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ABSTRACT 

Acoustic Anomaly Detection Using Robust Statistical Energy 

Processing 

Farakh Nayaab John Salik 

An anomaly is the specific event that causes the violation of a process observer's 

expectations about the process under observation. In this work, the problem of 

spatially locating an acoustic anomaly is addressed. Once reduced to a problem 

in robust statistics, an automated observer is designed to detect when high energy 

sources are introduced into an acoustic scene. Accounting for potential energy from 

signal amplitude, and kinetic energy from signal frequency in wavelet-filtered sub-

bands, an outlier a robust statistical characterization scheme was developed using 

the Teager energy operator. With a statistical expectation of energy content in sub-

bands, a methodology is designed to detect signal energies that violate the statistical 

expectation. These minor anomalies provide some sense that a fundamental change in 

energy has occurred in the sub-band. By examining how the signal is changing across 

all sub-bands, a detector is designed that is able to determine when a fundamental 

change occurs in the sub-band signal trends. Minor anomalies occurring during such 

changes are labeled as major anomalies. Using established localization methods, 

position estimates are obtained for the major anomalies in each sub-band. Accounting 

for the possibility of a source with spatiotemporal properties, the median of sub-band 

position estimates provides the final spatial information about the source. 
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Chapter 1 

Introduction 

1.1 Anomaly Detection & Localization 

An anomaly is the specific event that causes the violation of a process observer's 

expectation about that process. When a context has changed significantly, within 

a qualified scene, an intelligent system denotes this as an anomaly. While context 

and scene features can vary across observers, the detection mechanism for significant 

context change is essentially a salient feature of intelligent observers. Causal biolog­

ical systems are essentially reactive systems that retain some remarkable predictive 

qualities due to their ability to qualify their environmental context in a terse, com­

putationally efficient manner that allows for reliable predictive assertions to be made 

based on information constrained to time-frequency windows. The plasticity of this 

type of short-duration, predictive-reactive system is more apparent in the long-term 

observation of biological systems where inherent operational control laws are stable 

and remain stable where there are radical changes in scene context. 

Sensor array geometries that localize point sources in the far-field require a sig­

nal phase estimate from time-limited samples at each of its point sensors. Since the 

spectral composition of an anomaly is generally unknown, frequency isolation can 
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be especially important for phase estimation where the narrow band power of the 

anomaly is insignificant when compared to that of the wide band signal. Mitigating 

the fact that short-duration events cannot be limited in both time and frequency, com­

pact, shift-able and scalable wavelet bases allows for accurate signal representation 

while offering analysis capability of scalable time-frequency windows. 

This proposed method for anomaly detection and localization first attempts to 

statistically characterize Teager energy in filtered sub-bands. By distinguishing be­

tween extreme and outlier sample values that have appeared in the sub-bands of 

array sensor data. The outlier data in the time-frequency window can then be used 

to estimate array phase data required for computing wavefront direction of arrival in 

the far-field. 

1.2 Thesis Overview 

The robust anomaly detection and localization system proposed consists of two ma­

jor subsystems that are interlinked: the robust anomaly detection subsystem, and 

the sub-band anomaly spatial localizer. The robust anomaly detection subsystem is 

primarily designed for detecting total energy deviation in signals that are wide-sense 

stationary, or short-time (trend) stationary. Sub-band localization in the far field 

allows for anomaly positioning, even in the presence of a more powerful wide-band 

sources. 

1.2.1 Methodology 

In this work, the problem of anomaly detection and localization has been reduced to 

a problem in robust statistics. An automated observer is designed to detect when the 

total energy in wavelet filtered sub-bands radically changes in an acoustic scene. With 

an assumption that the source consists of several contributing narrow-band sources, 

2 



demodulation of each can give a measure of instantaneous total energy in that band if 

the further assumption is made that the constituent sources are modeled as a second 

order systems. 

Typically Laplacian audio is rendered Gaussian with a transformation of ran­

dom variable from which total energy is measured. Another transformation of the 

windowed-average of the total energy allows for its robust statistical characterization 

using the robust MCD estimator. A detection scheme is designed to detect when the 

modified sub-band energies violate the statistical expectation. The energy deviation 

metric is the Mahalanobis distance for which a confidence threshold can be computed. 

The violating energies imply that a fundamental change has occurred in their cor­

responding sub-band. Major deviations in energy trends across all sub-bands imply 

that the acoustic source has changed significantly in its energy content. The modified 

energy content of the source highlights the importance of the sub-band expectation 

violations and warrants localization. Using established localization methods, position 

estimates are obtained for these violations in each sub-band. Accounting for the pos­

sibility of a source with spatiotemporal properties, the median of sub-band position 

estimates provides the final spatial information about the source. 

1.2.2 Contents 

This work outlines the development of an acoustic anomaly detection and localization 

system as well as some of the theoretical concerns affecting its performance. Section 

1.3 of this chapter is a general survey of literature that describe different methods 

and practices that influence either the detection of anomalies or the localization of 

sources, which both directly and indirectly influence this work. A critical review of 

previous work is essential to understanding the nature of the problem at hand and to 

justify a sound design path. 

Described in Chapter 2 are the theoretical foundations that support this work. 
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Section 2.1 covers the general methodology concerning localization of an energy source 

in using sensor arrays in the far field by estimating phase differences between sensors 

configured in an array. Section 2.2 describes the Teager Energy operator's properties 

used for measuring total source energy and for signal demodulation. Sample outlier 

detection using robust Mahalanobis distances obtained from the robust scatter esti­

mator from the Fast-MCD algorithm is discussed in in Section 2.3. With a theoretical 

foundation laid, Chapter 3 clearly states the problem of anomaly detection and spatial 

localization in Section 3.1.1 with a hypothesis for its solution in Section 3.1.2. The re­

maining sections describe theoretical contributions that support the thesis hypothesis 

concluding with a high-level discussion of the proposed system architecture. Chapter 

5 finally concludes this work with an overview of the design and with a projection of 

future research that stems from this work. 

1.3 Literature Review 

1.3.1 Overview 

The detection and localization of unspecified anomalies in array sensor stream data 

can be used in a wide variety of areas including weapon systems, mission-critical 

system fault monitoring, medical diagnosis, and intelligent robotic data acquisition. 

Typical methods that have been implemented, or appear in literature make use of en­

vironmental assumptions that may, or may not hold true in all real world conditions. 

Research and development in this area is typically guided by some notion of signal 

stationarity where the source's control law can be reasonably assumed, decomposed 

or estimated. Assuming statistical stationarity justifies the use of well established 

methods such as maximum-likelihood parameter estimation, neural networks, radial 

basis functions, and principal component analysis to characterize signals. While these 

methods work well to model normal data flow, in stationary (stochastic) processes, 

4 



piecewise stationary and chaotic signals maybe difficult to model since iterative tech­

niques will have difficulty to converge to a solution, and the statistical models assumed 

for parameter estimation may no longer be valid. Assumptions about noise also play 

a major role in how signal pre-processing is done. Implicitly, most of these methods 

assume an unrealistically high signal-to-noise ratio. More often than not, with sensor 

arrays in practical scenarios, this assumption may be somewhat stretched. The type 

of noise is also of concern, especially where more than one sensor is of concern. While 

some systems have good properties with white noise, colored noise remains a problem 

but can be addressed using specialized techniques. In order to design any system, 

some sort of assumption will have to be made at some point. With respect to anomaly 

detection, it better that few assumptions be made about a possible anomaly. This 

way, we attempt to design a system that will not be overly tuned as a detector for 

signals that have been constrained to a set defined by the assumptions. While the 

problem of anomaly detection in data streams can be difficult, it is not impossible to 

design a system that can be used for practical purposes. 

Localization with sensor arrays requires assumptions to achieve reasonable per­

formance with reasonable computational complexity. While it may not be the case, 

signal stationarity is typically assumed for the localization process. Through care­

ful control of sampling, we can make this a more reasonable assumption for smaller 

signal samples (we assume stationarity for shorter signals). Furthermore, we make 

assumptions on the signal wave's geometry. Planar waves make for simplistic com­

putation and are a good choice where the curvature of the wavefront is nearly flat. 

These assumptions combined allow for detection of phase differences in planar waves 

using such things as linear or planar rectangular sensor arrays. The cross-correlation 

method is widely used for phase difference estimation produced by an incident source 

across linear, uniformly spaced sensors. This method relies on the relationship be­

tween the Fourier transform of the source and its autocorrelation function. The 
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Wiener-Khinchin theorem establishes this relationship on the condition of wide-sense 

stationarity. Localization this way will depend on the coherency of the signals at each 

of the sensors given reasonable assumptions about the randomness of the source as 

well as the shape of the energy waves it produces. 

In an incremental fashion, the literature review will build the topic of anomaly 

detection and localization from the work of previous authors. After assumptions 

about simple localization are discussed from the point of view of previous authors, 

some of their results are highlighted and compared between works. Previous works 

in anomaly detection will be compared with an emphasis on the constraints on the 

incoming signal. Finally, feature extraction in low SNR signals is also discussed, but 

only in the context of signal characterization. 

1.3.2 Localization 

The localization of a source in the vicinity of a sensor array can be done in various 

ways. With a varying numbers of sensors, the extraction of spatial information is 

dependent on the sensor geometry. Processing takes advantage of the fact that an 

energy wavefront emanating from a source will not pass through each of the sensors 

at exactly the same time because of the medium in which it travels. The simplest 

geometry is the two sensor array (uniform linear array - ULA) which in acoustics, is 

typically a stereo-microphone. To estimate the direction of incidence of the acoustic 

wavefront generated by a target in a stereo field, the following methods can be used 

[1]: 

• sound intensity, 

• time delay estimation using cross-power spectral phase 

• time delay estimation using cross-correlation function analysis. 
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Using sound intensity for localization allows for compact microphone arrangement 

however discrimination and separation of sound reflections is impossible therefore 

making localization sensitive to reflection. Also, the microphone sensor arrangement 

requires that there be precise phase and amplitude matching between microphones. 

The time delay of arrival (TDOA) can be estimated from the cross-spectrum of the 

spatially separated microphones. The phase of the cross-spectrum contains the infor­

mation regarding the delay and hence the direction of arrival of the planar wavefront. 

Spatially separated sensors will experience a time delay in their data corresponding 

to a phase shift in the frequency domain. Consider the signal x(t) (whose Fourier 

transform is X(u)) as it arrives unimpaired at the secondary sensor: 

x(t - Td) <& X(u)ejU}Td (1.1) 

While this statement holds true for any signal, this will only hold true for spatially 

separated sensors on the assumption that the noise at each of the microphones is 

incoherent, which can occur only after an infinitely long averaging time. The author 

of [1] showed that there are short comings to this method. . 

The same information offered in the cross-spectrum can also be obtained from 

its time domain counterpart, the cross-correlation function. The cross-correlation 

function for two spatially separated sensors a and b is obtained from the following 

expected value ( 1.2): 

Rab(r) = E[a(t)b(t + T)} (1.2) 

We can estimate the cross-correlation function for a time window of width T, centered 

at time t: 

Rab(t, T) = - jT* 2 a(u)b(u + r)du (1.3) 
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This estimate can also be obtained from the well known relation: 

Rab(r) = I Sab(uj)e^Tdw (1.4) 

Where Sat, is the cross spectral power. This estimate of -Rab(r) = RSS(T — To), where 

the latter (Jf28S)is the autocorrelation function of the source signal whose peak appears 

at the time shift Td in which we are interested. Regardless of the method used to find 

an estimate for Rab(T) the peak (maximum) will reveal r^ allowing us to estimate the 

angle of incidence Qc 

cos 9i = -— (1.5) 
U"mic 

Where c is the speed of sound and dmic is the physical distance between the micro­

phones. This method is the most widely used technique since it is robust to multi-path 

signals and multiple noise sources. Peak detection is sensitive to noise and averag­

ing time, and that slight changes in the acoustic environment may quickly shift the 

peak. With the purpose of facilitating peak detection in a sometimes deceptive cross-

correlation function, spectral pre-whitening can be done. While this alleviates the 

problem it can be addressed further with interpolation near the maximum. In theory, 

where the signal is white noise, we expect a delta function to appear as the maximum 

of the cross-correlation function. Alternatively, the author of [1] suggests use of the 

Hilbert transform of Rab(T~) to detect the peak by zero-crossing, producing the most 

accurate results. 

The experimental work done by [2] confirms these findings. The authors of this work 

used the entire sound waveform from a robotic platform with binaural (stereo) sound 

recordings to increase sensitivity of several time-domain localization methods. The 

TDOA method was tested. They elaborated on the assumptions they made in their 

work: 

• sound waves propagate along a single path from the source to the microphone 
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pair, 

• the response is approximately the same for both microphones, 

• aligned with each other, the microphones are relatively near to each other when 

compared to the distance from the array to the source. 

• there are no obstructions between the microphones. 

Amongst the methods reviewed by these authors, PHAT (Phase Transform), or 

cross-spectrum phase, was used as an alternative to simple peak-finding. This method 

assumes non-stationarity of the source utilizing a weighting function based on the 

short-time Fourier transform. This weighting function is used to enhance peak de­

tection in the simple cross-correlation function. Intuitively, we know this to be true 

since the weighting function performs spectral whitening of the source as well as that 

of its phase shifted counterpart. The cross correlation of two noise sources will result 

in a delta function in the cross correlation function at the phase shift making peak-

finding more reliable. A maximum likelihood method was also tested to determine 

phase shift using the Fisher discriminant. While this method is easy to implement 

in practice, performance degenerates if training data is non-stationary (ie. acoustic 

targets are moving). Finally, a perceptron was used to determine phase as a multi-

class separation problem. Initially only linear classification rules were used, followed 

by the use of radial basis functions (kernels). 

It was found by [2] that equalized cross-correlation functions were inferior to 

discriminative methods. There was no statistically significant difference between the 

use of Fisher's multi-class discriminant and the perceptron. Ultimately, PHAT proved 

to be most robust with a reasonable computational overhead. While maxima-finding 

is done in the time domain, spectral whitening is done in the frequency domain and 

consequently bearing the larger computational load. 
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Grassi and Shamma designed a learning, biologically inspired algorithm for local­

ization [3]. In their work, they noted that the barn owl (a nocturnal predator) has 

exceptional localization abilities. This animal's highly developed localization path­

way was used as a model for their work. These birds, as do humans and many other 

animals make use of ITD (interaural time difference) and ILD (interaural level dif­

ference) in order to localize sound. Their model used a location estimate per channel 

where a bank of simulated cochlear filters logarithmically spaced between 2 kHz and 

11 kHz was used with a 70 ms processing window. Their model computes this es­

timate, the ABL (average binaural level) for each channel of spectrally decomposed 

sound. This spectral decomposition solves a problem of localization which is where 

SNR in certain frequency bands is very poor. The estimates are combined using a 

weighted average to produce an estimate of the direction of arrival for the sound. 

Interestingly, experimental data suggests that barn owls have the ability to locate on 

both the horizontal and vertical axis using ITD and ILD only. 

1.3.3 Anomaly Detection 

The problem of detecting anomalies in data streams has been examined in the past 

with some success despite the difficulties stemming from the non-specificity of the 

problem's parameters. A general survey of literature will highlight that typical 

anomaly detection strategies will make some or all of the following assumptions [4]: 

• The background is static and/or uniform 

• The data's control law does not change. 

• The event of interest or its spectrum is known. 

Raeth and Bertke [4] offer an approach for detecting unspecified anomalies in un­

specified data streams that is spectrum independent. In their work, they attempted 

to find interesting and unexpected events in in continuous data streams using an 

10 



automated process. They also attempted to detect potential events without having 

to specify beforehand the data source or its characteristics. They had developed an 

adaptive detection scheme that predicted the next sample in a data stream. Their 

prediction model was composed of a network of independent Gaussian radial basis 

functions such as <7i(x, &) shown in ( 1.6): 

&(*,&) = ew*ll-6»2 (1.6) 

Where & is the location of the node, and of is its variance. In their scheme, they 

make use of the basis function in a function aproximator: 

n 

/ ( z ) = X)ci0i(z,&) (1.7) 
i=l 

In operation, the amplitudes of the basis functions and hence the signal model approx­

imation is continuously adjusted through Q. As the model is being built, it gradually 

becomes able to predict the next sample in the continuous data stream's sequence. 

Models with a detected event stop evolving until the event is no longer present to pre­

vent the event from becoming part of the model's background predictions. The latter 

will retain the model's sensitivity to future such events. This behavior is controlled 

by a set of heuristic rules that essentially measure the amount of signal departure 

from the adjusted function aproximator ( 1.7) according to some set threshold, and 

over a set number of samples. 

Through their experimentation, it was clear that the methodology had good merit 

when tested on both images and sound data. In the case of sound experimentation, 

they choose to detect a voice event that was immersed in the noise generated from a 

box fan. This event was detected with some reliability. While detection of the event 

was done with no preconceived knowledge of the event's spectrum, the background's 

characteristic was not well discussed, nor what the adjustment rule was for the weight 
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Cj in ( 1.7). If an iterative method were used on a signal departure error metric then 

the basis function weights would have to converge in order for the background to 

be reasonably qualified. It follows that weight convergence would require at least 

some notion of background stationarity in the statistical sense. In their analysis of 

one-step-ahead prediction functions, Modha and Masry support this idea by showing 

that neural networks and Legendre polynomials are consistent estimators, even when 

there is a constraint on the number of samples used [5]. 

Theoretically, a signal cannot be limited in both time and frequency simultane­

ously. Short-time Fourier transforms offer an analysis method for fixed time-frequency 

windows [6]. While this is a good method where the window is well-known for a prob­

lem (ie. sample length and bandwidth known), anomalies can occur across varying 

time intervals, with varying bandwidths. In order to deal with this, wavelets can be 

used. Wavelets are functions that form an orthonormal basis similar to the sine and 

cosine functions in the well known Fourier basis with the important exception that 

they are well localized in both the time and frequency domain. Furthermore, they 

offer themselves as a time-frequency analysis tool (although constrained by the time-

frequency uncertainty principle). Using wavelet analysis, the authors of [7] demon­

strated that common quality disturbances in electronic power supplies are caused by 

short-circuits, harmonic distortions, notchings, voltage sags and swells as well as tran­

sients during power switching could not only be detected, but identified and localized 

in time over varying bandwidths using wavelet decomposition of the power signal. 

Their method made use of wavelet analysis primarily as a pre-processing method 

prior to feature extraction. Their method involved the computation of energy in the 

wavelet coefficients at varying levels of frequency decomposition of the pure sinusoid 

used in their simulation experiments. Disturbances were then simulated and wavelet 

energy characterization was done for each decomposition level. Finally, the pure sig­

nal's decomposition energy is compared to that of seven different "curve families" of 
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power quality disturbances. They used a simple normalized distance measure(1.8): 

dp(j)(%) = 
en_dist(j) — eruref(j) 

eruref(7) 

Where they provide the following description: 

x 100 (1.8) 

dp(j)(%) "deviation between the energy distributions of the signal in study and its 

corresponding fundamental sinusoidal wave signal, at each wavelet transform 

level. 

en-dist(j) energy distribution concentrated in each wavelet transform level of the 

signal in study. 

eruref(j) energy distribution concentrated in each wavelet transform level of the 

correspondent fundamental component of the signal in study. 

enjrefij) energy concentrated in at level 7 (which concentrates the highest energy) 

of the corresponding fundamental component of the signal in study." 

The feature vector they used consisted of the above distance measure for ten 

decomposition levels. They found in simulation that this was a very good feature 

vector, being able to detect and classify known disturbance types without any iterative 

training (deviations are characterized once). Essentially, the system can be considered 

as an anomaly detector if we do not attempt to classify disturbances, but simply 

recognize that the decomposition energy of the the "normal" signal has changed. 

While the previously mentioned work work examined a very constrained signal 

with a small set of classification targets, it was done with the assumption of a very 

high SNR. Seekings and Potter examined the classification problem of marine acoustic 

signals where there is generally a low signal-to-noise ratio (SNR). The authors specifi­

cally examined whale song which is often considered to consist of sequences of repeated 

stereotyped units [8]. The purpose of their work was to recognize and classify each 
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unit that constituted the whale song. The song units could consist of long tonals, 

short pulses or frequency modulated signals, not clearly time or frequency localized. 

They noted that spectrogram matching methods (fixed time-frequency windows) are 

intolerant to time or frequency shifting, or stretching of any sort. Spectrograms also 

do not provide an intuitive way to extract feature vectors for characterization or clas­

sification. For these reasons, the authors, of [7] opted to use wavelet decomposition 

to overcome these issues while gaining some time-shift invariance and feature vector 

compression when used as a pre-processor for their neural network classifier. 

While there are many choices for the orthonormal wavelet basis, the Daubechies 

Real Biorthogonal Most Selective (DRBMS) wavelet was chosen for their work. This 

wavelet has some attractive features, highlighted by the authors: 

Time-Invariance Time-series shifting of the signal results in only wavelet packet 

shifts. 

Fast Computation Fractal-like structure leads to fast wavelet transform techniques. 

Sharp Transition Bands This minimizes edge effects of between frequency bands. 

Furthermore, the authors attempted to reduce noise in the coefficients by threshold­

ing using the Donoho-Johnstone estimator, optimized for this purpose.Their feature 

vector consisted of a Teager cepstrum for each wavelet packet decomposition that 

contains part of a whale call. Teager energy takes into account both kinetic and po­

tential energy. This energy measure is considered to be a far more accurate measure 

as compared to the commonly used measure which takes into account only kinetic 

energy. The Teager energy cepstrum is often used to obtain feature vectors in noisy 

environments for speech recognition. It has been shown by [9] that the Teager energy 

gives a good measure of signal energy in a sub-band in the presence of colored-noise. 

For each frequency band, the energy is computed from the lowest level of the wavelet 

packet decomposition: 
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6l = N 

N 

]T nnjl(tf - nnJ(t - i)nnyl{t +1) (1.9) 
ra=l 

Where f^ corresponds to the subspace of level j , I = 0 , . . . , 2" — 1 and N = ^f, n 

is the lowest level of decomposition, Ns is the length of the signal (therefore N is the 

number of samples in each sub-band. In their experiments, Ns = 512, n — 6 therefore 

N = 16. The Teager cepstrum is obtained from the discrete cosine transform of the 

log of Teager energy spectrum: 

TC(k) = 2 E log(e,) cos ( ^ - 2 n ° - 5 ) 7 r ) (1.10) 

for k = 1 , . . . , 12 since twelve points were used to encode the Teager energy spectrum 

(it was noted in their work that using more points did not affect classification results). 

The resulting feature vector extraction was tested with two neural network classi­

fiers, one simple back-propagation network (BP) and the other was a self-organizing 

map with learning vector quantization. Interestingly, they found little difference be­

tween the performance between these two types of network. This gives a strong hint 

as to the quality of the feature vector. Their results are summarized below: 

Network Training data correctly classified Test data correctly classified 

BP 89% 86% 

SOM-LVQ 91% 86% 

The success of this system shows that even with a relatively high SNR, time-shift and 

frequency-shift invariant systems can be designed for classification of signals. 
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1.3.4 Remarks 

While the work surveyed concentrated mostly on anomaly detection and localization 

as separate concerns, this work is dedicated to using both of these theoretical influ­

ences for the the spatial localization of source anomalies. Where anomaly detection in 

this survey sought to signal significant signal departure from a historic baseline, this 

work recognizes that this baseline is subject to change over time and that anomalies 

are not just simply an abrupt change in signal characteristics but a sudden deviation 

of context in the acoustic scene as a whole across all sub-bands. With some notion 

of context change, it is the attempt of this work to localize a detected anomaly in a 

time-frequency window, and subsequently in space. 

1.4 Conceptual Contributions 

This work contains several published contributions [10] that are outlined here. They 

include signal characterization by energy content using the modulating source as­

sumption, reshaping the energy distribution of Laplacian distributed audio to enable 

the detection energy outliers, use of a high-breakdown estimator to detect energy 

outliers using robust Mahalanobis distances, major and minor anomaly detection, 

anomaly localization as well as a lexicon of terms relevant to this area of research. 

1.4.1 Modulating Source Assumption 

Signal characterization by energy content for the purposes of anomaly detection re­

quires a means for capturing both short and long duration energy changes. To detect 

an anomalous signal event, a baseline of what is considered normal is first required, 

from which energy deviation can be measured. Classical energy measurement does 

not measure instantaneous energy, making the detection of short-term energy devia­

tions difficult, if not impossible. If we assume that all normal signals of interest have 
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been modulated somehow, then demodulation would expose features of the signal that 

could help characterize it, such as amplitude in the presence of a constant frequency, 

or frequency in the presence of constant amplitude. To improve demodulation, com­

plex sources are spectrally decomposed and demodulated in each sub-band. Termed 

the modulating source assumption, the Teager energy operator is used to provide AM, 

FM, and AM-FM demodulation in each sub-band. The demodulation property of the 

Teager energy operator provides an instantaneous measure of both potential energy 

from amplitude, and kinetic energy from frequency, or a combination of both. Be­

cause the total energy is measured in each decomposed sub-band, the total energy of 

the wide-band source is accounted for. 

1.4.2 Reshaping the Teager Energy Distribution for Lapla-

cian Distributed Audio 

On the observation that the moving average of the Teager energy operator is log-

Gaussian for a Gaussian input, Laplacian distributed sub-band audio data is trans­

formed into Gaussian data. With the estimated mean and variance of the Lapla­

cian audio, a non-linear function is designed using an inverse cumulative distribution 

method that will produce Gaussian distributed data with arbitrary parameters. Since 

the audio signals of interest are assumed to be changing constantly, fixed parameters 

for the target distribution cannot used. To make the target distribution dependent 

on the input distribution, the mean and variance for the Gaussian distribution are 

chosen to be the same as the estimated values of the Laplacian audio. In this way, 

the changing parameter estimates of Laplacian distributed audio can be used to spec­

ify a Gaussian redistribution, coupling them. The windowed Teager energy of this 

new signal is log-Gaussian distributed, and can also be redistributed into a signal 

that is Gaussian distributed using another non-linear function designed using the 

same method as the one already. Since the target distribution is Gaussian, a high-
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breakdown estimator can be used to characterize the signal's energy, even in the 

presence of outlier energy. 

1.4.3 Use of a High-Breakdown Estimator to Detect Energy 

Outliers using Robust Mahalanobis Distances 

Through successive random variable transformation, a Laplacian audio sub-band's 

total energy variable is rendered Gaussian, although unparameterized. The MCD 

is a highly robust mean and scatter estimator that provides reliable estimates with 

up to 25% of the data consisting of outliers (when the author's suggested default 

algorithm parameters are used). With parameters estimated for the modified Teger 

energy distribution, robust Mahalanobis distances can be computed for all energies. 

Given that the Mahalanobis distribution for a Gaussian variable are Chi distributed, 

a threshold can be established (given a confidence level) to determine when an energy 

does not belong to the distribution for which parameters were estimated. In this 

fashion, total energies that are too high or too low compared to the norm established 

by the majority of the sub-band's energy can be identified. 

1.4.4 Major &; Minor Anomaly Detection 

With the modulating source assumption, complex acoustic sources containing narrow 

band anomalies can be characterized after spectral decomposition. This improves the 

chance of detecting a narrow band energy anomaly that may be hidden in a wide 

band signal and allows for baseline energy characterization in each spectrally decom­

posed band. With robust energy characterization in sub-bands, energy outliers are 

are detected and labeled as minor anomalies occurring in the signal sampling period. 

As a complex acoustic source changes over time, its total energy will change accord­

ingly. The contributing sub-band energies will also change over time, demonstrating 
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trends which are used to characterize the entire acoustic signal over the signal sample 

period. With the expectation that sub-band energy trends will not change radically 

over successive signal sampling periods, major sub-band trend deviations provide an 

indication that minor anomalies within the period containing the deviations and are 

of greater importance. Minor deviations detected during radical sub-band deviations 

are called major anomalies. While minor anomalies occur in a single signal sampling 

period, major anomalies occur over successive sampling periods providing both short 

and long term sensitivity to signal energy changes. 

1.4.5 Anomaly Localization 

This work provides a strategy for the localization of major anomalies. Once detected, 

an event is isolated within a time-frequency window. Since the energy of the anomaly 

was detected in a particular sub-band where it's signal to noise ratio is improved 

compared to what it would be in the wide band, the extraction of spatial information 

is done in only that band. For stereo acoustic localization, the time delay for a 

wavefront from a single distant point source to reach a second microphone after 

having reached a first reveals the direction of the source relative to the position of 

both microphones. The basic cross-correlation method is used to estimate this delay 

in each sub band using only the major anomalies (if present). Using acoustic wave 

propagation properties, the delay estimations are translated into azimuth estimates 

and the position of the anomaly is resolved from the median azimuth angle across the 

sub-bands containing anomalies. 

1.4.6 Technical Lexicon 

Research in anomaly detection continues and is gaining technical importance. With 

the goal of promoting discussion and research, a relevant technical proposed. This 

works makes use of the following terms and concepts which are discussed in this work: 
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anomaly minor anomaly major anomaly 

stress context acoustic scene 

attention span anomaly localization spatio-spectral sources 

While used in the context of this work, the concepts presented here are meant for 

general use in the context of anomaly detection and localization. 
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Chapter 2 

Theoretical Background 

2.1 Sound Localization 

The problem of acoustic localization is to determine the direction of arrival of a wave-

front emanating from a an acoustic source relative to an acoustic sensor away. By 

taking advantage of the propagation delay of the wavefront in the air medium, phase 

differences in the signals from spatially separated acoustic sensors can be estimated 

and then translated into directional information. Because wavefronts will travel ra­

dially outwards from a point source, the distance from the sensor array to the source 

will affect the perceived shape of the wavefront. In the near-field, where the source 

is very close to be sensor array, the spherical wavefront's characteristic curvature is 

pronounced to the sensor array, manifesting itself in the phase shifts perceived by the 

sensors. In the far-field, the sensor array is sufficiently distant from the source that 

the wavefront shape appears to be almost planar to the sensor array. This section 

concerns itself with the localization of random acoustic point-sources in the far-field 

where location estimation is simplified because of the approximation. 
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Figure 2.1: A spherical wave-front emanating from a point source appears planar to 
a receiver that is sufficiently far away. 

2.1.1 The Far Field Assumption 

The process of localization depends on the propagation delay imposed in the acoustic 

wave front by the medium in which it travels. The geometry of the sensor away 

also plays a critical role in this process. While a sophisticated phase model can be 

developed, this would only serve to complicate the phase estimation process. To 

avoid this, a simplifying assumption is made that will not have a severe impact on 

the phase estimates. Consider that in a relatively non-turbulent chamber, sound 

waves travel spherically outwards from the source as shown in Figure 2.1. For small 

distances, the pronounced curvature of the spherical wavefront complicates phase 

estimation, especially where the distance between the source and the center of the 

array approaches the average distance between the sensors in the array. While this 

complication of near-field operation is resolvable in a general solution, it is done at the 

expense of a more difficult analysis. If we assume that the sensor array is sufficiently 

far from the source then the wave-front geometry perceived by the sensor array will 

be approximately planar. Given that the ideal near-field solution is only valid in an 

unrealistic non-turbulent environment, the planar wave approximation is attractive. 

In this work it is assumed that the distance of the sensor array is sufficiently far from 

the source that a planar wave-front is perceived by the array. This is the far-field 
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assumption. 

2.1.2 Wavefront Propagation and Sampling 

Stereo localization is a spatio-temporal problem whose solution parameters are re­

solved in both space and time. Array geometry therefore very important. For a 

simple stereo microphone pair, the radial distance between sensors is crucial for the 

determination of location from the inter-sensor wavefront propagation delay. This also 

plays a critical role in establishing the Nyquist frequency for this simple array. For 

discrete time-processing therefore, we can consider the relationship between sampling 

frequency and sensor spacing. The propagation delay r (in seconds) of a wavefront 

from one stereo sensor to another separated by a distance d (in meters) is given by 

the following fundamental relation: 

r - \ , 2 , ; 

Where c is the wavefront velocity through a specific medium. For the air medium, 

this can be approximated by: 

c=20.5-\/273.15 + T (2.2) 

Where T is the ambient air temperature in °C. The fundamental period r0 of the 

stereo acoustic array is established as the propagation delay of a wavefront from the 

position of one sensor directly to the other: 

To = / (2.3) 
20.5- V273.15 + T v ' 

To prevent aliasing, the sampling frequency would have to be at least twice the 

fundamental frequency f0 = l/r0 for this array. This is to say, the sampling period 
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Temperature, °C 

Sampling Frequency, kHz 

Figure 2.2: This plot shows that the effect of temperature is not as significant as the 
effect of the sampling frequency on inter-sensor distance. 

rs must be less than half the fundamental period (rs < ~T0): 

20.5-V273.15 + T 
2d 

(2.4) 

Figure 2.2 shows the negligible effect of temperature and the minimum distance for a 

chosen sampling frequency. If we assume an ambient temperature of 25° C and have 

a stereo acoustic array with an inter-sensor spacing of 1.6cm then we find that the 

sampling period is rs = 1/44100 or fs = 44.1kHz. 

2.1.3 Sampling Frequency &: Inter-Sensor Spacing 

A point acoustic source located far from the stereo acoustic array will not necessarily 

yield perfect time shifted samples in the sensor data. Small turbulent vortices can 

occur between the sensors in even relatively calm air. This will introduce distortions 
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Figure 2.3: The far-field assumption assumes a planar wave emanating from the 
acoustic source. Here, the angle of incidence 9 = arccos 1j. 

in the traveling wavefront that will be manifested as minor perturbations between 

between samples. Because of this sometimes chaotic behavior of the air between 

the sensors, we neglect this behavior knowing that the detectable differences will be 

minor, especially in the far-field. We assume that the air is perfectly still causing 

only a phase difference, or delay between sensor samples. Furthermore, we maintain 

the far-field assumption which implies that no correction will need to be made for 

the difference perceived by the spatially separated sensors. Depicted in Figure 2.3, 

this assumption of a planar wave allows us to trivially relate the wavefront's angle 

of incidence 9 with the inter-sensor distance and the propagation delay of the planar 

wavefront across sensors si and S2: 

TC 

9 = arccos — (2-5) 
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Sampling f=44.1kHz, 25°C 

Unit Sample Delays Sensor Spacing, m 

Figure 2.4: The surface shown represents 9 for differing values of d and n. Clearly, 
the sensor spacing determines the number of samples required to cover 0° < 9 < 180°. 
Consequently, spacing will determine the number of quantization levels. 

Both d and c are taken as constant, allowing this simple relation to determine the 

azimuth of an acoustic source relative to a stereo acoustic array. Discrete sampling 

will quantize 9 since r is in units of a fixed rs; 

. TITSC , . 

0 — arccos —— (2.6) 

Figure 2.4 shows the azimuth for various sample delays and inter-sensor distances. 

For smaller values of d, the values of 9 span their full range although have a greater 

number of quantization levels. Similarly, we note that large d require a large number 

of samples for the same range coverage. For Figure 2.4, we can determine the optimal 
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distance for a set quantization level reflected in the number of sample delays n. 

Consider the following example with n = ±99 and fs = 44.1kHz at 25°: 

a nTsC i 
COSt/ = — — Cos0=±l 

a 
d — ±nTsc 

= ±99 (-^—) (353.97) 
V44100/ V J 

= 0.7946 

Given these parameters, the optimal distance therefore is 0.7946m. Naturally, this 

can be repeated for other values of n offering a control over quantization levels in 9. 

Similarly, for a fixed distance and sampling frequency (and temperature is invariant), 

we can determine the number of samples that will be required in order to cover the 

full range of the azimuth. 

2.1.4 Delay Estimation 

Since no estimation model and no a posteriori probability density function exists for 

an uncharacterized acoustic source, standard estimation techniques such as maximum-

likelihood and maximum a posteriori methods cannot be used to estimate the prop­

agation delay r. We can examine this estimation problem in both the time and 

frequency domains. 

A signal that is both first and second-order stationary is said to be wide-sense 

stationary. For such signals, the Weiner-Kinchin theorem relates the poser spectral 

density (2.7) of a signal to its autocorrelation function (2.8) as a Fourier transform 

pair: 

/

+oo 
Rxx(r)exp-^dr (2.7) 

-oo 
1 r+oo 

RXX(T) = — / Sx(u>)exp>"TdLJ (2.8) 
Z7T J-oa 
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The autocorrelation function has a single maxima located at r = 0 and is perfectly 

symmetric about this point (Rxx(T) — RXX(-T)). For time delayed signals, the 

maxima of the cross-correlation function is is shifted by r0, which corresponds to 

the signal delay time. For a two sensor array, the following is used to estimate the 

cross-correlation function: 

C{r) = ̂ f^s1{t)s2{t + r)dt (2.9) 

Where T is the estimation period, and s\(t) and s2(£) are the signals from each of 

the two sensors in the simple array. Estimation of the delay time involves finding the 

value of r that maximizes Cr: 

r0 = maxC(r) (2.10) 

Figure 2.5 shows an example of localization by peak-finding in C(r). Stereo acoustic 

sensors were spaced 10cm apart at 25°C. The discretely sampled signals yielded a peak 

that was shifted by 8 samples. At a sampling frequency of 44.1kHz, this corresponds 

to r0 = 0.18l4lfis from a wave front with angle of incidence 9 = 45°. 

Certainly, peak finding methods can be used to find r0 however, some cross-

correlation functions can be very deceptive for them yielding inaccurate estimates. 

The Weiner-Kinchin theorem suggests that signals with a relatively flat spectrum such 

as white noise will have an impulse-like autocorrelation function. Spectral whitening 

of sensor data will therefore improve the performance of peak-finding methods which 

consequently improves estimates for r0 and therefore 6. Spectral whitening can be 

considered as an optimizing step and is not a requisite for coarse localization. This 

work, while it makes use of simplified localization from the cross-correlation alone, 

can be subjected to optimizations which are not the focus of this work. Spectral 

whitening is mentioned here only for the sake of completeness. 
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Figure 2.5: The unique peak of the cross-correlation function C(r) is perfectly sym­
metric where the signals are identical. Delayed signals shift the peak from the center 
location at r — 0. In this case, an audio sample from a microphone pair with a 
spacing of 10cm and a sampling rate of 44.1kHz at 25°C results in an 8 sample shift 
of the maxima to r0. This corresponds to a 45° angle of incidence. The dotted line 
indicates the expected line of symmetry at r = 0, however the units on the abscissa 
correspond to the discrete sample index of the cross-correlation function. 

29 



2.2 Teager Energy 

Under certain conditions, complicated random signals can be statistically character­

ized. Although very useful for very basic detection of signal amplitude deviation, this 

type of characterization gives very little information about signal content. Provid­

ing only a measure of scatter, central tendency and perhaps bandwidth, the signal's 

power and frequency are neglected. Measuring energy deviation is another way of de­

tecting anomalies as it takes into account a signal's strength over a time period. By 

detecting when energies deviate from some established baseline, we can interpret this 

as an indication that the signal being monitored has undergone some fundamental 

change in its level of activity. Both of these measures correspond to measurements 

of potential and kinetic energy respectively in a signal. The Teager energy operator 

provides a means for measuring both of these quantities simultaneously for the source 

of certain types of systems. Sensitive to both amplitude and frequency, the Teager 

energy operator can be used to detect deviations in total source energy. 

2.2.1 Signal Amplitude vs. Energy 

Characterizing signals by their kinetic energy content takes into account the fact that 

the signal is a dynamic quantity and that amplitude variations that cancel each other 

out still need to be accounted for. Consider that the instantaneous power observed 

in a simple electric circuit is defined as either of the following time-domain functions: 

m = &f (2.ii) 
p(t) = i(t)2R (2.12) 

Where v(t) is voltage, i(t) is current, and R is resistance of a trivial electrical system. 

Normalizing the resistance (R = 10), we observe that the power is simply the square 
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of the input signal, regardless of whether voltage or current is being measured: 

p(t) = \s(t)\2 (2.13) 

The classic definition for signal energy and total signal energy over some time period 

are given by Equation 2.14, and 2.15 respectively: 

= / \s(t)\2dt (2.14) 
J-T 

f \s(t)\2dt (2.15) 
J-T 

E 
J-T ' 

ET = lim 
T^oo J-T 

These definitions will certainly measure the activity in a signal, but it is unclear from 

them how signal frequencies affect the energy measures. In physics and engineering, 

ParsevaVs theorem is written as: 

/

oo /*oo 

\s(t)\2dt = \S(f)\2df (2.16) 
-oo J—oo 

Where S(f) is the Fourier transform of the signal. We can interpret this as follows: 

The total energy contained in the signal s(t) across all time is equal to the total energy 

of the signal's Fourier transform S(f) accrues all of its frequency components[11]. 

2.2.2 Measuring Total Energy of a Source 

By attempting to model the source system that generated s(t) as a spring-mass 

system, we find that the energy function of that system as it generates a sinusoidal 

signal varies as a function of both amplitude and frequency which is quite different 

from what is stated in (2.16). It is this source modeling that is fundamental to the 

definition of the Teager energy operator and is used in this context for characterizing 

signals by amplitude and frequency. Consider the simple spring-mass source model 
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Figure 2.6: A physical spring-mass system as it corresponds to the mechanical circuit 
used for defining Teager Energy 

shown in Figure 2.6, which is expressed in the Laplace domain as: 

sCX(s) + 

s2CX(s) + 

X(s) 
sL 

L 

0 

0 

(2.17) 

(2.18) 

Substituting C and L for their mechanical system counterparts (C — m and L — 1/k), 

we obtain a second-order differential equation for position in the time-domain (x) 

which is the starting point for the Teager energy operator: 

d?x k 

dt2 m 
(2.19) 

Note that this simplistic model incompletely describes a mechanical-acoustical sys­

tem. While accounting for mass oscillation which creates pressure waves its medium, 

the medium itself is not described by this model [11]. The periodic sinusoidal os­

cillation of the mass is observed from the solution to (2.19) which has the following 

32 



form: 

x(t) = Acos(tvt + (l)) (2.20) 

x(t) is the position of the mass at time t, A is the amplitude of the oscillation, 

UJ = Jk/m is the frequency of the oscillation and <f> is the initial phase. When <f> ^ 0, 

the system is not in initially in equilibrium. 

Newtonian physics describes the total energy in the spring-mass system as the 

sum of both the spring's potential energy and the mass's kinetic energy: 

ET= \kx2 + \mv2 (2.21) 

Spring's Potential Energy Mass' Kinetic Energy 

Substituting the solution of (2.20) and velocity v — ^ into (2.21), we obtain the 

following after simplification: 

ET = ^mu2A2 (2.22) 

The total energy of this system is clearly a function of both the amplitude of the 

oscillation (A) and the frequency of oscillation (a;). 

2.2.3 Definitions of the Teager Energy Operator 

Omitting the derivation from the spring-mass model, the definition of the continuous 

Teager energy operator followed by the discrete Teager energy operator are introduced 

[11]: 

^((x(t)) = x2(t)-x(t)x(t) (2.23) 

* [xn] =x2
n- xn-ixn+1 (2.24) 

While actually an estimate [11], the discrete version of the Teager energy (2.24) also 

has a more generalized definition [12] where a lag parameter M that is used to resolve 
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closely spaced tones: 

* [xn] =X2
n- Xn^MXn+M (2.25) 

For a sinusoidal excitation x(t) = Acos(uit) we can clearly see again that the con­

tinuous Teager energy is a function of amplitude and frequency (after simplification): 

* ( * ( * ) ) = A2coz (2.26) 
x(t)=Acos(ujt) 

It is this sensitivity that makes this form of energy measure interesting for the detec­

tion of deviations in both amplitude and frequency. 

2.2.4 Demodulation Properties of the Teager Energy Oper­

ator 

By setting either the frequency or the amplitude constant, it is clear from (2.26) how 

this operator can be used for the demodulation of AM, FM, or AM-FM signals since 

both the continuous and discrete forms of the Teager energy operator are sensitive 

to a signal's amplitude and frequency. Consequently, for a fixed frequency, Teager 

energy is sensitive to amplitude and can be used to for demodulation of AM signals 

where the carrier frequency is constant. Substituting into the continuous form of the 

the operator (2.23) on the understanding that the discrete form retains the the same 

properties, we have the greatly simplified result in 2.28 [11]: 

sAM(t) = a(t) cos(uct) (2.27) 

y(sAM(t)) = a2(t)u* + cos2'(uct)V(a(t)) (2.28) 

For a simple sinusoidal baseband a(t) = Acos(ut), Figure 2.7 shows both the AM sig­

nal and its corresponding instantaneous Teager energy. Clearly, the measured energy 
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AM Signal 
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Figure 2.7: An AM signal with its Teager Energy Output 

greatly resembles the envelope of the AM signal which is the modulated baseband 

The Teager energy operator has FM signal demodulation properties as well (2.30) 

[11]: 

SFM^t) = A COs((j)(t)t) 

*(sFM(t)) = A2[<f>\t) + 4>(t) 
s i n ( 2 ^ ) ) \ 

(2.29) 

(2.30) 

Where 4>{t) is the baseband of the FM signal. Figure 2.8 shows an example of FM 

demodulation where the baseband is again a simple sinusoid. We see again that the 

instantaneous energy measured has a great resemblance to the baseband signal. 

Since the same operator can be used for either AM or FM demodulation, AM-FM 

demodulation is a reasonable prospect. The Teager energy for an AM-FM signal is 
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Teager Energy Output 

0 200 400 600 800 1000 1200 1400 1600 1800 2000 

Figure 2.8: An FM signal with its Teager Energy Output 

given by the following expression [11]: 

* (sAM-FM(t)) = (a(t)<f)(t))2 + ^ a 2 ( i ) # ) sin(2<Ki)) + cos2((^))fr(a(t)) (2.31) 

' - ^ ' ' AM ' 

Figure 2.9 shows an example of an AM-FM signal with its instantaneous Teager 

energy. Upon close inspection of the modulated signal depicted, the Teager energy 

measure again greatly resembles the baseband signal. 

While demodulation is not the goal of this work, demonstrating the demodulation 

properties of the Teager energy operator shows its sensitivity to both frequency and 

amplitude together. There are many signals that can be characterized using these 

parameters and by using the Teager energy operator to monitor the sources's activity, 

we are not restricting measurement to amplitude change alone. 

0.02 

0.015 

o.oi 
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Figure 2.9: An AM-FM signal with its Teager Energy Output 

2.2.5 Negative Teager Energy and Operator Noise Sensitiv-

ity 

While Teager energy has interesting properties that are of use for characterizing sig­

nals, it is not without drawbacks. From the discrete operator definition in 2.24, we 

clearly see that its behavior is non-causal. While this can be overcome by acceptance 

of a one sample delay in the instantaneous energy computation (M samples for the 

generalized form in (2.25)), other properties may pose a problem for signal charac­

terization. Notably, the problem of negative Teager energy, and operator sensitivity 

to noise. 

Energy is a positive quantity, and a negative quantity measurement is strange 

indeed. For certain types of signals, Teager energy yields negative energy which is 

a strange behavior for any energy operator. Figure 2.10 depicts a signal containing 

two mixed sinusoids where the frequency of one is greater than the other, but with 
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Figure 2.10: Certain signals yield negative Teager energy. This is one such signal. 
Notice how the signal resembles a noisy sinusoid although it is a deterministic func­
tion. 

a much smaller amplitude (similar to a noisy sinusoid). In this signal, some of the 

energy measured will be negative. Although there are many other signals that will 

fall into this class, most real-valued signals do not. A detailed explanation of how to 

guarantee positivity of the energy measurement is not appropriate here (see [11]), but 

we should recall that the Teager energy model tries to model the energy of the source 

and not the signal although we speak colloquially to the contrary. The author of [11] 

suggests that if we consider the observed signal in Figure 2.10 was generated by two 

sources, each generating a sinusoid with one farther away and with higher frequency 

then Teager energy measurement will be based on an incorrect assumption of a single 

source system (2.18). This is a very reasonable explanation. 

The second term of the discrete Teager energy definition (2.24) is essentially a 

discrete differentiator which (by definition) is very sensitive to abrupt variations. 

Noise can be viewed as rapid variation superimposed onto an otherwise smooth signal. 
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Noisy Sinusoid Averaged Teager Teager Energy of 
s(t) = 4sin(t)+N(0J) Energy of Signal Averaged Signal 

Figure 2.11: s(t) is a simple monochromatic signal with additive zero-mean Gaussian 
noise of unity variance. Over 1500 samples, moving averages with window sizes 
W € {1,10, 50, 200} are shown respectively in rows for * (s(t)) and \t(s(£)). 

Teager energy of a noisy signal will also be noisy and may yield negative energy. 

Smoothing, or low-pass filtering is one good solution to reduce operator noise, and 

more importantly to reduce the tendency of some noisy signals to produce negative 

energy. Figure 2.11 shows a monochromatic signal with additive noise on the left. 

The next column shows a windowed (moving) average of its instantaneous Teager 

energy (^ (s(t))). As the window size increases, the operator tends to become more 

positive. The assumption of a single source for Teager energy does not account 

for the noise which appears as a secondary source and yields negative energy. As 

the window size increases, the effects of the negative energy are mitigated as the 

sinusoid becomes the more dominant component within the averaging window. Low-

pass filtering of the Teager energy operator is one way of dealing with numerical 

differentiation noise. If the signal were pre-filtered in an attempt to remove noise 

using before Teager energy measurement (\l/(s(£))), we can see that residual noise will 

still produce negative energy that decreases with an increase in size of the averaging 

window. A windowed average of the Teager energy appears to produce an output that 

reflects the energy of the most dominant single source while pre-filtering of the source 
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before Teager energy measurement appears to highlight the imperfections in the signal 

filter. Both averaging methods have the same goal which is to emphasize the more 

dominant single energy source in the presence of a secondary, low-amplitude, high-

frequency contaminant source. Pre-filtering or post-filtering in this sense becomes 

an implementation detail that affects performance of the resulting Teager energy 

measurement of a noisy signal. 

2.3 Outlier Identification 

In order to quantify inherent behaviors of an experimental process, constraints are 

put into place so that sampled data can be analyzed according to a known model 

that reflects a behavior of interest. Distribution parameter estimation and model 

fitting methods can be very accurate, however anomalous samples may inadvertently 

appear that do not come from the process of interest. Generally from a completely 

different distribution model, these outlier samples cause the model fitting process to 

yield large residual errors and statistical parameter estimation to produce very poor 

confidence intervals. The goal of robust statistics is to account for outlier samples 

and produce good model parameter estimates for the majority of the sample data. 

This section describes Gaussian parameter estimation and more importantly, robust 

dissimilarity measures and decision criteria used for outlier identification. 

2.3.1 Maximum-Likelihood Estimation 

The non-robust estimation of distribution parameters for a sample set will require 

the minimization of a cost function or maximization of some goal function. Given 

a parametrized distribution model, and a sample set, maximum-likelihood estimation 

seeks to maximize a likelihood function to estimate distribution parameters. The 

likelihood function describes the probability that the entire sample set belong to a 
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distribution with a given set of parameters. A general discussion of this method 

follows as it serves to highlight issues that are critical for robust outlier identification. 

Given independent, identically distributed samples xi, x2... XN, we wish to infer 

the parameters 6\, 92 ... 9k for a given distribution/(•): 

f(xux2...xN\e1,e2...ek) (2.32) 

Because the samples are independent and from the same distribution, we compute 

the likelihood function L(-) as well as the log-likelihood function A(-): 

N 

L(x1,x2...xN\91,92...9k) = Yif{xi,x2...xN\61,92...9k) (2.33) 

N 

A(x1,x2...xN\91,92...9k) = ^2]nf(x1,xi...xN\01,e2...ek) (2.34) 
t = i 

Because of the monotonic properties of the logarithmic function, we may estimate 

the parameters of interest by maximization. The estimate is for a given parameter 9i 

is obtained by: 
dA(x1,x2...xN\91,92...9k) 

ddi " { } 

Let us consider the estimation process for a univariate Gaussian function, whose 

estimators are very familiar. We wish to estimate the mean /J, and the standard 

deviation a for a Gaussian model from independent, identically distributed samples 

Xi,x2 . . . Xjy: 

f(xi,X2...xN\n,a)= / - — - e ^ (2.36) 

As explained earlier, the likelihood, and log-likelihood function are evaluated as: 

*L i (XJ-M)2 

L(x1,x2...xN\n,a) = I ] [R—26 ^2'37-) 

A(Xl,x2...xN\fJi,a) = --ln2n-Nlna--J2[-±^) (2-38) 
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We maximize the monotonic A(-) with respect to fi in order to obtain our estimator 

which we now call /t: 

dA(xi,X2...xN\fi,a) = 

A=^E^ (2-39) 

This unbiased estimator is the familiar sample mean. Similarly, we compute an 

estimator for the variance where the true mean is known a priori: 

dA(x1,x2...xN\n,a) _ 
da 

^ = I E (*i - »? (2-40) 

The asymptotically unbiased estimator of variance is used when the mean is not 

known: 
1 N 

This estimator yields the true value of the variance where the number of samples 

./V is large. Normally we expect parameter estimates and true parameter values to 

be the same where all of the samples are from a single parametrized, but unknown 

distribution. For all of its usefulness, the maximum-likelihood method takes into 

account all samples to perform its estimates including some samples that may have 

appeared from another distribution. This lack of discrimination is problematic for 

the estimators and in the case where the outliers carry sufficient statistical leverage, 

it can render them highly inaccurate. 
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2.3.2 Estimator Bias 

While the degree of bias in these estimators is not directly of concern in our discussion 

of outlier leverage, the metric used to compute bias is. Consider the expected values 

for each of these estimators: 

E { / } - / 4 (2.42) 

E { a 2 - a 2 } (2.43) 

Where \i and a are the true parameter values, while (i and a2 are the parameter esti­

mates. The breakdown point of an estimator is the maximal amount of model misspec-

ification they can stand before their bias becomes arbitrarily large. The breakdown 

point for the p-variate maximum-likelihood estimators has been shown to be at most 

[13]: 

71 (2.44) 
p + 1 

Therefore, 900 samples drawn from a contaminated process that produces bivariate 

Gaussian data can contain at most | ^ = 300 outliers before the maximum-likelihood 

estimators become unusable [14], with (2.42).and (2.43) becoming arbitrarily large 

instead of approaching zero for large sample sets. Maximum-likelihood estimators 

is the maximal amount of model misspecification they can stand before their bias 

becomes arbitrarily large and is at most - ^ for p-variate data [13]. For example, 

samples drawn from a contaminated process that produces bivariate Gaussian data 

can contain at most -^ outliers before the maximum-likelihood estimators become 
p+i 

unusable [14], with (2.42) and (2.43) becoming arbitrarily large instead of approaching 

zero for large sample sets. 
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2.3.3 Statistical Leverage in Maximum-Likelihood Estimates 

As previously stated, maximum-likelihood estimation of density function parameters, 

while useful, makes use of all available data. Problems arise when some of the samples 

are taken from a different distribution. During the observation of a controlled process, 

presence of these outlier samples are typically due to the existence of a process that 

was unforeseen. Because they lie well outside of the range of other samples, outliers 

can introduce large errors in the parameter estimates for the assumed distribution 

model, altering the characterization of the sample set completely. Also, called leverage 

points, outliers can have a dominating effect on the distribution model estimates 

an should therefore be identified for removal before estimation techniques can be 

employed. 

Considering the mean as a measure of central tendency of a sample, any values 

that are significantly far away from the majority of samples will have a very strong 

effect on fi. This can be clearly seen from a simple arithmetic example: 

S = {0.8 , 0.5 , 0.7 , 0.9 , 0.3 , 0.6 , 0.7 , 1000} 

H = ^ P = 125.5625 

Clearly, the last value in the sample set S is the only element that extends the range 

of the data set making it an outlier. If the other values were slightly modified without 

significantly extending or reducing the range of this subset, then we would see little 

change in the mean //. Changing the single outiler value would have a significant effect 

on ix making it most sensitive to the outlier which explains why it is also called a 

leverage point. Removing the outlier reveals the true mean, the one that characterizes 

the majority of the samples: 

S = {0.8 , 0.5 , 0.7 , 0.9 , 0.3 , 0.6 , 0.7} 
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Figure 2.12: The maximum-likelihood mean estimation for a Gaussian mixture does 
not yield a descriptive result for this particular sample set. 

/ i = ±3 = 0.64... 

Therefore, if we wish to characterize a sample set that may be contaminated with 

outliers, we should seek to identify these outliers so that they can be removed. Once 

removed and we have some confidence that the data is from a single distribution, we 

can perform the necessary parameter estimation to characterize the data. Figure 2.12 

also demonstrates this point. The estimation model assumes that samples were taken 

from a single Gaussian Distribution. Using the derived estimators, on this Gaussian 

mixture yields an ambiguous result that does little to describe the data set adequately. 

Only outlier identification and removal will improve the estimates. Robust estimation 

will therefore require some sort of decision criteria that distinguishes between outliers 

and extreme values given some measure of confidence. Given a parametrized Gaussian 

distribution, and a new sample, the Mahalanobis distance provides a metric for the 

degree of membership of the sample to the known distribution. 
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Bivariate Gaussian Contour Plot 
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Figure 2.13: The Euclidean distance from the mean to both A and B is identical 
while the Mahalanobis distance is not. The suspected outiler A has a much higher 
Mahalanobis distance than the other extreme value B. 

2.3.4 Mahalanobis Dis tance 

Distance measurement is an intuitive way to measure the closeness of items. Based on 

correlations between variables, the Mahalanobis distance is a useful way of measuring 

similarity between a known and unknown sample set and unlike Euclidean distance, it 

is scale-invariant. Figure 2.13 shows the isolines of a bivariate Gaussian distribution 

with sample points A, and B. While they both have an identical Euclidean, distance 

from the mean, their Mahalanobis distance greater for B than it is for A indicating a 

greater dissimilarity between the sample and the distribution it was assumed to come 

from. 

Given two sample sets x and y from the same distribution, with their covariance 

matrix E we define their dissimilarity measure with the Mahalanobis distance which 

is defined as: 

d(x, y) = ^1 {x - yy^-\x - y) (2.45) 
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In the case where S is a diagonal matrix, we have what is sometimes called the 

normalized Euclidean distance: 

d(x,y) = i £ < * « (2.46) 
i=l ai 

Where a^ is the standard deviation over the Xj in the sample set. While (2.45) is 

the normal, more general definition that is used, from (2.46) we can see clearly that 

the Mahalanobis distance between two vectors is the length of the difference between 

them scaled in each dimension by the standard deviation. It is this scaling that 

normalizes the distance in each dimension and consequently in the overall distance 

measure. For a parametrized multivariate Gaussian describing a sample set with mean 

pi — (/ii,fJ-2- • • IJ'N)T a n d covariance £, we can measure the dissimilarity between the 

sample set and an arbitrary sample: 

DM(x) = yj(x-fi)^-^x-i2) (2.47) 

While Figure 2.13 intuitively shows that DM (A) < DM(-B), it does not indicate 

which of the two, if any, is an outlier. Because of the greater Mahalanobis distance, 

we suspect that B is an outlier. This may in fact not be the case. Recall that some 

probability density functions, such as this multivariate Gaussian are asymptotic. This 

means that the distributions have an infinite support region therefore values extremely 

far from the mean can theoretically appear, however unlikely. 

Given good estimates for jl and E, the squared Mahalanobis distance DM
2(^) is a 

scalar value that is used to determine if x is part of an outlier set: 

Outlier Set = [x e W | (f - /Z)T5T1(£ - ft) > T} (2.48) 

The decision criteria and threshold T for determining whether a sample is an outlier 
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or an extreme value with some specified confidence level is discussed in Sections 2.3.5 

and 2.3.7. 

2.3.5 Mahalanobis Distance Sensitivity to Covariance 

The general Mahalanobis distance in (2.47) clearly shows the Euclidean distance be­

tween an arbitrary sample x and a Gaussian distribution mean pi is scaled by the 

distribution covariance matrix S. This can pose a problem. In order to use this dis­

similarity measure to detect outliers, these quantities must be known a priori. Given 

an unknown sample set, if we attempt to estimate these parameters and outliers are 

present, then the Mahalanobis distances will not be relative to the true distribution 

of the sample majority because of the outlier leverage on the estimates. Naturally, 

poor estimates will result in poor scaling making dissimilarity measures using the Ma­

halanobis distance in the presence of outliers unreliable (a masking effect that gets 

worse with the number of outliers). To circumvent this situation, an outlier-robust 

estimation scheme is required for the implicit parameters of the definition in (2.47). 

Clearly, too many outliers can be dangerous or classical statistical methods. 

2.3.6 Robust Parameter Estimation 

The minimum covariance determinant (MCD) algorithm is a highly robust mean and 

scatter estimator. The objective of this algorithm is to find a subset of observations 

whose covariance matrix has the lowest determinant. Hampered by its computational 

speed, the Fast-MCD algorithm [15] offers a great improvement in speed. For p-variate 

data, its objective is to find a set of h out of n observations whose covariance matrix 

has the lowest determinant. The tolerance ellipsoid with the smallest volume that 

covers h samples where | < h < n. It's breakdown is n^k. 

The method considers a subsets of size p + 1 within the h observations to find the 
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5% Outliers 30% Outliers 

Figure 2.14: With a breakdown value of 25%, the Fast-MCD produces a robust 
estimate in (a) and a poor estimate in (b). 

determinant with the lowest covariance. The value of h is chosen as: 

n +p + 1 
< h < n (2.49) 

with h — n+P+l by default. Where we expect that less than 25% of the sample are 

outliers, we may consider h = 0.75n as a compromise between the breakdown value 

and and statistical efficiency [15]: 

n — h 

n 
= 0.25 (2.50) 

h=0.75n 

Figure 2.14 shows two sample sets with n = 1000 samples drawn from the same 

bivariate Gaussian distribution but with differing proportions of outliers which were 

obtained from another distribution. With the compromise value chosen for h, we 

expect the Fast-MCD estimates to be robust where only 5% of the samples are outliers. 

This is confirmed by the 97.5% tolerance ellipse shown in (a). The tolerance ellipse 

in (b) confirms the breakdown we expect since 30% of the samples are outliers and 

this proportion exceeds the breakdown proportion in (2.50). 
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Because the Fast-MCD algorithm provides a robust estimation for location and 

scatter (jl and E), robust distances can be computed as well. With little or no 

outlier leverage, the sensitivity of the Mahalanobis distance is mitigated and the 

dissimilarity measure gains a more intuitive meaning where outliers are present. Since 

the estimated parameters represent a majority of the samples, the robust distances 

reflect dissimilarities from this norm. It should be clearly stated that the parameters 

are being estimated for the asymptotic Gaussian distribution therefore we cannot 

distinguish between outliers and extreme values from the same distribution without 

first determining the value of T from the decision criteria in (2.48). A large robust 

distance certainly indicates dissimilarity with the majority of other samples, but 

values far from the mean can most certainly arise regardless of how low this probability 

is. 

2.3.7 Outlier Detection in Gaussian Distributions 

Section 2.3.4 described the Mahalanobis distance as a dissimilarity metric. Given a 

known parametrized distribution, a degree of membership or distance can be estab­

lished for a new sample. The distance measure in (2.47) has the following property: 

{Vf <= W , DM(X) e [0, oo+) | jl, E} (2.51) 

A trivial observation, any vector in W has a distance that can be measured to a 

specified a p-variate distribution. In this sense, no distinction can be made between 

outliers and extreme values for samples that are far from the distribution without some 

confidence. Those samples whose distance is within a specified confidence interval, 

are considered to belong to the distribution. Those that are close to the interval 

boundary but are still within it are considered extreme values although this is a 

subjective distinction. Those samples that are outside the interval are outliers and 
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Figure 2.15: The Chi Distribution (xk{x)) shown with selected degrees of freedom 
k = 1,2,3,4. 

are considered not to belong to the distribution. A confidence interval is therefore 

crucial to make this distinction and should be reflected in the threshold chosen for T 

in (2.48). 

Given vectors x = [x\, x 2 , . . . , Xk]T and y — [yi, jj2,..., yk]T, consider the following 

statistic where all vector components are zero-mean gaussian distributed with variance 

1 (Xi ~ N(0,1) and Vi ~ N(0,1)): 

Z 
\ 

^-^ \%i Hi) 

<Ti 
(2.52) 

This statistic is Chi distributed with k degrees of freedom (xk(x))as shown in Figure 

2.15: Figure 2.16 shows the Chi-square distributed which is obtained from the statistic 

Z2, also with k degrees of freedom. The Mahalanobis distance in (2.46) carries the 

same form as the Z statistic in (2.52). We can therefore conclude that for vectors 

whose components are independently distributed, DM is Chi distributed, and DM (•) 

is Chi-square distributed. With this constraint observed, a confidence interval can be 

used to determine a threshold for the distances. For example, for a given sample set 

in 3ft3 in which we have confidence that 70% of the observations belong to a specified 

distribution Nk(/2, S). We can compute a cut-off value for DM2 as shown in Figure 
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Figure 2.16: The Chi-Squared Distribution (xt(x)) shown with selected degrees of 
freedom k = 1,2, 3,4. 

X\J3.66)=0.70 

Figure 2.17: Given a 70% confidence that a sample from K3 belongs to Nk(fl, £) , the 
inverse of x\=z gives a cut-off value for DM2- Samples with DM2 < 3.66 are considered 
part of the distribution while others are considered to be outliers. 

2.17. With this cut-off value, we can now express (2.48) for a p-variate distribution 

with T — Xp (a) where a is our degree of confidence that values with Mahalanobis 

distances less than T belong to a given p-variate Gaussian distribution parametrized 

with mean ft, and covariance E. 

Outlier Set=\xeW\(x- / T ^ E ^ x - ft) > -^(a) (2.53) 
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Similarly, we also have: 

Outlier Set = j x e W \ \j{x - jTj^E-^x - p) > — (a) \ (2.54) 

Clearly, we may use either DM
2 or DM. As a matter of convention, DM

2 is used in 

this text. 

Recalling that DM2 is sensitive to E, the threshold T may not be well placed 

according to our expected confidence a. Since T is invariant to outlier leverage we 

would require a robust estimate for £ in order to detect outliers. Robust outlier 

detection is therefore dependent on robust distances which can only be obtained from 

robust scatter estimates such as those provided by the Fast-MCD algorithm. With 

outlier leverage mitigated, a is the only parameter in the decision criteria for outlier 

identification. Ultimately, outlier leverage is the key underlying motivation for outlier 

identification and the breakdown point of the estimators should be considered before 

forming any expectation about the sample set. 
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Chapter 3 

Problem Statement & Technical 

Contributions 

3.1 Introduction 

When a context has changed significantly within a qualified scene, an intelligent sys­

tem identifies this event as an anomaly. While scene and context features can vary 

across observers, the existence of a detection mechanism for significant context change 

is a salient feature of intelligent observers. By detecting an anomaly, an intelligent 

system can apply a fitting control law to accommodate the new context or initiate 

learning to adapt or discover a new control law that is appropriate to maintain stabil­

ity the presence of the altered context without compromising previously established 

control laws. 

The method described here for anomaly detection and localization first attempts 

to statistically characterize wavelet filtered sub-bands which is especially important 

when the narrow band power of an anomaly is insignificant when compared to that of 

the wide band signal. By distinguishing between extreme and outlier Teager energy 

values that have appeared in the sub-bands of array sensor data. The outlier data in 
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the time-frequency window can then be used to estimate array phase data required 

for computing acoustic wavefront direction of arrival in the acoustic far-field. 

Chapter 2 provides a theoretical foundation that is critical to the objective of 

this work. Adding to this foundation, this chapter describes the objective of this 

work in great detail through a clear statement of the problem of interest as well as a 

supporting solution. 

3.1.1 Problem Statement 

An anomaly is the specific event that causes the violation of a process observer's 

expectations about that process[10]. The problem of anomaly detection and localiza­

tion is to determine the spatial information about an energy source that has caused 

a violation of a process observer's expectation about its environment. On the as­

sumption that the environment contains multiple sources whose characteristics are 

unknown and whose energy output can change slowly over time, an energy sensor 

array is used to extract spatial information about the environment. The sources are 

each assumed to have energies with an arbitrarily complex time-frequency signatures 

which means no assumption is made about its spectral content or its duration. The 

problem directly concerns itself with the design of an observer system that retains 

the afore mentioned properties and operates over discrete time-series samples. The 

problem of acoustic anomaly detection and localization is specific for acoustic energy 

and consequently, the observation data is received from acoustic sensor array. 

3.1.2 Thesis Hypothesis 

The problem of anomaly detection can be specified as a problem in robust statistics. 

By assuming that all sources provide a modulating force on a spring-mass system, 

the total energy of the source can be determined using the Teager energy operator. A 

measure of both potential and kinetic energy, this operator is sensitive to both signal 
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amplitude and signal frequency. 

Since an anomaly can be caused by a wide or narrow-band energy source, spectral 

discrimination should improve the likelihood of detecting an anomalous energy source 

where its narrow band energy is insignificant to that of the wide band signal it is 

immersed in. With most of its energy in the lower spectral bands, linear spacing of 

band-pass filters is not very efficient. With more weight on the lower spectral bands, 

non-linearly spaced band-pass filters provide spectral decomposition of the acoustic 

signal whose Teager energy provides the energy contribution of that band. 

Over short observation periods, statistical deviations in sub-band Teager energy 

samples provide some indication that there was some significant event in that sub-

band. Collectively, if the energy in each of the filtered sub-bands changes significantly 

over a larger observation period, then the significance of events in the sub-bands are 

given more weight and are used for localization in the far acoustic field. 

3.2 Characterizing Signals using Teager Energy 

To detect a signal anomaly, a baseline for what is considered normal is first required. 

On the expectation that this baseline should not change significantly over short ob­

servation periods, a metric for signal deviation will provide a means for determining 

if the expectation for consistent normality has been violated. This section concerns 

itself with the use of sub-band Teager energy as a means of signal characterization 

over short observation periods, as well as the characteristics of an anomalous event. 

3.2.1 The Modulating Source Assumption 

Energy change in a signal can be induced in different ways. The classic energy 

definition implies that its measure is sensitive to amplitude variations. According 

to (2.14), a signal with unipolar impulses appearing with frequency fo can have the 
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same energy as a bipolar signal with impulses alternating at the same frequency. A 

sinusoidal signal at this same frequency will not have the same energy. This simple 

example highlights that it is unreliable to characterize signal shape using classic energy 

measures. If a system were designed to follow energy changes in this sense, it would 

be insensitive to abrupt, short-duration changes in the signal shape. It is certainly 

possible that over successive observation periods that signals with completely differing 

shapes would result in similar or identical energies. Figure 3.1 shows signals that quite 

different yet have the same energy measure. Detecting anomalies in amplitude using 

E=1.0000 E= 1.0000 
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E= 1.0000 
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Figure 3.1: Various signals with identical, unit energy measured according to the 
definition of (2.14). 

this measure may pose serious difficulty if possible at all since this measure of energy is 

only sensitive to the mean amplitude of the absolute signal value over a time interval. 

If we assume that all signals of interest have been modulated somehow, then de­

modulation would expose other features of the signal that could help characterize it. 
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For example, AM demodulation would expose changes in the signal's envelope for 

relatively constant frequencies. FM demodulation would expose changes in frequency 

for a relatively fixed signal envelope. Finally AM-FM demodulation would simulta­

neously expose both of these features. The Teager energy operator has interesting 

demodulation properties that can be used for amplitude and frequency feature extrac­

tion. Figure 3.2 shows the Teager energies for the signals of Figure 3.1 respectively. 

Each has a characteristically different instantaneous and averaged energy using the 

Teager energy operator. If we make the assumption that the signal source is modeled 
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Figure 3.2: Instantaneous Teager energy of signals in Figure 3.1, with their average 
Teager energies (\I/) in the sub-figure headings. 

as a modulating force on a spring-mass system, we can make use of the demodula­

tion properties of the Teager energy operator (Section 2.2.4) for joint amplitude and 

frequency feature extraction. We will call this the modulating source assumption. 
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3.2.2 Measuring Teager Energy in Sub-Bands 

A simple source is characterized rather well with the modulated source assumption. 

Complicated signals however, become increasingly difficult to characterize in this fash­

ion because of the simplistic Teager source model. This difficulty is also experienced 

where multiple sources with differing properties are present. 

With the presence of many differing sources, or a single complex source, the sample 

probability density function approaches a central attractor distribution (the central 

limit theorem). Consequently, its spectral bandwidth becomes increasingly well de­

fined however, information about the contributing sources is completely lost with 

each of their individual distributions convolved with the others. Since we typically 

deal with few sources and cannot deal with the attractor distribution, characteriza­

tion of the signal will have to be broken down somehow. On the assumption that 

a complicated source has multiple, simpler sources contributing in sub-bands, Tea­

ger energy characterization of sub-bands may be more representative of the complex 

source. We therefore consider some of the underlying concerns with sub-band Teager 

energy characterization. 

3.2.3 Band-Pass Filtering 

Among other specifications, the filter order is very much of concern and typically 

defines the behavior of the filtered signal in the stopband. Figure 3.3 shows the 

frequency response of an elliptic band-pass filter of order 12. Clearly, the stopbands 

are not ideal, but acceptable depending on the application. Ideally, we would like to 

have flat passbands, stopbands with a perfectly sharp transition. In this theoretical 

sense, we could measure the total energy (2£r) in a signal from the energies in its 

sub-bands(i?j): 

i 
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Figure 3.3: The magnitude response of a typical band-pass filter: Elliptic IIR, Order 
32. 

Where i would denote the index of any number of theoretical band pass filters span­

ning the frequency of the input signal. Superposition in this sense could not be applied 

if the filters were not theoretically perfect. Theoretical band-pass filters as such can­

not be designed and typically display sidelobes in the stop-bands that allow undesired 

signal spectra to pass. Any energy measurement from non-ideal band-pass filters will 

contain surplus energy from the stop-band. Another problem with band-pass filtering 

where total energy is concerned, is where to place the center frequency of the filters. 

Since the transition bands are not perfect, this poses an extra degree of freedom that 

makes energy measurement far more subjective than we would like (because of the 

overlap of imperfect filters). While possible to obtain reasonable energy estimates, 

good filters come with a computational expense that increases with the number of 

bands required as well as the order of the filter. 

3.2.4 Advantages of Wavelet Decomposition 

Discrete sampling of a signal offers a great deal in the way of processing flexibility. 

One of note in the context of this work is the discrete wavelet transform (DWT). 
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Figure 3.4: Ideal band-pass filtering would allow for all sub band energies to be 
accounted for with no overlap between filters and no areas of magnitude attenuation 
as in. In (a) the passband is ideal with no transition band. The sum of energies in 
each of the sub-bands is equal to the total energy (ET = J2Ei). In (b), transition 
bands are clearly present with overlap in the stopbands. It is not clear how much of 
the total energy is accounted for in each of the sub-bands with this non-ideal band 
pass filtering (ET ^ Y. Et). 
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1 
I 

Band 1 Band 2 Band 3 Band 4 Band 5 

Frequency 

Figure 3.5: A scaled wavelet function acts as a band-pass filter, halving its band­
width for each decomposition level. Note that the center frequency of each band is 
nonlinearly spaced across the signal spectrum and that the transition bands are quite 
sharp, although not ideal. 

While typically used for time-frequency analysis of signals, it does have another use: 

band-pass filtering. A scaled wavelet function will act as a band-pass filter halving its 

bandwidth for each decomposition level as shown in Figure 3.5. A direct result of the 

dyadic sampling scheme used in the DWT, the center frequency of the band-pass filters 

are nonlinearly spaced across the sampling spectrum. The wavelet's scaling function 

prevents the existence of an infinite number of bands to cover the full spectrum 

effectively limiting the number of filters that are produced to a small number. If sub-

band energy characteristics are sought, then the spectrum sampling scheme should 

be chosen diligently. Audio data normally has most of its power in the lower spectra 

therefore we would expect most of the information in the signal would appear in these 

bands. In this case, we would choose to have a finer spectral discrimination for this 

type of signal. Discrete wavelet decomposition is very good in this case since the 

band-pass filtering has many of the filters in the lower frequencies and fewer in the 

higher frequencies. In addition to the sharp transition bands offered by wavelets, the 

natural nonlinear spacing of the band-pass filters is a good choice for audio analysis 

and comes at minimal cost. 
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As mentioned in Section 2.2.5, the Teager energy operator is very sensitive to 

noise. Typically appearing as a low-amplitude, high frequency modulation of a low 

frequency baseband source, the Teager energy operator will tend to give more negative 

values. Removing noise is advantageous in this case to ensure that the energy operator 

produces positive values as we would normally expect. Once again, wavelet analysis 

can provide a good solution for this problem. With minimal computational effort, 

de-noising is possible by thresholding wavelet coefficients in some bands. This will 

improve performance of the Teager energy operator. This optional preprocessing step 

was not used in this work. 

Optimal selection of a specific wavelet basis is highly dependent on the qualities 

of the for audio source and is not the topic of this work although some selection 

criteria is of concern. The real projection of a signal onto an orthogonal basis results 

in scalar coefficients. The energy in the resulting signal approximation is a sum of 

the energies in each basis projection. It is reasonable therefore to use a wavelet 

basis that has an instantaneous energy that is positive over its area of support. For 

this work, three wavelet families were considered. Figure 3.6 shows examples of the 

symlet(a), Daubechies(b), and discrete Meyer(c) wavelets. All three wavelets have 

negative Teager energies which may not be apparent given the scaling in plots (d) 

and (e). Because of the noisy bipolar nature of their Teager energy shown in (f), 

Daubechies wavelets were not used. A large sample of white noise was filtered using 

the symlet-8 and discrete Meyer wavelets to obtain an empirical impulse response for 

each of four band-pass filters corresponding to an increasing level in decomposition. 

Figure 3.7 shows the power spectral density of each filter output superimposed on the 

upper plot. Clearly, the stop-bands of the symlet-8 filters contain side lobes that are 

not desirable for this application of a band-pass filter. When the same white noise 

sample is filtered using the discrete Meyer wavelet, we notice right away that side 

lobes are minimized, and even eliminated for some bands. This filter resembles very 
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Figure 3.6: Teager Energy of selected wavelets: Symlet-8, Discrete Meyer and 
Daubechies-2. 

much like the desired filter of 3.5. We therefore reject the Symlet-8 wavelet in favor 

of the discrete Meyer wavelet in this work. 

3.2.5 Teager Energy in Sub-bands 

With appropriate band-pass filtering, energy measurement can be done in sub-bands 

of a signal. Our functional definitions thus far in Equations 2.23 and 2.24 define 

instantaneous Teager energy. We now introduce another measure, the average Teager 

energy for a discretely sampled signal in a particular sub-band: 

^w(xn) = 
W 

w 
E "^n s *Efi—l,s«Era+l,. (3.2) 

Where W is the number of samples, s is the index of a particular sub-band of interest, 

and xn}g is a particular sub-band sample within a sample set. Very similar in form to 

Equation 2.24, this non-causal definition serves three purposes: 

64 



Empirical Symlet—8 Impulse Response 
23 

I 

I 

3 

I 

50 

0 

-50 

-100 

-150 

50 

0 

-50 

-100 

-150 
0 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
Frequency 

Empirical Discrete Meyer Impulse Response 

o.l 0.2 0.3 0.4 0.5 0.6 
Frequency 

0.7 0.8 0.9 

Figure 3.7: Empirical impulse responses obtained from wavelet decomposition of a 
large sample of white noise. Symlet-8 filtering produces large side lobes in all stop-
bands for each level of wavelet decomposition. Filtering of the same sample using the 
discrete Meyer wavelet produces practically no side lobes which is very desirable (see 
Figure 3.5). 
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1. The power measurement will give a single central-tendency measure for the 

energy levels within a localized time period reducing the amount of data to 

process. 

2. Measuring power within a shifting time period is essentially a moving average 

for energy which acts as a low pass filter, mitigating problems with noisy energy 

processing. 

3. If the negative Teager energy appears within the measurement period, the av­

eraging function will offset the rare negative energy with the more common 

positive energy producing a more positive measure which is the central ten­

dency of the Teager energy measure. 

The averaging period (measured by the number of samples, W) effectively defines the 

sensitivity of our energy measurement. In choosing a value for W the goal is to try to 

maintain the positivity of \I/S while keeping as many samples as possible for statistical 

characterization. This can be done for any number of samples, but fewer samples can 

only provide a rough empirical probability density function which may not be useful 

for any estimation of central tendency or scatter. A large number of samples will give 

better estimates in general and for very large W, the density function will approach 

the attractor Gaussian distribution of the central limit theorem. 

3.3 Teager Energy Preprocessing 

A deterministic signal will have deterministic Teager energy. A discretely sampled 

acoustic signal in the context of this work is considered to be a stochastic time series 

that is wide-sense stationary. The Teager energy operator is a system that transforms 

the distribution of its random input to an output with another distribution. Conse­

quently, the instantaneous Teager energy of these signals are also a stochastic time 
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series. For Laplace distributed audio input, the Teager energy operator has an analyt­

ically complicated distribution. While it is certainly possible to find this distribution, 

it should be noted that for a Gaussian input, Teager energy is typically log-Gaussian. 

Through a successive transformation of random variable, it is possible to characterize 

Teager energy of a Laplace distributed input with a parametrized Gaussian distribu­

tion approximation in each sub-band. This section describes this process as a means 

of statistically characterizing Teager energy from a Laplacian source. 

3.3.1 Approximating the Log-Gaussian Distribution for Tea­

ger Energy 

The Teager energy operator can be considered as a memory system T(-) with one 

random variable input X and one random variable output Y: 

Y = T(X) (3.3) 

Since this work concerns itself with characterizing Laplace distributed audio and its 

Teager energy in sub-bands, the distribution of Y is of interest for Laplacian X. The 

point of paramount concern here is that Teager energy for a Laplacian input is non-

trivial. The methods discussed in Chapter 2 require a Gaussian random variable and 

this is certainly not the case with the non-trivial distribution. Outlier detection in 

this fashion is not possible. 

Through experimentation, it was found that if T(X) = ^w(X) (See (3.2)) for any 

sub-band signal, where X is a Gaussian random variable, Y in this case is approxi­

mately log-Gaussian distributed for some values of W, the averaging window length. 

For selected values of W, the following experiment was performed using a computer: 

1. Generate uniform random variable U: Pu{—0.5 <U< +0.5} = 1 
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Figure 3.8: A comparison of histograms for Teager energy output. X is a Laplacian, 
and X is a Gaussian distributed input to the operator. Y and Y are the output 
histograms (respectively). After computer analysis, it is unclear what the resulting 
distribution is. 

2. Generate Laplacian random variable X = L(0,1), where 

L(/i, & ) = / / - & sgn([7) In (1 - 2\U\) 

3. Generate the Averaged Teager Energy Y = *&w(X), where IF is a selected 

window size. 

4. Analyze Y. 

The effect of W is very important in this case since it has a direct bearing on the 

resulting distribution. For illustrative purposes, consider the case where W = 1, 

where (3.2) essentially reduces to (2.24). For an experiment with ten-thousand sam­

ples Figure 3.8 shows the resulting histograms for a non-windowed Teager energy 

transformation given Laplacian random variable X and a Gaussian random variable 

X for comparison. While computer analysis confirms that X is indeed Laplacian, 
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Figure 3.9: Histograms for Teager Energy outputs given Laplacian (X) and Gaussian 
(X) inputs. As W increases, the empirical distributions become log-Gaussian for 
moderate values and increasingly Gaussian for large values. 

the distribution of Y was not of any standard distribution with W = 1 when com­

puter analyzed against several known distributions. Large values of W succeeded 

in reducing the number of negative values, but reduced operator sensitivity. Y had 

similar problems but for smaller W preserving sensitivity while reducing and even 

eliminating negative values. The comparison is shown again for differing values of 

W in Figure 3.9. As W increases, the histogram reflects an underlying log-Gaussian 

distribution with a limitation: 

lim P^ r y l N(n,a) (3.4) 

which is expected given the central-limit theorem. A large W is not desirable since 

69 



higher energy frequencies within the band are removed (low-pass filtering of the sub-

band energy) and the averaged Teager energy operator becomes less sensitive to 

short-duration events. 

Although optimal selection of W was not investigated, it is known that large val­

ues are not desirable, and moderate values result in a log-Gaussian distribution of 

Teager energy for a Gaussian input. In preparation for outlier detection using Maha-

lanobis distances, transforming the Laplacian distributed audio data into a Gaussian 

distribution before processing Teager energy will result in a distribution that can 

be easily converted to a Gaussian distribution. If the transformation Y = G{X) 

transformation is one-to-one, then it can be used for outlier detection since: 

P{Y = Vi} = P{X = Xi} (3.5) 

where X{ is a sample from the input distribution and jji is the corresponding output [16]. 

This can be extended to any number of transformations provided they are all one-

to-one. If successive transformation results in a Gaussian distribution, then outlier 

detection can be performed with a reliable Mahalanobis distance threshold. 

3.3.2 Random Variable Transformation 

A double-sided exponential, the Laplace distribution has much higher kurtosis than 

the Gaussian distribution although they are both symmetrical and asymptotic (see 

Figure 3.10). As explained in Section 2.3, given a confidence interval, outlier identifi­

cation is possible only with a Gaussian distributions using the normalized distances. 

Certainly, a maximum-likelihood scatter estimator can be designed for the Laplace 

distribution, and Mahalanobis distances computed. The decision criteria (2.54) can­

not be used however since the distances are no longer Chi distributed. In order to 

use the decision criteria, the data would have to be transformed into a Gaussian 
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Figure 3.10: A Laplace distribution has higher kurtosis than Gaussian distribution. 
Shown here are L(0,1) and N(0,1) respectively. 

distribution. 

Given the known cumulative distribution F^x) of the random variable x, we can 

find the function y = g(x) for a specified cumulative distribution Fy(y). In the gen­

eral case [16], we find that if y = F" 1 (F^x)) then P(y <y) = Fy(y). Therefore, if x 

is Laplacian distributed audio data, it can be redistributed into a Gaussian distribu­

tion. The cumulative Laplace distribution is given in (3.6), the cumulative Gaussian 

distribution is given in (3.7), and the inverse cumulative Gaussian distribution is 

given in (3.8). 

F*(x) = 

Fy(y) = 

Fy_1(y) = 

- <1 + sgn(x - fi) • 1 - exp ( -

e r r 1 ( 2 y - l ) - a v / 2 + /x 

»\ (3.6) 

(3.7) 

(3.8) 

The Laplacian random variable x has two parameters which are estimated from sam­

pled audio data: the mean fi, and variance 2b2. For Laplacian distributed' sample 

data, the mean is the sample median and the following estimator is used to find the 
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parameter b of the variance from sample data: 

1 N 
& = ̂ EI^-Al (3-9) 

Where fi is the sample median of the sample Xj's, and b is the estimate of b, and N 

is the number of samples. The transfer function g(x) that will transform a Laplacian 

random variable x into a Gaussian random variable y = g(x) is obtained from the 

following: 

g(x) = F - ^ F ^ x ) ) (3.10) 

erf"1 h:Ul + sgn(^-fi)-l-expl-l-^^)\-lYaV2 + , 

= erf M sgn(x — //) • 1 — exp — 1 • ay/2 + fi 

The direct algebraic substitution of (3.10) leaves the parameters a and jl from the 

Gaussian random variable, and may be taken as constants, although this is not very 

useful. For example, any Laplacian random variable with a sample-estimated mean 

and variance can be transformed into a zero-mean Gaussian random variable with 

unity variance. Fully parameterizing the target distribution with constants is not 

very useful to characterize signals. In order to characterize a changing signal, a and 

fi should be dependent on the input random variable. To achieve this we let fi = fi, 

and a2 = 2b2, both being the mean and variance of the Laplacian random variable. 

The target distribution is therefore N(/x, 2b2): 

g(x) = F-^FsCx)) l ^ , ^ ^ (3.11) 

= erf"1 (sgn(x - fi) • 1 - exp ( - 7 ) ) • V2bV2 + fi 

= 2 6 e r r 1 | s g n ( x - ^ ) - ( l - e " ^ ) } + /z (3.12) 
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Figure 3.11: The transfer function g(x) shown in the center plot, x = L(0,1) is shown 
on the bottom plot with its transformation y = g(x) on the left and its histogram on 
the top. The histogram of y clearly shows a the desired correction in kurtosis offered 
by a Gaussian distribution. 

If we wish to estimate g(x) we can now make full use of the sample estimates: 

g(x) = 26 erf x < sgn(x — p) • ( 1 — e i ) > + p, (3.13) 

Where g(x) is the estimated random variable transform that will redistribute a ran­

dom Laplacian variable into a random Gaussian random variable. For the sake of 

clarity, the notation g(x) will be used instead of g(x) with the implicit understanding 

that distribution parameters are estimated from sample data. Figure 3.11 shows a 

Laplacian input sample x that is transformed into y = g(x) and is shown on the 

left. The histogram on the top shows represents Laplacian random variable x, while 

the histogram on the right highlights its transformation into y, a Gaussian random 

variable. From the reasoning that led to (3.12), it follows that a log-Gaussian random 
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variable v can be transformed into a Gaussian distribution using the following: 

F„(v) 

h(v) 

Given that both (3.12) and (3.16) are one-to-one functions, we may design the fol­

lowing transformed energy function for a Laplacian input [10]: 

f w ( x ) = h ( * l v ( g ( x ) ) ) (3.17) 

Where x is the audio input to the system, and \Ev(x) is the redistributed Teager 

energy. Because of the one-to-one nature of h(-), outliers in ^w(') a r e a l s o outliers 

in $w(')- This system is used for detecting Teager energy outliers in audio data 

provided robust estimates for Gaussian location and scatter parameters. 

3.4 Robust Anomaly Detection with Teager En­

ergy 

Given Laplace distributed audio data x, the Teager energy transformation from (3.17) 

will be Gaussian distributed. This extends to sub-bands. The more Laplacian the 

input, the more Gaussian the transformed Teager energy is. This not only applies to 

the wide band signal, but to sub-bands as well. Band-pass filtering using wavelets 

(Section 3.2.4) can decompose an audio signal and the transformed Teager energy of 

spectral bands can be used for outlier detection. Figure 3.12 shows histograms for a 

74 

- 5+Mwf) (3-i4) 
= V(F„(v)) (3.15) 

= lnv (3.16) 



real audio sample that has been wavelet decomposed into sub-bands using the discrete 

Meyer wavelet followed by a transformation in each band by ^w Note that the 

energy histograms in Levels 2, 3, and 4 clearly contain secondary distributions which 

are considered as outliers. The following section concerns itself with the detection 

of anomalous events once the signal has been preprocessed according to the methods 

discussed thus far, specifically those concerning Teager energy. 

3.4.1 Minor Anomalies 

Mahalanobis distances are dependent on Gaussian location and scatter parameters 

which are sensitive to the latter (Section 2.3.5) however, the Fast-MCD algorithm 

(Section 2.3.6) provides a robust estimation for these parameters. The robust Gaus­

sian characterization of ^w is very much dependent on whether or not the proportion 

of outliers has exceeded the breakdown point. If the breakdown point was not ex­

ceeded then the estimates are robust to outliers and consequently, robust distances 

can be used to identify outliers. For a sub-band sample buffer 5Sti of length N we 

define the set of Teager energy outliers at time-index i in sub-band s: 

$s,i — {xi,xi-l,xi-2 • • • Xi-N-l} (3.18) 

jls . : Robust mean of all elements in SSji (3.19) 

E<5si : Robust covariance of all elements in 5S)i (3.20) 

t)2
u(x ; fL,£) = (x-fL)T£-\x-fi) (3.21) 

a*,i = llxe Sa>i | D^ (tw(x) ; & M , E 5 s i ) > -^(a), k = 11 (3.22) 

Where Dĵ (:Ej ; /2, E) is the robust Mahalanobis distance which uses robust Fast-MCD 

estimates ft and E instead of those specified in (2.47). Since ^w{xi) is a scalar, there 

is k = 1 degree of freedom for the Chi distribution. Figure 3.13 shows a histogram of 

time-series data collected over 850 samples. The N(0,1) source contains contaminants 
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Figure 3.12: histograms for a real audio sample that has been wavelet decomposed into 
sub-bands using the discrete Meyer wavelet followed by a transformation in each band 
by ^w The energy histograms in Levels 2, 3, and 4 contain secondary distributions 
which are considered as outliers. 
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Figure 3.13: Outlier separability comparison: normal, and robust Mahalanobis dis­
tances. The data here is from two sources: N(0,1) and N(6,1.2) with threshold set 
by a = 0.975. 
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from a N(6,1.2) source for 20% of the samples. On the top is a histogram of the 

sample. On the bottom left, maximum-likelihood estimates for location and scatter 

cannot be thresholded to provide a good separation for the contaminants which are 

displayed to the right of the plot. On the bottom right, robust estimates are used 

and are easily thresholded to separate outliers. 

We define any member of aS)j as a minor anomaly where i is the time index for 

the computation over the TV-length buffer. Certainly, minor anomalies can appear 

as single samples and this may pose a problem for localization. To mitigate this, we 

can introduce another parameter 77 which is used to reject singletons. With a default 

of n = 1 (singletons allowed), we place an additional restriction on aS)i: If there is a 

sequence of anomalies whose length is less than rj, then the sequence is excluded from 

aS)j. This restriction reflects the reasoning that samples themselves are not anomalies, 

sample sequences are. 

As i advances in time, the proportion of outliers may increase past the breakdown 

point of the Fast-MCD algorithm. In this case, the estimates are very similar to those 

obtained by maximum-likelihood methods which account for all samples rather than 

a subset. This is not an undesirable effect since Dj^(a;j ; jl, E) will decrease as outliers 

increase in number because of their masking effect (caused by outlier leverage). This 

decrease in robust distance corresponds to a desensitization to the outlier's energy 

qualities. This habituation effect due to breakdown is desirable. Anomalies when in 

sufficient number, are not considered anomalies (no anomalies exist when breakdown 

occurs). 

The attention span \5Sj\ = N [10] clearly defines the length of the sample window 

used in the detection of minor anomalies. Since the robust estimates (2 and E are 

for the majority of samples over that period, we note that for large N, the method 

becomes insensitive to localized outliers, while a small N results in s hypersensitivity 

to outliers. The attention span therefore is a measure of sensitivity. 
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Figure 3.14: A block diagram of the sub-band minor anomaly detection system. 

A summary of the sub-band minor anomaly detection system described thus far 

is shown in Figure 3.14. 

3.4.2 System Stress 

Over time, robust parameters will change for differing acoustic scenes. This implies 

that somehow the scene context has changed somehow [10]. Tracking the parameter 

variations can give a qualitative measure about the degree of difficulty an observer 

will have in detecting an anomaly in any sub-band. We refer to this degree of difficulty 

as the system stress. On the assumption that a change in the current context implies 

that an observer system will have difficulty to adapt, we attempt to define and follow 

the signal context. For a buffer Aj of past contexts, there is a mean context z,^ that 

is subject to some variation OA^- We then compute the system stress as: 

s4(co = J(Q - SAJT eA; (a - EAi (3.23) 
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Where Cj is the current context containing the robust means in units of their robust 

scatter for each of the Ns sub-bands that were obtained from wavelet filtering: 

a Viu ^h,i 
S. 

i T 

N Ns,i 

< 5 l , s5 2 
E ^ s 

(3.24) 

jlk and E^ are the robust means in units of the robust covariance respectively for each 

of the k = 1 . . . Ns sub-bands. Also, we define ^A and 0 A as the unbiased maximum-

likelihood Gaussian parameter estimates for the past M observations of Cm in buffer 

A,: 

A, = |Cj,Cj_i, Cj_2,... , C J _ M j £ 9̂ ' NsxM 

/ 

< 

•. 

& M 

. ^Ns,i . 

S«. 2 , i - l 

»8» 

S«„ 

/**. 2,»-2 

s«. 2, i -2 

Mi N3,i-2 

^ * 

©L = 

E{C} 

E . { ( C - S A J T ( C - S A I ) } 

^ i , i -

^ l , i - M 

£<5, 

»S» 

s^ Ns,i-M J 

(3.25) 

(3.26) 

(3.27) 

(3.28) 

(3.29) 

Since system stress S;(C;) is a scalar quantity that is evaluated for each sample af­

ter a delay of at least M samples, its variations are can contain vector outliers that 

can be detected using appropriate thresholding. The decision criteria for determin­

ing whether a context change has occurred is therefore resolved by determining an 

acceptable threshold Tc for Si(Ci). 
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3.4.3 Major Anomalies 

Over the local scope defined by 6Sj, minor anomalies can reveal interesting features 

of an acoustic signal however, its importance as an uncharacteristic event over the 

scope defined by A$ is defined by the system stress [10]. If the system is sufficiently 

stressed we assert that the minor anomalies encountered in sub-bands are related to 

context change. We define a major anomaly as a minor anomaly that has occurred 

during a significant context change. 

As with outlier detection of transformed Teager energy ^wi a threshold can be 

determined to find outliers in A;. If Ci are p — ATs-variate Gaussian distributed 

(as was assumed in the estimates for EA4 and O A J then Sj(Cj) is Chi-distributed. 

Outliers in context are therefore defined as the following set: 

Qi = {3CeAi\Si(C)>Tc} (3.30) 

Minor anomalies that occur while Sj(Cj) > Tc are considered as major anomalies: 

Afl,f = J Ba^ | Si(Ci) > Tc = — (1 - p)1 (3.31) 
I XN3 J 

Where j3 is the confidence we have that there will be no significant change in context. 

It should be noted that for any given sub-band s: 

A-s,i — &*,i — ®s,i yo.oZ) 

Only major anomalies from ASji are localized in space. If AS)j = {0} then the local­

ization operation is not performed in that sub-band. 
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3.5 Anomaly Localization 

Spatial localization of a wide band source can be done in many ways and are generally 

optimized for performance. The goal of this work is not to suggest a new method 

of localization using sensor arrays, or to enhance performance in any way. This 

section describes a strategy for anomaly localization given samples that appear in 

time-frequency windows. 

3.5.1 Localization in Sub-Bands 

As denoted in their subscript, major anomalies are situated in both time and fre­

quency. An arbitrary AS;; contains samples from a single array sensor in a specified 

sub-band and time index. On the assumption that the anomaly is perceivable to all 

sensors in a given sensor array geometry, we can define a simple mapping LS:, that 

translates major anomalies in AS)i to PSyi which is the set of physical locations for 

each sub-band at time index i: 

L S t i : A S j i i—> P8ti E to"' (3.33) 

The localization method is arbitrary but a strategy is required in order to resolve 

the location of the anomalous source given major anomalies in the sub-bands. Since 

the system implicitly runs continuously in discrete time, a bracketing strategy is used 

to account for noisy positions. Recalling (3.32), it should be understood that the 

localization procedure requires only a subset of 5S)i. In the case of very short duration 

anomalies, the position estimates may be poor. Furthermore, AS;i should not be 

expected to be identical across all s, especially for narrow band sources adding to the 

variability of position estimates across all bands. 
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3.5.2 Sources with Spatio-Spectral Properties 

Non-point sources may have spatio-spectral properties that can cause position esti­

mates that are very dissimilar to those in other bands. A singing choir may have 

such properties if the performers are physically placed by their singing tone. When 

the performers sing together, this wide band source can be easily localized. Spectral 

filtering before localization will reveal differing positions. Localization of a higher 

band will reveal the position of the soprano of the group, while the lower band will 

reveal the location of the tenor. Because of an unknown source geometry, it should 

not be assumed that the position distribution will be symmetric. On the assump­

tion that non-point sources may have spatio-spectral properties, skew in the position 

distribution should be expected. 

3.5.3 Resolving Position from Sub-Band Anomalies 

The anomaly position P* is given as the median of all major sub-band anomaly 

positions: 

P* = minE{ |P s , , -0 |} (3.34) 
u 

This measure of central tendency will make position more robust to sources with 

spatio-spectral properties while providing good estimates for position of point sources. 
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Chapter 4 

Validation 

The majority of the system described in this work was designed with validation data 

provided from two sources: a robotic data acquisition system and from audio record­

ings obtained from the public domain. The former allowed for a great degree of 

experimentation with localization of anomalies, while the latter allowed for a great 

degree with differing types of anomalies. Some discussion is provided here about each 

of these data sources with a concentration on the latter since most of this work is 

relevant to anomaly detection. 

4.1 Algorithm Implementation 

All processing and validation was done in the , the Matlab™v.7.0 computing environ­

ment under the Windows XP operating system with Service Pack 2 installed. The 

algorithms described in this work were programmed in native Matlab, object-oriented 

computing language. A custom driver interface object was designed to control the 

robot and acquire audio data from it. Audio recordings were imported into the Matlab 

environment using native functions where they were processed. 
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4.2 Live Data 

The robotic instrumentation shown in Figure 4.1 was designed specifically for this 

work. It is a configurable stereo acoustic array and has the following technical char­

acteristics: 

Mechanical Custom design. Chassis and support constructed in plastic and metal. 

Custom plastic gearing. Two servo motors, one for each degree of freedom. 

Connectors Cylindrical power connector: 6.5V @ 2100mA, Serial interface: DB9, 

Stereo audio: TRS-3.5mm stereo. Computer: USB 2.0 via in-line converter. 

Acoustic Sensitivity Standard condenser microphone: -67dB/fibar, -J^ldBV/Pascal 

±4dB, 50Hz-20kHz. 

Degrees Of Freedom Two degrees of freedom: Microphone spacing (2cm < d < 

50cm; and azimuth f-90° < d < +90°,). 

Components Stereo acoustic amplifier: Velleman MK136. Servo motor controller: 

Pontech SV203. USB interface: Generic, in-line serial DB9 to USB2.0 con­

verter. 

Control USB serial port. Custom object-oriented software interface and driver in 

the Matlab™mathematical programming environment. See Appendix B.2. 

Microphones were placed on the tips of each of the bars which were connected to 

the top of the assembly. Rotation of a servo inside the boxed assembly it rests on 

caused a gear to rotate in one direction while an intermeshed gear rotated in the 

other direction. The ends of the bars opposite to the microphones were directly 

connected to these gears, so rotation of the gears caused an opening and closing of 

the bar assembly as shown in Figure 4.2. This first degree of freedom provided a 

controllable separation between the microphones. The entire microphone array was 
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Figure 4.1: The robotic data acquisition device used for experimentation in this work. 
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Figure 4.2: A top view of the robotic assembly. The bars are rotated with the turn 
of the servo-motor driven gears. The gears are intermeshed requiring torque on only 
one gear to rotate the other. This provides a controllable separation between the 
microphones. 

also orientable in the horizontal plane. The array, with the separated microphones 

was attached to a stationary base by a direct servo-motor coupling. Rotation of the 

servo-motor, caused rotation of the array. The second degree of freedom was the 

array azimuth angle as shown in Figure 4.3. Both motors controlling each degree 

of freedom were interfaced to a single servo-motor controller with a serial interface 

(DB9). The controller was connected to a computer via an in-line serial port to USB 

port converter (a proprietary driver for the operating system was required). The 

condenser microphones were connected to a pre-amplifier with an adjustable gain. 

The pre-amplifier output was connected to the computer's standard sound interface 

allowing for automated audio sampling by the computer. 

The robot was placed in acoustic scenes of many sorts. Some were very noisy with 

no particular subject of interest, or with complete silence. Some noisy environments 

had a brief, noticeable event occurring. Silent, and low noise environments were 

also chosen, all with events. Normally, differing types of events were introduced 

either accidentally, by intention, or by nature of the location. The near-immediate 

response of the system allowed for a great number of experiments to be performed. 
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Figure 4.3: Another top view of the robotic assembly. The entire microphone array is 
subject to rotation in the horizontal plane from a servo-motor. This provides azimuth 
control of the microphone array. 

When anomalies were detected, such as an object falling in an otherwise silent room, 

the best results were obtained from events that had low or mid tones. High tone 

anomalies were typically difficult to detect when the ambient noise also contained 

high tone sources. Low tone anomalies offered the best results. 

Localization performance was good. When the robot detected a major anomaly, 

the unit would turn to face it. This offered a visual cue that was excellent in exploring 

the nature of anomalous events. Ultimately, the robot was an excellent experimental 

tool for this type of work, and working with live data confirmed that the system 

could work in many acoustic environments with good results. More will be discussed 

in Section 4.4. 



4.3 Pre-Recorded Data 

Public domain data is used here to demonstrate minor anomaly detection as well as 

system stress measurement. For each data sample, a brief description of the entire 

acoustic scene is given. Another description follows for a smaller sub-sample used in 

minor anomaly detection. For each test brief discussion of results will follow 

first for minor anomaly detection and then signal stress measurement. After all data 

is presented, a summarizing discussion will follow highlighting key observations. 

4.3.1 Data Processing 

This work introduced many parameters, therefore due to the great variation in test 

data appropriate for this system, certain parameters are fixed so that comparisons can 

be easily made. For the experiments with minor anomaly detection, the parameters 

of Table 4.1 were used and in the case of system stress measurement, the parameters 

in Table 4.2 were used. For the results presented here, the context vector is taken 
—* —* 

to be Ci — 0. The system stress described in Equation 3.23 can be considered as a 

normalized distance. The non-normalized stress is used for demonstration purposes as 

it helps to understand how the signal is changing. Recall that for stress measurement, 

there is a buffering latency which is not shown in the plots. 
Parameter 
Ns 

W 
rj 

a 
N 

Value 
8 
100 
100 
0.975 
100000 

Description 
Number of wavelet decomposed sub-bands. 
Teager energy averaging window size. 
Minimum anomaly length. 
Data confidence level. 
Size of minor anomaly detection buffer. 

Table 4.1: Parameters used for validating minor anomaly detection. 

The data sets used for validation were selected primarily because of their acoustic 

qualities, specifically the occurrence of one or more events that a human observer 

would determine to be an anomaly. The data sets as well as the results of the selected 
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Parameter Value Description 
Ns 

W 
V 
a 
N 
M 

5 
100 
100 
0.975 
5000 
500 

Number of wavelet decomposed sub-bands. 
Teager energy averaging window size. 
Minimum anomaly length. 
Normal data confidence level. 
Size of minor anomaly detection buffer. 
Depth of the context buffer. 

Table 4.2: Parameters used for measuring system stress. 

experiments performed on them follow. 

Three Phase Blower Motor 

This is an audio sample of an initially inactive three phase blower motor which is 

activated for a brief period after which it is deactivated and allowed to slow down 

naturally (see Figure 4.4). As the motor starts up, there is a snapping sound followed 

by noise which sweeps from predominantly low frequencies, to predominantly high 

frequencies. By the end of the sample, the motor makes no sound, and there is no 

ambient noise. 752126 samples were acquired at a sampling rate of 44-lkHz, in 16 

bits. 
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Figure 4.4: The spectrogram and amplitude plot for the entire 3 phase blower motor 
sample. 
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Signal stress measurement was performed on the entire 752126 sample signal. The 

system stress measure in Figure 4.5 highlights the changing sub-band trends in the 

signal with some latency due to buffering. Clearly split into three parts, the first 

hump is due to the startup of the motor from a silent period. After some stability is 

achieved, the stress levels drop, rising again as sounds from the motor change once 

again. When the motor is deactivated, the signal changes once again causing stress 

levels to rise. 

Stress Measurement 
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Figure 4.5: System Stress: 3 Phase motor blower. 

Figure 4.6 shows the analysis results after minor anomaly detection applied to 

the first 100000 samples of the data. This 2.2676 second sub-sample, contains only 

the initial starting of the motor. Figure 4.6(d) shows the modified Teager energy 

histograms for each of 8 sub-bands, with the robustly estimated Gaussian distribution 

shown in gray. The first five sub-bands (£1-5) in Figure 4.6(d) clearly show that there 

are a fair number of samples that lie quite far from the robust mean. The robust 

distances in Figure 4.6(e) confirm this and show that they occur at the start of the 

data. The dotted line reflects the confidence that 97.5% of the data will have robust 

Mahalanobis distances below this threshold. Figure 4.6(f) shows the waveforms of 
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each sub-band with those samples detected as minor anomalies in black. They all 

show anomalies early on in the sample near the beginning, right where the motor is 

activated and where there is the snapping noise described above. 
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Figure 4.6: Minor Anomaly Detection: 3 phase blower motor, first 100000 samples. 
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Firecrackers With Human Screams 

A high-pitched whistling sound from a firecracker followed by an explosion that makes 

a loud cracking noise as it explodes (see Figure 4.7). Following the explosion, there 

are children present who scream and laugh at the event. Before the children begin 

vocalizing, there is a small pause. There is no ambient noise, but some reverberation 

is heard from the explosion. 521212 samples were acquired at a sampling rate of 

44-lkHz, in 16 bits, 
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Figure 4.7: The spectrogram and amplitude plot for the entire sample with fireworks 
and human screams. 

Signal stress measurement was performed on the entire 521212 sample signal. The 

system stress measure in Figure 4.8 highlights the changing sub-band trends over time. 

Initially, the signal consists of a high pitched whistle that remains constant as the 

firecracker ascends as can be seen in the plateau in the early part of the signal. After 

it explodes, a peak is observed. The brief silence afterward causes stress levels to 

decrease for its duration. When the nearby children are vocalizing, their spectral 

energies are very different from the firecracker causing the high stress levels at the 

end of the sample. 

Figure 4.9 shows the analysis results after minor anomaly detection is applied to 
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Figure 4.8: System Stress: firecrackers with human screams 

the first 100000 samples of the data. This 2.2676 second sub-sample, contains a long 

silence followed by the sudden onset of the high-pitched whistling of the firecracker 

as it is being launched. Figure 4.9(a) shows the modified Teager energy histograms 

for each of 8 sub-bands, with the robustly estimated Gaussian distribution shown in 

gray. Figure 4.9(d) shows that in three sub-bands (S2-4) there are a fair number of 

samples that lie quite far from the robust mean (there very little significant energy 

in the highest sub-band Si). The robust distances in Figure 4.9(e) confirm this 

showing these higher than normal energies occur in the latter part of the signal 

which coincides with the point where the whistling firecracker suddenly appears in 

the acoustic scene. The dotted line reflects the confidence that 97.5% of the data 

will have robust Mahalanobis distances below this threshold. Figure 4.9(f) shows 

the waveforms of each sub-band with those samples detected as minor anomalies in 

black. All sub-bands have some energy anomalies, although seven out of the eight sub-

bands have anomalies that coincide with onset of acoustic energy from the whistling 

firecracker. 
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(e) Robust Mahalanobis distances. (f) Minor anomaly detection 

Figure 4.9: Minor Anomaly Detection: Fire crackers with human screams, first 100000 
samples. 

96 



Fireworks 

In this sample, the scene is very quiet with the sounds from nearby birds. Predomi­

nantly consisting of very this very low intensity noise, the near silence is punctuated 

by two loud distant explosions for which some reverberation is heard (see Figure 4.10). 

914379 samples were acquired at a sampling rate of 44.1kHz, in 16 bits. 
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Figure 4.10: The spectrogram and amplitude plot for the fireworks sample. 

Signal stress measurement was performed on the entire 914379 sample signal. 

The system stress measure in Figure 4.11 highlights the changing sub-band trends 

in the signal with some latency due to buffering. In this case, the scale of the stress 

measurement is important. There is very little variation over this sample indicating 

that the explosion events were not accounted for in this measurement. This was 

probably due to the short duration of the events. In other words, the short duration 

explosions did not contribute toward the sub-band trends. 

Figure 4.12 shows the analysis results after minor anomaly detection applied to 

the first 100000 samples of the data. This 2.2676 second sub-sample, is of very low 

amplitude and is only of the birds without any explosions. In this acoustic sub-scene, 

many birds can be heard, although the bird call of one is quite noticeable above all 

others with a tweeting sound that repeats for a total of six times in this sample. Figure 
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Stress Measurement 
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Figure 4.11: System Stress: fireworks sample. 

4.12(a) shows the modified Teager energy histograms for each of 8 sub-bands, with 

the robustly estimated Gaussian distribution shown in gray. Note that these plots do 

not accurately highlight the presence of the relatively few numbers of samples with 

anomalous energies, although they are noticeable in the robust distances (53,4) in 

Figure 4.12(e). The dotted line reflects the confidence that 97.5% of the data will 

have robust Mahalanobis distances below this threshold. Figure 4.12(f) shows the 

waveforms of each sub-band with those samples detected as minor anomalies in black. 

The six tweeting sounds are clearly picked up in four sub-bands (Ss^jg) coinciding 

with what appears in the acoustic scene. There are other anomalies detected as well 

although those sounds could not be accurately identified. 
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(e) Robust Mahalanobis distances. (f) Minor anomaly detection 

Figure 4.12: Minor Anomaly Detection: Fireworks data, first 100000 samples. 
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Fireworks at 500 Meters 

Prom a distance of approximately 500 meters, an audio sample was obtained from 

a fireworks display. The acoustic scene opens from silence with a loud and sudden 

explosion followed by the sounds of debris particles falling to the ground (see Figure 

4.13). Other fireworks that make a high frequency whistling sound when launched 

punctuate the acoustic scene and continue to the end of the sample with many con­

current deep sounding explosions. 720129 samples were acquired at a sampling rate 

of 44-lkHz, in 16 bits, 
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Figure 4.13: The spectrogram and amplitude plot for the fireworks at 500m sample. 

Signal stress measurement was performed on the entire 720129 sample signal. The 

system stress measure in Figure 4.14 highlights the changing sub-band trends over 

time. The inital part of the signal contains a single deep explosion which raises the 

system stress decreasing only when debris fall gently. Concurrent explosions in rapid 

succession cause stress levels to decrease since they are short duration close to one 

another, demonstrating a trend. This causes the system stress to decrease. Near 

the end of the signal, a very loud and deep sounding explosion is heard with its 

reverberation, increasing stress levels as shown in the latter part of the plot. 

Figure 4.15 shows the analysis results after minor anomaly detection is applied to 
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Figure 4.14: System Stress: Fireworks at 500 meters. 

the first 100000 samples of the data. This 2.2676 second sub-sample, contains only 

the initial explosion followed by the sound of debris particles for the majority of its 

duration. Figure 4.15(d) shows the modified Teager energy histograms for each of 8 

sub-bands, with the robustly estimated Gaussian distribution shown in gray. Some 

of the sub-bands clearly show that there are a fair number of samples that lie quite 

far from the robust mean (SZ-Q). The robust distances in Figure 4.15(e) confirm 

this and show that they occur primarily at the start of the data when the explosion 

occurs and when the initial debris falls. The dotted line reflects the confidence that 

97.5% of the data will have robust Mahalanobis distances below this threshold. Figure 

4.15(f) shows the waveforms of each sub-band with those samples detected as minor 

anomalies in black. They all show anomalies early on in the sample where there is 

an explosion and the onset of falling debris. 
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(e) Robust Mahalanobis distances. (f) Minor anomaly detection 

Figure 4.15: Minor Anomaly Detection: Fireworks at 500m, first 100000 samples. 

102 



Gear-Reduced Motor Running at Low RPM 

A gear-reduced electric motor is activated for the duration of this sample. Prom an 

intimal silence, the motor is activated producing a steadily rising tone which remains 

constant for the duration of the acoustic scene (see Figure 4.16). Near the end of 

the scene, the motor is deactivated producing a very quickly falling tone as it stops. 

6394-50 samples were acquired at a sampling rate of 44-lkHz, in 16 bits. 
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Figure 4.16: The spectrogram and amplitude plot for the entire gear-reduced motor 
sample. 

Signal stress measurement was performed on the entire 639450 sample signal. The 

system stress measure in Figure 4.17 highlights the changing sub-band trends over 

time. The motor in this sample shows strong trends in each sub-band. The sound of 

the motor is very even and regular with no noticeable artifacts other than noise. The 

initial increase in system stress is due to the activation of the motor. The sustained 

stress is due to the sustained trends in sub-bands. Finally, the decrease in stress 

corresponds to the deactivation of the motor. 

Figure 4.18 shows the analysis results after minor anomaly detection applied to 

the first 100000 samples of the data. This 2.2676 second sub-sample, contains only 

the initial explosion followed by the sound of debris particles for the majority of its 
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Stress Measurement 
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Figure 4.17: System Stress: Gear-reduced motor running at low RPM. 

duration. Figure 4.18(d) shows the modified Teager energy histograms for each of 8 

sub-bands, with the robustly estimated Gaussian distribution shown in gray. Almost 

all of the sub-bands clearly show that there are many samples that lie quite far from 

the robust mean (S1-7). The robust distances in Figure 4.18(e) confirm this and show 

that they occur primarily at the start of the data when there is a silence right before 

the motor is activated. The dotted line reflects the confidence that 97.5% of the data 

will have robust Mahalanobis distances below this threshold. Figure 4.18(f) shows the 

waveforms of each sub-band with those samples detected as minor anomalies in black. 

They all show anomalies where there is an uncharacteristic silence in the data which 

predominantly has energy in many sub-bands. The lowest sub-band (Sg) contains an 

anomaly where the motor is about to reach constant speed. 
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Figure 4.18: Minor Anomaly Detection: Gear-reduced motor running at low RPM, 
first 100000 samples. 
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May 18, 1980 Mt. St. Helen's Eruption From 140 Miles Away 

A unique sound sample of the May 18, 1980 eruption of Mount St. Helens, a volcano in 

Washington state of the United States of America (see Figure 4.19). The sample was 

obtained 140 miles away with standard audio equipment. The sounds from the volcano 

are not easily heard due to its low frequency, and may not be noticed by a listening 

observer. Upon careful examination, at least six extremely low frequency seismic 

events occur with great intensity and short duration although the great majority of 

the sample consists of low intensity ambient noise from a natural setting. 1916293 

samples were acquired at a sampling rate of 44-lkHz, in 16 bits. 
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Figure 4.19: The spectrogram and amplitude plot for the Mount St. Helen's eruption. 

Signal stress measurement was performed on the entire 1916293 sample signal. 

The system stress measure in Figure 4.20 highlights the changing smVband trends 

over time. Each of the six very low frequency seismic events demonstrate trends that 

increase system stress each time. System stress lowers with the more regular sounds 

of ambient noise, in the absence of any seismic activity. 

Figure 4.21 shows the analysis results after minor anomaly detection applied to 

the first 100000 samples of the data. This 2.2676 second sub-sample, contains a 

single seismic event which is barely audible amidst ambient natural sounds. Figure 
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Figure 4.20: System Stress: Mount St. Helen's eruption data. 

4.21(d) shows the modified Teager energy histograms for each of 8 sub-bands, with the 

robustly estimated Gaussian distribution shown in gray. There are some anomalies 

far from the mean although they are not accurately shown in Figure 4.21(d). The 

robust distances in Figure 4.21(e) confirm this and indicate that there are anomalies 

in several sub-bands at differing times. The dotted line reflects the confidence that 

97.5% of the data will have robust Mahalanobis distances below this threshold. Figure 

4.21(f) shows the waveforms of each sub-band. They all show anomalies however 

only a select few coincide with the seismic event (Ses)- Initialy it could not be 

subjectively determined what the other anomalies were. Upon re-examination some 

sub-bands (S2-4) were found to suddenly contain faintly audible natural sounds of 

birds and another unidentified source. The identified anomalies coincide with these 

events. 
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(a) Wideband audio spectrum. 
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Figure 4.21: Minor Anomaly Detection: Mt. St. Helen's Eruption From 140 Miles 
Away (May 18, 1980), first 100000 samples. 
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Minolta Camera Attempting to Focus 

This is an audio sample of a Minolta brand camera lens attempting to focus on a 

subject (see Figure 4.22). The lens motor makes a moderately high pitched tone 

when activated for a brief period and emits a mechanical clicking noise when the lens 

has reached its limit and stops moving. It is activated three times over the duration 

of the sample. There is no ambient noise, and there are clear silences between motor 

activations. 338843 samples were acquired at a sampling rate of 44-lkHz, in 16 bits. 
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Figure 4.22: The spectrogram and amplitude plot for the Minolta camera attempting 
to focus. 

Signal stress measurement was performed on the entire 338843 sample signal. The 

system stress measure in Figure 4.23 highlights the changing sub-band trends over 

time. In this signal, the sub-band trends are going in differing directions over the 

brief period of the first two consecutive events (camera motor in operation). Because 

of the pause before the third event, the system stress detects a strong change by the 

time the motor is activated in the third event, thereby increasing system stress. 

Figure 4.24 shows the analysis results after minor anomaly detection applied to the 

first 100000 samples of the data. This 2.2676 second sub-sample, contains one focus 

attempt by the camera. Figure 4.24(d) shows the modified Teager energy histograms 
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Stress Measurement 
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Figure 4.23: System Stress: Minolta camera focusing data. 

for each of 8 sub-bands, with the robustly estimated Gaussian distribution shown in 

gray. It can be clearly seen that the first seven sub-bands (Si-?) have significant 

energies far from the robust mean. The robust distances in Figure 4.24(e) confirm 

this and show that they occur midway through the sub-sample, coinciding with the 

motor activation which breaks a predominance of silence. The dotted line reflects 

the confidence that 97.5% of the data will have robust Mahalanobis distances below 

this threshold. Figure 4.24(f) shows the waveforms of each sub-band with those 

samples detected as minor anomalies in black. The anomaly detected coincides with 

the activation of the motor, breaking the silence of the acoustic scene. 
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Figure 4.24: Minor Anomaly Detection: Minolta camera attempting to focus, first 
100000 samples. 
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Old Mechanical Toy 

This is an audio sample of a mechanical toy. In operation, the toy's emits a clicking 

noise a quick pace while there is another knocking noise that occurs regularly with the 

clicking, a result of movement on a hard surface while in operation (see Figure 4.25). 

The clicking sound is very regular while the knocking sound has a longer period and 

is not as regular. 178080 samples were acquired at a sampling rate of 44-lkHz, in 16 

bits. 
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Figure 4.25: The spectrogram and amplitude plot for the old mechanical toy data. 

Signal stress measurement was performed on the entire 178080 sample signal. The 

system stress measure in Figure 4.26 highlights the changing sub-band trends over 

time. In this sample, the clicking of the toy is very regular showing strong trends 

in each sub-band. The scale of plot shows that the system stress does not change 

because while there is signal variation, the strong trend is maintained. 

Figure 4.27 shows the analysis results after minor anomaly detection applied to 

the first 100000 samples of the data. This 2.2676 second sub-sample, contains clicking 

from the toy as well as the knocking sounds. Figure 4.27(d) shows the modified Teager 

energy histograms for each of 8 sub-bands, with the robustly estimated Gaussian 

distribution shown in gray. Some of the sub-bands clearly show that there are samples 
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Figure 4.26: System Stress: Old mechanical toy. 

that are quite far from the robust mean (S1-4). The dotted line in Figure 4.27(e) 

reflects the confidence that 97.5% of the data will have robust Mahalanobis distances 

below this threshold. Figure 4.27(f) shows the waveforms of each sub-band with 

those samples detected as minor anomalies in black. In this case, the knocking sound 

coincides with some of the detected anomalies, however the anomalies in S\ cannot 

be accounted for with a subjective label. 
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(e) Robust Mahalanobis distances. (f) Minor anomaly detection 

Figure 4.27: Minor Anomaly Detection: Old mechanical toy, first 100000 samples. 
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Rocks Hitting Each Other Very Hard 

This audio sample is of two rocks hitting each other very hard followed by a long 

silence (see Figure 4.28). The short-duration striking sound is a high pitched cracking 

sound with some reverberation. 220500 samples were acquired at a sampling rate of 

44-1kHz, in 16 bits. 
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Figure 4.28: The spectrogram and amplitude plot for the rocks hitting each other. 

Signal stress measurement was performed on the entire 220500 sample signal. The 

system stress measure in Figure 4.29 highlights the changing sub-band trends over 

time. This signal shows low system stress when the rocks hit each other and then 

high stress afterward when there is silence. This odd occurrence is due to the strong 

trends shown in all sub-bands when the rocks hit each other (recall the buffering 

latency) followed by changes as the signal tends toward silence in all sub-bands. 

Figure 4.30 shows the analysis results after minor anomaly detection is applied 

to the first 100000 samples of the data. This 2.2676 second sub-sample, contains the 

initial striking sound followed by a brief silence (unlike the complete sample which 

has a longer silence). Figure 4.30(d) shows the modified Teager energy histograms for 

each of 8 sub-bands, with the robustly estimated Gaussian distribution shown in gray. 

Some of the sub-bands clearly show that there are a fair number of samples that lie 
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Stress Measurement 

50 100 150 200 250 300 350 400 450 500 550 600 

Figure 4.29: System Stress: Rocks hitting each other very hard. 

quite far from the robust mean (£2-8) • The robust distances in Figure 4.30(e) confirm 

this and show that they occur when the striking event actually occurs. The dotted line 

reflects the confidence that 97.5% of the data will have robust Mahalanobis distances 

below this threshold. Figure 4.30(f) shows the waveforms of each sub-band with 

those samples detected as minor anomalies in black. The most significant continuous 

anomaly appears in Si and is identified clearly from the silence. 
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(e) Robust Mahalanobis distances. (f) Minor anomaly detection 

Figure 4.30: Minor Anomaly Detection: Rocks hitting each other very hard, first 
100000. 
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USAT Bomb Blast 

This is a digitized tape recording of an actual explosion in the Vale of Belvoir, Le­

icestershire (United Kingdom, 1988). After the explosion, there is some reverberation 

that can be heard after which there is a very long silence (see Figure 4.31). 248925 

samples were acquired at a sampling rate of 44-lkHz, in 16 bits. 
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Figure 4.31: The spectrogram and amplitude plot for the USAT bomb blast. 

Signal stress measurement was performed on the entire 248925 sample signal. The 

system stress measure in Figure 4.32 highlights the changing sub-band trends over 

time. This signal data is similar to what was obtained for the rocks hitting each other 

and demonstrates the same behavior. System stress is increased as reverberation from 

the blast continues and tends toward silence. 

Figure 4.33 shows the analysis results after minor anomaly detection is applied 

to the first 100000 samples of the data. This 2.2676 second sub-sample, contains 

only the explosion as well as the reverberation with a short silence afterward. Figure 

4.33(d) shows the modified Teager energy histograms for each of 8 sub-bands, with the 

robustly estimated Gaussian distribution shown in gray. Sub-band S\ shows clearly 

that there are energy anomalies present. To a lesser degree, this also occurs in other 

sub-bands as well as can be seen in the robust distances in Figure 4.33(e). Inspection 
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Stress Measurement 

Figure 4.32: System Stress: "USAT bomb blast. 

of robust distances in all sub-bands show energy deviance at both the beginning and 

end of the signal. The dotted line reflects the confidence that 97.5% of the data 

will have robust Mahalanobis distances below this threshold. Figure 4.33(f) shows 

the waveforms of each sub-band with those samples detected as minor anomalies in 

black. The anomalies detected correspond to both the initial explosion as well as the 

silence afterwards. 
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Figure 4.33: Minor Anomaly Detection: USAT bomb blast, first 100000 samples. 
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Random Laplacian Audio 

This is an audio sample of computer generated random audio with a Laplacian distri­

bution (see Figure 4.34). The random data covers the entire sample without silences 

or interruptions. 44100 samples were acquired at a sampling rate of 44-lkHz, in 16 

bits. 
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Figure 4.34: The spectrogram and amplitude plot for random Laplacian audio (only 
5000 samples shown). 

Signal stress measurement was performed on the entire 441000 sample signal. The 

system stress measure in Figure 4.35 highlights the changing sub-band trends over 

time. From the scale, it is apparent that the system stress does not change much 

compared to other signals because all sub-bands demonstrate strong trends. 

Figure 4.36 shows the analysis results after minor anomaly detection is applied 

to the first 100000 samples of the data. This 2.2676 second sub-sample, contains 

only the random Laplacian audio. Figure 4.36(d) shows the modified Teager energy 

histograms for each of 8 sub-bands, with the robustly estimated Gaussian distribution 

shown in gray. There are no significant energies far from the robust mean, and the 

robust Gaussian fits rather well. The robust distances in Figure 4.36(e) do show some 

anomalous energies although there are few in number. This is expected with random 
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Stress Measurement 
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Figure 4.35: System Stress: Random Laplacian Audio 

data. The dotted line reflects the confidence that 97.5% of the data will have robust 

Mahalanobis distances below this threshold. Figure 4.36(f) shows the waveforms 

of each sub-band with those samples detected as minor anomalies in black. The 

anomalies detected do not corresponed to any known artefacts in the random data. 
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Figure 4.36: Minor Anomaly Detection: Random Laplacian audio noise: L(0,1), first 
100000 samples. 
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4.4 Discussion 

The results from these selected experiments highlight some important strengths and 

weaknesses of the system described in this work. The results of Section 4.2 & 4.3 and 

4.2 are now discussed in the context of their specific experimental contribution. 

4.4.1 Feasibility for Real-Time Operation 

Working with live data was very difficult and highlighted the system's time com­

plexity. Very computationally expensive, the robot first sampled audio and then 

processed it, repeating this operational cycle again and again. The interpreted soft­

ware would run in the Matlab environment and was therefore not hardware optimized. 

The software code itself was partly optimized for Matlab kernel offering some speed 

improvement. After obtaining a timing profile for the software, it was found that the 

most serious system bottleneck was the fast-MCD implementation algorithm imple­

mentation. While an improvement over its predecessor the latency of this sub-system 

would require a great deal of hardware optimization. This could be done by imple­

menting kernel or compiled machine-level computer code. Alternatively, a hardware 

implementation could also provide a great increase in speed. Since minor anomaly 

detection and consequently system stress measurement depend on robust estimates 

provided by this sub-system, it is a worthwhile endeavor. Also providing system la­

tency was wavelet band-pass filtering, although this posed less of a problem than the 

fast-MCD implementation. 

4.4.2 Frequency Selectivity 

As mentioned in Section 4.3, the robot was placed in various environments with both 

high and low SNR with respect to the anomaly taken as a signal. In high SNR en­

vironments, the system was excellent at detecting minor anomalies, especially when 
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acoustic energy sources were introduced or removed. Major anomaly detection in 

high SNR environments was also observed to perform well. As experimentation with 

the robot progressed toward environments with lower SNR, it became apparent that 

the system had better accuracy with certain types of anomalous signals over others. 

In low SNR environments, acoustic anomalies with lower frequencies were easier to 

detect than those with higher frequencies. The uneven frequency weighting of the 

wavelet band-pass filters are responsible for this. When higher frequency anomalies 

are passed through the large bandwidth of the first levels of wavelet filters, narrow 

band anomalies do not experience any improvement in SNR in that sub-band, es­

pecially when the ambient noise has much energy in this sub-band as well. Even if 

the higher sub-bands do not contain energy, the filter's bandwidth is so wide that 

the cumulative effect of the normally insignificant high frequency low-energy sources 

will hinder the attempt at improving the SNR of the anomaly so it can be detected. 

The wavelet filters have a decreasing bandwidth as their center frequencies decrease. 

Therefore, anomalies with predominantly low frequencies have a better chance of be­

ing spectrally isolated and may have an increased SNR in that sub-band provided the 

ambient noise does not mask the anomaly in all bands. 

The system's insensitivity for high frequency anomalies, can be mitigated by in­

creasing the number of wavelet band-pass filters by increasing the size of the minor 

anomaly detection buffer. Increasing the size of the signal sample however, will result 

in a greater number of samples for the fast-MCD algorithm which the minor anomaly 

detection algorithm depends on. Because of the complexity of the fast-MCD algo­

rithm, the system latency will increase dramatically. In this sense, improving the 

SNR of narrow-band high-frequency anomalies will come at a serious performance 

cost. Another solution could be the redistribution of band-pass filters so that all 

frequencies are covered with a small, but equal bandwidth. 
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4.4.3 Minor Anomaly Detection Specificity 

Some of the pre-recorded sub-samples selected for minor anomaly detection contained 

events that were uncharacteristic with respect to the acoustic scene as observed in the 

sample. Most of these events were labeled by a human observer as being an anomaly. 

This is a good reference since humans have an excellent ability to detect anomalies, 

better than any known device or mechanism. The 3 phase blower motor data had a 

very clear snapping noise as the motor started up which did not appear in any other 

part of the data. This was detected very specifically as an anomaly, as was the sound 

of the transient speed of the motor as it ramped up before reaching a steady speed. 

These had very different frequency and amplitude characteristics when compared to 

other parts of the signal giving them a very different Teager energy than in the rest 

of the signal. This was also the case with the Minolta camera attempting to focus. 

This anomaly was very clearly identified because of its very high SNR in almost all 

sub-bands. This high SNR was primarily due more to the fact that the event oc­

curred amidst a predominantly silent acoustic background than due to the spectral 

decomposition. This was seen in other data as well where temporal isolation of the 

anomaly was excellent, such as where rocks were hitting each other very hard. In con­

trast, there were some data sets such as those acquired from the gear reduced motor 

running at low RPM and the USAT bomb blast which had uncharacteristic silences 

in the acoustic scene. These low energy outliers were identified very accurately. 

The samples with low SNR confirmed that minor anomaly detection would still 

perform reasonably well in identifying anomalies. Almost all of the fireworks data 

had events that were embedded in ambient noise. When the anomaly had a differing 

spectral energy than the rest of the background, it was clearly identified. In one case, 

the sub-sample of the fireworks with human screams, the firecracker made a high 

pitched sound while in flight amidst other sounds which was identified as uncharac­

teristic. In another case where acoustic data was obtained from the 1980 Mount St. 

126 



Helens's volcano the ambient noise was of very low amplitude, however - the seismic 

activity from the eruption 140 miles away was barely audible. The natural sounds of 

the acoustic scene consisted predominantly of higher frequency bird calls. Because of 

the finer spectral discrimination at lower frequencies offered by the filtering strategy, 

the seismic event in the sub-sample used was identified, although not as clearly as 

with high SNR anomalies. 

One sample contained no events at all: the random Laplacian audio. In this case, 

anomalies were still detected. This data suggested that the system would find anoma­

lies where there was none. The anomalous samples accounted for approximately 3% 

of the testing sample. Because the system has confidence on 97.5% of the robust 

distances (and therefore samples corresponding to each), the rest are labeled as an 

anomalies. In this sense, we are observing a false detection rate of appoximately 3% 

for this particular sample. This is entirely expected, but should be taken into account 

when the ratio of anomalies detected approaches 2.5%. 

4.4.4 System Stress and Context Change 

Humans are exceptional at identifying not only the context of an acoustic scene, but 

when it has changed. Stress measurements for the selected data sets were compared 

with the subjective opinion of human observers. While this provided some subjective 

insight into the dynamics of the acoustic scene, it did not detract from the fact that 

in general, when sub-band energies would change - system stress would increase, 

and when they would settle, system stress would decrease. This in itself is a good 

indicator that activity in the acoustic scene has changed, which implies that it's 

context has changed. Minor anomaly detection was quite selective and in some cases 

quite accurate, but this may pose a problem. System hypersensitivity can result 

given the right parameter settings, possibly rendering minor anomaly detection if 

used alone. Stress measurement for the purpose of detecting context change acts as 
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a kind of filter for minor anomalies. In this sense, major anomalies therefore have 

the property that they reflect an energy deviation locally in signal sub-bands, while 

taking into account a larger view of the signal across sub-bands, and over a longer 

period of time. 

In practice, minor anomaly detection (or localization) can be used separately de­

pending on the level of information required after processing. Typically, once an 

anomaly is detected (or localized), a system would expend energy to handle the sit­

uation further. If this post-processing is computationally intense, requires resources, 

or is just very costly in some sense, then major anomaly detection (or localization) 

should be used. 
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Chapter 5 

Discussion & Conclusion 

5.1 Discussion 

In this work, signal characterization plays a key role the detection of anomalies. The 

Teager energy operator is successfully used with the modulating source assumption to 

characterize a source by its total energy measured in sub-bands. This demodulating 

operator's sensitivity to amplitude and frequency make it far superior to classical 

energy measures which tend to be very insensitive to signal shape. 

A narrow-band source whose energy is undetectable when immersed in the wide­

band signal can be given spectral emphasis with the use of a band-pass filter before 

Teager energy characterization. The modulating source assumption is extended to 

sub-bands. This considers a spectrally decomposed signal as having composite ener­

gies in each band characterized by the Teager source model. A scaled wavelet function 

acting as a band-pass filter offers very sharp transition bands halving its bandwidth 

and center frequency for each decomposition level. This non-linear spacing provides 

finer discrimination in lower spectral bands, where most audio energy tends to reside, 

and coarser spectral discrimination in higher spectral bands where there is less energy 

from a typical audio source. 
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Detecting deviations in sub-band energy requires some pre-processing in order to 

detect statistical outliers. Laplacian distributed audio yields Teager energy that does 

not conform to any known standard distribution. A random variable transformation 

was designed that yields a Gaussian audio sample from a Laplacian audio sample. The 

window-averaged Teager energy of the transformed Gaussian audio is approximately 

log-Gaussian distributed. This transformed Teager energy can be re-distributed into 

a Gaussian distribution using a trivial variable transformation. On the understand­

ing that the random variable transformation functions are all one-to-one, and that 

the Teager energy operator yields instantaneous energy, statistical outliers in the 

transformed Teager energy correspond to the audio samples that generated them. 

Measuring energy dissimilarity is done with the Mahalanobis distance measure. 

Its sensitivity to energy location and scatter is mitigated by using a high-breakdown 

estimator known as the Fast-MCD. Through successive resampling, this method is 

very robust to outliers and provides estimates that describe the majority a given 

sample set. This robust estimator is used to obtain the mean and covariance for 

the transformed Teager energy. Because it is Gaussian distributed, the Mahalanobis 

distance is Chi distributed. Given a confidence level the inverse-Chi distribution 

will give a cut-off value for the Mahalanobis distance. Energies with a Mahalanobis 

distance greater than this value are are considered as energy outliers. The confidence 

level therefore represents the degree of expectation held that energies in the sample 

belong to the distribution whose parameters were determined with Fast-MCD. 

Samples that generate outlier energies are labeled as one of two types: minor 

anomalies and major anomalies. A minor anomaly is a set of samples that produced 

outlier Teager energies in a sub-band. Typically, this implies (but is not restricted 

to) signal samples that are high-amplitude, high-frequency as well as those that are 

low-amplitude, low-frequency when compared to other samples in a buffer. Minor 

anomalies can occur in some, all, or no sub-bands. 
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Minor anomalies are re-labeled as major anomalies when the observing system 

experiences strong deviations in its stress levels. These stress levels are determined 

by the robust signal trends in each of the sub-bands. These trends, or contexts are 

tracked over time and the presence of context outliers signal that any minor anomalies 

that appear have done so during a fundamental change in the signal across all of its 

sub-bands. This sign of signal volatility provides additional meaning to a minor 

anomaly in the context of the whole signal. 

For each sub-band, only major anomalies are localized using the cross-correlation 

technique. With a location estimate obtained for each sub-band, the final position of 

the anomaly is the median estimate. This final anomaly localization is only provided 

if major anomalies are detected. In other words, if a major anomaly is detected, its 

location is returned by the system, otherwise the system remains dormant. 

5.2 Future Work 

In the literature, anomaly detection does not receive mainstream attention primarily 

because of the non-specificity of the problem and the general need to set strict oper­

ational bounds in the statistical sense. It was the underlying attempt of this work to 

provide a framework for structured advancement in this area of research. By reduc­

ing the problem to one in robust random statistics, a formal technical language can 

be adopted for furthering development of other types of anomaly detectors. What 

follows is an outline of some of the more interesting areas of research that could stem 

from this work in future endeavors. 

5.2.1 Performance Metrics for Anomaly Detectors 

Anomalies, by definition are unexpected events that violate an observer's expecta­

tions. Reduced to a problem in robust statistics, anomaly detectors center their op-
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eration on the establishment of a norm from which deviations are measured. Signal 

characterization, deviation measure, outlier detection, filtering are all sub-systems 

that are subject to variation amongst other anomaly detectors. Since this work is 

based in statistical measure, a statistical measure of performance is required not only 

for the anomaly detector of this work but of other works as well. Establishment of 

performance metrics are required to not only to compare anomaly detectors, but to 

move toward the full parametrization of the anomaly detection problem in general. 

In this fashion, targeted optimizations can be performed on methods that can be 

standardized based on need. 

5.2.2 Tracking Context Movement in Sub-Band Space 

In this work, context served to provide some sense of volatility of the source. Stress, 

the context deviation measure, is established from a system expectation that the 

signal was not going to change in its trends across all sub-bands. Implicitly, it is 

assumed that the contexts conform to a single multivariate Gaussian in sub-band 

frequency space. The implication here is that contexts will have a single expected 

value. For complex signal environments, the mean may develop several expected 

values over time. A Gaussian mixture could be estimated for contexts that would 

provide a concise system memory for contexts. Context identification by measuring 

stresses to each of the cluster centers. Identification by minimum stress however, 

would not capture the nature of an evolving signal scene. By tracking mean context 

movement, the anomaly detector can concisely store the nature of a highly dynamic 

signal scene. Also, as a simple memory, expected context sequences can be established 

using minimum stress context identification. Context sequence deviations can be 

detected in this fashion. 
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5.2.3 Improving Blind Source Separation 

Recent advances in psychology suggest that the method in which the human mind 

can decompose convolved sources involves some sort of anomaly detection. Deconvo-

lution, or blind-source separation is a well explored problem in machine learning and 

statistics. For signal scenes where sources are added (or removed) over time, anomaly 

detection can be used to identify the number of sources that have appeared, and give 

some indication of which spectral bands they appear. For wide-sense stationary sig­

nals, the anomaly's autocorrelation function could give a hint that would improve the 

source-separation process. The assumption here, is that by identifying the onset of 

novel signal components and isolating them in time and frequency, their statistical 

properties could improve any attempts at signal separation. 

5.2.4 Anomaly Detection in Graphs 

Graphs appear in many branches of science describing systems and processes. For 

applications where many graphs are analyzed with small variations, an anomaly de­

tector could be designed to identify graphs that are deviant with respect to what is 

expected. For example, mapping specific complex metabolic pathways for large pop­

ulations of micro-organisms should yield similar graphs. Mutant organisms my have 

alternate pathways that would normally be undetected. Anomaly detection could 

provide a researcher a means of identifying mutant populations by their metabolic-

pathways. By establishing dissimilarity measures for complex graphs as well as a 

manner in which to statistically characterize them, anomaly detection can be very 

useful for identifying not only that a graph violates an observer's expectations about 

it, but also to identify the part of the graph that causes the violation. 
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5.2.5 Anomaly Detection in Complex Polyhedra 

Structures such molecular compounds, proteins, mechanical structures, or manufac­

tured surfaces, can be described using complex polyhedra. By attempting to char­

acterize the variations in such structures, expectations can be formed. Detection 

of abnormal structures could prove useful for many purposes including process re­

finement in the case of manufacturing, or identification of novel proteins for use in 

automated drug or disease discovery agents. Since descriptors using polyhedra are 

widely used, novel variations from what is expected can be studied for their relevant 

properties. 

5.2.6 Probability Distribution of Teager Energy 

Attempted for this work, it was found that the probability distribution function for the 

Teager energy operator was found to be non-trivial. It could be useful to determine 

the Teager energy probability distribution for various types of random variables. This 

could lead to an interesting class of maximum-likelihood estimators that are implicitly 

frequency and amplitude sensitive. 

5.3 Conclusion 

The problem of anomaly detection and localization has been reduced to a problem in 

robust statistics. An automated observer was designed to detect when high energy 

sources are introduced into an acoustic scene. The modulating source assumption 

offered a means for measuring total energy in a source using the Teager energy op­

erator. Accounting for potential energy from signal amplitude, and kinetic energy 

from signal frequency in wavelet-filtered sub-bands a robust statistical characteriza­

tion scheme was developed. With an expectation of energy content in sub-bands, a 

detection scheme was designed to detect signal energies that violated that expecta-
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tion. These minor anomalies provide some sense that a fundamental change in energy 

has occurred in the sub-band. By examining how the signal is changing across all 

sub-bands, a detector was designed that was able to determine when a fundamental 

change occurs in the sub-band signal trends. Minor anomalies occurring during such 

changes were labeled as major anomalies. Using established localization methods, po­

sition estimates are obtained for the major anomalies in each sub-band. Accounting 

for the possibility of a source with spatio-temporal properties, the median of sub-band 

position estimates provides the final spatial information about the source. 

The hypothesis declared in Section 3.1.2 appears to hold true highlighting the 

success of this work. The problem of anomaly detection has been successfully treated 

as a problem in robust statistics. The modulating source assumption applied to each 

band of a spectrally decomposing a signal allowed for total instantaneous energy to be 

measured which, over time allowed for joint amplitude and frequency features to be 

exposed using the demodulation properties of the Teager energy operator. Sensitivity 

to narrow-band sources in the lower audio bands was increased due to increased 

spectral discrimination where there was the majority of acoustic energy. 

Over short observation periods, statistical deviations in sub-band Teager energy 

samples provide some indication that there was some significant event in that sub-

band. Collectively, if the signal trends in each of the filtered sub-bands changes 

significantly over a larger observation period, then the significance of events in the 

sub-bands are given more weight and are used for localization in the far acoustic field. 

This work contains several contributions that have been published in a paper 

at a joint conference of the IEEE International Midwest Symposium on Circuits 

and Systems (MWSCAS 2007) and the IEEE International North East Workshop on 

Circuits and Systems NEWCAS (IEEE-NEWCAS 2007) in a paper entitled: "Sub-

Band Anomaly Detection and Spatial Localization" (See Appendix A). The major 

contribution was the use of random variable transformation so that energy outliers 
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can be detected in sub-bands of an acoustic signal. This stems from observing that 

a moving average of the Teager energy of a Gaussian signal is approximately log-

Gaussian. Use of a high-breakdown estimator to characterize a transformed Teager 

energy distribution is also a contribution. Finally, a minor contribution was the 

method of resolving spatial information about an anomalous source based on short 

the duration events detected in in sub-bands. 
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Appendix A 

Publication: MWSCAS 2007 / 

NEWCAS 2007 

This work contains several contributions that have been published in a paper at a joint 

conference of the IEEE International Midwest Symposium on Circuits and Systems 

(MWSCAS 2007) and the IEEE International North East Workshop on Circuits and 

Systems NEWCAS (IEEE-NEWCAS 2007) in a paper entitled: '"Sub-Band Anomaly 

Detection and Spatial Localization"' (See Appendix A). The major contribution was 

the use of random variable transformation so that energy outliers can be detected in 

sub-bands of an acoustic signal. This stems from observing that a moving average 

of the Teager energy of a Gaussian signal is approximately log-Gaussian. Use of a 

high-breakdown estimator to characterize a transformed Teager energy distribution 

is also a contribution. Finally the last, but minor contribution, was the method of 

resolving spatial information about an anomalous source based on short duration 

events detected in in sub-bands. 

The conference was held in Quebec, Canada on August 5-8 at the Marriott 

th 

Chateau Champlain Hotel in downtown Montreal. The year 2007 will mark the 50 

anniversary of MWSCAS and the 5 t h of NEWCAS, both sponsored by the IEEE. 
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I. INTRODUCTION 

An anomaly is the specific event that causes the violation of 
a process observer's expectations about that process. When a 
context has changed significantly within a qualified scent, an 
intelligent system identifies this event as an anomaly. While 
scene and context features can vary across observers, the 
existance of a detection mechanism for significant context 
change is a salient feature of intelligent observers. By detecting 
an anomaly, an intelligent system can apply a fitting control 
law to accomodate the new context or initiate learning to 
adapt or discover a new control law that is appropriate to 
maintain stability the presence of the altered context without 
compromising previously established control laws. 

The method described here for anomaly detection and 
localization first attempts to statistically characterize wavelet 
filtered sub-bands which is especially important when the 
narrow band power of an anomaly is insignificant when 
compared to that of the wide band signal. By distinguishing 
between extreme and outlier Teager energy values that have 
appeared in the sub-bands of array sensor data. The outlier data 
in the time-frequency window can then be used to estimate 
array phase data required for computing acoustic wavefront 
direction of arrival in the far-field. 

II. TOTAL ENERGY OF A SOURCE 

A. Demodulation Properties of the Teager Energy Operator 

Designed in an attempt to obtain the total energy of a signal 
source, the Teager energy operator assumes the source model 
to be analogous to a simple spring-mass system. Newtonian 
physics describes the total energy of the spring-mass system 
in motion as the sum of both the spring's potential energy and 
the mass's kinetic energy. For a natural excitation we have: 

can therefore be used for the demodulation of AM, FM, or 
AM-FM signals. Both the continuous and discrete forms of 
the Teager energy operator share this property. 

B. Modulating Source Assumption 

Let us assume that all signals of interest have been mod­
ulated somehow. Demodulation then, would expose features 
of the signal that could help characterize it among other sig­
nals. For example, AM demodulation would expose changes 
in the signal's envelope for relatively constant frequencies. 
FM demodulation would expose changes in frequency for a 
relatively fixed signal envelope. Finally AM-FM demodulation 
would expose these two features simultaneously. The Teager 
energy operator can be used successfully in each of these three 
demodulation modes without any modification or additional 
computational cost. If we assume the force on the spring-
mass system has been modulated, we can make use of the 
demodulation properties of the Teager energy operator for joint 
amplitude and frequency feature extraction. We will call this 
the modulating source assumption. 

C. Difficulties with Teager Energy 

Where we adopt the modulating source assumption, the 
Teager energy operator is not used for signal characterization 
without drawbacks. The discrete Teager energy operator has 
the following definition: 

-TOW 2 A 2 

2 
(1) 

The total energy Ex of this system is clearly a function of 
both the amplitude of the oscillation A and the frequency 
of oscillation u which are scaled by the constant mass m. 
Consequently, Teager energy is sensitive to amplitude for a 
fixed frequency, sensitive to frequency where the amplitude 
is fixed and is simultaneously sensitive to both. The Teager 
energy operator, which measures total energy in this system, 

¥frn Xn-lXn+1 (2) 

Clearly non-causal, there are more serious properties may pose 
a problem for signal characterization. Notably, the problem of 
negative Teager energy, and noise sensitivity. 

Teager energy yields negative energy for certain types of 
signals which is a strange behavior for any energy operator. 
In acoustic signals, this typically occurs for very few samples 
at a time, but it does occur. The average Teager energy for a 
discretely sampled signal in an arbitrary sub-band is taken as: 

*s[Zn £<» -l,s%n+l,s (3) 

Where W is the number of samples to be averaged, s is 
the index of a particular sub-band of interest, and xn,s is a 
particular sub-band sample. This moving average, which acts 

142 



as a low pass filter, mitigates the problem of rare negative 
energy as well as variations that are due to differentiation 
noise. Its averaging period W effectively defines its sensitivity 
in these respects. A detailed explanation of how to guarantee 
positivity of the energy measurement is not appropriate here, 
but we should recall that the Teager energy model tries to 
model the energy of the source and not the signal although we 
speak colloquially to the contrary. The author of [1] suggests 
that if we consider the observed signal generating negative 
Teager energy was generated by two sources, each generating 
a sinusoid with one farther away and with higher frequency, 
then Teager energy measurement will be based on an incorrect 
assumption of a single source system. This is a very reasonable 
explanation. 

D. Wavelet Band-Pass Filtering 

While typically used for time-frequency analysis of signals, 
the discrete wavelet transform (DWT) has another use: band­
pass filtering. A scaled wavelet function will act as a band-pass 
filter halving its bandwidth for each decomposition level. A 
direct result of the dyadic sampling scheme used in the DWT, 
the center frequency of the band-pass filters are nonlinearly 
spaced across the signal spectrum. Audio data normally has 
most of its power in the lower spectral bands therefore we 
would expect that most of the characterization information 
would also reside there. In this sense, we would choose to 
have a finer spectral discrimination in lower spectral bands, 
and coarser spectral discrimination in higher bands. Discrete 
wavelet decomposition is a very good choice since the band­
pass filtering has many of the filters centered in the lower 
frequencies and fewer in the higher frequencies. In addition 
to the sharp transition bands offered by wavelets, the natural 
nonlinear spacing of the band-pass filters is a good choice for 
audio analysis and comes at minimal cost. With appropriate 
band-pass filtering, energy measurement can be done in the 
sub-bands of a signal. Spectral characterization in this fashion 
can highlight important energies in sub-bands that would 
otherwise appear as insignificant over the full spectrum of the 
signal. For highly tonal sources, band-pass filtering effectively 
increases the SNR of the source's signal in the sub-band 
containing the tones. 

i n . ROBUST ENERGY PROCESSING 

A. Outlier Detection with the MCD 

Estimates for statistical model parameters are typically the 
result of some cost function minimization over all sample 
points. Consequently, this best estimate may be inaccurate for 
the model chosen where there exists samples from another 
distribution that have strong leverage over the cost function 
and therefore the estimation process as a whole. Not to be 
confused with extreme values along the asymptotic tails of 
some distributions, these outliers are those samples that belong 
to a distribution other than the one of the majority of the 
samples. 

Given a fully-specified multivariate Gaussian distribution 
one can measure the degree of membership of a new sample 

vector by its Mahalanobis distance. Unlike Euclidean distance 
which does not take scale into account, Mahalanobis distance 
is measured in units of the standard deviation: D(.r) — 
yj{x — / 7 ) £ - 1 ( : E — fi)T. If the components of the vector are 
independent, and normally distributed then D{x) is Chi (xk) 
distributed with its k degrees of freedom equal to the number 
of dimensions of x. With a confidence interval specified, a 
minimum distance can be obtained for inclusion into the dis­
tribution. Unfortunately, Mahalanobis distance is very sensitive 
to the scatter matrix S. This poses a problem where the co-
variance matrix was estimated with outliers present. Therefore, 
to obtain good, robust Mahalanobis distance measures, we 
require robust estimation of the covariance matrix. 

For a multivariate Gaussian distribution, the FAST-MCD 
algorithm [2] has been used successfully for covariance matrix 
estimation in the presence of outliers using the minimum 
covariance determinant (MCD). By successive selection of 
sample subsets, only those samples that have the lowest scatter 
characteristics in the greatest numbers are used to estimate 
S. With an outlier robust covariance matrix, robust distance 
estimates can be made. The robust Xk distributed distance 
measures can then be thresholded given a confidence interval 
to identify outliers. This method is very good for determin­
ing which samples have been introduced into the robustly 
estimated Gaussian distribution from an arbitrary, unknown 
distribution. What is important here is that outlier detection 
using the FAST-MCD method requires that the majority of 
the samples are Gaussian distributed, with all other samples 
designated as outliers. 

B. Random Variable Transformation 

Randomly sampled audio data is typically Laplace dis­
tributed. A double-sided exponential, this distribution has 
much higher kurtosis than the Gaussian distribution although 
they are both symmetrical and asymptotic. The FAST-MCD 
algorithm can be used on Laplace distributions, but the confi­
dence interval can not be used accurately for outlier detection. 
With this in mind, consider the following: Given the known 
cumulative distribution Fx(\) of the random variable x, we 
can find the function y — g(x) for a specified Fy(y). In 
the general case [3], we find that if y = F " 1 (F^fx)) then 
P(y < y) = Fy(y)- Therefore, if x is Laplacian distributed 
audio data then the output of the following random variable 
transformation is Gaussian distributed: 

g(x) = 26 e r r 1 |sgn(x - fi) (l ~ e " 1 ^ 1 ) j + £ (4) 

Where ft, is the sample median of x and the estimator for b is: 

By changing the distribution of the input data in this fashion, 
we gain accuracy in the detection of outliers for signal 
amplitude data, however this is not the primary justification 
for using g(x). 
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Fig. 1. Anomalies detected in a low frequency audio sub-band. 

C. Detection of Teager Energy Outliers in Audio Samples 

If we consider the Teager energy operator as a random 
variable transformation, its distribution is non-trivial for input 
samples that have a Laplacian distribution. Therefore the 
decision criteria for outliers will also be non-trivial. If the input 
samples are Gaussian distributed, then we find empirically 
that Teager energy is approximately log-Gaussian distributed. 
Converting a log-Gaussian random variable v to a Gaussian 
one is simply done using the following transformation of 
random variable: 

h(v) = lnv (6) 

Therefore through successive transformation of variable, ro­
bust distance measures designed for Gaussian distributions 
can be used to identify outlier Teager energies in Laplace 
distributed sub-bands. 

IV. ANOMALY DETECTION & LOCALIZATION 

A. Minor Anomalies 

In the context of this work, a minor anomaly is considered 
to be an uncharacteristic increase in sub-band amplitude, 
frequency, or both. Treated as an outlier detection problem, 
for time-series samples, we know intuitively that anomalous 
energies that appear in a signal are likely to be from a 
continuous source. Therefore, we reject single, non-adjacent 
samples that were likely a result of the noisy differentiation in 
the discrete Teager Energy definition (2). Figure 1 shows an 
example where continuous outliers in a signal form anoma­
lies in a wavelet-filtered band-passed audio signal. Given 
Laplace distributed audio data, the outlier detection process 
is summarized in Figure 2. Alone, this method itself is very 
useful for analysis of complex sound as it can detect those 
events that are out of place such as the onset of speech in a 
noisy environment or mechanical malfunction in the acoustic 
signature of machinery. This method is also a useful first 
step in attempting to remove anomalies. Anomaly filtering is 
out of the scope of this paper but it is certainly clear that 
if anomalous samples in specified time-frequency windows 
have been identified, then they can also be removed if proper 
reconstruction techniques are observed. 

We define the attention span 6 describes the length of the 
sample window required for the described anomaly detection 

method. For the attention span, we note that the robust 
estimates in that period describe the distribution parameters 
of the majority of samples. Therefore, for large S we note 
an insensitivity to local outliers. Small S results in a hyper­
sensitivity to outliers and is not useful. In other words, greater 
attention occurs in short periods, while less attention occurs 
over long periods. 

B. System Stress 

Invariably over time, the robust statistical properties of an 
audio signal will change for differing acoustic scenes implying 
that the scene context has changed. Tracking these variations 
over time can give a qualitative measure about the degree of 
difficulty an observer will have in detecting an anomaly in any 
sub-band. We call this measure of difficulty the system stress. 
On the assumption that a change in the current context implies 
that an observer will have difficulty to adapt, we a attempt to 
follow changes in the current context. We expect that for a 
for a buffer A of past contexts, there is a mean context S A 
that is subject to some variation 9 A . We can then compute 
the system stress as: 

S(C) = , / ( < ? - E A ) e A ' ( C - E A r (7) 

Where C is the current context containing the robust mean 
in units of the robust standard deviation for each of the N, 
sub-bands: 

d=\b.h...m,} (8) 

Also, for the past M context observations in the buffer A, 
we define HA and 6 A as the unbiased Gaussian maximum-
likelihood estimates for the mean and covariance respectively. 
The decision criteria for context change is resolved by first 
determining an acceptable threshold for S(<7). 

C. Major Anomalies 

While minor anomalies can reveal interesting features of a 
signal in its local scope, its importance as an uncharacteristic 
event over a brief history is determined by the system stress 
in that period. If the system is sufficiently stressed, then we 
know that the minor anomalies are related to context change. 
A minor anomaly that has appeared during a context change 
is considered as a major anomaly. Since in the context of this 
work, only major anomalies are localized, the threshold criteria 
for context change, is the same criteria for localization. 

The successive transformation of random variable in each 
audio sub-band resulted in the target Gaussian distribution. 
The wavelet decomposition into multi-resolution space re­
sulted in robust estimates that form the components of C. We 
assert that the stress S(C) is approximately Chi distributed. As 
such, given a probability p that a context change has occurred 
in the buffer A, we compute the threshold Tc = xl-pi^s)-
Minor anomalies that occur while S(C) > Tc, are considered 
as major anomalies and should be spatially localized. 

Figure 3 shows an example where the system stress was 
monitored for an audio sample of a fireworks event. Over fif­
teen explosions of varying intensities are heard in the presence 
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Fig. 3. The upper plol contains the normalized audio intensity of a festive 
fireworks event. The markers in the lower plol of S(C") denote only where 
major anomalies have occurred: onset of multiple explosions, spectators 
suddenly cheering, or launching of fireworks. 

of other activities including various sounds of the festive event. 
The markers denote where S(C) > Tc, which subjectively 
coincides with the onset of firework blasts, the addition of new 
spectator vocalizations or sounds from fireworks launches that 
have not yet resulted in a blast. In this particular case, all of 
the markers indicate when major anomalies have occurred. 

D. Anomaly Localization 

The trivial extraction of spatial information from a two 
sensor array takes advantage of the fact that an energy 
wavefront emanating from a far-field source will not pass 
through each of the sensors at exactly the same time because 
of the medium in which it travels. This delay can be estimated 
from the cross-spectrum phase of the sensor data whose 
time domain counterpart is the the cross-correlation function. 
A major anomaly can be localized using each of the two 
channels a and b over the attention span S where the relative 
number of anomalous samples in each sub-band has exceeded 
some threshold (say 50%). We estimate the cross-correlation 
function iJ,(r) using only these sub-bands from each channel 
Si.a. and Si.t, for a time window of width T = S, centered at 
time t: 

Ri(r) 
1 fi+% 

• 7Z I Sita{u)Si,b{u + T)du T Jt-Z 
(9) 

The location T& of the single peak in Ri(r) allows us to 
estimate the physical azimuth a* of the anomaly in each sub-
band i: cos ai = -j^, where c is the speed of sound and dmic 

is the physical distance between a stereo microphone pair [4], 
The median of the on estimates is used to finally localize the 
anomaly. 

V. CONCLUSION 

The modulating source assumption allows us to specify 
the problem of anomaly detection as a problem in robust 
statistics. The demodulation property of the Teager energy 
operator is used to jointly expose amplitude and frequency fea­
tures of audio sub-bands. Spectral decomposition is achieved 
using a scaled wavelet function acting as a band-pass filter 
which halves its bandwidth for each decomposition level. 
Through successive transformation of variable, Teager energy 
of Laplace distributed sub-bands are redistributed into a Gaus­
sian distribution for which parameters are estimated using the 
FAST-MCD algorithm. The robust Mahalanobis distances are 
used in the identification of minor anomalies. Tracked over a 
brief period, if an uncharacteristic change is detected in the 
context vector containing the robust sub-band means in units 
of the robust standard deviations, then the minor anomalies 
are relabeled as major anomalies and are used in a cross-
correlation estimate from both channels of a two sensor array. 
The median of the resulting delay estimates in each sub-band 

, provide the localization for the major anomaly. 
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Appendix B 

Matlab Source Code 

The Matlab mathematical programming environment was used to help develop the 

methodology described in this work. The object-oriented methodology was used for 

major components with their private and public methods listed here. Examining the 

class constructor reveals all properties which are private unless an accessor function 

is provided. 

B . l Mat l ab Object : ©Recorder 

B. l . l Public Methods 

display.m 

1 function display{c) 

2 % This function will display the critical parts or the Recorder object. 

3 

4 fprintf{1,'RECORDER Object (16 bit stereo) \n'); 

5 fprintf{1,'Sampling Rate = %6d Hz\n',c.Sampling_Rate); 

6 fprintf {1,'Sample Length - %6<i s\n', c. Sample-Length) ; 

7 if c. Azimuth_Beam_Angle == 0 & c .Microphone-Spacing ==0 

8 fprintf (1, 'Azimuth Beairif ortning - OFF\n ' ) ; 

9 else 

10 fprintf{1,'Azimuth Eeamforming ~ %6d degrees, %2.1f cm separation.\n',c.Azimuth_Beam_Angle,c.Microphone-Spacing); 

11 end; 

Get_Azimuth_Beam_Parameters .m 
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1 function [Angle, Separation] = Get-Azimuth_Beam_Parameters (obj) 

2 

3 Angle = obj .Azimuth_Beam_Angle; 

4 Separation = obj .Microphone-Separation; 

Get JIormalization_Mode .m 

1 f u n c t i o n Mode = G e t - N o r m a l i z a t i o n _ M o d e ( o b j ) 

2 Mode = o b j . N o r m a l i z a t i o n _ M o d e ; 

GetJ3ample_Length. m 

1 function Length = Get-Sample-Length(obj) 

2 Length = obj.Sample-Length; 

Get_Sampling_Rate.m 

1 function Rate = Get_Sampling_Rate(obj) 

2 Rate = ob j . Sampling-Rate; 

Get_Sound_Data.m 

1 

2 

3 

4 

5 

6 

7 

f u n c t i o n Data = Get_Sound_Data(ob j ) 

i f ob j . Azimuth_Beani_Angle==0 && ob j . M i c r o p h o n e - S p a c i n g = 

Data =ob j . Sound-Data ; 

e l se 

Data =Beamf ornuData ( o b j ) ; 

end; 

= 0 

Inject_File.m 

1 function In ject-File(obj. Filename) 

2 

3 [obj .Sound-Data, obj . Sampling_Rate, obj .Bit-Resolution] =wavread (Filename) ; 

4 obj .Sample-Length = round (max (size (obj . Sound-Data)) /obj . Sampling-Rate) ; 

5 assignin('caller', inputname(1), obj); 

k i l l .m 

1 function kill (c) 

2 clear c; 

Play.m 

1 function Play(obj) 

2 

3 if obj .Azimuth_Beam_Angle==0 && obj .Microphone-Spacing ==. 0 

4 disp('Original buffer playing...'); 

5 wavplay (obj .Sound-Data, obj .Sampling-Rate) ; 

6 else 

7 disp('Beamformed buffer playing...'); 
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8 wavplay (Beamf orm_Data (ob j ) , ob j . Sampling-Rate) ; 

9 end; 

Recorder.m 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

function x = Recorder(c) 

* 3 

if 

els 

his is the constructor for t.V 

nargin == 0 

x.Sampling_Rate = 44100; 

X. Sample-Length = 1; 

x.Bit-Resolution = 16; 

x.Azimuth_Beam_Angle = 0; 

x .Microphone-Spacing = 0; 

x.Microphone = audiorecorder 

x. Sound-Data = []; 

x = class{x,'Recorder'); 

eif isa{c,'Recorder') 

x=c; 

end 

Recorder object. 

x.Sampling_Rate,x. Bit-Resolution, 2) ; 

Set_Azimuth_Beam_Parameters. m 

1 function Set_Azimuth_Beam-Paraineters (obj. Angle, Separation) 

2 

3 if Angle>90 | Angle <—90 

4 error('RECORDER: Angle must be between —90 and 90 degrees.'); 

5 else 

6 ob j . Azimuth_Beam_Angle = Angle; 

7 end; 

8 if Separation<0 | Separation > 100 

9 error('RECORDER: Microphone separation must be between 0cm and 100cm.'); 

10 else 

11 obj.Microphone-Spacing = Separation; 

12 end; 

13 

14 assignin('caller', inputname(1), obj); 

Set_Normalization_Mode .m 

1 function Set-Normalization_Mode(obj,Mode) 

2 

3 if strcmpi(Mode,'ON') | Mode == 1 

4 obj.Normalization_Mode = 1; 

5 assignin('caller',inputname(1), obj); 

6 elseif strcmpi(Mode,'OFF') | Mode == 0 

7 obj .NormalizationJlode - 0'; 

8 assignin ('caller', inputname (1) , ob j) ;. 

9 else 

10 error('Verbose mode can either be ON(l) or OFF{0).'); 

11 end; 

Set J3ample_Lengtli. m 

1 function Set_Sample_Length(obj,Length) 

148 



2 obj. Sample-Length = Length; 

3 obj.Microphone = audiorecorder(obj.Sampling_Rate,obj.Bit-Resolution,2); 

4 assignin( 'caller1 , inputname(1), obj); 

Set_Sampling_Rate. m 

1 function Set_Sampling_Rate(obj,Rate) 

2 obj . Sampling-Rate = Rate; 

3 obj .Microphone = audiorecorder (obj . Sampling_Rate, obj .Bit-Resolution, 2); 

4 assignin('caller', inputname(1), obj); 

St ar t -Recording.m 

1 function Start-Recording(c) 

2 recordblocking(c.Microphone,c.Sample-Length); 

3 c.Sound_Data = getaudiodata(c.Microphone,'double'); 

4 assignin('caller',inputname(1),c); 

B.1.2 Private Methods 

Azimuth_Beam _Angle_To_Delay. m 

1 function Delay = Azimuth_Beam_AnglG_To.Delay {Angle,Microphone-Spacing) 

2 

3 § The angle in degrees ana microphone separation in centimeters is 

4 % converted to a delay in seconds. 

5 

6 i Speed of sound is 34000cm/s 

7 c = 34000; 

8 Delay = Microphone-Spacing*sind(Angle)/c; 

Beamform_Data.m 

1 function Data = Beamform_Data (obj) 

2 

3 Sample-Delay = floor {obj . Sampling_Rate*Azimuth_Beam_Angle_To_Delay (obj . Azimuth-Beam_Angle, obj .Microphone-Spacing)); 

4 size {obj . Sound-Data) ; 

5 • if obj .Azimuth-Beam_Angle>0. 

6 Data = (obj .Sound-Data (1 :end~S ample-Del ay, 1) +obj .Sound-Data (l + Sample_Delay :end, 2)) 12; 

7 else 

8 Data = (ob j. Sound-Data (l:end—Sample-Delay, 2) +obj .Sound-Data (l + Sample_Delay:end, 1) ) /2; 

9 end; 

149 



B.2 M a t lab Object: ©Robot 

B.2.1 Public Methods 

Autodetect.m 

1 function [Port, Controller-ID] = Autodetect (Robot, Hardware_Controller_Version_String) 

2 % This function will av.todetect which COM port the robot is on. 

3 

4 % Controller identifier. 

5 * Hardware-Cant roller-VexsiOTiSt ring = 'SV2G3 VI.2'; 

6 Hardware_Controller_Version_String.Querry = ''; 

7 

8 -5 Find'ail available COM ports. 

9 Hardware-Scan = instrhwinfo{'serial'); 

10 Number_Of-Available-COM_Ports = size (Hardware-Scan.AvailableSerialPorts, 1) ; 

11 Port-Found = 0; % No pert was found yet. 

12 

13 * Perform scan. 

14 for COM = l:Number_Of-Available_COM-Ports 

15 Robot.Serial-Port = serial (.. . 

16 Hardware-Scan.AvailableSerialPorts (COM) 

17 'BaudRate', 9600, .. . 

18 'DataBrU;',8, . . . 

19 'Parity', 'none', . . , 

20 'StopBits', 1, ... 

21 'Terminator', 13, . . . 

22 'Timeout',2) ; 

23 

24 % Open the serial port. 

25 fopen(Robot.Serial-Port); 

26 fprintf (Robot. Serial-Port, 'V? ') ; 

27 [Hardware_Controller-Version_String_Querry, Byte_Count, Message] = fgetl (Robot. Serial-Port) ; 

28 

29 -i Check to see if che controller's power is off. In this case, the 

30 * read will fail with zero bytes read. 

31 if (Byte_Count==0) 

32 Port = char (Hardware-Scan.AvailableSerialPorts (COM)); 

33 Controller-ID = 'Controller power may be off.'; 

34 f close (Robot. Serial-Port) ; 

35 assignin('caller',inputname(1),Robot); 

36 return; 

37 end; 

38 

40 i f (stremp (Hardware_Controller_Version-String, Hardware_Controller_Version_String_Querry) ) 

41 Port-Found = 1; 

42 Port = char (Hardware-Scan.AvailableSerialPorts (COM) ) ; 

43 Controller-ID = Hardware-Controller-Version_String_Querry; 

44 end; 

45 fclose(Robot-Serial-Port) ; 

46 end; 

47 assignin('caller',inputname(1),Robot); 

48 if -iPort-Found 
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49 

50 

51 

P o r t = 'None fo 

C o n t r o l l e r _ I D = 

end; 

a n d ' ; 

' Unas s igned . ' ; 

Destroy.m 

1 function Destroy(Robot) 

2 s This function is responsible for destroying the Robot obje 

3 

4 fclose(Robot .Serial-Port) ; 

DISPLAY.M 

1 function display(Robot) 

2 % This function will display the critical pa 

3 

4 fprintfd, 'ROBOT Object (2 D0Fj\n : 

5 

6 fprintf(1,'Communication Port: 

7 fprintf(1,'Controller ID: 

8 

9 fprintf(1,'Microphone Separation (Angle): 

10 Robot .Physical-Microphone-Spacing, . . . 

11 Robot .Physical_Arm_Angle) ; 

12 

13 fprintf(1,'Array Direction: 

14 Robot .Physical-Azimuth-Angle) ; 

the Recorder object. 

-V); 

%s (%s)\n', Robot .C0M_Port_ID, Robot .Serial-Port .status) ; 

%s\n\n',Robot-Controller-ID) ; 

%2.1f cm (%3 . If )\n 

s3.1f \ n \ . . 

Relax.m 

1 

2 

3 

4 

function Relax(Robot) 

$ This function is called to remove poxer from both 

Send-Command(Robot,'SV1 MO D100 SV2 MO D100'); 

motors. 

Robot.m 

function x = Robot(Argl) 

%• This is the constructor for the Robot object. 

% This property is to identify the hardware. 

x.Controller-ID = 0; 

x.COM-Port.ID • = • ' . -

•3 Jhe.se properties are for the angular control of the mlcrophor 

% The two values are used for calibration. 

x. Physical-Arm-Angle = 90; il'eqrees 

x.Physical-Arm-Length = 27.0; ^Centimeters 

x.Physical-Arm_Offset - 3.7; iCentimeters 

x.Physical-Microphone-Spacing = x.Physical-Arm_Off set+ . . . 

2*x . Physical-Arm-Length*sin (deg2rad (x . Physical-Arm-Angle) ) ; 

x.MIN_Logical_Arm_Angle = 23; 1-22 

x.MAX_Logical-Arm_Angle = 138; 

151 

http://Jhe.se


18 % These properties are for the azimuth control of the microphone 

19 % asserrjoly. The LHO values are used for calibration. 

20 x. Physical -Azimuth-Angle = 180; 

21 x.MIN-Logical-Azimuth = 2; 

22 x.MAX-Logical-Azimuth = 228; 

23 

24 switch nargin 

25 i The serial port is required in order: to work with the robot'? 

26 % controller. Since no arcruements are specified, use COM1 as tr 

27 % default serial port. 

28 case 0 

29 x.Serial-Port = serial('COM1'); 

30 x = class(x,'Robot'); 

31 [X.COM-Port-ID, x.Controller-ID] = Autodetect(x,'SV203 VI.2'); 

32 x.Serial_Port = serial(x.COM_Port_ID,'BaudRace',9600,... 

33 'DataBlts',8,'Parity','none','StopBits',1,'Terminator',13); 

34 % open the communication port. 

35 fopen(x.Serial-Port); 

36 

37 s Initialize the robot. 

38 Eet_Microphone_Separation (x, 0) ; 

39 paused); 

40 Set_Array_Direotion<x,0) ; 

41 

42 case 1 

43 if( isa(Argl , 'Robot ' )) 

44 dispCCase 1: Robot Class ' ) ; 

45 x=Argl; 

46 elseif isa(Argl,'char') 

47 dispCCase 1: Character Class'); 

48 x.Serial-Port = serial (Argl,'BaudP.ate', 9600,'DataBits',.. . 

49 8,'Parity','none','StopBits',1,'Terminator',13); 

50 f open (x. Serial-Port) ; 

51 x = class(x,'Robot'); 

52 end; 

53 end; 

54 

55 Sir nargin =«• 0 

56 * 

57 %elself isaic, 'Robot') 

58 * x-r; 

59 tend 

SencLCommand. m 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

function Send-Command (Robot, Command) 

% 

i 

* 

% 

This function will send a command to the motor G-t 

The range of the Futuba motor is from 2 to 228. 

The range of the Hitec motor is from 2.2 to 138. 

Create the cotrmand string with line termination. 

Command-String = sprintf('%s%c',Command,13); 

% Send the command string to the controller. 

rjtrclier . 
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11 fprintf (Robot .Serial-Port, ' %s', Command-String) ; 

Set_Array_Direction.m 

1 function Set-Array-Direction (Robot,Angle) 

2 % This function will take in a value for the array direction in degrees 

3 ? and adjust the robot to match. (--9G to +90 degrees) 

4 

5 Angle = Angle + 90; 

6 

7 % Map the norvalis.ed angle to the logical range. 

8 Motor-Control-Steps - 180/ (Robot .MAX-Logical-Azimuth - Robot .MIN.Loglcal-Azlmuth) ; 

9 Motor-Position = round (Robot .MIN-Logical-Azimuth + Angle/Motor-Control-Steps) ,-

10 

11 % Compute the physical position of the arm (corrected to the resolution of 

12 % the controller. 

13 Robot.Physical-Azimuth-Angle = 180* (Motor-Position-Robot.MIN-Logical-Azimuth)/.. . 

14 (Robot.MAX_Logical_&zimuth — Robot .MIN-Logical-Azimuth) ; 

IS 

16 . % Send the command to the controller. Motor tl is connected to the array. 

17 Command-String = sprintf ('SV1 M%d D800 MO ', Motor-Position) ; 

19 

20 % Save all changed values to the class. 

21 assigninC ca l le r ' , inputname(l) .Robot) ; 

Set_Microphone_Angle.m 

1 function Set-Microphone-Angle(Robot,Angle) 

2 % This function w.i.l.l take in a valve for the. microphone separation in 

4 

5 % Map the normalized angle to the logical range. 

6 Motor_Control-Steps = 90/ (Robot. MAX-Logical-Arm-Angle — Robot. MIN_Logical_Arm_Angle) ; 

7 Motor-Position = round(Robot .MIN_Logical-Arm_Angle + Angle/MotorXontrol-Steps); 

8 

9 % Compute the physical position of the arm (corrected to the resolution of 

10 % the controller. 

11 Robot .Physical_Arm_Angle = 90* {Motor-Position—Robot .MIN_Logical_Arm_Angle) / . . . 

12 (Robot .MAX-Logical_Arm-Angle — Robot .MIN_Logical_Arm.Angle) ; 

13 Robot .Physical-Microphone-Spacing = Robot .Physical_Arm.Off set + ... 

14 2*Robot .Physical_Arm_Length*sin (deg2rad (Robot .Physical-Arm-Angle)); iCentimeter:-, 

15 

16 % Send the command to the controller. Motor #2 is connected to the arm, 

17 Command-String = sprintf{'SV2 M%d D2000 MO',Motor-Position); 

18 Send-Command (Robot, Command-String) ; 

19 

20 * Save All changed valves to the class. 

21 assignin('caller' , inputname(1),Robot); 

Set_Microphone_Separation.m 

1 function Set_Microphone_Separation(Robot,Spacing) 

2 % This function will take in a value for the microphone separation in 
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3 % centimeters and adjust the robot to match. 

4 

5 Robot .Physical_Microphone_Spacing = Spacing— Robot. Physical_Arm_Of f set ; 

6 Robot .Physical_Arm_Angle = rad2deg(asin (Robot.Physical-Microphone-Spacing/ (2*Robot .Physical_Arm_Length)}); 

7 Set_Microphone_Angle (Robot, Robot . Physical_Arm_Angle) ; 

8 

9 . assigninf'caller',inputname(1),Robot); 

B.3 Ma t l ab Object: @Sub_Band_Anomaly_Detector 

B.3.1 Public Methods 

Analyze.m 

1 function Analysis-Results = Analyze(obj) 

2 

3 obj . Sub_Band_lnformation = Load-Data (obj, obj . Sample-Data) ; 

4 Analysis-Results = ob j .Sub_Band_Inf ormation; 

5 

6 % Save the data to the class. 

7 assignin('caller',inputname(1),obj) ; 

display.m 

1 function display(obj) 

2 % 1'his function is responsible for displaying the object correctly. 

3 

4 fprintf (1, '\n* Sub—Band Anomaly Detector Object\n \n ' ) ; 

5 % Display the appropriate output for the sample size 

6 [m, n] =size (obj . Sample-Data) ; 

7 i£(m==0 | | n==0) 

8 fprintf(1,' - Sample Size:\t\t\t\t-\n'); 

9 else 

10 fprintf(1,' - Sample Size:\t\t\t\t£d\n',n); 

11 end; 

12 

13 fpr intf(1, ' —Wavelet Basis:\t\t\t\t%s\n',obj-Wavelet-Basis) ; 

14 

15 if obj .Maximum-Decomposition 

16 fpr intf(1, ' — Analysis Level:\t\t\t\tMaximum\n'); 

17 else 

18 fprintf (1,' — Analysis Level :\t\t\t\t%d\n', obj . Analysis-Decomposition-Level) ; 

19 end; 

20 fprintf (1, ' — Averaging Window Size :\t\t%d\n', obj .Averaging_Window_Size) ; 

21 if obj.Reduce-Edge-Effects 

22 fprintf(1,' - Edge Effect Reduction:\t\ttrue\n'); 

23 else 

24 fprintf(1,' - Edge Effect Beduction:\t\tfalse\n'); 

25 end; 

26 
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27 if ob j , Laplacian_Sainple_Filter 

28 fprintfd,' — Laplacian Sample Filter:\ton\n') ; 

29 else 

30 fprintfd,' - Laplacian Sample Fiiter:\tof f \n'); 

31 end; 

32 fprintfd,1 — Minimum Anomaly Length:\t\t%d\n ', obj .Minimum_Anomaly_Length) ; 

Extract_Feature.m 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

function Feature = Extract-Feature(obj) 

% This function will extract the feature vector from the data set. 

s If the requested decomposition ievel is greater than the maximum, return 

% an error (don't execute this funotIon). 

if ob j . Analysis_Decomposition_Level > ob j .Maximum-Deconiposition_Level; 

obj 

errorf'The requested level of decomposition is greater than the maximum.\n'); 

end; 

Feature = obj .Extraction-Feature; 

switch (obj -Extraction-Feature) 

% Features froir. the approximation only. 

case 'Approximation Mean' 

Feature = Extract-Feature—Approximation-Mean (obj) ; 

case 'Approximation Variance' 

Feature = Extract-Feature—Approximation-Variance (obj) ; 

case 'Approximation Spread' 

Feature = Extract-Feature Approximation-Mean (obj) ./Extract-Feature Approximation 

case 'Approximation Energy' 

Feature = Extract-Feature—Approximation-Energy (obj) ; 

case 'Approximation Entropy' 

Feature = Extract-Feature—Approximation-Entropy (obj) ; 

case 'Approximation Trend' 

Feature = Extract-Feature Approximation-Trend (obj) ; 

case "feager Energy' 

Feature = Extract-Feature—Teager-Energy (obj) ; 

case 'Entror>y' 

case 'Information' 

case 'LPC1' 

otherwise 

end; 

-Variance(obj); 

get.m 

1 function val = get(obj,Property-Name) 

2 s This function is che function returns the value of the sp^cifi-^d property name. 

5 case ' Sub_BancLIn£formation ' 

6 val = ob j . Sub_Band_Inf ormation; 

8 error{[Property-Name,' i s not a valid FeatureJSxtractor p r o p e r t y . ' ] ) ; 

9 end; 
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LoacLData.m 

1 function Analysis-Result = Load-Data (obj, Input-Data) 

2 % This function will load the input cUttci into the object. 

3 

4 % Ensure that the data, is a simple row vector. 

5 [m,n]=size{Input.Data); 

6 Sample-Length = n; 

7 i f (m^l && n^L) 

8 fprintf(1,'ERROR: Single dimension vectors only. Sample not loaded.\n'); 

9 return; 

10 else 

11 if(n==l) 

12 % Convert the column vector to a row vector. 

13 Input_Data=Input_Data'; 

14 Sample-Length = m; 

15 end; 

16 obj . Sample_Data= Input-Data; 

17 end; 

18 

19 s Compute the maximum decornpostion level for this sample. 

20 if obj .Maximum-Decomposition 

21 obj .Analysis_Decomposition_Level=wmaxlev (Sample-Length, obj .Wavelet-Basis) ; 

22 end 

23 

24 % Call the sub—band outlier detector. 

25 Analysis-Result = Outlier-Detector(obj); 

26 ob j . Sub_Band_lnf ormation = Analysis-Result; 

27 

28 * Save the data to the class. 

29 assignin('caller',inputname(1),obj); 

set .m 

1 function se t (obj ,varargin) 

2 % This function is the function sots the value of the specified property name. 

3 

4 Property-List = varargin; 

5 while length(Property-List) >= 2, 

6 Property = Property-List{l}; 

7 Value = Property_List{2}; 

8 Property-List = Property-List (3 :end) ; 

9 switch(Property) 

10 case 'Wavelet-Basis' 

11 obj.Wavelet-Basis = Value; 

13 % obj .Sampling •---• Value; 

14 case 'Analysis-Level' 

15 obj.Analysis-Decomposition_Level = Value; 

16 if sizefobj.Sample-Data,2)>0 

17 Max-Decomp=wmaxlev (size (obj . Sample-Data, 2), obj .Wavelet-Basis); 

18 if Value<Max_Decomp 

19 obj .Maximum-Decomposition = false; 

20 else 

21 obj .Maximum-Decomposition = true; 

22 obj .Analysis-Decomposition_Level = Max_Decomp; 
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23 end; 

24 end; 

25 case ' Averaging-Wandow._Si?.e ' 

26 obj .Averaging.Window-Size = Value; 

27 case 'Maximum-Decomposition' 

28 if strcmpi(Value, 'true' ) |strcmpi(Value, 'on') |Value==l 

29 obj .Maximum-Decomposition = true; 

30 else 

31 if strcmpi(Value,'false')jstrcmpi(Value,'off)|Value==lValue==0 

32 obj .Maximum_Decomposition = false; 

33 else 

34 if islogical(Value) 

35 obj .Maximum_Decomposition=Value; 

36 else 

37 error ('Maximum-Decomposition can only take on values : {on j of f}, {true [false} or {0 11} ') ; 

38 end; 

39 end; 

40 end; 

41 case ' Edge_Efreet.Redact ion ' 

42 i f s t rcmpi(Value , ' t rue ' ) [s t rcmpi(Value , 'on ' ) |Value==l 

43 ob j .Reduce_Edge_Ef fec ts = t rue ; 

44 else 

45 if strcmpi(Value,'false')|strcmpi(Value,'off)|Value==0 

46 obj .Reduce_Edge_Ef fects = false; 

47 else 

48 if islogical (Value) 

49 obj .obj . Reduce_Edge_Ef fects=Value; 

50 else 

51 error (' Bdge_£f feet-Reduction can only take on values: {onjoff}, {true|false} or {0|l}'); 

52 end; 

53 end; 

54 end; 

55 case ' Laplacian-Sample-Fliter ' 

56 if strcmpi(Value,'true')|strcmpi(Value,'on')|Value==l 

57 ob j .Laplacian_Sample_Filter = true; 

58 else 

59 if strcmpi (Value, 'false ' ) | strcmpi (Value, 'off ) )Value==0 

60 obj .Laplacian_Sample_Filter = false; 

61 else 

62 error ('Laplacian-Sample-F.'LIter can only take on values;: {onjoff}, {true | false} or {C|l}'); 

63 end; 

64 end; 

65 case ' Averaging_Window_Size' 

66 obj .Averaging.Window-Size = Value; 

67 case * MinimumJmomaly..Length ' 

68 if Value<l 

69 error('The minimum anomaly length is one sample'); 

70 else 

71 ob j .Minimum_Anomaly-Length = Value; 

72 end; 

73 otherwise 

74 error('Unrecognized property.'); 

75 end; 

76 end; 

77 
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79 assignin('caller',inputname(1),obj); 

subsref.m 

1 function value = subsref(obj,index) 

2 

3 8 Check the depth of the references requested. 

5 if Number_0f_References>2 

6 error{'??? Too many references. Not implemented.'); 

7 end; 

8 

9 % Check the first reference and subsequent references if requested and 

10 * allowed. 

11 switch index(1).type 

12 case •{}' 

13 i Sub-Band Cell-Structure References 

14 % 

15 % When referenced In this mode, a l l of the gat tiered sub-band 

16 % information i s returned for the specified decomposition level. 

17 if index(1).subs{l}==0 

18 value=size (obj . Sub-Band.Inf ormation, 2) ; 

19 else 

20 if (Number.0f.References==2) & index (2) .type«' . ' 

21 Object«obj.Sub-Band-Information{index(l) .subs{l}}; 

22 value=eval(['Object.' index(2).subs)); 

23 else 

24 value=obj.Sub_Band-Information{index(l) .subs{l}}; 

25 end; 

26 end; 

27 case ' 0 ' 

28 s Su.c—Band Array References 

29 i -

30 % When referenced in this mode, only the band—pass signals are 

31 % returned at the specified decompostion levels. 

32 if index(1).subs{l}==0 

33 % All of the samples are the same size, use the first for 

34 s measurement of the array. 

35 value=size(obj.Sub_Band-Information{l}.Data,2) ; 

36 else 

37 value-obj.Sub_Band-Information{index(l) . subs{l}} .Data; 

38 end; 

40 % Object Property References 

41 * 

42 s When referenced in this mode, the value of the object's specified 

44 switch index(1).subs 

45 case 'Sample-Size' 

46 value=size (obj.Sample-Data, 2) ; 

47 case 'Wavelet-Basis' 

48 value-obj. Wavelet-Basis; 

49 case 'Analysis-Level' 

50 value=obj .Analysis-Decomposition-Level; 

51 case 'Averaging.Wir.dow.Size' 
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52 value=ob j . Averaging_window_Size; 

53 case ' EdgeJSf fect_Reduc„ion' 

54 value=obj .Reduce_Edge_Ef f ects; 

55 case ' Lap! acian-Sample-T'i Iter' 

56 value=ob j . Laplacian_Sample_Filter; 

57 otherwise 

58 error ('??? Attempt, to reference a nan—exist ant field,'); 

59 end; 

60 otherwise 

61 % Unknown Property References 

62 ? 

63 5- This is an error condition only. 

64 error ('??? Unknown reference type.') 

65 end; 

Sub_Band JtnomalyJDetector. m 

1 function Obj = Sub_Band-Anomaly_Detector (Obj) 

2 % This function is the constructor for the Si>.b.,Band.J\no!r:aly..Detect:or object. 

3 

4 if nargin==0 

5 % Main object property initialization 

6 Obj.Wavelet-Basis = 'dmey'; 

7 Ob j . Analysis_Decomposition..Level = 0; 

8 Ob j .Maximum-Decomposition = true; 

9 Obj.Sample-Data = []; 

10 

11 % Properties specific for the outlier detector. 

12 Ob j .Averaging_Window_Size = 20; 

13 Obj .Reduce_EdgeJ_.f fects == true; 

14 Obj .Laplacian_Sample-Filter = true; 

15 Obj .Minimum_A.nomaly_Length = 1; 

16 

18 Obj . Sub-Band_lnf ormation = {}; 

19 Obj = class (Obj, * Sub_B5rid_ft.n0maly_Detect.0r ' ) ; 

20 else 

21 i f isa(x, ' Sub_Band_Anoirialy-Detector ') 

22 Obj = x; 

23 end; 

24 end; 

B.3.2 Private Methods 

Lap2Gauss.m 

1 function y = Lap2Gauss(x) 

2 % y - L&pZGaus (x) 

3 % 

4 % 

5 % This function will convert a data set that follows a Laplacian 

6 % distribution to a normal, Gaussian distribution. 
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7 -8 

8 

9 i% Estimate the Laplace distribution parameters for the sainple. 

10 N = m a x ( s i z e ( x ) ) ; 

11 mu=median(x); 

12 b=l/N*sum(abs(x-mu)); 

13 sigma-2=2*b-2; 

14 sigma=sqrt(sigma_2); 

15 sqr t_2=sqrt(2) ; 

16 

17 %% Convert the data set to a Gaussian distribution by passing it. through a 

18 %% non-linearity. 

19 y = erf inv( sign (x-mu) . • (1—exp(—abs (x-mu)/b) ) ) *sigma*sqrt_2+mu; 

modifiedfastmcd2.m 
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40 % fit situations, i.e. when more than h observations lie on a (hyper)plane. 

41 \> Then the program sc.il I yields the MCD location and scatter matrix, the latter 

42 % being singular (as it should be), as well as the equation of the hypervlane. 

43 * 

44 5 Usage: 

45 % [res,raw]-fastmcd(data,options) 

46 % 

47 •§ If only one output argument is listed, only the final result ('res') is returne 

48 % The first input argument 'data' is a vector or matrix. Columns represent 

49 -§ variables, and rows represent observations. Missing values (NaN's) and 

50 % infinite values (Inf's) are allowed, since observations (rows) with missing 

51 % or. infinite values will automatically be excluded from the computations. 

52 % 

53 % The second input argument 'options ' is a structure. It specifies certain 

54 % parameters of the algorithm: 

55 * 

56 % options.cor: If 'ion—zero, the robust correlation matrix will be 

57 % returned. The default value is 0. 

58 % options.alpha; The percentage of observations whose covariance determinant wii 

59 % be minimized. Any value between 0.5 and 1 may be specified, 

60 * The default valve is 0.75. 

51 % opt ions, nt rial: The numloer of random trial sub-samples that are drawn for 

62 % large dacasecs. The default is 500. 

63 % 

L % The output structure '.raw' contains intermediate results, with the following 

65 S fields : 

66 * 

67 % raw.center: The raw MCD location of the data. . 

68 % raw.cov: The raw MCD covariance matrix (multiplied by s finite sample 

) % correction factor etna an asymptotic consistency factor) . 

70 % raw.cor: The raw MCD correlation matrix, if options.cor was non-zero. 

71 % raw.objective: The determinant of the raw MCD covariance matrix. 

72 % raw.rcbdist: The distance of each observation from the raw MCD location 

73 -s of the data, relative to the raw MCD scatter matrix 'raw.cov' 

74 % raw.wt: Weights based on the estimated raw covariance matrix 'raw.cov' and 

75 & the estimated raw location of the data. These weights determine 

76 % which observations are used, to compute the final MCD estimates. 

77 % 

78 -s The output: structure 'res' contains the final results, namely: 

79 * 

80 % res.n..obs: The number of data observations (without missing values). 

81 % res.quan: The number of observations that have determined the MCD estimator, 

82 * i.e. the value of h. 

83 % res.mahaianobis: The distance of each observation from the classical 

84 % center of the data, relative to the classical shape 

85 % of the data. Often, outlying points fail to have a 

86 s large Mahalanobis distance because of the masking 

87 % effect. 

88 % res. center.: The robust: location of the data,, obtained after reweighting, if 

89 % the raw MCD is not singular. Otherwise the raw MCD center is 

90 % given here. 

91 % res.cov: The robust: covariance matrix,, obtained after reweighting and 

92 % multiplying with a finite sample correction factor and an asymptotic 

93 % consistency factor, if the raw MCD is not: singular. Otherwise the 

94 s raw MCD covariance matrix is given here. 

95 % res.cor: The robust correlation matrix, obtained after reweighting, if 
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96 % options .cor was non-zero. 

97 ij res.method: A character string containing information about the method and 

98 * about singular sub samples (if any). 

99 % res.robdist: The distance of each observation to the final, 

100 % reweighted MCD center of the data, relative to the 

101 % reweighted MCD scatter of the data. These distances allow 

102 % us vc easily identify the outliers. If the reweighted MCD 

103 §• i s si ngvlar, raw, robdist i s gi ve n he re. 

104 % res.flag; Flags based on the reweighted covariance matrix and the 

105 •% reweighted location of the data. These flags determine which 

106 % observations can be considered as outliers. If the reweighted 

107 % MCD is singular, raw.wt is given here. 

108 % res.plane: In case of an exact fit, res.plane contains the coefficients 

109 % of a (hyper)plane a.l (x.il—m-1) f. . .>-a~p (X-ip~m.p}----0 

110 % containing at least h observations, where ('«?_!, , . ,, m„p i 

111 * is the MCD location of these observations. 

112 % res.X; Tne data matrix. Rows containing missing or infinite values are 

113 % ommitted. 

114 * 

115 % FASTMCD also automatically calls the function PLOTMCD which creates plots for 

116 % visualizing outliers detected by FASTMCD. The plots that can be produced are: 

117 * 

118 % 1. Plot of Mahalanobis distances versus case number. 

119 % 2. Plot o-f robust distances versus case number:. 

120 % 3. QQplot: shows robust distances versus chi—squared guantiles. 

121 % 4. Robust distances versus Mahalanobis distances (i.e. the D-D plot). 

122 % 5. The 97.5% robust tolerance ellipse (if the dataset is bivariate). 

123 * 

124 * Usage: 

125 * plotmcd (nxcdres, options) 

126 * 

127 % The first input argument 'madras' is the output argument, of the function 

128 % FASTMCD, The second input argument 'options' is a structure containing: 

129 8 

130 % options.ask: A logical flag: if set to Q, ail plots are produced sequentially; 

131 * if sec r.o 1, PLOTMCD displays a menu listing all the plots that 

132 * can be produced. The default value is 1. 

133 % options.nid: Number of points (must be less than n) to be highlighted in the 

134 % appropriate plots. These will be the 'nid' most extreme points, 

135 % i.e. those with largest robust distance. 

136 % options.xlab: Label, of the X-axis in the MCD tolerance ellipse plot. 

137 •% options.ylab: Label of the Y-axis in the MCD tolerance ellipse plot. 

138 

139 

140 * The fastmcd algorithm works as follows: 

141 * 

142 -s The dataset contains n cases and p variables. 

143 % When n < 2*n;uini (see below), the algorithm analyzes the dataset as a whole, 

144 % When n >-•= 2*nmini (see below), the algorithm uses several subdatasets. 

145 % 

146 % h'hen the dataset is analyzed as a whole, a trial subsample of p+1 cases 

147 -s is taken, o£ which the mean and covariance matrix are calculated. 

148 % The h cases with smallest relative distances are used to calculate 

149 % the next mean and covariance matrix, and this cycle is repeated cstepsl 

150 s times. For small n we consider all subsets of p+1 out of n, otherwise 

151 * the algorithm draws 500 random subsets by default. 
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152 % Afterwards, the 10 best solutions (means and corresponding covariance 

153 % meet ions) .a .re usee* a? i-cn.rt.inq values for the final Iterations. 

154 % These iterations stop when two subsequent de tier:;:: in ants become equal. 

155 % (At vest cstepsS iteration steps are taken.) The solution with smallest 

156 § determinant is retained. 

157 % 

158 % When the dav.aset contains more than 2*nmin.i cases, the algorithm does part 

159 •?• of the calculations on (at most) maxgroup non overlapping sv.bdatasets, of 

160 % (roughly) ssaxobs cases. 

161 % 

162 % Stage .1 : For each trial sv.bsamp.le in each subdatasei:, cstepsl (see below) iterations art 

163 % carried out in that svbdataset. For each subdataset, the 10 best solutions are 

164 i stored. 

165 * 

166 % Stage 2 considers the union of the subdatasets, called the merged set. 

167 % (If n is large, the merged set is a proper subnet of the entire datasei.) 

in this merged sat, each of the 'best solutions ' of stage 1 are used as starting 

169 % values for cst:eps2 (sse below) iterations. Also here, the 10 best solutions are stored. 

170 % 

171 * S'cage 3 depends on ;>., the total number of cases in the dataset. 

172 * If n O 5000, all 10 preliminary solutions are iterated. 

173 % If n > 5000, only the best preliminary solution is iteraced. 

174 * The nu.-riber of iterations decreases to 1 according to n*p (If n*p O 200,000 we 

175 % iterate c steps 3 (sse below) times, whereas for: n *p > 1, 00 0, 000 we take only one iteratlr. 

176 

177 

178 % The maximum value for n (=-• number of observations) is: 

179 %nmax=5GGGG; 

180 nmax=100000; 

181 

182 s The maximum value tor p (••- nun'iber of variables) is: 

183 pmax=50; 

184 

185 % To change the number of subdatasets and their size, the values of 

up and nmini can be cha-vged. 

188 nmini=300; 

189 

iteration steps in stages 1,2 and 3 can be changed 

e parameters cstepsi, csteps2, and csiepso. 

190 

191 

192 

193 

194 

195 

196 

* The number of 

% by adapting t 

cstepsl=2; 

csteps2=2; 

csteps3=100; 

* dtriai : numb 

197 dtrlal=500; 

198 

199 % The 6'.575 quantize of the chi—squared distribution. 

200 chi2q=[5.0238 9,7.3777 6, 9.34840,11.1433, 12.8325,... 

201 14.4494,16.0128,17.5346,19.0228, 20.-4831, 21.920, 23.337, ... 

202 24.736,26.119,27.488,28.845,30.191,31.526,32.852,34.170,.. 

203 35.479,36.781,38.07 6,39.364,40.646,41.923,43.194,44.4 61,.. 

204 45.722, 46.979, 48.232,49.481,50.725,51.966,53.203,54.437,.. 

205 55.668,56.896,58.120,59.342,60.561,61.777,62.990,64.201,.. 

206 65.410,66.617,67.821,69.022,70.222,71.420); 

207 
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208 % Median of the chi—squared distribution. 

209 c h i m e d = [ 0 . 4 54 9 3 7 , 1 . 3 8 6 2 9 , 2 . 3 6 5 9 7 , 3 . 3 5 6 7 0 , 4 . 3 5 1 4 6 , . . . 

210 5 . 3 4 8 1 2 , 6 . 3 4 5 8 1 , 7 . 3 4 4 1 2 , 8 . 3 4 2 8 3 , 9 . 3 4 1 8 2 , 1 0 . 3 4 , 1 1 . 3 4 , 1 2 . 3 4 , . . . 

211 1 3 . 3 4 , 1 4 . 3 4 , 1 5 . 3 4 , 1 6 . 3 4 , 1 7 . 3 4 , 1 8 . 3 4 , 1 9 . 3 4 , 2 0 . 3 4 , 2 1 . 3 4 , 2 2 . 3 4 , , . . 

212 2 3 . 3 4 , 2 4 . 3 4 , 2 5 . 3 4 , 2 6 . 3 4 , 2 7 . 3 4 , 2 8 . 3 4 , 2 9 . 3 4 , 3 0 . 3 4 , 3 1 . 3 4 , 3 2 . 3 4 , . . . 

213 3 3 . 3 4 , 3 4 . 3 4 , 3 5 . 3 4 , 3 6 . 3 4 , 3 7 . 3 4 , 3 8 . 3 4 , 3 9 . 3 4 , 4 0 . 3 4 , 4 1 . 3 4 , 4 2 . 3 4 , . . . 

214 4 3 . 3 4 , 4 4 . 3 4 , 4 5 . 3 4 , 4 6 . 3 4 , 4 7 . 3 3 , 4 8 . 3 3 , 4 9 . 3 3 ] ; 

215 

216 

217 s e e d - 0 ; 

218 quan=0; 

219 a l p h a = 0 . 7 5 ; 

220 f i l e = 0 ; 

221 

222 % The value o f the fields of the input rn-gument OPTIONS are now determined. 

223 % If the user hasn't giver; a value to one of the fields, t'ne default value 

224 % is assigned to i t . 

225 i f n a r g i n = = l 

226 c o r = 0 ; 

227 ntrial=dtrial; 

228 lts=0; 

229 elseif isstruct(options) 

230 names=fieldnames(options); 

231 

232 if strmatch('cor',names,"exact') 

233 cor=options.cor; 

234 else 

235 cor=0; 

236 end 

237 

238 if strmatch('alpha",names,'exact') 

239 quan=l; 

240 alpha=options.alpha; 

241 end 

242 

243 if strmatch('ntrial',names,'exact') 

244 ntrial=options.ntrial; 

245 else 

246 ntrial=dtrial; 

247 end 

248 

249 if strmatch('Its',names, 'exact'} 

250 lts=options.Its; 

251 else 

252 lts=0; 

253 end 

254 

255 else 

256 error ('The second input, argument is not a structure.') 

257 end 

258 

259 if size(data,1)==1 

260 data^data'; 

261 end 

262 

263 % Observations with missing or infinite values are o.'H'r:iti:ed. 

164 



264 ok=all(isfinite(data),2); 

265 data-data (ok, :) ,-

266 n=size(data,l); 

267 p=size(data,2); 

268 

269 % Some checks are now performed. 

270 i f n=«0 

271 error('All observations have missing or infinite values.') 

272 end 

273 

274 if n > nmax 

275 error(['The program allows for at most ' int2str(nmax) ' observations.']) 

276 end 

277 

278 if p > pmax 

279 error(['The program allows for at most ' int2str(pmax) ' variables.']) 

280 end 

281 

282 if n < 2ip 

283 error('Need at least 2* (number of var.iab.les) observations.') 

284 end 

285 

286 % n/r;io is the rrrlnirrmfn nur.'£e? of observations whose oovariance determinant 

287 t will be minimized. 

288 hmin=quanf(0.5,n,p); 

289 

290 i f -quan 

291 h=quanf(0.75,n,p); 

292 else 

293 h=quanf(alpha,n,p); 

294 i f h < hmin 

295 error([ 'The MOD must cover at least ' int2str(hmin) ' observations. ']) 

296 elsei f h > n 

297 error('quan is greater than the number of non—missings and non—infinites.') 

298 end 

299 end 

300 

301 fid=NaN; 

302 

303 % The value or some fields of the output argument are already known. 

304 res.n_obs=n; 

305 res.quan=h; 

306 res.x=data; 

307 

308 % Some initializations. 

309 res. f lag=repmat(NaN,1,length(ok)); 

310 raw.wt=repmat(NaN,1,length(ok)); 

311 raw.robdist=repmat(NaN,1,length(ok)); 

312 res.robdist=repmat(NaN,1,length(ok)); 

313 res.mahalanobis=repmat(NaN,1,length(ok)); 

314 if -.Its 

315 res.method=sprintf('\nMinimum Covariance Determinant Estimator.'); 

316 else 

317 res.method=sprintf('\n?he function fastmcd.m is called to compute robust distan 

318 end 

319 correl=NaN; 
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320 

321 % z : if at lease h observations lie or, a hyperplane, then z contains the 

322 % coefficients of that plane. 

323 % weights : weights of the observations that are not excluded from the computations. 

324 -s These are the observations that don't contain missing or infinite values. 

325 % bestobj : best objective value found. 

326 2(l:p)=0; 

327 weights=zeros{l,n); 

328 bestobj=inf; 

329 

330 % The breakdown point of the MCu estimator is computed. 

331 if h—hmin 

332 § the breakdown point is maximal. 

333 breakdown=(h-p)*100/n; 

334 else 

335 breakdown=(n-h+l)*100/n; 

336 end 

337 

338 % Tito classical estimates are computed. 

339 clasmean=mean{data); 

340 clascov=cov(data); 

341 

342 if p < 5 

343 eps=le-12; 

344 elseif p <= 8 

345 eps=le-14; 

346 else 

347 eps-le-16; 

348 end 

349 

350 % The standardization of the data will now be performed. 

351 med=median(data); 

352 mad-sort(abs(data-repmat(med, n,1))); 

353 mad.mad<h, : ) ; 

354 ii=min(find(mad < eps)); 

355 if length(ii) 

356 % Tiie lr~th order statistic is zero for the. ii~th variable. The array plane contains 

357 * all the observations which have the same value for the ii-ih variable. 

358 plane=fInd(abs(data(:,ii)-med(ii)) < eps) ' ; 

359 meanplane=mean(data(plane, : ) ) ; 

360 weights(plane)=1; 

361 if p==l 

362 res.flag=weights; 

363 raw.wt=weights; 

364 [raw.center,res.center]=deal(meanplane) ; 

365 [raw.cov,res.cov,raw.objective]=deal(0); 

366 if -.Its 

367 res.method=sprintf('\nUnivariate location and scale estimation.'}; 

368 res.method=strvcat(res.method,sprintf('sg of Che %g observations are identical.',length(plane),n)); 

369 % disputes, met hod); 

370 end 

371 else 

372 z(ii)=l; 

373 res.plane=z; 

374 covplane=cov(data(plane,:)) ; 

375 [raw.center,raw.cov,res.center,res.cov,raw.objective,raw.wt,res.flag, ... 
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376 res.method]=displ(3,length(plane),weights,n,p,meanplane,covplane,res.method,z,ok,... 

377 raw.wt,res.flag,file, fid,0,NaN,h,ii); 

378 end 

379 return 

380 end 

381 data=(data—repmat(med,n,1)}./repmat(mad,n,1); 

382 

383 i The standardized classical estimates are novs computed, 

384 clmean=mean(data); 

385 clcov=cov(data); 

386 

387 % The univariate non-classical case is r.ow handled. 

388 if p==l & r^n 

389 if --Its 

390 res.method=sprintf('\nunivariate location and scale estimation.'); 

391 end 

392 [raw.center,raw.cov]=mcduni(data,n,h,n—h+1,alpha); 

393 scale^raw.cov./sqrt(rawconsfactor(h, n, p)*rawcorfactor(p, n,alpha)); 

394 sor=sort((data—raw.center) . *2); 

395 raw.objective=l/(h— 1) *sum(sor(l:h)}*prod(mad}"2; 

396 *ai=2 *-n/asvard:lag (h, n,p) ; 

397 %quantile^qf (0. 97Stprnt-p + l) ; 

398 quantile=chi2q(p); 

399 ^weight s= ( idata—raw, center) /scale) . ~2* <itt-p+l} / (m+p}<quantile; 

400 weights-((data—raw.center)/scale). ~2<quantile; 

401 raw.wt=weights; 

402 [res.center,res.cov]=weightmecov(data,weights,n,p); 

403 factor=rewconsfactor(weights,n,p); 

404 factor=factor*rewcorfactor(p,n,alpha); 

405 res.cov=factor*res.cov; 

406 mah=(data—res.center)."2/res.cov; 

407 mah_raw={data—raw.center).~2/raw.cov; 

408 res.flag= mah <= chi2q(l); 

409 [raw.cov,raw.center]=trafo(raw.cov,raw.center,med,mad, p); 

410 [res.cov,res.center]=trafo(res.cov,res.center,med,mad,p); 

411 res.mahalanobis=abs(data'—clmean)/sqrt(clcov); 

412 raw.robdist=sqrt(mah.raw'); 

413 res.robdist=sqrt(mah'); 

414 * if -J 1:3 

415 * dlsp(res.method! ; 

416 * end 

417 

418 spec.ask=l; 

419 if -dts 

420 plotmcd(res,spec); 

421 end 

422 

423 return 

424 end 

425 

426 if det(clascov) < exp(—50*p) 

427 % all observe t: ions lie or. a hyper pi ane. 

428 [z, eigvl]=eigs(clcov,1,0,struct('disp', 0)); 

429 res.plane=z; 

430 weights(l:n)=l; 

431 if cor 

167 

file://'/nunivariate


432 correl=clcov./{sqrt(diag(clcov))*sqrt{diag(clcov))'); 

433 end 

434 [clcov,clmean]=trafo(clcov,clmean,med,mad,p); 

435 [raw.center,raw.cov,res.center,res.cov,raw.objective,raw.wt, res.flag, .., 

436 res.method]=displ(1,n,weights,n, p, clmean, clcov,res.method,z./mad', ok, ... 

437 raw.wt, res . flag, file, fid, cor, correl) ; 

438 if cor 

439 [res.cor,raw.cor]-deal(correl) ; 

440 end 

441 return 

442 end 

443 

444 S The classical case is now handled. 

445 if h==n 

446 if -dts 

447 msg=sprintf{'The MCD estimates based on %g observations are equal to the class 

448 res.method=strvcat(res.method,msg); 

449 end 

450 raw.center=clmean; 

451 raw.cov=clcov; 

452 raw.objective=det(clcov); 

453 mah=mahalanobis{data,clmean,clcov,n,p); 

454 res.mahalanobis=sqrt(man); 

455 raw.robdist=res.mahalanobis; 

456 weights=mah <= chi2q(p); 

457 raw.wt=weights; 

458 [res.center,res.cov]=weightmecov(data,weights,n,p) 

459 if cor 

460 raw.cor=raw.cov./(sqrt(diag(raw.cov))*sqrt(diag(raw.cov))'); 

461 res.cor=res.cov./(sqrt(diag(res.cov))*sqrt(diag(res.cov)) ') ; 

462 end 

463 if det(res.cov) < exp(—50*p) 

464 [center,covar,z,correl, plane, count]= f it(data,NaN,med,mad,p,z,cor, res.center, re 

465 res.plane=z; 

466 if cor 

467 correl=covar./(sqrt(diag(covar))*sqrt(diag(covar))'); 

468 end 

469 res.method=displrw(count, n,p, center,covar,res.method,file,z,fid,cor, correl); 

470 [raw.cov,raw.center]=trafo(raw.cov,raw.center,med,mad,p); 

471 [res.cov,res.center]=trafo(res.cov,res.center,med,mad,p) ; 

472 res.robdist=raw.robdist; 

473 else 

474 mah=mahalanobis(data, res.center,res.cov,n,p); 

475 weights-mah <= chi2q(p); 

476 [raw.cov,raw.center]=trafo(raw.cov,raw.center,med,mad,p); 

477 [res.cov,res.center]=trafo(res.cov,res.center,med,mad,p); 

478 res.robdist=sqrt(man); 

479 end 

480 raw.objective=raw.objective*prod(mad)'2; 

481 res.flag=weights; 

482 % if ~Uts 

483 % disp(res.method) 

484 % end 

485 

486 spec.ask=l; 

487 if -dts 
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488 plotmcd{res, spec); 

489 end 

490 

491 return 

492 end 

493 

494 percent=h/n; 

495 

496 % If n >"• 2*nmini the dataset will be divided Into subdataseis 

497 # will be treated as a whole. 

498 

499 if n >= 2*nmini 

500 

501 maxobs=maxgroup*nmini; 

502 if n >= maxobs 

503 ngroup=maxgroup; 

504 group(1:maxgroup)=nmini; 

505 else 

506 ngroup=f loo.r (n/nmini) ; 

507 minquan=floor(n/ngroup); 

508 group(1)=minquan; 

509 for s=2:ngroup 

510 group (s) =minquan+double (rem (n,ngroup)>=s—1) ; 

511 end 

512 end 

513 part=l; 

514 adjh=floor(group(1)*percent); 

515 nsamp=floor(ntrial/ngroup}; 

516 minigr=sum(group); 

517 obsingroup=fillgroup(n,group,ngroup,seed,fid); 

518 % obsingroup : i~~ch row contains the observations of the l~t 

519 % The last row (ngroup+.l—th) contairjs the observations for t: 

520 % of the algorithm. 

521 

522 else 

523 

524 [part,group,ngroup,adjh,minigr,obsingroup]=deal(0,n,l,h,n,n) 

525 replow=[50,22,17,15,14,zeros(l,45)]; 

526 if n < replow(p) 

527 % All (p+li — subsets will he considered. 

528 al=l; 

529 perm=[l:p,p] ; 

530 nsamp=nchoosek(n,p+l) ; 

531 else 

532 al=0; 

533 nsamp=ntrial; 

534 end 

535 

536 end 

537 

538 % some further initialisations. 

539 

540 csteps=cstepsl; 

541 inplane=NaN; 

542 5 tot times : the total number of iteration steps. 

543 % line : becomes 1 when the subdatasets are merged. 
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544 

545 

546 

547 

548 

549 

550 

551 

552 

553 

554 

555 

556 

557 

558 

559 

560 

561 

562 

563 

564 

565 

566 

567 

568 

569 

570 

571 

572 

573 

574 

575 

576 

577 

578 

579 

580 

581 

582 

583 

584 

585 

586 

587 

588 

589 

590 

591 

592 

593 

594 

595 

596 

597 

* final : becomes 1 for the final stage of the algorithm, 

[tottimes,fine,final,prevdet]=deal(0) ; 

% bcov I 

if part 

s bmeanl : contains, for tne first stage 

% best estimates. 

analogous to bmeanl, but now .i 

analogous to bmeanl, but now j 

if in the £-th subdataset thei 

% a hypezplane then the coeffic: 

% k—th column of coeffl. 

coeffl=repmat(NaN,p,ngroup); 

bobjl=repmat(inf,ngroup,10); 

bmeanl=cell(ngroup,10); 

bcovl=cell(ngroup,10) ,• 

[bmeanl{:}]=deal(NaN); 

[bcovl{:}]=deal(NaN); 

bmean : contains the means of the ten b<i 

algorithm. 

the alcicrithn, the me 

or t 

e are 

ents 

e obiective 

Plane wi 

observi 

be 

tions tha 

stored in 

obtained in the \oond stage 

% bcov : analogous to bmean, but now for the oovarlance matrices. 

% bobj : analogous to bmean, but now for the objective values. 

-?. coeff : analogous to coeffl, but now for t?:e merged subdataset. 

* If the data is not split up, the 10 best estimates obtained after cstepsl iterations 

•S will be stored in bmean, bcov and bobj. 

coeff=repmat(NaN,p,1); 

bobj=repmat(inf,1,10) ; 

bmean=cell(1,10); 

bcov=cell(l,10); 

[bmean{:}]=deal(NaN); 

[bcov{:}]=deal(NaN); 

while final^2 

if fine | (-part & final) 

nsamp=10; 

if final 

adjh=h; 

ngroup=l; 

if n*p <= le+5 

csteps=csteps3; 

elseif n*p <=le+6 

csteps=10— (ceil(n*p/le+5) — 2 ) ; 

else 

csteps=l; 

end 
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600 

601 if n > 5000 

602 nsamp=l; 

603 end 

604 

605 else 

606 

607 adjh=floor(minigr*percent); 

608 csteps=csteps2; 

609 

610 end 

611 

612 end 

613 

614 » found : .becomes 2 if we have a singular Intermediate MCD estimate. 

615 found=0; 

616 

617 for k=l:ngroup 

618 

619 if -.fine 

620 found=0; 

621 end 

622 

623 , for i=l:nsamp 

624 

625 tottimes=tottimes+l; 

626 

627 i- ns becomes 1 if we have a singular trial subsample and if there are at 

628 % .least adjh observations in the subdataset that lie on the concerning hyperpiane. 

629 % In that case we don't have to take C-steps. The determinant is zero which is 

630 s already the lowest possible value. If ns----l, no C—steps will be taken and we 

631 % start with the next sampie. If we, for the considered subdataset, haven't 

632 S already found a singular MCD estimate, then the results must be first stored in 

633 § bmean, bcov, bobj or in bmeanl, bcovi and bobjl. If we, however, ciiready found 

634 * a singular result for that subdataset, then the results won't be stored 

635 % (the hyperpiane we just found is probably the same as the one we found earlier. 

636 % vie then let adj be zero. This will guarantee us that the results won't be 

637 % stored) and 'we start immediately with the next sample. 

638 adj=l; 

639 ns-0; 

640 

641 t For the second and. final stage of the algorithm the array sortdlst !i.:adjh) 

642 % contains the indices of the observations corresponding to the adjh observations 

643 i with minimal relative distances with respect to the best estimates of the 

644 % previous stage. An exception to this, is mw.n the estimate of the previous 

645 %- stage is singular. For th.e second stage we then distinguish two cases : 

646 i 

647 % 1. There aren't adjh observations in the merged set that lie on the hyperpiane. 

648 % The observations on the hyperpiane are then extended to adjh observations by 

649 % adding the observations of the merged set with smallest orthogonal distances 

650 % to that hyperpiane. 

651 % 2. There are adjh or more observations in the merged set that lie on the 

652 i hyperpiane. Ne distinguish two cases. We haven't or have already found such 

653 % a hyperpiane. J.n the first case, we start with a new sample. But first, we 

654 s store the results in bmeanl, bcovl and bobjl. In the second case we 

655 >c immediately start with a new sampie. 
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656 t 

657 * For the final stage we do the same as .?. above (if we had h or more observations 

658 % on the hyperp.lane we would already have found it). 

659 

660 if final 

661 if -dsinf(bobj(1)) 

662 meanvct=bmean{i}; 

663 covmat=bcov{i}; 

664 if bob](i)==0 

665 [dis,sortdist]=sort(abs(sum((data—repmat(meanvct, n, 1) ) '.*repmat(coeff,l,n)))); 

666 else 

667 sortdist=mahal(data,meanvct,covmat,part,fine,final,k,obsingroup,group,.., 

668 minigr,n,p) ; 

669 end 

670 else 

671 break; 

672 end 

673 elseif fine 

674 1* -dsinf<bobjl<k,i)) 

675 meanvct=bmeanl{k, i}; 

676 covmat=bcovl{k,i}; 

677 if bobjl(k,i)==0 

678 [dis, ind]=sort{abs(sum((data(obsingroup{end}, :)—repmat(meanvct,minigr,1)) '. + ... 

679 repmat(coeffl(:,k),1,minigr)))); 

680 sortdist=obsingroup{end}(ind); 

681 if dis(adjh) < le-8 

682 if found==0 

683 obj=0; 

684 coeff=coeffl(:,k); 

685 found=l; 

686 else 

687 adj=0; 

688 end 

689 ns=l; 

690 end 

691 else 

692 sortdist=mahal(data,meanvct,covmat,part,fine, final, k, obsingroup,group, .,. 

693 minigr,n,p); 

694 end 

695 else 

696 break; 

697 end 

698 else 

699 » The first stage of the algorithm. 

700 * index : contains trial svbsample. 

701 if -part 

702 if al 

703 k=p+l; 

704 perm(k)=perm(k)+1; 

705 while ^(k—1 jperm(k) <=(n-(p+l-k) ) ) 

706 k=k-l; 

707 perm(k)=perm(k)+1; 

708 for j=(k+l):p+l 

709 perm( j) =perm( j—1)+1; 

710 end 

711 end 
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712 index=perm; 

713 else 

714 [index, seed]=randomset(n,p+l,seed); 

715 

716 end 

717 else 

718 [index,seed]=randomset(group(k),p+l,seed); 

719 index=obsingroup{k}(index); 

720 end 

721 

722 meanvct=mean(data(index, :) ) ; 

723 covmat=cov(data(index, :)) ; 

724 

725 if det(covmat) < exp(—50*p) 

726 

727 % The trial subsample is singular. 

728 Hi itfe distinguish two cases : 

729 8 

730 % 1. There are adjh or more observations in the subdataset that: lie 

731 % on the hyperplane. If the data is not split upr we have adjh~h and thus 

732 % an exact fit. If the data is split up we distinguish two cases. 

733 % He haven't or have already found such a hyperplane. In the first case 

734 % we check if there are more than h observations in the entire set. 

735 ? that -lie on the hyperplane. If so, we have an exact fit situation. 

736 % if not, we start with a new trial subsample. But first, the 

737 % results must be stored bw.eanl, bcovl and bobjl. In the second case 

738 * we immediately start with a new trial subsample. 

739 * 

740 t 2. There aren't sdih observations in the subdataset that lie on the 

741 % hyperplane. we then extend the trial subsample until it isn't singular 

742 % anymore. 

743 

744 

745 5 eigvct : contains the coefficients of the nyperplane. 

746 [eigvct, eigvl]=eigs(covmat,1,0,struct('disp',0)); 

747 

748 if -part 

749 dist-abs(sum((data-repmat(meanvct, n,1)) ' ,»repmat(eigvct,l ,n))); 

750 else 

751 dist=abs(sum((data(obsingroup{k}, :)-repmat(meanvct,group(k),1))'.*repmat(eigvct,1,group(k)))); 

752 end 

753 

754 obsinplane=find(dist < le-8); 

755 % count : number ot observations that lie on the tiyperpiane. 

756 count=length(obsinplane) ,-

757 

758 if count >= adjh 

759 

760 if -part 

761 [center,covar,eigvct,correl]=fit(data,obsinplane,med,mad,p,eigvct,cor}; 

762 res.plane=eigvct; 

763 weights(obsinplane)=1; 

764 [raw.center,raw.cov,res.center,res.cov,raw.objective,... 

765 raw.wt,res.flag,res.method]=displ(2,count,weights,n,p,center,covar,... 

766 res.method,eigvct,ok,raw.wt,res.flag,file,fid,cor,correl) ; 

767 if cor 
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768 [res.cor,raw.cor]=deal(correl) ,-

769 end 

770 return 

771 elseif found==0 

772 ' dist=abs{sum((data—repmat(meanvct,n,1))'.*repmat(eigvct, l,n))) ; 

773 obslnplane=find(dist < le-8); 

774 count2=length(obsinplane); 

775 if count2>=h 

776 [center,covar,eigvct,correl]=fit(data,obsinplane,med,mad,p,eigvct,cor); 

777 res.plane=eigvct; 

778 weights(obsinplane)=1; 

779 [raw.center,raw.cov,res.center,res.cov,raw.objective,... 

780 raw.wt,res.flag,res.method,varargout]=displ(2,count2,weights,n,p,center,covar, 

781 res.method,eigvct,ok,raw.wt,res.flag,file,fid,cor, correl); 

782 if cor 

783 [res.cor,raw.cor]=deal(correl); 

784 end 

785 return 

786 end 

787 obj=0; 

788 inplane(k)=count; 

789 coeff1(:,k)=eigvct; 

790 found=l; 

791 ns=l; 

792 else 

793 ns=l,-

794 adj=0; 

795 end 

796 

797 else 

798 

799 while det(covmat) < exp(—50*p) 

800 [index,seed]=addobs(index,n,seed); 

801 covmat=cov(data(index,:)); 

802 end 

803 meanvct=mean(data(index,:)) ; 

804 

805 end 

806 end 

807 

808 if -ins 

809 sortdist=mahal(data,meanvct,covmat,part,fine,final,k,obsingroup,group,... 

810 minigr,n,p); 

811 end 

812 

813 end 

814 

815 if -os 

816 

817 for j=l:csteps 

818 

819 tottimes=tottimes+l; 

820 

821 if j > 1 

822 % The observations correponding to the adjh smallest rr.ahalanohis 

823 % distances determine the subset tor the next iteration. 
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sortdist=inahal (data,meanvct, covmat,part, fine, final, k, obsingroup, group, . . . 

825 minigr,n,p); 

826 end 

827 

828 obs_in_set=sort(sortdist(l:adjh)); 

829 meanvct=mean(data(obs_in_set, :) ) ; 

830 covmat=cov(data(obs_in_set, :)); 

831 obj^det(covmat); 

832 

833 if obj < exp(-50*p> 

834 

835 % Ths adjh—subset is singular. If s&jh—h we- have &n exact fit situation. 

836 % If adjh < h we distinguish two cases : 

837 % 

838 * 1. We haven'c found earlier a singular adjh—subset. We first check if 

839 % -in the entire set there are h obssr.vav.ions chut: lie on the hyperplane. 

840 % If so, we have an exact fit situation. If net, we stop taking C—steps 

841 % (the determinant is zero which is the lowest possible value) and 

842 % store the results in the appropriate arrays. We then begin with 

843 % che next trial subss,mpl&. 

844 % 

845 % 2, n'e have, for the concerning subda.ta.set, already found 3 singular 

846 * adjh—subset. We then immediately begin with the next trial subsampie. 

847 

848 if —ipart | final | (fine & n==minigr) 

849 [center,covar, z,correl,obsinplane,count]=fit(data,NaN,med,mad,p.NaN,... 

850 cor.meanvct,covmat,n); 

851 res.plane=z; 

852 weights(obsinplane)=1; 

853 [raw.center,raw.cov,res.center,res.cov,raw.objective, .., 

854 raw.wt,res.flag,res.method]=displ(2,count,weights,n,p,center,covar,... 

855 res.method,z, ok,raw.wt,res.flag,file,fid,cor,correl); 

856 if cor 

857 [res.cor,raw.cor]=deal(correl) ; 

858 end 

859 return 

860 elseif found==0 

861 [eigvet, eigvl]=eigs(covmat,1,0, struct{'disp', 0) ); 

862 dist=abs(sum({data—repmat{meanvct,n,1)) '.*repmat{eigvet,1,n))); 

863 obsinplane^find (dist<le—8); 

864 count=length{obsinplane); 

865 if count >= h 

866 [center,covar,eigvet,correl]=fit(data,obsinplane,med,mad, p,eigvet, cor); 

867 res.plane=eigvct; 

868 weights{obsinplane)=1; 

869 [raw.center,raw.cov,res.center,res.cov,raw.objective,... 

870 raw.wt,res.flag,res.method]=displ{2,count,weights,n,p,center,covar,... 

871 res .method, eigvet, olc, raw.wt, res . flag, file, fid, cor, correl) ; 

872 if cor 

873 [res.cor,raw.cor]=deal(correl) ; 

874 end 

875 return 

876 end 

877 obj=0; 

878 found=l; 

879 if -ifine 
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880 coeffl(:,k)=eigvct; 

881 dist=abs (sum ( (data {obsingroup{k}, :) — ,.. 

882 repmat(meanvct,group(k),1))'.*repmat(eigvct,1,group(k)))); 

883 inplane(k)=length(dist (dist<le-8)); 

884 else 

885 coeff=eigvct; 

886 dist=abs{sum({data(obsingroup{end}, :)—repmat(meanvct,minigr,1))'.* repmat(eigvct,l,minigr))) 

887 inplane=length (dist (dist<le—8)); 

888 end 

889 break; 

890 else 

891 adj=0; 

892 break; 

893 end 

894 

895 end 

896 

897 -s We. step taking &~steps when two subsequent determinants become ecpaai. 

898 % We have then reached convergence. 

899 if j >= 2 s obj == prevdet 

900 break; 

901 end 

902 prevdet=obj; 

903 

904 end S G-steps 

905 

906 end 

907 

908 

935 
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936 

937 if -ifinal i adj 

938 if fine | T>art 

939 if obj < max(bobj) 

940 [bmean,bcov,bobj]=insertion(bmean,bcov,bobj,meanvct,covmat,obj,l,eps); 

941 end 

942 else 

943 if obj < maxlbobjl(k,:)) 

944 [bmeanl,bcovl,bobjl]=insertion(bmeanl,bcovl,bobjl,meanvct,covmat, ob j, k,eps); 

945 end 

946 end 

947 end 

948 

949 if final s obj< bestobj 

950 S bestset: 

951 * bestobj 

952 * inltmean, initcov 

953 bestset=obs_in_set; 

954 bestobj=obj; 

955 initmean=meanvct; 

956 initcov=covmat; 

957 end 

958 

959 end * nsamp 

960 end % ngroup 

961 

962 

963 if part s -ifine 

964 fine=l; 

965 elseif (part & fine & -ifinal) j {-part 5 -ifinal) 

966 final=l; 

967 else 

968 final=2; 

969 end 

970 

971 end * while loop 

972 

973 % factor : if we multiply the raw MCD covariance matrix with factor, we obtain consistency 

974 s when the data come from a multivariate normal distribution. 

975 factor=rawconsfactor(h,n,p); 

976 factor=factor*rawcorfactor(p,n,alpha); 

977 s initcov-factortinitcov; 

978 MNISOli' 

979 raw.cov=factor*initcov; 

980 raw.objective=bestobj*prod(mad)"2; 

981 [raw.cov,raw.center]=trafo{raw.cov, initmean,med,mad,p); 

982 

983 if cor 

984 raw.cor=initcov./(sqrt(diag{initcov))*sqrt(diag(initcov))'); 

985 end 

986 

the best subset for the whole data. 

objective value for this set. 

reap, the mean and covariance rxatrlx of this set. 
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992 %The reweighted robust estimates are now computed. 

993 %/nan-man a Ian ob is (dac.a, inicmean, .inifcov.. n,p) ; 

994 %%%NIEUW 

995 mah=mahalanobis(data,initmean,initcov*factor,n,p); 

996 raw.robdist=sqrt<mah); 

997 %m=2*n/asvArdiag (h, n,p) ; 

998 %-q-aantile^qf(0. 975,p,m-p + L) ; 

999 quantile=chi2q(p); 

]000 %weights*mah* (m-p+1)/(m*p)<quar.tilej 

1 001 weight s=mah<quant ile; 

1002 raw.wt=weights; 

1003 [res.center,res.cov]=weightmecov(data,weights, n,p); 

1 004 factor=rewconsfactor(weights,n,p); 

1005 factor=factor*rewcorfactor{p,n,alpha); 

1006 res.cov=factor*res.cov; 

1007 

1 008 [trcov,treenter]-trafo(res.cov,res.center,med,mad,p); 

1009 

1010 if cor 

1011 res.cor=res.cov./(sqrt(diag(res.cov))*sqrt(diag(res.cov))'); 

1012 end 

1013 

1014 if det (trcov) < exp(-50*p) 

1015 [center,covar,z,correl,plane,count]=fit(data,NaN,med,mad,p,z,cor,res.center,res.cov,n); 

1016 res.plane^z; 

1017 if cor 

1018 correl=covar./(sqrt(diag(covar))*sqrt(diag(covar))'); 

1019 end 

1020 res.method=displrw(count,n,p,center,covar,res.method,file,z,fid,cor, correl); 

1021 res.flag=weights; 

1022 res.robdist=raw.robdist; 

1023 else 

1024 mah=mahalanobis(data,res.center,res.cov,n,p); 

1025 res.flag=(mah <= chi2q(p)); 

1026 res.robdist=sqrt(mah); 

1027 end 

1028 

1029 res,mahalanobis=sqrt(mahalanobis(data,clmean,clcov,n,p)); 

1030 res.cov=trcov; 

1031 res.center=treenter; 

1032 

1033 % if -rits 

1034 * disp (res. methGO) 

1035 * end 

1036 spec.ask=l; 

J037 if --Its 

1038 plotmcd(res, spec) ; 

1039 end 

1040 

1041 * - -

1042 function [raw.center,raw.cov,center,covar,raw-ob jective,raw.wt, mcd_wt,method]=displ(exactfit, ... 

1043 count,weights,n,p,center,covar,method,z,ok,raw.wt,mcd.wt,file,fid,cor,correl,varargin) 
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1048 ft called instead of this function. 

3049 

1050 [raw-center,center]=deal(center); 

1051 [raw.cov,cov]=deal(covar) ; 

3 052 raw_objective=0; 

1053 mcd_wt=weights; 

3 054 raw.wt =weights; 

1055 

1056 switch exactfit 

1057 case 1 

1058 msg='The covarianee matrix of the data is singular.'; 

059 case 2 

060 msg^'The covariance matrix has become singular .during the iterations of the MCD algorithm.'; 

1061 case 3 

1062 msg=sprintf('The %g—th order statistic of the absolute deviation of variable %g is zero. ',... 

1063 varargin{l},varargin{2}) ; 

1064 end 

065 

1066 msg=sprintf([msg '\r.Theie are %g observations in the entire dataset of %g observations that lie on the \n' ], count, n); 

1067 switch p 

1068 case 2 

3069 msg=sprintf([msg 

1070 m s g = s p r i n t f ( [ m s g 

1071 c a s e 3 

1072 msg=sprintf{ [msg 

3 073 msg=sprintf([msg 

1074 otherwise 

1075 msg=sprintf([msg 

3076 msg=sprintf([msg 

line with equation %g (x_il—m-1) %+g {x_i2— m_2 ) =0 \n'],z); 

where the mean (m_I,m_2) of these observations is the MCD location']); 

plane with equation %g(x_il~-m_i) %+g (x-i2— ir:_2 ) %+g (x_i3-—m_3) -0 \n'],z); 

where the mean (m„l, m_2 , m_3) of these observations is the MCD location' ] ) ; 

hyperplane with equation a_l (x_.il— ni-1) + ... + a-p (x_ip—m_p) = 0 \n * ]); 

with coefficients a_i equal to : \n\n' ] ) ; 

1077 msg=sprintf([msg sprintf('%g ',z) ]); 

1078 msg=sprintf([msg '\n\nand where the mean (m_l,...,m_p) of these observations is the MCD location']); 

3079 end 

1080 

081 m e t h o d = s t r v c a t (method, [msg ' . ' ] ) ; 

1082 % disp (method) 

1083 

1084 

1085 ft- ----- - - — - — 

1086 function method=displrw(count,n,p,center,covar,method,file,z, fid,cor, correl) 

087 

3 088 % Displays and writes mess aye.:- in Lh<s case the re weigh ted robust covarl cJnct3 insfzi x 

089 S is singular. 

3 090 

1091 msg=sprintf('The reweighted MCD scatter matrix is singular. \n'); 

1092 msg=sprintf ( [msg 'There are %g observations in the entire dataset of %g observations that, lie on the\n'], count, n) ; 

1093 

1094 switch p 

1095 case 2 

096 msg=sprintf ([msg 'line with equation %g {x_il—in_.l) %+g (x_i2— «i_2) ~0 \n\n'],z); 

3 097 msg=sprintf ( [msg 'where the mean (m_l, m..2 ) of these observations is : \n\n' ]) ; 

3 098 case 3 

1099 msg^sprintf([msg 'plane with equation %g (x_ii—m_l) %+g(x_i2—~i_2 ) %+g (x_i3—ni_3) =0 \n\n'J,z); 

100 msg=sprintf([msg 'where the mean {irul,m_2, m_3) of these observations is : \n\n']); 

101 otherwise 

102 msg=sprintf([msg 'hyperplane with equation a_I (x_il—m_i) + ... + a_p (x_ip—m-p) - 0 \n']); 

1103 msg=sprintf([msg 'with coefficients a_i equal to : \n\n']); 
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1104 msg=sprintf { [msg sprintf('%g T,z)]); 

3 105 msg=sprintf ( [msg '\n\nand where the mean (m-1, • - - ,m_p) of these ol^servations is : \n\n']); 

1106 end 

1107 

1108 msg=sprintf{[msg sprintf{'%g '.center}]); 

3109 msg=sprintf { [msg '\r.\nTheir covariance matrix equals : \n\n']); 

1110 msg=sprintf([msg sprintf{[repmat('% 13.5g *,l,p) '\n'],covar)]}; 

1111 if cor 

1112 msg=sprintf([msg '\n\nand their correlation matrix equals : \n\n']); 

1113 msg=sprintf([msg sprintf { [repmat ('% 13.5g ',l,p) ' \r. * ] , correl) ] ) ; 

1114 end 

3115 

1116 m e t h o d = s t r v c a t ( m e t h o d , m s g ) ; 

1117 

]118 i : 

U 1 9 

] 120 f u n c t i o n [ w m e a n , w c o v ] = w e i g h t m e c o v ( d a t , w e i g h t s , n , n v a r ) 

1121 

1122 % Computes t h e reweiqhteci estimates. 

3 123 

3124 i f s i z e ( w e i g h t s , 1 ) = = 1 

3 125 w e i g h t s = w e i g h t s ' ; 

3126 end 

3127 wmean=sum(dat.*repmat(weights,1,nvar))/sum(weights); 

1128 wcov=zeros(nvar,nvar); 

1129 for obs=l:n 

3 130 hlp=dat (obs,:)— wmean; 

3131 wcov=wcov+weights(obs)*hlp'*hlp; 

3132 end 

3133 wcov=wcov/ (sum(weights)—1) ,-

3 134 

3135 % 

3 136 function [initmean,initcov]=mcduni(y,ncas,h,len,alpha) 

3 137 

3 138 % The exact MOD algorithm i'or the univariate case. 

3 139 

3140 y=sort(y); 

1141 

3142 ay(l)=sum(y(l:h)); 

3143 

3 144 for samp=2:len 

3145 ay (samp) =ay (samp—1)—y (samp— l)+y (samp+h— 1); 

3146 end 

3147 

3 148 ay2=ay.~2/h; 

3 149 

3 150 sq(l)=sum(y(l:h) ."2)-ay 2 (1) ; 

3151 

3 152 for samp=2 : len 

3153 sq (samp) =sq (samp—1)—y (samp—1) "2+y {samp+h—1) "2—ay2 (samp) +ay2 (samp~l) ; 

3154 end 

3155 

3 156 sqmin=min (sq) ; 

3 157 ii=find(sq==sqmin); 

3 158 n d u p = l e n g t h ( i i ) ; 

3 159 s l u t n ( l : n d u p ) = a y ( i i ) ; 
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3 160 initmean=slutn(floor((ndup+1)/2))/h; 

3 161 factor=rawcorfactor(1,ncas,alpha}; 

1162 factor=factor*rawconsfactor(h,ncas,l); 

1163 initcov=factor*sqmin/h; 

1164 

1165 -8 

] 166 function [initmean,initcov,z,correl, varargout]=fit(dat,plane,med,mad,p, z,cor, varargin) 

1167 

3168 % This function is called in the case of an exact fit. It computes the correlation 

1169 % matrix and transforms the coefficients of the hyperplane, the mean, the covarlance 

1170 % and the correlation matrix to the original units. 

3171 

1172 if isnan(plane) 

3173 [meanvct,covmat,n]=deal(varargin{:}); 

3 174 [z, eigvl)=eigs(covmat,1,0,struct('disp',0}); 

3175 dist=abs(sum{(dat—repmat(meanvct,n,1))'.*repmat{z,1,n)}}; 

3 176 plane=find(dist < le—8); 

3 177 varargout{l}=plane; 

3 178 varargout{2}=length(plane); 

3179 and 

3180 

1181 z=z./mad'; 

3182 [initcov,initmean]=trafo(cov(dat(plane,:)) ,mean(dat(plane,:)),med,mad,p); 

3183 if cor 

3184 correl=initcov./(sqrt(diag(initcov))*sqrt(diag(initcov)} ' ) ; 

3185 else 

3 186 correl-NaN; 

1187 end 

3 188 

3 189 * — 

3 190 function obsingroup=fillgroup(n,group,ngroup,seed,fid) 

1191 

3192 % Creates the subciatasets. 

1193 

1194 obsingroup=cell(1,ngroup+1); 

1195 

1196 jndex=0; 

3197 for k=l:ngroup 

3198 for m=l:group(k) 

1199 [random,seed]=uniran(seed); 

1200 ran=floor(random*(n—jndex)+1); 

3 201 jndex=jndex+1; 

1202 if jndex==l 

1203 index(1,jndex)=ran; 

1204 index(2,jndex)=k; 

3 205 else 

3 206 index(1,jndex)=ran+jndex—1; 

3 207 index(2,jndex)=k; 

3208 ii=min(find(index(l,l: jndex—1) > ran —1+[1: jndex— 1])) ; 

1209 if length(ii) 

1210 index(1,jndex: — l:ii+l)=index(1,jndex—l:—l:ii); 

1211 index(2,jndex: — l:ii + l)=index(2,jndex— l:-l:ii); 

3212 index(1,ii)=ran+ii-l; 

3 213 index(2, ii)=k; 

1214 end 

1215 end 
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1216 end 

1217 obsingroup{k}=index(1,index(2,:)==k); 

1218 obsingroup{ngroup+l}=[obsingroup{ngroup+l},obsingroup{k)]; 

1219 end 

1220 

1221 * 

1222 function [ranset,seed]=randomset{tot,nel,seed) 

1223 

1224 % This function is called it' not all (p-tl)- subsets out of n will be considered. 

1225 % It randomly draws a sobsample of nel cases out of tot. 

1226 

1227 for j-l:nel 

1228 [random,seed]=uniran(seed); 

1229 num=floor(random*tot)+1; 

1230 i f j > 1 

1231 while any(ranset==num) 

1232 [random, seed]=uniran{seed); 

1233 num=floor(randomrtot)+1; 

1234 end 

1235 end 

1236 ranset(j)=num; 

1237 end 

1238 

1239 % 

1240 function [index,seed]=addobs{index, n, seed) 

1241 

1242 % Extends a trial subsampie with one observation. 

1243 

1244 jndex=length(index); 

1245 [random,seed]=uniran(seed); 

1246 ran=floor(random*(n—jndex)+1); 

1247 jndex=jndex+l; 

1248 index(jndex)=ran+jndex—1; 

1249 ii=min (find (index (1: jndex— 1) > ran—1+[1: jndex—1])}; 

1250 if length (ii)^ 

1 251 index (jndex:—l:ii+l) =index (jndex—l:—l:ii) ; 

1252 index(ii)=ran+ii—1; 

1253 end 

1254 

1255 S 

1256 

1 257 function mahsort=mahal(dat,meanvct, covmat,part, fine,final,k,obsingroup,group,minigr,n,nvar) 

1258 

1259 * Orders che observations according to the mahalanobis distances. 

1260 

1261 if -part | final 

1 262 [dis,ind]=sort(mahalanobis(dat,meanvct,covmat,n,nvar)); 

1263 mahsort=ind; 

1264 elseif fine 

1265 [dis,ind]=sort(mahalanobis(dat{obsingroup{end},:),meanvct,covmat,minigr,nvar)}; 

1 266 mahsort=obsingroup{end}{ind); 

1267 else 

1268 [dis,ind]=sort(mahalanobis(dat(obsingroup{k},:),meanvct,covmat,group(k),nvar)); 

1269 mahsort=obsingroup{k}(ind); 

1270 end 

1271 
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1272 * 

1273 

] 274 function [covmat,meanvct]=trafo (covmat,meanvct,med,mad,nvar) 

1275 

1276 S Transforms a mean vector and a covariance matrix to tne original units. 

1277 

3 278 covmat=covmat.*repmat(mad,nvar,1}.*repmat(mad',1,nvar); 

1 279 meanvct=meanvct.*mad+med; 

3 280 

1281 S 

] 282 function [bestmean,bestcov, bobj]=insertion(bestmean,bestcov,bobj.meanvct,covmat,obj,row,eps) 

1283 

1284 § Stores, for the first and second stage of the algorithm, the results iji the appropriate 

1285 * arrays ii it belongs to t.he 10 best results. 

1286 

1287 insert=l; 

1288 

1289 equ=find(obj=«bobj(row,:) ) ; 

1290 

1291 for j=equ 

1292 if (meanvct==bestmean{row, j}) 5 all(covmat==bestcov{row,j}) 

1293 insert=0; 

1294 end 

1295 end 

1296 

1297 if insert 

1298 ins=min(find(obj < bobj(row,:})}; 

1299 

1300 if ins==10 

1301 bestmean{row,ins}=meanvct; 

1302 bestcov{row,ins}=covmat; 

1303 bobj{row,ins)=obj; 

1304 else 

1305 [bestmean{row,ins+l:10}]=deal(bestmean{row,ins:9}); 

1306 bestmean{row, ins}=meanvct; 

1307 [bestcov{row,ins+1:10}]=deal(bestcov{row,ins:9}); 

1308 bestcov{row,ins}=covmat; 

1309 bobj(row,ins+1:10)=bobj(row,ins:9); 

1310 bobj(row,ins)=obj; 

1311 end 

1312 

1313 end 

1314 %- — 

1315 

1316 function mah=mahalanobis(dat,meanvct, covmat,n,p) 

1317 

1318 % Computes the mahalanobis distances. 

1319 

1320 for k-l:p 

1321 d=covmat(k,k); 

1322 covmat(k,:)=covmat(k,:)/d; 

1323 rows=setdiff(l:p,k); 

1 324 b=covmat(rows, k); 

1 325 covmat(rows,:)=covmat(rows, : ) — b*covmat(k,:); 

1326 covmat (rows, k)=—b/d; 

1327 covmat(k,k)=l/d; 
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1 328 end 

1329 

1 330 hlp=dat—repmat(meanvct,n,1); 

1331 mah=sum(hlp*covmat.*hlp, 2 ) ' ; 

1332 

1333 * 

1334 

1335 function [random,seed]=uniran(seed) 

1336 

1337 % The random generator. 

1338 

1339 seed-floor(seed*5761)+999; 

1340 quot=floor(seed/65536); 

1341 seed=floor(seed)—floor(quot*65536); 

1342 random-seed/65536.D0; 

1343 

1344 * 

1345 

1346 function plotmcdfmcdres,options) 

1347 return; i>- DEBUG: This render* this function inert while maintaining cod 

1348 

1349 % The 0.37'j quantile of the chi—squared distribution: 

1350 chi2q=[5.0238 9,7.3777 6,9.34840,11.1433,12.8325,. . . 

1351 14.4494,16.0128,17.534 6,19.0228,20.4831,21.920,23.337, . . . 

1352 24.736,26.119,27.488,28.845,30.191,31.526,32.852,34.170, . . . 

1353 35.479,36.781,38.076,39.364,40.646,41.923,43.194,44.461, . . . 

1354 45.722,4 6.97 9,48.232,4 9.4 81,50.725,51.966,53.2 03 ,54 .437 , . . . 

1355 55.668,56.896,58.120,59.342,60.561,61.777,62.990,64,2 0 1 , . . . 

1356 65.410,66.617,67.821,69.022,70.222,71.420]; 

1357 

1358 

1359 p=size(mcdres.X,2); 

1360 

1361 i f det (mcdres.cov) < exp(—50*p) 

1362 error("The MCD covariance matrix i s singular ') 

1363 end 

1364 

1365 % The value of the fieids of the input argument OFl'iQNS are now deterrrii 

1366 % If the user hasn't given a value to one of the fields, the default va 

1367 * is assigned to it. 

1368 i f nargin—1 

1369 ask-0; 

1370 nid=3; 

1371 xlab='Xl'; 

1372 ylab='X2'; 

1373 elseif isstruct(options) 

1374 names=fieldnames(options); 

1375 

1376 if strmatch('ask',names,'exact') 

1377 ask=options.ask; 

1378 else 

1379 ask=0; 

1380 end 

1381 

1382 if strmatch('nid',names,'exact') 

1383 nid=options.nid; 
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] 384 else 

1385 nid=3; 

] 386 end 

1387 

1388 if strmatch('xlab',names,'exact') 

1389 xlab=options.xlab; 

1390 else 

1391 xlab='Xl'; 

1 392 end 

1393 

1394 if strmatchCylab',names, 'exact') 

1395 ylab=options.ylab; 

1396 else 

1397 ylab='X2\-

1398 end 

1399 

1400 else 

] 401 error('The second input argument is not a structure') 

1402 end 

1403 

1404 data=mcdres.X; 

1405 choice=l; 

1406 n=size(data,l); 

1407 ellip=[]; 

1408 

1409 if ask 

1410 al=0; 

1411 else 

1412 al=l; 

1413 end 

1414 

1415 closeplot-0; 

1416 

1417 s ir.d and rci contain resp. the classical and robust distance 

1418 md-sqrt(mahalanobis(data,mean(data),cov(data),n,p)); 

1419 %rd~sqrt {/vahalanobis (data, mcdres . canter, mcdres.cov, n,p'} ) ; 

] 420 rd=sqrt(mahalanobis(data,mcdres.center,mcdres.cov,n,p)); 

1421 * 

1422 I while choice *7 

1423 * It ask 

1424 S-

1425 % choice-menus'Make a plot selection :', 'All', 'Robust 

1426 * 'Mahalanobis Distances', 'QQ plot of Robust Disca 

1427 % 'Robust versus Mahalanobis Distances',... 

1428 % 'MCD Tolerance Ellipse', 'Exit'); 

1429 * 

1430 •! i f closeplot'-l 4 choice^? s - (choice-=6 & pf-2/ 

1431 % % Close previous plots. 

1432 % for i°*l:5 

1433 8 close 

1434 . * end 

1435 * clcseplot'O; 

1436 * end 

1 437 i-

1438 i if chclce^l 

1439 * al'2; 
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1440 * end 

1441 % 

3 442 * end 

1443 * 

1444 s if choice~l 

1445 * cholce-2; 

1446 i end 

1447 * 

1448 « i f a l ! - . ( c h o i c e ™ 6 * p^2 j c h o i c e — 2 ; 

1449 8 s Create a /ie» f i g u r e viindovi. 

1450 * f i g u r e 

1451 % end 

J 452 •! 

1453 * switch choice 

1454 5-

1455 I case 2 

1456 * x~l:n; 

1457 % yrci; 

1458 % ymax=max( [max (y) , sqrt (chi2q (p) ) , 2. 5 J) t-l.OS; 

] 459 * * beg ('index ', 'Robus t Distance ', rd, x, y, nid, n,-0. 025*n, n*l. 05,-0. 025*ymax,ymax) ; 

1460 8 beg ( 'Production Sequence', 'Robust Distance ', rd, x, y, nid, n, -0. 025*n,r.*i. 05, —G. 025*ymax, yrrcax) ; 

1461 * line(!-0. 025*n, nil. 05 1, repmat (max! isqrt (chi2q(p>) , 2.5]),1,2), 'Color', 'r'l ; 

1462 * 

1463 *. case 3 

1464 * x-l:n; 

1465 5 y=ml; 

1466 * ymax=max<[max<y)rsqr-t(chi2q<p)),2.S<)*1.05; 

1467 %• $ beg ( 'Index', -Mahalanobis Distance ',md,x,y, nid, n, — 0.025*n, n*l . 05,-0. 025 *ymax, ymax) ; 

1468 % beg ( 'Production Sequence ', 'Mahaianobis Distance ',,-nd, x,y,nid,n, -Q. 025*n,n*l. 05,-0. 025*ymax, ymax 

1469 % lined-O. 02S*n,n*1.051, repmat (max (isqrt (chi2q(p)) ,2. 51! ,1,2), 'Color', 'r'); 

1470 s 

1471 % case 4 

1472 s6 chisqquantile^repmat (0,1,n); 

1473 ! f o r 1-1:n 

1474 * chisqquantlle (i)^qctilsq! (i-1/3) / (ntl/2) ,p) ; 

1475 * end 

1476 % normqqplot isqrt ichisqqvantiie), rd) ; 

1477 * box; 

1478 5 xlabelf Square root of the quant lies or the chi—squared distribution'); 

1479 % ylabel('Robust distances'); 

1480 % 

1481 8 case 5 

1482 * x-md; 

1483 I- y~rd; 

1484 % ymax=max<[max(y),sqrt(chi2q!p)),2.5]i*1.05; 

1485 % x~ax=max<[max(x),sqrt(chi2q(p!),2.5!)*1.05; 

1486 i beg ( 'Mahaianobis Distance', 'Robust Distance', rd,x,y, nid, n,~0. 01*xmax, xmax,~-0. 01*ymax, ymax) ; 

1487 % lineirepmat !max([sqrt (ci:12q(p)), 2.5J) ,1,2), [-0.01 tymax, ymax;, 'Color', 'r'); 

1488 % lined—0.01*xmax,xmax], repmat (max I isqrt (chl2q(p) ),2.5]), 1,2), 'Color', 'r'); 

1489 i hold on 

1490 * plot (I- 0. 01 *xmax,min (ixmax, ymax!) 1, 1-0. 01 *ymax, min ([xmax, ymax!) ], ': ', 'Color ', 'g'); 

1491 s h o l d o f f 

1492 * 

1493 is case 6 

1494 -8 i f r«'2 

1495 * dispi'MCD Tolerance Elilps is only d ra in ; f o r two-dimensional datasets') 
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1496 

1497 

1498 

1499 

]500 

1501 

1502 

1503 

1504 

1505 

1506 

1507 

1508 

1509 

1510 

1511 

1512 

1513 

1514 

1515 

1516 

1517 

1518 

1519 

1520 

1521 

1522 

1523 

1524 

1525 

1526 

1527 

1528 

1529 

1530 

1531 

1532 

1533 

1534 

1535 

1536 

1537 

1538 

1539 

1540 

1541 

1542 

1543 

1544 

1545 

1546 

1547 

1548 

1549 

1550 

1551 

If iaerspliy (ellip) 

ellip-ellipse (tricdres. center, mcdrea. cov) ; 

end 

xmin-min ([data (:,1};ellip(:,1)}}; 

xmax~i!ax!fdata(:,i);eilip(:,ll l} ; 

y:nin-n:in ([da v.a (:, 2) ; e l l i p (:, 2) }); 

ymax=msx i [data (;, 2I; el 1 ip (:,?.) } ) ; 

xnazg-G . 05*a.bs (xmax— xirdn) ; 

yrciarg-O. 05 *abs (ymax—ymin) ; 

xinln-xm.i n—xmarg; 

ymax=ymaxtymarg; 

iieg> (xlab,ylab,rdt dai:a <:, 1) ', data (:, 2) ', nld, n, xmin, xmax, 

titlei'Tolerance ellipse ! 97.5 * }•); 

line (ellip (:, 1), ellip (:,2!); 

ask-Oi 

choice-

elseif al" 

choice-

elseli al» 

asM; 

closepl 

choice==£ 

=2 i choice^e 

function beg(xlab,ylab,ord,x,y,nid,n,xmin,xmax,ymin,ymax) 

scatter(x,y,3,'k'} 

xlabel(xlab); 

ylabel(ylab); 

xlim{[xmin,xmax]) ; 

ylim([ymin,ymax]); 

box; 

if nid 

[ord,ind]=sort(ord); 

ind-ind(n—nid+1:n)'; 

text(x(ind),y(lnd),int2str(ind)); 

end 
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3552 function coord=ellipse(mean,covar) 

1553 

1554 % Det ermines the coordinates of some points that lie on i:~ne 97.5 % tolerance ellipse. 

1555 

3 556 d e t e r = c o v a r ( l , l ) * c o v a r ( 2 , 2 ) - c o v a r (1 ,2) ~2; 

1557 ylimit=sqrt(7.37776*covar(2,2)); 

1 558 y^ylimit: 0 . 005*ylimit: ylimit; 

1559 sqtdi=sqrt(deter*(ylimit "2-y."2))/covar(2, 2); 

1560 sqtdi([l,end])«0; 

1561 b=mean(l)+covar(l,2)/covar(2,2)*y; 

1562 xl=b-sqtdi; 

1563 x2=b+sqtdi; 

1564 y=mean(2)+y; 

1565 c o o r d = [ x l , x 2 ( [ e n d : - l : l ] ) ; y , y ( [ e n d : - 1 : 1 ] ) ] ' ; 

1566 

1567 % 

1568 

1569 function quan=quanf(alpha,n,rk) 

1570 

1571 quan=floor(2*floor((n+rk+1)/2)-n+2*(n-floor((n+rk+l)/2))*alpha); 

3 572 

1573 % 

1574 

1575 function rawconsfac=rawconsfactor(quan,n,p) 

1576 

1577 qalpha=qchisq(quan/n,p); 

1578 calphainvers=pgamma(qalpha/2,p/2 + l)/(quan/n) ; 

1579 calpha=l/calphainvers; 

1580 rawconsfac=calpha; 

1581 

1582 % 

1583 

1584 function rewconsfac=rewconsfactor(weights,n,p) 

1585 

1586 if sum(weights)==n 

1587 cA.rew=l; 

1588 else 

1589 oA.rew=qchisq(sum(weights)/n,p) ; 

1590 cAinvers.rew=pgamma(gA- rew/2,p/2+l)/(sum(weights)/n); 

1591 cA. rew=l/rAinvers. rew; 

1592 end 

1593 rewconsfac=cA. rew; 

1594 

1595 % 

1596 

1597 function rawcorfac=rawcorfactor(p,n,alpha) 

1598 

1599 if p > 2 

1600 coeffqpkwad875- [-0.455179464070565,1.11192541278794, 2;-0.294241208320834,1.09649329149811,3]'; 

1601 ooe£fqpkwad500=[-l.42764571687802,1.26263336932151,2;-1.06141115981725,1.28907991440387,3]'; 

1602 yl.500=l+(coeffqpkwad500(1,1)*1)/p-coeffqpkwad500(2,1); 

1603 y2_500=l+(coeffqpkwad500(l,2)*l)/p'coeffqpkwad500(2, 2); 

1604 yl_875=l+(coeffqpkwad875(1,1)*1)/p'coeffgpkwad875(2,1); 

1605 y2.875=l+(coeffqpkwad875(1,2)*1)/p'coeffqpkwad875(2, 2); 

1606 yl_500=log(l-yl-500) ; 

1607 y2_500=log(l-y2.500); 
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1608 y_500=[yl-500;y2-500); 

1609 A_500=[l,log(1/(coeffqpkwad5 00(3,l)*p~2));l,log(l/(coeffqpkwad50 0(3,2)*p"2))]; 

1610 coeffic.500=A.500\y.500; 

1611 yl_875-log(l-yl_875) ; 

1612 y2_875=log(l— y2-875) ; 

1613 y.875=[yl_875;y2_875]; 

1614 A.875=[l,log(1/(coeffqpkwad875(3,1)*p"2)) ; 1, log(1/(coeffqpkwad875(3, 2)*p"2))]; 

1615 coeffic_875=A.875\y_875; 

1616 fp.500.n=l-(exp (coef fic.50 0 (1) )*1) /n"coeffic.5 00 (2) ; 

1617 fp_8 7 5.n=l-(exp (coef fic-875 (1) )*1) /rTcoef f ic-875 (2) ; 

1618 else 

1619 if p == 2 

1620 fp.5 0 0.n=l- (exp(0.6732 92623522027)»l)/n"0.691365864961895; 

1621 fp_87 5.n=l-(exp(0.44 6537815635445).l)/n"l.06690782995919; 

1622 end 

1623 if p == 1 

1624 fp-5 0 0-n-l- (exp(0.262024211897096)»1)/n"0.604756680630497; 

1625 f p_87 5.n=l-(exp(-0.351584646688712)*D/rT 1.01646567502486; 

] 626 end 

1627 end 

1628 if 0.5 <= alpha s alpha <= 0.875 

1629 fp.alpha-n=fp_5 0 0-n+(fp-875_n-fp.5 0 0-n) /0.375* (alpha-0.5) ; 

1630 end 

1631 if 0.875 < alpha S alpha < 1 

3632 fp_alpha.n=fp.875.n+(l-fp.875.n) /0.125* (alpha-0. 875); 

3 633 end 

3634 rawcorfac=l/fp_alpha_n; 

3 635 

3 636 5 - - - - —-

3 637 

1638 function rewcorfac=rewcorfactor(p,n,alpha) 

1639 

1640 if p > 2 

1641 coeffrewqpkwad875= [ -0 .544482443573914 ,1 .25994483222292 , 2 ; - 0 . 3 4 3 7 9 1 0 7 2 1 8 3 2 8 5 , 1 . 2 5 1 5 9 0 0 4 2 5 7 1 3 3 , 3] 

1642 coeff rewqpkwad500=[—1.02842572724793,1 .67 65 98 830 8192 6 ,2; — 0 .26800273450853 ,1 .359685628 93582 ,3 ] ' ; 

1643 y l _ 5 0 0 = l + ( c o e f f r e w q p k w a d 5 0 0 ( 1 , 1 ) * 1 ) / p ' c o e f f r e w q p k w a d 5 0 0 ( 2 , 1 ) ; 

3 644 y 2 . 5 0 0 = 1 + ( c o e f f r e w q p k w a d 5 0 0 ( 1 , 2 1 * 1 ) / p ' c o e f f r e w q p k w a d 5 0 0 ( 2 , 2 ) ; 

1645 y l _ 8 7 5 = l + ( c o e f f r e w q p k w a d 8 7 5 ( 1 , 1 ) * 1 ) / p ' c o e f f r e w q p k w a d 8 7 5 ( 2 , 1 ) ; 

3646 y 2 . 8 7 5 = l + ( c o e f f r e w q p k w a d 8 7 5 ( 1 , 2 ) * 1 ) / p ' c o e f f r e w q p k w a d 8 7 5 ( 2 , 2 ) ; 

3647 y l _ 5 0 0 = l o g ( l - y l _ 5 0 0 ) ; 

1648 y2-500=log( l—y2_500) ; 

1649 y _ 5 0 0 = [ y l . 5 0 0 ; y 2 _ 5 0 0 1 ; 

3 650 A.500=[l,log(1/(coeffrewqpkwad500(3,1)*p"2));1,log(1/(coeffrewqpkwadSOO(3, 2)*p"2))1; 

1651 coeffic-500=A_500\y.500; 

1652 yl_875=log(l-yl_875); 

3653 y2-875=log(l-y2_875) ; 

1654 y_875-[yl_875;y2.875]; 

1655 A_875=[1,log(1/(coeffrewqpkwad875(3, 1)*p"2));1,log(1/(coeffrewqpkwad875(3,2)*p"2))]; 

1656 coeffic.875=A.875\y-875; 

1657 fp-500-n-l-(exp (coef fic-500 (1) )*1) /n'coeffic-500 (2) ; 

3 658 fp_8 75.n=l-(exp (coef fic_875 (1) )»1) /n'coeffic-875 (2) ; 

3 659 else 

1660 if p == 2 

1661 fp_50 0_n=l-(exp(3.11101712909049)*l)/n"1.91401056721863; 

3662 f p.875-n=l- (exp(0.79473550581058)*l)/n"1.10081930350091; 

1663 end 
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1664 if p == 1 

3 665 fp.50 0.n=l- (exp(1.1109814 3415027)*1)/n"l.5182890270453; 

1666 fp_87 5-n=l- (exp(-0.6604677 67728 61)*1)/n"0.88 939595831888; 

1667 end 

1668 end 

1669 if 0.5 <= alpha 5 alpha <= 0.875 

1670 fp_alpha.n = fp_5 0 0.n+(fp_8 7 5-n-fp_5 0 0_n) /0.375* (alpha-0.5) ; 

1671 end 

1672 if 0.875 < alpha s alpha < 1 

1673 fp_alpha_n=fp_875.n+(l-fp_875_n) /0.125* (alpha-0. 875) ; 

1674 end 

1675 rewcorfac=l/fp_alpha_n; 

1676 

1677 *-

1678 

1679 function x = qchisq(p,a) 

1680 %QCHISQ The chisquara inverse distribution function 

1681 'a 

1682 * x - qchisoip.DegreesOfFreedom) 

1683 

1684 t Anders Holtsberg, 18-11—93 

1685 % Copyright (a) Anders Hoitsberg-

1686 

1687 i f any (any (abs (2*p—1)>1)) 

1688 error('A probability should be 0<°=p<=l, please!') 

] 689 end 

1690 if any (any (a<-0)) 

1691 error ('DegreesOfFreedom is wrong') 

1692 end 

1693 

1694 x = qgamma (p, a*0. 5) *2; 

1695 

1696 fr 

1697 

1698 function x = qgamma (p, a) 

1699 %QGAM?-iA The g<irr;rr:z inverse distribution function 

1700 i 

1702 

1703 if Anders Holtsberg, 13-11-9:1 

1704 % Copyright fcj Anders Holtsberg 

1705 

1706 if any (any (abs (2*p^l)>D) 

1707 error {'A probabili ty should hie (X^pOl, please! ' ) 

1708 end 

1709 i f any (any(a<-0)) 

1710 error( 'Parameter a i s wrong') 

1711 end 

1712 

1713 x = max(a-l,0.1); 

1714 dx = 1; 

1715 while any (any (abs (dx)>256*eps*max {x, 1) } ) 

1716 dx = {pgamma{x,a) — p) . / dgamma (x, a) ; 

1717 x - x - dx; 

1718 x = x + (dx - x) / 2 .* (x<0); 

1719 end 
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1720 

1721 10 = f ind (p==0) ; 

1722 x ( I 0 ) = z e r o s ( s i z e ( 1 0 ) ) ; 

1723 I I = f i n d ( p = = l ) ; 

1724 x ( I l ) = z e r o s ( s i z e ( 1 0 ) ) + In f ; 

1725 

1726 % 

1727 

J 729 sDGAP&tA The gaffrna density function 

] 730 * 

1731 % f = dgarrrr.a (x, a) 

3 732 

1733 * Anders Ho 1tsberg, 18-11-93 

1734 % Copyright: (c; Anders Holtsberg 

1735 

1736 i f a n y ( a n y ( a < - 0 ) ) 

1737 error('Parameter a is wrong') 

1 738 end 

1739 

1740 f = x .' (a-1) .» exp(-x) ./ gamma(a); 

1741 10 - find(x<0); 

1742 f(I0) = zeros(size(10)); 

1743 

1744 *• - — 

3745 

1747 SPGAMM The gajr:n:a distribution function 

1 748 S 

1749 % F " pgsmma(x, a) 

1750 

1751 * Anders Holtsberg, 18-11-93 

1752 $ Copyright (c) Anders Holtsberg 

1753 

1754 if any(any(a<=0)) 

1755 error('Parameter a is wrong') 

1756 end 

1757 

3 758 F = gammainc (x, a) ; 

1759 10 = find(x<0); 

1760 F(I0) = zeros(size(10)); 

1761 

1762 -8 

1763 

1764 f u n c t i o n x = r c h i s q ( n . a ) 

1765 ZFCHToQ Random. r.a~.!oars from the: chisquare distrikution 

1766 is 

1767 % x ••• rchisq(nrDegreesO£Freedom) 

1768 

1769 s Anders Holtsberg, 13-11-93 

1770 % Copyright (c) Anders Holtsberg 

1771 

1772 i f a n y ( a n y ( a < = 0 ) ) 

1773 error('DeqreesOfFreedom is wrong') 

1774 end 

] 775 
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]776 x = rgamma{n,a*0.5) ; 

1777 

1778 

1779 *• 

3 780 

1781 function x = rgamma(n,a) 

1782 WiSAMM .Random numbers from the gamma distribution 

1783 % 

1784 % x - rgamma (n, a) 

] 785 

1786 5 Anders Holtsberg, IS—11—93 

1787 % Copyright fc) Anders Holtsberq 

1788 

1789 i f any(any(a<=0)) 

1790 error{'Parameter a i s wrong') 

1791 end 

1792 

1793 i f size(n)==l 

1794 n = [n 1]; 

1795 end 

1796 

1797 x = qgamma(rand(n), a) ; 

1798 

1799 * 

1800 

1801 function normqqplot(x,y); 

1802 

1803 y = sort (y); 

1804 

1805 sca t t e r (x ,y ,3 , ' k ' ) 

1806 

1807 * 

1809 sfunction asvar-asvardiaqiquan,n.p) 

1810 » 

1811 %aifa-quan/n; 

1812 %alfa=i-alfa; 

1813 %qal ia^qchi sqU-a 1 fa, pi ; 

1814 %cal£ainver3----pga?:<i!:a (qalfa/2fp/2rl) ; 

1815 %calfa-(l-alfa)/calfainvezs; 

] 816 %c2=- l/2*pgait:ma Iqa 1 fa/2,p/2+l) ; 

1817 lc3=-:!/2*pgamma(qslfa/2,p/2+2) i 

1818 %c4=3*c3; 

1819 i-bi' (calfa - (c3-c<!> !/tl-alfa! ; 

1820 «i2=l/2+icaJ fa/tl-alfa) S * >c3- ((qalfa/p) * Ic2+(l~alfa) /2) 11 ; 

] 821 tasvar=(l—alla) rf)i ~2* (alia* ((caifa*qalfa) /p - i l ~2-l); 

1822 %asvar-'asrar~2*c3'<calfa! '2*(3*<bl—p*b2) ~2-Kp+2) *D2* (2*bl~p*b2j) : 

1823 %asvar--^as\'ar/ (((1—alfaj *bi * (bl~p*b2)) "2) ; 

1824 * 

1825 * - - - -

1826 

1827 function x = qf(p, a,b) 

1828 %QF The F inverse distribution function 

1830 § x ^ qf !'p/ dflfdf2) 

1831 
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1832 * Anders lialtsberg, 18-11-93 

1833 % Copyright: (o) Anders Eoitsberg 

1834 

1835 x - q b e t a ( p , a / 2 , b / 2 ) ; 

1836 x = x . * b . / ( ( l — x) .*a) ; 

1837 

1838 % 

1839 

1840 f u n c t i o n x = q b e t a ( p , a , b ) 

1841 %QBEI/i The beta Inverse distribution function 

3 842 * 

3843 t x - qbeta(p,a,b) 

1844 

1845 * Anders Holtsberg, 27-07-35 

1846 % Copyright (cj Anders Holtsberg 

3 847 

1848 if any(any( (a<-0) | (b<=0) ) ) 

1849 error('Parameter a or b is nonpositive') 

1850 end 

1851 if any (any (abs (2*p—1)>1)> 

1852 errort'A probability should be 0<=p<=lf please!') 

1853 end 

1854 b = min (b, 100000) ; 

1855 

1856 x - a ./ (a+b) ,-

1857 dx « 1; 

1858 while any (any (abs (dx)>256*eps*max (x, 1}) ) 

1859 dx = (betainc(x,a,b) — p) ./ dbeta (x, a,b) ; 

1860 x = x — dx; 

1861 x = x + (dx - x) / 2 . * (x<0); 

1862 X - x + (1 + (dx - x) ) / 2 .* (x>l); 

1863 end 

1864 

1865 »-

1866 

1867 function d = dbeta(x,a,b) 

1868 %DBETA The bets density function 

1869 * 

1870 » £ ' dbetaix,a,b) 

1871 

1872 * Anders tiolcsberg, 18-11-93 

1873 i Copyright (c) Anders Holtsberg 

1874 

1875 i f a n y ( a n y ( (a<=0) | (b<=0)) ) 

1876 error('Parameter a or b is nonpositive') 

1877 end 

1878 

1879 I = find( (x<0) | (x>l)); 

1880 

1881 d = x.'(a-l) .* (l-x).-(b-l) ./ beta(a,b); 

1882 d(I) = 0*1; 

1883 

1884 » 

Outlier-Detector.m 
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1 function Result - Outlier-Detect(obj) 

2 

3 N=size (obj.Sample-Data, 2); 

5 -SS (.'/; Decompose the audioj signal :into subheads. Convert: each of bunds 

6 M from a Laplscian Distribution to a Gaussian Distribution. Smooth the 

7 §3 data using- a low pass filter (moving average) . 

8 S=Wavelet_BPF(obj.Sample-Data, obj.Wavelet_Basis, obj.Analysis-Decomposition-Level) ; 

9 N-Subbands=size(S,l); 

10 Moving_Average_window_size=obj .Averaging-Window-Size; 

11 Extraneous_Value-Index»{}; 

12 T=[]; 

13 for i=l:N-Subbands 

14 if obj.Laplaoian-Sample-Filter 

15 Band-Pass-Signal=Lap2Gauss(S (i, :)) ; 

16 else 

17 Band-Pass_Signal=S(i, :) ; 

18 end; 

19 

20 % s The signal is windowed in the time domain using a Hamming window to 

21 % % reduce windowing effects. This must be investigated further. 

22 S if obj .Reduce..Edge.Bf foots 

23 S aand..Pass~Signal~Pand.-Fass-.Sigaal. thawing (si r.e (&and..Fa s S..S ignsl, 2) ) '; 

24 * end; 

25 

26 % The Teager energy is approximately log—nor/nai distributed. Construct 

27 % the feature vector using the .log of the Teager energy to convert the 

28 •§ distribution to an approximately normal one. 

30 Teager_Energy (Band-Pass_Signal) ) ; 

31 Averaged-T_Energy = Averaged_T_Energy (Moving_Average_window_Size :end) ; 

32 %T-£nergy=Averaqed-T-Enerqy; 

33 

34 % The signal is windowed in the time domain using a Bamfting window to 

35 % reduce windowing effects on the Teager energy sample. This must be investigated further. 

37 % Band-Fa ss-Signai--Band-F a ss-Signal. ^hamming (size (Band-Fass-Signal, 2)} '; 

38 T_Energy=Averaged_T_Energy . .hamming (size (Averaged-T_Energy , 2) ) ' ; 

39 else 

41 end; 

42 if obj.Laplacian_Sample_Filter 

43 warning off; 

44 lastwarnC ') ; 

45 Log-T-Energy=log (T_Energy) ; 

46 warning on; 

47 % tr there wore zero energies, LUo logarithm will be negative 

48 &• infinity. This will cause problems in MCD processing, amongst 

49 j other things. Remove all negative infinite energies and replace 

50 % them with the maximum negative value that Matlab allows. Note 

51 % that, a floating point minimum yields errors, while an integer 

52 * minimum does not (therefore it is used here). 

53 i f any (isinf (Log_T_Energy) ) 

54 [R_Inf,C-Inf]=find (isinf (Log_T_Energy) ) ; 

55 Log_T-Energy (R-Inf, C_Inf )=— intmax; 
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56 lastwarnC ' ) ; 

57 end; 

58 T=vertcat (T,Log_T_Energy) ; 

59 else 

60 T=vertcat(T,T_Energy); 

61 end; 

62 %Log.."<iEnergy-log (T.Energy); 

63 i'i-vertcat ('.!'_. Log.r..Hnergy) ; 

64 

65 % Collect: infinite and non—numerical (extraneous) values. 

66 Extraneous_Value-Index{i}«find(isnan(S(i, :) ) | isinf(S(i,:))); 

67 end; 

68 

69 %£ Compute the MCD scatter estimator for each subband. Note chat all 

70 %% extraneous values are automatically removed from the data during 

71 t% analysis. 

72 

73 % Options for the Fast—MCD algorithm implementation. 

74 Fast_MCD-Options.cor=l; 

75 Fast-MCD.Options.ntrial=1000; 

76 Fast-MCD_Options.alpha-0.75; 

77 

78 Sub-Band.Stats={}; 

79 for j-l:N.Subbands 

80 [Sub-Band-Stats{j},X]=modifiedfastmcd2 (T(j, :) , Fast_MCD_Options) ; 

81 ifprlntfll, 'So.6f %6. 6t\n',Sub.Sand.Stats{1}.center,X.center); 

82 %Sub.Band.Stats{j}^modifiedfastmod2 (T(j, :}); 

83 * How that analysis has been done, adjust the flag values so that they 

84 % take into account the original sub-band sample indices. 

85 Outlier_Index=Sub-Band-Stats{j}.flag; 

86 for k=l:size(Extraneous_Value_Index{j},2) 

87 Lower-List - Outlier-Index (find (Outlier.Index<Extraneous-Value-Index{ j} (k))) ,-

88 Upper-List - Outlier-Index (find (Outlier_Index>=Extraneous_value-Index{ j} (k) )) ; 

89 Outller.Index= [Lower-List; Upper-List + 1]; 

90 end; 

91 Sub_Band-Stats{j}.flag = Outlier-Index; 

92 end; 

93 

94 % Create a container ciass for each of the sub—bands. 

95 Sub_Band_Analysis-Result={}; 

96 for m=l:N.Subbands 

98 Temp-Result.Data=S (m, 2 :end-l); 

99 Temp-Result. Out lier.Index=Remove-Discontinuous( (-.Sub-Band-Stats{m}. flag) ', obj .Minimum-Anomaly-Length); 

101 Temp-Result. Robust.Variance=Sub_Band-St at s{m}.cov; 

102 Sub-Band-Rnaly sis-Result {m}=Temp-Result; 

103 end; 

104 Result=Sub-Band_Analysis_Result; 

105 obj. Sub-Band-Information = Sub-Band-Analysis-Result; 

106 

107 % Save the data to the class. 

108 assignin('caller',inputname(1),obj); 

Remove_Discontinuous.m 
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2 S Removes 3.1.1. flags {sets to 0) if they are not at least A' samples long. 

3 % This function will take one or two parameters. i f only one i s specified, 

4 » Uie (iaca, C/ISM A' is assumed to ie S. 

5 

6 %% Check input arguments. 

7 i f nargin==l 

8 N-5; 

9 end; 

10 

11 %% Force row vectors only. 

12 if size(x,l)>size(x,2) 

13 x=x'; 

14 end; 

15 N_Vals=size(x,2); 

16 

17 %% Perform' removal operation. 

18 i=l; 

19 Set.Flag.Index=[]; 

20 while i<=N_Vals 

21 % If a non-zero value is encountered, start counting the series wai.ting 

22 % for it to end. 

23 if x(i)#0 

24 Set_Flag_Index=[Set.Flag-Index i]; 

25 Set.Flag_Index.Size=size (Set-Flag.Index, 2); 

26 else 

27 Set-Flag.Index.Size=size(Set.Flag_Index,2) ; 

28 if Set.Flag-Index.Size<N 

29 x (Set-Flag.Index) =zeros (1, Set_Flag.Index.Size) ; 

30 end; 

31 Set_Flag_Index=[]; 

32 Set_Flag.Index.Size=0; 

33 end; 

34 % Increment the counter. 

35 i-i+1; 

36 end; 

37 

38 %% If there was a count running before the analysis was complete, check to 

39 %% make sure values are removed properly. 

40 if Set-Flag.Index_Size<N 

41 x (Set-Flag.Index) -zeros (1, Set.Flag.Index.Size) ; 

42 end; 

43 Result=x; 

Teager_Energy.m 
1 function Energy = Teager_Energy (x, Averaging-Window) 

2 % This function will compute the teager energy for the given signal vector. 

3 

4 [Rows,Columns] = size{x>; 

5 if Columns>Rows 

6 x =x; 

7 [Rows,Columns]=size(x) ; 

8 end; 

9 
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10 Energy = zeros (1, Columns—2); 

11 n=2 : Columns—1; 

12 Energy <n—l)=x(n) . "2—x (n-~l) . *x<n+l) ; 

13 

14 if nargin>l 

15 Moving_Average_Energy = filter {ones (1, Averaging-Window) /Averaging-Window, 1, Energy) ; 

16 Energy = Moving_Average_Energy; 

17 end; 

Wavelet-BPF.m 

1 function Subbands=Wavelet_BPF(x,Wavelet-Name,Levels) 

2 % This function will decompose a signal into suio-bancis using the specified 

3 % wave inc. 

4 

5 %% Preprocessina 

6 % Ensure the dai:a is in a row vect:or. 

7 if (size(x,2)<s±ze(x,l) ) 

8 x=x'; 

9 end; 

10 

11 % Get the nurrdier of samples and compute the maximum levels of 

12 * decomposition. 

13 N=size(x,2) ; 

14 Max-Levels=wmaxlev{N, Wavelet-Name); 

15 i f nargin==3 

16 Max_Levels=Levels; 

17 end; 

18 

19 %% Per form the wavelet: decomposition and reconstruction of sub—bands. 

20 [C, L]=wavedec (x,Max_Levels, Wavelet_Name) ; 

21 Subbands=[]; 

22 for i = l :Max_Levels 

23 Subbands(i,:) - wrcoef('d',C,L,Wavelet.Name,i); 

24 end; 

25 

26 %% Produce a plot if no output is given. 

27 if nargout==Q 

28 Max_Levels = 4; 

29 f i g u r e d ) ; 

30 [C, L] =wavedec (x, Max-Levels, Wavelet-Name) ; 

31 Subbands=[]; 

32 for i=l:Max_Levels 

33 Subbands(i,:) = wrcoef('d', C,L,Wavelet_Name,i); 

34 end; 

35 subplot(Max_Levels+2,1,1);plot(x,'r');title("Original Signal'); 

36 for p=2 : (Max.Levels + 1) 

37 subplot (Max-Levels+ 2, l,p> ;plot (Subbands (p— 1, :)) ,-

38 title(sprintf('Level %d Detail',p-l)); 

39 end; 

40 subplot {Max_Levels + 2,1, Max_Levels + 2) ; plot (wrcoef (' a', C, L, Wavelet-Name, Max_Levels) ) ; 

41 title{sprintf{'Level %d Approximation',Max_Levels)); 

42 

43 figure (2); 

44 subplot(Max_Levels+2,1,1);plot{x,'r');title('Original Signal'); 
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45 for p=2: (Max-Levels+1) 

46 subplot (Max.Levels+2, 1, p) /plot (Teager_Energy {Subbands (p—1, :) ) ) ; 

47 title (sprintf ('Level %ei Detail \\Psi ' ,p-l)); 

48 end; 

49 subplot(Max-Levels+2,l,Max_Levels+2); 

50 plot (Teager_Energy (wrcoef (' a ' ,C,L, Wavelet-Name, Max_Levels))); 

51 title(sprintf('Level %d Approximation',Max_Levels)); 

52 end; 
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