Firstly, the modularity makes it possible to use redundancy and replication of critical

functionalities over multiple modules. Secondly, the modular structure in itself tends to

limit the impact of faults in individual modules, and encourages sound engineering

design principles.

Basically, these features can be achieved by integrating more powerful processors and

memory chipsets in router hardware platforms. Together with the increasing number of

processors and memory capacity, router architectures have experienced much evolution

and distributed architectures have been recognized as one of the most prominent trends

[Chao07]. Such architectures have been investigated by several router providers and will

be deployed in the next generation of core routers [Kapl02], One of the highlighted

features of distributed architectures lies in the sharing of some tasks between control

cards and line cards, taking into account available processing and memory resources on

the line cards. This improvement allows the router to accelerate the processing

performance because some tasks can be done in parallel between control cards and line

cards, or among different line cards. One example of the task sharing is the data packet

7

processing where line cards achieve the data forwarding with routing information

updated by control cards.

Our research deals with the design of distributed software architectures to be

implemented on distributed hardware architectures of the new router generation.

Basically, a distributed software architecture is required to fully exploit the efficiency of

a distributed hardware platform. However, due to legacy techniques or business models,

we can observe that, even in the recent router products [Juni07, Cisc05], some of the

software components still remain centralized, particularly the routing protocol modules

and the Routing Table Manager (RTM). Since the control card of a router is responsible

for all routing tasks, it can easily be overloaded by overwhelming traffic in core

networks, especially when the routing tables get flopped (i.e., updated/refreshed). In

addition, bottlenecks can be experienced in a centralized architecture when the control

card is unable to process fast enough the huge number of requests coming from different

line cards. The time for route establishment and time to recover are also issues in the

centralized architecture because every protocol message must go through the control

card, leading to additional delay overhead. These limitations led to the design of a

distributed architecture for software implementation, particularly for hyper-speed routers,

such as the petabit routers [Tse04]. This thesis aims at the enhancement of the software

architecture of the first distributed router products [Avic06, Juni07], and in particular the

PBR1280 router of former HyperChip Inc. [DupJ05].

Some models for software distribution, such as the ForCES framework |"Dori07~|, have

recently been proposed to redesign the current router software. Based on ForCES, a

distributed control plane architecture has been introduced for the functions performed by

8

control cards and line cards [Deva03]. For example: i) link-specific functions are

performed on line cards, ii) update functions are performed by control cards, and iii)

protocol-specific functions still need to be considered on a case-by-case basis for

distribution with no standard model. However, the proposed architecture does not

consider the specific hardware architecture of next generation routers with a general

purpose CPU and extra memory resources on line cards. The ForCES-based architectures

can deal effectively with medium scale routers, e.g., routers having some tens of line

cards and some hundred interfaces. However, core routers, and especially petabit routers,

require enhanced distributed architectures in order to run on their high-scale hardware

platform (e.g., thousands of line cards). Therefore, in this thesis, we propose enhanced

distributed architectures, which enable efficient exploitation of the next generation router

hardware architecture.

Contributions of the PhD Thesis

Our approach, dealing with QoS provisioning for distributed systems, is to propose QoS

architectures in support of QoS information modeling and management and to design the

core routers with high scalability, resiliency and robustness. To this end, we have made

the following contributions:

In the first part of our research related to the QoS information modeling and

management,

We define an approach to support the quality-driven delivery based on a QoS

information management system. We demonstrate through an experimental video

streaming application that the current network-and-performance QoS

9

architectures are not able to deal efficiently with the evolution of distributed

system components and user requirements. QoS can be provided more efficiently

based on QoS information of all components of a system. An efficient QoS

decision is obtained only when all the mappings are taken into account. We

describe a framework to reach such goal including the information management

and building mapping rules. This work has been presented in [Nguy_03], |"Nguy04]

and [Nguy05"|.

We propose steps to build a QoS information management system based on QoS

information models. QoS information of each system component is represented

by a model with basic operations such as store, access and change. The QoS

information models are organized in a hierarchical manner from generic to

specific ones. The information management is therefore extensible in the sense

that new service components can easily be integrated into the QoS management

system. We also explore the different mechanisms to collect QoS information

from system and users. This work has been presented in [Kerh06].

We propose new mechanisms to build the QoS mapping rules in a flexible and

dynamical manner. QoS mapping rules are derived from available system

working state statistical information using data mining techniques. This work has

been presented in [Nguy06].

We define processes for making the best possible QoS decisions using a QoS

information management system built with QoS information models and mapping

rules of a distributed system. We also develop an experimental video streaming

delivery system which is able to make various QoS decisions with the help of an

10

independent QoS information manager considering the cost of resource

utilization. Such a system suggests alternative QoS management mechanisms,

which are not available in current video streaming systems, allowing the system

administrator to make cost-effective decisions.

In the second part of our research related to the design of core routers,

We propose novel distributed and scalable architectures to implement the

control plane for next generation routers. This contribution consists of a general

framework involving different distributed software architectures for routing and

signaling protocols. They can be used to effectively exploit the distributed

hardware of the next generation routers. The scalability and resiliency is also

improved. This work has been presented in [Kguy07a], [Nguy07b] and

[Nguy07fJ.

We design a distributed architecture for MPLS/LDP based on the general

distributed architecture for signaling protocols. We provide mechanisms for

message exchange, table and session management so that the MPLS/LDP

architecture can be fully distributed on next generation router platforms. This

allows the control functions to be implemented on the line cards of the router

and then avoids congestion on the control card. We also evaluate the

performance of the proposed distributed architecture in comparison with the

traditional centralized architecture. This work has been presented in [Nguy07d].

We propose distributed architectures for routing table management. We

demonstrate that the routing table management can also be distributed on new

11

router hardware platforms in order to improve the scalability in route processing.

Based on different types of routers, we present different distributed mechanisms

for routing table management and evaluate them in terms of CPU consumption,

memory usage and the number of exchanged messages. We also provide the

design of a distributed Routing Table Manager for highly scalable distributed

routers. This work has been presented in [Nguy07c], and [Nguy07e].

Outline of the PhD Thesis

The remainder of this thesis is organized in two parts.

The first part of the thesis, dedicated to the QoS architectures at the application layer,

includes chapters 1, 2 and 3. In Chapter 1 we present the background and motivation of

research, where we focus on the QoS provisioning at the application layer and its issues,

particularly for distributed multimedia systems. We also review and analyze some

emergent QoS architectures for distributed multimedia systems. In Chapter 2, we present

our approach for QoS information management based on the Quality-Driven Delivery

framework. QoS information models and QoS mapping mechanisms are provided.

Chapter 3 describes the QoS decisions and applications where we demonstrate that better

QoS decisions can be made using our QoS information management system.

The second part of the thesis, dedicated to new software architectures for the next

generation routers, includes chapters 4, 5, 6 and 7. Chapter 4 presents the background and

motivation of the research. We discuss the evolution of routers, their hardware and

software components and especially the main features of the next generation routers. We

also review the previous work which has been published on distributed software

12

architectures. In Chapter 5, we propose a new generic distributed scalable framework for

software implementation for the next generation routers. We also present new distributed

architectures for routing and signaling protocols and discuss the possibility of using these

architectures to implement the OSPF and MPLS modules. Chapter 6 describes the details

of the proposed distributed architecture for MPLS/LDP with further developments and a

performance evaluation. Chapter 7 provides different possible distributed architectures

for RTM and gives details of the selected architecture. We also evaluate the performance

achieved by the proposed RTM distributed architectures and discuss the ability of using

them for different types of routers

Finally, we conclude the thesis with the lessons learned and some thoughts about future

work.

13

PART I. QOS INFORMATION MANAGEMENT
ARCHITECTURES

Chapter 1 QoS Provision at the Application Level

In this chapter, we review the QoS provisioning and QoS issues for the distributed

systems. We describe the principles for QoS provisioning at the application level and we

focus on the QoS mechanisms such as resource allocation, adaptation and content

optimization. We also investigate the current QoS architectures and analyze their

insufficiency regarding the evolution of the current distributed systems and user

requirements. Finally, we motivate and provide the main objectives of our research.

1.1 Distributed Systems and Applications

Contemporary distributed multimedia systems are widely spread across various

platforms and infrastructures, such as telephone, dedicated optical or DSL lines. The

development of inexpensive high speed networking technology enables a new computing

environment where applications can be connected and share multimedia documents. The

distributed multimedia systems usually handle a large amount of multimedia content,

which is distributed across networks. This shared computing environment hold several

advantages over the traditional computing environment where each application has its

own dedicated purpose computing hardware. The emergent features of the new

distributed multimedia applications include: higher resource utilization, better

manageability and lower cost [NahrOO].

14

One of the main characteristics of the new distributed multimedia systems is the

heterogeneity. In addition to the various platforms, multimedia documents and

technologies, these systems typically go through independent upgrade and procurement

cycles which lead to heterogeneity over time.

Distributed multimedia applications can be classified along four dimensions: the task

they perform, the type of media they involve, the location of the operations (e.g.,

geographical dispersion of users) and the behavioral characteristics of users (e.g., user

expectations, skills) [Mira02]. The system architecture supporting such applications is

usually heterogeneous, consisting of a large number of client machines, database servers,

video servers or other specific servers, all interconnected through communication

networks. These complex environments require the integration of system management

mechanisms providing system scalability, application adaptation and quality of service

(QoS) support.

In legacy systems, access to the services such as network bandwidth, processing time

and data, follows a best-effort policy. The adoption of such a policy results in

unpredictable behavior in service provisioning. Current distributed multimedia

applications cannot tolerate uncertainty in relation to access to data and computational

resources. Such applications are said to have quality of service (QoS) requirements where

users demand that the availability of the resources used by them be predictable. QoS

support was initially introduced in the field of telecommunication networks and

multimedia systems and led to proposals for management strategies aimed at deciding

whether and how multimedia streams can be delivered to the user with some constraints.

In the context of distributed systems, QoS is considered as the ability to adapt system

15

offers to user requirements, taking into account several aspects: communication channel,

client applications and the nature of the service itself. QoS used in the system references

to the architectures ensuring the delivery of service from end to end or from application

to application.

Traditionally, mechanisms for resource management are added to computational

systems in order to make access to computational resources in a predictable fashion. The

term "QoS architecture" is used to describe middleware which provides applications with

mechanisms for QoS specification and enforcement. These architectures organize the

resources provided by the system with the intent of fulfilling the QoS requirements

imposed by the application.

For example, the video delivery service presented in the Introduction can be enhanced

with QoS management middleware in order to provide the video streaming service with

higher quality constraints. The QoS architecture provides an interface allowing users to

specify their requirements and then interacts with device managers, or uses OS functions,

in order to allocate resources satisfying user requirements. Various types of hardware,

operating systems and network infrastructures coexist in distributed systems, and

multiple resource reservation protocols can be deployed in this environment.

Consequently, allowing applications to manage resources via a middleware layer implies

that the differences between resource reservation protocols have to be handled by the

middleware. Therefore, the traditional QoS architectures strongly depend on computing

platforms and suit a specific application area.

Generally, a QoS architecture is achieved based on the cooperation of system

components, including communication network, applications and management software,

16

aiming at providing the service of quality to users. This leads to the fact that QoS can be

studied from different perspectives: resource management [Nahr99, Abde03], database

management [Ye03] and agent-based and cooperative management [Phan03]. The

common objective of QoS architectures for distributed systems consists in the provision

of high quality communication from end-to-end transparently to the users. Service

layering, resource allocation, and optimization are processed inside the system. Currently,

there is not a specific approach for QoS in distributed systems, but some researchers have

proposed to use layering [WangOO, Gu05, Yuan06] or object oriented [GJ1105, Duza04]

architectures.

We next present the issues for QoS provisioning in such architectures.

1.2 QoS Issues

QoS is widely used in various fields of data processing. The term QoS has been

introduced originally in the telecommunications area to describe the operational

requirements for the quality of communication such as bandwidth, delay, error rate,

reliability or availability. The QoS is delivered based on contracts between providers and

users. A typical contract, so called SLA (Service Agreement Level), specifies, usually in

measurable terms, the quality levels the provider has to furnish. Based on the SLA, the

provider allocates the resources (e.g., server or routers) and configures the links to satisfy

the required number of users or volume of traffic [ICSOO]. With a layer-based

communication system such as the OSI model, the higher layers uses the services

provided by the lower layers in order to achieve user communications. Due to the QoS

constraints, these layers need to exchange functional information, such as bit rate,

17

throughput, etc., and non-functional information, such as availability, reliability, etc., out

of the data and control messages. This leads to some challenges because the legacy

systems and protocols have not been designed to support this information. Some

extensions or complementary protocols, such as DiffServ or IntServ, may be used to deal

partially with these issues. However, they mainly focus on the functional information and

only a few parameters are taken into account, as shown in Table 1 -1 .

In order to provide the QoS, the network administrator can use various QoS control

mechanisms. Most legacy Internet applications, such as FTP or email, may accept the

best-effort QoS where providers promise to deliver the best service they can, but do not

guarantee a high-quality connection. Contemporary applications, such as video

streaming, require a bandwidth larger than a predefined minimal threshold to be working

properly. Networking resources, such as the router ports, are therefore reserved for the

demand, based on the network management policies and access control mechanisms.

Most current networking devices allow users to configure these policies. However, due to

the heterogeneity of network equipment and management software, the exchanges among

devices and networks remain a challenge in order to establish a QoS communication from

end-to-end. The model widely used to specify the QoS parameters of the current

networking devices is CIM, created by DMTF {Distributed Management Task Force)

[DMTF071. However, this model is not yet completed for all networking services.

18

\ Architecture

Characteristic^.

Throughput

Delay

Jitter

Error ratio

Availability

Priority

Connection Mode

Reliability

Cost

Internet /IETF

IntServ and

DiffServ

X

X

X

X

ITU/ATM

Forum

PCR1/ SCR2

CTD3

CDV4

CLR'

X

X

X

OSI

X

X

X

X

X

Table 1-1: QoS Characteristics Considered by Different Organizations

The QoS problem is also met in the field of software engineering to describe the non­

functional characteristics of a system. In general, a software system is composed of

several components with many depending interactions among them. Setting the QoS

characteristics of a component may have a direct impact on the architecture of the whole

system. The QoS should therefore be taken into account from the design phase of the

software development process. In [Frol98], authors proposed to characterize the QoS

along dimensions. A set of dimensions, sharing common criteria, can be gathered

together into a category. A dimension consists of a name and a domain of values. There

are three types of domains of values: numeric, enumerated and set. The QoS specification

is then based on the QoS contracts, which define the values of the dimensions. A profile

associates a contract to users, interface, operations, etc.

PCR : Peak Cell Rate SCR: Sustained Cell Rate
4 5

CTD: Cell Transfer Delay CDV: Cell Delay Variation CLR: Cell Loss Ratio

19

The QoS support in distributed systems involves issues addressed from both the

telecommunication networks and the software engineering points of view. Research

considers the QoS as the ability to adapt the system offers to the user requirements,

taking into account various factors such as the communication systems, the client

applications, the service architectures, etc. In particular, one of the issues for distributed

systems is that QoS is usually specified and interpreted by users and providers in

different ways. Users are concerned with the characteristics of the applications while

providers are more interested in the system parameters and resources. This leads to the

need of mapping mechanisms in order to unify different information.

We next describe mechanisms for QoS provisioning and then discuss the requirements

for QoS architectures.

1.3 QoS Provisioning

As presented in the previous section, distributed service delivery demands QoS support,

especially for QoS sensitive applications such as multimedia and e-commerce services.

QoS provisioning is enforced by SLA contracts and QoS violation is usually related with

financial penalty.

Traditionally, the most important concern of distributed multimedia systems is

bandwidth allocation to user. Since the multimedia transmission requires a lot of

networking resource while networking equipment is often costly. In order to deal with

such a challenge, QoS mechanisms can be deployed, such as:

a) Resource allocation. Allocation and re-allocation are fundamental methods to

address QoS violation problems. One of the most used models for resource allocation is

20

Integrated Services, based on RSVP protocol {Resource Reservation Protocol) that sets

up paths and reserves resources in the network. RSVP provides end-to-end QoS services

on per-flow basis. Thus, when bandwidth is decreasing, RSVP can be invoked to reserve

more network resources. In the context of multimedia networks with multiple

components, resource allocation is a multi-dimensional problem taking into account

resource information profiles, the application requirements and utility functions.

b) Adaptation. QoS adaptation is used to maintain as long as possible the service level

agreement built at the negotiation phase and can be achieved at the client side or server

side. In case of QoS violation, QoS adaptation is performed transparently, in such a way

that the system transition takes place from one state to another state to provide the

requested level of service. QoS adaptation differs from conventional management

function due to its real-time characteristics. Thus, when bandwidth to users is decreasing,

available adaptation mechanisms can be: changing the network path or changing the

server providing the service. In general, the majority of adaptation mechanisms can fit

into three main classes ["Nguy05~|: resource control, reconfiguration and change-of-

service. The first class includes the mechanisms making fine adjustments to individual

resources in the distributed system. The second class performs the adaptation by altering

the topology of the end-to-end processing. The third class allows users to prioritize

services and adjust as necessary.

c) Content optimization: Content optimization can also be used as well as adaptation or

allocation to deal with QoS violation problems. When bandwidth is decreasing, possible

content optimization techniques consists in compressing data content, or changing the

codec. For example, [Abde99] proposes a technique replacing GIF images by JPEG

21

images, which may reduce transmission overload more than eight times. [ShahOl]

presents a classification of content optimization techniques including: i) information

abstraction for reducing bandwidth requirement, ii) data prioritization for providing

different QoS levels, iii) modality transformation for transforming content adaptively to a

particular device, iv) data transcoding for enabling universal access using pervasive

computing device, and v) purpose classification for eliminating redundant information.

To the best of our knowledge, a good QoS provisioning mechanism should have the

following characteristics:

• User satisfaction. The service provision has to meet user requirements, in terms of

desired quality levels (e.g., service time and loss ratio). With the distributed

multimedia systems, there are usually multi-dimensional requirements at the same

time. For example, a user can have different requirements on the image, audio and

text. The system consists of different platforms and infrastructures needed to be

considered together. A user requirement can also be achieved by different

components, which can proceed in parallel.

• Efficient resource utilization. In addition to satisfying user QoS requirements, we

also want to achieve efficient resource consumption. This problem has different

implications in different environments. For example, in the pervasive computing

environment, we need to overcome resource constraints of mobile devices such as

limited memory capacity. However, when we look at the peer-to-peer computing

environment, the problem becomes how to efficiently distribute the load among

different peers to achieve optimal load sharing.

22

• Flexibility. The service provision should be able to adapt to the change of

environment and user requirements as fast as possible. Besides, most current QoS

provisioning mechanisms consider only a limited number of QoS dimension or user

requirements. As a result, the flexibility and efficiency is limited when the system is

growing. The multimedia distributed system requires QoS provisioning mechanisms

that are extensive, to support the heterogeneity of its components.

It recently appears that resource allocation and adaptation can be combined to provide

QoS in distributed systems [FostOl, Kerh06], but we believe that an optimal decision will

not be easy to obtain if all QoS dimensions are not considered together. The user

requirements should be positioned at the center of the QoS framework as they are the

ultimate objective and QoS information of all components of the system should be taken

into account. We will review the current QoS architectures and then come back on this

discussion in the next section.

1.4 Review of Current QoS Management Frameworks

The first QoS architectures for distributed systems have been introduced in the 90s

[AUIT98]. Most of them have been developed in the context of research projects and dealt

only with some specific QoS problems. Until very recently, there have been many

attempts to generalize and standardize QoS architectures in order to build a system which

covers all QoS aspects of distributed systems but no commercial product has been

introduced. Some notable architectures are:

• The QoS framework of the MONET research group. It is a set of QoS

architectures providing services and protocols for end-to-end QoS service

23

guarantee for distributed multimedia applications. They defined different projects

for QoS resource management, QoS middleware and QoS routing. Most

interesting architectures include 2KQ [NahrOO], QoSTalk [GuOl, Gu05] and

GRACE [Yuan06]. Some script languages for QoS information specification have

been developed to describe user requirements and functionality of applications,

systems and resources. The translation of user requirements, considered as generic

information, into specific resources parameters is done via composite system

information. The main contributions of MONET include:

o A XML-based QoS enabling language. This is an extended version of

XML, so called HQML, used to specify QoS at user, application and

resource levels. Since XML is an interactive Web language, HQML can

reuse this feature to report QoS violations. A mechanism to map user

requirements to a predefined set of resource parameters is also developed.

o A mechanism, so called 2KQ, which partitions the end-to-end QoS setup

process into distributed QoS compilation and run-time QoS instantiation

phases for different types of applications.

o A service composition program, so called SpiderNet, which combines

different components in order to achieve a requirement,

o A cross-layer design, which allows the resources to adapt to application

requirements based on the coordination of the operating system.

Basically, the researches of the MONET group have covered many aspects of

the end-to-end QoS provisioning problem. However, the number of QoS

24

parameters and the system components are limited. In addition, they do not take

into account different types of mapping.

• The QoS architecture for multimedia application developed by Hafid and

Bochmann [Hafi99, Serh05]. This architecture focuses principally on QoS

negotiation and re-negotiation. It takes into account the static information

identifying the service and the dynamic information characterizing the

communication sessions. QoS information is defined by profiles for users,

applications and resources. The mapping consists of transformations among

different profiles. The negotiation process tries to determine a functional

configuration of the system that can support user QoS requirements. This

architecture has a QoS manager, which maintains a set of functional

configurations of the system. For each user requirement, it selects the optimal

configuration considering the cost of service. The maximal bit rate and minimal

bit rate are the principal parameters of the system. Some optimal algorithms for

QoS decision making are also taken into account.

• QuO [Zink97, Wang04]. It is an object-oriented architecture with certain QoS

capabilities. It defines three specification languages, called CDL {Contract

Definition Language), RDL {Resource Definition Language) and SDL {Structure

Definition Language), used to describe the QoS of application, resource and

system respectively. QoS specifications are defined by developers for specific

objects when the application is being built. Mapping from object specification to

the CORBA platform is done when the application is compiled. The features of

QuO object design include:

25

o Integrating knowledge of the system properties to the objects. This allows

the object to be aware of the environmental conditions.

o Reducing the variance in system properties. This allows the QoS to be

provided in some predefined levels,

o Using design patterns. This allows the objects to be programmed in a

systematic way.

o Supporting code reuse and generation. This eases the application

development.

Applications may use QuO object services through the contracts. A contract

consists of:

o A set of functional states. Each state corresponds to a QoS level. There is

an activating condition for each state,

o Transitions between the different states,

o A reference to the object representing the environmental condition,

through which the applications are aware of the system QoS.

o A notification mechanism to inform the application about the transitions of

the states.

The contract does not contain information about the cost of service. Thus it is

impossible to compute the best QoS decisions in terms of the cost.

• TAO [Schm99, GJ1105]. It is also an object-oriented architecture based on the

CORBA distributed middleware, as QuO. Unlike QuO, TAO focuses rather on the

processing performance (in terms of execution time) and event scheduling than on

the QoS specification. TAO added some QoS features to the standard CORBA

26

bus such as: i) the ability of QoS specification and validation, ii) real-time

characteristics, and iii) the performance optimization. QoS information is defined

by the IDL interfaces CORBA provides. The QoS of the transport layer and the

operating system can be specified, based on the following parameters.

o Transport layer: sending buffer size, receiving buffer size, keep alive time,

routing permission, delay permission, network priority enabling.

o Operating system: worst-case execution time, cached execution time,

period, criticality, importance, quantum operation, dependency

information.

TAO provides predefined functions allowing the applications to specify QoS

levels based on the above set of parameters. Some additional mappings have been

added so that QoS specifications can be translated to the CORBA platform

parameters. However, in some cases, TAO requires users to define the mapping

rules in ad-hoc manner, for example when DiffServ is used.

Table 1-2 summarizes the main features of the five architectures described above. The

aspects taken into account include: implementation of the architecture, specification

levels, QoS information, transmission support, mapping mechanisms and the monitoring

methods. As we can see, the current QoS architectures provide intermediate QoS

controllable layers for distributed applications. There are two models for these

architectures: layer-based and object-based. The layer based architectures connect the

applications to the resources by building a QoS enabled middleware layer. Only a limited

number of logical resources is considered in these architectures, where they mainly focus

on the communication network. User requirements are performance related parameters.

27

The object based architectures define the software objects with QoS capability. Each

object can achieve a limited set of QoS functions. Applications may use the services

provided by these components to satisfy user requirements. The physical resources are

not presented and these architectures are based on an abstract resource management layer

(i.e., CORBA). They mainly deal with the execution time and task sharing for heavy

resource consuming applications.

QoS

architec­

ture

MONET

framework

(1996-

2007)

Hafid &

Bochmann

(1999-

2007)

QuO

(1997-

2006)

TAO

(1999-

2007)

Implem­

entation

layered

layered

object-

oriented

object-

oriented

Transmissi­

on support

High speed

(ATM

network)

Best effort

(Internet),

but often use

high quality

network for

multimedia

applications

CORBA

middleware

CORBA

middleware

Specifica­

tion levels

- User

- System

- Resource

N/A

(some

simple user

interfaces)

- User

- System

(object)

- Resource

Using QDLs

languages

pre-defined

IDLs

QoS

information

3 types:

- generic

- composite

- specific

2 types:

- static

- dynamic

Represented

by profiles

2 types of

information:

- negotiable

- real

system

execution

time

Mapping

Compilation of

generic

information in

terms of specific

information

Mapping user

specifications to

system

configurations

N/A

(defined by

CORBA)

Mapping

CORBA object

to specific

platforms

Monitoring

method

Specific

methods

Tools

available

from

infrastructure

or resource

reservation

protocols

Available

CORBA

methods

Available

CORBA

methods

Table 1-2: Comparison of QoS Architectures

28

Both types of the current QoS architectures are not extensible to integrate new QoS

parameters, especially from underlying devices. They manage QoS information in a

hard-coded manner. The implementation of mapping rules between layers or components

is not presented. Only a QoS solution is considered within the set of possible QoS

solutions regarding the different components of the system.

Through this review, we recognize that the evolution in the fields of

telecommunications, network management, software and distributed systems has created

new QoS information for specific devices, architectures and software systems. It is

therefore essential to have a systematic approach allowing the management of this

information. However, in the QoS architectures presented in this section, the information

management is achieved in an ad-hoc manner and is integrated directly into the code,

leading to the following disadvantages:

• The modification of a QoS parameter, if needed, requires modification of the source

code of applications or even modification of system architecture.

• The extension and reengineering of system become difficult because the definition

of a new QoS parameter will require changing the system design and

implementation.

• It is impossible to modify a QoS parameter when the application is running.

• There is no flexible mechanism to express the relationships between different QoS

parameters.

• The maintenance of the functions providing QoS can be costly.

29

The QDD framework we propose in Chapter 2 is a novel approach for QoS information

management, focusing on QoS information modeling and mapping, which is able to deal

with such issues.

The outline of our approach will be provided in the next section where we motivate the

research problem.

1.5 Motivation

The trend recognized through our literature review is that the evolution of applications

in different domains (e.g., telecommunication, network management, software

engineering, distributed system) requires QoS information for describing user

specifications and system offers. The volume of QoS information is increasing as new

devices and applications with specific features are developed. In addition, QoS

information becomes more diversified and heterogeneous due to various system

architectures and services. We believe therefore that a QoS information management

system should be provided, allowing QoS management activities to obtain appropriate

QoS information with accurate formats and contents. The QoS information management

should be achieved by a QoS information manager, located at the center of the QoS

management approach, providing the required QoS information to users, providers and

all components contributing to the quality delivery process. However, such a QoS

information manager has not been taken into account in the existing QoS architectures

where the QoS information management is hard-coded instead. The approach we propose

in this thesis, focusing on modeling and transformation, aims at separating the QoS

30

information management tasks from the QoS management architectures so that the QoS

information management can be achieved more efficiently and flexibility.

The ultimate goal of our research is to propose a new approach for QoS information

management for multimedia applications in the context of distributed systems. More

specifically, our objectives are to design QoS information models for multimedia

applications; design the methods to create these models, and to generate and store QoS

information; define the QoS mapping activities for different QoS architectures; develop

the mechanisms for generating the mapping rules; and validate our approach through the

possible QoS decisions made for an experimental distributed application.

1.6 Chapter Conclusions

In this chapter, we have presented the fundamentals of QoS provisioning for the

distributed multimedia systems. The main concept of the QoS is the QoS characteristics,

so called dimensions, which are used to describe the non-functional parameters of a

system. The QoS is provided to end-users by the cooperation of the components

contributing to the service. It is guaranteed by a contract between users and providers.

Essential mechanisms used to provide the QoS include: resource allocation, adaptation

and content optimization. In order to select the appropriate QoS mechanisms, the

contribution of all the service components should be taken into account.

The current QoS architectures are dealing with specific QoS problems, e.g., for a given

service or system. They can be based on layering or object oriented architectures. Only

some specific layers or service components are considered and the QoS decision usually

concerns resource allocation. We also pointed out that the current QoS architectures are

31

not designed in an extensible way, so the integration of new service components is not

possible. The QoS information management is not considered as a separate module in the

system, raising the issues of QoS management and QoS decision making.

Our proposal is a QoS management approach that is able to select the optimized QoS

decisions based on the available QoS information of all service components of the

system. To this end, we will investigate the QoS information management mechanisms in

the next chapter where we focus particularly on the information modeling and mapping.

32

Chapter 2 QoS Information Management

This chapter presents QoS information management and our approach to manage the

QoS information efficiently. We begin by investigating the QoS management activities

and the need of QoS information for QoS provisioning. We then position our approach in

the context of the QDD framework. QoS information modeling is presented to support

the QDD framework, and we explain the mechanisms we propose to collect and manage

QoS information. We also focus on the QoS mapping activity and then we propose an

approach to build the mapping rules to translate QoS information among different service

components.

2.1 QoS Management Activities

In a distributed service model, the service must be delivered transparently from provider

to users. The difference between provider and users leads to two different points of view

on the service: the one of the provider is directly related to the distributed system

supporting the service; the one of the user concerns the application and human

perception. While users expect that QoS information can be described in the simplest

possible way, the provider usually tries to detail as much as possible this information in

terms of physical resource parameters. This paradox results in the classification of QoS

information into two categories: qualitative and quantitative. Qualitative QoS information

is used primary by users to specify their requirements. Qualitative information is not

directly measurable and can be expressed in terms of quantitative information in the

context of a given service. Within a simple specification, qualitative information can be

33

expressed by users in terms of very abstract notions such as "Excellent", "Good", "Fair"

or "Bad". The provider, on the other hand, describes and quantifies the QoS he offers in

terms of measurable information, such as "transmission rate 50 frames per second" or

"processor speed 10 MIPS".

Service distribution

Adaptations

Specification

w

Mapping

i i

Monitoring/
Collect

S ^ \

C)
Negotiation

Provider

Figure 2-1: QoS Activities within a Service Distribution Session

One of the main activities of QoS provisioning is the information processing, which is

achieved by different system components. For example, a video streaming application

[WuOll composed of geographically separate servers and clients has to take care about

the quality of raw images and audio data, communication channel and software

applications (Figure 2-2).

In order to provide the video streaming with the quality satisfying the user

requirements, such a system is built with a QoS Controller component. Since the server

and the client are geographically separated, the QoS Controller should be implemented

on both the server and the client sides. On the server side, the QoS Controller is

responsible for combining the encoded video image and audio, and reducing the noise.

Client

34

On the client side, the QoS Controller separates the video and audio in order to display

them on separate channels. User QoS requirements are transmitted to the streaming

server through the communication between the two QoS Controller modules. From the

user point of view, the quality of a video sequence is traditionally expressed in terms of

the perceptive performance such as image resolution or frame rate. The ultimate goal of

QoS provisioning is to allocate and control all the physical and logical resources

contributing to the multimedia transmission session in order to deliver the service

satisfying the user requirements.

Raw
video

Video
encoding

Raw
audio

Audio
encoding

Streaming video server

Storage
svstem
Encoded
video

Encoded
audio

QoS
Controller

Transport
protocol

Client/Receiver application

Encoded
video

Synchroniz'
ation

Encoded
audio

QoS
Controller

Transport
protocol

Internet

Figure 2-2: Architecture of a Video Streaming System

Therefore, the challenges for QoS provisioning include:

• The mapping between different levels of the system. The qualitative information

at the user level must be mapped into qualitative and/or quantitative parameters

at the network and system levels.

• The access control according to the quality levels.

35

• The validation of QoS in cases of dynamic changes of system and network. The

QoS provisioning is expected to adapt dynamically to the changing condition

along the communication session.

In the context of multimedia applications, qualitative information describes the quality

of multimedia objects the user receives, including voice, video and data. Samples of

multimedia applications include video conferencing, video on demand or distant learning.

The provision of QoS for distributed multimedia systems must take into account different

operations performed on multimedia objects, namely visualizing, editing, converting,

processing, retrieving and analyzing.

Basically, QoS specification starts with collecting information from users and system

components. Most current systems provide users with a graphical interface allowing them

to declare their required quality level and the acceptable cost. On the other hand, QoS

information about the system offer is collected by monitoring tools. Sometimes, data

collected by monitoring tools consist of a set of values, while users need only certain

particular ones (i.e., medium, minimal or maximal values). In such cases, output data

should be pre-processed to get the desired values. The data analysis is also needed to

filter the valid values when there is a negative influence of the environment on the

results.

Since QoS parameters of each system component have different meanings, mapping is

required. This operation aims at transforming QoS information. The mapping process

helps to allocate system resources according to the user's demand. As current systems

consist of many different layers or components, the mapping activity is required to make

them cooperate in such a way that output information from one component can be

36

understandable by other components. For example, in order to allocate router bandwidth,

QoS information of TCP flows provided by the transport layer should be translated into

QoS information of IP traffic at the network layer using some mapping rules. Mapping

rules can be used also to convert QoS information from one system to other, for example

from IP to ATM so that an application can run on different systems without having to

modify its QoS requirements. Mapping is generally based on the relationships between

different parameters. This relation is traditionally expressed in terms of mathematical

formulas. For example the loss rate at the application layer can be calculated from the

loss rate at the network layer using the following formula [Huar97]:

L(n)xA(a)
A{n)

where L(a), L(n) are respectively the loss rates at the application and network layers, and

A(a) and A(n) are respectively the PDU average sizes at the application and network

layers.

When QoS information has been collected and processed, it needs to be stored. In large

systems, QoS information is usually stored in a database. The access to the database is

granted by a system manager and should be performed using queries. Basically, QoS

information is often stored using a management information base (MIB) [Hafj99]. A

QoSIB {QoS information base) can be remotely accessible by management protocols

such as STMP. In the current QoS architectures, the QoSIB is usually built using an ad-

hoc manner, meaning that information is collected then passed directly to the QoSIB with

no treatment (e.g., pre-analysis). In order to access the QoSIB, distributed components

should have extra knowledge about required information stored in the QoSIB, such as

information definition or relative position of required information inside the QoSIB.

37

In summary, QoS provisioning starts with the specification activity and an intermediate

component, such as QoS Controller, should be inserted into the system in order to

guarantee the expected QoS level. This component is based on available QoS information

about the system, which can be obtained by collection, analysis, mapping and storage

operations. We next present our framework to build such a QoS information management

system and to define a QoS information base.

2.2 QDD Framework

As stated in [Nguy04], QoS information plays a decisive role in the QoS provisioning

process. Due to the evolution of distributed applications, the amount of QoS information

increases, leading to the need for management approaches. The diversity and

heterogeneity of QoS information are the main challenges for QoS information

management. In addition, existing QoS architectures focus principally on network and

performance parameters, which appear sometimes no longer adequate for new

requirements from users and providers. In [Kerh06], we discussed that QoS should be

considered from a broader perspective so that the contributions of all system components

can be taken into account in order to provide QoS. For example, instead of using resource

allocation methods (i.e., upgrading network connection bandwidth) as current providers

are doing, we can deploy alternative solutions such as data prioritization, modality

transformation, data transcoding, purpose classification or resource adaptation in order to

efficiently deal with the QoS problem. These solutions require full information about

clients and servers. Some intermediate layers should also be implemented on clients and

servers.

38

We believe therefore that a QoS information manager is essential for QoS provisioning

in the context of distributed multimedia applications, which is unfortunately not yet

defined in current QoS architectures. Such a QoS information manager will be

responsible for offering QoS information management services, such as store, access,

share, transfer or produce, to all components of the system. In order to design and

implement the QoS information manager, we position our work in the context of the

Quality-Driven Delivery approach, proposed by Kerherve et al. [Gerb03, Kerh06].

The QDD framework includes QoS information modeling and transformation. QoS

information models are used during different QoS activities for translating requirements

to system constraints, for exchanging QoS information, for checking compatibility

between QoS information and more generally for making QoS decisions. Transformation

is used for supporting some QoS activities such as QoS mapping. The following activities

are involved in the QDD framework:

• Modeling QoS information. This aims at designing QoS information models

with basic operations such as store, access, derivation, generation, etc., for

system components. In the context of QoS information modeling, we are also

interested in the collecting operation, used to obtain QoS information from

system components and to analyze and synthesize such information.

• Mapping QoS information. This aims at representing different types of

mappings used in a distributed system. One of most important tasks involved in

QoS information mapping research is building QoS mapping rules, which

consists in proposing a flexible mechanism considering possible QoS mappings

between components or layers in a system.

39

Making QoS decisions. This aims at selecting mapping schemes allowing the

system components to provide the QoS in an optimal way in terms of user

requirements and system capabilities.

QoS
information
modeling

Collect
QoS

information

Produce
mapping

rules

Make optimal
QoS

decisions

Figure 2-3: QDD Steps

To illustrate the principles of QDD, we take the example of a video delivery service

where users specify their quality preferences according to three dimensions: the language

of the audio sequence, the size and the frame rate of the video. Figure 2-4 presents a

simplified view of this service. We identify three main modules: the quality information

manager (QIM), the decision engine (DE) and the adaptation and delivery engine (ADE).

Quality
Information
Manager

Decision
Engine

Adaptation
and Delivery

Engine

User"QDality"tnformatfon
Media Quality Information

Resource Quality
~-^__ Information __- - '

Application components

Figure 2-4: Components of a Video Delivery System

The QIM is in charge of collecting, storing, integrating and providing access to the

quality information (QI) used by the decision engine. This information can be classified

into three different categories: user QI describing the preferences and requirements of the

user in terms of quality levels; media QI describing the characteristics of the video

sequences and finally resource QI describing the characteristics of the resources, such as

user equipment, servers or network connections.

40

The decision engine, located at the center of the system, is in charge of making QoS

decisions allowing the video delivery under the constraints specified by the users and/or

concerning the available resources. Such decisions can be made in a centralized [NahrOl]

or distributed [Lima04] manner and may lead to content adaptation, resource allocation

or resource adaptation.

The ADE is responsible for executing the plan produced by the decision engine. The

ADE interacts with the different components of the system (encoder, video server,

network) to finally deliver the video sequence to the user.

The above example illustrates the QoS provisioning based on a QoS information

management system. We next describe the steps we propose to build such a system.

2.3 Basic Notions

The central point of the QDD approach is the QoS information models. QoS

information models are built based on conceptual notions. Most important notions

include: service, user, actor, dimension, category and value.

Service, user and actor

QDD services are offered to users and supported by different actors. A service is

offered to several users and a user can access several services. In the description of a

service, we are interested in the actors involved in the delivery process, but more

specifically those influencing the quality level of the provided service. We thus focus on

the elements allowing the description of the quality level offered by the actors supporting

a service. Actors can be components of the distributed system such as the communication

network, the video server or the database server, but also the objects which are delivered

41

such as video objects, multimedia documents, or web pages. In the example of our video

delivery service, we could make a distinction between two different types of actors:

media actors, which are video objects to be delivered, and resource actors, which are the

resources used for the delivery, such as the user equipment and the network connections.

Quality dimensions

A quality information model is built with the concept of quality dimension. Quality

dimensions are used to describe objective or subjective characteristics relative to the

quality level of the different actors of a delivery service or the quality level expected by

the user. Subjective characteristics refer to the quality level perceived by the user while

objective characteristics refer to a measurable quality level. An example of a quantitative

dimension is networkjthroughput. This quality dimension is objective and can be

measured using monitoring tools for communication networks. An example of a

subjective dimension can be response_time with the values: (unacceptable, bad, good,

excellent). This dimension is qualitative since the possible values depend on the

perception or the interpretation of the user.

A quality dimension takes its values in a definition domain. These values are used to

build expressions associated with dimensions. Expressions can be the declaration of a

value: for example network_throughput = 1MB or the declaration of a constraint such as

2ms < responseJime < 5ms.

The basic notions described above are used to build QoS information models as

presented next.

42

2.4 Modeling QoS Information

Our QoS information modeling approach is based on the QoS conceptual notions such

as dimension, category and value. Starting from these concepts, we are able to build the

models allowing description of QoS information. A QoS information model is defined in

an open way, meaning that extension and reuse are enabled in the design and deployment.

In the QDD approach, QoS information is modeled by two basic models: user model and

actor model.

• A user model contains qualitative and quantitative information describing user

requirements,

• An actor model integrates the quality dimensions along which is described a

quality level for a given system component and can be related to resources or

data.

One of the important contents of our research consists in designing the QoS information

models. The approach we propose is based on a classification of QoS information where

QoS information is divided into categories: qualitative and quantitative. System

components are also grouped together into classes so that their QoS information can be

classified in an appropriate way. For example, a possible proposal classifies the system

resources into two groups: logical and physical. The logical resources include the

management resources (e.g., OS, file management system, database management) and the

transmission protocols (e.g., TCP/IP). The physical resources include storage devices

(e.g., hard disk, memory), communication equipment (e.g., router, input/output

interfaces), processing resources (e.g., processor), and perception resources (e.g., camera,

microphone) (Figure 2-5).

43

Layer

User

Application

(Video delivery

application)

System

(OS, transport

protocol)

Resource

(network,

server, storage

device)

QoS dimensions

« Gold » quality

« Silver » quality

Audio/Video sample size

Encoding

Synchronization

Cost

Packet size

Number of transactions per second

Network end-to-end delay

Bandwidth

Error rate

Mean time to repair

< H User Quality

< K Media Quality

4 *] Logical resource

« H Physical resource

Figure 2-5: QoS Information and the Corresponding Models

Based on the conceptual notions of QoS information, different QoS information models

can be built. QI models are composed of model elements, each of them describing a

quality dimension. We have defined three QI models which can be used to represent a

general service: User Quality Model, Actor Quality Model or Core Model [Kerh06],

Figure 2-6 presents the class hierarchy for these QI models.

The model elements of a User Quality Model describe the dimensions used to specify

the expected quality level. We make a distinction between Qualitative Quality Model

where the dimensions included in the model are qualitative dimensions, and Quantitative

Quality Model where the dimensions are quantitative dimensions.

44

Quality
Information

Model

,.

User
Quality Model

Core
Quality Model

Actor
Quality Model

Qualitative
Quality Model

Quantitative
Quality Model

Resource
Quality Model

Media
Quality Model

Figure 2-6: Quality Information Models

The model elements of an Actor Quality Model integrate the quality dimensions along

which is described a quality level. We make a distinction between Media Quality Model

built with the dimensions used to describe the quality level of an object to be delivered,

and Resource Quality Model describing the quality level offered by a system component

(communication network, database system, video server, user's device, etc.).

The Core Model is unique and contains the predefined set of generic categories and

dimensions relevant for all types of QDD services. It can be built on the basis of existing

standards. Each of the following QI models: Qualitative Quality, Quantitative Quality,

Resource Quality, Media Quality, is associated to one and only one service.

Model management is the kernel of the QDD framework. Some model operations have

been defined for different steps of the QDD process, such as derivation, instantiation and

mapping [Gerb_03J. The derivation operation is used to build QI models from other

already existing models. The instantiation of a QI model produces quality information. It

creates a container for QI and expressions (values or constraints) on the dimensions

included in the QI model. The mapping operation transforms different QI models and

deals with the heterogeneity of QI between different components of the system. In this

45

research project, we focus particularly on mapping operations used to transform

qualitative or quantitative user QI models into quantitative actor QI models.

Based on the QoS information models presented in this section, a QoS information

management system can be built. We next describe the steps to generate QoS information

from these models and the structure of a QoS information management base.

2.5 Collecting QoS Information

In the context of QoS information modeling, we conducted research about QoS

information collection, so called QoS information monitoring, which is required for

generating instances from QoS information models. Monitoring QoS information is also

one of the most important QoS activities, used for QoS negotiation. We are interested in

both user information and system information. Current QoS-enabled applications usually

provide graphical interfaces allowing users to declare their desired quality level and the

acceptable cost [Jin04J. On the other hand, QoS information about the runtime

environment is collected by monitoring tools, which can be classified into three

categories [Agar03]:

• The hardware tools integrated into equipment or devices (i.e., router, switch,

bridge). These tools can measure particularly the QoS of the transmission

medium or environment, or performance, etc.

• The software tools integrated into applications. These tools can be used to

measure the end-to-end QoS at the application layer.

• The monitoring tools independent from hardware devices or applications. They

are developed independently from devices and applications. Using specific

46

protocols, such as ICMP, RTCP, SNMP, etc., they can measure some particular

QoS parameters of the systems.

Monitoring tools usually record statistical data about the working state of components

into logfiles. These files, whose size can vary from some megabytes to some gigabytes,

contain huge volumes of data values [Casa05]. Examples of statistical data can be:

• Real-time statistical generation of how content is consumed,

• Ability to analyze data by time of day,

• How many times content was requested,

• Total number of megabytes transferred,

• Costs incurred,

• Quality of transfers,

• etc.

Agent

Agent
Information
Collector

Information
Analyzer

Store QoS
information

Agent

Figure 2-7: Collect QoS Information

Monitoring tools are often working independently and do not support the aggregation of

information in order to build the relationships among different parameters. Few

monitoring tools are accompanied by an analyzing module that is able to discard out-of-

order information. Indeed, most of them return only the raw data and the user must

extract the appropriate information according to his requirements. Data mining

techniques can therefore be used to extract QoS information or relationships between

47

QoS information. Figure 2-7 shows our implementation architecture of a QoS mapping

builder we proposed [Nguy06] taking as input statistical data from monitoring tools

called agents. The Collector is used for storing statistical data coming from different

sources into a database and the Analyzer refines the data set.

Category

Performance

Utilization

Dimension

Throughput

Response time

Elapsed time

Number of concurrent programs

Number of concurrent users

UCT utilization

Memory utilization

Disk utilization

Buffer pool utilization

Table 2-1: Sample QoS Information of a DBMS

In this architecture, the agents are implemented in all system components that

contribute to the service provision. Basically, these components are geographically

distributed, therefore the Collector has to communicate with the agents using a specific

protocol, such as SNMP [Harr£9]. Each agent has a QoSIB containing the QoS

information of the attached component. For example, the QoSIB for a database

management system (DBMS) includes the categories and dimensions as described in

Table 2-1.

Collecting QoS information is required for building instances of the QoS information

models; that is, the association of collected values with the dimensions defined in the

models. In practice, QoS information for a system component can be collected

alternatively by different methods or tools. For example, the bandwidth provision of a

48

router can be reported by a built-in hardware tool that counts the number of packets

processed by router interfaces, or by a software tool measuring the input and output at the

upstream and downstream links. The current collecting methods can be classified based

on the system layers. For example, at the application layer, QoS information is usually

collected through the user graphical interfaces (GUI); while at the resource layers, QoS

information is gathered by monitoring tools without graphical interfaces [AgarJBJ.

Another classification approach is based on the number of participants of the collecting

process. For example the end-to-end delay should be measured based on the cooperation

of the sender and the receiver, while the QoS parameters related to the media encoding

are usually defined by only one actor (e.g., video provider). We recognized that the QoS

information collection methods are diversified. Thus, in order to generate QoS

information dynamically, the association of a given QoS parameter with specific

collection methods should be defined in the QoSIB. The QoSIB we propose is therefore

composed of four components:

• Service type, which can be broadcast or interactive.

• Service component, which provides the service (e.g., network).

• Monitoring tools, which we can use to collect QoS information of the

component

• ID, which is the identification of the QoS information base provided by the

collecting tool.

Table 2-2 shows an example of a QoSIB for the communication network, where three

QoS categories (Performance, Availability and Reliability) are considered. Each category

contains a set of dimensions for which we need to collect QoS values. For each

49

dimension, some monitoring can be used alternatively. The collection operation may be

performed solely by one of the actors participating in the service (i.e., provider or client)

or both, depending on the method implemented for the monitoring tool.

Category

Performance

Availability

Reliability

Dimension

Bandwidth

End-to-End Delay

Jitter

Loss probability

Reachability

Mean Time To Failure

(MTTF)

Mean Time To Repair

(MTTR)

Colletion tools

(Agents)

Router commands

(hardware)

Netperf (software)

TReno (software)

Netest (software)

Pathload (software)

TReno (software)

Agilent (hardware)

Jitterlyzer (hardware)

Iperf (software)

Router commands

(hardware)

Iperf (software)

Ping (software)

Traceroute (software)

Ping (software)

Router commands

(hardware)

Router commands

(hardware)

Actors

Provider

Client

Provider and Client

Client

Provider and Client

Provider and Client

Provider

Provider

Provider and Client

Provider

Provider and Client

Client

Client

Client

Provider

Provider

Table 2-2: Sample QoSIB for Network Component

Once the QoS information base has been generated from QoS information models using

the collecting tools, we can define the mappings in order to translate QoS information

among different components, which is presented next.

50

2.6 Mapping QoS Information

From the state of the art presented in Chapter 1, we noted that information management

plays a decisive role in the QoS provisioning process. Some research has been dealing

with the QoS management problem in general, without taking into account the QoS

information management as a specific issue. The diversity of QoS information, as well as

the evolution of distributed systems, have led to the fact that the current QoS approaches,

where QoS information is managed in an ad-hoc manner, may become no longer

compatible with new system requirements. We believe therefore that there is a need for

abstraction of QoS information and the modeling and mapping can be used to deal with

the QoS information management. One of challenges for the current QoS mapping

activity is the limited number of mapping rules generally based on mathematical formula,

which can not satisfy the increasing amount of QoS information and the variety of system

components.

QoS information collected by specific tools provided with each system component and

user specification can have variable formats needing to be unified. For example, QoS

specification at the user layer often contains very abstract information such as "good",

"bad", or "DVD quality", "telephone quality", etc. Lower layers, namely service and

system and resource layers, state their offers using more technical details such as frame

rate, number of color bits, or available bandwidth, packet rate, or CPU throughput,

memory buffer capacity. Therefore in order to help the QoS manager to provide the QoS

corresponding to user specifications, QoS information mapping is required. It aims at

translating QoS information between different layers. In addition, there can be several

components running simultaneously in the same layer and providing similar services (i.e.,

51

two servers executing an application). In such a case, QoS mapping is also needed to

compare the QoS provided by different components in order to make optimal QoS

decisions (i.e., in terms of cost).

Our research for QoS information mapping aims at generating the mapping rules from

available QoS information contained in the QoS information base. The process is shown

in Figure 2-8, and includes:

• Classification of QoS mappings based on the system architecture identification

(e.g., layer-based or component-based). QoS mappings of a given system can

therefore be represented in a systematic way.

• Obtaining and pre-processing QoS information from available sources.

• Generating QoS mapping rules in a flexible way, enables consideration of all

possible mappings when a QoS decision is made. Optimal QoS decisions can be

made only if all possible mappings are taken into account.

Identify
System

Architecture

Use mapping
classification

Obtain QoS
information

Processing
QoS

information

Build mapping
rules

Figure 2-8: QoS Mapping Rule Building Process

2.6.1 Classification of QoS Mappings

Traditionally, a service is usually implemented using the vertical layer approach where

the QoS specified or offered by each layer can be expressed by different abstract levels.

QoS mapping activity is used to "perform the function of automatic translation between

representations of QoS at different system levels and thus relieves the user of the

necessity of thinking in terms of lower level specification" [Aurr98, NahrOO]. For

example, QoS specification at the application layer often includes information at very

abstract levels such as "good", "bad", "acceptable", etc. QoS offers at lower layers, such

52

as transport, network and link layers, are described using more and more technical details

such as available bandwidth, packet rate, or CPU throughput, memory buffer capacity.

Thus, QoS mapping should be provided to describe the relationships between information

from different layers. It is essentially qualitative, aimed at translating the different

representations of QoS information.

On the other hand, QoS mapping is also required among components of the same

system layer, particularly when we consider the middleware and object-oriented systems

[Schm02]. QoS information of these components has consequently the same content. In

such case, the qualitative mapping is not needed. For example, data transmission service

can be provided by two components running respectively on IP and ATM networks. The

first component describes the network throughput in terms of bits per second, while the

second expresses it using ATM packets per second. QoS mapping in this case is used for

unifying the scales, and is rather quantitative.

In general, QoS mapping is deployed to translate: i) the content, or ii) the format, or iii)

both content and format of different information. QoS mapping is system dependent and

application dependent. For example, the QoS mapping used in a layer-based system

should translate QoS information between different layers (e.g., between the transport

layer and the network layer), while in a component-based system the QoS mapping can

be used to compare the contribution of two similar components (e.g., two servers doing

the same task).

Since most current distributed systems usually combine the layer-based and the

component-based architectures, the existing research that deals exclusively with layer-

based mapping [Jin04] or component-based mapping [Schm02] can be insufficient. The

53

approach we propose for QoS mapping is based on the models where QoS mappings are

classified into two main categories [~Kerh06] as follows.

• Vertical mapping: when Source and Destination models are located on different

layers. The vertical mapping is used to translate information content. For

example, it is required to translate a TCP-based dimension to an IP-based

dimension.

• Horizontal mapping: when Source and Destination models are located on a same

layer. The horizontal mapping is used to unify the scales of information. For

example, it is required to translate ATM packet rate to IP packet rate.

V: Vertical mapping
H: Horizontal mapping

*

Component
1

/
V

Component
< H ,

V

^ ^ ^ - V " " " ^

\
Component

H -

H
J

A-'

User specification

Component
2

V

Component

2.1

\
V \
Component

£..£.

H -

H
<—r-

V v.

>

_ _ ^
^"~^~- v _^^

Component
3

/

Component

\
V

< H

* ..
Component <->

Component
4

/ \
V V

Figure 2-9: Available Mapping Schemes in a Distributed System

In the context of distributed multimedia systems with heterogeneous components,

vertical and horizontal mappings should be used in a flexible manner in order to set up

QoS negotiations. Since some distributed components can be used alternatively, different

mapping schemes can be deployed to express a QoS contract (Figure 2-9). Thus, the QoS

manager should be responsible for selecting the optimal scheme considering the system

constraints. For example, better video image quality can be provided alternatively by: i)

changing the video codec, or ii) increasing the network bandwidth, where in most cases,

the first method is cheaper [Nguy05].

54

We next present the steps to build QoS mapping rules from available QoS information.

2.6.2 Building QoS Mapping Rules

One of the essential conditions for having an optimal mapping scheme is that all

possible mappings should be taken into account. This leads to the need for an advanced

mechanism for examining mapping rules among all the system components. Along with

the vertical architecture, the traditional mapping rules are presented by mathematical

formulas. For example [Huar97, Koli02]:

• Packet rate (consequently packet delay) at the transport layer:

RN=§MA/MN]) x RA, where MA , MN are respectively the media sample

size and rate obtained from, and RA is the packet size at the transport layer.

• Inter-arrival time (jitter) at the transport layer: PN = (l / RA)l\MA IMN]

• Packet loss rate at the network layer: LN = (LA X AN)l Aa where Aa and AN are

respectively PDU average sizes of video and network, LA and LN are

respectively loss rates at user and network layers.

Unfortunately, the number of formula-based mapping is generally not sufficient for

describing all the relationships existing among the specific components of a distributed

system. For example, it is very hard (or would be impossible) to express the relationship

between video buffering time, video codec, network bandwidth, server processing power

and server memory capacity by a mathematical formula.

This issue led us to propose an approach for implementing a QoS mapping builder that

is responsible for generating mapping rules from QoS information coming from different

sources [Nguy06]. The working principle of the QoS mapping builder consists of mining

the statistical data and configuration files containing working states and configurations of

55

each component of the system in order to produce association rules describing the QoS

relationships between them. The two main techniques used for this task are: i)

classification and prediction of user QoS requirement based on client-side configuration,

and ii) clustering system runtime information. Mapping rules are generated under the

table-based format (i.e., Table 2-3), which enables the flexibility of the number of input

and/or output parameters and the components involved in a mapping rule.

MPEG-2 MOS

4.0

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

Bandwidth (Mbps)

5.62

6.00

6.47

7.07

7.88

8.99

10.65

13.37

18.64

33.18

Table 2-3: Mapping from MOS (User Model) to Bandwidth (Network Model)

The approach for generating QoS mapping rules we propose includes the following

steps:

• Collect QoS information for users and system. This information is statistical

data.

• Classify user requirements. The classification is based on the prediction of

user's maximal level capability. A decision tree is built for the classification as

shown in Figure 2-10. The classification of user requirements can be performed

dynamically at two moments: starting of service or during the service whenever

the user configuration is changed. The first moment is used to set up an SLA

56

(Service Level Agreement) between user and provider and the latter served for

realizing a transparent adaptation or renegotiation.

Cluster system statistical information. This aims at determining the number of

QoS levels for a service from the QoS statistical data corresponding to the

number of user classes. Note that the system information we mention here is not

limited within the hardware devices but can cover also the software components

and the data themself (i.e., video transmission codec). Clustering is a set of

methodologies for automatic classification of samples into a number of groups

using a measure of association, so that the samples in one group are similar and

samples belonging to different groups are not similar. An example of clustering

is shown in Figure 2-11, where:

Cluster 1 = low level bandwidth

Cluster 2 = medium level bandwidth

Cluser 3 = high level bandwidth

Class 1 Class 2 Class 3 Class 2 Class 3

Figure 2-10: Classification of User Requirements

Our experimentation used the K-Means Partitional Clustering algorithm whose

performance has been discussed in [Liu04] in order to classify the statistical data.

57

The clustering computation is repeated until the centroid and the square error for

all the clusters are stabilized.

• Define QoS mapping rule. A mapping rule is an association of user requirements

and system offers. It is represented by a table as in Figure 2-12 where a mapping

between user classes and system QoS levels is built. Users belonging to the gold

class can be served with the gold QoS level, those of the silver class served with

the silver QoS level and so on. This mapping is defined based on a set of user

parameters and system parameters, which we suppose the most important for our

experimental service, such as user connection speed, processing power, storage

capability, bandwidth, video data MOS, etc. Mapping between more or fewer

parameters is also available. In general, we have three patterns for creating a

mapping model:

MPEG-
2 MOS*

4.0

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

Bandwidth
(Mbps)

5.62

6.00

6.47

7.07

7.88

8.99

10.65

13.37

18.64

Figure 2-11: Clustering the System Offers

o One to one mapping. It maps a user parameter to a system parameter,

o One to many mapping. It maps a user parameter to several system

parameters,

MOS - Mean Opinion Score

58

Cluster 1

Cluster 2

Cluster 3

o Many to many mapping: It maps some user parameters to some system

parameters. These parameters must be computed together due to the

correlation among them.

1 Correlation 1

User
class

Gold

Gold

Connection

LAN/T1

ADSL

CPU
(MHz)

>500

>1000

Storage
(MB)

>100

500

QoS
level

Gold

... Gold

MOS

4.6

4.7

Bandwidth
(Mpbs)

18.6

13.37

User parameters System parameters

Figure 2-12: A QoS Mapping Rule

In summary, the approach we propose allows the building of the QoS mapping rules

from available QoS information. It is flexible, because the mapping rules are generated

based on the relationships among a variable number of components. A user requirement

may correspond to several system configurations obtained by combining system

components with different parameters. Therefore the QoS manager can flexibly decide on

the QoS mechanisms to be used achieve a given user requirement. The proposed

approach is also dynamic, because the changes in the system can be reflected in the

mapping rule. When a component is removed from the system, or a dimension is

changed, the corresponding column of the tabular mapping rule can be rebuilt based on

system working state statistical information.

Together with the QoS information modeling and QoS information generation proposed

in Sections 2.4 and 2.5, the QoS mapping rule building process proposed in this section

allows the QoS manager to consider and to compare the contributions of all system

components in order to provide QoS. We will discuss in the next chapter possible QoS

decisions made with the help of the proposed QoS information management system.

59

2.7 Chapter Conclusions

In this chapter, we presented our work on QoS information modeling and mapping in

order to support QoS provisioning. The QoS provisioning process starts with the

specification activity and an intermediate component, such as QoS Controller, can be

inserted into system to provide the expected QoS level. This component is based on

available QoS information of the system, which can be obtained by collection, analysis,

mapping and storing operations.

In current QoS architectures, QoS information is managed in an ad-hoc manner by

integrating into source code. This leads to issues related to system extensibility and the

contribution of all system components is not taken into account. In the context of the

QDD framework, we proposed to build an independent QoS information management

system in order to offer QoS information management services to all components of the

system.

We have investigated QoS information modeling to build the proposed QoS information

system. QoS information models are based on the basic notions such as dimension and

category. Each model corresponds to a system component. A QoS information base is

generated from QoS information models using the collection tools to maintain QoS

information of all components of the system.

We then proposed an approach to build QoS mapping rules based on statistical data

using data mining techniques. The objective is to have as much QoS information as

possible concerning all service components of the system and to enumerate all

relationships of these components in order to compare their contributions in QoS

60

provisioning. The QoS mapping rule builder considers the different system architectures

and all the involved components.

The next chapter is devoted to the QoS decisions within the QDD framework and an

experimental application where possible QoS decisions are taken into account.

61

Chapter 3 Applications and QoS Decisions

In this chapter, we present a case study of our proposed QoS information management

system, built using QoS information modeling and QoS mapping, and used for QoS

provisioning. The chapter begins with a description of a video streaming application, its

QoS issues and current solutions for QoS provisioning. We next present the QoS decision

making process within the QDD framework, where we demonstrate that various QoS

decisions may be used alternatively and that the resource allocation is not always the best

decision. In order to validate the information models mapping and the advantages of our

approach in making QoS decisions, we conduct some experiments with the video

streaming delivery system.

3.1 Video Streaming Delivery and QoS Decisions

As discussed in Chapter 1, the increased volume of QoS information led to the

emergence of a QoS information management system. In Chapter 2, we have presented

the steps used to build such a system. In this section, we investigate the ability of using

such a system for QoS provisioning in a video streaming system as described in Chapter

1 and we discuss the advantages of the QoS information management system in QoS

decision making.

The video delivery service is chosen for the experiment because it is one of the typical

distributed applications where QoS issues can be easily experienced. Basically, there are

two modes for video transmission over the Internet, namely, the download mode and the

streaming mode [WuOJJ. In the download mode, users have to download the entire video

62

file and then play it back on a local machine, while in the streaming mode, parts of video

content are being received and decoded in real time. The download mode is not

concerned by QoS problems because users play their video locally. QoS issues can be

experienced with the streaming mode due to the fact that the current Internet does not

support any QoS facilities guaranteeing online user's perception requirements.

The video streaming application we built consists of four main components (Figure

3-1):

• Video Provider (VP). Located at the heart of the system, it contains complete

information about system architecture, topology, video descriptions and QoS

information.

• Streaming Server (SS). It can be installed on any server machine within a

distributed network to provide streaming video. SS does not store data locally;

instead, it loads video clip files from file management systems then converts

them into streams to send to clients. SS is designed as a multi-thread application,

thus it is able to serve several clients and several jobs at the same time.

• Client Player (CP). It is a video player program used to interpret a number of

video encoding types such as MPEG, AVI, MPG, H.263, etc., as well as real­

time streams. Client player has also graphic interfaces, allowing users to contact

the VP to obtain the movie list or to seek movies by keywords.

• Video Administrator (VA). It is a stand-alone program providing graphic

interfaces to control system activities. It can be used also to import video clips

into the database and to configure SSs and VP.

63

Video streams are transmitted from SS to CP using the RTP protocol (Real-time

Protocol). A signaling protocol is implemented to establish connections between: i) CP

and VP, ii) VP and SS, and iii) SS and CP.

Such typical video streaming systems usually place high demands on system resources,

and can present some QoS issues, such as:

• Video latency. It is due to network delay (alternatively bandwidth), server delay

(alternatively processing speed), storage server delay, client delay (processor

speed or I/O system), or video content quality.

• Image/audio clarity. It is due to network packet loss and jitter, data noise, server

processing error, or displaying error.

Figure 3-1: Video Streaming Delivery Application

Actually, video streaming services have been provided by different suppliers, e.g., AOL

[Aol07], Videotron [Vid07], CBC [CbcOZ], etc., through Web interfaces. The system

consists usually of several streaming servers installed within the supplier's network.

Dedicated lines are deployed to connect the streaming servers to the Internet. The service

64

is basically best-effort and no specific user QoS level is guaranteed. The suppliers aim

only at maintaining the service with their current network and server capacity. When the

streaming quality decreases due to the overload of network or servers, users will

experience video rebuffering or even that the video session is restarted.

In [Scha03], the authors proposed a CORBA-based QoS management architecture

providing video streaming service. The architecture is able to configure three types of

resources: processor, communication and memory resources. The QoS is provided based

on priority levels. The QoS decision can be processor rescheduling, bandwidth

reservation or memory allocation. This architecture, however, does not consider the video

documents as resources themselves.

Some other video streaming architectures with QoS capability, such as [WuOI], focus

on the video frame processing and bandwidth allocation problems. They do not take into

account non-performance parameters, such as semantic requirements or service context.

For example, the user's preferred language is not considered (e.g., English or English

with French subtitle videos). In our proposed architecture, users may also specify QoS

requirements on the video content. This can be achieved with the help of a QoS

information management system which contains video language-speaking information.

In addition, using alternatively different decisions for QoS provisioning is not taken into

account in current research and commercial products. The conventional QoS

management mechanisms take into account only parameters related to performance, and

focus particularly on network quality, such as network delay, packet loss, packet

disordering and jitter. This approach leads to the fact that re-allocation is usually the

strategy to be deployed when a QoS violation is detected. However, we have pointed out

65

in [Nguy05] that re-allocation is not always the optimal way to address QoS problems in

the general case. For example, we demonstrated that content optimization (e.g., data

compression), resource allocation and adaptation can be deployed alternatively in order to

deal with the network congestion problems.

The ultimate goal of the QDD approach is to facilitate the selection of optimal QoS

decisions based on available QoS information and mapping rules. Taking the example of

a video streaming application, a request for video transmission with a certain level of

quality can be expressed in terms of: the processing time of the CPU, amount of the

buffer memory and the available bandwidth. A mapping resulting in using less memory

may lead to more processor or more bandwidth consumption, and vice versa. Thus, if

users or providers put constraints on some QoS dimensions (i.e., processing cost, limited

size of memory or the bandwidth threshold), using some mapping rules can lead to a

better solution regarding the resource constraints. In general, in a distributed system,

several components can offer similar services, e.g., two video servers providing a same

video sequence. QoS provisioning should therefore deal with the optimization problems,

with respect to user or provider expectations.

66

QoS Information
Manager

Application
. " -- ^ - < ^ 7 adaptation

:ision ^~" i3 Decision
Engine

Resource
allocation

User
requirements

Objects (images,
video, text)

Resources

Figure 3-2: Making QoS Decisions in the QDD Architecture

Figure 3-2 shows the QoS decision making process within the QDD architecture, which

is implemented in the VP component. QoS information coming from various sources of

the system (e.g., users, documents, physical devices, etc.) is stored in a QoS information

base. The QoS information manager provides the requested components with appropriate

QoS information and QoS mapping rules. The decision engine computes the optimal QoS

provisioning strategies according to user requirements and minimizes the overall cost of

service provisioning.

As traditional QoS approaches concentrate principally on the communication network

[Schm99], the preferred decisions addressing the QoS violation problem are usually

related to the network configuration (i.e., bandwidth re-allocation or server re­

configuration). With our QDD perspective, we take into account the QoS information of

the overall system in order to make optimal decisions. For example, with the video

streaming system, we can have the following situations ["Nguy05"|.

• When delay increases, leading to lower video transmission rate, possible QoS

decisions are:

67

o Allocating more bandwidth on the existing path. This costly decision is

usually chosen in a provider-oriented QoS architecture;

o Changing the current transmitting server (or changing path). This

decision requires further QoS information about streaming servers in the

system, but that may be useful if the violation comes locally and

uniquely from the current server;

o Changing transmitting codec. This decision requires that QoS

information about video codecs should be taken into account, but the

overhead may be smaller.

• When jitter increases, leading to poorer video smooth layout, possible QoS

decisions are:

o Increasing temporary buffers of the transmitting servers or on-path

network equipment. This decision is often costly;

o Increasing receiving buffers of clients. This decision is quite simple but

needs further QoS information on the client side.

• When packet loss rate increases, leading to poorer video image/audio quality,

possible QoS decisions are:

o Changing to a more reliable transmission protocol with advanced error

solving mechanisms, such as forward error control, retransmission, error

concealment or group of picture based error spreading [Pyun02]. This

decision poses severe impact on both the client and server;

o Changing transmitting codecs (e.g., some codecs are more sensitive to

loss than others [Robu03]). This decision is simpler, but it requires QoS

68

information about video codecs and computation algorithms should be

implemented.

3.2 Examples of QoS Information Models and QoS Mapping

In the proposed QoS provisioning architecture for video streaming delivery, QoS

information is collected by user graphical interfaces and system monitoring/configuration

tools. Figure 3-3 illustrates the QoS information models of such a video streaming

delivery system. Two largest models are derived from the Core model: User model and

Actor model. As mentioned previously, qualitative dimensions are handled by the User

model while quantitative dimensions are managed by the Actor model. The User model

contains qualitative dimensions, expressed in terms of user MOS (Mean Opinion Score)

such as image quality, audio quality and content display quality. The Actor model

contains two sub-models: Network and Streaming Server. The Network model represents

the communication service, where we focus on the transport layer. It includes three

quantitative dimensions: delay, jitter and packet loss. The Streaming Server model

includes four sub-models: Encoding, Storage, and Operating System. The Encoding

model describes the quality of video documents handled by the streaming server. It

contains four quantitative dimensions: frame rate, frame size, number of color bits and

number of audio channels. The Storage model corresponds to the file storage system. It

contains three quantitative dimensions: memory utilization, caching and error rate. The

Operating System model represents the OS platform where the streaming server is

implemented. It contains three quantitative dimensions: CPU utilization, number of

threads supported and file control properties.

69

Mapping rules are built and defined on the QoS information base. A qualitative

dimension of the User model can be mapped to different quantitative dimensions of

Network, Encoding, Storage and Operating System models so that the system can make

the best possible QoS decision given the resource constraints.

Video Streaming
System Quality

Model

User Quality Model

Image
Quality

Actor Quality Model

Audio
Quality

Content
Display Quality

Network Quality
Model

Streaming Server
Quality Model

Bandwidth Jitter Pakcet
Loss

Encoding
Model

Frame
Rate

Frame
Size

Color
Bits

Audio
Channels

Storage
Model

Utilization

Caching

Error
Rate

Operating
System
Model

CPU
Utilization

Threads —

File
Control

Figure 3-3: Quality Information Models for Video Streaming Delivery System

Let us consider for example a mapping from content display quality, which is specified

by users in term of the capability of displaying the whole video content continuously and

smoothly, to network and streaming server parameters. In order to maintain the content

display quality level, networking resource allocation is usually deployed in the current

video streaming architectures. Using the QoS information management system we

proposed, other decisions can be considered. In our example, the bandwidth dimension of

the Network model is defined within a domain value consisting of 5 values: 30kbps,

60kbps, 90kbps, 120kbps and 150kbps. The number of color bits dimension of the

Encoding model has 3 possible values: 24, 16 and 8. The content display quality

70

dimension of the User model has 3 possible values: bad (smooth display time is less than

25%), acceptable (about 25-50% smooth display time), good (50-75%o smooth display

time) and excellent (75-100%) smooth display time). A table-based mapping rule from

User model's content display dimension to Network model's bandwidth and Encoding

model's number of color bits dimensions is defined as in Table 3-1. The rule is built as

follows:

Content display quality

(User model)

Excellent

Excellent

Excellent

Excellent

Excellent

Good

Good

Acceptable

Acceptable

Bad

Bad

Bad

Bandwidth (kbps)

(Network model)

150

150

150

120

120

120

90

90

60

90

60

30

Number of color bits

(Encoding model)

24

16

8

16

8

24

8

16

8

24

16

8

Table 3-1: Mapping from Content Display Quality to Network and Encoding Dimensions

• Users specify their QoS specification for video display smooth quality based on

Mean Score Opinion (MOS) method.

• The QoS information management system determines the configurations that can

satisfy each video display smooth QoS level considering the network dimensions

and the encoding dimensions which we can change.

• A table-based mapping is built combining the video display smooth QoS levels

and system configurations using two system dimensions: bandwidth and number

71

of color bits. The percentage of smooth layout frames over the total number of

displayed frames is counted and the relationship between the system configuration

and QoS specification is established.

In our experiment, the most important user requirement is to understand the whole

video content so the video display smoothness quality should be considered. The video

display smoothness quality can be improved in case of network congestion by increasing

bandwidth or by reducing the number of color bits. In the traditional approach where only

network-related dimensions are taken into account, the solution for improving video

display smooth is bandwidth allocation. It is costly. Regarding the cost of additional

network resources, we observe that reducing the image quality in terms of the number of

color bits is a more cost-effective solution.

3.3 Running Screenshots

Our experimental application is implemented using Java, and we use Java Media

Framework (JMF) API for image and audio processing [Sun07]. Figure 3-4 shows some

running screenshots of the Video Provider and Video Administrator. When the Video

Provider is launched, it loads the movie database, the list of registered streaming servers

and the QoS information base of the system. This information can be changed by users

through Video Administrator interfaces. Figure 3-4 (c) shows content description of a

clip in the movie database and its QoS information is given in Figure 3-4 (d). QoS

information of a clip includes video quality and audio quality dimensions which are

determined by analyzing video codecs.

72

A signaling protocol has also been designed based on text commands in order to

exchange control messages among Video Provider, Video Administrator, Streaming

Server and Client Player. Based on this protocol, the Video Administrator gets access to

the database managed by the Video Provider. There can be several streaming servers in

the system. Each Streaming Server registers with the Video Provider through the

signaling protocol. When a Streaming Server is launched, the Video Provider checks

whether it is allowed to stream the movie data. If it is, the Video Provider will connect it

to requested clients.

J M C;'WM'SySTEMK'tnid«(B jgj<i

"4ha

{K*e3 IDE

•X'll-J J , |... ;i1.Mim-,U <>i|.|ile!IH *^t i ! ! I ! \) lWl l iLwi ' l , \ idXpi . i . i \pFS81> , i:

"IIJE*1 "'"• '"•'mi"' J'v\,*>pi.B.i\jdKp.jar;d:'\kinWii>aMnple
HiUri.Mivulir.liK'iM .« Its- d:\kinktoa\kiilOTRuUMi\cksse^
iMiiiiiy ijiUen propcrhi .,.
alter suueroser passwordHest '
joadin? database...
Load mvin data . . .
Load psh server ddU >,,
New connection Socket E«Mr-/i32 J88.135.88,p8rt-il21Jui;alport-?87?3
[piidisereentp, 132,208.135,883
jteu connection Socket taMrV132,286.135,82,Bort489V,i(ic«loort-707?l
iliistnoofiles]
'[kill]

(a) Video Administrator
i:

PuSh S&IV3I \T~

f l .pnimp finkRl

DutaTinn |J

DPSUIPT •!•• f:iig screen TV
"'Vfi'-.r&j [jkdjjuL^ltjIwviSsiuIl

- ' l ;L pla.DVumklioaWownlo

OK | cancel j f t

(c) Movie descrintion

Video Encoding

Ftame Rate

Size

(b) Video Provider

A U J o Encod.ng
!•

-.000

<20x17J

Sample Rate j

Sarr-ple Size j

Channel; |1

OK | _Can-.el J

(d) Movie QoS information

Figure 3-4: Video Administrator and Video Provider Screenshots

Figure 3-5 shows some screenshots of the Video Player. When a user runs a Video

Player instance on his device, the Video Player will connect to the Video Provider using

the signaling protocol. Figure 3-5 (a) shows the list of available movies in the system,

73

file://d:/kinktoa/kiilOTRuUMi

which users get through a command. In this list, there is also information about streaming

servers that are currently hosting movies, the duration of each movie and keywords

describing movie contents, etc. With an interface given in Figure 3-5 (b), a user may

specify the QoS levels he wants. In this case, his most important requirement is the

continuity and smoothness of video display which allow him to understand the whole

content of the clip. The user also specifies that he may accept low quality image and

audio. When the user chooses playing a movie, a command is sent to the Video Provider,

which then selects an appropriate Streaming Server to transmit the movie stream. The

Streaming Server contacts the desired client using the signaling protocol to trigger the

streaming session (Figure 3-5 (c)).

lip N

lonir

i lot.

unti l i."c

I '-- .
I i 1.1

(a) Video Player i nam inte

I n |l

fi^^ .-•1i ~"J

(b) QoS level setting for a movie before
playing

(c) Video streaming by Video Player

Figure 3-5: Video Player Screenshots

74

The Streaming Server interface provides the administrator with information about the

current transmission session, the corresponding bitrates and the priority of the streams. In

Figure 3-6 (a), there are three opened sessions for the same destination streaming three

movies with different priorities. The two first streams are transmitted at 156kbps and the

last one is at 120kbps. The administrator can control the bandwidth of a given stream by

changing its priority. There are five priority levels in our experiments.

When there is a QoS violation, e.g., the bandwidth is decreasing or some packets are

lost, the system is required to make QoS decisions based on available QoS information

about service components and mapping rules. Figure 3-6 (b) gives two possible QoS

decisions with associated costs. The first decision is to buy more bandwidth, for example,

by increasing the priority of the current stream. The second is to change the video codec,

i.e., from 24 color bit depth to 8 color bit depth. Since in this case, the user is more

concerned with the video content display than the quality of image and audio, the second

decision may be better considering the cost.

S VideoPushServer@tIN -ici xi
- • V . • • ant/

132 208.135.82
132 208135 82

imhmmi

166
156

120 3

IncreasejFriur. | Wueasehior.;

\ammmamBix?\^ - • •
'he Content Display qualify is experiencing some degradation.

' i p following M decision are available.

Please select one.

Decision ::ost

F ine^asfisaMwIdifu, !'-

r Change.Eod.ee (reducejmage qua; -.) j C

[OK]] .Cancel [

te^-.jfl

™ . s

.

(a) Streaming Server main interface (b) QoS Control

Figure 3-6: Streaming Server Screenshots

Experiments have been conducted in the context of a QoS controllable environment,

where a perturbator is implemented for controlling some QoS parameters of the system.

75

http://Change.Eod.ee

At the first stage, we take into account only the network related parameters, namely

delay, and packet loss, and video document related parameters, such as encoding and

color depth. Server, database and client related parameters will be added in the future

implementations. Client behavior in terms of video frame rate, image and audio quality is

targeted to be observed. The perturbator captures data packets on the stream between

client and server. Each packet is then processed according to the quality level it is

assigned. The advantages of such & perturbator in comparison with a conventional traffic

generator include:

• Priority levels can be changed immediately as users require,

• Effect on the client and/or server side can be observed immediately,

• Different parameters can be treated together or separately as necessary,

• The perturbator can be removed from the system with no impact on the current

data stream.

We have also considered a set of possible mappings in the experimental system,

including:

• Mappings from users' QoS requirements to network dimensions, e.g., from

video quality to network delay and packet loss.

• Mappings from users' QoS requirements to streaming server dimensions, e.g.,

from video quality to the video color depth and frame size

• Mappings from streaming server dimensions to network dimensions, e.g., from

video color depth and frame size to network delay and packet loss.

Each mapping rule is associated with a cost, defined by the system administrator.

Whenever an environmental parameter is changed (e.g., network delay increases due to

76

the change of the stream priority), the system automatically computes the optimal QoS

decision based on available mapping rules and their costs. Therefore, such video

streaming system also allows us to conduct experiments on the performance of resources,

based on the comparison of their contribution to service provisioning.

3.4 Chapter Conclusions

This chapter has presented the QoS management using the QoS information

management facilities provided by a QoS information management system. A video

streaming delivery system is used as example to demonstrate the advantages of our

approach.

We investigated different QoS decisions that can be used alternatively for QoS

provisioning in a video streaming delivery system, and pointed out that the resource

allocation decision is not always the optimal one. We then propose some alternative

decisions which can be used to deal with QoS problems.

We described the video streaming application we implemented in order to validate the

utility of the QoS information management system. Such system is used to provide

requested components with appropriate QoS information. The ultimate goal is to make

best possible QoS decisions considering user specifications and resource deployment

costs. Through an example of the video display smoothness dimension, we demonstrated

that QoS can be provided efficiently using QoS information management services and a

specific table-based mapping rule. In this example, the cost of resource utilization for our

QoS decision is lower compared to the traditional network bandwidth allocation decision.

77

We also provided details of implementation of our experimental video streaming

application and then suggested further experiments to be conducted. Such a QoS

information management approach may be used effectively for QoS management in other

systems, or specific devices, for example, the core routers that we will present in the

second part of the thesis. A core router is required to support several protocols and data

flows. Traffic from different protocols, such as IP and MPLS, can be treated with

different priorities so there is a need for QoS information management in order to manage

user-level requirements and QoS capabilities of systems and links. QoS dimensions from

a given layer or protocol must be expressed in terms of dimensions belonging to other

protocols or layers in order to achieve the communication over heterogeneous networks.

Therefore flexible and dynamic QoS mapping should be considered, such as the mapping

from IP to MPLS traffic. Thus our proposed QoS mapping builder architecture can be

used.

This chapter ends the first part of our PhD research related to the QoS provisioning at

the application level. We have presented a complete QDD framework where the ultimate

goal is to provide QoS according to user requirements based on QoS information of all

service components of the system. Mechanisms to support the QDD have been developed

with QoS information modeling and mapping, that allow us to take into account the

contribution of all service components. With the QoS decision making process described

in this chapter, the QDD is able to help to improve the quality and efficiency of high

quality services regarding the evolution of user requirements and system characteristics.

78

PART II. SCALABLE AND DISTRIBUTED SOFTWARE

ARCHITECTURE FOR NEXT GENERATION ROUTERS

Chapter 4 Architectures of Routers

This chapter begins the second part of the PhD thesis. In the previous part, we

investigated a QoS management architecture at the application level based on the

assumption that the underlying devices provide the facilities allowing the application to

obtain QoS information and to modify the QoS parameters. This allows the making of

efficient QoS decisions, based on information about the QoS capabilities of the devices.

For example, the video streaming application with QoS-enabled features should be able

to configure its communication channel so that an appropriate amount of bandwidth is

allocated to transmit the video with the user requested quality level. This operation can be

achieved through the interaction between the software application and the hardware

devices, such as routers, switches, or access servers, that provide communication

services. In addition, the QoS information base is also built with the help of agents

running on devices. Therefore, QoS-enabled devices are essential for QoS architectures.

One of the main concerns about system operators is their networking quality. Most

current distributed systems are IP-based because of the evolution of the Internet.

However, IP is not appropriate to provide QoS because it does not support mechanisms

for traffic control and congestion avoidance. Therefore, one of the preferred scenarios for

current service providers is using IP to allow users to access the services, and then using

QoS-enabled and/or faster protocols in their core network [Chao07]. One example of

such protocols is MPLS {Multi-Protocol Label Switching), which provides traffic

79

engineering and QoS features, such as bandwidth reservation or VPN (Virtual Private

Network), etc. Typical current communication systems consist usually of small-scale

routers providing the access at the edge of networks and large-scale routers, which are

MPLS-enabled, at the core.

This part of the thesis presents the design of an efficient distributed software

architecture for large-scale routers providing high quality services in the core networks

by ensuring that the performance of the switching operations is fast enough. The core

routers may be considered as the most critical components of distributed systems, due to

the large amount of traffic to be switched. For example, some researchers claim that the

growth of traffic in the core networks can reach 400% to 500% per year [Bu04], Such a

requirement leads to the emergence of robust and highly scalable routers. Resiliency and

availability need also to be taken into account.

This chapter is organized as follows. Section 4.1 motivates our research and discusses

the need of distributed architectures for router software. We next describe the key tasks

of a router. In Section 4.3, we review the evolution of the router generations. Section 4.4

surveys the hardware architecture of the next generation routers. Section 4.5 discusses the

software architectures of routers and review the studies on distributed routing

architectures. A summary of the chapter is presented in Section 4.6.

4.1 Motivation

Highly scalable routers are required for today's core networks. Indeed, until very

recently, core network operators answered the growth of Internet traffic by adding more

routers, usually mid-size routers, in their network. This approach, referred to as router-

80

cluster [Chao02], imposes extra cost for management and maintenance, particularly when

the number of connections grows very fast. Due to the increase of the size of the router

clusters, the routers increasingly use their expensive interfaces (e.g., optical ports) to

carry intra-cluster traffic instead of value-added traffic. Another issue is that the number

of control message exchanges in the network and the routing table size explode, which

overloads the capacity of mid-size routers. In addition, these mid-size routers are not

scalable to support high-speed optical interfaces (e.g., OC-192).

Intra POP
Interconnection

Links

Parallel
WAN Links

Hub-to-Core Links

© © © Q © © ®
© © © 0 © © ©

© © © © © © @ ©
© © © © © © © ©

Access/Hub Routers Access/Hub Routers

Figure 4-1: Replacing a Cluster of Mid-Size Routers with a Large-Capacity Scalable Router

[Chao071

Taking advantage of the hardware evolution, a more cost-effective approach to deal

with the ever-increasing traffic in the networks consists in replacing a cluster of mid-size

routers by a next generation router with large switching capacity of multiple terabits or

even of a few petabits (Figure 4-1) [ChaoQ7], Such routers will satisfy the Internet traffic

growth with no need to be replaced for a couple of years, keeping the core network

configuration unchanged, therefore resulting in a more efficient and reliable system.

When the traffic requirement increases, the operator adds new interface modules without

81

replacing the whole router. The main challenge for this solution is to have a good router

design with high robustness, scalability and resiliency, for both its hardware and software

architectures.

The router should be scalable both in terms of the number of ports which can be

connected to the router and in terms of the data forwarding capacity. In addition, it is also

important that a router can be dynamically extended without disrupting the router normal

operation [Hide06]-

Due to the growing number of nodes in the Internet, the tables which must be

maintained in the router, such as routing tables, forwarding tables, QoS policy, etc.

become larger. As a consequence, the lookup operations performed on these tables take

more time. In particular, the next generation routers should be able to handle a huge

number of routes (e.g., some hundred thousands), such as BGP {Border Gateway

Protocol) routes. A router with several BGP peers in a core network will have to handle

large amounts of messages (e.g., flapping (refreshing) rate of 100,000 routes per three

minutes [Nguy07a, Hype04"|), which in turn consumes a significant amount of computing

and memory resources.

In addition, the general requirement for router availability in Internet core network is

99.999% |"Nguy07a, Hide06]. The resiliency is therefore important both in the control

plane and data plane of the router. The router also needs to maintain forwarding

functionality if the control plane temporary goes down and to provide redundant

functionality [Shai06].

As prices of hardware material are sharply decreasing, more processors and memory

chipsets can be added to the router platform in order to increase its overall power. For

82

example, some recent products have been provided with thousands of optical interfaces

and multiple terabits throughput (e.g., 400 Gbps throughput by 8,960 OC-3 interfaces or

2,240 OC-48 interfaces [Avic06], 2.5 Tbps throughput [Jun|07]). Some models have been

forecast to reach multiple petabits switching capacity with 64,000 optical interfaces

[Dup]05]. The hardware architectures of the next generation routers are basically

distributed, with the control and line cards interconnected by a very high speed switch

fabric. The control card is designed with one or more powerful processors and a large

memory capacity, aimed at running the main control and management tasks. The line

cards do mainly data forwarding using built-in specific network processors and traffic

manager chipsets. In recent router models, the line card is also equipped with extra

memory and a general-purpose CPU, allowing it to share some processing tasks that tend

to overload the control cards [Chao07].

One research issue is to design a software architecture that can exploit efficiently the

new router hardware platform. In general, a distributed software architecture is required

to fit into a distributed hardware platform. However, due to legacy techniques or business

models, we observe that, even in the recent router products [Cisc05], some of the

software components still remain centralized, particularly routing protocol modules.

Since the control card of a router is responsible for all routing tasks, it can be easily

overloaded by overwhelming traffic in core networks, especially when the routing table

gets flopped (updated/refreshed). In addition, bottlenecks can be experienced in the

centralized software architecture when the control card is unable to process the huge

number of requests coming from different line cards. The time for route establishment

and time to recover are also issues in a centralized architecture because every protocol

83

message must go through the control card, leading to additional delay overhead. These

limitations led to the need of distributed architectures for software implementation,

particularly for very highly scalable routers. Indeed, the starting point of our study was

the modular design approach, which has been presented in [Hide06, Dori07], where

routing software components, namely the control plane and data plane, can run

independently on the same or separate CPUs and interact with each other regardless of

their respective physical location. We extend this approach to allow the router control

plane processes to run on different router cards considering the task sharing among them.

Distributed models for specific processes, such as routing, signaling and routing table

management, are also taken into account.

4.2 Key Functions of a Router

Generally, a router must perform three fundamental functions: compute best routes,

forward data packets, and ensure that service agreements are met.

4.2.1 Compute Best Routes

The first function is to compute best routes which data packets should take through the

network to their destinations. The route computation has to take into account various

policies and network constraints [Zini02]. For example, the best route can be required to

maximize network efficiencies, to deliver the fastest possible response times to users, to

minimize bandwidth usage costs, or to meet some other user specifications. In the current

generation routers, the route computation is accomplished by a route processor (also

called routing engine). Routers determine best paths by sharing inter-networking

information with other neighboring routers. The route processor is actually the "brain" of

84

the router and is dedicated to communication with neighbors. This communication

enables the route processor to build a route database, or routing table, which allows the

forwarding engine to send packets across optimal paths through the network. In addition,

the route processor can communicate with other routers to provide them with its routing

table which helps them to identify the best routes and select the optimal paths. Such

exchanges are achieved by the routing protocols [Hala05]. The routing protocols

exchange messages containing networking information. These messages are called

routing updates. Every routing protocol has its own format for routing updates and its

own algorithm for exchanging and analyzing the messages. All routing protocols can be

classified as Interior Gateway Protocols (IGPs) or External Gateway Protocols (EGPs)

[Zini02]. IGPs run inside an autonomous system (AS) and perform so called intra-domain

routing functions. Widely used IGP protocols include the Open Shortest Path First

(OSPF) [Moy98] and the Intermediate System-to-intermediate System (IS-IS) [ISO02].

EGPs run between ASs. The currently most used EGP is Border Gateway Protocol

(BGP) [Rekh95]. In a core router, the BGP module has to handle a very large number of

routes (e.g., some hundreds of thousands of routes) and ASs (e.g., tens of thousands of

ASs).

4.2.2 Forward Data Packets

The second function of the router is to forward data packets received on an ingress

interface to the appropriate egress interface for transmission across the network.

Forwarding relies on the best route information computed by the route processor. The

forwarding function is achieved by forwarding engines. The forwarding engine consults a

Forwarding Information Table (FIT) which contains a complete set of forwarding

85

information for all destinations learned by the routing protocols or by the list of static

routes. Based on the destination address and/or TOS fields of the IP packet header, the

forwarding engine looks up the FIT to find the next hop and the appropriate egress

interface to forward the packet. As traffic loads grow, the processing resources required

for FIT lookups increase. Thus a router may need several forwarding engines.'

4.2.3 Service Function

The third major router function is the service function. A router should provide quality

of service according to the traffic specification and the Service Level Agreements (SLA)

between providers and their customers. This function is accomplished by a service

engine. As mentioned, the router requires a servicing system to perform a set of tasks

such as packet buffering, filtering, policing, shaping, marking, etc., in order to provide

the proper QoS. Each ingress interface on a line card receives packets which are

examined by a forwarding engine and directed to the egress interface associated with its

destination IP address. An example of the role of the service engine is the case where

multiple packets arriving simultaneously on different interfaces need to be forwarded to

the same output interface. A queue must be provided as a temporary waiting area in

which packets are queued up for transmission and ordered in the queue following their

relative priority. The order in which they are transmitted is determined by the policy

settings configured by the network administrator.

86

4.3 Evolution of Hardware Architectures of Routers

This section reviews the evolution of hardware router architectures and discusses the

needs of the next router generation, which is targeted by our research on software

architectures.

Three generations of routers have been recognized [AweyOl, Hide06, Medh07].

4.3.1 First Router Generation: Bus-based with Single Processor

Architecture

Routers of the first generation, born in late '70s or early '80s, were basically made of a

single central processor (CPU) and multiple interface cards interconnected through a

shared bus. The CPU runs a commodity real-time operating system and implements the

functional modules, including the forwarding engine, the queue manager, the traffic

manager, and some parts of the network interface, especially Layer 2/Layer 3 processing

logic in software.

Figure 4-2 shows the architecture and data processing of the first router generation. An

incoming packet (1) at a line card (so called ingress line card [Hala05]) is forwarded to

the buffer memory through the shared bus (2). The central CPU extracts the headers of

the packet (3) and uses the forwarding table (4-5) to determine the outgoing line card (so

called egress interface) and port. The packet is subsequently prioritized by the queue

manager (6) and shaped by the traffic manager (7). Finally, the packet is transferred from

the memory (8) to the appropriate output port in the egress line card (9-12).

The central CPU saves some of its cycles, which are mostly used for packet forwarding,

for running the routing protocols. Whenever a route change occurs, it updates the routing

87

table and the forwarding table. The central CPU also executes the management functions

for configuring and administering the router.

Figure 4-2: First Generation Router with a Single Central Processor and a Shared Bus

These routers suffer from two main drawbacks:

• Data packets travel through the bus twice: the first time from the ingress interface to

the central CPU, and the second time from the central CPU to the egress interface.

Thus, the bus is a severe bottleneck for the router throughput.

• Data packets are buffered in a centralized memory and the lookup operation needs

intensive memory access, so bottlenecks can easily be experienced by the memory

and central CPU.

Basically, the performance of these routers heavily depends on the throughput of the

shared bus and on the speed of the central CPU; taking into account the current speed and

memory parameters, these routers are not scalable and cannot meet today's bandwidth

requirements.

4.3.2 Second Router Generation: Route Caching Architecture

The second router generation, presented in '80s, was designed with line cards able to

perform some packet forwarding operations locally. Unlike the previous architecture,

more intelligence is added to the line cards, with processor, memory and forwarding

caches.

Route
Control

Processor

[Forwarding|
table

Central f~
CPU . i_

Routing
table _

Forwarding
Engine

Buffer
Memory

BtiS-

Linei
I Route I Card!
[Cache]

Queue
Manager

A 3

Buffer
^ Memory

Forwarding
Engine

Traffic
Manager

2 \ Network
I ^Interface

Route
Cache

Line
Card Queue

Managei

|Forwarding|
Engine

Buffer
Memory

— « r
Traffic

jManagen)

Network
Interface

Figure 4-3: Second Generation Router with Route Cache Architecture

Figure 4-3 shows the architecture of a next generation router and the data circulation.

The router has a central CPU maintaining a central forwarding table and the line cards

cache a subset of the master forwarding table based on recently used routes. When a line

card receives a data packet (1-2), it first looks the local cache for the next hop to forward

the packet (3-4). If no entry is available in the cache, the line card sends a request to the

central CPU. Otherwise, the data packet is transferred directly from the ingress line card

to the queue manager of the egress line card (5-6) and then to the appropriate output port

89

(7-11). The advantage of this architecture is the increased throughput due to the

forwarding cache of recently used addresses in the line card, which allows the line card to

process packets locally most of the time. However, the shared bus is still a potential

bottleneck because it does not allow more than one data packet to go across at the same

time. In addition, the throughput is highly dependent on the incoming traffic. There is

still an important amount of traffic that needs to travel the bus twice. Due to these

drawbacks, this architecture can neither scale to high capacity links nor provide complex

traffic pattern-independent throughput.

4.3.3 Third Router Generation: Switch-based Architecture

The third router generation, i.e., the current widely used router generation, was

introduced in '90s to solve bottlenecks of the second generation. The shared bus has been

replaced by a switch fabric which allows multiple packets to be simultaneously

transferred across, hence increasing the performance. The switch fabric is basically a

crossbar connecting multiple cards together, thus providing large bandwidth for

transmitting packets among line cards [AweyOl, Chao07]. In this generation, multiple

forwarding engine cards are connected in parallel to achieve high speed packet

processing rates (Figure 4-4). Each forwarding engine card hosts a forwarding table. Thus

data packets can be processed by the forwarding engine cards without going through the

central CPU. When a packet comes in a line card, the packet header is stripped and sent

to a forwarding engine on one of the forwarding engine cards for validation and routing.

The forwarding engine determines the outgoing port where the packet should be

transmitted. The packet is then moved from the source line card to the destination line

card and eventually sent out to the next hop.

90

Forwarding
Engine card

|Forwarding|
Engine

^Forwarding]
. table _

Forwarding
Engine card

Forwarding
Engine

K- .—1 <—-Mr-orwarding
L^table^J

' r
Route

Control
Processor

CPU

Memory

j d ~^>
Routing
table

1
Line
Card

Traffic
Manage

Buffer
Memory

r
Queue

Manage

Network
Interface

r

Line
Card

Traffic
Manage

Switch Fabric

Buffer
Memory

Queue
Manager

Network
Interface

1
Line
Card

Buffer
Memory

Traffic
Manager

Queue
Manager

Network
Interface

Figure 4-4: Third Generation Router with Switch Based Architecture

Basically, there are three main bottlenecks which can potentially be experienced in a

first and second generation router: processing capacity, memory bandwidth, and internal

bus bandwidth. Hence, the switching architecture has been deployed in the third

generation routers in order to replace the internal bus. In addition, processing resource

has been added on line cards in order to increase the processing speed and memory

capacity. Simultaneous packets can therefore be transferred among different pairs of

network interfaces. Multicast capabilities are also enabled. However, due to rapid growth

of the Internet, the architecture is not able to meet the expected amount of traffic (i.e.,

multiple terabits or petabits per second). The separation of the forwarding engines from

the line cards increases the load on the switch fabric for internal messages exchanged and

adds extra delay for packet switching. The architecture is not scalable to support a large

number of line cards. These issues led to the birth of the next generation routers, which

we will next describe in Section 4.4.

91

4.4 Next Generation Routers

The hardware architecture of the next generation routers is essentially switch-based,

with a switching capacity of multiple terabits or petabits per second, satisfying different

QoS requirements [Chao02]. First commercial products that appeared in the market were

Avici's TSR [Ayic06], Juniper's T1600 [Juni07]. Some prototypes are also being

developed, such as HyperChip's PBR1280 |"Hvpe04"|. We now describe the advanced

features of the next generation routers.

Line Card iNP -

/ Interface
Specific
Chipset

\
eNP

CPU

1

y

iTM -

\
\
eTM A

Figure 4-5: Components of a Typical Line Card

• The line card provides one or more interfaces to external devices (such as other

routers) and connects these interfaces to the switch fabric, as shown in Figure 4-5. As

in the third generation, data packets are processed locally on the line card without

going through the control card. Principal elements of a line card include: interface

specific chipset, network processors (NP), traffic manager (TM) chipsets, CPU and

memory.

o Network processors are dedicated to packet processing. Their tasks

typically include: Media Access Control (i.e., to handle the raw data

stream coming from the physical links), Packet Processing (i.e., header

and payload processing), Packet Classification (i.e., to identify and

92

classify traffic according to the QoS requirements) and Policing and

Traffic Management (i.e., to perform vendor-specific functions).

Nowadays, a network processor can handle flows at OC-48 (2 Gbps) or

OC-192 (10 Gbps) line rate or even faster [Chao07].

o Traffic manager chipsets bridge the network processor and the switch

fabric. The ingress TM (iTM) handles queuing and scheduling by applying

different buffering strategies so that flows can share limited buffers

according to the traffic requirements. The iTM is also responsible for

multicasting. The egress TM (eTM) processes data from switch fabric

before data are sent to the network processor. If packets are segmented

into cells in the ingress chip, reassembling the cells into original packets is

done by the eTM.

c

CPU

\

ontrol Card

^ ~ ~ T *

MEMORY

iTM

eTM -

Figure 4-6: Components of a Typical Control Card

The control card is designed to run the main tasks of the routing protocols (i.e., BGP,

OSPF, IS-IS and MPLS), and the Routing Table Manager (RTM), as shown in Figure

4-6. Complementary modules such as the Command Line Interface (CLI) are also

hosted by the control card in order to provide interfaces to the system user for

configuration purposes. The control card architecture is very similar to that of a line

93

card, but it has no line interfaces. The basic difference between them lies in the

processing power and storage capabilities: they are far superior on the control card.

The control card has one Ingress Traffic Manager (iTM) chip and one Egress Traffic

Manager (eTM) chip. These chips provide an interface between the local processor

and the switch fabric planes. The iTM and eTM chips are exactly the same as the ones

used in the line cards.

94

Fabric Traffic
Manager

Matrix Card
A switching plane

Figure 4-7: Sample of a Four-Plane Switch Fabric Interconnecting Router Cards

• The control and line cards are interconnected by a scalable switch fabric. The switch

fabric is distributed into identical and independent switching planes. In our research,

we rely on a switch fabric model provided by [Hyjje04], which consists of four planes

as shown in Figure 4-7. The switch fabric is made of so called matrix cards, which

95

provide data switching functions. Per-flow scheduling, path balancing and congestion

management within the switch fabric are achieved by the Fabric Traffic Manager

chipsets integrated on the matrix card. Each line card or control card has an ingress

port and an egress port connecting to a matrix card. Each switching plane is made of

the same number of matrix cards. In such a model, each switching plane has

bandwidth to handle a full OC-48 port or equivalent. Several topologies may be used

to connect the matrix cards where the Benes topology [Chao07] is the most

recommended, due to its non-blocking characteristics. It allows the switching system

to be non-blocking using only O(NlogN) switching elements, rather than the O(NxN)

required for a crossbar topology.

Consider the forwarding and routing mechanisms in a next generation router as

illustrated in Figure 4-8. Data packets come in by the iNP of the ingress line card, which

contains a FIT table which is used to determine the path to the destination. Packet

classification is also done by the iNP. Packets are then forwarded through the iTM where

traffic engineering policies are applied. They then travel through the switch fabric to the

egress line card. The eTM and eNP of the egress line card forward the packet to the next

hop in the direction of the destination. Control packets, on the other hand, are filtered by

the iNP of the ingress line card and forwarded directly to the control card or the CPU of

the line card where they will be processed by the routing protocol modules. The iTM and

eTM chipsets located on the control card are responsible for managing flows of control

packets. Control packets may also be sent out to external routers in the network through

appropriate line cards.

96

ISIS

4

Engineering

OSPF

^
-•*

< • - * •

CPU

* &
' Memory. - *

•4 A.'

RTM < •

MPLS BGP

lp ¥31
iTM Control Card

eTM

mm^mmm*M®m$;mmmmi qo.506$g.Q5000QOO0^Q<>$d0$O^05$gC'06^g W J W W W W ^ W W ^ M , &
i Line Card 1

iTM 1

...»

/
eTM

Data
packet

Interface
Specific |*
Chipset

eNP

Line Card 2\

iTM \ eTM

iNP

CPU
Mem!

iprFiT

Control
packet

Control
packet

Interface
Specific
Chipset

eNP

^fc iata
packet

- • Data flow •• Control messages — • - > Route update

Figure 4-8: Architecture of Next Generation Router

One of the primary requirements for next generation routers is scalability. In general, a

core router has to exchange control messages with hundreds of peers. According to the

growth of bandwidth, a large number of line cards (i.e., few hundreds or thousands) needs

to be added to the router platform. This imposes several challenges to the operation of

routing protocols. Current generation routers provide a throughput of multiple terabits,

while next generation routers, assuming a distributed architecture, will reach a throughput

of a few petabits per set of thousand line cards. In some practical networks [Hype04],

core routers are expected to support more than 300,000 routes with a flapping rate of

100,000 routes per three minutes, which exceeds the capacity of a single control card.

Task sharing should therefore be taken into account, in order to make the system more

scalable. In addition, resiliency is also an issue. One possible solution consists of having

97

additional control cards. Each control card runs an instance of a routing protocol module

or manages some parts of the global routing table. However, the control cards are often

costly and the processing capabilities are not improved much due to the quantity and

delay of messages exchanged between the different control and line cards in a system.

Another solution is to take advantage of available resources on the line cards in order to

perform some control tasks. This will be investigated in the next chapter.

4.5 Review of Software Architectures of Routers

This section provides a literature review of software architectures of routers. We begin

with the monolithic architecture used in legacy routers and then present some distributed

architectures for separating software modules.

4.5.1 Monolithic Software Architecture

Legacy routers (i.e., first and second generations) are built with one CPU on a control

card handling all basic modules such as routing engine, packet forwarding and service

engines. The routing engine handles a set of routing protocols such as IS-IS, OSPF, BGP

and MPLS that run together and interchange information such as routes or labels. The

exchange and coordination of these protocols are generally done via a Routing Table

Manager (RTM). Figure 4-9 shows the software architecture of the first and second router

generations. In such an architecture, the RTM is responsible for retrieving information

learned from the different routing protocol modules, making decisions for selecting best

routes and accordingly generating the best route table (FIT), which can be used later in

forwarding the packets to the corresponding destinations.

98

The advantage of such an architecture is the ease of management since all the routing

protocols run together on the same control card. The synchronization and message

exchange mechanisms are also quite simple to implement. However, the main issue of

such legacy systems is their monolithic code base with all forwarding and routing

processes competing for the same CPU and memory resources. Consequently, as the

demanding packet forwarding process consumes almost all the CPU capacity, the other

functions are left starving for CPU cycles. Clearly this type of software architecture can

only be used for small and medium size routers.

Physical Interfaces

Figure 4-9: Software Architecture of First and Second Router Generations

The current generation of routers (third generation routers), as described above, consists

of a control card and a set of line cards connected via a switch fabric. Line cards contain

very high speed interfaces (i.e., OC-48). This new hardware capacity needs a more

distributed software architecture in order to exploit the hardware platform. For instance,

99

the current software architecture, as of the HyperChip PBR1280 [Dup_105] shown in

Figure 4-10, consists essentially of:

• One controller card that hosts all routing protocols. There can be an additional

control card used for backup and redundancy.

• A given number of line cards, which perform:

o IP forwarding and/or MPLS label switching at the hardware level, and

o IP forwarding at the software level for exceptional packets (e.g., control

packets).

Figure 4-10: Software Architecture of the HyperChip PBR 1280

In addition, there is a FIT on each line card. The RTM located on the control card

receives the best routes learnt by routing protocols. Overall best routes are selected and

then recorded in the FIT of the IP stack. The FIT on each line card is downloaded from

the FIT on the control card via the switch fabric. The performance and the fault tolerance

of the router are hence improved because each line card is able to make the forwarding

100

decisions by itself without the need to send requests to the control card or to use a

separate forwarding engine. However, there is still a potential bottleneck at the control

card where all routing protocols run simultaneously. Therefore, such an architecture is

not scalable. The large capacity of line cards and the switch fabric is not exploited

efficiently due to the location of almost all processor and memory resources for the

computations on the control card.

Unfortunately, the largest vendors in the market, such as Cisco and Juniper, do not

publish their software architecture, so we have no clear idea about the architecture of

their control cards. However, in their recent products [Cisc05, Juni07], there is no control

function running on the line cards. Therefore, all routing protocols should be handled by

the control cards. This does not allow the control card to serve a large number of line

cards. For example, the current Cisco 12000 series products cannot support more than 16

line cards per chassis [Cisc05].

Due to the growth of the Internet routing tables and the web-based traffic, the software

architecture used in the current routers (third generation routers) becomes inefficient.

Third generation routers are moving to the edge of networks and leave room for the next

generation routers, which are much more powerful. For example, in 2005, HyperChip

Inc. has announced a new core router model, which may support a very large number of

line cards and control cards (e.g., 64,000) and able to provide a very high throughput up

to 1280 Gbps. The software architecture for next generation routers should therefore be

more distributed and more scalable.

101

4.5.2 Current Distributed Software Architectures

Until very recently, no distributed software architecture for the router control plane has

been considered. Third generation routers are still provided with no extra memory on the

line cards. Therefore control tasks are mainly performed at the control card level. The

need of distributed software architectures for routers has led to the birth of the next

generations.

The current research on the distributed software is mainly related to the router operating

system, which is originally motivated by the trend to extend the forwarding function of

routers. The existing architectures, mostly based on open-source, are aimed primary at

providing a software prototype to implement interfaces or communication protocols

among router components. The router prototypes on which the software architectures are

developed are small scale, or even general-purpose computers with no specific chipsets.

The software architectures are still implemented with no control function on line cards.

More precisely, the line card is considered as a simple forwarding element of the router

where no routing, signaling or management task can be hosted.

We classify the current distributed software routers in two categories:

• Distribution of processes. In this category, the router software is composed of

independent processes, which can run simultaneously on the hardware platform.

Each control function (i.e., a routing protocol) is achieved by an independent

process.

A specific example of such an architecture is the Router Plugin [DecaOO], The

software framework supports dynamic loading and unloading of plug-in

modules at run-time into the kernel of the operating system (OS). Each protocol

102

or forwarding engine is defined as a module. The architecture is implemented in

the Net BSD operating system kernel, which is an open source Unix operating

system. The forwarding engine is designed with extended functions, such as

packet-to-flows mapping and filtering.

Another example of distributed software in this category is XORP {extensible

Open Router Platform) [HandQ5] which is also open-source and Unix based. In

XORP, the routing software is modularized into one process per protocol and

extra processes for management, configuration and coordination. It also defines

a forwarding engine abstraction (FEA), which allows running the higher-level

subsystem on top of different types of forwarding engines.

• Distribution of tasks. In this category, each router function (i.e., routing protocol

or forwarding) can be split into different tasks. Each task can be achieved by a

router component. Thus a function may run at different locations of the router.

A typical example of such architectures is ForCES, presented by the IETF

[Dori07], which can be considered as the most notable framework for distributed

routers. The ForCES architecture is defined in terms of exchange of information

between control elements (CEs) and forwarding elements (FEs). A group of CEs

and FEs together forms a network element (NE) which can be considered as a

router in the traditional sense. The ForCES protocol is used to associate the CEs

and FEs. It updates the FEs with configuration information from the CEs,

queries for information by the CEs or sends asynchronous event notifications to

CEs. Using the ForCES protocol, the CEs may also configure the processing

functions on the FEs.

103

Based on the ForCES architecture, one can attempt to redefine the control

functions of a router in order to share the processing tasks between the control

cards and the line cards. In [Deva03], the authors present a Distributed Control

Plane architecture, where some message processing, particularly HELLO

processing, is handled by the line card. An example for distributed OSPF

architecture demonstrates that when HELLO processing is moved to line cards,

failures can be detected faster and Shortest Path First (SPF) calculations can be

run as frequently as required without affecting the load on the control plane

processor.

Another example of distributed software in this category is the distributed OSPF

architecture presented in [Hvpe041. It is a partial distribution of OSPF consisting

of message processing and link state databases located on the line card. The

control card handles the SPF computation and routing table management. A

specific protocol is designed to achieve the communication between control and

line cards.

Basically, the first category is not able to efficiently exploit the next-generation router

hardware platforms because the computing resources on line cards are not used for

control processing. It is rather suitable for third generation routers with multiple control

cards and therefore is not considered in this thesis.

The second category seems more suitable for next generation routers. However, the

current ForCES architecture does not consider some specific hardware features of the

next generation routers such as the general purpose CPU and available memory on line

cards. As described, the forwarding element in the ForCES architecture may correspond

104

to the network processor (NP) on line cards of a next generation router. Since the network

processor is required for key data processing functions, such as table lookup or flow

classification, the integration of some control functions into this forwarding element as

proposed in [Deva03] may slow down the data forwarding speed of the line card. In

addition, the NP is often designed for specific interfaces so reprogramming the NP is

costly.

Our approach presented in the next chapter enhances the ForCES framework by

exploiting the general-purpose CPU and memory on line cards, instead of the network

processor. This keeps the forwarding element intact so the forwarding performance is not

influenced by new control functions implemented on the line card. In addition, using the

general purpose CPU on the line card allows more control functions to be offloaded from

the control card in order to increase the scalability.

4.6 Chapter Conclusions

The purpose of the second part of this thesis is to study architectures for IP routers,

which play essential role in providing the QoS in distributed systems. The key tasks of a

router include the best route computation, data forwarding and service provisioning. As

the traffic in the core network is increasing rapidly, new architectures for routers are

required in order to improve the robustness, scalability and resiliency.

This chapter has reviewed the hardware architectures of three router generations and

discussed their evolution. The first and the second generation routers have been designed

with a common bus which is not able to serve a large number of interfaces and traffic

requirements. The current widely used routers belong to the third generation which is

105

made with a switch fabric. It enables the parallel processing and increases the number of

interfaces the router can support. We have also investigated the structures of the control

card and the line card of a router and the internal processing mechanisms for data and

control packets.

The hardware architecture of the next generation routers has then been analyzed and we

focused on the large switching capacity, computing and memory. We also reviewed the

software architectures of current routers, which are mostly monolithic, and some trends

of software distributions, namely the distribution of processes and distribution of tasks.

We demonstrated that the current software architecture does not fully exploit such a

robust platform, thus new distributed software architectures need to emerge. To this end,

the next chapters will propose a new framework to develop distributed software

architectures, followed by the designs of specific modules, such as routing, signaling,

Routing Table Manager and MPLS.

106

Chapter 5 Proposal for Distributed Software

Architecture for Next Generation Routers

In this chapter, we propose a new distributed and scalable framework, aimed at

redesigning the current software architectures to fit into the new hardware platforms of

the next generation routers. The chapter consists of two parts. The first part is dedicated

to a new distributed software framework we propose for next IP generation routers where

we focus on generic distributed architectures for routing and signaling protocols. In the

second part, we present the application of the generic distributed architectures to specific

protocols, such as OSPF and MPLS/LDP.

The generic architecture presented in the first part is based on the redistribution of many

of the existing functions on different router components without modifying them, while

maintaining their interfaces with other functions. In particular, most control functions

will be located on the line cards instead of on the control cards. It goes along with the

transfer of some tables, e.g., forwarding table, routing tables and adjacency tables, from

again the control card to the line cards. For both routing and signaling protocols, we first

review the centralized architecture before proposing the generic distributed one, and

discuss the feasibility of its implementation. We also assess the advantages of such a

distributed architecture. The objective of such a redistribution of the functions of the

routing and signaling protocols is to increase the scalability and resiliency. Because of the

distribution, control tasks can be processed in parallel on different hardware components

of the router. In the next chapters, we will present a detailed analysis of the performance

of the distributed architecture.

107

In the second part of this chapter, we discuss the ability of applying the proposed

distributed architectures for the design of distributed architectures for OSPF and

MPLS/LDP. Existing centralized architectures of these protocols are analyzed. We

propose then the software modules to be distributed. Distributed architectures for related

components such as RSVP-TE and Routing Table Manager (RTM) are also proposed.

In chapters 5, 6 and 7, we mainly focus on how to design distributed and scalable

software architectures that fully exploit the distributed hardware platforms of next

generation routers. Such software architectures include:

• A generic distributed architecture for routing protocols. We develop a model to

implement the routing protocols, particularly IGP protocols, for next generation

routers in a distributed way. This is presented in Section 5.1.1.

• A generic distributed architecture for signaling protocols. We develop a model

to implement the signaling protocols for next generation routers in a distributed

way. This is presented in Section 5.1.2.

• A distributed architecture for a typical routing protocol, namely OSPF. We

apply the generic distributed architecture for the OSPF protocol, taking into

account the specific features of OSPF. The distributed OSPF architecture is RFC

2328 compliant. The general description of the proposed architecture is

described in Section 5.2. The performance evaluation of the architecture is

discussed in Chapter 7.

• A distributed architecture for a typical signaling protocol, namely LDP. We

investigate the application of the generic distributed architecture for LDP. The

architecture is RFC 3036 compliant. This is presented in Section 5.2.2.2. The

108

details of the implementation architecture are provided in Chapter 6 where we

discuss the challenges and their solutions, as well as the resiliency issue.

• Distributed architectures for the Routing Table Manager. We propose three

distributed architectures for the Routing Table Manager, taking into account the

capacity of routers and the architectures of the routing protocol modules. This is

presented in Chapter 7.

• A distributed architecture for MPLS. We develop a distributed MPLS

architecture for next generation routers, including both data and control planes.

The architecture is RFC 3031 compliant. This is presented in Section 5.2.2.2 and

in Chapter 6.

• A distributed architecture for RSVP-TE. We investigate a distributed

architecture for RSVP-TE, which is similar to LDP protocols, with additional

features for traffic engineering. The architecture is RFC 3209 compliant. The

mechanisms we propose for LDP message processing can be reused for RSVP-

TE and the distributed path computation supporting the traffic engineering is as

described in the third proposed distributed RTM architecture. The description of

the distributed RSVP-TE architecture is outlined in Section 7.1. It has been

thoroughly investigated in the M.Sc Thesis of Saloni Neri [Neri07].

5.1 Generic Distributed Architecture for Routing and Signaling

In order to take advantage of the next generation router platform which provides

additional processing and memory resources on line cards, we investigate the ability of

moving some control functions from control card to line cards. This section provides a

109

basis for such a distribution with the new challenges. Existing protocols in the router will

be re-implemented based on this approach with respect to the RFC specifications. The

architecture we propose is based on the following assumptions:

• The router is based on next-generation architectures, consisting in a distributed

platform, with separated control cards and line cards. Lines cards have full capacity of

memory and processing power, and are able to perform all the data forwarding and

some control tasks.

• The communication between router cards is achieved through a specific device (called

Switch Fabric, SF) that is able to provide the required bandwidth and other QoS

demands. The forecast switching capacity is in order of a few petabits.

• There is a specific communication channel between line cards, enabling them to

exchange control information with a negligible impact on data flows. This channel

shares the bandwidth on the switch fabric with data flows. In our implementation

environment, see ["Dupl05~|, this channel is designed as an abstract layer called

Distributed Service (DS). It provides a synchronization mechanism to manage module

activations, monitoring and state transitioning facilities (active, backup, in-service

upgrade, etc.). DS maintains a distributed database allowing requesting modules to get

appropriate messages. Thus messages needed to be sent are flooded to DS and the

destination will be notified.

The key features of the software architecture we propose are as follows.

• A control component runs on a control card assuming the cooperation of the different

line cards and interfacing with other modules (e.g., user interfaces, management units,

etc.). Additional control cards can be added to share processing tasks. However, as

110

load balancing at the control card level is not investigated in this thesis, we can

assume the router has only one control card.

• A link component runs on each line card of the router, taking care of the protocol

procedures like route establishment, update advertisement, notifications, etc. Link

components are loaded into built-in processors and use available memory capacity of

the line cards.

A communication protocol is used for message exchanges between the control card and

the line cards. This protocol runs on top of DS and interoperates the control components

and link components in order to establish routes over networks.

Basically, the software implemented on the router platform has to carry out the

following three primary functions:

• Data Forwarding. This function can be entirely achieved by the line cards in the

current generation routers. The control card is no longer involved in this procedure.

Once routes have been established and recorded into the routing table, data can be

forwarded easily by network processors. Therefore the distributed software

architecture we propose focuses on the routing and does not deal with data forwarding.

• Routing and Signaling. This is basically the information exchange (e.g., link state

information) between different internetworking nodes in order to determine the paths

through a network. In the centralized architecture, this function is performed by the

control card. The distributed software architecture we propose aims to migrate most of

this function to the line cards. The control card can be required, from time to time, to

provide a global view of the network topology, according to the needs of the path

computation.

I l l

• Control and Management. This includes different tasks used to select optimal paths

learnt from different routing and signaling protocols, addressing mechanisms, routing

table updates and notifications, user interfaces and interfaces between different

modules. In the distributed software architecture we propose, this procedure can be

shared between the control card and line cards.

Some recent studies [Deva03] have also presented the distribution of the control plane

based on the functions performed by control cards and line cards. For example: i) link-

specific functions are performed on line cards, ii) update functions are performed by

control cards, and iii) protocol-specific functions need to be considered on a case-by-case

basis for distribution and there is no standard model. This approach can deal efficiently

with medium scale routers (e.g., routers with some tens of line cards and few hundred

interfaces [Deva03]). However, core routers, and especially petabit routers require

enhanced distributed architectures in order to run on their high-scale hardware platform

(e.g., thousands of line cards). The software architecture we propose in this section

provides a full distributed mechanism where the main tasks of the control plane are able

to run on the line cards. We take into account the nature of routing and signaling

protocols in order to propose an appropriate distribution scheme.

The distributed software architecture we propose, inspired from a peer-to-peer model

for distributed multimedia applications [Nguy_07b], assigns the data forwarding and

signaling tasks to the line cards, and shares the control between line cards and the control

card. The router can therefore be considered as a distributed system consisting of a group

of line cards playing the same role, and one or some control cards acting as super nodes.

The direct communication between any pair of router components (i.e., line card or

112

control card) making the router to be similar to a peer-to-peer system, particularly in the

case of a very large number of line cards.

Basically, the principal function of a router is to establish routes between two or several

nodes. It is usually achieved by two types of protocols: routing and signaling. Routing

protocols usually require route computations which identify the best routes while

signaling protocols may not need the best routes as they are primarily dealing with

reacheability. Hence, we next present the proposed distributed software architecture

which will be then refined for each type of protocols in subsequent sections.

5.1.1 Routing

Routing protocols are deployed to determine the best routes from one router to other

nodes in a network [Moy_98]. It means that the router has to compute the paths based on

information collected from other nodes. So, it must be aware of the whole network

topology which is generated combining the route update messages sent by other routers

in the network and its own routing information. Our distributed architecture for routing

protocols aims mainly at the IGP protocols, such as OSPF and IS-IS because the load

imposed on the control card to process these protocols is heavy. The EGP protocols,

particularly BGP, are not considered in this thesis. Indeed, one (or few) dedicated control

card is usually used to host the BGP module in the current routers [Dupl05"|. The

distribution of the BGP on line cards needs more complex solutions in order to overcome

the current implementation issues related to the loopback address that allows a router to

communicate with a given remote BGP speaker through any of its line cards. This will be

taken into account in some future work.

113

5.1.1.1 Current Centralized Architecture for Routing Protocols

Current routing protocols are mainly processed at the control card level. All protocol

messages must go to the control card where a protocol processing module. This

architecture works as follows (Figure 5-1):

Figure 5-1: Current Centralized Routing Model

• When the router is connected to a network, the routing protocol module running on the

control card discovers its neighbors. It broadcasts Hello messages through all line

cards to reach direct connected neighbors. Specific discovery messages can also be

addressed to given non-direct connected destinations indicated by the user.

• Route update messages come from neighbors through a line card ports are sent to the

routing protocol module located on the control card. Similarly for a link change which

is detected by the link manager module running on each line card. The control card re­

computes the best routes for the corresponding routing domain. Usually, all line cards

connecting to a given routing domain will send the same route update message,

therefore the control card waits for a convergence before executing the computation.

New best routes are then update to all forwarding tables located on the line cards.

114

5.1.1.2 Proposed Distributed Architecture for Routing Protocols

In order to apply the distributed software architecture for an IGP routing protocol, we

will assign a line card as proxy in charge of the route computation for a routing domain

where the router connects to. In practice, it can be the first line card on which the routing

protocol is activated, or the first line card that receives the update message. Every line

card willing to participate to the routing procedure for a domain must send a PROXY

message to the control card in order to get the address of the proxy of this domain. Route

update messages which a line card receives or discovers by itself must then be forwarded

directly to the proxy. The proxy computes the best routes for the domain then updates the

global routing table handled by the control card.

- • : Control
£ • : Data flow Control Card

(1) PROXY. * / '
,• / Switch Fabric \

Figure 5-2: Distributed Routing Model

In order to achieve this objective, the proposed model proceeds as follows (Figure 5-2):

' When the router is connected to a network, each link component running on a line

card that acts as a peer has to discover its neighbors. This procedure can be achieved

by broadcasting Hello messages to all physical interfaces of the line card (e.g., in case

of OSPF protocol) or by sending a request to a given destination indicated by the user

(e.g., in case of BGP protocol [Bu04]).

115

• When a link component receives a route update message from neighbors or detects a

link change, it sends a PROXY message to the control card to obtain the location of

the line card that handles the route computation for the domain to which it belongs.

The control card lookups its database for the proxy of the corresponding domain. A

LOCATION message is sent back to the requesting line card indicating the location of

the proxy. The requesting line card then directly forwards the update message to the

proxy. In case of control card failures, the link component continues to send

periodically HELLO messages in order to maintain the adjacency. If the proxy is

temporary down while there is a new request, the control card assigns the proxy tasks

to another line card in the domain in order to achieve the route computation.

• Upon receiving the update message, the proxy rebuilds the network topology and re­

computes the best routes. Then it sends them to the control card in order to advertise

them to all line cards in the system. The network processors will use these routes to

forward the data packets.

5.1.1.3 Distributed vs. Centralized Architecture for Routing Protocols

The proposed distributed architecture has exactly the same functions for all routing

processes associated with the conventional routing protocols as the centralized

architecture. It maintains interfaces with other software modules. Neighbor routers view a

distributed architecture based router and a centralized architecture based router the same

because their protocol messages are the same. We compare the centralized and

distributed architectures on the following points:

116

• Neighbor discovery. Both architectures discover neighbors by sending Hello

messages through line card ports. The number of Hello messages sent in both

case is the same.

• Reception of update messages. For a given routing protocol, both architectures

receive the same number of update messages (one message per line card port).

• Best route computation. The best route computation is achieved in a sole

component of a router for both architectures. In the centralized architecture, it is

handled at the control card level, and in the distributed architecture, it is

processed by the proxy line card. However, in both cases, they have the same

link state database built from the same update messages, therefore the results of

the route computation will be the same.

When the routing functions are distributed onto line cards, we need to take care of the

synchronization of link state databases (LSDB) among line cards in the same domain. We

propose to add an LSDB synchronization component to the proxy line card as described

in Section 5.2.1.2, allowing the proxy line card to update the other line cards in its

domain about newly received link state messages. Such a mechanism ensures that all line

cards in the same domain have the same LSDB because they receive the same update

from the proxy line card. Since all link update messages are sent first to the proxy line

card of each domain, the proxy line card contains the complete LSDB of the domain.

After having computed the best routes of the domain, the LSDB synchronization

component of the proxy line card sends the new best routes and the updated LSDB to the

other line cards. Thus, the LSDBs on all line cards belonging to the same domain are

identical.

117

5.1.2 Signaling

Signaling protocols, on the other hand, are aimed principally at establishing a path,

which is not necessary the best route, between two nodes in the network [Zhan02]. Figure

5-3 shows a diagram of a router connecting two different autonomous systems (AS) AS1

and AS2, respectively using Line Card 1 and Line Card 2.

5.1.2.1 Current Centralized Architecture for Signaling Protocols

Basically a typical signaling protocol (e.g., LDP) module implemented in the current

router works as follows.

• When there is a request for routing from AS 1 to AS2 through the router, Line Card 1

{ingress) forwards the request to the protocol module running on the control card.

• The control card determines the line card which is used to connect to AS2 (Line Card

2 - egress). The control card forwards then the request to AS2 through Line Card 2.

The control card must therefore maintain a routing table containing requests from all

line cards. An entry in this table represents an LSP.

• When there is a response from AS2, Line Card 2 forwards the response to the control

card in order to complete the corresponding entry of the routing table. The control card

sends a response to AS1 through Line Cardl. The control card updates the forwarding

table on all line cards with the new entry of its routing table. A data flow can then be

triggered between AS1 and AS2 through Line Card 1 and Line Card2.

118

inr

Control Card

* \ (2) REQUEST
Switch Fabric \ \

/ » (4) RESPONSE (3) RESPONSE\ ^

Figure 5-3: Current Centralized Signaling Model

5.1.2.2 Proposed Distributed Architecture for Signaling Protocols

Our distributed model proceeds as follows (Figure 5-4):

• When the router is connected to a network, each link component, acting as a peer has

to detect its neighbors (i.e., AS1 for Line Card 1 and AS2 for Line Card 2).

• When there is a request for routing from AS 1 to AS2 through the router or if the router

wants to build a path between two ASs following a user request, the link component

on Line Card 1 (ingress) sends a SEARCH message to the control card requesting the

address of the line card (egress) to be used in order to establish a connection with

AS2.

• The control card replies by a LOCATION message containing the address (e.g., IP

address) of Line Card 2. The control card maintains a routing table allowing it to be

aware about the topology of all networks the router connects to. There are two

possible situations:

o If there is only one connection to AS2 (e.g., through Line Card 2), by looking up

the routing table, the control card is able to determine the egress line card.

119

o If there is more than one connection to AS2, the control card has to compute the

most appropriate line card based on specific parameters defined by routing

protocols (e.g., link state).

• When receiving the LOCATION message from the control card, Line Card 1 sends a

REQUEST message to Line Card 2 asking for a connection to AS2. In general, some

additional parameters (e.g., protocol specifications, QoS or traffic engineering) are

also included in the REQUEST message.

• • • : Control
^ - : Data flow Control Card

(1) SEARCH.* /
Switch Fabric

AS1

/ kt (2) LOCATION

(3) REQUEST
Line

Cardl
(4) RESPONSE

Line
Card 2

^ (5): Data flow (5) V

AS 2

Figure 5-4: Signaling Model

• Line Card 2 is responsible for negotiating with AS2 about the new route. It can be

done with an iterative procedure where routing parameters are re-negotiated between

AS1 and AS2 with the help of REQUEST and RESPONSE messages exchanged

between Line Card 1 and Line Card 2 until they can settle an agreement for their

requirements.

• When two ASs and the router agree about the parameters for the new route, a new

entry will be added into the routing table of the router by which the forwarding engine

can trigger the data flow between Line Card 1 and Line Card 2. The control card can

also be notified about this update.

120

5.1.2.3 Distributed vs. Centralized Architecture for Signaling Protocols

Again, the proposed distributed architecture for signaling protocols has exactly the same

functions for all signaling processes associated with the conventional signaling protocols

as the centralized architecture. They only differ in their implementation: distributed vs.

centralized. Interfaces with other software modules are maintained. Neighbor routers

view a distributed based router and a centralized architecture based router the same

because their protocol messages are the same. We compare the centralized and

distributed architectures on the following points:

• Neighbor discovery. Both architectures discover neighbors by sending Hello

messages through line card ports. The number of Hello messages sent in both

cases is the same.

• Determination of the egress line card. The egress line card is determined for

each request in both architectures by the control card. Therefore, the result is the

same in both cases. It is similar for a response.

• Messages. In the centralized architecture, a request message is sent from the

ingress line card through the control card to the egress line card. In the

distributed architecture, it is sent directly from the ingress to the egress line card.

Since the egress line card is the same in both architectures, the destination of the

request message is unchanged. It is similar for a response message.

In the distributed architecture, there is a duplication of processing task on the line cards.

For example, each line card involved in a given LSP keeps a copy of information about

the LSP. Therefore, the parallel processing is enabled.

121

In the proposed distributed architecture, there is a synchronization issue related to two

line cards involved in a given LSP, i.e., Line Card 1 and Line Card 2 in Figure 5-4. In

order to send data from domain AS 1 to domain AS2 and vice versa, Line Card 1 and Line

Card 2 must contain the same information about the LSP. This is achieved by REQUEST

and RESPONSE messages exchanged between Line Card 1 and Line Card 2. However, if

one of these messages is lost due to software errors or internal transmission channel

errors, it will creates some inconsistencies in the databases of Line Card 1 and Line Card

2. In order to avoid those inconsistencies, an acknowledgement mechanism is proposed

as described in Section 6.3.1, where each REQUEST and RESPONSE message is

associated with an acknowledgement. Data transmission is trigged on the LSP only when

all acknowledgements are received. The synchronization issue is solved by such a

mechanism because it makes sure that protocol messages are exchanged in sequence, e.g.,

if the REQUEST is not yet received, a RESPONSE will not be sent. In addition, domain

AS1 starts sending data only after receiving the confirmation from domain AS2 and the

LSP information of the two line cards is complete and identical.

5.1.3 Advantages of a Distributed Architecture

Obviously, migrating some of processing tasks from the control card to line cards can

reduce potential bottlenecks experienced on the control card when the number of requests

is increased, according to the number of line cards and routes the core router has to

support. The most important feature is that our model can take advantage of the

additional resource available on line cards of the petabit router. In addition, the model we

propose has the following advantages:

122

• Performance. Parallel processing is available in our model and waiting queues can be

avoided. Line cards can independently process the routes they are involved in, without

having to wait for the reply from the control card.

• Scalability. The router will be more scalable if some control tasks, particularly the

signaling, can be processed by line cards. The control card will assume only the most

complicated tasks, the tasks that need human interactions or the tasks used to

interoperate different line cards.

• Resiliency. If the control card is required to perform all control tasks, system will be

totally shutdown when the control card fails. One of the possible solutions is to have

an additional control card, to be used as a backup for the primary control card

[NguOTa]. However, control cards are often costly. Having a backup mechanism at the

line card level as described in Chapter 6 provides a better solution: it is faster to

recover from line card failures; moreover a line card is much cheaper than a control

card.

• Availability. Since HELLO messages can be sent directly from the line cards, the time

to recover from failures will be reduced. The resulting congestion at the control card

level will not slow down the procedures on the line cards.

On the other hand, the distributed architecture can raise some additional management

overheads, as follows.

• There are more messages exchanged between the control card and line cards.

Although the heaviest processing tasks have been eliminated on the control card (i.e.,

route computation and message sending/receiving), the control card is still responsible

123

for the cooperation of the line cards. Such activity is supported by an internal protocol,

thus additional message exchanges are required.

• The software complexity is increased, the router can be seen as a completely

distributed system hence additional functions must be implemented, such as timing

and inter-card synchronization. Line card software should also provide extra-functions,

such as message processing, table management or inter-protocol communications.

Although there would be some trade-off due to the migration of control functions from

the control cards to the line cards, we believe that the proposed distributed architecture is

a good candidate for dealing with next generation router issues, particularly with a large

number of line cards.

5.2 Case Studies

5.2.1 Routing: A Distributed OSPF Architecture

The OSPF (Open Shortest Path First) protocol [Moy98] is used for computing the

shortest paths from one router to other nodes in a network. It is a hierarchical interior

gateway protocol (IGP) for routing in IP networks, using a link-state in the individual

areas that make up the hierarchy. A computation based on Dijkstra's algorithm is used to

calculate the shortest path tree inside each area. In each OSPF-enabled router, a link state

database (LSDB) is constructed as a tree-image of the network topology, and identical

copies of the LSDB are periodically updated on all routers in each OSPF-aware area.

5.2.1.1 Overview of Centralized OSPF Architecture

The OSPF module is implemented in current routers in a centralized way at control card

level as shown in Figure 5-5. A filter is defined at the iNP of each line card in order to

124

forward all OSPF messages to the control card where they are processed by an OSPF

module. There is a Link State Database (LSDB) managed by the OSPF module. The

LSDB contains information of all OSPF links. OSPF best routes are computed from

LSDB and updated to the RTM. They will then be compared to best routes coming from

other protocols (i.e., BGP, RIP, IS-IS, etc.) in order to select the overall best routes. This

final result is recorded to the FIT of the router through the IP stack.

iTM

7 ^

£g?j OSPF L]
OSPF Sub

Protocol

CPU

•*\ RIM h V = * >

1 I fe^ IP
LSDB .'

Control
Card

eTM

"^-Switch Fabric ""'

iTM
Line Card 1

iNP

&

CPU /

^ , p

eTM

eNP

iTM \ Line Card 2
eTM

iNP ,

CPLK

IP
eNP

Figure 5-5: A Centralized OSPF Architecture

Basically, such a centralized OSPF architecture consists of the following components:

• A link state database (LSDB), containing all OSPF links of the routers,

• A link state advertisement table (LSA), containing the advertisements the router

has to send to its OSPF neighbors,

• A SPF tree computation component, used to compute the OSPF network topology

from the LSDB,

• A Hello process, used to discover OSPF neighbors. Hello messages are sent from

this process to neighbors through appropriate line cards,

125

• An adjacency management process, used to manage OSPF neighbors,

• A flooding process, used to send OSPF advertisements to all OSPF neighbors.

As discussed in the previous section, such a centralized architecture will easily lead to

overloading problem at the control card, especially when the line cards are added to

satisfy the growing traffic demand.

5.2.1.2 A Distributed OSPF Architecture for Next Generation Routers

One of the distributed implementation models for OSPF has been proposed in [Deva03]

based on the ForCES framework [Yang04], where Hello protocol is handled by line cards

while the database synchronization and the path computation are still performed by the

control card. Some experiments have been conducted with a router platform having 10

line cards. However, it remains a partial distributed architecture and the number of line

cards to be tested is limited. On an advanced architecture containing thousands of line

cards and interfaces, overload can easily be experienced.

Note that distributed OSPF architectures are RFC compliant. In other words, all

functions provided by a distributed architecture are the same ones in the centralized

architecture. The difference between the two architectures resides in the internal

processing mechanisms. While all messages are processed at the control card in the

centralized architecture, in the distributed architecture they are processed at different

locations of the router. In [Hype04], the authors have also implemented a distributed

OSPF architecture where line cards handle OSPF messages processing and link state

database management. The path computation is still performed on the control card. We

improve this implementation with our proposed generic distributed architecture for

routing protocols. In our architecture, not only the Hello protocol but also control tasks

126

(i.e., path computation and database synchronization) can be migrated to line cards,

increasing the scalability, availability and robustness of the system. The distributed OSPF

architecture (Figure 5-6) consists therefore of two modules: the OSPF Control

Component (OCC) and the OSPF Link Component (OLC). The first one operates at the

control card level and the second one operates at the line card level. It is essentially a full

OSPF distribution where only some configuration and management functionalities

remain centralized at the control card level.

Figure 5-6: Distributed OSPF Architecture

The OCC module performs the following tasks:

• Maintain a global view of the network topology and select the proxy for each

domain,

• Update best routes to RTM (Routing Table Manager),

• Interact with the internal world of the router via IRP (Internal Routing Protocol),

• Interface with user and other modules (e.g., MPLS, QoS).

The OLC handles most of the control tasks, including:

127

• Send and receive OSPF packets (through the interface ports). This is achieved

by a Hello Process.

• Run Hello protocol in order to establish the adjacency with its neighbors. This is

achieved by an Adjacency Process.

• Synchronize its LSDB (Link State Database) topology database with other

OLCs in the same domain. This is done by a LSDB Synchronization component.

This component is added to deal with the synchronization issue which appears in

the distributed architecture. Whenever a new link state message comes in, it is

forwarded to the proxy line card of the corresponding domain. The proxy line

card updates the link state database and then re-computes the best routes of the

domain. The LSDB Synchronization is then used to update the LSDBs of the

other line cards in the domain.

• Flood LSAs (Link State Advertisement) to the external world. This is achieved

by a Flooding Process.

• Run SPF (Shortest Path First) if it is assigned as a proxy. This is achieved by a

SPF Tree component.

• Generate LSAs from an LSA table.

The distribution of OSPF we propose makes the router much more robust, scalable and

resilient [NguyOTb]. As discussed in Section 5.1.3, it is more robust, because the path

computation can be executed on line cards, thus different domains can be processed in

parallel. The scalability is also further enhanced because the router resources used by

OSPF could be adapted to the amount of the routing traffic of the network. Finally, the

128

overall router resiliency is also improved because a line card failure will not lead to the

lost of the adjacency with the neighbors on the other line cards.

The performance evaluation of the proposed distributed OSPF architecture compared to

the centralized one, in terms of CPU cycles, memory consumption and messages

exchanged, will be presented in Chapter 7 where we study the distribution of routing

protocols in the context of the distributed architectures for the Routing Table Manager

(RTM).

5.2.2 Case Study for Signaling: A Distributed MPLS/LDP

Architecture

In this section, we describe the ability of applying the generic distributed architecture

for signaling protocols we proposed, to implement MPLS with LDP as primary signaling

protocol for next generation routers. Actually, MPLS support is one of the primary

requirements for current core routers [Chao02].

5.2.2.1 Overview of Centralized MPLS Architecture

The traditional IP routing is a hop-by-hop forwarding paradigm. When an IP packet

arrives at a router, the router looks at the destination address in the IP header, does a

route lookup, and forwards the packet to the next hop. If no route exists, the packet is

then dropped. This process is repeated at each hop until the packet reaches its destination.

In a MPLS [RoseOl] network, nodes are forwarded hop-by-hop based on a fixed-length

label. This label, so called Label Switched Path (LSP), determines the route that the

packet will take to the destination. Thus, the routing process is done only in edge routers,

so called Label Edge Router (LER), then the packet is simply switched over transit

129

routers, so called Label Switch Router (LSR); in consequence, the forwarding speed is

improved. In traditional IP based networks, all packets from a given source to a given

destination travel on a best route determined by a routing protocol. Hence the additional

services such as VPN are not enabled. In addition, nodes on the best route can become

critical points due to the overload, while other nodes in the network can be inefficiently

utilized. Based on labels, MPLS provides flow management, traffic engineering, quality

of service (QoS), VPNs (Virtual Private Networks) and Any Transport over MPLS

(AToM).

A MPLS label is a 20-bit identifier, added to the MPLS data packets to forward them

over network. Packets sharing the same forwarding criteria, so called forwarding

equivalence class (FEC), e.g., that experience the same delay, carry the same label.

Therefore, a LSP is a combination of a FEC and a label. In order to define the LSPs

among routers in a network, signaling protocols are deployed, where most used are LDP

[AndeOl] and RSVP-TE [AwduOJJ.

BGP

Control Plane

OSPF H 4 R ™

IS-IS

MPLS
Controller

LDP IRSVP-TE
TCP/UDP ,' T

IP

Communication Channel

/ Data plane

FIT Forwarder

Figure 5-7: MPLS Architecture

130

In a next generation router, a MPLS architecture consists of two parts (Figure 5-7): data

plane and control plane. The data plane is responsible for forwarding MPLS data packet

based on information provided by the control plane. Basically, on current routers, data

plane is built in the hardware level in order to accelerate the switching speed and the

forwarding is achieved by specific chipsets. The control plane, on the other hand, is

implemented at the software level and can easily be configured and upgraded. There is a

Forwarding Information Table (FIT) on the data plane, that contains the LSPs generated

by the signaling protocols located on the control plane. The ingress LER at the incoming

edge of the network classifies the IP packets, pushes a label on the data packet that

matches a FEC. When a LSR receives a labeled packet, it does a label swapping that

consists of:

• Lookup the FIT based on the incoming interface and incoming label,

• Find an appropriate outgoing interface and outgoing label, and

• Replace the incoming label by the outgoing label and send the packet out the

outgoing interface.

The egress LER at the outgoing edge of the network will then perform a pop operation

to remove the label and restore the original IP packet.

The MPLS control plane has the following components:

• Signaling protocols. LDP and RSVP-TE can be used alternatively. They interact

with IGPs (Interior Gateway Protocol), like OSPF [Moy_98] or IS-IS [ISO02] to

compute the path for the ingress LER based on traffic engineering criterion.

Traditionally, IGPs provide IP best routes to reach all routers in network using

Shortest Path First (SPF) computation. With MPLS traffic engineering facility,

131

IGPs can be invoked to run Constrained SPF (CSPF) to generate path for traffic-

engineering (TE) tunnels. The difference between SPF and CSPF is that the latter

one takes into account more than one metric, instead of just a single cost for a link

between two neighbours as in the previous one. Based on the IGP path

calculation, MPLS signaling protocols establish LSPs. The interaction between

signaling protocols and IGPs are often achieved through a module called RTM

(Routing Table Manager) which gets routing information coming from different

routing protocols and selects the overall IP best routes of the system. LDP is

located on top of TCP and RSVP-TE use directly the raw socket service provided

by IP.

• Label Allocation Table (LAT). It contains the available label space of the system.

For example, a typical router is provided with 10 interfaces, each one can support

at most 100 LSPs, so the number of labels the router can supply is 1000. The LAT

table is shared between the signaling protocols in order to avoid ambiguity in the

label interpretation.

• Label Information Base (LIB). It is a set of tables containing the label mappings.

Once a LSP is completed, it is recorded into the FIT located on the data plane.

The following tables are required:

o FEC-To-Next Hop Label Forwarding Entry (NHLFE) Table (FTN). The

FTN is used at the LERs for making MPLS forwarding decisions for

unlabeled packets. Each entry of the table defines a mapping from a FEC

to a NHLFE which contains the instructions for forwarding MPLS packets

qualified for a specific flow. The NHLFE includes one or more outgoing

132

labels, operations on the packet label stack, layer 2 encapsulation,

specifications for traffic shaping and policing, the outgoing layer 2

interface,

o Incoming Label Map Table (ILM). The ILM table is used at the LSRs for

making forwarding decisions for labeled packets.

• Other tables, such as Multicast Routing Forwarding Table (MRF, used to map a

FEC to multiple NHLFEs), Differentiated Services Mapping Table (DSM, used to

map Differentiated Services Code Point values to layer 2 interface reservation

handles) can also be provided on the MPLS control plane depending on the router

capabilities.

• Traffic engineering. It takes care of the interfaces with user and the link

management module in order to control the bandwidth consumption on LSPs and

advertise the neighbors.

In addition, MPLS control plane can also interact with EGPs (Exterior Gateway

Protocol), like BGP, in order to distribute labels in the network using protocol extensions

TRekhOll.

The next section focuses on the MPLS control plane with LDP as principal signaling

protocol to distribute labels in the network.

5.2.2.2 Towards A Distributed MPLS/LDP Architecture for Next Generation

Routers

Basically, distributed MPLS/LDP architectures are RFC compliant. All functions

provided by a distributed architecture are the same ones in the centralized architecture.

However, while these functions are processed only at the control card in the centralized

133

architecture, in the distributed architecture they are achieved at different locations of the

router.

The underlying idea of our research is the distribution of some of the MPLS control

functions on line cards, as presented in [Ngu07a] and [Ngu07b]. It is leveraged by the

capacity of the multi-purpose CPU and additional memory available on the line cards of

the next generation routers which are able to perform complex operations. The switch

fabric is also enhanced allowing multiple flows to be transferred among router cards.

There are basically two approaches for control plane distribution. The first one is based

on the sharing among the control cards. Each control card performs a part of the routing

protocol, or covers a part of the network [Ngu07a]. The drawback is that failures on a

control card will lead to a partial service interruption. Even if backup control cards are

added, extensions are required to conventional routing protocols in order to ensure 100%

resiliency or current sessions will be restarted. In addition, the control card is still a

potential congestion point. In this section, we focus on the second approach that migrates

some control functions to the line cards. This can deal efficiently with both the resiliency

and scalability. The control cards overload can be reduced considerably if some

processing tasks are released. The congestion hence can be avoided and a control card

can serve more line cards. If the protocol processing is achieved at the line card level,

current sessions can be maintained for a while in case of control card failures waiting for

the control card to be restarted, making failures transparent. Thus, the resiliency is

improved. In addition, some failures can be recovered in a faster way from the line card

level.

134

Control Card

iTM

MPLS
Controller FV CPU

\
\

OSPF

—^~
BGP

MPLS
Signaling

H LDP RSVP
FIT IP

^L
RTM

Traffic
Engineering HeTM

Switch Fabric

iTM

iNP

&

^- '

1

1

i

s IP

Line Card

CPU

eTM

eNP

Figure 5-8: Centralized Architecture of MPLS /LDP

The current centralized MPLS implementation is illustrated in Figure 5-8. As we can

see, the data plane is entirely implemented on the line cards. Any MPLS data packet is

first processed at the iNP of the ingress line card (i.e., the line card that receives incoming

data packets) which determines the egress line card (i.e., the line card that sends out data

packets) and the outgoing port based on the FIT. Labeling operations (i.e., pushing,

popping and swapping) are all achieved by this iNP. The egress line card does only data

forwarding. The MPLS control plane, in other words, is implemented entirely on the

control card. Control messages (i.e., LDP or RSVP-TE messages) are filtered by the iNP

of the ingress line card and forwarded to the control card for further processing. The

MPLS Signaling module is in charge of combining, selecting and unifying information

provided by LDP and RSVP-TE so that messages going to the MPLS Controller have the

same format. The MPLS Controller achieves the label generation, table management and

135

interfaces with other modules and users. It updates the LSPs to the FIT which contains

also the IP best routes of routing protocols handled by a RTM. Messages are processed

on the control cards and are then sent to the peers through appropriate line cards. The

main advantage of this architecture is that it is easily upgradeable. Line card architecture

is simple and does not handle complicated software components. Once a router needs to

be upgraded, the control card is replaced or its software is rebuilt. The line cards remain

intact during the upgrading procedure.

However, the centralized architecture suffers from several drawbacks related to the

scalability and resiliency. Particularly, the table management and protocol processing

performed on the control card will slow down the processing speed. Such an architecture

cannot be used for very high scalable routers with expected petabit switching capacity

and thousands of line cards. In addition, the next generation routers are expected to be

installed in the core networks in at least few years without having to be upgraded

[Chao02]. Thus, the upgradeability is much less concerned than the scalability and

resiliency. Highly scalable control ports and software tools [DecaOO] can also help to ease

the software installation process on all line cards when deploying a distributed

architecture.

Towards a distributed MPLS architecture, we aim at improving the following

components (Figure 5-9):

• MPLS data plane. Although in the centralized architecture, the data plane is

implemented on the line cards, the processing task is carried out mostly at the

ingress line card. A load sharing between ingress and egress line cards can be

considered in the distributed architecture.

136

• LAT table. Access to the LAT can be done at the line card level instead of the

control card. Processing speed can also be accelerated if a line card can locally

decide to generate labels according to the requests from its peers.

• LIB table. The current LIB is located on the control card and contains the overall

LSPs of the system. It is then copied to the FIT of each line card. This is an extra

overload since some LSPs never go through the given line card (this is because

each line card hosts only some hundred LSPs while there can be hundred of

thousands LSPs in the whole system). Moving LIB to the line cards in the

distributed architecture may accelerate the protocol processing and hardware

recording. In addition, the memory requirement of the line card is reduced by

including only the required LSPs in the LIB of the line card.

CPU

IGP
Controller

G-RTM CLI

EGP
Controller

J^J^

Control Card •'

MPLS
Controller

i

SWITCH FABRIC

• Line Card

IGP
Link

EGP
Link

MPL
Link <5E3

CPU RSVP-TE

Forwarding Engine (Hardware)"^

Legend:

• • Data flow
• V Control messages

Data
packet

Figure 5-9: Overview of MPLS Distribution Architecture

137

• Signaling protocol. This section deals principally with LDP. In the distributed

architecture, the control card is no longer involved in the LDP message

processing and transmission. The scalability and resiliency can be improved as

discussed above. The LDP adjacency manager is also migrated to the line cards

along with LDP. This can also optimize the adjacency tables because the line

cards will manage only the neighbors to which it effectively communicate, while

the current MPLS Controller on the control card has to manage all adjacencies of

the system.

5.3 Chapter Conclusions

This chapter has presented a novel distributed framework for software architectures for

the next generation routers, which is able to fully exploit the new hardware features.

Considering the requirements of scalability and resiliency, it is a distributed approach

where software functions can be shared among router components, namely control cards

and line cards.

Such a framework distributes control plane functions onto control and line cards. It

includes generic distributed architectures for routing and signaling protocols, distributed

and scalable architectures for Routing Table Manager, specific applications for OSPF,

MPLS/LDP and RSVP-TE.

The proposed generic distributed architecture for routing and signaling protocols is

inspired from a peer-to-peer model. The architecture aims at highly scalable routers with

thousands of line cards and petabit switching capacity. The validation of the feasibility of

such a distributed architecture is also discussed. We described then the case studies to

apply the proposed generic distributed architectures for the OSPF and the MPLS/LDP.

138

The design of the OSPF distributed components are provided, with their functions and

interactions.

This chapter also focuses on a distributed architecture for the MPLS because it is one of

the most desired features of the next generation routers. We identified the functions and

the components of the MPLS module that can be distributed on router cards. Both MPLS

data and control plane have been considered, particularly the distribution of tables and the

signaling processes.

The next chapter will present the outstanding of this application with a descriptive

design for MPLS/LDP.

139

Chapter 6 A Distributed MPLS/LDP Architecture

In this chapter, we propose a new distributed architecture for MPLS/LDP. Based on the

distributed architecture for signaling protocols described in Chapter 4, we develop the

mechanisms to achieve MPLS/LDP functions on the components of the router, namely

control cards and line cards. In order to define such a distributed architecture, we must

address the additional challenges, such as synchronization, consistency between data and

control planes, distribution of MPLS labels and restoration of tables in case of failures.

The chapter is organized as follows. In Section 6.1, we review the MPLS/LDP

framework introduced by the IETF and present the typical components of a MPLS/LDP

architecture for a centralized router architecture. We then describe in Section 6.2 the

proposed distributed architecture of MPLS/LDP for the next generation routers. Solutions

for overcoming the additional challenges for such a distributed architecture are presented

in Section 6.3. We also provide the design of the MPLS/LDP tables that are used for

MPLS forwarding in Section 6.4. Finally, we perform some evaluations of the new

proposed architecture in terms of CPU resource consumption and the number of

exchanged messages.

6.1 Overview of LDP

The Label Distribution Protocol (LDP) [AndeOl] is a protocol used for distributing

labels in MPLS networks. It is defined by a set of procedures and messages by which

Label Switched Routers (LSRs) establish Label Switched Paths (LSPs) through a

140

network by mapping network layer routing information directly to data-link layer

switched paths.

An LDP session starts by a discovery process which allows an LDP entity (an LSR) to

find a remote LDP peer in the network and to negotiate basic operating procedures

between them. The discovery process consists of sending HELLO messages over UDP

connections allowing the recognition and identification of adjacent peers. An LDP

session is then opened between the two LSRs, and they can proceed to exchange MPLS

label binding information. The result of this process is a label switched path (LSP), which

constitutes an end-to-end packet transmission pathway between the communicating

network devices.

By means of LDP, LSRs can collect, distribute, and release label binding information to

other LSRs in a MPLS network, thereby enabling the hop-by-hop forwarding of packets

in the network along routed paths. An MPLS/LDP module implemented in a router must

be IETF compliant [RoseOJ,, AndeOl] and supports a number of features, including: LDP

adjacencies, LDP session management, Forwarding Equivalence Classes, Label

Generation, Label Distribution Modes, Label Retention Modes, Label Switch Path

Control and Loop Detection.

Located on top of TCP, LDP can operate in many modes to fulfill user requirements.

The most common usage is unsolicited mode, which sets up a full mesh of tunnels

between routers. In solicited mode, the ingress router sends a LABEL REQUEST

message to the next hop router, determined from its IP routing table. This request is

forwarded through the network hop-by-hop by each router. Once the request reaches the

egress router, a return message (LABEL MAPPING) is generated. This message

141

confirms the LSP and informs each router of the label mapping to use on each link for

that LSP. In unsolicited mode, the egress routers broadcast LABEL MAPPING messages

to all their neighbors. Across each hop, the LABEL MAPPINGS inform the upstream

router of the label to use for each link, and by flooding the network they establish LSPs

among all routers.

LDP Adjacency
Manager

LDP Encoder
/Decoder

LDP Session
Manager

Figure 6-1: Components of LDP and Connection with MPLS

An LDP module includes thee basic components as shown in Figure 6-1.

LDP Adjacency Manager. It sends and receives the HELLO messages to discover LDP

neighbors. There are basically two types of adjacencies: Link and Target. Link adjacency

is directly connected while Target adjacency is reached through some intermediate nodes.

When LDP is enabled on an interface, it sends a HELLO message over the link to

discover the peer. If the other peer is also LDP-enabled, it replies and an adjacency is

established. Then if an LSP is defined across the two routers, the adjacency will be

maintained permanently until the MPLS data transmission is terminated (often by failure

of one router). Target adjacencies are manually configured by system administrator.

LDP Encoder/Decoder. It encodes LSP-related requests generated by the MPLS

Controller into the LDP messages and passes them to the LDP session manager for

142

forwarding, and decodes incoming LDP messages and passes the appropriate

notifications to the MPLS Controller.

LDP Session Manager. It performs main LDP functions such as FEC classification,

label generation, label distribution, label retention, label switched path control, loop

detection, error processing and notification. The LDP session manager is responsible for:

i) opening, accepting, rejecting, and closing the transport (TCP/IP) layer and LDP

sessions, ii) notifying the MPLS Controller about newly available LDP sessions and the

LDP sessions that have been closed, iii) sending LDP KEEP ALIVE messages on idle

LDP sessions in order to maintain the connection, iv) processing incoming KEEP ALIVE

messages, v) packing messages generated by the LDP Encoder/Decoder (such as LABEL

REQUEST, LABEL MAPPING, etc.) into the LDP PDUs and sending them over

appropriate LDP sessions, and vi) receiving incoming LDP PDUs and passing the LDP

messages up to the LDP Encoder/Decoder.

Such a LDP architecture has to process four categories of LDP messages.

o Discovery messages: Provide a mechanism in which LSRs indicate their

presence in a network by sending HELLO messages periodically. Discovery

messages include the LDP Link HELLO message and the LDP Target HELLO

message,

o Session messages: Establish, maintain, and disconnect sessions between LDP

peers. Session messages are LDP INITIALIZATION messages and

KEEP ALIVE messages.

143

o Advertisement messages: Create, update, and delete label mappings. All LDP

ADDRESS messages and LDP LABEL messages belong to advertisement

messages.

o Notification messages: Provide advisory information and signal error

information to LDP peers.

Each LDP message is encapsulated in a so called LDP Protocol Data Unit (PDU) or

LDP packet. Figure 6-2 (a) and (b) illustrate the structure of LDP packets. Each LDP

packet is made of an LDP header followed by one or more LDP messages. All LDP

messages have a common LDP message header followed by one or more structured

parameters that use a type, length, value (TLV) encoding scheme. The Value field of a

TLV might consist of one or more sub-TLVs.

Except for discovery messages that use UDP as the underlying transport, LDP messages

rely on TCP to ensure reliable and in-order delivery of messages. All LDP messages have

the format that is depicted in Figure 6-2 (c).

IP

TCP

LDP Header

LDP Message

TLV1

TLVn

LDP PDU

IP

UDP

LDP Header

LDP Message 1
TLV1

TLVn

LDP Message 2

TLVs

LDP Message n

U Message Type (15 bits)

Message Length (2 octets)

Message ID (4 octets)

Mandatory Parameters
(Variable Length)

Optional Parameters
(Variable Length)

(a) LDP HELLO Packet (b) LDP Control Packet (c) LDP Message Format

Figure 6-2: LDP Packet and Message Structures

144

6.2 LDP Architecture

From the top view, in order to achieve the LDP functions described in RFCs [AndeOl],

a MPLS/LDP implementation architecture has four sub-functions:

• Label and path computation and processing,

• Message sending/receiving and processing,

• Table storage management,

• Interfaces with other modules, such as RTM, QoS, IP stack, CLI, etc.

In a centralized MPLS architecture, the MPLS control plane is primary handled at the

level of the control card. Line cards perform only the input/output data exchanges and are

not significantly involved in processing of control messages or packets. When the

number of LDP sessions is increasing, leading to a large number of routes and labels to

process, CPU resources of the control card must be reserved mainly for the LDP

processing, taking the precious CPU resources from other modules. The current

centralized approach therefore leads to a control card overloading when the traffic

increases. This problem can be dealt with an appropriate distribution approach, where a

distribution of tasks on the control cards and line cards should be taken into account.

Since the control card plays the role of central processing unit for the whole router, and

the number of line cards can vary according to different router specifications and system

configuration, a client-server model can be effectively deployed. The ultimate objective

is to reduce the actual load on the control cards to a minimum.

The MPLS/LDP distributed architecture we propose is based on the distribution of the

MPLS control plane, regarding the processing power and memory capacity of line cards

in next generation routers. The architecture highlights the following features:

145

MPLS related functions are improved.

• MPLS forwarder. This function, implemented on line cards, is modified so that

the MPLS swapping operation can be shared between ingress and egress line

cards.

• MPLS/IP interactions. This function is redesigned to be performed locally on

line cards. Thus the number of messages going through the switch fabric is

reduced. In the centralized architecture, the MPLS/IP interactions are done with

the help of a global RTM located on the control card. We propose then to do it

through the FIT (Forwarding Information Table) instead, located on the line

cards.

• Label provisioning. In the centralized architecture, new labels are provided at

the control card level by a LAT table. Access to the LAT is done through the

MPLS Controller. In our proposed architecture, the LAT table is divided into

segments, in order to distribute the global label space into the line cards.

Therefore each line card is able to make label allocations independently without

having to exchange with the control card.

• MPLS table management. We allow the MPLS tables (such as LIB - Label

Information Base) to be managed on the line cards. This enables MPLS data

forwarding decisions to be done locally on the line cards without having to go

through the control card.

LDP related functions are also re-designed.

• LDP module architecture. The LDP module is migrated entirely into line cards.

That way, the control card will never be involved in the processing of received

146

LDP control messages or packets, neither in the transmission of LDP control

messages.

• Adjacency management. Our proposed architecture allows the LDP adjacencies

to be managed at the line card level. An adjacency table is attached to the LDP

module.

• LDP task sharing. We balance the LDP message processing task between the

ingress line card and egress line card. In the centralized architecture of

MPLS/LDP, this task is performed only by the control card. In the new proposed

architecture, the LABEL REQUEST processing tasks, including next hop and

FEC lookups, will be processed mainly by the ingress line card (upstream line

card), while the LABEL MAPPING processing tasks, including label allocation

and LABEL REQUEST matching will be processed mainly by the egress line

card. A synchronization mechanism between line cards is provided.

We consider below (Figure 6-3) each of the key LDP elements and point out what is

modified or not modified in the LDP distributed framework. Whenever it is modified,

we mention which reason motivated this modification.

• LDP Message Encoder/Decoder. This component is simply moved from the

control card to line cards with some little modifications on its interfaces so that

it can process messages coming from modules running locally on line cards. The

LDP Message Encoder/Decoder creates an LDP message from LSP-related

information (e.g., FEC, labels) and decodes an LDP message and passes the

appropriate information to the needed modules.

147

• LDP Adjacency Manager. This component is moved from the control card to

line cards with some modifications. In the centralized architecture, adjacencies

are established by the LDP Adjacency Manager and managed by the MPLS

Controller. In our distributed architecture, the LDP Adjacency Manager

maintains a table to manage the adjacencies by itself. This allows the

adjacencies to be established according to the need of each line card.

Components related to the LDP Adjacency Manager include:

o Hello Sender. This process periodically sends HELLO messages on the

multicast address over all the physical interfaces. These messages are

used to discover peers on the network,

o Hello Processor. This process listens on the multicast address for

HELLO messages. HELLO messages are processed to determine the

capabilities of the peer. If a HELLO message is acceptable, the message

sender is saved in the Adjacency Table to be used later for establishing

LDP sessions,

o Adjacency Table. This table contains information about neighbors that

are MPLS/LDP enabled routers. There are two types of neighbors:

• Direct neighbor (or physical connected neighbor), which is

discovered by Basic Discovery HELLO messages (sent over

UDP)

• Targeted neighbor (or non-physical connected neighbor), which

is discovered by Extended Discovery HELLO messages (sent

over TCP)

148

• LDP Session Manager. This component is moved from the control card to line

cards with modifications. In the centralized architecture, the LDP Session

Manager processes all the LDP sessions of the system and passes information to

the MPLS Controller. As the LDP is distributed on the line cards, we add some

functions to the LDP Session Managers, allowing them to communicate with

each other on different line cards in order to establish the LSP through the line

cards. Components related to the LDP Adjacency Manager include:

o LIB-Process. This is a central process assuming the LDP session

management. Since an LSP can go through two line cards, the LIB

processes can interact with each other through the DS (Distributed

Service) in order to achieve LDP negotiations with upstream and

downstream routers. The LIB process contributes in the following way:

• Establishes labels for every MPLS enabled router to which the

line card has a connection (physical or non-physical connection).

• Opens session with the LDP peer and creates an independent

session process to manage all the message exchange between the

two peers. This session communicates with LIB Process

periodically.

• Writes new entries to the LIB using access services provided by

the MPLS Signaling.

o Wait-process. This process waits for requests from peers and starts a new

session for each remote peer. When a session is established, the Wait-

Process calls the LIB-Process to handle message exchanges.

149

• L-LAT (local LAT). This is a new component which does not appear in the

centralized architecture. The L-LAT, managed by the MPLS Signaling

component on the line card, contains the label space provided for each line card.

When the local label space is not empty, the line card can decide to allocate new

labels by itself in response to label requests coming from remote peers. A pool

of labels is initially attributed to each line card. When the L-LAT runs out of

labels, it may send a request to the G-LAT asking for a new provision. The

initial local label space can be configured by system administrators through

interfaces with the MPLS Controller running on the control card.

• LIB. This component is moved from the control card to the line cards with

modification. In the centralized architecture, the LIB, managed by the MPLS

Controller, contains all the LSPs of the system, while in the proposed distributed

architecture, it contains only the LSPs traversing the line card where it is

located. In addition, the LIB in the proposed architecture is managed by the

MPLS Signaling and can be accessed by signaling protocols such as LDP. There

are two types of LSPs contained in the LIB:

o Complete LSPs: the LSPs that have been established and are used to

forward MPLS data packets. Completed LSPs are recorded into the

hardware network processor.

o Incomplete LSPs: the LSPs that are being built by signaling protocols.

150

Legend:

1: MPLS configuration or Target
Discovery command.
2: Initial label provision/Additional
label request
3: IP route (FEC) update notification
or FIT lookup
4: IP best routes or FEC update
5: Static route update (routes with QoS
parameters)
6: Label allocation
7: FEC lookup
8: LSP update
9: MPLS adjacency update
10: MPLS adjacency lookup
11: Update configuration/Read
configuration
12: Write LIB to hardware
13: Message encode/decode
14: Resource allocation request
15: Status report

remaining modules of die
I 1 centralized architecture

•
new module of the

proposed architecture

User" -1 ,5 , 15 CLI

c J 1, 15 MPLS
Configuration File J \ ' "

Control

JL

^ Traffic
y * Engineering

RTM

Card

3,5

MPLS Controller

G-LAT

IP Stack

1,2,3, 15 ±
"ISwrTFtttP^ MPLS

Signaling

IP Stack

L3,15

Hello Sender

LDP
Adjacency
Manager

K

Hello Processor

"V

9,10

s Adjacency rable

Line
Card

:v
LDP Encoder/Decoder

Fabric Controller Er^o

Figure 6-3: Distributed MPLS/LDP Architecture

The distributed architecture we propose for MPLS/LDP is indeed derived from the

general distributed framework of signaling protocols for next generation routers

[NguOTb]. We summarize it in Figure 6-3. In our architecture, the MPLS Signaling

module, as well as LDP and RSVP-TE are moved entirely on the line card. The MPLS

Controller remains on the control card as in the centralized architecture, but it is much

simplified. It still handles the connections with other modules, such as RTM and CLI.

The RTM manages the IP routes learnt by routing protocols, combined with the static

routes provided by users. These routes are used to specify the FECs (Forwarding

151

Equivalent Class). Basically, the MPLS can get FECs directly from the FIT managed by

the IP Stack. However, the RTM is required from time to time to inform the MPLS about

the change of the existing FECs. There is a configuration file that contains specific

system settings. System administrators may change the configuration through the CLI

and the MPLS Controller keeps these running parameters in the configuration file. The

MPLS Controller manages a Global LAT (G-LAT), which contains the overall label

space of the system. Each line card handles a segment of the G-LAT, called Local LAT

(L-LAT), which is used exclusively for the traffic going through the local interfaces of

the line card. The L-LAT is maintained by the MPLS Signaling. When there is a label

request, the signaling protocol asks the MPLS Signaling for a new label and the MPLS

Signaling provides a label in the L-LAT. When the L-LAT runs out of labels, the MPLS

Signaling sends a request to the MPLS Controller to get additional labels from the G-

LAT. Unused labels of L-LATs may be returned periodically to the G-LAT. For example,

due to little traffic, there may still be many free labels in the initial label pool provided to

the L-LAT of a given line card after a period of time. In such a case, the MPLS Signaling

will send back some labels to the G-LAT, to allow their use by other line cards that are in

need of labels.

The LIB is migrated to line cards and is managed by the MPLS Signaling, which

controls accesses from signaling protocols. In order to update the FIT of the network

processors (NP), MPLS routes and IP best routes are recorded into the CAM {Content

Access Memory) respectively by the MPLS Signaling and the IP Stack through an

interface called the Fabric Controller. The FIT content is used by the NPs to forward IP

and MPLS data packets.

152

The Hello Sender process within the LDP Adjacency Manager periodically sends

HELLO messages on the multicast address over all the local physical interfaces of the

line card in order to discover peers on the network. It also sends Target HELLO messages

ordered by the MPLS Signaling module to indirect destinations according to user

requests. The Hello Processor listens on the multicast address for incoming HELLO

messages, then processes them to establish the adjacency. The LIB-Process within the

LDP Session Manager is responsible for LDP session management. It establishes LDP

connections to all Link and Target adjacencies in the Adjacency Table. Since a LSP can

go through two line cards, the LIB processes can also interact with each other located on

a different line card through the DS in order to achieve LDP negotiations with upstream

and downstream routers. If traffic engineering and Constrained-based Routing LDP (CR-

LDP) are deployed, the LIB process can interact with a local QoS module (L-QoS)

located on the line card, which manages the available bandwidth of all local interfaces.

However, CR-LDP mechanisms for resource allocation are not addressed in this thesis.

Indeed, the same function can be provided efficiently by RSVP-TE.

As the LDP module is implemented entirely on the line cards, the architecture we

propose has the following advantages.

Accelerate the HELLO sending rate. Because the HELLO sending process is

triggered locally at the line card level instead of the control card level,

HELLO messages go faster to reach neighbors. In the centralized architecture

where the MPLS signaling and LDP module run on the control card, HELLO

sending process can even be queued due to congestion on the control card.

153

Save control card resource used for HELLO processing. In the centralized

architecture, HELLO process is handled by the control card, leading to control

card resource consumption and low speed processing. It becomes critical

when the number of line cards is increasing.

Manage the LDP adjacencies efficiently. The Adjacency Table is created and

maintained locally by the MPLS module running on the line cards. It contains

only the neighbors the line card connects to. In the centralized architecture,

the control card has to maintain a large-size table containing all adjacencies of

the whole system. The lookup operation is therefore accelerated in the

proposed architecture.

- Reduce the size of the LIB table. The LIB in the proposed architecture is

optimized because it contains only the LSPs traversing the line card. In the

centralized architecture, the LIB located on the control card must contain all

the LSPs going through the router.

- Improve the MPLS/IP interaction. LDP processes can use directly the local

FIT located on the line cards to set up the FEC and LSP instead of using the

RTM located on the control card.

- Make the architecture more scalable. First, in the proposed architecture, LDP

sessions are handled in parallel by the line cards. In the centralized

architecture, they have to come in to a queue waiting for control card

processing resources. Second, LDP message processing, particularly the

message encoding/decoding, is performed entirely at line card level so the

scalability is increased.

154

6.3 Challenges and Their Solutions

Such an MPLS/LDP distributed architecture requires solving some new challenges

which correspond to issues that do not appear in the centralized architecture.

Synchronization among line cards. In a centralized architecture, all messages are

forwarded to the MPLS Controller on the control card. In the proposed architecture,

messages from the upstream router (Ru) and downstream router (Rd) are processed

separately. The upstream messages are handled by the LDP module on the ingress line

card while the downstream messages are taken care of by the egress line card. In order to

establish an LSP between the upstream and downstream routers, the ingress and egress

line cards have to pair their messages to their respective peer messages.

Label provisioning. In a centralized architecture, all labels are generated by the MPLS

Controller, which is aware of all the LSPs of the system. In the proposed distributed

architecture, each line card manages only a smaller set of LSPs and labels are generated

locally on line cards. Therefore, mechanisms should be provided to ensure that data

coming from different ingress line cards have the same label if they are qualified to be

sent out by the same egress line card.

Restoration of the LIB on a line card if there is an error on the line card. In a

centralized architecture, there is no MPLS software component on line cards. Therefore,

if a line card fails, its forwarding table is simply reloaded from the control card. In the

proposed architecture, each line card hosts a local LIB. Therefore if there is no backup

mechanism, data will be lost.

155

Some other challenges such as table management, selecting line cards to perform user's

requests, classifying IP packets into FECs, handling socket errors, are common for both

centralized and proposed architectures, so these are not considered in this section.

We next describe the solutions we propose to overcome these challenges.

6.3.1 Synchronization Mechanisms

In the traditional architecture where the LDP process runs on the control card,

synchronization is not an issue. The control card manages all tables, which are all global;

and it also handles the message processing. A queuing mechanism is implemented in

order to regulate the access to the control card. Concurrent access to the tables can be

solved by a simple locking mechanism.

However, due to the LDP distribution on line cards, LDP messages are processed

differently on the line cards. Basically, we distinguish the ingress line card and the egress

line card that are involved in a LSP. The ingress line card maintains the connection with

the upstream router (Ru) while the egress line card is connected to the downstream router

(Rd) (Figure 6-4). Since a line card has in general more than one port, it can be the

ingress for a given LSP and the egress for other LSPs.

In Figure 6-4, we can see that the LDP modules on the ingress and egress line cards

may receive different messages from the upstream and downstream routers, at different

times. However, the final information about the LSP to be built between the Ru and Rd

must be the same in the two LIBs. Otherwise, the MPLS forwarding can not be done.

This requirement leads to the need of synchronization between the ingress and egress line

cards.

156

awitch Fabric

iTtyl

JfjP^

X

CPU

LDP

elM

Ingress
Line Card

erllP

e lM

eilP
f

CPU

LDP
1

LIB

r.

Egress'--..,
Line Card

M

î P tt

Legend:

LDP message from peer ^ . |_SP information LSP

Figure 6-4: Ingress and Egress Line Card of an LSP

In addition, the content of the LIB should be consistent with the routing tables. That is,

whenever an IP route (and its corresponding FEC) is changed, the LSP based on the

corresponding FEC must be updated. This requirement leads to the need for

synchronization between the LIB managed by the LDP modules and the routing table

managed by the RTM.

Synchronization between Ingress and Egress Line Cards

In order to deal with the synchronization issue, we share information of each LSP on

both the ingress and egress line card, as shown in Figure 6-5 and Figure 6-6. These two

figures consider a case of transit routers (LSR). A similar synchronization mechanism for

edge routers can be used for edge routers where the IP FEC is mapped to MPLS labels.

Details of the synchronization algorithms for both LSR and LER can be found in

[Nguy06bJ.

The fields of the LIB are IP FEC, Incoming Label, Outgoing Label, Incoming Interface

and Outgoing Interface. The IP FEC is used as a key field for the table. The incoming

157

label is the label the router provides to the upstream router and the outgoing label is the

label supplied by the downstream router, assuming we are using the solicited mode. On

the ingress line card, the incoming interface is the port connecting to the upstream router

and the outgoing interface is the egress line card. On the egress line card, the incoming

interface is the ingress line card and the outgoing interface is the port connecting to the

downstream router.

Switch Fabric

10

Ru

iTM
8a

k

• l iH/^S

Ingres
Line Card J p j j

CRU,4'

LDP

eTM iTM

Egress
Line Card

k DS

eNP

IP

FEC
In

Lbl
Out
Lbl

eLC

iNP
T
8b

LDP

|eTM|

eNP •12H

mm
IP

FEC
In

Lbl
Out
Lbl

Rd

Message sequence:

1: Label Request (LR) messsage sent by upstream router (Ru), containing FEC 1.1.1.0
2: Forward LR to LDP module
3: Look for the LSP in the LIB (not found)
4: Lookup the FIT (Forwading Information Table) for the egress line card (eLC) and downstream router (Rd)
5. Create a new LIB entry
6: Send LR to LDP module of eLC, followed by address of Rd found from FIT.
7: eLC sends ACK
8a: Forward LR to iTM
8b: Create new LIB entry
9: Send LR to switch fabric
10: LR reaches eLC
11: LR comes to eNP
12: Send out LR

Figure 6-5: Label Request Handled by Ingress and Egress Line Card

The idea of the synchronization is to pair the messages received from the upstream and

downstream routers so that the LDP processes on the ingress and egress line cards will

record the same information to their LIBs. The pairing is achieved through the exchanges

between the ingress and egress line cards. We consider the mechanism for the two most

important messages of the LDP protocol: LABEL REQUEST and LABEL MAPPING.

The first message is used for requesting a label-FEC binding and the latter is the reply.

158

Figure 6-5 and Figure 6-6 illustrate the pairing of these two messages for one LSP on the

ingress and egress line cards of an LSR.

Figure 6-5 shows the processing of a LABEL REQUEST message sent from the

upstream router. The LABEL REQUEST message is sent by a remote peer (1). It is

filtered by the local iNP and sent to the LDP process (2). The LDP process looks up the

local LIB to determine whether an entry with the same FEC is already there (3). The

searching key is the FEC contained in the LABEL REQUEST message.

• If an entry is found with all the label fields completed, the ingress line card

replies with the label/FEC binding in the LIB.

• If no entry is found, the ingress line card performs the following tasks:

o Determine the address of the outgoing interface (on the egress line card)

by looking up the FIT table with the FEC as the search key (4).

o Create an entry in the LIB (5), where the fields contain the following

values:

• FEC: the FEC that needs a label,

• Incoming label: NULL, this label will be generated when the

LABEL MAPPING message arrives in the return path,

• Outgoing label: NULL, this is used to indicate that this entry is

incomplete and it is waiting for a LABEL MAPPING reply,

* Incoming interface: address of the sender from which the LABEL

REQUEST message is sent, that is the address of the upstream

router for the ingress line card or the address of the ingress line

card for the egress line card,

159

• Outgoing interface: the location of the egress line card.

o Use DS to forward the original LABEL REQUEST message to the

corresponding egress line card, followed by the address of next hop

found from the FIT (6).

o After receiving an ACK message from the egress line card (7), forward

LABEL REQUEST message to iTM (8a). The message travels the

switch fabric (9) in order to reach the downstream router (10), (11), (12).

o Wait for LABEL MAPPING reply from the egress line card.

• When the egress line card receives the LABEL REQUEST message from the

ingress line card sent over DS, it performs the following operations:

o Send an ACK back to the ingress line card. The ACK message also

contains the next hop (7).

o Create an entry in the LIB (8b), where the fields contain the following

values:

• FEC: the FEC that needs a label, this field is used as key to look

up the requester in the return path,

• Incoming label: NULL, this label will be generated when the

LABEL MAPPING message arrives in the return path,

• Outgoing label: NULL, this is used to indicate that this entry is

incomplete and it is waiting for LABEL MAPPING reply,

• Incoming interface: address of the ingress line card,

160

• Outgoing interface: the address of the downstream router, which

is provided by the ingress line card following the LABEL

REQUEST message.

o Wait for LABEL MAPPING reply from the downstream router. The

behavior of line cards when receiving the LABEL MAPPING is

described in Figure 6-6.

The return path of the LABEL MAPPING message is shown in Figure 6-6. Upon

receiving a LABEL MAPPING message (1-2) corresponding to the previous LABEL

REQUEST, the egress line card looks up the local LIB (3) to determine if there is an

entry waiting for this return mapping message. The search key is the FEC contained in

the LABEL MAPPING message.

Ru

Switch Fabric

f l
I T i Ingres
L j M Line Card

13-MP

12
CPU

LDP

iTM

10

eTM
Egress

Line Card

DS

iNP

LIB

IP
FEC

In
Lbl

Out
Lbl

eNP1

CPU

LDP

2C
'.$

iTM

i N P N l -

IP
FEC

Out
Lbl

Rd

Message sequence:

1: Label Mapping (LM) message sent by downstream router (Rd), containing FEC 1.1.1.0 and label 5
2: Forward LM to LDP module
3: Look tor the LSP in the LIB (found)
4: Generate new Label 7 from L-LAT (Local - Label Allocation Table)
5: Update the LIB entry with new label 5 (from LM) and label 7 (new generated)
6: Forward LM to LDP module of iLC, followed by new label 7
7: Lookup LIB for an entry (FEC as key) and update label fields by label 7 and label 5
8: iLC sends ACK
9: Replace label 5 in the LM by label 7 then forward LM to iTM
10:SendLMtoSF
11: LM reaches eLC
12: LM comes to eNP
13: Send out LM

Figure 6-6: Processing LDP Mapping for Previous LDP Request (Solicited Mode)

If an entry is found (with the label fields still empty), the egress line card:

161

o Generates a new label (taken from local L-LAT) (4),

o Updates the entry; the outgoing label field is filled with the label

contained in the LABEL MAPPING message, and the incoming label

field is filled with the new generated label (5),

o Uses DS to forward the original LABEL MAPPING message to the

corresponding ingress line card, followed by the new label the egress line

card has generated. The address of the ingress line card is found in the

entry of the LIB (6),

o After receiving an ACK message from the ingress line card (8), the

egress line card replaces the label in the original LABEL MAPPING

message with the new generated label, then forwards LABEL MAPPING

message through the iTM to the upstream router (9).

• If no entry is found, the egress line card proceeds as if the LABEL MAPPING

message had been sent in the Unsolicited mode. Hence it:

o Creates a new entry in the LIB table.

o Looks up the FIT for the ingress line card(s). It is in fact a reverse

lookup.

o Generates a new label (taken from local L-LAT).

o Fills in the new entry with the new label (to the incoming label field),

original label (to the outgoing label field) and FEC (to the FEC field) in

the LABEL MAPPING message, address of the ingress line card (to the

incoming interface field) and address of the router from which the

LABEL MAPPING message comes (to the outgoing interface field).

162

o Uses DS to forward the original LABEL MAPPING message to the

corresponding ingress line card(s), followed by the new label the egress

line card has generated,

o After receiving an ACK message from the ingress line card, the egress

line card replaces the label in the original LABEL MAPPING message

by the new generated label, then forwards the LABEL MAPPING

message through the iTM to the upstream router.

When the ingress line card receives a LABEL MAPPING message from the egress line

card sent over DS, followed by a label, it looks up the local LIB to determine if there is

an entry waiting for this mapping previously. The search key is the FEC contained in the

LABEL MAPPING message.

• If an entry is found (where the label fields are empty), the ingress line card:

o Updates the entry (7); the outgoing label field is filled with the label

contained in the LABEL MAPPING message, and the incoming label

field is filled with the second label.

o Sends an ACK back to egress line card (8).

• If no entry is found, the ingress line card considers that the LABEL MAPPING

message has been sent during the Unsolicited mode. It:

o Creates a new entry in the LIB table,

o Looks up the FIT for the upstream router. It is in fact a reverse lookup,

o Fills in the new entry with the second label (to the incoming label field),

original label (to the outgoing label field) and FEC (to the FEC field) in

the LABEL MAPPING message, address of the egress line card (to the

163

incoming interface field) and address of the router from which the

LABEL MAPPING message comes (to the outgoing interface field),

o Sends an ACK back to the egress line card.

The LABEL MAPPING will then be forwarded to the upstream router.

The synchronization issue is solved by the mechanism described above, because:

Information of the LSP is consistent in the LIBs of the ingress and egress line cards.

Indeed, the fields of the two LIBs are the same with the help of messages exchanged

between the two line cards. The IP FEC is determined on the ingress line card and then

sent to the egress line card. The Incoming Label is generated on the egress line card and

then sent to the ingress line card. The Outgoing Label is received by the egress line card

from the downstream router and then sent to the ingress line card. Finally the Outgoing

Interface is determined by the ingress line card and provided to the egress line card.

Data transmission is triggered only when the LSP is completed on both the ingress and

egress line cards. When the LIB fields are not filled with the desired information, the

LSP is not yet recorded in the FIT. The acknowledgement mechanism is implemented to

make sure that information provided by each LDP message is first saved in the LIBs of

both ingress and egress line cards, then the message is forwarded to the corresponding

peer. As shown in the Figure 6-6, the upstream router may start sending data only after

receiving the LABEL MAPPING message from the egress line card. The egress line card

sends this message when it has received the acknowledgement from the ingress line card.

This acknowledgement indicates that all LIB fields are completed so the router is ready

for MPLS data switching.

164

In addition, in the proposed architecture, LABEL REQUEST (or LABEL MAPPING)

messages are processed independently, meaning that the LDP module can accept new

REQUEST (or MAPPING) messages while waiting for ACK messages from other line

cards.

Synchronization between MPLS LIB and Routing Table

In the proposed architecture, the LDP gets information about the FECs from the FIT,

which is located on the line cards. The FIT content is updated by the RTM based on

routing information from routing protocols, such as OSPF or BGP. The issue is that,

whenever a FEC is changed, the corresponding LSP, which has been established and

recorded to the LIB, must be rebuilt. For example, routing protocols determine that the

best route to a given destination is changed. In such a case, the downstream router of the

LSP leading to that destination needs to be changed according to the new best route.

This issue is dealt with the help of the MPLS Controller. In the proposed architecture,

the MPLS Controller is located on the control card and has an interface with the RTM.

By implementing a "trap" function, the MPLS Controller can be informed of any change

in the routing table managed by the RTM. Thus, it will be notified whenever the RTM

updates the FITs on the line cards. If this update is related to an LSP that is already built,

a synchronization mechanism should be launched. Since an IP route change results in a

new next hop for a given FEC, we keep the ingress line card of the corresponding LSP

(which connects to the upstream router) and change the egress line card (which connects

to the downstream router). Therefore, the synchronization mechanism works as follows

(Figure 6-7).

165

- 1 1 -

- 12 -

"10, 13

'+>?
FEC

1.1.1.0

LIB

In
Lbl

7

Out
Lbl

9

In

iLC

Out

NRd

/, 1b

LIB

IP
FEC

1.1.1.0

In
Lbl

7

Out
Lbl

X 9

In

Ru

Out

NeLC

Old Egress
Line Card

*• ..•
LIB

IP
FEC

1.1.1.0

In
Lbl

Out
Lbl

In

TC

Out

Rd

New
Rd

Old
Rd

Message sequence:

1: Route update notification
2:ACK
3: Lookup LIB for the FEC
4: Remove entry
5: Route update notification (to
the ingress LC)
6:ACK
7: Remove Outgoing Label
7a: Label Release
8: Send Label Request to the
new egress LC
9:ACK
10: Create new entry in LIB
11: Send Label Request to
new downstream router
12: Receive Label Mapping
13: Enter new Outgoing Label
14: Send Label Mapping to the
ingress LC
15: ACK
16: Update LIB

Figure 6-7: Synchronization between IP Routing Table and MPLS LIB

Figure 6-7 shows a synchronization process triggered by an IP route update notification

received from the RTM. Using a "trap", the MPLS Controller determines the IP FEC, old

next hop, new next hop, old egress line card and new egress line card included in the

route update notification message. It then sends the route update notification message to

the old egress line card (1). The old egress line card replies with an acknowledgement

(2), then looks up its LIB to see whether a LSP with the given IP FEC is there (3). If it is,

the old egress line card:

o Removes the entry (4),

o Forwards the route update notification message to the corresponding ingress line

card (5),

166

o Sends a LABEL RELEASE message to the old downstream router in order to

release the current outgoing label and to stop the current LDP session with the

old downstream router (7a).

When the ingress line card receives the route update notification from the old egress

line card, it replies with an acknowledgement (6), then:

o Removes the current outgoing label from the corresponding entry in the LIB (7).

As the LIB entry is not completed, the current session is temporary halted,

o Creates a LABEL REQUEST, then sends it to the new egress line card whose

location is defined in the route update notification, followed by the current

incoming label (8).

The new egress line card processes the LABEL REQUEST message from the ingress

line card as in the normal case, except that no new label is generated. The new egress

line card:

o Replies with an acknowledge message (9),

o Creates a new entry in its LIB for the IP FEC (10), then forwards the LABEL

REQUEST to the new downstream router (11),

o Waits for the LABEL MAPPING message from the new downstream router.

When this message arrives (12), the new egress line card updates the incomplete

entry in the LIB (13) then sends the LABEL MAPPING to the ingress line card

(14).

The ingress line card sends back an acknowledgement (15), then updates the incomplete

entry in the LIB with the new outgoing label field (16). After receiving the acknowledge

167

message from the ingress line card, the new egress line card records the LIB entry to the

FIT to start the data transmission.

Such a mechanism deals efficiently with the MPLS/IP table synchronization issue,

because:

The LSP is updated consistently with the routing table. Whenever the routing table is

changed, the related LSP is updated through the notification service of the MPLS

Controller.

Ingress and egress are informed correctly about the change. The old egress line card is

first informed so it stops sending the current data stream to the old downstream router.

The ingress line card is then notified to contact the new egress line card. Finally a new

LSP is built between the ingress line card and the new egress line card.

Peer routers are informed in order to update LSP. The new downstream router is

contacted to establish a new LDP session. The old downstream router is informed to

release the label.

In addition, the current upstream router is kept transparent of the change. The old egress

line card is switched over a new one without having to shut down the current LDP

session with the upstream router. The incoming label is therefore maintained.

6.3.2 Label Provisioning and Data Recovery

In our architecture, the label generation is done by the egress line card instead of the

ingress line card. This ensures that packets coming from different sources to the same

destination will have the same label. For example, in the case where an LSP has been

defined and another ingress line card wants to forward data to the same downstream

router, the LABEL REQUEST is sent to the egress line card with a same FEC (because

168

of the same destination). The egress line card looks up its LIB based on the FEC and can

immediately return the existing labels without having to contact the downstream router

(Figure 6-8).

R3
1.1.1.0

M

5

Line Card
1

- 'MSi:-

IP
FEC

1.1.1.0

In
Lbl

2

Out
Lbl

5

In

R1

Out

LC3

Line Card
3

LIB

IP
FEC

1.1.1.0

1.1.1.0

In
Lbl

2

2

Out
Lbl

5

5

In

LC1

LC2

Out

R3

R3

Line Care
2

LIB

IP
FEC

1.1.1.0

In
Lbl

2

Out
Lbl

5

In

R2

Out

LC3

R4

2

R2

Figure 6-8: Forwarding Multiple Sources to the Same Destination

The resiliency issue is also dealt with efficiently by having the LSP information on the

LIBs of both the ingress and egress line cards. We aim at restoring the LIB on failed line

cards so that the data transmission can be resumed. As a LSP can go through at most two

line cards, we have two scenarios of failures: one line card failed and both line cards

failed.

In the case where one of the two LIBs is lost due to an error, information can be

restored with the help of the other. The recovering procedure is as follows. The failed line

card broadcasts a request to all line cards in the system. Every line card looks up the

Incoming Interface and Outgoing Interface fields of their LIBs using the failing line card

as search key. Any entry found means that the failing line card is involved in the

corresponding LSP. The lost LIB is then restored completely based on these entries.

169

The case where the two line cards are failed at the same time is hardly ever met. If it

does happen, all LDP sessions on the two failed line cards are restarted and all line cards

in the system are informed in order to remove the related entries.

For the LSPs going through two ports located on the same line card, which are not

much in practice, a traditional backup mechanism with a copy on the control card

managed by the MPLS Controller can be deployed. These LSPs are saved at two

locations of the router: the LIB of the line card and a table, so called L-ROUTE, on the

control card. When the line card is restarted, it sends a request to the MPLS Controller

asking for the lost LSPs. The MPLS Controller looks up the L-ROUTE, using the failing

line card as the search key. Entries found will be provided to the line card in order to

restore its LIB.

6.4 MPLS Data forwarding & Table Management

We now discuss the way the MPLS uses information provided by the LDP in order to

forward data packet over networks.

6.4.1 MPLS Tables

In the centralized architecture, MPLS tables are all managed by the control card, putting

heavy load on the control card processing resource. In the proposed architecture, these

tables are migrated into line cards in order to increase the scalability and efficiency. We

now describe the structures of the MPLS tables.

LAT

The LAT (Label Allocation Table) is used to manage label spaces and to track all

allocated and ready-to-use labels. The LAT is configured during the initialization of the

170

MPLS module and is consulted when an LSP is established or removed. In the

centralized architecture, only one LAT is handled by the control card that is responsible

for all label allocation requests. It is therefore non-scalable and inefficient.

Figure 6-9: LATs in the Distributed Architecture

In our proposed architecture, each line card maintains a local LAT (L-LAT) used

exclusively for the traffic traversing its interfaces. The control card keeps a global LAT

of the whole system. The G-LAT (Global LAT) is handled by the MPLS Controller. It

contains all labels of the system. Labels in the G-LAT are numbered followed the

increasing order. The sizes of L-LATs correspond to the label space of each line card,

which can be configured by system administrators (Figure 6-9). The L-LAT is managed

by the MPLS Signaling module. There is a connection between the MPLS Signaling and

the MPLS Controller. When there is a label request, the LDP asks the MPLS Signaling

for a new label and the MPLS Signaling allocates a label from the local label space. In

the case where there are no local labels left to allocate, the MPLS Signaling sends a

request to the MPLS Controller to get additional labels from the G-LAT. The G-LAT can

provide a range of labels if possible. If not, the request will be refused.

The segmentation of the LAT can accelerate the label allocation procedure because line

cards can assign labels themselves without going through to the control card.

LIB

111

The LIB contains information for labeling a data packet, changing the current label, or

removing a label when the packet reaches the destination. The LIB is subdivided into two

main tables: FTN (FEC-TO-NHLFE) and ILM (Incoming Label Mapping).

The FTN table is used for making MPLS forwarding decisions for unlabeled packets.

When the ingress line card receives an unlabeled packet, it classifies the packet using a

Flow Qualifier. The criteria used to qualify can be QoS class, VPN ID, and so on. If the

packet is qualified for an LSP, the MPLS forwarder looks up the FTN table to find an

entry which has the NHLFE (Next Hop Label Forwarding Entry) [RoseOl] corresponding

to the LSP.

o If an FTN entry is found, the FTN table returns one or more NHLFEs associated

with the entry used as instructions for packet forwarding,

o If the entry is not found, the line card performs IP based forwarding.

Figure 6-10 shows the structure of an FTN record.

IP FEC (from FIT)

VPN assigned to LSP

QoS information r\
LSP statistical information

FTN ID

LDP Req

FEC

VPN ID

FlowSpec

NHLFE

Statistics

: ^

Pointer to LDP
request

Pointer to Next-
Hop-Label
Forwarding Entry
(nexthops and
outgoing labels)

Figure 6-10: FEC-TO-NHLFE (FTN) Table Structure

The ILM table is used for making MPLS forwarding decisions for labeled packets.

When the ingress line card receives an MPLS labeled packet, it looks up the ILM table

for the next hop and outgoing label using the incoming label as a search key.

172

o If the lookup is successful, the ILM table returns the NHLFE associated with

this label used as an instruction for packet forwarding.

o If the lookup fails, the packet is simply dropped.

Figure 6-11 shows the structure of an ILM record.

Incoming interface
(upstream or ingress
line card)

LSP statistical information w

Incoming Label

Incoming

NHLFE

Statistics

Pointer to Next-
Hop-Label
Forwarding Entry
(nexthops and
outgoing labels)

Figure 6-11: ILM Table Structure

6.4.2 Data Forwarding

When an LIB entry is completed, the MPLS Signaling running on line card records it to

the local FIT. As discussed above, both entries on the ingress and egress line card will be

registered to the FIT before the routers start the data transmission. An incoming MPLS

data packets is qualified for an LIB entry based on its label (incoming label) at the iNP of

the ingress line card of the router. If the label of the packet needs to be changed (i.e.,

incoming and outgoing labels are different), the iNP will strip the current label. The

packet is then forwarded through the switch fabric to the corresponding egress line card

as indicated on the Outgoing Interface field of the LIB. Flow control mechanisms may be

applied on the packet when it enters the iTM before traveling the switch fabric. The

packet is then switched to the egress line card where a new label is added based on the

Outgoing Label field of the LIB (Figure 6-12 (a)).

173

Ingress
Line Card

• m - • •
-4

Egress Line
Card

\ t LIB

IP
FEC

1.1.1.0

\ In
\Lbl

l 7

Out
Lbl

5

In

Ru

Out

eLC

I
LIB |

IP
FEC

1.1.1.0

In
Lbl

7

Out'
Lbl I

5 1

In

iLC

Out

Rd

(a) Use Distributed LIBs for Label Swapping on Data Packet

LSP1onLC2

LSP m on LC n

Centralized
Global LIB

Distributed LIBs
on Line Cards

(b) Centralized Global LIB vs. Distributed LIBs

Figure 6-12: Using Distributed LIBs

The lookup operation is considerably accelerated in the proposed architecture. Since the

LIB on each line card contains only the LSPs that go effectively through the line card, the

size of each LIB is considerably reduced compared to the global LIB hosted by the

control card in the centralized architecture (Figure 6-12 (b))

The proposed architecture is also able to support data multicasting, which is one of the

main requirements of core routers. Nowadays, multicasting is not yet available in the

centralized MPLS architecture due to the fact that data packets are all labeled at ingress

line cards. Egress line cards are not involved in the packet processing procedure. They

simply send or forward the labeled packets to the next hop (Figure 6-13). When a packet

is sent to a group of destinations (multicasting), it is cloned at the ingress line card and

appropriate labels are added. This is not efficient, however, because the ingress line card

has to process repetitively the packets for each destination within the multicast group.

174

Inside router

header _

2 Data

i l_C^

• Data

•»
- •
S i

7 Data

4 Data

5 Data

>' r

V
-K

I i i i i i i

- 7 Data _

__ $ F :

:: 4

:. 5

Data _

Data _

1 1 1 1 1 1

••

eLC 1

7 Data

•

eLC 2

4 Data

•

eLC 3

5 Data

7 Data

4 Data

5 Data

Figure 6-13: Label Swapping in a Centralized Architecture

In order to provide effective multicasting mechanisms, we propose to share the label

swapping operation between the ingress and egress line card, as illustrated in Figure 6-14.

Since the LIB tables are located on both the ingress and egress line card of a LSP, the

label swapping operation can be divided into two sub-operations: popping and pushing.

The popping can be performed at the ingress line card while pushing can be done at

egress line card. The data packet travels the Switch Fabric with only an internal header,

so it can be multicast to the group of destinations. Each egress line card is then

responsible for putting the appropriate MPLS label on the data packet before forwarding

it to the next hop.

Inside router
header

2 Data

\ — c

=̂ +
5

- I J o,
*-l

" ~~l*

5F " r-

1 Data
i

eLC

- •

1

7 Data

p.\C?

11 Data - • 4 Data

eLC 3
Data - • 5 Data

7 Data

4 Data

5 Data

Figure 6-14: Label Swapping in the Proposed Distributed Architecture

175

Now the whole MPLS/LDP processing at the line card level is summarized in

Figure 6-15.

Data forward to SF
Resource
allocation

Packet Classifier
LDP Port: 646
Next Hop Lookup
Label Assignment
Label Popping

Switch Fabric

T*r

iTM iLC

iNP

,. CPU

LDP
process

. •

eTM

eNP

I O IlllClf.KVV

,

iTM eLC

iNP

CPU/

LDP
process

JUL
eTM

eNP J / 1

FIT

JEC
I/0-Intcrfaecs

Legend: * +

Label
Pushing
Next Hop
Lookup

: MPLS data traffic :LDP

Figure 6-15: Data Packet and Control Message Processing in the Proposed Distributed

Architecture

When a packet arrives at a given line card, it is qualified by the Interface Controller to

MPLS or IP packet.

• If it is an IP packet, it is identified as a control or data packet, based on the

Protocol ID field of the packet header.

• If it is an IP data packet, the iNP will determine whether the packet meets the

criteria of a given FEC, using the FTN table of the LIB. If it does, the packet is

labeled and then sent to the LSP corresponding to the FEC. Otherwise, the iNP

uses the IP forwarding table to forward the packet over the IP network.

176

• If the packet is a LDP message, the iNP forwards it to the LDP process on the

line card.

• If the packet is a MPLS data packet, the iNP uses the ILM table of the LIB to

determine the operations to be performed on the packet. The packet label can be

changed and the packet is switched over MPLS networks.

6.5 Performance Evaluation

The distributed architecture for MPLS/LDP is indeed proposed in order to fully exploit

the advanced architecture of next generation routers. The first requirement for next

generation routers is high scalability, which can be expressed in terms of requests or

routes the router can support. Since the main bottleneck of the router is the control card,

migrating some processing operations from the control card to line cards will save the

control card resources and increase the scalability of the router. In this section, we discuss

the qualitative and quantitative analysis of the performance achieved by the proposed

distributed architecture.

6.5.1 Qualitative Analysis

In general, migrating some of the processing tasks from the control card to the line

cards can reduce potential bottlenecks experienced on the control card when the number

of requests is increased due to the growth of the number of line cards and routes the core

router has to support. In addition, the architecture we propose has the following

advantages:

Robustness: parallel processing at the line card level is available in our architecture and

waiting queues are avoided. Line cards may independently process the LSPs they are

177

involved in, without having to wait for the reply from the control card as in the

centralized architecture. The HELLO sending rate is also accelerated because this process

can be triggered locally at the line card level instead of the control card level. The LIB

tables and the Adjacency Table are optimized to contain only the LSPs and the neighbors

directly related to the line card. Thus, the lookup operation can be sped up.

Scalability: the router will be more scalable if some control tasks, particularly the

signaling, can be processed by line cards. The control card will assume only the most

complementary tasks; the tasks that need human interactions or the tasks used to

interoperate different line cards. In fact, the most important task of the control card is

routing and management. Data redundancy is excluded in the LIB and consequently the

forwarding table, allowing it to contain more routes. Task sharing between the ingress

and the egress line card also enables load balancing among line cards. In Section 6.5.2,

we provide practical data demonstrating the higher scalability of our architecture, in

terms of processing.

Resiliency: the migration of signaling protocols to the line cards keeps the current

session alive if the control card fails. If the control card is required to perform all control

tasks, the system will totally shut down when the control card fails. Having a backup

control card is a costly solution. We provide a better resiliency mechanism at the line

card level as described in Section 6.3.2. Indeed, it is faster to recover from line card

failures; moreover a line card is much cheaper than a control card. In addition, problems

at the control card level will not slow down the procedures on the line cards.

On the other hand, the distributed architecture can raise some additional management

overhead, such as:

178

Increase in the number of messages exchanged. As shown in the Section 6.3.1, each

LABEL REQUEST or LABEL MAPPING message going through the router requires

two additional internal messages between the ingress and egress line cards, which is not

the case in the centralized architecture. Loading configuration files from the control card

to the line cards when MPLS is started or sending user settings to the line cards also

consume extra bandwidth on the switch fabric.

More complex software implementation. It is more difficult to upgrade the system

because all line cards need to be upgraded instead of just one control card.

Although there would be some trade-off due to the migration of control functions from

the control cards to the line cards, we believe that the proposed architecture is a good

candidate for dealing with next generation router issues, particularly with a large number

of line cards.

6.5.2 Quantitative Analysis

We now conduct a comparison of the performance achieved by the distributed

MPLS/LDP architecture we proposed and the centralized one. Table 6-1 shows the

configurations of the router used for the experiments in terms of number of line cards per

router, number of ports per line card and number of LSPs per port. For each

configuration, we compare the performance achieved by the proposed and centralized

architectures in terms of CPU cycles and the number of messages exchanged. We work

with the assumption of having 10 ports per line card, with an increasing number (between

16 and 128) of line cards per router. The connectivity of the network, in terms of the

number of ports per domain and the number of LSPs per port, is also taken into account.

179

Scenario

1

2

3

4

Number of

line cards /

router

16

32

64

128

Number

of ports /

line card

10

10

10

10

Number of

of LSPs / port

5

6

7

8

Table 6-1: Scenario Parameters

Let:

NLC : number of line cards in the router. For the configurations shown in Table 6-1, NLC

takes the following values: 16, 32, 64 and 128.

N pon : average number of ports (network interfaces) located on each line card. Usually,

all line cards in a router have the same number of ports. In Table 6-1 Nport is equal to 10.

NLSP : average number of LSPs per port. For the configurations shown in Table 6-1,

NLSP is equal to 5,6,7,8 respectively.

Nciabei: average number of CPU cycles used for label provisioning operation. This

operation is performed on the control card in the centralized architecture, and on line

cards in the proposed architecture.

NCLIB : average number of CPU cycles used to record an LSP to the LIB.

NCFIT : average number of CPU cycles used by an FIT lookup operation to determine

the egress line card and the downstream router based on the IP FEC.

Ncmsg : average number of CPU cycles used to process a message on the line card or on

the control card.

M: required memory to store one route on the line card or on the control card

180

In the following calculation, we do not consider the HELLO or KEEP ALIVE. We also

assume that all LSPs go through two line cards.

The number of LSPs that the router has to support is: — x NLC X NPort x NLSP

Number of messages going through the switch fabric

In the centralized architecture, for each LSP, the control card receives a LABEL

REQUEST message from the upstream router. This message goes through the ingress

line card and the switch fabric. The control card then forwards this message to the

downstream router, through the switch fabric and the egress line card. In turn, the control

card receives a LABEL MAPPING from the downstream router then sends a similar

message to the upstream router. Therefore, 4 messages go through the switch fabric for

each LSP. Totally, there are 4x — x NLC xNport xNLSP -2X NLC X N p0n x NLSP

messages going through the switch fabric for the whole router.

In the proposed distributed architecture, for each LSP, the ingress line card receives a

LABEL REQUEST message from the upstream router. It then forwards this message

through the switch fabric to the egress line card. The egress line card sends back an

acknowledgement through the switch fabric. Then the ingress line card sends the message

to the downstream router through the switch fabric. Therefore, there are 3 messages

going through the switch fabric for a LABEL REQUEST processing. Similarly, there are

3 messages required for the LABEL MAPPING in the other direction. Totally, there are

(3 + 3) x — x NLC x Npan x NLSP - 3 x NLC x Nport x NLSP messages going through the

switch fabric for the whole router.

181

CPU cycles

In the centralized architecture,

• The control card needs for each LSP: NCFIT CPU cycles to determine the egress

line card and the downstream router, Naabei CPU cycles to allocate a label from

the LAT, NCLIB CPU cycles to record the LSP to the LIB, and 2xNCnsg CPU

cycles to process a LABEL REQUEST and a LABEL MAPPING. Totally, it

requires

{NCFIT + Naabei + NCLIB + 2 x NcmsS) x — x NLC x NPon x NLSP CPU cycles to

establish all needed LSPs for the whole router.

• A line card needs 2xNcmsg CPU cycles for each LSP: in order to process a

LABEL REQUEST (from the upstream router) and a LABEL MAPPING (from

the control card) if it is the ingress for a LSP. If the line card is egress, it also

needs 2 x Ncmsg CPU cycles in order to process a LABEL REQUEST (from the

control card) and a LABEL MAPPING (from the downstream router). Totally, a

line card needs 2xNcmsg xNp0n XNLSP to process all LSPs going through its

ports.

In the proposed distributed architecture,

• The control card is required to provide the initial label space to all the line cards.

Therefore, it needs Ndabei x NLC CPU cycles.

• An ingress line card needs for each LSP: NCFIT CPU cycles to determine the

egress line card and the downstream router, Nam CPU cycles to record the LSP

182

to the LIB and 2 x NCmsg CPU cycles to process a LABEL REQUEST (from the

upstream router) and a LABEL MAPPING (from the egress line card). The

egress line card needs: Ncubei CPU cycles to allocate a label from the L-LAT,

NCLIB CPU cycles to record the LSP to the LIB and 2 x Ncmsg CPU cycles to

process a LABEL REQUEST (from the ingress line card) and a LABEL

MAPPING (from the downstream router). Since the LSPs are equally distributed

on all line cards, the average number of CPU cycles required on each line card

is:

— x (NCFIT + NCLIB + 2 X Ncmsg + N dabei + NCLIB +2xNcmSg)x — x Nport x NLSP

= — x (NCFIT + 2 x NCLIB + 4 X Ncmsg + N cubd) x NPort x NLSP

Memory consumption

In the centralized architecture, all LSPs are managed by the MPLS Controller.

Therefore, the amount of memory needed for the global LIB on the control card is

M — —
— x NLC x Npon x NLSP • The FIT of each line card has a copy of this table.

In the proposed distributed architecture, each line card stores only the LSPs effectively

going through its port. Therefore, the amount of memory required on each line card is

M x N port xNLSP . The whole router needs: M x NLC x Np0n x NLSP memory units.

We can see that the memory needed for the whole router in the proposed architecture is

twice compared to the centralized architecture. However, the memory requirement for

each line card is much less, especially when the number of line cards increases.

183

Figure 6-16 (a) and (b) compare the CPU consumption in the centralized and the

proposed architecture according to the scenarios in Table 6-1. In the centralized

architecture, the CPU requirement on the control card is very high when we add more

line cards and/or increase the number of LSPs per port. In the proposed distributed

architecture (Figure 6-16 (b)), the CPU load on the control card is lower because most

processing tasks are moved to the line cards such as message processing, label provision

and table update.

2 Scenario 3

CPU cycles
1.E+07 -,

1 .E+06

1.E+05 -

1.E+04

1.E*03 -

1 E*02

1.E*01

1.E+00

0

•

1 2 Scenario 3

a) CPU resource consumption on control card and
line card in the centralized architecture

b) CPU resource consumption on control card and
line card in the proposed distributed architecture

1.E+0S -

1.E+04 -

J1.E+03-
£
•s

N
u
m

b
e
r

+

+

o
o

1.E+00

•
•

•

3 1 2 Scenario 3

•

•

4 5

1.E+05 -|

1.E+04 -

N
um

be
r o

f m
es

sa
ge

s

1.E+01 -

1.E+00 -.
0

•

•

1

•
•

2 Scenario 3

•

4 1

c) Total number of messages going through the d) Number of messages going through one plane of the
switch fabric in the centralized and proposed switch fabric in the centralized and proposed distributed

distributed architectures architectures

Figure 6-16: LDP Performance in the Centralized and Proposed Architectures

In the centralized architecture, the CPU utilization on line cards is low because it is

required only for sending and receiving messages. In the distributed architecture, the

CPU requirement on line cards increases in order to handle additional tasks. The number

184

of messages traveling the switch fabric generated by the proposed distributed architecture

increases (Figure 6-16 (c)), but not as much, due to the exchanges among line cards,

however, it can be easily fulfilled with the large capacity and load balancing (e.g., using

multiple planes) of the switch fabric. Indeed, the parallel processing capability of the

switch fabric is not efficiently exploited in the centralized architecture because all

messages have to go through the plane connecting to the control card. Figure 6-16 (d)

shows the utilization of each plane on the proposed architecture in case of router

configuration having 4 planes. If we assume that each SF plane serves the same number

of line cards and the total number of LSPs is equally distributed on all line cards, the

number of messages going through each plane is almost the same and it is less than the

number of messages going through the SF plane connecting to the control card in the

centralized architecture.

6.6 Chapter Conclusions

This chapter has presented the distributed architecture for MPLS/LDP resulting from

the general distributed framework for signaling protocols described in Chapter 4. MPLS

support is one of the emergent requirements for the next generation routers. We have

reviewed the centralized architecture of MPLS/LDP and then investigated thoroughly the

distribution of its functions. The distributed architecture we proposed allows the MPLS

signaling to be achieved entirely on the line cards. The result is a significantly increase of

the scalability of the router.

We have discussed the new challenges for a distributed architecture of MPLS/LDP,

including the synchronization, label provision and table recovery. Some solutions have

185

been proposed to overcome these challenges. In particular, we have proposed a resiliency

mechanism that can be achieved at the line card level and that can be deployed efficiently

in order to save backup memory on the control card. This chapter also provided an

evaluation of the proposed distributed architecture in comparison with the centralized

one, in terms of CPU consumption and number of exchanged messages.

The distributed architecture for LDP we presented is a good sample for distributed

modules required for next generation routers. With little modification, a similar

architecture can also be developed for RSVP-TE in order to complete the MPLS

framework, where the synchronization, and recovery mechanisms as well as table

management may be reused [Neri07]. The methodology of LDP message processing is

useful for RSVP-TE, too. The most important extra requirement for such a distributed

RSVP-TE architecture, related to the CSPF computation, will be discussed in the next

chapter.

186

Chapter 7 Distributed RTM Architectures

In this chapter, we present the distributed architecture we propose for the Routing Table

Manager (RTM). The first requirement for a RTM distributed architecture comes from

the RSVP-TE module. As with LDP, the RSVP-TE module needs also to be distributed

on line cards in order to increase the scalability and resiliency and to reduce the load on

the control card. Unlike the LDP, the RSVP-TE needs to compute paths over the network

based on user-specific requirements, such as QoS. This is done with the help of routing

protocols, like OSPF or BGP, through interfaces with the RTM. Therefore, a distributed

architecture for the RTM is required to implement a RSVP-TE distributed architecture. In

addition, the distributed architecture of RTM may save the CPU resource and memory on

the control card(s) that are used to compute the best routes.

This chapter begins with the distributed architecture for RSVP-TE, followed by the

proposed distributed schemes for the RTM. The performance evaluation and comparison

of the proposed schemes are provided, in terms of the number of exchanged messages,

CPU cycles and memory consumption. We also discuss where to deploy the distributed

schemes depending on the type of routers (i.e., their hardware capacity). The

implementation architecture of the selected distributed RTM scheme is also provided,

where we focus on the use of such a distributed RTM for CSPF computations.

7.1 Distributed architecture for RSVP-TE

Routing protocols, such as OSPF [Moy98], IS-IS [ISO021 or BGP [Rekh95] require

path computations in order to produce best routes. The LDP protocol presented in the

187

previous chapter (Chapter 6) is a signaling protocol for MPLS networks which simply

performs the message exchanges between LSRs to establish the LSPs. With LDP, LSPs

are built without taking into account traffic engineering parameters. Therefore, the path

computation is not involved in the LDP process. RSVP-TE [AwduOl] can be used

alternatively as another signaling protocol for MPLS networks that provides additional

traffic engineering features. In traffic engineering we are concerned with establishing

LSPs which do not necessarily follow the IP best routes from the ingress to the egress

computed by normal routing protocols like OSPF or IS-IS. This allows data to be sent by

alternative routes to reduce bottlenecks and congestion, to increase the utilization of

network-resources, and to avoid planned faults. The Resource Reservation Protocol

(RSVP) [Zhan02] was originally designed as a signaling protocol for the Integrated

Services (IntServ) model, wherein a host requests a specific QoS from the network for a

particular flow. RSVP-TE is an extension of RSVP that has been adapted to support

traffic engineering within the MPLS network.

The architecture of RSVP-TE is basically similar to LDP, described in Chapter 6. Both

signaling protocols are running on line cards and can be used alternatively by the MPLS

Signaling module to establish the LSPs with the peer routers. Their concurrent access to

the LIB table is controlled to avoid data inconsistency. The labels provided by the L-LAT

are given to RSVP-TE and LDP according to their requirements. LDP establishes the

LSPs for the IP best routes defined in the FIT managed by the IP stack, while RSVP-TE

builds the TE-based routes. LDP runs on top of TCP and RSVP-TE uses the raw sockets

provided by the IP stack. In Figure 7-1, there is only one RTM running on the control

card that contains all the routes of the system and manages the interfaces of the routing

188

protocols. Therefore, all path computation requests from RSVP-TE must go to the control

card. The distributed MPLS architecture is not deployed efficiently. In addition, the

control card can be overloaded by the large number of requests when the number of line

cards is increasing.

User-<- 1-affc
Eng fleering

IMStack

Fabric Controller ^ r r r H

Figure 7-1: Distributed MPLS Architecture with a Centralized RTM

This issue can be dealt with by using a distributed RTM, where each line card has a

RTM instance. The distributed RTM on each line card may contain the available routes

of the routers, or all the routes which directly relate to the local line card, out of the best

routes. RSVP-TE path computation requests may therefore be addressed to the local

RTM instance running on the same line card instead of the control card. Based on its

routing table, the local RTM will be able to call the appropriate routing protocol to

compute the routes that satisfy user QoS requirements.

189

With a distributed RTM architecture, a distributed RSVP-TE process on line cards will

be able to consult the local routing database in order to obtain routes. Routing protocols

determine where packets get forwarded; RSVP-TE is only concerned with the QoS of

those forwarded packets. RSVP-TE sessions are launched according to user requests from

the application level. A host uses the RSVP-TE protocol to request specific QoS from a

network for particular application data streams or flows. Routers use RSVP-TE to deliver

QoS requests to all nodes along the paths of the flows and to establish and maintain a

state to provide the requested services. RSVP-TE requests generally result in resources

being reserved at each node in the data path.

Quality of service is implemented for a particular data flow by mechanisms collectively

called "Traffic Control" which include:

• Packet scheduling (or some other Layer 2-dependent mechanism to determine

when particular packets are to be forwarded),

• Admission control,

• Policy control.

For each outgoing interface, a packet scheduler (or other link-layer-dependent

mechanism) is required to achieve the promised QoS. Traffic Control implements QoS

service models defined by the Integrated Services Working Group [Bake97]. During

reservation setup, an RSVP-TE request is passed to admission control and policy control.

Admission control determines whether the node has sufficient available resources to

supply the requested QoS. Policy control determines whether the user has administrative

permission to make the reservation. If both checks succeed, parameters are set in the

forwarding engine (through Traffic Manager chipsets) to obtain the desired QoS. If one

190

of the checks fails, the RSVP-TE process returns an error notification to the application

process which originated the request.

7.2 Current RTM Architecture

We now describe RTM architectures to support such RSVP-TE modules.

7.2.1 Overview of RTM

The main task of the RTM is to build the Forwarding Information Table (FIT) from the

routing database coming from different routing and signaling protocols [Zini02]. All

routes learnt by different routing protocols are stored in the routing database; including

the best and the non-best routes. For a set of routes having the same destination prefix,

only one route is deemed the best, which is based on a pre-configured preference value

assigned to each routing protocol. For example, if static routes have a high preference

value and OSPF routes have a low preference value, and if a route entry having the same

destination prefix was recorded by each protocol, the static route is considered to be the

best route and is added to the FIT (Figure 7-2). However, some services, such as RSVP,

can use non-best routes to forward data with respect to user-defined parameters.

Therefore, the RTM has to keep all routes and allows users or requested modules to

access the route database and make routing decisions based on:

• Request Next Hop and Explicit Route resolution.

• Notify any change in the routing tables generated by the underlying routing

protocols (e.g., RIP, OSPF, IS-IS, BGP).

• Alert the routing protocols about the current state of physical links, such as the

up/down status, available bandwidth, etc. in order to manage associated link

191

states, and indirectly route status. This information helps the routing protocols

when flooding QoS-related information to the routing domain or building QoS

forwarding tables.

Communicate with the policy manager module for making route filtering

decisions for routing protocols (e.g., OSPF or BGP).

Alert the routing protocol about resource reservation failures.

CLI (30.0.0.0 is directly connected, Serial 0 J Control Card

RTM

OSPF

30.0.0.0/24 via 20.2.1.1, Ethernet C

Routing Database

O 30.0.0.0/24 via 20.2.1.1,00:00:03, Ethernet 0
S 30.0.0.0 is directly connected. Serial 0

Legend:

O: O S P F
S: Static

Line
Card

Forwarding Engine
{Network processor)

Forwarding Information Table (FIT

S 30.0.0.0 is directly connected, Serial 0

Forwarder Engine
(Network Processor)

Line
Card

Forwarding Information Table (FIT)

S 30.0.0.0 is directly connected, Serial 0 '

Figure 7-2: Update Routing Database and Select Best Routes

The traditional architecture of the RTM module, so called centralized architecture, is

neither distributed nor scalable (Figure 7-3). These legacy routers consist principally of a

RTM located on the control card [Zini02], which processes information from all routing

protocols and every network the router connects to. Indeed, there is no RTM module

running on any line card. However, it supports resiliency at the control card level. It

manages software and hardware failures of the control card on which it is running by

having a backup instance running on another control card that will take over the

preceding primary instance in case of failures.

In such an architecture, routing protocols, such as ISIS, OSPF and BGP are all running

on the control card. Each protocol computes the best routes for all domains it connects to.

192

The results are sent to the RTM, which then selects the overall best routes among all

routing protocols and updates the FIT through the services provided by the IP stack.

Figure 7-3: RTM in a Non-Distributed Routing Architecture

The RTM is also responsible for managing routing policies for the routing protocols. An

external policy module is therefore required to provide policy information (i.e., QoS or

traffic engineering information) to the RTM. The policy module allows system

administrators to configure the filtering policies and inter-working between routing

protocols (i.e., OSPF-BGP inter-working), and to modify path attributes according to

specific pre-configured policies. The content of the policy module consists of the policy

rules. Each rule is an association of conditions and actions. When the conditions are met,

the router is required to trigger the specific actions. A condition is a boolean expression

that is evaluated to be either true or false. An action represents a concrete treatment that

should be taken to enforce a policy rule if the conditions are evaluated to be true. Policy

193

actions may result in executing one or more operations to affect and/or configure network

traffic and resources.

We will not go into details of the routing policy implementation architecture in this

thesis. It is hence considered as an independent module which has only an interface with

the RTM. The protocols, like MPLS, use its services through the RTM in order to filter

the control packets out of the data packets and to map the routes as required.

7.2.2 Current RTM Architecture for Next Generation Routers

The RTM architecture used for recent router products, as described in [Ngu07a],

consists of a Global RTM (G-RTM) module that manages the routing table for the whole

system and several smaller RTMs, each devoted to a given protocol and therefore

denoted by IGP-RTM or EGP-RTM, i.e., for each protocol. Each IGP/EGP-RTM is

responsible for managing routes computed by a specific routing protocol (i.e., OSPF,

BGP, MPLS), as shown in Figure 7-4. The G-RTM is a stand-alone process located on

any control card in the system. It interfaces only with the IGP/EGP-RTMs and IP. It

receives all the routes learned by the different IGP/EGP-RTMs and performs the

selection of the overall best routes. Then it updates IP and the IGP/EGP-RTMs and

finally performs route redistribution between protocols. The G-RTM also manages the

configuration of static routes configured by users (through an external routing policy

module) or traffic engineering based routes. The interface configuration and up/down

status are handled by the G-RTM and broadcast to the routing protocol modules through

the IGP/EGP-RTMs.

Each IGP/EGP-RTM is physically linked with a given protocol and gives the

impressions to the protocol that it is a complete RTM. It contains all best routes of the

194

protocol and the overall best routes of the system computed by the G-RTM used to

update the protocol. It offers the same API, and keeps all pertinent information to the

protocol for fast access and sustained performance.

Control Card

ISIS
Control

ISIS-
RTM

-*c—*-

OSPF
Control

OSPF-
RTM

^*r

BGP
Control

BGP-
RTM

MPLS
Control

MPLS-
RTM

,-Vfit

Policy
Manager)

^
I G-RTM

^

l^

IP

FIT

Switch Fabrij;

Line Card

4H

HW

ISIS
Signaling

OSPF
Signaling

BGP
I Signaling

Y ^ ~

MPLS
Signaling isi

HW

Figure 7-4: Current RTM Architecture: Distribution on Protocol Basis

Such an architecture allows the routing protocols to have flexible access to the routing

tables managed by the G-RTM, without being queued. The architecture does not require

much modification of routing protocol modules and the G-RTM regarding the traditional

architecture (Figure 7-3). Each IGP/EGPRTM manages only the subset of the routing

table that is related to a specific routing protocol. When a routing protocol receives a

route update notification message through the corresponding signaling component on a

line card, the control component located on the control card re-computes the best routes

and updates its local IGP/EGP-RTM. The G-RTM is also notified through the link with

the IGP/EGP-RTM. The overall best routes of the system are selected among those

195

provided by different protocols. The route update is advertised by the G-RTM to other

routing protocols in order to notify the neighbors. Finally, the overall best routes are

updated to the FIT on the line cards through the connection with the G-RTM.

The architecture does not reduce the number of messages sent to the control card, in

other words, the congestion still remains. However, the resiliency and scalability are

improved at the control card level because the routing protocol can still use the IGP/EGP-

RTMs when the G-RTM temporary fails. The lookup operation is faster because each

IGP/EGP-RTM contains only a portion of the global routing table. The main advantage

of this scheme is the simplicity since not much modification is needed. Therefore, it can

be suitable for the short-term migration from the current to the next generation routers,

where only the control card needs to be upgraded. However, there are some critical

issues:

• Although the IGP/EGP-RTMs are distributed on a per protocol basis, they are

basically independent processes running on the same control card. This leads to

quite heavy resource consumption and to some overloading of the control card

as the number of routes increases.

• Additional computing and memory resource on the line cards are not efficiently

exploited to run the best route computations or to perform the route management

tasks.

• In the context described in Chapter 5 where the routing protocols will be

distributed on the line cards in order to improve the scalability and fully exploit

the available memory and CPU resource of the line cards [NguQ7a], the

IGP/EGP-RTM modules need also to be migrated to the line cards.

196

• It is not very efficient to perform the FIT update operations at the control card

level by G-RTM as the FITs are hosted by the line cards.

In order to deal with these issues, in the following sections, new architectures for RTM

will be proposed. We aim at a full distribution of RTMs on line cards, where each line

card has an RTM instance responsible for the local routing protocols.

7.3 Proposals for Scalable and Distributed RTM Architectures

Taking into account the necessity of sharing the processing between control cards and

line cards, we conducted a study where the aim was the migration of some control

operations from the control card to line cards. Candidates for the migration included the

three following items.

• Protocol processing: This is achieved by the IGP/EGP routing protocol

modules, such as OSPF, IS-IS or BGP. Most of these processes can indeed be

moved onto the line cards.

• Route maintenance: This is achieved by RTM. This operation can be shared

between line cards and control cards.

• Router management and user interface: This is achieved by appropriate modules

such as CLI. These operations should remain at the control card level in order to

ease the management.

Therefore, this section focuses on the distribution schemes for the first two operations.

We consider and evaluate four distribution schemes that we next describe.

197

7.3.1 Scheme 1: Basic Distribution of RTM

In order to ease the CSPF computations and to reduce the load of the control card due to

the large number of requests addressed to the G-RTM, ones think about the migration of

G-RTM functions to the line cards. In the simplest distribution scheme, a copy of G-RTM

is implemented on each line card of the router. Thus, each line card has a so called LC-

RTM which plays the role of the G-RTM of the control card (Figure 7-5). The best route

computation for each routing protocol and the selection of overall best routes of all

routing protocols are still achieved on the control card, respectively by control

components of the routing protocols and by the G-RTM. Once new routes are added to

the routing database, the G-RTM will update the LC-RTMs on the line cards. The LC-

RTMs are responsible for recording the overall best routes to the FIT of the line card and

for serving the CSPF computation requests. Since the LC-RTM contains all available

routes of the router, as well as the parameters of all links, it is able to achieve the CSPF

request sent by the RSVP-TE module running locally on the same line card.

Advantages

This architecture may reduce the load on the control card because CSPF computation

requests are served by the LC-RTM running on the same line card with the RSVP-TE

module. Recording overall best routes to the FIT is also accelerated with the interface

between the LC-RTM and the Fabric Controller on line cards.

198

ISIS
Control

BGP
Control

OSPF
Control

MPLS
Control

Control Card

Line Cird 1

LC-RTM

OSPF Sig.

IS-IS Sig.

Line^ard 2

LC-RTM

OSPF Sig.

IS-IS Sig.

\ Jne Card
^ N

LC-RTM

OSPF Sig.

IS-IS Sig.

Figure 7-5: Basic Distribution of RTMs

Disadvantages

This architecture requires a large amount of memory on the line cards to save the whole

routing table. It does not help to reduce the best route computations, which are achieved

by routing protocols on the control card. The LC-RTM may contain many routes that are

never used for the line card so the lookup operation is not optimal.

7.3.2 Scheme 2: Distribution of Routing Protocols

In this scheme, the IGP/EGP routing protocols are distributed on the line cards and the

best route computation is entirely done at the line card level. The IGP/EGP-RTMs

associated with each routing protocol (i.e., in the centralized architecture) are removed

because whenever the best routes are determined, they are sent directly to the G-RTM

located on the control card.

In the centralized architecture, the control component of each routing protocol running

on the control card performs the best route computation for the corresponding protocol. It

collects the link state notifications received by all the line cards and builds the network

topology. Taking into account the fact that routers are usually grouped together in

199

domains or sub-networks according to the routing protocol policies (e.g., OSPF, IS-IS,

etc.), we propose an improvement in the distribution scheme which migrates the

computation from the control card to the line cards in order to reduce the load of the

control card and to increase the performance and the scalability of the whole router. In

this architecture, line cards are grouped into clusters according to their physical

interconnection domains and link state notification messages are limited in each cluster.

A line card that is out of a cluster will not receive the link state notifications of that

cluster, hence is not involved in the best route computation process. Each domain has a

"proxy" line card for each routing protocol, which takes care of the path computation for

the domain as described in Chapter 5.

\LineCa-d" linaCa'a2

^ Domain D3 „ -

Figure 7-6: Domains and Clusters of Line Cards

Let us illustrate this concept on Figure 7-6 where we consider 8 line cards with 4 ports

each, the use of 2 protocols (OSPF and IS-IS) and 4 domains (Dl, D2, D3, D4). Consider

the line card #1 (denoted by LCI): it has two ports linked to domain Dl and two ports

linked to domain D2. Therefore it belongs to two clusters, the first one associated with

Dl, and the second one associated with D2. The cluster associated with Dl contains 3

200

file:///LineCa-d

line cards, LCI, LC2, LC3. While LC3 is a regular line card, the other two line cards

serve as proxy ones: LCI for OSPF and LC2 for IS-IS.

G-RTM

Routing
table

Control Card

routes routes
-IS ^ E G P

IS-IS
"Proxy"

Line Card 2
OSPF

IS-IS

EGP

EGP
"Proxy"

Line Card 3
OSPF

IS-IS

EGP

E

Line Card 4

OSPF

IS-IS

EGP

\D2

D1

Figure 7-7: Distribution of Routing Protocols

An OSPF and an IS-IS module used to exchange protocol messages with other routers

in the network run on each line card. In our example, each line card is connected to four

different routers through its ports. If the state of any link in a domain is changed, a

notification will be sent to the neighbor router pertaining to that domain. In return, each

router in the domain will compute the best routes (e.g., using Djikstra algorithm for

OSPF and IS-IS) to other routers in the domain following the reception of the link state

update being flooded to all routers connected in the domain. Basically, all routers in a

domain receive the same information. Therefore having a proxy line card per protocol for

each domain avoids repeating the computation on each line card within that domain, plus

ensures that a central instance will not be overloaded by having to calculate the best

routes for both domains. In our example, OSPF best routes for the domain Dl are

computed on LCI, IS-IS best routes for the domain Dl are computed on LC2. The LC3 is

201

not involved in any best route computation of the domain Dl, however, it performs the

OSPF best route computation for the domain D2 as it has some ports connecting to D2.

The best routes computed by each proxy in each domain and for each routing protocol

is sent to the G-RTM which then selects the overall best routes of the system based on the

protocol preference value (e.g., administrative distance) or on the router configuration, as

shown in Figure 7-7. The G-RTM updates these final results to the FIT on all line cards

as the FIT is consulted to forward data packets. Each proxy in the proposed scheme

maintains a database to keep the best routes of its domain. The G-RTM handles all best

routes from all domains and routing protocols in the system. Any change in system

interface configurations and up/down status are sent by the G-RTM to the proxies, which

then notify the neighbor routers through the appropriate routing protocols.

We illustrate on Figure 7-8 the message sequence exchanged between a proxy line card

and a regular line card belonging to the domain D managed by the proxy. Whenever a

link state modification is received, each line card in domain D must send a report to the

proxy. The proxy computes the best routes and advertises the result to all line cards in

domain D.

Figure 7-8: Messages Exchanged between a Proxy and a Regular Line Card for the Second

Distribution Scheme (Distribution of Routing Protocols)

202

This scheme can be deployed in the case where only some ports of each line card of the

router are connected to a routing protocol domain. Those can be medium scale routers

with a limited number of line cards so the ports of a line card are shared among different

domains. The scheme can also be preferred in case where ports are changed flexibly from

a domain to other. Thus we can assume that the number of ports per domain is chosen

randomly.

The architecture achieves the CSPF computation requests as follows. A CSPF

computation request sent by a RSVP-TE module running on a given line card is

forwarded to the G-RTM located on the control card as in the centralized architecture.

However, the G-RTM does not compute the CSPF path on the control card. It looks in the

routing database for the appropriate routing protocol and the domain where the CSPF

needs to be computed. The G-RTM then forwards the request to the proxy assuming the

route computation of that domain to achieve the CSPF, taking into account user-specific

parameters.

Advantage

The main advantage of this scheme is the saving of the control card resources. It is also

scalable because the load balancing among all line cards can be achieved by having a

good proxy assignment mechanism, i.e., as shown in Figure 7-6, each line card can be

proxy for a specific routing protocol. As the highest resource consumption is due to the

best route calculation using Bellman-Ford or Dijkstra's algorithms, when this task is

performed in parallel on several proxies, the overall performance of the router will be

improved in comparison to the current RTM architecture.

Disadvantage

203

The drawback of this scheme is that the routing protocol modules need to be modified

in order to enable message exchanges among line cards. This can lead to extra

development costs. In addition, since all routes are still stored by G-RTM, the CSPF

computation (e.g., for RSVP-TE paths) must be performed at the control card level, thus

message exchanges between the line cards and the control card should be taken into

account.

7.3.3 Scheme 3: Distribution of LC-RTMs on Line Cards

For highly scalable routers, all ports on each line card connect to only one routing

domain. The cabling connections are maintained for a long time (e.g., several months or

years). Thus each port is attached permanently to its routing domain. Several protocols

can be executed alternatively to perform the routing on that domain (e.g., OSPF and IS­

IS). If one protocol temporary fails, the routing can be resumed by other protocols.

In this context, our third proposed distributed scheme enhances the second one by

having a "master" for each cluster of line cards in addition to the proxies (Figure 7-9).

Each cluster is associated with a domain as in the previous scheme. The main difference

between the second and the third scheme is that in the previous one, the proxy of a given

domain and a routing protocol computes the best route then sends the result to the G-

RTM located on the control card in order to select the overall best routes of all routing

protocols of the system; while in the latter scheme, the master line card instead performs

the overall selection of the best routes from all routing protocols in its domain. In

addition, in the second scheme, all available routes are stored by the G-RTM and only a

copy of the overall best routes is kept by line cards to perform the forwarding. Unlike the

previous schemes, in the third scheme, available routes of all routing protocols of a

204

domain are managed by the master of that domain. This allows the master to be able to

perform further the CSPF calculation on user-specific parameters (e.g., administrative

weights) according to special requests (e.g., from RSVP).

In this scheme, routes are managed at the line card level by a so called LC-RTM

process running on each line card (Figure 6). The LC-RTM handles the overall best

routes of the domain supplied by the master. If a line card is assigned as master for a

domain, its LC-RTM contains all available routes of the domain. The FIT of each line

card is updated by the local LC-RTM. The LC-RTM of each line card has interfaces with

local routing protocols modules so that route notifications can be sent from a given

protocol to another one in order to advertise neighbors.

Any CSPF computation request (i.e., sent by a RSVP-TE module) from any line card in

a domain will be forwarded to the master line card of that domain. The master LC-RTM

performs the CSPF computation based on its database and on the IGP topology of the

domain.

Figure 7-9: Distribution of LC-RTMs

205

Figure 7-10 shows the message sequence exchanged between a master line card and a

regular line card belonging to the domain managed by the master. Whenever a link state

notification is received, routing protocols will send a report to the LC-RTM. The LC-

RTM forwards the notification to the master, which is responsible for computing and

selecting best routes for all routing protocols.

The IGP/EGP-RTMs associated to each routing protocol as in the centralized

architecture are no longer required in this scheme because the local LC-RTM of each line

card has an interface with local routing protocol modules and the master LC-RTM

contains all the best routes of the domain.

Figure 7-10: Message Exchange between the Master and a Regular Line Card for the Third

Distribution Scheme (Distribution of LC-RTMs)

Advantages

The main advantage of this scheme is that route information is handled on a master line

card for each domain. Thus it can be used for IGP/EGP or RSVP-TE protocols without

having to go up to G-RTM. In this case, CSPF computation is conducted at the level of

the master line card. The trade-off is that the master line card must reserve a large

memory space for storing all routes and the IGP topology of the domain. In addition, the

206

number of message exchanges between the master line card and other line cards in the

domain can be large, i.e., a request should be sent to the master per LSP computation.

The resiliency of the system in the proposed scheme is also improved because when the

control card temporary fails, routing can still be achieved at the line card level and the

overall best route for each domain can be computed independently by the master line

cards.

Disadvantage

A large memory resource is required at the master line card in order to contain all

available routes in the domain. It can be therefore costly in terms of line card memory. In

addition, the CSPF computation for every LSP in the domain requires message exchanges

with the master: this results in an increase of the traffic among the line cards associated

with the same domain.

7.3.4 Scheme 4: Distribution of Best Route Computation

Algorithms.

The best route computation algorithm, such as Djikstra, needs to have the global

topology of the network. Therefore, it must be performed in one router component,

namely line cards or the control card. This scheme is proposed assuming we have an

algorithm that is able to determine the shortest path from one node to other node in a

network in a distributed way. On other words, parts of the best route computation

algorithm can be performed on different router cards. The final result can be converged

through the messages exchanged among the cards.

207

In this scheme (Figure 7-11), line cards are again grouped according to the domains

they are associated with, but there is no proxy line card for each domain. Instead, the

route computation algorithm can be implemented in a distributed way. Each line card

performs a fragment of the computation algorithm and synthesis of the distributed

computations is handled through the message exchanges among line cards. In such an

architecture, each line card manages only the routes connecting to its neighbors. Each

line card computes only some best routes of the domain and the final results are sent to

the G-RTM in order to select the overall best routes.

However, a distributed algorithm for best route computation is out-of-scope of this

thesis so we do not consider the implementation of this scheme.

I G-RTM I

Figure 7-11: Distribution of Route Computation Algorithms

Advantage

This scheme is able to balance the computation task among line cards because each line

card performs only a portion of the algorithm. Each line card maintains the available

routes; hence the CSPF computation can be executed locally within the domain.

208

Disadvantage

There is currently no suitable distributed algorithm for the best route computation.

7.4 Performance Evaluation of the Proposed Distributed Schemes

The distribution schemes are proposed in order to fully exploit the hardware

architecture of the next generation routers. In addition, they increase the scalability of the

system in terms of the number of routes the router can support. We conduct a comparison

of the performance achieved by each distribution scheme in order to select the most

appropriate one for our requirements.

In this evaluation, we focus on the second and the third distribution scheme (i.e.,

distribution of routing protocols and distribution of LC-RTMs respectively). We do not

consider the first scheme because it is too costly in practice. In addition, we will compare

the performance of these two distribution schemes with the current centralized

architecture.

We first set the notations, then evaluate the number of messages going through the

switch fabric, the CPU and the memory consumptions before conducting a comparative

performance evaluation in the last paragraph of this section.

Let:

NLC : number of line cards in the router.

TVpon : average number of ports (network interfaces) located on each line card. Usually,

all line cards in a router have the same number of ports.

Np: number of protocols currently running. We assume that all Np protocols are

activated in all line cards.

209

Ncmsg : average number of CPU cycles used to process a message on the line card or on

the control card.

' Nsei: average number of CPU cycles used to select an overall best route among Npbest

routes of Np routing protocols. We assume that best routes to a destination learnt by NP

protocols are computed at the same time.

M: required memory to store one route on the line card or on the control card

NJ
D : number of domains for the routing protocol/

• For the second scheme, we assume that the domains of the routing protocol j are

equally distributed on all line cards. Each domain has a proxy. So the number of

proxies for the routing protocol^ is also NJ
D .

• For the third scheme, since all ports connecting to a domain are included in a

cluster and all protocols are activated in that domain, NJ
D = ND for ally, and the

number of line cards used to connect to each domain is: NLCIND

P/: number of ports the router uses to connect to domain i of the routing protocol/

• For the second scheme, we assume that these ports are distributed equally on all

line cards and each line card has at maximum one port connecting to the domain

i of the routing protocol j .

• For the third scheme, since all ports connecting to the domain i are included in a

cluster and all protocols are activated in that domain, P/ = Pt for all j , and

Pt=(NLC/ND)xNPort

210

NJ
R : number of routers in the domain i of the routing protocol j except the router in
i

consideration. In practice, a router can be reached by several routing protocols.

• For the third scheme, since all protocols are activated on the same domain,

Ni = NR. for ally.

NJ
C : number of needed CPU cycles in order to run the route computation algorithm

(either on the line card or on the control card) for domain i and routing protocol/

Thus, the total number of domains for all protocols, as well as the total number of

Np

proxies for all routing protocols in the second scheme is V NJ
D .

The average number of domains a line card can belong to, as well as the average
Np

number of proxies per line card is: C^NJ
D)I NLC

In the following calculation, we do not consider the messages used by a routing

protocol to establish and maintain connections such as HELLO or KEEP ALIVE because

they can be processed entirely at the line card level thus are not involved in the path

computation process performed by the RTMs.

7.4.1 Number of Messages Going Through the Switch Fabric

For a link state routing protocol j , when there is a link change in a domain i, all ports

connecting to that domain are notified by a message. Thus the router receives ~5\P/
1=1

messages. This number is the same for all the proposed distributed schemes.

211

ND

In the centralized architecture, all ^P/ link notification messages received by all

w

line cards are forwarded through the switch fabric to the protocols control

components located on the control card in order to compute a new best route. Since
NpNJD

there are Np protocol modules, there are 'Y^lL^ messages processed by the

; = i <=i

control card. The G-RTM updates the FITs on all line cards with the overall best

routes. We assume that a message can contain all the overall best routes of a

domain. Therefore, the number of update messages going through the switch fabric

r
J
D

In the second scheme, P/ - 1 link notification messages received by non-proxy line

cards of domain / of a given routing protocol j are forwarded to the proxy of their

domain (the notification message received by the proxy is processed locally so it

does not consume bandwidth of the switch fabric). Since there are iV^ domains for

K
the routing protocol j , there are ^ (P/ -1) messages sent by line cards to their

NPNJD

proxies within the protocol j . And as there are Np protocol modules, Z^Z^iP/ -1)
7=1 i=l

messages are sent by line cards to their proxies. In addition, each proxy of a domain

i and routing protocol j sends a message containing the best route of its domain to

the G-RTM located on the control card. Therefore, the number of best route

messages sent over the switch fabric is^NJ
D . Totally, the number of messages sent

212

over the switch fabric in the distributed architecture is

Np Np NJ
D Np NJ

D

V NJ
D +y]'y\(P/ -1) = T]y \P/ > exactly as same as in the centralized

architecture. Similarly, the G-RTM updates all line cards with the overall best

routes. Thus the number of update messages going through the switch fabric is

Np

NLC x ^T NJ
D as in the centralized architecture.

• In the third scheme, each line card receives Np0n messages from its NPorl because

it uses all ports to connect to the domain /. These messages are the same for the

protocol j . The routing protocol module forwards only one notification per protocol

to the master of the domain. Since there are NLCIND line cards in the domain, the

number of messages forwarded through the switch fabric to the master

\s(NLClND)-\. With Np protocols, the total number of messages sent to the

master of the domain / is Np x ((NLCIND) - 1) . There are ND domains in the

system, so the number of message sent to the masters is Np x(NLC -ND). The

master updates the regular line cards in its domain with the overall best routes of the

domain. Therefore, each master sends {NLCIND)-\ update messages. All masters

send NLC - ND update messages in total.

7.4.2 CPU Consumption

In order to compute best routes:

• In the centralized architecture, the protocols control component located on the

control card uses N^,. CPU cycles to compute best route for the domain i for a

213

given protocol j . Since there are ND domains and NP protocols running, the

NPNJD

number of cycles needed on the control card is: ̂ ^ Nj

j=l 1=1 '

• In the second scheme, the computation is achieved by proxies. Each proxy performs

the computation for a domain and a routing protocol. The number of CPU cycles

consumed on the proxy for the path computation is therefore: NJ
C . The total

NPNJD

number of CPU cycles used by the whole system is unchanged: ^ y] - ^ 7 •
7=1 i = l C<'

However, since the proxies are equally distributed on line cards, the number of CPU

cycles used for the best route computation on a line card on average is

NPND

(IZ^)/^c-
j=\ i=l '

• In the third scheme, the computation is achieved by the proxies of protocols and the

overall best routes are selected by the master line cards. Therefore CPU cycles

consumed by each proxy is similar to the second scheme: NJ
C cycles per proxy. In

NpNJD

other words, each line card uses on average Cj^Y^N')/NLC CPU cycles.

j=\ /=i •

In order to select the overall best routes:

• In the centralized architecture and the second scheme, the G-RTM on the control

card chooses among best routes computed by all routing protocol modules. For each

domain, it takes N&i CPU cycles. The number of common domains for all

214

Np

protocols is (^NJ
D)/Np. Therefore, the number of CPU cycles to select the

Np

overall best routes is: (N&i x]T NJ
D) / Np.

• In the third scheme, the masters assume the overall best route selection. Therefore,

each master uses Nsei CPU cycles.

In addition, some computing resources are also required for processing the messages:

• In the centralized architecture, the control component of the protocol j located on

w7
D

the control card has to process ^P/ link notification messages coming from
1=1

domains of the protocol j . Therefore, the number of CPU cycles consumed by all

_ Np NJD

control components to process protocol messages is JVcwg x XS^7 •
,/=i ;=i

In the second scheme, the proxy of the domain i and the protocol j processes Pt
J - 1

link notification messages coming from all ports in the domain. Therefore, the

number of CPU cycles used by that proxy is: Ncmsg x (P/ - 1) . In total, the number

NpNJD

of CPU cycles used by all proxies for message processing is Ncmsg
 x X S ^ ~ ^ •

7=1 1=1

In other words, the number of CPU cycles used on average by each proxy for

_ NPN1D

message processing is(NcmSg
 X2l/_I(P/ -ty)lNLC since the proxies are equally

7=1 i=l

distributed on all line cards. The control card receives a best route update per

- NP

domain, therefore it uses NCmsg
 X^NJ

D CPU cycles.
7=1

215

• In the third scheme, each line card sends only one link notification message per

protocol to the proxy because all the ports on a line card are connected to the same

domain. With NLCIND line cards per domain each proxy uses

Ncmsg x{NLCl ND -1)CPU cycles. The master has to process a best route update

message per proxy in its domain. Therefore, it uses Ncmsg x Np CPU cycles. The

control card receives an overall best route message per domain, thus it uses

Ncmsg x ND CPU cycles.

7.4.3 Memory Consumption

Memory is required to store routes.

• In the centralized architecture, the best routes of all domains of the routing protocol

j are saved on the control card by the j-RTM (IGP/EGP-RTM). There is a best route

to reach each router on a given domain i using the protocol j . Since there are

NJD

A^ routers in the domain i connected by the protocol j , there are ^NJ
R best

1=1

"D

routes. Hence, the amount of memory needed to save these routes is M x ̂ T A^ .

i=\

NpN'D

With NP different protocols, the memory needed is M x ^ N J
R . Best routes of

> i i=i '

all routing protocols and all domains are backed up by the G-RTM, which requires

NPNJD

M x ̂ T J] ^R. memory.
j=\ ,=i

• In the second scheme, the best routes of all routing protocols and all domains are

saved by the G-RTM. The proxy of each domain and each protocol keeps the best

216

routes of that domain. There is a best route to reach each router on a given domain i

using the protocol j . Since there are NR routers in the domain i connected by the

protocol j , the number of best routes to all routers in the domain i using the protocol

j is NJ
R . Since the proxies are equally distributed on line cards, the memory

NpNJD

required to save best routes on each line card in average is (M x ̂ ^ NJ
R) / NLC .

The memory needed on the control card for the G-RTM to save best routes is
NpNJD

M x Y Y NR . The overall best routes are updated directly by the G-RTM to the

y=i i=i

FIT located on the iNP of each line cards, therefore, it does not require memory

space of the line card.

• In the third scheme, the best routes of all routing protocols in a domain are handled

at the master line card. Therefore, the memory needed on a master line card is
ND

M xNpX^ NR . The control card keeps only the overall best routes of the system,

ND

therefore, the memory it needs i s M x ^ i V j , .
1=1

Table 7-1 summarizes the overhead needed to compute new routes in the centralized

architecture and our proposals. The numbers should be very similar for most IGP

protocols.

217

7.4.4 Observations

The performance evaluation of the three proposed schemes based on the computation

above is illustrated in Figure 7-13 and Figure 7-12 according to the following router

configuration parameters:

Number

of

messages

exchanged

through

switch

fabric

Centralized

Np

7=1

Distribution of routing

protocols

7=1

Distribution of LC-

RTMs

(Np+\)x(NLC-ND)

CPU Consumption

CPU

cycles on

the

control

card

Average

CPU

cycles on

proxy line

card

CPU

cycles on

master

line card

NPNJ

7=1 '=1 '

(
Np

(Nseixj^N^/Np
7=1

) +

NPNJD

(Nc^x^P/)
7=1 i=i

N/A

N/A

Np

((NSelxYJN
J
D)/Np) +

7=1

__ NP

(Nc^xYNi)
7=1

NpN'D

((ZZ^)//viC) +
7=1 «'=1 ''

(
NpNh

7=1 1=1

)

N/A

Nansg X ND

NPNJD

((iz^)/^c)
+

(

Nc,nsgx(NLC/ND-l)

)

Nsel + Ncmsg X Np

218

Memory Requirements

Memory

required

on control

card

Memory

required

on line

card

Memory

required

on master

line card

NpNJD

2x(MxXE^i,.)

N/A

N/A

NPNJD

. 7 = 1 1 = 1

NPNJD

y = l <=1

N/A

MxTjV.
t r "'•

i=i

i=i

Table 7-1: Performance Comparison of the Centralized and the Distributed RTM Architectures

• The number of line cards the router supports (NLC). The more line cards are

added, the higher connectivity the router has.

• The number of interfaces (ports) located on a line card (Nport). They are optical

interfaces with high capacity (10-40Gbps). In our evaluation, we use the

configuration of 10 ports per line card.

• The number of routing protocols (Np) currently running on the router. In

practice, a router may support RIP, OSPF, IS-IS, BGP, MPLS, LDP and RSVP.

The number of messages going through the switch fabric is almost the same on the

centralized architecture and the second schemes. In the centralized architecture, link

notification messages received by all line cards are forwarded to the control component

on the control card through the switch fabric. In the second scheme they are forwarded to

the proxy of each domain and only the best routes are sent to the G-RTM on the control

card. The number of messages traveling the switch fabric in the third scheme is smaller

219

because each line card uses all of its ports to connect to a domain therefore the routing

protocol module on a line card sends only one link notification message to the master.

In the centralized architecture, no CPU and memory resource is required on the line

cards for route management, because the RTMs are implemented only on the control

card. Therefore we compare in Figure 7-13 only the CPU and memory used for route

management on the control card (CC) in the centralized architecture with the control card

and the line cards (LC) in the second scheme and with the control card and the master

line cards in the third scheme. There are respectively 2 and 4 protocols running on the

system.

CPU cycles

1.E+05 -

1.E+04 -

1.E+03 -

1.E+02 -

1.E+01

1.E+00 -,

0

•
•

6

*

16

• Np=2,CC,1st scheme

o Np=4,CC,2nd scheme

•

X
o
A A

32

- Np=2,Master,3rd scheme

o Np=4,CC,3rd scheme

•

O
K
A

&
*

[i i

48 64 80
Number of line cards

• Np=4,CC,1st scheme

* Np=2,l_C,2nd scheme

A Np=4,Master,3rd scheme

•
• • •

i I
* *
• *

i i i

96 112 128 144

° Np=2,CC,2nd scheme

x Np=4,LC,2nd scheme

+ Np=2,CC,3rd scheme

Figure 7-12: Comparison of CPU Consumption between the Centralized and the Proposed

Distributed Architectures

Figure 7-13 shows that the memory needed on the control card in the centralized

architecture is largest, followed by the second and the third scheme. It is due to the fact

that the centralized architecture saves two copies of all best routes: one is handled by the

220

G-RTM, the other is distributed on IGP/EGP-RTMs. The second scheme balances the

memory utilization on all line cards by a good proxy distribution. The third scheme

transfers the memory consumption from the control card to the masters so with a small

number of line cards, the memory used in the masters is more than in the control card.

With a large number of line cards, memory used for the route management can be shared

equally between control and line cards.

Memory (bytes)

1.E+09

1.E+08

1.E+07

1.E+06

1.E+05

1.E+04

1.E+03
0 16 32 48 64 80 96 112 128 144

Number of line cards

• Np=2,CC,1st scheme • Np=4,CC, 1st scheme a Np=2,CC,2nd scheme

o Np=4,CC,2nd scheme * Np=2,LC,2nd scheme x Np=4,LC,2nd scheme

- Np=2,Master,3rd scheme A Np=4,Master,3rd scheme + Np=2,CC,3rd scheme

o Np=4,CC,3rd scheme

Figure 7-13: Memory Requirements in the Centralized and the Proposed Distributed Architectures

We also observe the following:

• As the number of line cards increases, the resource requirements increase in the

control card for all three architectures.

• As the number of protocols increases, the resource requirements increase in the

control card for the centralized architecture and Scheme 2. It is not the case,

however, for the third scheme because the control card is not involved in the

221

best route computation and the overall best routes selection. In the third scheme,

different protocols share the same domain so the number of overall best routes

does not change when more protocols are activated.

• As the number of line cards increases, the resource requirements on the line

cards in the second and third scheme do not increase if we have a good proxy

selection mechanism where a proxy serves an unchanged number of line cards.

• As the number of protocols increases, the resource requirement in the line cards

increases for schemes 2 and 3.

Since the ultimate goal of a scalable RTM distribution scheme is to support the CSPF

computation of RSVP-TE routes, Scheme 3 is the best candidate for our requirement

because it allows the reduction of the number of messages exchanged between line cards

and the control card. Hence in the following sections, we will present an implementation

model for Scheme 3.

7.5 RTM Distribution and Added Values for Path Computation

Traditionally, the RTM is handled by control cards where it can obtain routing

information (e.g., link state, route exchange) directly from routing protocols such as

OSPF and BGP. Best routes are computed and recorded into the Forwarding Information

Table (FIT) located on line cards through services provided by the IP stack. Towards a

distributed approach where routing protocols can be distributed between line cards and

control cards, the RTM should be distributed between line cards and control cards in

order to reduce the load on the control card and the number of messages exchanged

between control cards and line cards. In addition, a distributed architecture for RTM

222

allows the forwarding process to be achieved independently on the line cards. A local

RTM (LC-RTM) located on each line card can update routes instantly to the FIT used by

the local IP stack and local Network Processors (NP) located on the same line card. LC-

RTM contains appropriate information used for routing protocols, such as OSPF or IS-IS,

and signaling protocols, such as RSVP-TE, running on the same line card. Path

computation can be performed at the line card level, making the distributed process to be

highly scalable and robust.

However, such a distributed approach has to take into account the following challenges.

• The number of message exchanges between line cards and control cards can be

large: in order to update routing tables and to compute best routes, RTMs (the

G-RTM and LC-RTMs) need to exchange routing information. In the traditional

architecture (e.g., with only G-RTM located at the control card level), there are

only communications between the set of line cards and control cards. According

to the distributed architecture, communications among the line cards are

required. This can be done with the control card used as a relay point. However,

this solution will lead to additional load on the control card. The solution we are

considering is to have a special communication channel for line cards which

shares the bandwidth on the switch fabric with data flows.

• Resource consumption at line card level (i.e., memory and processing resource):

memory resource is required to contain LC-RTM tables (i.e., link state

databases). Some CPU cycles are also needed to be reserved for path

computation and access/update operations.

223

• The consistency among the LC-RTMs: it is required that LC-RTM contents

must be consistent in some given context (i.e., for line cards belonging to a same

domain). This can be done through appropriate synchronization mechanisms,

but they entail some resource consumption, which needs to be evaluated.

In addition, a distributed architecture of the RTM has to perform the following tasks.

• Receive route update notifications from routing protocols. Routing protocols are

responsible for computing best routes using appropriate algorithms and message

exchange mechanisms. Best routes are then sent to RTM in order to update the

IP forwarding table (FIT).

• Send new route advertisements to routing protocols. Routing protocols must be

aware about new computed routes in order to update their databases and to

inform neighbors. Therefore after having computed the new routes, the RTM

has to advertise the appropriate routing protocols.

• Path computation (best route or TE-based path). There are basically two

computations done by the RTM. The first is best route computation where the

RTM has to select the best routes coming from different protocols in order to

update the FIT. The selection criterion is usually based on the administrative

distance. The second computation deals with traffic engineering (TE) paths

where the RTM has to determine the appropriate LSPs based on QoS parameters

of the links, such as administrative weights.

• QoS/TE route definition. The RTM is responsible for getting static route

configurations from users, as well as managing route policy.

224

where the path computation is the most important and complex task. In the following

paragraph, we will investigate the ability of distributing the path computation function to

line cards with the LC-RTM. The other tasks will be discussed together with the

proposed architecture for RTM.

On the line card, the LC-RTM can be designed hence as a Path Computation Element

(PCE) [Farr06] which currently serves the RSVP-TE path computation requirement but

also can be extended to other protocols such as OSPF or BGP. Since the current signaling

protocols (RSVP-TE and LDP) are able to run independently on line cards, the LC-RTM

module consists of two main components (Figure 7-14):

• Traffic engineering database (TED): contains the topology and resource

information of the domain. The TED may be fed by an IGP protocol instance

running on the same line card or on the control cards.

• Path computation element (PCE): achieves the path computation based on a

network graph and applies computational constraints during the computation.

We investigate the distributed path computation model in the inter-domain,

intra-domain and inter-layer context.

o Inter-domain path computation may involve the association of topology,

routing and policy information from multiple domains. This can be done

at the LC-RTM level,

o Intra-domain path computation deals with the routing information

coming from a single domain. This is achieved by routing protocols

running on the line cards, such as OSPF or IS-IS.

225

o Inter-layer path computation aims at performing the path computation at

one or multiple layers while taking into account topology and resource

information at these layers. This is achieved by the LC-RTM and local

QoS (L-QoS) modules.

I
Path

Computaton
Element

Signaling
Protocols (LDP,

RSVP-TE)

Signalin 4*

Adjacent
node

Figure 7-14: Overview of the Proposed RTM Architecture

The path computation can be done with the help of a distributed RTM architecture,

which consists of a G-RTM located on the control card and the LC-RTMs running on line

cards. LC-RTM contains information of a domain while G-RTM keeps information of all

routes going through the router. The LC-RTMs can exchange link state information in

order to establish traffic engineering routes. The process can be described as follows.

• The RSVP-TE module on the ingress line card of the router receives a PATH

message from the upstream router.

• The RSVP-TE module on the ingress line card checks the admission status

(grant/deny) for the new request based on information in the TED.

• The LC-RTM computes the next hop (downstream) router using the PCE and

the traffic engineering database

226

o In case of inter-domain path computation, the request is sent to the

master of the domain which is able to build the inter-domain topology

with other domains.

o In case of intra-domain path computation, routing protocol modules

running on the same line card are invoked,

o In case of inter-layer path computation, the PCE uses information

contained in the traffic engineering database.

• The egress line card connecting to the downstream router is contacted in order to

forward the PATH message.

7.6 Implementation of the Distributed RTM Architecture

Our distributed model for RTM has two main components (Figure 7-15):

OSPF MPLS
Control Control I Control Card

BGP
Control

ISIS
Control

Routing
policy

fiwitnh FRhrir,
Line Card N

Line Card 2

OSPF
Link

Line Card 1

BGP
Link

^ ^ - — ^ [

Routing
table

&L2

IP Forwarding engine

Figure 7-15: Distributed RTM Architecture

Each line card handles a LC-RTM process. The LC-RTM obtains link state update

information from routing protocols which are running on the same line card, and

computes the best routes for each network domain of the line card. This task can be

227

achieved by exchanging information among the line cards and it may need the help of

the control card in order to make routing decisions at the platform level (e.g., selection

of routes based on user decisions). For example, some routing protocols need a global

view of the network topology provided by the control card in order to compute the

best route.

• G-RTM to run on a control card and be responsible for getting routing information

from LC-RTMs and updating the forwarding table of the router. The G-RTM is also

the interface with the user (through an external routing policy module) by which the

user can define static routes, TE or QoS-based routers. Additional control cards can be

added to share processing tasks or to save backup information of the G-RTM used for

resiliency purpose. However, load balancing and G-RTM resiliency are not taken into

account in this thesis. We suppose also that there is a routing policy module located on

the control card that allows users to configure route filtering policies and OSPF/BGP

inter-working, and to modify path attributes for BGP routing protocols according to

specific pre-configured policies.

We investigate the ability of using a distributed model proposed for RTM based on the

following aspects:

Receiving route update notification from routing protocols. The RTMs, i.e., G-RTM

and all LC-RTMs, must be notified of the changes in the routing information generated

by the underlying routing protocols (i.e., RIP, OSPF, IS-IS, BGP) or by the user. In our

proposal, we assume that LC-RTMs are updated through exchanges with G-RTM. Best

routes and/or TE/QoS-based routes can be re-computed and the forwarding table can be

updated.

228

Sending new best route advertisements to routing protocols. The RTMs must send an

alert message to the routing protocols about the current state of physical links, such as the

up/down status, the available bandwidth, etc. This information helps the routing protocols

when flooding QoS-related information to the routing domain or building QoS

forwarding tables

Path computation. Best or TE/QoS-based routes are computed based on information

collected from routing protocols and users. When the RTM is distributed on the line

cards, the results given by each process must converge for the whole platform, i.e.,

information provided by the set of processes is consistent or otherwise inconsistencies

must be addressed and resolved.

QoS and traffic engineering. QoS and TE-based routes are established for specific

connections and replace the existing best routes. These routes can be defined by the user

through a command line interface running on the control card or by QoS-enabled

protocols such as RSVP-TE or LDP-CR.

G-RTM

RTM API

| DS

1

Static
Route

MPLS

Policy
Distributi

on

- « • •

s

a

o

*

Routing
socket

API

routing
sockets

i

y\
» 3

4 >

1 r
sockets

IP

IP FIT

Distribution

Databas

t
e

Figure 7-16: Architecture of G-RTM on the Control Card

Figure 7-16 and Figure 7-17 present the architectures we propose for G-RTM and LC-

RTM respectively. The communication between LC-RTMs located on line cards and the

229

G-RTM located on the control card or among LC-RTMs is achieved by the Distribution

Services (DS) channel. The G-RTM has an interface with routing socket by which it is

able to record the forwarding information table (FIT) through services provided by the IP

stack. Route update information can be received from neighbor routers through interfaces

between LC-RTM and routing protocols running on the same line card (Figure 7-16).

Also, route advertisement can be sent out to the external world using the same interface.

The functions provided by the G-RTM and the LC-RTMs are implemented as APIs.

They include the store, access, lookup, list, remove, update and backup functions. Each

function is represented by a Type-Length-Value (TLV) structure. A module, e.g., MPLS,

can execute an RTM function by sending a message containing this data structure to the

G-RTM or LC-RTM. The Type field is the name of the operation, followed by the length

of the structure; the Value field contains additional information for the function, such as

the parameters to be processed.

Interface with OSPF

BGP I

BGP
import
Policy

BGP4_SEND

BGP export
Policy

A

Interface with BGP

Figure 7-17: Architecture of LC-RTM on a Line Card

Figure 7-17 shows the interface between the LC-RTM on line card with the routing

protocols, namely OSPF and BGP. For the BGP, the LC-RTM has two tables. The RIB-

IN (Routing Information Base - Input) handles the routes advertised by BGP neighbor

230

routers (so called BGP speakers). The RIB-LOC (Routing Information Base - Local)

contains the routes the router discovers by itself (e.g., physical links of the line card or

the routes learnt by other protocols like OSPF). By combining these two tables, the LC-

RTM determines the best routes for BGP, which are stored in the RIB-OUT (Routing

Information Base - Output) table, taking into account the additional user policy

configurations. The RIB-OUT table is then advertised to the BGP neighbor routers.

The LC-RTM has also access to the Link State Database (LSDB) managed by OSPF as

shown in Figure 7-17 (a). This allows the OSPF to be updated with the route changes and

the link status information managed by the LC-RTM. The OSPF best route computation

is achieved by the OSPF module so the LC-RTM is not involved in this process.

However, the final results will be stored in the routing table through the RTM API

services.

Basically, the distributed architecture we propose achieves the essential functions as

follows.

Receive route update from routing protocols

In the proposed architecture, link state databases (LSDB) are stored on line cards, made

locally available to be accessed by the requesting processes such as IGPs, LC-RTM or

RSVP. Recall that the link state database is domain specific or network specific. In the

centralized model, the link state database is handled by the control card, hence

synchronization is not required. In the proposed distributed model, we have to make sure

that all line cards connecting to a domain or network maintain the same link state

database. This can be achieved by having a line card acting as a "proxy" assuming the

path computation for each domain or network. When a line card in the given domain

231

receives a link state notification message, it has to forward the message to the

corresponding proxy line card of the domain. The proxy updates its database and then

synchronizes the associated line cards. An appropriate election mechanism for the proxy

line card is required for each domain or sub-network the router connects to. In order to

simplify the architecture, we can assign the first line card on which the routing protocol is

activated as the proxy for that domain. After having computed the best routes, the

protocol module has to send update information to the LC-RTM located on the same line

card. The LC-RTM will update its best route table with this information and advertise to

other line cards in the same domain.

Advertisement

The LC-RTM has an interface with the IP stack, by which it is able to detect changes on

physical links of the line card. Local routing protocols are then updated to perform the

further processing (i.e., re-compute the paths or inform neighbors). Also, when the LC-

RTM is updated by a routing protocol, it has to re-compute the overall best routes and

update the other protocols running on the same domain.

Path computation (best route and TE-based route)

The path computation is processed on routing protocol basis. According to a distributed

architecture of routing protocols, best routes can be computed in a distributed way. For

link-state based protocols (e.g., OSPF, IS-IS), path computation can be performed by the

"proxy" line card of the domain or sub-network. On the other hand, distance vector based

protocols have to send the route update information they obtain from neighbors to the

master line card of each cluster in order to perform the computation. Basically, the path

computation process proceeds as follow:

232

• The routing protocol module receives update information from neighbors or

detects local link modifications by itself.

• Based on the protocol identification, it decides to send the notification to the

master line card (i.e., in case of distance vector based protocols) or forward this

information to the corresponding proxy line card (in case of link state protocols).

• The PCE of the master line card or an appropriate "proxy" line card runs

specific algorithms (e.g., Dijkstra for link-state based protocols or Bellman-Ford

for distance vector based protocols) to build the network topology and produce

the best routes.

• New route or update route will be registered in the forwarding tables located on

each line in the cluster through the local LC-RTMs.

New best routes are then also advertised to all routing protocols in order to update their

tables.

In practice, administrative weights are specified by users through the interface between

the G-RTM and the Routing Policy module.

QoS and traffic engineering specification

The model we propose provides user QoS and traffic engineering specification

functions through an interface between the routing policy module and the G-RTM located

both on the control card. QoS and TE-based routes can also be established using specific

protocols like RSVP-TE or CR-LDP. In that case, specific parameters will be updated

first to LC-RTM, then the computed routes will be updated to G-RTM.

Migrating some processing tasks from the control card to line cards helps to reduce

potential bottlenecks experienced on the control card when the number of requests

233

increases following the increase of the number of line cards and the number of routes the

core router has to support. The LC-RTM is also able to react rapidly to the physical link

modification and exploit efficiently additional resources available on line cards of next

generation routers. In addition, the model we propose has the following advantages:

• Scalability: it balances the path computation load between the control card and

line cards. RTM functions are distributed as far as possible, allowing the control

card to be available for more complicated tasks, such as router management and

user interaction.

• High availability: since route information and link state databases have a back

up on line cards, we provide a high redundancy level for RTMs. Also, problems

arising on the control card will not slow down the processes running on the line

cards.

• Robustness: in our architecture, the path computation is performed on the

domain or sub-network instead of the whole router, which leads to a rapid

convergence in case of topology changes. Routing information and notification

can also arrive faster and more efficiently to the needed modules because they

can be provided directly by LC-RTMs. Communication between routing

protocols and RTMs is also more efficient and bandwidth of the switch fabric

can be saved.

Table 7-2 presents a qualitative comparison between the centralized and distributed

architecture for RTM.

234

Parameter

Hardware writing latency

Interface with routing

protocols

Path computing performance

User management

Memory consumption

(Control Card)

Memory consumption (Line

Card)

Link state notification

reception

Route advertisement speed

QoS/TE specification

Centralized

architecture

Poor

Good

Poor

Good

High

Low

Some delay

Some delay

Good

Distributed

architecture

Good

Good

Good

Good

Low

High

Fast

Fast

Good

Table 7-2: Qualitative Comparison between the Centralized and Proposed Architectures for RTM

7.7 Chapter Conclusions

In this chapter, we have presented the distributed architectures for the Routing Table

Manager (RTM), which is essentially the most important component of a router. The

RTM plays a decisive role for routing performance and connectivity of the network. The

distribution of RTM was firstly required to serve the CSPF computation requests of a

distributed RSVP-TE on line cards. Such distributed RTM architecture may also

considerably reduce the load of the control card since parts of the path computation can

be achieved on the line cards. We have proposed three distributed schemes to implement

the RTM in the next generation router platform, including the basic distribution, the

distribution of routing protocols on the line cards, and the distribution of RTMs on line

cards, which are suitable for upgrading the control card, medium scale routers and very

235

highly scalable routers respectively. The architectures we propose are able to exploit

additional computing and memory resources which are available in line cards and the

very high speed communication channel among line cards. The robustness, availability

and resiliency of the router can also be considerably improved.

We have also performed some evaluation in order to compare the performance achieved

by the distributed architectures to the centralized one where the number of CPU cycles,

the memory requirements and the number of messages exchanged are taken into account.

This chapter also described the implementation architecture of the LC-RTM on the line

cards and the use of such distributed architectures to compute CSPF path as RSVP-TE

module requires. We have provided the designs of interfaces of LC-RTMs with routing

protocols, both on control and line cards. The communication among LC-RTMs and

between LC-RTM and G-RTM is also discussed.

With distributed RTM architectures, the PhD thesis has covered the distribution of

principal components of the control plane of the routes: signaling protocols, routing

protocols, route management and MPLS. Particularly, we have provided the details of the

implementation of RTM and MPLS/LDP. The methodology to design distributed

software architectures has been presented, which can be applied for other protocol

modules, such as OSPF or BGP, that will be considered in our future research.

236

Conclusions

In this PhD thesis, we investigated the need for new architectures in order to provide

QoS for distributed applications regarding the evolution of applications and hardware

components. QoS architectures can be implemented on the application layer in order to

provide services to end users with expected quality levels. The underlying layer

supporting these QoS architectures consists of QoS-enabled devices. We therefore

conducted research on the QoS provisioning architectures on both layers: application

layer and underlying layer.

The first part of our two-fold research deals with the QoS provisioning at the

application level where one of the main issues is the diversity and heterogeneity of QoS

information on the various layers, software and hardware components. We have pointed

out that QoS management architectures have to take into account all QoS information in

order to make optimal QoS decisions. As the diversity and heterogeneity of service

components increase over time, the proposed QDD (Quality-Driven Delivery) framework

deals with the large amount of QoS information. In order to support QDD, an extensive

and flexible QoS information management system has been developed to provide

available QoS information adequately to needed QoS activities. The QoS information

management system is based on the information models specifically designed for each

service component. It allows users and providers to specify the QoS dimensions for any

component that contributes to service provisioning in a distributed system. Mapping rules

are built to represent relationships between user specifications and QoS dimensions of

237

service components or among QoS dimensions of service components. The QoS

management architecture we proposed in the context of QDD consists of a QoS

information base that contains available QoS information and mapping rules for a given

service, a QoS information manager that provides access to the QoS information base,

and a QoS decision engine that computes efficient QoS decisions based on information

from the QoS information manager. A user QoS requirement is achieved by one or many

service components through different stages. All of this is expressed by a set of mapping

rules. An efficient QoS decision can be made by walking through all available mapping

rules, taking into account the deployment cost of the involved service components.

The main benefit of the approach is to avoid the hard-coded QoS information

management that is found in the existing QoS management architectures. Mapping rules

are also built in a flexible way and represented by formulas or tables, allowing the

description of the QoS relationships of all service components. Since all QoS information

and mapping are considered, QoS decisions are then improved, resulting in higher quality

service provisioning and cost-effective distributed systems.

The second part of our PhD thesis is devoted to the QoS enabled devices, where we

investigate particularly the core routers, considered as the most critical part of distributed

systems. The main issue is to design routers with high scalability, resiliency and

robustness. To address these requirements, the proposed distributed architecture exploits

the new hardware features of the next generation routers through the distribution of

control functions on all router hardware components. It results in the distribution of the

specific functions of the router control plane, namely the routing, signaling and routing

238

table management functions on router control and line cards. The starting point was the

proposal of an overall generic distributed architecture for the control plane. We pushed

further the distribution and developed fully distributed architectures for MPLS/LDP and

RTM. We also outlined a distributed OSPF architecture. For each architecture, we

reviewed the current centralized architecture, analyzed its drawbacks, and then proposed

the fully distributed architecture taking advantage of the new hardware features, i.e., line

cards with additional memory and computing resources and the very high switching

capacity being petabits per second. For the MPLS/LDP, we are interested in improving

the resiliency of protocol, the task sharing among line cards, and the scalability of the

processing. For the RTM, we focus on the distributed computing of best routes, the

storage, and the scalability of routing domains. Performance evaluation was conducted in

order to compare the proposed architectures to the current ones. It showed that our

proposed architectures can reduce the resource consumption, in terms of CPU cycles and

memory, on the control card hence avoid potential congestions. Load balancing is also

achieved among line cards.

The main benefit of this approach is the ability to fully exploit the distributed hardware

architecture of the next generation routers The resiliency is significantly improved

because message processing is achieved at the line card level so that the failures of the

control card can be recovered transparently. The load on the control card is reduced, so

the scalability of the router increases.

239

Contributions of the Thesis

In the first part of the thesis, we have presented a new QoS information management

system based on information models. Steps to provide the QoS regarding the contribution

of all service components are identified within the QDD framework. We have proposed a

new methodology to specify the QoS of a distributed system based on the qualitative and

quantitative QoS information. A novel classification of information models is presented

where User Models and Actor Models are essential. Other QoS information models are

derived from these basic models and include specific QoS information for each service

component.

We have also established a methodology to determine the QoS mapping rules among

services components. In summary, the proposed methodology is to (i) install the agent on

specific components, (ii) collect and store the QoS information from agents, (iii) analyze

the QoS information, (iv) generate the mapping rules using data mining techniques.

We have demonstrated that efficient QoS decisions can be made only if all QoS

information and mapping rules of all service components are taken into account. We also

proposed a case study with a video delivery system in order to illustrate and validate the

proposed QoS information system. It leads to a video application that is able to provide

service with quality in a flexible way, taking into account the utilization cost of various

system components.

In the second part of the thesis, our contributions include a general distributed and

scalable framework for the control plane of next generation routers; a distributed

architecture for MPLS/LDP; and three distributed architectures for RTM. Based on our

proposal of a general distributed control plane architecture, we have defined mechanisms

240

allowing routing and signaling protocols to be processed in a distributed manner. A novel

approach of distributed processing based on the routing domain configuration has been

proposed. A distributed OSPF architecture has also been outlined.

The distributed architecture for MPLS/LDP fully complies with the RFC specifications.

In addition, the protocol processing is achieved totally in a distributed platform.

Processing mechanisms have been completely redefined in order to deal with the message

synchronization between line cards, synchronization between routing tables and MPLS

tables, distributed LSP storage, distributed label provision, distributed table access and

update, LSP establishment with multiple sources and data recovery in case of failures.

The result is not only a novel distributed MPLS/LDP implementation architecture that is

able to exploit the next generation router platform, but also involves a new approach to

design distributed signaling protocols. Both data and control planes are considered,

allowing significant improvement of the scalability and resiliency of routers.

The new proposed distributed architectures for RTM have been designed to do route

computation efficiently in very large scale routers, where best routes of each autonomous

system are computed independently on different locations of the router. Different

distributed schemes have been explored and compared. In particular, we discussed and

identified for each scheme the best network/traffic environment where it should be

deployed. We also provided the description for interfaces between the RTM and different

routing protocols, allowing the proposed distributed architectures to fit in the existing

software platforms. Comparative performance evaluations have been conducted for the

centralized and proposed distributed architectures where comparisons have been made in

terms of the number of CPU cycles, memory requirements and messages exchanged.

241

Lessons Learned

For the QoS provisioning at the application layer:

• Current distributed system components and user requirements, especially those

related to QoS, are evolving over time, thus QoS management architectures

should be built in an extensible manner. For example, in current QoS

management architectures, the QoS information management is defined in a

hard-coded manner so it is not able to dynamically update the evolution of the

system. Our research has been conducted to address this issue.

• A modeling approach can be used to deal with extensible systems such as

distributed multimedia systems. In this thesis, we have used a modeling

approach to better manage QoS information. Generic models help to give an

overview of the system and specific models provide details about system

components. In fact, it is difficult to build specific QoS information models for

all service components of an extended system. However, the more information

models we have, the better QoS decision can be made.

• It is hard to build a mapping rule among different QoS dimensions using

mathematical formulas, particularly for user-defined dimensions or new

dimensions. Mapping rules can be defined from statistical information using the

tabular tool.

• In cases where the service quality is degraded, the QoS manager should seek

alternative solutions to maintain the most important user requirements while

keeping the cost unchanged. Current service providers are more interested in the

242

fast or easy-to-implement solutions (e.g., increase the bandwidth) than cost-

effective solutions (e.g., change the codecs). Therefore, users are often asked to

upgrade their systems.

For the architecture of next generation routers:

• A software architecture should be able to fully exploit the capacity of the

hardware platform. This helps to increase the overall performance of the router.

Several router software architectures have been developed in general-purpose

environments. Therefore they do not take full advantage of the new advanced

features of router platforms.

• Due to the evolution of processor and memory manufacturing industries, the

main issues of the current routers are moving towards scalability and reliability

instead of performance. According to many studies in this field [Chao07],

current core routers will be replaced in few years by more powerful ones.

However, keeping them functional with zero-downtime is still a big challenge

for engineers. Due to additional processors and memory chipsets, routers are

provided with more cards, raising problems related to current software design

and management.

• Routers should be designed in a modular manner, so that failures can be

isolated. A good design has to make sure that failures at the control plane level

do not lead to the shutdown of the data plane. Additional backup cards should be

used in order to increase the resiliency.

243

• Task sharing should be used as much as possible to reduce congestion. The next

generation routers are expected to have thousands of line cards and to be

designed in a distributed manner. This is a good suggestion for task-sharing

based architectures. Since the volume of data to be processed is very large,

congestion can be experienced in different locations of a router. Thus centralized

processing architectures cannot be used.

• Router functions, such as routing, signaling, routing table management or data

forwarding, may be distributed in different ways. There are different possible

distributed architectures, leading to different scalable and resiliency levels. We

have to investigate the nature of each function in order to propose an appropriate

distributed architecture. Resource consumption, complexity of the architectures

and development costs need to be taken into account.

Future Work

For the QoS provisioning at the application layer:

• Developing the information models for a wider range of service components. In

this thesis, we demonstrated the usefulness of a QoS information management

approach for a video streaming application with a limited number of service

components, namely streaming servers, video provider and clients. A

commercial system may include more components running on different

platforms. In the future, we would like to investigate the problem on a peer-to-

peer video streaming system with hundred of nodes where each node can be

considered as a service component with various configurations.

244

• Investigating the algorithms to make optimal QoS decision, taking into account

a larger number of mapping rules and QoS dimensions. Since the QoS

provisioning for contemporary services should be achieved dynamically, the

QoS decision is expected to be made in the shortest possible time. We may

therefore consider techniques producing solutions using the dynamic

programming, approximation or distributed computing.

For the distributed and scalable software architecture of routers:

• Proposing distributed architectures for other protocols, such as OSPF or BGP.

This thesis proposed new distributed architectures for MPLS/LDP and RTM and

outlined one for OSPF. A complete distributed control plane for core routers

should also consider IS-IS, BGP and RSVP as essential protocols. We can also

apply the general distributed architecture for these protocols regarding their

specific functions. For OSPF, we should consider proxy selection mechanisms,

neighbor management, designated router and backup designated router elections,

physical link management and synchronization among LSDB (Link State

Database) of line cards within a domain. For BGP, we are interested in

balancing the load between active and backup control cards, and restoring

information of BGP sessions from the TCP stack of the router.

• Developing resource reservation mechanisms for MPLS. Actually, the LDP

architecture presented in this thesis does not deal with the resource reservation

issue. Bandwidth and other QoS parameters are allocated using RSVP-TE,

which is still centralized in most products in the market. One of the next

245

objectives of our research is to develop the distributed architectures for RSVP-

TE and CR-LDP {Constrained Routing LDP). One of the main challenges for

this work is the design of a local QoS module on each line card, which is able to

interact with network processor (NP) and traffic manager (TM) chipsets.

Sharing QoS information between ingress and egress line cards should also be

taken into account. Mapping different IP traffic to appropriate QoS levels is also

an issue. Additional mechanisms should be defined to allow MPLS to deploy

LDP and RSVP-TE protocols alternatively.

• Investigating algorithms to group the line cards into domains and to assign the

proxy or master line card in an optimal way, so that the load on the line cards

can be balanced. Indeed, if the size of a routing domain is too large, two or

more proxies can be deployed to share the computing task. On the other hand, a

proxy can serve several domains if their sizes are small. We consider also

developing distributed algorithms to compute the best routes of a domain in

parallel in all line cards belonging to that domain.

• Implementing some prototypes of distributed software for commercial routers of

the next generation. This process should be done with the help of industrial

equipment so we can observe the behaviors of software architectures in the

context of specific hardware platforms. Several challenges should be addressed

to implement the proposed architecture according to industrial development

standards. Our goal is to develop a set of distributed prototypes for OSPF, BGP

and MPLS modules, which are able to run on next generation router products.

246

The performance test in working environments with a large number of network

nodes and large traffic volume can also be considered.

Finally, we would be interested in exploring the combination of two research topics,

where QoS information models and mapping rules of the first research topic can be used

similarly in the second one in order to manage the tables and to map different traffic,

such as MPLS and IP.

247

Bibliography

[Abde99] Abdelzaher, T.F., Bhatti, N., "Web Content Adaptation to Improve Server

Overload Behavior", Computer Networks, Vol. 31, No. 1116, pp. 1563-

1577, May 1999.

[Abde03] Abdelzaher, T.F., Shin, K.G., Bhatti, N., "User-level QoS-adaptive

Resource Management in Server End-Systems," IEEE Transactions on

Computers, Vol. 52, Issue 5, pp. 678- 685, May 2003.

[Agar03] Agarwal, D., Gonzalez, J., Jin, G., Tierney, B., "An Infrastructure for

Passive Network Monitoring of Application Data Streams", PAM, April

2003.

[AndeOl] Andersson, L., Doolan, P., Feldman, N., Fredette, A., Thomas, B., "LDP

Specification," RFC3036, IETF - Network Working Group, January 2001.

[Aol07] AOL Video on demand, http://video.aol.com (Last access: 31/08/2007)

[Aurr98] Aurrecoechea, C , Campbell, A.T., Hauw, L., "A Survey of QoS

Architectures," Journal of Multimedia Systems, Vol. 6, No. 3, pp. 138-

151, May 1998.

[Avic06] Avici Systems Inc., "The Avici TSR®," 2006.

http://www.avici.com/products/tsr.shtml (Last access: 31/08/2007)

[AwduOl] Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V., Swallow, G.,

"RSVP-TE: Extensions to RSVP for LSP tunnels," RFC 3209, IETF -

Network Working Group, December 2001.

[ATIS01] Alliance for Telecommunications Industry Solutions (ATIS), "Objective

Video Quality Measurement using a Peak Signal-to-Noise Ratio (PSNR)

248

http://video.aol.com
http://www.avici.com/products/tsr.shtml

Full Reference Technique", ATIS Technical Report T1.TR.74 - 2001,

October 2001.

[AweyOl] Aweya, J., "IP Router Architectures: An Overview," International Journal

of Communication Systems, Vol. 14, Part 5, pp. 447-476, 2001.

[Bake97] Baker, F., Krawczyk, J., Sastry, A., "Integrated Services Management

Information Base Guaranteed Service Extensions using SMIv2," RFC

2214, IETF - Network Working Group, September 1997.

[Bu04] Bu, T., Gao, L., Towsley, D., "On Characterizing BGP Routing Table

Growth," Computer Networks, Vol. 45, Issue 1, pp. 45-54, 2004.

[Casa05] Casale, G., "Combining Queueing Networks and Web Usage Mining

Techniques for Web Performance Analysis," Proceeding of ACM

Symposium on Applied Computing, pp. 1699-1703, March 2005.

[Cbc07] CBC Video on demand, http://www.cbc.ca/cbcondemand/index2.html

(Last access: 31/08/2007).

[Chao02] Chao, H.J., "Next Generation Router," IEEE Communication Magazine,

Vol. 90, No. 9, pp. 1518-1558, September 2002.

[Chao07] Chao, H.J., Liu B., "High Performance Switches and Routers," Wiley-

Interscience, USA, 2007.

[Cisc05] Cisco Systems, "Cisco 12000 Series Internet Router Architecture,"

http://www.cisco.com (Last access: 31/08/2007)

[CormOl] Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein C , "Introduction to

Algorithms, Second Edition," The MIT Press, 2001.

249

http://www.cbc.ca/cbcondemand/index2.html
http://www.cisco.com

[DecaOO] Decasper, D., Dittia, Z., Parulkar, G., Plattner, B., "Router Plugins: A

Software Architecture for Next-Generation Routers," IEEE/ACM

Transactions on Networking, Vol. 8, Issue 1, pp. 2-15, February 2000.

[Deva03] Deval, M., Khosravi, H., Muralidhar, R., Ahmed, S., Bakshi, S., Yavatkar,

R., "Distributed Control Plane Architecture for Network Elements", Intel

Technology Journal, Vol. 7, Issue 4, pp. 51-62, November 2003.

[DMTF07] DMTF Inc, "CIM Schema: Version 2.15," April 2007.

[Dori07] Doria, A., Haas, R., Salim, J.H., Khosravi, H., Wang, W. M., "ForCES

Protocol Specification", IETF Draft, Work in Progress, IETF - Network

Working Group, July 2007.

[Dupl05] Duplaix, J., "Routing Software Architecture in the R1.0 PBR-1280

Router," Internal Document, HyperChip Inc., October 2005.

[Duza04] Duzan, G., Loyall, J., Schantz, R., Shapiro, R., Zinky, J., "Building

Adaptive Distributed Applications with Middleware and Aspects,"

Proceeding of The 3rd International Conference on Aspect-Oriented

Software Development, pp. 66-73, UK, 2004.

[Farr06] Farrel, A., Vasseur, J.-P., Ash, J., "A Path Computation Element (PCE)-

Based Architecture," RFC 4655, IETF - Network Working Group, August

2006.

[FostOl] Foster, I., Roy, A., Sander, V., "A Quality of Service Architecture that

Combines Resource Reservation and Application Adaptation," Proceeding

of the 8th International Workshop on Quality of Service - IWQOS,

pp.181-188, May 2001.

250

[Frol98] Frolund, S., Koisten, J. , "QML: A Language for Quality of Service

Specification," HP Technical Repport, 1998.

[Gerb03] Gerbe O., Kerherve B., Srinivasan U., "Model Operations for Quality-

Driven Multimedia Delivery," In the Proceeding of ICCS 2003,

International Conference on Conceptual Structures (ICCS2003), Germany,

July 2003.

[GuOl] Gu, X., Nahrstedt, K., Yuan, W., Wichadakul, D., Xu, D., "An XML-

based QoS Enabling Language for the Web," Journal of Visual Language

and Computing (Special Issue on Multimedia Languages for the Web),

Vol. 13, No. l,pp.61-95,2001.

[Gill05] Gill, C , Gossett, J.M., Corman, D., Loyall, J.P., Schantz, R.E., Atighetchi,

M., Schmidt, D.C., "Integrated Adaptive QoS Management in

Middleware: An Empirical Case Study," Journal of Real-time Systems,

Vol.29, No. 2-3, pp. 101-130, 2005.

[Gu05] Gu, X., Nahrstedt, K., "Distributed Multimedia Service Composition with

Statistical QoS Assurances," IEEE Transactions on Multimedia, Vol. 8,

Issue 1, pp. 141-151,2005.

[Hafi99] Hafid, A., Bochmann, G., "An Approach to QoS Management in

Distributed Multimedia Applications: Design and an Implementation,"

Multimedia Tools and Applications, Vol. 9, No. 2, 1999.

[Hala05] Halabi, S., "Internet Routing Architecture," Second Edition, Cisco Press,

2005

251

[Hand05] Handley, M., Kohler, E., Ghosh, A., Hodson, O., Radoslavov, P.,

"Designing Extensible IP Router Software," Proceedings of the 2nd

USENIX Symposium on Networked Systems Design and Implementation

(NSDI), 2005.

[Harr99] Harrington, D., Presuhn, R., Wijnen B., "An Architecture for Describing

SNMP Management Frameworks," RFC 2571, IETF - Network Working

Group, April 1999.

[Hide06] Hidell, M., "Decentralized Modular Router Architecture," Doctoral

Thesis, KTH - Royal Institue of Technology, TRITA-IT R 96:07, Sweden,

September 2006.

[Huar97] Huard J.F., Lazar A.A, "On QOS Mapping in Multimedia Networks,"

Proceeding of COMPSAC '97 - 21st International Computer Software and

Applications Conference, pp. 312-323, May 1997.

[Hype04] Hyperchip Inc., "PBR-1280 Release 1.0 Performance Characterization

System Engineering," Technical Report, 2004,

[ICS00] ICS Inc., "Enterprise Process Management Framework - A definition of

Service Level Management," White paper, Intelligent Communication

Software, 2000.

[ISO02] ISO, "Intermediate System to Intermediate System Routing Information

Exchange Protocol for use in Conjunction with the Protocol for Providing

the Connectionless-mode Network Service," ISO 8473, ISO/IEC

10589:2002, Second Edition.

252

[Jin04] Jin, J., Nahrstedt, K., "QoS Specification Languages for Distributed

Multimedia Applications: A Survey and Taxonomy," IEEE Multimedia

Magazine, Vol. 11, Issue 3, July 2004.

[Juni07] Juniper Networks Inc., "Juniper Networks Next Generation Network Core

Solution for Service Providers," Solution Brochure, June 2007.

[Kapl02] Kaplan, H. "Non-Stop Routing Technology," White Paper, Avici Systems

Inc., 2002.

[Kerh06] Kerherve, B., Nguyen, K.K, Gerbe, O., Jaumard, B., "A Framework for

Quality Driven Delivery in Distributed Multimedia Systems", Proceeding

of ICIW'06, France, pp. 195-202, February 2006.

[Koli02] Koliver, C , Nahrstedt, K., Farines, J.M., Fraga, J.S., Sandri, S.A.,

"Specification, Mapping and Control for QoS Adaptation," Journal of

Real-Time Systems, Vol. 23, No 1-2, pp. 143-174 , July 2002.

[Lee99] Lee, C , Lehoczky, J., Siewiorek, D., Rajkumar, R., Hansen, J., "A

Scalable Solution to the Multi-Resource QoS Problem," Proceeding of the

20th IEEE Real-Time Systems Symposium (RTSS '99), pp. 315-326,

Phoenix, AZ, December 1999.

[Lima04] Lima, S., Carvalho, P., Freitas, V., "Distributed Admission Control for

QoS and SLS Management", Journal of Network and Systems

Management - Special Issue on Distributed Management, Vol. 12, No. 3,

pp. 397-426, September 2004.

[Liu04] Liu, Y., Pisharath, J., Liao, W., Memiki, G., Choudhary, A., Dubey, P.,

"Performance Evaluation and Characterization of Scalable Data Mining

253

Algorithms," Proceeding of 16th IASTED International Conference on

Parallel and Distributed Computing and Systems, MIT Cambridge, MA,

November 2004.

[Medh07] Medhi, D., Ramasamy, K., "Network Routing - Algorithms, Protocols,

and Architectures," Morgan Kaufmann, Elsevier Edition, 2007.

[Mira02] Miras, D., "Network QoS Needs of Advanced Internet Applications",

Working Document of Internet 2 - QoS Working Group, November 2002.

[Moy98] Moy, J., "OSPF Version 2," RFC 2328, IETF - Network Working Group,

April 1998.

[Nahr99] Nahrstedt, K., "Quality of Service Guarantees in Networked Multimedia

Systems," Handbook on Multimedia Computing, Borko Fuhrt Edition,

CRC Press, 1999.

[NahrOO] Nahrstedt, K., Wichadakul, D., Xu, D., "Distributed QoS Compilation and

Runtime Instantiation," IEEE/IFIP International Workshop on Quality of

Service, pp. 198-207, June 2000.

[NahrOl] Nahrstedt, K., Xu, D., Wichadakul, D., Li, B. "QoS-Aware Middleware

for Ubiquitous and Heterogeneous Environments," IEEE Communication

Magazine, Vol. 39, Issue 11, pp. 140-148, November 2001.

[Neri07] Neri, S., "Distributed and Scalable RSVP-TE Architecture for Next

Generation Routers," M.Sc. Thesis, Department of Electrical and

Computer Engineering, Concordia University, September 2007.

254

[Nguy03] Nguyen, K.K., Kerherve, B., Jaumard, B., "QoS Information Modelling

and Transformation", Poster presented at MITACS'03, Montreal,

February 2003.

[Nguy04] Nguyen, K.K., Kerherve, B., Jaumard, B., "Modelisation et

Transformation d'lnformations de Qualite de Service : line Revue de la

Litterature", In Proceedings of RTVF'04, Vietnam, February 2004.

[Nguy05] Nguyen, K.K., Kerherve, B., Jaumard, B., "Quality Driven Delivery for

Video Streaming Application: Implementation and Evaluation", In

Proceedings of RIVF'05, Vietnam, February 2005.

[Nguy06] Nguyen, K.K., Kerherve, B., Jaumard, B., "QoS Mapping Rule Builder: A

Model", In Proceedings of CCECE'06, Ottawa, Canada, May 2006.

[Nguy06b] Nguyen, K.K., "Incremental Architecture Description for LDP", Internal

Document, HyperChip Inc., December 2006.

[Nguy07a] Nguyen, K.K., Mahkoum, H., Jaumard, B., Assi, C , Lanoue, M.,

"Towards a Distributed Control Plane Architecture for Next Generation

Routers," In Proceedings of ECUMN'2007, pp. 173-182, France, February

2007.

[Nguy07b] Nguyen, K.K., Jaumard, B., "A Distributed Model for Next Generation

Router Software," In Proceedings of HPSR'07, pp. 1-6, Brooklyn, NY,

May 2007.

[Nguy07c] Nguyen, K.K., Neri, S., Jaumard, B., Agarwal, A., "Distributed and

Scalable Architecture for Routing Table Maintenance," In Proceedings of

DFMA'07, France, July 2007.

255

[Nguy07d] Nguyen, K.K., Jaumard, B., Agarwal, A., "A MPLS/LDP Distributed

Architecture for Next Generation Routers," Submitted for publication to

Journal of Computer Networks, December 2007.

[Nguy07e] Nguyen, K.K., Jaumard, B., Agarwal, A., "Three Distributed Schemes for

Route Maintenance in Next Generation Routers," Submitted for

publication to IEEE Communication Magazine, December 2007.

[Nguy07f] Nguyen, K.K., Jaumard, B., Agarwal, A., "A Distributed and Scalable

Routing Table Manager for Next Generation IP Router," To appear in

IEEE Network, Special Issue: Internet Scalability: Properties and

Evolution, Mars 2008.

[Phan03] Phanse, K.S., DaSilva, L.A., "Addressing the Requirements of QoS

Management for Wireless Ad Hoc Networks," Journal of Computer

Communications, Vol. 26, Issue 12, pp. 1263-1273, July 2003.

[Pyun02] Pyun, J.-Y., Shim, J.-J., Ko, S.-J., Park, S.-H., "Packet loss resilience for

video stream over the Internet," IEEE Transactions on Consumer

Electronics, Vol. 48, Issue 3, pp. 556-563, August 2002.

[Rekh95] Rekhter, Y., Li, T., "A Border Gateway Protocol 4 (BGP-4)," RFC1771,

IETF - Network Working Group, March 1995.

[RekhOl] Rekhter, Y., Rosen, E., "Carrying Label Information in BGP-4,"

RFC3107, IETF - Network Working Group, May 2001.

[Robu03] Robustelli, L., Loreto, S., Fresa, A., Longo, M., Spinelli, D., "Prototype of

an Adaptive Voice Coder for IP Telephony," Proceeding of International

Conference on Software, Telecommunications and Computer Networks -

256

SoftCom 2003, pp.859-863, Split Dubrovnik (Croatia), Ancona, Venice

(Italy), October 2003.

[RoseOl] Rosen, E., Viswanathan, A., Callon, R., "Multiprotocol Label Switching

Architecture," RFC 3031, IETF - Network Working Group, January 2001.

[Scha03] Schantz, R.E., Loyall, J.P., Rodrigues, C , Schmidt, D.C., Krishnamurthy,

Y., Pyarali, I., "Flexible and Adaptive QoS Control for Distributed Real­

time and Embedded Middleware," ACM/IFIP/USENIX International

Middleware Conference on Middleware, Brazil, June 2003.

[Schm99] Schmidt, D., Levine, D., Cleeland, C , "Architectures and Patterns for

High- Performance, Real-time CORBA Object Request Brokers,"

Advances in Computers, Marvin Zelkowitz, Ed., Academic Press, Vol. 48,

pp. 1-118,1999.

[Schm02] Schmidt, D., Gokhale, A., Gill, C , "Patterns and Performance of Real­

time and Data Parallel CORBA for High-Performance Embedded

Computing Applications," Proceeding of the 6th Annual Workshop on

High Performance Embedded Computing, USA, September 2002.

[Serh05] Serhani, M.A, Dssouli, R, Hafid, A, Sahraoui, H, "A QoS broker based

architecture for efficient web services selection," Proceeding of IEEE

International Conference on Web Services (ICWS'05), pp.113-120, July

2005.

[Shai06] Shaikh, A., Dube, R., Varma, A., "Avoiding Instability During Graceful

Shutdown of Multiple OSPF Routers," IEEE/ACM Transactions on

Networking, Vol. 14, Issue 3, June 2006.

257

[ShahOl] Shaha, N., Dessai, A., Parashar, M., "Multimedia Content Adaptation for

QoS Management over Heterogeneous Networks," In Proceeding of

International Conference on Internet Computing (IC 2001), USA, pp. 642-

648, June 2001.

[Sun07] Sun MicoSystems, Inc. "Java Media Framework API (JMF),"

http:II] ava.sun.com/products/j ava-media/jmf/index.j sp (Last access:

31/08/2007)

[Tse04] Tse, H.E.S., "Switch Fabric Architecture Analysis for a Scalable Bi-

Directionally Reconfigurable IP Router," Journal of Systems Architecture,

Vol. 50, Issue 1, pp. 35-60, January 2004.

[Vid07] Videotron:Television Video-on-demand, (Last access: 31/08/2007)

http://www.videotron.com/services/en/television/vod-video-sur-demande-

vsd.jsp

[WangOO] Wang, P.Y., Yemini, Y., Florissi, D., Florissi, P., "QoSME: Toward QoS

Management and Guarantees," Proceeding of WCC-ICCT 2000

International Conference on Communication Technology, pp. 868-875,

China, August 2000.

[Wang04] Wang, N., Gill, C , Schmidt, D., Gokhale, A., Natarajan, B., Loyall, J.,

Schantz, R., Rodrigues, C , "QoS-enabled Middleware," Chapter in

Middleware for Communications, Wiley, July 2004.

[WuOl] Wu, D., Hou, T., Zhu, W., Zhang, Y.Q., Peha, J.M., "Streaming Video

over the Internet: Approaches and Directions," IEEE Transaction on

258

http://www.videotron.com/services/en/television/vod-video-sur-demande-

Circuits and Systems for Video Technology, Vol. 11, Issue 3, pp. 282-300,

February 2001.

[Yang04] Yang, L., Dantu, R., Anderson T., Gopal R., "Forwarding and Control

Element Separation (ForCES) Framework," RFC 3706, IETF - Network

Working Group, April 2004.

[Ye03] Ye, H., Kerherve, B., Bochmann, G., Oria, V., "Pushing Quality of

Service Information and Requirements into Global Query Optimization,"

Proceeding of International Database Engineering and Applications

Symposium (IDEAS), pp. 170-179, Hong Kong, July 2003.

[Yuan06] Yuan, W, Nahrstedt, K, Adve, S., Jones, D., Kravets, R., "GRACE: Cross-

Layer Adaptation for Multimedia Quality and Battery Energy," IEEE

Transactions on Mobile Computing, Vol. 5, Issue 7, pp. 79-815, 2006.

[Zhan02] Zhang L., Deering, S., Estrin, D., Shenker, S., Zappala, D., "RSVP: A

New Resource Reservation Protocol," IEEE Communication Magazine,

Vol. 40, Issue 5, pp. 116-127, May 2002.

[Zini02] Zini, A., "Cisco IP Routing," pp. 80-111, Addition-Wesley, 2002.

[Zink97] Zinky, J., Bakken, D., Schantz, R., "Architecture Support for Quality of

Service for CORBA Objects," Journal of Theory and Practice of Object

Systems, Vol. 3, No.l, pp. 1-20, January 1997.

259

Pending Patents

1. Nguyen, K.K., Jaumard, B., Lanoue, M., "Distributed Architecture for

MPLS/LDP", Submitted in Canada, 2007.

2. Nguyen, K.K., Jaumard, B., Lanoue, ML, "Distributed RTM Architecture on the

Control Card", Submitted in Canada, 2007.

3. Nguyen, K.K., Jaumard, B., Agarwal, A., "Distributed Best Route Computation

and Management Architecture on Line Cards", Submitted in Canada, 2007.

4. Nguyen, K.K., Jaumard, B., Agarwal, A., "Distributed Architecture of RTM on

Line Cards", Submitted in Canada, 2007.

5. Nguyen, K.K., Jaumard, B., Agarwal, A., Neri, S., Lanoue, M., "Distributed

Architecture for RSVPTE", Submitted in Canada, 2007.

260

