Comprehension and
Transformation
of Object-oriented Models

Zeng Zi

A Thesis
in
The Department
of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements
For the Degree of Master of Computer Science
Concordia University
Montreal, Quebec, Canada
March 2007

© Zeng Zi, 2007

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 978-0-494-28959-4
Our file Notre référence
ISBN: 978-0-494-28959-4
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

Comprehension and Transformation of Object-oriented Models

Zeng Zi

During object-oriented (OO) software development, the problem domain is
mapped into the solution space implemented by a programming language and
executed by a computer system. During OO design, the real-world objects are
mapped into software objects with assigned responsibilities to fulfill certain tasks.
In order to improve the quality of software systems, a number of approaches have
been proposed to improve the quality of the existing code. One of these is “restruc-
turing”, a process of improving the internal structure of a software system without
altering its external behaviour. However, refining implements artifacts tends to be
much more expensive than refining design artifacts. In addition, Model Driven Ar-
chitecture (MDA) with its supporting tools has become the mainstream in software
development and provides increasingly powerful facilities to automatically gener-
ate documentation and code from the platform-independent design model. These
facts make the quality of a software product greatly associated with the quality
of the design model. In recent years, there is a trend of addressing restructuring
at a higher level of abstraction. In MDA, the Unified Modeling Language (UML)
model is widely used to build and visualize the design in a platform-independent
way. In this dissertation, we propose the development of approaches to obtain
comprehension, and perform restructuring of the UML design model.

i

Acknowledgments

I would like to acknowledge many individuals who have provided help for this
dissertation.

First, I would like to express my special gratitude to my supervisor, Dr. Con-
stantinos Constantinides, for his help, guidance and support during my study at
Concordia, and especially to this research work.

In addition, I thank Venera Arnaoudova, Hamoun Ghanbari, Laleh Mousavi-
Eshkevari, Elaheh Safari, Paria Parsamanesh, for their valuable comments over my
research work.

I would like also to express my thanks to Guillaume Theoret, for his cooperation
while working on the supporting tools. 1 also want to thank Amir Abdollahi
Foumani for his valuable advice throughout this project.

At last, but not least, I would like to thank my parents, who supported and
encouraged me during my studies in Concordia. I also want to thank my boyfriend

for his encouragement, support and tolerance during my research.

v

Contents

List of Figures
List of Tables

1 Introduction
1.1 Major contributions

1.2 Synopsis of the dissertation

2 Theoretical background
2.1 Model Driven Architecture
2.2 The Unified Modeling Language
2.3 Use-case driven development in object-oriented development
24 Productionrules Lo
2.5 Comprehension L

2.6 Model transformation

3 Problem and motivation

ix

xi

4 Proposal

4.1 Model transformation into a production system
4.1.1 Representation and storing the second-level design model in

arelational schema

4.1.2 Extracting knowledge and achieving comprehension

4.1.3 Restructuring

42 Toolsupport.

421 Toolstodeploy

422 Toolstodevelop.

Production rules: Defining the second-level design model

Defining the third-level design model

Comprehension and transformation

7.1 Extracting knowledge to obtain comprehension
7.1.1 Identifying a “lazy class”
7.1.2 Identifying a “data class”
7.1.3 Identifying unused methods
7.1.4 Finding all aggregates of a givenclass.
7.1.5 Tracing the calling sequence of messages in a scenario

7.1.6 Checking for consistency between the static and the dynamic

vi

23

29

7.1.7 Measuring coupling and cohesion
7.2 Restructuring
7.2.1 Strategies to address “bad smells” in design

7.2.2 Restructuring to design patterns

8 Case study: A library information system

8.1 Design model representation
8.1.1 First-level representation: UML

8.1.2 Second-level representation: Producing a production system

8.1.3 'Third-level representation: Producing a relational database
schema L
8.2 Comprehension of themodel
8.3 Performing Restructuring

8.4 Producing a refined first-level model representation

9 Related work and evaluation

10 Conclusion and recommendations

Appendices

A Tool support and user manual

B Addressing multi-level inheritance

vii

84

89

92

92

95

C Glossary and abbreviations 97

Bibliography 100

viii

List of Figures

10

11

12

13

14

UML activity diagram illustrating use-case driven development. . . 6
Three level design models. 12
UML activity diagram illustrating the steps of the proposal. 13
Automation and tool support.o 19
ER diagram for the relational database schema. 33
Algorithm illustrating multi-level inheritance. 54
Multi-level inheritance.o Lo oL 55
SSD for use case make book entry. oL oL 69
Sequence diagram for makeNewBookentry(). 70
Sequence diagram for addBook(). 70
Sequence diagram for endBookentry(). 71
Class diagram. e 71

Screen shot for UML2PR tool to generate the production system
representation. oL 0o e e e e 72

Screen shot for PR2DB tool to build a database. 74

X

15

16

17

18

19

20

Screen shot of RPR tool to perform model comprehension. 77
Screen shot for RPR tool to perform model restructuring. 79

Screen shot for RPR. tool to perform model restructuring to patterns. 81

Screen shot for PR2JAVA tool to generate Java skeletal code. . . . 82
Screen shot illustrating *.java files generated. 83
Refined class diagram. 83

List of Tables

10

11

12

13

14

15

Productions for static definitions (Partl). 27
Productions for static definitions (Part2). 28
Productions for dynamic definitions. 28
Database schema for Class. 31
Database schema for Attribute. 31
Database schema for Operation. 32
Database schema for Interaction. 32
Database schema for Association. 32
Result of hide method example. 48
Result of move method example. 51
Result of encapsulate Collection. 52
Result of pull up method example. 56
Result of extract interface example. 58
Class table. 74
Attribute table. 75

xi

16

17

18

19

20

21

22

23

24

Operation table. 75

Association table. 75
Interaction table. 0L 76
Result of UnusedMethod. 77
Result of DataClass. 78
Result of calling sequence. 78
Result of checking consistency. 78
result of HideMethod. 79
Result of Pull up method. 81

xii

Chapter 1

Introduction

The maturities of object-oriented software development technologies and process
models such as the Unified Process have managed to bridge the gap between the
real world and the software models, having also significantly reduced the risk of
development. Compared to the wide availabilities of code generation tools, sup-
porting tools for automatically improving an existing design model are rare. This
dissertation aims to fill this gap and to provide strategies and supporting tools to
aid in comprehension and improvement of a design model through model transfor-
mation, knowledge representation, refactoring and design patterns technology as a
mean to enrich OO design. The expected benefit will be an implementation whose
quality is the result of the natural mapping of the design, rather than an imple-

mentation which would need significantly corrective measures through refactoring.

1.1 Major contributions

The expected contributions of this research are as follows:

1. To provide a human readable and computer tractable representation of a
UML model in both the static and the dynamic view for the purpose of

automatic analysis and modification.

2. To implement comprehension strategies and analysis algorithms in forms of

higher order queries which utilize the advantages of database logic processing.
3. To implement automatic restructuring of a model by simple text processing.

4. To provide automation that can support 1-3.

1.2 Synopsis of the dissertation

The rest of the dissertation is organized as follows: In chapter 2, we introduce
the theoretical background of the thesis. In chapter 3, we discuss the problem
and motivation behind this research. In chapter 4, we present our proposal of this
research. In chapters 5, 6 and 7, we discuss our methodology. In chapter 8, we
provide a case study to illustrate our approach and the deployment of our tool. In
chapter 9, we discuss related work in comparison with our proposal and provides
an evaluation of this dissertation. In chapter 10, we provide our conclusions and

recommendations for future work.

Chapter 2

Theoretical background

In this chapter we discuss the necessary theoretical background to this research.

2.1 Model Driven Architecture

Model Driven Architecture (MDA) [Groa], is an initiative by the Object Man-
agement Group (OMG), a consortium of companies, in defining an approach
to software development based on modeling and automated mapping of models
into implementation. The fundamental MDA pattern includes the definition of a
platform-independent model (PIM) and the corresponding automated mapping to
one or more platform-specific models (PSMs) [CH]. In MDA, the terms PIM and
PSMs refer to models of a software system which may or may not link to a specific
technological platform, such as a specific programming language. For example, a

generic description (e.g. a text description) of a software system can be considered

as a platform-independent model, while a representation of a software system using
Java or C++ can be considered as a platform-specific model. The motivation is to
model a system in a platform-independent way. Model Driven Architecture focuses
on the functionality of the system rather than addressing their implementation.
New object-oriented software development implementation technologies for busi-
ness functions do not require repeating modeling, as modeling can be performed
in a platform-independent way. As a result, system functionalities are modeled
only once. For example, a system can be modeled and implemented in Java. If for
some reasons it should be re-implemented in C++, the design model may have to
be restructured if it is platform-specific. Therefore, if the system is modeled in a
platform independent way, the model can be deployed regardless of the technology

in which it is implemented.

2.2 The Unified Modeling Language

Born out of the unification of earlier object-oriented graphical model languages,
the Unified Modeling Language (UML) [BRJ99] is a general purpose graphical
modeling language capable to capture and visualize the real world system based
on object definitions and object relationships. The UML is an open standard under
the control of OMG. A system can be modeled through a combination of static
and dynamic views, supported by a number of different artifacts. Two artifacts .

widely used are the class diagram, and the two types of interaction diagrams

(communication and sequence diagram). The class diagram can represent the
static view of the system and the interaction diagrams can collectively represent

the dynamic view.

2.3 Use-case driven development in object-oriented

development

Use-case driven development is a term adopted to stress the notion of the use-case
model as a central theme driving the OO development process. The use-case model
is used to capture functional requirements in scenarios [Figure 1]. Based on the
narrative description of use-case scenarios, a domain model captures real-world
concepts and their attributes, as well as the associations between concepts. Trans-
lated from a given use-case scenario, a system sequence diagram (SSD) treats the
system as a black-box and illustrates: 1) the request events that an external actor
generates (implicitly illustrating the corresponding operations requested from the
system), 2) the order of these events and 3) inter-system events (if any). In an
SSD, an actor issues a sequence of request events, each invoking a correspond-
ing operation at the system end. The set of system operations that correspond
to an SSD constitute a subset of the interface (the overall behaviour) of the sys-
tem. Each system operation can be associated with a set of formal or semi-formal

specifications, referred to as a system operation contract, which is implemented as

Requirement Design Implementation

(Elicit and analyze requirements) Specify system operations)

Map design to code

Implementation

[System operafion contracts]

(Build overall behavior) (Design interactions between objects)
[System sequence diagram | [Interaction Diagrams |

Develop domain model

Define classes)
Class diagram

Domain model

Figure 1: UML activity diagram illustrating use-case driven development.

an interaction diagram. During this activity, developers may apply certain guide-
lines on the assignment of responsibilities to objects through the deployment of
responsibility patterns [Lar04], and design patterns (GoF) [GHJV95] in order to
reuse proven designs and experience. In an interaction diagram, upon reception
of the external message, the subsystem under design must provide a logical solu-
tion to the problem by illustrating how objects collaborate in order to fulfill this
responsibility. To perform this collaboration, objects interact via message passing.
Based on the domain model and interaction diagrams, a class diagram illustrates
software classes (containing state and behaviour) and their associations. The class
diagram and the set of interaction diagrams are mapped to the implementation

model (potentially to any object-oriented language).

2.4 Production rules

The Unified Modeling Language provides a graphical model for the system under
development. The semantics and metadata behind the model could be expressed
by a set of abstract rules which we refer to as production rules (PR) [FCa) that
are finite according to their definition. A production system can be utilized as a

language to represent knowledge.

2.5 Comprehension

In the context of software development and maintenance, comprehension is the
process of understanding the functionality as well as providing measures towards
the quality of a software system. Comprehension is directed toward the entire set

of artifacts that comprise the software system.

2.6 Model transformation

In MDA, the term “model transformation” refers to: 1) the transformation of a
model based on a metamodel into another model which is based on another meta-
model (e.g. model transformation between Eclipse Modeling Framework (EMF)
models [EMF]) or 2) the transformation of a model to another model which is
based on the same metamodel. An example of the second kind of model transfor-

mation is “restructuring”. Generally speaking, restructuring refers to : a change

made to the internal structure of software to make it easier to understand and
cheaper to modify without changing its observable behaviour [Fow99]. Traditional
restructuring focuses on the implementation as the primary artifact. Currently,
restructuring to find “bad smells” and restructuring to patterns [Ker04] are pop-
ular among researchers and practitioners and they are deployed as a guidance for
code improvement.

In this chapter, we discussed several topics which serve as the theoretical back-

ground to this research.

Chapter 3

Problem and motivation

In this chapter we discuss the problem and the motivation behind this research
which constitutes the scope of this dissertation.

With the support of a collection of tools, MDA-based software development
proceeds through the stage of modeling with UML (platform-independent model)
to automatic documentation generation or code generation (from platform-specific
models). During these stages, design is the activity in which a real world domain
model is mapped into a software model where objects are assigned responsibil-
ities to fulfill requirements. The code, most of which is currently skeletal, can
be automatically generated from the design model through mapping. The imple-
mentation artifacts are completed by implementing each functionality modeled in
design stage using desired technologies (e.g. Java, C++). Therefore, in MDA,

design produces critical artifacts in the development process and it greatly affects

the quality of software products. However, anomalies in design such as high cou-
pling, low cohesion and bad information hiding are bound to affect the quality of
the end-product. Moreover, they tend to be difficult to detect and address. In
addition, experience has shown that fixing errors in design is less expensive than
fixing errors in code [BPM]. Since traditional improvement toward the software
system is to improve the code, approaches and supporting tools are strongly de-
sired by the developers for detecting and addressing anomalies early in the design
stage. However, the UML representation of the static and dynamic model is not
comprised of a single artifact. The representation is multi-dimensional and it is
comprised of a collection of artifacts. For medium- to large-scale systems, the UML
representation will contain a large collection of artifacts, which will make their com-
prehension and possible transformation difficult, tedious and error prone. Thus,
to perform these activities automatically, the design model should be described in
a machine-manipulable form that can be automatically analyzed and restructured
(if needed). In addition, in which way the model can be analyzed is an open issue.
Furthermore, there is also the issue of how to make necessary modifications and
how these modifications can be mapped into a new model. The motivation behind

this research is described by the following points:

1. To represent the entire model (static and dynamic view) in a single form
which is appropriate for easy manipulation in order to extract knowledge

and achieve comprehension.

10

2. To develop strategies (algorithms) for knowledge extraction in order to iden-

tify anomalies.

3. To develop strategies (algorithms) to restructure the model along the lines
of “bad smells” and “refactoring” [Fow99] strategies and along the lines of

“restructuring to patterns” [Ker04].

4. To support automation for 1-3.

In this chapter, we discussed the scope of this dissertation in terms of problem

and motivation.

11

Chapter 4

Proposal

In this chapter, we discuss our research proposal. The main idea is illustrated in

Figures 2 and 3.

restructure
UML representation}M Production system | transform | = Database | query
representation representation
First-level design model Second-level design model Third-level desigﬁ model

Figure 2: Three level design models.

12

Modeling

|UML representation)] .

|XML representation |

(Transform)

AV
Production system
representation

+———>f Relational database

|Java skeletal code

Transform

Database Representation and
Query

representation

Execute query)

Anélyze

Knowledge towards the
system

[Restructuring candidates

— .

Model Restructuring

Developer

|UML representation'|
I

.

(Make determination)

(Restructure

¥
Restructured production

system representation

+————{Transform

Figure 3: UML activity diagram illustrating the steps of the proposal.

13

4.1 Model transformation into a production sys-

tem

To obtain an alternative representation of a UML model, we deploy a model trans-
formation technique. The motivation behind this idea is to transform a model to
another one which is easier to manage, and is able to be automatically analyzed
and modified. XML Metadata Interchange (XMI) [Grob] is used as an interchange
format for a UML model. Also, it is commonly used as an intermediate model
representation through which code and documentation can be generated from the
UML model. XMI can also be considered as a textual representation of the model.
One approach to automatically manipulate a UML model is to manipulate its cor-
responding XMI representation. However, as a data exchange facility, the XMI
representation of a model often contains superfluous information such as tags and
graphic positions. Therefore, even if there are plenty of tools available that could
generate XMI from a UML model, we choose to target the transformation of the
model into an alternative representation which can be easily read by humans and
easily manipulated by a machine. Our chosen approach is the notion of production
rules, which describes an abstract concept language for representing the semantics
and metadata behind the model.

We refer to the UML model as the first-level design model, and the production

system representation generated from UML as the second-level design model. In

14

addition, the second-level design model serves as an intermediate model represen-
tation, which is expressed at a higher enough level to be humanly readable and at
a lower enough level to be machine manipulatable. To obtain comprehension of
a system, we define syntax and semantics to represent the two dimensions of the
model: static and dynamic. The UML models, involved in the model transforma-
tion process are the UML class diagram and interaction diagrams, which address

the structure and the behaviour of the system respectively.

4.1.1 Representation and storing the second-level design
model in a relational schema

The second-level design model provides a complete and manageable description
(static and dynamic) of the system. Analysis over this model can be carried out to
identify anomalies which refer to any factor that affects the quality of the system,
also refer to “bad smells” [Fow99] in context of code. However, when encounter-
ing the situations where data of a particular category needs to be extracted and
analyzed, we need to decode the production system representation, classify the
data and then extract requested information. This text processing can become te-
dious for a large system. Data describing the design model can be clearly classified
and transformed into the relational database. For instance, a model would have
classes, a class would have features (attributes and methods), and each feature

would have properties, all of which can be modeled into a relational schema by

15

a collection of tables. Moreover, analysis toward the model is usually based on
logical reasoning which could be implemented in a higher order query language.
In this approach, we can combine the storage mechanism with the logical system:
a combination supported by the database technique. Therefore, in general we can
translate the production system representation into a database, in which the in-
formation and data of the model are classified and organized into an appropriate
relational schema. We refer to the database representation as the third-level de-
sign model. Analysis can be performed by applying proper strategies (algorithms)
through executing statements in the form of queries (possibly with the assistance

of additional programming if required).

4.1.2 Extracting knowledge and achieving comprehension

Comprehension of the model could be manually performed by drawing observa-
tion over the UML diagrams. However, in situation where 1) there are many
classes with many features, 2) the interaction among objects is complex and a
potentially large collection of interaction diagrams is required to be analyzed, a
manual comprehension can be tedious and error-prone over these artifacts. Even
if proper algorithms have been applied to help the comprehension of a system, the
problem is that the input data for the algorithm might not be correct due to the

loss, or misunderstanding of information towards the model by manual analysis.

16

Our production system produces a single representation of the entire model origi-
nated from the UML class diagram and a collection of UML interaction diagrams.
Therefore, we propose several strategies through which the production system rep-
resentations can be analyzed by extracting knowledge from the third-level design

model to achieve comprehension.

4.1.3 Restructuring

There are three possible places where we can modify a design: 1) Modify UML
diagrams manually (first-level design model), 2) Modify the production system rep-
resentation (second-level design model) and transform it back to UML, 3) Modify
database (third-level design model) and transform it back to UML. All of these
approaches are feasible but not all of them are straightforward. The first approach
requires that developers read and understand the analysis results from database
queries, then manually modify the UML diagrams. This can be tedious and error
prone. It also implies that the process cannot be automated. Thus, both (2) and
(3) seem more viable solutions. We plan to perform modification over the second-
level design model. Furthermore, there may be the case that without analyzing the
model, developers decide to re-design part of the model. In this case, modification
of the model could be carried out directly on the second-level design model without

relying on the results of analysis from the database. The restructured second-level

17

design model can be translated back to corresponding UML model. Our objec-
tive is to define a system that can guide developers to perform the correct and
necessary restructuring towards the second-level design model, which will lead to
an improvement of the design. Ideas for this approach are borrowed from “soft-
ware refactoring” [Fow99]. We feel that some categories of refactoring (including
refactoring to patterns), which are discussed in the literature in the context of
implementation can be applicable in our proposal and be deployed in the context

of design representation.

4.2 Tool support

In this section, we discuss applicable tools we deploy as well as the desired tools

we plan to build as Figure 4 shows.

4.2.1 Tools to deploy

Currently, there are a number of different tools to support modeling frameworks
and code generation facilities, for example EMF, Umbrello UML [umb] and Po-
seidonUML [Pos]. The idea behind the model transformation from UML to code
is to utilize XML. As an OMG standard for exchanging metadata information
via XML, XMI can be generated by many modeling tools such as EMF, and can

be used to generate code corresponding to a UML model. Similarly, XMI could

18

VISUALIZATION TOOLS (EXTERNAL)
Poseidon EclipseUML

(UML representation) UML representation’
m XML representation)

COMPREHENSION AND TRANSFORMATION TOOQL SUITE

transform transform
[UML2PR] [PR2UML]
(Production system representation &—-
restructure [RPR]
transform
[PR2DB]

@tabase representation) J4eVIRPRI

Figure 4: Automation and tool support.

be used to automate the process of bi-directional transformation between UML
and production system representation. That is to say, we can take UML as an
input, parse the XMI representation generated by an existing tool, and take a
production system representation as an output. However, there is certain short-
coming existing in EMF. The generated XMI representation uses a UML2 library
which is not openly available. This problem makes EMF difficult to work with.
PoseidonUML is one of the tools that seem to be a viable technology without
the problems encountered with EMF. We plan to deploy Poseidon to aid in the
transformation from the UML representation to the production system representa-
tion. The transformation can be achieved by passing through the entire XML and

generating the production system representation of the model. To transform the

19

production system representation back to the UML representation, XMI is not a
good choice since it is extremely complex to generate. The reasons are as follows:
1) XML file is verbose and tedious. Even a small model can translate into a large
XMI representation. Therefore, generating the production system representation
of a model back to its corresponding XMI representation is obviously difficult. 2)
A valid XMI representation that could be used to produce UML diagram would
have to include additional information such as graphic positions, which can not be
obtained from the production system representation. The reason for this is that
for the versions of XMI representation which do not use UML2 library, because
during the parsing of XMI representation of a model, we get rid of information
that is not related to the model itself such as graphic position, but is required if
we want to import XMI back to UML. As an alternative approach, we plan to
generate Java skeletal code from the production system representation which can
be imported into visualization tools in order to generate a refined UML model. We
can deploy EclipseUML [Ecl] in this approach, which is a plug-in for Eclipse that

allows building UML models, and can support reverse engineering of Java code.

4.2.2 Tools to develop

To facilitate the model representation, comprehension and transformation, we plan
to develop the following tools listed below according to the respective activity which

they perform. These tools constitute our comprehension and transformation tool

20

suite (Figure 4).

UML to production system representation (UML2PR) Taking a UML model
as an input, XMI representation could be generated automatically by Posei-
don UML. To generate a production system representation, we plan to build a
tool to parse the XMI representation and transform it to the production sys-
tem representation via text processing. This tool will be developed in Ruby,

which is very good at text processing since it supports regular expressions.

Production system representation to database schema (PR2DB) To store
the data of the production system representation of the UML model, we plan
to build a parser to decode the production system representation, classify the
data, and store it into a relational database schema via text processing and

JDBC processing. This tool will be developed in Java.

Restructuring of production system representation (RPR) To automate the
process of restructuring the second-level design model, we plan to develop a
tool to obtain the restructuring candidates and to restructure the production
system representation based on the proposal, via text processing and JDBC

processing. This tool will be developed in Java.

Production system representation to UML (PR2UML) To translate the re-
structured second-level design model back into a new UML model, we pro-

pose to develop a tool that generates Java skeletal code via text processing,

21

which can be imported into EclipseUML, and generate a refined UML class

diagram and sequence diagrams. This tool will be implemented in Ruby.

In this chapter we discussed the proposed methodology by introducing the
structure of the three-level design model, the approach to comprehension and the
model transformation, and the supporting tools to deploy and to develop for the

provision of automation.

22

Chapter 5

Production rules: Defining the

second-level design model

In this chapter, we discuss how production rules can be deployed to provide a
representation of the model.

In the following subsections, we define the syntax and semantics of the pro-
duction rules to represent the static and dynamic views of the system respectively
by extending the original definition of production rules presented in [FCa]. In
[FCb], the authors define production rules as a set of abstract rules which sup-
ports the semantics of object-oriented artifacts, G. G is defined in terms of a set of

five elements, each of which is finite. Let G = C, A, M, P, R, such that:
1. Cis a set of classes.

2. A is a set of attributes.

23

3. Mis a set of methods.

4. P is a set of transformation rules that defines an object oriented design se-
mantics in terms of: a) definition of classes, b) hierarchy of classes, c) rela-
tionships between classes, d) system scenarios in terms of message passing

between classes.

5. R is set of relationships and concepts defined by the object-oriented method-
ology. We define this set as [declare], [has], [calll, [extend],

[declare/receive], [set], [supplement].

From the original definition of the production system, we can see that it can
not describe all model informations in both the static and the dynamic views. For
example, there is no support for some essential properties of the model such as
visibility, return type, static, abstract, associations etc. To faith-
fully represent the model, the original production rules should be extended. We
refine and extend production rules to be a set of abstract rules that supports G.
G, which describes the semantics of the UML model artifacts (class diagram and
interaction diagram), is represented by a set of elements, each of which is finite.

Let G = {C, Attr, M, Assocs, I, P, R}, such that
1. Cis a set of classes.
2. Attr is a set of attributes.

3. Mis a set of methods.

24

4. Assocs is a set of associations.

5. I is a set of interactions.

6. P is a set of transformation rules that defines an object-oriented design se-
mantics in terms of: a) definition of classes, b) definition of attributes, c)
definition of class-methods (without method body), d) associations between

classes e) scenarios in terms of message passing between classes.

7. R is set of relationships and concepts defined by the object-oriented method-

ology. We define this set as [Class], [Propertyl, [Operation], etc.

The reasons for adopting production rules are: 1) The representation is much
more terse than the XMI representation since it contains only necessary informa-
tion required to describe the model. To describe a model, we must to extract
knowledge from the system. A set of production rules that support G, can be de-
fined to faithfully represent the UML static and dynamic model, for the purpose of
system comprehension. 2) Usage of production rules can be “infinite.” The syntax
of the production rules is defined to be “finite”, but they can describe infinite kinds
of models through building of derivation sentences over corresponding production
rules.

We define production rules to describe the static structure of the system rep-

resented by a class diagram in Tables 1 and 2. In Table 3, we define production

25

rules to support dynamic behaviour of the system represented by communica-
tion/sequence diagrams.

There are six parts in a production system representation according to G (dis-
cussed in proposal): 1) List of classes 2) List of enumeration 3) Values in enu-
merations 4) Definition of classes and their properties 5) Definition of associa-
tions 6) Scenarios described by showing interactions among objects. Parts 1-5
could be defined by providing the class diagram as an input. Part 6 calls for
more careful consideration. The descriptions of the use-case scenarios are orga-
nized one by one, based on the use-case diagram. In a use-case scenario, sys-
tem operations are ordered based on the SSD. The interaction description, in
production system representation, describes each use-case scenario with all sys-
tem operations involved which is ordered together with sequences of their inter-
nal operations. In addition, each system operation will be illustrated by Begin
Interaction<InteractionName> and EndInteraction<InteractionName>. The
default InteractionName is the name of the corresponding interaction diagram.
The name of each interaction diagram should be the name of corresponding system
operation.

In this chapter we discussed the definition of the production system deployed

in this research.

26

PRODUCTION

DESCRIPTION

Boolean Datatype: Boolean.

Real Datatype: Real.

Integer Datatype: Integer.

String Datatype: A sequence of charac-
ters.

Set Datatype: A collection of non-
redundant elements.

OrderedSet Datatype: An ordered set.

Bag Datatype: A collection of un-

T ordered
elements, allowing redundancies

Sequence Datatype: A collection of ordered
elements.

T Datatype previously defined.

C::=[Class] C is a class.

<ClassList>::=<C+> A non-empty list of classes.

<C>::= Class definition.

[Visibility] <PubliclProtectedl|
Private>
[IsAbstract]

[IsFinall
[IsInterfacel

[extends]<C’>
[Implements]<C’>

If not abstract, eliminate this key-
word.
If not final, eliminate this keyword.
If not interface, eliminate this key-
word.

<C>::=[Propertyl <Attribute>

C has Attribute.

C.Attribute

Attribute is a field of C.

<C.Attribute> ::=
[Typel <T>
[IsStatic]

[IsFinall

(Visibilty] <Public|Protected|
Private>

Attribute definition.

Attribute is of type T.

If not static, eliminate this key-
word.

If not static, eliminate this key-
word.

<C>::=[0Operation] <operation()>

C has operation().

C.operation()

operation() is a feature of C.

Table 1: Productions for static definitions (Part1).

PRODUCTION

DESCRIPTION

<C.operation()> ::=

[Visibility] <Public|Protected|
Private>

[IsStatic]

[IsAbstract]

[ReturnType] <T>
[Parameter]<String*>

Operation definition.

If not static, eliminate this key-
word.

If not abstract, eliminate is key-
word.

If void, make it blank.

List of Parameters, seperated by
commas.

[IsFinal] If is not, eliminate this keyword.
<AssociationList>::=<associationName+> | A non-empty list of associations.
<associationName>::=String associationName is literal.
<Set | OrderedSet | Bag | Sequence> A collection of elements of type T

=[Typel<T> T can be a set, ordered set, bag, or
T sequence.
Enumeration An enumeration type.
<AssociationName> ::= Multiplicity in AssociationName
[Reference] <C1> over C1 end

[Lower-bound}<n1>

[Upper-bound] <n2>

[Reference] <C2>

[Lower-bound] <n1>
[Upper-bound] <n2>
[Relationship| <Compositel
Aggregate | unidirection |
bidirection>

[Typel<Set | OrderedSet | Bag |
Sequence> T

is between nl and n2,
where n is an integer.
As above for C2.

Composition Predefined association, composite.

Aggregation predefined association, aggregate.

unidirection Predefined association, unidirec-
tion.

bidirection Predefined association, bidirection.

Table 2: Productions for static definitions (Part2).

PRODUCTION DESCRIPTION

<C.operation()>[Parameter]<T1,T2..>::= | C.operation() with Parameter
T1,T2

[calls] calls

<B.operation()>[Parameter]
<T1,T2..>[iter]<n>

B.operation() with parameters of
type T1, T2... n times.

Table 3: Productions for dynamic definitions.

28

Chapter 6

Defining the third-level design

model

In this chapter we discuss the definition of the third-level design model captured by
the relational database schema mapped over from the second-level design model.
The production system representation is organized in a way that it describes
the structure of the model. The ecore [BSM™] model serves as a metamodel for any
EMF model and uses EClass, EAttribute, EReference Classes, EOperation
to represent all classes, attributes, references and operations in a model. Borrowing
ideas from ecore model, we define the relational database schema which contains
the following parts essential for the comprehension of the system and includes
both static and dynamic views of the model: Class, Attribute, Operation

Association and Interaction. Each element is represented by a table since it

29

has its own properties. Class, Attribute, Operation, and Association to-
gether represent the static model of a system. Table Interaction represents the
dynamic view of a system. The database schema is shown in Tables 4 - 8. The
entity relationship (ER) diagram in Figure 5 describes the structure and enti-
ties (with their properties) of the schema. Although most of the data could be
extracted from the second-level design model directly and inserted into the rela-
tional database schema, some of them are not so straightforward. There are a few
points that need to be elaborated on concerning the Interaction table:

1. The SegNumber in the table indicates the sequence number that implies to

the order of the interaction. For example, we have a set of productions

representation which describe a system operation as follows:

Begin Interaction<Opil>

<A.0p1()>[Parameter]<>::=[calls]<B.0p2()>[Parameter]<Integer>
::=[calls]<B.0p3()>[Parameter] <>

<B.0p2()>[Parameter]<Integer>::=[calls]<C.0p4()>[Parameter] <>

End Interaction<Opl>

The SeqNumber for A.0Op1(), B.Op2(Integer), C.0p4() is 1, 1.1, 1.1.1,

1.2 respectively. We can see that the way we construct the SeqNumber is the

same as the way we construct the sequence number in the communication

diagram which is one type of the UML interaction diagram [Lar04].

Begin Interaction<QOpl>
<A.Op1()>[Parameter]<>::=[calls]<B.0p2()>[Parameter]<Integer>[iter]<5>

End Interaction<Opil>

30

Class
field type modifier key definition
ClassName VARCHAR NOT NULL primary
Visibility VARCHAR NOT NULL public/protected /private
IsAbstract VARCHAR NULL "true” if abstract, else
7 false”
Implements VARCHAR NULL Else put NULL
Extends VARCHAR NULL Else put NULL
IsInterface VARCHAR NULL Else put NULL
IsFinal VARCHAR NULL ”true” if final, else ” false”
Table 4: Database schema for Class.
Attribute
field type modifier key definition
AttributeName | VARCHAR NOT NULL primary
Type VARCHAR NOT NULL
ClassName VARCHAR NOT NULL foreign
primary
IsStatic VARCHAR NULL ?true” if static, else ”false”
IsFinal VARCHAR NULL "true” if final, else ”false”
Visibility VARCHAR NOT NULL public/protected /private

Table 5: Database schema for Attribute.

2. Elements under OperationNames are ordered following the calling sequence

of internal operations for each system operations.

In this chapter, we discuss the relational database schema to support the storage

of the model.

31

Operation

field type modifier key definition
OperationName VARCHAR NOT NULL primary
ReturnType VARCHAR NOT NULL If not void, put its type, else
put NULL
ClassName VARCHAR NOT NULL foreign
primary
Visibility VARCHAR NOT NULL
IsAbstract VARCHAR NULL “true” if abstract, else
”? false”
IsStatic VARCHAR NULL "true” if static, else "false”
IsFinal VARCHAR NULL ”true” if final, else " false”
Parameter VARCHAR NULL primary | A list of parameters
Table 6: Database schema for Operation.
Interaction
field type modifier key definition
OperationName VARCHAR NOT NULL foreign
ClassName VARCHAR NOT NULL foreign
SeqNumber VARCHAR NOT NULL primary
InteractionName VARCHAR NOT NULL
Looping Integer NOT NULL The iterations of an opera-
tion
Parameter VARCHAR NULL foreign A list of parameters
Table 7: Database schema for Interaction.
Association
field type modifier key definition
AssociationName VARCHAR NOT NULL primary
endl VARCHAR NOT NULL foreign
primary
Lowerbound.end1 VARCHAR NOT NULL
Upperbound.endl VARCHAR NOT NULL
end?2 VARCHAR NOT NULL foreign
primary
Lowerbound_end2 VARCHAR NOT NULL
Upperbound_end2 VARCHAR NOT NULL
Relationship VARCHAR NOT NULL Composite/Aggregate
/unidirection/bidirection
Type VARCHAR NULL Set/OrderedSet
/Bag/Sequence

Table &: Database schema for Association.

32

PK
PK,FK1

e

end2

AssociationName

LowerBound_end1
UpperBound _end1

PK
PK

OperationName
Parameter

PK,FK1

LowerBound_end2 | _&nd1is ;P ClassName
UpperBound_end2 |1 1 —
Relationship end? is Visibility
Type —> IsAbstract
1 ' |isFinal

_ Extends

n Implements
A T " Isinterface
AttributeName L a— e
Type implements
Visibility
IsStatic
IsFinal
ClassName

ReturnType
IsAbstract
IsFinal
Visibility

FK1
FK1

OperationName
ClassName
InteractionName
Looping

Figure 5: ER diagram for the relational database schema.

33

Chapter 7

Comprehension and

transformation

In this chapter we discuss the extraction of knowledge from the relational database
schema, in order to achieve comprehension of the model. We also discuss strategies

in order to restructure the production representation of a model.

7.1 Extracting knowledge to obtain comprehen-
sion

Basic knowledge of a design model is easy to obtain by observing the UML di-
agram manually. However, more complex knowledge from the model that is not

straightforward to extract or requires analysis over a large group of entities, adds

34

difficulties to perform the comprehension process manually. We will illustrate a
number of cases which tend to be tedious to achieve comprehension by manually
examining the UML diagram but could be easily performed by executing statement
in forms of query over the third-level design model: 1) To identify “lazy class”, 2)
To identify “data class”, 3) To identify unused operations, 4) To trace the calling
sequence of messages in a given use-case scenario, 5) To check for consistency be-
tween the static and the dynamic model, 6) To measure coupling and cohesion of

the model.

7.1.1 Identifying a “lazy class”

In [Fow99], a “lazy class” is defined as one that does not do enough. At the
design level, responsibilities of a class are indicated by their features. Identifying a
potential lazy class could be achieved by examining the number of their features.
However, the number of the features of a class would not necessarily indicate that
it is a lazy class. For example, a class may have only one method which takes a
possible large number of responsibilities. Since the responsibilities taken by the
method cannot be definitely described by the information provided in the UML
model, we can only indicate potential lazy classes in the model. An empty class,
which is not categorized to be a lazy one, needs to be identified separately. In
addition, a class defined in the static model but never used in the dynamic model

is a strong candidate to be a lazy class. Following this idea, we thus indicate a

35

lazy class if 1) a class has only one method, 2) a class is empty, or 3) a class
is unused. We distinguish between a lazy class in an inheritance relationship (in
which we suggest to collapse the hierarchy) and one which is not in an inheritance
relationship (in which we suggest to delete and transfer its responsibility to another
class). The potential lazy classes could be found by the following queries:

Casel: A class has only one method:

1. First, create a view AllLazy to find out all classes that have only one

method.

SELECT o.ClassName as LazyClass, count(*) as numOfMethod
FROM Operation o

GROUP BY LazyClass

HAVING count(*) = 1;

2. Identifying the classes in an inheritance relationship from above view Al1Lazy.

SELECT 1.LazyClass
FROM AllLazy 1, class o
WHERE 1.LazyClass = o.ClassName AND o.extends!=’’;

Case2: A class is empty:

SELECT ClassName AS EmptyClass
FROM Class
WHERE ClassName
NOT IN (SELECT ClassName
FROM Attribute)
AND ClassName
NOT IN (SELECT ClassName
FROM Operation);

36

Case3: A class is never used:
The following query creates a view AllUnUsed to identify classes which are

defined in the static model but are not used in the dynamic model.
SELECT ClassName AS unusedClass
FROM Class
WHERE ClassName

NOT IN (SELECT ClassName
FROM interaction);

There are two cases to be considered when examining the result from the above
query:

1. Identifying super classes in view A11UnUsed. A super class that is not refer-
enced in the interactions is perhaps because of polymorphisms in an inheri-
tance relationship. Therefore, more detail should be looked into to determine

whether or not it is an unused class.

SELECT p.unusedClass AS unusedClassSuper

FROM AllUnused p, class c

WHERE p.unusedClass=c.ClassName

AND p.unusedClass IN (SELECT extends
FROM class);

2. Identifying interfaces. An interface is the most common case that a class is

in the static view but not in an dynamic view.

SELECT p.unusedClass AS unusedClassInterface
FROM AllUnused p, class c

WHERE p.unusedClass=c.ClassName

AND p.IsInterface=’true’;

37

7.1.2 Identifying a “data class”

In [Fow99], a “data class” is defined as one in which all of its features are at-
tributes. This type of class would need further consideration to undertake some

responsibilities. The following query identifies the data classes of the model.

SELECT ClassName AS DataClass

FROM Class

WHERE ClassName

NOT IN (SELECT ClassName
FROM Operation)

AND ClassName

IN (SELECT ClassName
FROM Attribute);

7.1.3 Identifying unused methods

An unused method is one defined in a class but never used in the dynamic model.
Normally, this kind of method adds no value to the system but it is a potential
place where errors might occur. We can identify unused methods by the following
queries: (We exclude interface classes in this case since operations in an interface

class will never appear in the dynamic model)

SELECT OperationName AS unusedMethod, o.ClassName, Parameter
FROM Operation o, class c
WHERE c¢.ClassName=o0.ClassName
AND c.IsInterface=’false’
AND NOT EXISTS (SELECT o.0perationName, o.ClassName, o.Parameter
FROM interaction i
WHERE o.0OperationName=i.0OperationName
AND o.Parameter=i.Parameter
AND o.ClassName=i.ClassName) ;

38

7.1.4 Finding all aggregates of a given class

To further understand the relationship of classes, sometimes we need to find all

aggregates of a given class, which can be obtained by the following query:

SELECT endl, end2

FROM Association

WHERE end1="GivenClass"

AND Relationship="Aggregate";

7.1.5 'Tracing the calling sequence of messages in a scenario

The calling sequence of messages in a scenario indicates how objects interact via or-
dered message passing. A scenario is described by a sequence of system operations
that are described by sequences of internal operations, and the InteractionName
in the Interaction table is the same as the system operation name. The param-
eters for this query are the name of each system operation with a particular order
according to the SSD, for example beginOp, doOp and endOp. With the following
query, we can get the calling sequence of messages of the scenario by finding out the

calling sequence of their system operations with corresponding internal operations.

SELECT OperationName, ClassName, Parameter
FROM interaction

WHERE InteractionName=’beginOp’

UNION

SELECT OperationName, ClassName, Parameter
FROM interaction

WHERE InteractionName=’do0p’

UNION

SELECT OperationName, ClassName, Parameter
FROM interaction

WHERE InteractionName=’end0Op’

39

Once we get the calling sequence of messages of a scenario, we can use it to
simulate the scenario, which can be later compared with the calling sequence traced

from the code to check for consistency between model and implementation.

7.1.6 Checking for consistency between the static and the
dynamic model

The dynamic model describes how objects, defined in the static model interact
with each other via message passing. However, there are situations where an
object would send a message to another object, against the definition in the static
model. For example, it would be inconsistent that a method defined to be private
called by objects, other than instance of the class in which it is defined. This

strategies can be achieved by the following two steps:

1. Create a view A11P which obtains private operations list together with their

OperationName, ClassName, Caller and SeqNumber by the following query.

SELECT i.OperationName, i.Parameter,i.ClassName,i2.ClassName
AS Caller,i.SeqNumber

FROM interaction i, operation o, interaction i2

WHERE o.visibility = ’private’

AND o.0perationName=i.0OperationName
AND o.Parameter=i.Parameter
AND 0.ClassName=1.ClassName

AND instr(i.SeqNumber,’.’)!=0
AND i2.SeqNumber=reverse(right (reverse (i.SeqNumber) ,
length(i.SeqNumber)-instr(reverse(i.SeqNumber),’.’)));
//the last two line are used to identify the Caller of a class

40

2. Identifying the methods that are used outside of the class in which they are
defined:

SELECT DISTINCT OperationName, Parameter, ClassName, Caller
FROM Al11P
WHERE ClassName<>Caller;

7.1.7 Measuring coupling and cohesion

In [PFC], the author argued that coupling and cohesion could be estimated in
terms of “fanin” and “fanout.” The terms define the number of messages that a
given object receives and sends respectively, over a single execution path. An exe-
cution path is defined as an ordered sequence of message passing through which the
interactions between objects could be captured. The authors also provide metrics
to measure coupling and cohesion by tracing the source code. However, in the de-
sign model, some of the algorithms could also be applied to this proposal in order to
measure these two factors. For example, class independency factor (CIF), method
independency factor (MIF), class cohesion (CCH) factor and class coupling (CCP)

factor. Each of the metrics is defined as follows:

CIF — class fanin __ method fanin
~ class fanout’ method fanout
COH — (number of classes in execution path)

(number of methods in execution path)

_ X Ci.fanin(Mi, Cj)

CoP = > Cj.fanin(Myj, Ci)

41

By analyzing the algorithm, we found that the parameters for all of them are:
class fanin, class fanout, method fanin, method fanout, number of classes in ex-
ecution path, number of methods in execution path, number of invocations for a
method (e.g. Ci.Mi()) originated from a class (e.g. Cj) and number of messages
received in a class (e.g. Ci) from another class (e.g. Cj). Our three level model
transformation system can support those algorithms by providing the parameters
listed above. The way through which we get these informations is discussed below.
Since all these algorithms address problems in the scope of one use case scenario,
the precondition is to find all related information with this scenario from the dy-
namic model. The user should inform which interaction diagrams are involved in
this use case. Consider the following example: there are three interactions named
beginOp, doOp, endOp involved in the current use case scenario, we can extract

all related information corresponding to this scenario by the following query.

//create a view named "thisScen"

SELECT OperationName, ClassName, Parameter
FROM interaction

WHERE InteractionName=’beginOp’

UNION

SELECT OperationName, ClassName, Parameter
FROM interaction

WHERE InteractionName=’do0p’

UNION

SELECT OperationName, ClassName, Parameter
FROM interaction

WHERE InteractionName=’endOp’

42

Class fanin and class fanout

1. class fanin : This factor could be obtained by executing the following query

SELECT ClassName, count(x) AS fanin
FROM
(SELECT ClassName,Caller, CallerOpPara, CallerOp,
COUNT (%) AS Freq
FROM
(SELECT i.OperationName, i.Parameter,i.ClassName,
i2.ClassName AS Caller,
i2.0perationName AS CallerOp,
i2.Parameter AS CallerOpPara, COUNT(*) AS Freq
FROM thisScen i, thisScen i2
WHERE 1i2.SeqNumber=reverse(right(reverse(i.SeqNumber),
length(i.SeqNumber)-instr (reverse(i.SeqNumber),’.’)))
AND instr(i.SeqNumber,’.’)!=0
AND i.ClassName!=i2.ClassName
GROUP BY i.0OperationName, i.Parameter,i.ClassName,
Caller, i2.0OperationName, i2.Parameter
HAVING COUNT(*)>0) Cfreq
GROUP BY CallerOpPara, CallerOp, ClassName, Caller
HAVING COUNT(*)>0) Creql
GROUP BY ClassName;

2. class fanout : We calculate class fanout by the following query:

SELECT ClassName, COUNT(*) AS famnout

FROM (SELECT DISTINCT i.ClassName, ti.ClassName AS Callee,
ti.0OperationName AS Callee(p,ti.Parameter AS CalleeOpPara
FROM thisScen i, thisScen ti
WHERE i.SeqNumber=reverse(right(reverse(ti.SeqNumber),

length(ti.SeqNumber)-instr(reverse(ti.SeqNumber),’.?)))

AND instr(ti.SeqNumber,’.’)!=0
AND i.ClassName!=ti.ClassName) ft

GROUP BY ClassName;

Method fanin and method fanout

1. method fanin: The method fanin can be get in a similar way as we do with

class fanin.

43

SELECT OperationName, ClassName, Parameter, COUNT(*) AS fanin
FROM
(SELECT OperationName,Parameter,ClassName,Caller,
COUNT(*) AS Freq
FROM
(SELECT i.0OperationName, i.Parameter,i.ClassName,
i2.ClassName AS Caller,
i2.0perationName AS CallerOp,
i2.Parameter AS CallerOpPara,
COUNT(*) AS Freq
FROM thisScen i, thisScen i2
WHERE i2.SeqNumber=reverse(right(reverse(i.SeqNumber),
length(i.SeqNumber)-instr(reverse (i.SeqNumber),’.’)))
AND instr(i.SeqNumber,’.’)!=0
AND i.ClassName!=i2.ClassName
GROUP BY i.OperationName, i.Parameter,i.ClassName,
Caller, i2.0perationName, i2.Parameter
HAVING COUNT(*)>0) Cfreq
GROUP BY OperationName, Parameter,ClassName, Caller
HAVING COUNT(*)>0) Cfreql
GROUP BY ClassName,OperationName,Parameter;

2. method fanout: This is very similar with class fanout and it could be achieved

as follows:

SELECT ClassName, OperationName, Parameter, count(*) AS fanout
FROM (SELECT DISTINCT i.ClassName, i.0perationName, i.Parameter,
ti.ClassName AS Callee,
ti.0OperationName AS CalleeOp,
ti.Parameter AS CalleeOpPara
FROM thisScen i, thisScen ti
WHERE i.SeqNumber=reverse(right(reverse(ti.SeqNumber),
length(ti.SeqNumber)-instr(reverse(ti.SeqNumber),’.’)))
AND instr(ti.SeqNumber,’.’)!=0
AND i.ClassName!=ti.ClassName) fm
GROUP BY OperationName, ClassName, Parameter
ORDER BY ClassName;

Number of classes and methods in execution path

1. Obtain the number of classes in execution path as follows:

44

SELECT COUNT(DISTINCT class) AS numOfClass
FROM thisScen i;

2. Obtain the umber of methods in execution path as follows:

SELECT COUNT(DISTINCT *) AS numOfOp
GROUP BY OperationName, ClassName, Parameter
FROM thisScen i;

Parameters for the CCP factor

To calculate the CCP factor for two classes Ci and Cj, the parameters are the
number of invocations for methods (e.g. Ci.Mi()) originating from a class (e.g.
Cj) and the number of invocations for methods (e.g. Cj.Mj()) originating from
a class (e.g. Ci). In this case, the parameters for the query are the names of the

caller and the callee (e.g. Ci, Cj). We can execute the following query to obtain

> Ci. fanin(Mi, Cj)

SELECT ti.Class, i.Class AS Caller,
COUNT(*) AS num
FROM thisScen i,
(SELECT OperationName, Class, Parameter, SeqNumber
FROM thisScen
WHERE Class = ’Ci’) ti
WHERE i.SegNumber=reverse(right(reverse(ti.SeqNumber),
length(ti.SeqNumber)-instr(reverse(ti.SeqNumber),’.’)))
AND i.Class = °Cj’
GROUP BY i.Class;

45

7.2 Restructuring

In this section we discuss restructuring strategies.

7.2.1 Strategies to address “bad smells” in design

We can extract essential knowledge from the third-level design model to analyze
and then provide results to determine the quality of the design. This process
could be implemented by executing query statements. The analysis results serve
as guidelines for the improvement of the design. We borrow ideas from refactoring
strategies discussed in the literature such as [Fow99] [Rob] [MT], and we apply
these strategies that seem to be feasible to the design model. However, we cannot
address all the strategies mentioned in the literature because a number of them
focus on intra-method behavior which is not captured in the UML design model.
The criteria of refactoring strategies supported toward this proposal is the class-
method level. In some cases the analysis results can only serve as a guidance.
Developers should apply their own judgment toward whether or not to follow the
suggestion provided and apply this restructuring. However, since design is not a
task following a certain approach, we currently present all kinds of analysis re-
sults as suggestions, and leave the final decision to the user to decide whether or
not to perform restructuring. Our approach includes the following steps: 1) Exe-
cute statements in forms of queries over the third-level design model (database),

looking for “bad smells” in design, 2) Perform modifications to the second-level

46

design model (production system representation) following solutions from the lit-
erature mentioned above. In the following subsections we list and illustrate cases

of knowledge extraction and restructuring.

Casel: Making method calls simpler with “hide method”
Motivation If a method is not used by other classes, make it private.

Strategy to obtain candidates 1) Obtain the public method list of the system,

2) Obtain those that are only used by the class within which they are defined.

General Solution Modify the visibilities of these methods to be “private.”

Obtaining restructuring candidates

1. Create a view Pub0Op to obtain operations which are public with their OperationNames,
ClassNames, callers and SeqNumber by the following query, whose result
is captured in Table 9.
SELECT i.OperationName, i.Parameter,i.ClassName,
i2.ClassName AS Caller,i.SeqNumber

FROM interaction i, operation o, interaction i2
WHERE o.visibility = ’public’

AND o.0OperationName=i.0perationName
AND o.Parameter=i.Parameter
AND 0.ClassName=1i.ClassName

AND instr (i.SeqNumber,’.’) =0
AND i2.SeqNumber=reverse(right (reverse(i.SeqNumber),
length(i.SeqNumber)-instr(reverse(i.SeqNumber),’.?)))

2. Create a view PubOp2 to obtain the operation which has been used by the
class other than the class in which it is defined. Then exclude these operations

and obtain ones that are only used in the class in which they are defined.

47

OperationName Parameter ClassName
Opl() NULL Ca
Op2() NULL Cb
Op3() NULL Cc

Table 9: Result of hide method example.

SELECT DISTINCT pl.0perationName, pl.Parameter, pl.ClassName

FROM PubOp pil

WHERE p1.ClassName<>pl.Caller
//0btain the method called by the other
class other than the one who defines it

SELECT DISTINCT OperationName, Parameter, ClassName

FROM PubOp
WHERE NOT EXISTS

(SELECT PubOp.0OperationName,PubOp.ClassName,PubOp.Parameter

FROM PubOp2

WHERE PubOp.0OperationName=Pub0p2.0perationName

AND
AND

Pub0p.ClassName=Pub0Op2.ClassName
Pub0Op.Parameter=Pub0p2.Parameter)

Apply restructuring: As Table 9 shows, by applying the above algorithm
public operations Op1(), 0p2(), 0p3() which are called only by the classes in
which they are defined, are obtained . Following the solution provided, we

make these methods private by modifying the production system representation as

follows:

Before:
<Ca>::=[Operation]<0p1()>

<Ca.0p1()>::=[Visibility]<public>...

<Cb>: :=[0peration]<0p2()>

<Cb.0p2()>::=[Visibilityl<public>...

<Cc>::=[Operation]<0p3()>

<Cc.0p3()>::=[Visibilityl<public>...

48

After:
<Ca>::=[0Operation]<0p1()>

<Ca.0p1()>::=[Visibilityl<private>...

<Cb>: :=[0Operation] <0p2()>

<Cb.0p2()>::=[Visibilityl<private>...

<Cc>: :=[0Operation]<0p3()>

<Cc.0p3()>::=[Visibilityl<private>...

Case2: Moving features between objects with “move method”

Motivation If a method is used by more features of another class than by the
class in which it is defined, move that method to that class to decrease the

coupling.

Strategy to find candidates 1) Obtain all operations (without constructor) to-
gether with the classes who call them 2) Obtain the classes that have the

largest number of features that call an operation.

General Solution Move the method to the class with the largest number of fea-
tures which use it, and make corresponding changes to the usage of this

method.

Obtaining the restructuring candidates

1. By default, we deal with methods used by at least two features of a class.
However, we provide the flexibility for the users to define it by themselves.
These methods are potential ones that might need to be moved. We do
not consider constructor since a constructor of a class will never be moved
out of its owner class. Create a view, Cfreql, which extracts the methods
used by more than two features together with its ClassName, Parameter,

CallerOp, and Freq (number of features)

SELECT OperationName,Parameter,ClassName,Caller,

COUNT (%) AS Freq

FROM (select i.0OperationName, i.Parameter,i.ClassName,
i2.ClassName AS Caller,
12.0perationName AS CallerOp,
i2.Parameter AS CallerOpPara,

49

COUNT(*) AS Freq
FROM interaction i, interaction i2
WHERE i2.SeqNumber=reverse(right (reverse(i.SeqNumber),
length(i.SeqNumber)-instr(reverse(i.SeqNumber),’.’)))
AND instr(i.SeqNumber,’.’)!=0
AND i.OperationName!=’constructor()’
GROUP BY i.0OperationName, i.Parameter,i.ClassName,
Caller, i2.0perationName, i2.Parameter
HAVING COUNT(*)>0) AS Cfreq
GROUP BY OperationName, Parameter,ClassName, Caller
HAVING COUNT(*)>2
//you can choose any number you think indicates
//a frequent usage base on the context.

2. The first select statement creates a view, MaxFreq, to obtain the max num-
ber of caller features. The second select statement creates another view,
MostF, which obtains callers who have the most features that use the meth-
ods:

SELECT OperationName,Parameter,ClassName,Caller
MAX(Freq) AS MostFrequent

FROM Cfreql

GROUP BY OperationName, Parameter,ClassName

SELECT al.OperationName,al.Parameter,
al.ClassName, a2.Caller,
al.MostFrequent AS featureNum

FROM MaxFreq ail,Cfreql a2

WHERE al.0OperationName =a2.0perationName

AND al.Parameter=a2.Parameter

AND al.ClassName=a2.ClassName

AND a2.Freq=al.MostFrequent;

3. Excluding the results in which the ClassNames are the same as the their
callers in view MostF.
SELECT *

FROM MostF
WHERE Caller!=ClassName;

50

OperationName Parameter ClassName Caller FeatureNum

Op1() Cb Ca Cb 8

Table 10: Result of move method example.

Apply restructuring The result in Table 10 shows that Cb has eight features
that use Ca.0p1(). Therefore the following modification are suggested to be
applied on the production system representation:

1) Delete the following Op1()s method definition from Class Ca

<Ca>::=[0Operation]<0p1()>
<Ca.0Op1()>::=[ReturnTypel] <Integer>[Visibility]<public>[Parameter]<Cb>

2) Add method definition for Op1() into class Cb. At this step we should check
whether it has a parameter of type Cb, in which case we delete it from the the

parameter list.

<Cb>::=[0peration]<0p1()>
<Cb.0p1()>::=[ReturnTypel <Integer>[Visibility]<public>

3) Modify all expressions as Ca.0p1() to Cb.0p1()

Before:
<Cc.0p2()>[Parameteri<int>: :=[calls]<Ca.0pl()>[Parameter]<>

After:
<Cc.0p2()>[Parameter]<int>::=[calls]<Cb.0p1()>[Parameter] <>

Case3: Organizing data with “encapsulate collection”

Motivation if a class has collection, suggest to add addElement and removeElement

operation into it.

Strategy to find candidates Obtain the classes that have collection.

General Solution Add addElement and removeElement method.

o1

ClassName
Ca

Cb

Ch

Cj

Table 11: Result of encapsulate Collection.

Obtaining restructuring candidates
SELECT DISTINCT ClassName
FROM Attribute
WHERE type=’set’
OR type=’0rderedSet’
OR type=’Bag’
OR type=’Sequence’;

Apply restructuring: The result of the query is captured in Table 11 con-
taining the classes that have collections. Corresponding modifications should be
made for the production system representation as follows: Add method definition
of addElement and removeElement method for class Ca,Cb,Ch,Cj.

<Ca>::=[0Operation]<addElement ()>
<Ca.addElement()>::=[Visibility]<private>

<Ca>: :=[0peration] <removeElement ()>
<Ca.removeElemenet ()>: :=[Visibility]<private>

The developer might decide how to make use of methods addElement () and
removeElement () to do further refactoring following the mechanism provided in

[Fow99].

Case4: Dealing with generalization with “pull-up method”

Motivation If methods in sub-classes are doing the same thing, pull it up to the

inheritance class.

52

Strategy to find candidates 1) Obtain classes list which has a parent and pro-
vide the parents’ name, 2) Obtain the same operations from the classes that

are of the same parent.

General Solution Change the method definition to the target class.

Obtaining restructuring candidates : Two level inheritance

1. Create a view, extendingClassOp to obtain the classes which have parent
and their operations.

SELECT OperationName,Parameter,Operation.ClassName,extends
FROM Operation,
(SELECT c1.ClassName, cl.extends
FROM class cl,class c2
WHERE cl.extends=c2.extends
AND cl.ClassName<>c2.ClassName
AND cl.extends!="’
AND c2.extends!=’’) AS extendC
WHERE extendC.ClassName=operation.ClassName
AND OperationName!=’constructor()’;

2. The first select statement creates a view, SameOp, which obtains the methods
and the number of their occurrences in an inheritance relationship. The sec-
ond statement obtains the common methods that are defined in subclasses.

SELECT OperationName, Parameter, extends AS SuperClass,
COUNT(*) AS num

FROM extendingClassOp

GROUP BY operation, Parameter, extends

HAVING COUNT (*)=num0fChildren;

SELECT b.0OperationName, b.Parameter, c.ClassName, b.SuperClass
FROM SameOp b, extendingClassOp c

WHERE b.OperationName=c.OperationName

AND b.Parameter = c.Parameter

AND b.SuperClass = c.extends

ORDER BY OperationName;

53

consiruct an inhentance
relationship free
ree depth>, e F
T |
-oblain ‘oorrir»n‘o;n methods

pull-up common methods.

Figure 6: Algorithm illustrating multi-level inheritance.

Obtaining restructuring candidates : maulti-level inheritance. Multi-
level inheritance requires careful consideration. The inheritance relationship of a
model can be described by a tree structure, and the restructuring candidates can
be identified by recursive query over the Class and Operation tables following
the idea of dealing with two level inheritance. The algorithm is described by a
flowchart in Figure 6.

Figure 7 illustrates an example of a multi-level inheritance relationship starting
from class A. According to this relationship, classes B,C both extend class A, and
classes D,E both extend B, while classes F,G both extend C. Op1() is the common

method which is a candidate to be pulled up to a higher level. The algorithm

54

/

B c
D/\E F .
+0p1() +Op1() +Op1() +0p1()

Figure 7: Multi-level inheritance.

dealing with this problem has to address inheritance relationship level by level. We
can construct a tree structure in which each node stores the information that is
necessary for analysis (e.g. ClassName, parent, childrenList, methodList).
To obtain the common methods in all children of a parent, we need to traverse the
tree. After obtaining Op1(), the common method in D and E, we first suggest to
pull it up into class B, and perform the similarly activity on F and E. We then move
to the level of class B and C in which depth we also obtain Op1(), the common
method pulled up from the children of B and C, is the common method that can
be pulled up into class A. Since class A has no parent, we stop dealing with multi-
level inheritance. A suggestion is provided in each level and restructuring will be
performed upon user requests.

Since not all databases have the ability of recursive query, we make use of
programming language as an alternative approach. The process described by the

flowchart can also be described as follows: 1) construct a tree structure by reading

55

OperationName Parameter ClassName extends
Op5() String Cx Ce
Op5() String Cy Ce

Table 12: Result of pull up method example.

the classes and their corresponding properties from database (The data structure
is implemented in Java in the Appendix.) 2) Get the depth of the tree structure
and the nodes in each level 3) find common operations of all children of each parent
in each level starting from the deepest level.

Applying restructuring: Table 12 shows the resulted restructuring candi-
dates for pull-up method strategy, which tells that Cx.0p5(String) and Cy.0p5(String)
perhaps does the same thing in the inheritance relationship among classes Cx, Cy,
Cc. The user needs to examine the table and go to the model to determine the
actual intention of method Op5(String) in Cx and Cy. If method Op5() is found
to be of the same responsibility in Cx and Cy, we restructure the production system
representation by pulling up the method definition to their parent class.

1. Delete the method definitions of Op1() and 0p2() from Ca and Cb respec-

tively, which means to delete the following parts:
<Ca>: :=[0Operation] <0p5()>
<Ca.0p5()>::=[Visibilityl<public>

<Cb>: :=[0Operation] <0p5()>
<Cb.0p5()>::=[Visibility]<public>

2. Define the operation in their parent

<Cc>::=[Operation]<0p5()>
<Cc.0p5()>::=[Visibility]<public>

56

3. Modify the method call

Before:
<Cx.0px()>[Parameter]<>::=[calls]<Ca.0p5()>[Parameter] <>

<Cy.0py (O>[Parameter]<Integer>::=[calls]<Cb.0p&()>[Parameter] <>

After:
<Cx.0px ()>[Parameter]<>::=[calls]<Cc.0p5()>[Parameter] <>

<Cy.0py()>{Parameter]<Integer>::={calls]<Cc.0p5()>[Parameter]<>

Case5: Dealing with generalization with “extract interface”

Motivation If several clients use the same subset of a class’ interface, or two
classes have a common part of their interfaces, extract this subset into an

interface.

Strategy 1) Get the list of callers of all operations in a class, 2) Check whether

there is a group of methods that are called by a group of clients.

General Solution If there is a group of methods that are used by a group of

clients, we suggest creating an interface for the clients who use them.

Obtaining restructuring candidates

In this case, it is not necessary to analyze all classes. The potential candidates
for applying “extract interface” are those which provide group of services to a
group of clients. The developer should be aware of this kind of classes which take

this special responsibility. Therefore we support this strategy by identifying the

o7

OperationName Parameter ClassName Caller SeqNumber
Opi() Integer OriginalClass Ca 2.1

Opl() Integer OriginalClass Cb 213

Opl() Integer OriginalClass Cc 3.1

Op1() Integer OriginalClass Cd 4.3

Op2() Integer OriginalClass Ca 2.2

Op2() Integer OriginalClass Cb 3.2

Op2() Integer OriginalClass Cd 3.5.1

Table 13: Result of extract interface example.

potential classes that the user would have to examine and narrowing the scope

that one should examine.

1. Find all calling relationships of the user provided class.

SELECT DISTINCT i.0OperationName, i.Parameter,i.ClassName,

FROM
WHERE

ORDER BY OperationName;

i2.ClassName AS Caller
interaction i, interaction i2

i2.SeqNumber=reverse(right (reverse(i.SeqNumber),

length(i.SeqNumber)-instr(reverse(i.SeqNumber),’.’)))
AND instr(i.SeqNumber,’.’)!=0

AND ji.ClassName=’UserProvidedClass’
AND i.OperationName!=’constructor()’

Applying restructuring: Table 13 shows the restructuring candidates by

providing the callers of all operations of a class.

We can see that the set of operations {Op1(),0p2()}, which is a subset of all

operations in a class (here we say it is called OriginalClass), there is a group

of clients {Ca,Cb,Cd} employing it. Since Ca,Cb and Cd use only this subset of

operations, they do not need to know all responsibilities of the class. Following the

guidelines of extract interface, we modify the production system representation as

follows:

o8

1. Add an interface definition as follows (the interface name should be provided

by the users)

<ClassList>::=<...,interfaceClass>

interfaceClass: :=[Class]
<interfaceClass>::=[IsInterface] [Visibility]<public>
<interfaceClass>::=[Operation]<Opi()>
<interfaceClass.Op1()>::=[Visibility]<public>
<interfaceClass>: :=[0Operation] <0p2()>
<interfaceClass.0p2()>::=[Visibilityl<public>

2. Modify the [Implements] modifier of OriginalClass as follows

<OriginalClass>::=[Visibility]<public>[Implements]<interfaceClass>

7.2.2 Restructuring to design patterns

With the aid of the second-level design model, patterns can be applied on design
automatically upon user request. However, we can not address patterns fully in the
design stage because some patterns are highly related to implementation. What
we provide in this project is a set of key features for each pattern which can
serve as guidelines for developers to implement a pattern. The criteria of patterns
supported lies at the class-method level. Moreover, sometimes, user intervention is
required when applying a particular pattern (this will be discussed in the following
subsection). Further, restructuring to patterns discussed in this dissertation only

addresses the static structure of the model.

59

Singleton: A creational pattern

Creational patterns provide guidance on how to create objects when their creation

requires making decisions which need to be structured and encapsulated [Gra02].

Motivation To ensure that only one instance of a class is created.

General solution To provide a private constructor and perform lazy instantia-

tion.

1) Private constructor: The first step is to provide a constructor that is private
to prevent direct instantiation from other class. Otherwise, code generation tools
might create a public constructor if none is provided.

2) Lazy instantiation: Create an accessor method to return an instance of the

class itself but not to allow more than one copy to be accessed.
Example Consider a class that is defined as follows before applying the Sin-
gleton pattern.
<Class>::=[Property]<Attri>
<Class.Attrl>::=[Visibility]<public>

<Class>: :=[Operation]<0p1()>
<Class.0p1()>::=[ReturnTypel<Integer>[Visibility]<public>

If developers request to apply the Singleton pattern over Class, we can modify

the corresponding production system representation as follows:

1. Add a private constructor:

<Class>::=[Property]<Attril>
<Class.Attr1>::=[Type]<Integer>[Visibility]<public>
<Class>::=[0Operation]<0p1()>

<Class.0p1()>::=[ReturnTypel <Integer>[Visibility]<public>

60

<Class>: :=[Operation>[constructor()]
<Class.constructor()>::=[Visibilityl<private>

2. Provide lazy instantiation:

1) Define an attribute that is private, static and will later be assigned a value
of null, to be named as the class name(e.g. Class) followed with a string

” instance_initNULL”.

<Class>::=[Property]<Class_instance_initNULL>
<Class.Class_instance_initNULL>::=[Type]<Class>
[Visibilityl<private>[IsStatic]

2) Define a static method normally usually called getInstance() with the
return type of the class itself.

<Class>: :=[0Operation]<getInstance()>
<Class.getInstance()>::=[ReturnType] <Class>
[Visibility]l<public>[IsStatic]

Observer: A behavioural pattern

Behavioural patterns are concerned with the interaction among objects, in a way

that they communicate with each other but are loosely coupled.

Motivation Some objects (subscriber objects) need to be notified with the state
changes of events of another object (publisher object) and they react in
their own way when events are generated. This pattern makes the publisher
interacting with the subscribers with lower coupling via interface definition.
In addition, it supports the Model-View [Coa] Separation principle.

61

General solution Add an observer interface implemented by the subscribers.
The publisher attaches the subscribers dynamically which need to be no-

tified by the generation of an event.

Example Consider three classes are provided by users: Publisher, subscriberA
and subscriberB. Developers ask for the deployment of the Observer pattern on

them. The original definitions of these three classes are as follows:

<Publisher>::=[Visibility]<public>
<Publisher>::=[Property] <Attri>
<Publisher>::=[0Operation]<0p2()>
<Publisher.0p2()>::=[Visibility]l<public>
<SubscriberA>::=[Visibility]<public>
<SubscriberB>::=[Visibility]<public>

To apply the Observer pattern on this system, we proceed as follows:

1. Create an Observer interface and make both Subscribers implement it.

a. Add an interface called Observer
<ClassList>::=<...,0bserver>

<0Observer>: :=<Class>

<0Observer>: :=[Visibility]<public>[IsInterface]

b. Modify the definition of class Subscriber

<SubscriberA>::=[Visibility] <public>[Implements]<Observer>
<SubscriberB>::=[Visibility]<public>[Implements]<Observer>

2. Create an interface definition of Subject in case that there are more than
one Publishers in future design.
<ClassList>::=<...,Subject>

<Bubject>::=<Class>
<Subject>::=[Visibility]<public>[IsInterface]

62

3. Create a method called update() for both Subscribers and Observer re-

spectively.

<SubscriberA>: :=[0peration] <update()>
<SubscriberA.update()>::=[Visibility]<public>
<SubscriberB>::=[0peration]<update()>
<SubscriberB.update()>::=[Visibility]<public>
<Observer>: :=[0peration] <update ()>

<Observer .update()>::=[Visibility]<public>

4. Add a list to keep the Observers in Publisher. The list is where the

Publisher knows who to inform.

<Publisher>::=[Property] <ObserverList>
<Publisher.ObserverList>::=[Visibilityl<private> [Type]l <OrderedSet>

5. Create three methods, called attach(), detach() and notify(), which are
able to add, remove and notify an Observer, respectively. attach() adds
Observers to the list, detach() removes Observers to the list. notify()

notifies the Observers when events occur.

<Subject>: :=[0Operation]<attach()>
<Subject.attach()>::=[Visibility]<public>
<Subject>: :=[0Operation] <detach()>
<Subject.detach()>::=[Visibility]<public>
<Subject>::=[0Operation]<notify()>
<Subject.notify()>::=[Visibility]<public>

6. Modify the class definition of Publisher to make it implement the Subject.
Create method definitions to implement attach(), detach() and notify()

methods in Subject.

63

<Publisher>::=[Visibilityl<public>[Implements]<Subject>
<Publisher>::=[Operationl<attach()>
<Publisher.attach()>::=[Visibility]<public>
<Publisher>::=[0Operation}<detach()>
<Publisher.detach()>::=[Visibility]l<public>
<Publisher>::=[Operationl<notify()>
<Publisher.notify()>::=[Visibility]<public>

7. In case that developers want to deploy the Observer pattern without indi-
cating which classes are worked on, we just create two interfaces: Subject

and Observer.

Facade: A structural pattern

Structural patterns aim to describe common ways that different types of objects

can be organized to work with each other [Gra02].

Motivation To simplify the usage of the system by providing an unified interface

for the subsystem.

General solution Define an interface where is the single point of entry to the
services of the subsystem. The Facade pattern is usually applied via the
Singleton pattern through which it provides a single access point to a single
instance of a class. The developers should provide essential information about

1) Which services are required to be exposed, and 2) The name of the Facade

class.

64

Example Consider that the users want to provide an interface for services:
Servicel () from class Ca, Service2() from class Cb, Service3() from class
Cc, which are defined as follows in production system representation:

<Ca>::=[0Operation]<Servicel()>
<Ca.Servicel()>::=[Visibility]<public>[Parameter]<Integer>
<Cb>: :=[Operation]<Service2()>

<Cb.Service2()>: :=[ReturnTypel<Integer>[Visibilityl<public>

<Cc>::=[0Operation]<Service3()>
<Cc.Service3()>::=[Visibility]<public>

Then, to apply Facade pattern we proceed as follows:

1. Define a Facade class whose name is defined by developers.

<ClassList>::=<...,UserFacade>
<UserFacade>::=[Class]
<UserFacade>::=[Visibility]l<public> //A Facade class is usually public

2. Provide method definitions that offer services to the clients outside the sub-
system and make the modifier and signature of a method to be the same as

the service-provider defined in the subsystem.

<UserFacade>: :=[Operation] <Servicel()>
<UserFacade.Servicel(}>::=[Visibility]<public>{[Parameter]<Integer>
<UserFacade>: :=[0peration]<Service2()>
<UserFacade.Service2()>::=[ReturnType]<Integer>[Visibility]<public>
<UserFacade>: :=[0peration]<Service3()>
<UserFacade.Service3()>::=[Visibility]<public>

3. Apply a Facade class with the Singleton pattern following the steps of ap-
plying the Singleton pattern.

a. Define a private constructor for class UserFacade as follows

65

<UserFacade>: :=[Operation] <constructor()>
<UserFacade.constructor()>::=[Visibilityl<private>

b. Define a static method getInstance () which returns a type of the Facade

class itself.

<UserFacade>: :=[Operation] <getInstance()>
<UserFacade.getInstance()>::=
[ReturnTypel <UserFacade>[Visibility]<public>[IsStatic] //Singleton Pattern

c. Define an attribute that is private and static of type Facade class, and

named as UserFacade_instance_initNULL

<UserFacade>: :=[Property] <UserFacade_instance_initNULL>
<UserFacade.UserFacade_instance_initNULL>::=
[Typel<UserFacade>[Visibility]<private>[IsStatic] //Singleton pattern

. Make corresponding changes in the production system representation of inter-
action part related to Servicel(), Service2(), Service3(). Since class
UserFacade is Singleton, we do not need to keep an instance of it in the
client object, which means that we do not need to define an attribute of type

class UserFacade in class Client.

Before:

<Client.0px()>[Parameter]<>::=[calls]<Ca.Servicel ()>[Parameter]<Integer>
<Client.0py()>[Parameter]<>::=[calls]<Cb.Service2()>[Parameter] <>
<Client.0Opz()>[Parameter]<>::=[calls]<Cc.Service3()>[Parameter] <>

After:
<Client.0Opx{()>[Parameter]<>::=[calls]<UserFacade.getInstance()>[Parameter]<>
::=[calls}<UserFacade.Servicel () >[Parameter] <Integer>
1:=[calls]<Cb.Service2() > [Parameter] <>
<Client.0Opy()>[Parameter]<>::=[calls]<UserFacade.getInstance()>[Parameter]<>
::=[calls] <UserFacade.Service2()>[Parameter] <>
::=[calls]<Cb.Service2()>[Parameter] <>)
<Client.0pz()>[Parameter]<>::=[calls]<UserFacade.getInstance()>[Parameter]<>
::=[calls]<UserFacade.Service3()>[Parameter] <>
::=[calls]<Cc.Service3()>[Parameter] <>

66

In this chapter, we discussed how various comprehension and restructuring
strategies can be performed towards the design model with proper algorithms in

forms of SQL statements, supported by queries examples and results.

67

Chapter 8

Case study: A library information

system

To demonstrate our approach, we will describe a case study of an information sys-
tem for a library which maintains a catalog for books and journals. Library clerks
may populate the catalog by adding entries. Library clerks or library members
may browse the catalog. In the following sections we focus on the main (success)

scenario of the use case Make Book Entry.

63

)

Library Clerk | System
makeNewBookEntry()
l°_°fﬂ addBook(author title, publisher,year)

confirmation

K e -

endBookEntry()

confirmation

e)

Figure 8: SSD for use case make book entry.
8.1 Design model representation

8.1.1 First-level representation: UML

The model is represented by a collection of UML artifacts. The static model is rep-
resented by the class diagram of Figure 12, and the dynamic model is represented
by a collection of sequence diagrams. The use-case scenario is represented by a sys-
tem sequence diagram (SSD) (Figure 8) which identifies three system operations,
makeNewBook(), addBook(), endBookEntry(), each of which is represented by

the sequence diagrams of Figures 9, 10 and 11 respectively.

69

sd: Terminal.makeNewBookEntry)

Lifeline 1:Terminal Lifeline 2:BookentrySession

1) |
<< create >>

!
]
: l JlogStart()
|

Figure 9: Sequence diagram for makeNewBookentry ().

sd: Terminal.addBook ’

Lifeline 3:Terminal

.makeNewBook(,x,x,x)

Lifeline_4:BookEntrySession| |Lifeline :Catalog| |Lifeline_6:Book

i .makeNewBook(,x,x,x)j :
: ' 1) .Book(X,X,X,X):X |
1" <<create>>

Figure 10: Sequence diagram for addBook().

70

sd: Terminal.endBookEntry)

Lifeline 9:Terminal

Lifeline 10:BockEntrySession

.becomeComplete()

JogEnd()

Figure 11: Sequence diagram for endBookentry().

Terminal

-attribute_1:int

BookEntrySession

“sComplete:Boolean

+makeNewBookEntry().void Captures | *MakeNewBook(author:String titie:String, publisher:String,year:Integer):void
+addBook(author:String,titie: String,publisher:String,year:Integer):void -becomeComplete():void
+endBookEntry():void +logStart(}.void
+ogEnd():void
Uses Accesses
Journal Printeditem Catalog

-author:String title:String Contained-in -books:Set
+display():void ~publisher.String +makeNewBook{author:String title:String publisher:String,year:integer):void

“year:integer +makeNewOrder{):void

T +add(book:Book):void
Book

-author:String
+display():void
<<create >>+Book(author:String,title:String,publisher:String,year:integer):Book

Figure 12: Class diagram.

71

S CANINDOWS systen32iend. exe

YW Fradiy xmd

Figure 13: Screen shot for UML2PR tool to generate the production system rep-
resentation.

8.1.2 Second-level representation: Producing a production
system

We translate the XMI representation of the first-level representation (UML) gener-
ated from PoseidonUML into the second-level representation (production system)
by running UML2PR Ruby parser (Figure 13). The production system represen-

tation are shown below:

<ClassList>: :=<Book,Catalog,PrintedItem,BookEntrySession,Terminal, Journal>

Book: :=[Class]

Catalog: :=[Class]

PrintedItem: :=[Class]

BookEntrySession::=[Class]

Terminal::=[Class]

Journal: :=[Class]

<Book>::=[Visibility]<public>[Extends]<PrintedItem>

<Book>: :=[Property] <author>

<Book.author>: :=[Typel<String>[Visibility]<private>

<Book>: :=[0Operation]<display()>

<Book.display()>::=[ReturnTypel<void>[Visibility]<public>[Parameter]<>

<Catalog>::=[Visibility] <public>[Extends] <>

<Catalog>::=[Propertyl] <books>

<Catalog.books>: :=[Typel <Set>[Visibilityl<private>

<Catalog>: :=[0Operation] <makeNewBook () >

<Catalog.makeNewBook()>: :=[ReturnTypel]<void>[Visibility]}<public>
[Parameter]<String, String, String, Integer>

<Catalog>: :=[0Operation]<makeNewOrder ()>

<Catalog.makeNewOrder ()>: :={ReturnTypel<void>[Visibility]<public>[Parameter]<>

<Catalog>: :=[0Operation]<add()>

<Catalog.add()>::=[ReturnTypel<void>[Visibility]<public>[Parameter]<Book>

<PrintedItem>::=[Visibility]<public>[Extends]<>[IsAbstract]

<PrintedItem>::=[Propertyl<title>

<PrintedItem.title>::=[Typel<String>[Visibilityl<private>

72

<PrintedItem>::=[Propertyl<publisher>
<PrintedItem.publisher>::=[Typel<String>[Visibility]<private>
<PrintedItem>: :=[Property]<year>
<PrintedItem.year>::=[Type]<Integer>[Visibility]<private>
<BookEntrySession>::=[Visibility]<public>[Extends] <>
<BookEntrySession>: :=[Property] <isComplete>
<BookEntrySession.isComplete>: :=[Type]l <Boolean>[Visibility]<private>
<BookEntrySession>::=[0Operation] <makeNewBook()>
<BookEntrySession.makeNewBook()>::={ReturnTypel<void>[Visibility]<public>
[Parameter]<String, String, String, Integer>
<BookEntrySession>: :=[Operation] <becomeComplete()>
<BookEntrySession.becomeComplete ()>: :=[ReturnType] <void>[Visibilityl<private>[Parameter]<>
<BookEntrySession>::=[0Operation] <logStart()>
<BookEntrySession.logStart()>: :=[ReturnTypel <void>[Visibility]<public>[Parameter]<>
<BookEntrySession>: :=[0Operation] <logEnd()>
<BookEntrySession.logEnd()>::=[ReturnTypel] <void>[Visibilityl<public>[Parameter]<>
<Terminal>::=[Visibility]<public>[Extends]<>
<Terminal>: :=[Operation] <makeNewBookEntry()>
<Terminal .makeNewBookEntry()>: :=[ReturnTypel <void>[Visibility]<public>[Parameter]<>
<Terminal>::=[0peration]}<addBook()>
<Terminal.addBook()>::=[ReturnType] <void>[Visibility]<public>
[Parameter] <String, String, String, Integer>
<Terminal>::=[0Operation] <endBookEntry()>
<Terminal .endBookEntry()>::=[ReturnTypel<void>[Visibility]<public>[Parameter]<>
<Journal>::=[Visibility]<public>[Extends}<PrintedItem>
<Journal>::=[Propertyl] <author>
<Journal.author>::=[Type] <String>[Visibilityl<private>
<Journal>: :=[0peration]<display()>
<Journal.display()>::=[ReturnTypel<void>{Visibility]<public>[Parameter]<>
Begin Association
<Captures>::=[Referencel]l<Terminal>[LowerBound_end1]<1>[UpperBound_end1]<1>
[Reference2] <BookEntrySession>[LowerBound_end2] <1>[UpperBound_end2]<1i>
[Relationship]<unidirection>
<Contained-in>: :=[Referencel] <Catalog>[LowerBound_end1]<1> [UpperBound_end1]<1>
[Reference2] <PrintedItem> [LowerBound_end2] <1>[UpperBound_end2]<1>
[Relationship]<composite> ,
<Accesses>: :=[Referencel] <BookEntrySession>[LowerBound_end1]<1>[UpperBound_end1]<1>
[Reference2] <Catalog> [LowerBound_end2]<1>[UpperBound_end2]<1>
[Relationship]<unidirection>
<Uses>::=[Referencel] <Terminal>[LowerBound_end1]<1>[UpperBound_end1]<1>
[Reference2] <Catalog> [LowerBound_end2] <1>[UpperBound_end2]<1>
[Relationship]l<unidirection>
End Association
Begin Interaction<Terminal.makeNewBookEntry>
<Terminal .makeNewBookEntry()>[Parameter]<>
::=[calls]<BookEntrySession.constructor()>[Parameter] <>
::=[calls]<BookEntrySession.logStart()>[Parameter]<>
End Interaction<Terminal.makeNewBookEntry>
Begin Interaction<Terminal.addBook>
<Terminal.addBook()>[Parameter]<String, String, String, Integer>
::=[calls] <BookEntrySession.makeNewBook () > [Parameter] <String, String, String, Integer>

73

Figure 14: Screen shot for PR2DB tool to build a database.

ClassName Visibility | IsAbstract | IsInterface | Implements | IsFinal | Extends
Catalog public false false NULL false NULL
Journal public false false NULL false Printed-
Item
Terminal public false false NULL false NULL
Book public false false NULL false Printed-
Item
PrintedItem public true false NULL false NULL
BookEntrySession | public false false NULL false NULL

Table 14: Class table.

::=[calls]<Catalog.makeNewBook()>[Parameter]<String, String, String, Integer>
::=[calls]<Book.constructor()>[Parameter] <String, String, String, Integer>
<Catalog.makeNewBook ()>[Parameter]<String, String, String, Integer>
::=[calls]<Catalog.add () >[Parameter] <Book>

End Interaction<Terminal.addBook>

Begin Interaction<Terminal.endBookEntry>
<Terminal.endBookEntry () > [Parameter]<>
::=[calls]<BookEntrySession.becomeComplete()>[Parameter] <>
::=[calls]<BookEntrySession.logEnd ()>[Parameter] <>

End Interaction<Terminal.endBookEntry>

8.1.3 Third-level representation: Producing a relational
database schema

The second-level representation (production system) is translated into a third-level
representation (relational database schema) by running PR2DB tool (Figure 14).

The content of the resulted database is shown in Tables 14 - 18.

74

AttributeName ClassName Type IsStatic IsFinal Visibility
books Catalog false false NULL false
author Journal false false NULL false
author Book false false NULL false
title PrintedItem false false NULL false
publisher PrintedItem true false NULL false
year PrintedItem true false NULL false
isComplete BookEntrySession false false NULL false
Table 15: Attribute table.
Operation- Return- | Is- ClassName | Is- Is- Visi- | Parameter
Name Type Abstract Static | Final| bility
constructor() void false Book false false | public | String,String,
String,Integer
display() void false Book false false | public | NULL
makeNewBook()| void false Catalog false false | public | String,String,
String,Integer
makeNewOrder() void false Catalog false false | public | NULL
add() void false Catalog false false | public | Book
makeNewBook()| void true BookEntry- | false false | public | String,String,
Session String,Integer
become- void false BookEntry- false false | private | NULL
Complete() Session
logStart() void false BookEntry- | false false | public | NULL
Session
logEnd() void false BookEntry- | false false | public | NULL
Session
makeNewBook- | void false Terminal false false | public | NULL
Entry()
addBook() void false Terminal false false | public | String,String,
String,Integer
addBookEntry() | void false Terminal false false | public | NULL
display() void false Journal false false | public | NULL
Table 16: Operation table.
Assoc- endl end2 Lower- Upper- | Lower- Upper- | Rela-
iation- Bound_ | Bound. | Bound_ | Bound_ | tion-
Name end1 end1l end2 end2 ship
Capture Terminal BookEntry- | 1 1 1 1 uni-
Session direction
Accesses Catalog PrintedItem | 1 1 1 1 composite
Con- BookEntry- Catalog 1 1 1 uni-
tained- Session direction
m
Uses Terminal Catalog 1 1 1 1 uni-
direction

Table 17: Association table.

75

OperationName ClassName | Interaction- SeqNumber | Parameter Looping
Name
makeNew- Terminal Terminal.make- 1 NULL 0
BookEntry() NewBookEntry
constructor() BookEntry- | Terminal.make- 1.1 NULL 0
Session NewBookEntry
logStart() BookEntry- Terminal. make- 1.1.1 NULL 0
Session NewBookEntry
addBook() Terminal Terminal.add- 2 String,String, | 0
Book String, Integer
makeNewBook() BookEntry- Terminal.add- 2.1 String,String, | 0
Session Book String,Integer
makeNewBook() Catalog Terminal.add- 2.1.1 String,String, | 0
Book String Integer
constructor() Book Terminal.add- 2.1.1.1 String,String, | 0
Book String, Integer
add() Catalog Terminal.add- 2.1.1.2 Book 0
Book
endBookEntry() Terminal Terminal.end- 3 NULL 0
BookEntry
becomeComplete() | BookEntry- | Terminal.end- 3.1 NULL 0
Session BookEntry
logEnd() BookEntry- Terminal.end- 3.1.1 NULL 0
Session BookEntry

Table 18: Interaction table.

76

é: : I‘:}Myl)ocmnmts

=] My Music

A3 My Pictures (=5 planetsim_3.0_TED_refactored D class;
= My Shapes 2 Visual Studio Projects [y confie
3 My Skype Contert yvs?ispt Y mode
L] My Skype Pictures Lo BIRBIR 1™ rutes
[} My Skype Received Files G WA 3 sp2y
<7 i : :

vm*s =
SR B

Figure 15: Screen shot of RPR tool to perform model comprehension.

UnusedMethod ClassName Parameter
display() Book NULL
makeNewOQOrder() Catalog NULL
display() Journal NULL

Table 19: Result of UnusedMethod.

8.2 Comprehension of the model

We analyze the model with the restructuring tool RPR to gain comprehension
(Figure 15). RPR provides a list of features which could be applied to perform
various types of analyzing strategies. The analyzing results are provided in forms

of tables.

1. Perform “Find UnusedMethod” and obtain Table 19 as a result.

77

ClassName
PrintedItem

Table 20: Result of DataClass.

MethodName ClassName Parameter
makeNewBookEntry() Terminal NULL
constructor() BookEntrySession NULL
logStart() BookEntrySession NULL
addBook() Terminal String,String,
String,Integer
makeNewBook() BookEntrySession String,String,
String,Integer
makeNewbook() Catalog String,String,
String,Integer
constructor() Book String,String,
String,Integer
add() Catalog Book
endBookEntry() Terminal NULL
becomeComplete() BookEntrySession NULL
logEnd() BookEntrySession NULL

Table 21: Result of calling sequence.

2. Perform “Find DataClass” and obtain Table 20 as a result.

3. Perform “Find Calling sequence of a scenario” by being provided system
operations in terms of the names of their corresponding sequence diagrams,
in the following order: Terminal .makeNewBookEntry, Terminal.addBook,

Terminal .endBookEntry. The result is captured in Table 21.

4. Perform “Check consistency between static and dynamic model”. The result

is captured in Table 22.

MethodName OwnerClass Parameter Caller
becomeComplete() BookEntrySession NULL Terminal

Table 22: Result of checking consistency.

78

Figure 16: Screen shot for RPR tool to perform model restructuring.

MethodName ClassName Parameter
add() Catalog Book
logStart() BookEntrySession NULL
logEnd() BookEntrySession NULL

Table 23: result of HideMethod.

8.3 Performing Restructuring

The RPR tool also provides functionalities to restructuring the model. Various

kinds of strategies are provided (Figure 16):

1. Perform “Hide Method” and obtain the result captured in Table 23.

After obtaining the restructuring candidates, restructuring is performed upon
user decision. In this case, the user decides to make all of them private, The
RPR tool will perform automatic modification over the production system
representation as follows:

Before:
<Catalog>: :=[Operation]<add()>
<Catalog.add()>::=[ReturnTypel<void>[Visibility] <public>[Parameter]<Book>

<BookEntrySession>: :=[0peration]<logStart()>
<BookEntrySession.logStart()>::=[ReturnType] <void>[Visibilityl<public>[Parameter]<>
<BookEntrySession>: :=[0peration] <logEnd ()>

<BookEntrySession.logEnd()>: :=[ReturnTypel<void>[Visibility] <public>[Parameter]<>

After:

<Catalog>::=[Operation]<add(}>
<Catalog.add()>::=[ReturnTypel <void>[Visibility]<private>[Parameter] <Book>

79

<BookEntrySession>: :=[0Operation]<logStart()>

<BookEntrySession.logStart()>: :=[ReturnTypel<void>[Visibilityl<private>[Parameter]<>
<BookEntrySession>: :=[0Operation] <logEnd()>
<BookEntrySession.logEnd()>::=[ReturnTypel <void>[Visibility]<private>[Parameter]<>

. Perform “Pull-up method”. The result is captured in Table 24. In this case,
method display() in both Book and Journal is decided to be pulled up
to PrintedItem. Automatic modification is performed over the production
system representation as follows:

Before:

<Book>: :=[0Operation] <display()>

<Book.display()>::=[ReturnTypel <void>[Visibility]<public>[Parameter]<>
<PrintedItem>::=[Visibility]<public>[Extends]<>[IsAbstract]
<PrintedItem>: :=[Property]<title>
<PrintedItem.title>::=[Type]<String>[Visibilityl<private>
<PrintedItem>::=[Property]<publisher>
<PrintedItem.publisher>::=[Type]<String>{Visibilityl<private>
<PrintedItem>::=[Property]<year>

<Printedltem.year>::=[Type]l <Integer>[Visibility]<private>

<Journal>: :=[0peration]<display()>
<Journal.display()>::=[ReturnType]<void>[Visibility]<public>[Parameter]<>

After:

<PrintedItem>::=[Visibility]<public>[Extends]<>[IsAbstract]
<PrintedItem>::=[Operation]<display()>
<PrintedItem.display()>::=[ReturnType]<void>[Visibility]<public>[Parameter]<>
<PrintedItem>::=[Operation]<display()>
<PrintedItem.display()>::=[ReturnTypel<void>[Visibilityl<public>[Parameter]<>
<PrintedItem>: :=[Propertyl<title>
<PrintedItem.title>::=[Typel<String>[Visibilityl<private>

<PrintedItem>: :=[Property]<publisher>

<PrintedItem.publisher>: :=[Typel<String>[Visibility]<private>

<PrintedItem>: :=[Property] <year>
<PrintedItem.year>::=[Typel<Integer>[Visibility]<private>

80

MethodName Parameter className Parent
display() NULL Book PrintedItem
display() NULL Journal PrintedItem

Table 24: Result of Pull up method.

OHT MR G PRTTERNSC Y ¢

o apply or input exit to guit:

Figure 17: Screen shot for RPR tool to perform model restructuring to patterns.

3. The RPR tool supports “Restructuring to patterns” (Figure 17).

The Singleton design pattern is applied over class Catalog upon user request,
since there should be only one entrance for object Catalog. Key features
of the Singleton pattern will be added on the corresponding part of the
production system representation as follows:

Before:

<Catalog>::=[Visibility]<public>[Extends]<>

<Catalog>: :=[Property] <books>

<Catalog.books>::=[Typel] <Set>[Visibility]<private>

<Catalog>::=[Operation]<makeNewBook()>

<Catalog.makeNewBook()>: :=[ReturnType]<void>{[Visibility]<public>
[Parameter]<String,String,String,Integer>

<Catalog>: :=[0peration]<makeNewOrder()>

<Catalog.makeNewOrder ()>: :=[ReturnTypel<void>[Visibilityl<public>[Parameter]<>

<Catalog>::=[Operation]<add()> ‘

<Catalog.add()>::=[ReturnType] <void>[Visibility]<public>[Parameter]<Book>

After:

<Catalog>::=[Visibility] <public>[Extends]<>

<Catalog>::=[Operation]<constructor()>
<Catalog.constructor()>::=[Visibilityl<Private>
<Catalog>::=[Property]<Catalog_instance_initNULL>
<Catalog.Catalog_instance_initNULL>::=[Typel<Catalog>[Visibility]l<Private>[IsStatic]
<Catalog>::=[0Operation}<getInstance()>
<Catalog.getInstance()>: :=[ReturnTypel <Catalog>[Visibility]<Public>[IsStatic]
<Catalog>: :=[Property] <books>

81

Figure 18: Screen shot for PR2JAVA tool to generate Java skeletal code.

<Catalog.books>: :=[Type]<Set>[Visibility]<private>

<Catalog>: :=[0Operation] <makeNewBook()>

<Catalog.makeNewBook{)>: :=[ReturnType] <void>[Visibility]<public>
[Parameter]<String,String,String, Integer>

<Catalog>: :=[Operation]<makeNewOrder()>

<Catalog.makeNewOrder()>: :=[ReturnType] <void>{[Visibility]<public>{Parameter]<>

<Catalog>: :=[Operation]l<add ()>

<Catalog.add()>::=[ReturnType]<void>[Visibility]<public>[Parameter]<Book>

8.4 Producing a refined first-level model repre-

sentation

To obtain a refined UML model, a set of Java skeletal code is generated by the
PR2UML tool (Figure 18, 19). We import these . java file into EclipseUML and
obtain a new UML model (Figure 20).

In this chapter, we provided a case study to demonstrate how to obtain compre-
hension and to perform restructuring of a software system, adopting the three-level

design model, together with our comprehension and restructuring strategies.

82

zzPattern. txt casestudy. txt

e

Printedltem. java
Jave Lenguage So...

1 KB

Terminal: Twrs

B Piintaaite

4t publisher: String
§ g% ditler String

A o P =

S KB S Xe
BookEntrySession. .. “a Catalog java

Jave Lasguage Se. .. Java Langusge So. ..
1 K& HB

Book. java

Juva Langusge So. ..

1K

Journal. java

Java Langasge So.. .

2 44

32 yeeriat

2 display()

e

B doumal

i g% author String

47 avthor: String

3 Book

é Book(in p1: String, in p2: String, ...

@ Terminal

o myBookEntrySession!:: BookEntrySession

| dmperts

- B¢aion

i ¥ books: TreeSet

© addBook(n pt: String, in p2: String, n p3: String, inpd:.Int...

% endBookEntry():
i % makeNewBookErtry()

2. myBookt: Book.

o Catalog()y
. @ add(nparaml: Book)
i ¢ getinstance(): Catalog

& makeNewOrder()

J,x;’ Catalog _instence_intNLLL: Catalog

i @ makeNewBook(inp1: String, in p2 String, in p3: Shring,in p4: 1.

40 isComplete: Boolean

& BookErtrySession()

J’ BookEntrySession(in p1: String, in'p2: String, in p3: Siring, in R4 Int...
% becomeComplete()

& logEnd()

1 -logStert()

. makeNewBook(in pt: String, in p2: String, in p3: String, in p4: Integer)

Figure 20: Refined class diagram.

83

Chapter 9

Related work and evaluation

Model transformation has widely been discussed in the literature and there is cur-
rently a number of tools available. MTF [MTF] is a commercial tool from IBM
which supports transformation between EMF models. In addition, refactoring has
been discussed in [Fow99]. Supporting tools to facilitate refactoring process are
available currently. Eclipse provides help for refactoring the code, which restruc-
tures the code only but needs decision and input from the developers to what and
where it should target. codePro Analytix [cod] is a testing tool to analyze and
address problems over Java code. Metrics [met] for Eclipse is a plug-in for Eclipse
and it provides metrics for analyzing Java code. Borland Together is a commercial
tool providing audit and metrics for detecting bad smells in code. MagicDraw is
a commercial tool that provides metrics for both UML model and code, perform-

ing simple statistics toward the model elements without providing suggestion on

84

restructuring candidates and automatic restructuring. A survey from [MT)] shows
that the research focusing on refactoring in the design stage gains great empha-
sis. Refactoring on UML model has been discussed in [SPTJ] [Ast]. In these, the
authors proposed the restructuring of the UML model by identifying the restruc-
turing candidates through completely manual analysis based on certain guidelines.
Refactoring to patterns with supporting tools has been discussed in [Arn], where
the author provides users with a ”pattern library”, a set of components capturing
the intent of the underlying design patterns that they can reuse directly. Moreover
in [FBY], the authors provide approaches and tool support that can generate
pattern-prescribed code automatically. In [DYZ], the authors provide approaches
and tool support for transforming a UML model of a design pattern into the evolved
UML mode of the pattern. In [GSMD] and [BPPT], the authors discuss how to
keep consistency among different UML models and code after applying refactoring
on one UML model.

In [MDB™] the authors pose the following question as future work: How can
we apply refactoring at higher levels of abstraction? The recent released version
of ArgoUML, a commercial tool, starts to provide the functionality of providing
suggestions in forms of a "to-do list” based on a design analysis. However, ac-
cording to its user manual [RVR™], each suggestion it provides is mainly based on
separated analysis of a concrete type of diagram (e.g. analysis on class diagram,

analysis on state diagram) and the analysis is still in a simple level (e.g. naming

85

problem). Rational Software Architect (RSA) [BIJ] [RSA], a popular commercial
tool for Model Driven Development (MDD), supports application of patterns via
templates in design level by necessary user intervention in order to provide tem-
plate parameters. Nevertheless, it does not support comprehension and also does
not provide restructuring candidates for model restructuring.

Our three level design model architecture and supporting tools, can automate
the model transformation process and can provide assistance with comprehension
and restructuring of the system. This is achieved by analyzing the static, and dy-
namic design model in both separated and combined way (e.g.checking consistency
between static and dynamic model) to gain comprehension, obtain restructuring
candidates and provide automatic restructuring upon the user determination or
request. This implies that, between a UML design model and its implementation
(neglecting the way it is achieved), we add another layer composed by the second,
and the third level design model to gain more confidence over the design and to
improve it, if necessary. Thus, along with MDA we build a more reliable design
model that is platform-independent. This way, regardless of the specific technol-
ogy a design is implemented, the corresponding generated code can be of higher

quality.

36

Comprehension and transformation can be tedious under some other technolo-
gies and approaches. For example, using imperative language (e.g.C++), to pro-
duce the production system representation, or even working with XMI representa-
tion, can implement the same logic but it usually requires more code to parse the
file. For example, a query to find out all public classes requires parsing the whole
file line by line, selecting the desired data, storing them in the memory, and ana-
lyze them. However by transforming the text into a database, obtaining all public
classes can be achieved by a simple query toward the class table. We can also use
XSLT [W3C07] allows defining rules or templates to analyze XML file and trans-
form XML to get the desired result. However, XSLT is also based on XML and the
rule or template to transform XML file is also XML style. Therefore, it also compli-
cate the implementation of logic. To compare with XSLT, SQL is more expressive
and it is more closer to natural language. Those are the main advantages of adopt-
ing database as the third-level model in our system. The database is designed to be
the analysis database rather than the transaction database. This database is good
to extract knowledge from the system but it does not provide viable representation
for restructuring. Therefore we do not modify the model through modifying the
production system representation rather than through modifying the database.

Moreover, we define our own data types for the second and the third design
model. The data types are defined to be the mathematical ones to highlight the

deployment of platform-independent modeling. Currently, UML modeling tools

87

provide language specific data types for the designers to choose. However, since
the purpose of utilizing UML is to build platform-independent models, we felt it
is much better to adopt typical and general data types based on OCL, and leave
the generation of language specific data types to the code generator.

The tool for analyzing the database and restructuring the production system
representation can be easily extended to support new design patterns and refac-
toring strategies, since each functionality is well encapsulated. For example, to
add a new refactoring strategy, one just needs to write the corresponding SQL
statements which implement the logic of the strategy, and then add it with JDBC

processing into our restructuring tool.

88

Chapter 10

Conclusion and recommendations

In this dissertation, we defined a three-level design model composed of a UML
representation, a production system representation and a database representation,
in order to facilitate the comprehension and restructuring of the object-oriented
model. In order to achieve the desired results, a set of production rules has been
defined, based on which the production system representation (the second-level
design model) can be generated. A relational database schema has been character-
ized to store the production system representation for constructing the third-level
design model. Based on the three level design model, we also built a set of compre-
hension and restructuring strategies based on certain guidelines. These guidelines
are based on related strategies from the literature in order to audit and improve

code. Moreover, to provide automation for model transformation, we developed a

89

tool suite, containing UML2PR, PR2DB, RPR and PR2UML, which can be de-
ployed to be mutually supportive with visualization tools such as Poseidon and
EclipseUML.

As a future development, this project could be extended to support the applica-
tion of more complex design patterns and more refactoring strategies, by defining
the algorithms to analyze the database and also by extending the restructuring tool
developed. Meanwhile, the tools for different level of model transformation can be
integrated to provide more facilities to the developers. Facilities for bi-directional
transformation and synchronization between the second- and third-level design
model could be developed for the best utilization of each level of model and keep-
ing consistency between them. Furthermore, expert system technology could be
adopted in the future to help developers make decisions after obtaining restruc-
turing candidates in order to reduce user intervention which is required in our
system.

Even if tools which support UML claim to use it to build platform-independent
model, they do not work in an absolutely platform-independent way (e.g. usage
of data type of a specific programming language). Therefore, to make them com-
pletely platform-independent, the data types which are allowed in the UML model
should be only typical and general ones (e.g. OrderedSet rather than Arraylist
in Java).Code generators should be powerful enough to identify these general data

types and provide mapping to language-specific data types (if it is one-to-many

90

mapping, it is left to the developer to decide which one to choose). In addition,
since current utilization of XMI, as an intermediate for model transformation, can
cause incompatibilities among different modeling tools [IBM], in the future we ex-
pect modeling tools to follow a uniform version of XMI in order to make models
generated from different tools compatible with each other. Different vendors should
support this standard in order to share model information among each other. Tools
developed in this dissertation can only parse the XMI representation that is gen-
erated from Poseidon and MagicDraw. We expect this situation to improve in the
future with the adoption of a standard by commercial vendors, thus allowing a
full integration of our tool suite with any visualization tool. Furthermore, round-
trip in dynamic view from code to UML needs a better support from the current
commercial visualization tools (e.g. to generate UML interaction diagrams from
source code). Currently, there are few tools providing this facility such as Borland

Together, MagicDraw and EclipseUML.

91

Appendix A

Tool support and user manual

This appendix serves as a manual on how to deploy the supporting tools to this
research.

The supporting tools we provide include four parts: 1) UML2PR: XMI-to-PR
parser 2) PR2DB: PR-to-database parser 3) RPR: Model analyzing and restruc-
turing tool 4) PR2UML: PR-to-Java skeletal code parser. The current version of

XMI-to-PR parser is able to deal with XMI file generated from Poseidon UML.

1. Create UML diagrams (class diagram and sequence diagrams) in Poseidon
and generate XMI file of the project. According to our requirement, when
defining data types for attributes and return types of methods, what a de-
signer is allowed to enter is defined data types in production system. If other
types are used in the model, it can not generate correct Java skeletal code.

In addition, in order to have the right order of events, the designer should

92

create the sequence diagrams following the order of system operations of each

scenario since this is the way we get the right calling sequence for scenarios.

. To parse the XMI file, copy the XM file into the directory in which you have
the XMI parser UML2PR. The parser can be invoked by going to the direc-
tory where you put the parser together with the .xmi file and running com-
mand ruby xml parser.rb input.xmi output.txt (“input” is the name of
the .xmi file, “output” is the name of the production system representation

file in the form of .txt file).

. 'To transfer the data of production system representation into database, run
PR2DB tool. To invoke this tool, go to the directory where you put the
tool together with the production system representation file generated from

UML2PR tool and execute command java PRmySQL/PR).

. To analyze the database and to restructure the production system represen-
tation, invoke the RPR tool by going to the directory where you put the
RPR and running command java restructuring/Main. Then follow the

instructions provided by the application to perform the desired strategies.

. To transform the restructured production system representation to java skele-
tal code, run PR2JAVA tool. The tool can be invoked by going to the di-

rectory where you put the ruby productions_parser and executing command

93

ruby production_parser.rb input.txt (“input” is the name of the pro-
duction system representation file based on which you want to generated the
java file). Subsequently, you include these files in an eclipse project (which
includes the eclipseUML plug-in from Omondo), creating class diagrams for

the whole project and creating sequence diagrams for the desired methods.

94

Appendix B

Addressing multi-level inheritance

The following Java implementation addresses multi-level inheritance and it is being

deployed by our tools.

import java.util.ArrayList;
public class Node {
public Node parent = null;
public ArrayList childrenList = new ArrayList();
public String ClassName="";
public ArrayList methodList = new ArrayList();
private boolean isRoot;
public Node() { }
public void addChild(Node child) {
childrenList.add(child);
}
public Node getChild(int index) {
return (Node) childrenList.get(index);
}
public int getChildCount() {
return childrenList.size();
}
public int getDepth() {
if (isRoot())
return 1;
else
return 1 + getParent().getDepth();

95

}
public boolean isInternalNode() {
if (childrenList != null)
return true;
else
return false;
}
public boolean isLeaf() {
if (childrenList == null)
return true;
else
return false;
}
public boolean isRoot() {
return isRoot;
}
public void removeChildAt(int index) {
childrenlList.remove(index) ;
}
public void setRoot() {
isRoot = true;
}
public Node getParent() {
return parent;
}
public void setParent(Node parent) {
this.parent = parent;
}
public ArrayList getChildrenList() {
return childrenlist;
}
public void addMethod(Method method) {
methodList.add (method) ;
}
}

96

Appendix C

Glossary and abbreviations

Software Comprehension A process of obtaining knowledge from a software

system.

Bad smells Factors that will affect the quality of the software system originally

discussed in the context of code.

Design pattern A description of communicating objects and classes that are

customized to solve a general design problem in a particular context.

Extensible Markup Language (XML) A general-purpose markup language that

supports various applications and is recommended by W3C.
EMF Eclipse Modeling Framework.
Data class A class contains only fields without methods.

Lazy class A class with few responsibilities.

97

Model Driven Architecture (MDA) A software design approach recommended
by Object Management Group (OMG) which supports Model Driven Engi-

neering.

Model Driven Engineering (MDE) A software development approach that uses

models as primary engineering artifacts throughout the engineering lifecycle.

MTF Model Transformation Framework.

Model transformation A process of transforming a model based on a meta-
model, into another model based on either the same metamodel or a different

metamodel.

Platform-independent model (PIM) A model of a software system that is

independent of the specific implementation technology.

Platform-specific model (PSM) A model of a software system that is linked

to a specific implementation technology.

PR2DB Production system representation to database schema tool.

PR2UML Production system representation to UML tool.

Production Rules A set of abstract rules to describe semantics of a UML model.

PRP Restructuring of production system representation tool.

RSA Rational Software Architect.

98

System Sequence Diagram (SSD) A picture that describes the events that
external actors generate, their order and possible inter-system events, for a

use-case scenario.

Unified Modeling Language (UML) A general purpose graphical modeling

language for object-oriented modeling.

UML2PR UML to production system representation tool.

W3C World Wide Web Consortium.

XML Schema Definition (XSD) A recommendation of W38C which specifies

how to formally describe the elements in an XML document.

XML Metadata Interchange (XMI) A standard for exchanging metadata in-

formation using XML.

99

Bibliography

[Arn]

[Ast]

[BLJ]

[BPM]

Karine Arnout. From Patterns to Components. Ph.D Thesis, Swiss

Institute of Technology, March 31,2004.

Dave Astels. Refactoring with UML. Proceedings of 3rd International
Conference on eXtreme Programming and Flexible Processes in Soft-
ware Engineering, pp. 67-70, Alghero, Sardinia, Italy. 26th-30th May,

2002.

A. W. Brown, S. Iyengar, and S. Johnston. A Rational Approach to

Model-Driven Development. IBM System Journal, Volume 45, Number . .

3, pages 463-480, 2006.

I. D. Baxter, C. Pidgeon, and M. Mehlich. DMS: Program Transfor-
mations for Practical Scalable Software Evolution. Proceedings of 26th

International Conference on Software Engineering, Scotland, UK, May,

2004.

100

[BPPT]

[BRJ99]

[BSM+]

[Coa]

[cod]

IDYZ]

Paolo Bottoni, Francesco Parisi-Presicce, and Gabriele Taentzer. Co-
ordinated Distributed Diagram Transformation for Software Evolution.
Electronic Notes in Theoretical Computer Science. Volume: 72, Issue:

4. 2002.

Grady Booch, James Rumbaugh, and Ivar Jacobson. The Unified Mod-

eling Language User Guide, 1999.

Frank Budinsky, David Steinberg, Ed Merks, Raymond Ellersick, and
Timothy J. Grose. Eclipse Modeling Framework. Addison Wesley. pages

93-114. 2004.

Krzysztof Czarnecki and Simon Helsen. Classification of Model Trans-
formation Approaches. Proceedings OOPSLA03 Workshop on Genera-

tive Techniques in the Context of Model-Driven Architecture, 2003.

Peter Coad. Object-oriented patterns. Communications of the ACM.

Volume 35, Number 9, pages 152-159. 1992.

CodePro Analytix from Instantiations. http://www.instantiations.

com/codepro/index.html. Date last accessed: 6th March, 2007.

Jing Dong, Sheng Yang, and Kang Zhang. A Model Transformation
Approach for Design Pattern Evolutions. Proceedings of 13th Annual
IEEE International Conference on Engineering of Computer Based Sys-
tems (ECBS), pages 80-89, Germany, March, 2006.

101

[Ecl]

[EMF]

[FBY)

[FCal

[FCb]

[Fow99]

EclipseUML Free Edition. http://www.omondo.com. Date last ac-

cessed: 5th March, 2007.

Eclipse Modeling Framework. http://www.eclipse.org/modeling/

emf/?project=emf. Date last accessed: 5th March, 2007.

John Vlissides Frank Budinsky, Marilyn Finnie and Patsy Yu. Auto-
matic Code Generation From Design Patterns. IBM System Journal.

Volume: 35, Number: 2, Pages: 151 - 171. 1996.

Amir Abdollahi Foumani and Constantinos Constantinides. Aspect-
oriented Reverse Engineering. Proceedings of the 9th World Multi-
conference on Systemics, Cybernetics and Informatics (WMSCI 2005),

Orlando, Florida, USA, 10th-13th July, 2005.

Amir Abdollahi Foumani and Constantinos Constantinides. Reengi-
neering Object-oriented Artifacts by Analyzing Dependency Graphs
and Production Rules. Proceedings of the 9th TASTED International
Conference on Software Engineering and Applications (SEA 2005).

pp-335-343. Phoenix, AZ, USA, 14th-16th Novermber, 2005.

Martin Fowler. Refactoring-Improving the Design of FExisting Code.

Addison-Wesley, 1999.

102

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. De-

[Gra02]

[Groa]

[Grob]

[GSMD]

IBM]

[Ker04]

[Lar04]

sign Patterns-Elements of Reusable Object-Oriented Software: Profes-

sional Computing Series. Addison Wesley, 1995.

Mark Grand. Patterns in Java: A Catalog of Reusable Design Patterns

Hllustrated with UML. Wiley, second edition, 2002.

Object Management Group. The Model-Driven Architecture. The

Model-Driven Architecture, Guide Version 1.0.1. 6th January, 2003.

Object Management Group. MOF 2.0/XMI Mapping Specification,

Version 2.1. 1st September, 2005.

Pieter Van Gorp, Hans Stenten, Tom Mens, and Serge Demeyer. Formal
UML Support for the Semi-automatic Application of Object- Oriented

Refactorings. Technical Report, University of Antwerp, 2003.

Working XML: UML, XMI, and Code Generation, Part 2. http:
//www-128.ibm.com/developerworks/library/x-wxxm24/. Date last

accessed: 5th March, 2007.

Joshua Kerievsky. Refactoring to Patterns. Addison Wesley, 2004.

Craig Larman. Applying UML and Patterns. An Introduction to Object-
Oriented Analysis and Design and Iterative Development. Addison-

Wesley, 2004.

103

[MDB]

[met]

[MTF]

[PFC]

[Pos|

Tom Mens, Serge Demeyer, Bart Du Bois, Hans Stenten, and Pieter Van
Gorp. Refactoring: Current Research and Future Trends. ETAPS 2003
Workshop on Language Descriptions, Tools and Applications. Warsaw,

Poland, 5th-13th April, 2003.

Metrics 1.3.6 - Getting started. http://metrics.sourceforge.net.

Date last accessed: 15th March, 2007.

Tom Mens and Tom Tourwe. A Survey of Software Refactoring. I[EEFE
Trans. on Software Engineering. Volume: 30, Issue: 2, pp.126-139.

February, 2004.

AlphaWorks: Model Transformation Framework: Overview. http://
www.alphaworks.ibm.com/tech/mtf. Date last accessed: 5th March,

2007.

Paria Parsamanesh, Amir Abdollahi Foumani, and Constantinos Con-
stantinides. Mining Anomalies in Object-Oriented Implementations
Through Execution Traces. Proceedings of the International Confer-
ence on Software and Data Technologies (ICSOFT), Setubal, Portugal.

11th-14th September 2006.

Gentleware - Model to Business: UML Tools and Services. http://

www.gentleware.com. Date last accessed: 5th March, 2007.

104

[Rob]

[RSA]

[RVR+]

[SPTJ]

[umb)

[W3C07]

Donald Roberts. Practical Analysis for Refactoring. PhD thesis, Uni-

versity of Illinois at Urbana-Champaign, 1999.

Rational Software Architect - Features and Benefits. http:
//www-306.1ibm. com/software/awdtools/architect/swarchitect/
features/index.html1?S_CMP=rnav. Date last accessed: 15th March,

2007.

Alejandro Ramirez, Philippe Vanpeperstraete, Andreas Rueckert,
Kunle Odutola, Jeremy Bennett, Linus Tolke, and Michiel Van Der
Wulp. ArgoUML User Manual: A Tutorial and Reference Description.

Version 0.22. 2006.

Gerson Sunye, Damien Pollet, Yves Le Traon, and Jean-Marc Jezequel.
Refactoring UML Models. Proceedings of UML 2001 - The Unified
Modeling Language. Modeling Languages, Concepts, and Tools, Vol-

ume 2185 of LNCS. Springer, pages 134-148. 2001.

Umbrello UML Modeller. http://uml.sourceforge.net/index.php.

Date last accessed: 5th March, 2007.

W3C. XSL Transformations (XSLT) Version 2.0, 23th January, 2007.

105

