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ABSTARCT

INTEGRATED CONDITION ASSESSMENT MODELS FOR SUSTAINABLE
SEWER PIPELINES
Fazal ur Rehman M Chughtai

The Federation of Canadian Municipalities (FCM) reported that approximately
55% of sewer infrastructure in Canada did not meet current standards. Therefore, burden
on Canadian municipalities to maintain and prioritize sewers is increasing. One of the
major challenges is to develop a framework to standardize the condition assessment
procedures for sewer pipelines. Lack of detailed knowledge on the condition of sewer
networks escalates vulnerability to catastrophic failures. This research presents a
proactive methodology of assessing the existing condition of sewers by considering
various physical, environmental, and operational influence factors. Based on historic data
collected from two municipalities in Canada, structural and operational condition
assessment models for sewers are developed using multiple regression technique. These
models are utilized to generate deterioration curves for Concrete, Asbestos Cement, and
Polyvinyl Chloride (PVC) sewers.

A combined condition index (CCI) for sewers is developed, which integrates the
combined effect of structural and operational conditions. The CCI is divided into 5
condition categories, ranging from “Acceptable” to “Critical”. It is developed based on
integrating the two major sewer condition assessment protocols adapted in Canada: WRc
(Water Research Centre, UK) and CERIU (Centre for Expertise and Research on
Infrastructures in Urban Areas, Canada). Unsupervised, self-organizing, neural network

approach is used in order to develop the CCI and the integrated protocol.
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The developed regression models show 82% to 86% accuracy when they are
applied to the validation data set. The CCI and integrated protocol are verified by
municipal practitioners and experts of the CERIU sub-committee for developing a unified
sewer condition assessment system. Based on the developed models, a web-based sewer
condition assessment tool, coded in Java (version 5’.0), is developed to predict structural
and hydraulic conditions as well as the CCI.

The developed models will assist municipal engineers in identifying critical
sewers, prioritizing sewer inspections, and developing a unified sewer condition

assessment system.
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Chapter 1
INTRODUCTION

1.1 Overview

With an aging underground infrastructure, the burden on municipal agencies to
prioritize and maintain the rapidly deteriorating underground utilities is increasing (Najafi
et al 2005). This deterioration of underground infrastructure, such as sewers, poses a
serious problem to most developed urban centers (Moselhi et al 2000). Sewer is a conduit
(pipe or tunnel) that collects and transports waste and storm water. If a sewer’s function
is to transport waste water only, it is called sanitary sewer. Sanitary sewer collection

systems are an extensive and vital part of any nation’s infrastructure (Kulandaivel, 2004).

In Canada, the average age of sanitary sewer system is reported to be 42 years. In
particular, about 20 percent of existing trunk sewers (large diameter sewers) have been in
service for more than 50 years (Zhao, 1998). Moreover, a report released by the
Federation of Canadian Municipalities (FCM) suggests that nearly 55% of Canada’s
water and wastewater infrastructure can be classified as not meeting current standards

(Allouche et al 2002).

Although major part of infrastructure deterioration is attributed to aging, age
related deterioration of sewer is unclear (Fenner, 2000). Influence factors such as
surrounding soil conditions, hydraulic overloading, corrosion, etc, could accelerate the
rate of deterioration of sewers. A major problem in assessing the condition of sewers is
the lack of detailed knowledge about pipeline degradation process. Being covered with

soil, the condition of buried pipelines cannot be directly and easily monitored (Kathula,
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2000). Thus, deteriorating sewers leave communities vulnerable to unexpected
catastrophic failures that disrupt not only sewer service but also above ground activities.
These failures are difficult to avoid if the cities are unaware of their network’s condition
(Hahn et al 2000). As a consequence, many municipalities all around the world have been
spending a huge amount of their budget on emergency repairs of sewers. The need for
emergency repairs of buried pipes can be significantly reduced if critical sections could
be identified and repaired before a catastrophic failure occurs. As a result, the utilization

of funds can be optimized to dramatically reduce the overall cost of maintenance

(MacLeod et al 2000).

In short, effective functioning of sewer network system is extremely important for
municipal agencies (Grigg et al 1994). This requires an appropriate maintenance and
management system (Hasegawa et al 1999), and valid condition assessment is the key for

developing this system (Fenner, 2000).

1.2 Current Approaches

Different sewer management approaches have been adapted by different municipal
agencies all across the world. The basic theme of all these approaches is to develop an
ideal asset management plan which can prioritize maintenance and rehabilitation of
pipeline networks. This involves (Kulandaival, 2004):

* Routine and systematic inspections for sewer structural and hydraulic condition

assessment

= Establishment of a standard condition rating system

= Developing and updating prediction models for sewer conditions



The importance of assessing the condition of sewer pipes led to the development of
new techniques for inspection of the buried infrastructure. A closed-circuit television
(CCTV) camera was first introduced in the 1960s (Reyna et al 1994). Later on, new
technologies like laser based scanning and ultrasound inspection systems were introduced
(Wirahaikusumah et al 2001). Nevertheless, CCTV inspection remains to be the most
commonly used technique (Makar, 1999).

The second aspect of sewer management plan is the establishment of standard
condition rating protocols or system. Generally, these protocols consist of some weighted
factors which are used to grade the severity of a sewer’s condition. These weighted
factors have been developed by many institutions all across the world. The first sewer
condition assessment protocols were developed by Water Research Centre (WRc), UK in
1978 (Thornhill et al 2005).

The third part of sewer management approach consists of developing and updating
condition prediction tools for prioritizing detailed inspection. Many tools have been
introduced to assist municipal engineers for optimizing decision regarding infrastructure
inspection and condition assessment. Current decision tools are largely in the form of
general guidelines where distress indicators observed in the asset are translated into asset

condition state (Kleiner, 2001).

1.3 Problem Statement

The current sewer management practices have some limitations. Therefore, there
is an urgent need to address these issues for standardizing the current sewer condition

assessment process. The limitations associated to current practices are described below:



1.3.1 Limitations of Inspection Techniques for Condition Assessment

There are three major limitations associated to the inspection techniques for sewer

condition assessment:

» Random inspections of sewers for condition assessment are expensive (Zhao,
1998). As a consequence, the adoption of current sewer inspection methods has
become practically impossible for a majority of Canadian municipalities, and only
22% of the Canadian municipalities have a complete condition assessment
program (Rahman et al 2004).

» The inspection process is highly dependent upon the skills of the inspector and the
quality of the equipment used. A small error in observation could generate
erroneous results. Therefore, the process may lead to diagnostic errors due to lack
of concentration and/or experience of inspector (Shehab-Eldeen, 2001).

» The current inspection practices are very time consuming, and a very huge
amount of data is involved for the mangers for analysis. Therefore, the process is
considered tedious by most engineers and practitioners (Shehab-Eldeen, 2001).

The limitations mentioned above can be minimized by adapting an alternate approach to
random inspection of sewers. This approach should suggest solutions for prioritizing
sewer inspections to critical sewers. Thus, the undesirable use of resources could be

minimized.

1.3.2 Lack of Unification of Sewer Condition Assessment Protocols

Although WRc protocols are in wide usage in many municipalities across Canada,
many sewer condition assessment protocols have been developed. As can be seen, it is

difficult for a municipality or utility to select amongst the available protocols. Therefore,
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there is an urgent need of developing a unified sewer condition assessment system for

Canadian municipalities and utilities (Rahman et al 2004).

1.3.3 Limitations of Condition Prediction Tools

There are numerous documented studies that focus on various aspects of drainage
systems including different methodological approaches to predict the condition of sewers
(Ruwanpura et al. 2004). However, there is an urgent need of an integrated and easy to
use approach towards condition prediction. Moreover, current research mainly
emphasizes upon structural condition prediction; nevertheless, an existing sewer’s
performance also depends upon its hydraulic, or commonly known as operational,

condition.

1.4 Research Objectives

The objective of this research is to develop a methodology that could facilitate the
standardizing of the current sewer pipeline condition assessment process. The objective
can be divided into the following sub-objectives:

¢ Develop structural condition prediction model for sewers

e Develop operational condition prediction model for sewers

¢ Build deterioration curves for sewers

e Propose a technique for unification of sewer condition assessment protocols

s Design a combined condition index (CCI) through integration of structural and

operational conditions of sewers; thus, help decision makers in visualizing a

complete picture of a sewer’s condition



e Develop an automated web-based sewer condition prediction tool by utilizing the
findings of this research to facilitate municipal personnel for planning future

sewer inspection needs

1.5 Research Methodology

The methodology of current research consists of different steps. The detailed description
of the research methodology will be presented in chapter 3. The main steps include:

» Literature review

» Comparison of different sewer condition assessment protocols

» Data collection and pre-processing
Development of sewer structural and hydraulic condition prediction models
Development of structural and operational deterioration curves

Development of integrated sewer condition assessment system protocols

YV VWV VWV VvV

Design a combined condition index (CCI) for sewers which should integrate
structural and hydraulic condition rating of sewers

» Development of web-based automated condition prediction tool

1.6 Thesis Organization

Chapter 2 presents literature review of different types of sewer pipes, major
factors which affect a sewer’s structural and operational condition, different sewer
inspection techniques for condition assessment, historical background of sewer condition
assessment protocol development, an overview of two major sewer condition assessment
protocols, different adapted research techniques for sewer management system, and an

overview of the two techniques which have been adapted in this research.



Chapter 3 provides an overview of the proposed research methodology. This
includes a brief introduction and layouts for building sewer condition prediction models,
development of combined condition index (CCI) for sewers, and web-based condition
rating program.

Chapter 4 describes the data collection and pre-preparation procedures in detail. It
illustrates an overview of different assumptions which were made during data pre-
processing. The descriptive statistics and histograms of collected data are also presented.

Chapter 5 illustrates the sewer condition assessment regression models design and
validation processes. The different statistical checks and diagnostics applied during the
process have been discussed in detail. The summary of results is also tabulated.

Chapter 6 proposes a methodology to convert CERIU (Centre for Expertise and
Research on Infrastructures in Urban Areas) sewer condition assessment protocols into
WRc and vice versa. The methodology verification process is also presented. The
proposed methodology of development of combined condition index (CCI) for sewers is
presented. The clustering process of structural and operational condition grades through
unsupervised neural network is presented in detail.

Chapter 7 describes a methodology of developing a web-based decision support
system for condition prediction of existing sewers. The step by step process of the web
application is illustrated.

Chapter 8 presents conclusions, limitations of the research, research contributions,

and recommendations for the future research work.



Chapter 2
LITERATURE REVIEW

2.1 Overview

The literature review of this research covers six main sections as shown in Figure 2-1:

Literature Review

Materials

Sewer Pipes Deterioration

w

p
Influence Factors

L o] forasewer's |——» Structural Condition

Operational Condition

Condition )
4 y
_ | Sewer Inspection
" Techniques
\ J

- — \
Sewer Condition Historical Development
—»- Assessment WRc Protocols

Protocols ) CERIU Protocols

Research
—»{ Techniques in
| Sewer Management)

a ) Regression Analysis
An Overview of » Self-Organizing Neural
Applied Techniques Networks

Figure 2-1: Chapter 2 Content Diagram



As illustrated in Figure 2-1, a detailed review of all aspects of sewer pipeline networks
has been presented. The first section covers a review of different types of sewer pipe
materials, their characteristics, and their deterioration phenomena. The second section
describes the major factors which affect a sewer’s structural and operational condition.
The third section presents an overview of different sewer inspection techniques for
condition assessment. Fourth section illustrates a history of sewer condition assessment
protocols development. This section further presents an overview of two major sewer
condition assessment protocols which have been adapted in Canada.

The fifth and sixth sections deal with the different adapted research techniques for sewer
management system. The fifth section represents a review of all major techniques which
have been utilized in the past by researchers for finding solutions to different sewer
management problems. The sixth and last section presents an overview of the two

techniques which have been adapted in this research.

2.2 Sewer Pipes

Sanitary sewer system can be divided into two main categories: trunk and regular sewers.
Trunk sewers are typically used to intercept regular sewers, and receive and transport
sewage to a few central places, such as treatment plants or discharge points on river
banks. These sewers vary in size, and are installed along or deeper than other buried
utilities. The minimum recommended diameter of these sewers has been classified
differently by different protocols and is dependent upon local administrative requirements.
NASSCO (National Association of Sewer Service Companies, USA) defines sewers with
diameter 686mm (27 inch) or more as trunk sewers (Zhao, 1998). The other category of

sewers, regular sewers, is usually designed for collection of sewage from end users
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(residential, commercial, and industrial). The minimum recommended size by many

Canadian municipalities for this type of sewer is 200mm.

2.2.1 Pipe Materials

There are different pipe materials available for sewer system, each with unique
characteristics and is used in different conditions. Until 1850, sewers were generally
constructed by bricks. Although some sewer systems still contain brick sewers, very few
are left (Kulandaivel, 2004). Now there are several types of sewer pipe material available.
The choice of sewer pipe material depends upon several factors. The main factors include
(ACPA, 1980):

» Physical strength

» Cost of material and availability in required sizes

» Ease of handling, installation, maintenance, and repair

» Flow characteristics (Friction Coefficient)

» Resistance to abrasion, corrosion, acids, alkalis, gases, and solvents
In general, sewer pipe materials can be divided in two categories depending upon their
behaviour towards load carrying capacity (Peggs, 1985), and are shown in Figure 2-2.
Furthermore, Figure 2-3 represents the distribution of different pipe materials in Canada.
A brief description of these categories is as follows:
(i) Rigid Pipes: Pipe materials in this classification derive a substantial part of their basic
earth load carrying capacity from the structural strength inherent in the rigid pipe wall.
Commonly specified rigid pipe material includes (ASCE, 1992) asbestos cement,

concrete, cast iron, and vitrified clay.
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Asbestos cement pipe composed of a mixture of Portland cement and asbestos fibre and
is manufactured in such a way that a very strong bond exists between cement and
asbestos fibres (McGhee, 1991). The concrete pipes can be further classified into two sub
categories: plain and reinforced concrete pipes. Reinforced and pre-stressed concrete

pipes are used for pressure and gravity sewers (ASCE, 1992).

Sewer Pipe Classification

Y !

Rigid Flexible
Asbestos .
= Cement - Ductile Iron
= Concrete -] Fabricated Steel
| Vitrified Clay 1 Polyethylene
Polyvinyl
| Cast lron .- Chloride

Figure 2-2: Commonly Used Sewer Pipe Material Classification
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Cast iron has been used for both gravity and pressure sewers, although recently ductile
iron pipe has been specified in its place (Butler et al. 2000). Vitrified clay pipes are
composed of crushed and blended clay that are formed into pipes. These pipes are then
dried and fried in a succession of temperatures. These pipes have been used for hundreds
of years (Kulandaivel, 2004).The main advantages and disadvantages of all these pipe

materials are described in Table 2-1 (Adapted from ASCE 1970 & 1992).

Brick{Stone
~ 3%

Cmcr&ie_w
41% o
wPVC
Y 22%
. PE
5%

Vitrified Clay P\ Asbestos-
16% - Cemen
Other Cement
3% 1099

Figure 2-3: Distribution of Sewer Pipe Martials in Canada (Allouche et al 2002)

(ii) Flexible Pipes: Pipe materials in this classification drive their load carrying capacity
from a combination of the inherent strength of the pipe and through the side support of
the surrounding soil (Butler et al 2000). Commonly used flexible sewers include ductile
iron, fabricated steel, Polyethylene (PE) and Polyvinyl Chloride (PVC).

As mentioned above, ductile iron pipes are considered to be a replacement for cast iron
pipes. Not only ductile iron pipe has all the cast iron pipe’s properties, but also it has an
ability to deform without cracking. Fabricated steel pipes are available in different

varieties; such as, corrugated steel pipes, arches and galvanized corrugated arch pipes
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(ASCE, 1992). Polyvinyl chloride (PVC) and polyethylene (PE) are forms of plastics,

and are obtained through the process of polymerization. These pipes are used both for

gravity and pressure sewers. The advantages and disadvantages of all the flexible pipes

are also shown in Table 2-1.

2.2.2 Sewer Pipe Deterioration

Pipe deterioration is a very complex process and related to various pipe characteristics

(Yan et al 2003).

Table 2-2: Sewer Pipe Deterioration Factors Considered by Some Researchers

Country/Area | Research Reference Sewer Deterioration Factors
Location, Soil Type, Pipe Depth, Size,
McDonald et al 2001
Type of Waste, Seismic Zone
Canada
Ariaratnam et al 2001 | Age, Diameter, Material, Depth
Ruwanpura et al 2004 | Age, Material, Length
Abraham et al 1998 Location, Traffic Loads, Pipe Size
US Yan et al 2003 Age, Diameter, Material, Depth
A
Length, Diameter, Material, Age, Depth,
Najafi et al 2005 )
Gradient
European Age, Material, Length, Diameter, Type of
Rutsch et al 2000 )
Union Soil, Ground Water Level
Age, Material, Location, Diameter,
Germany Baur et al 2002 )
Gradient, Type of Waste
Material, Diameter, Soil Condition, History
Norway Rostum et al 1999 .
of Failure
Age, Material, Depth, Ground Water
Japan Hassegawa et al 1999 | Level, Soil Properties, Proximity of Other
Underground Installations
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Although sewers are designed for a particular lifespan under standard operating condition,
their deterioration never follows a set pattern (Najafi et al 2005). Researchers all around
the world have been working on analyzing the effects of different sewer attributes on its
deterioration, and different factors have been considered as major factors. Some of the
important research history regarding factors influencing sewer deterioration is shown in
Table 2-2. Table 2-2 shows that pipe attributes, such as age, size, material, length, size,
and environmental attributes, such as type of surrounding soil, water table and proximity

of other underground installations are important factors.

2.3 Factors Affecting Sewer Pipeline Condition

It is clear from the previous discussion that there are several factors which should be
taken into account for the assessment of sewer pipeline condition. In general, sewer
collapses are caused by structural and hydraulic failures (Abraham et al 1998). The
structural failures depend upon the existing structural condition of sewers. The hydraulic
failures depend upon a sewer’s operational condition; which describes the capability of a
sewer pipe to meet its service requirements and indicates the loss of capacity, potential of

blockage and water tightness.

2.3.1 Factors Affecting Sewer’s Structural Condition

Three types of factors, physical, functional and environmental, can influence the
structural condition of sewer pipes. The physical factors comprise of the general pipe
characteristics such as its length, diameter etc. While the functional factors deal with the
adapted operational and maintenance strategies for network management. The third

category is concerned to certain environmental factors directly influencing a pipe’s
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criticality and deterioration. These factors include type of surrounding soil, traffic volume

above pipe etc.

Table 2-3: Factors Affecting Existing Sewer’s Structural Condition

Factors Explanation
Pipe in longer length and having greater length to
Pipe Length | diameter ratio are more likely to suffer from bending
stresses
Pipe Diameter Srpall diameter pipes are more susceptible to beam
failure
= | Pive Material Pipes manufactured with different materials show
2 P different failure patrons.
_E Age More probability of collapse for aged pipes
If the depth is very low, the pipe is susceptible to
surface live load. If depth is high, the pipe is susceptible
Average Depih to overburden. Moderate depths increase the life of
sewers
Pipe Gradient Steeper slope§ of pipe cause high flow velocity which
increases erosion phenomena
= Good maintenance and repair strategies increase the
s .
E M&R service life of sewers
2 Strategies
=
Type of waste lefer.ent pres ‘of waste react with c¥1ffer§nt pipe.
materials in a different manner causing pipe erosion
Ground Water Groundwater can cause infiltration, which washes soil
particles and reduces the soil support along the pipe
—_ _ Different types of soils provide side supports to pipes
*g Type of Soil according to their own physical and chemical properties
]
E Bedding The chance of pipe failure increases with improper
e Conditions bedding condition of pipes
= The load on buried sewers increases due to additional
2 Frost Factor o
= frost load in winter
o Proximity of other underground installations increases
Other Utilities | the criticality of a sewer
Traffic Volume The bend.mg' stresses in the pipe increase with the
increase in live load above pipe
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Table 2-3 (Adapted from Barqawi, 2006 & Kulandaivel, 2004) shows these factors in
detail. Based on the literature review the table also explains how these factors contribute

in pipeline structural deterioration phenomena.

2.3.2 Factors Affecting Sewer’s Operational Condition

There are several factors which could deteriorate the over all operational condition of
sewers causing over flows. These factors can be divided into two categories (May et al.
1998): non-hydraulic and hydraulic.

Non-hydraulic problems are generally defined as those deficiencies in sewer performance
which are not due to lack of flow capacity within the sewer system. As shown in Figure
2-3 (May et. al 1998), these problems are uncertain; for example, random blockage of
flow due to some object or pumping station failure etc. However, some factors such as
structure condition of a pipe are more likely predictable. The structural condition of a
sewer affects directly on its flow capacity. Older pipes have rougher inner surface, more
structural cracks, and deformations. These results in more debris and reduction in
diameter due to deformation, as well as problems related to the infiltration phenomenon.
A pipe’s structural condition further depends upon many factors (Table 2-3). Therefore,
all these factors directly or indirectly have an influence on the operational condition of
sewers. Further, non-hydraulic problems are greatly dependent upon the operational and
maintenance strategies and history. Routine maintenance and repair programs could
increase the service lives of sewers.

Hydraulic problems occur when a sewer is not adequate enough to sustain high volume of
flow. The causes of these problems could be faulty design for pipe size and its gradient.

Pipe size includes its diameter and length. Larger diameter pipes can accommodate larger
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volume of flow. Similarly, longer lengths of pipe mean less bends to accumulate debris
creating blockage (Kulandaivel, 2004). Another major hydraulic factor is infiltration
(Abraham et al 1998) and inflow. Infiltration occurs when groundwater enters a sewer
system through broken pipes, defective pipe joints, or illegal connections of foundation
drains; while inflow is surface runoff that enters a sewer system through manhole covers

and exposed broken pipe.

Sewer Operational Condition Influence Factors

Non-
Hydraulic
Random Inadequate Flow
Blockage Capacity
Debris, Fats,
—#| Greases and —T> Infiltration
Roots
Pumping Station/
—»i Screening Equipment ) Inadequate
Faliure Sewer Gradients
Operational &
® Maintenance History

Figure 2-4: Major Factors Affecting Sewer Pipeline Operational Condition
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2.4 Inspection and Evaluation of Existing Sewers

Sewer inspection and evaluation are routine tools for the municipal agencies. The first
method of inspecting pipelines was developed during the aftermath of Second World War
(Allouche et al 2002). Since then, several inspection techniques have been developed to

evaluate existing condition of sewers.

2.4.1 Inspection Objectives

There are three main objectives of inspecting sewers (Adapted from Butler et al 2000):
1) Periodic inspection to assess the condition of existing sewers
2) Crisis inspection to investigate emergency conditions or the cause of repeated
problems along a particular sewer length
3) Inspection of workmanship and structural condition of new sewers before

adoption

2.4.2 Sewer Inspection techniques

There are various sewer inspection techniques that are used for condition assessment of
sewers and can be classified into three different groups (Makar, 1999). An overview of
this classification is illustrated in Figure 2-4 (Adapted from Makar, 1999). The first group
consists of techniques that determine the internal condition of a sewer. The commonly
used examples for this group are closed circuit television (CCTV) inspections and sewer
scanner and evaluation technology (SSET). The second group examines the overall
condition of sewers and the surrounding soil. The last group detects specific problems
within or behind a sewer wall (Kulandaivel, 2004). Among all the inspection techniques,

CCTV inspection remains to be the mostly used technique (Makar, 1999). Table 2-4
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(Adapted from Makar, 1999 and Kulandaivel, 2004) presents a brief summary of
commonly used inspection techniques for assessing the existing condition of sewers. IT
suggests the most appropriate usage of different techniques, and illustrates the important

advantages as well as disadvantages of these techniques.

Inspection Techniques for Sewer
Pipeline Condition Assessment

l ! !

Inner Surface Pipe’s Structure/ Bedding Material
Inspection Bedding Inspection
Inspection

Ground
Penetrating
Radar

Micro-
cerv Deflections
Natural

Zoom
Camera

Impact Echo

Laser
Scanning

Figure 2-5: Inspection Techniques for Sewer Pipeline Condition Assessment

20



I¢C

guippaq surppaq sadid Iepey
oAlsuadxa u1 $300[qo I9Yj0 pue SH201 Ul JUSJUOD JaJeM paiiy Aqpented | Sunensusd duippag
arow ‘synsai jo uonejaidisyug ‘SPI0A ‘UOIIBI}IJXS JO U01)312(] ‘odid punoure sprop pue Aidwy punoin
$309J2p [enpIAIpUl SIOMDS UOTJR[IJXS
o1e00] Jou saop uawdinbe 9]210U0d pue YoLiq 10} poo3 | ‘UoiSai YorID ‘UOIPUOD stamas | ooy joedui]
pareiedo Ajjenuey ‘s10MaS pulyaq sploa 530039 | adid pue [10s paulquio)) 1ajowelp 931e]
Zuiues|d 1omas y)Sua| a1nua Sui[aaen uonen|1JXa Surppag
) < . . < ¢ ) mcomwm.mn_:/
alow saitnbai ‘umouyun mnoypm Audajul [erngongs | ‘uordag yorId ‘UoiIpuod ’ JERLIVR) (BTN
[einjeN
uonIpuod Juippaq Jo 19349 s.adid sainseow Apoan( | adid pue jros paurquio)) s1amas Aidwyg adig
ALgaut jeangonas s adid
; : ; Suo1oa[jop
$109J2p [enpIAIpuUl saInseaw A[J021Ip ‘UOIIPUOd yiSua13s
S91B90 ‘K did p13 3 A did p18 “ORIN
| JOU “AJUO Sadld pisiy UIppaq Aq pa1o9jje 10N [BOLUBLDSU [[RIDAQ sadld pIsiy
SISA[eue
aalsuedxe siouwl ‘AIessaosu peseq 19ndwods ‘aul] Jojem oSewrep yolIq sodid | punosen|n
Iomas Jo Surues|ds aA1sualxy | mojaq pue oaoqe 109Jop saInseajy | ‘Uoisoso ‘uoneunioje | popooy 031 Adwy
JUsWaINSBOUI SuonRULIOJOP sadid 3
: ‘ urgueog
Anowioag pue 109J9p 9jeIndde ‘syot1q Suissiw pa[[y Ajjerred oSt
Soul| Jojem 3A0QR SHIOM AJuQ ‘sisA[eue paseq 1oindwo)) | ‘uoisols ‘SyorIO 90BJING pue Adwyg 1
ALDD Uey) 9jeindoe . ALDJD KoeInooe 19mo[ sadid BIOWE)) JdelIns
sso[ are synsa1 ‘adid e uey) Jadeayo ‘uonoadsur a10joq A 10 ) paiiy Ajjenred oo
Jo y1Sua] ajoym IoA00 Jouue)) |  peainbex st Surysnyy/Suruea[o oN NG ALDD SV pue Adwg Z fouu]
soyoul
uorjeunioyep adid jo Koeinooe Jay3Iy $7 01 g woy 14SS
oarsuadxyg |  juswdpn(l pood ‘Aoeinooe JoUSIH M Inq ALDD sV | Ierowelp Jo sadid
JISU| 21U ageyoo[q ‘uonenjyur sadid
synsa1 jo uonejdisjur | sojenjead ‘ojqejreae AJises ‘desyo |  ‘UO0ISOI ‘SUOBULIOJOP pajLy Ajented ALDD
‘S109Jop USpply SSIw ABIA AjoAtzejal ‘enbiuyoe) prepuelg ‘syjorlo 9oBLING pue Adwy
sagejueApesl sagejueA SUO01199)9(] UOUIIO ages anbruyos dno.s
jueApesiq juBApy 19319 J n g L, uonoadsuy

onbruyos ], uonoadsu] Jamag pas) A[uouro)) jo uostredwio) v p-g dqe L




2.5 Sewer Pipeline Condition Assessment Protocols

2.5.1 Introduction

Sewer defect coding has become of paramount importance for the worldwide sewer
rehabilitation industry to ascertain critical information regarding the underground
infrastructure (Thornhill et al 2005). The historical background of the development of
sewer defect codes or condition assessment protocols goes back to 1977; when for the
first time, sewer defect codes were developed by Water Research Centre (WRc) UK. The
first manual for sewer condition classification was published by WRc in 1980. On the
basis of the guidelines provided by WRc, several condition assessment protocols were
developed through out the world during the past twenty five years. These developments
are illustrated in Figure 2-5 (Developed from Thornhill et al 2005).

The WRc sewer condition assessment protocols are accepted world wide, including
Canada. In Canada, North American Association of Pipeline Inspectors (NAAPI), Centre
of Advanced Trenchless Technologies (CATT), and many municipal agencies have
adapted the WRc sewer defect coding techniques. However, National Research Council
(NRC) of Canada has introduced its own coding and grading system. Nevertheless, NRC
Coding system is strongly based upon WRc theory. In the Province of Quebec, CERIU
(Centre for Expertise and Research on Infrastructures in Urban Areas) with the help of
BNQ (Bureau de normalisation du Québec) developed their own sewer defect codes in
1997. The CERIU codes have been adapted by most of the municipalities in the Province.
As a consequence, WRc and CERIU protocols are the two basic sewer condition

assessment codes which have been adapted by most of municipal agencies in Canada.
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1% Sewer Condition Assessment Protocols in History by WRc UK
(1977)

!

WRc Sewer Codes
Revision 1 & 2

I (1980 & 1988)

Australian Conduit
Condition Evaluation

Manual (1991)
CANADA
WRc Sewer Codes o NAAPI 1997
Revision 3 o CERIU 1997
(1993) e NRC
e City of Edmonton
———————¢ City of Winnipeg
NASSCO USA
2003
»! Euro Codes
WRc Sewer Codes (2003)
Revision 4
(2004)

Updated Australian Conduit

Condition Evaluation M |
ondiion ;%(l)jg ton Manua  ¢———teip] SOUth East Asia

(2004)

New Zealand Pipe Inspection .
Manual 2006 < »| India (2004)

Figure 2-6: An Overview of the Historical Background of Sewer Defect Codes

Development

2.5.2 WRc¢ Condition Assessment Protocols:

According to SRM (Sewerage Rehabilitation Manual) 4™ Edition (2004) of WRc, sewer
pipeline defect codes have been divided into two major categories: structural and

operational defects. The structural and service condition rating is generated from the
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number and severity of defects for each pipeline. Severity or criticality scores have been
allocated in accordance with the general principles outlined in Table 2-5 (Developed
from New Zealand Water and Waste Water Association (NZWWA, 2006).

Table 2-5: WRc Defect Scores General Guideline

Criticality

Description
Code

Light Defects: Defects which should not cause any problem in
L the near future (10 years or more). (e.g. for Structural Grading;

Defect Score is < 10)

Medium Defects: Minimal short term failure risk; however no
M urgent action is required (e. g. for Structural Grading: Defect

Score is from 10 to 25).

Severe Defects: Immediate risk of failure or severe loss (e. g. for

Structural Grading: Defect Score is > 30).

An overall sewer condition grade for the whole pipe segment is identified by a number
from 1 to 5 (WRc, 2004); the overall condition grade is also called as Internal Condition
Grade (ICG).These numbers determines the probability of collapse and are illustrated in
table 2-6:

Table 2-6: The Severity of WRc Condition Grades (Developed from WRc, 2004)

Condition
Description
Grade
1 Acceptable Condition
2 Minimal Collapse Risk but Potential for Further Deterioration
3 Collapse unlikely but Further deterioration likely
4 Collapse Likely in Near Future
5 Collapse Imminent or Collapsed
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WRc also defines Internal Condition Grades (ICG) in terms of criticality and
rehabilitation requirements which are tabulated in Table 2-7.

Table 2-7: WRc Condition Classification as per Criticality and Rehabilitation Priority

Condition Grades | Criticality Code | Rehabilitation Priority
1 L Not Required
2 L Low
3 M Medium
4 S High
5 S Immediate

Internal Condition Grade (ICG) is determined by a defect score calculation that is based
on various defects in a pipe segment. The value, or weight, for each defect is assigned,
and the impact of the defect on the service life and performance of the sewer pipe
segment is determined. The total score represents the summations of all deduct values
while the peak score represents the highest deduct value in the pipe segment. The mean
score reflects the overall condition of a pipeline and is the average of defect scores per
meter of pipeline (NZWWA, 2006). The mean score can be determined by the formula in

equation 2-1.

Z(Deduct Values)  Total Score

Mean Score = =
Length of Pipe Length of Pipe

Equation 2-1

The peak score reflects the magnitude of the worst defects in each pipeline. The peak
score is the maximum defect score for any one meter length of pipe within a pipeline

(NZWWA, 2006).

Peak Score = Maximum Deduct Value Equation 2-2
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(i) Structural Defects

These defects describe the physical condition of a pipe. The defect score assigned to
structural defects depends upon severity of defects and type of pipe material. Table 2-8
shows some defect scores for some common defects in concrete pipes.

Table 2-8: WRc Structural Defect Scores for Some Common Defects (WRc, 2004)

Defect Detail Score Unit
Slight 0.1 Per Joint
Joint Opening Medium 0.5 Per Joint
Large 2 Per Joint
Slight 0.1 Per Joint
Joint Displacement | Medium 0.2 Per Joint
Large 5 Per Joint
Circumferential 1 Per Crack
Crack Longitudinal 2 Per Crack
Multiple 5 Each
Circumferential 8 Per Crack
Fracture Longitudinal 15 Per Crack
Multiple 40 Each
5% 10 Each
10% 30 Each
Deformation 1% % Fach
20% 90 Each
25% 125 Each
30% or More 165 Each
Hole <1/4 Circumferential 80 Each
>1/4 Circumferential 165 Each
Broken Pipe 80 Each
Collapsed Pipe 165 Each
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The defect scores are calculated and on the bases of peak defect score or deduct value, a
single condition grade for the structural condition of pipe is assigned according to Table
2-9.

Table 2-9: WRc Guidelines for Calculating the Overall Structural Condition Grade of a

Sewer Pipe Based upon Peak Score (Developed from NAAPI, 2002)

Overall Structural Condition | Peak Structural defect Score
Grade of a Pipe Segment Found in Segment

1 <10

2 10-39

3 40-79

4 80-164

5 165 & above

(ii) Operational Defects

Operational defects describe the capability of a sewer pipe to meet its service
requirements and indicate the loss of capacity, potential of blockage and water tightness
due to the main factors described in Table 2-10. The individual defect scores for these
most common 6iaerational defects are also tabulated. General guide lines for evaluating
over all operational conditions of pipes are same as described for structural conditions.
As mentioned above, WRc suggests peak scores in determining internal condition grade
(Rahman et al 2004); nevertheless, NAAPI takes into account both mean and peak scores
for evaluating the operational condition grade (Table 2-11).

With the help of all the codes mentioned above, structural and operational condition of a
pipe can be assessed separately. However, WRc does not suggest any condition grading

index for combined structural and hydraulic condition assessment of pipes.
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Table 2-10: WRc Operational Defect Scores for Some Common Defects (WRC, 2004)

Defect Detail Score
Fine 1
Tap 5
Roots Mass < 5% 2
5% - 20% 4
20% + 10
Light 1
Encrustation Medium 2
Heavy 5
5% 1
Debris 5% - 20% 2
(Including Silt & | 20% - 50% 5
Grease) 50% - 75% 8
>75% 10
Obstruction 10
Water Seeping Through Cracks Sipper
Infiltration Water Dripping Through Cracks Dripper
Water Gushing Through Cracks Gusher

LS

Table 2-11: WRc Operational Condition Grade for a Sewer Pipe (NAAPI, 2002)

Overall Operational Peak Operational Mean Operational
Condition Grade for a | defect Score Found in | Defect Score of the
Pipe Segment Segment Segment

1 <1 <0.5

2 1-1.9 0.5-0.9

3 2-49 1-2.4

4 5-9.9 25-49

S >10 >5
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(iii) WRce Construction Codes

In addition to the structural and operational defects, WRc addresses some additional
features which are classified as construction codes. These codes deal with different
features associated with the installation of sewers. These codes are used to identify
encountered, pre-existing construction features; such as, connections, manholes, linings,
etc. These codes are also important, especially for analyzing defective and protruding

service connections affecting the structural and operational condition of sewers.

2.5.3 CERIU Condition Assessment Protocols

CERIU sewer condition classification protocols were developed in 1997 and were revised
through “Manuel de standardization des observations” 2" Edition, 2004. The CERIU
condition classification codes have been adapted by municipalities all across the Province
of Quebec.

Table 2-12: The Severity of CERIU Condition Grades

CERIU
Description
Condition Grade
1 No Intervention, Action Required
2 Action Required but not Major
3 Action Required but Not Urgent
4 Action Required and Urgent
5 Immediate Action Required

CERIU does not suggest overall structural or hydraulic internal condition grade (ICG) for
a whole sewer pipe segment like WRc codes do. On the contrary, CERIU suggests 5

different classes for each structural or hydraulic defect. These numbers consider the
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intervention or rehabilitation requirements as the key factor. Table 2-12 better explains
these condition grades.

100%

87.5%
75%
62.5%

50%

37.5%

25%

12.5%

0%

Figure 2-7: CERIU Division of Sewer Pipe’s Cross-Sectional Area (CERIU, 2004)

In order to judge the severity of the defect, CERIU suggests the methodology of
referencing defects of a sewer pipe by dividing a pipe’s cross-sectional area into eight
equal parts (1/8, 1/4, 3/8,..., 1) and calculating the percentage as 6, 12.5, 25, 37.5%, etc;
thus slightly differs from WRc’s methodology which considers the percentage of cross-
sectional area of pipe directly (5%, 10%, 20%, 25%, etc.). Figure 2-6 illustrates the
CERIU approach more clearly. CERIU addresses the issue of sewer pipeline condition
assessment in four different scenarios; structural defects, hydraulic defects, infiltration,

and junction/connection condition. All of them are discussed below:

(i) Structural Defects

CERIU describes the physical condition of a pipe by classifying each defect in the pipe

individually. The condition class assigned to structural defects depends upon severity of
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the defect and type of pipe. Table 2-13 shows some defect classes for some of the most
common defects in rigid pipes:

Table 2-13: CERIU Structural Detect Condition Classes for Some Common Defects

Defect

Class

Description

Joint Opening

Opening > 12 mm and < 25 mm

Opening > 25 mm and < 50 mm

Opening > 50 mm and < 100 mm

Opening > 100 mm

Joint
Displacement

Displacement < 6% of Pipe Diameter

Displacement > 6% and < 12% of Pipe Diameter

Displacement > 12% and < 25% of Pipe Diameter

Displacement > 25%

Circumferential
Crack

Crack Visible without Any Visible Opening

Visible Opening < 1.5mm

Visible Opening > 1.5mm and <8 mm

Visible Opening > 8 mm and < 16 mm

Visible Opening > 16 mm

Longitudinal
Crack

Crack Visible without Any Visible Opening

Visible Opening < 1.5mm

Visible Opening > 1.5mm and <5 mm

Visible Opening > 5 mm and <10 mm

Visible Opening > 10 mm

Multiple Crack

Multiple Crack Visible without Any Visible Opening

Visible Opening < 1.5mm

Visible Opening > 1.5mm and <5 mm

Visible Opening > 5 mm and < 10 mm

Visible Opening > 10 mm

Deformation

Rigid Pipe Deformation > 6% to < 12.5% of Diameter

Rigid Pipe Deformation > 12.5% of Diameter

Hole

Hole Diameter <25 mm

SO EISE E7 T KV QISR SAE N BV N ISR SR [V S -QRISEE SEE N LV R QUL S ) F G EFSRE SRE

Hole Diameter > 25 mm and < 100 mm & Hole
Diameter < 25% of the Pipe’s Circumference

91

Hole Diameter > 100 mm and > 25% of the Pipe’s
Circumference

(ii) Hydraulic Defects

CERIU describes the capability of a sewer pipe to meet its hydraulic capacity by the main
factors described in Table 2-14. The individual condition classes for these most common

hydraulic defects are also tabulated.
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Table 2-14: CERIU Hydraulic Defect Condition Classes for Some Common Defects

Defect

Class

Description

Roots

Roots Formation on Rim < 12.5% of Pipe Diameter

Roots Formation on Sill <12.5% of Pipe Diameter

Roots Occupying > 12.5% and < 25% of Pipe Diameter

Roots Occupying > 25% and < 37.5% of Pipe Diameter

Roots Occupying > 37.5% of Pipe Diameter

Deposits
(Soft/Hard/
Lime Stone)

Deposits < 6% of Pipe Diameter

Deposits > 6% and < 12.5% of Pipe Diameter

Deposits > 12.5% and < 25% of Pipe Diameter

Deposits > 25% and < 37.5% of Pipe Diameter

Deposits > 37.5% of Pipe Diameter

Grease

Grease < 6% of Pipe Diameter

Grease > 6% and < 12.5% of Pipe Diameter

Grease > 12.5% and < 25% of Pipe Diameter

Grease > 25% and < 37.5% of Pipe Diameter

Grease > 37.5% of Pipe Diameter

Visible
Material

NN R RN O [N e 9| DN

Apparent Trimming < 10% of Pipe Diameter without
collapsing

W

Apparent Trimmed Obstruction on Upper Half Periphery
of Pipe

[ =S

Apparent Trimmed Obstruction Make the Most Vertical
or Slanting Part of Pipe

Apparent Trimmed Obstruction on Lower Half

Periphery of Pipe

Obstructing
Object

Object Little Harmful to Flow

Hydraulic Capacity of Pipe Reduced Due to Obstruction

Hydraulic Capacity of Pipe almost Reduced to Zero Due
to Obstruction

Water Level

Water Depth < 6% of Pipe Diameter

Water Depth > 6% and < 12.5% of Pipe Diameter

Water Depth > 12.5% and < 25% of Pipe Diameter

Water Depth > 25% and < 37.5% of Pipe Diameter

N W =] U (W =] U

Water Depth > 37.5% of Pipe Diameter

(iii) Service Connections

CERIU recognizes three major and most common defects for service connections which
may cause obstruction to flow or loss of hydraulic capacity of whole system. These

defects along with their condition classes are explained in Table 2-15.

32



Table 2-15: CERIU Service Condition Classes for Sewers

Connection
Class Description
Defects
1 Penetration < 6% of Pipe Diameter
. 2 Penetration > 6% and < 12.5% of Pipe Diameter
Connection
. 3 Penetration > 12.5% and < 25% of Pipe Diameter
Penetration
4 Penetration > 25% and < 37.5% of Pipe Diameter
5 Penetration > 37.5% of Pipe Diameter
2 Obstruction > 6% and < 12.5% of Connection’s Diameter
Clogged or
3 Obstruction > 12.5% and < 25% of Connection’s Diameter
Choked
. 4 Obstruction > 25% and < 37.5% of Connection’s Diameter
Connection
5 Obstruction > 37.5% of Connection’s Diameter
5 Connection’s Flow < 60 drops/min (< 6 ml/min or 1
Drinking Glass/Hour)
Flow from
3 Connection’s Flow > 6 ml/min and < 500ml/min
Connection
4 Connection’s Flow > 500ml/min < 10 L/min
5 Connection’s Flow > 10 L/min
(iv) Infiltration

CERIU code deals with infiltration phenomena separately and does not consider it as a
part of hydraulic defects.

Table 2-16: CERIU Infiltration Condition Classes for Sewers

Infiltration
Description
Class
1 Trace of Infiltration
2 Infiltration < 60 drops/min (< 6 ml/min or 1 Drinking Glass/Hour)
3 Infiltration > 60 drops/min (> 6 ml/min and < 500ml/min)
4 Infiltration > 500 ml/min and < 10L/min
5 Infiltration > 10L/min
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Infiltration through service connections and through main pipes is usually dealt
separately by assigning them appropriate condition classes as defined by the code. The

condition classes for infiltration have been defined in Table 2-16.

2.6 Research Techniques in Sewer Management

In order to plan sewer management and maintenance activities more effectively, tools are
required which can prioritize any proactive work by predicting sewer condition and
performance. This requires the development of suitable analytical techniques to analyze
past performance in an attempt to better direct future proactive maintenance activities
(Fenner, 2000). Therefore, different research techniques have been adapted for the
assessment of condition, performance, and deterioration of sewer pipes all around the
world. The theory behind the adoption of these techniques is inspired by the assessment
and deterioration models for pavements and bridges which have been the primary focus
for research in infrastructure systems (Abraham et al 1998). Following are the important

research techniques for sewer management:

2.6.1 Regression Analysis

Regression analysis is a statistical tool for the investigation of relationships between
variables. Usually, the investigator tries to find the effect or some kind of relationship of
one variable upon another/others. The investigator also typically assesses the degree of
confidence that the true relationship is close to the estimated relationship (Sykes, 1986).
Applications of regression analysis exist in almost every field. The common aspect of the
applications is that the dependent variable is a quantitative measure of some condition or

behaviour (Andreu et al 1987).Prediction models currently used for predicting the
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performance of infrastructure system includes regression techniques (Butt, 1994).
However, regression techniques are valid only if the predictive variables can be found

that are related to sewer condition deterioration (Abraham et al 1998).

2.6.2 Deterministic Models

Deterministic modelling procedure consists of mathematical modeling, numerical
simulation, clustering the solutions, and sensitivity analysis (Sumida et al 2001).In
deterministic model development, parameters under consideration are classified
according to their similarities. When historical condition data are not readily available,
the use of deterministic dynamic programming together with a heuristic prediction model
based on expert opinion is suggested (Abraham et al 1998). In short, deterministic
methods may provide general guidelines, but they are inadequate for establishing
accurate water and sewer management decisions. An alternative and more favourable

approach is to be used that essentially simulate a range of potential outcomes (Stengel,

1994).

2.6.3 Logistic Models

Logistic models are a special form of regression models. It is a multiple regression with a
categorical response variable (dependent variable) and explanatory variable(s) which can
be either continuous or categorical (Varela, 2005). Logistic models can be developed for
assessing the condition of existing sewer pipeline network as well as understanding the
deterioration phenomena of the network. Ariaratnam et al (2001) used logistic models to
predict the like hood that a particular infrastructure system could be in a deficient state.

The methodology was illustrated in a case study involving modeling of different
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attributes related to sewer pipes for providing decision makers with a means of evaluating
sewer sections for the planning of future scheduled inspections. The logistic model for
pipe deficiency probability (m) was developed through pipe parameter: pipe age, pipe
diameter, and type of waste. A sensitivity analysis was also performed to validate the
proposed model. However, it was concluded that the model results would only be as good

as the quality of data collected.

2.6.4 Probabilistic Models

Probabilistic models estimate a distribution of values for future condition. By applying
probabilistic model analysis, judgment can be built into estimates (Maze, 2005). The
concept of probabilistic models can be used to determine the probability of a pipe to enter
in a stage; thus calculating the economic life of a pipe (Andreou, 1987). Fenner et al
(2000) developed a probability based model to predict the like hood of sewer failure in a
grid square. The model was based on the analysis of pipe data contained in a series of
grid squares defined by GIS software. A consequence factor was allocated to each grid
square which was based on global and local matrices; which affect the community and
individual customers respectively. These likelihood and consequence values were
combined in a two dimensional risk plot which enabled the identification of “Critical
Grid Squares”

Another probabilistic approach is known as the cohort survival model for urban
infrastructure network which was developed by Herz (1996). Cohorts are defined as a set
of elements installed in the same year with a particular failure probability. The state
survival function of a sewer system specifies the probability of a transition between the

various classes in the form of a Herz distribution curves. Frangopol et al (2004) presented

36



a review of different probabilistic models developed for maintaining and optimizing the
life cycle performance of the deteriorating structures. After analyzing different modeling
approaches, it was found that none of the probabilistic approaches was generally

applicable, and the use of each model was limited to certain extent.

2.6.5 Markovian Models

The basic theory of Markovian modeling is that probabilities involving how the process
will evolve in the future depends upon the present state of the process; therefore,
independent of the processes in the past. Abraham et al (1998) explained the concept of
adaptation of Markovian chain process in deterioration modeling for sewers. To model a
sewer’s deterioration, Markov probability transition matrix could be developed. The
transition matrix P would be a square matrix of order m x m, where m would be the
number of possible states. Therefore, if there were five categories in sewer condition,
then five possible states would be involved in the transition matrix of order 5 x 5. The
components of P, p;; would represent the probabilities of being in state i at the time 0 and
transitioning to state j over a given period At.

Markovian models provide a reliable mechanism for development of prediction models,
and Markov chain can be employed to model stochastic processes (Hillier et al 1995).
However, the model development requires sufficient statistical data for establishing

sound transition probability matrices (Kulandaivel, 2004).

2.6.6 Fuzzy Logic Based Approach

Fuzzy provides a remarkably simple way to draw definite conclusions from vague,

ambiguous or imprecise information (Mills et al 1996). One of the key applications of
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this approach is the transformation of non — mathematical linguistic variables into fuzzy
variables. The main idea is to have an almost direct correspondence between qualitative
data of the rough models and fuzzy values of fuzzy variables. The naming the values of
fuzzy variables using suitable words in our everyday language was developed by Zadeh
in 1975; who created this idea of calling fuzzy variables as linguistic variables
(Bandemer et al 1995).

Yan et al (2003) proposed a method for assessing the condition of pipes by applying
Fuzzy set theory to convert linguistic descriptions of pipe condition indicator into
numerical format. These numerical values of linguistic variables were used to develop a
model that ranked pipes in order of their condition. The main linguistic variables which
were considered in developing the condition assessment model were traffic density and
environmental conditions in the surrounding area of pipe. It was concluded that the use of

Fuzzy theory in pipeline condition assessment would be very helpful for decision makers.

2.6.7 Artificial Neural Networks

ANN (Artificial Neural Networks) is an information processing model that is inspired by
the human or biological nervous systems. The key element of this model is the structure
of information processing system. An ANN is configured for a specific application, such
as pattern recognition or data classification, through a learning process (Stergiou et al
2005). ANN are applicable in virtually every situation in which a relationship between
predictor and response (independent and dependent) variables exists, even when that
relationship is very complex (Smith, 2003).

Kulandaivel (2004) developed an Artificial Neural Network (ANN) Model for predicting

the condition of sewer pipes based on the historic condition assessment data. The model
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development in the study included training, testing and validation. The author was in
opinion that using neural network methodology for predicting the condition of sewer
pipes was the best possible option available to him. Shehab-Eldeen (2001) developed an
automated system for detection, classification and rehabilitation of sewer pipes using
neural networks. The developed model was based upon image analysis techniques,
artificial neural networks and visual basic programming.

Combining two research techniques like ANN and Fuzzy logic has been gaining
popularity in the sewer management operations. Chae et al (2001) proposed a Neuro-
Fuzzy approach for accurately analyzing and interpreting data regarding the condition of
sanitary sewer pipelines. The involvement of Fuzzy estimation techniques in ANN

enabled the modeling of uncertainty associated with the input data.

2.6.8 Simulation

Simulation is a mathematical exercise in which a model of a system is established, and
then the model's variables are altered to determine the effects on other variables.
Simulation is an efficient and cost-effective tool for decision making and analyzing real
systems (Ruwanpura et al 2004). Many simulation tools have been developed around the
world for strategic decision making planning for sewer maintenance.

Stein et al 2005 developed a model for analyzing the environmental impacts caused by
the defects in sewer network system using Monte Carlo simulation. Results of the
simulation established the links between the local ancillary conditions and the specific
sewer defect characteristics. Denys et al 2004 developed a simulation model for factors
influencing sewer system properties to give sewer managers an idea of all elements in

their decision making process for sewer network maintenance. The simulator contained
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some “moduli” which computed the level of performance of the system from the data
actually available or when there was a deficiency. The risks were also evaluated through
statistical analysis of a\;ailable data.

A rule based simulation condition assessment model was developed by Ruwanpura et al
(2004). The procedure of the simulation involved CCTV inspection data analysis. The
developed simulation model predicted the condition rating of pipes based on four inputs:
type of material, age class, pipe length, and the APE value. The actual probability of
existence (APE) curve was developed through simulation of the collected data. Allouche
et al (2003) introduced educational based simulation software “SIMSEWER” for the
enhancement of sewer management skills. The main objective of the software was to
introduce the basic concepts of infrastructure management, engineering economics and
various techniques of sewer rehabilitation. The program was based on real case history
and enabled the user to develop management strategies for a simulated trunk sewer

network.

2.6.9 Bayesian Belief Networks

Bayesian belief networks (BBN) are compact networks of probabilities that capture
probabilistic relationship between variables, and historical information about their
relationships. Bayesian belief networks are very effective for modeling situations where
some information is already known and incoming data is uncertain or partially
unavailable (Russel et al 2003). The probability of any node in the Bayesian belief
network being in one state or another without current evidence is described using a
conditional probability table. Probabilities on some nodes are affected by the state of

other nodes, depending on causality. Prior information about the relationships among
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nodes may indicate that the likelihood that a node is in one state is dependent on another
node’s state (Grzymala, 1991).

Hahn et al (2000) proposed a sewer management system for prioritizing sewer line
inspections on the basis of Bayesian belief networks. The belief network logic system
was based on information provided by the sewer utilities of ten medium sized cities. The
concepts of Bayesian belief networks were used for creating an inference engine that
catalogued information for both inspected and non-inspected sewer lines. The system

developed was found helpful in prioritizing the inspection of sewer lines.

2.6.10 Dynamic Programming

Dynamic programming is a way of decomposing certain hard to solve problems into
equivalent formats that are more amenable to solution. Basically, the dynamic
programming approach is to solve a multi-variable problem by solving a series of single
variable problems. This is achieved by tandem projection onto the space of each of the
variables (Benli, 1999). Dynamic Programming Technique starts with a small subset of
the original problem which is called sub-problem. The second step of this technique is to
find the optimal solution of the sub problem. Consequently, it gradually enlarges the sub
problem and finds the current optimal solution from the preceding sub problem. This step
is repeated until the entire problem is solved (Trick, 1997).

Dynamic programming in conjunction with Markov chain modeling has been
successfully used in highway management systems (Abraham et al 2003). In sewer
management systems, decision regarding maintenance and rehabilitation needs to be
supported by a sound decision making procedure. Dynamic programming has significant

potential for developing solutions in this regard. Therefore, this method is viable for life
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cycle cost analysis for sewer management system because it provides a quick method of
finding optimal maintenance and rehabilitation options for each analysis period or stage

through out the life cycle of a sewer (Wirahadikusumah, 1999).

2.7 An Overview of Applied Techniques

Regression analysis and unsupervised neural network are applied in this research. The

basic ideology of both the techniques is discussed below:

2.7.1 Regression Analysis

Regression analysis is a process used to estimate the parameter values of a function, in
which the function predicts the value of a response variable (Y) in terms of the values of
other variables (X). In its simplest form the model can be stated as follows (Neter et al
1996):

Yi=Po+PiXi+ g (Equation 2.3)

where, Y is value of response variable in the i" trial, Bo & B are regression parameters, X;

is the value of predictor variable in the i™ trial, and €; is random error. In multiple

regression models, more than one variable are used to predict the behaviour of response
variable. Therefore Equation 2.3 can be transformed into Equation 2.4 for p-1 predictors:
Yi=PBot+PiXi+PaXigt eoeneeininnen + Bp-1Xip-1 T & (Equation 2.4)
To estimate the regression parameters, the method of least square can be applied.
According to the method, the values by and b, are estimated for the regression parameters
Bo & P1 (equation 2.3) respectively to minimize the sum of square deviation for the given

sample observations (X, Yj), (X2, Y2),eeeeenennenn , (X4, Yy). Therefore, by and b; are
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called point estimators of Bo and f; respectively, and their values can be estimated from

the following equations (Kutner et al 2005):

L _ XX =X -T)

= ! Equation 2.5
1 Z(X, _X)z ( q )

b, = l(ZYi ~b, ZXI) =Y -bX (Equation 2.6)
n

where X and Y are the mean of X; and Y; observations respectively. Consequently, by is
the slope of regression line and by is the Y intercept for the line. In the method of least

square, the variation in regression relation is measured in the form of total sum of squares

(SSTO); which is the measure of variation of the Y; values around their mean?Y .

SSTO =Y (Y,-Y) (Equation 2.7)

=1
SSTO is further divided into two categories: regression sum of squares (SSR) and error /
residual sum of squares (SSE) (Levine et al 2002). SSR is equal to the sum of squared

difference between each predicted and average value of response variable.
SSR=3"(¥,-Y)’ (Equation 2.8)
i=1

SSE is equal to the sum of squared difference between each observed and predicted value

of the response variable
SSE =3, -y’ (Equation 2.9)
i=1

For the development of regression model, some assumptions are necessary for to check
the validity of any conclusion reached. Three important assumptions of regression

(Levine et al 2002) are listed below:
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1) Error around a regression line should be normally distributed at each value of X
2) Variation around a regression line be constant for all values of X.

3) Errors around a regression line be independent for each value of X.

e

!
!
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!
!
|
|
t
|
|
t
|
!

X; X
Figure 2-8: Measures of Variance in Regression (Developed from Levine et al 2002)
Following are some important tests or statistics which should be taken into account for

checking the appropriateness of a regression relationship:

(i) Coefficient of Multiple Determination

The coefficient of multiple determination, denoted by R?, is equal to the regression sum
of squares divided by the total sum of squares (Levine et al 2002). In other way it can be
defined as follows (Kutner et al 2005):

»_ SSR _,_SSE
T SSTO  SSTO

(Equation 2.10)

The value of R? varies from 0 to 1. R will be 1 when all Y observations fall directly on
the fitted regression surface that is when?Y, = f, , for all i. Similarly R* will be 0 when

there would be no regression fitted surface for Y observations. R” usually increases with
the addition of more predictive variables in the model. This value could be misleading;

therefore, a modified measure is suggested for the adjustment of the value R? in the
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model. The adjusted coefficient of multiple determination, denoted by R, adjusts R? by

dividing each sum of squares by its associated degrees of freedom (Kutner et al 2005).
The term degrees of freedom (df) is a measure of the number of independent pieces of

information on which a parameter estimate is based (Fox, 1997). If more parameters are

estimated, the value of “df” decreases. Therefore, R’ can be calculated by the following

equation;
SSE
- -1} SSE
R=1-1L g | 172 | 200 Equation 2.11
° = TSSTO (n— p ) SSTO (Fa )
n—1

(i) “F” & “t” Tests
To test whether there is a regression relation between the response variable Y and the set

of X variables X, X3...X,.1, following alternatives is considered:

Ho.’ ﬁ] Zﬂz N ‘—",Bp_l = ()
H,: not all By (k=1 ....p-1) equal to zero (Equation 2.12)

The test statistics would be:

. MSR
MSE

(Equation 2.13)
where MSR and MSE are Regression Mean Squares and Error or Residual Mean Squares
respectively, which can be obtained by dividing the respective sum of squares by the

degrees of freedom. The decision rule to control the Type 1 error at a is:

If F* < F (1- a; p-1, n-p), Conclude H,
If F*> F (1- a; p-1, n-p), Conclude H, (Equation 2.14)

In order to check the significance of any predictor variable Xy in the regression
relationship, the alternatives are defined as: Ho: Bx = 0 and Ha: Bx# 0. The test statistics

would be:
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= (Equation 2.15)

where, b, is the estimated co-efficient of the predictor variable X, and s{b, }is the

standard error associated with it (Schleifer et al, 1995).

Therefore, the alternatives for the t test are:

If "

<i(1-4 55 n-p), conclude Hy, otherwise, conclude H, (Equation 2.16)
(iii) Residual Analysis
Residual e; is the difference between the observed value Y; and the fitted value )A’,

Table 2-16: Residual Analysis Diagnostics (Menzefricke, 1995)

Assumptions Diagnostic Checks
Standardized Residual vs. Fitted Plot

Linearity Standardized Residual vs. Predictor Variable Plot
Constant Standard | Standardized Residual vs. Fitted Plot

Deviation Standardized Residual vs. Predictor Variable Plot
Randomness Sequence Plots; Control Tests; Run Charts
Normality Normal Probability Plot

Residual may be regarded as the observed error, in distinction to the unknown random
error €; in a regression model. For an appropriate regression relationship, error terms

should justify the assumptions of linearity, constant standard deviation, randomness and
normality. Table 2-17 shows the different diagnostics for the assumptions and their

explanation.

(iv) Lack of Fit Test

Lack of fit test determines whether a specific type of regression function adequately fits
the data. The test requires repeat observations of Y at one or more levels of X. These

observations are called replicates. In the test, error sum of squares SSE is decomposed
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into pure error and lack of fit. The pure error sum of squares SSPE is obtained by first
calculating for each replicate group the sum of squared deviations of the Y observations
around the group mean, where a replicate has the same values for each of the X variables.

SSLF = SSE — SSPE (Equation 2.17)
The F test would be

_ SSLF _SSPE _ MSLF

F’ : =
c—p n—c MSPE

(Equation 2.18)

The appropriate decision rule would be;

IfF" <F(l—-a;c—p,n—c), conclude H,
IfF’ > F(l—a;c—p,n—c), conclude H, (Equation 2.19)

Minitab, statistical software, performs an approximate lack of fit test, data subsetting lack

of fit test, when replicate observations are not available (Anderson et al 2005).

2.7.2 Unsupervised Neural Networks (Self-Organizing Maps)

Self-Organizing Maps (SOM) belong to a general class of unsupervised neural network
methods, which are non-linear regression techniques that can be trained to learn or find
relationships between inputs and outputs or to organize data so as to disclose so far
unknown patterns or structure.

In unsupervised neural network learning, there is no performance evaluation available
(Gallant, 1993). Therefore, there is no information which could be used to improve
network’s behaviour. Without any specific knowledge of what constitutes a correct or
incorrect answer, unsupervised models constructs groups of similar input patterns. This

phenomenon of constructing similar pattern groups is known as clustering. Cluster
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boundaries can be found based on the large and representative sample of inputs as shown
in Figure 2-8 (Developed from Hrycej, 1992).

SOM are also known as competitive-learning neural networks that uses an unsupervised
training algorithm (Deboeck et al 1998). In competitive learning, cells receive identical
input information. By means of lateral interactions, they compete in their activities. Each
cell or a group of cells is sensitized to a different domain of vectorial input signal values
and act as a decoder of that domain (Kohonen, 1997). Moreover, the process of self-
organization means that the network becomes oriented and adaptively assumes a form by

which it best describes the input in an ordered and structural fashion (Kohonen, 1993).

8°,
gow

°© 0 oo
00 % ® oo
9% o 0
* 0 0

(@ (b}

Figure 2-9: Two dimensional Patterns (a) Clustered and (b) No Apparent Cluster

It is important to state that SOM algorithm is not a clustering algorithm. However, each
node on the map can be theoretically considered as a cluster centroid. The key concept of
SOM algorithm is the neighbourhood function that is adjusting not only the best
matching unit but also its surrounding units (Schatzmann et al 2003). Nevertheless, SOM
algorithm was compared with hierarchical clustering methods, and it was found that
SOM is superior in both robustness and accuracy (Wang et al 2002). Furthermore, data

division through SOM have three important advantages (Shahin et al 2004):
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¢ There is no need to decide which proportion of the available data to use for
training, testing and validation

o The statistical properties of the resulting training, testing, and validation is
sufficiently small, provided that intra-cluster variation is sufficiently small.

¢ Information is provided about whether “outliers” exist in the data or not

(i) Historical Development and Applications

The SOM is a fairly well known neural network and one of the most popular
unsupervised learning algorithms. It was invented by Finnish Professor Teuvo Kohonen
in 1980s. Since the invention of SOM, more than 4000 research articles have been
published on the algorithm, its visualization and applications (Schatzmann et al 2003).
The application of SOM in the field of civil engineering includes various data
classification problems. Mukherjee (1997) employed the SOM algorithm to predict the
natural mode shapes of building frames with a varying number of stories. Lingras (1995)
used the concept of SOM algorithm in classifying a large number of traffic patterns.
Shahin et al 2004 developed four different ANN models using four different data division
methods for the study of settlement prediction of shallow foundations on granular soils. It
was concluded that SOM was more suitable approach for data division. Lee et al 2006
used SOM for the assessment of alternative methods of analyzing water quality
performance indicators for constructed treatment wetlands. It was concluded that Self-
Organizing Maps (SOM) had better potential to visualize the relationship between

complex biochemical variables and to search for optimal map.
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(ii) SOM Structure

A self organized map consists of neurons organized on a regular low dimensional grid
(Figure 2-9). Each neuron is a “d” dimensional weight vector, where “d” is equal to the
dimension of input vector. Neurons are connected to the adjacent neurons by a

neighbourhood relation, which indicates the topology or structure of the map (Vesanto et

al 1999).
Figure 2-10: Neighbourhoods (0, 1 and 2) of the Winning Neuron (The Centremost

Cell): Hexagonal on the Left and Rectangular on the Right (Vesanto et al 1999)

Kohonen layer

Input layer

Figure 2-11: SOM Input and Output (Kohonen) Layers (Shahin et al 2004)
The self-organization of this out layer is dependent on the input layer patterns. The input

layer consists of a set of “n” input patterns (x; for i = 1, 2, 3,....., n). This layer is fully

connected to the output layer or self-organized layer (Kohonen Layer) through
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connection weight (wj;, where j = 1, 2, 3, ..., m). The connections between input and

output layers are illustrated in Figure 2-10.

(iii) Training of SOM Algorithm

The training of SOM algorithm consist of four basics steps (Kohonen, 1990):

i.

ii.

iii.

1v.

Calculation of similarities between the input pattern and the weights arriving at
each node or neuron

Finding the most similar neuron which is usually called as “winner”

Selection of a set of output nodes which are located close to the winner in the
output grid or neighbourhood

Updating the weights of all nodes in the neighbourhood in such a way that their
weights are moved closer to the input pattern

Input Weight Output
layer vectors layer

A winning
ORONCHE L —neuron
- i Phst

‘“f‘ ® O O |  neighboring

15 _ fenrons

Figure 2-12: A typical Architecture of a Winning Neuron (Tangsripairoj et al 2005)

The weights are initially assigned randomly. At each node in the output layer, the input

(x;) is presented without providing a desired output. In this context, a matching value is

calculated for each output node. This value is the Euclidean distance or Straight line

distance (Dj) between the weights of each node and the corresponding input values. The

value of Dj is calculated by the equation below (Shahin et al 2004):
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D, =>"(x,-w,) ,wherej=1,2,.......,m (Equation 2.20)

The node that has the minimum Euclidean value is considered as a winning neuron

(Figure 2-11). This process is repeated until desire groups are obtained.

2.8 Summary

The deterioration phenomenon of sewers is very complex and is dependent upon many
factors. There are different types of sewer inspection techniques available, and proper
selection of these techniques depends upon local requirements. Similarly, different
municipalities have adapted different sewer condition assessment protocols according to
their respective needs.

Many analysis techniques have been utilized by different researchers for proposing
solution for different sewer management problems. Among these techniques, regression
analysis and artificial neural networks are important for data analysis and modelling

purposes.
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Chapter 3
RESEARCH METHODOLOGY

3.1 Overview

The methodology of current research is presented. Current research consists of different
steps: literature review, data collection and pre-processing, sewer condition prediction
models development, development of deterioration curves for sewers, comparison of
different sewer condition assessment protocols, integration of sewer condition assessment
protocols, development of combined condition index (CCI) for sewers, web-based

condition rating program, and conclusions and recommendations.

3.2 Description

The research methodology is presented in Figure 3-1, and is described below:

3.2.1 Problem Statement and Literature Review

The first step of this research is to clearly describe the problem statement and research
objectives. The study objectives have been defined in chapter 1. The relevant literature
has been reviewed in chapter 2. That includes: types and failure of sewer pipes, factors
contributes to sewer deterioration, sewer inspection techniques for condition assessment,
adapted sewer condition assessment protocols, research techniques in sewer management,
and regression analysis and unsupervised neural network learning processes.

After the literature review, the research is to be carried out in two parallel paths:
development of sewer condition prediction models and combined condition index (CCI).

Both the methods have been briefly described below.
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3.2.2 Sewer Condition Prediction Regression Models

The main objective of this part of research is to develop sewer pipeline structural and
operational condition prediction models. The main steps of the process are described

below:

(i) Data Collection and Preliminary Analysis

The first step in model building process is to collect historical data of sewer condition
assessment. Two data sets are collected from municipalities of Niagara Falls, Ontario and
Pierrefonds, Quebec. The condition assessment data collected from both the
municipalities are according to two different condition assessment protocols: WRc
(Water Research Centre) UK protocols and CERIU (Centre for Expertise and Research
on Infrastructures in Urban Areas), Canada. Therefore, a methodology is developed to
convert CERIU sewer condition classification data into WRc protocols, the most widely
used protocols in the world, through unsupervised neural network clustering process.
This methodology will be discussed later.

Preliminary analysis of the data is carried out; which consists of sorting and ordering of
data obtained from sources, comparing data, defining assumptions, and finalizing input
parameters. In order to eliminate the categorical variable “pipe material” from structural
condition prediction models, the prepared data is transformed into three groups with
respect to their pipe material (concrete, asbestos cement, and PVC). Separate structural
condition prediction models are to be built for the three groups. For the operational
condition model the categorical variable “pipe material” is transformed according to its
Manning’s coefficient of roughness values for each material. Therefore, total four data

sets are prepared. The detail of this process has been presented in chapter 4.
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(ii) Regression Model Development Methodology

The regression model building methodology is presented in Figure 3-2.
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Figure 3-2: Regression Model Building Methodology
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From all the four data groups approximately 25% of data is picked randomly for model
validation process, and the rest of the data is used in developing regression models. The
regression models are built using Minitab ® statistical software. Figure 3-2 shows that
regression model building process included four main steps: preliminary diagnostics for
interactions, model building, statistical diagnostics of the built model, and remedial

measures. The detail of all these diagnostics and remedies will be presented in chapter 5.

(iii) Regression Model Validation Methodology
The validation data are embedded into their respective developed most appropriate
regression models for comparing results with the actual results using Microsoft Excel

spread sheet procedures.

Selected Model for Validation

v

+ Plot for Actual and Predicted Outputs
+ Descriptive Statistics for Actual and

Predicted Output Data Unsatisfactory
» Validation Through: Results
1) Average Invalidity Percentage {(AlP) S Build New
Model

2) Average Validity Percentage (AVP)

3) Root Mean Square Error (RMS)

4) Mean Absolute Error & Fitness
Function (MAE & fi)

Satisfactory
Resuts

Model Accepted

Figure 3-3: Regression Model Validation Methodology
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All the models are validated on four basic criteria: average invalidity percentage (AIP),
average validity percentage (AVP), root mean square error (RMS), and mean absolute
error and fitness function (MAE & fi). An overview of model validation methodology
has been presented in Figure 3-3. The detail description of the validation methodology

will be presented in chapter 5.

(iv) Deterioration Curves for Sewers

Current research develops structural and operational deterioration curves for sewers. The
developed regression models are used to build these curves for sewers, which will also be
presented in chapter 5. The curves are built to develop and understand the relationship
between a sewer’s structural and hydraulic condition to its age. The curves are intended
to assist decision makers in prioritizing inspections, maintenance, and rehabilitation

programs.

3.2.3 Combined Condition Index (CCI) for Sewers

Figure 3-1 illustrates an overview of the methodology for developing a combined
condition index (CCI) for sewers. In order to achieve the objectives, the first step is to
compare the adapted sewer condition assessment protocols, so that an integrated sewer
condition classification system could be proposed. In this context, the two major
protocols adapted by many municipal agencies in Canada: WRc and CERIU; are
compared. As WRc protocols are accepted world wide and also called “Embryo Codes”
(Thomhill et al 2005), the protocols are considered as standard in this research.
Consequently, the other major protocol adapted in Canada, CERIU, is converted into

WRc for unification and integration of sewer condition assessment procedures.
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(i) CERIU Protocols Conversion Methodology

An overview of the methodology for conversion of CERIU sewer condition assessment
protocols into WRc is shown in Figure 3-4. The detailed methodology will be presented
in chapter 6. The key difference between the two protocols is that WRc assigns different
deduct values to each defect in a sewer pipe, and based on these deduct values it
calculates an overall condition class for the whole pipe; while CERIU directly assigns a
condition class to each defect in a sewer pipe, and it does not calculate any condition
class for the whole pipe segment.

Based on WRc severity ranking for different sewer defects, transformed deduct values for
CERIU classifications are generated. The generated values are clustered into five groups.
The methodology of unsupervised neural network clustering (Kohonen’s self-organizing
maps) is adapted with the help of Neuroshell ® software. The principal objective of
clustering deduct values is to develop five different condition classes for CERIU
protocols, compatible to WRc protocols, for structural and operational conditions of
sewers. This methodology is verified through feedbacks from CERIU sub-committee for
the development of a unified condition assessment protocol (2006). The details will be

discussed in chapter 6.

(ii) Combined Condition Index (CCI) for Sewers

After the conversion of CERIU protocols into WRe, the next step is to propose a
combined condition index (CCI) for sewers. Usually, an existing sewer’s condition is
considered in two different scenarios: structural and operational. An integrated approach
to condition assessment is proposed by combining the effects of structural and hydraulic

condition ratings of sewers.
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As a result, a methodology is adapted for development of combined condition index
(CCI) for sewers. Figure 3-5 presents an overview of the methodology adapted for the
development of combined condition index (CCI) for sewers. A combined condition

matrix is defined by taking account of all possible scenarios for a sewer’s condition. The
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matrix is clustered into five classes by using the collected data and adapting self-
organizing neural networks methodology. The clustering is done with the help of
Neuroshell ® software. The developed clusters are examined through feedbacks from
experts, and a final combined condition index (CCI) is proposed. CCI varies fro 1 to 5;
where 1 represents an acceptable combined (structural plus operational) condition of a
sewer, 5 represents critical combined condition. Further, a regression model is developed
to directly convert structural and operational condition ratings into CCIl. The detailed

methodology of the development of CCI will be presented in chapter 6.

3.2.4 Web-Based Automated Condition Prediction Tool

After the development of condition prediction models and combined condition index
(CCI) for sewers, a web-based automated tool is designed using Java programming
language. The web-based program will assist municipal engineers to predict the existing
structural and operational condition of sewers for prioritizing detailed sewer inspection.
Thus, the tool will assist the decision makers to minimize the current, costly practises of
random inspections of sewers.

The program has been designed in a simple, user friendly environment. After login, a
user can import relevant data in *xls file format with unknown pipe condition. After
processing, the program displays the results which show the most likely existing
condition ratings of sewers (structural condition, operational condition, and CCI). The
program utilizes all the developed regression models during this research for data
processing. A flowchart for the web-based model process is shown in figure 3-6. The

detailed process of the program will be discussed in chapter 7.
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3.3 Summary:

The methodology of current research is presented. The methodology includes literature
review, data collection and preliminary analysis, condition prediction regression models
design and validation, development of structural and operational deterioration curves for
sewers, comparison and conversion of sewer condition assessment protocols,
development of combined condition index (CCI) for sewers, and development of an

automated web-based sewer pipeline condition prediction tool.
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Chapter 4
DATA ACQUISITION AND PREPARATION

4.1 Introduction

One of the main objectives of this research is to design model for sewer pipeline
condition prediction that can prioritize the sewer inspection; consequently, could reduce

the cost due to random sewer inspection.
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Figure 4-1: Overview of Condition Prediction Model Development Process
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Model building procedure requires a detailed analysis of historical data. In this context,
data acquisition and processing is performed according to the requirements. Figure 4-1
shows an overview of this process. As clear from the figure, the process can be divided
into two main steps: data acquisition and preparation, and data processing. This chapter
discusses the first step, data acquisition, in detail. Data collection and pre-preparation
procedures are described in detail. The chapter also illustrates an overview of different
assumptions which are made during data pre-processing. The descriptive statistics and

histograms of collected data are also presented in the chapter.

4.2 Data Acquisition

Many municipalities across Canada were contacted for data collection purposes. As a
result, two data sets were received from municipalities: Niagara Falls, Ontario and
Pierrefonds, Quebec. The information received regarding sewer pipeline networks is
shown in Figure 4-2.

A major difference between both the data sets is that the municipality of Niagara Falls,
Ontario has adopted the WRc condition grading systems for their sewers; whereas, the
municipality of Pierrefonds, Quebec has adopted CERIU classification system. Moreover,
there are some other minor differences in both the data sets. Missing information from
the data collected from Pierrefonds is traffic volume data. In order to develop an
integrated approach for model development and its applications, interpolation and
preparation of data in a generalize manner is performed which is described in the next

section.
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Niagara Falls, Ontario
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_> CCTV Inspection Results

_> Traffic Volume Data

Pierrefonds, Quebec

General Pipeline
’ Network Inventory

Pipe Material
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* Year of
Construction

¢ Pipe Length

¢ Pipe Depth

¢+ Bedding Material
Class

¢ Pipe Material class

Bed Slope

CCTV Inspection

—J»|  Reports (CERIU
Classification)

_> AutoCAD Drawings

Figure 4-2: Summary of Data Received from Municipalities

4.3 Data Preparation

As mentioned above that the collected data sets have some differences and can not be
simultaneously modeled into a single pattern for model development. Therefore, a
complete preliminary analysis is performed for both the data sets. Consequently, a

generalized approach for analyzing the data is developed and adapted for both systems.
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Figure 4-3 presents the adapted methodology for data preparation. It clearly shows the

four key steps for data preparation. The detail of theses steps are describe below.

4.3.1 Data Sorting

The first step is to sort the data in some order. Figure 4-2 shows the systematic order of
data; however, it is found out that there are less data set points available which have all
the complete required details. For example, if a pipe segment has a record of CCTV

inspection; it may not have record of other parameters.

Data Collection

Sorting &
Ordering Data
Obtained from
Sources

Data
Comparison

Finalizing Input
Parameters

Defining
Assumptions

— Transformed Data for Model Development

Figure 4-3: Data Preparation Process
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Therefore, all the data set points from both the available databases which have some

missing information are removed from the prepared database.

4.3.2 Data Comparison

After sorting the data, the next step is to determine the differences in the two data sets,
and to find some solution for generalizing the input data. The major difference, as
mentioned above, was the adapted different sewer condition classification systems by the
municipalities. The utilization of both data sets simultaneously is not possible because
there is no standard method available for comparison and conversion of these two
different classification systems. Therefore, in order to compare one sewer condition
classification system with the other, a complete analysis of both the condition
classification systems is carried out, and a methodology is adapted to suggest conversion
factors for data conversion. This methodology and analysis will be presented in chapter 6.
Condition assessment data obtained from Pierrefonds is converted into WRc

classification system by using the suggested methodology for further processing.

4.3.3 Defining Assumptions

The next step is to define some of the parameters in detail. The different assumptions and

interpretation made for different parameters are discussed below.

(i) Pipe Material

The data received from the municipalities consist of three different categories for pipe
material: concrete, asbestos cement, and polyvinyl chloride (PVC). The structural
condition grading models are to be developed separately for each pipe material for

simplifying the multiple regression inputs.
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In case of developing operational condition assessment model, the care is given to the
fact that operational condition depends upon flow velocity inside a pipe and some other
factors. In order to assess flow velocity, a formula should be selected which must include
a suitable co-efficient of friction for the internal surface of the pipe (Perkins, 1974).
Consequently, the categorical pipe material variable is redefined by a suitable co-efficient
of friction for each type of pipe material; thus transformed into quantitative variable.

In this context, Manning’s roughness coefficient is considered which is widely applied in
partly filled conduits (Casey, 1992). The Manning’s roughness coefficient can be found
out from the Manning’s formula which is expressed as:

) R0'67\/§ (Equation 4.1)

n

V

where, V is mean velocity of flow (m/s), n is Manning’s co-efficient of roughness, S is
channel slope (m/m), and R is hydraulic radius (m) (cross-sectional area/wetted
perimeter). There are wide disagreements between researchers on the value of n and
extensive research on its determination is on going (Bilgil, 2003). However, the general
ranges of n for various pipe materials have been defined (Gribbin, 2001) and the input

values of n are taken as a model parameter according to Table 4-1.

Table 4-1: Manning’s Roughness Co-efficient Values (Adapted from Gribbin, 2001)

Input Value of “n”
Pipe Material “n” Value Range
for Model
Concrete 0.011 t0 0.015 0.011
Asbestos Cement 0.011 t0 0.015 0.011
PVC 0.009 t0 0.011 0.009
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Table 4-1 shows that for simplicity, the value of n is considered to remain constant

through out a pipe’s life. However, the value of n increases as the pipe age increases.

(ii) Pipe Material Class

Pipe material class is very important in determining the existing condition of pipe. A high
strength material can with stand more crushing load as well as bending stresses. As
mentioned, the data collected from both the municipalities consist of three materials:

concrete, asbestos cement and PVC.

Table 4-2: Description of Reinforced Concrete Pipe Classes (ASTM C-76-02)

Dead Load to Produce 0.01
Pipe inch or 0.3mm Crack Ultimate Load
Class | Lbs/foot/foot | N/m/mm of | Lbs/foot/foot | N/m/mm of
of Diameter Diameter of Diameter Diameter
1 800 40 1200 60
2 1000 50 1500 75
3 1350 65 2000 100
4 2000 100 3000 150
5 3000 140 3750 175

In case of concrete pipes, both municipalities have been using the ASTM (American
Society of Testing Materials) standards (ASTM C-76). ASTM divides concrete pipe into
five classes according to the ultimate crushing strength of the material. Table 4-2
illustrates the ASTM classes. The data sets received from municipality of Pierrefonds
have some missing information regarding the type of concrete (reinforced or plain) and
concrete class. It is found out through Pierrefonds municipality’s official that if a pipe’s

depth is greater or equal to 4m, and the municipality does not have proper record
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regarding the concrete class of the pipe; it considers the pipe to be a class 5 reinforced
concrete pipe. Therefore, the missing information regarding concrete class for depth
greater than 4m is interpolated accordingly. The same input weights are assigned to each
class for model development; for example, the input weight for class 5 would be 5.

Table 4-3: Canadian Standards for AC Sewer Pipe Classes (CAN/CGSB-34.9-94)

Pipe Minimum Crushing Load

Diameter Ranges
Class Lb/foot KN/m
1500 1500 22 200mm to 400mm
2400 2400 35 200mm to 600mm
3300 3300 48 200mm to 750mm
4000 4000 58 250mm to 1055mm
5000 5000 73 250mm to 1055mm
6000 6000 88 900mm to 1055mm
7000 7000 102 900mm to 1055mm

In case of asbestos cement pipe, the data of municipality of Niagara Falls is interpolated
as per Canadian General Standards for asbestos cement sewer pipes. Canadian General
Standard Board (CGSB) defines 7 different asbestos cement classes which are in
accordance with ASTM standard ASTM C-428. These classes are shown in Table 4-3.
The pipe diameter ranges (Table 4-3) show that first three classes are most appropriate
for pipes up to 750mm. The acquired data from municipality of Niagara Falls for asbestos
cement pipe is consisted of diameter range below than 750mm mark.

Consequently, the pipe classes defined by municipality of Niagara Falls are redefined as
per CGSB standards and influence factors or input weights are assigned to them for

condition rating model’s input as shown in Table 4-4.
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Table 4-4: Approximate Equivalent CGSB Classes for Niagara Falls Data

Municipality’s E A?‘?a'iox?ncaéeSB Input Weights for
Defined Class quiva‘en Model
Class
A 3300 3
B 2400 2
C 1500 1

As far as the municipality of Pierrefonds data is concerned, there is very little information
available for asbestos cement pipes; therefore, they are eliminated from model input data.
Furthermore, no data is available for PVC pipe classes; therefore, PVC material classes

are not considered during the condition prediction model development for PVC pipes.

(iii) Bedding Material Class

Pipe stresses also depend upon bedding material properties: material class, material
thickness and physical properties. Five different types of bedding material have been

considered by Building Research Establishment (BRE) UK, which are also acceptable in

USA (Perkins, 1975).

Table 4-5: Bedding Material Classes as per BRE and OPSD Standards

Bedding Factor By
Bedding
Description BRE OPSD
Class
Classification | Classification

A Reinforced Concrete Cradle or Arch 3.4 ) g

Plain Concrete Cradle or Arch 2.6 .
B Well Compacted Granular Material 1.9 1.9
C Well Compacted Backfill 1.5 1.5
D Flat Sub Grade 1.1 --
Others | Cement Stabilized Material 2.6t03.4 --
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In Ontario, Canada, OPSD (Ontario Provincial Standard Drawings) defines four classes
of bedding material (Zhao et al 2001). Table 4-5 (Adapted from Perkins, 1974 and Zhao
et al 2001) shows the summary of different bedding material classes. The bedding factor
By can be defined in equation 4.2 (Zhao et al, 2001):

/4
Br=—— Equation 4.2
f S (Eq )

Where, W is the calculated external load and S,p is the three edge bearing strength

Table 4-6: Transformed Values for Table 4-5 for Model Inputs

Bedding Input Weight for
Description
Class Model
A Reinforced or Plain Concrete Cradle or Arch 4
B Well Compacted Granular Material 3
C Well Compacted Backfill 2
D Flat Sub Grade 1
Others Cement Stabilized Material Not Considered

The data obtained from municipalities consist of some sub classes of bedding material e.g.
class “B-B”, % inch crushed stone etc. These sub classes are sorted out according to the
specification presented in Table 4-6. For example, class “B-B” is simply considered as
class “B’ etc. Four basic classes are defined which are generally considered in Canada.
The classes are assigned with there respective weights to convert the categories into
numbers for input data. The description of these classes and their assigned weights are

presented in Table 4-6.
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(iv) Traffic Volume and Street Categories

The next step is to define the influence of average daily traffic above a pipe on its
condition in a generalized manner. It is difficult to collect average traffic volume data for
each street in a municipal area. Therefore, a methodology is adapted by categorizing
streets and assigning them weights according to street sizes. This methodology is
developed by considering the ASCE (American Society of Civil Engineers) classification

for residential streets. Figure 4-4 illustrates the basic ASCE classification.
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Figure 4-4: Basic Hierarchy of Urban Streets (ASCE, 1990)

ASCE defines the four different categories of streets (Figure 4-4) as follows:

a) Arterial Street. It is a high volume street which should not have any residences on it.
Its function is to conduct traffic between communities and to connect the communities
with major highways.

b) Collector: It conveys the traffic from arterial streets to lower order streets. The

collector carries relatively higher traffic volume then lower order streets.
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¢) Sub-Collector: 1t provides passage to access streets and conveys traffic to collectors.
It provides frontage and access to residential lots but also carries some through traffic to
lower order streets. The sub — collector is a relatively low volume street.

d) Access Streets: 1t is designed to conduct traffic between dwelling units and higher
order streets. It is a very low traffic volume street.

The obtained data from municipality of Pierrefonds contains AutoCAD drawings. As the
average annual daily traffic (AADT) volume data is not obtained, the streets are
categorized according to ASCE classification by analyzing drawings. Corresponding
weights are assigned to streets according to their respective classes as an influence factor
for sewer pipeline condition. These classes and their respective weights are shown in
Table 4-7.

In case of municipality of Niagara Falls, the data contain average annual dailly traffic
(AADT) volume record along with the closest intersection location information. The
municipality categorizes its roads as per average annual daily traffic (AADT) volume into
five categories. After thorough analysis of traffic volume data with respect to its location
information, it is found out that the fifth category consisted of highways or major roads of
the area. For simplicity and comparison with the other data set, this category is ignored.
Therefore, all of the categorical traffic volume data obtained from Niagara Falls is
transformed according to ASCE urban street classification.

Table 4-7 clearly shows that the traffic volume above a pipe is categorized only on the
basis of urban streets classification and on the effect of extremely high traffic volume;
which might be the case for highways and expressways, is not considered in the model

development.
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Table 4-7: Transformation of Data into ASCE Urban Street Classification System

Input
ASCE Street AADT Count p
Classifi Description Weight for
assification : :
Niagara Falls Pierrefonds Model
1 Arterial 10,000 to 12,500 4
Q
2 Collector 7,500 t010,000 = 3
3 Sub-collector | 5,000 107,500 S‘ 2
4 Access < 5,000 E 1
3 Not
Not Specified > 12,500 A )
Considered

4.3.4 Finalized Transformed Data

The data prepared and described in the previous section was finalized for the regression

model development.

Sewer Pipeline Existing Condition Prediction Models

Structural

Condition Models

For
Concrete
Pipes

Asbestos
Cement
Pipes

Model # 3
For PVC
Pipes

Operational
Condition Model

Figure 4-5: Types of Sewer Pipeline Condition Assessment / Prediction Models
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As illustrated in the previous section the structural condition prediction models are to be
developed for each pipe material separately; nevertheless, for operational condition
grading models, the categorical parameter “pipe material” is defined in terms of
Manning’s roughness co-efficient. As clear from Figure 4-5 that data is prepared and
transformed into four categories for the development of four different statistical models.
All the four data sets are further divided into two parts; data for model development and
data for model validation. Approximately, 25% of data set points from the above
mentioned four prepared groups of data are randomly picked for model validation.

A brief summary of the four prepared data groups is illustrated below:

(i) Group Number 1

The first group of data is prepared for the concrete pipe structural condition assessment

model.
Histogram of Concrete Pipe Structural Condition Grading Model Data
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Figure 4-6: Histogram of Data for Group Number 1
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Figure 4-6 presents the histogram for the transformed data for the different parameters.
Further, the descriptive statistics for the data is also presented in Table 4-8.

Table 4-8: Descriptive Statistics for the First Group Data

Parameter Mean Stargda!rd Minimum | Median | Maximum
Deviation
Depth (m) 3.48 0.83 2.03 33 6.6
Length (m) 77.21 33.29 6.1 79.1 179.83
Age (Years) 35.14 5.92 26 37 47
Diameter (mm) 422.5 156.3 300 375 825
Concrete Class 3.95 0.44 3 3 5
Bedding Factor 2.44 0.5 2 2 3
Street Category 2.75 0.95 1 2 4
WRc Structural Rating 2.26 1.26 1 1 5
(ii) Group Number 2

The second group consists of data for asbestos cement pipe structural condition

assessment model.

Histogram of Ass Cement Pipe Structural Condition Model Data

Length Age
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Diameter Asbestos Cement Class Bedding Class Factor
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400 . 500 600 2 3
Street Category Structural Grades

Figure 4 -7: Histogram of Data for Group Number 2
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Figure 4-7 presents the histogram for the transformed data for the different parameters.
Further, the descriptive statistics for the data is also presented in Table 4-9.

Table 4-9: Descriptive Statistics for the Second Group Data

Parameter Mean Star}da.rd Minimum | Median | Maximum
Deviation
Depth (m) 4.03 0.72 2.21 4 5.34
Length (m) 80.46 14.81 35.66 82.3 107.59
Age (Years) 32.55 3.26 27 34 41
Diameter (mm) 550.9 102.7 300 500 675
A. Cement Class 1.76 0.79 1 2 3
Bedding Factor 2.48 0.74 1 3 3
Street Category 2.59 0.95 1 2 4
WRc Structural Rating 1.45 0.57 1 1 3
(iii) Group Number 3

The third group consists of data for PVC pipe structural condition assessment model.

Histogram of PVC Pipe Structural Condition Model Data

Depth Length Age
40 — £ g - 2
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Figure 4-8: Histogram for Data of Group Number 3
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Figure 4-8 presents the histogram for the transformed data for the different parameters.

Further, the descriptive statistics for the data is also presented in Table 4-10.

Table 4-10: Descriptive Statistics for the Third Group Data

Parameter Mean Stalfdzfrd Minimum | Median | Maximum
Deviation

Depth (m) 3.66 0.8 2.93 3.36 6.48
Length (m) 66.03 29.26 5 62.9 126
Age (Years) 2.64 4.10 1 1 14
Diameter (mm) 255 15.15 250 250 300
Bedding Factor 2.74 0.44 2 3 3
Street Category 1.48 0.5 1 1 2
WRC Structural Rating 1.1 0.303 1 1 2

4.3.4.4 Group Number 4

The fourth and last group consists of data for the development of operational condition

assessment model. Figure 4-9 presents the histogram for the available data for the

different parameters.
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Figure 4-9: Histogram of Data Group Number 4
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In Figure 4-9, “n” stands for the Manning’s co-efficient for roughness; which indicates

the different type of materials. The descriptive statistics for the data is also presented in

Table 4-11.

Table 4-11: Descriptive Statistics for the Fourth Group Data

Parameter Mean Stargdzfrd Minimum | Median | Maximum
Deviation
Age (Years) 26.69 16.26 1 31 47
Length (m) 62.23 27.97 6.1 65.5 121.2
Manning’s Co-efficient 0.11 0.0007 0.009 0.011 0.011
Diameter (mm) 334.02 88.61 250 300 1050
%age Slope 1.06 1.29 0.11 0.5 6.82
WRc Operational Rating 2.8 1.27 1 3 5

4.4 Summary

A detailed discussion regarding data collection and preparation is presented in this
chapter. The raw database from two different sources is transformed into a standardized
format, which is ready to use for regression model development. The available
parameters for model development are identified, and their preliminary statistical analysis
is performed. The descriptive statistics and histogram presented in the chapter are
beneficial in identifying outliers, data variability issues, and data ranges for analyzing and

defining the limitations of developed models in the later stages.
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Chapter 5
SEWER CONDITION PRIDICTION MODELS DEVELOPMENT

5.1 Overview

In the previous chapter, data acquisition, preparation and preliminary analysis procedures
are described. This chapter deals with the regression model building and validating
process. The application of regression analysis in this chapter is concentrated on building
the most appropriate models for condition assessment or prediction of sewer pipelines. In
Figure 4-1, a general methodology regarding data processing or regression model
building has been presented. An overview of model building and validating
methodologies has already been presented in Figures 3-2 and 3-3 respectively. The
detailed description of these methodologies is described in this chapter. Furthermore, the

chapter presents the designed structural and operational deterioration curves.

5.2 Model Building Process

Regression is a data oriented technique because it deals directly with the collected data
without considering the process behind it (Zayed et al 2005). As a result the original data
has been carefully pre-processed according to the adapted procedures described in the
previous chapter. The original data is stored and pre processed in Microsoft Excel
because of its versatility of spreadsheet analysis. For data processing or model building
part, Minitab ® statistical software package is selected. Minitab ® is one of the most
powerful, flexible, and easy to use (Kulandaivel, 2004) statistical software package. Due
to broad spectrum influence of predictor variables upon response variable “pipe

condition”, many regression models are designed by defining different functional forms
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of explanatory or predictor variables. The necessary statistical diagnostics are applied to
each model for further processing and decision making as shown in Figure 3-2.

As illustrated in Figure 4-5, four separate models are to be designed to describe the best
possible fit for the prepared four data sets. The step by step methodology for designing
the four models is same. Therefore, in this section, the model building process is
described in a general manner with specific examples. The final outcome of all the
models is summarized after the detailed explanation of the methodology. Following is the

step by step explanation of the model building process:

5.2.1 Selection of Variables and Their Functional Forms

The selection of proper variables for model development depends upon the data in hand
regarding the explanatory and response variables. Furthermore, a variety of diagnostics
should be employed to identify the functional forms in which the explanatory variables
should enter a regression model, and important interactions that should be included in the
model (Neter et al 1996). The predictor selected for developing regression models are
based upon the literature review of the pipe condition influence factors, and the actual
data information in hand regarding these factors.

The second step is to define functional forms for the input variables. Linear regression
model include not only first — order models in predictor variables but also more complex
models. Therefore, models with transformed variables or with different interaction terms
will be considered as linear regression models due to their respective linear parameters.
For example, the following two equations present linear regression models (Kutner et al

2005):
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Y = Bo +A1Xn +b’2X,-21 +p3Xi2 +ﬂ4Xi22 +B5XinXiz +i (Equation 5.1)

log10Y; =Bo + Al \/5(—; + prexp(Xjp)+¢; (Equation 5.2)
In this context, different functional forms of variables are defined for different possible
scenarios. Each combination of variables is tested according to the methodology
described in Figure 3-2 for finding the best fit.

Furthermore, the standardised function is also used to standardise the data. The function
assigns a normalized value from a distribution characterized by mean and standard
deviation. The normalized value for i observation of a specific distribution is obtained

through the equation 5.3.

Z; = (Equation 5.3)

where, Z; is normalised or standardised value of the i" observation, X; is the i"

observation, u is the mean of distribution, and o is the standard deviation of the

distribution.

5.2.2 Preliminary Diagnostics for Relationships and Interactions

The next step is to find out if any multi-colinearity or possible interactions existed in the
variables. The matrix scatter plot for all the model input variable is obtained for detection
and remedial measures. This plot is useful in detecting any existing bivariate
relationships between predictors and response variables as well as among predictor
variables. In matrix plots, Y variable for any scatter plot is the name found in its row and
the X variable is the name found in its column. Figures 5-1 and 5-2 describe it in more

detail.
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Matrix Plot for Predictors and Response Variable
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Figure 5-1: Matrix Plot for Concrete Pipe Structural Condition Assessment Model
Variables before Defining Forms

Figure 5-1 shows the matrix plot for model variables prior to defining any forms. It also
shows replicates in case of integer variables; nevertheless, the relationships between
decimal variables are quite satisfactory. In case of integer variables with very less range
(e.g. from 1 to 5 in most of cases under consideration), the replications are expected.
Therefore, the plot is considered satisfactory.

Figure 5-2 presents a matrix plot for transformed variables. All the variables have been
predefined by assigning some forms as described in step number 1. Figure 5-2 shows
existing relationships and interactions between some variables. This fact is due to the
defined functional forms and interactions; therefore, are expected in this kind of situation.

Therefore, the results of plot are considered satisfactory.
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Matriz Plot of Transformed Functions of Yariables
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Figure 5-2: Matrix Plot for Concrete Pipe Structural Condition Assessment Model

Variables after Defining Forms

5.2.3 Best Subset Analysis

If there are some unexpected interactions or bivariate relationships found in a matrix plot,
the combination of variables is redefined through best subsets regression analysis. The
best subsets analysis determines the best possible combination of variables with regards
to lowest error and variation and the highest R* (adjusted) value. Therefore, best subset
analysis identifies the best fit regression model that can be constructed with the specified
number of variables.

Figure 5-3 shows an example of Minitab out put for best subset analysis. Each line of the
output represents a different model. The first column represents the number of variables

or predictors in the model. R? and R? (adjusted) have been converted into percentages.
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Predictors that are present in the condition assessment model are indicated by a symbol

“X”.
BT
L er
De da
en d £
P gab it
Mallows ttgilCni
Vars PR-S5g R-S5q(adj) C-p 5 hheaCugc
1 22.1 21.1 65.4 1.1332 X
1l 19.6 15.6 69.5 1.151z2 X
2 40.6 39.0 34.4 0.99645 XX
2 34.2 32.4 45.8 1.0437 ¥ X
3 50.8 48.8 18,2 0.91332 XXX
3 49.3 47.2 20.8 0.92672 X XX
4 56.2 53.8 10.4 0.86734 X XXX
4 55.86 53.2 11.4 0.87287 X XXX
5 60.1 57.3 5.4 0.83326 X XXXX
5 58.0 55.0 9.3 0.85546 XX XXX
{6 60.9 57.6 6.0 0.,8308%7 X XXX XX
6 60.2 56.8 7.3 0.83842 X X X X XX
7 60.9 57.0 5.0 0.83675 X X XXXXX

Figure 5-3: Minitab Output for Best Subset Analysis for Concrete Pipe Structural
Condition Assessment Model Trial

It is clear from Figure 5-3 that the obtained model with higher R (adjusted), lower G
and lowest S value is the most appropriate model. Therefore, the variable “pipe depth”
should be excluded from the model (C, = 6.0 & S = 0.83087). Where, S is the standérd
deviation of residuals and C, is described as follows:

c S5E, (n—2p) (Equation 5.4)
pad —{n—- uation D.
? T MSE(X, .. X, ) P d

where, SSE p is error sum of squares for the fitted subset regression model with p
parameters (p-1 predictors), MSE(X]........ X p-1) is unbiased estimate of variance, and n

is the number of observations.
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5.2.4 Model Building

After all the above mentioned preliminary diagnostics the next step is to build a multiple
regression model for further analysis. The corresponding data for the deformed variables
is put in Minitab for regression analysis. The Minitab output consisted of a certain
regression equation with an estimate of regression coefficients “Bi” for the specified data

and some other results for further analysis.

5.2.5 Preliminary Tests for Model Adequacy

The preliminary tests include; coefficient of multiple determination, F test for regression
relation ant t test for each regression parameter “By”. Figure 5-4 shows the Minitab
output for these tests. R? and R? (adjusted) values are 84.9% and 83.1% respectively. The
R?value indicates that the predictors explain 84.9% of the variance in “structural grade”
(response variable). The R? (adjusted) accounts the number of predictors in the model.
Both values indicate that the model fits the data well.

The next test is the F test for regression. To determine P(F) for the whole model, a
hypothesis test is carried out. The null hypothesis (Hp) assumes that all regression
coefficients, B¢, Bi1.. Pp-1 are zero i.e. By = B; = PBp-1 =0. The alternate hypothesis (H,)
assumes that not all of them equal to zero. In Figure 5-4, the p-value (statistical
significance) in analysis of variance table is 0.000. That means that null hypothesis is
rejected. This shows that the estimated model is significant at o - level of 0.05. Therefore,
at least one coefficient in the estimated regression equation is not zero.

The next step is to test that all predictors are significantly related to the response variable
or not. To determine the validity of regression coefficient individually, “t-tests” are

performed separately for By, B Pp-1 in a similar fashion. In case of By, the null
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hypothesis (Hg) of t-test assumes that fo= 0; while alternative hypothesis (Hj;) assumes
that Bo# 0. Similarly, the other null hypothesis assumes that B; = 0 and vise versa. The

results of these tests are shown in Figure 5-4.

Predictor Coef SE Coef T p
Constant -0.056508 D.004799 -11.77 |[0.0CD
Log Depth -0.009911 0.D05630 -1.76 0.080
Depth/Length -0.000011 0.000230 -1.36 0.180
Length 0.00001311 0.00001375 0.95 0.342
Age 0.00011A06 0.00005646 2.06
Diameter -0.000000B2 0.0000D0385 -0.21 0.837
Concrete Class -0.800218 p.001013 -0.22 0.830
Bedding Factor 0.007641 0.001496 5.11 0.000
Street Class 0.0020209 0.0005337 3.79 |0.000
S = 0.00634780 R-Sq = B84.9% R-S8q {adj) = 83.1%
Analysis of Variance

sSource DF 58 M3 F P
Regression 8 0.631275 0.078009 1958.25 [0.000
Residual Error 182 0.007334 0.000040

Total 1%0 0.638609

Figure 5-4: Minitab Output for Preliminary Test Results of a Concrete Pipe Structural
Condition Assessment Trial Model

Figure 5-4 shows that the p-value for the estimated coefficients for predictors “Bedding
Factor” and “Street Class” is 0.000. Similarly, the p-value for predictor “Age” is 0.041.
As a result, alternative hypothesis is accepted. This indicates that the predictors are
significantly related with the response variable “Structural Grade” at a - level of 0.05.
However, the case is different for other predictors. For example, p—value for the
estimated coefficient for predictor “diameter” is 0.837; which is closer to 1 and greater
than « - level of 0.05. This shows that predictor is not significantly related to response
variable.

Therefore, due to the unsatisfactory results, the model is rejected and some other forms of

variables should be introduced for the next trial. This process is repeated, and some
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models with better results are selected for further diagnostics. One of them is shown in
Figure 5-5. Figure 5-5 shows that the model has less R? value as compare to the model
shown in Figure 5-4; however, its t tests for Py are better. Therefore, on this criterion the

model should be selected for further diagnostics

Predictor Coef SE Coef T P
Constant -0.8491 0.7147 -1.19 0.239
Log Dia/Length 0.5921 0.3151 1.88 0.064
exxT -0.006807 0.001196 -5.69 0.000
Log Depth ~3.217 1.213 -2.65 0.010
Log Age/CC -1.6044 D.4161 -3.86 O0.0O0C
Log De/Bedd 6.919 2.754 2.51 0.014
Bedd ing 0.9582 0.2511 3.82 0.000

s = 1.02281 R-5q = 72.7% R-Sq{adj) = 70.5%

Analysis of Variance

Source DF 85 M3 I P
Regression 6 200.979 23.4%97 32.02 0.000
Residual Error 72 75.322 1.046

Total 78 276.301

Figure 5-5: Minitab Output for Preliminary Test Results for one of the Trial Models

5.2.6 Residual Analysis

After obtaining satisfactory results from the previous step, the next step is to analyze the
residuals and their patterns. These diagnostic checks are essential to verify the linear

regression assumptions. These diagnostic are described below:

(i) Normality of Error

Consider the Minitab output for normal probability and frequency plots for residuals for
the selected model (Figure 5-6) from the previous step. The normal probability plot
shows that error terms are nearly normal. As small departures from normality do not

create any serious problems (Kutner et al 2005); the resuits could be considered as
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satisfactory. However, there could be a possibility of outliers. The possibility of outliers
is also clear from the histogram of residuals plot. The bar on the far right and two bars on

far left indicate that the data correspond to these values are not fit with the model.

Nomal Probability Plot of the Residuads
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Figure 5-6: Normal Probability and Histogram of Residual Plots for Concrete Pipe
Structural Condition Assessment Chosen Model

In order to check the possibility of outliers and errors in normal probability plots, Minitab
output for unusual observations are analyzed. Figure 5-7 shows observations with large
standardized residuals, and some with large influence on the model characteristics. These
observations are affecting the normal probability plot of residuals. A question arises that
either should these observations be removed by considering them outliers or should be

considered important to be included in the model? After a careful examination of the
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unusual observations, it is found out that the pipeline deterioration phenomenon is

sometimes extremely uncertain. For example, one of the unusual observations shows that

the pipe condition is in class 1 (excellent) while the pipe’s age is 40 years.

Unusual Observations

Obs
1

2
18
35
36
56
57
69

Log Dia/Length

0.027
0.027
0.0Z6
0.035
0.023
0.406
0.031
0.390

1/s8G
0.200
0.200
0.333
0.500
0.500
1.000
1.000
1.000

Fit
0.558
0.558
0.439
0.965
1.013
1.027
0.525
0.980

SE Fit
0.046
G0.0406
0.107
0.04z
0.045
0.111
0.047
0.106

Residual 35t Resid

-0.358 -2.08R
-0.358 -2.09R
-0.106 -0.73 X
-0.465 -2.31R
-0.513 -2.78R
-0.027 -0.17 X

0.475 2.58R

0.020 0.15 X

R denotes an observation with a large standardized residual.
X denotes an observation whose X wvalue gives it large influence.

Figure 5-7: Program Output for Unusual Observations

The program considers these types of observations as possible outliers. Eliminating these

unusual observations from the model would give better results in terms of R* values and

other statistical parameters; however, the model could not be considered as the best

representation of the real world data in hand. Figure 5-8 shows the normal probability

plot of residuals after eliminating all the unusual observations. The results show that there

is minimum possibility of outliers.

Percent

Normal Probability Plot of the Residuals
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~p.50 =0.25 0.00 0:25 0.50

Residual

Figure 5-8: Normal Probability Plot of Residuals for the Chosen Model after Eliminating

Qutliers
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Moreover, Figure 5-9 shows that the value of R” has also been improved by eliminating
the possible outliers. Furthermore, there seems to be an improving trend in p-value for .
However, p-value for By of predictor “Log Diameter/Depth” is 0.920. Previously, when
the outliers were considered, it was 0.064 (Figure 5-5). Therefore, two major predictors
under consideration, pipe diameter and pipe depth, have almost been eliminated from the
model; which could lead to pitfall. Consequently, these possible outliers are considered

important to be represented in the model.

Predictor Ccoef SE Coef T P
Constant 4.0572 0.6107 .64 0.000
Log Dia/Length 0.0488 0.4848 0.10 0.920
e**T -0.0062616 0.0009923 -6.31 0.000
Log Depth -2.710 1.197 -2.26 0.027
Log Age/CC -2.0221 0.3447 -5.87 0.080
Log De/Bedd 5.245 2.630 1.99 0.05C0
Bedding**Lambda -5.302 1.423 -3.73 0.000

S = 0.798235 R-5q = B83.5% R-Sqg{adj) = 82.0%

Figure 5-9: Minitab Output for Preliminary Test Results for the Chosen Model after

Eliminating Outliers

(ii) Homoscedasticity

The second assumption that the variation around a regression line be constant for all
values of X can be verified through the residuals vs. the fitted value plot. Figure 5-10
shows the fitted value plot for the model under consideration. In ideal scenario, constant
data would be distributed evenly across the plot. That would show the consistent variance
across the fitted value range. However, Figure 5-10 shows diagonal bands across the
centre line. The reasons for these types of results could be due to:

» Important variable(s) might be omitted from the model (Neter et al 1996)
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» Data variability issues: data composed of integer variables (Anderson et al 2005)

Residuals Versus the Fitted Vaues

0.50 1 -
0.25 1
:3 D00 -
m .
E 0251 *
&
-0.50 1 S
0.3 0.6 0.9 12
Fitted ¥ alue

Figure 5-10: Residual vs. Fitted Values Plot for Concrete Pipe Structural Condition
Assessment Chosen Model from Step 4

The careful examination for the data in hand shows that both above mentioned
possibilities exist in this case. Some of the important variables which could have a strong
effect on existing pipe conditions could be missing. For example, type of soil,
maintenance and repair history, infiltration etc. are important parameters which affects
existing pipe conditions directly. As information regarding these kinds of parameters was
not available; the study of the effect of these parameters on the pipe condition is
recommended for future research.

The second possibility of diagonal bands could be due to existence of integer predictors
causing data variability. The model under consideration has integer predictors and
response: concrete class, bedding class factor, street categories, and pipe condition. The
discrete values of these variables could cause the problem of unequal variance. The
remedial to the unequal variance is weighted least square regression (Kutner et al 2005).
If some important parameters are not omitted, the weighted least square regression will

produce better results. The weighted least square regression will be discussed later.
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(iii) Independence of Error

Errors around a regression line should be independent for each value of predictors. Figure
5-11 shows the residuals vs. the order of data plot for the model under consideration. The
results shows positive residuals at outer bands of X values, and the inner bands largely

consist of negative residuals.

Residuals Versus the Order of the Data
02.50 4

0.25 4

0.00 1

Residual

-0.25 1

-0.50

151015 20 25 30 35490 &5 5 60 6 7075
Dbservation Order

Figure 5-11: Residual vs. Order of Data Plot for Concrete Pipe Structural Condition
Assessment Chosen Model

The results could lead to a conclusion that there could be a pronounced shift in the
regression equation in the outer bands of the series; resulting in lack of fit of regression

function. Therefore, some additional diagnostics are necessary to evaluate the model.

5.2.7 Additional Diagnostics

In the previous section it has been seen that residual plots are one of the most necessary
tools in identifying a regression model’s adequacy. If the required results are not
achieved, the adequacy of a regression equation becomes objectionable. Therefore, some
additional statistical test should be performed before reaching on a final conclusion.
There are many statistical diagnostics available to check the adequacy of a model;

however, the two important diagnostics are described below:
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(i) Lack of Fit Test

The first diagnostic is the lack of fit test. As mentioned in literature review, Minitab
performs this test in two ways;

e If enough replicates are available — pure error test

e Ifnot enough replicates are available — data subsetting test
Lack of fit test is performed on the model under considerations and it is found out that the
program cannot perform pure error test due to lack of replicates. Therefore, data
subsetting test results are displaced as, “Overall lack of fit test is significant at p = 0.000”.
The results also show some possible interaction in the predictor “Bedding Factor” at p =

0.000. Therefore, the model can not be presented as fit for the data in hand.

(ii) Durbin-Watson Test

This test is important in identifying the possibility of auto-correlation among the
predictors. The Minitab out put for the model under consideration for Durbin-Watson
Statistics is 0.804345. The Durbin-Watson test bound tables provide the values for test
statistics up to five predictors (Neter, 1996). In the case under consideration, the
predictors are six.

d.=1.49 (n =80, p-1=5)
dy=1.77(n=280,p-1=5)

Hg: p = 0 (Error terms are independent)

H;: p > 1 (Error terms are positively correlated)
i g

D > dy, conclude Hy

D < d;, Conclude H,

di, €D < dy, the test is inconclusive

Result: 0.804345 < 1.49

D < dp, Error terms are positively correlated

Figure 5-12: Durbin-Watson Test Statistics for the Model under Consideration
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Therefore, the table is interpolated accordingly, and the results are shown in Figure 5-12.
The results show that error terms are positively correlated. This shows that the error

terms are not independent and remedial are required in this regard.

5.2.8 Remedial Measures

In the previous two steps, some necessary diagnostics for checking the adequacy of
regression models have been discussed. This section deals with some remedies of the

problems detected through these diagnostics in the regression models.

(i) Weighted Least Square Regression

One of the remedies for unequal error term variances is weighted least square regression.
The model under consideration is tested for different weighted trials by assigning weights
in variables one by one. Minitab performs weighted regression analysis using weights in
one variable at a time. In order to obtain better results, all variables in the model under
consideration were assigned weights one by one, and obtained results were analysed on

hit and trial basis. Two of the examples are explained in Figure 5-13.

Residuals Yersus the Fitted Values Residuals Versus the Fitted Values

050 a 0.50 -
0,25
_ s - o, =
s o " 2000 , g
= 0,00 ___Q_a_;'j% ’% e
g - - 025 - ®
® 025 LA oo
* 0,50
-0.50 ., ;
000 025 BED - 0.75 0 1,00 02 0. 06 o8
Fitted Yalue Fitted Yalue

Figure 5-13: Residual vs. Fitted Values Plot using weights in Predictor ‘bedding Factor’
(left) and in response ‘SG’ (Right) for Concrete Pipe Structural Condition Assessment

Chosen Model
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Figure 5-13 shows the results for residual vs. fitted value plots for two different types of
weighted regression. This analysis is performed by assigning weights in each variable to
judge any improvement in the inconsistency of error term. The purpose of weighted
regression is the reduction of sequential error terms variance; consequently, to minimize
the possibility of variability issues or noise in data. However, Figure 5-13 shows almost
the same results as already been presented in Figure 5-10. Therefore, it is concluded that
these diagonal bands of residual vs. fitted values are due to some omitted important

variable which could have an influence on a pipe’s structural condition.

(ii) Box-Cox Transformation

For remedies of lack of fit and inconsistent error terms, the response variable for the
model under consideration is transformed according to the Box-Cox procedure, and is

shown in Figure 5-14.

Box-Cox Plot of SG
Lower CL Upper CL
Lambda
0.51 (using 95.0% confidence)
Estimate -0.69
0.4 Lower CL -1.18
Upper CL -0.23
Rounded Value  -0.50
g 0.3 4
3
0.2
0.1+
Limit
0.0 T ¥ T T T
-5.0 -2.5 0.0 2.5 5.0
Lambda

Figure 5-14: Box-Cox Plot for Response Variable
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Figure 5-14 shows the Box-Cox plot of response variable “Structural Grade”. It is clear
that if power transformation on Y ()) is near to -0.5, the standard deviation in the data is
minimum. Therefore, the response variable is transformed accordingly for the
transformed model development. As described earlier, the lack of fit test displayed that
there could be possible interaction in the predictor “bedding Factor”. Therefore, the
predictor is also transformed accordingly and is shown in the Figure 5-15. Figure 5-15
shows that the rounded value of A in this case is -1.00. Consequently, the predictor is

transformed according to the obtained Box-Cox power transformation results.

Box-Cox Plot of Bedding
Lower CL Upper CL
0.20 Lambda
(using 95.0% confidence)
Estimate -0.94
0.19 Lower CL -2.76
Upper CL 0.84
0.18- Rounded Value  -1.00
>
8
[/}
0.17 4
0.161 Limit
0.154 T T T T T
-5.0 -2.5 0.0 2.5 5.0
Lambda

Figure 5-15: Box-Cox Plot for Predictor “Bedding Factor”

The transformed variables are again regressed, and preliminary results of the obtained
model are shown in Figure 5-16. As far as the R* and F test for regression is concerned,
there is no difference between the values obtained previously. However, there is a

considerable improvement in the t test for Bo. The p — value in this case is 0.000; where
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the p - value in the previous case was 0.239. Therefore, the intercept of regression plane

is better represented in the transformed model.

Predictor Coef SE Coef T P
Constant 3.9420 0.6225 .33 0.000
Log Dia/Length 0.5921 0.3151 1.88 0.064
e**T -0.006807 D0.0011836 -5.69%9 0.000
Log Depth -3.211 1.212 -2.65 0.010
Log Age/CC -1.6044 0.4161 -3.86 0.000
Log De/Bedd 6.919 2.754 2.51 0.014
Bedding**Lambda -5.748 1.507 -3.82 0.000
5 = 1.02281 R-8q = 72.7% R-8q {adj) = 70.5%

Analysis of Vvariance

sSource DF s M3 E P
Regress ion 6 200.979 33.497 32.02 0.000
Residual Error 72 75.322 1.0486

Total 78 276.301

Figure 5-16: Minitab Output for Preliminary Test Results for the Concrete Pipe
Structural Condition Assessment Transformed Model

In case of residual analysis, the results are almost the same except the diagonal band
slope of the residual vs. fitted value plot are inversed. This is due to the negative power
transformation of the response variable after Box-Cox procedure. In case of Lack of Fit
test, the results show some improvement, as the p-value of data subsetting test is
increased from 0.000 to 0.049. Furthermore, the Durbin-Watson statistics value is
increased form 0.804 to 0.95; nevertheless, is still less than d;, showing auto correlation.
In short, the transformed model shows better results for statistical diagnostic than the
previous model; therefore, it is selected for the model validation process. Table 5-1
shows the summary of results for both the models: model before Box-Cox transformation

and model after Box-Cox transformation.
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The regression model building process and decision making criterion for selection or
rejection of the built models have been explained above through one example i.e.
concrete pipe structural condition assessment model. The other models for the remaining
three data groups are built according to the same methodology. All of these models are

than validated through their respective validation data.

5.3 Model Validation Process

It is noted that all the statistical diagnostics which have been described above are not
enough to check the adequacy of a regression model. Therefore, a comprehensive model
validation procedure is applied to all selected models for validating them. An overview of
this methodology has already been shown in Figure 3-3.

The validation data for all the four groups is embedded into the regression model for
comparing its results with the actual results using Microsoft Excel spread sheet
procedures. Furthermore, descriptive statistics and histograms for the actual and predicted
output data is obtained through Minitab statistical software package. All of these steps are

explained below through examples in an order of sequence.

5.3.1 Actual vs. Predicted Output Plot

The first step is to compare the actual observation with the predicted values for the
validation data for each group. Figure 5-17 shows actual vs. predicted output plot for the
concrete pipe structural condition model as an example. The figure shows that the
predicted values are well in acceptable limits and are scattered around the actual values

for response variable. Therefore, the first validation test’s results are satisfactory.
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Figure 5-17: Model Validation Plot as per Order of Observation for the Selected

Concrete Pipe Structural Condition Prediction Model

5.3.2 Descriptive Statistics

The second step is to check descriptive statistics of the actual and predictive output

observations.
5
4
-
2 37
=1}
=
[~
-1}
& 2
14 Variable
Actual Structural Grade
- Caleulated Structural Grades
D H ] ¥ ¥ T T
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Data

Figure 5-18: Minitab Output for Histogram of Actual and Predicted Values
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Table 5-2: Descriptive Statistics for Actual and Predicted Outputs for Validation Data

Descriptive
Mean St Deviation
Statistics
Observations Actual Predicted Actual Predicted
Value 2.267 2.283 1.23 1.287

Figure 5-18 and Table 5-2 show descriptive statistics for the concrete pipe structural
condition prediction model validation data. The results show that the mean and standard
deviation of actual and predicted outputs are quite closer to each other. The predicted
outputs have slightly more values of mean and standard deviation; however, the results

are satisfactory.

5.3.3 Mathematical Validation Diagnostics

The validation data is checked for all commonly used mathematical parameters for model

validation. All these mathematical parameters are discussed below:

(i) Average Invalidity and Validity Percent (AIP & AVP)

Average Invalidity and Validity Percent can be calculated for validation data by the

following formulae (Zayed et al 2005):

n :
Z 1— _EL
i1 (OF
Alp=1=—"__— = (Equation 5.5)
n
and AVP =1- AIP (Equation 5.6)

where, AIP is Average Invalidity Percent, AVP is Average Validity Percent, Ejis

Estimated or Predicted Value, C;is Actual Value, and »is the number of observations.
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AIP value varies from 0 to 1. If the value AIP is closer to 0; the model is fit for its
validation data. AIP value closer to 1 shows that the model is not appropriate for its
validation data. On the contrary, for a satisfactory validation, AVP value should be closer
to 1. For the model under consideration, the values are listed below:

> AIP=0.1808

» AVP=0.8192
The value show that predicted outputs are almost 82% accurate. The results can be
considered as more than satisfactory because the model which is being validated has R?
value of about 72%. That means it explains 72% of variation in model building data;

further, it explains about 82% of variation in validation data.

(ii) Root Mean Square Error (RMSE)

Root mean square error (RMSE) can be estimated by the formula (Barqawi, 2006):

(Equation 5.7)

where, RMSE = Root Mean Square Error, E;= Estimated or Predicted Value,C;= Actual

Value, and n= No of Observations. The value of RMSE close to 0 shows that the model

is fit for its validation data. For the model under consideration, the value of RMSE is

0.0827.

5.3.3.3 Mean Absolute Error and Fitness Function (MAE & f;)

The mean absolute error (MAE) is defined as (Barqawi, 2006):
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n
2.ICi ~ Ej
MAE == (Equation 5.8)
n

where, MAE is Mean Absolute Error, E;is Estimated or Predicted Value, Cjis Actual

Value, n1s the number of observations.

MAE value varies from 0 to infinite. However, the value of mean absolute error should
be close to zero for the validity of a model. Further, the mean absolute error value is used
to define the fitness function f; for a model validation. The fitness function can be
calculated as (Dikmen et al 2005):

fim 1000
' 14+ MAE

(Equation 5.9)
where, MAFE is Mean Absolute Error, and fiis Fitness Function. The equation for fitness
function shows that if the value of fitness function is closer to 1000 for a model, the
model is fit for validation data. fi value closer to 0 indicates that the model is
inappropriate for the representation of validation data. The values for MAE and f; for the
model under consideration are:

» MAE =0.3465

» fi=742.66
The above results show that the model’s accuracy is about 74.26%.
All the above validation checks show that the model is fit for the validation data.

Therefore, the model was selected as the best fit model for the representation of data in

hand; includes model building as well as validation data.
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5.4 Summary Developed Models

All the above mentioned methodology for model building and validating processes has
been illustrated by giving examples from concrete pipe structural condition assessment
model. As already been mentioned, four data groups are prepared to develop four
different models. Consequently, all the models are built and tested according to the same
adapted methodology. Total number of predictors in a developed model may differ with
other models. This is due to available input data and results of different statistical tests
e.g. best subset analysis etc. The regression equations for the developed models are listed
below. Further, Table 5-3 presents the results for the different statistical diagnostics

applied to all the developed models

5.4.1 Structural Condition Assessment Models

Three different models for asbestos cement, concrete, and PVC pipes have been

designed. The final outcome of the models is described below:

(i) Asbestos Cement Pipe Structural Condition Assessment Model

The developed regression equation is:

20.9 1 542 L0810 epth

Structural _Grade = Length
0.1

+0.207 Age — 0.742 Aabestos _Cement _Class
—14.8Diameter

(Equation 5.10)

The units of all variables are same as described in Table 4-9.
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(i) Concrete Pipe Structural Condition Prediction Model

3.94 + 0,507 LogL0Diameter  , 06e1,Street _ Category
Length

LogioAge

Structural _Grade =| -3.22LogygDepth—1.6
Concrete _Class

LogyioDepth _575 1

+6.92 X
Bedding Factor Bedding _Factor

(Equation 5.11)

The units of all variables are same as described in Table 4-8.

(iii) PVC Pipe Structural Condition Prediction Model

2.25-0.00642 Age —1.89 Length®-01
Structural _Grade = —Log| —0.0302 Bedding _ Factor —0.0405Street _ Category

— 0.0000( Diameter)%-3 (Depth)*

(Equation 5.12)

The units of all variables are same as described in Table 4-10.

5.4.2 Operational condition Prediction Model

As mentioned above, operation condition assessment model was developed for all the

three pipe materials and is given in the following equation:

1

063

0.308 + 0.567[_T~4ge_)( Length)™
Diameter”

Operational _Grade = (Equation 5.13)

Age

Where, n is the Manning’s roughness coefficient for a specific pipe material. The units of

all variables are same as described in Table 4-11.
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The summary of results of all developed models is shown in Tables 5-3 and 5-4.

5.4.3 Limitation of Models

The developed regression models are limited to a certain range of input data. These input

data ranges have been described in chapter 4 (Tables 4-8 to 4-11).

5.4.4 Validation Summary and Parameter Comparison

Table 5-4 shows the summary of results for all concerned validation checks for the
selected models. All of the validation checks shown in Table 5-4 are in satisfactory range
with respect to data in hand and R? values for the respective models. However, some of
the factors are more sensitive to variation or noise in the validation data than others.
Figure 5-19 shows a comparison between two of the validation parameters; average
validity percent (AVP) and fitness function (fi). As the fitness function is dependent upon
MAE value, it is more sensitive than average validity percent. Nevertheless, the values of

both the parameters are compatible to their respective R? values.

100 -

95 | | = AVP (%) —a—Fi (%) |

90 A

85
60 A
75 4
70 A

Percentage Value of Parameter

65 +

BU T T T 1

Concrete Asbestos Cement PWYC Structural Operational
Structural Structural

Model

Figure 5-19: Sensitivity Comparison between AVP and Fitness Function
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5.5 Deterioration curves for Sewers

Based on developed model, structural and operational deterioration curves for sewers are
built. Due to limitation of input data ranges for asbestos cement and PVC structural
condition models, the structural deterioration curves are only developed for concrete
pipes. Nevertheless, the developed operational deterioration curves represent all pipe

materials under consideration.

5.5.1 Structural Deterioration Curves

Equation 5.11 shows that deterioration of a concrete pipe is a complex phenomenon,
which involves many sewer attributes. The structural deterioration curves are built by
varying one or two attributes at a time; while other attributes are kept constant.

Figures 5-20 and 5-21 represent structural deterioration of concrete sewers with respect to
their road categories. The curves have been drawn by considering average values of other
attributes in concrete pipe regression model. For example, average values of depth and
length are taken as 3.5m and 80m respectively. Figure 5-20 represent collector sewers
with the diameter ranges from 200mm to 525mm, and Figure 5-21 represent trunk sewers
with the diameter ranges from 600mm to 825mm. It is observed that pipes buried under
arterial streets will reach the critical condition class in 50 years when all the other values
will be kept constant. It is also observed that this deterioration trend is slightly more in
case of collector sewers. This could be due to greater length to diameter ratios for

collectors, which could increase bending stresses.
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Figure 5-20: Structural Deterioration Curves for Concrete Pipes for Average Depth,

Length, Bedding and Concrete Classes (Diameter 200mm to 525mm)

n
5

Structural Condition Rating
(WRc Classification)
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Figure 5-21: Structural Deterioration Curves for Concrete Pipes for Average Depth,

Length, Bedding and Concrete Classes (Diameter 600mm to 825mm)
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Figure 5-22: Structural Deterioration Curves for Concrete Pipes for Average Depth,

Length, Diameter and Concrete Classes (Collector Street, Bedding Material Class B & C)
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Figure 5-23: Structural Deterioration Curves for Concrete Pipes for Average Depth,

Length, Diameter and Bedding Material Classes (Collector Street, Pipe Classes 3 to 5)
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Figure 5-22 represents structural deterioration of concrete sewers with respect to their
bedding material classes. It is observed that for average conditions, deterioration rate for
concrete sewers will almost remain the same for pipes placed on class B or C bedding
material during the first five years. However, after five years there is a significant
difference in the rate of deterioration. This could be due to more vulnerability of
displacements in weaker bedding materials. Figure 5-23 represents structural
deterioration of concrete sewers with respect to their concrete classes. It is clear that the

rate of deterioration is significantly less in case of high strength classes.

5.5.2 Operational Deterioration Curves

Operational deterioration curves are drawn with the help of equation 5.12. For simplicity,
Manning’s roughness coefficient is considered constant for all the pipe materials under
consideration: concrete, asbestos cement, and PVC. The operational deterioration curves
are built by varying one or two attributes at a time; while other attributes are kept
constant.

Figure 5-24 represents operational deterioration of a sewer with respect to its bed slopes
(length to diameter ratio ranges between 200 and 300). it is observed that operational
deterioration rate is more for steeper bed slopes. This means that performance of sewers
is best for a certain range of bed slopes, which can be called as optimum or critical bed
slopes. These slopes are associated with the designed self cleansing velocity of sewers.
Steeper slopes may cause super critical flows resulting in erosion of pipe; thus, increasing
pipe’s roughness. Therefore, inspection priority should be given to those sewers which

have extremely steeper bed slopes for average length to diameter ratios.
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Figure 5-24: Operational Deterioration Curves for Concrete, Asbestos Cement, and PVC

Pipes for Different Bed Slopes (L./D Ratio between 200 and 300)
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Figure 5-25: Operational Deterioration Curves for Concrete, Asbestos Cement, and PVC

Pipes for Average length and Bed Slope
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Figure 5-25 compares operational deterioration of trunk sewers with collectors. All the
other attributes are considered to be in average condition. It is observed that the rate of
operational deterioration is slightly less than that of collectors. However, the difference is
not significant. As many factors have not been considered during the design of
operational condition assessment model, the detailed review of operational deterioration

is recommended for future research.

5.5 Summary

Regression Model building and validating methodology has been presented. The different
statistical checks and diagnostics applied during the process have been discussed in detail.
Three different structural condition grading models are built for different pipe materials:
concrete, asbestos cement, and PVC. However, only one operational condition grading
model is built for all the three pipe materials. The summary of results have been tabulated
and found satisfactory. Based on the developed models, deterioration curves are drawn to

better understand the structural and operational deterioration phenomena.
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Chapter 6

INTEGRATION OF SEWER CONDITION ASSESSMENT

PROTOCOLS

6.1 Overview

As mentioned in chapter 2, there are many condition assessment protocols which have
been adopted by Canadian municipal agencies. Among them, WRc and CERIU protocols
are more popular. Nevertheless, there is an urgent need of developing and adapting an
integrated and unified approach towards condition assessment. As a first step towards
achieving this objective, this chapter compares and analyzes both the protocols.
Moreover, the chapter proposes a methodology to convert CERIU protocols into WRe
and vice versa. Conversion factors have been developed through unsupervised neural
network clustering in this regard. Based on the self-organizing methodology for the
integration of protocols, a combined condition index (CCI) is proposed through clustering
of combined condition matrix. The combined condition matrix has been developed based
on WRc’s approach. The methodology has been verified through CERIU’s sub-

committee for development of a unified condition assessment protocol and other experts.

6.2 Protocol Comparison

6.2.1 General

WRc and CERIU sewer condition assessment protocols consider the same concept of
judging a defect’s severity and its impact on service life by assigning a certain numerical

value on a specified scale. The key difference is that the CERIU protocols are not tied to
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condition assessment but rather to the standardisation of the terms or language used to
describe what one can sece when doing an inspection. The CERIU's manual for
standardization of observations was and still is a manual for sewer condition
classification, near equivalent to WRc¢ manual of sewer condition classification and does
not stand to address the equivalent of the WRc's SRM (Sewerage Rehabilitation Manual,
2004).

For calculating a pipe’s condition, sewer defects in the pipe need to be ranked in some
order of severity. In this context, WRc SRM assigns different deduct values to each
defect in a pipe, and on the basis of these deduct values it assigns a condition class to the
whole pipe. On the contrary, CERIU directly assigns a condition class to each defect in a
pipe, and it does not calculate any condition class for the whole pipe segment. Therefore,
the results obtained by the application of CERIU codes are complex and need more time
for analysis. Nevertheless, CERIU divides cross-sectional area of a sewer pipe in a more
convenient way (Figure 2-6) resulting in easy judgment of flow depth and other
observations inside a pipe. Moreover, CERIU addresses the problems caused by
infiltration and service connections in more detail than WRec.

The main drawback of CERIU codes, could be minimized by comparing condition
classes developed by CERIU with the deduct values developed by WRc for each sewer
defect. Therefore, the first step should be to develop tables for comparison between
CERIU condition assessment classes for sewer defects and their corresponding WRc
deduct values. This methodology is illustrated below and deals with structural and

operational defects separately.
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6.2.2 Structural Condition Protocols

Table 6-1 shows a comparison between the codes for structural defects. It is developed by
taking the three criticality conditions (light, medium and severe) into account.

Table 6-1: Comparison of WRc Structural Deduct Values with CERIU Condition Classes

CERIU WRe
Criticality
Defects Unit Condition Deduct
Level
Class Values
Light Per Joint 1 0.1
Joint Opening | Medium Per Joint 2t03 0.2
Severe Per Joint 4 2
Light Per Joint 2 0.1
Joint
Medium Per Joint 3t04 0.5
Displacement
Severe Per Joint 5 2
Light Per Crack 1to?2 1
Circumferential
Medium Per Crack 3 -
Crack
Severe Per Crack 4t05 8
Light Per Crack 1to2 2
Longitudinal
Medium Per Crack 3 -
Cracks
Severe Per Crack 4t05 15
Light Each 1to2 5
Multiple Crack | Medium Each 3 -
Severe Each 4105 40
Light Each - 10
Deformation Medium Each 4 75
Severe Each 5 165
Light Each 3 80
Hole Medium Each 4 -
Severe Each 5 165
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Table 6-1 shows that sometimes both the codes do not define either a certain condition
class or a deduct value for a particular defect’s criticality level. However, both codes
usually define a condition class or a deduct value for every defect when the criticality
level is severe. Therefore, it is essential to take into account these scores for critical

defects when comparing the two grading systems.

6.2.3 Operational Condition Protocols

In the same context, a comparison between the two codes for some common operational
defects can be done.

Table 6-2: Comparison between WRc Operational Deduct Values with CERIU Classes

Operational Defect CERIU WRe
Criticality
CERIU WRe Condition Deduct
Level
Pronunciation | Pronunciation Class Values
Light 1to2 2
Roots Roots Medium 3 4
Severe 4105 10
Light l1to?2 1
Deposits Encrustation | Medium 3 2
Severe 4t05 5
Grease/ Light 1to2 1
Visible Debris Medium 3 5
Material Severe 4t05 10
Light 1 -
Obstructing
Obstruction | Medium 3 -
Object
Severe 5 10
Light 1to2 -
Infiltration Infiltration | Medium 3 -
Severe 4t05 -
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Similarly, Table 6-2 has been developed by taken into account the three conditions of
criticality i.e. light, medium and severe, which shows that sometimes both the codes do
not define either a certain condition class or a deduct value for a particular defect’s
criticality level. However, both codes usually define a condition class or a deduct value

for every defect when the criticality level is severe.

6.3 Proposed Modification Methodology

As mentioned, the main drawback of CERIU protocols is that CERIU directly assigns a
condition class to each defect in a sewer pipe, and it does not calculate any condition
class for the whole pipe segment. A methodology for the solution to this problem was
adapted and has already been overviewed in Figure 3-4. The detailed stepwise analysis is

performed by adapting the methodology and is described below.

6.3.1 Defect Ranking

WRc assigns different peak deduct values for different defects. That means some defects
have more weights than others for determining the overall condition of a pipe. For
example, longitudinal crack has a maximum deduct value of 15 per crack as compare to
40 for multiple crack. As a consequence, it can be said that a multiple crack affects the
overall condition of a pipe 2.67 times more than a longitudinal crack. In this context, all
defects can be ranked on the basis of their contribution towards the overall condition of a

pipe. This methodology is illustrated below for structural and operational defects.

(i) Structural Defects

For structural condition assessment, WRc assigns a maximum deduct value of 165 for a

defect. Therefore, all structural defects can be ranked according to the above mentioned
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value and are shown in the table 6-3. The percentage ranking weights obtained from
Table 6-3 for common structural defects have been plotted in Figure 6-1 for comparison

of severity.

Table 6-3: WRc Ranking Weights for Common Structural Defects

%age
WRe Ranking
Ranking
Structural Defect Maximum Weights
Weights
Deduct Value (Col 2/165)
(Col 3*100)
Joint Opening 2 0.01 1.21
Joint Displacement 2 0.01 1.21
Circum. Cracks 8 0.05 4.85
Long. Cracks 15 0.09 9.09
Multi. Cracks 40 0.24 24.24
Deformation 165 1.00 100.00
Hole 165 1 100.00

Hole
Deformation

Multi. Cracks

Long. Cracks

Structural Defects

Circum. Cracks

Joint Displacement E

|

Joint Opening E
O

0.00 20.00 40.00 60.00 80.00 100.00 120.00
Percentage Ranking Weights for Defects

Figure 6-1: Severity Contribution in Overall Structural Condition of a Pipe by Common

Structural Defects (WRc Approach)
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(iii) Operational Defects:

For operational condition assessment, WRc assigns a maximum deduct value of 10 for a
defect. Therefore, operational defects can be ranked accordingly and are shown in Table
6-4.

Table 6-4: WRc Ranking Weights for Common Operational Defects

WRe
Operational Ranking %age Ranking
Maximum
Defect Weights Weights
Deduct Value
(Col 2/10) (Col 3*100)

Roots 10 1.00 100.00
Encrustation 5 0.50 50.00

Debris 10 1.00 100.00
Obstruction 10 1.00 100.00

ceafucton

ebria

Operstional Defects

Enc ruriai on

Roots

.00 20.00 40.00 50.00 000 100.90 120.00
Percentage Ranking Vkights for Defects

Figure 6-2: Severity Contribution in Overall Operational Condition of a Pipe by

Common Operational Defects (WRc Approach)
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Similarly, the percentage ranking weights obtained from Table 6-4 for some common

operational defects have been plotted in Figure 6-2 for comparison of severity.

6.3.2 Assigning Transformed Deduct Values for CERIU Classifications

The deduct values, or weights, for defects are assigned according to the condition
assessment protocol used and they determine the impact of defects on the service life and
performance of a sewer pipe segment. Deduct values for defects for any one protocol
should be assigned in a consistent manner (Rahaman et al 2004). Therefore, care should
be taken into account while proposing deduct values for CERIU classification, so that the
deduct values should be consistent and compatible with other codes. The proposed
methodology assigns deduct values for CERIU classification by multiplying WRc
severity ranking weight for a particular defect with the specified CERIU class for the
same defect. This methodology can be applied to structural and operational defects as

follows:

(i) Structural Defects

Table 6-5 presents the obtained deduct values for CERIU classification for some common
structural defects. These values have been transformed from their respective ranking
weights obtained from WRc classification. For some defects, CERIU does not specify all
five condition classes. For simplicity, these classes have been ignored while transforming
deduct values. Therefore, the missing values will be considered as zero during the self-

organizing neural network clustering process.
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Table 6-5: Transformed Deduct Values for CERIU Condition Classes for Common

Structural Defects

WRe Transformed Deduct Values for CERIU
Ranking Condition Classes
Structural Defect . C v L.
Weights (Ranking Weight * CERIU Condition Class)
Class1 | Class2 | Class3 | Class4 | Class S
Joint Opening 0.01 0.01 0.02 0.03 0.04 -
Joint
0.01 - 0.02 0.03 0.04 0.05
Displacement
Circum. Crack 0.05 0.05 0.1 0.15 0.2 0.25
Long. Crack 0.09 0.09 0.18 0.27 0.36 0.45
Multi. Crack 0.24 0.24 0.48 0.72 0.96 1.2
Deformation 1 - - - 4 5
Hole 1 - - 3 4 5

Table 6-6: Transformed Deduct Values for CERIU Condition Classes for Common

Operational Defects

WRe Transformed Deduct Values for CERIU Condition
Ranking Classes
Operational Defect Weights (Ranking Weight * CERIU Condition Class)
Class1 | Class 2 Class 3 Class 4 | ClassS
Roots 1 1 2 3 4 5
Deposits 0.5 0.5 1 1.5 2 2.5
Grease 1 1 2 3 4 5
Visible Material 1 - 2 3 4 5
Obstruction 1 1 - 3 - 5
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(ii) Operational Defects

Similarly, deduct values for CERIU classification for some common operational defects
are shown in Table 6-6, and the values have been transformed from their respective
ranking weights obtained from WRc classification. Again for easy transformation,

deduct values for missing classes have been ignored.

6.3.3 Development of Self-Organizing Maps

Overall condition class of a pipe can be calculated on peak or mean deduct values
methods; where peak score represents the highest deduct value in a pipe segment and
mean score represents an average of the deduct values for a particular pipe segment. For
simplicity, the method of peak deduct values has been adapted for developing modified
CERIU classification system.

In order to develop an overall structural or operational condition grading system for
CERIU classification, the obtained transformed deduct values need to be grouped or
clustered into five categories of condition classes. For this purpose, self-organizing maps
are developed for grouping structural and operational transformed deduct values through
unsupervised neural network applications.

The clustering or groupings of deduct values for structural and operational grades are
done separately. Computer software Neuroshell ® is used for this purpose. The key
topology of SOM is shown in Figure 6-3. The input layer consists of transformed deduct
values, and the output layer represents the topology of five groups for these values. These
groups are obtained separately for structural and operational deduct values which are

described below.
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Output Layer: Five Groups of
Transformed Deduct Values

Input Layer:
Transformed
Deduct Values

Figure 6-3: Topology of Applied Kohonen’s Self-Organizing Map

(ii) Structural Defects

The transformed deduct values for structural defects (Table 6-5) are taken as the input
values for the development of self-organizing map. The total number of deduct values are
28. Initially, these 28 values are entered in the program. The input layer is trained from
500 to 500,000 epochs for generating the desired five category output. The initial
learning rate was 0.5 and neighbourhood size was taken as 4. During the process of
training, the learning rate and neighbourhood size eventually decreased to 0.000001 and 0
respectively (Figure 6-4). However, the five categorical desired outputs are not achieved.
This process is repeated for different learning epochs; nevertheless, the final results are

the same i.e. 4 categorical outputs and one unused output category (Figure 6-4).
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nput Deduct Values

Training Graphics There are 28 training pattemns.

[X learning events completed: 14000000
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Figure 6-4: Initial Results after Training Showing Four Categorical Outputs (One
Unused Output)

As the neural network models are always data hungry; the input data set points are
gradually increased to get the desired five categorical outputs. Therefore, in the second
step, the 28 input deduct values are entered twice, resulting in total 56 input dataset
points. Further, all the possible scenarios are adapted regarding pattern selection, distance,
learning epochs, neighbourhood size, etc. The input data set points are increased by
adding one more batch of deduct values (28 values) every time. This process is repeated
until consistent results of five categorical outputs are achieved. It was found out for
optimum results, deduct values are entered in the program 14 times simultaneously
resulting in total 392 input data set points. The deduct values are entered in the program
15, 16 and 17 times to check any change in the categorical outputs, but no significant
change is observed in this regard. Therefore, the results obtained with 392 data set points
were considered as satisfactory, and are shown in the Figure 6-5. It also shows the class
boundaries of obtained clusters. The five clusters (groups) of deduct values obtained

through Kohonen self-organizing maps are shown in Table 6-7.
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Figure 6-5: Final Categorical Output for CERIU Transformed Deduct Values for

Structural Defects

Table 6-7: Group Divisions for CERIU Transformed Deduct Values for Structural

Defects Obtained through Unsupervised Neural Network (Kohonen) Learning Process

SOM
Transformed Deduct Values

Groups

0.01, 0.02, 0.03, 0.04, 0.05, 0.09, 0.1, 0.15, 0.18
Group#2 | 02,024,025, 027,036, 0.45, 0.48

roup#3 ] 0.72,096, 12

3

(4.5
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(ii) Operational Defects

The same methodology for grouping operational deduct values is adapted. Total numbers
of dataset points as obtained from Table 6-6 are 22. For obtaining consistent results, the
total number of input values are increased and decreased in the similar fashion. It is found
out that when the deduct values are entered 9 times simultaneously, resulting in 198 input
data points, the results are more consistent with well defined output categories. These
results are chosen as the best possible scenario (Figure 6-6). Figure 6-6 shows the class
boundaries of obtained clusters. The obtained categorical divisions are illustrated in Table

6-8.

Pats.
in
Pats. Cat
i
Catl

v 2 3 4 s
Category (Dulpull Nember Category (Qulpul) Number

Figure 6-6: Final Categorical Output for CERIU Transformed Deduct Values for

Operational Defects through Kohonen Learning Process
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Table 6-8: Group Divisions for CERIU Transformed Deduct Values for Operational

Defects

SOM
Transformed Deduct Values

Groups

0.5,1
/ Group#2 | 15,2
roup#3 | 2.5,3

Group

6.3.4 Proposed Modification in CERIU Protocols

The class boundaries for each group or cluster can be easily defined from the self-
organizing map’s results which are tabulated in Tables 6-7 and 6-8. For example (Table
6-7), group no 1 has a minimum deduct value of 0.01 and maximum of 0.18. Therefore,
the peak value for this group is 0.18. Further, this maximum value is less than all values
of group 2 and so on. This shows a holistic picture of developed self-organized condition
classes for both structural and operational defects. These condition classes are tabulated
separately for structural and operational conditions in Table 6-9.

Table 6-9: Holistic CERIU Structural and Operational Condition Classes for Sewers

Proposed Overall CERIU Peak Structural Peak Operational
Structural and Operational Transformed Transformed Deduct
Condition Class Deduct Values Values
1 <0.18 <1.00
2 0.19-0.48 1.1-2
3 049-12 2.1-3
4 1.21-3 3.1-4
5 >3 >4
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The obtained peak transformed deduct values for CERIU classifications for structural and

operational defects are compared with their corresponding WRc deduct values for

comparison. The results are shown in Tables 6-10and 6-11 respectively.

Table 6-10: Comparison between Obtained Modified CERIU and WRc Structural

Condition Classes According to Peak deduct Values

Overall WRC/CERIU Modified CERIU Peak WRc Peak Structural
Structural Condition Structural Deduct Value | Deduct Value Found in a
Class for a Pipe Found in a Pipe Segment Pipe Segment

1 <0.18 <10

2 0.19-0.48 10-39

3 0.49-1.2 40-79

4 1.21-3 80-164

5 >3 165 & above

Table 6-11: Comparison between Obtained Modified CERIU and WRc Operational

Condition Classes According to Peak deduct Values

Overall WRC/CERIU

Operational Condition

Modified CERIU Peak
Operational Deduct Value

WRec Peak Operational

Deduct Value Found in a

Class for a Pipe Found in a Pipe Segment Pipe Segment
1 <1.00 <1
2 1.1-2 1-19
3 2.1-3 2-49
4 3.1-4 5-99
5 >4 >10
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6.5 Feedbacks from Experts on the Developed Methodology

CERIU has setup a sub-committee which is going to prepare a round-table of all the
stakeholders and other people interested in the development of a unified condition
assessment protocol. In short, there seems to be at three camps, one pro-CERIU, one pro-
WRc and some on the fringe who support the approach of integrating both approaches.
Before proceeding with any approach, the sub-committee at large must give
recommendations and then only will CERIU be able to trace a clear development path
(Bergeron, 2006).

The proposed methodology was presented to the CERIU sub-committee during its
meeting in its meeting in October 2006. The main comments given by the committee on
the research (Bergeron, 2006) are described below:

> The sub-committee admired the work and considered it as very interesting and
promising

> The sub-committee acknowledged that the question of CERIU protocols had been
lingering for a long time now within the community, and there was an urgent need
to address it.

» The sub-committee agreed that the proposed conversion factors would be helpful
in providing a documented link between CERIU protocols and WRc condition
assessment system.

» Some of the committee’s members expressed their concerns about the inner

working of the unsupervised neural networks.
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» Another question was raised by a member that how the network addressed the
various observations noted within CERIU's manual that were not even considered
by WRe.

> After consultation, the sub-committee recommended that future research should

be carried out for finding solutions to both the raised question

6.6 Combined Condition Index (CCI) for Sewers

In previous sections, discussion is mostly concerned with the comparison and conversion
of sewer condition assessment protocols into one another for the integration of condition
assessment protocols. The very next step is to develop a combined condition rating
system for sewers which takes into account both structural and hydraulic conditions
simultaneously. This section presents a methodology of clustering structural and
operational condition grades through unsupervised neural network learning into five well
defined categories. A combined condition matrix has been developed based on WRc
protocols, and has been clustered through Kohonen’s self-organizing procedure for

developing a combined condition index (CCI) for sewers.

6.6.1 Combined Condition Matrix

As described, a sewer’s existing condition is usually defined in two ways: structural
condition and operational condition. Generally, a condition rating scale varies from 1 to 5,
where 1 represents the good condition and 5 represents the worst case scenario. A
question arises over here for municipal managers that what would be the condition of a

sewer which would not be following the path of balanced deterioration? For example, if a

136



pipe has structural condition rating 1 and operational condition rating 5 according to a
certain code, what would be the criteria of judging the overall condition of that pipe?
In order to better understand it let us consider Figure 6-7. It shows a matrix of all possible
combinations of structural and operational conditions for a sewer as per WRc
specification; therefore, this matrix can be called as combined condition matrix. The
matrix aj is a square matrix of order 5. Where, 1 and j represent the possible structural and
operational condition ratings of a pipe respectively. It can be noticed from Figure 7-1 that
» Ifi=j, balanced deterioration of a pipe
» If1>], pipe more structurally deteriorated

» If1i<j, pipe more operationally deteriorated

106 Wi Operational/Service Grades

SG W Internal Structural Condition Grades
‘Balanced Deterisration of pipe
{Pipe Structurlaslly Deteriorated

Pipe Hydraulically Deteriorated

Figure 6-7: Sewer Pipeline Combined Condition Matrix

The matrix also shows that there are 25 possible scenarios for assigning a combined
condition of a sewer. As a consequence, it shows a very complex picture to municipal

managers for taking any decision.

6.6.2 Clustering of Combined Condition Matrix

The idea of clustering the combined condition matrix through unsupervised neural

network is introduced in the same fashion as have been carried out for conversion of
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CERIU protocols. The main objective is to generate five well defined clusters out of the
25 possible scenarios for defining overall condition classes for sewer pipes; consequently,
developing combined condition index (CCI) for sewers.

The procedure adapted for generating the required clusters is almost the same as is
adapted for clustering the transformed deduct values for CERIU classification. The same
software Neuroshell ® is used in this regard, and the same topology of Kohonen’s self-
organizing map is applied to this problem as shown in the Figure 6-3.

Data obtained from the municipality of Niagara Falls is chosen for clustering purposes.
Total 966 data set points are available, which show the required description of a pipe’s
structural and operational condition rating. All these values are taken as the input values
for the development of self-organizing map.

Initially, objectives are defined to divide these 966 data set points into 5 clusters. The
input layer is trained from 500 to 500,000 epochs for generating the desired five category

output.

Link

Initial Waights:
3&5

N eighborhood: Epochs;
4 {500000

Click Slabs or Connection Aows to edit parameters; neurons; and-weights,

Figure 6-8: Output Layer Design for Neurons and Neighbourhood Size
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The initial learning rate is 0.5 and neighbourhood size is taken as 4 (Figure 6-8). The
output layer design for neurons is set at 5 neurons as five clusters are desired.
Furthermore, the pattern selection criterion for clusters is set at random and the Euclidean

distance is used to measure the distance between the clusters and is shown in Figure 6-9.

/ | Distance Metnc:
. @ Vanilla [Euclidean} - { Mommalized

Consider Mizsing Values to be:.
" zeros ) minimum values " maximum values

{i average values & enror condibions

Figure 6-9: Pattern and Distance selection Parameters for Clusters

During the process of training, the learning rate and neighbourhood size eventually
decrease to minimum possible value i.e. 0.000001 and O respectively. However, the

groups or clusters obtained are not according to basic logics.

Figure 6-10: Achicved Five Clusters through Niagara Falls Data
Figure 6-10 shows the 5 categorical outputs for the input data in terms of combined

condition matrix. The entries without any colour show the missing possible scenarios
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from the collected data; that means the collected data have 23 combinations of different
structural and operational conditions out of 25 possibilities.

Table 6-12: Class Boundaries of Obtained Clusters

Cluster Structural Operational Condition
Number Condition Rating Rating

1 1to5 1

2 1to5 2

3 1to5 3

4 1to5S 4

5 1to5 5

Table 6-12 presents the obtained class boundaries for the desired five clusters which have
been shown in Figure 6-10. It is clear that all the five clusters have been produced by
considering more weights in operational condition ratings and no importance has been
given to structural condition. Therefore, the obtained clusters should be rejected.
Consequently, for achieving desired results, the same procedure is adapted to increase the
data set points as have been done in deduct value clustering. However, instead of
increasing data set points, desired outputs are gradually increased to cluster the data into
maximum possible groups. As real world data is used for clustering purposes, it is not
recommended to change the collected set of observations.

Therefore, in the second attempt, the networks are set to generate 6 output clusters.
Similar procedures are adapted as described above, and the obtained results are analyzed.
This procedure is repeated with increasing the desired output categories. It is found out

that the maximum groups in which the collected data could be clustered are 9.
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There are 966 training pattemns.

x learning events completed: {493[‘][][}00[]‘

Distribution Distibution X learning epochs left to go: [o

by by Category . ) - ,
Category X cumrent learning rate: i n.nunomr

X current neighborhood size: § 0

Training Time: (hhh: mm:ss) % unused output categories: § 1
001:06:19

Figure 6-11: Final Outcome of Neighbourhood size and Learning Rate

00

A0+

Pals, 3004
in Pats.
Cal i

Ca 2004+

100~

1 2 14 58 6 7 8 810
Category (Oulpul) Number Category (Qutput) Number

Figure 6-12: Generated Groups or Clusters: Categorical Output Summary
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Figure 6-11 shows the final outcome of neighbourhood size and learning rate for 10
desired output categories. It shows that the network is not able to produce 10 desired
clusters for the input data; therefore, the number of unused output categories is 1. The
learning epochs completed for this particular trial are 500,000, and the achieved learning
rate is almost 0. As a result, it is concluded that the input data could be conveniently
transformed only into maximum 9 clusters. The categorical output patterns for the
selected simulation are shown in Figure 6-12. The figure also illustrates the generated

boundaries for groups or clusters for the combined condition matrix.

Table 6-13: Class Boundaries of Obtained 9 Clusters (Total Number of Entries = 966)

Cluster Number of Structural Condition Operational
Number Entries Rating Condition Rating
1 406 1 1to2
2 96 1 3
3 117 2 1
4 51 1to?2 4
5 115 1to?2 5
2 2103
6 40
3 3
7 59 3to4 1
3to4 2to3
8 23
3to5 1to3
9 59 3to5 4t05

Table 6-13 shows class boundaries for the obtained clusters. The missing values have

been assumed to be a part of the 9' cluster. This assumption has been made by extending
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the 9™ cluster’s boundaries for the missing elements: Xys5 and Xs4. This extension is

described in Figure 6-13.

Figure 6-13: Logical Extension of 9™ Cluster for Missing Elements

Table 6-14 shows that for the first 5 clusters, structural condition rating varies from 1 to 2,
and operational condition varies from 1 to 5. Therefore, after combining these 5 clusters
with the 6™ cluster and rearranging, five clusters with definite class boundaries can be
developed (Table 6-14).

Table 6-14: Integration of Obtained 9 Clusters into 5 Categories

Cluster Structural Condition Operational
Number Ratiﬁg Condition Rating
’ 1t02 1t03
1to?2 4105
3 3to4 1
3104 2103
3to5 1to3
3toS 4t05

Tablej‘6-14 clearly indicates that the obtained clusters have been transformed into five

well defined categories. These clusters have been sorted according to the criticality of
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structural condition ratings and then according to the criticality of operational condition

ratings.

6.6.3 Proposed Combined Condition Index for Sewers

This research suggests that the obtained five groups (Table 6-14) through self-organizing
neural networks should be considered as five different combined condition classes or
indexes for sewers. Therefore, based on these clusters, a combined condition index (CCI)
for sewers is proposed. Table 6-16 shows the description of the proposed combined
condition index (CCI) for sewers. Each class or index has well defined boundaries for its
respective structural and operational condition classes. This index is divided into 5
categories, ranging from “1” to “5”, and linguistically, from “Acceptable” to “Critical”.
The index has been proposed by giving more weights to a sewer’s structural condition for
defining the rehabilitation or action requirements. In addition, criteria for assessment risk
of collapse and flooding is defined for each class. The proposed remedial actions depend
upon the developed risk criteria for collapse, over flow and basement flooding problems,
as well as impact assessment factor. These criteria have been developed through the
general guidelines provided by experts, which will be discussed in the next section. The
premise for an impact factor follows that not all pipe segments have the same likelihood
of failure or the same consequences of failure. This impact factor for a sewer can be

calculated with the following formula (McDonald et al 2001):
Iy =(0.2)17 +(0.16) f5 +(0.16) f +(0.16) f7 +(0.16) 7 +(0.16) /g  (Equation 6.1)

Where, f; is location factor, f; is embedment soil factor, £ is size factor, f; is burial depth

factor, fis sewer function factor, and f; is seismic factor.
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The impact rating is helpful in defining criticality level of a sewer. Table 6-15 shows the
method of calculating the impact of some important factors for defining criticality level
of a sewer. The calculated impact rating for a sewer (Equation 6.1) is integrated with
other scenarios in Table 6-16 for proposing an appropriate rehabilitation or action plan.
The integration of all scenarios in defining a specific class of the proposed CCI will be
helpful in understanding the overall condition of sewers. For example, if the CCI is “1”
for a certain sewer, it has acceptable overall condition; therefore, no particular action
except routine monitoring is required. On the contrary, if a pipe has CCI value of “57,
immediate rehabilitation action is proposed for that pipe. In this context, the proposed
combined condition index is intended to provide a framework for municipal engineers to

decide and plan maintenance and rehabilitation actions for sewer networks.

6.6.4 Verification of Proposed CCI

In order to verify the proposed combined condition index, a questionnaire is designed and
has been sent to different municipal experts and consultants. The questionnaire consists
of three basic questions:
1) Is the index adequate according to maintenance and rehabilitation requirements?
2) Is the index requires some revisions/reassessments in terms of assigned equivalent
WRe structural and operational condition class boundaries?
3) Is the defined criteria for each category of the index is acceptable?
Four comprehensive feedbacks have been received from experts. Three out of four
municipal practitioners are agreed on the point that the idea of combining structural and

operational condition ratings into a single scale will help municipal engineers in
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prioritizing detailed inspection, maintenance, and rehabilitation operations. However, one

expert suggests that structural and operational conditions should be analyzed separately.

The important comments from experts have already been embraced into the description

of different classes of CCI (Table 6-16). Some of the points are summarized as follows:

>

Pipes collapse occurs for reasons like severe cracking or exposed aggregate due to
hydrogen sulphide or chemical attack. Light, moderate or severe cracking should be
considered in determine collapse risk

There are other defect conditions that may cause overflow problems similar to a
collapse pipe. These defects may be tree root intrusions, debris or encrustations
etc. Depending on the severity, the required action may range from cleaning to
immediate rehabilitation

In all separated sewer systems and some combined systems, collapsed pipes may
cause flooded basements instead of overflow problems. The response to flooded
basements may require a higher rehabilitation priority than the priority given to
overflow

A good CCI should also cover construction defects such as sags in the pipe,
protruding services, and misaligned joints etc

Pipe rehabilitation is expensive and also depends upon available resources and

budget location etc

4

6.6.5 Automated Conversion of Structural and Operational Ratings into CCI

To facilitate an automated conversion of a sewer’s structural and operational condition

observations into CCI, a regression model is designed. All the possible scenarios shown

in Table 6-16 are taken as input data for the model. The response variable “CCI” is
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regressed against its corresponding values of predictor variables (structural and
operational ratings) using the Minitab ® statistical software. The similar procedures for
model development are adapted as shown in Figure 3-2.

Equation 6.2 shows the final outcome of the adapted procedure. The equation clearly
indicates that CCI can be found for any sewer if its structural and operational conditions
are known. The structural and operational condition ratings are according to WRc

classification

0.541+ 0.273(Structural _Condition _ Rating)

Cl = _ N : (Equation 6.2)
+ 0.37(Operational _Condition _ Rating)

Table 6-17: Important Statistical and Validation Diagnostics for the Regression Model

2 P (0 Validation
R’ Ry

P (F)

(%) 5o p1 | P2 | AP | AVP
(%)

81.2 | 81.1 | 0.000 | 0.000 | 0.000 | 0.000 | 0.208 | 0.791

As mentioned, the equation 6.2 is verified through all necessary statistical diagnostics as
well as validation checks. Some of the important statistical and validation diagnostics are
shown in Table 6-16. The Box-Cox power transformation for CCI data was found out to
be 0.50. Therefore the response variable, CCIl, in the model has been transformed
accordingly (Equation 6.2). The fitted response plane for the regression model is shown
in Figure 6-14.1t shows the variation in response (CCI) with the variations in predictors
(structural and operational condition ratings). The developed model will facilitate a user

to calculate CCI from given structural and operational condition information of a sewer.
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Figure 6-14: Minitab Plot of Fitted Response Plane

6.7 Summary

The proposed modification in CERIU classification system will not change the current
CERIU classification; only some additional details have been proposed. Moreover, the
proposed system is based on WRc approach; therefore, data conversion from WRc to
CERIU and vice versa is possible. The proposed modification is a first step towards
integrating sewer condition assessment protocols. Consequently, unified, standardized,
and integrated sewer condition assessment protocols could be developed, as compare to
using different protocols according to different local requirements.

The proposed combined condition index (CCI) for sewers has been developed through
unsupervised neural network modeling, and has been modified through feedbacks from
experts. The basic idea of developing CCI is to facilitate municipal agencies in
prioritizing maintenance and rehabilitation works by taking into account the combined

effects of structural and hydraulic conditions of sewers.
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Chapter 7

WEB-BASED AUTOMATED SEWER CONDITION PREDICTION

MODEL

7.1 Introduction

Recent developments in internet technologies have provided a wide range of applications
which can be shared with other users. This chapter describes a methodology of
developing a web-based decision support system for condition prediction of existing
sewers. This system is developed to assist municipal engineers in predicting structural
and operational condition ratings of sewer pipeline networks. Further, the system can also

predict the combined condition index (CCI) for sewers.

7.2 Model Program

The program of the web-based condition prediction model is written in Java (version 5.0)
using the JBoss application server (JBoss 4.0.1SP1). Java is a well-known object oriented
programming (OOP) language for internet applications created by Sun Microsystems in
1990s. OOP is a methodology that views a program as consisting of objects that interact
with each other by means of actions. Small Java applications are called Java applets. Java
applets are ideal for running program applications on any computer after downloading
them from a server (Savitch, 2006).

The web-based program includes procedures that link different web-pages, import and
export of Excel files, calculations and interpretations, and result generation. Finally the

program generates and displays the condition grading results.
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7.3 Framework and Process

The web-based condition prediction tool utilizes the previously developed regression and
unsupervised neural network models in predicting existing condition of sewers. The web-
based model uses MS Excel in order to import and export data. The model has been
designed in a simple, easy to use format to facilitate users. Figure 3-6 shows an overview
of the process flowchart of the model.

The developed system requires data related to all the factors which were considered
during regression and neural network modelling process. The model requires the data in a
well defined Excel spreadsheet format. A user has to prepare input data as described in
chapter 4. For example, the user has to define street categories as per ASCE
specifications from category 1 to 4. If a user puts a street category value more than 4, the
‘program will automatically convert it into 4. Similarly, the program processes all input
data, and if it finds some data sets exceeding or decreasing from the ranges specified in
chapter 4; it takes the maximum or minimum allowable values respectively to calculate

the required condition rating. The framework shown in Figure 3-6 is described below:

7.3.1 User Login

The first page of the model will allow a user to register and login as shown in Figure 7-1.

This web-page includes a menu bar which enables a user to proceed.
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Figure 7-1: Login web-page for users

7.3.2 Selection of Condition Rating and Pipe Material

The next step for a user is to select the type of condition grading system. Three types of
condition rating: structural, operational, and combined, can be obtained from this model.

Therefore, user has to specify the requirements on the web-page shown in Figure 7-2.

The user can only select one option at a time.
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Figure 7-2: Selection of Required Condition Grading

Similarly, in the next step, the program will ask from the user to select a specific pipe
material from the three options: concrete, asbestos cement, and PVC. Further, like the
previous case, user can select only one pipe material type at a time. The reason for this
has been explained in chapter 5 and 6, where different condition prediction models are

built for different pipe materials. Therefore, the program has been designed on the similar

fashion.
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7.3.3 Importing Data

After the selection of pipe material, the program will ask the user to import data. The user

can browse through his files and can select an appropriate “*.xls” file according to the

pipe material and condition prediction requirements (Figure 7-3).

T B R g p

b~ G2y vahoot ~ T Answers > » S Saeglt’ 33
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P

My, Natwork . Fle e joaop b :Open
Plates

page will be opened. And here youneed to five a browse button so that a file can be uploaded.

Files o type: [Al Fles )

Please Eater the Following Detailz
File Name; _ii.Browse,

© Concordia Unaversity-2006-All nghts reserved

Figure 7-3: Importing Data for Model Input

7.3.4 Data Processing and Results

The program processes the imported file for calculation of required condition rating and
displays final results as shown in Figure 7-4. If a file is not appropriate, the program

displays an error. As already been explained, input data should be according to a well
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defined excel spread sheet formats. Some samples of the formats have been embedded in

the program to help the user for understanding the proper function of the program.

X http: e ;
Fle EQR - View . Fevortes . Took  Help
@m - Q/ ﬂ ﬁ r{:\> j:"; search *}ﬁ?quv\tu @} -
44 48] bt flocahast 8080/ modetWeblpages/FieUpload.
7. o = {Search web

Concordia
PN E RSN

WortreloRbe s Canada

Result
depth(m) length(m) age(year) Diameter (mm) Concrete Class Bedding Material Class Street Category slope  Structural Grade operational Grade Combined Grade :
31 953 39 7500 4 2 4 0011 30 10 10 :
32 1003 35 750.0 4 2 4 0.0020 3.0 16 10
2.94 983 38 825.0 4 2 4 0.0020 3.0 1.0 10
428 914 33 600.0 4 2 4 0.0020 3.0 1.0 10
3585 848 43 300.0 3 2 2 0.0020 2.0 10 10
3625 1048 41 3000 3 2 2 0.0020 2.0 1.0 10
85.0 42 3000 3 2 2 0.0020 2.0 10 1.0
1120 44 300.0 4 2 3 0.0020 2.0 1.0 10
"3 44 300.0 3 2 1 0.0020 2.0 1.0 10
829 47 3750 4 2 2 0.0020 2.0 10 10
6096 27 600.0 4 2 3 0.0020 2.0 1.0 1.0
17221 28 675.0 5 3 4 0.0020 1.0 1.0 10
14783 28 £75.0 5 2 4 0.0020 3.0 10 10
70.2 29 300.0 4 3 1 0.0020 1.0 1.0 10
1074 29 300.0 3 3 1 0.0020 1.0 10 10
ined stuchural 431 29 300.0 4 2 2 0.0020 20 10 19
9 703 29 300.0 4 2 2 0.0020 2.0 10 10
Contact us 352 981 29 300.0 4 2 2 0.0020 2.0 10 1.0
2895 296 29 300.0 4 2 3 0.0020 2.0 1.0 10
2775 457 29 300.0 4 2 3 0.0020 2.0 10 10
296 70.6 29 300.0 4 2 3 0.0020 2.0 10 1.0
285 12.8 29 300.0 3 3 0.0020 1.0 1.0 10

Figure 7-4: Condition Assessment/Prediction Results

7.4 Summary

The developed web-based decision support tool will help municipal engineers to
prioritize inspection and rehabilitation of critical sewers. The tool will be helpful for the
decision makers to share their knowledge with others. Therefore, it has a great potential
for providing extremely valuable feedbacks of experts from all around the world.
Therefore, the program will provide a solid platform for the future expansion of the

research.
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Chapter 8

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

8.1 Summary and Conclusions

The present research work leads to the development of a combined condition
index (CCI) for sewer pipelines. The index has five different categories varying from 1 to
5; where 1 represents acceptable combined (structural plus operational) condition of a
sewer, and 5 represents a sewer’s critical condition. The proposed index will help
municipal engineers in visualizing the combined effects of structural and hydraulic
problems on a sewer’s existing condition.

A methodology for predicting a sewer’s structural and operational condition
rating through the use of historical data is proposed. The current research has developed
multiple regression models for prediction the most likely structural and operational
condition rating of an existing sewer. Different regression models are designed for three
different sewer pipe materials: concrete, asbestos cement, and PVC. These models are
developed on the basis of identified physical, operational and environmental factors
which contribute to a sewer’s deterioration. Various functional forms of variables have
been experimented during the design procedure for the selection of best possible scenario.
The co-efficient of multiple determination (R?) results show that 72% to 88% of the total
variability in structural and operational condition of sewers can be explained through the
developed regression models. Similarly, all other necessary statistical diagnostics have

been applied to check the adequacy of the regression models.
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Furthermore, all regression models have been validated through their respective
validation data. Average validity percent of these models is found to be with in range
from 82% to 86%. These results are considered as acceptable. Based on the developed
models, structural and operational deterioration curves have been generated. These curves
represent a relationship between condition rating and age. Consequently, the models are
recommended for the future usage of structural and operational condition prediction of
sewers.

Moreover, the research has developed a web-based automated tool for a sewer’s
structural and operational condition prediction. The proposed web-based tool will
evaluate the structural, operational, and combined condition (CCI) of sewers on the basis
of different physical, environmental and operational factors. The developed web-based
decision support tool will help municipal engineers to prioritize inspection and
rehabilitation to critical sewers. The tool will assist decision makers to share their
knowledge with others. Therefore, it has a great potential of expansion and enhancement
through feedbacks of experts from all around the world.

In order to optimize solution for the unification and integration of different
developed sewer condition assessment protocols, this research suggests accepting the
WRCc protocols, the most widely used sewer condition assessment protocols in the world,
as standardized condition rating system for sewers. This research further proposes a
methodology of integrating other in use protocols with WRc protocols through
unsupervised neural network clustering technique (self-organizing maps). As an example,
the research proposes modifications in CERIU sewer condition assessment protocols, the

protocols adapted in the Province of Quebec, to facilitate its conversion and integration
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into WRc. The proposed methodology has been examined by CERIU sub-committee for
the development of an integrated and unified condition assessment protocol. The sub-
committee has agreed that the proposed conversion factors will be helpful in providing a
documented link between CERIU and WRc protocols. Furthermore, the sub-committee
has recommended some related issues for future research. These issues will be presented
in recommendation session. Consequently, the proposed methodology will be helpful for
municipal engineers in their research regarding unification, standardization, and

integration of sewer condition assessment protocols.

8.2 Research Contributions

Following are the contributions of this research in the current sewer condition
assessment process:
1) Design a combined condition index (CCI) for sewers
2) Develop structural condition prediction regression models for sewers
3) Develop an operational condition prediction model for sewers
4) Propose a modification in CERIU sewer condition assessment protocols for its
documented conversion to WRc protocols: the first step towards integration of all
sewer condition assessment protocols
5) Develop a web-based condition rating model for sewers
The added value of the research contributions is presented in Table 8-1. The added value
includes, development of an integrated and easy to understand condition rating scale for
sewers, enhancement of the concept of sewer condition prediction for prioritizing sewer

inspections, development of a documented link between the two major sewer condition
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assessment protocols adapted in Canada, and introduction to the web-based applications

for sewer pipeline condition assessment.

Table 8-1: Added Value of the Research

Research
Added Value
Contribution
ccl Integration of structural and operational condition ratings of

sewers into one easy to understand condition rating scale

Structural Condition

Prediction Models

Introducing the effects of bedding material and traffic

volume on existing sewer pipeline condition

Operational Condition

Prediction Model

Introducing the concept of operational condition assessment

for sewer pipelines

Proposed Modification
in CERIU

A documented link between WRc and CERIU protocols has

been developed

Web-Based Condition

Predictor

A platform for municipal engineers to utilize condition

assessment tools for sewers is developed

8.3 Research Limitations

The current research introduces combined condition index (CCI) for sewers,
structural and operational condition prediction models for sewers, and a methodology for
the integration of sewer condition assessment protocols. The research has some
limitations which are described below:

e The statistical diagnostics results for sewer condition prediction regression
models show that the selected predictors are not enough to entirely explain the
variation in existing condition of sewers

e The developed regression models are limited to a certain range of input data.

These data ranges have been described in chapter 4 (Tables 4-8 to 4-11)
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e The condition assessment models are only designed for three types of sewer pipe
materials: concrete, asbestos cement, and PVC

e The operational condition prediction model is built on the assumption that the
value of Manning’s co-efficient of roughness will not change during the whole
life span of a pipe

e The developed models are not appropriate for the condition prediction of sewers
buried under highways

e The CERIU protocol conversion methodology does not address the various

observations noted within CERIU's manual that are not even considered by WRc

8.4 Future Recommendations

Future recommendations for the extension of this research can be summarized as
follows:
% Current Research Enhancement Areas:
»  More predictors, such as soil conditions, seismic factors, etc, should be
incorporated to enhance the developed condition prediction models
» True validation of models can be performed by acquiring more data from
various other municipalities
» More clustering techniques, such as k-means clusters etc, should be
adapted to validate the developed cluster boundaries of transformed
deduct values and combined condition matrix
s  The left over observations of CERIU protocols should be taken into

account for the enhancement of CERIU protocol modification

methodology
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¢ Current Research Extension Areas:

» Standardization of data acquisition tool for municipalities which should
cover all relevant physical, operational and environmental factors

> Extension of the sewer pipeline condition prediction methodology to other
sewer network structures such as manholes, outfalls, pumping stations, etc.

> Integration of hydraulic performance models for sewers with the
developed operational condition prediction model

» Application of sewer condition prediction methodology to storm water
drains

» Incorporation of the developed web-based tool with GIS

» Adoption of similar methodologies for conversion of all sewer condition
assessment protocols into an integrated condition assessment system for

SEWCErS
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SEWER PIPE STRUCTURAL CONDITION PREDICTION MODEL
RESULTS
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Appendix A- 1: PIPE MATERIAL: ASBESTOS CEMENT

Weighted analysis using weights in Structural Grade
The regression equation is

Structural Grade**2 = 20.9 + 542 Log Depth/Length + 0.207 Age - 0.742 Ass Cmt
Class - 14.8 Dia**0.1

Predictor Coef SE Coef T P
Constant 20.87 20.41 1.92 0.041
Log Depth/Length 541.7 136.9 3.96 0.001
Age 0.20691 0.08946 2.31 0.034
Ass Cmt Class -0.7416 0.4168 -1.78 0.093
Dia**0.1 -14.83 10.74 -1.99 0.085
S = 1.32426 R-Sq = 82.4% R-Sq(adj) = 78.3%

Analysis of Variance

Source DF SS MS F P
Regression 4 139.824 34.956 19.93 0.000
Residual Error 17 29.813 1.754
Lack of Fit 15 22.613 1.508 0.42 0.874
Pure Error 2 7.200 3.600
Total 21 169.636
19 rows with no replicates
Source DF Seq SS
Log Depth/Length 1 101.251
Age 1 20.509
Ass Cmt Class 1 14.718
Dia**0.1 1 3.346
Unusual Observations
Str
Obs Log Depth/Length Grade**2 Fit SE Fit Residual St Resid
14 0.0088 1.000 3.883 0.329 -2.883 -2.25R
16 0.0143 9.000 8.731 0.726 0.269 1.12 X

R denotes an observation with a large standardized residual.
X denotes an observation whose X value gives it large influence.

Durbin-Watson statistic D = 1.42776
For the Model
p-1 = 4 (Total No of Predictor variable)

n = 22

From Table B-7 (Neter, 1996)

d, = 0.96

dy = 1.80

Hy: p = 0 (Error terms are independent)

H,: p > 1 (Error terms are positively correlated)
If

D > dy, conclude Hg

D < d;, Conclude H;

d;, £ D £ dy, the test is inconclusive

Result: d; £ D £ dy, the test is inconclusive
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Lack of Fit Test
No evidence of lack of fit (P >=0.1).

Residual Plots
Residual Plots for Str Grade**2
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Validation Plot for Actual and Predicted Values
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Appendix A-2: PIPE MATERIAL: CONCRETE

Weighted analysis using weights in Age

The regression equation is
1/8G = 3.94 + 0.592 Log Dia/Length - 0.00681 e**T - 3.22 Log Depth
- 1.60 Log Age/CC + 6.92 Log De/Bedd - 5.75 Bedding**Lambda

Predictor Coef SE Coef T P
Constant 3.9420 0.6225 6.33 0.000
Log Dia/Length 0.5921 0.3151 1.88 0.064
e**T -0.006807 0.001196 -5.69 0.000
Log Depth -3.217 1.213 -2.65 0.010
Log Age/CC -1.6044 0.4161 -3.86 0.000
Log De/Bedd 6.919 2.754 2.51 0.014
Bedding* *Lambda -5.749 1.507 -=3.82 0.000

S = 1.02281 R-Sq = 72.7

oe

R-Sq(adj) = 70.5%

Analysis of Variance

Source DF SS MS F P
Regression 6 200.979 33.497 32.02 0.000
Residual Error 72 75.322 1.046

Total 78 276.301

Sum of squares for pure error is {nearly) zero.
Cannot do pure error test

Source DF Seqg SS

Log Dia/Length 1 41.216

e**T 1 52.236

Log Depth 1 0.408

Log Age/CC 1 28.228

Log De/Bedd 1 63.658

Bedding**Lambda i 15.233

Unusual Observations

Obs Log Dia/Length 1/8G Fit SE Fit Residual St Resid
1 0.027 0.200 0.558 0.046 -0.358 -2.09R
2 0.027 0.200 0.558 0.046 -0.358 ~2.09R
18 0.026 0.333 0.439 0.107 -0.106 -0.73 X
35 0.035 0.500 0.965 0.042 ~-0.465 -2.51R
36 0.023 0.500 1.013 0.045 -0.513 -2.78R
56 0.406 1.000 1.027 0.111 ~0.027 -0.17 X
57 0.031 1.000 0.525 0.047 0.475 2.58R
69 0.3950 1.000 0.980 0.106 0.020 0.15 X

R denotes an observation with a large standardized residual.
X denotes an observation whose X value gives it large influence.

Durbin-Watson statistic = 0.804345

For the Model

p-1 = 6 (Total No of Predictor wvariable)
n =79

From Table B-7 (Neter, 1996)

d, = 1.49 (n = 80, p-1 = 5)
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dy=1.77 (n=80, p-1=35)

Hy: p = 0 (Error terms are independent)

H;: p> 1 (Error terms are positively correlated)

Result: D < dy, Error terms are positively correlated

Lack of fit test

Possible curvature in variable Log Age/ (P-Value = 0.065)
Possible interaction in variable Bedding* (P-Value = 0.032)
Overall lack of fit test is significant at P = 0.049

Residual Plots
Residual Plots for 1/SG
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Validation Plot for Actual and Predicted Values

Validation

Structural Grades

LT e S S B A s
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Observations

——— Predicted Structural Grade
Actual Structural Grade |

Histogram of Actual and Predicted Values

Histogramof Actual and Calculated Structural Grades
Normal
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Actual Structural Grade
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Mean StDev N
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2,283 1.287 30

Frequency
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Appendix A-3: PIPE MATERIAL: PVC

Weighted analysis using weights in Age

The regression equation is
0.1**SG = 2.25 - 0.00642 Age - 1.89 L**0.01 - 0.0302 Bedding Class
- 0.0405 Street Class - 0.000013 (Dia**0.3) (Depth**4)

Predictor Coef SE Coef T P
Constant 2.2468 0.6976 3.22 0.003
Age -0.006424¢6 0.0009648 -6.66 0.000
L**0.01 ~1.8916 0.6645 -2.85 0.008
Bedding Class -0.03023 0.01241 -2.44 0.021
Street Class -0.040524 0.009001 -4.50 0.000
(Dia**0.3) (Depth**4) -0.00001273 0.00000223 ~5.71 0.000
S = 0.0368870 R-Sg = 81.8% R-Sg(adj) = 78.6%
Analysis of Variance
Source DF SS MS F P
Regression 5 0.171724 0.034345 25.23 0.000
Residual Error 28 0.038119 0.001361
Total 33 0.209843
No replicates.
Cannot do pure error test.
Source DF Seq SS
Age 1 0.060913
L**0.01 1 0.004925
Bedding Class 1 0.041465
Street Class 1 0.020079
(Dia**0.3) {Depth**4) 1 0.044341
Unusual Observations
Obs Age 0.1**SG Fit SE Fit Residual St Resid
1 14.0 0.01000 0.02563 0.00811 -0.01563 -2.79RX
4 1.0 0.10000 0.01411 0.01877 0.08589 2.70R
5 14.0 0.01000 0.02616 0.00820 -0.0lelé6 -2.95RX
20 14.0 0.01000 0.00671 0.00961 0.00329 1.47 X
23 14.0 0.10000 0.07932 0.00600 0.02068 2.64R
34 2.0 0.01000 0.02223 0.02397 -0.01223 -1.19 X

R denotes an observation with a large standardized residual.
X denotes an observation whose X value gives it large influence.

Durbin-Watson statistic = 1.81929 = 1.82
For the Model
p-1 = 5 (Total No of Predictor variable)

n = 34

From Table B-7 (Neter, 1996)

d; = 1.15

dy = 1.81

He: p = 0 (Error terms are independent)

Hi: p > 1 (Error terms are positively correlated)
D > dy, (Error terms are independent)
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Lack of fit test

Possible interaction in variable Age (P-Value =0.031)
Possible interaction in variable L**0.01 (P-Value =0.081)
Overall lack of fit test is significant at P = 0.056

Residual Plots
Residual Plots for 0.1**SG
Normal Probability Plot of the Residuals Residuals Versus the Ftted Values
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Validation Plot for Actual and Predicted Values

Model Validation
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APPENDIX - B

SEWER PIPE OPERATIONAL CONDITION PREDICTION MODEL
RESULTS
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PIPE MATERIALS: ASBESTOS CEMENT, CONCRETE, AND PVC

The regression equation is
(Age*0G) **Lambda = 0.308 + 0.567 [ (Age/bia**n) (Length**Slope

Predictor Coef SE Coef T

Constant 0.3075 0.5504 -3.05 0
[ (Age/Dia**n) (Length**Slope)] 0.56703 0.01775 31.94 0
S = 3.38404 R-Sg = 87.9% R-Sqg(adj) = 87.8%

Analysis of Variance

Source DF SS MS F P

Regression 1 11e80 11680 1019.96 0.000

Residual Error 141 1615 i1

Total 142 13295

Sum of squares for pure error is (nearly) zero.

Cannot do pure error test.

Unusual Observations

Obs [ (Age/Dia**n) (Length**Slope)] (Age*0G) **Lambda Fit
43 46.3 16.262 26.547
136 29.4 23.912 16.975
137 29.1 23.912 16.830

Obs St Resid

43 -3.07R
136 2.06R
137 2.10R

R denotes an observation with a large standardized residual.

Durbin-Watson statistic D = 0.465104

For the Model

p-1 = 1 (Total No of Predictor variable)
n = 143 > 100 so take n = 100

From Table B-7 (Neter, 1996)

dy, = 1.65
dy = 1.69
Hp: 0 (Error terms are independent)

o =
Hi: p > 1 (BError terms are positively correlated)
If
D > dy, conclude H,
D < d;, Conclude H,
dy, £ D dy £, the test is inconclusive
D < dg
Result: Error terms are positively correlated

Lack of fit test

Possible curvature in variable [ (Age/Di (P-Value = 0.073)
Overall lack of fit test is significant at P = 0.073
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Residual Plots

Residual Plots for (Age*0G)* *Lambda
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Validation Plot for Actual and Predicted Values

Operational Grades
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APPENDIX - C

Sample of Collected Data

186




L81

JONVNILNIVIN 0000C ¢ I ¢/l61 LG'€6 vV ¢ djaIouod 19 006  GS00CiOLLL
IONVNILNIYIN 0000C € I /6l 99'¢ol vV ¢ 8jaI1ouod 229 006 Sv0CCIOLLL
JONVYNILNIVIN 00521 G } G/61 L9'6e} g ¢ djaiouocd  g8'L 006  L000¥0SOLL
JONVNILNIVIN 00SCL G L [#1:1 Loevl vV & 8jaI0uU0d  28°6 006 oLooZLOLLL
JONVYNILNIVIN 00521 ¥ } 0961 16°¢6 g ¢ 3]auUod L'y 0S0L €1005+608
3IONVNILNIVIN 00S¢L S l 0961 SSY01 0 ¢ 8]a10U0d €' 0S0l 0cooLo0e8
JONVNILNIVIW 00SCL G } 0961 SSP01 o ¢ 8joI0Uod  ¢'G 0s0L 0c¢00L00¢8
JONVYNILNIYIN 00S¢L G I 1251 gL'qoL g € dJaIou0d  Z6'G 080l §200.0618
IONVYNILNIVIN 00SCL S } Y961 16°Lg g S 8)aI0U0d  26°G 0S0lL §100.0618
JONVNILNIVYIN 00SL & L 1661 vivl a ¢ SjaIouod  L6'G 050l 0110102011
NOILLYLINlgvHIY 005, G b 1661 vivi g < d)oIouod /'S 0S0L OLL0LOLOLL
NOILVLITIgvH3Id 0000C v I .66} '8 g9 ¢ 8jalouod  G'9 0S0L 0v0CLOLOLL
NOILYLIGvHId 005, & I 1661} 106 g ¢ daIouod g2 0S0l 0600L0L0L1
NOILYLITIgvHIY 005 ¢ l 1661 G6'0LL g4 ¢ 8jaIouod  ge’l 0s0lL 0800104011
NOILYLITIBYHIY 00S. § L 1661 G6'0LL g ¢ 8jaiouod  ge'l 0S0L 0800L0L0OLL
NOILVYLITIgvH3d 00002 S b 1661 LLLL 9 ¢ djaIouocd  gg’L 0501 0400104011
JONVNILINIVIN 0000L G I G/61 cl'v8 g ¢ djaiouod  9g°/L 0S0L 010090118
AONVNILINIVIN 00SCL & 4 0961 s'och g 9 djlaiouod  G9°/ 0S0L S0008090C
JONVNILINIVIN 00SCL S 4 0961 €9°¢0L g S 8jaouod  Go°/L 0S0lL  S0008090¢
JONVYNILINIVIN 00821 G c 0961 e0cl g S Sj2iouod  G9°L 060l S0008090C
JONVNILNIVIN 00SCL & [4 og6l el g g sjanoucd g9l 0S0L S0008090¢
JONVNILNIVIN 00521 & [4 0961 cLobL g s 8jaIouod  G9'L 0601 S0008090¢C
JONVNILNIVW 0008 & } €461 c'egl 8 g 8JaI0uUod  BT’'S 00clL €v002020¥
JONVYNILNIVIN 0000 S b 0961 69¢cl 9 v 8jaloucd 0’9 G/Zl Sv00Lec608
AONVYNILNIVIN 00002 V¥ 2 €461 18°¢¢C g v 8jajoucd gy G§/¢€l S000209i8
JONVNILNIVIN 0000C & I 1261 14" vV ¢ 8j8louod  ¢ZL'9 G/€L  0€00L090F
JONVNILINIVIN 0000 & I €461 L1201 g v 8J210udd  €p'9 G/¢el §100209.8
JONVNILNIVIN 0000C & } €461 ve'ase a v 3jaIouU0d  EY'9 G/€lL 0L00c09L8
JONVNILNIVIN 0008 ¥ b 0961 L'zsl a v 8)alouod 289 0851 500010808

AHOOILYD MHOM 1AV¥V S0 9S Hing HION3I1 Buippeg mmm_o IVIN3LVIN HLd3a VIA Y¥ISWNN L3ASSY
sy adid

oLIvIu(Q) ‘s|[e] viedeiN woly paureyqQ eye( jo ojdueg :1-) xipuaddy



881

L0°F5 DLCD LY DAY coos 3261 %iT -] Al ooc 003 2030Cad LOGO'Cad ool

SLER ol 45 6905 EC'\s 361 %l90| Al'vEL 0oe 268 1090°€°ay 0o90'e Ay 0oLy

cors Frvs £EC LS EF 1S 961 %l90] Al'YEL 0oE 0Ee oo9oedy 6620°eay 0oLy

Fr¥g oF¥S £¥ LS £2 1S a-/61 %BS 0| Al'vEL 0o0g 605 6850 € dd 8650°€dd 00y

ED LK 890k oy 8e CE8E 6561 YLk O vaL 0oE L6l vakO EaY E6K0 € aY OE0¥
, =i : Y 0

2Or0E 0y

AN g8r0E aY

‘AN ‘N 2C0LC am an wOL goc A 20P0C'aY 30F0°C'aY OCcOv
amn €90 an 9922 AN hd=11 0oe ol ger0 e ad Leroe ay Q0¥
| EF rlLEY EEOF LFOF WBEQ] AlvEL 0oE 5o g610ead S6L0€ QY Siov

g8L0eay

=S

Al'wEL

1810 ¢ 0,
o210'ead

L9¢7¥ LFEE L9sL
e’y Z6'Zr Y962 6L0f LosL %P 0] AlvEL CoE 2101 6510°£'ay gs8i0edy Giov
Or v Zoer 0460 2009 LOGL WL 0| Al'vOl ooc 00 ooocad 20LDCay AN
Or Zr ArEr 99°6E 84'6E 8561 %090 hg=1R 0oe 00z £810°E QY 98LO0ead SLov

B0t
e210€Qd

co'ec QZec

oz e 2288 1S GE [ LEG L %BE0-] Alwdl noE 0ssl 6210°E'0d g821L0'e'ay S0
8B AN Ches 09or LO0% Fi61 SLa9°C1 AINYOL onoc cac 2650 CaY oEL0C dY 010w
Cyes Oy Co 10°0% BER I P61 SER0) AlNYOL ooc O+va G650 C'ad neC0Cad oLy
Sy ez £9'95 2905 FLES Fall Y8R ] AlWEL DOE 069 S6S0°E G FOS0E A QLow
TaAT | LNOWY AT IMNOWY [4Yeilanisuoy (i) UolaBs Ej OpN OnN and

snssaq] | snssag | Jeiped | saiped | ep ssuuy | siuad | xneusleln |edaweld japinenbuol| duwodd Yy | ddwo3d 3d |20 ON

23qony) ‘spuoja.Lidng woly paureqQ eye( Jo sjdweg :z-) xipuaddy



681

SUOIIRAIASH 10 ON

L ¥ £
£ F v z
r. L G L L
(1] JUUS et LR LT
G ¥ z £
[ 1 V W z A
hl ? L L L
N ~nng. B LN-r. NAaLner
L L r
L . £ F
9 FA A z z L
n 7Nng. fLa-r LaLn-r.
L ¥
L L £
£ l I z
. G L L L
v u e BN s LU EdLURY
L ¥
L L £
z ! £ G z
Sl I nt T F ) h L
1] YU CYLU-E RMLURE
L £ Z £
£ z L z
I G ! G nF oL L L 7 L
u CUUE By LU PYILURE
2 L z 4
i b 8 1 L
0 ZooT VOL0E GOL0E
M| 1 wal 1ol e ea|nalwajdu|aal o) || of|ar| A - ] L 27| AH | HO ) L1 | v
WIIEApAH HATIITLILY, U WS PO w U FUEHA Ul wua
7]

33qanQ) ‘spuoja.Lialg woay paureq( sproday uondadsuy A D) Jo djdureg :¢-D xipuaddy




