Supporting UCM Requirements Evolution by Means of Formal Concept Analysis

Maryam Shiri

A Thesis
in
The Department
of
Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Applied Science (Software Engineering) at
Concordia University
Montreal, Quebec, Canada

February 2008

© Maryam Shiri, 2008

A

Library and Bibliotheque et

Archives Canada Archives Canada

Published Heritage Direction du

Branch Patrimoine de I'édition

395 Wellington Street 395, rue Wellington

Ottawa ON K1A ON4 Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 978-0-494-40934-3
Qur file Notre référence
ISBN: 978-0-494-40934-3

NOTICE: AVIS:

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by

telecommunication or on the Internet,

loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur a accordé une licence non exclusive
permettant a la Bibliothéque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canad;

Conformément a la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thése.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

Supporting UCM Requirements Evolution by Means of Formal Concept
Analysis
Maryam Shiri
Software evolution refers to the process of adapting software systems to modification
request caused by requirements and technology changes that occur after the initial system
delivery. Prior to implementing a requirements change, decision-makers must determine
if a modification request is feasible and the cost associated with it. Traditional

modification analysis approaches have focused mainly on the analysis of source code to

determine the potential impact of a change.

In this research, we present a novel approach to support modification analysis early in the
software evolution lifecycle thus allowing management, who are not necessarily familiar
with the detailed system implementation, to determine the impact associated with a
modification request. In our research we develop several analysis techniques to support
the system evolution at the requirements level, namely impact analysis at the
requirements level, prediction of regression testing effort, feature interaction analysis
including detecting potential bad smells of the requirements, in order to provide support
for improving the comprehensibility and maintainability of requirements. In our
approach, we combine Use Case Maps, as a notation to model requirements, with Formal
Concept Analysis in order to explore the applicability of Formal Concept Analysis during

modification analysis at the requirements level. We implemented a proof of concept tool

iit

and several case studies are presented to demonstrate the applicability of our

methodology.

iv

Acknowledgements

I am most grateful to my supervisor, Dr. Rilling, for his encouragement, support, and
patience throughout this research. Without his help, advice and positive attitude, my

studies in this area would not have been possible.

I would also like to thank, my family for their great love. Their support was a major

factor in the success of my work.

I would also like to extend my appreciation to Jameleddine Hassine for his helpful

comments and suggestions.

Dedication

To my parents, for their unconditional love and who are the inspiration of my life.

Vi

Table of Contents

T A0 013 (PO ix
List Of TADIES ...covviviiiiiiiiiiini Xi
L. INtrOAUCHION . c..eeiiieiiec ettt ettt ettt eesen e st e sre e senesseneesanesobaesebesssnesens 1
1.1 0703113 9101015 0] 1 J OO PP TR PPN 2
1.2 PUBLICAtONS. ...ttt et s 4

2. BacKkground ...ttt sre s san s 5
2.1 UCM ittt bbb s 6
2.1.1 Basic UCM NOtation.......ccoueriereerinireieneeniiseinienesosienessonessesosesossesseenees 8
2.1.2 UCM Example — A Simple Telephony System........c.ccoecvviivivvniniiniinnanns 10
2.13 UCM TOOIS ..ottt snens 12
214 UCM FormaliZationcocceiiiniiiiniiirineniiinresestestnessseesnessesseesnesessnens 14

2.2 FCA i e 17
2.3 Analysis TEChDIQUEScccvvviriiiniiiiiiiiri e 22
2.3.1 IMpPact ANALYSIS .o..eviieierieiiiierierirrere e 22
2.3.2 Regression Testing Methodologies. ..., 25
233 Feature INteractionc.ccceveeeiiineiinieneeriece e see e ere e sin e s 28
234 Bad SIMELIS ..couverireeieiieieie e s be s 31

3. A UCM Requirements Evolvability Frameworkcoccovcceeriiniiniiniinnnenncnennn, 45
3.1 MOUIVALION. ettt et 46
3.2 Research Hypothesis and Research Goalsccceccevnieiieriiinnncienniinencicnecne 47
3.2.1 Research Hypothesis ..o 47
322 SUD-ZOAIS.....cccviiiiiiiic e e sneeene 52

3.3 Requirement Modification Analysis Methodologyc.ccocvirircinninininicniininens 53
33.1 Generation of UCM System Level Scenarios (traces).......coccevveverenrernne 54
332 UCM Trace Analysis c..ccceiveerieniiiiiniieniiniecnesiesecniin e seeesiessreseesieens 56
333 Combining UCM with FCA.........c.ccoiiiniiiiiiniiiiiiicncnn 59
334 UCM Change Impact Analysiscooceeviiiiienneiinieiiiniieiecccciecceee 64
335 UCM Regression Testing.....cocvviivniiiiiiiiiiiiiiiinneiinnienen, 70
3.3.6 UCM Feature INteractioncooeeverieeieiienienenirrenieeresniessnesnessessseesseenes 72
3.3.7 UCM Bad smell detection..........o.cueivvieeiierrieinneeniinniieenrcenreeseeesrees e 75

3.4 SUIMMATY .ottt ettt st be e sea e st e s b e sat e beesbesaeessnesanenaesnsnen 91

4. UREAF _ANALYZETccociiiiiiiiiiiieienicniinsien ettt sre st ssba st sbes st saesebesne 92
4.1 TOOl ATChITECIULE ...ttt s s 92

5. Application EXamples........ccocevviiiiiiiiiiiniiniiiieererenie st 96
5.1 Change Impact ANALYSIS «.cveievervreriineereniineieienteneeee et eete et seessesaeessseenis 96
5.2 Selective Prediction Regression Testing........ccecvevirrreiirieniiniennieninnnenieesnnennns 101
5.3 Feature INteraCtioncocoviveiiiiinenininiiiiciec s se e 103
54 Bad Smell DEtectionccceeiririiruenieniniieieenieneneeniesrenessresiessesneeseessessseneenee 111
5.4.1 Large Map Bad Smell ..., 112
54.2 Bloated Mapsccoeeviiiiiiniiiiieniiee e e e 114
543 ShOtGUN SUTGETY....ciiiiiiiiiiiiiiiiiit e 117
544 AGEIessiVe SCENATTO.......uiiiiiiiiiiiiiiciii et 118
54.5 Lazy Plug-in/CompoOnentcoceeeveeneeenieeniieeceeeeeeesieeesnieesseeeseeesvees 121

5.5 Related Work and Discussion of the Results and Limitations..........cc.cccec..... 122

6. Conclusion and Future Workc.cccooeriiiiniiniieiiiecietcne et 129

vii

7.

References

...

viii

List of Figures

Figure 1-1: UCM Evolution Frameworkccoccooeriiniiiriciniiieciciccneeeccnee 3
Figure 2-1: A Simple Telephony System (UCM root map) [81].....ccccocerviiiviininininiinnns 7
Figure 2-2: Structuring Scenarios [52]ccccooreieerieinieriiieccerrinee e 9
Figure 2-3: Stubs and PIug-ins [52]cccoviiiiiiiiiiinieeeeeececee e 10
Figure 2-4: Plug-ins for Simple Telephony Features [81].......ccccoivviiiiiiiiiiniiniiiiiinnn. 11
Figure 2-5: UCMNAV GUIL.....c.ooiiiiiiiiieeeeee et 13
Figure 2-6: JUCMNAV GUIL.....ccooiiiiiiiiiiieieiine it erires e s ciere st resseneeessseseesaeseneaeeenes 14
Figure 2-7: UCM_ASML OVEIVIEW [S1] ..ooiiiiiiiiiiiiiiieieieee et eeeene 15
Figure 2-8: ASM-UCM Simulation Engine Architecture [51]........ccccooeviviiiiiiiniiinnnens 16
Figure 2-9: UCM Hyper_ Graph [S1]..ccccooiioiiieerececrcecrecsee e 17
Figure 2-10: ConteXt Table [T1]coociiiiiiiiiieieeeeecee e 18
Figure 2-11: Resulting Concept LattiCe [71] ...ccoovvvvivviiiiiniiniiiiiniiiiiiciicnncicces 20
Figure 2-12: Generic Impact Analysis Process [11]........cocconviiiiiiiiniiiicn 23
Figure 2-13: A Meta —Model of a Traceability System [55]ccoovvvieriiiiieeiieeieieeeeeees 24
Figure 2-14: A Simple Schema for a Dependency Analysis [48]......ccocovvveeriiiiireierecnnnne. 24
Figure 2-15: Illustration of a Telephony Feature Interaction..........cccoeeevervieeeceeicnvennnennn 29
Figure 2-16: Example of a Class with too Many Functionalitiesccccceevuvivvvrennennns 35
Figure 2-17: Example of Extract Class Solution [39]........ccceeoiiieiiiiniiieiiieiiieeeiieennne 36
Figure 2-18:Example of a Class with Temporary Fieldscc.cccooovinoiiniinnnncnnene. 37
Figure 2-19: Example of a Code Affecting Several Classes.......ccoovueeevvveeeevverenvereennnnns 38
Figure 2-20: Example of Refactoring by Creating a New Class and Move Method
TECHIIQUE ... vetieeree ettt e etbe e ettt e st e s stte e e sre e e s sbtaasansbaesasnneesstsaenannsessssaneansen 39
Figure 2-21: A Classes With limited Functionaliti€s..........cccceceerieirciienniiinieeniieeiieeeieens 40
Figure 2-22: Example of Inline Refactoring for a Class with a Few Functionalities [39] 41
Figure 2-23: Example of an Unnecessary Delegationc.c.ccevveierniinincicnniencennienneenn 42
Figure 2-24: Example of Middle Man Bad Smell and Remove Middle Man Refactoring
11 2 [T O OO OO PRSP U PSP PPTUPPURUPPPIRPRUPPRINt 42
Figure 2-25: Example of a Class Using Only Features of Other Classes.............c..ccun..... 44
Figure 2-26: Example of Move Method Refactoring Feature Envy Bad Smell................ 44
Figure 3-1: Requirement Modification Analysis Methodology..........ccccevvueinirienvrennnenne. 54
Figure 3-2: The Process of Generating Concept Lattice from UCM Traces 61
Figure 3-3: An Example of @ UCM TTACEcccooieririieriieienieeie ettt 62
Figure 3-4: A Sample Concept Lattice in Graphviz dot Format............ccccecceivveeccacnnnnne 63
Figure 3-5: A Screenshot of Graphviz Programcccccciiiiiniiiiiinnieceeeeeeceeene 64
Figure 3-6: A UCM Root Map EXamPIEcccooveieiieriniiiiiiiieeeiiecciee e esiaeeesiee e 66
Figure 3-7: SImple FCA CONEXL.....ccciiiiiiiiiiiiiiieeiiieeneeitint st sre st eseeesieesveseeene 67
Figure 3-8: Concept Lattice Representationcccvevcueireeeriieeiiensnieeeiieeseeesiveesvessneenes 68
Figure 3-9: Concept Lattice Indicating Direct and Indirect Impactsccc.ccceeveeiciinnnnes 70
Figure 3-10: Concept Lattice Representing Selected Regression Testsccccecveeennnne. 71
Figure 3-11: Feature Interaction Methodology Process..........ccooccveirniiiievrieeiiiressiieeenee 74
Figure 3-12: Example of a complex UCM with Large Map bad smellcccc.u....... 77
Figure 3-13: Example of a Complex UCM with Bloated Map Bad Smell...................... 79
Figure 3-14: Example of a Complex UCM with Shotgun Surgery Bad Smell................ 81
Figure 3-15: Example of a Complex UCM with Aggressive Scenario Bad Smell.......... 83

X

Figure 3-16: UCM Traces of Large Map Graph..........ccccoeciviiiiiiininiice 85
Figure 3-17: Concept Lattice Corresponding to Large Map Bad Smell........................... 85
Figure 3-18: Bloated Map Bad Smell UCM TTacesccccueevieirreenrensieenieeneeceieennens 86
Figure 3-19: Concept Lattice Corresponding to Bloated Map Bad Smell........................ 87
Figure 3-20: Shotgun Surgery Bad Smell UCM Tracescccoocveeveeniieneeencencieeeeeen 88
Figure 3-21: Concept Lattice Corresponding to Shotgun Surgery Bad Smell.................. 88
Figure 3-22: Aggressive Scenario Bad Smell UCM Tracesccocvvvviviiniiiiinnninninnnne 89
Figure 3-23: Concept Lattice Corresponding to Aggressive Scenario Bad Smell............ 89
Figure 3-24: Concept Lattice Corresponding to Lazy Plug-in/Component Bad Smell.... 90
Figure 4-1: UREAF_ System ATCRItECTUIE.......c.coivirieriiiiriiiieiccicnie et 92
Figure 4-2: UREAF_Tool Component DIiagramcccceevvveernereeriieeiniieensieeeeeeeseeveenas 93
Figure 4-3: A Sample Screenshot of Our Tool showing CIA and RTS Analysis............. 94
Figure 5-1: Examples of Feature Dependency LattiCeccccovveeevveriieniecneennieecneenne, 98
Figure 5-2: CIA_Domain Element Execution Dependency Latticeccccoceveverenenne. 100
Figure 5-3: RTS_Domain Element Execution Dependency Lattice..........cccoeeveerveennens 101
Figure 5-4: UCM Call Model (oot map) [49].....ccoviriiiiiiieieeieeeeerieerre e 103
Figure 5-5: Call Model System FCA LattiCe.......cccocverereeriieniieeieerreeeieeeiesvaesneesneenns 107
Figure 5-6: FCA lattice of Annotated PIUg-inS.......c.ccoovviviiiiiieiiieiiecceecee e 108
Figure 5-7: Concept Lattice Representing Single Feature Scenarioscccoceeevveennen. 109
Figure 5-8: Feature Interaction Concept LattiCe........cocevevereerirerieeceeiiere e ceesneenee 110
Figure 5-9: Elevator system UCM [117] ..ccocoiiiiiiiiiiiiiniiniiineereeesee e eesr e evae e 113
Figure 5-10: Concept Lattice for Large Map Bad Smell...........c.cccccoceriiiivinininnnnnnn. 114
Figure 5-11: Pizzeria UCM [117] ..o e 116
Figure 5-12: Concept Lattice for Bloated Map Bad Smellcccooveeveveevcrieeiunannnn, 117
Figure 5-13: Concept lattice representing Shotgun Surgery Bad Smell......................... 118
Figure 5-14: An Online Store UCM [120].....cccceiiiiiiiiiiiieiieeieciee e esine e 120
Figure 5-15: Concept Lattice Corresponding to Aggressive Scenario Bad Smell.......... 121
Figure 5-16: Lazy Plug-in €Xamplecccoeiiiiiiiiiiiiiiiiec et esre et 122

Table 2-1:
Table 3-1:
Table 5-1:
Table 5-2:
Table 5-3:
Table 5-4:
Table 5-5:
Table 5-6:

List of Tables

Table of Calculated Concepts Corresponding Figure 2-10.........ccccoeeeeenenne 19
The Mapping of Execution Dependencies to FCA Concepts.........ccccceeueenenee. 60
Telephony System Scenario Definitions [52]ccccocveeiiviiiiniiininncccnnncn. 97
Feature Dependency Context Tablecoceiviivniiniinnniiiiiiniiinineice, 98
Feature Interaction AnalysiS.......cccoceeeierenneenieeniecnre e 111
Elevator System Scenario Definitions.ccoccceeviiiiiiciiinniicce, 112
Pizza System Scenario Definitionccccoooeeveinieiniincnennccene e 115
Online Store Scenario Definitionoccoeovviiiieieniiiciiiiinceenec e 119

X1

1. Introduction

Requirement specifications, regardless of how they are articulated, represent a way to
transform vague ideas and goals into concrete and comprehendible documents for the
stakeholders and engineers during the process of requirement engineering, and later in the
maintenance process. Yet it is impossible to always construct requirement specifications
right the first time without the necessity for change. These imprecise requirements often
play a major and costly role in project failures [1]. A requirements change is typically
referred to as either the modification or deletion of an existing requirement, or the
addition of a new requirement. Even though requirement changes are not the sole reason
for software evolution, they are responsible for 80% of all necessary software
maintenance activities [65]. In [21], Brooks states, “the hardest single part of building a
software system is deciding precisely what to build. No other part of the conceptual work
is as difficult as establishing the detailed technical requirements. No other part of the
work so cripples the resulting system if done wrong. No other part is as difficult to rectify
later.” This emphasizes the importance of analyzing requirements, their overlaps and
conflicts, and managing their modifications [110].

While developing software systems, it is rare that an initial system design will correspond
completely with the final design or implementation of a system [70]. Ever changing
customer needs, such as changing or adding new features, lead to requirement
modifications (perfective maintenance) [17], while repairing faults (corrective
maintenance) and adapting to new environment changes [87] (adaptive maintenance) are

other possible reasons for evolution in requirements [57].

The efficient management and execution of these changes are critical to software quality
and the evolution of software systems [17]. Maintenance processes (e.g., [57]) have been
established to guide both management and maintainers during typical requirement

maintenance and evolution tasks.

Common to these process models is that they require some type of modification analysis
(MA) prior to committing to a change. The initial MA is typically performed at a higher
non source code-based abstraction level (e.g. requirements or design level). During a
MA, management, who may not necessarily be familiar with the detailed implementation
of a system, have to determine the feasibility, impact, and cost associated with such a

change request.

1.1 Contributions

In this research, we propose a novel framework for supporting an approach which we
refer to as UCM Requirements Evolution Analysis Framework (UREAF). The goal of
this framework is to identify potential change impact and re-testing efforts at the
requirements level, without the need for implementation-specific details. Our UREAF
approach also supports the identification of possible feature interactions within existing
system requirements and allows for the detection of potential bad smells in the
requirements, to improve future evolvability of these requirements. We illustrate our new
approach using Use Case Maps (UCM) [117], an existing requirement modeling
technique that is being translated into a formal semantics representation [50] to make the

requirements model executable. Traces are created from this model by executing UCM

[117] scenarios that are then collected and further analyzed using Formal Concept

Analysis (FCA) [41].

Bad Smell_Analysis

Figure 1-1: UCM Evolution Framework

Within the software engineering community, FCA has various applications in program
comprehension and maintenance applications. However, to the best of our knowledge
there exists no previous work utilizing FCA for evolution analysis at the requirements

level.

We introduce four typical evolution analysis tasks (Figure 1-1) supported by our
implemented UREAF framework, which we will be revisited throughout the thesis to
illustrate the applicability of the presented approach. The four analysis task examples are:
1. Determine the impact of a modification request on traces

2. Estimate the test cases that have to be re-tested as part of a modification request

“w

Identify Use case scenarios which contain feature interactions

N

. Suggest some of the potential bad smells within the UCM system

The major contributions of this thesis can be summarized as follows:

(1) explored the use of Formal Concept Analysis in combination with formalized UCM
traces to support evolution analysis;

(2) introduced different analysis techniques, including change impact, regression testing,
feature interaction and bad smells detection at the requirement specification level;

(3) implemented a proof of concept tool, UREAF_tool, which implements the introduced
methodologies and automates the analysis process. We have shown that this tool can be
used to extract dependency and perform different types of evolution analysis at the UCM

level.

1.2 Publications

Research results presented in this thesis have been published in proceedings of three

recognized international conferences and workshops including:

¢ Proceeding of the Ninth international Workshop on Principles of Software Evolution
in Conjunction with the 6th ESEC/FSE Joint Meeting (IWPSE 2007) where we
presented an FCA-based approach for determining change impact analysis and
regressing testing at the UCM level [106].

¢ In Proceedings of the Twenty-Second IEEE/ACM international Conference on
Automated Software Engineering (ASE’07) where we proposed the possibility of
detecting feature interaction analysis by means of FCA [107] in terms of a short

paper.

e In proceeding of the Third International IEEE Workshop on Software Evolvability
where we introduced an evolution analysis framework at the requirement

specification level using FCA [105].

Parts of this research are a joint effort with Jameleddine Hassine, a PhD student at
Concordia University. His contribution mainly focused on providing the formal
semantics and verification of Use Case Maps by means of Abstract State Machines
Languages (AsmL) in order to generate dynamic UCM traces which are used as inputs to

the research presented in this thesis.

The remainder of the thesis is organized as follows: Section 2 introduces Use Case Maps,
Formal Concept Analysis, and some background relevant to change impact analysis,
regression testing, and feature interaction. Section 3 introduces our modification change
impact analysis and selective regression testing approach based on UCM and FCA. An
initial case study is demonstrated in Section 4, followed by related work and discussions

in Section 5. Section 6 presents conclusions and future work.

2. Background

In an attempt to make this thesis self-contained, we review some of the relevant

background including FCA, Use Case Maps, feature interaction, and impact analysis.

21 UCM

Use Case Maps (UCM) [117] are a modeling technique, originally introduced by Buhr
[23], applied to capture functional requirements in terms of causal scenarios. UCMs can
represent behavioral aspects at a higher level of abstraction than, for example, UML
diagrams. UCM can visualize an entire system to provide a better understanding of the
evolving behavior of complex and dynamic systems [117] at the requirements and
specification level. The Use Case Maps notation [58] is a high-level scenario-based
modeling technique used to specify functional requirements and high-level designs for
various reactive and distributed systems. Furthermore, UCMs can provide stakeholders
with guidance and reasoning about system-wide functionalities and behavior. UCMs
were originally introduced to model the behavior of telecommunication systems. In
recent years, UCMs have also been applied in other application domains, such as web

services, airline reservations, object-oriented frameworks and many more [4, 120, 121].

A UCM model (Figure 2-1) depicts scenarios as causal flows of responsibilities (e.g.
operation, action, task, function, etc.) that can be superimposed on the underlying
component structures. Components are generic and can represent software entities
(objects, processes, databases, servers, etc.) as well as non-software entities (e.g. actors or
hardware). These relationships are said to be causal because they involve concurrency,
partial ordering of activities, and they link causes (e.g., preconditions and triggering

events) to effects (e.g. post-conditions and resulting events).

Agent:Orig Agent:Term

User:Orig)
e w1 SRE oury

noﬁify D our
|

bysy fivd sie

User:Term
ring

disilay

ringing

Figure 2-1: A Simple Telephony System (UCM root map) [81]

The UCM notation expresses scenarios above the level of messages exchanged between
components, hence, they are not necessarily bound to a specific underlying structure
(such UCMs are called Unbound UCMs). Path details can be hidden in sub-diagrams,
called plug-ins, contained in stubs (containers) on a path. A stub can be either static
(represented as plain diamond) containing only one plug-in, or dynamic (represented as
dashed diamonds), which may contain several plug-ins. Dynamic plug-ins are selected at
run-time according to a selection policy. Strengths of UCM is its ability to integrate a
number of scenarios together (in a map-like diagram), as well as the ability to interpret
the architecture and its behavior over a set of scenarios. UCM is not intended to replace
UML, but rather complement it and bridge the gap between requirements (use cases) and
design (system components and behavior). In comparison with UML, UCMs provide a
complementary fit between use cases and behavioral diagrams. Use cases often describe
the system according to its external behavior (black-box view), whereas UML class
diagrams are used to describe how the system is constructed (glass-box), but do not
describe how it works. UCM is an attempt to close the conceptual gap that typically

exists between requirements and design [10]. Use Case Maps are part of a new proposal

to ITU-T for a User Requirements Notation (URN) [56]. UCMs have been useful in a
number of areas such as design and validation of telecommunication and distributed
systems [6, 7], detection and avoidance of undesirable feature interactions [25, 26],

evaluation of architectural alternatives [81], and performance evaluation [89].

2.1.1 Basic UCM Notation

As shown in the simple telephony example, Figure 2-1, and continued in Figure 2-4, the

basic UCM contains the following constructs:

Start points (represented as a filled circle): The execution of a scenario path begins at a
start point (e.g req in Figure 2-1),

Responsibilities (shown as crosses): Responsibilities are abstract activities that can be
described in terms of functions, tasks, procedures, events (e.g.
fwd_sig [forwarding signal in Figure.2-1]).

End points (represented as vertical bars): The execution of a path terminates at an end
point (e.g. busy in Figure 2-1).

Components (represented as simple boxes): UCM components are abstract enough to
correspond to software entities (e.g. object, process, etc), as
well as non-software entities (e.g. actors, hardware, user: Orig

in Figure 2-1).

UCMs also support structuring and integrating scenario sequences by using alternatives
(with OR-forks/joins shown in Figure 2-2(a)) or concurrent paths (with AND-forks/joins

Figure 2-2 (b)).

) - Indicate routes that share
OR-join OR..fork™ cotmou causal segments.

Alternatives may be identified
[ves] by labels or by conditions
({enards])

[no
Permissible routes
assumed identified

(a) Sharcd routes and OR-Fork/Joins

1N, Nl _’\illjflp'
’——I‘”‘b ,m..-l >
- AND-fork AND-join Generic version

(b) Concurrent routes with AND-Fork/Joins

Figure 2-2: Structuring Scenarios [52]

OR-Joins: Capture the merging of two or more independent scenario paths.
OR-Fork: Split a scenario path into two or more alternative paths, generally

determined by Boolean conditions (guards).
AND-Forks: Split a single control into two or more concurrent control.
AND-Joins: Capture the synchronization of two or more concurrent scenario paths.
Scenario variables (global variables) are introduced to model system states, and to control
alternative scenario paths, and selection policies [81].
When maps become too complex to be represented as one single UCM diagram, a
mechanism for structuring sub-maps becomes necessary. UCM provides the notion of
stub concepts, allowing for hierarchical decomposition of complex maps. UCM path
details can be hidden in separate sub-diagrams, referred to as plug-ins, contained in stubs
(diamonds) on a given path. These plug-ins are reusable UCMs that can be used (plugged

in) in many stubs (Figure 2-3).

/o‘i'f\.<; f:::@ﬁ

(a) Static stubs have only one plug-in (b) Dynamic stubs may have multiple plug-ins
Figure 2-3: Stubs and Plug-ins [52]

The two types of Stubs are:

Static stubs (represented as plain diamonds): They contain only one plug-in.

Dynamic stubs (shown as dashed diamonds): They may contain several plug-ins, whose
selection is determined at run-time according to a selection

policy (often described with preconditions).

2.1.2 UCM Example - A Simple Telephony System

Figure 2-1 shows the UCM root map of a telephone example that was originally
introduced in [81] and referenced in [52]. The example illustrates the connection request
phase in an agent-based telephony system with user-subscribed features. The case study
contains four components (originating/terminating users and their agents) and two static
stubs. Upon the request of an originating user (req), the originating agent selects the
appropriate user feature (in stub Sorig) which could result in some feedback (notify). This
may also cause the terminating agent to select another feature (in stub Sterm), which in
turn, can cause different results in the originating and terminating users. Stub Sorig
contains the Originating plug-in, whereas stub Sterm contains the Terminating plug-in.
These sub-UCMs have their own stubs, whose plug-ins correspond to user-subscribed

features.

10

In stub Sscreen we have the following plug-ins:

- OCS (Originating Call Screening): This plug-in, blocks calls to people on the OCS
filtering list. It checks whether the call should be denied or allowed (chk). When
denied, an appropriate event occurs at the originator side (notify).

- Default: This is used when the user is not subscribed to any other originating feature.

Sdisplay .

Start INIOSCTEER cniyeq SWECES giam [otBusy] givi - _ YingTreatment
It * i = Busy] T oy
fail " Youn ﬂj"ll) _|

: “"" busyTreatment
ORIGINATING plug-in reportSuccess UV o g Treatment
" TERMINATING plug-in
Start checkOCS§ [motOnList] suecess . =
- e - - '; i

il) [OnList] '
= — A CND Plug-lll
' deny

OCS plug-in
Start conﬁnug

DEAFULT plug-in i

Figure 2-4: Plug-ins for Simple Telephony Features [81].

The plug-ins in Sdisplay are:

- CND (Call Number Delivery): This plug-in displays the caller’s number on the
callee’s device (display) concurrently with the rest of the scenario (update and
ringing).

- Default: This plug-in is used when the user is not subscribed to any other terminating
feature.

As part of this UCM a set of global variables are defined: Busy (the callee is busy),

OnOCSList (the callee on OCS list), subCND (the callee is subscribed to CND), subOCS

(the caller is subscribed to OCS). Figure 2-4 illustrates the corresponding UCM that was

11

generated with UCM Navigator. Each plug-in is bound to its parent stub, that is, stub
input/output segments (IN1, OUTI, etc.) are connected to the plug-ins’ start/end points.

A more detailed discussion and description of the case study can be found in [53].

2.1.3 UCM Tools

In an effort to support the use of UCMs, there are two freely available editing tools:
UCMNav (UCM Navigator) [84] and jUCMNav [59]. In this thesis, creation and

maintenance of UCM models were supported by both tools.

UCM Navigator

UCMNav [118], developed by Andrew Miga [84] at Carleton University, provides
features for creating syntactically correct UCMs manipulated with respect to a defined
UCM Document Type Definition (DTD) that is available at [118]. UCMNav uses this

DTD to ensure that syntactic and static semantic rules are satisfied [81].

In addition, UCMNav maintains various kinds of bindings (plug-ins to stubs,
responsibilities to components, subcomponents to components, etc.) and allows users to
edit the plug-ins of each stub at all levels and allows for the generation of comments and
descriptions for the UCM specification. UCMNav also supports the generation of XML
descriptions and scenario definitions, enabling the highlights of scenario paths in a UCM
specification, and providing the ability to export UCMs in different formats (e.g.
Encapsulated Postcript(EPS), Computer Graphics Metafile (CGM), Maker Interchange
Format(MIF), etc) [4]. The tool also supports the converting of created (or imported)

UCMs to other models, such as the performance model, Layered Queuing Networks

12

(LQN) and message sequence charts (more details on these transformations can be found
in [89] and [81] respectively). UCMNav is supported by multiple platforms such as:
Solaris, Linux (Intel and Sparc),HP/UX, and Windows (95, 98, 2000, XP and NT).

Use Case Map Navigator : Pizza%.0em

zza ardering and delivery overview|

[CK]

VerifyCredi
tolen)
ReqAddress

HungryCustomer Pizzeria /
Receptionist]

ChkCard
TakeNots@ GiveAddress

La}

Order

OrderConfirmed
1
i

A

kol
Thank¥ou pagsCommand
Cook

MakePizza,

1

DeliveryGuy /

PizzaDelivered
T

\ jﬁvul’iﬂa

Figure 2-5: UCMNav GUI

jUCMNav

jUCMNav [59] is an open-source tool distributed as an Eclipse plug-in, supporting the
editing and analyzing of URN models. jJUCMNav [100] originally supported only the
development of Use Case Maps scenario models. In its most recent version, it was

extended to support GRL [57] and provide complete URN coverage. This integration of

UCM and GRL views in the same tool allows for the creation of various types of

13

traceability links among these notations. In the

extended to support scenario definitions.

PlzzerlaSystam {2)
4 Andrork (76)
iR Bank(12)
it [cook(24)
DeliveryGuy (18)
HungryCustomer (8)
[pizzeria (14)
1 [Recaptionist (22)
i- =] OrderConfirmed (86)
| orderRefused (882)
~{ PizzaDeiivered (29)
« OrFork (127)
-w€ OrFork (880)
W Aeloin 170}

X TakeNote
i:g Takes good note of the command
< i| of the customer’s addess
g X verifyCredit
| Varfias whether the customer’s
credt & fine or not
1l)€ Charge
Charges the requested smount to
tha cradt caed
X Passorder
Passas the ordar to the cook
il X peliverPizza
|| Dedvers the frash pizza to the

HungryCustomer

X

Order .,___

OrderRefused I____,

OrderConfimed “ PassOrder
‘ ThankYou

[akanote GiveAddress

RefuseOrder

-
o

L

DeliveryGuy

PizzaDelvered &

2 gxceptlonaIScenarlos (1051)

meantime, jUCMNav was further

i

NotEnéthredt

I “ CardExpired (1058)
e} CreditCardStolen (1055)
ﬁ]'%« 3 T

i

059

[click to edit]

o)
(&> NormalScenarios (1050)

MissingIngredients (1054) /

Figure 2-6: jUCMNav GUI

2.1.4 UCM Formalization

In [51], an operational semantics for the UCM language, based on Multi-Agent Abstract

State Machines, was proposed. The authors claim that their technique in comparison to

the one given in [5] using LOTOS, provides a more abstract and flexible formalization

approach. Also, authors in [51] state that their ASM rules can be easily modified to

accommodate language evolution and reflect new design choices without the need to

14

change the original specifications. In [5], one is required to re-design the mapping

between UCM to LOTOS.

Furthermore, Hassine et al. [51], state their ASM-UCM simulation engine may support
different concurrency semantics at minimal cost. Agents may behave either in an
interleaving semantics with atomic actions (i.e. comparable to LOTOS processes) or in a
true concurrency model. The choice of a suitable alternative depends on the application

domain and design choice.

The ASM model provides a concise semantics of UCM functional constructs and
describes precisely the control semantics. The resulting operational semantics are
embedded in an ASM-UCM simulation engine and are expressed in AsmL [82], an
advanced ASM-based executable specification language; an overview of the system is

shown in Figure 2-7.

o uew 0 R »
 Speciflcation | - Representation

Figure 2-7: UCM_AsmL Overview [51]

15

The proposed AsmL-UCM approach taken from [51] (Figure 2-8) provides an
environment for executing and simulating UCM specifications and creating the
simulation traces. In order to apply ASM rules, the UCM specification (originally

described in XML format) should be translated into a hyper graph format according to the

UCM Spec
(XML Format) Environment

|

' '

syntax defined below.

Data ASM UCM Spec Spec variables
Structures Program (Hyper Graph) *+ initialization
y
Simulation

traces

Figure 2-8: ASM-UCM Simulation Engine Architecture [51]

The definition of the ASM formal semantics consists of associating each UCM construct
with an ASM rule (a hyper graph format) to model its behavior [51].

A UCM specification is defined as a Hyper-Graph Spec=(C, H, 1)

Where:

e C s the set of UCM constructs composed of sets of typed constructs.
C=RUSPUEPUAFUAJUOFUOJUAFUSTUTmuU ST U...etc
where R: Responsibilities, SP: Start Points; EP: End points; AF: AND-fork; Al:
AND-join; OF:OR-fork; OJ : OR-Join; AF: AND-fork; ST: Stubs...etc.

e His the set of hyper-edges

e) isatransition relation (path connection) defined as: A = CxHxC

16

Hyper edy

Hyper edge

Hyper edge
: UCM construct (Start Point, End Point, Or-Fork, And-Join,etc.)

Endl

UCM= {(Start,e1,Stub1), (Stub1,e2,Resp1), (Resp,e3,0r-Fork),
(Or-Fork,e4,End1), (Or-Fork,e4,End2)}

Figure 2-9: UCM Hyper_ Graph [51]

In Figure 2.9, a simple UCM example and its representation as a Hyper —Graph [51] are

presented.

2.2 FCA

Formal Concept Analysis (FCA) [41] is a mathematical approach that dates back to
Birkoff in 1940 [14]. FCA is commonly used for representing and analyzing information
by performing logical grouping of objects with common attributes. An FCA context is a
triple C= (0, A, R) where O represents a set of objects and A, a set of attributes, with R
CO x A being a relation among them [71]. A context in FCA is normally represented as a
relation or a context table, where rows represent objects and columns their attributes. In

the context table (Figure 2-10); cells marked with an “X” in each row indicate attributes

associated with a particular object.

17

Context (O, A, R)
Attributes A
O
&Y Ko iS’
‘..Q.\ " i ii} O Q
{%":’\ c’*& -'\{i:; N é}? 00\ ¢ ¥
HF T FE Y &P
Merkur X * »
Venus X X — X
(“::3 ;’!‘ -
w | Earth
b3
€ | Mars
ey
Q| Jupiter X X X
Saturn X x| =
Uranus e X |x
Neptune x x %
Pluto X x| _J
T e

Figure 2-10: Context Table [71]

In a relation R, the concept (O, A) corresponds to the maximal set of objects (extent) that
share a set of attributes (intent). For example, in Figure2-10 there exists a concept with
Earth and Mars as its objects and small, near, and moon as its attributes (shown
highlighted). The goal of FCA is to group concepts in such a way that no other object,
outside of an identified concept, contains the same attributes and no other external

attribute can be ascribed to other objects of that group.

Table 2.1 lists all the concepts from the context table. Each concept is a set of objects
with common attributes. For example, Concept 4 is a pair of the object set, {Merkur,
Venus}, and the attribute set containing {small, near, nomoon }. It can be interpreted that

small, near, and nomoonl are all members of the attribute sets of Merkurs and Venus.

18

Likewise, Concept 8, ({ Earth, Mars, Pluto}, {moon, small}) indicates that in the attribute

sets of Earth, Mars, and Pluto, all contain moon and small.

One of the major advantages of FCA is its ability to visualize relationships between sets
of objects and their common attributes, i.e. “concepts” as a hierarchical graph or “concept
lattice”. These lattices contain the complete information of the concept structure. In the
concept lattice (Figure 2-11); the italic names represent attributes, while the others
represent objects. Concept lattices are typically represented with either redundant or non-

redundant (sparse or reduced) labeling [71, 42].

Concept 1 | ({}, {moon, medium, distant, small, large, near, nomoon})

Concept 2 | ({Pluto}, {moon, distant, small})

Concept 3 | ({Uranus, Neptune}, {moon, medium, distant})

Concept4 | ({Merkur, Venus}, {small, near, nomoon})

Concept 5 | ({Jupiter, Saturn}, {moon, distant, large})

Concept 6 | ({Jupiter, Saturn, Uranus, Neptune, Pluto}, {moon, distant})

Concept 7 | ({Earth, Mars}, {moon, small, near})

Concept 8 | ({Earth, Mars, Pluto}, {moon, small})

Concept 9 | ({Merkur, Venus, Earth, Mars}, {small, near})

Concept 10 | ({Merkur, Venus, Earth, Mars, Pluto}, {small})

Concept 11 | ({Earth, Mars, Jupiter, Saturn, Uranus, Neptune, Pluto}, {moon})

Concept 12 | ({Merkur, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune, Pluto}, {})

Table 2-1: Table of Calculated Concepts Corresponding Figure 2-10

19

Concept lattices using redundant-labeling display the complete list of objects and
attributes for each concept. Even though redundant labeling ensures all objects and
attributes of each concept are shown, it can cause information-overloading, resulting in
lattices that are too difficult to comprehend. Lattices with non redundant-labeling address
this problem by presenting each object and each attribute only once in the lattice [42]

(shown in Figure 2-11).

no moon medium

5

>~ Jupiter 3 Uranus
Satorn Neptune

Merkur 4
Venus

Figure 2-11: Resulting Concept Lattice [71]

When interpreting a concept lattice, all attributes are passed down and objects are passed
up [71]. For example, concept #7 can be obtained by passing down the attributes small,
near and moon, and passing up the objects Earth, and Mars, therefore being written as 7:
({Earth, Mars}, {small, near, moon}). The bottom concept in a concept lattice - in this
case (#1) - contains those objects with all the common attributes, while the top concept

(#12) contains those attributes shared by all objects.

20

Formal Concept Analysis has gained popularity in recent years due to: (1) its
programming language and application domain independence which allows users to
easily define different views (by varying the object, attribute combinations), (2) its
availability of tool support to automatically generate context tables and lattices, and (3)
the fact that it is a relatively inexpensive analysis, particularly when compared to other
more traditional dynamic dependency and trace analysis techniques. However, it must be
noted that FCA does not consider semantic information during the analysis step thus
limiting its applicability for certain analysis tasks. Furthermore, its flexibility in selecting
different attribute-object pairs can result in difficulties selecting an appropriate context

for a particular analysis task.

FCA has been applied in various domains such as medicine, linguistics, psychology,
mathematics, industrial engineering and computer science. More specifically, FCA-based
applications are used for conceptual clustering, ontology engineering, information

retrieval, and software engineering [75, 114].

Within the software engineering community, FCA has various applications in program
comprehension and maintenance applications [113]. Among these applications are re-
engineering of class hierarchies [109], re-engineering of configurations [108], software
component retrieval [71], identifying modules [94] and objects from legacy code[73],
model restructuring [115], and suggesting refactoring to correct certain design

defects[85].

21

2.3 Analysis Techniques

In this section, we review existing analysis techniques supporting software evolution
related to our research. We focus mainly on impact analysis, regression testing, feature

interaction and bad smells detection at different levels of abstraction.

2.3.1 Impact Analysis

When a change occurs in a system, regardless whether it is at the requirement, design or
code level, such a change will introduce potential defects in a system [2]. Impact analysis
focuses on identifying the parts of a system that are (potentially) affected by a proposed
modification request. Software Change Impact Analysis (CIA) can be defined as “the
determination of potential effects to a subject system resulting from a proposed software

change” [11] [17].

Change impact analysis is a process which typically involves several steps. Figure 2.12
presents a generic impact analysis process as discussed in [11], illustrating the inputs and
outputs involved in this impact analysis approach. The process begins with a real world
modification request that is reduced to a re-specified change request and is the basis for
further planning of the change implementation. After the change is re-specified, an initial
impact set is determined. Next the IA approach identifies potentially impacted ripple
effects related to the modification request. The collection of these impacts and their ripple
effects results in the potential impact set of the change, which can then be used to plan,

predict measure and accomplish the modification task.

22

Real World

Measurements,
Assessement of
Impact Perform
Change Artifact Impact
Specification Object Explanation
Model .
Determine what of Impact
Is impacted [
‘ N |
Respecified - Impacted Objects/
Change Analysis Relationships
(Estimated)
|A Approach

Figure 2-12: Generic Impact Analysis Process [11]

The IEEE Standard 14764-2006: IEEE standard for Software Engineering — Software
Life Cycle Processes — Maintenance [57] provides guidelines for the required activities
during the Modification analysis phase of software maintenance.
The standard states that impact analysis should [57]:

e analyze Modification Requests(MR) and Problem Reports (PRs);

e replicate or verify the problem;

e develop options for implementing the modification;

e document the MR/PR, the results, and execution options;

e obtain approval for the selected modification option.

These guidelines can serve as a general template for determining what should be

accomplished during a modification analysis process.

Most of the existing change impact analysis approaches focus on source code [13, 43, 67,

115] and design level analysis [19, 20].

23

These approaches can be categorized into two types of impact analysis techniques:
traceability analysis [S5, 95, 104] and dependency analysis [17]. Traceability analysis
focuses on the linking of software life cycle objects (SLOs) generated or modified at
different abstraction levels, e.g. requirements or designs to the source code [17]. Figure
2-13 present an example of a traceability model showing the links between the system

artifacts [55].

REQUIREMENT @ DESIGN

TESTCASES Y CODE

Figure 2-13: A Meta ~Model of a Traceability System [55]

Dependency analysis typically focuses on identifying how objects at the same abstraction
level are related to one another [17]. A simple schema for dependency analysis is shown

in Figure 2-14 [48].

Entity A Dependency ‘ Entityl}
(eg. flnction) W (ep. function,
o o data type)

Figure 2-14: A Simple Schema for a Dependency Analysis [48]

There exist other approaches that support syntactical dependency analysis such as static
[119], dynamic slicing techniques [63], or hybrid versions which combine both static and

dynamic dependency analysis. Common to these source code-based approaches is their

24

computational complexity (e.g. slicing techniques), and their often limited applicability,
because they are restricted to a specific programming language.

Other dependency-based impact analysis approaches, such as expert judgment and code
inspection, are difficult to automate, often incorrect [74], and also very expensive [90].
There exists only limited work on applying slicing-based dependency analysis at a higher

model level [64].

Existing work in change impact analysis and regression testing has focused mainly on
identifying changes at the source code level [67] [55]. These source code-based
approaches typically result in an accurate analysis of change impacts [17], due to the
fine-grained granularity of the information available at the source code level as well as
the fact that the source code represents the requirements implemented. However, these
approaches also tend to be time consuming and require an understanding of both the
system requirements and their implementations which makes them less applicable for

management and non-technical decision-makers.

2.3.2 Regression Testing Methodologies

One necessary, but costly maintenance activity is regression testing [96]. After a
modification is implemented, a system has to be validated to ensure the modified parts
have not introduced any new errors into previously tested code [44]. One approach to re-
using test suites is called re-test-all and it requires re-running all test cases in the existing
test suite. This approach, however, is typically too expensive and unnecessary. In most

cases, except for the rare event of a major re-write, changes only affect parts of a system

25

and do not have any effect on the remaining parts of the system. Selective regression
testing allows for a reduction of the number of test cases to be re-executed, and therefore,
reducing the cost associated with testing, by identifying the subset of test cases that are
relevant and have to be re-run. Regression techniques always apply some type of impact
analysis in order to determine the coverage needed by the selected regression tests. In
[96], a typical selective re-test solution is presented consisting of the following steps:
Given a program P, its modified version P’, and test set T used previously to test P; the
goal is to find a way to re-use T which provides sufficient confidence in the correctness
of P’.

1. Select T’ T, a set of tests to execute on P’

2. Test P’ with T’, to establish the correctness of P’ with respect to T’

3. If necessary, create T”, a set of new functional or structural tests for P’

4. Test P’ with T”, to ascertain the correctness of P’ with respect to T”

5. Create T”, a new test suite and test history for P, from T, T’, and T”

The goal of such a regression test is to identify 7° and to re-use these parts of T that
provide sufficient confidence in the correctness of P' [96].

Various types of regression test techniques are proposed in the literature [98] to improve
cost-effectiveness. Four of these techniques involve re-using existing test cases and are

discussed further below.

Re-test All
This technique provides the most conservative approach for regression testing. Re-testing

all requires re-executing all tests 7 from the test suite in order to cover unnecessary parts

26

of P’ that might not be affected by a modification, and therefore, would not need to be
re-tested [98]. Indeed, the cost associated with re-running all test cases can be very
expensive [111].

Regression Test Selection (RTS)

For regression test selection, test cases are re-used selectively (e.g., [29]) by identifying
only the subset of an existing test suite needed to re-test the modified program P’. RTS
techniques are typically based on the assumption that the test selection is safe (all
affected parts are re-tested) and the overall approach is more efficient than a re-test all
approach. While safe RTS techniques [102, 29] guarantee that, under certain conditions,
test cases not selected could not have exposed errors in the modified program; they might
require inclusion of a larger number of test cases in comparison to non-safe RTS
techniques. Non-safe RTS techniques [e.g. 98, 46] relax the safety (completeness) rule to
improve the efficiency (speed) of their algorithms used to identify test cases. The cost of
re-test all regression testing can be reduced by selecting a subset of possible test cases
focusing mainly on the parts of the system which have been modified or are most likely
to be impacted by a change [112, 48].

Coverage Technique

Coverage techniques for test selection differ from minimization techniques by not
focusing on the minimization of the test cases; instead they aim to maximize the test
coverage. Therefore, the goal of coverage techniques is to identify all the tests that
exercise either modified or affected program parts. Examples for coverage techniques

approaches can be found in [122], and [97].

27

Prioritization Technique

This technique orders an application’s set of test cases so that those test cases which are
better at achieving testing objectives are executed earlier [99, 111]. By re-testing these
high priority tests first, the overall confidence in the system grows quickly initially,

before leveling off.

2.3.3 Feature Interaction

From a maintenance perspective, an ideal software system would consist only of features
that work and function independently from each other. Such a system would allow
features to be modified or added without affecting other features in the system. However,
reality differs, and typically one has to deal with situations where one feature
interacts/depends on other system features. Furthermore, certain (sometimes unexpected)
behavior might only occur when two or more features are combined together and would
need to interact with each other [27] [32] [66]. Therefore, we can define feature
interaction (FI) informally as:

(1) the situation where one feature modifies or subverts the desired operation of

another feature or;

(2) when a system functions incorrectly due to the presence of certain features.
In the past, most of the research in FI analysis has focused on the telecommunications
domain [9]. Telephony features are usually complex and difficult to design and
implement. The specification of features written in a natural language (e.g. English) can
be unclear or ambiguous and may be subject to interpretation. As a result, independent
implementations of the same feature may be incompatible. There is a need for a notation

to help designers describe, understand and analyze system features. Several notations

28

have been introduced to describe system features (Chisel Diagram [3], Finite State
Machines [15], LOTOS [38], Use Case Maps (UCM) [4], etc.). In this work, we focus on
UCMs as a feature description language and illustrate its use to describe system features
in the telecommunication domain. However, FI has also been studied in other application
domains, such as [32]. An example of feature interaction in a telecommunication system
is when a callee is subscribed to both VM (voice mail) and CFBL (call forwarding on
busy line) when the line is busy. Suppose that caller A dials B, who is subscribed to both
VM and CFBL busy. In the case where B is busy, the system cannot determine whether
CFBL or VM should be activated. As a result, we have in this case a non-deterministic FI

occur (Figure 2-15).

VM: Forward calls
to voice mail

<_~

A B is busy c
A calls B B forwards to C 77

P
»

{} B forwards to veice mail 77
CFBL: Forward \ @
calls to C

Voice mail

Figure 2-15: Illustration of a Telephony Feature Interaction

It should be noted that in most systems, feature interaction is inevitable and, in fact,
necessary as little can be achieved by independent features. Since many feature

interactions are intentional by design, determining if a specific feature interaction is

29

intentional, or the result of a specification fault, typically involves some type of

application domain knowledge and is outside the scope of this thesis.

2.3.3.1 Addressing feature Interaction

Existing work on feature interaction can be classified in three main problem areas:

Avoidance, Detection, and Resolution [28].

Avoidance

For the avoidance of feature interactions, the objective is to prevent the manifestation of
unwanted interactions by defining additional guidelines and constraints. The avoidance
approach assumes the causes of the interactions in a system are known. However, the
required domain knowledge and insights related to the cause of the feature interaction
might not be available. Avoidance of feature interaction analysis is typically applied in
the early phases of software lifecycle when features are specified and designed. An
example of feature interaction avoidance is presented in [47], where by using a judging
algorithm at run-time, the authors propose a technique to prevent service initiation only
when a terminal assignment causes feature interaction. Another example is shown in [40],
where a Wireless Intelligent Network (WIN) system feature interaction problem is solved

(partially) by assigning pre-defined priorities to different features [40].

Detection

The goal of detection of feature interaction is to determine whether or not “a set of

independently specified features”, once composed to a system, can cause conflicts that

30

might lead to undesirable side effects. Feature interaction detection can be applied on
various artifacts created throughout a software lifecycle (e.g. requirements, specification,

source code) leading to a variety of feature interaction detection approaches [8, 25, 26].

Resolution
The objective of feature interaction resolution is to find solutions to undesired feature
interactions within a system [e.g. 22, 25, 26, 47]. Two of the proposed techniques for
resolving feature interaction are [22, 26] which focus on:

e replacing the undesired behavior by a reasonable one;

e creating a protocol between the features involved in the interaction consisting of

an exchange of necessary information to avoid the interaction.

The detection of all possible feature interactions is often an inherently difficult and
expensive task due to possible presence of large number of feature combinations and
scenarios, executing these features [68] within a system. Thus, there is a need to reduce
the complexity of the analysis for such feature rich systems by limiting the analysis to the
scenarios and features that are either affected, or prone to be affected, by a feature
modification request. In the context of this thesis we are focusing on the detection of

feature interactions.

2.3.4 Bad Smells

2.3.4.1 Background on Bad Smell and Refactoring

The notion of bad smells in source code originated by Fowler and Beck [39], who

introduced an initial set of 22 bad smells for object-oriented programs. This set of bad

31

smells was further classified and categorized in [77], providing a taxonomy and grouping
of bad smells. Bad smells are generally associated with bad design and/or bad
programming. Bad smells do not always imply that the code or the design is wrong; they
can be considered as an indication of high complexity which may lead to a serious
problem in the future [31]. Bad smells identification can be applied by developers and
maintainers to determine parts of software design that would benefit from a set of
restructuring, or in the specific case of object-oriented system, refactoring [76] rules. Bad
smells can be removed by using these refactoring techniques to improve the quality of the
software [92]. Refactorings are modifications made to programs, models or
specifications in order to advance their structure, and thus making them more
comprehensible, readable and extendable. Refactorings are required to preserve the
external behavior of the program/ design model/specification while enhancing their
internal structure.

Chikofsky and Cross in [30] classify restructuring as “the transformation from one
representation form to another at the same relative abstraction level, while preserving the
subject system’s external behavior (functionality and semantics)”. A restructuring
transformation is often one of appearance, such as altering code to improve its structure
in the traditional sense of structured design. While restructuring creates new versions that
implement or propose change to the subject system, it does not normally involve
modifications because of new requirements. Restructuring can improve the
comprehension of the subject system by suggesting changes that can improve structural
aspects of the system [30]. Opdyke in his PhD dissertation [88] , originally introduced the

term refactoring as an object-oriented variant of restructuring; and Fowler et al. , define

32

refactoring as “the process of changing a [object-oriented] software system in such a way
that it does not alter the external behavior of the code, yet improves its internal structure”
[39]. When introduced at the source code level or design level, the key idea here is to
reorganize classes, variables, and methods across the class hierarchy in order to improve

complexity of the system and to facilitate future modifications and evolvability [77].

2.3.4.2 Detection of Bad Smells

Most of the existing work in the area of bad smells has focused on the identification of
such smells at the source code [39, 77, 76, 83] and design level [33, 86]. Mens et al. [83]
introduced a comprehensive overview and classification of existing work in the area of
software restructuring and refactoring. More recently the notion of bad smells and
refactoring/restructuring has been extended to the formal requirement specification level
[31, 37,78, 79. 80]. In [31, 37, 78, 79, and80] bad smell detection and refactorings have
been applied to Object-Z [34], which is an object-oriented extension of the state-based
formalism Z [123] used for requirements specification. In [78] the focus is on
refactorings that are applicable on single methods only (e.g. extracting methods,
simplifying conditions, substituting algorithms). Common to the refactoring techniques
mentioned in [37, 79, 80] is that they all focus on the refactoring of object-oriented

specifications (written in Object-Z).

The work of Russo et al. [101] proposes the restructuring of natural language
requirements specifications by breaking these specifications down into a viewpoint
structure. Each viewpoint contains partial requirements of some of the components within

the system, and interactions between these viewpoints are explicitly shown. The goal of

33

this restructuring technique is to increase requirements comprehensibility, enabling

detection of inconsistencies, and managing requirements evolution.

Ciemniewska et al., in [31], demonstrate another approach to detect bad smells at the
requirement specification level, by presenting a technique for supporting use-case
reviews based on natural language processing (NLP) tools. Their intention is to find
“easy-to-detect defects” (such as duplicate use-cases in the document, inconsistent

naming styles of use cases, complex sentence structure in use cases, etc) automatically.

2.3.4.3 Bad Smells Categories and Refactorings

In this research we briefly described all six bad smell categories introduced in [77] and
provide a concrete example of a bad smell for each of these categories.

1. The Bloater Category

The Bloater category includes bad smells that “represents something that has grown so
large that it cannot be effectively handled” [77]. Bad smells that fall into the Bloater
category are: Large Class, Large Method, Primitive Obsession, Long Parameter List, and
Data Clumps [77].

Name of Bad Smell: Large Class

Description: Classes that are trying to do too much often have many instance

variables and can also suffer from code duplication.

34

Example [1]: The Person class includes too much functionality that involves

different data structures and access functions to these structures

class Person...

public String getName () {
return _name;

}

public String getTelephoneNumber () {
return ("(" + _officeAreaCode + ") " + officeNumber);

}

String getOfficeAreacCode() {
return _officeAreaCode;

}

void setOfficeAreaCode (String arg) {

_officeAreaCode = ary;

}
String getOfficeNumber() {
return _officeNumber;

}
void setOfficeNumber (String arg) {

_officeNumber = arg;
}

private String _name;
private String officeArealCode;
private String officeNumber;

Figure 2-16: Example of a Class with too Many Functionalities

Solutions: Eliminate redundancy in the class itself by using Extract Class (by
using Move Method, and Move Field) or Extract Subclass [39]. An

example is provided below.

35

Person Person TelephoneNumber
Office Telephone
m& areaCode
name > name N
office AreaCode :] aumber
officeNumber
getTelephoneNumber getTelephoneNumber getTelephoneNumber

Figure 2-17: Example of Extract Class Solution [39]

2. Object-Oriented Abusers Category

The bad smells in this category are all related to cases in which good OO design is not
fully supported in the solutions. Examples of bad smells in this category are Swirch
Statements, Temporary Field, Refused Bequest, Alternative Classes with Different
Interfaces, and Parallel Inheritance Hierarchies [77].

Name of Bad Smell: Temporary Field

Description: Sometimes in an object, instance variables are set only in certain

circumstances. Such code is difficult to understand, because it is

expected that the object requires all of its variables.

Example [77]: The textRep field is not an essential part of the Person class and

it is only used in the toString () method.

36

public clasa Pevson |
private 8tring nome;
Private &txing phonelNumnber;
private StringBuffer textRep;

public Person (String nawme) |
this name = rame;

public void petPhonefNumber(S$tring phoneNumber) {
thisg. phonelunteyr = phorebiumbser ;

public String getihonelumberi{) {
return phonedunkeyr;

textRep . append (phoneNunber) ;
textRep . append{...};

return DextRep. tosString()

Figure 2-18:Example of a Class with Temporary Fields

Solutions: It is suggested to use Extract Class refactoring in order to create a
class for “orphan variables” [39]. Every related code that concerns
the variables should be put together into the component.
Furthermore, it “might be possible to eliminate conditional code by
using Introduce Null Object to create an alternative component for
when the variables aren't valid.” [39]. In the example, refactoring
Extract Class can be used to move the textRep to a new class.

3. Change Preventors

Bad smells in this category are code structures that hinder the modification of the

software. The smells in the Change Preventers category are Shotgun Surgery and

Divergent Change [77].

Name of Bad Smell: Shotgun Surgery

Description: When a change in the program requires lots of code changes in
many different classes making it hard to find all the right places

that would need changing.

37

Example: The openRs method in Figure 2-19 is responsible for the database
access and used in every class. Therefore a change to the database
name would result in a change affecting every class containing the
openRs method.

clasg CreateMesting (

public void openks{)
{
tey
{
Clasg forName {"sun. jdbd, odbe, Jdbag
eon = DrivarBanager, getlonnection
stut ® Cob.createStatemant {
R&ﬁﬁltﬁst.?YQE*SGRQLL‘$EHSITIVE,Results*%.QQNGUR_UFDAEABLS};
i

)
public class Legin {

public void openks{)
{
try
{ .
Clasg. Forfans ("sun. jdbe. odbe, Jdbot
con ® Driverfanager. getConnection
stmt = con.oreateftatemant { W
ResultSet, TYPE_SCROLL SENZITIVE, RegultSet. CONCUR_UPDATABLE) ;
¥

}
clagg AppointmentFrane {

public veld openka()
{
try
{
Clase. Forlama {(“sun. jdbe. odbe, Jdbet bl
eon & BriverManager. getlonnestion
sLEt = Con.createSratement {
Resultiet I¥PE_SCROLL SENSITIVE, Resultfiet, CONCUR_UEDATABLE) ;
}

Figure 2-19: Example of a Code Affecting Several Classes

38

Solution:

In this case the Move Method and Move Field refactoring can be
applied (Figure 2-20) to gather all the changes into a single class.

However, when no current class seems as a good candidate,

creating a new class is a better option [39].

openRS()

/

CreaieMeeting

Figure 2-20: Example of Refactoring by Creating a New Class and Move Method Technique

AppimeniFrame
openRS(\

openRS()

4. Dispensables Category

This category mainly addresses those bad smells which are a result of unnecessary

elements in the source code. Members of this category include: Lazy Class, Data Class,

DBConnect

openRS()

Duplicate Code, and Speculative Generality [77].

Name of Bad Smell: Lazy Class

Description:

These are mainly classes that are providing limited functionality
caused either by downsizing due to previous refactoring or because

they were added to a system for future changes that never took

place [39].

39

connectToDB()

Ry CreateMeeting

conneciToDB()

connectloDB()

Example:

Solution:

The TelephoneNumber class in the example below performs

limited functionality only [39].

class Person...
public String getName () {
return _name ;

}
public String getTelephoneNumber () {
return _officeTelephone.getTelephoneNumber () ;

}
TelephoneNumber getOfficeTelephone() {
recurn _officeTelephone;

}

private String _name;

private TelephoneNumber officeTelephone = new TelephonsNumber() ;

class Telephonelfumber.. .
public String getTelephoneNumber() {
retwn ("({" + _areaCode + ") " + _number);

}
String getAreaCode(} {

return _areaCode;

}

void setdreaCode (String arg) {
_areaCode = arg;

}
String getNumber () {
return _rumber;

}

void setNumber (String arg) |
_humber = arg;

}

private String number;

private String _areaCode;

Figure 2-21: A Classes With limited Functionalities

These classes can either be removed or changed, using the Inline
Class refactoring method. If they are subclasses, the Collapse

Hierarchy refactoring can be applied to collapse the existing

structure [39].

40

Person Telephone Number
- ofice Telephone areaCo
number
1
gelTekptioneumber gefTelephone Number

N

Person

name
areaCode
number

gelTelephoneNumber

Figure 2-22: Example of Inline Refactoring for a Class with a Few Functionalities [39]

5. Encapsulators Category

In [77], it has been suggested that the Encapsulators category deals mainly with “data

communication mechanisms or encapsulation”. The smells grouped in this category are

Middle Man and Message Chains. It should be noted that the authors in [77] assert that

Message Chain could belong to a different category (Couplers) and Middle Man could

also be added to the Object-Oriented Abusers category. However, since both are dealing

with the way in which objects, data, or operations are accessed, they have been assigned

to a separate bad smell category.

Name of Bad Smell: Middle Man

Description:

When a delegate class is performing no useful or extra work and

not really contributing to the application [39].

Example:

In the example below (Figure 2-23),

Department

i8

encapsulated within the Person class, thus to find a person’s

41

manager, there is a need to delegate functionality to the

Department class [39].

class Person...
Department _department;
public Person getManager () {
return _department.getManager () ;

class Department. ..
private Person _manager;
public Department (Person manager) {

manager = manager;

}

Figure 2-23: Example of an Unnecessary Delegation

Solution: In general, the Remove Middle Man refactoring can be used to

restructure the class in a way that client calls are delegated directly.
However, sometimes ‘“delegates are created to provide a sort of
fagade, keeping the details of messages and structures hidden from
the caller” [33]. Thus, it is a good practice to first determine the

intention of the delegation, and then take action.

Client Class

Client Class

k
;
|
Y
Person

1
1
i
]

A Person Department

i o e
Y getDepartment gelanager

Figure 2-24: Example of Middle Man Bad Smell and Remove Middle Man Refactoring [39]

42

6. Couplers Category

Bad smells in this category focus on the coupling among classes. However, the authors in
[77] believe these bad smells also could be grouped in other categories. The two bad
smells in this group are Feature Envy and Inappropriate Intimacy.

Name of Bad Smell: Feature Envy

Description: This is the case when a method is more interested in using the

attributes of a class other than the one it is actually in.

i,

Feature Envy

Examples: In the code snippet below which is taken from [77], the write
method in class FigureWriter is only using features from

classes other than its own.

43

public class Figure {

public String getName() {
return namwme;

public String getDimensions() {
return dimensions;
!

public String getColor() |
return color;
}

public void update{} {
}
public class FigureWriter {
public String write(Figure fig) |
StringBuffer result = new StringBuffer();

fig.update{);

result.append(fig.getName()) ;
result.append(fig.getDimensions());
regult.append (fig.getColox()};
return result.toString{();

Figure 2-25: Example of a Class Using Only Features of Other Classes

Solution: In order to eliminate this smell, Move Method refactoring can be applied

(Figure 2-26). In the case where only parts of a method are misplaced, the

Extract Method will be an option [39].

Fignre Writer Figure Writer

S

Write

Figure Figure

Write

Figure 2-26: Example of Move Method Refactoring Feature Envy Bad Smell

44

3. A UCM Requirements Evolvability Framework

Maintenance processes (e.g., [57]) have been established to guide both managers and
maintainers through typical maintenance and evolution tasks. Common to these process
models is they require some type of modification analysis (MA) prior to signing up on a
particular modification request. During a MA, managers, who are often not familiar with
the detailed implementation of a system, have to determine the feasibility, impact, and
cost associated with such a modification request. In this chapter, we present a novel
framework for supporting modification analysis for early detection of change impact, re-
testing effort, feature interaction, and detection of bad smells at the requirements

specification level.

In section 3.1, we explain in more detail the motivation behind our research. Section 3.2
presents the research hypothesis and research goals as well as a set of criteria to validate
our hypothesis. Section 3.3 describes in detail the requirement modification analysis
approach used in this research and illustrates our methodology for each type of analysis.

Our major research contributions are summarized in section 3.4.

45

3.1 Motivation

When developing software systems, it is rare that an initial system design will correspond
completely with the final design or implementation of a system [70]. Ever changing
customer needs lead to requirements modifications [17]. The efficient management and
execution of these changes are critical to software quality and for managing the evolution
of software systems [17]. Modification analysis, an essential phase of most software
maintenance processes, requires decision-makers to perform and predict potential change
impacts, feasibility and costs associated with a modification request. The majority of
existing techniques and tools supporting modification analysis focus on source code level
analysis and require an understanding of the system and its implementation. In this
research, we present a novel approach to support the identification of potential
modification and re-testing efforts associated with a modification request without the
need for analyzing or understanding the system source code. Our research is motivated by
the lack of a requirement level framework which: 1) supports early modification analysis
without the need to comprehend the underlying source code; 2) can perform requirement
modification analysis at different levels of abstraction and granularity and; 3) provides a
visualization of the analysis results to guide both management and maintainers during

their decision-making process.

46

3.2 Research Hypothesis and Research Goals

3.2.1 Research Hypothesis

In this research we present a new modification analysis methodology which utilizes
formalization of a requirement modeling technique, Use Case Maps, combined with a
formal sensible grouping method, Formal Concept Analysis, in order to assist the
managers and maintainers during their early decision-making process.

Research Hypothesis:

A Requirements Evolution Analysis Framework can be developed to assist
decision-makers in supporting modification request analysis and evolution

of requirements specified in the Use Case Map language.

We expect our research hypothesis to hold if the following acceptance criteria can be

validated:

Formalization of UCM

A UCM specification integrates multiple scenarios, some with separate starting points
and others that share starting points but under different types of input data or different
system states. We adopt the UCM scenarios definition introduced by Hassine et al. [51]
and describe system level scenarios as being end-to-end scenarios, where each scenario
starts at a start point and ends at an end point. System level scenarios make use of a path
data model composed of global (Boolean) variables used on guarding conditions. In
UCM, abstract syntax and static semantics are informally defined as XML document type

definition resulting in UCM diagrams where scenarios, global variables, and stubs have

47

to be analyzed and traced manually. The interpretation of these UCM specifications is
therefore typically left completely to the user of these diagrams. In [51], an operational
semantics for the UCM language based on Multi-Agent Abstract State Machines was
proposed. The operational UCM semantic itself is expressed using AsmL [82] a high-
level executable specification language developed by the Foundations of Software
Engineering (FSE) group at Microsoft Research. The resulting ASM semantics are
embedded in an ASM-UCM simulation engine designed for simulating and executing

UCM specifications.

Change Impact Analysis

As discussed in Chapter 2, resolving specification errors and modifying requirements
may introduce new collateral errors. Change Impact Analysis (CIA) techniques have been
used to assess the impact of changes in an attempt to prevent the introduction of new
errors [11, 18]. CIA techniques can be classified into two main categories: traceability

[S5, 95, 104] and dependency analysis [1, 17].

Among the various CIA approaches, the approach by Tonella et al. [115] is of particular
interest to our proposed research. They introduced an approach that combines slicing and
formal concept analysis (FCA) to determine the change impact at the source code level.
They referred to their approach as “Concept Lattice of Decomposition Slices”. The
authors claim their technique is an extension of the decomposition slice graph in which
the graph is obtained from concept analysis and can provide maintainers with relevant
information on dependencies and interfaces to support program comprehension and to

assess change impacts at given program points.

48

At the requirements and architectural level, we expect to adopt some aspects and
techniques of existing work on architectural [11, 18, 52, 115] and requirements impact
analysis. Requirements traceability is a quite well-established and mature research
domain. Hewitt et al. in [52, 54], recommend a change impact analysis approach that
makes use of a system’s UCMs specification so that the scope of the change may be
determined at an early stage of the change life cycle. From FCA-based application
presented in [115], we see the potential of the concept lattice to identify all the execution
element dependency within UCM specifications. Specifically, we conjecture that a
formalized and executable UCM representation provides sufficient information about the
structure and behaviour of a system to determine the potential impact of a change through
the use of a formal sensible grouping method (FCA) for dependency analysis at the UCM

level.

Regression Testing

As software evolves and new modification requests are introduced, test cases are required
to be re-exercised to ensure these modifications did not cause any undesirable behaviour
of the system. Different regression testing techniques have been adopted to ensure that
new changes have not affected other system features both at the source code level [98,
112] and design level [20, 91]. As discussed in [20], regression testing at the source code
level is expensive with respect to required time and hardware resources in comparison to
regression testing at the architectural level. Regression testing at the architectural/
specification level focuses on high-level test cases, resulting in a typical small number of
test cases and therefore reduced cost for the computation and re-execution of these test

cases. Often project managers are focusing on an initial prediction of the testing effort

49

and therefore testing cost associated with a particular change before determining the

detailed testing strategy at more fine grained analysis levels (source code).

Tallem et al. [112] developed a Delayed-greedy algorithm using FCA which uses both
implications of the requirements and test cases, and delays the application until no more
reduction of test cases can be performed and all the essential tests are selected. The
algorithm uses attributes and object implications of the requirements and test cases with a

focus toward minimizing the number of test cases at the source code level.

Currently no selective regression testing technique exists which can be used at the
requirement level; however, a FCA-based regression technique has been introduced in
[112] and we therefore expect that FCA can also be reapplied to the traces generated by

our formalized UCM semantics to identify selective regression tests.

Feature Interaction Techniques

Feature interaction analysis has become an important task for management and
maintainers, due to the fact that features might be designed, maintained and evolved at
different phases of the software life cycle. For this reason, there is not only a need to
automatically detect existing features in a system, but also their interaction [66]. Thus,
over the past years, various techniques have been proposed to avoid, detect and solve
feature interactions at all stages of the software life cycle, many focusing on the
requirement stage including UCM specifications [25, 26, 68].

Eisenbarth et al.’s work focuses on conducting feature analysis by means of Formal

Concept Analysis. In [36], they introduce a technique to support program understanding

50

by deriving feature-component correspondence utilizing dynamic information for the part
of the program to be understood. Each concept in the lattice represents the common
source code portion executed by different usage scenarios, thus proving the lattice of
feature-component correspondence can identify all software components (e.g. functions,
procedures, statements) that contribute either to a certain feature or all features to which a
component contributes. While in our research features will be identified at the
requirements (UCM) level, we presume the basic concept introduced in [36] will also be

applicable for UCM.

Bad Smell Techniques

The notion of bad smell has mainly been discussed at source code [39, 69] and design
level [33, 86]. Bad smells are motivated by the need to identify those parts of a software
design that would benefit from a set of restructuring in order to improve the software
quality. Various techniques and formalisms have been proposed and used to support

restructuring and refactoring activities, for example formal concept analysis [83].

Snelting and Tip in [109] use concept analysis for refactoring object-oriented class
hierarchies. Tonella uses FCA to restructure software modules [115], and Moha et al. in
[85], use formal concept analysis to “to Suggest Refactorings to Correct Design Defects”
and detect cohesion and coupling by means of FCA. They provide a sketch of the target
design by grouping methods and fields into cohesive sets and separate classes, to

represent a better trade-off between coupling and cohesion [85].

51

More recently the notion of bad smells and refactoring/restructuring has been extended to
include the formal requirement specification level [31, 34, 37] thus motivating us to use
the formalized and executable UCM traces and analyze them by means of FCA to detect

possible bad smells at the UCM specification level.

Based on the above criteria, we can now also define our Null-Hypothesis when to reject
our research hypothesis.

Null Research Hypothesis:

The research hypothesis will be rejected if at least one of the validation
criteria will not hold and therefore no Requirements Evolution Analysis
Framework can be developed to support modification request analysis and

evolution of requirements specified in the Use Case Map language.

3.2.2 Sub-goals

As stated in the last section, the general goal of this research is to develop a requirements
evolution analysis. In what follows, we divide this general research goal into some more
specific sub-goals to be addressed by this thesis:
¢ Collect traces from the formalized UCM semantics and analyze these traces using
FCA to:
o Support impact analysis of modification requests at the UCM level
o Perform regression test analysis to identify test cases that have to be re-
tested as part of a modification request

o Identify use case scenarios containing feature interaction by means of

FCA

52

o Identify the impact of a feature change on other system features
o Suggest potential bad smells at the UCM level to improve the overall
structure and design of the UCM
e Implement a proof of concept tool to support a semi-automatic approach for
impact analysis, selective regression testing, feature interaction and bad design
detection at the UCM requirements level
e Provide case studies and examples to illustrate both the applicability and

limitations of the proposed approach

3.3 Requirement Modification Analysis Methodology

During the analysis of modification requests, decision-makers face several challenges: 1)
the ability to determine the potential affect of a modification request on the overall
system early in the software maintenance cycle; 2) as part of this decision process, there
is a need to identify which UCM scenarios contains which features; and 3) the ability to
analyze whether a feature interacts with other features and determine the testing effort
related to a particular change. In what follows, we describe our methodology including
the major activities to be performed for analyzing and supporting requirements evolution
(Figure 3-1).

In step 1, we utilize a formalized UCM semantics to generate scenario traces from the
formalized UCMs (Section 3.3.1). In step 2, we define different types of dependencies
between the UCM elements captured by the recorded UCM traces to support further
modification analysis (Section 3.3.2). In step 3, we combine our UCM dependency

analysis and FCA to support modification analysis through impact, feature interaction

33

and regression test selection analysis at the requirements level (Section 3.3.3), which are
divided into four types of evolution analysis: Change Impact Analysis (3.3.4), Test Case
Selection Results (3.3.5), Feature Interaction Analysis (3.3.6) and Bad Smell Detection

(3.3.7).

©

Formalize

Requirement
modification in
UCM
Generate

Analyze

Figure 3-1: Requirement Modification Analysis Methodology

3.3.1 Generation of UCM System Level Scenarios (traces)

In UCM, abstract syntax and static semantics are informally defined as XML document
type definitions. This informal representation of UCM diagrams results in a notation that

does not support symbolic execution of scenarios captured in these diagrams. In its

54

original form, UCM elements such as scenarios, global variables, and stubs have to be
analyzed and manually traced to gain an understanding of the various dependencies that
might exist in a UCM. This results in a situation where the interpretation of UCM
specifications is left completely to the user. In [50, 51] an operational semantics for the
UCM language-based on Multi-Agent Abstract State Machines was proposed. The
definition of the ASM formal semantics consists of associating each UCM construct with
an ASM rule to model its behavior. The resulting ASM semantics are embedded in an
ASM-UCM simulation engine designed for simulating and executing UCM
specifications. It is written in AsmL [82] which is a high level executable specification
language developed by the Foundations of Software Engineering (FSE) group at
Microsoft Research. For a detailed description of UCM semantics, the reader is invited to
consult [51]. Thus, as mentioned in [51], a scenario definition contains a name, initial
values for the global variables, a list of start points, and (optionally) post-conditions
expressed using the global variables. Based on the initial values of the specification’s
global variables, the ASM-UCM simulation engine generates system level scenarios
(traces) which resolve choice points on the OR-forks and on dynamic stubs. In cases
where more than one condition evaluates to true, the AsmL-based simulation engine non-
deterministically selects one choice [51]. Note that throughout this thesis we use the
terms scenario, trace and “system level scenario” interchangeably since traces are a direct
result of scenario executions.

A UCM specification integrates multiple scenarios; some with separate starting points
and others that share starting points but under different types of input data, or different

system states. We define system level scenarios as being end to end scenarios in which

55

each scenario starts at a start point and ends at an end point. System level scenarios make
use of a path data model composed of global (Boolean) variables used on guarding
conditions. A scenario definition contains a name, initial values for the global variables, a
list of start points, and (optionally) post-conditions expressed using the global variables.

The telephony system (Figure 2-1) integrates seven features into one single view. A
particular combination of features is obtained by initializing the feature specific global
variables. Feature global variables can informally be defined as those variables which
correspond to a feature plug-in in the system (i.e. subOCS) and allow a user to subscribe
to this feature if their value is true during a scenario execution. For instance, to enable a
feature F, we subscribe the user to the feature (sub_F:= true) and satisfy its precondition
(for instance Busy:=false). Based on these initial values of the global variables, the ASM-
UCM simulation engine generates system level scenarios (traces) which resolve choice
points found in OR-forks and in dynamic stubs. In cases where more than one condition
evaluates to true, the Asml-based simulation engine non-deterministically selects one

choice.

3.3.2 UCM Trace Analysis

In our approach, each scenario represents a test case which executes all UCM scenario
elements in a particular scenario. Due to feature interactions, a requirement modification
will often affect more than one scenario. Having the traces from the executable UCM
allows us to apply dynamic dependency analysis to determine the impact of a
modification on the overall system. In our research, we define and apply both feature and
execution dependency analysis to answer questions about what and how objects in a

UCM are related to one another.

56

Feature dependency. Scenarios are directly mapped to functional requirements involving
one or more system features. Therefore, we can informally define scenarios as being
feature dependent when the following holds:

« two or more scenarios represent the same functional features or;

¢ twoO Or more scenario contain the same sub-scenarios.

We further refine this definition by assuming functional features are represented by UCM

plug-ins/stub combinations. We can now state that feature dependency at the UCM level

exists if one of the following two conditions holds:

e two or more scenarios contain the same sub-scenarios (share sub-scenarios with the
same start and end points) or;

o two scenarios Scl and Sc2 are feature dependent if they share the same plug-in

(feature) P , where Pa ¢ P={Pa, Pb ...Pz}.

One of the main challenges in analyzing functional dependencies in UCM is the use of
dynamic stubs. Dynamic stubs allow for the specification and visualization of alternative
behavior of scenarios. Being able to model such dynamic behavior is gaining more
importance due to the widespread use of protocols and communicating entities in most
systems. UCMs support the modeling of dynamic behavior through sub-maps, called
plug-ins, that are associated with a dynamic stub. Conditions (global variables) in
dynamic stubs define which plug-in is selected at run-time. A major advantage of

formalizing UCM is that these dynamic dependencies of the plugs are resolved

57

dynamically by executing their conditions and calling the respective plug(s) as part of the

selected execution path.

Execution dependency. Execution dependency, a more fine grained dynamic dependency
analysis, focuses on the interaction of scenarios and shared elements within a model.
Therefore, scenarios are execution dependent if they share common elements during their
executions. In a UCM context, one can apply scenario execution dependencies at two

abstraction levels: component and domain element.

e Component execution dependency

From an UCM perspective, a component dependency exists when two or more scenarios

share the same component C’, where C’ c {set of UCM components}.

¢ Domain element execution dependency

Domain elements are execution dependent if their scenarios share common Use Case
Map domain elements. We base our definition of domain elements on a subset of the
elements introduced in [52]. We can now state that E is a set of UCM domain elements
where E= {SP U EP U R U AF U AJ U OF U OJ U ST}, where SP is the set of Start
Points, EP is the set of End Points, R is the set of Responsibilities, AF is the set of AND-
Fork, AJ is the set of AND-Join, OF is the set of OR-Fork, OJ is the set of OR-Join, and
ST is the set of Stubs. Thus, we can specify now that two scenarios scl and sc2 are
domain element execution dependent if both scenarios share any executed element E’,

where E’ CE.

58

Execution dependency, therefore, can be seen as an extension of feature dependencies
allowing for the support of different impact analysis granularity levels. For example, the
component execution dependency can be applied for distributed and/or larger systems
(both typically modeled in UCM) to comprehend components (subsystems) and how
these might be affected by a specific requirements modification. The domain element
execution dependency, on the other hand, focuses on a more fine grained analysis at the
UCM domain element level and provides insights on how these lower level domain
elements might be affected by a modification request. It should be noted, it is similarly
possible to assess global variable dependency amongst scenarios which can be defined as

scenarios that share the same global variables.

3.3.3 Combining UCM with FCA

In Figure 3-1, we presented a general overview of our UCM_FCA methodology
including the different types of modification analysis supported by our approach. In what
follows we focus on the process of applying FCA for UCMs.

In our research, we apply FCA to automatically identify different types of dependencies
from collected UCM traces based on the object/attribute pairs used as input to FCA

(shown in. Table 3-1).

59

Dependency Analysis Type FCA-Objects FCA-Attributes
: UCM traces . .
Functional dependency (Scenarios) UCM plug-ins (within stubs)
Domain element execution UCM trgces UCM domain elements
dependency (Scenarios)
UCM traces
Component dependency (Scenarios) UCM components

Table 3-1: The Mapping of Execution Dependencies to FCA Concepts

In our approach, UCM scenarios are executed first to allow the collection of execution
traces, and then filtered to generate the FCA format inputs. The FCA algorithm then
calculates concepts, and builds up the dependency lattice from the UCM execution traces
collected. As shown in Table 3-1, we distinguish three types of dependencies to support
our evolution analysis at the UCM level. Functional Dependencies: To identify the
functional dependencies through FCA, we apply the following object/attribute pair as
input to the FCA analysis. UCM traces are mapped to objects and UCM plug-ins (mini
scenarios) to attribute(s). Domain element execution dependency: Similarly, we create
for the domain element execution dependency the following object/attribute pair as input
to FCA: UCM traces (scenarios) become objects and UCM domain elements are mapped
to be attributes for the analysis. Component dependency: For the component dependency

analysis, we map the UCM traces to the objects and UCM components as attributes.

3.3.3.1 Apply Formal Concept Analysis

As illustrated by figure 3-2, generated /existing Use Case Maps will be validated and

60

Validated and
Formalized

Create

Generate
Figure 3-2: The Process of Generating Concept Lattice from UCM Traces

formalized through ASML engine [51] which will output UCM traces (an example is
shown in Figure 3-3). These traces will be filtered via a UCM_FCA filtering technique to
prepare them in a context format required by FCA algorithm.

This context format is simple and is stored in a text file composed of lines of object
names followed by their attributes, similar to what follows:

objectl : attributel.1 attribute 1.n

object2 : attribute2.1 attribute 2.n

objectN : attributeN.1.... attribute N.n

61

Start Executing: MainReq

MainReq.active:inl

MainReg:Rule of Start Point:Req

MainReg.active:el

MainReq:Rule of Stub_Construct:S0rig
Execution of Plugin: Orig_plugin

MainReq.active:0rig_inl

MainReq:Rule of Start Point:3tart

MainReq.active: 01

MainReq:Rule of Stub Construct:3screen
Execution of Plugin: DEF Plugin

MainReq.active:DEF_inl

MainRecg:Rule of Start Point:Start

MainReq.active:DEF1

MainReq:Rule of End point:fail

MainReq:UpStub executed

MainReq.active:es

Responsibility: fwd sig in component: Agent Orig

MainReg.active:e6

MainReq:Rule of End point:busy

MainReq:Execution Terminated successfiully
Figure 3-3: An Example of a UCM Trace
The calculated concepts and their relationships are then listed and an output file is created

in a specific format (Graphviz [12], section 3.3.3.2) as shown in Figure 3-4.

62

graph conceptlattice {

lahel = "concept lattice

node7[label="\nd", fontsize=10, labelfloat=true]:

nodeé6 [label="\nH", fontgsize=10, labelfloat=true style = dotted]:
node5[label="Sc4\nC", fontsize=10, labelfloat=true] ;
node4[label="Sc1\nB*", fontsize=10, labelfloat=true style = bhold];
node3[label="\nG* D*", fontsize=10, labelfloat=true style bold color =red];
nodeZ [label="Sc2\nF", fontsize=10, labelfloat=true style = bold color =red]:
nodel[label="5c3\n", fontsize=10, labelfloat=true style = bold]:

node0[label="\n",fontsize=10, labelfloat=true style = bold]:;

nodel -- node0;

node2 -- node0;
node3 -- nodel:
node3 -- node2;
node4 -- node0;
nodeb5 -- node4;
node6 -- nodel:;
nodet -- node4;
node? -- node3;
node? -- node5;
node? -- node6:

}
Figure 3-4: A Sample Concept Lattice in Graphviz dot Format

3.3.3.2 FCA Visualization

From the textual representation of the FCA results (Figure 3-4), it is difficult to identify
and comprehend the relationships among the various FCA concepts. Providing a visual
concept lattice representation can reduce the information complexity and enhance the
analysis and comprehension of the results. As part of this research, we performed a brief
survey of existing graph visualization software and selected Graphviz [12] as our
visualization engine for generating the concept lattice. It was selected mainly because our
original FCA engine was easily adaptable to the Graphviz input format. Furthermore,
Graphviz, an open source graph visualization software, “takes descriptions of graphs in a
simple text language, and make diagrams in several useful formats™ [12]. It has several

layouts and diagram drawing features (colors, fonts, tabular node layouts, shapes, etc)

63

and has various output formats (such as images, Postscript for inclusion in PDF, etc).

Figure 3-5 displays a screenshot of Graphviz program.

Figure 3-5: A Screenshot of Graphviz Program

In this thesis, we used the dot layout which can perform the hierarchical drawing of

directed FCA graphs.

3.3.4 UCM Change Impact Analysis

Impact analysis focuses on identifying those parts of a system that are (potentially)
affected by a modification request. As stated earlier, one of the objectives of our research

is to develop an approach that predicts such potential changes without the need to analyze

64

and comprehend the source code of the system to be modified. In our approach we
combine UCMs with FCA to perform such a high-level change impact analysis.

In what follows, we present our approach for generating the impact sets related to a
modification request at the UCM level. Before presenting our approach, we introduce the
assumptions we have made with respect to the change set. As part of our assumptions,
we define a change set as all the known elements that will be affected by the planned
change. We also assume the Modified Element (ME) is known prior to performing the
change impact analysis.

For the impact analysis itself, we apply an approach similar to the one introduced by
Tonella in [115]. Tonella et al. identified relationships between execution scenarios and
the executed programming entities by means of FCA to determine the impact set.
Tonella’s approach uses program slicing to generate the decomposition slices for the
analysis of FCA and to reduce the complexity of the data set generated from the source
code. In our approach we do not use decomposition slices since: (1) while performing
impact analysis at the requirements level, we typically deal only with a limited
complexity compared to the source code based approach; (2) Tonella had to apply
decomposition slices to identify code relevant to a given scenario while in our context
we have already dealt with abstractions through the formalization of the UCM elements
and the generation of the UCM traces; (3) the UCM traces generated by our system do
not provide sufficient fine-grained information (data dependencies) to perform program
slicing therefore requiring us to introduce different types of dependency analysis in order
to identify the potential UCM elements and to identify scenarios that are either directly or

indirectly affected by a modification request.

65

However, as mentioned in [16,19], by considering both direct and indirect (transitive
closure) impacts, the results impact set can become extremely large due to overestimating
the result set. Given such a large impact set, its analysis and verification might become
impractical. Therefore, in many cases, some sort of measurement (i.e. distance measure
[19]) has been suggested in order to reduce the number of false-positive cases and/or to
limit the scope of the analysis. Overestimation becomes even more likely at the
requirement specification level due to the lack of detailed fine-grained (implementation
level) knowledge and the nature of Use Case Maps (isolating and encapsulating of
complex details of lower levels of abstraction [10]). Therefore, we limit our dependency
analysis by default to one level of transitivity. It should be noted however, that users can
extend the analysis by specifying other levels of indirect dependencies to be considered

in the analysis.

In the first part of our impact analysis, a user specifies a scenario element to be modified
and selects the type of dependency analysis to be performed. In what follows, we
illustrate the computation of direct impact set by means of scenarios that share the

modified element (ME).

F EndPoint

EndPoint

StartPoint

._

EndPaint
]

X-

EndPoint
. |

Figure 3-6: A UCM Root Map Example

66

Based on the UCM example in Figure 3-6, we first create the required traces for the FCA
analysis by executing the formalized UCMs in the ASML engine and filtering them into

FCA supported format. Figure 3-7 shows UCM trace being generated and used as input

to FCA analysis.
Sc: A C H B
Sc2:A G D F
S¢3:A H G D
Scd: A C
Sei:A G D

Figure 3-7: Simple FCA Context

The FCA algorithm then computes concepts based on their commonality and builds up
the dependency lattice. Next the ME is chosen and all scenarios that are potentially
affected by this change request are identified automatically.

Given the concept lattice in Figure 3-8 and a change to element H (in this case, a UCM
responsibility domain element), the concept containing H will include all these concepts

in the change set that can be identified by traversing the lattice downwards, including all

reachable nodes (high lighted).

In order to distinguish between objects and attributes, the nodes in the lattice include two
parts. The object (scenario) is always on the upper line and the attribute (list of UCM

elements) is placed on the lower line.

67

concept lattice

Figure 3-8: Concept Lattice Representation
In order to determine the impact of modification request for element H on the remaining
parts of the system, further analysis is required. In the case of H in Figure 3-8, we will
know the two scenarios Scl with attributes {A,C,HB} and Sc3 with attributes
{AH,G,D} are potentially affected by the modification. Since FCA provides an analysis
based on commonality among objects (in our case scenarios), the FCA lattice will
automatically include all scenarios directly reachable in the concept lattice. It has to be
noted that FCA will not consider the potential effects of execution sequences on these
impact sets, since the FCA analysis is performed on a non-ordered set. Without the
information on the execution order of elements, the analysis will therefore consider

elements as potentially affected regardless if they are executed prior to the change or not.

68

This imprecision in the analysis can lead to a large change set of domain elements
potential affected by the modification.

We address this limitation of our original FCA-based analysis by integrating information
about the order of domain element executions within the FCA lattice. This information is
derived by introducing a separate forward filtering step of the UCM traces that identifies
all elements modified after the modification point. We apply the following simple
forward filtering algorithm to identify these elements executed after the modification

point.

Input:UCM Scenario traces + (Modified Element ME)
OutPut: Filtered UCM traces, reduced set of potentially impacted elements
Stepl: (/* Searching ME */)
If (ME = component) then
If (ME found) then Compute all the elements which are bound to the component and the
consequent components; Go to step 2
Else notify user and exit;
End if
Else /* ME # component */
If (ME found) then Go to Step 2
Else notify user and exit;
End if
Step2: /* UCM Forward Traversal*/
If (ME = component)
Take all the collected components and their elements and traverse to scenario’s end point

If (ME # component)
Simply start from the ME and collect all the elements towards the endpoint.

The result of this filtering is shown in Figure 3-9. Elements denoted by a star are those
elements that are executed after the modification to element H is performed, and
therefore, are also likely to be affected (direct or indirectly). Based on extended analysis,
not only Scenario 1 and Scenario3 (containing elements D and G) are identified as being
directly affected, but also Sc2 might be indirectly affected. Note that all scenarios which
are affected, either directly (bold) or indirectly (dashed) by the modification request, are

highlighted in the concept lattice.

69

concept lattice

Figure 3-9: Concept Lattice Indicating Direct and Indirect Impacts

3.3.5 UCM Regression Testing

For the selective regression test analysis, a concept (requirement) to be modified is
specified. Based on the selected modified requirement, the regression test analysis
identifies all test cases that need to be potentially re-tested after the modification is
performed. The test cases are identified by traversing the execution dependency lattice
downward until all reachable leaf nodes (test cases) that execute the modified component

are included. Test cases which are non-leaf nodes and contained in the path between the

70

modified node and its reachable leaves are ignored, since they are already covered by the

leaf node test cases.

Ir shared by

Medified Node

Test Case to be Retested

@ Tnternal Mode
concept lattice

Figure 3-10: Concept Lattice Representing Selected Regression Tests

In what follows, we describe how our method supports selective regression test case
analysis at the UCM level. We will also discuss how the selection of the re-usable test
cases can be performed. The goal of our test case selection technique is to identify every
test case exercising a modified requirement element, thus similar to the coverage
techniques for regression testing discussed in section 2.3.2. As stated in the criteria of our
hypothesis, we can identify all the test cases that execute a particular UCM path and its
UCM elements since each node in our dependency lattice represents a group of UCM
elements that are executed by a particular set of test cases (scenarios). The dependency

lattice (execution/functional or component) is traversed downwards based on the FCA

71

reading technique for non-redundant-labeling lattice - passing up the objects and passing
down the attributes to the concept of interest (see section 2.2). As a result, all the objects
that are downward reachable leaf node objects (scenarios/test cases) from the concept

being changed are the test cases that execute the modified request.

However, there are cases where a test case can exist in non-leaf nodes located between
the modified node and its reachable leaves. If such leaf-level test cases are invoked, all
the non-leaf-level test cases included on this path will automatically be invoked. Thus,
the non-leaf-level tests can be omitted, and the list of test cases to be re-tested can be

reduced to include only the leaf nodes.

3.3.6 UCM Feature Interaction

Scenarios are behavioral definitions of use cases which typically correspond to user
requirements. From a maintainer’s perspective, it becomes important to identify which
scenarios contain which features, and whether a feature interacts with other features. The
formalization of UCM allows for the execution and generation of traces to be used in
FCA. The quality of the FCA depends directly on the quality and coverage achieved by
the traces used for the analysis. For that reason, we assume every scenario at the UCM

level was executed at least once.

For the analysis of feature interactions we adopt a three step methodology that analyzes
and classifies features based on their interactions. We apply the following classifications

for the feature interactions [49, 68]:

72

o FI never occurs: Corresponds to scenarios which contain none or only one feature.

e FI occurs: FI occurs will occur, if there exists two feature global variables (sub_F1,
and sub_F2) but only one corresponding feature plug-in (plug-in_F1 OR plug-
in_F2).This corresponds to a situation where the system selects one of the two
possible features.

e FI can occur (FI prone): A scenario is FI prone when there exist two feature global
variables (sub-F1 AND sub_F2), as well as their corresponding plug-ins (plug-in-F1
AND plug_in_F2).

Before introducing the three steps involved in our scenario analysis, we introduce our

assumptions. A scenario Scl is a subset of all UCM scenarios SC, where Scl c {SC}.

We assume that a featured-scenario will contain at least one feature implemented through

one or more non-default plug-in(s). For illustration purposes, we also assume that plug-

ins are annotated with the name of a feature. For example, feature Call Forwarding Busy
line (CFBL, see section 5.3), which is implemented using three plug-ins {Busy CFBL,

Busy Setup CFBL and Busy Disconnection CFBLY}, is annotated simply as CFBL plug-in

since all contain CFBL in their plug-in name. In Figure 3-11, our three-level feature

interaction process is presented followed by a description of each step.

73

Figure 3-11: Feature Interaction Methodology Process

First Step. Execution traces are generated for all scenarios defined in the UCM. The
collected traces form the input to the FCA analysis. It should be noted that in this step the

annotations of the plug-ins are simplified and default plug-ins are eliminated.

Second Step. A FCA concept lattice is generated: Global variables of features
corresponding to attributes and scenarios become the objects. Based on the resulting
FCA, the system can traverse up each scenarios and eliminate those scenarios which
contain none or only one feature global variable. These scenarios can be excluded from
the next step of the analysis since they are “FI never occurs”, thus reducing the number of

scenarios that have to be analyzed for FI.

74

Third Step. The actual remaining scenarios are classified as either FI occur or FI prone
by passing down all attributes from the upper levels in the concept lattice associated with
the particular scenario.

Once the scenarios are classified as either FI never occurs, FI prone or FI occur the

modification request analysis can be performed.

3.3.7 UCM Bad smell detection

In the context of our research we extend the original definition of bad smell at the source
code and design level to the UCM specification level. In what follows, we present 5 bad
smells based on Fowler’s definitions and apply the notion of bad smells at the UCM
specification level. The motivation for using these bad smells is to provide
analyst/managers with some guidance in identifying potential parts of the Use Case Maps
at the requirements level that are not well designed or difficult to evolve over time. From
a UCM perspective, UCM language elements (e.g., scenario, responsibility, plug-ins)
provide different levels of abstraction that can be analyzed to detect anomalies.

In this section we present several bad smells, and introduce major UCM specification

anomalies that can be flagged by our system.

3.3.7.1 UCM Bad smells

1. Bad Smell: Large Map
This bad small is adopted from the idea of Large Method, introduced by Fowler [39], and

mentioned in section 2.2.1.

75

Definition: We state that a Use Case Map is identified as a Large Map bad smell if a
UCM map contains a large number of domain elements and the
mechanism of sub-map for implementing features is not applied; thus

making the map unnecessarily complex and difficult to comprehend.

Effect: This bad smell results in an increase in system complexity and
complicates the comprehension and evolvability of features modeled
within such a map.

Example: The following example illustrates how a large map can complicate both
the comprehension of the map and the identification of features and their

interaction.

76

Figure 3-12: Example of a complex UCM with Large Map bad smell
Solution: Possible solutions include the creation of plug-ins to simplify the root-
map.
2. Bad Smell: Bloated Map
In an object-oriented program, a Blob represents procedural thinking [24]. Our definition
for a Bloated Map is very similar to of that of Large Map; however, in Bloated Map,
plug-ins have been partially implemented, but other parts of the map may still suffer from
a lack of plug-ins being used to further reduce the complexity of the map.
Description: A UCM map with some existing sub-maps is regarded as bloated if
complex parts (mainly groups of UCM domain elements which are

executed together) could be implemented as a plug-in.

7

Affect:

Example:

The larger the number of attributes found in a bloated map, the more the
re-use and comprehensibility of the map is affected.

In the following example R1, R2, R3, and R5 correspond to four
responsibilities that are executed together no matter what condition is
chosen. Therefore, to reduce the complexity of the root map, these
responsibilities can be implemented in a re-useable plug-in, making the

root map simpler and easier to comprehend.

78

, g /
3.]
=y 4,/
S1 Ii) C1-1
S — | Ré6 -A1-

El E1-2

Plug-inl

Figure 3-13: Example of a Complex UCM with Bloated Map Bad Smell
Solution: Bloated parts of the system are possible candidates for restructuring by
clustering the complex parts (mainly groups of UCM domain elements

which are executed together) into plug-ins.

3. Bad Smell: Shotgun Surgery

Shotgun smell is an adaptation of Fowler’s [39] Shotgun Surgery bad smell, however
change smells are not directly visible in the UCM and can typically only

be identified by applying FCA on the UCM traces.

Description: When a change in one element of a UCM scenario results in changes in

many other scenarios, due to the fact that these scenarios all share this

79

Affect:

Example:

same element, the UCM is considered to have Shotgun Surgery bad

smell.

An attribute with high-change-coupling bad smell can result in many
unwanted ripple effects. In addition to complicating comprehensibility
and re-usability of the system, when an attribute is shared by many
scenarios, a change in that attribute could potentially affect all of those
scenarios.

We can use the example presented in Figure 3-14. Many domain
elements within this UCM (i.e. S1, R1, etc) have high-change-coupling
because they are shared in most of the UCM system scenarios. However,
identifying this type of bad small is a very difficult task in UCMs,
especially in more complex systems because of a system’s dynamic
behavior and the need for execution dependencies to perform the

detection.

80

C1 c2

51 Ri R2
."--._ 3¢ R3

E2 Stub2

R4

Stubi

"\
l\—)é-’" dri NS

Figure 3-14: Example of a Complex UCM with Shotgun Surgery Bad Smell

Solution: As mentioned in [39], ideally one should arrange the UCM elements so
there is a one-to-one relationship between common changes and
scenarios. Modifying a shared attribute should take place with extreme

caution due to the potential impact on the other elements.

4. Bad Smell: Aggressive Scenario

The forth bad smell introduced at the scenario level is based on the idea of cohesion and

high-complexity defects such as Large Class bad smell in section 2.2.1. The idea is to

adopt “The Swiss Army Knife” design defect smell which can be described as “a

complex class that offers a high number of services to address many different needs”

[92].

Description: = We state that a scenario in a UCM system can be called an aggressive
scenario if the scenario is trying to perform a large amount of
functionality and involves a large number of plug-ins (features),

components (in many cases components represent classes) or both.

81

Affect:

Example:

When a scenario contains too many plug-ins or components, keeping
track of interactions among these elements is difficult and makes it hard
to maintain and modify the system. Also, Aggressive Scenarios might be
the core scenarios of the system and contain a significant amount of the
business rules, and therefore modification to this scenario might impact
a large number of other scenarios. The complexity of these scenarios and
their interactions with other UCM language constructs will have a
negative impact on their comprehensibility and maintainability.

The example below illustrates an Aggressive scenario with plug-ins and
components being nested and scenarios containing a combination of
these plug-ins and components. Even though these plug-ins are shown in
Figure 3-15, determining manually which nested components and plug-
ins are used by a particular scenario is difficult. The comprehension
problems are due to the potential complexity of scenarios and their

dynamic behavior as a result of the use of dynamic plug-ins.

82

Figure 3-15: Example of a Complex UCM with Aggressive Scenario Bad Smell
Solution: A complex scenario can possibly be composed to smaller more easily
handled UCM scenarios.
5. Bad Smell: lazy component /plug-in
The fifth bad smell introduced in this research is adopted from the idea of Lazy Class bad
smell introduced by Fowler [39] and described in section 2.1.4. This bad smell is related
to those components or plug-ins that are providing only minor functionality or services to

other scenarios using them.

Definition: Those plug-ins or components which are contained only in very few

scenarios may suggest they are not performing much of a system’s

functionality, and therefore, they are a Lazy Component/Plug-in.

83

Affect: Each UCM construct will cost effort, money and time to maintain and
understand. A not-so-very useful construct will not be worth the cost.

Example: This type of UCM bad smell is also difficult to detect from the UCM
itself, and there is a need for other techniques to aid in the detection.

Solution: Lazy UCM constructs are good candidates to be eliminated from a

system or to be joined with other existing constructs.

3.3.7.2 UCM Bad Smell Detection

The manual detection of the previously-introduced UCM bad smells is difficult due to the
dynamic behavior of scenarios and the execution dependency amongst UCM domain
elements. In what follows, we demonstrate our approach, and how by means of FCA

these previously defined bad smells can be detected at the UCM level.

1. Large Map

Intuitively, one sign of the Large Map bad smell is its sheer size and complexity. This
bad smell occurs when no plug-ins are used to reduce the size of a map. Figure 3-12
(section 3.3.7.1) illustrates such a large map bad smell, which can be detected through a
visually inspection of the UCM. Applying FCA enables us to go a step beyond just
detecting the obvious large map smell; it also allows for the identification of a potential
grouping of elements that are always executed together, and therefore, would make a
good candidate(s) to be implemented as part of a plug-in. For the analysis we use and
perform FCA to generate the concept lattice shown in Figure 3-17. (In the trace
represented below, Figure 3-16, Sc represent scenarios, while S is for Start points, R,

responsibilities, and E stands for end points).

84

Sc1: 81 83 R1 R2 El

Sc2: 81 83 R1 R2 E2 R3 R4 R5 811 R7 R8 R? 88 39 S10 R10 R11 R12 86 87 E3
S¢3:82 83 R1 R2 E2Z R3 R4 R5 811 R7 R8 R9 88 89 S10 R10 R11 R12 86 87 E3
Sc4: 34 RZ E2Z R3 R4 R5 311 R7 R8 R9 88 39 810 R10 R11 R12 86 §7 E3
Sc5:85 R2 E2 R3 R4 R5 511 R7 R8 R9 58 39 310 R10 R11 R12 36 87 E3

Sc6: 84 RZ2 E? E1l

Figure 3-16: UCM Traces of Large Map Graph

concept lattice
Figure 3-17: Concept Lattice Corresponding to Large Map Bad Smell
As shown in Figure 3-17, concept #5, framed by the dashed line, suggests that these
attributes should be further investigated for the possibility of breaking them into smaller
groups of plug-ins. One approach to identify these potential bad smells is introducing a
user-defined threshold (depending on application domain, system, etc) based on the ratio
between the number of attributes in each concept (NOA) and the total number of
attributes (totaNOA) in the lattice. Cases, where the ratio of attributes is larger than the

specified threshold, might indicate a potential bad smell.

&5

2. Bloated Map
For the detection of the UCM Bloated Map bad smell we re-apply FCA on the UCM
traces to identify bloated concepts. For this bad smell, a concept is regarded as bloated if
the ratio of attributes, in this case UCM domain elements (NOA) divided by the total
number of attributes (totalNOA) in a lattice, is greater than a user-defined threshold.
An example 1s given in the UCM shown in Figure 3-13 (section 3.3.7.1) consisting of 3
scenarios and their corresponding responsibilities, start/endpoints and stubs. From these
scenarios, the FCA lattice shown in Figure 3-19 can be generated. Concepts shown with
dashed lines correspond to bloated concepts flagged by our tool. These bloated concepts
indicate that the number of domain elements associated with the concept exceeds the user
defined-threshold and further analysis is suggested. However, it should be noted that the
concept containing scenario 2 (Sc2) contains, as a domain element a stub, and therefore, a
plug-in has already been applied. However, our tool will still identify it as a candidate of
a bloated map bad smell.

Scl: 81R1 R2 R3 R5 R7 R8 St1 R13 R9,E2

Sc2: 81 R1R2 R3 R5 R7 R8 5t1_ R12 5t1 R16 St1_E12 R9 E2

3c3:31R1,R2 R3R4 R6 R5 R7 R8 St1_R13 R9 E2

Figure 3-18: Bloated Map Bad Smell UCM Traces

86

B‘lo‘at‘ej d i

|
I
I
I HE RY RS RI BRI REE2RY 51
I
L

“._..mzé._ Y-

A - -

!
|
M _EL 811 ag/} '
e J'

concept lattice

Figure 3-19: Concept Lattice Corresponding to Bloated Map Bad Smell

3. Shotgun Surgery

As a result of using FCA for UCM, attributes located in the lattice supermum (top) are
common amongst all the existing scenarios. Therefore, a change in those attributes may
result in a change in all other scenarios, thus making them prime candidates for further
analysis to improve maintainability of the system. The Shorgun Surgery bad smell
identifies such modification-prone attributes by computing the ratio between the number
of scenarios (NOS) sharing the attributes of a concept divided by the total number of
existing scenarios (totalNOS) within the concept lattice. In what follows, we revisit the
UCM presented in (Figure 3-14) and study the generated concept lattice to identify

attributes with shotgun surgery bad smell.

87

Scl:81R1R2 R3R4 8T1 R5 E1
Sc2.81R1RZR3B8T1 STZEZ
Sc381R1IRZR3R4ST1 ST2ZEZ
Sc4:831R1R2R38T1 R5E1

Sc5 81 8T2E2
Figure 3-20: Shotgun Surgery Bad Smell UCM Traces
As shown in the Figure 3-20, one can observe that concept 1 and 2 in the lattice are
identified as potentially containing domain elements with high change coupling (Shotgun

Surgery).

concept lattice

Figure 3-21: Concept Lattice Corresponding to Shotgun Surgery Bad Smell
4. Aggressive Scenario
For the detection of UCM Aggressive Scenario bad smells, for each scenario we calculate
the ration between number of plug-ins or features (NOP), number of components

(NOComp),or both, by dividing them with the (total(NOP + NOComp)) within the

88

concept lattice. If the ratio is greater than a user-defined threshold, our system will flag
these scenarios as an Aggressive Scenario bad smells.

Given is the UCM example presented in 3-15 consisting of 5 scenarios, 4 plug-ins (nested
plug-ins) and 6 components (C1, ...C6).

SclP1P2C1C3
Sc2P1P3C1C3
Sc3PIP3P5C1C2C3C4C5C6
Sc4P1P2P5C1C2C3C4C5C6
Sc5P4 C1

Figure 3-22: Aggressive Scenario Bad Smell UCM Traces
From the concept lattice (Figure 3-23), one can identify the scenarios Sc3 and Sc4 have
both been flagged by the system (dashed lines) as potentially aggressive scenario
candidates, suggesting this complex scenario should be simplified by possibly

decomposing them into additional scenarios.

concept lattice

Figure 3-23: Concept Lattice Corresponding to Aggressive Scenario Bad Smell

89

5. Lazy Component/Plug-in

A plug-in or component can be identified as a Lazy plug-in/component smell if the
number of scenarios (NOS) that each plug-in or component is used in, divided by the
total number of scenarios (totalNOS) in the lattice, is less than a user defined ratio.
Detecting Lazy Component/Plug-in through UCM (i.e., Figure 3-15) can possibly
become difficult for larger and more complex UCMs where identifying which plug-ins or
components are shared by which scenarios is no longer trivial. For example in Figure 3-
24, plug-in 4 (P4) will be identified as a Lazy plug-in since it is only used by scenario 5
(Sc5). This suggest further analysis is needed to determine if the plug-in should be kept

as is, merged with other plug-in(s), or just simply removed from the system.

concept lattice

Figure 3-24: Concept Lattice Corresponding to Lazy Plug-in/Component Bad Smell

90

3.4 Summary

In this chapter, we introduce our research hypothesis, goals, validation criteria and some
related work on applicable analysis techniques to support our research objective. We also
presented different analysis techniques to support the evolution of requirements at the
UCM level. It should be noted the modification analysis in our approach has limitations
similar to those of other impact analysis and regression testing approaches. Like many
impact analysis techniques, our approach supports mainly modifications of type
alternation. Potential impacts and re-testing effort involved in this type of change can be
predicted quite well using our UREAF. For modifications involving an addition or
deletion of domain elements, an iterative analysis approach can be applied. Modification
occurs at the UCM level, then the new set of UCM traces will be executed and the system

behavior after re-executing the UCM scenarios can be analyzed and compared.

91

4. UREAF_Analyzer

This chapter briefly describes some of the architectural and design aspects of our UREAF
Analyzer tool developed to demonstrate the applicability of supporting a semi-automatic
requirements evolution analysis at the UCM level. The UREAF_Analyzer provides a
proof of concept implementation of our requirements evolution methodology. The tool
supports: (1) different types of dependency analysis based on a user-specified analysis
request; and (2) visualizes the results from the change impact analysis, RTS technique,

feature interaction analysis, and bad smell detection.

4.1 Tool Architecture

The UREAF Analyzer is a Java implementation providing an analysis framework that
utilizes existing analysis techniques (FCA) with traces from formalized UCM, and
visualizes the results using the Graphviz visualization component.

In our system, each component acts as a single processing transformer - accepting inputs
and producing outputs which will be used as inputs for the subsequent components - thus

implying a pipe and filter architecture for our system (Figure 4-1).

Dependency
Formalized FCA format concept
traces files .

Figure 4-1: UREAF _ System Architecture
Figure 4-2 shows a component model to illustrate the overall architectural of our UREAF

Analyzer tool.

92

RTS_Parser
RTS_Componant

* visualize
I refings 1.x

uses Cl Parser 1. Component ConnectGraphviz Visualization

i AR] .
FCA_Console |+ visuglize ' Componant
Tl FCA Componant & - U8es _ | o
I I gses! -
1 1
!

— II\ :
FCA_Format | | L
" | Badsmall_Parser visuatize
! Badsmell_Component f—i
1 uses

Files
]

refines :
Fi_Filter
. Filtering Component FI_Component - o
visualize

Genarates

[Formalized UCM
] Component

Figure 4-2: UREAF_Tool Component Diagram

The Filtering Component transforms the UCM traces, generated by the Formalized UCM
Component, into an FCA .ctx compatible format creating the FCA_Format Files. The
FCA_Format Files are used for FCA, performed by the FCA_Component. The
FCA_Component is responsible for generating the corresponding concept lattices based
on the FCA Format File. Depending on the selected analysis to be performed, the
corresponding analysis components will be called and the results of the analysis will be
visualized in the form of a concept lattice using the Visualization Component. The
different analysis components are:

CI_Component determines the impact set of a specific UCM element and identifies the
scenarios and their containing elements which may potentially be affected.
RTS_Component determines the list of test cases to be re-tested after the program

modification is performed. The system first requires specification of the modified

93

elements (by the user) to be handled through CI_Component ,and then, the required
analysis will take place through RTS_Component.

FI_Component applies several filtering algorithms to identify and remove those scenarios
from the set of UCM scenarios that contain none or only one feature, since they are not
involved in any feature interaction. In the second step, the remaining scenarios are further
analyzed to detect those scenarios which either contain, or may contain, feature
interaction.

Bad Smell_Component implements different algorithms to detect five possible types of

bad smells within the UCM system by analyzing the result from the FCA.

%1 JRE Systom Ubeery [¥e1.5.0_1 1]

I3 I Fiter
i Parser

A

R Q8

conwspt Lattice
sk ki tom:

Figure 4-3: A Sample Screenshot of QOur Tool showing CIA and RTS Analysis

Visualization component:

94

In our research we have used Graphviz as an external graph visualization system for our
tool to provide a visual concept lattice representation of the results. Once analysis is
performed, the output file is generated (depending on the type of analysis) and the
Graphviz program will visualize the results. For example in (Figure 4-3), in the case of
Change Impact analysis and Regression Test Selection analysis, our tool identifies the
modified node as well as the selected test cases’ nodes within the execution dependency
lattice and uses Graphviz to highlight these nodes in the lattice.

This chapter briefly described the overall architecture of the UREAF tool, by providing a
component view and explaining some of the major components and those support

evolution analysis at the UCM level.

95

5. Application Examples

In this chapter, we present several application examples to demonstrate an initial proof of
concept for both, our requirements evolution methodology and our tool implementation.
In what follows, we apply our approach to existing UCM examples in order to show that
it is possible to apply formal concept analysis on UCM to support the analysis of change
impact, regression testing selection, feature interaction and, bad smell detection at the
UCM requirements specification level. In particular, this brief study will select various
examples of the UCM and apply the different aspects of our approach to produce the

required information for our requirement evolution analysis framework.

It should be noted that in this set of examples, we are limiting ourselves to direct
dependencies (direct impacts) in order to avoid overestimating the results at the
requirement specification level. This is significantly due to our lack of data control

dependency knowledge at UCM requirement specification level.

5.1 Change Impact Analysis

One of the main challenges in analyzing functional and/or execution dependencies in’
UCMs results from the use of dynamic stubs and the need to identify inter-scenario

dependencies that might exist in a UCM plug-in.

96

We revisit the telephony case study (Figures 2-1 and 2-4 in section 2.1) to illustrate the
applicability of our approach. This telephony system contains 4 functional features: basic
call, OCS, CND, and the combination of both OCS_CND. A scenario definition in UCM
consists of an identifier, a name, initial values for the global variables, a list of start
points, and post-conditions (optional) based on the global variables. In the telephony case
study, seven system-level scenario definitions can be identified (Table 5-1). It should be
noted that the detailed UCM for Simple Telephony System [81] contains an additional
plug-in and some other scenarios which have been eliminated from the model in order to

simplify the case study.

g Variables
=) fu s 2
g & 2 Z =3 N
5 2 £ e AEIEE
35 £) 219|122
[75] V4 = &= @) "g =
¥ = 2| @
W o
1 BCbusy T|-|F|F
Basic Call 9 BCsuccess F S| FIF
3 OCSbusy T|F|F|T
OCS Feature 4 OCSdenied F|T|F|T
5 OCSsuccess F|F|F|T
CND Feature 6 CNDdisplay F|-|T|F
OCS_CND 7 OCS_CNDudisplay FElrlITIT

Table 5-1: Telephony System Scenario Definitions [52]

Feature Dependency

In UCM, a plug-in represents a group of sub-scenarios containing a certain feature. An
example for such a feature is the OCS_plugin (depicted with dashed line in the concept
Table 5-2). All scenarios containing the OCS plug-in share the OCS functionality and are

therefore functionally dependent on the OCS feature. From the context table, one can

97

determine that Scenarios Sc3, Sc4. Sc5, and Sc7 share the OCS-plug-in. Therefore, any

change in this feature, or any of its elements, will potentially affect these 4 scenarios.

Orig_plugin term_plugin DEF_pIuiﬂmié:gtS”_Eluﬁj_r? CND_plugin

Sc1 X X X

Sc2 X X X

Sc3 x X

Scd X

Sch X

Scbé X

Sc7 x X

Table 5-2: Feature Dependency Context Table

For larger UCMs, the number of objects and attributes increases rapidly and the context

dependencies.

table representation will not provide sufficient abstraction to analyze and interpret the
3

Orig plugin
2 o -
’ b
f 54 A
term_Plugin + OC3_plugin "
NL o

s
@ Internal Node

LYY

4 ‘: Modified Node

Impacted Node

scl sc2
DEF. Plugin CND_Plugin

[N

concept lattice concept lattice

Example A Example B
Figure 5-1: Examples of Feature Dependency Lattice

98

Figure 5-1 shows the resulting graphical representation of the feature dependency in the

form of a concept lattice (based on Table 5-2). Objects and attributes in the concept

lattice can be distinguished by:

« The object (scenario) is always on the upper line (i.e., Sc4);

o The attribute (or list of attributes) is found in the lower part of each concept node
(i.e., OCS_plugin).

In Example A (Figure 5-1), a modification request for the OCS_plugin (concept# 3) is

analyzed. After selecting the concept node, all objects are passed from bottom levels up

to this node. As a result, scenarios sc4, sc3, sc5 and sc7 can be identified as potentially be

affected by the OCS_plugin modification request.

In Example B (Figure 5-1), a modification request for Orig_plugin (concept# 1) occurs.

The Orig_plugin (the topmost concept) implements the originating call features that are

shared by all other features (scenarios) in the telephony system. Traversing the concept

lattice, one can identify that in this case every scenario in the telephony system might be

potentially affected by the change.

Domain Element Execution dependency

As we have illustrated in the previous examples, FCA can ease the effort involved in
identifying potential ripple effects in scenarios. This analysis can be further refined if one
considers domain elements (such as start-points, responsibilities, etc) as the unit of
change. Changes at the domain element level might occur again as part of incorrect

requirement analysis and/or misinterpretation of client requirements.

99

The concept lattice in Figure 5-2 provides a view of the dependencies between domain
elements in the UCM and scenarios.

In this example, we select a concept (concept#7), containing only one attribute “ring” as
domain element (responsibility) and pass all of its objects up to this node. In this
example, all scenarios (sc2, sc5, sc6, and sc7) sharing this UCM element are included in

the change set of scenarios potentially affected (depicted in bold).

Rag Hgent Terto Soart Swerenn SOrig

6

contine

14

concept lattice
Figure 5-2: CIA_Domain Element Execution Dependency Lattice
A similar analysis can be performed for the other concepts in order to identify their

execution dependency between domain elements, concepts and scenarios.

100

5.2 Selective Prediction Regression Testing

In this example, we re-use the case study from section 5.1 to illustrate our predictive
regression testing approach. Given a concept lattice based on the execution of UCM
domain elements, we identify the scenarios that have to be re-executed after a

modification request is completed.

‘:'».M?.qugent__Tum Stert

2

3
Agert_Orig success o
4 5 6
repartSuccesy ringing contitiue ®

7
Q lﬂ
10
e
. digplay disp ’D

10

sl
digplay disp

14
conicept lattice { xx ' Modified Node coricept lattice
Example A iy Example B

@ TLiapacted Node

Test Cases to be Retested (Leaf Nodes)

Figure 5-3: RTS_Domain Element Execution Dependency Lattice
Assuming a given modification request (Figure 5-3 — Example A) involving concept #7,

this modification will affect potentially sc6, sc7, and sc5. Applying our FCA-based

101

regression test selection approach, one can limit the number of scenarios to be re-tested to

sc6 (at the minimum), since sc¢6 also includes sc5 and sc7.

In the second example (Figure 5-3, - Example B), we introduce a change in the most
common domain elements (concept #1). Using our selective regression testing approach,
one can quickly identify that only sc6 (concept #12), scl (concept #9) and sc4 (concept
#13) have to be re-tested (leaf nodes). Our initial case study shows that our test case
selection technique can be applied at different analysis granularity levels to reduce the

number of test cases at the requirements level.

102

5.3 Feature Interaction

In the next example, we introduce a POTS telephony service using UCM. The POTS

system is based on a 4-phase service decomposition [49]. The four service groups

provided by the telephony system are: (1) Service Request (2) Information Check (3)

Provide the service (4) Disconnection. Figure 5-4 shows the corresponding UCM root

map, with stub 1 representing the call request, stub 2 corresponding to the call checking

phase, stub 3, 4, 6 and 7 represent the call setup phase and finally stubs 5 and 8

correspond to call disconnection. The basic call model (BCM) describes the core

activities involved in establishing a communication between two users, A and B. The

basic call can be represented as a model containing the stubs {1: Default, 2: Default, 3:

Default, 4: Default, 5: Default, 6: Default, 7: Default, 8: Default}

¢ Ly
Service
Request

#4 o
f . 1",7‘\ I 8 5,
T, E 5 o~ - r
y 5‘-‘,*" ‘\(i’ |
S = Information :
Disconnection Provide Dj "
Check . isconnection
\ Service J J
Disconuection

[

Disconnection

Disconpection

» Disconnedtion

0y
o4 (N
B
] f—-{
\“”
- Disrmlzmz:‘m
A

Figure 5-4: UCM Call Model (root map) [49]

Adding Feature to the Basic Call Model (BCM)

From a requirements evolution perspective, modeling features, and their interactions are

an important aspect. In UCM, a combination of a root map, stubs and plug-ins can be

103

used to represent system features. The plug-in maps are sub-maps that describe locally
how a feature modifies the basic behavior. Adding features to such UCM collections is
often achieved by creating new plug-ins for the existing stubs or by adding new stubs
containing either new plug-ins or instances of existing plug-ins.

In what follows, we assume that features are an extension/modification of the POTS and
stubs are used to define them. As a result, adding features to the system will
automatically extend the scenarios in the basic call mode by adding stubs, plug-ins and
corresponding global variables (feature global variables) to the system. Consequently, a
scenario will only execute a feature if the feature specific plug-in(s), and enabling
conditions, are part of this scenario. The following is a list of features added to the
original BCM, with each of these features corresponding to a sub-map (plug-in) which
either adds a new, or substitutes an existing, stub [49]. For this example, we use a
combination of seven features that were originally presented as part of a common contest
case study for feature interaction detection [45, 62]. Each feature is described with an

end-to-end point of view and the different actions are not bound to network entities.

INTL (IN Teen Line)

The Teen Line feature restricts outgoing calls based on the time of day (i.e., hours when
homework should be the primary activity for teens). This feature can be overridden on a
per-call basis by anyone with the proper identity code. INTL modifies the BCM by
overriding the default plug-in of stubl with an INTL specific plug-in. As result, the
following INTL plug-in configuration is defined: {1: INTL plug-in, 2: Default, 3:

Default, 4: Default, 5: Default, 6: Default, 7: Default, 8: Default}

TCS (Terminating Call Screening)

104

The Terminating Call Screening, (TCS) feature restricts incoming calls. Calls from lines
that appear on a screening list are redirected to a vague but polite message. Adding the
TCS feature is accomplished by plugging the TCS sub-map into the second default plug-
in; therefore creating {1: Default, 2: TCS plug-in, 3: Default, 4; Default, 5: Default, 6:

Default, 7: Default, 8: Default}

CND (Calling Number Delivery)

The CND feature allows a called telephone to receive a callee’s Directory Number (DN)
and the date and time. In the on-hook state, the delivery of this information occurs during
the long silence between the first and second power ringing cycles. The CND feature is
added to the BCM through a CND sub-map plugging a Calling Number Delivery plug-in
into the third default plug-in. The new CND feature in the BCM corresponds to the
following scenario {1: Default, 2: Default, 3: CDNplug-in, 4: Default, 5: Default, 6:

Default, 7: Default, 8: Default}

INFB (IN Free Phone Billing)

The IN Freephone feature allows subscribers to pay for incoming calls. The addition of
INFB is done by plugging INFB sub-map “INFB plug-in” into the forth default plug-in,
creating the following scenario {1: Default, 2: Default, 3: Default, 4: INFBplug-in, 5:

Default, 6: Default, 7: Default, 8: Default}
OCS (Origination Call Screening)

The OCS feature forbids a call to phone numbers on a screening list. The OCS is added to

the BCM by plugging in the OCS sub-map into the second default plug-in, generating the

105

following new scenario {1: Default, 2: OCSplug-in, 3: Default, 4: Default, 5: Default, 6:

Default, 7: Default, 8: Default}

CFBL (Call Forwarding Busy Line)

This feature enables all calls to the subscribing line to be re-directed to a predetermined
number when the line is busy. The subscriber pays any charges for the forwarded call
from his station to the new destination. The subscriber’s originating service is not
affected by this new service.

The addition of CFBL requires adding the CFBL plug-in to the basic root. {1: Default, 2:

Default, 3: Default, 4: Default, 5: Default, 6: CFBLplug-in, 7: Default, 8: Default}

VM (Voice Mail)

All calls to the subscribing line are re-directed to a voice mail system. The voice mail
feature is added to the BCM by plugging in the VM plug-in into the basic root, leading to
the following new scenario: {1: Default, 2: Default, 3: Default, 4: Default, 5: Default, 6:

VMplug-in, 7: Default, 8: Default}

In this section we demonstrate how our methodology can support maintainers during the
modification analysis through the support of feature interaction analysis. In what follows
we revisit our original telecommunication example Figure 5-4 to demonstrate the
applicability of our methodology in guiding maintainers during feature interaction

analysis and feature modification impact analysis at the requirements level.

106

5ecd
INTL_Plugn

5¢20 Se22
VM _Plugin

concept lattice

Figure 5-5: Call Model System FCA Lattice

Our feature interaction identification and modification analysis approach starts with the
simplification of scenarios (the original concept lattice for the system is shown in Figure
5.5) by applying the following simplification steps:

1) Annotation of features that are implemented by multiple plug-ins and presenting them
as a single plug-in. The only feature matching this criterion in our example is the CFBL
feature. The CFBL feature itself is implemented through three different plug-ins: {Busy
CFBL, Busy Setup CFBL and Busy Disconnection CFBL} and sharing the same
sub_CFBL global variables. Also, all default plug-ins are removed from the lattice.

Figure 5-6 shows the resulting lattice after the simplification.

107

B¢l3 Se1d 8cl5 8l 8 Sedl 8e23 83 8cd
TC3_Plugin CFEBL Plugin

Sell Bel28el 520 8e22
QOCS_Plugin YM_ Plugn

Sc
CND_Plugin

* 8010 87 58 59
INTL_Plugn

concept lattice

Figure 5-6: FCA lattice of Annotated Plug-ins

2) In this step (shown in Figure 5-7), we perform a new FCA analysis to create a view
that is focusing on feature-related global variables (attributes) and scenarios
(objects).These global variables represent feature subscription of each scenario (i.e.
scenarios 7, 8, 9, and 10 are subscribed to INTL feature because they share subINTL).
More specifically, objects and attributes during this FCA analysis are:

* Object(s) are scenarios (e.g. Sc8, Sc9) shown in the upper part of the concepts

* Attribute (s) are global variables shown in the lower part of a concept

108

2
$c10-8c7 S8 8D
sbINTL

concept lattice

Figure 5-7: Concept Lattice Representing Single Feature Scenarios

Through the feature-related global variable analysis, those scenarios without any feature-
related global variables will be eliminated. This is because these scenarios lack attributes
to be used for the FCA grouping, and therefore, these scenarios are excluded from the
lattice. For the remaining scenarios, a scenario analysis will be performed by our system.

For example, while analyzing Sc6 (concept #7), the system will pass down Sc6’s
attributes subINFB to the current node. Since there is only one attribute for this scenario,
Sc6 will be categorized as a scenario involving only one feature. In another example
scenarios Scl8, or Sc19 (each will be process separately) are part of concept #8; the two
attributes subOCS (concept #3) and subTCS (concept #4) will be passed down to this
node from the upper concepts. As a result, both scenarios have more than one attribute
and the system will categorize these scenarios as scenarios that need additional analysis
during the third analysis step. This process continues until every scenario has been
analyzed and those scenarios with none or only one feature will be removed. Therefore in

our case study, only 8 of the original 23 scenarios (Figure 5.8) will be further analyzed.

109

O FI_Occur Scenarios
N

P e
! + FI_Prone Scenarios

Scly
OCH_Plugin

concept lattice
Figure 5-8: Feature Interaction Concept Lattice

3) In the last analysis step, the actual feature interaction analysis will take place. The
analysis is based on the reduced concept lattice derived from the first two analysis steps.
Figure 5-8 shows the feature interaction concept lattice with scenarios being its objects
and feature-related global variables and plug-ins being its attributes.

For the feature interaction analysis, a scenario is selected, for example. Sc/9 (concept
#6), and all its attributes will be automatically passed down {subTCS, subOCS, and
OCS_plug-in}. Based on the global variables, the system maintainer can now easily
identify two global subscription variables subTCS and subOCS, but only one
corresponding plug-in (OCS_plug-in). The fact that the TCS_plug-in is missing is caused

by non-determinism between the TCS and OCS feature. Based on our feature interaction

110

definition, such a non-determinism instance corresponds to an Fl-occur feature
interaction between the TCS and the OCS feature. The FI occurred is indicated in the
concept lattice by the concepts in bold. Another example for the feature analysis is Sc16
(concept#11), in which again all attributes are passed down {subTCS, TCS_plug-in,
subCFBL, and CFBL_plug-in}to concept #11. Through the FI analysis, we can now
identify that two features, TCS and CFBL, and their associate plug-ins are part of Scl6.
Based on our FI definitions, scenario Sci6 is categorized as FI prone (shown as dashed
lines).

The FI analysis results for our telecommunication case study shows that from the 8
remaining scenarios, only two scenarios Scl6 and Scl7, are FI prone in the
telecommunication system. The remaining 6 scenarios {Sc19, Sc18, Sc15, Sc21, Sc22,
Sc23} are all FI occur, meaning that feature interaction in these scenarios exist. The
remaining 15 scenarios eliminated during the initial two analysis steps are all FI never

occurs (table 5-3).

FI1 FI
Original | Non FI
occur | prone

Scenarios 23 15 6 2

100% 65% 26% 9%

Table 5-3: Feature Interaction Analysis

5.4 Bad Smell Detection

As discussed throughout, UCMs are able to show both the relationship among use case,

as well as the progression of their scenarios in a map-like approach. However, often these

111

UCM diagrams contain unnecessary complexity due to modeling problems and these
maps end up complex and unnecessarily difficult to comprehend. Therefore, detecting
such modeling problems through bad smells in the UCM system can assist requirements
engineers in identifying the parts of the system requirements that could potentially be

restructured to improve the comprehensibility and maintainability of the UCM models.

In this section, we illustrate how our UREAF Analyzer tool can be applied to detect

potential bad smells in UCM system.

5.4.1 Large Map Bad Smell

The following example models a UCM for an elevator system containing 6 scenarios

(shown in the Table 5-4) [117].

§ % g § % Variables
S
% <o 2 5‘; Z switchOn | OnList | UP | Reql | Req2
atFloor Scl | On_list - T - - -
atFloor Sc2 | Up_Two_Requested

floors) F T F T
atFloor Sc3 | Down_to

requested_floor
inElevator | Sc4 | Up_Two_Requested

T F T F T
floors
inElevator | Sc5 | Down_to T F F T T
requested_floor
inElevator | Sc6 | On_list - T T - -

Table 5-4: Elevator System Scenario Definitions

System description: In the elevator system, an elevator is called by pressing a call
button, either at a floor or inside the elevator. A floor number can be added to the list if
the switch is on (otherwise the system will shutdown). The doors will be closed and

depending on whether the up or down buttons were pushed, direction will be decided and

112

the elevator will move. It keeps moving and passing the floors that were not requested
when approaching each floor until the elevator passes by floor F. The elevator will stop at
floor F, and when stopped, it will open the doors. When the elevator doors have been
opened, they will automatically close after a delay and the floor number F will be deleted

from the list (Figure 5-10).

User Elevator Control System

down [not_requested)]

already on list

atfloor select_elevator

below Z [on st]dedde_on_direcﬁ[z:t;’i]

above 2 ionary-memory

[requgsted)

in elevator

motor_stop j

door_open
remove_from_list

N

at requested floor daor dosmgdeja}- A

" <
I [=
Servipe Personfid]” Arrivil Sensor

switkh off swigthon

approaching floor

Figure 5-9: Elevator system UCM [117]
As shown in Figure 5-10 (concept lattice), the resulting UCM contains only one complex
root map and no sub-maps, making this UCM quite difficult to comprehend. One
approach to improve the UCM is to identify UCM domain elements that can potentially
be logically grouped together and then move them into a plug-in. In order to create such a
grouping, we apply FCA to identify the domain elements that are executed together and
are common within scenarios. Using scenarios as objects and the UCM domain elements
as attributes as input to the FCA analysis, we can generate the following concept lattice
(Figure 5-10). In order to identify a large map bad smell, users will have to define a user-

specific threshold (see section 3.3.7.2) to be used by our bad small detection algorithm to

113

identify such large map bad smells. In this example, a default threshold value of 25% was
adopted, indicating that a concept contains more than 25% of the total number of concept
attributes in a system as too large. As shown in Figure 5-10, the concept identified by our
tool as a Large Map contains 57% of the total of attributes. This indicates these parts in

the concept might be good candidates to be moved into a sub-map.

[farge map |
| 3 |
| |

sffoer select_devator /| op stat 1 emo swtiching On switchOn pritchOf doar_cose app floa? app floar decids On_cir moving aRegFloor check d@]
| !

concept lattice
Figure 5-10: Concept Lattice for Large Map Bad Smell

5.4.2 Bloated Maps

The following example, taken from [117], describes a pizza delivery system. The

corresponding UCM for the pizza system is shown in Figure 5-11). The UCM includes 3

scenarios shown in the Table 5-5.

114

Variables
Scenario | Number Scenario Alllngredients CreditCard
. Stolen
Group Name Avail

anary Scl Normal Case T

Scenarios

Exceptional Sc2 Missing Ingredients F

Scenarios Sc3 | CreditCardStolen T

atFloor

System description: When ordering Pizzas, the system checks the customer credit cards.
If the credit is approved, the order will be confirmed, the pizza will be made and
delivered. If the credit card has been reported as stolen, the bank will request the
customer’s address from the receptionist. To avoid the customer becoming suspicious
and knowing the fraud has been discovered, the bank will pay for the pizza and the pizza
will be delivered.

The multi-step process of making a pizza is presented in the MakePizza plug-in with two
possible scenarios. In the first scenario, the pizza order is received and all the ingredients
are available which results in a pizza ready to be delivered. For the second scenario, some

of the requested ingredients are missing and the pizzeria will reimburse client for the

Table 5-5: Pizza System Scenario Definition

delay by refunding some money to the customer’s credit card.

115

HungryCustomer

Order

OrderConfirmed
|

=T

ChkCard
TakeNote GiveAddress

.
|

PizzaDelivered

-

¥
ThankYou PassCormnmand

| A

Figure 5-11: Pizzeria UCM [117]

AddSomelngredients

PizzaOrder PrepareCrust

Bank

Pizeria

CustomerReimbursed

Credit

ReimpurseSomeMoney

BakePizza PizzaAvailable

AddIngredients

MakePizza Plug-in

As shown in the UCM diagram in Figure 5-11, the map contains a sub-map to cluster

some of the scenarios. However, there are still parts of the map that are unnecessarily

complex and difficult to understand. Using FCA on the scenario traces, our tool can

identify UCM domain elements that are commonly executed together and should be

further analyzed. In this study, we again apply a default threshold value of 25%,

suggesting that any concept that contains more than 25% of all attributes in the system

will be considered bloated. Figure 5-12 shows that one concept can be identified that

contains 56% of the total of attributes and can be seen as a potential candidate for another

sub-map.

116

| bloated map

’ I
l |
} , |
S —
| g OrderConfim ThankYou TakeNote Charge ChkC ard Delivered PassC omm and VerifyC s |
| |

8e3
aredit Reimwrsed AddBomelngredients Reimburse
Se2
RegAddress GiveAddiess

‘ Sel
\ Addlngredients

concept lattice

Figure 5-12: Concept Lattice for Bloated Map Bad Smell

5.4.3 Shotgun Surgery

For the Shotgun Surgery bad smell, we revisit the example used in Figure 5-9, but this
time we look for those attributes that are shared among many scenarios, and therefore
their modification would result in changes to many other scenarios. Similar to the
previous defect measurement, we allow the user to decide on a threshold to be applied to
identify the bad smell.

In the following example we apply a default value of 75%, reflecting that an attribute
(UCM element, plug-ins, etc) is considered to cause a Shotgun Surgery bad smell if it is
shared amongst more than 75% of the total number of concept objects (scenarios) in a
system. Analyzing the elevator UCM (Figure 5-9), it is very difficult to determine exactly

which elements are highly shared among different scenarios. Applying our UREAF tool

117

we can identify such shared elements amongst the scenarios. In this concrete example
(Figure 5-13), any element which is used among more than 5 scenarios (75% of 6

scenarios) will be flagged as a potential “Shotgun Surgery” bad smell .

e
I

Shutgun Surgery |
|

udd fo list

@n switchOff daor_close app floar? app _floor decide On_dir moving wiReqFloor check doar Cls_delayremove_frm List doo

offloor select dlevatar

concept fattiee

Figure 5-13: Concept lattice representing Shotgun Surgery Bad Smell

As shown in Figure 5-13, the attribute in the top-most concept is shared by all scenarios

(100%) making it a candidate for the shotgun surgery bad small.

5.4.4 Aggressive Scenario

In the next example, adopted from [120], an online store web-application is presented.
For simplicity sake, we have chosen 6 of the 7-mentioned scenarios in [120] shown in

Table 5-6. (In order to simplify the table, we do not show the global variables).

118

. Scenario e
Scenario Group Description
Name
BaseCase Scl Custompr buys one widget and everything
works fine.
invalidAccount Sc2 Cgstomer can not download widgets
without a valid account
SecondThoughts Sc3 Customer brows again to review the cart.
MultipleProducts Scd Custom.er buys many widgets and everything
works fine.
i Customer brows again to review the cart and
Sc5 .
EditingCart ¢ remove/add widgets to the cart
MulitpleOrderes_Co Two customer buy many widgets and
Sc6
ncurrentCustomers download them

Table 5-6: Online Store Scenario Definition
System description: In the online store system, a customer is able to navigate through
the store’s homepage and will be presented with various categories of widgets. A
customer can view each category and select widgets from them to be added to his/her
shopping cart. The system will update the shopping cart and when no more items are
added to it, the customer can proceed to the checkout system. The checkout system
requires the customer to provide his/her account information. If the provided account
information is valid, the system will build an order summary including the totals and
number of items to be checked-out. Once the customer confirms the order, the payment
will be processed and the invoice will be displayed. At this point, the customer can
proceed to the download area where s/he can download the purchased widgets. If
customer’s account information is not valid, the process will terminate (Figure 5-14). It
should be noted that the authors [120] included some intentional errors in the requirement
specification for their own research purpose of detecting faults. Since these seeded errors
did not affect our research context, we focus on detecting modeling problems rather than

requirement faults. These original requirement errors were not removed.

119

Customer
_—

eaterSite 1 B‘W‘ﬁm"s o '(:.m}:\mm ourt v D‘W ouy; ExitSite
¢ | \ |
e
A
Root map for online store
mw{h’i;
i B
hsah kv
——
e, T
shiroclvbail
downloadAren {IN1}
et Customer S}'ﬂm '
sheinlagd
) | PordondAre processDownloadAres
ol ke 1
* |
downloadWidge: sendDowrload ™
BrowseCatalog Plug-in 4
chackong {IN1} st
Cistiing Sumes
ewLog and {OUT1
deeLegc " and {QUT1}
1
sptn Tosalidieosva]
¢ Download Plug-in

o

£

e (A7)

Checkout Plug-in

Figure 5-14: An Online Store UCM [120]

In order to detect whether a UCM contains aggressive scenarios, one has to determine

which scenarios involve a large number of UCM components/plug-ins. This is difficult

120

for large systems, especially when there might be more than one scenario with such
conditions.

Once again, we apply the notion of a threshold, this time specifying a default value of
75%, indicating that a scenario that contains more than 75% of a system plug-

ins/components is considered as being an aggressive scenario bad small.

L
ustomerComp systemComp BrowseC atalog plugin wnbound Checkout Plug

scl gc3 sed scl sch
Download. Plugin ProcessPayment Plugin

concept lattice
Figure 5-15: Concept Lattice Corresponding to Aggressive Scenario Bad Smell

Figure 5-15 shows that scenarios 1, 3, 5, and 6 contain all the existing plug-ins and
components in the given system making the maintenance and modifications of this plug-

in difficult to manage due to its coupling with all scenarios.

5.4.5 Lazy Plug-in/Component

For the Lazy Plug-in/ Component bad smell, we re-use the example used for the Feature
Interaction case study (section 5.3). Lazy UCM constructs are good candidates to be
either eliminated or merged with other existing constructs. In order to determine if a
plug-in or a component belongs to this bad smell category, we adopted a default
threshold value of 10%, indicating that a plug-in/component is considered to be lazy if it

is contained in less than 10% of the total number of scenarios within a system.

121

Scd
INTL_Plugn

Sc14 Sc1S 8cl§
TCH_Plugin Busy CFBL _Pligin

I Busy_SetUp_Plugin

. Busy Disc_Plugn

concept lattice

Figure 5-16: Lazy Plug-in example
From the analysis in Figure 5-16, we can see that all those plug-ins (dashed box) are
used in one scenario only and are therefore flagged as a Lazy plug-in/component bad
smell. One approach to fix these bad smells is to eliminate or merge these plug-ins
with other maps. It has to be noted that one of the reasons these lazy plug-ins exist,
could be the fact that they might have been intentionally created for further re-use or

extension of future scenarios. This is left to the maintainer to decide.

5.5 Related Work and Discussion of the Results and Limitations

In this section we will discuss and compare our work with existing research that is
closely related to ours with respect to requirements evolution by means of change impact

analysis, regression testing, feature interaction analysis, and bad smell detection analysis.

122

Change Impact Analysis. A significant body of research exists on impact analysis with
the majority of this work focusing on identifying changes and their impact at the source
code level [13, 43, 67, 115]. There is less work on impact analysis at the design [19, 20,
61] or requirement specification level [52, 54, 61]. Change impact analysis at the code
level has the advantage of being more accurate because it is based on final
implementation of the design. However, it also requires maintainers to have a previous
understanding of both the requirements and their mapping to source code in order to be
able to identify and localize the potential change.

Our approach differs from these source code-based impact analysis approaches by
identifying the potential impact of a change at the requirement level. Our methodology
does not require either a previous knowledge of the source code to be analyzed or the
source code itself. In [19], the authors proposed an impact analysis approach that can be
applied on UML models to detect direct or indirect impacts at the UML level. However,
their technique is based on traceability analysis and on the definition of specific change
propagation rules, with neither their completeness nor their correctness being guaranteed
[35]. Other approaches to identify the impact of requirement changes at the requirement
and specification level can be found in [52, 61,93 ,54]. In both [61, 93], guidelines for
changing requirements and design documents based on traceability techniques are
introduced. Our approach differs from this work through identification of actual impacts
using dependency analysis. In [52, 54], a lightweight approach base on Use Case Maps to
analyze the potential impact of requirement changes on a system is introduced. However

it was based on a static analysis approach leading to an imprecise handling of dynamic

123

plug-ins. Furthermore, the dependency analysis was not fully automated and did not
provide different levels of granularity. Our approach is automated and based on
dependency analysis technique utilizing the benefits (analysis and logical clustering) of
FCA. FCA has been previously applied in conjunction with slicing for determining the
change impact analysis at the source code level [115] called “Concept Lattice of
Decomposition Slices”. FCA has also been applied previously for extracting class

hierarchies at the specification level [109] and for recovering design patterns [116].

However, to the best of our knowledge, no previous work exists on utilizing FCA for
change impact analysis at the requirement level. Our approach is based on dependency
analysis technique and we believe it combines the benefits of formal modeling and the
analysis and clustering capabilities of FCA. Furthermore it allows for visual
representations of requirement changes. It allows us to easily generate different views to
enable maintainers and managers to better understand the impact of a requirement change

before actually committing to or implementing the change.

Regression Testing. Similar to the impact analysis approaches, most of the work on
regression test selection has been focused on the source code level [44, 96,97, 98, 99,112]
and some at the design level [20, 91]. However, to the best of our knowledge, there exists
no previous work on selective regression testing by means of FCA at requirement level.
In [20], a mapping between design changes in UML and code changes has been created
to classify code tests. In [91], an approach for selective re-test strategy was presented

which relies on categorizing changes to UML design.

124

The most closely related work to ours was presented in [112], where a greedy algorithm
using FCA uses attribute and object implications among the requirements and test cases
to minimize the number of test cases. However, it is source code-based and does not

provide support for change impact, feature interaction, and bad smells analysis.

Feature Interaction. There exists a wide range of notations and techniques in the
literature to describe features (LOTOS [8] [38], Chisel Diagram [3], Finite State
Machines [15] Use Case Maps [4], etc). Common to all of these notations is that a need
still remains for maintainers to be able to identify and understand the interaction among
features in a system. Among the existing research in the FI problem domain [27, 60], the
authors in [27] provide a comprehensive review of various feature interaction analysis
approaches. Some of these techniques are based on formal methods which are very
accurate however, their use in the industry is still quite restricted to people with the
necessary background in formal methods and are often difficult to implement. In Chisel,
for example, features are added in a “gluing nodes” fashion making it hard to identify
scenarios within an entire system [68]. The use of FSM in their approach has the
advantage of detecting all existing FIs; however, as the number of features grows the
number of states in the model also grows larger exponentially. There have been several
techniques proposed for FSM to reduce the number of states [28], however, these
techniques can be very complex and expensive [68].

The most closely related work to ours is [68], in which the authors propose a two-phase
FI filtering method based on UCM. A stub configuration is used and the analysis is

performed on a SC-matrix. In comparison to this work [68], our approach is more

125

conservative when it comes to distinguishing FI prone scenarios, and we are also not able
to detect all FI free cases within those FI prone scenarios. Common to both approaches is
their computation complexity and that both can be semi-automated. Our approach differs
from [68] in that we apply FCA, which is a more flexible, domain independent analysis
technique. Furthermore, because of FCA, the analysis is not limited to UCMs and its
notation; in fact, any formalized notation that allows the generation of traces can be
integrated with our FCA tool. Other differences between these two approaches are: 1) we
determine FI between features from executable scenarios that resolve some of the non-
determinism during the analysis; and 2) we can also assist maintainers in determining the

potential impacts of a feature modification request by combining UCM with FCA.

Bad Smell. Research on bad smell has focused mainly on source code [39, 69, 83, 109]
and design level [33, 86]. The work presented in [112] is similar to ours with respect to
detecting bad smells by means of FCA. The approach uses concept analysis for
refactoring object-oriented class hierarchies based on detected bad smells. In [115], FCA
was applied to restructure software modules; however, both FCA-based approaches [109
and 115] are at the source code level. Moha et al. in [85] use formal concept analysis to
“to Suggest Refactorings to Correct Design Defects. “ However, they restrict their
analysis to only the detection of cohesion and coupling by means of FCA. While some
techniques have been used to detect bad smells and perform refactoring and restructuring
at the formal requirement specification level [78, 79, 103], none of these techniques have
used FCA in their analysis. In [78] only some simple rules are explained which include

refactoring at method and class level , while in [103] a similar work has been done on all

126

class system level and the authors in [78] claim that all refactoring should be covered by

combining both approaches together.

Limitations and Discussion

We take advantage of FCA and its analysis and logical clustering flexibilities to support
additional modification analysis (e.g. feature interaction). Furthermore, because of the
use of FCA, the analysis is not limited to UCMs and its notation; in fact, any formalized
and executable requirement notation can be integrated within our modification analysis

framework.

We note that our approaches have several limitations, for example our change impact
analysis approach similar to other impact analysis approaches supports only
modifications or deletions. For new requirements, it is possible to use an iterative
approach by introducing the modification at the UCM level and to compare the system
behavior after re-executing the UCM scenarios. Also the accuracy of the FCA analysis
depends on the quality of the traces. In the context of our research, we assume the
executed scenarios achieve domain element coverage, meaning that every domain
element was executed at least once.

From a FI analysis perspective, our approach has limitations with respect to the lack of a

domain knowledge integration technique which could aid us in better clarifying cases of

FI prone scenarios.

127

Other limitations of our system are caused by the fact that our UCM traces do not provide
sufficient detail to allow for a more specific data dependency analysis, as well as the fact
that FCA does not consider sequence of events during the analysis. Both of these
limitations limit the ability of our approach to provide a minimization RTS technique.

The issue of scalability can be viewed as another limitation. Even though the approach
conducts the analysis at the requirement specification level and the size of the
dependency lattice might not get very large at this level, the possibility of encountering a
very large lattice as a result of a large number of UCM traces still exists. A solution for

this issue will be discussed in the future work section.

128

6. Conclusion and Future Work

In this research, we introduced a methodology to support the evolution analysis of
requirements by applying FCA to UCM. We introduced the concept of UCM scenarios
and different types of UCM dependencies and provided a complete methodology
including algorithms and steps involved to apply FCA for UCM change impact,
regression test selection, feature interaction and bad smell analysis. A proof of concept
prototype environment was implemented to support our methodologies and its
automation. The applicability of the presented methodologies and its tool support was
demonstrated and discussed using existing published UCM examples.

The major contributions of this thesis can be restated as follows:

(1) We presented a novel approach by combining Formal Concept Analysis with
formalized UCM traces to support requirement specification evolution analysis;

(2) We introduced different evolution analysis techniques, including change impact,
regression testing, feature interaction and bad smells detection at the requirement
specification level;

(3) We implemented UREAF _tool as a proof of concept, which implements the

introduced algorithms and methodologies and automates the analysis process.

As part of future investigation, finding new techniques to enrich FCA for detecting direct
and indirect impact analysis in a way that would reduce the number of false positive

cases would be interesting.

129

Moreover, there is a need to further evaluate and validate our approach by applying our
techniques on larger case studies, especially cases studies from industries other than

telecommunications and phone industry.

Also scalability issues need to be addressed, for example, by hiding unrelated parts in the

concept lattice representation.

Furthermore, when it comes to regression test selection, it would be interesting to
implement other techniques such as prioritizing techniques and compare those results
with our current approach. In respect to feature interaction analysis, a way to integrate
domain knowledge in order to determine FI cases would be interesting. Finally, in this
research we are not considering synchronization and the notion of time. It would be

interesting to investigate if our methodologies can fully support timed UCMs or not.

130

7. References

1. S. Anderson and M. Felici, "Requirements changes risk/cost analyses: An avionics
case study," Foresight and Precaution, Proceedings of ESREL, vol. 2, pp. 921-925,
2000.

2. R.S. Arnold. “Software Change Impact Analysis.” IEEE Computer Society Press,Los
Alamitos, CA, USA, 1996

3. A. Aho, S. Gallagher, N. Griffeth, C. Scheel, and D. Swayne. “ Sculptor with Chisel:
Requirements Engineering for Communications Services”. Fifth International

Workshop on Feature Interactions in Telecommunications and Software Systems
(FIW'98), Lund, Sweden, September, 1998, 45-63.

4. D. Amyot. “Use Case Maps as a Feature Description Notation.” FIREwork Feature
Constructs Workshop, 2000.

9

. D. Amyot. “Formalization of Timethreads Using LOTOS”. Master Thesis,
Department of Computer Science, University of Ottawa, Canada, 1994.

6. D. Amyot, R.J.A Buhr., T. Gray. and L. Logrippo, “Use Case Maps for the Capture
and Validation of Distributed Systems Requirements”. RE’99, Fourth IEEE
International Symposium on Requirements Engineering, Limerick, Ireland, June
1999,44-53. http://www.UseCaseMaps.org/pub/re99.pdf

7. D. Amyot, R. and Andrade, “Description of wireless intelligent network services
with Use Case Maps,” SBRC’99, 17th Simp osio Brasileiro de Redes de
Computadores, Salvador, Brazil, May 1999, pp. 418-433.

[0 o]

. D. Amyot, L. Charfi, N. Gorse, T. Gray, L. Logrippo, J. Sincennes, B. Stepien T.
Ware. “Feature Description and Feature Interaction Analysis with Use Case Maps
and LOTOS.” In: M.Calder and E. Magill, Sixth International Workshop on
Feature Interactions in Telecommunications and Software Systems, 10S Press,
Glasgow 2000, 274-289.

9. D.Amyot, and L. Logrippo. “Directions in feature interaction research.” Computer
Networks, vol. 45, pp. 563-567, 2004.

10. D. Amyot and G. Mussbacher, "Bridging the Requirements/Design Gap in Dynamic
Systems with Use Case Maps (UCMs)," Proce.s 23rd Int. Conf. on Software
Engineering (ICSE), pp. 743-744, 2001.

11. Arnold, R. S., and Bohner, S. A., "Impact Analysis -Towards A Framework for
Comparison," Proc. of the Conf. onSoftware Maint., pp. 292-301, Sept. 1993.

131

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

. AT&T Labs-Research, Graphviz, http://www.graphviz.org. Last accessed, October
2007.

. L. Badri, M. Badri and D. St-Yves, "Supporting Predictive Change Impact Analysis:
A Control Call Graph Based Technique," Proc. 12th Asia-Pacific SE Con.
(APSEC'05)-Volume 00, pp. 167-175, 2005.

. G. Birkhoff. Lattice theory, Providence, Rhode Island: Amer.Math.Soc, 1967.

. G. V.Bochmann, “Finite State Description of Communication Protocols.” In:
Computer Networks, Vol. 2 (1978), 361-372.

.S. Bohner, "Software change impacts-an evolving perspective," Software
Maintenance, 2002.Proceedings.International Conference on, pp. 263-272, 2002.

.S. A. Bohner and R. S. Arnold, "An Introduction to Software Change Impact
Analysis," Software Change Impact Analysis, pp. 1-26, 1996.

. Bohner, S. A., "A Graph Traceability Approach to Software Change Impact
Analysis," Ph.D. Dissertation George Mason University, Fairfax, VA, 1995.

. L. Briand, Y. Labiche, L. O’Sullivan and M. S6wka, "Automated impact analysis of
UML models," The J. of Systems & Software, vol. 79, pp. 339-352, 2006. (8)

. L. Briand, Y. Labiche and G. Soccar, "Automating impact analysis and regression test
selection based on UML designs," Proc. of the Int. Software Maintenance
Conference (ICSM), pp. 252-261, 2002.

. F. P. Brooks, "No Silver Bullet Essence and Accidents of Software Engineering,"
Computer, vol. 20, pp. 10-19, 1987.

.R.J. A. Buhr, D. Amyot, M. Elammari, D. Quesnel, T. Gray, and S. Mankovski,
"Feature-Interaction Visualization and Resolution in an Agent Environment,"
Feature Interactions in Telecommunications and Software Systems V, 1998.

.R.J. A. Buhr and R. S. Casselman, “Use Case Maps for Object-Oriented Systems.”
Prentice Hall, 1996 .

.RJ.A. Buhr, R.S. Casselman, T.W. Pearce, “Design Patterns with Use Case Maps: A
Case Study in Reengineering an Object-Oriented Framework”, SCE 95-17,
http://ftp.sce.carleton.ca/UseCaseMaps/ dpwucm.ps.

.R.J. A.Buhr, M. Elammari, T. Gray and S. Mankovski , “Applying Use Case Maps to
multiagent systems: A feature interaction example”. In 31st Annual Hawaii
International Conference on System Sciences, 1998.

. N. Nakamura, T. Kikuno, J. Hassine, and L. Logrippo, “Feature Interaction Filtering
with Use Case Maps at Requirements Stage”. In: Sixth International Workshop on

132

Feature Interactions in Telecommunications and Software Systems (FIW’00),
Glasgow, Scotland, UK, May 2000.

. M. Calder, M. Kolberg , E. H. Magill, and S. Reiff-Marganiec. “Feature interaction: a

critical review and considered forecast.” Computer Networks, vol. 41, pp. 115-141,
2003.

. E. Cameron and H. Velthuijsen, "Feature interactions in telecommunications
systems," Communications Magazine, IEEE, vol. 31, pp. 18-23, 1993

. Y.F. Chen, D.S. Rosenblum, K.P. Vo., “TestTube: A System for Selective Regression
Testing,” In Proceedings of the 16th International Conference on Software
Engineering, May 1994, p. 211-220.

. E.J. Chikofsky and J.H. Cross, “Reverse Engineering and Design Recovery: A
Taxonomy,” IEEE Software, vol. 7, no. 1, pp. 13-17, 1990.

. A. Ciemniewska, J. Jurkiewicz, L. Olek and J. Nawrocki, "Supporting Use-Case
Reviews*," LECTURE NOTES IN COMPUTER SCIENCE, vol. 4439, pp. 424,
2007.

. R G..Crespo, M.Carvalho, and L. Logrippo, ‘“Distributed resolution of feature
interactions for internet applications”. Computer Networks, vol. 51, pp. 382-397,
2007.

. £ Dobrzanski and L. KuZniarz, "An approach to refactoring of executable UML
models," Proceedings of the 2006 ACM Symposium on Applied Computing, pp.
1273-1279, 2006.

. R. Duke, P. King, G. Rose and G. Smith, "The Object-Z specification language,"
Technology of Object-Oriented Languages and Systems: TOOLS, vol. 5, pp. 465-
483, 1991.

. A. Egyed, "Fixing Inconsistencies in UML Design Models," Proceedings of the 29th
International Conference on Software Engineering, pp. 292-301, 2007.

. T. Eisenbarth,; R. Koschke, D. Simon ; “Feature-Driven Program Understanding
Using Concept Analysis of Execution Traces,” In Proceedings of the International
Workshop on Program Comprehension, 2001

. H. C. Estler, T. Ruhroth and H. Wehrheim, "Modelchecking Correctness of
Refactorings-Some Experiments,” Electronic Notes in Theoretical Computer
Science, vol. 187, pp. 3-17, 2007.

. M. Faci, L. Logrippo and B. Stepien. “Formal Specifications of telephone Systems in

LOTOS.” Protocol Specification, Testing and Validation IX, eds. E. Brinksma, G.
Scolo, and C. Vissers,1990.

133

39. M. Fowler and K. Beck, "Bad Smells in Code," in Refactoring:Improving the Design
of Existing Code,” Addison-Wesley,2000, pp. 75-88.

40. A.Gammelgaard and J. E. Kristensen.” Interaction Detection, a logical approach. In:
L.G. Bouma and H. Velthuijsen (eds.) Feature Interactions in Telecommunications
Systems. IOS Press, 1994 (Proc. of the 2nd International Workshop on Feature
Interactions in Telecommunications Systems, Amsterdam) 178-196.

41. B. Ganter and R. Wille, “Formal Concept Analysis: Mathematical Foundations.”
Springer-Verlag NY, 1997.

42.B. Ganter and R. Wille, “Applied Lattice Theory: Formal Concept
Analysis”.Preprints, 1997.

43.T. Goradia, "Dynamic impact analysis: a cost-effective technique to enforce error-
propagation," Proceedings of the 1993 International Symposium on Software
Testing and Analysis, pp. 171-181, 1993.

44. T. L. Graves, M. J. Harrold, J. M. Kim, A. Porter and G. Rothermel, "An empirical
study of regression test selection techniques," ACM Transactions on Software
Engineering and Methodology ,Vol.10,2001 pp. 184-208, 2001.

45. N. Griffeth , R. Blumenthal, J. Gregoire , and T. Ohta. “Feature interaction detection
contest.” Feature Interactions in Telecommunications Systems V, pp. 327-359.

46. R. Gupta, M.J. Harrold, and M.L. So®a.” An approach to regression testing using
slicing.” In Proceedings of the Conference on Software Maintenance, pages 299-
308, November 1992.

47. D. Harada, H. Fujiwara and T. Ohta, "Avoidance of Feature Interactions at Run-

Time," Software Engineering Advances, International Conference on, pp. 6-6,
2006.

48. J. Hartmann, D. Robson, “ Techniques for Selective Revalidation.” IEEE Software,
Jan 1990, p.31-38.

49. J. Hassine. “Feature Interaction Filtering and Detection with Use Case Maps and
LOTOS.” Master’s thesis, University of Ottawa, Ottawa, Ontario, Canada, 2001.

50. J. Hassine, J. Rilling and R. Dssouli, "An ASM Operational Semantics for Use Case
Maps," .Proc.13th IEEE Inter. Conf. on Requirements Engineering, pp.467-468,
2005.

51.J. Hassine, J. Rilling, and R. Dssouli. Abstract operational semantics for use case
maps. In Formal Techniques for Networked and Distributed Systems - FORTE
2005, 25th IFIP WG 6.1 International Conference, Taipei, Taiwan, October 2-5,
pages 366380, 2005.

134

52.J. Hassine, J. Rilling, J. Hewitt and R. Dssouli, "Change Impact Analysis for
Requirement Evolution using Use Case Maps," Proc. of the 8th Int. Workshop on
Principles of Software Evolution, pp. 81-90, 2005.

53.J. Hassine, R. Dssouli and J. Rilling, "Applying Reduction Techniques to Software
Functional Requirement Specifications," 4th SDL and MSC Workshop (SAM’04),
2004.

54.7. Hewitt and J. Rilling, "A light-weight proactive software change impact analysis
using use case maps," IEEE Int. Workshop on Software, Evolvability pp. 41-46,
2005 .

55. S. Ibrahim, N. B. Idris, M. Munro and A. Deraman, "A Requirements Traceability to
Support Change Impact Analysis," Asian Journal of Information Technology,
Pakistan, vol. 4, pp. 345-355, 2005.

56. ITU-T, Recommendation Z.150, User Requirements Notation (URN), Geneva,
Switzerland.

57. International Standard - ISO/IEC 14764 IEEE Std 14764-2006 Software Engineering,
Software Life Cycle Processes, Maintenance, ISBN: 0-7381-4961-6, 2006 (33_1

58. ITU-T, URN Focus Group (2003), Draft Rec. Z.152 - UCM: Use Case Map Notation
(UCM), Sept. 2003.

59. jUCMNav. jucmnav project (tool, documentation, and meta-model).
http://jucmnav.softwareengineering.ca/twiki/bin/view/ProjetSEG/WebHome,
2006.Last accessed, October 2007.

60. D. O. Keck, and P. J. Kuehn. “The feature and service interaction problem in
telecommunications systems: a survey”. IEEE Trans. Software Eng., vol. 24, pp.
779-796, 1998.

61. A. v. Knethen,"Change-oriented requirements traceability. Support for evolution of
embedded systems," Proceedings International Conference on Software
Maintenance (ICSM). pp. 482-485, 2002.

62. M. Kolberg, E. H. Magill, D. Marples, and S. Reiff. Second feature interaction
contest. Proc.of Sixth Int’l. Workshop on Feature Interactions in Telecommunication
Networks and Distributed Systems (FIW’00), pp. 293-310, 2000 (35) pp. 246-250.

63. B. Korel and J. Laski, "Dynamic slicing of computer programs,"” J. Syst. Software,
vol.13, pp.187-195, 1990.

64. B. Korel, L. H. Taha, “Understanding Modifications in State-Based Models,” 12th

International Workshop on Program Comprehension (IWPC), 2004, Italy, pp. 246-
250.

135

65. W. Lam, Martin Loomes, V. Shankararaman, “Managing Requirements Change
Using Metrics and Action Planning,” Conference on Software Maintenance and
Reengineering, 1999, pp. 122-129.

66. T.F. La Porta, D. Lee, Y. J. Lin, and M.Y annakakis. “Protocol Feature Interactions.”
Proceedings of the FIP TC6 WG6.1 Joint International Conference on Formal
Description Techniques for Distributed Systems and Communication Protocols
(FORTE XI) and Protocol Specification, Testing and Verification (PSTV XVIII),
pp. 59-74, 1998.

67.]. Law and G. Rothermel, "Whole program path-based dynamic impact analysis,"
Proceedings of the International Conference on Software Engineering, pp. 308-318,
2003.

68. P. Leelaprute, N. Nakamura, K. Matsumoto, and T. Kikuno, “Design and Evaluation
of Feature Interaction Filtering with Use Case Maps”. NECTEC Technical Journal,
pp. 581-597, 2005.

69. M M. Lehman, J F. Ramil, P D. Wernick, D E. Perry, and W M. Turski. “Metrics and
laws of software evolution” - the nineties view. In METRICS ’97: Proceedings of
the 4th International Symposium on Software Metrics, page 20, Washington, DC,
USA, 1997. IEEE Computer Society.

70. M. Lehman and L. Belady, Program Evolution: Processes of Software Change.
Academic Press Professional, Inc. San Diego, CA, USA, 1985.

71. C. Lindig.” Introduction to Formal Concept Analysis”, Harvard University, 2000,
http://www.st.cs.uni-sb.de/~lindig/talks/ L.ast Accessed 2006.

72. C. Lindig. “Concept-based component retrieval.” IJCAI95 Workshop on Formal
Approaches to the Reuse of Plans, Proofs, and Programs, 1995.

73. C. Lindig; G. Snelting. ““ Assessing Modular Structure of Legacy Code Based on
Mathematical Concept Analysis.” Software Engineering, , ICSE, 1997.

74. M. Lindvall and K. Sandahl, "How well do experienced software developers predict
software change?" The Journal of Systems & Software, vol. 43, pp. 19-27, 1998.

75. A. Maedche, G. Neumann and S. Staab, "Bootstrapping an Ontology-Based
Information Extraction System," Studies in Fuzziness and Soft Computing,
Intelligent Exploration of the Web.Springer, 2002.

76. M. Mantyla, J. Vanhanen and C. Lassenius, "Bad smells-humans as code critics,"
Software Maintenance, 2004.Proceedings.20th IEEE International Conference on,
pp- 399-408, 2004.

77. M. Mantyla, J. Vanhanen and C. Lassenius, "A taxonomy and an initial empirical

study of bad smells in code," Software Maintenance, 2003.ICSM
2003.Proceedings.International Conference on, pp. 381-384, 2003.

136

. T. McComb, "Refactoring Object-Z specifications," FASE'04: Fundamental
Approaches to Software Engineering, 2004.

. T. McComb and G. Smith.Architectural .”Design in Object-Z.” In Australian
Software Engineering, Conference (ASWEC’04), pages 77 — 86. IEEE Computer
Society Press, 2004.

. T. McComb and G. Smith. “Refactoring object-oriented specifications: A process for
deriving designs.”Technical Report SSE-2006-01, School of Information
Technology and Electrical Engineering, University of Queensland, Australia, May
2006.

. A. Miga, D. Amyot, F. Bordeleau, C. Cameron and M. Woodside, "Deriving Message
Sequence Charts from Use Case Maps Scenario Specifications," Tenth SDL Forum
(SDL'01), pp. 268-287, 2001.

. Microsoft, "AsmL for Microsoft.Net," research.microsoft.com/foundations/asml,
April/2007.

. T. Mens and T. Tourwe, "A survey of software refactoring," Software Engineering,
IEEE Transactions on, vol. 30, pp. 126-139, 2004.

. A. Miga. “Application of use case maps to system design with tool support.” Master's
thesis, Dept. of Systems and Computer Engineering, Carleton University,Ottawa,
Canada, 1998.

. N. Moha, J. Rezgui, Y. Guéhéneuc, P. Valtchev, G. El Boussaidi. “Using FCA to
Suggest Refactorings to Correct Design Defects”. Proceedings of the 4th
International Conference On Concept Lattices and Their Applications (CLA 2006),
pp. 297-302 , In S. Ben Yahia & E. Mephu Nguifo Eds, October 30-November 1st,
2006, Hammamet, Tunisia.

. N. Moha, S. Bouden and Y. Guéhéneuc, "Correction of High-Level Design Defects
with Refactorings," In Proc.of the ECOOP Workshop on Object-Oriented
Reengineering WOOR, 2006.

. V. Nanda, N. H. Madhavji, “The Impact of Environmental Evolution on
Requirements Changes,” Int’l Conference on Software Maintenance 2002, pp. 452-
461.

. W.F. Opdyke, “Refactoring: A Program Restructuring Aid in Designing Object-
Oriented Application Frameworks,” PhD thesis, Univ. of Illinois at Urbana-
Champaign, 1992.

. D. Petriu, M. Woodside, "Software Performance Models from System Scenarios in

Use Case Maps", Carleton Univ. Canada, Proc. Performance TOOLS 2002,
London.

137

90. S. L. Pfleeger, “Software Engineering: Theory and Practice”. Prentice-Hall, Inc.
Upper Saddle River, NJ, USA, 1998.

91. O. Pilskalns and A. Andrews, "Regression Testing UML Designs," Proc. IEEE
International Conference on Software Maintenance (ICSM'06)-Volume 00, pp.
254-264, 2006.

92. J. Ratzinger, M. Fischer and H. Gall, "Improving evolvability through refactoring,"
ACM SIGSOFT Software Engineering Notes, vol. 30, pp. 1-5, 2005.

93. B. Regnell, M. Andersson, J. Bergstrand,” A hierarchical use case model with
graphical representation”, In Proc IEEE Symposium and Workshop on
Requirements, 1996, pp.270 — 277.

94. Reps, T.; Siff, M.; Identifying Modules via Concept Analysis, In IEEE ICSM, Italy,
Oct 1997, p.170-179

95.S. W. K. Rochimah, W. M. N. Abdullah and H. Abdul, "An Evaluation of
Traceability Approaches to Support Software Evolution," Software Engineering
Advances, 2007.ICSEA 2007.International Conference on, pp. 19-19, 2007

96. G. Rothermel and M. Harrold, "Analyzing regression test selection techniques,"
Software Engineering, IEEE Transactions on, vol. 22, pp. 529-551, 1996

97. G. Rothermel] and M. J. Harrold, "A safe, efficient regression test selection
technique," ACM Transactions on Software Engineering and Methodology
(TOSEM), vol. 6, pp. 173-210, 1997

98. G. Rothermel, S. Elbaum, A. G. Malishevsky, P. Kallakuri and X. Qiu, "On test suite
composition and cost-effective regression testing," ACM Transactions on Software
Engineering and Methodology (TOSEM), vol. 13, pp. 277-331, 2004.

99. G. Rothermel, R. Untch, C. Chu, and M.J. Harrold. Test case prioritization. IEEE
Transactions on Software Engineering, October 2001

100. J. Roy, J. Kealey, and D. Amyot. Towards integrated tool support for the user
requirements notation. In SAM 2006, pages 198-215, 2006.

101. A. Russo, B. Nuseibeh, and J. Kramer, “Restructuring Requirements Specifications
for Managing Inconsistency and Change: A Case Study,” Proc. Int’]1 Conf. 57

102, M. Ruth and S. Tu, "A Safe Regression Test Selection Technique for Web
Services," Internet and Web Applications and Services, 2007.ICIW'07.Second
International Conference on, pp. 47-47, 2007.

103. T. Ruhroth, "Refactoring Object-Z Specifications," 18th Nordic Workshop on
Programming Theory, 2006.

138

104

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

. R. Settimi, J. Cleland-Huang, O. Ben Khadra, J. Mody, W. Lukasik, C. DePalma,
“Supporting Software Evolution through Dynamically Retrieving Traces to UML
Artifacts,” 7th International Workshop on Principles of Software Evolution
(IWPSE), 2004, pp. 49-54

M. Shiri, J. Hassine, J. Rilling, "A Requirement Level Modification Analysis
Support Framework," software-evolvability, pp. 67-74, Third International IEEE
Workshop on Software Evolvability 2007.

M. Shiri, J. Hassine, and J. Rilling. “ Modification analysis support at the
requirements level.” In Ninth international Workshop on Principles of Software
Evolution: in Conjunction with the 6th ESEC/FSE Joint Meeting (Dubrovnik,
Croatia, September 03 - 04, 2007). IWPSE '07.

M. Shiri, J. Hassine, and J. Rilling. Feature interaction analysis: a maintenance
perspective. In Proceedings of the Twenty-Second IEEE/ACM international
Conference on Automated Software Engineering (Atlanta, Georgia, USA,
November 05 - 09, 2007). ASE '07.

G. Snelting,” TOSEM Re-engineering of Configurations Based on Mathematical
Concept Analysis”, 1996.

G. Snelting, F. Tip,“Reengineering Class Hierarchies Using Concept Analysis
“,ACM Transactions on Prog. Languages and Systems 5/ 2000, p.540-582.

I. Sommerville, "Integrated requirements engineering: a tutorial," Software, IEEE,
vol. 22, pp. 16-23, 2005.

A. Srivastava, and J. Thiagarajan., "Effectively prioritizing tests in development
environment," ACM SIGSOFT International Symposium on Software Testing and
Analysis, Roma, Italy, 2002, pp. 97-106.

minimization," Program Analysis for Software Tools and Eng. pp. 35-42, 2005.

T. Tilley, R. Cole, P. Becker and P. Eklund, "A Survey of Formal Concept Analysis
Support for Software Engineering Activities," Proc.of 1st Int. Conference on
Formal Concept Analysis, 2003.

T. Tilley, W. Hesse and R. Duke, "A software modelling exercise using FCA,"

Proceedings of the 1lth International Conference on Conceptual Structures

(ICCS’03), Springer LNAI 2746, Dresden, Germany, 2003.
P. Tonella, "Using a concept lattice of decomposition slices for program

understanding and impact analysis," IEEE Trans. Software Eng., vol. 29, pp. 495-
509, 2003.

139

S. Tallam and N. Gupta, "A concept analysis inspired greedy algorithm for test suite

116

117.

118.

119.

120.

121.

122.

123.

P. Tonella and G. Antoniol, "Inference of object-oriented design patterns," Journal
of Software Maintenance and Evolution Research and Practice, vol. 13, pp. 309-
330, 2001

UCM, « Use Case Maps Web Page and UCM User Group »,
http://jucmnav.softwareengineering.ca/twiki/bin/view/UCM/WebHome, 2006.

UCMNav. ucmnav project (tool, features, documentation, example, and meta-
model). http://jucmnav.softwareengineering.ca/twiki/bin/view/UCM/UcmNav,
2005. Last accessed, December 2007.

M. Weiser, "Program slicing," Proceedings of the 5th International Conference on
Software Engineering, pp. 439-449, 1981.

M. Weiss and D. Amyot, "Business Process Modeling with URN," International
Journal of E-Business Research, vol. 1, pp. 63-90, 2005.

Weiss, M. and Amyot, D.: Designing and Evolving Business Models with
URN.Montreal Conference on eTechnologies (MCeTech), Montréal, Canada,
January 2005, 149-162.

White, L.J.; Leung, HK.N., A Firewall Concept for Both Control-flow and Data-
flow in Regression Integration Testing, In Proceedings of the Conference on
Software Maintenance, Nov 1992, p. 262-70

J. Woodcock and J. Davies, Using Z: Specification, Refinement, and Proof.
Prentice-Hall, Inc. Upper Saddle River, NJ, USA, 1996.

140

