AUTOMATIC SEGMENTATION AND RECOGNITION OF
UNCONSTRAINED HANDWRITTEN NUMERAL STRINGS

JAVAD SADRI

A THESIS
IN
THE DEPARTMENT
OF

COMPUTER SCIENCE AND SOFTWARE ENGINEERING

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
For THE DEGREE OF DOCTOR OF PHILOSOPHY
CONCORDIA UNIVERSITY

MONTREAL, QUEBEC, CANADA

APrIL 2007
(© JAVAD SADRI, 2007

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A ON4

395, rue Wellington
Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 978-0-494-31139-4
Our file Notre référence
ISBN: 978-0-494-31139-4
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliothéque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

In compliance with the Canadian Conformément a la loi canadienne

Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thése.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

Automatic Segmentation and Recognition of Unconstrained Handwritten

Numeral Strings

Javad Sadri, Ph.D.

Concordia University, 2007

Segmentation and recognition of handwritten numeral strings is a very interesting and chal-
lenging problem in pattern recognition. It also has a lot of important applications such as:
postal code recognition. bank check processing, tax form reading, etc. In this thesis, a new
system for the segmentation and recognition of unconstrained handwritten numeral strings
is proposed. The system uses a combination of foreground and background features for the
segmentation of touching numerals in strings. The method introduces new algorithms for the
traversal of top and bottom foreground and background skeletons, and top and bottom con-
tours of numerals. Then, it tries to locate all feature points on these skeletons and contours
and alternatively match feature points from top to bottom (or bottom to top) of the images
to build all possible candidate segmentation paths (so-called segmentation hypotheses). A
novel genetic representation scheme is utilized in order to represent the space of all possible
segmentation hypotheses. In order to improve searching and evolution of segmentation hy-
potheses and facilitate finding the ones with the highest confidence values of segmentation
and recognition, this genetic framework utilizes contextual knowledge extracted from string
images. A novel evaluation scheme based on segmentation and recognition scores is intro-
duced in order to improve the evaluation of segmentation hypotheses and to enhance the
outlier resistance of the svstem. In order to improve stability and plasticity of our system
in the learning and recognition of numerals, a new algorithm for clustering of handwritten
digits based on their shapes is proposed. Also, in order to improve the searching power

of our system and its convergence, a new evolutionary algorithm based on genetic particle

iii

swarm optimization (GBPSQ) is proposed. Numerous experiments using images from well
known databases of handwritten numeral strings such as CENPARMI, NIST NSTRING
SD19, and our newly created databases of Farsi/Arabic numerals have been conducted in
order to evaluate the performance of the proposed method. Experiments have shown that
proper use of contextual knowledge in segmentation, evaluation and search greatly improves
the overall performance of the system. This svstem shows superior results compared with

those reported in the literature.

v

Acknowledgments

1 would like to sincerely thank my supervisors, Professor Ching Y. Suen and Professor Tien
D. Bui for their guidance and their scientific support over the last few years during my Ph.D.
studies and research projects. Their advice has always been a major source of inspiration

for me.

Many thanks to Dr. Jianxiong Dong, Dr. Luiz Eduardo Soares Oliveira, Dr. Mohamed

Cheriet, Dr. Nematollaah Shiri, and Dr. Cheng-Lin Liu for their advice, and encouragement.

I am grateful to all my friends at CENPARMI (Center for Pattern Recognition and Machine
Intelligence at Concordia University) for their help and friendship that has enriched my
studies during these years. CENPARMI, as a research center. has provided me with a very
happy and rich environment to learn, think, criticize, be criticized, and share my ideas with
other people, and to try new ideas. My special thanks at CENPARMI goes to Mr. Nicola

Nobile for his technical assistance, and to Ms. Shira Katz for her editorial assistance.

I also would like to thank the members of my examining committee: Dr. David Doermann,
Dr. Nawwaf Kharma, Dr. Tony Kasvand, and Dr. Adam Krzyzak for their kind advice and

very helpful comments and discussions.

Most of all, I would like to thank my wife, Dr. Zari Dastani, who brought a peaceful and
happy time for me and our two sons, and who gave me strength all through the challenges.

Without her efforts and her patience it would have been impossible for me to come to Canada

and to continue my doctoral studies. This work is cordially dedicated to my wife, and our

two curious sons: Iman, and Erfan.

The research in this thesis has been financially supported by awards and research grants from
CENPARMI, Concordia University, The Power Corporation of Canada, NSERC (Natural
Sciences and Engineering Research Council of Canada), and FQRNT (Fonds de Recherche
sur la Nature et les Technologies de Quebec). I sincerely appreciate the support of all of

them.

vi

Contents

List of Figures xii
List of Tables XXV
List of Acronyms and Symbols xXxXvii
I Design and Implementation of The Modular System 1
1 Introduction 2
1.1 Problem Statement 3
1.2 Goals of the Research 5
1.3 Contributions 6
1.4 Outline of this Thesis 8
2 Review of State-of-the-Art Techniques in Segmentation and Recognition
of Handwritten Numeral Strings 10
2.1 Pre-processing of Handwritten Documents 11
2.2 Segmentation of Handwritten Numeral Strings 12
2.3 Feature Extraction for Isolated Handwritten Numerals 19
2.4 Classification of Handwritten Isolated Digits 21
2.5 Verification Methodso 24
2.6 Segmentation and Recognition of Handwritten Words 25
2.7 Some Results From the Literature 28

vii

2.8 Discussion e e e e e e e e

2.9 SUIMIMALY o oo i e e e e e

Overview of Our Methodology
3.1 Mathematical model o000
3.2 Methodology

3.3 Summary

Pre-Processing

4.1 Smoothing and Noise Removal of Handwritten Numeral Strings . .

4.2 Slant Detection and Correction of Handwritten Numeral Strings . .
4.2.1 Component Slant Angle (CSA) Estimation
4.2.2 String Slant Angle (SSA) Calculation
4.2.3 String Slant Angle (SSA) Correction
4.2.4 Improving the Visual Quality by Slant Correction
4.2.5 Statistical Characteristics of Slant Angles

4.3 Summary o. ... e e e e e

Segmentation Hypotheses Space: Generating Cutting Paths

5.1 Connected Component (CC) Analysis

5.2 Splitting of Touching Digits
5.2.1 Generating Foreground Features
5.2.2 GQGenerating Background Features
5.2.3 Constructing Candidate Cutting Paths

5.3 Combining Cutting Paths for Generating Segmentation Hypotheses

5.4 Summary o e

Segmentation Hypotheses Space: Representation and Searching
6.1 Representation of Segmentation Hypotheses
6.2 Searching Segmentation Hypotheses Space

6.2.1 Genetic Algorithm (GA)

31
31
34
35

37
37
39
41
44
45
46
46

52
53

56
58
60
61
62

6.2.2 Genetic Representation Scheme 69

6.2.3 Genetic Operations 71

6.2.4 Our Genetic Algorithm Approach 74
6.3 Summary e 74
Segmentation Hypotheses Space: Evaluation 76
7.1 Needs for New Evaluation Schemes 77
7.2 Segmentation Scores 79
7.3 Recognition Scores 81
7.4 Overall Confidence Score 84
7.5 Summary . .o ... e e 85
Experimental Results and Discussion 86
8.1 Comparison of Slant Correction Methods 86

8.1.1 Comparison of Our Method With Nonuniform Methods 87

8.1.2 Comparison of Our Method With Another Uniform Method: Running

Time e 38

8.2 Effects of Slant Correction on Segmentation 90
8.3 Testing the Segmentation Algorithm 93
8.3.1 Collecting Outlier Patterns 95

8.4 Implementation and Testing of the Classifiers 96
8.5 Adjusting Parameters of our Genetic Algorithm 98
8.6 Numeral String Recognition Results 100
8.7 Statistical Analysis 102
8.8 Discussion 103
89 Summary e 105

ix

II Towards Generalization and Applications 106

9 Incremental Learning: Plasticity and Stability in Handwritten Digit Recog-

nition Systems 107
9.1 Needs for Plasticity and Stability in Digit Recognition Systems 108
9.2 Feature Extraction and Similarity Measures 109
9.2.1 Feature Extraction 110
9.2.2 Similarity Measures 110

9.3 Clustering Algorithm 112
9.4 Experimental Results L L 114
9.5 Summary e e e e 116
10 A Genetic Based Particle Swarm Optimization (GBPSO) Model 118
10.1 Particle Swarm Optimization 119
10.2 Continuous Particle Swarm Optimizer 121
10.3 Discrete (Binary) Particle Swarm Optimizer 122
10.4 Genetic Based Particle Swarm Optimizer 124
10.4.1 Modeling of a Dynamic Swarm 125
10.4.2 Modelling of Birth Operations 132
10.4.3 Modeling of Death Operation 133
10.4.4 Modeling the History of the Swarm 134
10.4.5 Pseudo Code of Our GBPSO Algorithm 135

10.5 Experimental Results o, 135
10.6 Discussion e 138
10.7 Summary e e e e e e 140
11 Segmentation and Recognition of Handwritten Numerals in Farsi 142
11.1 An Introduction to Farsi (Persian) Script and its relation to Arabic 143
11.1.1 Old Persian Script (550 to 330 B.C.) 143
11.1.2 Middle Persian (300 B.C. to 900 A.D.) 144

11.1.3 Modern Persian Script (after 7th century)
11.1.4 Farsi Handwritten Digits and Numeral Strings
11.2 Creating a Comprehensive Database for Research on Farsi OCR
11.3 Recognition of Isolated Numerals in Farsi
11.4 Segmentation of Numeral Strings in Farsi
11.5 Discussion

11.6 Summary e

III Final Conclusion

12 Conclusion and Future Works

IV Appendices
Appendix A: NSTRING SD19 and CENPARMI Databases
Appendix B: Our Farsi Database

Appendix C: Required Formulas

V Bibliography

Bibliography

xi

154

155

159

160

167

171

172

173

List of Figures

1 Some examples of unconstrained handwritten numeral strings from the NIST

SD19 database. 3
2 Tlustration of variations in writing styles of courtesy amounts. Examples in

this figure have been taken from CENPARMI courtesy amounts database. . . 4
3 Example of touching successive zeros in numeral strings. 5
4 Outliers are defined as samples of wrongly segmented isolated or touching dig-

its (such as (a), and (b)). Example of outliers: (a) Over-segmented digits, and

(b) Under-segmented touching digits. More examples of outliers (over/under

segmented digits) and also more information about their detection and rejec-

tion will be presented in chapters 7and 8. 6
5 Block diagram of a general numeral string segmentation and recognition system. 10
6 (a) A pair of touching digits, (b) Their profiles, (¢) Their segmentation path,

and (d) An example of a situation where a segmentation path cannot be found

by using profile features.o 12
7 (a) Analyzing and extracting contour points, (b) Constructing the cutting

path, and (c) Some cases where contour points cannot identify the touching

TEGIONS. e e e e 13
8 (a) Original image, (b) Foreground and background skeletons, (c) Stroke seg-

ment, (d) Hole segments, (e¢) Top background segment, (d) Bottom back-

ground SEEMENL. o 13

xii

10

11

12

13

14

16
17

18

19

20

21
22

(a) Skeleton segments {(b) and (c¢)] Matching feature point for constructing
candidate segmentation paths. {(d) and (e)] Wrong candidate segmentation
paths caused by protrusions on the skeletons.
(a) Top and bottom water reservoirs created by touching digits. (b)Some
examples of errors produced by the segmentation.
Drop fall algorithms: (a) Top left, (b) Bottom left, (c¢) Top right, (d) Bottom
right, (e) Some examples of errors produced by a wrong starting point selected
by the drop fall algorithm. L.
An example of HDS for segmentation.
(a) Features from contour, (b) Features from profile, (c) Features from skele-
ton. ..o
(a) Original image, (b), (¢), and (d) Constructing segmentation path based
on contour and skeleton feature points.
Classification of current methods for segmentation and recognition of numeral
SEEINGS.
Examples of handwriting styles: (a) Cursive, (b) discrete, and (c¢) mixed.

(a) Word image. (b) Word-shape features do not refer to individual characters
and include “Length”, “Ascenders”, “Descenders”, “Loops”. etc.
Ambiguities in segmentation: the letter(s) following “H” can be recognized as
“w”,or “ui” or “lu” or “HiT. L L
Large variability in shapes of handwritten characters (“O” and “P” in this
example).
Illustrations of segmentation hypotheses for an input string image. S°, i =
1,-.-, N shows the segmentation hypotheses or partitionings of the numeral
string, and si is the k™ partition or segment of S*.
The general optimization model for our problem
General flowchart of our proposed system for handwritten numeral string seg-
mentation and recognition. Ty, and G are two threshold values, which can be

adjusted by the user of the system., ..

xiil

23

24

25

26

27

28

29

30
31

(a) 4-connected (or 4-neighborhood): pixels are connected if their edges touch.
In other words, two pixels are neighbors if they are connected along the hori-
zontal or vertical directions. (b) 8-connected (or 8-neighborhood): pixels are
connected if their edges or their corners touch. In other words, two pixels
are neighbors if they are connected along the horizontal, vertical, or diagonal
directions.
Examples of filter masks (3 by 3) which are used for smoothing binary docu-
ment images, (b), (c), and (d) are rotated versions of the mask in (a) with 90
degrees.
(a and c) original images, (b and d) smoothed images, respectively.
(a) Images of slanted handwritten words, and (b) Images of slanted handwrit-
ten numeral strings, selected from USPS-CEDAR CDROMI1 Database.

Handwritten numeral strings are sets of connected components (CC’s) such
as: isolated digits, parts of fragmented digits or touching digits.
(a) A connected component (CC) is circumscribed by a tilted rectangle, where
h is the height of the CC, and d is the horizontal distance from point P to
point Q (points P, and Q are the intersections of the lines [y, I3, and [, l4,
respectively), (b) Based on the parameters h and d, a component slant angle
(0) is estimated for the connected component.
Hlustration of the heights of the components: (a) Original numeral string, (b)
Vertical heights of all the connected components (four CCs) are shown. . . .
(a) Original numeral string, (b) Slant corrected by the proposed method. . .
Top rows: Original images of numeral strings selected from different databases:
(a) MNIST, (b) CENPARMI Isolated Digits, (¢) NSTRING SD-19, (d) CEN-
PARMI Courtesy Amounts. Bottom rows: Corresponding numeral strings

slant corrected by our proposed method.

Xiv

41

46

32

33

34
35

36

37

38

39

Histogram of the distribution of slant angles over 8232 samples of handwritten
numeral strings with different lengths. This histogram shows a near-normal
distribution. For comparison, it has been superimposed with a normal distri-
bution. e
lustration of a normal probability plot for the slant angles of 8232 samples
of handwritten numeral strings. A normal probability plot is a graph of cu-
mulative probabilities of the data, using a specific scale on the vertical access.

If the data come from a normal distribution, the plot will appear to be near

Block diagram of the segmentation module.,
In the connected component (CC) analysis sub-module, all the connected
components are detected, and they are labeled from left to right.
Three types of connected components found in numeral strings, (a) Parts
of (broken) digits, (b) Isolated digits, and (¢) Two (or more) touching dig-
its/components. L.
Connected components whose widths (w,.) less than 85% of the height of the
string image (H), often do not require any further segmentation. CC} in (a)
needs over-segmentation, but other CCs in (a), and (b) do not require any
segmentation. L. L
Skeleton and contour tracing: (a) Original image of a CC, (b) Skeleton (con-
tour) is traversed from the starting point to the ending point in clockwise
and counter-clockwise directions, (c¢) Top-skeleton (top-contour), (d) Bottom-
skeleton (bottom-contour). L
In both examples 1 & 2: (a) Pre-processed image, (b) Foreground skeleton,
starting point (S), ending point (E) are depicted by O, and intersection points
(IPs) are depicted by o, (¢) From starting point (S), the skeleton is traversed
in two different directions (clockwise: dashed arrows, and counter clockwise:
dotted arrows) to the end point (E), (d) Mapping of intersection points on

the outer contour by bisectors to form foreground-features (denoted by O). .

Xv

58

40

41

42

43

44

(a) Pre-processed image, (b) Background region in {1] and [2] (black pixels are
considered as background), (c¢) Top projection profile of (a), (d) Bottom pro-
jection profile of (a), (¢) Combining top and bottom-projection profiles in (c)
and (d)(here black region is considered as background in our method), (f) Top-

background-skeleton (skeleton of black region in c), (g) Bottom-background-

skeleton (skeleton of black region in d). (h) Background features are denoted

(a) Foreground feature points denoted by O, (b) Background feature points
denoted by O, (c) Feature points from the background and foreground (from
top to bottom or bottom to top) are matched and assigned together to con-

struct possible cutting paths. Lo

Flowchart of downward/upward searching for constructing segmentation paths.

61
(a) A numeral string is over-segmented by our segmentation algorithm (here,
total number of cutting paths n=4). (b), (c), (d), and (e) Cutting paths are
ordered from left to right (based on the horizontal position of their centers of
gravity), and they are labeled by integer numbers from 1 to n. The center of
gravity (CG) of each cutting path is denoted by O.
(a) The original numeral string and its segmentation cutting paths, (b) Seg-
mentation graph for the numeral string in (a), where each node except for S
and E, corresponds to a cutting path in (a), and each edge represents a possi-
ble segment in (a). Terminal nodes (starting and ending nodes) are denoted
by S, and E, respectively. Each path from S to E is a segmentation hypothesis;
the optimum path from S to E is depicted by a thick path line. In (a), there
are n = 4 candidate cutting paths. Similarly, there are n = 4 non-terminal
nodes, and e = 15 edges in the graph. The total number of segmentation

hypotheses (paths from Sto E)is16.

xvi

45

46

47

48

49

A general segmentation graph. Nodes 0 and n + 1 represent the terminal
nodes of S and E, respectively. Other nodes represent non-terminal nodes
(corresponding to cutting paths) which are ordered from left to right and
labeled from 1 ton.
Genetic algorithms can be used for global optimization of multi-modal objec-
tive functions in very complex search spaces.
Each cutting path is presented by a gene in a binary chromosome (of length
n = total number of cutting paths produced by the segmentation algorithm).
Each segmentation hypothesis is encoded as follows: dotted lines (inactive
cutting paths) are not considered in the segmentation of the string, and they
are encoded as zeros in the chromosome. Solid lines (active cutting paths)
are coded as ones, and they are considered in the segmentation of the string.
Each segment of the image is defined as a portion of the image from one
active cutting path (solid line) to the next active cutting path (solid line).
Each segment can contain either a valid digit or an outlier (over or under-
segmented pattern).
(a) An example of a chromosome of n genes; in this example, we assume all
those genes except i, and j are equal to zero (S and E are not part of this
chromosome representation and each of them is always assumed to be equal
to one). So this chromosome shows a path in the segmentation graph from S
to E containing three edges (segments): from node S to ¢, from i to j and from

j to E. (b) Matrix A is a data structure that saves all the weights (confidence

scores) of all the edges in the segmentation graph such as: ag;, a;j, and ajny1). 72

Memoization of the weights of all segments (edges).

Xvii

72

ol
52

93

(a) Selection: very high fitness chromosomes are given a better chance to
reproduce themselves, and to be present in the new generations or to act
as parents. (b) Crossover: pairs of chromosomes are selected based on their
relative fitness in order to perform crossover at a random position. In this
example, crossover happens between the locations of the seventh and eighth
genes in the two parent chromosomes, and it produces two new offsprings. (c)
Mutation: single chromosomes are selected based on their relative fitness in
order to be mutated at a single random position. In this example, mutation
happens on the second cutting path (second gene in the parent chromosome),
and it produces one new offspring. L.
Pseudo code of our GA.
Relying only on the recognition scores of the isolated digit classifiers, and
without contextual information, it is more likely that most of the numeral
strings shown in this figure will be misrecognized with very high confidence
values. For example, in (a), 20 will be misrecognized as 020, (b) 60 will be
misrecognized as 100, (c) 9 will be misrecognized as 01, and in (d) 6 will be
misrecognized as 10.
A segmentation hypothesis or chromosome, which is denoted by S?, consists
of m; regions (segments) (1 < m; < oo). Each segment is bounded by two
consecutive active cutting paths. A combination of two scores {segmentation
score and recognition score) are used to evaluate (measure the quality of)
each segment in a segmentation hypothesis. By combining these scores, a
total confidence value (0 < conf(S?) < 1) is assigned to this segmentation
hypothesis. Based on this confidence value we can rank and compare different

segmentation hypothesis in order to find the bestone.

Xviil

54

95

56

57

o8

59

Illustration of parameters used in the computations of position-ratio (p_rat),
and aspect-ratio (a_rat) for the third segment of the string. For each segment
(or CC) in the image, we can compute p rat, and a_rat, and then we can cal-
culate p_conf. and a_conf. Finally, s_score can be computed for each segment
(or CC) according to Equation 31.
(a) Graph of position-confidence (p_con f) membership function, (b) Graph of
aspect-ratio-confidence (a_conf) membership function.
The general structure of our recognition module. After pre-processing and
feature extraction, a trained classifier assigns class labels and confidence values
to each segment in the segmentation hvpotheses.
An example of pre-processing and feature extraction: (a) Original image,
(b) Pre-processed, slant corrected, and normalized image (45 by 45 pixels),
(c) Skeleton of part b, (d) Reducing the resolution of the skeleton in horizontal
and vertical directions by 1/3; the resulting image is considered as a feature
vector, (e, and f) Two examples of the transformation which is used to reduce
the variability of the pixels on the skeleton. In (e), all black pixels inside the
windows are represented by a single pixel in the center of the window; In (f),
all white pixels surrounding the center pixel are removed.
Two examples of original handwritten numeral strings are shown, where for
each string, all of the CCs, and their corresponding slant angles and heights
are listed. For each string, SSA (©) has been calculated.
Comparison of nonuniform and uniform slant corrections (our method). For
each string, top row: original image, middle row: nonuniform slant corrected,
bottom row: uniform slant corrected (by our method) are shown. Nonuniform
correction of the slants of CC’s in numeral strings can yield many distortions
such as touching cases and overlapping CC’s. The first two columns show the

results of String; and String, from Figure 58 , respectively

Xix

60

61

62

63

64

(a) and (b) Two examples of slant estimation for CCs: (a) Our method,
(b) Method in [3], (¢) Comparison of the average running time between our
slant correction and method in [3] for all numeral strings in our data set
(1000 strings from NSTRING SD-19 database). Experiments showed that, on
average, our method is around 6.5 times faster than the method used in(3].

A and B: images before slant correction, A’ and B’: images after slant cor-
rection: (a) Original images without slant correction (in A and B), with slant
correction (in A" and B’), (b) Foreground features denoted by O, (c¢) Com-
bining vertical projection profiles from top and bottom to specify background
regions, (d) Taking background skeleton. to extract background features (de-
noted by O), (e) Image after segmentation, and (f) Candidate cutting path(s)
without slant correction (in A and B), and using slant correction (in A’ and
B'). In B the segmentation algorithin was not able to find the correct seg-
mentation candidate. However, in B’ it was abletodoso.
C: image before slant correction, C’: image after slant correction: (a) Orig-
inal image without slant correction (in C), with slant correction (in C’ (b)
Foreground features denoted by O, (¢) Combining vertical projection profiles
from top and bottom to specifv background regions, (d) Taking background
skeleton, to extract background features (denoted by O). (e) Image after seg-
mentation, and (f) Candidate cutting path(s) without slant correction (in C),
and using slant correction (in C').
Examples of successful segmentations (or over-segmentations) produced by
our segmentation algorithm. Here, we do not use any recognition informa-
tion. Bounding boxes contain real life string images from the Nstring SD19
Database with different lengths (2 to 10 digits). Each cutting path goes from
the top to the bottom of the bounding box or vice versa. As shown in this
figure, some cutting paths have two or more branches.
Examples of unsuccessful cases of segmentation (without using any recognition

information) by our segmentation algorithm.

89

66
67

68

69

70

71
72

73

74
5
76

Outlier Samples: (a) Over-segmented samples, (b) Under-segmented samples. 97
Some samples of the CENPARMI isolated handwritten digit database. . . . 98
Successful examples of segmentation/recognition produced by our system.
Numeral strings are taken from NSTRING SD19 Database. 102
Unsuccessful examples of segmentation/recognition produced by our system.
(a, and b) wrong segmentation-wrong recognition, (¢) correct segmentation-
wrong recognition, (d, and e) wrong segmentation-correct recognition 102
(a) Original image, (b) Smoothed, slant corrected, and normalized image (45
by 45 pixels), (¢) Skeleton of part b, (d) Reducing the resolution of the skeleton
in horizontal and vertical directions by down sampling (1/3). The resulting
(15 by 15 pixels) image in (d) is considered a (2D array) representation of the
structure and style of writing of a digit. 110
New incoming data may push the centers of some previously learned clusters
towards each other. By merging these (smaller) clusters, gradually bigger clus-
ters are emerged (more general concepts or better generalizations are achieved).113
Our clustering algorithm.00 113
Two samples of clusters obtained by our algorithm. (a) One of the clusters
obtained for digit 4, this cluster has 55 samples. (b) One of the clusters ob-
tained for digit 5, this cluster has 19 samples. For both these clusters our
clustering algorithm has identified one of the patterns as the center (represen-
tative or prototype, shown in a rectangular bounding box). Here, the center
of a cluster is defined as a basic shape which contains most of the common
structural parts of the other patterns in that cluster. 115
(a) Centers of clusters (43 prototypes) found for digit 4, and (b) Centers of
clusters (29 prototypes) found for digit 2 in the training set of the CENPARMI

isolated handwritten digit database. 116
Vector representation of Equations 39 and 40. 122
Pseudo code of original PSO Algorithm. 123
Sigmoid function of: s(vF) = HTpl(—vﬂ 124

xxi

7

73

79

80

81

82

83

84

85
86

87
88

89

90

(a) Oscillation of the birth and mortality rates in Example 1, (b) Oscillation
of the population size in Example 1. 129
(a) Oscillation of the birth and mortality rates in Example 2 (these oscillations
are slightly different from Example 1), (b) Oscillation of the population size
in Example 2 (here, the population size is gradually increasing). 130
(a) Birth and mortality rates in Example 3, (b) Population size changes lin-
earlyin Example 3. 132
Pseudo code for our GBPSO Algorithm. 135
Graphs of four standard test functions for evolutionary algorithms (Sphere,
Rosenbrock, Griewangk, Rastrigrin) in two dimensions (two input variables) [4,
By Bl e 136
Population changes for our GBPSO model in one run (80 iterations). 137

Comparison of the convergence of original binary PSO, and GBPSO on four

different test functions for N=150 dimensions. 139
Old Persian (cuneiform type): alphabet and numbers. 144
A sample of Pahlavi (Middle Persian) script. 144

Farsi alphabet derived from Arabic alphabet, the letters which have been
indicated by arrows were added to Arabic alphabet in order to form Farsi
alphabet.o 145
A sample of Modern Persian script. L. 146
(a) Arabic digits (used mainly in Latin and English speaking countries), (b)
Farsi digits (used mainly in Iran), (¢) Indian (Hindi) digits (used in most Arab
COUNETIES). L 146
(a) Numeral strings in Farsi, [(b), and (c)] the same numeral strings written
in Indian digits (used in most Arabic countries) and Arabic digits (used in
Latin countries). 146
An example of feature extraction for a digit (3): (a) Profiles, (b) Crossing

counts, (c¢) Projection histograms. 149

Xx1i

91

92

93

94

95
96

97
98

Confusion matrices on the test set of CENPARMI Indian digit database (a),
and on our Farsi isolated digit database (b).
(a) Original image (4 touching 3), (b) Foreground skeleton; starting point and
ending point are depicted by S and E, respectively, (¢) From starting point
(S), skeleton is traversed in two different directions (clockwise: dashed arrows,
and counter-clockwise: dotted arrows) to the end point (E), (d) Mapping
of intersection points on the outer contour by bisectors to form foreground-
features, (e) Background region, (f) Background feature points, (g) Feature
points on the background and foreground (from top and bottom) are matched,
and assigned together to construct segmentation path(s)
(a) Original image of touching digits 5 and 6, (b) Pre-processed image, (c)
skeleton traversals from S to E in clockwise (dashed arrows), and counter-
clockwise (dotted arrows), (d) Mapping of intersection points on the outer
contour by bisectors to form foreground-features, (e) Background region, (f)
Top/bottom background skeletons, (g) Top/bottom-background-skeletons af-
ter removing parts that are lower/higher than middle line, (h) Segmentation
path for separating two digits. L.
(a) Samples of numeral strings which our algorithm could find the correct
segmentation paths, (b) Samples of numeral strings which our algorithm did
not perform well for the over-segmentation of the strings. These numeral
strings have been randomly selected from CENPARMI handwritten Arabic
check database [7].
Handwriting Sample Form (HSF) page.
Nstring SD19 structure (note: hsf stands for handwritten sample form, tdp
stands for touching digit pairs). L.
Some samples of numeral strings in NString SD19 database.
Samples of CENPARMI handwritten isolated digit database that shows the

variations of digits in this database.00,

xxiil

99 Sample form (From no. 1) that has been used for collecting handwritten data.

The fields in this form contain numeral strings, dates, Arabic digits, and Farsi

alphabet letters. 168
100 Sample form (From no. 2) that has been used for collecting handwritten data.

The fields in this form contain legal amount words, and legal amount values. 169
101 Samples from our Farsi handwritten database, (a) Farsi Numeral strings, (b)

Farsi dates, (c) Legal amount words (for Farsi checks), (d) and (e) Farsi letters

(gray level and binary formats). 170

XX1V

List of Tables

Sy O e W N

10

11
12

13

Distribution of 1189 touching cases in a sample of 1100 French bank checks . 5
Some results from the literature on isolated digit recognition. 28
Some results from the literature on segmentation of numeral strings. 28
Some results from the literature on courtesy amounts recognition. 29
Some results from the literature on numeral strings recognition. 29

Examples of digits, or numeral strings selected from NSTRING SD-19, sorted

by their slant angles. Corresponding slant corrected strings are shown in the

third column. 48
Some important statistics about the distribution of string slant angles (SSA)

in handwritten numeral strings. (Note: a+a =1,and b+ =1). 51
Distribution of segmentation cases which were improved or not improved by

slant correction.o 93
Performance Comparison of Different Segmentation Algorithms 96
Performance evaluation of our classifiers on CENPARMI isolated digit Database.
(N.A. stands for not applicable.) 98
Parameter values for our genetic algorithm. 99
Recognition rates of our system on the numeral strings from NSTRING SD19,

using two different classifiers: MLP and SVM, and in two different situations:
without and with segmentation scores (contextual knowledge). 101
Comparison of the recognition rates of our approach (using segmentation
scores) with similar approaches on the test samples of NIST NSTRING SD19.

(Reference [8] used only a subset of the test samples for their experiments.) 101

XXV

14

15

16

17

18

19
20
21

Number of clusters (prototypes) per digit class in the training set of the CEN-
PARMI database.
Recognition rates per digit class and overall recognition rate in the testing set
of the CENPARMI database.
Performance evaluation of our system in isolated digit recognition on CEN-
PARMI handwritten isolated digit database.
Comparison of the best average minimum found by original PSO and our
GBPSO method for (a) N = 3, (b) N =15, (¢) N = 75, (d) N = 150
dimensions in 80 iterations
Comparison of the main features of three evolutionary optimization algo-
rithms: GA, PSO, and GBPSO.
Distribution of samples in our Farsi database among its 6 different datasets.

HSF series distribution

XxXvi

148

CENPARMI
CC
CG
HMM
HSF
PDF
GA
IP
OCR
SVM
NN
KNN
MLP
NIST
MNIST
PP
RR
SE

I

SD
CSA

List of Acronyms and Symbols

Center for Pattern Recognition and Machine Intelligence
Connected Component

Center of Gravity

Hidden Markov Model

Handwritten Sample Forms

Probability Density Function

Genetic Algorithm

Intersection Point

Optical Character Recognition

Support Vector Machines

Nearest Neighbor

K-Nearest Neighbor

Multi-Layer Perceptron

National Institute of Standards and Technology
Modified NIST

Post-Processor

Recognition Rate

Square Error

String Image

Special Database

Component Slant Angle

XXvil

SSA
UHNS
RBF
PSO
GBPSO
Rec. (%)
Err. (%)
Rej. (%)
i

e

F(S7)

e

> =

String Slant Angle

Unconstrained Handwritten Numeral Strings
Radial Bases Function

Particle Swarm Optimization

Genetic Based Particle Swarm Optimization
Recognition rate (%)

Rejection rate (%)

Rejection rate (%)

ith segmentation Hypothesis

jth segment in Segmentation Hypothesis S*
Objective function
Segmentation-recognition score

Velocity vector of particle ¢

Position vector of particle 7

Parameters of our similarity measure
Parameters of our clustering algorithm
Birth rate

Mortality rate

Overall birth rate

xxviil

Part 1

Design and Implementation of The

Modular System

Chapter 1

Introduction

Handwriting consists of artificial graphical signs and marks written by human on a surface
such as paper, wood, metals, glass, rocks, etc. The purpose of handwriting is to register,
transfer, or communicate news, messages, business information, ideas, etc. In fact, hand-
writing is a skill, learned by educated (or semi-educated) people and that is closely affected
by their physical characteristics, age, personality, or mood. This can explain the great
variability that exists in the handwritings of different people. In spite of this variability,
human beings can still decipher most of the information in handwritings, accurately. For
example, they can recognize handwritten numerals, letters, strings, and words, in spite of
the very large variability in their shapes, sizes, writing styles, and their occlusions or noisy
backgrounds. This ability of human beings is appreciated when faced with the difficultics
of training computers to do the same task of recognizing handwritings. After more than
60 years of research in the area of pattern recognition and artificial intelligence, designing
a general handwriting recognition system with capabilities similar to human beings still re-
mains a big challenge and an open problem. It seems unlikely that a unique system that
can simulate all human abilities in handwritten recognition will be built. So normally, the
goal in designing handwritten recognition systems is to make computers perform as closely
as possible to human beings in some aspects or subtasks of handwritten recognition.

Handwritten numeral strings are important part of handwritten documents, and recognition

of these numerals has many potential applications, such as the recognition of postal codes

in mail, courtesy amounts in bank checks, revenue values in tax forms, and other numeric
values in application forms. In this thesis, we consider the design and implementation of
a system for segmentation and recognition of unconstrained handwritten numeral strings.
There are many challenges in the problem of segmentation and recognition of unconstrained
handwritten numeral strings. In this thesis, we discuss these challenges, and we present
new solutions (algorithms) for them. Also, based on these solutions a new modular system
for segmentation and recognition of unconstrained handwritten numeral strings is developed

and tested.

1.1 Problem Statement

The focus of this thesis is the segmentation and recognition of Unconstrained Handwritten
Numeral Strings (UHNS). By definition, unconstrained handwritten numeral strings are
handwritten numerals with no limitations in their writings, e.g., UHNS are not written in
separate boxes, nor written neatly, nor written with a special type of pen [9]. UHNS are
normally found in real life applications such as courtesy amounts on bank cheques, postal
codes on envelopes and numerical values on various business forms. Some examples of
UHNS are shown in Figures 1, and 2. Generally, UHNS include isolated digits (with a lot
of variations in their shapes, sizes or styles of writing), touching digits, overlapping digits,
noisy or broken digits. Among challenges in the segmentation and recognition of UHNS,
segmentation and recognition of touching or highly overlapped digits is the most difficult

one.

S 308 YA LY €S/

5308 85200 87251
HDF ABLRT) A
71329 45537 3976

Figure 1: Some examples of unconstrained handwritten numeral strings from the NIST SD19
database.

'43,@3.?3 /A -8/4~ "W‘ ﬁ/'

43,503.77 16.81% 707.71
Y,M spms/ AW
80,111 512.54 280.00
Wb P 3t)6EF
616.00 35.18 16.00
I % -9
719.37 111.00 7.39

Figure 2: Hlustration of variations in writing styles of courtesy amounts. Examples in this
figure have been taken from CENPARMI courtesy amounts database.

Here, the challenge is to segment and recognize touching numeral strings with a very high
accuracy. Touching numerals frequently occur in UHNS. For example, a study {10} on 1100
French bank checks showed that 6.2% of those checks contained connected digits. The
distribution of 1189 connected numeral pairs is shown in Table 1. Here, ‘X’ represents any
numeral, for example, 5X represents touching between numeral 5 and any other numeral.
Another study [11] on 400 Brazilian checks showed that about 80% to 85% of successive
zeros were connected; see Figure 3. In another research study, Wang et al. [12] showed
that 84.6% of the touching cases occurred between two consecutive numerals, while the
remaining occurred among three or more consecutive numerals. Because of the importance
of handwritten numeral strings in real life applications, and also due to frequent occurrence
of touching digits in these numerals, it is very important to develop effective and high

performance methods in order to accurately segment and recognize UHNS.

Table 1: Distribution of 1189 touching cases in a sample of 1100 French bank checks

Connected | 1X | 2X | 3X [4X |5X |6X | 7X (18X |9X |0X
Pairs:
Occurrence | 7.9 | 13.03| 6.05 | 2.43 | 15.89] 8.49 | 26.19 11.94| 3.78 | 4.28
(%)

Figure 3: Example of touching successive zeros in numeral strings.

1.2 Goals of the Research

Many methods have been proposed for the segmentation and recognition of handwritten

numeral strings such as in [9],[8],[13],[14], etc. However, it seems that present techniques

are not yet adequate enough for modeling all the infinite variations of the handwritten

strings. Many improvements are still required in order to build robust systems for real life

applications. Our main goals in this research thesis are as follows:

e To introduce a method that improves building of segmentation candidates in order to

lower as much as possible the number of outliers (refer to Figure 4) at the segmentation

stage of UHNS.

e To introduce a method that improves outlier resistance (outlier rejection) of ordinary

isolated digit classifiers in order to lower as much as possible the number of misclassi-

fications at the recognition stage of UHNS.

e To design and implement a modular system for the segmentation and recognition of

UHNS with a very high performance.

In general, we are going to introduce new algorithms and new techniques that can improve

the accuracy of segmentation and recognition of unconstrained handwritten numeral strings.

5

o @HD| |2 KRS

(a) (b)

Figure 4: Outliers are defined as samples of wrongly segmented isolated or touching digits
(such as (a), and (b)). Example of outliers: (a) Over-segmented digits, and (b) Under-
segmented touching digits. More examples of outliers (over/under segmented digits) and
also more information about their detection and rejection will be presented in chapters 7

and 8.

We are going to use all possible sources of background and foreground information, and
contextual knowledge from the string image in order to facilitate locating and searching of
segmentation candidates and also to improve the evaluation of the corresponding separated
digits. In other words, we are going to introduce segmentation algorithms that produce fewer
outliers. Also, we are going to introduce evaluation algorithms that show higher outlier
resistance in order to remedy insufficient outlier resistance of the ordinary isolated digit
classifiers in UHNS. Finally, we are going to build a modular system for the segmentation
and recognition of numeral strings which utilizes all these techniques, and we are going to

evaluate and compare its performance with similar systems.

1.3 Contributions

The original contributions of this thesis can be summarized as follows:

e The introduction of a novel and efficient algorithm for slant correction of handwritten
numeral strings. Using this algorithm, we investigated the statistical characteristics of
slant angles in handwritten numeral strings. We also studied the effects of slant angle

correction on the performance of of segmentation of handwritten numeral strings [15].

o For the first time, we introduced a novel and eflicient algorithm for tracing the skeletons
of digits and characters. This algorithm is similar to the algorithms that exist for

tracing of contours or boundaries in image processing. Our skeleton tracing algorithm

6

is a general algorithm that can be used for tracing the skeletons of any 2D objects
(planar shapes). This algorithm can be used for extracting structural features from

skeletons and for exploring structures of unknown 2D objects [16, 17].

The introduction of a novel and efficient algorithm for segmentation and separation of
touching digits in unconstrained handwritten numeral strings. Our algorithm extracts
new features. from both the backgrounds and foregrounds of string images, and it
combines the information from the skeletons and contours of digits in order to build

segmentation cutting paths [16, 18].

The introduction of a new evaluation scheme (new scores) for evaluating segmenta-
tion hypothesis, based on the contextual information extracted from numeral strings.
Our method can facilitate and improve detection of outliers (under/over-segmented
components, in fact, wrongly segmented digits). This method compensates for the
lack of outlier resistance and improves the weakness of ordinary isolated digit clas-
sifiers in rejecting outliers. In this thesis, these new scores are called segmentation
scores, as opposed to recognition scores which are produced by ordinary isolated digit

classifiers [17].

We formulated (modeled) segmentation and recognition of unconstrained handwrit-
ten numeral strings as a global optimization problem. Our objective is to maximize
both the segmentation and recognition confidences for any given image containing a
numeral string (with any unknown length). We introduced a general framework for
this optimization problem based on genetic (evolutionary) algorithms in order to find
the optimal solution. We also introduced a novel genetic representation scheme that
can be applied in searching for the optimal path in any Directed Acyclic Graph (DAG)

using a genetic search [18, 17].

In order to capture the great variability that exists in the shapes of handwritten digits
and to improve the recognition accuracy of isolated digit classifiers, we introduced

a new online clustering algorithm that clusters the shapes and the styles of writing

of digits. Our algorithm is an incremental unsupervised learning algorithm that can

improve stability and plasticity of handwritten recognition systems [19)].

e The introduction of a new class of evolutionary algorithms based on the combination
and generalization of ideas from Genetic Algorithms (GA’s) and Particle Swarm Op-
timization (PSO). This new class of evolutionary algorithms is called genetic-based
particle swarm optimization (GBPSO) and it shows a higher performance and faster

convergence compared to GA and ordinary PSO [20].

e Developing a new comprehensive standard database for research, training, evaluation,
and testing of handwritten recognition systems for Farsi (Persian) language. This
database is composed of six different sets of handwritten images including: isolated
digits, isolated letters, numeral strings, legal amounts, dates, and Arabic isolated digits
written by people who speak Farsi. These data sets can be used by researchers who
want to investigate handwritten Farsi script recognition [21. 22]. (This was a joint

research work with another graduate student).

e Applying developed algorithms including: segmentation, recognition, slant correction,
and clustering on Farsi handwritten numeral strings. We investigated and evaluated

the performances of these algorithms on Farsi handwritten numerals [23, 24, 25].

1.4 OQOutline of this Thesis

This thesis consists of three main parts. The first part of the thesis contains eight chap-
ters. These chapters describe our main ideas, algorithms, and experiments for designing,
implementation and testing of a new modular system for segmentation and recognition of
unconstrained handwritten numeral strings. The second part of this thesis has three chapters
which expand our research towards generalization and new applications of the algorithms
and techniques introduced in the first part. Also in this part, we modify the algorithms that
developed in the first part to be applicable for the numeral strings in other languages such as

Farsi and Arabic. The third part of this thesis belongs to our conclusion. The details of the

chapters in this thesis are as follows: the current chapter (Chapter 1) outlines the problem,
its definition, our goals, and our main contributions in this thesis. In Chapter 2, we present
a review of the state-of-the-art techniques for handwritten numeral string segmentation and
recognition. In Chapter 3, we present an overview of our system. In Chapter 4, we present
the details of our pre-processing steps, such as noise removal, and slant correction. We also
present statistical properties of slant angles in handwritten numeral strings. In Chapter 5,
the details of the algorithms for generation of segmentation hypotheses are explained. In
Chapter 6, the details of our representation and searching strategy are presented. Chap-
ter 7 presents the the details of our evaluation scheme for segmentation hypotheses. We
also introduce the segmentation score and the recognition score. In Chapter 8. the details
of our experimental results are elaborated. We present the experimental results on all our
developed algorithms on handwritten numeral strings. In Chapter 9, first the importance
of plasticity and stability in handwritten digit recognition systems is discussed, and a new
clustering algorithm for handwritten digits is presented. Then, using this clustering algo-
rithm, a new method for improving plasticity and stability in handwritten digit recognition
systems is presented. Chapter 10 presents a generalized model of evolutionary algorithms for
search and optimization, based on Genetic Algorithms (GA) and Particle Swarm Optimizers
(PSO). In Chapter 11, segmentation and recognition of handwritten numerals in Farsi and
Arabic languages is presented. Finally, Chapter 12 draws the conclusion of this thesis and

future works are discussed.

Chapter 2

Review of State-of-the-Art Techniques
in Segmentation and Recognition of

Handwritten Numeral Strings

The focus of this thesis is offline recognition of handwritten numeral strings. In this chapter,
we briefly review some of the state-of-the-art techniques and developments for offline pre-
processing, segmentation, feature extraction, and recognition of handwritten numeral strings
in the literature. In general, a conventional system for offline segmentation and recognition
of handwritten numeral strings has an architecture as shown in Figure 5. Here, first the
function of each module is explained, and then we briefly review the literature on cach of

these functions (processes).

. Feaure . s Recognized
Segmentation F—>f. . F—>{Recognition Venfication = ecog
Extraction Numerals

A 4

A

Image —7 Pre-Processing

Figure 5: Block diagram of a general numeral string segmentation and recognition system.

e Pre-processing: This module may include some image processing operations such

10

as binarization of input images, noise reduction, smoothing, filling, slant correction,
baseline detection, skew correction detection, or other image transformations such as

normalization.

e Segmentation: This module introduces some segmentation cutting paths (segmenta-

tion hypotheses) in order to separate touching or overlapping digits in numeral strings.

e Feature Extraction: In this module, for each separated digit (or connected compo-

nent), some features are extracted (to be used by the recognition module).

e Recognition (Classification): In this module, an isolated digit classifier (or a com-
bination of isolated digit classifiers) assigns class labels and confidence values to seg-

mented digits or connected components.

e Verification: In some systems, there is an optional verifier that verifies the decisions
made by the recognizer(s). This module tries to reduce (resolve) the errors made by

the recognizer.

2.1 Pre-processing of Handwritten Documents

Pre-processing steps are very important in order to improve the readability and the automatic
recognition of handwritten document images. These steps make the segmentation and feature
extraction processes more reliable and effective. In our method we only use smoothing and
slant correction as pre-processing steps. Here, we review one of the methods found on the
literature on slant correction.

The method presented by Britto et al. [3] is the only method found in the literature for
slant correction of un constrained handwritten numeral strings. They modified, a word slant
normalization method in order to improve the results for handwritten numeral strings. For
each connected component (CC) in the string they calculated an slant angle. Using these
slant angles and the contour length of each CC, Britto et al. [3] obtained a mean slant angle
for the entire numeral string. Then, they used this average angle for the slant correction of

the entire string.

11

2.2 Segmentation of Handwritten Numeral Strings

In this section, we review state of the art methods on segmentation of connected digits.
Among earlier pieces of literature for the segmentation of handwritten numeral strings, one
class of methods is based on extracting the profiles of touching digits [26]. Fujisawa et
al. [26] proposed a method based on profile features. In this method, the segmentation path
is constructed by computing the upper, and lower profiles of the connected components and

analyzing the distance between these upper, and lower profiles (see Figures 6-a, b, and c).

a) b) c) d)

Figure 6: (a) A pair of touching digits, (b) Their profiles, (c) Their segmentation path, and
(d) An example of a situation where a segmentation path cannot be found by using profile
features.

Although some segmentation paths can be successfully produced by computing the upper
profile and lower profile of the connected components, and analyzing the distance between
these profiles, this approach fails when handwritings are skewed or strongly overlapped,
because in these cases the proper segmentation points (or regions) cannot be reached simply
by analyzing a vertical profile (see Figure 6-d).

Another class of methods for segmentation is based on analyzing the contour of a touching
digits [13, 14, 27]. Strathy et al. [13] proposed a method for the segmentation of touching nu-
meral strings based on an analysis of the contour valleys and mountains as feature points. In
their method, by joining valley points and mountain points on the top and bottom contours,
cutting paths are constructed, as illustrated in Figures 7-a, and b. Although contour points
provide very important information for segmentation, in some cases when the two numerals
touch each other through a straight line, segmentation methods based on contour fail (see
examples in Figure 7-c). In these cases, there are no corresponding valley and mountain

points in the touching regions.

12

a)| | b) gl T =

Figure 7: (a) Analyzing and extracting contour points, (b) Constructing the cutting path,
and (c) Some cases where contour points cannot identify the touching regions.

Some other methods use features from the background and foreground skeletons such as
Chen and Wang (2], and Lu et al. [1]. Chen and Wang [2], used background and foreground
skeletons for the segmentation of connected components. They extracted feature points such
as: fork, end, or corner points on the top, bottom, hole, or stroke segments of these skeletons
(see Figure 8-a, to e). Then they matched feature points from top segments to bottom
segments of the skeletons to construct the candidate segmentation paths (see Figure 9-a,
b, and ¢). In their method, they tried to evaluate segmentation candidates based on some
geometric features and rank them using a mixture of Gaussian probabilities in order to find
the best segmentation path, or reject the candidate paths. In fact, these methods are very
time consuming, and additionally skeletons usually generate protrusions. These protrusions
sometimes cause confusion with actual fork and end points, and they may yield wrong

candidate cutting path(s) (see examples in Figures 9-d, and e).

[V)

d) e)

Figure 8: (a) Original image, (b) Foreground and background skeletons, (c) Stroke segment,
(d) Hole segments, (e) Top background segment, (d) Bottom background segment.

Some other methods use structural and morphological features for segmentation, such as

13

Figure 9: (a) Skeleton segments [(b) and (c)] Matching feature point for constructing can-
didate segmentation paths. [(d) and (e)] Wrong candidate segmentation paths caused by
protrusions on the skeletons.

Yu and Yan [28, 29], and Kim et al. [14]. In [28], which is based on structural feature
points, the first touching regions of the connected components are determined. Then, based
on geometrical information of the special structural points, candidate touching points are
pre-selected. Finally, after morphological analysis, partial recognition results are used for
choosing cutting paths. The problem with this method is that it is very dependent on many
heuristic rules based on structural features, and also it has to check for many structural
features to select the appropriate ones.

Pal et al. [10] proposed a method based on a concept called water reservoir. If water is poured
from the top or bottom of a numeral. regions of the numerals where water will be stored are
defined as reservoirs (see Figure 10-a). In [10], they extracted three sets of features. The
first set of features were extracted based on the reservoirs such as: the number of reservoirs,
position of the reservoirs (top, middle, bottom), their sizes, their shapes, their centers of
gravities (CG’s), and their relative positions. The second set of features were topological
features from closed loops such as: the number of closed loops, their positions, their center
of gravities, and their relative heights. The third set of features were structural features
based on the morphology of touched regions. Using a combination of these three sets of
features and applying some heuristic rules, a decision was made for distinguishing isolated
and connected components and building their segmentation paths. This method requires

many computations for extracting a lot of structural features. Also, they will fail if there

14

is a breakage in the strokes of connected digits or if two digits have common portions (see

Figure 10-b).

) T 2R | eo eo

Figure 10: (a) Top and bottom water reservoirs created by touching digits, (b)Some examples
of errors produced by the segmentation.

Congedo et al. [30] and Punnoose [11], proposed some drop fall algorithms for segmentation,
which can simulate an object such as a marble or a drop of water, falling from above the
digits and sliding downward along their contours. The object falls downward until it gets
stuck in a well, at which point it cuts through the contour and continues downward (see
Figures 11-a, b, ¢, and d). These algorithms are very sensitive to starting points, and once
a wrong starting point is selected they will fail to reach the touching regions (see example

in Figure 11-e).

!
|
|
|

) L

Figure 11: Drop fall algorithms: (a) Top left. (b) Bottom left, (c) Top right, (d) Bottom
right, (e) Some examples of errors produced by a wrong starting point selected by the drop
fall algorithm.

A similar algorithm was introduced by Shridhar and Badrelin [31], which is called Hit and
Deflect Strategy (HDS). This algorithm starts at a peak of the bottomn contour of the con-
nected components and attempts to move upward. This algorithm follows a set of rules
such as: whenever it hits a black pixel in the image it deflects, and it keeps changing its
direction of motion until it reaches the top of the image. In fact, this method is only useful

for separating not deeply touching handwritten numerals such as shown in Figure 12.

15

Figure 12: An example of HDS for segmentation.

Blumenstein, and Verma [32] proposed a strategy that generates a number of paths, and uses
a neural network to select the correct paths. All paths are generated simultaneously using
heuristic rules, and the best ones are selected by the neural network. This requires a large
number of paths to be considered and they have a higher computational cost. Also, no new
paths are generated in later stages so the system does not take advantage of possible feedback
from the recognition module (in the latter stage). If the correct path was not generated in
the original set, then the system fails. Even if the path is slightly off, confidence values will
go down dramatically and the correct path will not be selected [11].

Martin [33] presented a system based on implicit segmentation for numeral string recognition
which uses a sliding window to move incrementally across a string of text. A neural network
attempts to recognize characters centered in the window. Ideally, each character is recognized
when it gets to the center of the window, so explicit segmentation is not required. However,
this approach needs a lot of computations for each position of the window.

In another system presented by Martin et al. [34], instead of sliding over the string, the
window mimics the motion of the human eyes, and moves in bursts. The window moves
forward, or sometimes if necessary backward in smaller jumps, called corrective jumps. These
movements are controlled by a neural network, which learns to jump from one character
to another while recognizing individual characters. This approach also entails exhaustive
computation.

Oliveria et al. [35] presented a system based on a combination of different features for the
segmentation and recognition of handwritten numeral strings. This system uses a combina-

tion of three types of features: contour, profile, and skeleton in order to build segmentation

16

paths (see Figures 13, and 14). This approach also entails a heavy computation.

Profite Paint

a) W (/:' b) s ,,,'/ C)

Figure 13: (a) Features from contour, (b) Features from profile, (c) Features from skeleton.

a) b) c) d)

Figure 14: (a) Original image, (b), (c), and (d) Constructing segmentation path based on
contour and skeleton feature points.

For the recognition of handwritten numeral strings, there have been two general approaches:
segmentation-then-recognition, and segmentation-based-on-recognition [9]. In the first ap-
proach, the segmentation module provides a single sequence of partial images based on some
heuristic rules, where each partial image should contain an isolated character which is sub-
mitted to a recognizer [10, 36, 31]. Since this technique does not use any contextual or
recognition feedback (for segmentation), it shows its limits rapidly when the correct segmen-
tation does not fit the predefined rules of the segmenter. In the second strategy, first the
segmenter provides a list of segmentation hypotheses, and then the recognition module eval-
uates each hypothesis {9, 37, 38]. This approach gives better results and a higher reliability
than the first one. However, it entails a higher computational cost, since it has to generate
all the segmentation hypotheses and then compare their recognition results. In addition,
in this latter method, the correct segmentation rate depends too much on the accuracy of
the isolated digit classifier in the recognition of digits and rejection of outliers (wrongly
segmented digits).

In general, we can classify segmentation and recognition methods of handwritten numeral

strings according to Figure 15. As seen in this diagram, segmentation can be either explicit

17

or implicit. In the explicit methods, segmentation is accomplished explicitly prior to recog-
nition in order to provide primitive segments (candidate digits) for the recognizer, such as
(10, 16, 35]. In these methods, cutting paths are normally found from the contour, profile,
background or foreground regions or skeletons of the string image. However, in implicit
methods, segmentation is embedded in the recognition process and is performed simulta-
neously with recognition such as in [12, 39]. In these methods, the challenge consists of
finding the best compromise between segmentation and recognition. As indicated in the
literature, explicit segmentation methods for handwritten numeral strings tend to have a

better performance than implicit methods [9, 2].

Segmentation Methods

for Numeral Strings

Segmentation- Segmentation Based on
Then-Recognition Recognition

‘44\

Explicit Segmentation Implicit Segmentation Explicit Segmentation

Figure 15: Classification of current methods for scgmentation and recognition of numeral
strings.

Similar to combining classifiers, there has been methods for combining string recognizers
such as Ye et al. [40] proposed a paradigm of combining string recognizers. They introduced
a frameworks for combination of multiple string recognizers. A parallel combination system,
is implemented based on three independent alphanumeric handwritten string recognizers
that act as black boxes. Among the different segmentation and recognition results provided
by three handwritten string recognizers, they try to find the best segments based on a graph-
based searching method. All factors such as the agreement of size, classification, and the
position are converted into a measurement resulting in a soft decision. Their combination
(so called StrCombo) could achieve a substantial improvement over any one of the individual
recognizers. The problem with this method is the very high computational cost and we

should have the original string recognizers before hand ready.

18

For more information on character string segmentation algorithms, see [41]. After segmen-
tation of numeral strings and separating them into digits (or connected components) some
features must be extracted for them for their recognition. In the next section, we review

some of the-state-of-the-arts feature extraction methods.

2.3 Feature Extraction for Isolated Handwritten Nu-
merals

Selection of a relevant feature extraction method is probably one of the most important
decisions in designing any pattern recognition system for achieving a high recognition per-
formance. For this reason, feature extraction has gained considerable attention in the field
of handwritten recognition. A good survey about feature extraction can be found in {42, 43].
The literature on handwritten digit recognition shows generally three main classes of features:
structural, statistical, and a combination of these two features.

Structural features are typically'perceptual attributes of the character such as position and
the number of their strokes, their bends, end points, branch points, loops, measures of
concavity, and directional features [44, 45, 46, 47, 48, 49]. In structural handwriting recog-
nition the characters are represented as unions of structural primitives. It is assumed that
the character primitives extracted from handwriting are quantifiable, and that one can find
the relations among them. Basically, structural methods can be divided into two classes:
grammatical methods [31] and graphical methods [50, 51].

Statistical features are normally the results of global mathematical transformations on the
image, for example, different sets of moments such as: Geometric moments, Invariant mo-
ments, and Zernike moments, statistics of chain codes, Fourier descriptors, and Wavelet
coefficients (transforms) [52, 53, 54, 55, 56].

Also, in order to improve the reliability of the recognition systems many researchers have
turned towards different combinations of structural and statistical features [57, 58]. Some
researchers have also used deformable models [59] in order to make their systems more

reliable against variations in the shapes of numerals.

19

Trier et al. [42] presented a comprehensive overview of feature extraction mecthods for off-
line recognition of isolated characters. The feature extraction methods included: template
matching, deformable templates, unitary image transforms,; graph descriptions, projection
histograms, contour profiles, zoning, geometric moment invariants, Zernike moments, spline
curve approximations, and Fourier descriptors.

Liu et al. [43] compared state-of-the-art feature extraction techniques, which included the
extraction of chaincode features, gradient features, profile structure features and peripheral
directional features. They presented the comparisons of recognition performances among
different types of these features.

Some methods such as [60, 61, 62] used the original gray-level or binary values of all pixels
of the character images as features. In these methods, no transformation or explicit feature
extraction involved. These values (features) are used as direct input to Neural Networks or
Support Vector Machine (SVM) classifiers. In fact, in these cases, the Ncural Network or
the SVM can act as a feature extractor during the learning process, and all the variations
among the charachter/digit shapes are handled by these classifiers.

Mitchell and Gillies [63] used mathematical morphology to extract concavity features from
digits for their handwritten digit recognizers. A classification system was implemented by a
symbolic model matching process.

Shi et al. [64] proposed a handwritten digit recognition system by using gradient and curva-
ture features of the gray level images in order to improve the accuracy of handwritten digit
recognition.

Krzyzak et al. [65] extracted features from the contours of numerals: 15 complex Fourier
descriptors were extracted from the outer contours and simple topological features were
extracted from the inner contours. These features were used as input of a three-layer Neural
Network for classification.

Oliveira et al. [9] proposed specific concavity, contour-based feature sets for the recognition
and verification of handwritten numeral strings.

Chen et al. [66] used a multiwavelet orthonormal shell expansion on the contour of hand-

written numerals to get several resolution levels and their averages. They used the shell

20

cocflicients as the features input and they input them into a multi-layer perceptron (MLP)

neural network to recognize numerals.

2.4 Classification of Handwritten Isolated Digits

In this section, we review some of the state-of-the-art techniques in handwritten digit clas-
sification. Classificrs take feature vectors for each patterns as their input, then as their
result they assign class labels (along confidence values) to those patterns (features). Classi-
fication is considered the next important step after feature extraction for the recognition of
handwritten isolated digits. The literature shows many classification schemes, which have
been applied for the recognition of handwritten isolated digits such as: Template Match-
ing, Nearest Neighbor (K-Nearest Neighbor), Polynomial Discriminant Classifiers, Learning
Vector Quantization (LVQ), Feed Forward Neural Networks such as Multi Layer Percep-
tron (MLP), and Support Vector Machines (SVM’s) [67]. Some researchers have also used
combinations of different classification algorithms (called multi-experts/multiple classifiers)
in order to make recognition systems more reliable against variations in each numeral’s
shape [68, 69]. See [43, 59] for a good survey on classification techniques in handwritten
recognition. Below, we briefly review some popular classification methods.
K-Nearest-Neighbor: In this classification method, for each pattern in the target dataset (test
data set), the closest K pattern (the K nearest neighbors) in the training dataset is found. A
distance measure such as Euclidean, or Hamming distance,... is used to find the neighbors.
Based on the class label of the majority of these neighbors, the class label is determined for
the test pattern [67, 70]. Using this approach in [71], good recognition results for handwriting
recognition were reported. The problem with the K nearest neighbor classification is that it
has a high computation cost and is inflexible. To avoid such a problem, some researchers in
[72] proposed a faster K-NN method for handwritten recognition.

Bayesian Classifier: In Bayes classification, class prototypes are used in the training stage in
order to estimate the class-conditional probability density function for a feature vector [67,

73]. Using Bayes’ rule (Bayes’ theorem), an unknown pattern (object) is assigned a class

21

label that achieves the highest (maximum) posterior probability.

Polynomial Discriminant Functions: The polynomial discriminant classifier assigns a pattern,
for example, a digit to a class with the maximum discriminant value. These discriminant
values are computed by a polynomial function on the components of the feature vector of
the incoming pattern. Coefficients of the trained polynomial classifier implicitly represent
learned class models [67, 74].

Hidden Markov Model (HMM): A Hidden Markov Model is a statistical model in which the
system being modeled is assumed to be a Markov process with unknown parameters, and the
challenge is to determine the hidden parameters from the observable parameters [75]. Nor-
mally, HMM consists of a set of states and the transition probabilities between consecutive
states. When HMM models are used for classification problems, and for each pattern class
an individual HMM is constructed. Then for each observation sequence (each sequence of
feature vectors), the likelihood for the sequence is calculated. The class in which the HMM
achieved the highest probability, considerd as the winner which considered to be the class
that produced the actual sequence of observations. HMM'’s are widely used in speech recog-
nition and thier applications to handwritten recognition is also increasing [76, 77, 78, 79].
Artificial Neural Network (ANN) classifiers: Neural Networks due to their important advan-
tages such as highly parallel mechanism (possible parallel implementation), excellent fault
tolerance (good performance with noisv data), adaptation, and their excellent ability to learn
from examples, have become increasingly popular in pattern recognition. ANN models are
generally very powerful, and they have very nice theoretical properties. So, these models can
be applied well to many real world applications. Different architecture of neural networks
successfully have also been used in handwritten recognition [80, 81, 82, 83]. The most widely
studied and used neural network in pattern recognition (and in handwritten recognition) is
the Multi-Layer Perceptron (MLP) neural network. These networks can be trained based
on gradient descent method, so-called the back propagation algorithm or generalized delta
rule [84]. The MLP neural networks with back propagation algorithm are very powerful

and they can easily be implemented. Other types of neural networks such as convolutional

22

neural networks are also proposed for handwritten recognition such as LeNet-5. These spe-
cialized architectures incorporate knowledge about the invariance of two dimensional objects
(characters/digits) by using local connection patterns, and by imposing constraints on the
weights of the network [85].

Support Vector Machines (SVM’s): SVM’s are introduced by Vapnik [86], and they are one of
the most interesting recent developments in classification and machine learning. Because of
their excellent generalization performance in learning. in the past years, SVM’s have received
increasing attention in machine learning and pattern recognition communities. Fach SVM
is basically a two-class (binary) classifier and multi-class classification is accomplished by
combining multiple binary SVM classifiers. Many SVM classification systems have been
developed for handwritten digit recognition and very promising results have been obtained
such as [87, 88, 89], and also the method proposed by Dong et al. [90] for fast training of
SVM’s.

Fuzzy Logic or Fuzzy Sets: Fuzzy set models can represent degrees of truth or belonging to
a set. In fact, fuzzy logic can encode imprecise knowledge and naturally maintains multiple
hypotheses that result from the uncertainty and vagueness inherent in real world problems.
Handwriting recognition also requires tools and techniques that recognize complex character
patterns and represent imprecise, common-sense knowledge about the general appearance of
characters, words and phrases, and fuzzy Logic or fuzzy Sets can provide these tools [91].
Also, combination of neural networks and fuzzy logic have been used in designing handwritten
recognition systems. Neural networks can model highly nonlinear processes, and fuzzy logic
can model imprecise knowledge. So, by combining the complementary strengths of neural
and fuzzy approaches into a hybrid system, we can attain an increased recognition capability
for solving handwriting recognition problems such as the systems in {91, 92, 93, 94].
Multiple Classifiers: Multiple classifiers or combination of classifier has attracted a lot the-
oretical and practical attention in pattern recognition community in the recent years. In
general, the decision obtained by a combination of several classifiers seems to to be better
(more reliable) than the decision obtained by the best individual classifier in the combina-

tion, however the computational cost will be higher. In handwritten recognition, there are

23

two main purposes for combining classifiers one is to increase recognition reliability another
is to increase recognition accuracy [68, 69]. The idea of classifier combination appears in
the literature under different names such as classifier ensembles [95, 96], classifier combina-
tion [69, 97}, mixture of experts [98], classifier fusion [99], committees [100]. The literature
shows many application of combining classifiers in handwritten recognition. Xu et al. [97]
proposed four combining classifier approaches according to the levels of information avail-
able from the various classifiers. The experimental results showed that the perforinance of
individual classifiers could be improved significantly. Huang and Suen [101, 102] proposed
the Behavior-Knowledge Space method in order to combine multiple classifiers for providing
abstract level information for the recognition of handwritten numerals.

Liu et al. [43] studied and compared the performance of different classifiers in isolated hand-
written digit recognition. The classifiers were the k-nearest neighbor, three neural network
classifiers, a learning vector quantization classifier, a discriminative learning quadratic dis-
criminant function (DLQDF) classifier, and two support vector classifiers (SVCs). They
compared the performance of these classifiers using different features such as chaincodes,
gradient, profile, and peripheral direction contributivity.

Decoste and Scholkopf [103] proposed a method for the recognition of handwritten isolated
digits. They incorporated prior knowledge about invariance of digits (as support vectors)
under some transformations such as translation, rotation in the training procedure of Support

Vector Machines (SVMs) as isolated digit classifier [104].

2.5 Verification Methods

Verification schemes are used in order to reduce the number of misclassifications, and also to
increase the reliability of handwritten recognition systems in the classification stage. Zhou
et al. [105] investigated some verification schemes, and they also proposed a verification
model for handwritten numerals. They conducted experiments on both isolated and touching
numerals. Their system has two layers of verification modules: class-specific verifiers and

pair-wise verifiers. A class-specific verifier was designed to distinguish one class from all other

24

classes, for example: is the input '3’7 A pair-wise verificr was used to verify the rccognized
characters from two different classes for example: is the input "7 or 1’7

Oliveira et al. [106] described the concept of levels of verification. They introduced two
levels of verifications on handwritten numeral strings: high-level and low-level. The high-
level verifier dealt with a subset of the classes in order to confirm or deny the hypotheses
produced by the general-purpose recognizer. The low-level verifier dealt with meta-classes
of the system (characters and parts of characters). The purpose of the low-level verifier was
to determine whether a hypothesis generated by the general-purpose recognizer was valid or

not.

2.6 Segmentation and Recognition of Handwritten Words

Although this thesis focuses on handwritten numeral string recognition and not on word
recognition, here, we briefly review some literature on word recognition in order to show the
important differences between segmentation and recognition of numeral strings and words.
Segmentation and recognition of handwritten word is also an important topic of research
in document recognition. Some applications of offline handwritten word recognition include
recognition of legal amounts on bank checks, interpretation of handwritten addresses on
pieces of mail, reading handwritten names/words on business forms, etc [107]. In general,
handwritten words or strings may be cursive, purely discrete, touching discrete, or a mixture

of these styles. Refer to Figure 16 to see some examples of these cases.

WLa Cix thi by
Figure 16: Examples of handwriting styles: (a) Cursive, (b) discrete, and (c¢) mixed.

Compared to numeral string recognition, word recognition applications normally include a
lexicon which shows all the possible or meaningful words. The size of the Lexicon could be

very small for example about 50 words or very large such 50,000 or more words. Although

25

words are normally complex patterns, and they contain great variability in handwriting
styles, but handwritten word segmentation and recognition can becomes tractable when
a lexicon of valid words is provided [108, 109]. The lexicon is usually dependent on the
application domain. For example, in handwritten bank check processing there are exactly 33
different words that may appear in the so-called legal amount fields. However, the number of
different courtesy amount values that can appear on the bank checks can be nearly infinite
(in fact it depends to the maximum number of the allowed digits in the courtesy amount
field, which is normally large).

From the earliest days of research in handwritten word recognition, two approaches to this
problem have been identified. The first approach, often called the analytical approach, treats
a word as a collection of simpler subunits such as characters, and proceeds by segmenting
the word into these units, identifying the units and building a word-level interpretation using
a lexicon. The other approach treats the word as a single, indivisible entity and attempts to
recognize the word as whole. The latter approach is referred to as the word based or holistic
approach. As opposed to the analytical approach, the holistic paradigm in handwritten word
recognition treats the word as a single, indivisible object and attempts to recognize words
based on features from their overall shapes. The holistic paradigm was inspired in part by
psychological studies of human reading, which indicates that humans use features of word
shapes such as length, ascenders, and descenders in reading; (see Figures 17 for some of the
holistic features). A large body of evidence from psychological studies of reading points that
humans do not, in general, read words letter by letter. Therefore, a computational model of
reading should include the holistic method.

Because analytical approaches decompose handwritten word recognition into the problem of
identifying a sequence of smaller subunits of individual characters, the main problems they

face are:

e Segmentation ambiguity: deciding the boundaries of individual segments in the word

image (see Figure 18)

e Variability of segment shape: determining the identity of each segment (see Figure 19)

26

// s
/./f’//{,//" T / ™
ey 7 /
54’ Lo jS‘ (i,
1! - Yo

vy -
V-7 Ny 7/
Destender
@]

Figure 17: (a) Word image. (b) Word-shape features do not refer to individual characters
and include “Length”, “Ascenders”, “Descenders”, “Loops”, etc.

2 dred

lcdh)

cvi—dU
G

Figure 18: Ambiguities in segmentation: the letter(s) following “H” can be recognized as

48 »

w”, or “ui” or “iu” or “i

iii”.

Holistic approaches circumvent these problems in word recognition because they make no
attempt to segment the word into subunits. Actually, holistic methods follow a two-step
process: the first step performs feature extraction, and the second step performs global
recognition by comparing the representation of the unknown word with those of the references
stored in the lexicon. This scheme leads to two important practical consequences: firstly as
letter segmentation is avoided and recognition is performed in a global way, these methods

are usually considered to be tolerant to the dramatic deformations that affect unconstrained

Qooco/o oo

PropprPePF

Figure 19: Large variability in shapes of handwritten characters (“O” and “P” in this ex-
ample).

27

cursive scripts. Secondly, as they do not deal directly with letters but only with words,
recognition is necessarily constrained to a specific lexicon of words.

Holistic approach has also been used for numeral string recognition. Zhou and Suen [110]
presented a holistic approach for the recognition of pairs of touching digits. They considered
recognition of touching pairs as a classification problem with 100 different classes, and they
proposed a classifier based on error correcting codes that could handle this large number
of classes. The problem with their holistic method is that it is limited to touching pairs of

numerals, and it cannot be applied to unconstrained numeral strings with unknown lengths.

2.7 Some Results From the Literature

Here, in this section we summarize some results from the literature on segmentation and
recognition of handwritten isolated numerals, numeral strings, and courtesy amounts on

bank checks.

Table 2: Some results from the literature on isolated digit recognition.

Approach and Year Rec.(%) | Err.(%) | Rej.(%) | Database Num. of test
samples
Zhou et al. [111], 1999 90.0 1.0 9.0 CENPARMI| 2,000
Park et al. [112], 1998 98.2 1.8 0 NIST SD3 53,301
Ha and Bunke [113], 1997 | 99.5 0.5 0 NIST SD3 173,124
C. L. Liu and M. Naka- | 98.45 1.55 0 CENPARMI| 2,000
gawa [114], 1999
Mayraz and Hinton [115], | 98.3 1.7 0 MNIST 10,000
2002
LeCun et al. [60], 1998 99.3 0.7 0 MNIST 10,000
Lauer et al. [116], 2006 99.46 0.54 0 MNIST 10,000
Simard et al. [117], 2003 99.60 0.40 0 MNIST 10,000

Table 3: Some results from the literature on segmentation of numeral strings.
Recog. | Error Reject | Database
Approach Rate Rate Rate
(%) (%) (%)
Cheriet et al. [118] | 80.8 19.2 0

120 images of touching digits from
their own collection

Luet al. [1] 97 3 28.6 3355 images of touching digits from
NIST Database

Shi et al. [119] 85.7 14.3 [2579 US zipcode images from US
Postal Database

Oliveira et al. [35] 95.24 2.14 2.62 900 touching digits from Brazilian
Bank Checks

Chen and Wang [2] | 96 4 7.8 4178 images of touching digits from

NIST Database and 332 images
from their own collection

Alhajj and Elna- | 97.8% 2.2% 0 4095 images of touching digits from
gar [120] their own collection

28

Table 4: Some results from the literature on courtesy amounts recognition.

Method Rec.(%) | Err.(%) | Rej.(%) | Database

Lethelier et | 60.0 40.0 0 10,000

al. {121] French
cheques

Suen et al. [122] | 62.0 1.0 37.0 400 Cana-
dian
cheques

Kaufmann and | 79.3 20.7 0 1,500

Bunke {123} Swiss
cheques

Table 5: Some results from the literature on numeral strings recognition.

Approach Rec.(%) | Err.(%) | Rej.(%) | Database

Britto et al. [76] 90.33 9.67 0 NIST NSTRING
SD19

Oliveira ct al. [9] 93.57 6.43 0 NIST NSTRING
SD19

Liu ct al. [8] 96.74 3.26 0 A subset of NIST
NSTRING SD19

2.8 Discussion

In the present chapter, we reviewed some of the state-of-the arts techniques and their results
related to the main areas of our research. By analyzing these techniques and results, we can

draw some general conclusions:

o There have been a lot of progress on isolated digit recognition. Some papers reported
recognition rates higher than 99% on isolated digits. However, still there is a big
gap between the performance of human beings in reading on numeral strings and and

machines.

e Generally the results on handwritten isolated digit recognition is higher than numeral
string segmentation. This is due to the complexity of segmentation of numerals. In
fact, when the problem comes to numerical string segmentation and recognition, nor-
mally performances go down due to problems such as connected (touching) digits,

overlapping, and unknown length of the strings.

e Most of the papers in the literature focus on segmentation of isolated or touching
digits and they do not consider segmentation and recognition of numeral strings with
unknown lengths.

o It is difficult to carry out a complete comparison between different approaches, since

29

they have been tested on different databases and even with different number of testing

samples from the same database.

e In applications such as recognition of courtesy amounts reliability of the system is
much more important than recognition rate, so in these systems normally there is a

higher rejection rates.

e On segmentation of digits segmentation-based recognition systems with explicit seg-

mentation normally achieves better results than other methods.

o One of the main problems, in segmentation and recognition of numeral strings is the
recognition (rejection) of outliers (over or under segmented digits). The main reason

is that even rejection of outliers with ordinary classifiers is very difficult [8, 9].

2.9 Summary

In this chapter, we presented the state-of-the arts of the main areas related to the segmenta-
tion and recognition of handwritten numeral strings including: pre-processing, segmentation,
feature extraction, digit recognition/classification, and verification. For each of these topics,
we reviewed some of main important contributions in the literature. We also briefly reviewed
some important techniques on word segmentation and recognition, and we highlighted the
main differences between the word and numeral string recognition. In the next chapter, we
will present an overview of our system and we will describe our methodology for segmentation

and recognition of handwritten numeral strings.

30

Chapter 3

Overview of Our Methodology

In this chapter, a general mathematical model for the problem of segmentation and recogni-
tion of handwritten numeral strings is presented. Then, based on this mathematical model,
an overview of our methodology for solving the problem of segmentation and recognition of

handwritten numeral strings is shown.

3.1 Mathematical model

Segmentation and recognition of string images can be modeled as an optimization problem as
follows: There is an input image I (as shown in Figure 20), and it is assumed that I contains a
handwritten numeral string with an unknown length (unknown number of digits/connected
components). We are looking for a segmentation or partitioning of image I denoted by

S* (i = 1,---,N), such that: S® has m; (1 < m; < oo) partitions which are denoted by

s§ (j =1,---,m;), and they are subject to the following constraints:
I=s{Usyu---Ush,, (I = Input String) (1)
85 # o, (Vj=1,---,m) (2)
séﬂs}'g:(p, (V3. k=1,---,m;) and (j#k) (3)

There also exists an evaluating function (f), which assigns to each segment or partition

st of §', a segmentation-recognition score of v! and a class label of ¢;. The value v} is a

31

Input Image Suring Image

First Scgmentation / >
Hypothesis N 1 1 /
G CA

Second Segmentation S
Hypothesis k 2

52
S 3
S:, 3 \‘ my
\)
»

Nth Segmx ion - 0y
' Hy;‘;:;iasl ° N N N (\\ / Y
gv Sy Sy | 5 \
! l {

Figure 20: Illustrations of segmentation hypotheses for an input string image. S'. i =
1,---, N shows the segmentation hypotheses or partitionings of the numeral string, and s},
is the k" partition or segment of S°.

L~
—
;”_

measurement of the confidence (likelihood, or membership) of segment s;'- to be a valid digit

in the class of c§~ as described below:

(¢, viy=f(s}), j=1,---,my vi€0,1], ¢ €{0.1.2,---,9} (4)

Among the set of all possible partitionings (segmentation hypotheses) of the image I (shown
in Figure 20), we are looking for the segmentation hypothesis or partitioning of S* which

globally maximizes our objective function F' as follows:

F(Sz) = MZTL(V;,V;,,I/Z) (5)

m;

In general, this optimization problem can be expressed as shown in Figure 21 and can be
described as follows:
The segmentation or partitioning (S*) which globally maximizes F is called an optimal

solution of the problem, and the sequence of class labels (cé., j=1,---,m;) corresponding

32

Maximize F(S?), Vi=1,---,N, and I = Input String

Subject to I =siUsbU---Us! Vsj-ES", (j=1,---,my), 1 <m; < o0

3;7&@ V]::l/ml

siNs, =¢ Vsi, sk € S', j#k, and jk=1,---,m,

Figure 21: The general optimization model for our problem

to this optimal solution will be called the recognition result of the input handwritten numeral

string. This recognition result is presented as follows:

¢, ch,ch, -+, ¢t (A numeral string with m; digits)

In this general model, several candidate functions can be chosen for the objective function,

such as those shown in Equations 6 to 9.

F(S) = Minl%, v, (Minimum Objective Function) (6)
F(SY) = I, v (Product Objective Function) (7)
F(SY) = S ot (Summation Objective Function) (8)
F(S) = mi Yt v (Average Objective Function) (9)

In this thesis, we propose minimum objective function (Equation 6), and we try to maximize
this function, in order to ensure that all the segments (partitions) of the optimum segmen-
tation hypothesis receives enough high segmentation-recognition scores (l/;) Evaluation of
segmentation hypothesis by combining their partial scores (VJ’) through the minimum func-
tion also facilitates detection of the outlier patterns in those segmentation hypotheses. This

will be explained in detail in Chapter 7.

33

3.2 Methodology

As seen in the previous section, we modeled segmentation and recognition of an input hand-
written numeral string as an optimization problem. Therefore, in order to solve this problem,
our proposed method contains several important stages. Figure 22 shows a general flowchart

of these stages in our proposed system. In this section, we briefly review these stages.

Input Image

Numeral String
\ 4 Image

Pre-Processing

Pre-Processed
Image
Segmentation
Candidate
Cutting Paths
Confidence i -
Values Genetic
A e Algorithm

Population of Segmentation
Hypotheses

Feature Extraction

Features, and Contextual
y Information

Evaluation and
Classification

No Labels and
Confidence valucs

Numh\ 77777 . éess Vam
o

< Generations > -
T'/‘ " Yes

\\ >G e N
™

T~

Yes Post Processing
(Optional)
v

Reject the String o 7 Ou(p\;:String
Image (m digits)

€ C5Cy 5.5 C,

m

Figure 22: General flowchart of our proposed system for handwritten numeral string seg-
mentation and recognition. T3, and G are two threshold values, which can be adjusted by
the user of the system.

As seen in this flowchart, the first step in our system is inputting the image. During this step
a handwritten numeral string with unknown length (unknown number of digits) is input into
the system. In the second stage, the input image is pre-processed in order to prepare it for
segmentation. The details of the pre-processing steps will be presented in Chapter 4. The

next stage after pre-processing is segmentation. Segmentation is a very important step in our

34

system which its details will be described in detail in Chapter 5. The segmentation module in
our system has two main goals: first to provide a set (super set) of best segmentation candi-
dates (cutting paths) for over-segmentation of the input string image, second to produce less
number of outlier patterns as much as possible. This module provides main building blocks
(cutting paths) for generating segmentation hypotheses for the input string (as those cutting
paths shown in Figure 20). After producing candidate cutting paths by the segmentation
module, each combination (subset) of them can be chosen to form a possible segmentation
hypothesis. In the next stage of the system, there is a search and optimization module which
tries to find the best segmentation hypothesis for the input string based on some segmen-
tation and recognition scores. In this stage, a Genetic Algorithm (GA) {124, 125] generates
and searches the populations of segmentation hypotheses for the input numeral string. In
fact, GA searches the space of all possible segmentation hypotheses, and tries to find the
optimum hypothesis for the segmentation and recognition of the input numeral string. In
the Feature Extraction stage, some features are extracted for each segment (partition) of
each segmentation hypothesis. These features are used by the Evaluation and Classification
module. In the Evaluation and Classification module, based on the features produced by
the Feature Extraction module, all the segmentation hypotheses are evaluated. This module
assigns a combination of scores to each segmentation hypothesis for its segmentation and
recognition. Our GA uses these scores as confidence values to compare generated segmen-
tation hypotheses also to find the optimum of those scgmentation hypotheses. The details
of our Genetic Algorithm, Feature Extraction and Evaluation method will be presented in

Chapters 6 and 7, respectively.

3.3 Summary

In this chapter, a mathematical model for the problem of segmentation and recognition of
handwritten numeral strings was presented. We modeled segmentation and recognition of
handwritten numeral strings as a optimization problem. Based on this mathematical model,

a general overview of our solution was shown. In the following chapters we will discuss the

35

details and the main stages of our system.

36

Chapter 4

Pre-Processing

Pre-processing is the first stage of processing in our proposed modular system. The goal
of pre-processing is to prepare input images for segmentation and feature extraction. We
assume that all the input images to the system are in binary (black and white) format,
so no binarization process is involved in our system. In this chapter, two important pre-
processing steps for handwritten numeral strings, which are essential in our modular system,
are presented as follows: first, smoothing and noise removal, and second, slant correction.
In the first step, as much as possible, images of handwritten numeral strings are smoothed
and their noises are removed. In the second pre-processing step, in order to facilitate the
segmentation task and also in order to make the resulting cutting paths as straight (vertical)
as possible, the slants of the input numeral strings are corrected. Numeral strings are
essential parts of documents such as: bank checks, postal codes (in mail), tax form. Slant

correction can significantly improve their segmentation and recognition accuracy [3, 15].

4.1 Smoothing and Noise Removal of Handwritten Nu-
meral Strings

Frequently, in handwritten document analysis and recognition systems, smoothing opera-
tions are applied in the initial image processing steps in order to reduce noises (clean the

images) and to regularize the edges of characters, numerals, or words. In fact, by smoothing

37

operations, small gaps on the contours (or edges) of the characters are filled, or small bumps
in their contour edges (or their edges) are removed. Normally, smoothing operations are im-
plemented by filtering operations. Filtering is a neighborhood operation, in which the value
of any given pixel in the target image (so-called target pixel) is determined by applying some
algorithms to the values of neighboring pixels in the original image. In filtering methods, a
pixel’s neighborhood is defined as a set of pixels that are specified by their locations relative
to the pixel of interest (center pixel). A neighborhood usually is defined by specifying a
connectivity. There are two types of connectivity or neighborhoods (4 and 8), as shown in
Figure 23. Similar to the methods in [9, 13], in our system, we use four 3 by 3 filter masks
based on 8-neighborhood pixels in order to smooth the binary images of numeral strings.
These filter masks are shown in Figure 24. In the rest of this section, we explain how we

apply these filter masks for smoothing the input images.

(a))

Figure 23: (a) 4-connected (or 4-neighborhood): pixels are connected if their edges touch. In
other words, two pixels are neighbors if they are connected along the horizontal or vertical
directions. (b) 8-connected (or 8-neighborhood): pixels are connected if their edges or their
corners touch. In other words, two pixels are neighbors if they are connected along the
horizontal, vertical, or diagonal directions.

The masks shown in Figure 24 are passed over the entire image in order to smooth it, and
this process is repeated until no changes (removing or adding pixels) will take place in the
target image. The masks are applied to the images sequentially as: a, b, ¢, and then d,
and this process is repeated as follows: scanning of the image by each mask begins in the
upper right corner of the image, and proceeds row by row moving downward. The pixel that
falls in the center of each mask is considered as the target pixel. Pixels overlaid by any cell

marked “X” are ignored. If the pixels under the cells marked by “=" all have the same color

38

@ (b) (c) (d)

Figure 24: Examples of filter masks (3 by 3) which are used for smoothing binary document
images, (b), (c), and (d) are rotated versions of the mask in (a) with 90 degrees.

(value), i.e., all are black (zeros), or all are white (ones), then the target pixel is forced to
match them so that they will have the same color (value), otherwise the target pixel does not
change. These masks are able to fill single pixel holes or to remove single pixel bumps in the
edges of the characters or numerals, and they can remove single pixel noises (so-called salt
and pepper noises). Figure 25 shows some of the result of smoothed handwritten numeral
strings using these masks. As shown in these figures, artifacts such as lines that are one

pixel wide can also be completely eroded from the input images.

4.2 Slant Detection and Correction of Handwritten Nu-
meral Strings

After smoothing, slant correction is an important second step in the pre-processing stages
of both handwritten numeral string and word recognition. By definition, the deviation of
numerals, characters, or strokes from their vertical direction (which is normally found in
handwritten texts), is called slant [126]. Figure 26 shows some samples of slanted hand-
written numeral strings and words. The general purpose of slant correction is to reduce the
variation of the script, shapes of characters and specifically to improve the quality of their
segmentation candidates. These improvements, in turn, can yield a higher recognition accu-
racy or robustness in the automatic reading of handwritten documents. In addition, slant
angle is an important feature in forensic examination and verification of official handwritten

documents [127].

39

— 53

(a) (b)

(c) (d)

Figure 25: (a and c) original images, (b and d) smoothed images, respectively.

Many methods have already been proposed for slant detection/correction of handwritten
words [126], [128]-[129]. However, there has been little research on slant correction of numeral
strings. Only a few methods for slant correction of handwritten numeral strings such as [3]. or
for typewritten numeral strings such as [130] can be found. Examples in Figure 26 show that
digits in numeral strings are normally written separately, and compared to handwritten words
(especially cursive words), numeral strings have a smaller number of touching components.
Therefore, word slant correction methods are not directly or efficiently applicable to numeral
strings.

Generally, methods for slant correction of words or numeral strings can be classified into two
categories: uniform and nonuniform [129]. In uniform methods, the average slant angle of all
the characters or components is estimated, and then uniform correction is applied to all the
characters/components [126], [128], [131], [3], [130]. In nonuniform methods, a local slant
angle is estimated in each horizontal position of the word, and then the slant is corrected

nonuniformly in different positions or parts of the word [129]. For estimation of local slant

40

bjeh 6

)

sva0) 400/ MHS TT840

Figure 26: (a) Images of slanted handwritten words, and (b) Images of slanted handwritten
numeral strings, selected from USPS-CEDAR CDROM1 Database.

angles, different techniques have also been proposed in the literature. Some techniques
estimate slant angles based on the angles of non-horizontal strokes in the word [128],[132].
Others [133, 134] use projection histograms or statistics of the chain codes of contours in
order to estimate the local slant angles [135],[131],[3]. Normally, these techniques of slant
angle estimation are strongly based on heuristic rules or they have a high computational
cost.

In this section, we contribute an efficient uniform slant correction method for handwritten
numeral strings. In Chapter 8, we will compare our method with similar methods in the
literature. In our method, a technique based on geometric features is utilized to estimate
the local slant angles, and then a new technique is developed in order to find the average
slant angle of all the connected components in the string. In the following subsections, we
will describe the steps and the details of our slant correction method as follows: Component
Slant Angle (CSA) estimation, String Slant Angle (SSA) calculation, and String Slant Angle

(SSA) correction.

4.2.1 Component Slant Angle (CSA) Estimation

After smoothing the input images as explained in the previous section (4.1), component
slant angle (CSA) estimation is the first step in our slant correction method. As shown in

Figure 27, handwritten numeral strings are normally sets of connected components (CCs),

41

where each component of the string has its own slant angle and height.

Figure 27: Handwritten numeral strings are sets of connected components (CC’s) such as:
isolated digits, parts of fragmented digits or touching digits.

In our CSA estimation algorithm, CC’s are visited one by one from left to right (or vice
versa), and for each CC a slant angle is estimated. The method in [130], which has been
used for slant estimation of typewritten isolated digits, is generalized in order to estimate
the slant of all CC’s. Details are described as follows: First, each CC in the numeral string
is circumscribed by a tilted rectangle. In other words, each CC of the string is surrounded

independently by the following four straight lines ({; to l4):

L: y=z+M (10)
lL: y=z+p3 where:) < 3 (11)
li: y=—-z+4f; (12)
ly: y=—x+ B where B3 <3y (13)

The details are shown in Figure 28. As seen in Figures 28-a, and in 28-b, denoted by 0, a

Component Slant Angle (CSA) can be estimated for each CC as follows:

6 = arctan(d/h) (14)

The parameters h, and d, used in Equation 14, are illustrated in Figure 28, and they are
explained as follows: h is the height of the connected component, and d is the horizontal

distance from point P to point Q, where, points P, and Q are the intersections of the lines

42

_ l
y:—x-}-lB4 y—x"'ﬂz 2

7 N A———==-
A , y =—X+/@ l4 I

Iy
(a) (b

Figure 28: (a) A connected component (CC) is circumscribed by a tilted rectangle, where
h is the height of the CC, and d is the horizontal distance from point P to point Q (points
P, and Q are the intersections of the lines {1, I3, and I3, Iy, respectively), (b) Based on the
parameters h and d, a component slant angle () is estimated for the connected component.

Ly, I3, and [y, 1, respectively. The horizontal distance from P to Q is projected on the x

coordinates, and it is measured algebraically as follows:

d=(Ba+ 05— B3—)/2 (15)

Since h is the height of the CC, it is always a positive value. However, the sign of d (horizonal
distance) depends on the relative position of points P and Q, so it can have a negative or
positive value. Therefore, corresponding to the left or right orientation of each CC, CSA (6)
can have a negative or positive value, respectively. After estimating the values of CSA for
all the components of the input numeral string, these values are used in order to calculate a

string slant angle. The details will be explained in the next section.

43

4.2.2 String Slant Angle (SSA) Calculation

String slant angle (SSA) calculation is based on CSA values. Our observations and exper-
iments on strokes/digits in handwritten numeral strings, and also our observations on the
orientation of the straight objects, revealed that visually human beings pay more attention
to the orientation of the objects which are higher than shorter. For example, people take no-
tice more to the orientation of the Leaning Tower of Pisa than to the orientation of any tree
around it, although the trees may have more of an inclination than the tower. Inspired by
these observations, we defined a weighted average for the slant angle of the numeral strings
(SSA’s) based on the relative heights of their components, and their CSA’s as follows: As-
sume there exists N connected components in a numeral string, and also assume that the
slant angle of each component (6;, 1 < i < N) has been estimated independently according
to the method described in Section 4.2.1. A weighted average slant angle (©) for the whole

numeral string can be computed as follows:

6 =
Zi:1 hi
- ()
i\ i)
= w; - 6; where: w; = — 5 (16
; S h)

In Equation 16 above, the parameters 8;, and h; are the component slant angle and the
vertical height of the *" connected component, respectively. An illustration of 6;, and h;
for each component was shown in Figure 28-b, and is shown in Figure 29-b. We denote the
relative height of the ¢** component (h;/ X, h;) with (w;), and consider it as the weight
for its slant angle (6;). We name © as the String Slant Angle (SSA), and we define it as the
global slant angle for an entire handwritten numeral string. As seen in our method, each
component of the string contributes to the value of © proportional to its relative height,
with respect to the other components. In Equation 17, we summarize and write © (SSA)
as a convex combination of all the components’ slant angles (CSA’s) in the numeral string.

In this combination, components which are higher have bigger weights (w;) for their slant

44

angles (0;), compared to shorter components. Having calculated SSA, we use it in order to

correct the slant of the numeral string. This will explain in the next section.

N
@szi-Oi where: 0 < w; <1, and Zwi:] (17)

=1 =1

/274 | /27Y]

Ci

(a) (b)

Figure 29: Illustration of the heights of the components: (a) Original numeral string, (b)
Vertical heights of all the connected components (four CCs) are shown.

4.2.3 String Slant Angle (SSA) Correction

In order to correct the slant of a numeral string, its SSA (0) is used. A shear transform [136]
in the horizontal direction is applied to all the pixels of the string image, to shift them to the

left or to the right (depending on the ©). The transformation expressions are given below:

¥ = r-—y-tan(O) (18)

y =y (19)

where = and y are horizontal/vertical coordinates of the pixels in the original image; z,
and 3 are the corresponding transformed coordinates. As Equations 18 and 19 show, this
transformation only shifts the pixels of the image in the horizontal direction, proportional
to their vertical height (y). If © is positive, the pixels will be shear transferred to the left,
otherwise they will be shear transferred to the right. This transformation does not change
the vertical height of the objects in the image. An example of applying our string slant
correction method to a numeral string is shown in Figure 30. Several other examples will be

shown in the next section.

45

w7421

Figure 30: (a) Original numeral string, (b) Slant corrected by the proposed method.

4.2.4 Improving the Visual Quality by Slant Correction

In order to evaluate the effects of our slant correction method on the visual quality of
handwritten isolated digits and numeral strings, 1600 images were randomly selected from
four different databases (from each database we selected 400 samples), and we visually
verified the result of slant correction on those samples. These databases included: Isolated
handwritten digits (MNIST. and CENPARMI), and handwritten numeral strings (NSTRING
SD-19, and CENPARMI courtesy amounts of bank checks). Our results are summarized in
Figure 31. As shown in these figures, in nearly all the cases our slant correction method can

improve the appearance or the visual quality of the images.

8|/ 2N Y|56\7 8|7 Ol /|F /s \a L2
3)012395‘6‘?3913)0162345(078"7
52|03\ 83\ |00 45| 5Y 53 IH 00| H5.43| 186234 % | 32|/ 00
o 15363 313400 4| Y52 Q) [Hoo | HoM? 2ok 342 | {3/ DO

Figure 31: Top rows: Original images of numeral strings selected from different databases:
(a) MNIST, (b) CENPARMI Isolated Digits, (c) NSTRING SD-19, (d) CENPARMI Cour-
tesy Amounts. Bottom rows: Corresponding numeral strings slant corrected by our proposed
method.

4.2.5 Statistical Characteristics of Slant Angles

For the first time, we explore the statistical characteristics of slant angles in handwritten

numeral strings, and we present some important statistics of slant angles. The method

46

presented in this chapter provides an efficient tool which enables us to measure and collect
the SSA (©) of many handwritten numeral strings very quickly. We conduct an exploratory
data analysis on these values (©) in order to obtain an insight into slant angels, uncover
their underlying distribution, and extract some of their important statistics. Then, we
look at the distribution of © over a very large number of handwritten numeral strings.
In Table 6, slant angles of some numeral strings from the NIST NSTRING SD19 database
(unconstrained handwritten numeral strings with various lengths) and from the CENPARMI
database (unconstrained handwritten isolated digits) are presented and compared. In the
first and third columns of this table, we show the original strings and their corresponding
slant corrected strings. In the second column of this table, estimated string slant angles
(SSA’s) for the corresponding original strings are shown. The rows of this table have been
sorted increasingly, based on the SSA’s in the second column. As this table shows, when
the absolute value of SSA is around 7 degrees or less than that. it is very hard to make a
distinction between the original strings and their slant corrected images visually. Examples
in Table 6 show that the bigger the absolute value of the SSA above 7 degrees, the easier it
is to detect the slant in the string by the human eyes. In our analysis, we define slant angles
with absolute values less than 7 degrees as relatively small (usually we ignore them).

In order to find the probability of occurrence (percentages) of these cases, we investigate the
distribution of slant angles over a very large sample of handwritten numeral strings. In total,
8232 samples of handwritten numeral strings were randomly selected from the NSTRING
SD-19 Database. These strings had different lengths from 2 to 10 digits per string, and they
were written by different unknown individuals. The values of SSA’s (©’s) for all the numeral
strings of this dataset (8232 samples) were computed, and their distribution was drawn as a
histogram in Figure 32.

The histogram shows that the underlying distribution of string slant angles (SSA) in hand-
written numeral strings is a near-normal distribution. In order to verify this conclusion,
the normal probability plot of our data is shown in Figure 33. A normal probability plot
is a graph of the cumulative probabilities of the data, using a specific plotting convention

(special vertical scaling). This plot provides a better (graphical) test for normality than the

47

Table 6: Examples of digits, or numeral strings selected from NSTRING SD-19, sorted by
their slant angles. Corresponding slant corrected strings are shown in the third column.

Original String SSA {¢m)of Original| Slant Cprrocted
String (in degree) String
| El -18.03 @
= o5
> 782 =]
Eoé2] 437
7o o7 7ol
+1.4 (1}
oS5 +2.04 |‘7°’|
.04
+6.05
/52 +7.21 Ris2c)
Eg‘ +18.01 ﬁ
@ +22.71 @
a2 +25.65 5]
+28.87 m
L= +34.74
T w5
_ Zl +39.02 [

histogram itself [137, 138]. As seen in Figure 33, the normal probability plot of our data is
very close to a straight line. Therefore, according to [137], a near-normal distribution is a
legitimate model to represent the distribution of slant angles.

The parameters of 4 (mean), and o (standard deviation) of the normal distribution (N (g, 02))

in Figure 32, can be estimated as follows:

_ TMe;
S T (20)
it — w)?
A (21)

Here, M is the number of numeral strings in our dataset (M = 8232). After using the above

48

1000 T T T T T T T T

900

800

700

600

500

Frequency

400

300

200

100

40 - - - [y} 10
Slant angle (&) in degree

Figure 32: Histogram of the distribution of slant angles over 8232 samples of handwritten
numeral strings with different lengths. This histogram shows a near-normal distribution.
For comparison, it has been superimposed with a normal distribution.

estimations, we obtained p = 8.7° and ¢ = 11.4°. So, the Probability Distribution Function

(PDF) of SSA’s over different numeral strings can be approximated as follows:

p(©) = \/21_71'0 exp(—1/2((© — u)?/0?)), where: =87, and o=114° (22)

As seen in Figure 32, the average value of a slant angles (1) of handwritten numerals is
around 9 degrees to the right, and the range of the values of slant angle (©) often changes
from —32° (32° slant to the left) to +41° (41° slant to the right). In general, we consider the
whole range of (©) from —90° to +90°. Using the approximation of PDF in Equation 22, we
summarized some important statistics about the distribution of slant angles in handwritten
numeral strings in Table 7. This table indicates that 22% of writers slant their handwritings
to the left, and the rest (78% of writers) slant their handwritings (for numerals) to the right.
Since the slant angles with absolute values less than 7 degrees are too difficult to detect by
human eyes, we can say that about 35% of the handwritten numeral strings have very small

SSA’s, while the rest (about 65%) have a considerable slant to the left or to the right. This

49

Normal Probability Plot

0.999]
0.997, ,
L

0.99 >
0.98 ,{,

0.95
0.90

o
~
o

Probability
o
o
o

o
P
1251

0.10
0.05

0.02
0.01

0.003
0.001

-30 -20 -10 0 10 20 30 40
String Slant Angle (SSA} in degree

Figure 33: Illustration of a normal probability plot for the slant angles of 8232 samples of
handwritten numeral strings. A normal probability plot is a graph of cumulative probabilities
of the data, using a specific scale on the vertical access. If the data come from a normal
distribution, the plot will appear to be near linear.

shows the importance of slant correction. In Chapter 8, we will investigate the effects of
our slant correction method on segmentation of handwritten numeral strings, and we will

compare our method with other methods found in the literature.

4.3 Summary

Pre-processing of handwritten numeral strings puts them in a better condition for further
processing such as: segmentation, feature extraction, and recognition. In this chapter, two
essential image pre-processing steps in our modular system were presented: smoothing (noise
removal) and slant correction. Smoothing removes the small spots of noises and regularize

the edges in the image. Slant correction straightens the orientation of the digits in numeral

50

Table 7: Some important statistics about the distribution of string slant angles (SSA) in
handwritten numeral strings. (Note: a +a =1, and b+ b = 1).

© (String Slant Angle) p(©) (Probability)
Slant to the left: © € (—90°,0°] 0.22 (a)
Slant to the right: © € [0°,+90°) 0.78 (a')
Small or zero slant: © € (=7°,7°) 0.35 (b)
Considerable or large slant: |©] > 7° 0.65 ()

strings, and reduces the variation of their shapes. Here, we presented a new method for slant
correction. Also, for the first time, we investigated the statistical distribution of slant angles
in handwritten numeral strings, and we presented some statistics about slant angels. In the

next chapter, we will present the details of our segmentation module.

51

Chapter 5

Segmentation Hypotheses Space:
Generating Cutting Paths

In this chapter, an algorithm for segmentation (over-segmentation) of unconstrained hand-
written numeral strings is proposed. We presented the basic idea of this algorithm (separation
of pairs of touching digits) in [16]. Here, the algorithm is expanded such that it can segment
numeral strings with unknown lengths. The goal of our segmentation algorithm is twofold:
first, to introduce a super set of candidate cutting paths in order to over-segment input nu-
meral strings, and second, as much as possible to produce a fewer number of outlier patterns.
In fact, scgmentation is a very complicated and difficult task, and there is a contradiction in
its goal. For example, by introducing a set with a small number of cutting paths, there is a
danger to lose or ignore some important cutting paths. On the other hand, by introducing
a set with a large number of cutting paths, there is a danger to produce too many outlier
samples (non-digit patterns which are produced by over-segmentation of digits). In general,
outlier patterns are very difficult to evaluate or reject by isolated digit classifiers [9, 8, 17].
Also, too many unnecessary segmentations of numeral strings will increase the computational
cost of the system very rapidly. So, in order to properly over-segment a numeral string, we
require a set of cutting paths which gives us a high confidence that it contains all of the nec-
essary cutting paths. At the same time, the set should not contain too many extra cutting

paths which unnecessarily over-segment the components of the string. In our algorithm, in

32

order to reach a trade-off, a selected combination of contextual information from the string
image and some local, global, foreground and background features for each component are
extracted, and they are utilized to construct efficient cutting paths. The general block dia-
gram of our segmentation module is shown in Figure 34. As seen, the segmentation module
consists of two submodules: connected components analysis and splitting of touching digits.
The details of the processes and algorithms in each of these submodules are described in the

following sections.

Pre-processed ‘ Connected Candidate
Image Connected i Components (CCs) Splitting of Cutting Paths
» Component » . D R o
Analysis i Touching Digits

Figure 34: Block diagram of the segmentation module.

5.1 Connected Component (CC) Analysis

By definition, connected components (CC’s) are groups of black pixels in the input image,
which are connected (8-connected) [139]. Normally, numeral strings are composed of several
connected components (CC’s). Therefore, the first step in segmentation of a handwritten
numeral string is detecting and labeling its connected components. In the CC analysis
submodule, all the CC’s of a pre-processed string are detected and labeled. In order to
locate CC’s, the algorithm starts scanning pixels of the image from left to right and top to
bottom, and it finds groups of black pixels which are connected together. CCs, which are
found, are ordered and labeled from left to right based on the horizontal position of their
Center of Gravities (CG’s). The center of gravity of each CC can be found by averaging
the corresponding « and y coordinates of all the black pixels that belong to that CC. For
each CC, its width, height and its bounding box information is also computed (as shown in
Figure 35). This information will be used in subsequent stages of our modular system.

Our observations on the connected components of many handwritten numeral strings from
Nstring SD-19 Database revealed that there are three possible types of connected components

in a string image: pieces of broken digits, isolated digits, and touching components (or

53

cC CC, CC Ce cc; ces
A

-
i

H +
H T
*
»

SR

Figure 35: In the connected component (CC) analysis sub-module, all the connected com-
ponents are detected, and they are labeled from left to right.

touching digits). Examples of these three component types can be seen in Figures 35, and
36. The first two types of CCs (36-a, and 36-b) do not require any segmentation; however,
the third type of CCs (36-¢) must be identified for segmentation (over-segmentation). In the
splitting of touching digits submodule, all the incoming CCs are checked, and some cutting
paths for their separation and their over-segmentation are introduced. The details of this

process are explained in the next section.

70 ¥ 33

Figure 36: Three types of connected components found in numeral strings, (a) Parts of
(broken) digits, (b) Isolated digits, and (c) Two (or more) touching digits/components.

5.2 Splitting of Touching Digits

In order to segment a handwritten numeral string, all its CCs must be separated from each
other, and (if required) over-segmented by some cutting paths. Here, we call these cutting
paths as candidate cutting paths. The touching digits splitting submodule is responsible
for introducing those candidate cutting paths. In this section, we explain how the touching
digits splitting submodule identify the locations of the candidate cutting paths, and how it

constructs those cutting paths for separating and segmenting of digits.

54

Consider connected components of two sample numeral strings as shown in Figure 37, where
the width of each CC is denoted by w,., and the global height of the string (height of the
bounding boxes) is denoted by H. In observing many strings (such as those shown in this fig-
ure) from our database, we noticed that the third type of CC’s (touching components/digits)
normally have a longer width than the two other types with respect to the height of the string
image. So, we employed a very helpful rule to avoid excess over-segmentation of the com-
ponents: If the width of a CC (w..) is less than 85% of the height of the image (H), then
that CC is very likely to be a single digit (or a small piece of a digit), otherwise the CC is
considered as a candidate of touching components. Therefore, in the touching digits split-
ting submodule, all the CCs are checked based on this rule. CCs which are indicated as
single digits or CCs which are small piece of digits, using this rule, are not over-segmented.
They will only be separated from their previous or next CCs in the string. However, con-
nected components which arc identified as possible candidates of touching digits, will be

over-segmented by utilizing this submodule.

Te8 594208

<> 4> 4> 4> 4>
w._. w w w w
ey <

ccy ccy cc, 3

(a) b)

We 4 ch5

C,

Figure 37: Connected components whose widths (w,.) less than 85% of the height of the
string image (H), often do not require any further segmentation. CC) in (a) needs over-
segmentation, but other CCs in (a), and (b) do not require any segmentation.

As an example of applying this rule, component C'C, in Figure 37-a and all the components
in Figure 37-b will avoid being over-segmented. This preliminary segmentation step prevents
over-segmentation of many isolated digits in the numeral strings, and it can prevent a great
deal of computations. Also, this segmentation step avoids making many mistakes resulting
from the over-segmentation of isolated digits. Most of the other methods in the literature
(such as [8] and [9]) do not make any similar decision in their segmentation stage, so after

segmentation they are faced with a lot of pieces of wrongly over-segmented digits (outliers).

35

Often, recognition or rejection of these pieces of digits in the later stages of the system by
an isolated digit classifier is very costly or error prone. This will be explained in detail in
Chapter 7

In the splitting of touching digits submodule, for segmentation of those CCs which are
identified as candidates of touching digits, two types of important features are extracted:
foreground features, and background features. The details of our new features, and the
algorithm for construction of candidate cutting paths will be explained in the following

three subsections.

5.2.1 Generating Foreground Features

Foreground features are those features which are extracted from the black pixels of the CC’s.
These features are very helpful for locating touching regions and for constructing cutting
paths in CC’s. In order to find foreground features, we introduce a new algorithm and a
new concept called skeleton tracing. Our skeleton tracing algorithm is similar to contour
tracing algorithms in [139, 140, 141], however, it traces the skeletons of 2D objects (instead
of tracing their contours). Examples in Figure 38 show the difference between skeleton
tracing and contour tracing. By tracing the skeletons of CC’s (or any 2D objects), we can
extract very helpful features from their structures, which can be used for their segmentation.
Normally, it is not easy to extract these tvpes of features by contour tracing. In the following
paragraphs, we explain how our skeleton tracing algorithm works, and how this algorithm
helps to extract foreground features for a CC.

In order to apply skeleton tracing to a CC, first its skeleton must be extracted by using
a thinning algorithm [142, 143, 144] (see Figure 38-b). Then, on this skeleton, two points
called starting and ending points (denoted by S, and E, respectively) are found, as described
below. We start at the top-left corner of the skeleton image, and scan each column of the
pixels from the top going downward, and we keep proceeding to the right until we encounter
a black pixel on the skeleton. We declare this pixel as “the Starting point”. In a similar
way, we start at the top-right corner of the skeleton, and scan each column of the pixels

from the top going downward, and we keep proceeding to the left, until we encounter a black

56

Skeleton Tracing

(a) «©) (d)

Contour Tracing

Figure 38: Skeleton and contour tracing: (a) Original image of a CC, (b) Skeleton (contour)
is traversed from the starting point to the ending point in clockwise and counter-clockwise
directions, (c) Top-skeleton (top-contour), (d) Bottom-skeleton (bottom-contour).

pixel. We declare this pixel as “the Ending point”. Then, from the starting point (S), the
skeleton is traversed in two different directions: first clockwise, and then counter-clockwise,
until both traversals reach the ending point E), and they stop. We define the traversal in the
clockwise direction as top-skeleton (Figure 38-c), and the traversal in the counter-clockwise
direction as bottom-skeleton (Figure 38-d).

Examples in Figure 39 illustrates how we can obtain useful features of top/bottom-skeletons
for segmentation of CC’s. When the skeleton tracing algorithm traverses the top/bottom
skeletons, it looks for intersection points (IPs), which are visited on the skeletons. IPs are
points that have more than two connected branches (in Figure 39-b, they are denoted by o).
Corresponding to each visit of any IP on the skeletons, there is an angle where its bisector
can be found (Figure 39-c). The intersections of these bisectors with the outer contour of the
connected component are obtained, and are denoted by O in Figure 39-d. These points are
called foreground feature points. In fact, in our algorithm, bisectors map IP points on the
outer contour of the connected components in order to form foreground feature points. As
shown in Figure 39-d, these feature points are very close to their corresponding IP. Therefore,
foreground feature points can specify important information about the touching regions and

the location of touching strokes.

57

Example 1 Example 2

Figure 39: In both examples 1 & 2: (a) Pre-processed image, (b) Foreground skeleton,
starting point (S), ending point (E) are depicted by O, and intersection points (IPs) are
depicted by o, (c) From starting point (S), the skeleton is traversed in two different directions
(clockwise: dashed arrows, and counter clockwise: dotted arrows) to the end point (E), (d)
Mapping of intersection points on the outer contour by bisectors to form foreground-features
(denoted by O).

5.2.2 Generating Background Features

For over-segmenting of CC’s, in addition to foreground features, we utilize background fea-
tures. Background features are those features which are extracted from the surrounding
pixels and inner pixels (those inside the holes and inner parts) of the CC’s. Lu et. al. [1] and
Chen and Wang [2] utilized the skeleton of the background to extract background features.
In their methods, they considered all surrounding and inner pixels of CCs as background re-
gion (see Figure 40-b). However, in our method background region is obtained by combining
vertical top and vertical bottom projection profiles (see Figures 40-e). In fact, we applied
a new definition of the background regions for CC’s, and we conducted a new method of
finding background features. In our method, vertical top and bottom projection profiles of
each CC are found, as illustrated in Figures 40-c and 40-d. In these profile images, black pix-
els are considered as the background regions. By combining background regions of the two
profile images, we can show the overall backgro‘und region in our method (see Figure 40-¢).
The skeletons of the background regions in top and bottom profile images are also extracted,
which are shown in Figure 40-f and Figure 40-g, and they are called top-background-skeleton

and bottom-background-skeleton, respectively.

o8

(e)) (9 (h)

Figure 40: (a) Pre-processed image, (b) Background region in {1] and [2] (black pixels are
considered as background), (¢) Top projection profile of (a), (d) Bottom projection profile
of (a), () Combining top and bottom-projection profiles in (¢) and (d)(here black region
is considered as background in our method), (f) Top-background-skeleton (skeleton of black
region in c), (g) Bottom-background-skeleton (skeleton of black region in d). (h) Background
features are denoted by O.

In order to specify background features, on each background skeleton (top/bottom), end
points are found. End points are points which have only one black neighbor pixel, and they
are denoted by O in Figure 40-h. The first and the last end points of each background
skeleton will not be used (they are ignored). Compared to the methods of [1], and [2],
the background regions in our method only covers the essential part of the background of
the CC’s. Results of our experiments (Chapter 8) show that our feature points are more
informative and stable with respect to the variation of the shapes of the touching digits.
Also, in our method, usually a smaller number of feature points in the background regions
are obtained. This facilitates decision making for the construction of cutting paths. In the
next section, using both foreground and background features, we describe how to construct

candidate cutting paths for touching CC’s.

59

5.2.3 Constructing Candidate Cutting Paths

Using the example in Figure 41, we explain the details of the algorithm for constructing
of candidate cutting paths for touching CC’s. All the feature points extracted from the
foreground and background, are denoted by O in Figures 41-a, and 41-b, respectively. These
feature points from top to bottom, or from bottom to top, are assigned and connected
together alternatively to construct all possible segmentation paths, according to the following
rule: Two feature points, A and B, are matched and assigned together if condition (23),

described below, is met.

(a) (b) (©)

Figure 41: (a) Foreground feature points denoted by 00, (b) Background feature points
denoted by O, (c) Feature points from the background and foreground (from top to bottom
or bottom to top) are matched and assigned together to construct possible cutting paths.

|z, — x5 <a-H, «€]0.25,0.5] (23)

Here, £, and Iy are the horizontal coordinates of A and B, respectively. « is a constant,
which is selected as equal to 0.4 in our experiments, and H is the vertical height of the
string image. The flowchart in Figure 42 shows the details of the process of construction of
segmentation paths. This process is repeated until all the cutting paths for over-segmentation
of the CC’s in the string are constructed.

More results of generating candidate cutting paths (for short, we say cutting paths) by our
segmentation algorithm (in handwritten numeral strings) will be presented in Chapter 8,
and its performance will be compared with similar algorithms in the literature. In the next

section we explain how to generate segmentation hypothesis from cutting paths.

60

Downward path
Searching

Upward path
Searching

Y

Path searching starts from a feature point
on the top-background-skeleton

Find
matched point from
top-foreground-
features

No

Find matched
point from bottom-
foreground-features

No

feature point on
bottom-background-
skeleton

'

Path searching starts from a feature point on
the bottom-background-skeleton

Find
matched point from bottom-
foreground-features

No

No

Find matched
point from top-foreground-
features

Find matched
feature point on
top-background-
skeleton

y

Construct a vertical segmentation path
until it reaches the bottom of the image

Figure 42: Flowchart of downward/upward searching for constructing segmentation paths.
5.3 Combining Cutting Paths for Generating Segmen-
tation Hypotheses

After generating of all cutting paths for an input string, those cutting paths will be put
together. So, a set (super set) of candidate cutting paths for that string is formed. Then,
these cutting paths are ordered and labeled from left to right based on the geometric location
of their centers of gravity (an example is shown in Figure 43). As shown in this example,
our segmentation algorithm is an over-segmentation strategy. Therefore, its output normally
provides some redundant cutting paths. Over-segmentation of a numeral string is defined
successful if it can introduce a super set of candidate cutting paths containing n cutting

paths (0 < n < oo) which includes the optimum cutting paths for that string (the optimum

61

y

Construct a vertical segmentation path
until it reaches the top of the image

required cutting paths for each string are not yet known at this stage). Each combination of
cutting paths is called (is defined) a segmentation hypothesis. In the next chapter, we will
explain how to represent all segmentation hypotheses generated from the set of candidate

cutting paths, and how to search for the optimum segmentation hypothesis.

Bk

Figure 43: (a) A numeral string is over-segmented by our segmentation algorithm (here, total
number of cutting paths n=4). (b), (c), (d), and (e) Cutting paths are ordered from left to
right (based on the horizontal position of their centers of gravity), and they are labeled by
integer numbers from 1 to n. The center of gravity (CG) of each cutting path is denoted
by O.

3 4

@ (O] ©

5.4 Summary

In this chapter, we presented the details of our algorithm for the segmentation of uncon-
strained handwritten numeral strings. In our segmentation algorithm, all connected compo-
nents are detected and several segmentation cutting paths for their over-segmentation are
constructed. For construction of cutting paths, our algorithm utilizes a combination of fore-
ground and background features. We presented new methods for extracting these features
and also for constructing candidate cutting paths. In the next chapter, we will show how to
represent and search the space of all possible segmentation hypotheses. Also, we will explain

how to search the space of segmentation hypotheses in order to find the optimum hypothesis.

62

Chapter 6

Segmentation Hypotheses Space:

Representation and Searching

In the previous chapter, we showed how our segmentation algorithm generates a set of can-
didate cutting paths in order to over-segment an input numeral string. Using this set of
candidate cutting paths, in this chapter, we show how to generate and represent all segmen-
tation hypotheses for an input numeral string. We introduce a representation and a searching
method based on an evolutionary approach (Genetic Algorithm or GA) in order to find the
optimum segmentation hypothesis in the space of all possible segmentation hypotheses. The
details of our representation and searching (optimization) method will be presented in the

following sections.

6.1 Representation of Segmentation Hypotheses

Efficient representation is a very important step in scarching for the optimum segmentation
hypothesis among all possible segmentation hypotheses for an input numeral string. Here,
we describe our representation scheme and we compare it with similar methods found in the
literature.

After our segmentation algorithm splits (over-segments) an input string image into a se-

quence of primitive images (sequence of segments), the next task is to produce all possible

63

sequences of these primitive images. Each sequence of these primitive images (segments) is
called a segmentation hypothesis for the input string image. In order to find the optimum
segmentation, the next important step is to generate and represent the space of all possible
segmentation hypotheses. A graph representation is used in order to show the segmentation
hypotheses. Then, segmentation hypotheses will be assessed and searched in order to find
their optimum.

Segmentation graphs (candidate lattice graphs) have been widely used for representation of
all segmentation hypotheses in both word and numeral string segmentation and recognition
[8, 9, 145]. In Figure 44, a segmentation graph which shows all possible segmentation hy-
potheses for a numeral string is shown. Oliveira et al. [9] and Liu et al. [8] used segmentation
graphs to represent segmentation hypotheses for segmentation/recognition of handwritten
numeral strings, however, they used heuristic rules to remove or reject some of the unlikely
edges (or paths). For example, in [8] researchers made some assumptions about the maxi-
mum number of connected components in a path from S to E. They used some heuristic rules
for the grouping of broken components, or they put constraints on the widths or heights of
the candidate patterns in each edge of the graph. Since these kinds of heuristic rules are
normally biased to the training/verification sets of the system, we decided not to use any
heuristic rule for rejection of the paths in our segmentation graphs, and we kept all the edges
in these graphs. After some investigations on segmentation graphs of many handwritten nu-
meral strings, we found a general representation for these graphs, and we also discovered that
our graphs show certain properties. These properties have not been used (or mentioned) in
the previous studies on numeral strings such as [9, 8, 2]. In this section, and in the next one,
these properties will be proven in some theorems, starting with a description of our graph
representation and notations.

In describing the properties of segmentation graphs, we utilize the same notations that we
used in the previous chapter. For example, n always shows the total number of cutting
paths which have been produced by our segmentation algorithm. We also assume that the

cutting paths have already been ordered from left to right and labeled by 1 to n. Here,

64

1&2 3 4

(&)

Figure 44: (a) The original numeral string and its segmentation cutting paths, (b) Segmen-
tation graph for the numeral string in (a), where each node except for S and E, corresponds
to a cutting path in (a), and each edge represents a possible segment in (a). Terminal nodes
(starting and ending nodes) are denoted by S, and E, respectively. Each path from S to E is
a segmentation hypothesis; the optimum path from S to E is depicted by a thick path line.
In (a), there are n = 4 candidate cutting paths. Similarly, there are n = 4 non-terminal
nodes, and e = 15 edges in the graph. The total number of segmentation hypotheses (paths
from S to E) is 16.

for construction of our segmentation graph (Figure 44-b), each non-terminal node (non-
terminal vertex) corresponds to a cutting path in Figure 44-a, so non-terminal nodes are
assigned the same labels (integers from 1 to n) as their corresponding cutting paths. There
are two extra nodes which are called starting (S) and ending nodes (E). Since nodes S and E
do not have any corresponding cutting path, they are labeled by 0 and n + 1, respectively. S
is placed on the left, and E is placed on the right side of the graph. Edges, in segmentation
graphs, represent pieces of the digits or sequences of the primitive images (CC’s). In our
representation, in order to build legitimate segments of the input string, each node of the
graph is only connected to all of its following nodes (not to its previous nodes). Each
path from S to E shows a sequence of possible segments of the numeral string; in fact each
path from S to E represents a segmentation hypothesis. Therefore, the space of all possible
segmentation hypotheses for an over-segmented string can be represented by the set of all

possible paths from S to E in the segmentation graph. We can say, there is a one to one

65

correspondence between the set of all paths from S to E in the graph, and the space of all
possible segmentation hypotheses of the string. In the rest of this section, we provide the

proof of some general properties for our segmentation graphs.
Theorem 6.1.1. Segmentation graphs are Directed Acyclic Graphs (DAG’s).

Proof. As explained in the construction of our segmentation graph, each node 7 is only
connected to all of its following nodes. So, according to our representation scheme a node
i is connected to node j. if and only if ¢ < j and ¢,j € {0,1,2,3,...,n+ 1}. Therefore, all
the edges of the graph are directed, and they start from any node i and end at any node
i1+1,142,743,..., n+ 1. This means that there will be no circles, closed circuits (or loops)

in our graphs. Therefore, our segmentation graphs are always Directed Acyclic Graphs. See

an abstraction of a segmentation graph in Figure 45.

Figure 45: A general segmentation graph. Nodes 0 and n+ 1 represent the terminal nodes of
S and E, respectively. Other nodes represent non-terminal nodes (corresponding to cutting
paths) which are ordered from left to right and labeled from 1 to n.

0
Theorem 6.1.2. The underlying graph of a segmentation graph is always a complete graph.

Proof. According to the structure of the segmentation graphs and Theorem 6.1.1, we can
say that each pair of the nodes ¢ and j (when i # j) are connected such that if 7 > j there is
an edge from ¢ to j, and if j > ¢ there is an edge from j to ¢. Since each pair of distinct nodes
are connected by exactly one edge, if we ignore all the arrows on the edges in Figure 45, the

remaining graph will be a complete graph. 0

66

Theorem 6.1.3. The total number of edges e (the total number of possible segments) in a
segmentation graph with n non-terminal nodes (n cutting paths) is: e = 3(n® + 3n +2) =

O(n?).

Proof. According to the structure of the segmentation graphs, they have n non-terminal
nodes corresponding to n cutting paths, and two extra nodes corresponding to terminal
nodes of S and E. So we can say that the total number of nodes in segmentation graphs (v)
is always v = n + 2. Also, according to Theorem 6.1.2, there is exactly one and only one
edge between any distinct pair of the nodes in the segmentation graph (underlying graph is

complete). So, the number of edges (e) can be written as:

e = %’U(’U - 1) (24)
= %(n2 +3n+2), (since v =n+ 2) (25)

= 0O(n?), (Big-Oh notation) (26)

O

The conclusion of Theorem 6.1.3 is very important, because it shows that in order to con-
struct a segmentation graph and assign weights (evaluation scores) to all the edges of the
graph, we have to invoke an evaluation function (such as a digit classifier) O(n?) times to
produce the weights for all the edges (segments). In Section 6.2, we will also prove that the
total number of paths from S to E in segmentation graphs, or the total number of segmenta-
tion hypotheses is always 2". These facts verify the critical role of n (the number of cutting
paths) in the computational cost or complexity of the problem. So, if a segmentation algo-
rithm (carelessly) produces a large number of redundant cutting paths for over-segmentation,
it can heavily affect the computational cost of searching for the optimum hypothesis. In the

next section, we will present a scarching method which utilizes our representation scheme.

67

6.2 Searching Segmentation Hypotheses Space

Using an cxhaustive search to find the optimum path (optimum segmentation hypothesis)
in the segmentation graph, while n is large, entails a very high computational cost, and
it will be quite unfeasible. Many researchers used Dynamic Programming (DP)[146, 147]
to find the optimum segmentation hypotheses in the segmentation graphs of the numeral
strings. For example, in (8], authors evaluated different paths in the graph by accumulating
dissimilarity measures, produced by the isolated digit classifiers, along each path. Then,
they used a DP search to find the optimal path in the graph. Since lengths of the numeral
strings were unknown a priori, experiments showed that the results of the search were biased
towards the short strings or short paths of the graph. Authors in (8], also attempted to
use the average path scores with respect to the path lengths. Since the average path scores
were not monotonic, it turned out that the DP search did not find the global optimum
path based on the average path scores. Their results showed that under some constraints of
the evaluation scores or the corresponding objective functions (e.g. non-monotonicity), the
search does not guarantee finding the global optimum segmentation hypothesis. In order to
relax the constraints on the evaluation scores of the segments of numeral strings and the
corresponding objective functions, in [17, 18] we proposed a Genetic Algorithm (GA), as
an alternative searching strategy for finding the optimum segmentation hypothesis in long

numeral stings. In the next subsections, we will present the details of our genetic algorithm.

6.2.1 Genetic Algorithm (GA)

Genetic Algorithms (GA’s) are known as robust search techniques for solving optimization
problems in complex spaces which are not continuous, or their objective functions are multi-
modal (not monotonic) [124, 125]; (see Figure 46). GA’s are computationally simple and
at the same time powerful. They also have powerful operations such as selection or repro-

duction, crossover, and mutation, which can evolve the initial population of the candidate

68

solutions to a better population of solutions in terms of the average fitness. However, suc-
cessful application of genetic algorithms into a new problem domain generally is very depen-
dent on the information representation, operator definition, and also on the corresponding
evaluation scheme for that domain. Our information representation scheme (chromosome
structure) and the operator definition are explained in this chapter, and the details of our

evaluation scheme will be described in the next chapter.

F(x, y)

Figure 46: Genetic algorithms can be used for global optimization of multi-modal objective
functions in very complex search spaces.

6.2.2 Genetic Representation Scheme

In this section, we explain how to represent all segmentation hypotheses of a numeral string
by binary chromosomes. As seen in Figure 44-b, all the paths from S to E in the segmen-
tation graph can be obtained by alternatively activating or deactivating the cutting paths
in Figure 44-a (or the corresponding graph nodes in Figure 44-b). In general, for example
in Figure 45, in each path from S to E, some nodes (cutting paths) are present (active) and
some are absent (inactive). This implies that each path from S to E in the graph (or equiv-
alently each segmentation hypothesis) can be represented by a binary chromosome with n
genes. Each gene corresponds to a cutting path or a non-terminal node in the segmentation
graph. In this representation, nodes S and E are not taken into account, since they are
always present in all the paths. Here, we prove a theorem about the number of paths from

S to E in segmentation graphs.

Theorem 6.2.1. The total number of paths from the starting point (S) to the ending point

(E), in a segmentation graph with n non-terminal nodes is 2".

69

Proof. As explained in our genetic representation scheme, each path from S to E in the
segmentation graph with n non-terminal nodes can be represented by a binary chromosome
(or binary string) with n genes (n bits), and vice versa. So, if a gene in the chromosome is 1
then the corresponding node is present on the path, and if a gene is 0, then the corresponding
node is not present on the path. A binary chromosome with n genes, has 2" possibilities,

therefore, there are 2" corresponding paths from S to E in a segmentation graph. |

Corollary 6.2.2. The total number of segmentation hypotheses for an over-segmented nu-

meral string with n cutting paths is 2".

Proof Each path from S to E in the segmentation graph corresponds to a segmentation
hypothesis for the numeral string, and also according to Theorem 6.2.1, the total number of
such paths is 2". Therefore, the total number of corresponding segmentation hypotheses is

also 2. OJ

An example of applying Theorem 6.2.1 (and Corollary 6.2.2) is shown in Figure 47, where the
segmentation algorithm produced n = 9 cutting paths. In this example, each segmentation
hypothesis is encoded as a binary chromosome with a length of n = 9 genes. If a gene
is 1, then the corresponding cutting path is active (denoted by a solid line), so it will be
considered in the segmentation of the image. On the other hand, if a gene is 0, then the
corresponding cutting path is inactive (denoted by a dashed line), so it will not be considered
in the segmentation of the image. Simply, we can see that the total number of segmentation
hypotheses is 2? = 512.

Considering the above representation scheme for chromosomes, we can say that each path
(chromosome) in the segmentation graph (from S to E) contains a unique sequence of some
edges (segments). During our genetic algorithm, these segments of the chromosome are
evaluated and they receive weights (segmentation and recognition confidence scores). The
details of the computation of weights (scores) for edges will be presented in the next chapter
(Chapter 7). The weights of the edges are saved in an upper triangle matrix such as matrix
A shown in Figure 48, and they are reused during the evaluation of other chromosomes

in our GA. The idea of saving these weights and reusing them for the evaluation of the

70

1 234567839
[o]] 1] 1] of f[o]o] 1]

AT

234567809
1|1

1
L[1o [o t[] 1]

1 23 456789

[e[of [[of o] +]o]

Figure 47: Each cutting path is presented by a gene in a binary chromosome (of length n =
total number of cutting paths produced by the segmentation algorithm). Each segmentation
hypothesis is encoded as follows: dotted lines (inactive cutting paths) are not considered
in the segmentation of the string, and they are encoded as zeros in the chromosome. Solid
lines (active cutting paths) are coded as ones, and they are considered in the segmentation
of the string. Each segment of the image is defined as a portion of the image from one
active cutting path (solid line) to the next active cutting path (solid line). Each segment
can contain either a valid digit or an outlier (over or under-segmented pattern).

future chromosomes (offsprings) is very similar to the idea of memoization and it avoids
re-evaluation (re-computation of weights) of edges. Memoization (storing and reusing earlier
results) is very general and helpful idea in optimization, and it is also the main idea of
dynamic programming [146, 147]. The algorithm in Figure 49 shows the details of our
memoization process. In the next subsection, we describe the design of our genetic operators

in order to produce new generations of chromosomes (offsprings).

6.2.3 Genetic Operations

Representation of all segmentation hypotheses by binary chromosomes enables us to efli-
ciently use all genetic operations such as: selection, crossover, and mutation [124, 125].
Figure 50 shows examples of these operations, and they are explained in the following para-
graphs.

Selection is a process by which the chromosomes ranked higher in the current generation are
given higher chances to act as parents for the next generation. During each iteration of GA,

a proportion of the current population is selected to breed a new generation. Chromosomes

71

0 wwr) & (104 P *
Yesl 00 s . P .
000 & — « “
e B I VI 1 R | ajj - *
A= oo : o : : :
000 -0 - 0 = - x "
Joeel 000 -0 -0 00 - % Fitnt13
012 7 Jninndt Pesb 000 0 s 00 - D o
:._TIOIOI"'FI‘O'IH“{O fofi: B S (T | B | RO N | B SR
S E
b

()

Figure 48: (a) An example of a chromosome of n genes; in this example, we assume all
those genes except ¢, and j are equal to zero (S and E are not part of this chromosome
representation and each of them is always assumed to be equal to one). So this chromosome
shows a path in the segmentation graph from S to E containing three edges (segments):
from node S to ¢, from i to j and from j to E. (b) Matrix A is a data structure that
saves all the weights (confidence scores) of all the edges in the segmentation graph such as:
Ao, Ayj, and Aj(n+1)-

are selected through a fitness-based process, where fitter solutions are typically more likely
to be selected. For implementation of the selection, we used a fitness-proportionate selection
(based on roulette-wheel [124, 125]). The details of measuring the fitness of chromosomes
will be explained in the next chapter.

The crossover operator produces two offsprings (two candidate segmentations) by recom-
bining the genetic structure of the two parents. So, it is possible that by combining two

good chromosomes, we can produce a better chromosome (solution). Crossover operation

Var A = An upper triangle matrix of size (n + 2)by(n + 2)
function evaluate (edge(i, 7))
if A(¢,7) is empty
A(t, j) = Compute-weights-for(edge(:, 7))
else
return A(i, 5)
end

Figure 49: Memoization of the weights of all segments (edges).

72

) 4 5 8
1 234567869 | 23456789 \ The Same
Individual Em |o]1|1|1|1|1[0[|]1] ------ »> |o|1|v|:|1|1|0|||1| E [ra'(é"‘ﬁ In}:ll\'sidual
. s > 4

{a)-Selection

878 g
1 23456789 1234567809 r_' ")
Parent 1 |00|1t|0|‘|0_1r'] ol lol 1 ﬂa[ﬂ‘(ﬂ‘ﬁ Offspring |
________ ,. CLLTTTELT gy) AT
o
pore 123456789 123456789 J Offspring 2
" PITITTEA] CRCLEFETT b, e

)-Crossover

— 34 5 g§78 O ? 1
Single H ! 34567849 1 2348586789
Parent J ooy tjrfrfo] of 1 -=---- = o | tf1]tf1jo] 1]
» .

(¢)-Mutation

2 4 _5 678 9
v
1

IM o

Figure 50: (a) Selection: very high fitness chromosomes are given a better chance to repro-
duce themselves, and to be present in the new generations or to act as parents. (b) Crossover:
pairs of chromosomes are selected based on their relative fitness in order to perform crossover
at a random position. In this example, crossover happens between the locations of the sev-
enth and eighth genes in the two parent chromosomes, and it produces two new offsprings.
(c) Mutation: single chromosomes are selected based on their relative fitness in order to
be mutated at a single random position. In this example, mutation happens on the second
cutting path (second gene in the parent chromosome), and it produces one new offspring.

can be single point or k-points. In crossover, after choosing one single point (or k points) in
the parent chromosomes, the genetic information of the two parents between the crossover
point(s) are swapped, and two new offsprings are generated.

Mutation is a genetic operator used to maintain genetic diversity from one generation of a
population of chromosomes to the next generation. Mutation is implemented by a random
alteration of one or more genes in a single parent. A common method of implementing a
mutation operator involves generating a random variable for one or any chosen gene in a
chromosome. This random variable indicates whether or not a particular gene(s) will be
altered. Mutation in GA can help the algorithm to avoid local minima by preventing the

population of chromosomes from becoming too similar to each other. In the next subsection

73

we give an overview of our GA approach.

6.2.4 Our Genetic Algorithm Approach

In our implementation, we applied very simple versions of the genetic operations, such as
random single-point crossover, and a random single-point mutation on our binary chromo-
somes {124, 125]. As seen in the examples in Figure 50, genetic operations in general are
able to improve current segmentation hypotheses and change them into new offsprings with
higher fitness/confidence levels. Also, they show that the results of the genetic operations
in our method will always yield valid segmentation hypotheses (valid paths in the graph).
Therefore, our GA repeatedly can produce new generations (populations) of the segmentation
hypotheses. In each iteration of our GA, there is a population of chromosomes (segmentation
hypotheses), which is evaluated and it goes through the genetic operations in order to gen-
erate the next population. This process is continued until the highest fitness chromosome is
found or the algorithm reaches the maximum number of generations; a general pseudo code
of our algorithms is shown in Figure 51. For more details on genetic algorithm or genetic

operators, refer to [124] and [125].

Generate an initial population of chromosomes.
Evaluate the fitnesses of the chromosomes in the population.
Repeat
Select best (fitter) chromosomes to reproduce.
Breed new offsprings, using crossover and mutation opcrations.
Evaluate the fitnesses of the offsprings.
Replace worst ranked part of the population with the offsprings.
Until terminating condition occurs.

Figure 51: Pseudo code of our GA.

6.3 Summary

In this section, first we introduced a representation scheme for segmentation hypotheses in

the numeral string. We explained the application of the segmentation graph (candidate

74

lattice) in order to show all the possible segmentation hypotheses for an over-segmented
handwritten numeral string. We also introduced a searching method based on Genetic Al-
gorithms (GA’s) in order to find the optimum segmentation hypothesis in the space of all
possible segmentation hypotheses. We described our representation scheme for the chro-
mosomes and the genetic operators of GA. Our representation scheme and the operator
definition are very efficient and general. In fact, our representation scheme is able to gen-
erate (or represent) all the paths in any Directed Acyclic Graph (DAG), and our genetic
operators are also applicable on all the paths of the graph. Therefore, our method can easily
be applied for searching any searching space modeled by DAG’s. In the next section, we will
evaluate our chromosomes (segmentation hypotheses/or paths in the segmentation graphs)

in order to find their optimum one(s) by GA.

75

Chapter 7

Segmentation Hypotheses Space:

Evaluation

In the previous chapter, using segmentation graphs, we showed how to represent all the
possible segmentation hypotheses for an input numeral string. In order to be able to compare
different segmentation hypotheses and in order to find the optimum segmentation hypothesis,
all those hypotheses must be evaluated (ranked). Evaluation of segmentation hypotheses
(paths in the segmentation graph) is a very important and difficult stage in numeral string
recognition. At this stage, we have to rank each segmentation hypothesis based on some
confidence scores (measures). Due to uncertainty in the segmentation process, scgmentation
hypotheses may include isolated digits with different sizes or shapes, over-segmented (or
broken) digits, or under-segmented (not correctly separated) digits. In the literature, over-
segmented and under-segmented parts of the digits are called outliers (out-of-class or non-
digit patterns). A segmentation graph which presents all the segmentation hypotheses for
a numeral string was shown in Figure 44 in Chapter 6. In that figure, each segmentation
hypothesis was represented by a path from starting node (S) to ending node (E). As shown
in that figure, some paths contained outliers which were produced during the segmentation
process. At the evaluation stage, all the paths which contain at least one outlier pattern must
be rejected or ranked with very low confidence scores. In the first section of this chapter, we

briefly review some of the problems with the current methods for the evaluation (ranking

76

or measuring the confidence) of segmentation hypotheses for numeral strings, and in the
following sections, we will describe our evaluation method. In Chapter 8, we will compare

our evaluation method with the current methods found in the literature.

7.1 Needs for New Evaluation Schemes

Unlike handwritten word recognition, in the recognition of handwritten numeral strings
there is no dictionary information or linguistic context available. So graphical models such
as Hidden Markov Models (HMM) (148, 149], which are frequently used in word recognition,
simply cannot be used to evaluate segmentation hypotheses in a candidate lattice for a
numeral string (in some applications such as zip code recognition, there are some linguistic
models used, but we do not consider these special applications here). In general, it is assumed
that the constituent patterns in a segmentation hypothesis (or in a path) are independent
from each other. Therefore, the majority of the researchers in the area of numeral string
recognition only use the outputs of single character classifiers (similarity, dissimilarity, or
probability measures) and assign scores independently to each constituent pattern (edge) of a
path in a segmentation graph [8, 9. 150]. They combine these scores (by product, summation,
average, cte.) to find a total score for ranking different segmentation hypotheses. However,
our experiments show that there are many cases where isolated digit classifiers are not able to
evaluate or reject outliers in handwritten numeral strings. For example, all numeral strings in
Figure 52 have been over-segmented by the segmentation module, and the resulting outliers
are very similar to real digits. In these cases, it is very likely that an isolated digit classifier
assigns higher confidence values to the outliers instead of to the correct candidates and mis-
classifies outliers as valid digits. For instance, in Figure 52-a, it is possible that the wrong
candidate (020) receives a higher recognition score than the correct candidate (20), or in
Figure 52-b, it is possible that the wrong candidate (100) receives a higher confidence score
than the correct candidate (60) by using only an isolated digit classifier and so on.

The main reason for these kinds of mistakes can be explained as follows: isolated digit

classifiers are trained to classify their inputs to one of the ten classes (0—9). These classifiers

77

q
L/

(a) (b) () (d)

Figure 52: Relying only on the recognition scores of the isolated digit classifiers, and without
contextual information, it is more likelv that most of the numeral strings shown in this
figure will be misrecognized with very high confidence values. For example, in (a), 20 will
be misrecognized as 020, (b) 60 will be misrecognized as 100, (c¢) 9 will be misrecognized as
01, and in (d) 6 will be misrecognized as 10.

normally classify input digits one by one independent of the previous or the next components
in their input. In other words, isolated digit classifiers normally do not pay attention to the
(geometric) context of the digits/components in the numeral string images, such as relative
positions, relative widths, or relative heights of the digits in the string. Therefore, if a high
precision isolated digit classifier is fed with outliers, which are very similar to valid digits, it
will very likely output valid digit class labels with high confidence values for those outliers,
instead of rejecting them. In order to remedy this weakness of the isolated digit classifiers,
and still use them with high reliability in numeral string recognition systems, we propose
the use of a novel method based on contextual information which uses a new set of scores
called segmentation scores. These scores can support isolated digit classifiers, and can help
them to avoid making many mistakes in numeral string recognition systems. In our method,
each segmentation hypothesis is assigned two types of scores: segmentation and recognition
scores. In the rest of this section, we define our notations and templates, and then in the
following sections, we describe the details of our segmentation and recognition scores and
the method for their combination.

We use the template in Figure 53 for defining and explaining segmentation and recognition
scores. This figure shows a typical segmentation hypothesis for a numeral string. This seg-
mentation hypothesis consists of m; segmentation regions (so-called segments or partitions).
We assume that each region or segment contains a valid isolated digit or an outlier. During

the evaluation process, each segment is assigned two different scores: a segmentation score

78

and a recognition score, denoted by s_score and r_score, respectively. Computation of these

two scores for each region will be explained in detail in the next two sections.

5 s;(. 8 s l)s

Figure 53: A segmentation hypothesis or chromosome, which is denoted by S, consists of
m; regions (segments) (1 < m; < oo). Each segment is bounded by two consecutive active
cutting paths. A combination of two scores (segmentation score and recognition score) are
used to evaluate (measure the quality of) each segment in a segmentation hypothesis. By
combining these scores, a total confidence value (0 < conf(S?) < 1) is assigned to this
segmentation hypothesis. Based on this confidence value we can rank and compare different
segmentation hypothesis in order to find the best one.

7.2 Segmentation Scores

Segmentation scores (s_score) are tools that help contextual knowledge to be taken into
account in the evaluation and selection of the segmentation hypotheses. These scores are
expressed as degrees of membership that show to what degree each connected component (or
segment) in a numeral string can be fit into a bounding box of a valid digit. Segmentation
scores are calculated based on two other component scores: position-confidence (p_con f), and
aspect-ratio-confidence (a_conf). Computations of p_conf, a_conf, and s_score are accom-
plished according to the Equations 27, 28, 29, 30, and 31. listed below, and the parameters
which are used in these equations are illustrated for the third segment (or third CC) of the
numeral string in Figure 54. As seen in this figure, the position-confidence (p_conf) evalu-
ates the position-ratio (p_rat) of each CC in the string image. The position-ratio (p_rat) is
defined by Equation 27, and it shows the relative height and vertical position of the bounding
box of each CC in the string image. If a CC is very small, and its position is very close to
the top or bottom of the bounding box of the image, it is assigned a low value of p_conf.
Similarly, aspect-ratio-confidence (a_conf) evaluates the relative aspect-ratio (a.rat) of a
CC, which is defined here as the ratio of the width of a CC (w,.) to the height of the string
image (H). If the width of a CC is greater than 85% of the height of the string (H), it is

79

assigned a low value of a_conf. The membership functions of position-confidence (p_conf)

and aspect-ratio-confidence (a_conf) are plotted in Figure 55.

max(hy, hy)
= ’ 27
p-ra i (27)
1 if prat<a
p_conf(p_rat) = a=3 k=4 (28)
exp(—k(prat — o)) if prat >«
wCC
— 2
a_rat 1% (29)
1 if arat<pg
a_conf(a_rat) = =085 ,t=145 (30)
exp(—t(a_rat — 3)) if arat>p
s_score = min (p,conf(p,rat) , amonf(a-mt)) (31)

Figure 54: Hlustration of parameters used in the computations of position-ratio (p_rat), and
aspect-ratio (a_rat) for the third segment of the string. For each segment (or CC) in the
image, we can compute p_rat, and a_rat, and then we can calculate p_conf, and a_conf.
Finally, s_score can be computed for each segment (or CC) according to Equation 31.

Based on the definition of s_score, we can verify that valid isolated digits or valid segmented
digits in a numeral string will receive a much higher s_score than invalid outliers such as those
shown in Figure 52. In fact, rejection of most outliers by relying only on recognition scores

(like the methods in [9, 150, 8]), is very error prone. However, by using our segmentation

scores, those outliers can be detected easily and rejected. In order to compute an overall

80

Pasition-Confidence {p_conf} Aspect-Ratio-Confidence (a_conf)

g 04 % 0.4
= 02 7 2 0.2} .
%0 070203040506070808 4 O 05 1T 15 2 25 3
Posttion-Ratio (p_rat) Aspect-Ratio (a_rat)
(a) (b)

Figure 55: (a) Graph of position-confidence (p_conf) membership function, (b) Graph of
aspect-ratio-confidence (a_con f) membership function.

segmentation score for a segmentation hypothesis, after computing the s_score for all of its
segments, a total_s_score can be computed, according to Equation 32. In order to detect
an outlier in a segmentation hypothesis we apply the following rule: if the total_s_score
of a segmentation hypothesis is lower than a threshold of 75 = 0.45 (which is determined
empirically), we can conclude that it contains at least one outlier segment. Therefore, that
segmentation hypothesis will be rejected, and the recognition scores (r_score) of its segments
will not be computed (in fact those scores will be set to zero). This also helps to avoid a
great deal of computations (which are required to evaluate/reject patterns in an invalid
segmentation hypothesis). For those remaining segmentation hypotheses, of which their
total s_score values are greater than the threshold (7:), recognition scores (r_score) are

computed. The details of computing recognition scores will be described in the next section.

total_s_score(S*) = min (s_score(sj) , s_score(s) , ..., s,score(sfm)> (32)

7.3 Recognition Scores

In addition to segmentation scores, we use recognition scores to reject the remaining out-

liers, and also to rank the segmentation hypotheses. By using an isolated digit classifier,

31

recognition scores and class labels are assigned to the segments in the segmentation hy-
pothesis. In our system, any isolated digit classifier (or a combination of classifiers), can
be utilized. Achieving a very high accuracy for isolated digit classification is not the goal
of our research, since this goal has already been investigated in the literature (see [43], for
a survey on state-of-the-art techniques). Here instead, our goal is to improve the outlier
resistance of the isolated digit classifiers, by using contextual knowledge, and to study its
effect on the improvement of segmentation and recognition of numeral strings. According
to [43] and [90], MLP Neural Networks (MLPs) and Support Vector Machines (SVMs) with
radial basis function kernels (SVM _rbf) normally have higher recognition rates in handwrit-
ten recognition than other classifiers with the same features. Therefore, due to the efficiency
in implementation and satisfaction in the performance of MLPs and SVMs with rbf kernels,
we implemented our system, using these two classifiers.

The general structure of our recognition module is depicted in Figure 56. The details of
preprocessing and feature extraction are shown in Figure 57. Figure 57-b shows that the
slants of all the segments in a segmentation hypothesis are corrected, and the size of all the
segments are normalized into a matrix of size 45 by 45 [151]. Then, for feature extraction, the
skeleton of each normalized segment is taken [142](Figure 57-c), and it is divided into 15 by
15 zones, such that each zone is a window of 3 by 3 pixels. If there is at least one black pixel
in a zone, its center pixel is set to black; otherwise its center pixel will remain white. Then,
all the pixels in a zone except for the center pixel will be removed. Two examples of this
transformation are shown in Figure 57-e, and in Figure 57-f. Since different arrangements of
the black pixels inside a zone (a window of 3 by 3) are replaced by just a single black or white
pixel in the center, this transformation can greatly reduce the variations of the pixels in the
skeletons of handwritten digits. Afterwards, the basic shapes of the digits are extracted, as
in Figure 57-d. This image has 15 by 15 pixels, which is considered as a feature vector, and
it is fed into the classifiers (MLP or SVM) for classification.

Here, we briefly describe the structure of our classifiers, while the details of their training
are presented in Section 8.4. Our MLP classifier has 3 layers (225 neurons in the input layer,

85 neurons in the hidden layer, and 10 neurons in the output layer), and all the neurons in

82

our network are sigmoidal neurons [84]. By using the back propagation learning algorithm
[84], our MLP classifier is trained to produce labels and confidence values in the range of 0,
and 1 for the segmented digits. For constructing our SVM classifier, we use 10 binary SVMs,
one for separating each digit class from the other classes (so-called one-against-all strategy).
Each binary SVM classifier uses a radial basis function kernel, and it produces an algebraic
output as follows: a positive value corresponds to the target class samples (+1), and a
negative value corresponds to the non-target class samples (—1). Similar to the methods in
[150], and [152], these output values are mapped into confidence scores in the range of 0, and
1. The sigmoid function in Equation 33 is used for this mapping, where f(x) is the output

of a binary SVM for the feature vector z, and g(z) is the corresponding confidence value

(€ (0,1)).

1
g9(z) = (33)
1+ exp(—f(z))
Imageofa [] Label & Confidence
Segment Preprocessing) Classifier Value for the Segment
e > —»
(Normalization) Feature Extraction (MLP or SVM)

Figure 56: The general structure of our recognition module. After pre-processing and feature
extraction, a trained classifier assigns class labels and confidence values to each segment in
the segmentation hypotheses.

As mentioned above, each of our classifiers (MLP or SVM) has 10 outputs, corresponding
to 10 classes (0 — 9), and each output produces a confidence value between 0, and 1 (so-
called recognition score, denoted by r_score). For each classifier, the class which receives the
highest recognition score is the winner, and it determines the label for the input segment.
Recognition scores of all the segments in a segmentation hypothesis are combined based on
Equation 34, in order to produce a total r_score. Having a low total_r_score for a segmen-
tation hypothesis indicates that it contains at least one outlier segment, or a segment which

our classifier cannot recognize very well.

83

@)) ©)

(e) (4]

Figure 57: An example of pre-processing and feature extraction: (a) Original image, (b) Pre-
processed, slant corrected, and normalized image (45 by 45 pixels), (c) Skeleton of part b,
(d) Reducing the resolution of the skeleton in horizontal and vertical directions by 1/3; the
resulting image is considered as a feature vector, (e, and f) Two examples of the transfor-
mation which is used to reduce the variability of the pixels on the skeleton. In (e), all black
pixels inside the windows are represented by a single pixel in the center of the window; In
(f), all white pixels surrounding the center pixel are removed.

total_r_score(S") = min <r,score(sj) , T_score(sy) , ..., r,score(sfnl)> (34)

7.4 Overall Confidence Score

In the two previous sections (7.2, and 7.3), we showed how to compute the total_s_score
and total r_score for each segmentation hypothesis. By combining these two scores, we
are able to compute a confidence value for each segmentation hypothesis (S?) based on
Equation 35, below. This confidence value expresses the total segmentation-recognition
confidence for a segmentation hypothesis (or a chromosome S?). It is used by our genetic
algorithm to evaluate the individuals in the population of segmentation hypotheses. Having
a low confidence value for a segmentation hypothesis indicates that it contains at least one
segment with a very low s score, or a very low r_score (or both), and in all these cases
that segmentation hypothesis must be rejected. In fact, this confidence value is a measure
of quality for segmentation hypotheses. Based on this measure, we can rank and compare

(evaluate) different segmentation hypotheses in order to find the best and optimum onecs.

Conf(S*) = min (total,s,score(Si) , total_r_score(Si)> (35)

84

7.5 Summary

In this section, we presented a new evaluation method for segmentation hypotheses of a
numeral string. Our evaluation method is based on a combination of two sets of scores:
segmentation and recognition scores. Segmentation scores enable us to take into account the
contextual information from the string image in the evaluation of segmentation hypotheses.
Our recognition scores is based on confidence scores from isolated digit classifiers. For each
segmentation hypothesis these two scores are computed and combined in order to produce a
total confidence score (fitness for a chromosome) which is used by our scarching algorithm

(GA).

85

Chapter 8

Experimental Results and Discussion

In the previous chapters, we introduced our modular system for segmentation and recogni-
tion of handwritten numeral strings. Our system has several important modules including:
pre-processing (slant correction), segmentation, genetic algorithin, evaluation and classifica-
tion. The details of the algorithms for each of these modules were described in the previous
chapters. In this chapter, we show our experimental results with these algorithms, and we
compare them with similar algorithms in the literature. Also, we present the overall perfor-
mance of our system on segmentation and recognition of handwritten numeral strings and
we compare it with the similar systems. Finallv we present our discussion and conclusion.
All of the test images used for the experiments in this chapter are taken from two stan-
dard handwritten databases as follows: NIST NSTRING SD19 (unconstrained handwritten
numeral strings) and CENPARMI (unconstrained handwritten isolated digits). These stan-
dard databases have been frequently used for testing and comparing the performances of

different algorithms (or systems) on handwritten numeral string segmentation and recogni-

tion [8, 9, 43, 76].

8.1 Comparison of Slant Correction Methods

Slant correction is a very important step in the pre-processing module of our system (pre-

sented in Chapter 4). Our slant correction method is a uniform slant correction method.

86

Here, first we compare our slant correction method (as a uniform method) with nonuniform
slant correction strategies, and then, we compare the running time of our slant correction
method with a similar uniform slant correction method found in the literature. For our
comparisons in this section, we randomly selected 8 sets of 125 numeral strings (in total
1000 strings); each set contained strings with different lengths (one set of touching digits
and 7 sets of strings with lengths 1,2, 3,4, 5,6, and 10 digits). These strings were taken from
the NSTRING SD-19 database .

8.1.1 Comparison of Our Method With Nonuniform Methods

In nonuniform slant correction methods, for each part of the string (CC) a slant angle is
estimated, and its slant is corrected independently [129]; however in uniform methods, the
average slant angle of all the CC’s is calculated, and then uniform correction is applied
to the whole string. Here, we compare these two methods. In Figure 58, two samples of
numeral strings from our data set are shown, where for each string, all of the CCs and their
corresponding slant angles and heights are listed. According to our method, SSA (©) has
also been calculated for each of these two strings. As seen in Figure 58-a and b, in string,,
component CC, has a slant to the left and CCs has a slant to the right. If we correct the
slant of string; nonuniformly, these two components will move towards each other (because
of shear transform), and as they become closer, they may even touch or overlap. In Figure 58,
another string (string,) is shown. In string,, component CCy nearly has no slant, and CCs
has a large slant angle to the right. Therefore, during nonuniform slant correction, CCs
will move to the left towards CC, (because of shear transform), and their distance will
become smaller; again there is a possibility for touching or overlapping digits. The results of
nonuniform slant correction of these two strings, along with many other numeral strings are
illustrated in Figure 59, and they are compared with the results of our method (as a uniform
mecthod). As this figurc shows, nonuniform slant correction of both string,, and string,
will produce touching components. As examples in Figure 59 show, in nonuniform slant
correction of numeral strings, sometimes the distance between components becomes much

smaller, which yields touching or overlapping digits, and sometimes the distance between

87

components becomes unexpectedly large. Also, when broken digits or fragments exist in the

strings, nonuniform slant correction can produce distortions in the strings.

CG; 0; h; (in pixels)
CCy 8.07° 67
CCsy 8.13° 70
CCs 12.04° 68
CCy —7.94° 43

é \[(/ 2. S'¢ CCs | 27.0T° 52
CCs 21.03° 69

cc, cc, ¢, cc, €C, CC, SSA | © =12.04° —

(a) String, (b) CCs, and their corresponding

slant angles and heights for string,

CC; 6; h; (in pixels)

CCy 10.84° 47

3 3 5" CC, | 06 59
CCs 28.01° 54

foled cc, CC SSA | © = 13.42° —

(d) CCs and their corresponding
slant angles and heights for string,

(c) String,

Figure 58: Two examples of original handwritten numeral strings are shown, where for each
string, all of the CCs, and their corresponding slant angles and heights are listed. For each
string, SSA (©) has been calculated.

8.1.2 Comparison of OQur Method With Another Uniform Method:
Running Time

Here, we compare our slant correction method with another uniform method. Method [3]
is the only slant correction method that was found in the literature for slant correction of
handwritten numeral strings. This method uses statistics of chain codes of contours of CC’s
(digits) in order to estimate slant angles (6;’s) in numeral strings. OQur experiments on 1000
numeral strings showed that both our method and [3] produced very similar slant corrected
numerals without any distortions, however there was a big difference between their running

time, which is shown here. The average running time of these two methods for numeral

88

23RS 1500|1584 |\ BG)45537\ 817
bYY 33‘4'3 3; 15%0% 57| 3'84{ 3"1 9‘45'5'31 g V"
WSt 338 iseors) 84| 3990455318 11

Figure 59: Comparison of nonuniform and uniform slant corrections (our method). For each
string, top row: original image, middle row: nonuniform slant corrected, bottom row: uni-
form slant corrected (by our method) are shown. Nonuniform correction of the slants of CC’s
in numeral strings can yield many distortions such as touching cases and overlapping CC’s.
The first two columns show the results of String; and String, from Figure 58 , respectively

strings with different lengths is compared in Figure 60-c. In the next paragraph, we analyze

the time complexity of these two algorithms.

& 1511 =m = Britto et al. method ’F =
o 1.4}-1=4=0ur method 5O
£ ,
= 1.2 »
o
£ ,.--r"’
[
@ 2 ’
g os < 2
506 2
204 A
1 2 3 4 5 6 7 8 9 1 1
String length (number of connected components)
(b o)

Figure 60: (a) and (b) Two examples of slant estimation for CCs: (a) Our method,
(b) Method in [3], (¢} Comparison of the average running time between our slant correction
and method in [3] for all numeral strings in our data set (1000 strings from NSTRING SD-19
database). Experiments showed that, on average, our method is around 6.5 times faster than
the method used in{3].

If we assume that all the CCs in the strings have exactly the same shape, size, and orientation
(strings such as 99 ---99 or 44 - - - 44), under this assumption, analysis of both methods shows
that both will have a linear time complexity with respect to the number of CCs in the strings
(running time will be a linear function of string length). However, in practice, CCs in the
strings have different shapes, sizes, and orientations, so as a result of our experiments shown

in Figure 60-c, the running time of these two algorithms is not exactly linear with respect

89

to the string length. Also, in our algorithm, the slant angle of each CC (¢;) is estimated by
finding its bounding box (circumscribing the CC by four straight lines as shown in Figure 60-
a). It can be verified that this process takes a very short and nearly constant time for all the
connected components in the strings. However, in method [3], the values of §; for CC’s are
estimated by tracing their contours and finding the statistics of their chain code elements
in specified directions such as: 45°,90°,135° (see Figure 60-b). It can be verified that this
process heavily depends on the details of the shapes of the connected components, and on the
smoothness of the contours. So, normally this process takes a much longer time compared
to our component slant angle (6;) estimation. This can explain why there is a big difference
between the running times of the two algorithms.

In order to have a fair time comparison of these two methods, both were implemented in
a Matlab programming environment with the same programming style, and both programs
were executed on the same machine having a Pentium(R) 4 Processor with 2.40 GHz speed.
Experiments were conducted on the same set of numeral strings used in Section 8.1 (1000
strings randomly selected from NSTRING SD-19 database). Because of fragmentation and
touching cases, the number of CCs in these strings varied from 1 to 11 components per string
(there was no string with 9 CCs in our selected set). Our experiments showed that our slant
correction method on average is around 6.5 times faster than the method used in [3]. In the

next section, the effects of our slant correction on segmentation are shown.

8.2 Effects of Slant Correction on Segmentation

In this section, we investigate the effects of our slant correction method on the segmentation
of handwritten numeral strings. Here, for our study, we consider the effects of slant correction
on the location of foreground and background feature points for segmentation and also on the
construction of the candidate cutting paths. In Chapter 4-Section 4.2, we showed that about
65% of the handwritten numeral strings (in NIST NSTRING SD19) have considerable slant
angles (|©| > 7°). In this section, for our experiments, we randomly selected a set of 1000

images of touching pairs of digits from the NSTRING SD-19 database. For each touching

90

pair, we estimated © (SSA) based on our proposed method in Chapter 4. Obscrving the
values of © for these touching pairs showed that only a subset of them containing 631 pairs,
had considerable slant angles (|©] > 7°). We applied our segmentation algorithm (presented
in Chapter 5) to all the touching pairs in this subset (631 slanted pairs) under two different
situations: in the first situation, we did not correct the slant of the touching pairs. In the
second situation, we applied the slant correction as a pre-processing step before segmentation
to correct the slant of the touching pairs. Comparing these two situations showed that slant
correction did not affect the position of the foreground feature points significantly. However,
in the majority of cases, it greatly changed the position of the background feature points.
Changing the background feature points, in turn, can affect the construction of the candidate
cutting paths. Experiments showed that in 92.40% of the slanted cases, slant correction could
improve the candidate cutting paths. Two examples of these cases are shown in Figure 61,
and they are described below:

Figures 61-A and 61-A’ show the segmentation results of the same touching pair by the our
algorithm in two different situations: without slant correction (A), and with slant correction
(A’), respectively. Comparison of Figures A-b and A’-b shows that slant correction does
not move the position of the foreground feature points significantly. However, comparison
of Figures A-c and A-d with Figures A’-c and A’-d shows that the background regions and
also background feature points are greatly affected by the slant correction. Comparison of
Figures A-e and A-f with Figures A’-e and A’-f shows that construction of the cutting path
has been improved by slant correction. Figures 61-B and 61-B’ also show another example
where slant correction has improved construction of the segmentation candidates.
Experiments also showed a few cases where slant correction does not improve or affect the
results of segmentation significantly. An example of these cases is shown in Figures 62-C
and 62-C”. In this example, the segmentation algorithm was able to find the correct candidate
cutting paths in both situations. Comparison of Figures 62-C and 62-C’ shows that there is
no significant difference in the background regions and segmentation candidates before and
after slant correction.

Our visual inspection on the results of segmentation of touching pairs showed that in 92.40%

91

A")

L3]
#
b

B)

Figure 61: A and B: images before slant correction, A" and B’: images after slant correction:
(a) Original images without slant correction (in A and B), with slant correction (in A’ and
B’), (b) Foreground features denoted by O, (¢) Combining vertical projection profiles from
top and bottom to specify background regions, (d) Taking background skeleton, to extract
background features (denoted by O), (e) Image after segmentation, and (f) Candidate cutting
path(s) without slant correction (in A and B), and using slant correction (in A’ and B’).
In B the segmentation algorithm was not able to find the correct segmentation candidate.
However, in B’ it was able to do so.

of the slanted pairs, slant correction improves the segmentation candidates of touching digits,
and also in 7.60% of the slanted cases, slant correction cannot improve the construction of
the segmentation paths significantly. Table 8 summarizes these results. As a result of
our experiments, we recommend that slant correction should be added as a pre-processing
step to the segmentation algorithms, especially to those algorithms that utilize background

information such as [2, 16].

92

A . B 2 2
94 SR V-V

Figure 62: C: image before slant correction, C’: image after slant correction: (a) Original
image without slant correction (in C), with slant correction (in C’ (b) Foreground features
denoted by O, (c) Combining vertical projection profiles from top and bottom to specify
background regions, (d) Taking background skeleton, to extract background features (de-
noted by O), (e) Image after segmentation, and (f) Candidate cutting path(s) without slant
correction (in C'), and using slant correction (in C').

C")

Table 8: Distribution of segmentation cases which were improved or not improved by slant
correction.

Segmentation of slanted cases Number | Percent(%)
Segmentation cases improved by 583 92.40%
slant correction

Segmentation cases not improved 48 7.60%
by slant correction

Total slanted cases (|©] > 7°) 631 100%

8.3 Testing the Segmentation Algorithm

The function of our segmentation module is to over-segment an input numeral string by con-
structing some cutting paths. In the experiments with segmentation algorithm, we examined
the performance of our segmentation module independent of other parts of the system (with-
out using classification information). In order to have a better comparison of our algorithm
with similar algorithms in the literature, we conducted two sets of experiments. In the first
set, we took 5000 touching pairs of digits from the NIST Database, and we input them to
the algorithm. Experiments showed that in 96.5% of the touching cases, our algorithm was
able to produce the correct cutting path. In the next set of the experiments, we randomly

selected 1800 images, from the NIST NSTRING SD19 Database (for each string length of:

93

2,3,4,5,6, and 10, we took 300 string images). The lengths of the strings were not given to
our algorithm, and they were considered unknown. After inputting these images, we looked
at the output of the segmentation module, to verify the results. We defined segmentation
(or over-segmentation) of a numeral string as successful if the set of cutting paths produced
for that numeral string contained all the necessary cutting paths. Otherwise, segmentation
was considered unsuccessful. A visual analysis revealed that in 98.04% of the cases, our
segmentation algorithm could successfully over-segment the numeral strings. Figures 63 and
64, respectively, show some successful and unsuccessful segmentation results produced by

our segmentation algorithm.

A3 33 Oz

(0 \Il\l & ”0
13036 06 Q) &WWWQ
040G i6ie 199 0143456787

Figure 63: Examples of successful segmentations (or over-segmentations) produced by our
segmentation algorithm. Here, we do not use any recognition information. Bounding boxes
contain real life string images from the Nstring SD19 Database with different lengths (2 to
10 digits). Each cutting path goes from the top to the bottom of the bounding box or vice
versa. As shown in this figure, some cutting paths have two or more branches.

94

$0L] OS5 2
6 <hoS1OD)95
O33N 9 D

—

Figure 64: Examples of unsuccessful cases of segmentation (without using any recognition
information) by our segmentation algorithm.

As shown in Figure 64, most unsuccessful segmentations were due to a large amount of
overlaps between the connected components in the strings. Most of the algorithms in the
literature (such as [2],[13],[10],[35], etc.) were proposed to split only touching pairs of dig-
its, and they were not used for the segmentation of longer numeral strings (with unknown
lengths). In contrast, our algorithm assumes an unknown number of isolated or touching
components in the numeral strings. In addition, the majority of the segmentation algorithms
in the literature use recognition information to select the best cutting paths. By contrast,
the goal of our algorithm is to over-segment the numeral strings by introducing a super set of
best cutting paths, and it does not make any final decision about those cutting paths. Also,
note the methods such as [2, 1, 153] have very high rejection rates. Although our algorithm
uses neither recognition information for rejection (or acceptance), nor information about the
lengths of the strings, Table 9 shows that the results of our segmentation algorithm compares

favorably to similar algorithms found in the literature such as [1, 2, 35, 119, 153].

8.3.1 Collecting Outlier Patterns

After producing all the segmentation hypotheses for our numeral strings, we were able to

collect a set of over and under-segmented components. These components are called outliers

95

Table 9: Performance Comparison of Different Segmentation Algorithms

Correct | Error Reject | Database Recog.
Approach Rate Rate Rate info.
(%) (%) (%)
Chi et al.[153] 95.1 4.9 After 3355 images of touching digits from | yes
32.7 NIST Database
Chi et al.[153] 89.2 10.8 After 3355 images of touching digits from | yes
2.8 NIST Database
Cheriet et al.[118] 80.8 19.2 0 120 images of touching digits from | no
their own collection
Lu et al.{1] 97 3 After 3355 images of touching digits from | ves
28.6 NIST Database
Lu et al.[1] 92,5 7.5 After 3355 images of touching digits from | yes
4.7 NIST Database
Shi et al.{119] 95 5 0 495 zipcode images from CEDAR | no
CD-ROM Database
Shi et al.[119] 85.7 14.3 0 2579 US zipcode images from US | yes
Postal Database
Oliveira et al.[35] 98.5 1.5 0 900 touching digits from Brazilian | no
Bank Checks
Oliveira ct al.[35] 95.24 2.14 2.62 900 touching digits from Brazilian | ves
Bank Checks
Chen and wang[2] 96 4 After 4178 images of touching digits from | ves
7.8 NIST Database and 332 images
from their own collection
Our approach 96.5 3.5 0 5000 images of touching digits from | no
NIST Database
Our 98.04 1.96 0 1800 images from NIST NSTRING | no
approach (Over- SD19 Database (touching and non-
segmentation) touching strings with lengths of:
2,3,4,5,6, and 10 digits)

(out-of-class or non-digit) samples. In total, 1640 outlier samples were collected: 1154 sam-
ples of over-segmented outliers and 486 samples of under-segmented outliers. Some of these
outlier samples are shown in Figure 65. These outliers were used for two different purposes.
Firstly, by using them we could adjust the parameters (o, k, ¢, and 3) in Equations 28
and 30 in Section 7.2 (for our segmentation scores). Secondly, these outlier samples were

utilized to improve the training of our classifiers, explained in the next section.

8.4 Implementation and Testing of the Classifiers

Before using MLP and SVM to classify the input digits, they must be trained by samples
in a database (training set). Compared to other similar handwritten databases, samples
in the CENPARMI database show more variations in their shapes and styles. We there-

fore selected this database for the training of our isolated digit classifiers. Some samples

96

LU

(b)

Figure 65: Outlier Samples: (a) Over-segmented samples, (b) Under-segmented samples.

of the CENPARMI isolated digit database are shown in Figure 66. Using the CENPARMI
handwritten isolated digit database and the collected outlier samples, our MLP and SVM
classifiers were trained and their parameters were adjusted. The CENPARMI database has
4000 training samples (400 samples per digit) and 2000 testing samples (200 samples per
digit). Researchers in [8] and {154] showed that adding outlier (or non-character) samples
to the training set of isolated digit classifiers (such as MLP, SVM, etc.) yields higher per-
formances in the classifier’s rejection of outliers. Therefore, in order to improve the outlier
resistance of our classificrs, 1640 outlier samples (produced in the previous stage of our
experiments) were added to the training samples of the CENPARMI database. However,
unlike (8], and [154], we did not require a very large number of outlier samples to train our
classifier to become outlier resistant. This is because most of the outlier samples were han-
dled/rejected by our segmentation scores (which were introduced in Chapter 7-Section 7.2),
and not by our isolated digit classifiers (MLP and SVM).

After some trial training of our classifiers (MLP, and SVM) the number of neurons in the
hidden layer of the MLP was set equal to 85 (it has 225 and 10 neurons in the input and
output layers, respectively). The parameters ¢ and C of the SVM_rbf classifier were also

set equal to 1.15 and 10, respectively. The performances of our classifiers after training

97

on the CENPARMI isolated handwritten digit database are presented in Table 10. As it
shows, our MLP, and SVM classifiers could reach the recognition rate of 98.03% and 98.90%
on the testing set of the CENPARMI isolated digit database. Table 10 also shows that
the performances of our two classifiers on the testing set are a little lower than the results
reported by [43] (using SVM_rbf). Although our isolated digit classifiers have a little lower
performance in isolated digit recognition than [43], our system shows outlier resistance and
a very good overall performance. We will discuss this issue and compare the performance of
our system with other systems in the recognition of numeral strings in Sections 8.6 and 8.8,

respectively.

O AN L S E 7839
D] 233 K% £ (o=5F
P2 B AADHE TTEO

Figure 66: Some samples of the CENPARMI isolated handwritten digit database.

Table 10: Performance evaluation of our classifiers on CENPARMI isolated digit Database.
(N.A. stands for not applicable.)

Our Approach Approach in [43]

Database: CENPARNMI MLP SVM_rbf SVM _rbf

Ree. T Err. | Rej. | Rec. | Err. | Re). | Rec. | Err. | Rej.
(%) | (%) | (%) | (%) | (%) | (%) | (%) | (%) | (%)

Training Set 99.81| 0.19 0 99.92 | 0.08 0 N.A. | NA. [NA.
(4000 Samples+

1640 Qutlier samples)
Testing Set 98.03 | 1.97 0 98.90 | 1.10 0 99.05(095 | O
(2000 Samples)

8.5 Adjusting Parameters of our Genetic Algorithm

Genetic algorithms have several parameters such as probability of reproduction (F,), prob-

ability of crossover (F,), probability of mutation (F,,), size of the initial population (M),

98

and maximum number of generations (G). Before using GA, these parameters must be ad-
justed. In order to adjust these parameters the same samples of numeral strings that were
used in testing of segmentation module (1800 numeral strings) were also used to adjust the
parameters of our genetic algorithm (GA). After some trial adjustment, the parameters of
our GA were determined as shown in Table 11. In this table, n is the number of cutting
paths generated by our segmentation algorithm. For short numeral strings where n is less
than or equal to 5, the total number of possible segmentation hypotheses (2") will be less
than or equal to 32. In these cases, our search algorithm conducts an exhaustive search on
the population of segmentation hypotheses, instead of a GA search, but in the other cases
(where n > 5) it conducts a GA search.

As shown in the flowchart in Figure 22, our genetic search (GA) starts with a random popu-
lation of chromosomes, where each chromosome has n binary genes. Then it searches for the
optimum solution by updating the population using genetic operations. Qur GA terminates
in two cases: first, it terminates if a solution is found with desired fitness (a solution where
its confidence is greater than a threshold of T}; 77 is shown in Figure 22). Second, it ter-
minates if the number of iterations (generations) reaches the maximum number generations
(G), and no other good solution has been found. For the former case, the algorithm accepts
the string, and it outputs the labels and corresponding confidence values for the string. For
the latter case, the algorithm rejects the input string. In our experiments, the rejection level
of the system was controlled by adjusting the acceptance/rejection threshold (77). In our
experiments, a typical value for 77 was set equal to 0.80. In the next section, we will present

the overall numeral string recognition results produced by our system.

Table 11: Parameter values for our genetic algorithm.
PT PC -P7n, M G
0.4 | 0.55]0.05 | 32 | 2[n/2] |

99

8.6 Numeral String Recognition Results

Many researchers have used the NIST NSTRING SD19 Database in order to evaluate their
segmentation/recognition systems. For example, NIST NSTRING SD19 Database (hsf 7
series) was used by researchers in [9], [150], and [76]. Authors in [8], also used NIST
NSTRING SD19 for some of their experiments, but they only reported the results on nu-
meral strings with lengths 3 and 6, and they used fewer string images (1471 images, for each
string length). In order to compare our results with all these researchers, we also used the
NIST NSTRING SD19 Database for our experiments, and we used the same test images and
string lengths used in [9], [150], and [76] (reference [8] used only a subset of those images).
Table 12 summarizes the segmentation/recognition rates of our system on numeral strings of
lengths 2, 3, 4, 5, 6, and 10 digits. In this table, we report the results of our system with two
different isolated digit classifiers: MLP, and SVM under two different conditions: first, with-
out using segmentation scores, and using only the recognition scores (columns 3-6); second,
using segmentation scores in addition to the recognition scores (columns 7-10). In the former
case, segmentation hypotheses are evaluated based on their recognition scores produced by
the isolated digit classifiers (MLP, or SVM), without using any contextual information. In
the latter case, in addition to the recognition scores, contextual information (segmentation
scores) are also used to evaluate the segmentation hypotheses. The results of these two cases
at zero rejection level for the MLP and SVM classifiers, can be compared from columns 3
to 7 and 6 to 10 of Table 12, respectively. This comparison shows that using segmentation
scores (contextual knowledge) improves the results of the numeral string recognition system.
The average improvement for the case of MLP is 7.85%, and for the case of SVM it is 5.21%.
For simplicity, we also provide the results only for the MLP classifier at two different levels
of errors (less than 1%, or 0.5%) by changing the acceptance/rejection threshold (737). As
seen in Table 12, on average, our system can correctly segment, and recognize 95.28% (in
case of MLP), and 96.42% (in case of SVM) of the test samples from NIST NSTRING SD19

(hsf_7) Database at a zero rejection level. In Table 13 a summary of our best results using

100

segmentation scores taken from Table 12 is compared with the best results of similar ap-
proaches found in the literature. This table shows that our results using segmentation scores

compare favorably to those existing in the literature [8, 9, 150, 76].

Table 12: Recognition rates of our system on the numeral strings from NSTRING SD19,
using two different classifiers: MLP and SVM, and in two different situations: without and
with segmentation scores (contextual knowledge).

[Col# 1] Col#2 | Col#3 | Col#4 | Col 5 [Col#6 [Col## 7 | Col# 8 | Col## 9 | Col# 10
Without Segmentation Scores With Segmentation Scores

String Number MLP SVM MLP SVM
Length | of Strings | 0%(rej) | 1%(err) | 0.5%(err) | 0%(rcj) | 0%(re]) | 1%(err) | 0.5%(crr) | 0%(rej)
2 2370 92.06 87.05 85.56 95.05 97.87 92.20 90.77 98.94
3 2385 89.39 84.79 83.04 91.43 96.43 90.06 87.18 97.23
4 2345 88.20 83.63 81.00 91.07 95.17 87.91 85.04 96.16
5 2316 85.75 81.91 79.05 88.05 94.91 86.97 84.38 95.86
6 2169 85.64 81.02 78.69 88.69 94.26 83.01 80.41 96.10
10 1217 83.51 79.75 78.13 86.13 93.01 81.12 79.05 94.25
Average — 87.43 81.56 80.91 90.07 95.28 86.88 84.47 96.42
Rates

Table 13: Comparison of the recognition rates of our approach (using segmentation scores)
with similar approaches on the test samples of NIST NSTRING SD19. (Reference (8] used
only a subset of the test samples for their experiments.)

Col# 1 Col# 2 Col# 3 Col# 4 Col# 5 Col# 6 | Col# 7 | Col# 8 | Col# 9
String Number Results Results Results Results by [§] Our Approach
Length of Strings | by [76] | by [9] (MLP) | by [150] (SVM) MLP SVM MLP SVM
2 2370 94.8 96.88 97.67 — — 97.87 98.94
3 2385 91.6 95.38 96.26 95.60 96.82 96.43 97.23
4 2345 91.3 93.38 94.28 — — 95.17 96.16
5 2316 88.3 92.40 94.00 — — 94.91 95.86
6 2169 891 93.12 93.80 95.58 96.74 94.26 96.10
10 1217 86.9 90.24 91.38 — — 93.01 94.25
Mean — 90.33 93.57 94.57 — — 95.28 96.42
Standard — +2.8 +2.3 +2.2 — — +1.7 +1.6
Deviation — po . * — — be ox*

Paired T-test analysis between different columns: > (col#3 and col#8) P Value= 0.0001, o
(col#3 and col#9) P Value = 0.0001, ¢ (col#4 and col#8) P Value= 0.0015, * (col#5 and
col#9) P Value = 0.0006.

Some successful and unsuccessful segmentation-recognition results of our system on hand-
written numeral strings from NSTRING SD19 are also shown in Figures 67 and 68, respec-
tively. As these two figures indicate, there are four possible outcomes for the output of a
handwritten numeral string segmentation-recognition system: correct segmentation-correct

recognition, wrong segmentation-wrong recognition, correct segmentation-wrong recognition,

101

and wrong segmentation-correct recognition. The first and the last of these cases produce

A3
2T O] ko

correct recognition results.

S

30

X

7551 Y1 $ 14
13236 0133456154 72
(2 55 K06 76 f

Figure 67: Successful examples of segmentation/recognition produced by our system. Nu-
meral strings are taken from NSTRING SD19 Database.

R Skl ce 4 S s

(2)-643(640) (b)-5601(561) (c)-58149(58199) (d)-5021(5021) (€)-25(25)

Figure 68: Unsuccessful examples of segmentation/recognition produced by our system. (a,
and b) wrong segmentation-wrong recognition, (c) correct segmentation-wrong recognition,
(d, and e) wrong segmentation-correct recognition

8.7 Statistical Analysis

In order to verify the statistical significance of the improvement of our results in Table 13 over

other methods in that table, a statistical analysis using GraphPad InStat Software (Version

102

3.05) was performed. A paired T-test was applied and one-tailed P value less than 0.05
considered for a significant differences. These comparisons have been shown at the bottom
of Table 13. This analysis has been performed on the results reported by Britto et al. [76]
and Oliveira et al. [9, 150}, and the results by Liu et al. [8] were not included (because they
did not use all the samples in the database). The data in Table 13 passed the normality test,
and the results based on 95% confidence interval and 5 degree of freedom were extremely

significant for both our MLP and SVM classifiers.

8.8 Discussion

In this section, we discuss the results that we obtained in our experiments with handwritten
numeral strings (Section 8.6), and we compare them with similar methods reported in the
literature. There are two recent examples of numeral string recognition systems in the
literature where researchers focused on improving the isolated digit classifiers in order to
improve the overall performance of the system. First, researchers in [9] used MLP neural
networks to function as an isolated digit classifier and as verifiers for the recognition of
handwritten numeral strings, and then in [150] they substituted these MLP neural networks
for Support Vector Machines with Radial Basis Function Kernels (SVM rbf). Their results
are shown in columns 4, and 5 of Table 13, respectively. Comparison of these two columns
in Table 13 shows that although SVMs have a higher generalization power (and a higher
computational cost) than neural networks in isolated digit recognition [43], substituting
MLPs for SVMs could improve the performance of a numeral string recognition system
by an average of around 1%. Secondly, researchers in [8] also studied the performances
of various isolated digit classifiers on handwritten numeral string recognition and various
training methods of those classifiers. They also found that using different isolated digit
classifiers or using different strategies for their training can yield different performances in
handwritten numeral string recognition. Comparison of their results for two sample classifiers
(MLP Neural Network, and SVM_rbf) in columns 6, and 7 of Table 13, show that SVM _rbf

has about 1.16% — 1.22% higher performance in numeral string recognition than MLP Neural

103

Networks. These results are consistent with the results of [9, 150, 50]. These two examples of
systems for handwritten numeral string recognition show that there is a possibility to improve
the performance of a numeral string recognition system slightly, by enhancing the isolated
digit classifier module. However, in our experiments, unlike [9], [8], and [150] we kept our
isolated digit classifiers (MLP and SVM) unchanged, and we only added the segmentation
scores (as a source of contextual knowledge) to the system, and we were able to increase the
performance of our system, to about 7.85% in the case of MLP, and 6.35% in the case of
SVM | which are very significant improvements. The rcason for this improvement can be
explained as follows: isolated character classifiers (such as SVM, MLP, etc.) are designed, and
trained in order to recognize single and independent components one at a time, so normally
they do not use the contextual knowledge (such as comparisons of adjacent components, or
comparison of relative sizes or relative positions of different components) in their decisions.
Not using contextual knowledge, which is easily available in numeral strings, can cause
isolated digit classifiers (even with a very high recognition power) to misrecognize many
outliers, and to treat them as valid digits. This can explain why boosting the isolated digit
classifier in a numeral string recognition system is not the most effective solution in order to
improve the overall performance of the system.

Researchers in [8] also showed that training the isolated digit classifiers with many outlier
samples (in addition to the original training samples), can improve the outlier resistance of
those isolated digit classifiers, and subsequently this can improve the performance of those
classifiers in handwritten numeral string recognition systems. However, our experiments
showed that there were many outlier samples that could not be recognized/rejected by iso-
lated digit classifiers, no matter whether those classifiers have been trained or not by the
outlier patterns. Also, in order to train classifiers with outlier samples, a set with a very
large number of outlier patterns is required. Currently, such a standard set of outlier samples
is not available. Therefore, researchers have to use their own collected outlier samples.

In summary, in systems which do not use segmentation scores (sources of contextual knowl-
edge), correct segmentation-recognition of numeral strings only relies on the accuracy and

the outlier resistance of the classifier. So, these systems are very dependent on the structure

104

and training method of the isolated digit classifier. In comparison, in our system, correct
segmentation-recognition of numeral strings depends on two different factors: first the accu-
racy/outlier resistance of the classifier, and secondly, the segmentation scores. Since segmen-
tation scores are independent of the classifier and they come from another source (contextual
information), in our system the classifier has a less crucial rule in the performance, and this

can also improve the reliability of the system.

8.9 Summary

In this chapter, we presented the experimental results of our modular system, and we com-
pared them with similar systems in literature. All of our experiments in this chapter were
conducted on handwritten isolated digits or numeral strings from the CENPARMI and NIST
NSTRING SD19 databases. Here, first we compared our slant correction algorithm with
other slant correction algorithms, and we showed the effects of slant correction on segmen-
tation of handwritten numeral strings. Then, we compared the performance of our segmen-
tation algorithm and our isolated digit classifiers with other segmentation algorithms and
isolated digit classifiers in the literature. Adjusting the parameter of our system was also ex-
plained. Finally, we compared and discussed details of our experimental results with similar

methods.

105

Part 11

Towards Generalization and

Applications

106

Chapter 9

Incremental Learning: Plasticity and
Stability in Handwritten Digit

Recognition Systems

In Chapters 7 and 8 (Sections 7.3 and 8.4, respectively), we designed and used MLP Neural
Networks and SVM classifiers for the recognition of segmented digits and in order to produce
recognition scores. Although Neural Networks (NN's) and Support Vector Machines (SVM’s)
both have a very good generalization power [43. 90], and they have received a great deal of
attention over the last decade in many application domains, they both have a low incremental
learning capacity [155]. In many applications such as character or digit recognition, new data
and new styles of writing characters/digits are continuously introduced and added to already
huge databases. Therefore, we require the introduction of recognition systems that operate
incrementally that are able to learn new data.

In this chapter, in order to capture the very large variability that exists in the shapes and
styles of handwritten digits, and in order to learn the new shapes/styles of digits incremen-
tally, we introduce a new clustering algorithm. Our clustering algorithm is an incremental
unsupervised learning algorithm that is able to continuously learn new shapes of digits from
the same class (plasticity) and at the same time, it is able to remember the shapes of the

digits that it has learned previously (stability) [19]. By applving our clustering algorithm

107

and by using a K-Nearest Neighbor classifier, we have designed a system that shows stability

and plasticity in handwritten digit (character) recognition.

9.1 Needs for Plasticity and Stability in Digit Recog-
nition Systems

The determination of a set of representative prototypes to be used by a pattern recognition
system (or classifier) is a very challenging design step [156]. In the case of handwritten
character recognition, finding representative prototypes can be very complex, first because
of the very large variability that is exhibited by handwritten characters. Second, people’s
handwriting styles normally change with time; therefore, new data samples/shapes of writ-
ing for characters/digits are introduced and continuously added to already huge databases.
One way to tackle this challenge is to introduce handwritten recognition systems that adapt
to new writing styles without forgetting the previously learned ones. Therefore, we require
machine learning techniques in order to automate this task. Conventional machine learning
techniques (such as conventional Neural Networks and SVM’s), in order to learn new pat-
terns, must be retrained. In these machines, learning new patterns involves modifying all
previously trained weights and adjusted parameters, and normally by retraining (learning)
new prototypes, these machines forget the old learned prototvpes. We need machine learning
techniques (classifiers) which do not require retraining the entire set of weights (parameters)
when a new pattern is learned. However, in conventional learning machines, in order to
maintain the general performance of the system at a relatively high level, the retraining
process should involve all the historical samples besides the new samples. So, we have to
combine those samples into one huge data set and use it for retraining of the system. This
is not efficient in terms of both time and space, and it is considered as one of the main chal-
lenges in the design of evolutionary, efficient and robust handwritten character recognition
systems.

In pattern recognition (or machine learning), the ability to learn new patterns continuously

is called plasticity, and the ability not to forget the previously learned patterns is called

108

stability [157]. There is a conflict between plasticity and stability. Simply speaking, there
is always a question of how to keep learning new things without forgetting or destroyving
previously learned information [157, 158]. Adaptive Resonance Theory (ART) was proposed
in order to resolve the plasticity-stability dilemma in machine learning [157]. In fact, all clas-
sifiers/learning systems should solve the plasticity-stability dilemma. Due to the challenges
mentioned in the previous paragraph, we need handwritten character recognition systems
that exhibit plasticity and stability in their learning. However, our literature survey showed
that there has not been much research on implementing plasticity and stability in handwrit-
ten character recognition systems. In this chapter, in order to achieve plasticity and stability
in handwritten digit recognition systems, we introduce a new clustering algorithm based on
ART. We also introduce a new set of similarity measures that can compare similarities of
the shapes of handwritten digits. Using our features, similarity measure, and clustering al-
gorithm, handwritten digits are clustered based on their shapes, and the centers of different
clusters for each digit are found. These centers of clusters (basic shapes) will function as
representative prototypes which can efficiently model variations in each digit class. Finally,
a K-Nearest Neighbor (K-NN) classifier, utilizing our similarity measure, is used to assign
class labels to new samples based on their similarity to the prototype shapes of each digit.
This system is able to incrementally learn the new shapes/styles of handwritten characters
(shows plasticity), without forgetting the previously learned ones (shows stability).

In the next subsections, we will describe the details of our feature extraction. similarity
measure, and our proposed clustering algorithm. Finally, we will show our experimental

results.

9.2 Feature Extraction and Similarity Measures

Feature extraction and similarity measures are two essential components of any clustering

method. They will be described in this section and applied in Section 9.3.

109

9.2.1 Feature Extraction

For feature extraction, we used the method that was presented and used in Chapter 7 (in
Section 7.3). This feature extraction method is briefly reviewed here. Our method tries
to reduce the variation in the shape of a digit through smoothing, slant correction, and
normalization, and it utilizes a two-dimensional representation for the shapes or structures

of digits. The details of preprocessing and feature extraction are illustrated in Figure 69.

{b) (c) (d}

Figure 69: (a) Original image, (b) Smoothed, slant corrected, and normalized image (45 by
45 pixels), (¢) Skeleton of part b, (d) Reducing the resolution of the skeleton in horizontal
and vertical directions by down sampling (1/3). The resulting (15 by 15 pixels) image in (d)
is considered a (2D array) representation of the structure and style of writing of a digit.

9.2.2 Similarity Measures

Similarity or dissimilarity (distance) measures also play an important role in clustering, pat-
tern recognition and classification. Researchers have investigated similarity/dissimilarity
(distance) measures for a century, and currently many similarity/distance measures are
available in the literature, such as: Euclidian distance, Inner product, Cosine Similarity,
Hamming distance, Rogers-Tanimoto similarity [159], etc. Rogers-Tanimoto similarity can
measure similarity between two binary feature vectors, so it can be used to measure the sim-
ilarity of the shapes of digits in our representation. We adopted Rogers-Tanimoto similarity
measure and we modified it a little bit by adding some adjustable weights for its terms which

is explained as follows:

XY + XY

Sp (X, Y) = St S
ror(X.Y) XY + X'Y +2(XY + X'Y)

(Rogers-Tanimoto Measure) (36)

110

aXY + XY

MSp_r(X,Y) = g A
X Y) = vt XY + (XY + X'Y)

(Our Modified Measure) (37)

Here X, and Y are two binary feature vectors (where zeros stand for white pixels, and ones
stand for black pixels), and X'Y stands for the inner product of the two vectors. «a, 8,
and v are adjustable non-negative weights (credits) where at least one of them must be
non zero. Each term in Rogers-Tanimoto similarity has a meaning as follows: X'Y shows
the positive matching (black to black matching pixels); X'Y shows the negative matching
(white to white matching pixels); X'Y, and XY show non-matching cases between two
input vectors (black to white pixels or white to black pixels, respectively). Rogers-Tanimoto
similarity measure always assigns a score value between 0 and 1 for the similarity of two
pattern vectors. If two pattern vectors, X and Y, are exactly the same, their similarity,
based on this measure, will be equal to 1. Whenever the two pattern vectors are completely
dissimilar (for example, logical complements of each other), their similarity measure is equal
to 0. In addition to the above properties, our modified measure in Equation 37 introduces a
bigger family of similarity measures which enables us to apply different weights or credits for
positive matching (black to black pixels matching) and negative matching (white to white
pixels matching), or larger weights for non-matching cases (in the denominator) in order
to penalize those non-matching cases (and to obtain more restricted similarity measures).
We can say that Rogers-Tanimoto similarity is a special case of this family where both «
and (3 are equal to 1, and « is equal to 2. In our modified version, the greater the ratio

of v*= the more restricted the similarity measure (more sensitive to non-matching

oy
max(a,3)’

cases) will be, and the lower the ratio y*= m, the more flexible the similarity measure

(less sensitive to non-matching cases) will be. If we choose a = 3 (# 0), we can write our

similarity measure as follows, which has only one control parameter, denoted by ~*:

XY + X'V
XY + X'Y +4(XtY + X'Y)

In the next section, we explain our clustering algorithm.

MSg r(X,Y) =

(where 1* > 0) (38)

111

9.3 Clustering Algorithm

Data clustering is one of the most traditional and important issues in computer science.
Cluster analysis aims at discovering groups and identifying meaningful distributions and
patterns in large datasets. Numerous clustering algorithms have been proposed in the liter-
ature, and some methods such as K-Means clustering are very popular [67]. See [160] for a
recent survey of clustering algorithms. In recent years, due to emerging complex applications
such as data and text mining, data clustering has attracted a new round of attention [158].
In many applications, such as handwritten recognition or data mining in dynamic environ-
ments, databases are growing. Designing efficient and robust clustering algorithms that can
cluster patterns incrementally is very challenging.v As a result, few works for the develop-
ment of incremental clustering algorithms have been found in the literature [158]. ART
clustering algorithm (ART neural network) is one of the algorithms that has incremental
learning capabilities. ART is a type of unsupervised learning algorithm that tries to assign
an input pattern into one of the stored categories depending on which stored pattern it
most resembles. If the input pattern does not match any stored pattern within a system
parameter § (called vigilance factor; here, we refer it as minimum similarity threshold), a
new category is created, and no stored pattern is destroyed or changed. We took the basic
idea of this algorithm, and we modified it as follows. In our method, in order to improve
the generalization in learning, whenever the centers of the neighboring clusters (categories)
become very close to each other, (based on the chosen similarity or distance measure), they

will be merged into one cluster as illustrated in Figure 70.

The pseudo code of our algorithm is shown in Figure 71, where the minimum similarity
threshold (0 < § < 1) is the only parameter that must be adjusted before running the
algorithm. In each cluster, each pattern (member of the cluster) must have a similarity at
least of 6 to the center of that cluster, in other words a pattern is assigned to a cluster with
maximum similarity if that similarity is greater than §. Otherwise, a new cluster is created

for that pattern. Unlike offline clustering algorithms (such as K-Means), here, we do not

112

) 2) 3)

Figure 70: New incoming data may push the centers of some previously learned clusters to-
wards each other. By merging these (smaller) clusters, gradually bigger clusters are emerged
(more general concepts or better generalizations are achieved).

specify the number of clusters a priori, and we do not require all the patterns to be present at
the beginning of the clustering process. Also, unlike K-Means, in order to find the centers of
clusters, our algorithm scans (visits) all the input patterns only once, and it does not iterate
over the input patterns several times. These properties of the algorithm make it suitable for

the clustering of incoming online patterns (incremental learning).

Clustering Algorithm

1 Adjust the minimum similarity threshold (0 < § < 1).

2 Cluster_centers_ list = ¢.

3 Read the next pattern.

4 Find the most similar cluster center to the pattern in cluster_centers_list
with similarity greater than 4.
If found: assign the pattern to that cluster; Adjust cluster center; If this
new center becomes close (with similarity greater than §) to any other
center, then merge the corresponding clusters as one cluster; Update the
cluster_centers _list.
If not found: build a new cluster, and insert the input pattern into the
cluster_centers_list as a new cluster center.

5 Repeat steps in 3-4 for all the input patterns.

6 Output cluster_centers_list.

Figure 71: Our clustering algorithm.

113

9.4 Experimental Results

For our experiments on handwritten isolated digits, similar to Chapter 8, we used the CEN-
PARMI isolated digit database. As we mentioned in that chapter (8), handwritten samples
in the CENPARMI database show more variations in their shapes, compared to similar hand-
written databases. This database has 4000 training samples (400 samples per digit) and 2000
testing samples (200 samples per digit). Here, for implementing our similarity measure, we
considered equal weights for black to black and white to white matching pixels. Therefore,
we used Equation 38 for computing the similarity. After some initial adjustments, we set
~* (parameters of our similarity measure) equal to 3.5, also we set (minimum similarity
threshold in our clustering algorithm) equal to 0.75. We applied our clustering algorithm to
all training samples of each digit in the CENPARMI database (400 training samples per each
digit). Afterwards, we found the centers of the clusters for each digit. We considered those
centers as candidate prototypes for the shapes of digits. Two examples of clusters found by
our algorithm, (one for digit 4 and one for digit 5) are shown in Figure 72. The centers of
these clusters, have also been identified by rectangular bounding boxes. In our method, the
center of a cluster is a pattern that has a basic shape which contains most of the common
structural parts (common features) of the other patterns in its corresponding cluster. By
adding new samples to a cluster, its center can change. In fact, after adding a new sample
to a cluster, the algorithm updates the center to a pattern which has maximum similarity

to all the patterns of that cluster.

Figure 73 shows all the cluster centers obtained for digits 4 and 2. Table 14 shows the number
of all the cluster centers obtained per digit class. With the above parameter values of v* and
d, our clustering algorithm was able to find, in total 345 clusters of different shapes, which
is much smaller than the number of training samples found in the CENPARMI database
(4000). This greatly reduces the computation time, and memory space required for the

system, vet it maintains the high performance, using fewer prototypes.

114

YUY YL L L
YA GG
.
Yy sy fj—fg >
vy yQussdy 5 SR
tds vy Y S5 55§

(a) {b)

Figure 72: Two samples of clusters obtained by our algorithm. (a) One of the clusters
obtained for digit 4, this cluster has 55 samples. (b) One of the clusters obtained for digit 5,
this cluster has 19 samples. For both these clusters our clustering algorithm has identified one
of the patterns as the center (representative or prototype, shown in a rectangular bounding
box). Here, the center of a cluster is defined as a basic shape which contains most of the
common structural parts of the other patterns in that cluster.

Table 14: Number of clusters (prototypes) per digit class in the training set of the CEN-
PARMI database.
Digit 0111 2!3,41516|7]| 8,9 Total

Number of Clusters | 12 | 4 1 29 | 47 | 43 132 |42 |44 | 57 { 35| 345

The classifier used in our experiments was based on the K-Nearest Neighbor rule: an input
digit is compared against all the prototypes (centers of all the clusters for all digits) and the
most K similar ones vote for its classification. In our experiments, we took K =3. We applied
our classifier to all testing samples (200 samples per class) in the CENPARMI digit database,
and the results for all the classes are shown in Table 15. Our overall recognition result on the
CENPARMI test set was 98.75%. In Table 16 this result has been compared with the result
that reported by Lu et al. [43] using the CENPARMI database. Reference [43] reported one

of the highest results in the literature on CENPARMI isolated handwritten digit database.

Table 15: Recognition rates per digit class and overall recognition rate in the testing set of

the CENPARMI database.

Digt | 0 | T [2 |38 [4 [5 | 6 | 7] 8 | 9 [Total]
| Recog. Rate (%) | 99.55 | 99.33 | 98.74 | 08.33 | 97.68 | 99.01 | 09.10 | 98.15 | 9879 | 98.84 | 98.75 |

115

£ SRR
SN SES N NIV
S\ s NIV SN
S N PR
=1 XX =K
DTSR PR

2
2
2
2]
o2

PRLNY
JERN R NN

<dAX =2
RN LR >
ANY Y
WL »

{a))

Figure 73: (a) Centers of clusters (43 prototypes) found for digit 4, and (b) Centers of
clusters (29 prototypes) found for digit 2 in the training set of the CENPARMI isolated
handwritten digit database.

Table 16: Performance evaluation of our system in isolated digit recognition on CENPARMI
handwritten isolated digit database.

Our approach (Our clustering + KNN) Approach in [43] (SVM 1bf)
Dataset Rec (%) Err (%) Re). (%) Rec.(%) | Err.(%) Re.(%)
CENPARMI | 99.83 0.17 0 N.A. N.A. N.A.
Training set
CENPARMI | 98.75 1.25 0 99.05 0.95 0
Testing set

As this table shows, the results using our method here is a little bit lower than the results
obtained by SVM (using rbf kernels)[43]. However. our goal here was not to reach the max-
imum recognition rate, but instead to design a svstem which shows plasticity and stability

(high ability for incremental learning) in handwritten isolated digit recognition [19].

9.5 Summary

In this Chapter, we considered the problem of incremental learning in the handwritten
recognition systems. We presented a generalized set of similarity measures for comparing
the shapes of handwritten digits (characters), and we presented a new clustering algorithm
for improving plasticity and stability of handwritten character recognition systems. Our
clustering algorithm, for new shapes of different digits (or new shapes of the same digits)

which are dissimilar, creates new clusters. Our clustering algorithm, adaptively allows the

116

learned clusters to be merged to make bigger clusters (broader concepts). Also it is able to
automatically determine the optimal number of clusters in the input data. Unlike off line
clustering algorithms, our method scans the input data just once, so it is normally faster,
and it can be used for clustering on line input data. We built a system which is able to
incrementally learn new handwritten styles (shapes) of characters, without forgetting the

previously learned ones (shows plasticity and stability in handwritten digit recognition).

117

Chapter 10

A Genetic Based Particle Swarm

Optimization (GBPSO) Model

In Chapter 6, we proposed an evolutionary method (based on GA’s) for searching and
optimization of segmentation hypothesis. In this chapter, considering basic properties of
GA’s and another important evolutionary algorithm (so-called Particle Swarm Optimizer
(PSO) [4, 5]), an extension for evolutionary optimization algorithms is proposed. Here, a
general model which is called Genetic Based Particle Swarm Optimization (GBPSO) model
is developed. In the original GA or PSO methods, the size of the population (swarm) is fixed.
In our model, we introduce birth and death as two general population operations (instead
of regular evolutionary operations) in order to make the population dynamic. Similar to
the natural species that their birth and mortality rates change over time, our model allows
oscillations in the size of the populations due to such changes. In our model, as part of
its history, the swarm (population) remembers records of its good (high fitness) particles,
even after their deaths. Compared to the original Genetic Algorithms and PSO models, our
strategy proposes a more natural simulation of the social behavior of intelligent animals. The
experimental results show that compared to the original PSO, our GBPSO model can reach
broader domains in search spaces and can converge faster in very high dimensional and com-
plex environments. In this chapter, first we give some background information about PSO

optimization, then we present the details of our proposed GBPSO as a general evolutionary

118

optimization model, and finally we show our comparison results.

10.1 Particle Swarm Optimization

Here, we give a short description of the main concepts for the Particle Swarm Optimization
(PSO) technique. A detailed description of PSO can be found in [4, 5, 161]. PSO was
originally designed and introduced by Eberhart and Kennedy in 1995 [4, 5]. The PSO
algorithm is an adaptive algorithm, which involves simulating the social behavior of a group
of bees, birds or a school of fish. In PSO, individuals (each one is referred to as a particle) fly
through a multidimensional search space. Each particle is represented by a point (vector) in
the multidimensional search space, and a population of particles (so-called swarm) adapts by
moving stochastically towards previously successful regions of the space. A particle swarm
has two primary operations: velocity update and position update. At every iteration, each
particle accelerates towards the particle’s best previous position and the global best position
(or the local best position in its neighborhood). In each generation, each particle updates
its velocity vector based on its current velocity, the distance from its best previous position,
and the distance from the global best position (or the local best position). The new velocity
vector of each particle is then used to update its new position vector in the new generation.
The PSO process is then iterated a fixed number of times, or until a minimum error based on
some performance index is achieved. It has been shown that this simple model can deal with
difficult optimization problems efficiently [161]. Some researchers compared PSO and GA’s
and they have shown that PSO shares the ability of genetic algorithms to handle arbitrary
nonlinear functions, but with a much simpler implementation [162]. Some other researchers
have also shown that the hybrid GA and PSO possess better abilities to find the global
optimum than the standard GA and PSO algorithms [163].

There are two versions of the PSO algorithm: continuous and discrete. The original PSO
described above has been developed for solving continuous optimization problems. However,
lots of practical engineering problems are formulated as discrete combinatorial optimization

problems. In addition, researchers frequently model continuous domain problems in binary

119

(discrete) terms, and they solve those problems in discrete high dimensional spaces, featuring
qualitative distinctions between levels of variables. Typical examples of discrete optimiza-
tion include problems which require the ordering or permutation of discrete elements, such
as scheduling or routing problems. Although PSO have been used recently for solving op-
timization problems in different domains, the overall situation still seems to be as it was
in 2001 [164]. At that time, Kennedy and Eberhart wrote in their book [161]: “..we are
looking at a paradigm in its youth, full of potential and fertile with new ideas and new
perspectives...researchers in many countries are experimenting with particle swarms...many
of the questions that have been asked have not yet been satisfactorily answered”. In 1997,
Kennedy and Eberhart introduced a discrete (binary) version of PSO for discrete optimiza-
tion problems [165]. Our literature survey has shown that compared to continuous PSO,
binary PSO has not been used extensively for optimization, and it is still at the beginning
stages of its development and research.

Although evolutionary algorithms such as GA and PSO have been used extensively, to the
best of our knowledge there has been no research on general variable size population models
of evolutionary algorithms, and most of the research has focused only on special cases of
variations in the populations such as saw-tooth population model in [6]. In this chapter, we
propose a general population model for evolutionary algorithms, and we utilized it in order
to improve the performance of original PSO model. In our expansion, we add important
operations called birth and death to the PSO model, in order to make the population more
dynamic. Our model allows a variable population size of PSO, such that the size of the
population (swarm) can oscillate or change as a result of the changes in the birth and
mortality rates. Also, we add history over generations to our PSO model, so that the model
remembers the records of its high fitness individuals even after their death or removal of
those individuals from the population. Our proposed GBPSO model can be considered as a
unified generalized (hybrid) model for both Genetic Algorithms (GA’s) and Particle Swarm
Optimization methods [20]. So, it can exhibit advantages of both methods in the searching
of complicated search spaces or the optimization of difficult objective functions. We have

also applied our proposed GBPSO for optimization of some standard test functions, and

120

have compared its performance with the original PSO method.
In the next two sections, we will present some background information about two important

versions of particle swarm optimization: continuous and binary versions.

10.2 Continuous Particle Swarm Optimizer

In this section, we describe the basic concepts and the equations used in PSO model [4,
5, 161]. Like GA, PSO is a population-based search and optimization algorithm, however,
in PSO all the members of the population (particles) move around and search for food
(the optimum). So, in PSO each particle in the search space has a current location, direc-
tion and velocity of movement. Assume that the search space for an optimization problem

is d-dimensional. The ** particle of the population (swarm) can be represented by a d-

dimensional position vector X; = (x},22,...,x%). The rate of changes in position (velocity)
for the i** particle is represented by another d-dimensional vector V; = (v}, v2,...,v¢). The
best previously visited position of the i particle is denoted as Pies; = (p}, 02, . .., p%). Also

assume that g is the index of the individual in the swarm which currently has the best fitness,
therefore its position is denoted by Pypest = (p}, 2, ..., p%). For each generation, the particles

3

are manipulated according to the following equations for their velocity and position:

vf = v+ (pF—2b) + 02902(7); - aj) (39)

aF = 2F4of (40)

where ¢; and ¢, are positive constants, and ¢; and @, are random numbers, uniformly
distributed between 0, and 1. Some researchers have shown that setting each of ¢; and ¢,
equal to 2 gets the best overall performance. Figure 74 shows the vector representation
of these equations. The new velocity and position vectors in Equations 39, and 40 may
be updated to take some constraints into account. The most common one for the velocity
vector is to check that the maximum velocity in each dimension is within a specified range:

[-vF vF 1. The most common constraint for a position vector is the interval constraints:

tmaz? imaz

121

the new position vector has to be within a given interval (continuous, or binary) to be
considered inside the search space. The pseudo-code of the basic PSO procedure is given
as follows in Figure 75. The PSO procedure described here essentially handles continuous

optimization problems. In the next section, we will look at discrete PSO.

A

Figure 74: Vector representation of Equations 39 and 40.

10.3 Discrete (Binary) Particle Swarm Optimizer

Kennedy and Eberhart developed a discrete binary version of PSO for binary problems
[165]. They proposed a model wherein the probability that a particle will decide “yes” or

no” (“true” or “false”), or will make some other binary decision, is a function of personal

and social factors as follows:

Prob(zf =1) = f(af,vF, pf,p¥) (41)

Prob(z¥ =0) = 1— Prob(zF =1) (42)

Here, Prob(z¥ = 1) is the probability that a particle will choose 1 for its next movement in

the dimension k (k € {1,2,3,...,d}), and Prob(z¥ = 0) is the probability that a particle

122

PSO Procedure
For each particle in the population

Initialize the particle (its position and its velocity)
End

Repeat
For each particle
Compute its fitness value. If its fitness value is better than its previous
best fitness (Pies) set the current value as its new Py
End

Find the particle with the best fitness (Pies:) and consider it as the best
particle of the population (Pypest)

For each particle
Compute its velocity: based on Equation 39
Update its position : based on Equation 40
End
Until the maximum number of iterations or stopping criteria are attained.
End PSO Procedure

Figure 75: Pseudo code of original PSO Algorithm.

will choose 0 for its next movement in the dimension k. The parameter v* (predisposition
for each particle) is calculated similarly to the continuous case based on Equation 39, and
it will function as a probability threshold to make one of the two decisions (0 or 1). If vf
is higher, the individual is more likely to choose 1. and lower values will vield to the choice
of 0. Such a threshold needs to stay in the range of [0, 1]. The sigmoidal function shown in

Equation 43, and in Figure 76, maps the interval of v} to a range of [0,1]:

k 1

s(vy) = H—@(m (43)
Final binary decision making is based on the following rule:
1 if pf < s(vF)
Ty = (44)
0 otherwise
Here, p; = [p}, p2,p2,. ... p¢] is a random vector which is chosen from a uniform distribution

in the interval of [0,1]. As shown in Figure 76. we can limit v¥ so that s(v¥) does not

123

1

A(!':'"v =

L4+ exp{—e)
1 T T T /4—/— T
7
o9 .
/
‘_/
o.8F /,' i
/
0.7 / B
/
{
0.6 i b
i
Si:l.’)-k) 05k ,/ N
/
04F ," -1
f
/
f
0.3 f 4
//
f
o2t // 4
H
0.1 7 4
_/
0 i et L))
-15 10 -5 0 £ 10 15

Figure 76: Sigmoid function of: s(v¥) = m

approach too closely to 0 or 1. A constant parameter V,,,. can be set at the start of the
algorithm to limit the range of s(vF). Normally, V,,., is set within the range of [-4.0, +4.0],
so that there is always at least a chance (probability > 0.0180) that a bit state change can
occur. The entire PSO algorithm of the binary version is almost the same as that of the

basic continuous version in Section 10.2, except that it uses the above decision rule. In the

next section, we will introduce our GBPSO model.

10.4 Genetic Based Particle Swarm Optimizer

Our Genetic Based Particle Swarm Optimizer (GBPSO) is a generalized evolutionary algo-
rithm (a novel generalization of both PSOs and GAs). In our model, in order to improve
the dynamism of the population (swarm), and to increase the exploration power of its par-

ticles, we introduce birth and mortality rates into the population [20]. In each generation,

124

particles (chromosomes) are updated similarly to particles in the PSO method, based on the
rules and equations explained in Sections 10.2 and 10.3. However, in each generation after
updating all the particles in the swarm, new individuals (children) are added to the swarm
by birth operations, and also some particles of the current swarm die, and they are removed
from the swarm, by death operation(s). In addition to birth and death rates in our model,
we also maintain a history that keeps the information of high performance particles which
have been removed from the swarm because of death operation. Dynamic swarm, birth and
death operations, and history of the swarm are the main components of our GBPSO model,

described in the following subsections.

10.4.1 Modeling of a Dynamic Swarm

In this section, we introduce the equations that model our dynamic swarm. Assume that
at each generation ¢, the swarm has a birth and a death rate (mortality rate). The Birth
rate (which is denoted by b(t)) is defined as: the number of births per unit population per
unit of time. The death rate or mortality rate (which is denoted by m(t)) is defined as the
number of deaths per unit population per unit of time. Here, both birth and death rates
are considered as non-negative values (b(t) > 0 and m(t) > 0). The overall birth rate of the

swarm (which is denoted by 7(¢)) can be defined as follows:

r(t) = b(t) — m(t) where: V¢t b(t), m(t) >0 (45)

Although, b(t) and m(t) both are non-negative rates, r(t) can be positive, zero, or negative.
The population size at generation ¢ is denoted by P(t). The overall birth rate r(¢) can affect
the size of the population at the next generation (P(t+ 1)) relative to the current size of the

population (P(t)), as follows:

If r(t) >0, then P(t+1) is greater than P(t)
If r(t) =0, then P(t+1) isequal to P(t)
If r(t) <0, then P(t+1) isless than P(¢)

125

In order to derive the differential equation, which specifies the population (swarm) size, we
consider how the population will change in a small time interval from ¢ to ¢t + At. The change
in the population size is directly proportional to the birth and mortality rates, At, and the

population size itself, as follows:

[change in population size] = [births] -[deaths]

P(t + At) — P(t) = b(t).P(t).At — m(t).P(t).At (46)

If we divide both sides of Equation 46 by At, and let At approach zero, we can get the
following differential equation, which models the size of the population (swarm) in diffcrent

generations:

P(t) = (b(t) - m(t))P(t)

P(t) = r(t)P(t) (47)

This differential equation has a unique solution as follows, where ¢ is a constant that depends

on the initial size of the population at time ¢ = 0 (denoted by P(0)).

P(t) = e®® where: R(t) = /r(t)dt +c (48)

Without loss of generality and in order to be able to find the solution to Equation 48, we
have considered four different cases for the population and its birth rate (b(¢)) and mortality

rate (m(t)) as follows:

Case I: Population with Constant Size

If both b(t) and m(t) are chosen to be equal such that b(t) = m(t) V¢t > 0, then r(¢t) = 0,

therefore, according to Equation 48, the population will be a constant size as follows:

P(t) = P(0) = Constant (49)

126

In particular, if b(t) = m(t) = 0, then we have the conventional PSO model (constant
population size with no births and deaths). So, the original (conventional) PSO model is a

special case of our GBPSO model.

Case 11: Population with Exponential Changes in Size

If both b(t) and m(t) have different values such that b(t) = ¢; and m(t) = ¢z and ¢; # ¢,
then r(¢) and P(¢t) will be defined as follows:

r(t) = bt)—m(t)=c —co (50)
P(t) = ela-ette — p(Q) . ela-ct (51)

In this case, the population size will increase or decrease exponentially (depending on the

relative values of b(t) and m(?)).

Case III: Population with Exponential-Sinusoidal Changes in Size

If both b(t) and m(t) have general forms as follows:

b(t) = ay cos(wt + 6,) + 5. where: £; > a; > 0 (52)

m(t) = as cos(wt + ba) + o, where: s > a2 > 0 (53)

Here, ay, e, 81, B2, and w are positive real numbers and they are normally chosen to be very
small; and 6,6, € [0,27]. The condition §; > «; guarantees that both b(t), and m(t) will
have non-negative values in all generations. If oy = a3 and 8; = 2 and 6; = 6,, this case
will become Case 1 above. If a; = a2 = 0, we have constant birth and mortality rates and
this case will become Case II above. In the general form, by substituting b(t), and m(t) from

Equations 52 and 53 into Equation 45, we can find r(t) as follows:

r(t) = acos(wt + 6) + 3 (54)

127

Here, 3 = B — (32, and «, and 0 can be easily derived from a1, a9, 61, and 02 (refer to
Appendix C). After replacing the r(¢) in the Equation 48, we can find the solution for the

differential equation, as follows:

P(t) _ P(O)e[% sin(wt+0)4-6t—2 sin(O)] (55)

Considering this model for the population, we can simulate many different situations for our
population. For example, if both «, and 3 are equal to zero, the population will always
be fixed at P(0) (conventional population models). If « is equal to zero, the size of the
population will increase or decrease exponentially, corresponding to the sign of 3 (+ or -,
respectively). If 3 is equal to zero, the size of the population will oscillate starting from the
initial size (P(0)). If o, and 3 are both non-zero, the size of the population will oscillate,
and it will increase (or decrease) exponentially. In all of these cases, parameter w determines
the speed (frequency) of the oscillations. The two examples below graphically show these

situations.

Example 1:

In this example, we assume that the initial size of the population is equal to P(0) = 30, and
we also assume that the birth and mortality rates of the population (b(t), and m(t)) have

been chosen as the following functions:

b(t) = 0.012cos(0.03t + 7/12) + 0.5 (56)

m(t) = 0.019cos(0.03t + 7/3) + 0.5 (57)

Oscillations or changes of these rates are shown in Figure 77-(a). Using the parameter values
in the above equations of b(t), and m(¢), we can obtain a = 0.0135, 8 =0, and ¢ = 257/16,
which are required for the population function in Equation 55. By replacing these values,
we can obtain the population size as a function of ¢ as shown in Equation 58. The graph of
this function is also shown in Figure 77, where the size of the population is initialized at 30,

and it oscillates while its minimum is fixed around 30, and its maximum is fixed at 73.

128

1 == L — Qscillation of population size
----- Birth rate 80 I pop
— Mortality rate 70t
o 0.8} 1
s N 60
‘? w
g 0.6 1 § 50
LR W WO N N N N W P WL S 40
?) i o
E 0.4 & 30
£ 2
@2 1 =
10f
% 500 000 1500 2000 0 500 1000 1500 2000
Number of generations Number of generations

Figure 77: (a) Oscillation of the birth and mortality rates in Example 1, (b) Oscillation of
the population size in Example 1.

257

P(t) = 306[0.45 sin(0.03t+ %) ~0.45 sin(FF)| (58)

Example 2:

In this example, again we consider the same initial size for the population (P(0) = 30), and
we choose slightly different birth and mortality rates for the population (b(¢), and m(t)) from

those in the first example, as follows:

b(t) = 0.012co0s(0.03t + 7/12) + 0.5 (59)

m(t) = 0.019c0s(0.03t + 7/3) + 0.4999 (60)

Oscillation of these rates are shown in Figure 78. Using the parameter values in the above
equations of b(t), and m(t), we can obtain o = 0.0135, 3 = 0.0001, and § = 257/16. The
population function is shown in Equation 61, and the graph of this function is also shown
in Figure 78. As shown in this figure, the size of the population is initialized by 30 and it

is oscillating, while its minimum, maximum, and the amplitude of its oscillations are slowly

129

increasing. This population model can be useful in cases where, after many generations,
we want to gradually increase the number of particles in the swarm (adaptively using more

particles to search a complicated landscape).

1 = 100 . . .
=== Birth rate [— Oscillation of population size |

e — MortaMy rate
© 0.8 80}
£ X
sos "g‘ 60p
R g W N W A S -
041 g 40
e o
£0.2 20}
=

0 0 1 L '

] 500 1000 1500 2000 0 500 1000 1500 2000
Number cf generations Number of generations
(a) (b)

Figure 78: (a) Oscillation of the birth and mortality rates in Example 2 (these oscillations
are slightly different from Example 1), (b) Oscillation of the population size in Example 2
(here, the population size is gradually increasing).

P(t) = 3010-455in(0.03t-+ 5F)+0.0001¢—0.45 sin(2| (61)

Case IV: Population with Linear Changes in Size

If g(t) is a positive valued (Vt > 0: g(t) > 0), and if it is differentiable (V¢ > 0 : ¢/(t) exists),

in this case it is possible to choose b(t) and m(t) such that:

re) = o) —m) =LY w0 (62)

In this case, according to Equation 48, P(t) can be calculated as follows:

P(t) = eMuthte = e g(t) =k - g(t) (ki : constant, depends on P(0)) (63)

130

In this case, the population form is dependent on the form of the function g(t). For example,
if g(t) is linear, polynomial, or exponential, the form of P(t) also will be linear, polynomial,

or exponential, respectively. Consider the following example of a linear P(t),

Example 3:

Assume that b(t) and m(t) have been chosen as follows, and the initial population size is

P(0) = 20.

18
b = 64
(®) 10t +20 (64)
8
mt) = Jorya0 (65)
then r(t) will be calculated as follows:
’0) = b~ mlt) = oo (66)
B 10t +20
According to Equation 48, R(t) and P(t) can be calculated as follows:
R(t) = In(10t+20) +c (67)
P(t) = 1020 = q0¢ 4 20 (68)

Figure 79 shows the graph of the changes of b(t), m(t) and P(t) for this example. As seen in
this figure the population size starts from 20 and it grows linearly (increases by 10 in each
generation).

As shown in Cases I to IV, in our GBPSO model, the population size can change in differ-
ent forms, and we are able to simulate any form of population function, such as constant,
exponential, sinusoidal, linear, etc. In the following sections, we will model birth and death

processes, and the history of the population.

131

1 v 1000
----- Binth rate

908 — Montality rate | | o 800
8 N
208 9 s00}
] i _g
% :‘ < 400}
= 04 2
L Q
t [1%
0 o2 200}

0 —— oo memmeoooooemaea O L A A

0 20 40 60 80 0 20 40 60 80
Number of Generations Number of Generations
(a) (b)

Figure 79: (a) Birth and mortality rates in Example 3, (b) Population size changes linearly
in Example 3.

10.4.2 Modelling of Birth Operations

In our GBPSO model, unlike PSO, there are birth operations. At each generation ¢, a subset
of the particles in the swarm are randomly selected, in order to produce new children (birth).
The particles in the selected subset are given equal chances to mate or mutate in order to
produce new children. The new children will be included in the swarm and new information
records (data structures) for them will be created and initialized. Here, unlike conventional
Genetic Algorithms, the new children do not replace their corresponding parents, nor do they
compete with their parents. In fact, here, the relationship between parents and children is
some kind of collaboration or cooperation for reaching a shared goal.

At each generation £, the number of particles which are added to the swarm as new born
particles are proportional to the birth rate b(t) of the swarm. For example, at generation ¢,

the number of particles that are born is calculated as follows:

num-of _new_children = | P(t).b(t) | (69)

Similar to genetic algorithms [124, 125], here, there are two different ways of producing new

children: crossover and mutation. So, we can assume that we have two partial birth rates:

132

one birth rate for the children produced by crossover b.(t), and another birth rate for the

children produced by mutation b,,(t), such that:

b(t) = b.(t) + b, (t), where b.(t) = ko.b,(t) (70)

Normally, the percentage of children produced by crossover is higher than the percentage of
the children produced by mutation. Here, we assume that ky € [1,10] is a constant ratio
of b.(t), and b,,,(t) (as a typical value in our experiments we took k» = 3). Having k. and
b(t), we can compute b.(t), and b,,(t). Therefore, we can compute the number of parents for

producing crossover and mutated children separately, as follows:

num_of crossover children(t) = |P(t).be(t)) (71)
num_of mutated children(t) = [P(t).bn(t)] (72)
crossover parents(t) = L—P(MJ (73)
mutated_parents(t) = |P(t).bn(t)] (74)

So, from the population at each generation ¢, the number of crossover parents(t) (pairs of
particles) will be randomly chosen in order to produce crossover children (each pair of parents
produces two crossover children). Also, mutated parents(t) particles will be randomly chosen

in order to produce mutated children.

10.4.3 Modeling of Death Operation

In our GBPSO model, unlike PSO, there is death operation. At each generation ¢, a subset
of the particles in the swarm are randomly selected (without considering their age or fitness),
in order to be removed from their swarm (death). In fact, this process simulates removing
those individuals in nature from their population which die for many different reasons such
as: disease causing death, natural disasters, sudden changes in the environment, lack of food,
or being hunted by predators, etc. The number of particles in the selected subset for death

at each generation is proportional to the death rate m(t) of the swarm. For example, at

133

generation ¢, if the size of the population is denoted by P(t), then the number of particles

that must have died is calculated as follows:

num_of death(t) = | P(t).m(t)] (75)

In order to simulate death, at each generation ¢, the num_of _death(t) particles from the
current swarm will be randomly chosen, and they will be marked as dead particles (their
records can be physically removed from the swarm, as well). The particles in the selected
subset are logically considered as dead, so there will be no further updates for their records
(their positions and their speeds are not updated). In the next section, we will explain how

a summary of the information of dead particles is saved in the history of the swarm.

10.4.4 Modeling the History of the Swarm

Unlike the original PSO, there is a history in our GBPSO algorithm, which saves the infor-
mation of the best individuals which have died. At each generation, records of those particles
which are marked as dead can be physically removed from the swarm. At the same time, the
history of the swarm is updated to keep the information on the best particles(s) that have
dead. Therefore, if the best particle (Pj.s:: particle with the highest fitness) is among those
selected for death, its record will be kept in the history. In this way, the swarm can save the
knowledge gained during past generations. In fact. at any generation, live particles of the
swarm can use the knowledge, and the experiences of the best particle (P,), even if it has
died. This is a bit similar to elitism in Genetic Algorithms (GA’s). Elitism in GA’s ensures
that the genes or information on the best individual(s) is always copied to the subsequent
population, and in this way, good individuals will not be accidentally lost when combined
with other individuals [6]. However, in our method, we keep the information on dead good

individuals (high performance particles which died) in the history, not in the swarm.

134

10.4.5 Pseudo Code of Our GBPSO Algorithm

In this section, we put all the main elements of our GBPSO model (dvnamic swarm, birth
and death operations, and history) together, and we show a pseudo code of our algorithm.
The general pseudo code of our GBPSO algorithm is shown in Figure 80. In the next section,

we show the experimental results with our algorithm.

Initialization;

while (not terminated)

{

t=t+1; //increment number of generations

for ¢ = 1 : Number of particles // (for all particles of (P(t))

{

Vi(t+1) = V() + ¢q ¥ rand() * (P _ibest — X;(t)) + co * rand() * (P_gbest — X;(t));
Xi(t+1) = X;(t) + Vi(t + 1);

Fitness;(t) = (A{1)); // f() is the fitness or objective function
if required, update P _ibest;

} // end of for

do the birth operation; // Number of births: P(t) b(t)

do the death operation; // Number of deaths: P(t) x m(¢)
update the swarm size (P(t)) // update the Number of particles
update P_gbest and history of the swarm (if required);

} // end of while

Output the best particle found.

Figure 80: Pseudo code for our GBPSO Algorithm.

10.5 Experimental Results

In this section, we will compare the performance of our proposed GBPSO method with the
original PSO proposed by Kennedy and Eberhart [165]. For comparison, we investigated both
methods on the minimization of a set of four standard test functions: Sphere, Rosenbrock,
Griewangk, and Rastrigrin. Each of these four functions has a global minimum value equal
to zero. The expressions of each of these functions for N input variables are given below,

and their graphs for 2 input variables are shown in Figure 81.

135

fx) = x¢ (Sphere) (76)
i=1
N-1
f(x)= Z (100(x311 — x?)? 4 (x; — 1)?) (Rosenbrock) (77)
i=1
fx)= L 3 x2 — l_N[cos 2 41 (Griewangk) (78)
4000 = ' 5 Vi
N
f(x) = (x# — 10 cos(2mx;) + 10) (Rastrigrin) (79)
i=1
Sphere 0 Rosenbrock

-10 .10

Figure 81: Graphs of four standard test functions for evolutionary algorithms (Sphere, Rosen-
brock, Griewangk, Rastrigrin) in two dimensions (two input variables) [4, 5, 6].

These functions have been used by many researchers as benchmarks for evaluating and
comparing different optimization algorithms [4, 5, 6]. Here, x = (x3,X2, -+, XN), i a position
vector in the NV dimensional search space. Like PSO or GA’s, in our GBPSO, each particle

is represented by a vector of N values (a point in N dimensional search space) or we can say

136

by a chromosome which has N genes. In our experiments, the range of the particles in each
dimension was set equal to [—50,50]. We tested both PSO, and GBPSO methods in finding
the global minimum of these functions, in both low and high dimensional search spaces such
as: N = 3,15,75,and 150 dimensions.

In our experiments, with GBPSO, the birth rate (b(t)) and mortality (m(t)) rate of the
population were set by Equations 80 and 81 below, and the size of the population was
initially set at P(0) = 1. Considering these settings, the size of the population in GBPSO

changed according to Equation 55, which is shown as a graph in Figure 82.

b(t) = 0.15cos(0.6t + 7/12) + 0.43531 (80)
m(t) = 0.15cos(0.6t + 7/3) + 0.361 (81)
Population Changes
400
300

Population Size
N
S

8

(=]

o] 20 40 60 80
lterations

Figure 82: Population changes for our GBPSO model in one run (80 iterations).

For each function and for each value of N (dimension of the space), we ran PSO and GBPSO
algorithms 10 times, and each run looped 80 generations. As mentioned above, and as shown
in Figure 82, the number of particles in our GBPSO model started at one, and it gradually in-
creased, such that its maximum finally reached 397 particles (after 80 generations/iterations).
To have a better comparison, we took the population size of 400 for the ordinary PSO (which
is slightly bigger than the maximum number of particles in our GBPSO model), and also of

800 (which is around two times of the maximum number of particles in our GBPSO model).

137

In each run, we looked at the best optimum value of objective functions (test functions)
found by both algorithms, and we took the average of the best optimum values found for
each algorithm during 10 runs. Results are summarized in Table 17 for each dimension.
The convergence of the original PSO and GBPSO algorithms for the case of N=150 (a very
high dimensional space) is also compared in Figure 83. As Table 17 and Figure 83 show in
nearly all the cases our GBPSO coverage faster (in terms of number of generations) and find

a better minimum.

Method | Population Size | Sphere | Rosebbrock | Griewangk | Rastringrin
PSO 400 (fixed) 1.22E-013 | 9.15E-011 | 9.91E-007 0.9950
PSO 800 (fixed) 3.88E-015 | 3.00E-012 | 4.99E-009 | 3.64E-009

GBPSO 1— 397 2.15E-014 | 2.52E-008 | 2.24E-013 | 3.92E-011

(a) Dimension N =3

Method | Population Size | Sphere | Rosebbrock | Griewangk | Rastringrin
PSO 400 (fixed) 3.23E-004 23.59 0.0543 56.72
PSO 800 (fixed 3.48E-005 14.43 0.0197 51.73

GBPSO 1— 397 7.29E-012 13.83 6.96E-013 | 2.69E-010

(b) Dimension N = 15

Method | Population Size | Sphere | Rosebbrock | Griewangk | Rastringrin
PSO 400 (fixed) 371.55 5.12E+005 1.0951 1.67E+003
PSO 800 (fixed 258.87 1.30E+4005 1.0873 1.41E+003

GBPSO 1— 397 3.44E-011 73.78 6.21E-011 | 8.84E-008

(c) Dimension N =75

Method | Population Size | Sphere | Rosebbrock | Griewangk | Rastringrin
PSO 400 (fixed) 1580 2.38E4-006 1.3315 2.5E+003
PSO 800 (fixed 756.91 2.12E+4-006 1.26 1.6E4-003

GBPSO 1— 397 5.38E-011 148.78 2.25E-013 | 2.2E-008

(d) Dimension N = 150

Table 17: Comparison of the best average minimum found by original PSO and our GBPSO
method for (a) N =3, (b) N =15, (¢) N =75, (d) N = 150 dimensions in 80 iterations

10.6 Discussion

One of our main goals in this research was motivating Evolutionary Algorithm (EA) re-

searchers to further investigate varying population sizes and to show the important positive

138

x 10‘ Sphere 10 Rasebbrock Griewsngk x 10‘ Rsslringrin

14 30, 12

-
C

@

12

L]
[N]
o
-
=1

~

-]
~
1>

-

-
°

Minimum value of the function
Lo o

Minimum valus of the function
Minimum valus of the funation
N
o
Minimum value of the function
o

- ™
on
N

1L

0

0 0

¢ 20 40 0 & o 20 40 6 80 0 20 4 6 8 0 20 40 & 8
Remtions fterations. ferations Herations
%10 Sphere x10 Rosebbrock Griswangk x10' Rastringrin

15 18 k13 14

16 |

30, 12
5 s § H

H 3 025 210
S0 s 3 g
2 2 H 2

z Z10 z20 :®
° 13 3 °
-3 ° © o
3 R 3 2

§ [4 ;15 s 6

E E

55 5 £ £

£ E Eqp E 4
£ £ £ £
b3 =z = =

5 2

2 L i
0] 0 0 5

0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80
herations Kerations flerations Nerations

Figure 83: Comparison of the convergence of original binary PSO, and GBPSO on four
different test functions for N=150 dimensions.

effects of births and deaths in the population in evolutionary algorithms. In most EA pub-
lications, the population size is considered to be a fixed parameter. However, there are
biological and experimental arguments to explain why adjusting the population size is more
promising. Normally, in natural environments, population sizes of animals change and tend
to stabilize around appropriate values according some natural resources and the capacity of
ecosystems [166], [167]. Here, for the first time (to the best of our knowledge), we proposed
and simulated an effective, gencral and easy to use population model that can be utilized in
all evolutionary algorithms (such as PSO, GA’s...). Table 18 compares some basic features
of GBPSO with two other important evolutionary algorithms: GA and PSO.

Our experimental results showed that introducing birth and death operations and utilizing

139

Table 18: Comparison of the main features of three evolutionary optimization algorithms:

GA, PSO, and GBPSO.

Property of the Algorithm GA | PSO | GBPSO
Population based Yes | Yes Yes
Updating the population in each generation Yes | Yes Yes
Evolutionary operators (crossover, mutation,...) Yes | No Yes
Interaction between particles No | Yes Yes
Memory (each particle remembers and learns from | No | Yes Yes
its past)

Learning (particles can learn from other particles | No | Yes Yes
and history)

Birth/Death operations No | No Yes
Variable population size (General population | No | No Yes
model)

variable size population model can greatly improve the performance and convergence of EA’s
in optimization, especially in high dimensional or complicated search spaces. As shown by
the results in Table 17 and Figure 83, GBPSO converges much faster, and finds a much
better optimum than ordinary PSO for the standard test functions in very high dimensional
search spaces, however because of the birth and death operations (updating the population

and the history in each generation) it needs more computations compare to PSO.

10.7 Summary

In this chapter, we explored the extension of the particle swarm optimization (PSO) model by
including features from Genetic Algorithms in order to improve its performance in searching
and optimization. The main contribution of our model is to generalize PSO and Genetic
Algorithms, and to put them into a unified framework. A second contribution was to propose
a simple model for variable population size models of evolutionary algorithms through the
use of birth and death operations.

In our future research, we intend to apply our proposed approach (GBPSO) to a variety
of real-world problem domains such as searching and optimization of large graphs, and
segmentation of numeral strings in different languages such as Latin, Arabic and Farsi. We

also intend to explore how this model may adaptively can use more information from the

140

past history of the swarm in order to control and adjust its birth and mortality rates in the

future generations.

141

Chapter 11

Segmentation and Recognition of

Handwritten Numerals in Farsi

Segmentation and recognition of unconstrained handwritten numeral strings is one of the
main challenges in the automatic processing of many scripts (languages) in the world. Al-
though several methods have been proposed for the recognition of isolated handwritten Farsi
(Persian) digits, such as [23, 168, 169, 170]..., to the best of our knowledge, no method has
been reported for the separation of touching digits and the construction of segmentation
paths in handwritten Farsi numeral strings. In this chapter, a brief history of the evolution
of Farsi script is presented and the historic connections between Farsi and Arabic Scripts are
shown. Similarities and dissimilarities between Farsi digits (used in Iran) and Indian digits
(used in Arab countries) from the Optical Character Recognition (OCR) point of view are
shown [22, 25]. Due to a lack of standard databases for OCR research on Farsi, we created
a novel standard comprehensive database for Farsi script to facilitate the OCR research in
Farsi [21]. Our database includes different sets for isolated digits, letters, numerical strings,
legal amounts (used for cheques), and dates. Also, for the first time, we applied Support
Vector Machines (SVMs) for the recognition of isolated handwritten Farsi numerals [23], and

we tested our segmentation method for separating touching handwritten digits in Farsi [24].

142

11.1 An Introduction to Farsi (Persian) Script and its
relation to Arabic

Farsi (Persian) and Arabic are two important cursive scripts used mainly in the Middle
East and some other neighboring countries. Farsi is the main language used in Iran and
Afghanistan, and it is spoken by more than 110 million people, including some people in
Tajikistan, and Pakistan. Arabic is spoken in all Arab countries, both in the Middle East
and in Africa, and it is used by 234 million people worldwide. In western countries, it is
commonly thought that Farsi and Arabic scripts are the same. However, apart from major
differences in the two languages, minor yet important differences exist in their alphabets
and their styles of writing of their scripts. Due to these differences, a system adjusted for
automatic recognition of one script might not perform well for the other one. While much
research on Arabic recognition has been published and introduced internationally, most of
the research in Farsi recognition has been presented only in Farsi Journals and Iranian
conferences [22, 25]. To the best of our knowledge, research on handwritten Farsi script
recognition has not yet been widely introduced to the research community and compared to
English script, it is still at the beginning stage. In the rest of this section, we briefly review
the history of Persian script and its historic connection to the Arabic script, and review

evolution of the Persian script over three periods: Old, Middle, and Modern.

11.1.1 Old Persian Script (550 to 330 B.C.)

Old Persian script was a cuneiform type script dating from the time of the Achaemenid
dynasties in Persia (6th-4th century B.C.) [22, 25, 75]. In that script, characters were made
of strokes, which could be impressed upon soft materials by a stylus with an angled end.

Figure 84 shows the alphabet and numbers used in Old Persian script.

143

mwaEqdaa¢er

33 G

-G ETE ATy
G 1CH AT e 06 e

Dk i)

1 B R H 6 ¢ T

20 30 40 100

Figure 84: Old Persian (cuneiform type): alphabet and numbers.

11.1.2 Middle Persian (300 B.C. to 900 A.D.)

Middle Persian includes the Iranian dialects as they appeared from about 300 B.C. to about
900 A.D. Middle Persian is generally called Pahlavi (a derivative of the old Persian word
"Parthian’) [22, 25, 75]. It was the language of quite a large body of Zoroastrian literature, the

state religion of the Sassanids in Iran. An example of Pahlavi Script is shown in Figure 85.

Figure 85: A sample of Pahlavi (Middle Persian) script.

11.1.3 Modern Persian Script (after 7th century)

After the fall of the Sassanids and conquest of Persia (Iran) by the Arab Muslims (in the 7th
century - 650 A.D), Pahlavi script gradually gave way to the Arabic script [22, 25, 75]. The
introduction of Islam brought a massive infusion of loaned words from Arabic to the Persian
language. The Arabic alphabet was gradually adopted as the Persians’ new alphabet, as the
script of politics, religion, and education. Figure 86 shows Modern Persian (Farsi) alphabet.

An example of modern Persian script is also shown in Figure 87.

144

Isalatest| ol Medial j Final Roman | Name | lolated| Inifial | Medial | Final Roman | Mame
)) L L a |alef| ho| o | wa ja | s | sad
w | 2 x| b I be|l sl alygas| d | zad
< 2 = - p pe | I | L 5 N N t ta
) A = S t te Bl B =Y i = z za
& b el & th se & < = & ayn
c|l=>=l=>1{¢] 1 |#im| & | 2| 2| & | gh |ghayn
- = = & ch | che | «3s 2 a a f fe
C . = c h he 3 3 a 3 q qaf
el A & | kh |khe| S | S LG AN kaf
a a A a d |aam] 8| X €| 8| g | gar
3 a N a jdah fzal] J 4 4 Jd I lAm
B} > B3 B} r re e o - e m | mim
)) > s z ze ') ey = O n nun
S1 53131353 (zh|zhe|l 5 | 5 | 5| & |wva]|va
A | s [PYVE RPE T =3 sin -3 3 a h he
O | L L] (] sh | shin) o " 3 s yli ye

Figure 86: Farsi alphabet derived from Arabic alphabet, the letters which have been indicated
by arrows were added to Arabic alphabet in order to form Farsi alphabet.

11.1.4 Farsi Handwritten Digits and Numeral Strings

Farsi and Indian (Hindi) digits look very similar; however, there are minor but important
differences between their handwritten digits [23]. Indian (Hindi) digits are used in most
Arab countries for writing numeral strings. Farsi digits are used mainly in Iran, and they
normally form 13 classes of shapes because of the two different ways of writing the numerals
0, 4, and 6. However, Indian (Hindi) digits normally form 11 classes because of the two
different ways of writing the number 3. Also the number 5 is written differently in these
two scripts. Figure 88 compares Arabic, Farsi and Indian (Hindi) handwritings of digits.
Note that Arabic digits (used mainly in Latin and English speaking countries), are written
differently from Farsi and (Indian) Hindi digits. In Figure 89, samples of numeral strings

written in Farsi, Indian, and Arabic digits can be seen and compared.

145

Ut s L b (P8 0 S (15 S (Pl orpi e et (S L2

. . ” - N
Lot - v M ’!:? N i/
Ll (e PR LSNS ;.:;,,»QJ‘ L . :‘-';//_f.—‘-:/"’f’ /e Lo

y 2N - /_. Y ,e
/')//) ;-U'd(;:/_)‘/\.«(g g//)/f/./ (J ésf(_},{_) ()

Figure 87: A sample of Modern Persian script.

@ [o0Jr 121314]5[6[7

P NYIRIE DTV A
NIy Y

i)
D
f==g
ot
4
<N

>
,..--‘R
~0

© | o) 2 |21 AlQ X

Figure 88: (a) Arabic digits (used mainly in Latin and English speaking countries), (b) Farsi
digits (used mainly in Iran), (c¢) Indian (Hindi) digits (used in most Arab countries).

11.2 Creating a Comprehensive Database for Research

on Farsi OCR

Standard databases are essential requirements of research and development in the field of
off-line and on-line handwriting recognition. Recently, some databases were released for

Arabic handwriting recognition such as CENPARMI Arabic Cheques [7] and IFN/ENIT

-

{(a

Yhooo | FAAR | POrer | PVA | \LI | DXY
“IVA~- | eAd | Qo | NN | \Q) [o

© 68000 1899 2500

141 544

Figure 89: (a) Numeral strings in Farsi, [(b), and (c)] the same numeral strings written in
Indian digits (used in most Arabic countries) and Arabic digits (used in Latin countries).

146

handwritten Arabic words [171]. The CENPARMI Arabic Cheques database consists of
legal and courtesy amounts on Arabic bank cheques, and isolated handwritten digits. As
mentioned in the previous section, there are similarities and dissimilarities between Indian
digits (used in Arab countries) and Farsi digits (used in Iran); so CENPARMI’s Indian
digits databases can not be completely used for research on Farsi handwritten numeral
strings recognition. Also, until recently, there was no publicly available Farsi handwritten
database for researchers on Farsi OCR. Therefore, we decided to assemble such a database
for handwritten Farsi script. Collecting and arranging samples for such a database was a
huge effort which was done as a collaborative research work in CENPARMI. We presented
our Farsi handwritten database at the International Workshop on Frontiers in Handwriting
Recognition (IWFHR) in 2006. In the next paragraph, a summary of the main features of
our Farsi database is presented (its details can be found in [21]).

Our comprehensive database consists of 6 different datasets and all its samples were written
by 175 individual writers that were randomly chosen from different places, groups of ages,
genders, and levels of education in Iran. These writes were randomly divided into three
different sets of 105, 20, and 50 writers. The samples from the first set of writers (105
writers) were taken for training sets of all our datasets. The samples from the second set of
writers (20 writers) were taken for verifving sets of all our datasets, and the samples from the
third set of writers (50 writers) were taken for testing sets of all our datasets. These datasets
include: isolated Farsi digits (18000 samples), isolated Farsi alphabet letters (11900 samples),
Farsi numeral strings (7350 samples), Farsi dates (175 samples), Farsi legal amounts words
(7875 samples), and Arabic digits (3500 samples of digits used in English/Latin language
countries). Our database also provides both gray level and binary versions of all the images
in all these datasets. Therefore, it can be used for research on both gray level and binary
image processing/feature extraction techniques. Table 19, shows details of the distribution

of samples in our Farsi database.

147

Table 19: Distribution of samples in our Farsi database among its 6 different datasets.

Dataset Classes | Total Training| Verifying| Testing
/ Samples| Set Set Set
Fields

Isolated Digits 10 18000 11000 2000 5000
Classes

Isolated Letters | 34 11900 7140 1360 3400
Classes

Numeral Strings | 42 7350 4410 840 2100
Fields

Dates 1 Fields| 175 105 20 50

Legal Amount | 45 7875 4725 900 2250

Words Fields

Isolated Digits | 10 3500 2100 400 1000

(Arabic) Classes

11.3 Recognition of Isolated Numerals in Farsi

Like Latin languages (such as English), handwritten Farsi digit recognition is an interesting
and challenging problem. However, compared to a Latin languages, little research has been
conducted in this area. In the last ten years, some papers were published on Farsi/Arabic
digit recognition, and they used different methods for feature extraction such as: geometric
moment invariants, Zernike moments [168], shadow coding [169]; and different methods
for classification such as: statistical, fuzzy, or ncural approaches [168, 169]. To the best
of our knowledge, profile features, and SVM classifiers have not been used in Farsi digit
recognition. For the first time, we used profile features and SVM classifiers for the recognition
of isolated Farsi digits in [23]. The details of profile features and SVM classifiers for Farsi
digit recognition can be found in {21, 23]. For the experiments on Farsi/Arabic recognition,
first we used the CENPARMI Indian digit database and then we used our newly developed
Farsi database. Confusion matrix in Figure 91-(a) shows the results of our experiments on
CENPARMI Indian digit database. The overall performance of our system on the test set of
CENPARMI Indian digit database was 94.14% with zero rejection. In another experiment,
more features were used to represent isolated digits: profiles from four directions; crossing
counts; and projected histogram from two directions as shown in Figure 90, and we tested
these features in our Farsi database. These results are shown in confusion matrix of Figure 91-

(b). The overall recognition performance that we obtained in testing of our Farsi Database

1438

was 97.32% with zero rejection. As seen in these confusion matrices (Figure 91), most of the
errors are due to the mis-recognition of zeros with other digits, and this is because of the
shape of zero after size normalization is mis-recognized with other digits such as ‘1’ or ‘5’

(or vice versa).

[ww]

YuE I RAwl
A [T [T

(@) (b) ©)

Figure 90: An example of feature extraction for a digit (3): (a) Profiles, (b) Crossing counts,
(c) Projection histograms.

11.4 Segmentation of Numeral Strings in Farsi

For the first time, we considered the problem of separating touching digits in handwritten
numeral strings in Farsi, and we presented our results in [24]. The method that we introduced
in Chapter 5 was applied to touching digits of Farsi numeral strings. Figures 92, 93, and 94
show examples of feature extraction in the foreground and background and construction of
segmentation path(s) for Farsi handwritten numeral strings.

For testing our segmentation algorithm on Farsi numerals, we collected a set of 100 touching
pairs of Farsi digits from the images in our Farsi database. Results of our algorithm showed
that our algorithm was able to correctly segment 75% of the samples in our testing set (100
touching pairs), for the rest of the samples (25%), the algorithm was not able to find the

correct segmentation path.

149

0 1 2 13 4 5 6 7 8 9 Total

0 11525 |31 |0 |1 0 11 1 0 2 3 1574
1 |37 2641 | O 0 2 0 0 0 0 304
216 0 | 2133 3 0 0 0 0 0 225
3|2 0 |4 134 | 2 0 1 1 0 0 144
4 14 0 |6 |0 123 1 0 0 0 0 0 133
5 | 29 0 (0 |O 0 233 1 0 1 0 0 263
6 ;0 2 |0 0 0 0 107 | O 0 2 111
7 14 1 0 |3 0 0 0 101 | O 0 109
8 15 0 |0 |0 0 0 0 0 93 0 98

9 (6 1 0 |0 0 0 3 0 0 64 74

(a) Confusion matrix on test set of CENPARMI Indian digit database

0 |1 2 13 (4 |5 16 |7 |8 |9 |total
0 459133 |1 2 /0 3 (0 {0 |2 |0 |500
111274832 0 J]O0O 0 12 70 10 |1 500
210 |1 4932 |3 |0 |1 0 |0 10 | 500
3 |1 0 |17 {4728 |2 {0 [0 |0 {0 | 500
4 10 0 |3 [4 1492/0 ;1 0 10 |0 | 500
518 {0 {0 {0 |0 [492/0 |0 [0 |0 |500
6 |1 2 13 1 3 1 48410 |0 |5 | 500
740 0 |0 |O |O |O O |500/0 |0 | 500
810 (0 |0 O |O [0 |1 0 | 499/ 0 | 500
910 [0 O O O O [5 |0 |3 |492) 500

(b) Confusion matrix on test set of our Farsi database

Figure 91: Confusion matrices on the test set of CENPARMI Indian digit database (a), and
on our Farsi isolated digit database (b).

11.5 Discussion

Comparison of the results that we obtained for segmentation and recognition of the numeral
strings in Farsi with the results that we obtained in Chapter 8 for Numeral strings in En-
glish shows that the recognition rates for Farsi script are much lower than the results for
English script. This shows that for segmentation and recognition of Farsi numeral strings,
our algorithm must be adjusted and we need specialized features in order to segment and
recognize Farsi numerals with high precision.

Unfortunately, our results for segmentation and recognition in Farsi are not comparable with
any other method in Farsi, because most of the developed methods for Farsi have been mainly

tested on small and private databases collected by the researchers, and those databases have

150

() (b)) @

i
&

€) " ©

Figure 92: (a) Original image (4 touching 3), (b) Foreground skeleton; starting point and
ending point are depicted by S and E, respectively, (c) From starting point (S), skeleton
is traversed in two different directions (clockwise: dashed arrows, and counter-clockwise:
dotted arrows) to the end point (E), (d) Mapping of intersection points on the outer contour
by bisectors to form foreground-features, (e) Background region, (f) Background feature
points, (g) Feature points on the background and foreground (from top and bottom) are
matched, and assigned together to construct segmentation path(s) .

not always been available to others. We hope that by introducing new developed databases
(such as our database) we can provide a standard database to the research community for

comparison of algorithms in Farsi OCR.

11.6 Summary

This chapter briefly reviewed the evolution of Farsi (Persian) script and its historic con-
nections to Arabic script. It discussed the similarities and dissimilarities between numeral
strings in these two scripts from the OCR point of view. Creating a comprehensive database
for research on Farsi recognition was described, and our new methods for recognition and
segmentation of handwritten numeral strings in Farsi were tested. There are still many un-
solved problems in Farsi and Arabic script recognition systems. The main problem is the
lack of a standard database with a huge number of samples of words, letters, digits and
numeral strings (touching and non touching cases) for research on Farsi recognition. An-

other important problem is the lack of online resources that show the results of previous

151

! (c)

te) i (g M

Figure 93: (a) Original image of touching digits 5 and 6, (b) Pre-processed image, (c) skeleton
traversals from S to E in clockwise (dashed arrows), and counter-clockwise (dotted arrows),
(d) Mapping of intersection points on the outer contour by bisectors to form foreground-
features, (e) Background region, (f) Top/bottom background skeletons, (g) Top/bottom-
background-skeletons after removing parts that are lower /higher than middle line, (h) Seg-
mentation path for separating two digits.

research works on Farsi recognition to the international research community. We hope that
our comprehensive database will become a popular database for Farsi script recognition and
will be used for testing and comparison of systems in the field of Farsi handwritten document

analysis and recognition research.

152

\ iV o q gm‘;o“i - T‘_\ -O
N L
1 t:)OOO 1300
N3 Y- CA -
(b)

Figure 94: (a) Samples of numeral strings which our algorithm could find the correct seg-
mentation paths, (b) Samples of numeral strings which our algorithm did not perform well
for the over-segmentation of the strings. These numeral strings have been randomly selected
from CENPARMI handwritten Arabic check database [7].

153

Part 111

Final Conclusion

154

Chapter 12

Conclusion and Future Works

The main focus of this thesis was on the segmentation and recognition of unconstrained hand-
written numeral strings. We formulated the segmentation and recognition of unconstrained
handwritten numeral strings as an optimization problem, and we proposed novel solutions
and algorithms for solving this challenging problem. In order to test our algorithms, we
designed and implemented a modular system for the segmentation and recognition of hand-
written numeral strings. Our system has several important modules such as: pre-processing,
segmentation, feature extraction, classification/evaluation, and an evolutionary algorithm.
In each module, we contributed some new algorithms (solutions).

For pre-processing of handwritten numeral strings, we introduced a novel slant correction
algorithm. We showed that our algorithm is able to improve extracting of segmentation
feature points, and as a result it is able to improve the separation of touching digits. For the
first time, we also investigated the statistical characteristics of slant angles in handwritten
numeral strings, and we showed some novel statistics. We also showed that slant angles (in
handwritten numeral strings) have a near normal distribution.

Constructing segmentation paths is one of the main challenges in the segmentation of hand-
written numeral strings. We proposed a novel segmentation method for the segmentation of
touching digits and construction of segmentation paths. We introduced a novel algorithm
which is called skeleton tracing, for finding feature points on the foreground and background

skeletons. In our segmentation algorithm, feature points on the background and foreground

155

of the numeral strings are extracted, and based on a combination of these features, segmen-
tation paths (segmentation hypotheses) are constructed. Our skeleton tracing algorithm can
also be utilized for extracting structural features and exploring skeletons of any 2D objects.
In order to handle over and under-segmentation in numerals, we introduced segmentation
scores. These scores allow us to efficiently utilize contextual information from the string
image. Segmentation scores help us to incorporate information about the shapes, relative
sizes, or positions of connected components in the evaluation of the segmentation hypotheses.
Our segmentation scores also facilitate and improve the detection of outliers (over/under-
segmented components). These scores compensate for low outlier resistance of isolated digit
classifiers, and improve their outlier rejection. We showed that by employing segmentation
scores (as a source of contextual knowledge), even lower computational cost classifiers can
reach a very good performance, comparable to the more complicated classifiers in handwrit-
ten numeral string recognition. These scores also help to avoid considerable computation,
which is normally required to reject outlier patterns by ordinary digit classifiers.

In order to capture the great variability that exists in the shapes of handwritten digits (es-
pecially after their segmentation in numeral strings), we introduced an efficient incremental
clustering algorithm that clusters the shapes and the styles of writing of handwritten dig-
its. Our clustering algorithm is an unsupervised incremental learning algorithm that can
improve stability and plasticity in handwritten recognition systems. Also, for the first time
(to the best of our knowledge), we discussed and considered the problem of stability and
plasticity in handwritten recognition systems, and we designed a system that shows stability
and plasticity in its recognition. Our clustering algorithm is general and can be used in other
similar domains such as data mining or bioinformatics.

We introduced a general framework based on evolutionary algorithms for finding the optimum
segmentation and recognition in unconstrained handwritten numeral strings. We introduced
a novel genetic representation and opcrator definition that can be applied for searching the
optimal path in any Directed Acyclic Graph (DAG). Also, we proposed a novel hybridization
(generalization) of the two popular evolutionary algorithms: Genetic Algorithms (GAs) and

Particle Swarm Optimization (PSO). We named this new model as Genetic Based Particle

156

Swarm Optimization (GBPSO). Our GBPSO model has important elements such as variable
size population, birth and death operations, history; and it shows a higher performance and
faster convergence compared to the ordinary evolutionary algorithms.

We studied segmentation and recognition of handwritten numeral strings in Farsi and Arabic
languages. We also created a comprehensive standard database for research and evaluation
of handwritten recognition systems in Farsi (Persian) language. This database is composed
of six different sets of handwritten images including: isolated digits, isolated letters, numeral
strings, legal amounts, dates, and Arabic isolated digits written by people who speak Farsi.
Our Farsi database is publicly available to the research community, and it can function as
a very helpful and necessary tool for the investigation and development of Farsi handwrit-
ten recognition systems. We also applied our segmentation and recognition algorithms to
Farsi handwritten numeral strings. For the first time, we considered the problem of separa-
tion of touching digits in Farsi/Arabic handwritten numeral strings, and we provided some

promising results on the segmentation of touching digits in Farsi/Arabic.

Future Works

Due to time constraints, we did not have the opportunity to address some issues in our re-

search. Here, we outline some directions which we believe are worthy of future investigations:

e We think that it may be possible to improve our segmentation algorithm by utilizing
all sources of global and contextual information that can be extracted from numeral

string images.

o We think that it may be possible to find a mechanism to estimate the number of digits
in the strings, so that this information could be used as another source of knowledge

to improve the performance of the system.

e It will be very helpful to find an optimized feature set or a combination of different

feature sets in order to improve the classification of segmented numerals.

157

e It will be very helpful to design a combination of the classifiers in order to immprove
the recognition accuracy and avoid mis-classifications of segmented or isolated digits.

Also, it will be very helpful to use verification strategies for the segmented numerals.

e We think that the problem of segmentation and recognition of handwritten numeral
strings can be considered as a multi-objective optimization problem, and in order to
solve this problem, we must optimize different (conflicting) objectives for segmentation,
recognition, Recently, multi-objective optimization models have received great

attention in solving machine learning and pattern recognition problems.

e We think that our clustering algorithm can also be modeled as a multi-objective opti-
mization problem in order to optimize the number of clusters, and at the same time to
optimize the overall similarity (distance) among the samples, and the shapes (sizes) of

the clusters.

e We think that our Genetic Based Particle Swarm Optimization (GBPSO) algorithm
may also be improved by using more information from the previous generations (history
of the swarm) in order to adjust the birth and mortality rates of future generations.
Also, we think that our GBPSO model can be extended for solving multi-objective

optimization problems.

e Our investigation on Farsi/Arabic script recognition showed that there are still many
challenges and unsolved problems in these two scripts. New sophisticated algorithms
for pre-processing, segmentation, and recognition of these scripts must be developed,
and the results of these methods must be internationally available in order to avoid
repetition in the research. We still think that the main problems are: lack of popular
standard databases for development, comparison, and evaluation of handwritten recog-

nition systems, and the lack of on-line resources for research on these two languages.

We hope the efforts in this thesis will improve or speed up the research in these challenging

fields.

158

Part IV

Appendices

159

Appendix A

NSTRING SD19 and CENPARMI Databases

In this appendix, we explain the main features of the two main databases (NSTRING SD19
database and CENPARMI isolated digit database) that we have used for our experiments.

In the next appendix (B). we will present our Farsi database.
NSTRING SD19: an Standard Database for Research on Numeral Strings

NSTRING SD19 database is based on NIST Special Database 19 (SD19) (developed by the
National Institute of Standards and Technology). This database was originally created to
support the PhD. project of Alceu de Souza Britto Jr., who was a Ph.D student (2000) super-
vised by Prof. Robert Sabourin (ETS-Canada), Prof. Flavio Bortolozzi (PUCPR-Brazil),
and co-supervised by Prof. Ching Y. Suen (CENPARMI-Canada), and Prof. Edouard
Lethelier (PUCPR-Brazil) [172].

With the numeral strings extracted from the full-page forms available in the Special Database
19 (SD19) provided by NIST, Britto et al. created a numeric string database called NString
SD19 useful for research on handwritten numeral string recognition. Such a database is
valuable to train, validate and test recognizers that go beyond the isolated digit classification.
In this appendix, we first present a brief description of NIST Special Database 19 (SD19)
and then we present the structure and content of the NString SD19. A detailed description

of the origin, publication history and organization of the NIST SD19 is available in [172].
NIST Special Database 19 (SD19)

The SD19 is composed of 3669 full-page binary images of Handwritten Sample Forms (HSF),

which are organized into eight series, denoted by hsf 0,1,2,3,4,6,7,8. A sample of an HSF

160

form is shown in Figure 95.

HANDWRITING SAMPLE FORM

l,_m___‘ aTY STATE P
§-3-59 | \mawew 2ty 1 #4952)
Thin saznple of b ing 3 cotlocted for uee i compute i inted sambers
I et e e

556789 123488789 0123458789

lorz3ysergs lmm
wve] (Gor7) [(Z2esz]
77 7

81738 19653 00 8
& p

1 09TM 2. 40002

(2227

gyxiskpdebisirumwigjenhocy .

U9y xda N Sbrz/rupw F9denhoc |

ZXSBNGECMYWQTXKFLUOHPIRVYDIA

| ZXSBUCECHYWRTKFAVOHFP /LY pTA]

Pleass prind the foBowing text in the box below:

myrwkdmuwsm,hmhh-.m”mum,m:mmmg

w.wwﬂ:hfhmb‘u,mlkmdmummwdhkmb
oursaives st our posterity, do ordain sad setablish this CONSTITUTION e the United Stases of Americe.

b Bk

3k

IR
A

N
N

b

We, The Deofte of fre Py feg STri=s, /s orderfo
 Lorm a More Pgr{‘e¢+ Daon, establish Sistee,
mspre domestiC Trango b ,Omde Cof The
common Defens<) promote +Fhe genera L Walfire]
ang Seeyve Ywe Rless a9s of fbérty o pur—
Zelves ans ovr Postevi Ty, do ordam and

establish s QousTTUTION For Yhe

United SYates of America .

Figure 95: Handwriting Sample Form (HSF) page.

A total of 814,255 handwritten labeled characters (digits and letters) have been segmented
from these forms and organized by class field and writer. These isolated characters as well
as the full-page images can be found in the original SD19 compact disk. Since the numeral
strings were not extracted, Britto et al. decided to fill in this gap [172]. Table 20 shows the
distribution of HSF pages per series. From the example shown in Figure 95, we can see that
an HSF page consists of 34 fields, 28 of which contain only numeric characters. One can
also notice that the information pertaining to each field is given. The field descriptions are

presented in Table 21.

161

Table 20: HSF series distribution

Series | Number of pages
hsf 0 | 500

hsf 1 | 500

hsf 2 | 500

hsf 3 | 600

hsf4 | 500

hsf 6 | 499

hsf .7 | 500

hsf 8 | 70

Total | 3669

Table 21: Handwriting sample forms fields

Field Description

fid_0 Name

fid_1 Date

fid_2 City/State/ZIP

fid_3 ... id_30 | Numeric Values

fid_31 Lower case character box
fid 32 Upper case character box
fid_33 Free format text

A total of 100 HSF templates were used to fill in the HSF pages. The number, size and
location of the fields are the same in all template variations, however, they present different

character strings.

NString D19: Extracting Numeral Strings

The process used to extract the numeral strings from the HSF pages is based on two steps:
1) field extraction from the HSF page, 2) pre-processing for bounding box deskewing and
removal. In the first step, we detect and extract the field boxes from a page, which are
saved separately in new files named fyyyy xx w.tif, where yyyy and xx identify the writer
and the template, and w corresponds to the field nmnber from 3 to 30. To this end, a
process based on vertical and horizontal projections is used to locate the coordinates of the
upper left corner of the field fid 0. The coordinates of the other fields are calculated using

the fld_0 coordinates as a reference. In order to extract the numeral strings from these

162

cut fields, the pre-processing first deskews the ficld bounding box. Afterwards, vertical and
horizontal projections arc used to locate the lines of the field bounding box in order to remove
them. The resulting images, containing only the cleaned numeral string files, are saved as

cdfyyyy xx_w.tif (cd = cleaned and deskewed).

NString SD19: Organization

The structure of the NString SD19 database is shown in Figure 96. The directory NString
SD19 is divided into 11 subdirectories: one for each of the 8 NIST series (hsf_*), a subdirec-
tory for the reference files (truerefs), a subdirectory for the isolated digit database (digits),

and a subdirectory for the touching digit pairs (tdp). The HSF series subdirectory is divided

into 3 sections as follows:
e pages: contains a copy of the original NIST HSF pages;
e fields: contains the numeric fields cut from each HSF page.
e numeral strings: contains the numeral strings extracted from the field images.

The string image files are saved in the directory of images. In addition, several groups of file
name lists are provided as follows:

2_digit.list, 3_digit.list, 4_digit.list, 5_digit.list, 6 digit.list, and 10 digit.list natseq.list.
touch.list, fragm.list, noise.list, other.list.
The digits also directory is divided into 3 sections, which contains handwritten isolated digits
extracted from hsf 0123, hsf 7 and hsf 4. Some samples of numeral strings from NString
SD19 database are shown in Figure 97. More details about the extraction, pre-processing

operations, and organization of this database can be found in [172].

CENPARMI: an Standard Database for Research on Handwritten Isolated Digits

The CENPARMI handwritten isolated digit database has 4000 training samples (400 samples

per digit) and 2000 testing samples (200 samples per digit). Compared to other similar

163

7 page
7 fields
7 bsf 0 o
: numeral strings .~ mnages

* Jists {11 ist files)

robsf 3
NString_SDl9< 5 obsf g
7 truerefs
[o
rodigits—< hsf 7
r hsfd

7 bsf 0123
» hsf 7
r hsf 4

r tdp

\

Figure 96: Nstring SD19 structure (note: hsf stands for handwritten sample form, tdp stands
for touching digit pairs).

handwritten databases, samples in the CENPARMI database show more variations in their

shapes and styles of writings. Figure 98 shows samples of digits in this database.

164

Q30630 |99t [L4F |60l
0/23YS67%50 6902 | h2n

848762 | |9284T| B3&s57 | A6 gﬂ
56|12 762/105L50Q]||CA||77

Figure 97: Some samples of numeral strings in NString SD19 database.

165

W W 0 N O O & S e O B O O
S = SN C Y= NN L o T SR NONUIE . SV S
o~ (>~ O\ S s e O el 6 O Ol S T
Nem o s e, o D e [ST S, S W

N 2 Y = o Ty
> :
sr>x>> [[235E05RS leszsns
D Sl S R Al XD S D YD o o Eae T o
RN N = T a2 {J.Jmﬂu”.(«uoru S 0O |y wa D
. [P2R 2B 7N (=1 A O e & Qy W
R Y W R N = o Yy A\ ks A D Do LD o o 0O e Ses
‘ANl//u.../vldl//n/avq o IS Loy D e N Ay 2] a0 Ta e e S v
”hl//t”»id/dl#fd/ tn L MPUp BED Dy oo e O S A A ey

"o SR el
— NN [- 0~ £~ o o

- Ty, TN T
-2 05 D No >

~— e D NS e 8
== T e M BN PETE - JNE S~ S,
=) -

o By <o Oa.\u.,,,ad/‘ P S s -9 & & 5

N = sy N LY
—~ |~ .S S S 9 O

Figure 98: Samples of CENPARMI handwritten isolated digit database that shows the
166

variations of digits in this database.

Appendix B:

Our Farsi (Persian) Database

Our comprehensive Farsi (Persian) database includes a set of handwritten datasets that can
be used for off-line handwritten recognition research in Farsi [21, 22]. Our database consists
of 6 different datasets and these datasets were written by individuals (writers) that were
randomly chosen from different: places, groups of ages, genders, and levels of education in
Iran. In total, 175 writers (individuals) were chosen to fill out our forms like those shown
in Figures 99 and 100. The data in these forms were collected during the years 2005-2006,
and then they were processed and organized as a comprehensive database in the Center
for Pattern Recognition and Machine Intelligence (CENPARMI) at Concordia University.
The writes of the forms were randomly divided into three different sets of 105, 20, and 50
writers. The samples from the first set of writers (105 writers) were taken for training sets
of all our datasets. The samples from the second set of writers (20 writers) were taken for
verifying sets of all our datasets, and the samples from the third set of writers (50 writers)
were taken for testing sets of all our datasets. These datasets include: isolated Farsi digits
(18000 samples), isolated Farsi alphabet letters (11900 samples), Farsi numeral strings (7350
samples), Farsi dates (175 samples), Farsi legal amounts words (7875 samples), and Arabic
digits (3500 samples of digits used in English/Latin language countries). Our database also
provides both gray level and binary versions of all the images in all these datasets. So, it can
be used for research on both gray level or binary feature extraction or recognition methods.
In this appendix, we show sample forms that were used for collecting handwritten samples,
and also some samples from our final Farsi database (in gray level and binary formats).
More details about the creation (collecting samples, extraction, pre-processing,...) of our

Farsi database can be found in our papers: [21] and [22].

167

o S St A gy, e et AL Sy g p B
o T FORE RN, T SN TV

gy Aamessl madrsnench Ao o) i p B 2wy s
SRS e O i Linild o]

Vo ek e o b o

Purthut Salemcn e e A
n n n

Cimcnriy mwrsty
xa-mmm ,\(371
Py o vt yoiss vy Uy W Ry S Lorwdy

WG“”
e SR KBy mr Dash Bk g Thl SR S G D5 ke b ary B B w b (gh S g e Sk bty Aot s Ms § PP A3
B gt b gyt e o gh e Jo e o 41w b 0 O b 20, v s) it K b o s B Jb 1 Dy Bieasls
Lp w2 e g mrge by e 2 e Dl Dame s ppas B gy 1 Dy gt G ol g ad e i g o ki U, AT e cpad A2 Spa g e 4 4
B e Al R e L e e L 2 a L R e R el el
xhlﬂ-‘»»r‘ﬁbﬂ—#}‘)g:“‘rfé}“?#‘.n*'ﬁ?-‘!“)‘»‘*-‘-—‘sar}d‘ﬂi&mw.rr“fv
. B e T R e e T o

3 1 et sl 59, gy i) alys S E

-

I VYAV, Y, ¢

sint AYry

AV I AY, v

(RS
7

rTs

Y
¥4

LM

ta Al

LAY 1R 4

Al 7 Ve

$Y. Y A1

234

LA TR 7y, ¥ vi e

DAY

YOALRY

$9. .37

YA+ v~

Voo

Vs AL A f

a2

AYTYSYT

Pa-LYY

rervYR?

ALYyIY SN RV A LERAEVE R

Figure 99: Sample form (From no. 1) that has been used for collecting handwritten data.
The fields in this form contain numeral strings, dates, Arabic digits, and Farsi alphabet
letters.

168

BT '::‘;"‘”‘“”": - b g e s Rt RS gy e gt AR 2gy 8 D L
. . . e85 4 ""m, e i{ I SRAKROOUD B ¢ g il - 3R gk g m il
e B MG 0% [N L e L SR e PR g
S TE N R WIREREG TN S0 s FA I ADINEY ONAI MY KB Py i e

P e R e I I I I e e P e P

<

FEIUTPRIE SPRL N ST TR DRSO L SN I R R g R]

A B b ks e = PRI R VDI JRE J Jr a

R T L R I e

B e LR ML - wees R WA A
pud S x W w wd e g .4’——"@..“._...._,.\'.&.“_.:“; d w2 e s e W WD T THTOIID, sy 3 ot

Sama e 1TIr Y To e L

™ LR 5 4 P NP S (S I 0P QUUE S EIEARE JWyr-t JEUup S

= L A »)
4 £
#44 - — 3
s PR 5
.
» ~ e it G
> o ¥4
b EY -
) o k™ e f}f
- g g [N 22k
N - ,

N ; ; a9 b
S JE 9D ey e
o ESSE EEs] S 2 g

- s
L2 i 3 R B
e JAUVES P, g o
. kd
[[4
A Sk ,w;,,»"'p D } > g“,,{:
o »
O pay P e e
¥
L
Ly g « .

s - . ¥ $ L
——— P o e P
- el

i A e R il 8

- -
R o5 - oy P
-
} L i s ¥
ALY e i AP S
e - S O 35

s
7

¥
< S EFT et
s (- g

Figure 100: Sample form (From no. 2) that has been used for collecting handwritten data.
The fields in this form contain legal amount words, and legal amount values.

169

AAVE DY P YTV [AYV
ALY YL agy vaq A
AL. C’f(}bﬁq Vi \Y VRV

NPT
YTV
Y2y, M

(b)

o1 [22 | Jb

0)31' 6 (‘}‘: r\:C)b;‘ (_)-:4’),\-:3{

LI\ —

| ¢
> 2 & ;” / /’}O ~— ’ &
)

) (e)

Figure 101: Samples from our Farsi handwritten database, (a) Farsi Numeral strings, (b)
Farsi dates, (c) Legal amount words (for Farsi checks), (d) and (e) Farsi letters (gray level
and binary formats).

170

Appendix C:

Required Formulas

Here, we present the formulas that are required in order to find «, 7, and 6. These formulas

are used for computations of these parameters in Chapter 10, Section 10.4.1.

b(t) = aa cos(wt + 61) +
m(t) = agcos(wt + 62) + B
r(t) = b(t) — m(t)
r(t) = acos(wt +) + 3
a = /(A +A3)
6= arctan(A—j)
B=01— D

Where
A = a1 cos(6;) — agcos(fs)

A2 = agsin(fy) — agsin(fy)

171

Part V

Bibliography

172

Bibliography

[1]

2]

[3]

[5]

Z. Lu, Z. Chi, W. Siu, and P. Shi. A Background-Thinning-Based Approach, for Sep-
arating and Recognizing Connected Handwriting Digit Strings. Pattern Recognition,

32(6):921-933, 1999.

Y. K. Chen and J. F. Wang. Segmentation of Single or Multiple Touching Handwritten
Numeral String Using Background and Foreground Analysis. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 22(11):1304-1317, 2000.

A.D. S. Britto JR., R. Sabourin, E. Lethelier, F. Bortolozzi, and C. Y. Suen. Improve-
ment in Handwritten Numeral String Recognition by Slant Correction and Contextual
Information. In Proceedings of International Workshop on Frontiers in Handwriting

Recognition (IWFHR), pages 323-332, Amsterdam, September 2000.

R. Eberhart and J. Kennedy. A New Optimizer Using Particles Swarm Theory. In
Sizth International Symposium on Micro Machine and Human Science, pages 3943,

Nagoya, Japan, October 1995.

J. Kennedy and R. Eberhart. Particle Swarm Optimization. In Proceedings of IFEE
International Conference on Neural Networks, pages 1942--1948, Perth, Australia,
November/December 1995.

K. V. Koumousis and C. P. Katsaras. A Saw-Tooth Genetic Algorithm Combining
the Effects of Variable Population Size and Reinitialization to Enhance Performance.

IEEE Transactions on Fvolutionary Computation, 10(1), 2006.

173

7]

18]

[10]

11

[12]

[13]

[14]

Y. Al-Ohali, M. Cheriet, and C. Y. Suen. Databases for Recognition of Handwritten
Arabic Cheques. Pattern Recognition, 36(1):111-121, 2003.

C. L. Liu, H. Sako, and H. Fujisawa. Effects of Classifier Structure and Train-
ing Regimes on Integrated Segmentation and Recognition of Handwritten Numer-
als Strings. [IEEF Transactions on Pattern Analysis and Machine Intelligence,

26(11):1395-1407, November 2004.

L. S. Oliveira, R. Sabourin, F. Bortolozzi, and C. Y. Suen. Automatic Segmentation of
Handwritten Numerical Strings: A Recognition and Verification Strategy. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 24(11):1438-1454, November
2002.

U. Pal, A. Belaid, and Ch. Choisy. Touching Numeral Segmentation Using Water
Reservoir Concept. Pattern Recognition Letters, 24(1-3):261-272, 2003.

J. Punnoose. An Improved Segmentation Module for Identification of Handwritten
Numerals. Master’s thesis, Department of Electrical Engineering and Computer Sci-
ence, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA, October
1999.

X. Wang, V. Govindaraju, and S. Srihari. Holistic Recognition of Touching Digits.
In Proceedings of International Workshop on Frontiers in Handwriting Recognition

(IWFHR), pages 295-303, Taejon, Korea, August 1998.

N. W. Strathy, C. Y. Suen, and A. Krzyzak. Segmentation of Handwritten Digits Using
Contour Features. In Proceedings of International Conference on Document Analysis

and Recognition (ICDAR), pages 577-580, Tsukuba City, Japan, October 1993.

K. K. Kim, J. H. Kim, and C. Y. Suen. Segmentation-Based Recognition of Handwrit-
ten Touching Pairs of Digits Using Structural Features. Pattern Recognition Letters,

23(1-3):13-24, 2002.

174

[15]

[16]

[18]

[20]

[21]

[22]

J. Sadri, C. Y. Suen, and T. D. Bui. Statistical Characteristics of Slant Angles in
Handwritten Numeral Strings and their Effects on Segmentation. Submitted to the

International Journal on Document Analysis and Recognition (IJDAR), 2006.

J. Sadri, C. Y. Suen, and T. D. Bui. Automatic Segmentation of Unconstrained
Handwritten Numeral Strings. In Proceedings of International Workshop on Frontiers

in Handwriting Recognition (IWFHR), pages 317-322, Tokyo, Japan, October 2004.

J. Sadri, C. Y. Suen, and T. D. Bui. A Genetic Framework Using Contextual Knowl-
edge for Segmentation and Recognition of Handwritten Numeral Strings. Pattern

Recognition, 40(3):898-919, 2007.

J. Sadri, C. Y. Suen, and T. D. Bui. New Approach for Segmentation and Recognition
of Handwritten Numeral Strings. In Proceedings of Document Recognition and Retrieval
XII (Part of SPIE-IS/T Electronic Imaging 2005), volume SPIE-5767, pages 92-100,
San Jose, CA, USA, 2005.

J. Sadri, C. Y. Suen, and T. D. Bui. A New Clustering Method for Improving Plas-
ticity and Stability in Handwritten Character Recognition Systems. In Proceedings of
International Conference on Pattern Recognition (ICPR), volume 2, pages 1130-1133,
Hong Kong, August 2006.

J. Sadri and C. Y. Suen. A Genetic Binary Particle Swarm Optimization Model.
In IEEE Congress on Evolutionary Computation (IEEE CEC 2006), pages 656663,
Vancouver, B.C., Canada, July 2006.

F. Solimanpour, J. Sadri, and C. Y. Suen. Standard Databases for Recognition of
Handwritten Digits, Numerical Strings, Legal Amounts, Letters and Dates in Farsi
Language. In Proceedings of International Workshop on Frontiers in Handwriting

Recognition (IWFHR), pages 3-7, La Baule, France, October 2006.

J. Sadri, S. Izadi, F. Solimanpour, C. Y. Suen, and T. D. Bui. State-of-the-Art in Farsi
Script Recognition. In Press, Proceedings of the International Symposium on Signal

Processing and its Applications (ISSPA 2007), Sharjah, U.A.E., February 2007.

175

[23]

[24]

[25]

[26]

27]

[28]

[29]

[30]

J. Sadri, C. Y. Suen, and T. D. Bui. Application of support vector machines for
recognition of handwritten arabic/persian digits. In Proceedings of Iranian Conference
on Machine Vision and Image Processing & Applications (MVIP), volume 1, pages
300-307, Tehran-Iran. February 2003.

J. Sadri, C. Y. Suen, and T. D. Bui. Segmentation of Handwritten Numeral Strings in
Farsi and English Languages. In Proceedings of Iranian Conference on Machine Vision
and Image Processing & Applications (MVIP). volume 1, pages 305-311, Tehran-Iran,
February 2005.

C. Y. Suen, S. Izadi, J. Sadri, and F. Solimanpour. Farsi Script Recognition-A Survey.
In Proceedings of International Summit on Arabic and Chinese Handwriting (SACH),
pages 101-110. University of Maryland, College Park, MD, USA, September 2006.

H. Fujisawa, Y. Nakano, and K. Michino. Segmentation Methods for Character Recog-

nition: From Segmentation to Document Structure Analysis. Proceedings of the IEEE,

80(7):1079-1092, 1992.

R. Fenrich. Segmentation of Automatically Located Handwritten Words. In Proceed-
ings of International Workshop on Frontiers in Handwriting Recognition (IWFHR),
pages 33-44, Chateau de Bonas, France, September 1991.

D. Yu and H. Yan. Separation of Single-Touching Handwritten Numeral Strings Based
on Structural Features. Pattern Recognition, 31(12):1835-1847, December 1998.

D. Yu and H. Yan. Separation of Touching Handwritten Multi-Numeral Strings Based
on Morphological Structural Features. Pattern Recognition, 34(3):587-599, March
2001.

G. Congedo, G. Dimaura, S. Impedovo, and G. Pirlo. Segmentation of Numeric String.
In Proceedings of International Conference on Document Analysis and Recognition

(ICDAR), volume 2, pages 1038-1041, Montreal, Canada, August 1995.

176

[31]

[32]

[33]

[34]

[35]

37]

[39]

M. Shridhar and A. Badrelin. Recognition of Isolated and Simply Connected Hand-

written Numerals. Pattern Recognition, 19(1):1-12, 1986.

M. Blumenstein and S. Verma. A Neural Based Segmentation and Recognition Tech-
niques for Handwritten Words. In IEFE International Conference on Neural Networks,

volume 3, pages 1738-1742, Anchorage, Alaska, USA, 1998.

G. Martin. Centered-Object Integrated Segmentation and Recognition of Overlapping
Hand Printed Characters. Neural Computation. 5(3):419-429, 1993.

G. Martin, R. Mosfeq, and J. Pittman. Integrated Segmentation and Recognition
Through Exhaustive Scan or Learned Saccadic Jumps. Pattern Recognition and Arti-

ficial Intelligence, 7(4):831-847, 1993.

L. S. Oliveira, E. Lethelier, F. Bortolozzi, and R. Sabourin. A New Approach to
Segment Handwritten Digits. In Proceedings of International Workshop on Frontiers

in Handwriting Recognition (IWFHR), pages 577-582, Amesterdam, September 2000.

Z. Shi and V. Govindaraju. Segmentation and Recognition of Connected Handwrit-
ten Numeral Strings. In Progress in Handwritten Recognition, pages 515-518. World
Scientific, Hackensack, NJ, USA, 1996.

H. Nishida and S. Mori. A Model-Based Split-and-Merge Method for Character String
Recognition. In P. S. P. Wang, editor, Document Image Analysis, pages 209-226. World
Scientific, Hackensack, NJ, USA, 1994.

O. Matan and C. J. C. Burges. Recognition of Overlapping Hand-Printed Characters
by Centered-Objects Integrated Segmentation and Recognition. In Proceedings of In-
ternational Joint Conference on Neural Networks (IJCNN), pages 504-511, Seattle,
USA, 1991.

S. Choi and I. Oh. A Segmentation-free Recognition of Two Touching Numerals Using
Neural Networks. In Proceedings of International Conference on Document Analysis

and Recognition (ICDAR), pages 253-256, Bangalore, India, September 1999.

177

[40] X. Ye, M. Cheriet, and C. Y. Suen. Strcombo: Combination of String Recognizers.
Pattern Recognition Letters, 23:381-394, 2002.

[41] R. G. Casey and E. Lecolinet. A Survey of Methods and Strategies in Character
Segmentation. [IEEE Transactions on Pattern Analysis and Machine Intelligence,

18(7):690-706, July 1996.

[42] O. D. Trier, A. K. Jain, and T. Taxt. Feature Extraction Methods for Character
Recognition: A Survey. Pattern Recognition, 29(4):641-662, 1996.

[43] C. L. Liu, K. Nakashima, H. Sako, and H. Fujisawa. Handwritten Digit Recognition:
Benchmarking of State-of-the-Art Techniques. Pattern Recognition, 36(10):2271-2285,
2003.

[44] J. Hu and Y. Yan. Structural Primitive Extraction and Coding for Handwritten Nu-

meral Recognition. Pattern Recognition, 31:493-509, 1998.

[45] S. W. Lee. Multilayer Cluster Neural Network for Totally Unconstrained Handwritten

Numeral Recognition. Neural Networks, 8:783-792, 1995.

[46] H. Nishida. Curve Description Based on Directional Features and Quasiconvex-

ity /Concavity. Pattern Recognition, 28(7):1045-1051, 1995.

[47] J. J. Zou and H. Yan. Extracting Strokes from Static Line Images Based on Selective
Searching. Pattern Recognition, 32(6):935-946, 1999.

[48] C. Y. Suen, C. Nadal, R. Legault, T. A. Mai, and L. Lam. Computer Recognition of
Unconstrained Handwritten Numerals. Proceedings of IEEE, 80:1162-1180, 1992.

[49] LS. Oh and C. Y. Suen. Distance Features for Neural Network-Bbased Recognition of
Handwritten Characters. International Journal on Document Analysis and Recognition

(IJDAR), 1(2):73-88, 1998.

[50] L. E. S. Oliveira. Automatic Recognition of Handwritten Numerical Strings. PhD
thesis, Ecole de Tecnologie Superieure Universite du Quebec, Montreal, Canada, July

2003.

178

[61] T. Hirano, Y. Okada, and F. Yoda. Structural Character Recognition Using Simulated
Annealing. In Proceedings of International Conference on Document Analysis and

Recognition (ICDAR), pages 507-510, Ulm, Germany, August 1997.

[52] R. R. Bailey and M. Srinath. Orthogonal Moment Features for Use with Parametric
and Non-Parametric Classifiers. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 18(4):389-399, 1996.

[63] M. K. Hu. Visual Pattern Recognition by Moment Invariant. IEEE Transaction on
Information Theory, 8(2):179-187, 1962.

[54] M. Shridhar and A. Badreldin. High Accuracy Character Recognition Algorithm Using
Fourier and Topological Descriptors. Pattern Recognition, 17(5):515-524, 1984.

[55] S. Pittner and S. V. Kamarthi. Feature Extraction from Wavelet Coeficients for Pattern
Recognition Tasks. IEEE Transactions on Pattern Analysis and Machine Intelligence,

1(21):83-88, 1999.

[56] S. E. N. Correia and J. M. Carvalho. Optimizing the Recognition Rates of Uncon-
strained Handwritten Numerals Using Biorthogonal Spline Wavelets. In Proceedings
of International Conference on Pattern Recognition (ICPR), volume 2, pages 251-254,

Barcelona, Spain, September 2000.

[57] T. M. Bruel. A System for the On-Line Recognition of Handwritten Text. In Pro-
ceedings of International Conference on Pattern Recognition (ICPR), volume 2, pages

129-133, Jerusalem, October 1994,

[58] L. Heutte, T. Paquet, J. V. Moreau, Y. Lecourtier, and C. Olivier. A Struc-
tural /Statistical Feature Based Vector for Handwritten Character Recognition. Pattern

Recognition Letters, 19(7):629-641, 1998.

[59] R. Plamondon and S. N. Srihari. On-line and Off-line Handwriting Recognition: Com-
prehensive Survey. IEEE Transactions on Pattern Analysis and Machine Intelligence,

22(1):63-84, January 2000.

179

[60]

[61]

[64]

[65]

[67]

[68]

[69]

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-Based Learning Applied to
Document Recognition. Proceedings of IEEE, 86(11):2278-2324, 1998.

T. Hastie and P. Y. Simard. Metrics and Models for Handwritten Character Recogni-

tion. Statistical Science, 13(1):54-65, 1998.

N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines.
Cambridge University Press, Cambridge, UK, 2000.

B. T. Mittchell and A. M. Gillies. A Model-Based Computer Vision System for Rec-
ognizing Handwritten ZIP Codes. Machine Vision and Applications, 2(4):231-243,
1989.

M. Shi, Y. Fujisawa, T. Wakbayashi, and F. Kimura. Handwritten Numeral Recog-
nition Using Gradient and Curvature of Gray Scale Image. Pattern Recognition,

35(10):2051-2059, 2002.

A. Krzyzak, W. Dai, and C. Y. Suen. Unconstrained Handwritten Character Recogni-
tion Using Modified Backpropagation Model. In Proceedings of International Workshop
on Frontiers in Handwriting Recognition (IWFHR), pages 155-166, Montreal, Canada,
April 1990.

G.Y. Chen, T. D. Bui, and A. Krzyzak. Contour-Based Handwritten Numeral Recogni-
tion Using Multiwavelets and Neural Networks. Pattern Recognition, 36(7):1597-1604,
2003.

R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. John Wiley and
Sons, Inc., Wiley-Interscience, New York, NY, USA, 2000.

A. F. R. Rahman and M. C. Fairhurst. An Evaluation of Multi-Expert Configuration
for the Recognition of Handwritten Numerals. Pattern Recognition, 31(9):1255-1273,
1998.

J. Kittler, M. Hatef, R. Duin, and J. Matas. On Combining Classifiers. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 20(3):226-239, 1998.

180

[70] A. K. Jain, R. P. W. Duin, and J. Mao. Statistical Pattern Recognition: A Review.
IEEFE Transactions on Pattern Analysis and Machine Intelligence, 22(1):4-37, 2000.

[71] D. Guillevic and C. Y. Suen. Cursive Script Recognition Applied to the Processing of
Bank Cheques. In Proceedings of International Conference on Document Analysis and

Recognition (ICDAR), pages 11-14, Montreal, Canada, August 1995.

[72] L. Mic and J. Oncina. Comparison of Fast Nearest Neighbour Classifier for Handwrit-
ten Character Recogniton. Pattern Recognition Letters, 19(3-4):351-356, 1999.

[73] K. W. Cheung, D. Y. Yeung, and R. T. Chin. A Bayesian Framework for Deformable
Pattern Recognition with Application to Handwritten Character Recognition. IFEE
Transactions on Pattern Analysis and Machine Intelligence, 20(12):1382-1388, 1998.

[74] J. Schurmann. Pattern Classification - A Unified View of Statistical and Neural Ap-
proaches. JohnWiley and Sons Inc., Wiley Interscience, New York, NY, USA, 1996.

[75] Wikipedia, The Free Online Encyclopedia, http://en.wikipedia.org/wiki/, 2006.

[76] A.S. Britto, R. Sabourin, F. Bortolozzi, and C. Y. Suen. Recognition of Handwritten
Numeral Strings Using a Two-Stage HMM-Based Method. International Journal on
Document Analysis and Recognition (IJDAR), 5(2-3):102-117, 2003.

[77) A. Britto-Jr., R. Sabourin, F. Bortolozzi, and C. Y. Suen. A String Lenght Predictor
to Control the Level Building of HMMs for Handwritten Numeral Recognition. In
Proceedings of International Conference on Pattern Recognition (ICPR), volume 4,

pages 31-34, Quebec City, Canada, August 2002.

[78] L. R. Rabiner. A Tutorial on Hidden Markov Models and Selected Application in
Speech Recognition. Proceedings of the IEEE, T7(2):257-286, 1989.

[79] U. V. Marti and H. Bunke. Using a Statistical Language Model to Improve the Perfor-
mance of an HMM-Based Cursive Handwriting Recognition Systems. World Scientific
Publishing Co., Inc., River Edge, NJ, USA, 2001.

181

[80]

[81]

[82]

[83]

84]

(85]

[88]

[89]

B. Zhang, M. Fu, H. Yan, and M. A. Jabri. Handwritten Digit Recognition by
Adaptive-Subspace Self-Organizing Map (ASSOM). [EEE Transactions on Neural
Networks, 10(4):939-945, 1999.

Z. Chi, Q. Wang, and W. C. Siu. Hierarchical Content Classification and Script
Determination for Automatic Document Image Processing. Pattern Recognition,

36(11):2483-2500, November 2003.

Y. LeCun, B. Boser, J. S. Denker, R. E. Howard, W. Habbard, L. D. Jackel, and
D. Henderson. Handwritten Digit Recognition with a Back-Propagation Network. Mor-
gan Kaufmann Publishers Inc., San Francisco, CA, USA, 1990.

A. Amin, H. B. Al-Sadoun, and S. Fischer. Hand-Printed Arabic Character Recognition
System Using an Artificial Network. Pattern Recognition, 29(4):663-675, 1996.

C. M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press,
Oxford, UK, 2003.

Y. Le Cun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard W. Hubbard, and
L. D. Jacket. Backpropagation Applied to Handwritten ZIP Code Recognition. Neural
Computation, 1(4):541-551, 1989.

V. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag, New York,
NY, USA, 1995.

L. N. Teow and J.F. Loe. Robust Vision-Based Features and Classification Schemes
for Off-line Handwritten Digit Recognition. Pattern Recognition, 35(11):2355-2364,
2002.

H. Byun and S. W. Lee. Applications of Support Vector Machines for Pattern Recog-
nition. In Proceedings of the International Workshop on Pattern Recognition with

Support Vector Machine, pages 213-236, Niagara Falls, Canada, August 2002.

N. E. Ayat, M. Cheriet, and C. Y. Suen. Optimization of the SVM Kernels Using an

Empirical Error Minimization Scheme. In Proceedings of the International Workshop

182

92}

[96]

[97]

98]

on Pattern Recognition with Support Vector Machine, pages 354-369, Niagara Falls,
Canada, August 2002.

J. Dong, A. Krzyzak, and C. Y. Suen. Fast SVM Training Algorithm With Decom-
position on Very Large Training Sets. IFFEFE Transactions on Pattern Analysis and

Machine Intelligence, 27(4):603-618, 2005.

P. D. Gader, J. M. Keller, and J. Cai. A Fuzzy Logic System for Detection and Recog-
nition of Street Number Fields on Handwritten Postal Addresses. IEEE Transactions

on Fuzzy Systems, 3(1):83-95, 1995.

P. D. Gader. J. M. Keller, R. Krishnapuram, J. H. Chiang, and M. A. Mohamed. Neural
and Fuzzy Methods in Handwriting Recognition. Computer, 30(2):79-86, February
1997.

B. Lazzerini and F. Marcelloni. A Linguistic Fuzzy Recognizer of Off-line Handwrriten

Characters. Pattern Recognition Letters, 21(4):319-327, 2000.

C. Y. Suen, R. Legault, C. Nadal, M. Cheriet, and L. Lam. Building a New Generation
of Handwriting Recognition Systems. Pattern Recognition Letters, 14(4):303-315, 1993.

A. Krogh and J. Vedelsby. Neural Networks Ensembles, Cross Validation, and Active
Learning. In G.Tesauro et al., editor, Advances in Neural Information Processing

Systems, volume 7, pages 231-238. MIT Press, Cambridge, MA, USA, 1995.

L. Hansen and O. Salomon. Neural Network Ensembles. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 12(10):993-1001, 1990.

L. Xu, A. Krzyzak, and C. Y. Suen. Methods of Combining Multiple Classifiers and
Their Applications to Handwriting Recognition. IEEE Transactions on Systems, Man,
and Cybernetics, 22(3):418-435, 1992.

R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton. Adaptative Mixtures of
Local Experts. Neural Computation, 3(1):79-87, 1991.

183

[99]

[100)

[101]

[102]

[103]

[104]

[105]

[106]

[107)

P. D. Gader, M. A. Mohamed. and J. M. Keller. Fusion of Handwritten Word Classi-
fiers. Pattern Recognition Letters, 17(6):577-584, 1996.

R. P. W. Duin. The Combining Classifier: To Train or Not to Train? In Proceedings
of International Conference on Pattern Recognition (ICPR), volume 2, pages 765-770,
Quebec City, Canada, August 2002.

Y. S. Huang and C. Y. Suen. Aun Optimal Method of Combining Multiple Classifiers
for Unconstrained Handwritten Numeral Recognition. In Proceedings of International
Workshop on Frontiers in Handwriting Recognition (IWFHR), pages 11-20, Buffalo,
NY, USA, May 1993.

Y. S. Huang and C. Y. Suen. A Method of Combining Experts for the Recognition of
Unconstrained Handwritten Numerals. IFEE Transactions on Pattern Analysis and

Machine Intelligence. 17(1):90-94, 1995.

D. Decoste and B. Scholkopf. Training Invariant Support Vector Machines. Machine
Learning, 46(1-3):160-190, 2002.

P. Zhang. Reliable Recognition of Handwritten Digits Using A Cascade Ensemble
Classifier System and Hybrid Features. PhD thesis, Department of Computer Science

and Software Engineering, Concordia University, Montreal, Canada, April 2006.

J. Zhou, A. Krzyzak, and C. Y. Suen. Verification-A Method of Enhancing the
Recognizers of Isolated and Touching Handwritten Numerals. Pattern Recognition,

35(5):1179-1189, 2002.

L. S. Oliveira, R. Sabourin, F. Bortolozzi, and C. Y. Suen. Impacts of Verification on
A Numeral String Recognition System. Pattern Recognition Letters, 24(7):1023-1031,
July 2003.

E. Lecolinet and O. Baret. Cursive Word Recognition: Methods and Strategies. In
Fundamentals in Handwriting Recognition, pages 235-263. Springer-Verlag Inc., New
York, NY, USA, 1994.

184

[108]

[109]

[110]

[111]

[112]

[113]

[114)

[115]

[116]

S. Madhvanath and V. Govindaraju. The Role of Holistic Paradigms in Handwritten
Word Recognition. IEFE Transactions on Pattern Analysis and Machine Intelligence,

23(2):149-164, 2001.

T. K. Ho, J. J. Hull, and S. N. Srihari. A Word Shape Analysis Approach to Lexicon
Based Word Recognition. Pattern Recognition Letters, 13:821-826. 1992.

J. Zhou and C. Y. Suen. Unconstrained Numeral Pair Recognition Using Enhanced
Error Correcting Output Coding: A Holistic Approach. In Proceedings of International
Conference on Document Analysis and Recognition (ICDAR), pages 484488, Seoul,

Korea, August-September 2005.

J. Zhou, Q. Gan, A. Krzyzak, and C. Y. Suen. Recognition of Hhandwritten Numerals
by Quantun Neural Networks with Fuzzy Features. International Journal on Document

Analysis and Recognition (IJDAR), 2(1):30-36, 1999.

J. Park, V. Govindaraju, and S. N. Srihari. OCR in a Hierarchical Feature Space.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(4), 1998.

T. M. Ha and H. Bunke. Off-line Handwritten Numeral Recognition by Perturbation
Method. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(5):535-
539, 1997.

C. L. Liu and M. Nakagawa. Handwritten Numeral Rrecognition Using Neural Net-
works: Iimproving the Accuracy by Discriminative Training. In Proceedings of Inter-
national Conference on Document Analysis and Recognition (ICDAR), pages 257-260,

Bangalore, India, September 1999.

G. Mayraz and G. E. Hinton. Recognizing Handwritten Digits Uusing Hierarchical
Pproducts of Experts. IEEFE Transactions on Pattern Analysis and Machine Intelli-
gence, 24(2):189-197, 2002.

F. Lauer, C. Y. Suen, and Gerard Bloch. A Trainable Feature Extractor for Hand-

written Digit Recognition. Pattern Recognition, 40:1816-1824, 2007.

185

[117]

[118]

[119]

(120]

[121]

[122]

[123]

[124]

[125]

P. Y. Simard, D. Steinkraus, and J. C. Platt. Best Practices for Convolution Neural
Networks Applied to Document Analysis. In Proceedings of International Conference
on Document Analysis and Recognition (ICDAR), volume 2, pages 958-962, Edin-
burgh, Scotland, August 2003.

M. Cheriet, Y. S. Huang, and C. Y. Suen. Background Region Based Algorithm for
the Segmentation of Connected Digits. In Proceedings of International Conference on

Pattern Recognition (ICPR), pages 619-622, Hague, Netherlands, September 1992.

Z. Shi, S. N. Srihari, Y-C. Shin, and V. Ramanaprasad. A System for Segmentation and
Recognition of Totally Unconstrained Handwritten Numeral Strings. In Proceedings of
International Conference on Document Analysis and Recognition (ICDAR), volume 2,

pages 455-458, Ulm, Germany, August 1997.

R. Alhajj and A. Elnagar. Multiagents to Separating Handwritten Connected Digits.
IEEFE Transactions on Man and Cybernetics, Part A, 35(5):5693-602, September 2005.

E. Lethelier, M. Leroux, and M. Gilloux. An Automatic Reading System for Handwrit-
ten Nnumeral Amounts on French Checks. In Proceedings of International Conference
on Document Analysis and Recognition (ICDAR), pages 92-97, Montreal. Canada,
August 1995.

C.Y. Suen, K. Liu, and N. W. Strathy. Sorting and Recognizing Cheques and Financial
Documents. In Proceedings of the 3rd IAPR Workshop on Document Analysis Systems,
pages 1-18, Nagano, Japan, November 1998.

G. Kaufmann and H. Bunke. Automated Reading of Cheque Amounts. Pattern Anal-
ysis and Applications, 3(2):132-141, 2000.

D. E. Goldberg. Genetic Algorithms in Search, Optimization , and Machine Learning.
Addison-Wesley Longman Inc., Boston, MA, USA, 1989.

J. R. Koza. Genetic Programming - On The Programming of Computers by Means of
Natural Selection. The MIT Press, Cambridge, MA, USA, 1992.

186

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

P. Slavik and V. Govindaraju. Equivalence of Different Methods for Slant and Skew
Correction in Word Recognition Applications. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 23(3):323-326, March 2001.

S. N. Srihari, S. H. Cha, H. Arora, and S. Lee. Individuality of Handwriting. Journal
of Forensic Science, 47(4):1-17, July 2002.

R. M. Bozinovic and S. N. Srihari. Off-Line Cursive Script Word Recognition. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 11(1):68-83, January

1989.

S. Uchida, E. Taira, and H. Sakoe. Nonuniform Slant Correction Using Dynamic
Programming. In Proceedings of International Conference on Document Analysis and

Recognition (ICDAR), pages 434-438, Seattle, USA, September 2001.

T. Yamaguchi, Y. Nakano, M. Maruyama, H. Miyao, and T. Hananoi. Digit Classifi-
cation on Signboards for Telephone Number Recognition. In Proceedings of Interna-
tional Conference on Document Analysis and Recognition (ICDAR), pages 359-363,
Edinburgh, Scotland, August 2003.

Y. Ding, F. Kimura, Y. Miyvake, and M. Shridhar. Accuracy Improvement of Slant
Estimation for Handwritten Words. In Proceedings of International Conference on
Pattern Recognition (ICPR), volume 4, pages 527-530, Barcelona, Spain, September
2000.

G. Kim and V. Govindaraju. A Lexicon Driven Approach to Handwritten Word
Recognition for Real-Time Applications. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 19(4):366-379, April 1997.

D. Guillevic and C. Y. Suen. Cursive Script Recognition: A Sentence Level Recogni-
tion Scheme. In Proceedings of International Workshop on Frontiers in Handwriting

Recognition (IWFHR), pages 216-223, Taipei, Taiwan, December 1994.

187

[134] E. Kavallieratou, N. Fakotakis, and G. Kokkinakis. A Slant Removal Algorithm. Pat-
tern Recognition, 33(7):1261-1262, July 2000.

[135] F. Kimura, M. Shridhar, and Z. Chen. Improvements of a Lexicon Directed Algorithm
for Recognition of Unconstrained Handwritten Words. In Proceedings of International
Conference on Document Analysis and Recognition (ICDAR), pages 18-22, Tsukuba
City, Japan, October 1993.

[136] H. S. M. Coxeter and S. L. Greitzer. Geometry Revisited. Mathematical Association
of America, Washington DC, 1967.

[137] S. Shapiro. How to Test Normality and Other Distribution Assumptions. WI- American
Society for Quality, Milwaukee, 1990.

[138] M. Hart and R. Hart. Statistical Process Control for Health Care. Duxbury Press,
Pacific Grove, CA, USA, 2002.

[139] R. C. Gonzales and P. Wintz. Digital Image Processing. Addison-Wesley Longman
Publishing Co. Inc., Boston, MA, USA, 2001.

[140] T. Pavlidis. Algorithms for Graphics and Image Processing. Computer Science Press,
Rockville, MD, USA, 1982.

[141] A. G. Ghuneim. Contour Tracing. Technical report, Department of Computer Science,
McGill University, Montreal, Canada, http://www.cs.mcgill.ca/aghnei/index.html,
2000.

[142] T.Y. Zhang and C. Y. Suen. A Fast Parallel Algorithm for Thinning Digital Patterns.
Communication ACM, 27(3):236-239, 1984.

[143] T. Pavlidis. A Thining Algorithm for Discrite Binary Images. Computer Graphics and
Image Processing, 13:142-157, 1980.

[144] L. Huang, G. Wan, and C. Liu. An Improved Parallel Thinning Algorithm. In Pro-
ceedings of International Conference on Document Analysis and Recognition (ICDAR),

volume 2, pages 780-783, Edinburgh, Scotland, August 2003.

188

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152)

[153]

J. T. Favata. Offline General Handwritten Word Recognition Using an Approximate
BEAM Matching Algorithm. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 23(9):1009-1021, 2001.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms.
MIT Press, Cambridge, MA ; McGraw-Hill, New York, NY, 2001.

D. P. Bertsekas. Dynamic Programming and Optimal Control, volume 1 and 2. Athena

Scientific, Nashua, NH, USA, 2nd edition, 2000.

M. Y. Chen, A. Kundu, and J. Zhou. Off-line Handwritten Word Recognition Using
a Hidden Markov Model Type Stochastic Network. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 16(5):481-496, 1994.

J. H. Kim, K. K. Kim, C. P. Nadal, and C. Y. Suen. A Methodology of Combining
HMM and MLP Classifiers for Cursive Word Recognition. In Proceedings of Interna-
tional Conference on Pattern Recognition (ICPR), volume 2, pages 319-322, Barcelona,
Spain, September 2000.

L. S. Oliveira and R. Sabourin. Support Vector Machines for Handwritten Numer-
ical String Recognition. In Proceedings of International Workshop on Frontiers in

Handwriting Recognition (IWFHR), pages 39-44, Tokyo, Japan, October 2004.

C. L. Liu, K. Nakashima, H. Sako, and H. Fujisawa. Handwritten Digit Recognition:
Investigation of Normalization and Feature Extraction Techniques. Pattern Recogni-

tion, 37:265-279, 2004.

G. Wahba, X. Lin, F. Gao, D. Xiang, R. Klein, and B. Klein. The Bias-Variance Trade-
Off and the Randomized GACV. In Proceedings of the 13th Conference on Neural

Information Processing Systems (NIPS), pages 8-31, Vancouver, Canada, December
2001.

Z. Chi, M. Suters, and H. Yan. Separation of Single and Double Touching Handwritten
Numeral Strings. Optical Fngineering, 34:1159-1165, 1995.

189

[154]

[155]

[156]

[158]

[159]

[160]

[161]

[162]

C. L. Liu, H. Sako, and H. Fujisawa. Integrated Segmentation and Recognition of Hand-
written Numerals: Comparison of Classification Algorithms. In Proceedings of Inter-
national Workshop on Frontiers in Handwriting Recognition (IWFHR), pages 303-308,
Niagara-on-the-Lake, Canada, August 2002.

Y. Prudent and A. Ennaji. A K Nearest Classifier Design. Electronic Letters on
Computer Vision and Image Analysis, 5(2):58-71, 2005.

L. P. Cordella, C. De Stefano, A. Della Cioppa, and A. Marcelli. A New Evolutionary
Learning Model for Handwritten Character Prototyping. In Proceedings of Interna-
tional Conference on Image Analysis and Processing (ICIAP), pages 830-835, Venice,

Italy, September 1999.

G. A. Carpenter and S. Grossberg. The ART of Adaptive Pattern Recognition by a
Self-Organizing Neural Network. IEEE Computer, 21(3):77-88, March 1988.

Y. Prudent and A. Ennaji. A New Learning Algorithm for Incrementalself-Organizing
Maps. In Proceedings of Furopean Symposium on Artificial Neural Networks (ESANN),
pages 7-12, Bruges, Belgium, April 2005.

D. Rogers and T. Tanimoto. A Computer Program for Classifying Plants. Science,

3434(132):1115-1118, 1960.

R. Xu and D. Wunsch II. Survey of Clustering Algorithms. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 16(3):645-678, May 2005.

J. Kennedy and R. Eberhart. Swarm Intelligence. Morgan Kaufmann Publishers, Inc.,

San Francisco, CA, USA, 2001.

J. Lee, S. Lee, S. Chang, and B.-H. Ahn. A Comparison of GA and PSO for Excess
Return Evaluation in Stock Markets. volume 3562, pages 221-230. Lecture Notes in

Computer Science (LNCS), Springer Berlin/Heidelberg, 2005.

190

[163]

[164]

[165]

[166)

[167)

[168]

[169]

[170]

A. A. A. Esmin, G. Lambert-Torres, and G. B. Alvarenga. Hybrid Evolutionary Algo-
rithm Based on PSO and GA Mutation. page 57, Aukland, New Zealand, December
2006.

R. Poli, W. B. Langdon, and O. Holland. Extending Particle Swarm Optimisation via
Genetic Programming. In European Conference on Genetic Programming (EuroGP),

pages 291--300, Lausanne, Switzerland, March-April 2005.

J. Kennedy and R. Eberhart. A Discrete Binary Version of the Particle Swarm Op-
timization Algorithm. In Proceedings of IEEE International Conference On Systems,

Man and Cybernetics (SMC), pages 4104-4109, Orlando, Florida, USA, October 1997.

J. Roughgarden. Theory of Population Genetics and Evolutionary Fcology: An Intro-
duction. Reprinted by Macmillan Publishing Company, New York , NY, 1987; and
Prentice-Hall, Upper Saddle River, New Jersey, 1996.

J. Song and J. Yu. Population System Control. China Academic Bublishers, Beijing,

Springer-Verlag, Berlin, 1988.

M. H. Shirali-Shareza, K. Faez, and A. Khotanzad. Recognition of Handwritten Farsi
Numerals by Zernike Moments Features and a Set of Class Specific Neural Network
Classificrs. In Proceedings of The International Conference on Signal Processing Ap-
plications, and Technology (ICSPAT), volume 2, pages 998-1003, Dallas, Texas, USA,
October 1994.

M. H. Shirali-Shareza, K. Faez, and A. Khotanzad. Recognition of Handwritten Ara-
bic/Persian Numerals by Shadow Coding and an Edited Probabilistic Neural Network.
In Proceedings of The International Conference on Image Processing (ICIP), volume 3,

Washington DC, USA, October 1995.

H. Soltanzadeh and M. Rahmati. Recognition of Persian Handwritten Digits Using
Image Profiles of Multiple Orientations. Pattern Recognition Letters, 25(14):1569-1576,
October 2004.

191

[171] M. Pechwitz and V. Mrgner. Baseline Estimation for Arabic Handwritten Words.
In Proceedings of International Workshop on Frontiers in Handwriting Recognition

(IWFHR), Niagara-on-the-Lake, Canada, August 2002.

[172] A. de S. Britto Jr. and C. P. Nadal. Numeral String Special Database 19 (NString
SD19) Version 1.0. Technical report, Ecole de Technologie Superieure (ETS, Universite
du Quebec, Montreal, Canada), Centre for Pattern Recognition and Machine Intelli-

gence (CENPARMI, Concordia University, Montreal, Canada), Pontifcia Universidade
Catlica do Paran (PUC-PR), Brazil, June 2000.

192

