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Abstract

Routing in Sensing - Covered Ad Hoc networks

Tarek El Salti

We introduce a new approach in ad hoc networks for obtaining a sensing-covered
network in the 2-D environment. This approach is based on a grid technique and
the unit disk graph (UDG). This technique makes sure that a region is fully covered
by a small number of sensor nodes. To experiment with variations of the generated
graph, we introduce a new subgraph of the UDG. This graph is a generalization
of the Yao graph in 2-D environment where the cones used are adaptively centered
on a set of nearest neighbors for each node, thus creating a directed or undirected
spanning subgraph. We also permit the apex of the cones to be positioned anywhere
along the line segment between the node and its nearest neighbor, leading to a class
of Yao-type subgraphs. We give an extension of the DAAY (both directed and undi-
rected) from the 2-D environment to the 3-D environment. For routing on such a 2-D
sensing-covered sensor network topology, we propose new routing protocols. Some of
these new routing algorithms include hybrid routing algorithms which are based on
the BVGYF' routing protocol of Xing et al. (2006) and our own protocols. The rea-
son for these combinations is that we show that the BVGF routing protocol does
not guarantee delivery all the time on general sensing covered networks. Our hybrid
algorithms do guarantee delivery on such networks. We demonstrate through simu-
lations that our proposed routing protocols perform much faster compared to some
existing routing protocols. We also compare the routing protocols based on the path
lengths (hops or Euclidean distances). Our routing protocols show good performance

in terms of these metrics.
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Chapter 1

Introduction

1.1 Wireless Ad hoc Networks

An ad hoc network [MWHO1] is a system of wireless autonomous hosts that can
communicate with each other without having any fixed infrastructure. Thus, it is
one type of computer network. Each host in this network can communicate with all
other hosts within its transmission range [BFNO03, BCSW98], which we will assume
to be a fixed range R¢ for all hosts. The hosts in an ad hoc network can collaborate
so that data can be transported. These hosts are considered as endsystems (receive,
send and process data) and as routers (data forwarding). The decision of forwarding
packets depends on the network connectivity. This is in contrast to older traditional
network technologies where there are special nodes like routers, firewalls, hubs, and
switches that are responsible for forwarding the packets. Since ad hoc networks do
not need specific configurations and can be deployed quickly, ad hoc networks are
suitable in remote or hostile environments. For example, this technology can be used
in a salvational mission when a natural disaster occurs. Wireless Ad Hoc networks
have three types: Wireless Mobile ad hoc networks (referred to as MANET), Wireless
Sensor networks (referred to as WSN), and Wireless Mesh networks. We will focus
on the first two types since our work primarily relates to them.

A wireless mobile ad hoc network contains either static or mobile hosts. The

communication between these hosts is over wireless links without the use of a static



infrastructure. There will be hosts that are not within the transmission range of each
other. Thus, multihop routing will be used where intermediate hosts are used to
transmit the message.

A wireless sensor networks is an integration of processing, sensing and wireless
communication. Even though wireless sensor networks have many similarities with
the usual ad hoc networks, their sensing applications need additional requirements
to be included. For example, many applications (e.g., distributed detection [Var96])
present a sensing coverage requirement that is not included in the usual ad hoc net-
works. What we mean by a sensing-covered network is that every single point in the
geographic area is covered by the sensing range of at least one sensor node. The sensor
nodes are used to monitor conditions, e.g., environmental conditions (temperature,

pollutants, etc.).

1.2 Routing in MANETs and WSNs

In mobile ad hoc and sensor networks, two nodes, u and v, can communicate with
each other if they are within their transmission range. In this case there is no need
for a routing protocol, otherwise a routing protocol is used. This routing protocol
uses the intermediate nodes (between v and v) to forward the packets hop by hop
until reaching, if possible, the node v. This is referred to as a multihop routing
protocol. MANETs and WSNs work with a lower bandwidth than wired networks.
If the information collected by such traditional routing algorithms (link-state routing
protocol [JMQ*01] and distance vector routing protocol [PB94]) to generate a routing
table, this would be impractical and expensive. This is because these protocols need
the global topology information to be available at each node. Therefore if the nodes
are mobile, then all the nodes using these protocols have to update their routing tables
whenever the topology changes. This increases network congestion and may shorten
the network lifetime since the nodes’ energies are being used for every route discovery.
Therefore improving a routing protocol is a challenging task in MANETs and WSNs,

and is essential for fundamental network operation. Also, the underlying networks



use channels that provide lower frequency than the wired networks. Thus the routing
protocols here must be efficient in using the network bandwidth. In other words,
these protocols must consume the minimum amount of overhead while computing
the routes. Another issue to be mentioned here is the battery power limitation.
The routing protocols must be power efficient in order to prolong the lifetime of the
network (MANET and WSN).

Routing research in MANET's and WSNs is a huge field. We focus on the unicast
approach to delivering a packet between a single source and a single destination.
Several unicast routing protocols have been presented based on 2-D graphs during
the past few years [GSB03]. Most of these protocols assume that the network is static
and models the network as a unit disk graph (UDG) in the 2-D environment.

One of the popular classes of routing protocols is the geographic routing protocol
(position-based routing protocols). In these protocols, a node forwards a packet based
on the positions of itself, its neighbors, and the destination [GSB03]. The positions of
the nodes can be acquired by GPS system or any other technique. Various versions
of the Greedy algorithm [Fin87, TK84, KSU99] are good examples for position-based

routing protocols.

1.3 Contribution of Thesis

We introduce a new approach for obtaining a static sensing-covered network in the
2-D environment. This approach is based on a grid technique and the UDG. This
technique makes sure that a region is fully covered by a small number of sensor nodes,
thus creating a fully connected network and using minimal energy. This energy saving
would prolong the lifetime of the network. To experiment with variations of the
generated graph, we introduce a new subgraph of UDG. This subgraph is referred
to as DAAY (Displaced Apex Adaptive Yao). It is a generalization of the Yao graph
in 2-D environment where the cones used are adaptively centered on a set of nearest
neighbors for each node, thus creating a directed or undirected spanning subgraph.

We also permit the apex of the cones to be positioned anywhere along the line segment



between the node and its nearest neighbor, leading to a class of Yao-type subgraphs.
Unlike the Yao graph {Yao82], the DAAY graph is orientation-invariant and it can be
tuned (various cone angles, continuous in value, may be used). We present only one
version of DAAY in the sensor network. In this version, the cone apex is at the current
node since moving the cone apex needs further investigation. Even though DAAY
reduced connectivity in sensor network under various cone angles, the network is still
strongly connected and has a small number of edges. We give an extension of the
DAAY from 2-D environment (both directed and undirected) to 3-D environment. We
do not use the 3-D DAAY in our sensor network since it needs further investigation
(e.g., what is the notion of coverage in 3-D?) and the grid technique should be
modified in order to work in a 3-D environment.

We show that the Bounded Voronoi Greedy Forwarding ( BVGF') routing protocol
[XLPHO06] does not always achieve 100% delivery on a general sensing covered net-
work. This is because, even though the current node in the BVGF routing protocol
has neighbors with positive progresses, the Voronoi regions of these neighbors do not
always intersect the line joining the source and the destination. This leads to a failure
in packet delivery.

Using the above sensor network topology (DAAY combined with the grid tech-
nique), we propose new routing protocols and compare them to Greedy Forwarding
(GF) routing protocol. All these routing protocols achieve 100% delivery rate. Among
these new routing algorithms, two new hybrid versions of BVGF (the original BVGF
routing algorithm was mentioned by Xing et al. [XLPHO06]) and two new hybrid ver-
sions of our Sensing Circles Close to the Line (SCL) routing protocols are proposed.
The first version is a combination between BVGF and the Smallest Angle To The
Line routing protocol (SAL) which is referred to as BVGF:SAL routing protocol (the
same applies to SCL:SAL). The second version is a combination between BVGF and
the GreedyClose2 (GC2) which is referred to as BVGF:GC2 routing protocol (the
same applies to SCL:GC2). These hybrid versions are proposed since BVGF and
SCL routing algorithms do not guarantee delivery all the time. After introducing

these versions, we compare them to the other proposed routing algorithms and the



GF routing algorithm. We show that, using the undirected and directed versions of
DAAY, our new routing protocols and GF' routing protocol perform much faster in
terms of execution time if the angle of the cone is larger.

We also compare our routing protocols to the GF routing protocol in terms of
the path length (number of hops or Euclidean distances). In terms of number of
hops, we find that even though the GF routing protocol outperforms our routing
protocols, the SCL: GC2, SCL:SAL, and GC2 routing protocols still outperform the
BVGF:SAL and BVGF:GC2 routing protocols. In terms of Euclidean distances,
the two proposed versions of the BVGF routing protocol outperform the SCL:GC2,
SCL:SAL, and GC2 routing protocols, but when 6 in the DAAY graph increases, all
of them become very similar in their performance. Using the same metric, our routing
protocols outperform the GF routing protocol. We show that SCL:GC2, SCL:SAL,
G (2, and GF routing protocols are almost the same in their time performance but all
of them are much faster than the BVGF:SAL and BVGF':GC2 routing protocols. We
also show the difference in the performance between the mentioned routing algorithms
on the directed Displaced Apex Adaptive Yao graph and the same routing protocols
on the undirected Displaced Apex Adaptive Yao graph.

1.4 Thesis Organization

The rest of this Thesis is organized as follows. In Chapter 2, we explain some geo-
metric concepts and introduce some existing subgraphs based on UDG graph in the
2-D environment and briefly mention some of them in 3-D environment. We also
introduce some existing position-based routing protocols. In Chapter 3, we introduce
both directed and undirected versions of DAAY in 2-D environment and their exten-
sions in 3-D environment, and demonstrate some of their properties experimentally.
In Chapter 4, we show a new approach for achieving a sensing-covered network with
a small number of nodes. In Chapter 5, we introduce new routing protocols which are
based on the position-based approach and compare them to GF' routing protocol and

each other. In Chapter 6, we conclude this Thesis and list our interests for further



research.



Chapter 2

Background

As mentioned in Sec. 1.3, we present new results related to graphs and routing pro-
tocols. In order to demonstrate their properties clearly later on, we illustrate in this
Chapter some related works concerning geometric graphs and routing protocols.

In Sec. 2.1, we give a quick review of some subgraphs and elaborate on their related
geometric concepts. The description includes subgraphs in 2-D and some in 3-D. We
also demonstrate some relevant work concerning coverage and connectivity in sensor
networks. In Sec. 2.2, we present some existing position-based routing algorithms in

the 2-D environment and briefly mention some in the 3-D environment.

2.1 Geometric Graphs

A geometric graph is a graph embedded in a d-dimensional Euclidean space such that
its vertices are points with coordinates and its edges are straight-line segments. We
are particularly interested in 2-D and 3-D geometric graphs.

The set of n wireless hosts can be represented as a point set S in the Euclidean two-
dimensional plane R?, each point possessing a geometric location. We will assume that
S is static. On S, a (Euclidean) graph can be modeled as a weighted (undirected or
directed) graph G(S, E') where E is a subset of the pairs of nodes of S and the weight of

an edge uv between nodes u and v is the Euclidean distance between the nodes which

we denote as |uv|. In 2-D, the Euclidean distance is [uv|=+/(u, — vz)2 + (u, — v,)?.



In 3-D, the Euclidean distance is juv|=1/(uz — v2)? + (uy — v,)2 + (u, — v,)2.

The weight of a graph is the sum of its edge weights. Between any pair of nodes,
there are two types of path lengths. One refers to the Euclidean length which is
the sum of all the hops’ Euclidean distances in a path. The other one refers to the
network length which is the hop count of a path.

In our wireless host model, two nodes are connected by an undirected edge if the
Buclidean distance between them is at most R,, the transmission range of the nodes.
The resulting graph is called a unit disk graph. For node u, we denote the set of its
neighbors by N(u). The number of the neighbors of u is the degree of u.

A unit disk graph (UDG) is a common geometric graph to represent ad hoc
networks. The UDG is considered poor for some routing protocols for various reasons.
The 2-D UDG graph is typically a non-planar graph which means that it has crossing
edges. Also since the UDG is a dense graph, it can have a high average node degree,

the routing protocols performed on it will take considerable time.

2.1.1 Quality Measurements of Graphs

Following the notation of Xing et al. [XLPHO6], let Lg(u,v) refer to the shortest
network length between any two nodes, u and v, in the graph G(V,FE). Thus, if we
have a subgraph Z(V,E'), E' C E, that is a network t-spanner of graph G(V,E)
if Yu, v € V, Lz(u,v)< t-Lg(u,v). The term ¢ refers to the network stretch factor
[Epp96]. Assuming also a graph EUg(u,v) which refers to the shortest Euclidean
length between any two nodes, u and v, in the graph G(V,E). Thus, if we have
a subgraph Z(V,E'), E' C E, that is a Euclidean a-spanner of graph G(V,E) if
Vuv €V, EUz(u,v) < a- EUg(u,v). The term a refers to the Euclidean stretch
factor [Epp96]. Spanner graphs have been heavily studied in computational geometry
[Epp00] and mainly provide us with two things: short paths and energy optimal paths.

We will define our stretch factors as follows. Let Sg(u,v) refers to the shortest
network length between any two nodes, u and v, in the graph G(V,E). Assume also

that we have a subgraph Z(V,E'), E' C E.



Definition 1 The hop number stretch factor is defined by:

SZ (u, ’U)
Sc(u,v)

Now assume a graph EUg(u,v) which refers to the shortest Euclidean length

Dy, = max, yev

between any two nodes, u and v, in the graph G(V E). Assuming also that we have

a subgraph Z(V E'), E' C E.

Definition 2 The Fuclidean stretch factor is defined by:

D. = mazuuev o)

The stretch factor in general is represented by the dilation with regard to an
ultimate wireless network. A network is referred to as an ultimate network if it has a
path with network length [%—l and a path with Euclidean distance |uv| for any pair
of nodes u and v. We adopt two definitions from [XLPHO06]. See definitions 3 and 4

below:

Definition 3 The network dilation is defined by:

Le(u,v)
ol

Definition 4 The Euclidean dilation is defined by:

Dn = MaATy eV

D, = maa:u,vev%q—)2

You can see from the above definitions that the dilation is the upper bound of the
stretch factor with regard to any potential wireless network that has the same set of
nodes.

Our simulations depend on the above two dilation definitions. Even though the
definitions here are for gauging the quality of graphs, we will also use them later in
Sec. 2.2.3 while discussing routing algorithms. This is because our simulations use
them to gauge the performance of the routing algorithms.

For a geometric graph G, a Euclidean Minimum Spanning Tree EMST(G) is a

minimum weight spanning tree of G. There are some subgraphs that contain the
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EMST(G) as a subgraph. Another desired property of subgraphs is to be strongly
connected which means that each node u in G can communicate with every other
node in G. Also subgraphs aim to be t-spanners, and orientation-invariant (which
refers to the fact that if G is rotated by an arbitrary angle to give G’ then the resulting
subgraph Z’ of G’ is a rotation of the subgraph Z of G) and to have bounded out-
degree.

2.1.2 Geometric Subgraphs

In general, the main objective of the subgraphs is to resolve some UDG’s issues such
as high node degree and non-planarity. Some of these subgraphs are described in the
following subsections in 2-D environment and some of them are briefly mentioned in

3-D environment.

Voronoi Diagram and Delaunay Triangulation

Assume V is the set of nodes in the 2-D environment. The Voronoi diagram[For92]
is acquired by partitioning the plane into £ Voronoi regions for all nodes in V. The
Voronoi diagram is not necessarily based on UDG. Each node in V has one Voronoi
region. A Voronoi region for a node f € V is termed Vor(f). A point z lies in Vor(f)
if and only if the node f has the shortest Euclidean distance to z. The boundary
between two adjacent Voronoi regions is called a Voronoi edge. A Voronoi edge is
perpendicular to the segment connecting the two adjacent nodes. When Voronoi
edges intersect, we will have a Voronoi vertex p. See Fig. 1.

The dual graph of a Voronoi diagram is the Delaunay Triangulation [For92] which
is denoted by DT(V). The Delaunay Triangulation has an edge which is not related
to UDG between nodes u and v if and only if the Voronoi regions for these two nodes
share the same Voronoi edge. The DT(V) is a planar graph. The stretch factor of a
Delaunay Triangulation is % as determined by Keil and Gutwin [KG92].
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Figure 2: An edge u,v in GG

Gabriel Graph

A 2-D Gabriel graph [GS69] [MS80] (GG) is a planar subgraph of a UDG(V), contains
minimum energy paths (where a minimum energy path allows messages to be sent
with the minimum energy usage) and is connected. An edge binding two vertices,
v1 and ve € is in GG if the minimal diameter circle that circumscribes v; and vy,
whose diameter is the line segment that has both v; and v, as its endpoints, has no
other vertex of V. See Fig. 2 and Fig. 3 respectively. In other words, there exists an
edge (v1,v2) in GG(V) if there is no w € V where |vyw|*+|vow|? < |vyvs]2. The 3-D
Gabriel graph would have the same definition as the 2-D version [KFO05]. Let S(p,
R.) be the sphere with center point p with a radius R, and let an edge (u,v) have
the midpoint q. This edge would be in GG if another node w does not exist which
has an edge (u, w) and an edge (v, w) in the sphere S(q, '“2—”|)

11



Figure 3: An edge u and v is not in GG

Figure 4: The edge (u,v) is not in RNG(G).

Relative Neighborhood Graph

The 2-D Relative Neighborhood Graph (RNG) of UDG(V)) [Tou80] is a planar sub-
graph of a set of points V. An edge binding two vertices, u and v € V, is in RNG
if the intersection of the two disks centered on two vertices with radii |uv| does not
contain any other vertex w € V. See Fig. 4. Bose et al. [BDEKO01] showed that
the stretch factor of RNG is at most n-1. The 3-D RNG [KFOO05] would have the
same definition as the 2-D version. The edge (u,v) would be in RNG if another node
w does not exist which has an edge (u,w) and an edge (v, w) inside the lens region
formed by the intersection of two spheres S, (u, |uv|) and S, (v, juv}).

In other words, you can see from Fig. 4 that there should not be a vertex w in the

gray arca, defined by the intersection between the disks for the two vertices, v and v.
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Figure 5: Yao graph for one node located in the center with k=8,

YAO Graph

The YAO graph [Yao82] is constructed by partitioning the space around each node
into cones with equal angles. Each node connects itself to the nearest neighbor in
each of these cones. See Fig. 5. '

In other words, for a geometric graph G, a YAO Graph (also called a Theta Graph
[BGMO04]) YGx(G) with an integer parameter k > 6 is defined as follows. First, we
will define a directed Yao graph, D-YGr(G), for G. At each node u in G, k equally-
separated rays originating at u define k cones. In each cone, only the directed edge (u,
v) to the nearest neighbor v, if any, is part of D-Y Gx(G). Ties are broken arbitrarily.
Let YG,(G) be the undirected graph obtained if the direction of each edge in D-
Y Gx(G) is ignored, yielding a subgraph which may have crossing edges if G=UDG.
The graph Y G (G) is a 1/(1-2sin(w/k))-spanner of G [LWW02], has an out-degree of
at most k, and contains the EMST(G) as a subgraph [Yao82]. One drawback of the
Y G(G) graph is that it is not orientation-invariant. That is, if the G is rotated by
an arbitrary angle to give G then the resulting YGk(G') subgraph is not necessarily
a rotation of YGr(G).
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Figure 6: HSP graph

Half Space Proximal Graph (HSP)

For a geometric graph G, HSP(G) is defined as follows [CDK*05]. As with the YAO
Graph, first a directed D-HSP(G) is defined. At each node u in G, the following
iterative procedure is performed until all the neighbors of u are either discarded or
are connected with an edge. See Fig. 6. A directed edge [u, v] is formed with the
nearest neighbor v. An open half plane is defined by a line perpendicular to [u, v],
intersecting [u, v] at its midway point, and containing v. All the nodes in this half
plane are then discarded. The procedure then continues with the next nearest non-
discarded neighbor and so on until all the nodes have been discarded. The selected
directed edges determine the D-HSP(G). The undirected HSP(G) is obtained by
ignoring the direction of the edges, yielding a subgraph that may still have crossing
edges. Among the properties shown in [CDK*05] for the HSP subgraph that it is
strongly connected, has an out-degree of at most six, contains the EMST(G) as its
subgraph, and is orientation-invariant. Bose et al. [BCC*07] show that HSP has a
stretch factor of at least 3 — e. One drawback of the HSP(G) graph is that, since
the forbidden region is always defined by a straight line, there is no control over the

degree of a node.

2.1.3 Issues Concerned In Sensor Networks

For sensor networks, in terms of graphical representations, using the subgraphs men-

tioned above is not enough since other issues arise. Because of the impact of the
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distribution of sensor nodes in a region on performance, additional issues concerning
sensor networks are required and they are the following: coverage, connectivity and
power usage issues. Coverage refers to the fact that every single point in a region is
at least covered by the sensing range of one node. A sensor node covers a point in a
region by its sensing range (sensing radius) that keeps track of the surrounding area.
Connectivity refers to the fact that any node can reach any other node. After dealing
with these two issues, the power saving issue comes into consideration. It refers to
the procedure for turning off redundant nodes while keeping the area covered. This
is considered as an efficient way to conserve the energy and prolong the lifetime of
the sensor network while maintaining sufficient coverage of the field.

There is some previous work proposed to create networks to solve the issues men-
tioned above. As far as we know, most these works are based on the decimation
approach. In other words, the previous methods deal with the fact that the network
is already dense such that every single point is covered by at least one sensor node.
Our method solves the above issues as well and is based on an incrementation ap-
proach. In our approach, we place one sensor node at a time at the region, until we
make sure that every single point in the region is covered by at least one sensor node,
reducing the number of required nodes.

The work by Meguerdichian et al. [MKPS01] proposes Surveillance which is a
sensor coverage metric that is used as a quality of service measurement provided by
a particular sensor network, and centralized optimum algorithms are presented to
assess the paths that are best and least monitored. Another work by Meguerdichian
et al. [MKQPO1] deals of how a moving object can be monitored along a path with
a random velocity in a sensor network.

Xing et al. [XWZ105] mentioned an efficient way that determines whether the

network is being covered or not by the sensor nodes. They use the following algorithm:

1. For each sensor s; of s; such that |s;,s;| < 2R, (where |s;,s;| is the distance
between a node s; and its neighbor s; and R; is the sensing radius) determine

the arch angle of s;, denoted by [o; f,a;g], that is perimeter covered by s;.
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2. For all the neighbors s; of s;, such that |s;,s;} < 2R,, place all the points «; f
(left) and ;g (right) on the line segment [0,27] and sort all these points in an
ascending order into a list L. Also properly mark each point as a left or right

boundary of a coverage range.

3. Traverse the line segment [0,27] by visiting each element in the sorted list L

from left to right and determine the perimeter-coverage of s;.

Huang et al. [HTWO07] deal with the fact that the relationship between R, and R,
is arbitrary and they could still have a sensor network that is fully covered and fully
connected. They mentioned that if the network is not covered, it may be disconnected.
The coverage issue is based on the work presented by Huang and Tseng [HT03]. The
work by Zhang and Hou [ZHO04] focuses on the coverage, connectivity, and power
saving issues. Their work makes sure that the network is fully covered, fully connected
and has the least number of sensor nodes. The authors assumed that the network
is a dense network such that any sensor node can be found at any desirable point.
They solve the connectivity issue by presenting a fact that if a finite number of sensor
nodes exist in a finite area, then the condition R.>2xR, is necessary to ensure that
coverage implies connectivity. The problem is reduced to the coverage problem. For
this, the authors proposed a completely localized density control algorithm, called
OGDC (Optimal Geographical Density Control Algorithm). The algorithm assumes
that all the nodes have 'undecided’ states. The algorithm works as follows. See Fig. 7.
The time is divided into rounds. In each round, a random starting node is chosen.
Let us say this node is A. Then, one of its neighbors is chosen with an approximate
distance v/3R,. Let us say this node is B. In order to cover the crossing point O, the
node whose position is the closest to the optimal position C is then chosen. In this
case node P is chosen. The process continues until making sure that all the nodes
switch their states to 'on’ or 'off’ states. When a node switches to the 'off’ state, this
means that redundant nodes are turned off while ensuring that the network is still
fully covered. The protocol outperforms other protocols like: the PEAS algorithm
[YZLZ03], the hexagon-based GAF-like algorithm [YZLZ02], and the sponsor area
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Figure 7: Node p is picked since it is the closest to the optimal point C

algorithm [TGO02] with respect to the number of working nodes needed.

The work by Xing et al. [XWZ105] presents a coverage configuration protocol
(CCP). The CCP protocol is constructed of a coverage eligibility algorithm that
determines if a node is eligible to become active or not. This algorithm works as
follows. An intersection point occurs when two or more sensing circles intersect each
other. A node is eligible to be an active node if all the intersection points inside the
node’s sensing circle are not covered by at least K sensor nodes. Another condition
for eligibility is that if there are no intersection points inside the sensing circle of a
node and there are K, or more sensor nodes (other than this sensor node) that are
located at the same position of this node, then this sensor node would be ineligible
to become active. The reason is that CCP checks if every single point on the region
is covered by at least K, sensor nodes. The CCP protocol keeps a table of the
sensing neighbors using beacon messages (HELLO messages) that are received from
these neighbors. A HELLO message from a node contains its position. Sensor nodes
can communicate with each other if they are within each other’s the communication
range. Xing et al. assume two cases for the communication range: 1)R.>2R, and
2)R.<2R. In this Thesis, we will use the first assumption, since the second one is
based on the assumption that instead of using sensing circles of the nodes, irregular

sensing shapes are used. In our Thesis, these irregular shapes are not presented due
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to their complexities. Therefore, the CCP protocol deals with both connectivity
and coverage problems and ensures that only necessary nodes are being used in the
network to ensure energy conservation.

As mentioned above, all these works are based on the assumption that the network
used is a dense network. A dense network means that the nodes are already placed
at the field. In our view, using a dense network in advance made the correctness of
the previous coverage techniques easily proven. These techniques appear as if they
are checking if the network is covered or not rather than making a covered network.
Another issue is that a dense network would mean that a large variable number of
nodes have to be deployed. This would make any coverage technique take sometimes
a very long time. Also, simply having dense networks do not necessarily mean that
every single point in the region is actually fully covered. Our work proposes a grid
technique as mentioned in Sec. 1.3 which is based on the incrementation approach.
This technique is used to fill out the field and uses the least number of sensor nodes
while having a fully connected sensor network based on the assumption R.>2R,
[XWZ*05]. The power saving issue was addressed by our approach by only placing the
necessary nodes at the field based on the grid calculations. The placement procedure
is a random procedure meaning that each time we will have a random position for
the new sensor node. Before placing a node, the sensor controller generates a random
position for the new sensor node, then it checks if this prospective position is already
covered by some previous sensor nodes. If not, then the sensor node will be placed at
this position, otherwise the sensor controller will generate a new random position and
checks again, and so on. The drawback of our approach and the previous approaches

is that they are considered global approaches.

2.2 Routing Algorithms

After presenting geometric graphs to model our networks in Sec. 2.1, we can now
present routing protocols based on geometric graphs. Many studies focused on routing

algorithms in mobile ad hoc and sensor networks.
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Routing algorithms can be divided into two main classes [MWHO01]: position-
based routing algorithm and topology-based routing algorithm. The former makes a
decision based on the local position information available. The latter makes a decision
based on a routing table using the global routing information.

Topology-based routing algorithms can be classified into 3 classes: proactive, reac-
tive, and hybrid. Proactive techniques use one of the two routing methods which are
distance-vector routing [PB94] or link-state routing [JMQ*01]. They maintain the
information about all the available paths (including the unused paths). The short-
coming here is that each node has to maintain a large routing table for the whole
network. Another shortcoming is that periodic dissemination of routing information
is required by proactive techniques so that all nodes can calculate routes to other
nodes. As opposed to proactive techniques, reactive techniques [PC97] are known as
on-demand route acquisition systems. A node sends a route request (RREQ) when-
ever it wants to send a message to another node for which this route does not already
exist. Reactive techniques generate less traffic in the network. Thus they are scalable
techniques. Therefore they are appropriate for dynamic ad hoc networks. Hybrid
techniques [HP98] combine the proactive and reactive strategies. Even though hy-
brid and reactive schemes are much more efficient and scalable, they may have to
perform a routing discovery prior sending one packet, and to maintain a routing ta-
ble for as many as all the nodes in the network. Therefore, these algorithms have
limited tolerance to any topological change that may occur later on.

Giordano et al. [GSBO03] distinguished several classes of position-based routing
protocols. We mention two of them. The first class includes Basic Distance, Progress,
and Direction Based Methods. In this type of class, a node A will forward the packet
either based on the Euclidean distance to the destination, projected distance to the
destination or the direction to the destination. Such protocols under this class are:
GEDIR [Fin87}, DIR [KSU99], and MFR [TK84]. The second class includes Partial
Flooding and Multi-Path Based Path Strategies. In this type of class, a node @ sends
a message to its neighbors whose direction is closer to the direction of the destination

node Q1. To control flooding, flooding-based methods require from nodes to memorize
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past traffic, so that the same message would not be forwarded more than once. Such
protocols under this class are: DREAM [BCSW98|, LAR [KV00], V-GEDIR [St099],
and CH-MFR [Sto99]. Due to our research interest, we will only focus on the first
class.

Position-based routing algorithms are locally distributed algorithms [SL01][BMSUO1]
[KKO00][TK84]. In these routing algorithms, each node makes a decision to forward a
packet to a specific neighbor based on the locations of this node, its neighbors, and
the destination. This indicates that these routing algorithms do not need to gather
the global topology information of the network as a whole. Thus, the bandwidth and
limited storage resources can be more efficiently utilized. These characteristics also
make the position-routing algorithms quick to adapt to network topology changes.
We will consider only position-based routing algorithms in this thesis.

Several characteristics of position-based routing protocols are presented by Gior-
dano et al. [GSBO03]. The purpose of these characteristics is to evaluate the perfor-
mance of these routing protocols. Some of these characteristics are mentioned in the
following:

1.Guaranteed delivery: If a packet can be assured by a routing algorithm to
be delivered to the appropriate destination in a connected graph, we say that this
algorithm has a guaranteed delivery. This feature will be present in our routing
algorithms discussed later.

2. Memorization: If a routing protocol does not need to memorize the past traffic,
we say that this protocol is without memorization. Even though memorization is
being used to resolve some issues such as avoiding routing loops, it has several seri-
ous drawbacks. First, each node has limited resources (memory, battery power) to
maintain this extra information. Second, each node requires extra time to memorize
the past traffic.

3. Loop Freedom: If a loop can be avoided by a routing protocol without memoriz-
ing the past traffic, we say that this protocol is a loop freedom routing protocol. The

loop means that the packet is being trapped between nodes without being delivered.
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2.2.1 Localized Progress-Based Routing Algorithms in Ad
Hoc Networks

In the previous section, we briefly mentioned some of the classes of position-based
routing protocols. Localized progress-based routing algorithms are under the class
that includes Basic Distance, Progress, and Direction Based Methods. In these algo-
rithms, all the nodes know their geometric positions and the geometric positions of
their neighbors within the transmission range R.. The source node in this algorithm
also knows the position of the destination node.

If we have a source node S and a destination node D, S will pick one of its
neighbors that have the most positive progress towards the destination. If S picks
C, then C will repeat the same procedure till reaching, if possible, the node D. The
main goal is to always forward the packet towards the destination. We refer to such
protocols as progress-based routing protocols. We will discuss the versions of Greedy
routing protocol as examples of progress-based routing protocols.

Even though these protocols can be used in both 2-D and 3-D environments, our
work mainly deals with the 2-D version presented in Sec. 5.6.

One popular example of position-based routing algorithms is the Greedy Forward-
ing routing algorithm (denoted by GF'). GF takes decisions based on n-hop neighbor
information, where n > 1. This feature avoids the need of gathering and maintaining
the global topology information for the whole network. In other words, the decision
made by GF regarding forwarding the packets depends on the information of n-hops
(neighbors) away, where n is constant.

GF has three types. One is based on the Euclidean distance to the destination
[Fin87] which is referred to as geographic distance (GEDIR). See Fig. 8. In this
figure, a current node (yellow) forwards the packet to the neighbor (orange) which is
the closest one to the destination (red).

Another one is based on the projected distance to the destination (the projection
is on the straight line joining the current node and the destination node) [TKS84],
see Fig. 9, which is referred to Most Forward within Radius (MFR). As you can
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Figure 9: GF' is based on the projected distance to the destination (MFR)
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forwarded to B

Figure 10: GF is based on the smallest angle (DIR)

see, each node has a projected point on the straight line joining the current node
(vellow) and destination node (red). The node C has a projected point C' which is
the closest among other projected points to the destination node, thus the packet will
be forwarded to C.

The last one is based on the direction to the destination (this is measured by
calculating the angle between the line joining the current node and destination node
and the line joining the current node and the neighbor node [KSU99], see Fig. 10,
which is referred to Compass routing (DIR). As you can see that node B (orange) has
the smallest angle to the line that joins the current node and the destination node
(red). Hence node B is the chosen one.

In general, progress-based routing protocols may suffer from local minima [BMSUO01],
that is, a current node has no other neighbors that make better progress than itself,
or two adjacent neighbors that are equally close to the destination. Hence a loop can
occur. Even if GEDIR protocol can stop forwarding a packet once detecting a loop,

there will be a failure in delivering the packet.

23



o - N 7
* / ™~ / % s *
&
{ . \,,\ / SN
TN Lo sH2 N I
T N . ~ \\ . N M,L\ !
N u o 4 -y
N =~ o~ - . fr [
. ! b B L Qi+ ; f
. j ¢ .-~ J iy ;
ey / Sty -é- - ,
g ! H /

Figure 11: BVGF algorithm.

2.2.2 Greedy Forwarding Routing Protocol for Sensing-Covering

Networks

The sensing-covered network is assumed to cover every single point in a region. Also
some routing protocols require to have the Voronoi diagram in advance in sensor
networks.

There are several routing protocols that have been studied in sensor networks.
Some of these include: GEDIR, DIR, MFR (and their 2-hop version [SL01]) and
Bounded Voronoi Greedy Forwarding (BVGF') [XLPHO06] routing protocols.

Since we already gave a clear idea about the versions of GF routing protocol in
Sec. 2.2.1, we would focus on the BVGF routing protocol. The BVGF routing algo-
rithm works as follows: A current node checks if the Voronoi regions of its neighbors
intersect the line segment joining the source and the destination. See Fig. 11. After
having this set of nodes, the algorithm picks the one which is the closest one to the
destination.

The algorithm continues like this until reaching the destination. This algorithm is
based on a strongly connected graph. According to the Theorem 5 in [XLPHO06], this
algorithm guarantees that the packet is delivered to the destination. In this theorem,

the authors assume that there is always a neighbor that has a positive progress and
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whose Voronoi region intersects the line. The proof is associated with the theorem in

[XLPHO6].

2.2.3 Metrics For Routing Algorithms Performance

As mentioned in Sec. 2.1.1, the stretch factor is represented by the dilation with
regards to an ultimate wireless network for measuring the quality of graphs. The
presentation includes Euclidean and network dilations. Xing et al. [XLPHO6] repre-
sented the stretch factor in terms of Euclidean distance and hop counts using routing
algorithms. This representation is used to evaluate the performance of routing algo-
rithms. Therefore, this new representation is illustrated in this section.

A routing algorithm’s performance depends on two things. The former is the
network length which is the hop count between any pair of nodes. The latter is
the Euclidean length which is the accumulated Euclidean distance of each hop of
the routing path. The shortest Euclidean and network paths may be different for
the same pair of nodes. The subgraph’s path quality can affect routing algorithm
performance.

The network dilation is said to be D, (U). This means that the network dilation
is based on U (routing algorithm) if Lg(u,v) in definition 3 in Sec. 2.1.1 represents
the network length of the routing path (from node v to node v) chosen by U. The

network dilation evaluates the performance of the routing algorithm with regards to

fuv|

the ultimate wireless network. This network has a path with [ 7

] hops between any
two nodes u and v, where R, is the connectivity radius. The same applies for the

Euclidean dilation of U but using definition 4 in Sec. 2.1.1.
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Chapter 3

Displaced Apex Adaptive Yao
Graphs in 2-D and 3-D

To add a degree of variability to our sensor network simulations, we will use a gener-
alization of the Yao graph. This generalization is based on the Yao graph, presented
in Sec. 2.1.2.

In this Chapter, we demonstrate this Yao graph generalization in both 2-D and
3-D. The cones used here are adaptively centered on a set of nearest neighbors for
each node, thus creating a directed or undirected spanning subgraph of a given unit
disk graph (UDG). We also permit the apex of the cones to be positioned anywhere
along the line segment between the node and its nearest neighbor, leading to a class of
(Yao)-type subgraphs. We show that these locally constructed spanning subgraphs
are orientation-invariant. Since a continuous set of cone angles are possible, these
subgraphs also permit control over the degree of the graph. This new subgraph is
referred to as the Displaced Apex Adaptive Yao graph (DAAY). We demonstrate
through simulations that these subgraphs of the UDG combine the desirable proper-
ties of the Yao and the Half Space Proximal subgraphs of the UDG.
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3.1 Displaced Apex Adaptive Yao in 2-D

In this section, we give a formal definition of a class of Yao-type graphs and prove
some basic properties of the graphs. Let S be a set of N points in the Euclidean
two dimensional plane, each point possessing a geometric location. For the following,
define the cone angle # to be the half-angle of the cone’s apex.

We will use the parameter s to parametrize the closed line segment between u and
v: (1 —s)u+sv, 0 < s <1. Any particular choice of s represents the position of the
apex of the cone. We will use a second parameter o, 0 < a < 1, to determine 8 as
a fraction of the maximum cone angle, 6,,(s, |uz|), which we define shortly, which is
a function of s and the distance from the current node u to the nearest neighbor z
for which the cone is determined. If the cone’s half-angle # is increased more than

Om (s, |uz|), then the DAAY becomes disconnected.

Algorithm 1 Displaced Apex Adaptive Yao(G, a, s) graph algorithm

Input: A graph G with the node set S, an angle parameter o, and a parameter s.
Output: A list of directed edges L for each node u € S which represent the Dis-
placed Apex Adaptive Yao subgraph of G, DAAY(G, a, s).
for all u € S do
Create a list of neighbors of u: LN (u) = N(u).
repeat
(a) Remove the nearest neighbor z node from LN(u) and add the directed
edge uz to L.
(b) Determine 6,,(s, [uz|). Let 8 = « - 0,,(s, |uz}).
(c) Let r = (1 — s)u + sv be a point on the line segment uz.
(d) Consider the cone C' with its apex at r with a cone angle  and z in its
interior, such that the line uz bisects the cone C into two equal halves (i.e.,
the segment uz lies in the center of the cone).
(e) Scan the list LN (u) and remove each node in the interior of C.
until LN (u) is empty
end for

Definition 5 Let G be a UDG with node set S. The directed Displaced Apex Adap-
tive Yao subgraph, D-DAAY(G, «, s), is defined to be the graph with node set S whose
edges are obtained by applying the Displaced Apex Adaptive Yao(G,«, s) algorithm,
Algorithm 1, on the graph G using cone angle § = « - 6,,(s, |uz|) and apex displace-
ment parameter s. The undirected graph DAAY(G, «, s) is obtained by ignoring the
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Figure 12: Applying the Displaced Apex Adaptive Yao(UDG, 1,0) graph algorithm
on the node u of a UDG: (a) the nearest neighbor is first chosen; (b) the second
nearest node out of the rest of the nodes is chosen. Note that its associated cone

overlaps with the first cone; and (c) the third nearest neighbor is chosen from the list
LN(u).

direction of the edges in D-DAAY(G. o, s).

When s = 0, we simply refer to the resultant graph as the Adaptive Yao graph.
Note that the directions of the cones used in the Displaced Apex Adaptive Yao(G, a, s)
algorithm only depend on the relative directions of the selected nearest neighbors.
Therefore, the resultant subgraph is the same regardless of the orientation of the point
set S. Hence the DAAY(G, a, s) is orientation-invariant. See Fig. 12. The running
time of Algorithm 1 per node is O(n) where n is the number of nodes and results in a
subgraph that may still have crossing edges. We show in [FAESHO07] that DAAY sub-
graphs are strongly connected, have bounded out-degree, are t-spanners with bounded
stretch factor, contain the FMST as a subgraph, and are orientation-invariant. We
omit the details of the proofs of these properties for the DAAY subgraphs since the
main focus of this thesis is on routing in sensing-coverage networks.

After determining some properties of cone angles, we define the maximum cone

angle 0,,(s, |uz|).

Lemma 1 Consider a node u and neighbor z of u. Consider an arbitrary point
k = (1—s)u+ sz where the parameter s has a value in the range [0, 1]. Define L to be
the line perpendicular to the line segment uz and that intersects uz at its midpoint m
(corresponding to s = 0.5 in the above line equation). Define a cone with cone angle

8, with its apex at k, oriented such that z is in its interior and the segment uz lies in
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Figure 14: DAAY subgraph when s >0.5
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the center of the cone. See Figs. 13 and 14, respectively. Consider the boundary of

this cone intersecting the line L at a point c. Then the cone angle 8 satisfies

sin(0 — 6y)  s|uz|
sin(f)  |uc]’

where cos (fp) = %%ETI

Definition 6 Using the same definitions as in Lemma 1, define the mazimum cone
angle 0,,(s, |uz|) as a function of the parameter s and the distance |uz|. It is as

follows:

sm( m (8, fuz|) — %)
sin(0n (s, uzl))

sm(H( |uz|) — cos™? (%’T
sin(0m (s, luzl))

Note that when 0 < s < 0.5, then 6,,(s, |uz|) is only a function of s such that 6
is a fixed angle for fixed values of s and a. When s = 0.5, 6,,(0.5, |uz|) = /2 and,

=3 if 0 <s<0.5

)> _ 3|77fz| if05<s<1

if @ = 1 such that 8 = 6,,(0.5, |uz|), we obtain the Half Space Proximal subgraph
[CDK™*05].

3.2 Simulation Results for DAAY in 2-D

In our experiments we use randomly chosen connected unit disk graphs on an area
of 100 x 100. By connected we mean that the entire graph is a single connected
component. We vary the number of nodes, N, between 65, 75, 85, 95, and 105 nodes.
For all the results reported here, the results have been averaged over 25 graphs for
each value of N. For all the graphs tested, the transmission radius R, used is 15
units.

The stretch factors presented here are for experimentally measuring the quality
of graphs and are the same as the definitions 1 and 2 mentioned in Sec. 2.1.1. In
addition to the maximum stretch factors (Euclidean or hop number) over the 25
graphs, we also calculate the average stretch factors (Euclidean or hop number) in
our simulations.

For each UDG, an Adaptive Yao subgraph (equivalent to a Displaced Apex
Adaptive Yao subgraph with s = 0), Displaced Apex Adaptive Yao subgraphs with
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Figure 15: Original UDG and related subgraphs: (a) UDG; (b) Yao Graph with k=6;
(c) Adaptive Yao Graph; (d) Displaced Apex Adaptive Yao Graph with s=0.25; (e)
HSP Graph; and (f) Displaced Apex Adaptive Yao Graph with s=1.0;

s = 0.125 and s = 0.25, Half Space Proximal subgraph (equivalent to a Displaced
Apex Adaptive Yao subgraph with s = 0.5), and Displaced Apex Adaptive Yao sub-
graphs with s = 0.75 and s = 1.0 are generated. For each Displaced Apex Adaptive
Yao subgraph we use a = 1 such that § = 6,,(s, |uz|) (recall, for s > 0.5, 8 is a
function of the distance to the chosen neighbor defining the cone). For comparison,
we also generate the original Yao subgraph with & = 6 for each UDG. An example of
an UDG and related subgraphs is given in Fig. 15. For some of the degree properties
studied, we consider the directed versions of the subgraphs.

The following tests are done on the undirected version of each of the graphs
mentioned above: 1) average Degree (Fig. 21); 2) maximum path stretch factor, in
terms of both hop number and Euclidean distance (Fig. 25 and Fig. 27); 3) average
path stretch factor, in terms of both hop number and Euclidean distance (Fig. 26
and Fig. 28); 4) weight of each graph (Fig. 18); 5) number of crossing edges of
each graph (Fig. 19); and 6) degree distribution of each graph (percentages of each
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degree is averaged over 25 graphs) (Fig. 16 and Fig. 17). For directed versions of the
Adaptive Yao subgraph, Displaced Apex Adaptive Yao subgraphs with s=0.125 and
5=0.25, Half Space Proximal subgraph, and Displaced Apex Adaptive Yao subgraph
with s=0.75, we also measure 1) maximum in-degree (Fig. 24); 2) average in-degree
(Fig. 23); 3) maximum out-degree (Fig. 22); and 4) average out-degree (Fig. 23).

As s approaches 0.5, from Fig. 13, Fig. 21 and Fig. 20, the average and maximum
node degrees monotonically decrease until s=0.5 when we have the HSP graph. Then
as s continues to increase to 1, the node degrees begin to increase again. This holds
true across all values of N. We can see this trend reflected in the histograms of
the node degrees in Fig. 16 and Fig. 17. Also, as we can see in Fig. 18, although
the weights of the graphs follow the same trend as the node degrees, the number of
crossing edges as s goes from 0.5 to 1 increases only slowly.

In terms of the stretch factors of the graphs, the Adaptive Yao graph (s=0)
has consistently the lowest maximum and average (hop number or Euclidean length)
stretch factors. For our simulations, the stretch factor for the Adaptive Yao graph was
about halfway between that of the HSP and the Yao graph with k=6. As s increases
to 0.5, the stretch factors increase to a maximum for s=0.5. Then, mirroring the
trends for node degree and the weights of graphs, the stretch factor again decreases
as s approaches 1. In particular, for the average and maximum Euclidean stretch
factors, the drop is more significant.

The reason for this behavior is that for s > 0.5 we obtain a graph that maintains
many of the properties of the HSP graph but with additional, predominantly short,
edges. These edges are added since the inverted cone leaves a couple of gaps on
either side of the directed edge to the chosen nearest neighbor (e.g., within the region
defined by dce in Fig. 14) where additional close neighboring nodes may be selected.
Although these additional edges are added and the node degrees of the graphs go up,
the weights and the number of crossing edges increase more slowly.

The values in Figs. 29 - 34 are averaged over 25 graphs with N = 75 nodes. In these
figures, we study the dependence of the Displaced Apex Adaptive Yao subgraphs on

s and a. For all the plots, it is obvious that there is a stronger dependence on o than
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Figure 29: Maximum node degree for DAAY
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s and no matter the angle changes at a particular s value, the conclusion will be the
same to the conclusion drawn for the same s when a=1 in the previous 2-D plots.
In addition, for the maximum node degree, average node degree, average number of
edge crossings, and average weight, there appears to be symmetry about the s = 0.5
value, which appears more pronounced for larger a values. As is apparent from the
figures, for these latter four graph properties, about the minimuimn at s = 0.5, the
values are larger as s goes to 0 as compared to the values as s goes to 1.

The trends for the node degree, weight and number of edge crossings are reflected
in the stretch factor plots in Figs. 33 and 34 except that for large o values, the stretch

factor values are maximum at s = 0.5.

3.3 Displaced Apex Adaptive Yao in 3-D

After presenting the 2-D DAAY in Sec. 3.1, we will present here only the simulation
results for the 3-D DAAY. The reason is that DAAY graph in 3-D is just an extension
of the 2-D version since the line half-way becomes a half-plane, and the cone becomes
a three dimensional cone. All the angles are symmetric about the axis of the cone so
the 6,,(s, |uz|) definition is essentially the same. The properties and the algorithm
of the 2-D version are similar to the 3-D version. In fact even the simulation results

presented for the 3-D DAAY are also similar to the 2-D version.

3.4 Simulation Results for DAAY in 3-D

In our experiments we use randomly chosen connected unit disk graphs on in a cube
of 100x100x100. We vary the number of nodes, N, between 65, 75, 85, 95, and 105
nodes. For all the results reported here, the results have been averaged over 25 graphs
for each value of N. For all the graphs tested, the transmission radius R, used is 25
units. The definitions for both Euclidean and hop number stretch factors are the same
as the definitions mentioned in Sec. 2.1.1. Additional to the maximum stretch factors

(Euclidean or hop number), we also calculate the average stretch factors (Euclidean
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Figure 35: Histogram of degrees of nodes for a 3-D graph with 75 nodes.

or hop number) in our simulations.

For each 3-DUDG, an 3-D Adaptive Yao subgraph (equivalent to a 3-D Displaced
Apex Adaptive Yao subgraph with s = 0), 3-D Displaced Apex Adaptive Yao sub-
graphs with s = 0.125 and s = 0.25, 3-D Half Space Proximal subgraph (equivalent
to a Displaced Apex Adaptive Yao subgraph with s = 0.5), and 3-D Displaced Apex
Adaptive Yao subgraphs with s = 0.75 and s = 1.0 are generated. For each 3-D
Displaced Apex Adaptive Yao subgraph we used o = 1 such that 0 = 0,,(s, |uz|)
(recall, for s > 0.5, 8 is a function of the distance to the chosen neighbors).

The following tests were done on the undirected version of each of the graphs

mentioned above: 1) average Degree (Fig. 39); 2) maximum path stretch factor, in
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Figure 36: Histogram of degrees of nodes for a 3-D graph with 95 nodes. Same legend
as Fig. 35.
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terms of both hop number and Euclidean distance (Fig. 43 and Fig. 45). 3) average
path stretch factor, in terms of both hop number and Euclidean distance (Fig. 44 and
Fig. 46); 4) weight of each graph (Fig. 38); and 5) degree distribution of each graph
(The percentages of each degree is averaged over 25 graphs) (Fig. 35 and Fig. 36).
The stretch factor for a pair nodes u, v, u#wv, is the ratio of the shortest length
path between u and v in the subgraph over that for the original UDG. The path
length is computed in terms of the number of hops along the path or the sum of the
Euclidean lengths of the edges of the path. The maximum is taken over all distinct
pairs u, v in the graph. For directed versions of the Adaptive Yao subgraph, Displaced
Apex Adaptive Yao subgraphs with s equal to 0.125, 0.25, 0.75, we also measured 1)
maximum in-degree (Fig. 42); 2) average in-degree (Fig. 41); 3) maximum out-degree
(Fig. 40); and 4) average out-degree (Fig. 41).

As s approaches 0.5, from Fig. 39 and Fig. 37, the average and maximum node
degrees monotonically decrease until s=0.5 when we have the HSP graph. Then as s
continues to increase to 1, the node degrees begin to increase again. This holds true
across all values of N. We can see this trend reflected in the histograms of the node
degrees in Fig. 35 and Fig. 36.

In terms of the stretch factors of the graphs, the Adaptive Yao graph (s=0)
has consistently the lowest maximum and average (hop number or Euclidean length)
stretch factors. For our simulations, the stretch factor for the Adaptive Yao graph was
about halfway between that of the HSP and the Yao graph with k=6. As s increases
to 0.5, the stretch factors increase to a maximum for s=0.5. Then, mirroring the
trends for node degree and the weights of graphs, the stretch factor again decreases
as s approaches 1. In particular, for the average and maximum FEuclidean stretch
factors, the drop is more significant.

The reason for this behavior is that for s > 0.5 we obtain a graph that maintains
many of the properties of the HSP graph but with additional, predominantly short,
edges. These edges are added since the inverted cone leaves a couple of gaps on either
side of the directed edge to the chosen nearest neighbor where additional close neigh-

boring nodes may be selected (similar to the 2-D case). Although these additional
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Figure 37: Average maximum node degrees for each 3-D graph with various numbers
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edges are added and the node degrees of the graphs go up, the weights increase more

slowly.
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Figure 38: Weights of 3-D graphs. Same legend as Fig. 37.
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Chapter 4

Model of a Sensing-Covering

Network

Here we will present a new model of a sensing-covering network based on the UDG
graph. As mentioned in Sec. 2.1.3, there are some approaches that ensure a network
is fully covered and fully connected. Some of these approaches handle the power
usage issue. The previous works are based on the decimation approach assuming
a very dense set of nodes. In this Chapter, we will present a new approach that
handles coverage, connectivity, and power usage issues. Our approach is based on an

incrementation approach.

4.1 Assumptions of our New Model

The assumptions we make include the following:
e The nodes locations are based on 2-D space.

e Sensing range is 20m. Therefore, we can have a node with a sensing circle, and

this node is the center of its sensing circle.

e All the nodes have the same sensing range. Thus any point in the field should
be covered by at least one node. This leads to the definition of a sensing-covered

network.
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e The nodes are within a square of 500x500 meters.

These assumptions are the same as those presented by Xing et al. [XLPHO06).
They are used as topology-based versions of some position-based routing algorithms
presented in Chapter 5. The assumptions are deployed in the stochastic model. In
this model, two nodes, u and v, can communicate with each other if and only if
|luv|<R.. In this model also, the network is based on the unit disk graph G(V,FE),
where V is the set of all the nodes in the network, and F is the set of all the edges in
the network. The edge(u,v)€FE if and only if |uv|< R,.

4.2 Double Range Property

The double range property means that there is a relationship between the sensing
range (R,) and the communication range (R.) as mentioned by Xing et al. [XLPHO06].
This relationship is presented as a ratio between R, and R,. It refers to the range
ratio [XLPHO06]. We start with R./R, = 2. When the ratio augments, our sensor
network becomes denser, achieving a much better dilation. Thus, the double range

property can be generalized as follows:

R./Rs > 2,the more the ratio increases, the denser the network becomes.

The geometric analysis by Xing et al. [XWZ%05] used this assumption to prove
that the network is strongly connected. In other words, if the network is a sensing-
covered network, this network would be strongly connected if the double range prop-
erty has been taken into consideration. This property supports the routing protocols
for finding a routing path to the destination. Xing et al. proved this theorem using
the Voronoi diagram, as illustrated in Fig. 47. A Voronoi cell of node u is represented
by Vor(u). They first proved that if the Voronoi cells of two given nodes are adja-
cent, then these nodes can communicate. As shown in the Fig. 47, the vertex p is the
common Voronoi vertex for the three adjacent Voronoi cells Vor(u), Vor(v), Vor(w).

The nodes u, v, and w are equal in their distance from p and they are the closest to
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Figure 47: The Voronoi diagram of the nodes that cover the region

p among others. Therefore, p must be covered by the nodes u, v, and w, if not then
it won’t be covered by any nodes in the diagram. Based on the triangle inequality,
they had:

luv| < |pu| + |pv| < 2Rs < R..

After that, Xing et al. [XWZ*05] proved that the network is connected. They
showed that there is a path between any two nodes in the network. Suppose the
line segment st does intersect the successive Voronoi cells Vor(s)=Vor(uy), Vor(uz)
until Vor(u,)=Vor(t). Since the Voronoi cells are adjacent to each other, any two
consecutive nodes in the series u; to w, can communicate according to the first part
of the proof. Therefore, there is a communication path from s to ¢. This path is

illustrated in the dashed line.

4.3 Constructing a Sensing Covered Network

In this design, we ensure that we have a fully covered network using the sensing
coverage property of the nodes. Once every single space is covered, we can then

ensure that the delivery rate for our routing protocols achieve 100% using the double
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sponding node.

range property. To construct this network, we need to demonstrate specific techniques

in the upcoming sections.

4.3.1 Constructing a Grid

We assume that we have a region of hxh units in which the nodes are randomly
located. In this region, a grid is constructed with h/2+1 columns and h/2+1 rows,
including grid lines on the boundary of the region. Now, each row or column is
represented a linked list. Initially, each row stores a space of its actual length in its
corresponding linked list. In other words, there is a space on the row and its length
is the same as the row length. The linked list stores initially one node which is the
length of the actual row. The same applies for the column’s linked list. The grid
can ensure that most of the spaces have been filled by sensing circles. We mentioned
the word 'most’, since even if all the lines (rows and columns) have been filled, there
will be some cases in which a space exists between the lines. One of those cases is
demonstrated in Fig. 48. These cases are referred to as blind points [TG02]. At the

beginning, as we mentioned before, the grid would be empty. See Fig. 49.
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Figure 49: A sample of the empty lines in the grid of 16 rows and 16 columns. They
are marked by bold black color.

4.3.2 Filling out The Spaces

In this section, we will show how we fill out all the lines in the grid, even the spaces
between the lines. In other words, a single line (row or column) indicates that there
is one space or multiple space fragments on it. Filling out the lines means that we
are filling out the spaces.

The sensing range is responsible for checking and eliminating the spaces. We place
one node at a time (as mentioned previously, each node is centered in its corresponding
sensing circle), and based on this we will know what line(s) are intersected by the
sensing circle. After that, we will remove the space(s) where the circle has already
covered. We continue like this until every single space is covered. To clarify more
about this idea, let us see Fig. 50. Note in this figure, we increased the width of the
lines only for clarification purposes - actually they do not have any width.

We will be interested in the colored (other than the black) lines in Fig. 50. These
colours indicate the sizes of the spaces which are on the lines; although the other lines
have black bold colours (also indicating the sizes of the spaces). We place one node
at a time. After that, we check if this area (it represents the place where the sensing
circle intersects the lines) is fully covered by previous sensing circle(s). This can be
done by checking which line is currently being intersected by the new added sensing
circle. If the area of the intersected line is already covered by some previous sensing
circles, then we check whether the other intersected lines are being covered or not. If

these lines are completely covered, then we do not add this node since it is considered
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Figure 50: Shows the new sizes of the spaces in different colors (other than black).
This happens after adding a sensing circle to the grid.

as a duplicate node. 'Duplicate’ refers to the fact that the new node would duplicate
the covering behavior of previous nodes. In other words, we do not place it at the
covered area but we use it for other areas. This is referred to as 'Duplication’ and
will be explained in detail in Sec. 4.3.3. If these lines are partially covered, then we
take the new sensing circle into our consideration. We turn on the new added node.
Once the node becomes active, immediately it will split the space into new spaces
or if there is no space left after adding this node, then the covered space(s) would
be removed, see Figs. 51 and 52, respectively. The intersected lines are colored
by other colours in order to show that we have different sizes of the new remaining
spaces. In other words, the space on the intersected row (row number 3) becomes
shorter than before as well as for the intersected column (column number 3). The
node that represents this space in the linked list for this row will be removed, and
two new nodes will be added in this row’s linked list. Each new added node has a
new remaining space size after placing a sensing circle at that row. The same applies
for the column. We place another circle again as shown in Fig. 53, and then we will
have new remaining spaces and so on. See Fig. 54. Note that the second sensing
circle will split one of the remaining spaces that occurred by the first sensing circle

into two new smaller lines.
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Lonah1of Row NULL

Lorvmzo' Row + NULL

Langth of Row s NULL
Leruh‘of Row NULL
Length of Row it NULL

Figure 51: Fach row represents a space. At the beginning, each row stores its actual
length in the corresponding linked list. The same applies for columns.

Lenah:x Row — NULL

Longth of Row e NULL

Py el =t NuLL
Langth of Row s NULL
Length of Row et NULL

Figure 52: A demonstration of how the spaces are stored in the linked list for the
rows, for example in Fig. 50. The same applies for the columns. The space becomes
shorter at row 3. This happens after adding the new sensing circle.
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Figure 53: Shows the new sizes of the spaces in different colors. This happens after

adding the second new sensing circle to the grid. The size of the space on row number
3 became smaller than before.

i e et

i =
o e iy B
’W:'RWI —~——NULL

’WSMRWI — N

Figure 54: A demonstration of how the spaces are stored in the linked list for the

rows, for example in Fig. 53. The same applies for the columns. The space became
shorter at row 3. This happens after adding the second new sensing circle.
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Figure 55: The remaining spaces on the grid after placing several nodes.

4.3.3 Duplicate Nodes

A demonstration for the duplication issue is shown in Fig. 56. In this figure, we
identify that the sensing circle (red) is unnecessary to be added to the grid and it
is considered as a duplicate node. Refer to the previous section for the coverage
checking procedure. If the duplicate node were to be placed, then it would become a
redundant node. Redundant nodes could increase the routing path unintentionally.
They could also waste unnecessary energy. To clarify more about the duplication
issue, let us take the Fig. 56 as an example. The new sensing circle is being placed
randomly at columnl and column2 and at row2 and row3. We see that row2 in the
selected area is already covered by some sensing circles, the same applies for row3.
Now, we see that at columnl, the intersected area is already covered by other sensing
circles, the same applies for column2. In this case we do not place the node. This

sensing circle can be used for other spaces on the grid later on.

74



I Row 1

———  Row?2

Q Row 3
7

Figure 56: A sensing circle that will be placed at a location which is already filled
out by other sensing circles.

4.3.4 Removing the Remaining Uncovered Spaces in the Re-
gion

We mentioned previously that in the worst case, we could have some space(s) left
even if we covered all the rows and columns. Refer to Fig. 48 for one of the worst
cases (blind points). To overcome this case, we represent a fact in Fig. 57.

In the above figure, we see that we have h/2+1 rows in a grid of hxh meters.
Thus, it leads to the fact that h/(h/2+1)=2. This result means that between each
row there is a space of two units. The same applies for the columns. Therefore, this
is the only space left that we can have after filling out all the lines. We start placing
nodes with a sensing radius of 18 units. After filling out all the rows and columns,
we increase the radius by 1 unit to eliminate the possibility of having a space left in
the grid. This means that every single point is being covered by at least C(u, R),
where I, is the sensing radius of node u which makes a node u with a sensing circle

C of radius R,.

75



2 meters

2 meters

[
z+l

'

i+n

Figure 57: A representation for the rows and columns in the grid of 500X500 meters.
The number of rows and columns is 251.

In [XLPHO6], the BVGF and GF routing protocols are based on R, equal to 20.
Because of this, our aim is to make R, equal to 20 meters, so that we can evaluate
our routing protocols performance with the BVGF and GF routing protocols. Thus,

we increase the sensing radius by 2 units instead of 1 unit.

4.3.5 The Algorithm for Covering the Spaces on the Grid

and Removing Duplicate Nodes

The whole procedure in the previous sections for filling out the spaces on the grid and
removing duplicate nodes are summarized in Algorithm 2. For clarity, see Figs. 50 -
53, respectively.

The algorithm assumes that the number of rows and the number of columns are
denoted as K'1 and K2 respectively. Each time we scan the array of lists for ’"Column’
and the array of lists for 'Row’ to check if the sensing circle is covering a space in

these two types of lists. This can be known by checking the lists that represent the
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Algorithm 2 Throw_fill

Input: An empty node set V, an array of lists for the spaces in rows 'Row’, an
array of lists for the spaces in columns 'Column’ and R,.

Output: returns a list of nodes in'V and R, .
repeat

Let u is a random node (centered in its sensing circle) within the region of A x h
meters.
for I=1to K1 do

Scan Row I, Remove the covered area (space) by the new added sensing circle
from the list of Row 1.

if the list size of Row I changed and u ¢ V then
Insert w in V.
end if
end for
for I=1 to K2 do

Scan Column /, Remove the covered area (space) by the new added sensing
circle from the list of Column 1.

if the list size of Column I changed and u ¢ V then
Insert u in V.
end if
end for
until the array of lists 'Row’ and ’Column’ are empty
Let R,=R,+1.
R.=2R,
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intersected lines. If the sensing circle covers a space, this space will be removed from
that list. We mean by removing the space that sometimes the sensing circle covers
the whole given space; thus we should remove the whole node from the linked list.
We mean also that sometimes the sensing circle covers part of the space; therefore we
reduce the size of the space into two new smaller spaces than the original one.

The algorithm can be further improved since it does not need to go through all
columns and all rows. This improvement can be as follows. The algorithm will focus
on either rows or columns since covering one of them would be sufficient. Assume
that we are focusing on the rows. The algorithm should also locate the sensing circle
on the grid upon placing it. Because of this information, the algorithm should know
the rows that are intersected by the sensing circle. Having this kind of information
will let the algorithm to only pass through these specific rows. Thus, making the

algorithm much faster than before.

4.3.6 Simulation Results

As we mentioned before, the number of nodes deployed would be around one thousand
nodes. Sensing radius is set to 20m. The region is 500x500m and R, = 2 « R,.

In the simulation, we measure the shortest path lengths for UDG graph as well as
for DAAY with various angles. See Fig. 58. As you can see from the figure, the UDG
graph has the highest number of short edges. The DAAY with =0 is equivalent to
UDG graph. The more the § increases, the less number of short edges will be in the
DAAY subgraphs. This is due to the fact that when @ increases, the DAAY will
eliminate more edges. Thus ending up with longer paths than before. This can be
seen as we move along the figure. This is illustrated further in Fig. 59. As can be
seen, the more 6 increases, a smaller number of edges will be in the subgraphs due to

the elimination of edges.
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Figure 58: Lengths of shortest paths between all distinct pairs of nodes.
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Figure 59: Average degree of nodes for DAAY with various 6. Degrees are averaged
over five graphs.
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Chapter 5

New Position-Based Routing
Algorithms

As mentioned in Chapter 3, the 2-D DAAY subgraph was introduced to solve some
issues existed in UDG like the high degree of nodes. In Chapter 4, we introduced a
new model that resolved some issues in sensor networks like coverage, connectivity and
power usage issues. In this Chapter, the 2-D DAAY subgraph and the grid technique
are combined together to form a graph model of our network for our new position-
based routing protocols. The idea of using 3-D DAAY with the grid technique is out
of the scope of this Thesis and needs further investigations. This Chapter lists in
detail these routing protocols and how they perform on top of this topology.

As mentioned in Sec. 2.2.2, Xing et al. [XLPHO6| claim that the BVGF routing
protocol guarantees packet delivery. In this Chapter, we present a counter-example
that shows that this protocol does not deliver the packet all the time on a general sens-
ing covered network. To solve this issue, we propose new hybrid routing algorithms
which combine the BVGF' routing protocol with other protocols. This leads to two
new enhanced versions of BVGF routing protocol such that these two new versions
guarantee delivery. We also introduce a simplified version of BVGF, called Sensing
Circles Close to the Line Routing Algorithm (SCL) replacing the Voronoi regions
with the sensing ranges, and similar hybrid versions of SCL. After creating these

versions, we compare them to each other and the Greedy Forwarding routing protocol
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in terms of hop dilation, Euclidean dilation and time. All the algorithms used here
guarantee the delivery of packets. The time measurement is proposed here for the
first time for gauging the performance of the BVGF routing protocol (two enhanced
versions) since it was not discussed by Xing et al. [XLPHO06]. These measurements
show that the two versions of the BVGF routing protocol are much slower than the
other routing protocols as well as GF' routing protocol. Both the hop dilation and
the Euclidean dilation show some interesting properties for the all mentioned routing
protocols. All these measurements are given in Secs. 5.6.1 and 5.6.2 for the directed
and undirected versions of DAAY | respectively.

The routing algorithms implemented in the following sections are based on UDG
and Adaptive Yao (6=10°, 20°, 30°, 40°) subgraphs. The reason for limiting the ¢
is that having a 6>40°, when running GF and our new routing protocols on these
subgraphs, will lead to a failure in packet delivery. This is because the DAAY will
start loosing more edges which contradicts the fact that we can always have a next

node with a positive progress. This may lead to local minima.

5.1 A Counterexample for BVGF Routing Proto-

col

In [XLPHO06], Xing et al. mentioned in Lemma 1 that the Voronoi regions for the
nodes are always inside their corresponding sensing circles. A proof was associated
with their lemma in their paper. There is a missing case in which the neighbors of a
current node can’t have both criteria (positive progress and intersection with the line).

Thus, BVGF routing protocol will fail in delivering the packet to the destination.

Lemma 2 A current node can'’t always find a neighbor that has positive progress to-
wards the destination and whose sensing circle intersects the line joining the source
and the destination (The proof is illustrated in Fig. 60 as a counterexample for The-

orem 5 in [XLPHO6]) .
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Figure 60: A counterexample for BVGF'. This is based on UDG graph. A current
node (white blue) is surrounded by its neighbors.

As you can see from Fig. 60, the current node (white blue) is surrounded by its
neighbors with different colours. It barely crosses the source-destination line. Now
even though its neighbors (gray) have positive progresses towards the destination,
their sensing circles do not intersect the the source-destination line. It is obvious that
the sensing circles of some nodes (magenta) do not have positive progresses towards
the destination in spite of their sensing circles intersections with the line joining the
source and the destination. It is interesting to note that even though the sensing
circle of the neighbor (yellow) intersects the source-destination line, this neighbor has
very small negative progress.

The purpose of using the sensing circles in the proof is to show that you can

not have both criteria (intersection with the line and a positive progress towards the
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destination) all the time. Because of this, and the fact presented in Lemma 1 in
[XLPHO6], definitely BVGF will fail sometimes to satisfy the mentioned two criteria.
Then, we won’t be able to move forward. Hence BVGF routing protocol will have a

failure in the packet delivery.

5.2 GreedyClose2 routing algorithm (GC2)

We introduce the GC2 routing protocol since it helps some hybrid routing protocols
(mentioned later in this Chapter) recover from situations where packets are stuck.
The aim here is to have a positive progress, in addition to staying as close as possible
to the line between source and destination.

In this algorithm, a current node may have two best options (neighbors) towards
the destination. In other words, a current node considers the first closest one to the
destination and the second closest one to the destination. Among these, the current
node will pick the one which has the shortest vertical projection on the line segment
joining the source and the destination. Here the projection refers to the line from the
neighbor of a node to the line joining the source and the destination. See Fig. 61. In
this figure, the yellow node (neighbor of a current node) has the shortest projection
on the line segment joining the source and the destination. The algorithm continues
like this until reaching the destination. Even though GC2 routing protocol is similar
to GF routing protocol, it always tries to stay close to the line joining the source and
the destination.

This algorithm guarantees that the packet is always delivered to the destination.
This can be proven by contradiction as follows. See Figs. 62 and 63. Assume a node
a (current node) covers some parts of a region. This node wont have a neighbor that
has a positive progress towards the destination. Now assume that the node b has
a positive progress towards the destination and is the closest node to node a as in
Fig. 63. It is clear from the figure that there is a space between node a and node b.
Because of the fact that every single point in a region is covered by at least one sensor

node, there must be at least one sensor node that covers this space. This contradicts
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Figure 62: Node a is the current node between the source and the destination
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Figure 63: Node b is the closest node to node a
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the fact that the node a does not have a neighbor with a positive progress towards the
destination. Thus, GC2 routing protocol will always find a sensor node that has a
positive progress towards the destination. The same proof applies for the GF routing
protocol.

The GC2 routing protocol will be used as a recovery mode in hybrid protocols
discussed later in this Chapter instead of the GF routing protocol. This is because
even though GF' routing protocol always picks a neighbor that is the closest neighbor
to the destination, this neighbor might be far away from the line joining the source

and the destination.

5.3 Smallest Angle To The Line Routing Algo-
rithm (SAL)

We introduce the SAL routing protocol since it also helps some hybrid routing pro-
tocols (mentioned later in this Chapter) recover from places where packets are stuck.
The aim here is to have a positive progress, in addition to staying close to the line
between source and destination.

The idea behind this protocol is to choose the neighbor whose angle to the line
joining the source and the destination is the smallest possible. The angle for one
neighbor is between the line joining this neighbor and the source node, and the line
joining the source and the destination. See Fig. 64. The Compass routing protocol
mentioned in Sec. 2.2.1 is similar to this protocol except for the fact that the angle
measured in Compass routing is between the line joining the current node and the
destination node and the line joining the current node and the neighbor.

In SAL algorithm, the chosen neighbor that has the smallest angle, should also
have positive progress towards the destination. The angle might not be the smallest
angle since this algorithm picks the neighbor that has the smallest angle among all
the neighbors that have positive progresses towards the destination. So there might

be a neighbor that has the smallest angle but it has a negative progress, thus this
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Figure 64: Smallest Angle To The Line Routing Algorithm.

algorithm will ignore this neighbor. Therefore, this protocol always stays as close as
possible to the line joining the source and the destination and at the same time it
will have positive progress towards the destination.

The SAL routing algorithm guarantees that the packet is always delivered to the
destination. This proof is similar to the proof presented in Sec. 5.2.

The SAL routing protocol will be used as a recovery mode in hybrid protocols
discussed later in this Chapter instead of GF routing protocol. This is because even
though GF' routing protocol always picks a neighbor that is the closest neighbor to
the destination, this neighbor might be far away from the line joining the source and

the destination.

5.4 Two Hybrid Versions of BVGF Routing Algo-
rithm

As mentioned in Sec. 2.2.2, the BVGF routing algorithm chooses the next hop if this
hop’s Voronoi region intersects the line joining the source and the destination; and
that has a positive progress towards the destination.

To overcome the counterexample presented in Sec. 60, BVGF routing protocol
is combined with either SAL algorithm or GC2 algorithm as hybrid versions of the
original BVGF routing protocol. These hybrid versions are presented in the following

subsections:
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5.4.1 BVGF:SAL Routing Algorithm

When BVGF encounters a failure in the packet delivery at a particular node, BVGF
switches to SAL algorithm once and then it continues as before. As mentioned in
Sec. 5.3, SAL algorithm running on one node attempts to choose among all its neigh-
bors, the neighbor that has the smallest angle possible. SAL mode allows BVGF to
always be as close as possible to the line segment joining the source and the destina-
tion in order to avoid any failure in the packet delivery. Since BVGF:SAL routing
algorithm depends on SAL routing protocol as a recovery mode, it will guarantee
that the packet is always delivered to the destination. This can be proven by cases

as follows.

Case 1: The BVGF routing protocol guarantees, by Theorem 5 in [XLPHO06], that
the packet is always delivered to the destination if there is always at least one
neighbor that has a positive progress towards the destination and its Voronoi region

intersects the line joining the source and the destination.

Case 2: The BVGF routing protocol switches to the SAL routing protocol if it does
not have any neighbor such that its Voronoi region intersects the line segment
joining the source and the destination, and has positive progress towards the
destination. The proof that SAL routing algorithm guarantees packet delivery was

presented in Sec. 5.3.

Thus, the BVGF:SAL routing protocol guarantees that the packet is always delivered

to the destination.

5.4.2 BVGF:GC2 Routing Algorithm

Another option when BVGF encounters a failure is to switch to GC2 algorithm.
As mentioned in Sec. 5.2, GC2 algorithm running on one node finds the first closest
neighbor to the destination and the second closest neighbor to the destination. Among
these, the algorithm picks the one which has the shortest projection on the line

segment joining the source and the destination. This option would make BVGF
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Figure 65: SCL algorithm.

to have less failure since it is trying to move forward towards the destination while
maintaining the closeness to the line condition. Since BVGF:GC2 routing algorithm
depends on GC2 routing protocol as a recovery mode, it will guarantee that the
packet is always delivered to the destination. This can be proven by cases and the
proof is similar to the proof presented in Sec. 5.4.1 but instead of SAL as a recovery
mode, GC2 will be used. The proof that GC2 routing algorithm guarantees packet

delivery was presented in Sec. 5.2.

5.5 Sensing Circles Close to the Line Routing Al-
gorithm (SCL)

As mentioned by Xing et al. [XLPHO06], the Voronoi region of a node is contained
in its sensing circle. Because of this fact, we introduce a simplified version of BVGF
routing protocol called SCL routing protocol by replacing the Voronoi regions with
the sensing ranges of the nodes.

The routing algorithm works as follows. A current node checks if the sensing circles
of its neighbors intersect the line segment joining the source and the destination.
After having this set of nodes, the current node picks the one which is the closest
to the destination. See Fig. 65. The algorithm continues like this until reaching the
destination.

The SCL routing protocol in general fails less frequently than BVGF routing

protocol. This is because each Voronoi region (including its boundary) is contained
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within its corresponding sensing circle, there will be a greater possibility for the
nodes that do have a positive progress towards the destination to have an intersection
between the line segment and their sensing circles rather than using the Voronoi
regions of the nodes.

In spite of the fact that this algorithm uses the sensing ranges instead of the
Voronoi regions, this algorithm still does not guarantee packet delivery. This is be-
cause the counterexample (Fig. 60) mentioned for BVGF also applies to SCL routing
algorithm. To overcome this problem, SCL routing protocol is combined with ei-
ther SAL algorithm or GC2 algorithm as hybrid versions of the original SCL routing

protocol. These hybrid versions are the following.

5.5.1 SCL:SAL Routing Algorithm

When SCL encounters a failure in the packet delivery at a particular node, it switches
to the SAL algorithm once and then continues as before with SCL. SAL algorithm
running on one node attempts to choose among all its neighbors that have positive
progresses, the neighbor that has the smallest angle possible. SAL mode allows SCL
to always be as close as possible to the line segment joining the source and the
destination in order to avoid any failure in packet delivery. Although SCL:SAL is
similar to BVGF:SAL in using the same recovery mode, SCL:SAL routing protocol
performs much faster than BVGF:SAL routing protocol since it does not need to
calculate the Voronoi regions for the sensor nodes.

The SCL:SAL routing algorithm guarantees packet delivery. This can be proven

by cases as the following:

Case 1: The SCL routing protocol guarantees that the packet is always delivered to
the destination if there is always at least one neighbor that has a positive progress
towards the destination and its sensing circle intersects the line joining the source

and the destination.

Case 2: The SCL routing protocol switches to the SAL routing protocol if it does

not have any neighbor such that its sensing circle intersects the line segment joining
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the source and the destination and has positive progress towards the destination.
The proof that SAL routing algorithm guarantees packet delivery was presented in
Sec. 5.3. Thus, the SCL:SAL routing protocol guarantees that the packet is always

delivered to the destination.

5.5.2 SCL:GC2 Routing Algorithm

Another option when SCL routing algorithm encounters a failure is to switch to
the GC2 routing algorithm. As mentioned in Sec. 5.2, GC2 algorithm running on
one node finds the first closest neighbor to the destination and the second closest
neighbor to the destination. Among these, the algorithm picks the one which has the
shortest projection on the line segment joining the source and the destination. This
option would lead SCL to fail less often since it is trying to move forward towards
the destination while maintaining the closeness to the line condition. Even though
SCL:GC2 is similar to BVGF:GC2 in using the same recovery mode, SCL:GC2
routing protocol performs much faster than BVGF:GC2 routing protocol for the
same reason mentioned in Sec. 5.5.1.

The SCL:GC2 routing algorithm always guarantees packet delivery. The proof is
similar to the proof mentioned in Sec. 5.5.1 but instead of using SAL as a recovery

mode, the GC2 routing algorithm is used.

5.6 Evaluating the Performance of the New Rout-
ing Algorithms in 2-D Environment.

The experiments are done based on the stochastic communication model. In this
model, we place around 1000 nodes randomly in a 500mx500m region in 2-D. This
region is covered by a set of active nodes. The transmission radius of each host is
assumed to be of a fixed size (20 m). The largest connected component is exactly
equal to the number of nodes since the graph is strongly connected. We repeat this

simulation five times. Each time, every single node sends a packet to every other node
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in the network. We perform the routing protocols based on UDG, directed DAAY,
and undirected DAAY subgraphs. The 6§ in DAAY in both directed and undirected
versions has the values 10°, 20°, 30°, and 40°. The routing protocols running on these

graphs achieve 100% delivery rate.

5.6.1 The Performance of the New Algorithms on Directed
Adaptive Yao Subgraph (D-DAAY)

In this section, we evaluate the performance of our new routing protocols and compare
their performance with GF and each other. The experiments show the Euclidean
dilation, the hop dilation, and the time for the routing algorithms. The experiments
are done based on D-DAAY. We vary the value of 8 for D-DAAY. See Figs. 66 - 70,
respectively.

You can see from the Fig. 66 that even though GF routing protocol outperforms
other routing protocols, our new routing protocols are better than BVGF:GC2 and
BVGF:SAL routing protocols. The more 8 increases, the more the average dilation
increases for all routing algorithms. The reason is that when 8 increases, the network
will have smaller node degrees. Thus, we will start loosing some edges which might
be part of shorter routing paths to some destination nodes. This loss of node degree
will force the routing protocols to take longer paths than before. Another thing,
when 6 increases, the number of switches to other routing protocols (SAL and GC2
routing protocols) increases, since a node will start loosing some edges with neighbors
which may have had intersection with the line segment by their Voronoi regions or
their sensing circles. You can see from the figure also, that the two hybrid versions of
BVGF are almost the same in their behavior. The same applies for the two hybrid
versions of SCL routing protocol.

Now let us see Fig. 67. This figure shows the Euclidean dilation for various
routing protocols. It is clear that even though the enhanced versions of BVGF routing
protocol have lower Euclidean dilation compared to other routing protocols; SCL: GC2

and SCL:SAL routing protocols are close to BVGF versions especially as the angle of
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Figure 66: The hop dilation for different routing algorithms.

D-DAAY graph increases. Our routing protocols achieve a much better performance

than the GF routing protocol. As you can see, the Euclidean dilation increases when

8 increases. The number of switches also increases with the increase of 8. The reasons

for these two behaviors are the same reasons mentioned above. You can see from the

figure also, that the two enhanced versions of BVGF are almost the same in their

behavior. The same applies for the two enhanced versions of SCL routing protocol.

Now let us look at the time measurement. See Figs. 68 and 69. In these figures

we measure the time in hours for the routing algorithms on D-DAAY for different

values of #. From these figures, you can see that our routing protocols and GF

routing protocol outperform the two enhanced versions of BVGF routing protocol.
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Figure 67: The Euclidean dilation for different routing algorithms. The legend is the
the same as Fig. 66.
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Figure 68: The time for various routing algorithms.
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Figure 69: The time for BVGF:SAL and BVGF:GC2 compared to the other routing
protocols.
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In other words, our routing algorithms and GF routing protocol are much faster than
the two versions of BVGF routing protocol. You can see from the Fig. 69 that the
two hybrid versions of BVGF routing protocol are very close to each other in their
time performance. From Fig. 70, the hybrid versions of BVGF routing protocol are
almost equal in the number of switches to recovery modes. Note that when 6=0,
the BVGF:GC2 switches 4564 times to GC2 routing protocol, and the BVGF:SAL
switches 4624 times to SAL routing protocol. Also from Fig. 68, our routing protocols
are close to each other in their time measurement. They are also close to the GF

routing protocol.

5.6.2 The Performance of the New Algorithms on Undirected
Adaptive Yao Graph (DAAY)

In this section, we evaluate the performance of our new routing protocols and compare
their performances to GF and each other. The experiments show the Euclidean
dilation, the hop dilation, and the time measured in hours for the routing algorithms.
The experiments are done based on DAAY. We vary the value of # for DAAY. See
Figs. 71 - 75, respectively.

The previous analysis for the figures in the directed DAAY section is almost the
same for these figures. Note from Fig. 75 that when 6=0, the BVGF:GC2 switches
4564 times to GC2 routing protocol, and the BVGF:SAL switches 4624 times to SAL
routing protocol. The idea here is to show that there is no big difference between the
mentioned routing algorithms on D-DAAY and DAAY in terms of Euclidean dilation,
hop dilation, and the time in terms of hours. This is because as we mentioned before,
every point in the region in 2-D is covered by at least one node’s sensing circle, and
R. = Rs; * 2. In other words, our wireless network is a strongly connected and it is
considered a dense network. The small differences are discussed in the following.

The Euclidean and hop dilation for the routing protocols in D-DAAY shown in
Figs. 71 and 72, respectively, will be a little bit higher compared to the routing

protocols on DAAY. This is because the more 8 increases, the more edges are thrown
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away, which make the routing paths longer than before. In addition, to this, for the
directed version, there will be fewer out-edges from a current node to its neighbors
than the same node in DAAY. In addition, even though the undirected version of
DAAY throws away some edges like D-DAAY as 6 increases, the remaining edges are
two-way edges. According to this, DAAY will have a higher possibility for shorter
paths than D-DAAY, which improve the Euclidean/hop dilation.

Another difference is the time measurement in Figs. 73 and 74. Even though the
routing protocols on DAAY outperform the routing protocols on D-DAAY in terms
of Euclidean and hop stretch factors, the time spent by these protocols on DAAY
is a little bit higher than the time spent by these routing protocols on D-DAAY.
This is because the routing protocols (whose running times are proportional to the
degree of the current node.) running on DAAY will take a longer time compared to
the routing protocols on D-DAAY, since a current node on DAAY graph has more

neighbors compared to the same current node’s neighbors on D-DAAY graph.
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Chapter 6

Conclusion and future work

In this Thesis, we presented a class of Yao-type graphs that combine the advantages
of both the HSP subgraph and the Yao subgraph by permitting control over the de-
gree of the subgraph while being orientation-invariant. Indeed, the degree control is
continuous since any cone angle less than 6,,(s, |uz|) can be used as differs from the
Yao graph where only a discrete set of cone angles (7/k) are possible. In addition,
unlike the Yao subgraph, DAAY subgraph can be easily extended to three dimen-
sional UDGs. The 2-D and 3-D versions of DAAY come in two types: directed and
undirected graphs. The experimental results presented here evaluated both 2-D and
3-D DAAY graphs based on several metrics, some of these are: Euclidean stretch
factor, hop stretch factor and degree of nodes.

We introduced a new approach for obtaining a sensing-covered network in 2-D
environment. This approach is referred to the grid technique and it is based on the
Unit Disk Graph (UDG). This technique makes sure that a region is fully covered
by the least number of sensor nodes. Thus, creating a fully connected network and
saving up some energy. This saving would prolong the lifetime of the network. In
order to create variations of this graph, we implemented the mentioned 2-D DAAY
based on this graph.

Based on the above topology (DAAY combined with the grid technique), we pro-
posed new position-based routing protocols and compared them to GF routing pro-

tocol. Among these routing protocols, two new versions of BVGF and SCL routing
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protocols were created. The reason for these versions is that our experiments discov-
ered a strong case which shows that BVGF and SCL routing protocols do not always
guarantee packet delivery. We compared our new position-based routing protocols
to GF routing protocol in term of hop stretch factor, Euclidean stretch factor, and
the time taken for packet delivery. The experimental results show that even though
GF routing protocol outperforms our routing protocols in term of hop stretch factor,
the two enhanced versions of BVGF routing protocol do not outperform the other
routing protocols. The experiments also show that even though the two versions of
BVGF routing protocol outperform the other routing protocols in term of Euclidean
stretch factor, these other protocols still outperform GF routing protocol. Some of
our routing protocols become very similar in their performance (Euclidean stretch
factor) to our two hybrid versions of the BVGF' routing protocol as # increases in
DAAY subgraphs, in both directed and undirected versions.

The future work would consider several things. Finding a much more efficient
way than the grid technique to cover the entire network which is based on the in-
crementation approach. Moving the cone along the line segment between the node
and its nearest neighbor in 2-D DAAY, when dealing with sensor networks. The grid
technique still needs to be implemented in 3-D so that it can be combined with the
3-D DAAY. Power metric should also be measured for our 2-D sensor network and its
extension to 3-D environment. Also an interesting work would include a comparison
between incrementation and decimation approaches in their performance. This work

can be extended by combining both of these approaches.
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