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ABSTRACT 

Techniques for the Formal Verification of Analog and Mixed- Signal 
Designs 

Mohamed Hamed Zaki Hussein, Ph. D. 

Concordia University, 2008 

Embedded systems are becoming a core technology in a growing range of electronic 

devices. Cornerstones of embedded systems are analog and mixed signal (AMS) designs, 

which are integrated circuits required at the interfaces with the real world environment. 

The verification of AMS designs is concerned with the assurance of correct functionality, 

in addition to checking whether an AMS design is robust with respect to different types 

of inaccuracies like parameter tolerances, nonlinearities, etc. The verification framework 

described in this thesis is composed of two proposed methodologies each concerned with 

a class of AMS designs, i.e., continuous-time AMS designs and discrete-time AMS de­

signs. The common idea behind both methodologies is built on top of Bounded Model 

Checking (BMC) algorithms. In BMC, we search for a counter-example for a property 

verified against the design model for bounded number of verification steps. If a concrete 

counter-example is found, then the verification is complete and reports a failure, other­

wise, we need to increment the number of steps until property validation is achieved. 

In general, the verification is not complete because of limitations in time and memory 

needed for the verification. To alleviate this problem, we observed that under certain con­

ditions and for some classes of specification properties, the verification can be complete 

if we complement the BMC with other methods such as abstraction and constraint based 
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verification methods. To test and validate the proposed approaches, we developed a pro­

totype implementation in Mathematica and we targeted analog and mixed signal systems, 

like oscillator circuits, switched capacitor based designs, Delta-Sigma modulators for our 

initial tests of this approach. 
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Chapter 1 

Introduction 

1.1 Motivation 

Embedded systems are becoming a core technology in a growing range of electronic de­

vices. Generally, embedded systems are characterized by their reactive and real-time 

dynamical behavior in response to their environment. Such interaction is often facilitated 

through sensors to capture the state of the environment and actuators to change or update 

the environment (Figure 1.1(a)). Cornerstones of embedded systems are the analog and 

mixed signal (AMS) System on Chip (SoC) building blocks [67]. Typically, SoC refers to 

the integration of different electronic intellectual property (IP) and custom design blocks 

into a single integra-ted chip as depicted in Figure 1.1(b). Among the important func­

tions of AMS designs are the processing of analog signal on the front and back ends of 

the system. Other functionalities include converting between analog and digital data rep­

resentation, frequency synthesis and generating timing references. In addition, analog 

circuits are used for biasing which is necessary for correct and stable operations of the 

system. In summary [42], AMS designs are needed for: 

• Analog front-end circuits: On the front-end of the embedded system, signals from 

sensors or antenna (in Radio Frequency (RF) designs) must be sensed, received, 

amplified and filtered up to the level that allow digitization with sufficient signal to 
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Figure 1.1: Embedded System 

noise ratio. In addition, in case of RF, a down-conversion mixer performs frequency 

translation by multiplying the RF signal with local oscillator generated signal. 

• Analog back-end circuits: At the back-end of the system, signals are re-converted 

from digital to analog. Among the analog circuits at the back-end are filters, oscil­

lators and buffers. For RF, the analog signal is upconverted to the desired RF band 

for transmission. 

• Mixed circuits: Data processing components like analog to digital (A/D) and digi­

tal to analog (D/A) converters encode and/or transform the data between analog and 

digital representations. These include sample and hold circuits, which are usually 

used to take snapshots (samples) of the analog signal; in phase locked loops (PLL); 

and frequency synthesizers for generating timing references. 

• Biasing and reference circuits: These circuits produce stable absolute current and 

voltage references insensitive to temperature, power supply and load variations that 

are necessary for correct operations and meeting the challenge arising from reduced 

supply voltages. 
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• High Performance digital circuits: The largest analog circuits today are high per­

formance (high-speed, low-power) digital circuits. Typical examples are state-of-

the-art microprocessors, which make extensive use of full custom design including 

custom sized transistors as in analog circuits, to push speed or power limits. Also, 

a critical part in the development of such electronic systems is high-speed inter­

chip signalling. Many of the timing problems related to high-speed signalling are 

mitigated through the use of phase-interpolating circuits to generate precise clock 

phases. 

• Optoelectronics and electromechanical devices: Optoelectronics include inte­

grated optical circuit, photodetectors, photodiodes and phototransistors, photoresis-

tors and photoconductor. Electromechanical devices are those that combine electri­

cal and mechanical parts. 

1.1.1 AMS Computer-Aided Design 

Computer-aided design (CAD) tools have been proposed and developed to overcome chal­

lenges in the development process of AMS design circuits. For instance, the full-custom 

design of analog integrated circuits is very time-consuming and needs experienced de­

signers. In addition the necessity to design and improve the quality of more complex 

integrated systems with the tight constraints of increasingly shorter time-to-market and 

productivity increase, led to the awareness of the importance of computer-aided and au­

tomated design tools for AMS designs. Such CAD tools and concepts are then needed to 

provide unique insights into the behavior and characteristics of the integrated circuits, to 

help the designer select the best design strategies. Finally, CAD tools should tackle the 

crucial aspects of real designs to correctly and efficiently model these circuits as well as 

analyzing the corresponding behaviors. In recent years, some breakthroughs have been 

made in different aspects of the CAD procedure, especially in the development of hard­

ware description languages (HDL) suitable to describe the different AMS behaviors [91]; 
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e.g., VHDL-AMS [110], Verilog-AMS [109] and SystemC-AMS [108]. Other advances 

have been made in the design procedure, namely analog synthesis and topology selections 

(in top-down methodologies), design related optimizations like design centering and de­

vice sizing and analog layout automation [96]. One important constituent of the CAD 

framework is the verification task which subsumes several challenging aspects that re­

quire extensive expertise and deep understanding of the AMS behavior. 

Classification of AMS Designs 

Unlike digital designs, the functionality of analog circuits is defined directly in terms of 

continuous electrical quantities and is usually sensitive to environment factors like signal 

noise, current leakage, temperature, etc., in addition to higher order physical effects when 

designing in deep submicron, such as increased parasitics and current leakage which pose 

a challenge in the design process. 

AMS designs are usually classified based on a variety of criteria and/or the type 

of analysis applied on the designs [17]. For instance, we can differentiate between AMS 

designs based on the type of signals processed within the design components. A sig­

nal can be described as continuous-time when it can assume any analog value over a 

continuous-time range, whereas a discrete-time signal is an analog signal defined only for 

discrete values of time. In general a discrete signal can be obtained by taking samples of 

a continuous-time analog signal at discrete instants of time. 

Therefore, for each class of AMS designs, i.e., continuous-time AMS (CT-AMS and 

discrete-time AMS (DT-AMS), we provide mathematical models capturing the relevant 

behavior at the different levels of design abstraction. For example, differential equations 

capture the physical characteristics of the designs, appropriately. On the other hand, cer­

tain families of AMS designs (e.g., A/D converters) are composed of digital components 

that can be adequately modeled at higher levels of abstraction interfaced by threshold 

event generators components (e.g., comparator circuits). Such systems are typically mod­

eled using piecewise based equations. 
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To sum up, a key for a sound verification of the different classes of AMS designs 

is an adequate model that captures both the analog and digital behaviors while being 

amenable for algorithmic analysis. We will propose in this thesis a computational model 

which is general enough to represent the different behavioral aspects of CT-AMS and 

DT-AMS designs. 

AMS Abstraction Levels 

In general, the verification challenges arise throughout each of the phases of the design 

process. For a consistent design flow, a compliance certificate approving the correspon­

dence between different design levels (or different designs at a specific level) is required to 

ensure correctness of the end product and its conformity to the specification. For instance, 

in the bottom-up design methodology as illustrated in Figure 1.2, the process starts with 

the design of the individual blocks, which are verified individually and then combined 

to form the system. However, such verification can be quite expensive as the entire sys­

tem is represented at the transistor level. A solution to this problem lies in modeling at 

a higher level than the implementation level, such that an analysis for the whole design 

can be performed. This is achieved by the development of symbolic analysis which are 

simplification methods applied to obtain simplified models (e.g., macromodel, behavioral 

models) preserving the properties of interest. To ensure correctness of the methodology, 

some notion of equivalence needs to be verified between the implementation and the gen­

erated models. Moreover, we want to ensure that the extracted models when combined 

preserve specification properties. 

A wide range of properties and requirements exist for the different classes of AMS 

designs. In the following, we highlight some of the design and verification challenges at 

the different levels of abstraction [42]: 

• Circuit Level: Analysis at the circuit level can be conducted in the time or fre­

quency domain. It includes DC and operating point analysis, small signal analysis; 
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Figure 1.2: AMS Bottom-up Design Methodology 

i.e. AC, noise and distortion analysis and transient analysis used to predict the 

nonlinear behavior of a circuit and periodic steady state analysis. 

• Macromodel Level: Macromodels are design models with more ideal circuit ele­

ments, which approximate the behavior of the original circuit. For example, simpli­

fied but convenient approaches for discrete-time circuits such as switched-capacitor 

oversampling converters use difference equations to model the circuit behavior. 

• Functionality Level: Many nonlinear blocks of interest like switches, comparators, 

etc., are intended to switch abruptly between two states. While such operation is 

obviously natural for purely digital systems, the strongly nonlinear behavior is also 

exploited in analog blocks such as sampling circuits, switching mixers, analog-to-

digital converters, etc. 

• System Level: Challenges arise not only in the AMS design process, but also dur­

ing the integration of analog and RF IP designs in SoC platforms. Problems range 

from correct functionality of the integrated analog and digital parts through confor­

mance to system specification like area and power consumption. 
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AMS Verification 

While AMS components constitute only a small part of the whole SoC (between 5 - 1 0 

percent as noted in [10]), the AMS blocks' design and their integration account for 40 — 50 

percent of the overall design time [16]. Of this design time, 70 — 80 percent are spent on 

verification [16]. Traditionally, simulation is used to verify the designs at abstraction 

levels from circuit level using Spice based simulators through behavioral level where 

design are written in programming languages like VHDL-AMS, SystemC-AMS and up 

to system level. However, simulation is often done manually in an informal fashion and 

the search of the state space is not complete. As a consequence, simulation methods 

lack the rigor needed to ensure correctness of the design. Besides, it does not provide 

the guarantees needed for correct correspondence between the implementation and the 

approximate models at subsequent design levels, or two models at the same level where 

robustness and parameter tolerances are considered. In addition, such method falls short 

to validate interesting properties of the design behavior such as temporal requirements. 

Another problem is caused by the fact that while a design defined in advance, one 

cannot ensure a priori that the desired properties will exactly be met during manufacturing 

of the actual circuit. Component tolerances will always lead to large variations of a cir­

cuits properties, which may result in effects not expected from the results of the numerical 

simulation. This latter problem cannot be overcome within a single numerical simulation. 

Therefore more sophisticated methods are usually used as complementary to simulation 

to raise confidence in the end product1. For instance, simulation is complemented by 

symbolic techniques [96], where the effect of parameter variations on the system behav­

ior is analyzed. Although successful, challenging problems like non-linear effects make 

these techniques only suitable for simple designs. 

The last decade saw the emergence of a new engineering field known as hybrid sys­

tem theory where researchers have developed formal techniques for the automatic design 

'Monte Carlo simulation serves as a standard solution for circuits verification in the presence of pa­
rameters imprecision. However, it inherits the coverage limitation drawbacks from standard simulation 
methods. 
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and analysis of systems with real-time and continuous behavior and which are described 

by a composition of continuous-time systems and discrete-time systems. 

Boosted by the successful application of formal methods in hybrid designs verifi­

cation, formal methods became a serious candidate for the verification of AMS systems. 

This growing interest is due to the fact that such methods promise a complete verification, 

therefore, increasing the level of confidence in the verification results. In particular, one 

is interested in global properties connected to the dynamic behavior of the AMS systems. 

For example, we might be interested in properties like "will the circuit oscillate for a given 

set of parameters, and for all sets of constant input voltages?", "will switching occur in 

less than a specific amount of time?". 

In this thesis, we aim at the development of methods and techniques tackling such 

challenges in the verification process of AMS designs using methods from hybrid system 

research. 

1.2 AMS Designs as Hybrid Systems 

The analysis of the behavior of AMS designs with mixed domains heterogeneity and at 

different levels of abstraction requires formal tools that cut across existing disciplinary 

boundaries: the analog part of which is usually modeled as continuous-time or discrete-

time dynamical system while the digital part's dynamics are modeled as discrete systems. 

Moreover, at each level of abstraction, an appropriate model should always be set for 

the analysis phase. The levels of abstraction for these models include simple algebraic 

equations, ordinary and partial differential equations, up to block diagram level depending 

on the level of details needed. In this respect, AMS models have to meet two contradicting 

demands. On the one hand, they have to describe the physical behavior of a circuit as 

accurately as possible. On the other hand, the models should be simple enough to keep 

the computing time for verification reasonably small. For example, complex elements 

such as transistors can be modeled by small circuits containing basic network elements 
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described by algebraic and ordinary differential equations only. 

1.2.1 Hybrid Systems Modeling 

Hybrid systems theory [4] was developed to deal with systems with heterogeneous be­

havior. Specifically, to fully understand the system's behavior and meet high performance 

specifications, the designer needs to model all of the dynamics together with their interac­

tion, which is very important when the different parts of the system are tightly integrating 

or strongly interacting. For instance, at the specification level, the embedded system archi­

tecture illustrated in Figure 1.1(a) can be modeled in an abstract way as shown in Figure 

1.3. The digital controller is modeled by finite state machines (FSMs), while the dynam­

ical environment is described using systems of ordinary differential equations (ODEs) or 

difference equations (DE). In addition, the sensor and A/D interface can be modeled as a 

threshold detector and an event generator respectively, while the actuator and D/A com­

ponents can be modeled as switches that choose between different system of ODEs and 

set the initialization and reset conditions necessary for correct functionality. 

The unified analysis of such systems results in the development of complex dynam­

ical systems is called hybrid systems. Hybrid systems theory is a general theory dealing 

with the different aspects of modeling, analysis and verification of systems composed of 

discrete and continuous components interacting together in a specific manner. Formally, 

these systems are characterized by the interaction of continuous dynamics models (gov­

erned by differential or difference equations), and of logic rules and discrete event systems 

(described by temporal logic, finite state machines, etc.). Examples of continuous models 

include analog behavior of electronic components, while examples of discrete dynamics 

include switching behavior in circuits. 
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Figure 1.3: Hybrid System Modeling 

1.2.2 Hybrid System Approaches 

A look at the literature shows that there are many approaches to modeling, analysis and 

synthesis of hybrid systems. They can be characterized and described along several di­

mensions. In broad terms, approaches differ with respect to the emphasis on or the com­

plexity of the continuous and discrete dynamics, and on whether they emphasize analysis 

and synthesis results or analysis only or simulation only. The multi-disciplinary research 

in hybrid system theory led to different points of view when dealing with issues related to 

modeling and verification: 

• On one end of the spectrum there are approaches to hybrid systems that represent 

extensions of system theoretic ideas for systems (with continuous-valued variables 

and continuous time) that are described by ordinary differential equations to include 

discrete time and variables that exhibit jumps, or extend results to switching systems 

like piecewise affine and mixed logical dynamical models [95, 12]. Typically these 

approaches are able to deal with complex continuous dynamics and are amenable 

to symbolic analysis. 

• On the other end of the spectrum there are approaches to hybrid systems that are 

embedded in computational models and methods, that represent extensions of ver­

ification methodologies from discrete systems to hybrid systems. Typically these 
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approaches are able to deal with complex discrete dynamics described by finite au­

tomata and emphasize analysis results (verification) and simulation methodologies. 

The approach pursued by computer scientists is to extend traditional finite-state au­

tomata by introducing progressively more complex continuous dynamics. Several 

models along these lines are hybrid automata [61] and its variants, e.g., piecewise-

constant derivative systems [81,31]. 

• There are additional methodologies spanning the rest of the spectrum that combine 

concepts from continuous control systems described by linear and nonlinear differ­

ential/difference equations, and from supervisory control of discrete event systems 

that are described by finite automata and Petri nets among these models is switch­

ing models [15] and threshold-event-driven hybrid systems (TEDHS) [18]. For 

instance, hybrid Petri Nets proposed by Bail et al. [71] is a combination of ordi­

nary and continuous Petri nets. It inherits all the modeling facilities of Petri nets 

such as the ability to capture concurrency, synchronization and conflicts, allowing 

the modeling of systems with continuous flows and linear evolutions in an intuitive 

way. Allam and Alia [2] present a procedure for constructing the hybrid automaton 

associated with a hybrid Petri net, in order to benefit from the modeling power of 

the latter and the analysis power of the former. 

In summary, the benefits of a unified hybrid system modeling for AMS designs are 

numerous: 

• It provides a unified view of the many behavioral aspects of the AMS designs in­

volving continuous and discrete event dynamics. Consequently, it paves the way to 

a reasoning mechanism on the global properties of the design. 

• By taking into consideration the different dynamics and their interactions at the 

same time, we can capture the behavior of the system more accurately. 

• From the design point of view, through a more complete study of such systems, 

advanced design and verification methodologies can be developed. 
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• Since the behavior of AMS systems are very rich and their hybrid nature makes their 

mathematical models quite complex, research in hybrid systems presents significant 

challenges; on the other hand, it offers significant promises. 

Central to the AMS verification is an adequate model that captures both the analog 

and digital behavior meanwhile amenable for algorithmic analysis. In this thesis, we 

provide a modeling framework which is amenable to formal verification. 

1.2.3 Hybrid Systems Verification 

The goal of formal verification is to prove that a representation of the actual system satis­

fies the desired and anticipated behavior. More specifically, in formal methods, a decision 

procedure checks whether a mathematical model for the design satisfies some given prop­

erties in the specification; this can be applied using several techniques such as model 

checking [22, 66] or theorem proving [66]. Another verification problem is to check 

the correspondence between two mathematical model representing different levels of the 

same design; this is known as equivalence or compliance checking [66]. In addition, hy­

brid semi-formal techniques combining simulation and formal based methods have been 

developed as way to benefit of the advantages of these methods, where logical models are 

used to analyze the simulation results [116]. 

Model checking [22] is a powerful technique developed initially for the algorith­

mic verification of digital systems, with the dynamic properties expressed using temporal 

logics [22]. Model checking has several advantages when compared to other verification 

approaches. It can automatically provide a complete coverage of the state space, while 

returning sound verification results. Furthermore, the nature of model checking makes it 

adequate for the verification of several interesting properties that characterize the behav­

ior of hybrid systems. In the following, we will review the major works done in adopting 

model checking for hybrid systems. 
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1.2.4 Model Checking Hybrid Systems 

In model checking, the model of the design under verification is a kind of transition sys­

tem describing all its possible behaviours while the specification property is a temporal 

logic formula that is interpreted over the model by exhaustive exploration of the state 

space. This exploration can be either explicit or implicit [22]. In general, extending 

model checking techniques for the verification of hybrid systems is not a trivial task as 

explained below: 

• Modeling: Unlike the discrete models used in conventional model checking, the 

system under verification is modeled in some computational hybrid system formal­

ism, which incorporates the discrete and continuous behavior. 

• Specification: Desired properties are expressed as temporal logic formulas. How­

ever, it is very important to reason about the real-time behavior as well as con­

tinuous states behavior of the system. This requires extending the conventional 

temporal logic to support such constraints. 

• Analysis: The main challenge in hybrid system model checking algorithm is to ob­

tain information about the continuous behavior of the system. This is manifested 

with the solution of system of equations. More precisely, this involves the compu­

tation of flow pipes, that is, the collection of continuous-time trajectories emanating 

from a set of initial continuous states. 

Several techniques for model checking of hybrid systems have been proposed. They 

can be (roughly) classified into three categories; algebraic, on-the-fly and abstract model 

checking. Literature touching the different aspects of the model checking verification is 

quite wide and spans through many different research domains. We will highlight in the 

following the most relevant work while in depth investigations can be found in references 

therein. 
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• Algebraic Methods: The application of algorithmic verification like model check­

ing is based on the existence of analytic solutions to the differential equations and 

the representation of the state space in a decidable theory of the real numbers. This 

direction was initiated with the work of Pappas et.al [115, 70] and further extended 

with the work of Rodrguez-Carbonell et.al[94] and Mishra et.al [87]. Another di­

rection was described by Henzinger et. al [59] where he proposed analyzing non­

linear hybrid systems by first translating the system to a linear hybrid automata 

counterpart, and then using automated model-checking algorithm on the simplified 

system. 

While the approach allows a precise and sound verification, it is not attractive in 

terms of practicality as the linearization method proposed in [59] is restrictive and 

finding a closed form solution is not possible for most classes of systems of ordinary 

differential equations (ODEs). 

• On-the-fly Model Checking: This approach computes a set of reachable states 

that corresponds to an over-approximation of the solution of the system equations, 

which is obtained for a bounded period of time. In this approach only a partial 

state space is explored; hence, this can be referred to as bounded model checking 

(BMC). The basis of the methods is combining a numerical based integration of 

the differential equations and numerical representations of approximations of state 

space typically using (unions of) polyhedra. These techniques provide the algorith­

mic foundations for the tools that are available for computer-aided verification of 

hybrid systems [69, 4] like Checkmate [19], d/dt [8], PHaver [35], etc. 

For instance, in [51], Halbwachs et.al used convex approximation of linear equa­

tions to describe the solution flow. The work is latter implemented in HyTech [61]. 

HyTech supports several abstract-interpretation operators [25, 60], including the 
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convex-hull operator and the extrapolation operator [24, 51]. Clarke et. al [20], ex­

tended the Checkmate verification toolbox with an abstraction refinement method­

ology [20]. 

The on-the-fly approach is the most widely investigated model checking technique 

for hybrid system. Nevertheless, two main issues can be associated with the meth­

ods developed. First, the nature of the approach is bounded in time and therefore 

a complete verification cannot be guaranteed. Nevertheless a property like oscil­

lation behavior can be verified by showing an inclusion fixpoint. The other issue 

is with the precision of the abstraction. The numerical over-approximation of the 

reachable states can lead to loose results that are trivial for the verification. There­

fore a suitable abstract domain must be carefully chosen. Moreover, such method 

should always be supported with a refinement procedure to avoid spurious counter­

examples. 

• Abstract Model Checking: The whole state space is subdivided into regions and 

then heuristic rules define the transitions between states. Conventional model check­

ing algorithms are applied on the new abstract model of the system, which is gen­

erally described as a finite state automaton. 

Alur et. al [5] used the algorithms for solving flow problems to help generate pred­

icate for the predicate abstraction methodology. However, this work was limited to 

specific systems such as simple linear systems. In [59], Henzinger et. al consid­

ered linear hybrid automaton where the continuous environment is partitioned into 

a finite number of classes such that within each class, the continuous variables are 

governed by constant polyhedral differential inclusions. Other work in this direc­

tion is the work by Stursberg [103, 102] and the work of Ratschan, where they used 

the concept of predicate abstraction at the core of a constraint solver algorithm for 

hybrid systems [93]. 
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In [106] a qualitative based approach was developed for abstract model genera­

tion for hybrid systems, based on higher derivative analysis. This work was later 

extended in [107] by using invariance to obtain more precise abstract models. A 

similar invariant based approach was proposed in [98], where more general invari­

ants are constructed for the whole system. In [92], the authors proposed a similar 

framework using the idea of barrier certificates. Barrier certificates if they exist, are 

invariants that separate system behavior from a bad state. Hence, they can verify 

safety properties. 

The a priori abstraction of the whole state space allows an unbounded verification 

of the results, hence contributing to the confidence in the verification results. On the 

other hand, such abstraction is only suitable for checking a small class of properties 

(i.e., safety properties) and therefore, it limits the capability of the model check­

ing. Due to the over-approximation inherent in this methods, it should always be 

supported with a refinement procedure to avoid spurious counter-examples. 

We present in this thesis, a novel on-the-fly model checking approach for AMS 

designs, which provides tight bounds for the reachable states by using non-convex over-

approximation. In addition, the symbolic nature of the chosen representation of the reach­

able states using polynomials terms, has the advantage of minimizing the risk of state ex­

plosion. However, as this kind of verification is not complete in general as stated earlier, 

we complement the verification with an abstract model checking approach, in order to 

provide a complete verification framework. 
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1.3 Scope of the Thesis 

1.3.1 AMS Formal Verification 

Using formal methods, two types of properties are frequently distinguished in temporal 

logic: safety properties state that something bad does not happen, while liveness proper­

ties prescribe that something good eventually happens. In the context of AMS designs, 

examples of safety properties can be about voltages at specific nodes not exceeding cer­

tain values throughout the operation. Such properties are important when designing AMS 

circuits, as a voltage exceeding a certain specified value can lead to failure of functionality 

and ultimately to a breakdown of the circuit which can result in undesirable consequences 

for the whole design. On the other hand, occurrence of oscillation or switching are good 

examples of liveness properties. A bounded liveness property specifies that something 

good must happen within a given time, for example, switching must happen within n 

units of time, from the previous switching occurrence. 

Obviously, the AMS design process must ensure, with a high degree of confidence, 

the proper functionality in all possible situations and that the design will meet its per­

formance requirements. Therefore, precise constraints and properties identification along 

with verification from the behavioral level through functional and circuit levels is needed. 

This motivates the necessity of using formal verification methodologies throughout the 

design process. An extensive state of the art survey of the different research directions 

will be provided in the next chapter of the thesis. 

The rich and diverse ideas that were developed in the hybrid systems community 

provided a fertile environment for exploring and adopting the application of formal meth­

ods to new domains. One such domain is analog and mixed signal design, which as 

outlined earlier poses many challenges in terms of analysis and verification. On the other 

hand, the diversity of the AMS modeling and representation as well as the objective prop­

erties needed to be checked make the development of a unified formal verification tech­

nique a very difficult task to achieve. Nevertheless, a formal verification framework that 
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subsumes the different classes of designs and addresses a variety of functional and timing 

specifications will alleviate the verification problem. Therefore, the research presented 

in this thesis is concerned with the development of a formal verification framework for 

AMS designs. However, before we present the proposed methodology, we will review the 

main research activities in the application of formal methods for the verification of AMS 

systems. We will emphasize techniques of interest to the work presented in this thesis. A 

more thorough investigation of related work will be provided in Chapter 2 

1.3.2 State of the Art 

Model checking and reachability analysis were proposed for validating AMS designs over 

a range of parameter values and a set of possible input signals. Common to the proposed 

methods is the necessity for the explicit computation of the reachable sets corresponding 

to the continuous dynamics behavior. Such computation is usually approximated due to 

the difficulty of obtaining exact values for the reachable state space (e.g., closed form 

solutions for ODEs cannot be obtained in general). 

Several methods for approximating reachable sets for continuous dynamics have 

been proposed in the open literature. They rely on the discretization of the continuous 

state space by using over-approximating representation domains like polyhedra and hy-

percubes. In [76], the authors construct a finite-state discrete abstraction of analog circuits 

by providing a partitioning of the continuous state space into fixed size hypercubes. They 

use numerical techniques to compute the reachability relations between these cubes before 

applying conventional model checking on the abstract model. In contrast to the work in 

[76], the authors in [57] used variable sized hypercubes to model the abstract state space, 

while they used heuristics to identify possible transitions between adjacent regions. The 

a priori abstraction of the state space developed in [76, 57] is usually computationally 

expensive to apply. Moreover, such exploration techniques are not practical in general as 

for a given set of initial conditions, only some parts of the state space need to be explored. 

In this thesis, we evaluate an alternative approach where we partition the state space into 

18 



non-linear regions and use qualitative characteristics of the state space in order to define 

the transitions between the regions. Such qualitative based partitioning is usually more 

precise and also leads to a smaller abstract model. 

On-the fly algorithms have been proposed with the development of the Hytech tool 

[61] for the verification of hybrid systems with simple dynamics using polyhedral over-

approximations. To deal with the complex behavior of the circuits, the authors of [49,117] 

proposed combining discretization and projection techniques of the state space, hence 

reducing its dimension. Variant approaches of the latter analysis were proposed. For in­

stance, the model checking tools d/dt [28], CheckMate [50] and PHaver [37] were adapted 

and used in the verification of a biquad low-pass filter [28], a tunnel diode oscillator [50], 

and voltage controlled oscillators [37]. Petri net based models and algorithms have been 

developed also for the reachability analysis of AMS designs in [74, 73]. 

The bounded verification for continuous-time designs we present in this thesis is in 

the same spirit as the above mentioned works in terms of requirement for state exploration. 

However, we can identify two distinct features of our approach. First, we rely on func­

tional based modeling form as a way to model the hybrid behavior design rather than a 

computational model like an automaton. Such modeling provides us with a more compact 

representation amenable to the rich application of symbolic analysis, hence leveraging the 

verification. Second, we apply the verification over Taylor model forms [13, 77] which 

provide tight bounds for the reachable states by using non-convex over-approximation. In 

addition, Taylor models allow the symbolic representation of the reachable states using 

polynomials terms, therefore minimizing the risk of state explosion and providing a way 

for scalability. Apart from these features, the fact that polynomial formulas reside at the 

heart of modeling different classes of AMS designs is an incentive to explore different 

verification problems within a unified framework. 

Few works were concerned with the verification of discrete-time AMS designs. For 

instance, in [50] a discrete version of the Checkmate tool was used to verify the stability 
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of a AZ modulator. In [28], the authors proposed to reformulate bounded time reacha­

bility analysis as a hybrid constrained based optimization problem that can be solved by 

techniques such as mixed-integer linear programming [12]. The verification idea is to 

compute a set of worst case trajectories whose safety implies the safety of all the other 

trajectories. In [38], the authors proposed a bounded model checking approach for the 

verification of the static behavior of AMS designs. The idea is based on validity checking 

of first-order formulae over a finite interval of time. The authors trade-off accuracy with 

efficiency by basing the analysis on rational numbers rather than real numbers, hence 

affecting the soundness of the verification. In addition, the method is only limited for 

designs with linear dynamics. 

In contrast to the above discussed work, we apply bounded model checking for 

discrete-time AMS designs supported with an induction theorem prover engine and a 

counter-example refinement procedure, allowing in some cases, the complete property 

verification of the designs as will be demonstrated throughout the thesis. The superiority 

of the approach is derived from the fact that we overcome the time bounded verification 

of current methods by extending bounded model checking with a mathematical induc­

tion engine that allows unbounded time verification. In the following, we describe the 

proposed methodology preceded by a brief introduction of the basic concepts of formal 

verification. 

1.3.3 Basic Verification Concepts 

A model checking algorithm determines whether a mathematical model of a system meets 

a specification that is given as a temporal-logic formula. More formally, the model check­

ing problem is defined as follows: Given a model M of a design and a property P expressed 

in temporal logic, check M\=P, i.e., check if P holds in the model M. 

In reality, it is not always possible to generate a computational model representing 

all possible executions (behavior) of a design. Hence, properties in questions about the 
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concrete behavior of the design are most often hard or even impossible to answer. In gen­

eral, the size of the state graph can be exponential in the description of the system (leading 

to the state explosion problem), and infinite state systems cannot be handled without fur­

ther measures. Consequently, a significant amount of research in model checking has 

been devoted to both problems. 

One possible solution is to limit the explored state space. Bounded model checking 

(BMC) was first put in practice in [14]. BMC aims at solving the same problem as tradi­

tional model checking, however, it has a unique setting for the verification problem. The 

user has to provide a bound on the number of cycles (time steps in case of analog models) 

that should be explored, which implies that the method is incomplete if the bound is not 

high enough. It then uses constraint satisfiability techniques [14] to verify the properties 

for the bounded steps. 

As another approach, many researchers consider model abstraction as one of the 

most powerful tools to combat the state explosion problem. The main idea of model ab­

straction is to find a map between the actual set of values of state variables and a small set 

of abstract values such that a simulation relation (a mathematical relation) exists between 

the original transition system and the newly created one. The model checking problem 

thus becomes the following: given a model M and a temporal logic property P , compute 

an abstraction M* of the model and an abstraction P* of the property and check whether 

M* \= P*. Of interest in this thesis are two forms of this abstraction concept, i.e., the 

abstraction refinement framework and the predicate abstraction technique. 

Abstraction refinement is a methodology to try to alleviate the complexity of the 

verification problem by starting with a coarse abstraction and subsequently refining it 

based on information from unsuccessful verification attempts [21]. On the other hand, 

predicate abstraction is a technique to obtain a finite approximation of infinite state sys­

tem [45]. Given a concrete infinite state system and a set of abstraction predicates, a 

conservative finite state abstraction is generated. Model checking is then applied on the 
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generated system. If the property is verified then it holds in the concrete system. Other­

wise an abstract counter-example trace is generated and analyzed according to an abstrac­

tion refinement framework. An in depth classification of abstraction concepts have been 

discussed in the overview paper [27]. 

Additionally, in some cases the verification can be achieved without the need to ex­

plore or to abstract the state space. For instance, invariant checking [118] is a technique in 

which a property is verified to always hold true over the structure of the system equations. 

Another method is induction verification [118], which is suitable to prove properties for 

discrete-time designs. In both approaches, the verification can be done through theorem 

proving or constraint solving. While incomplete in general (a negative verification an­

swer is not conclusive), these methods are usually adequate as preprocessing steps for 

more complex verification tasks such as abstract model checking. 

1.3.4 Proposed Verification Methodology 

The verification framework described in this thesis is composed of two proposed method­

ologies each concerned with a class of AMS designs, i.e., continuous-time AMS designs 

and discrete-time AMS designs. The common idea behind both methodologies is built 

on top of Bounded Model Checking (BMC) algorithms. The BMC is achieved using 

symbolic simulation and constraint solving. 

Briefly, the idea behind constraint solving is to solve problems by stating constraints 

about the problem area and consequently finding solutions satisfying all the constraints. 

On the other hand, symbolic simulation is a form of simulation where many possible 

executions of a system are considered simultaneously. This is typically achieved by ab­

stracting the domain over which the simulation takes place. The symbolic simulation is 

generally based on algebraic rewriting rules that are applied on the design equations. 

In general, the verification is not complete because of limitations in time and mem­

ory needed for the verification. To alleviate the problem, we observed that under certain 
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conditions and for some classes of specification properties, the verification can be com­

plete if we complement the BMC with other methods like abstraction and constraint based 

verification approaches. 

Continuous-time AMS Verification 

The proposed verification methodology for continuous-time AMS designs is shown in 

Figure 1.4. For continuous-time AMS designs, bounded model checking is applied on 

an over-approximation of the system model based on the concept of Taylor model arith­

metics. Taylor model arithmetics were developed by Berz et. al [13, 77] as an interval 

arithmetics extension to Taylor approximations allowing the non-linear approximation of 

system reachable states using non-convex enclosure sets. In the proposed approach, state 

space exploration algorithms are handled symbolically with Taylor model arithmetics to 

verify timed temporal logic properties. Such modeling allows the computation over con­

tinuous quantities while avoiding the unsoundness inherent in the conventional numerical 

Taylor approximation. If there exits a path for which the property evaluates to false, then 

we provide a counter-example that is subject to a validation procedure to check whether it 

is spurious or not. If it is not spurious, then the counter-example is a concrete one and the 

design is proved faulty, otherwise a refinement procedure is used to remove the spurious 

counter-example and the verification is repeated. If all paths give true, then we say that 

the design satisfies the property for a bounded time. 

In some cases, an unbounded verification of continuous-time can be achieved us­

ing the concept of lazy abstraction. We propose a qualitative abstraction approach for 

Continuous-Time AMS designs represented such that the satisfaction of the property in 

the abstract model guarantees its satisfaction in the circuit-level model. This is done in 

two stages. In invariant checking, the state space is initially partitioned based on the 

qualitative properties of the AMS model and symbolic constrained based methods are 

applied to check for invariant property validation. In case of failure, an iterative verifi­

cation/refinement process is applied where the regions violating the property are refined 
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Figure 1.4: Verification Methodology for Continuous-Time AMS Designs 

using the concept of predicate abstraction and symbolic model checking is applied for 

the property validation. The extraction of the predicates is incremental in the sense that 

more precision can be achieved by adding more information to the original construction 

of the system. When the property is marked violated, one possible reason is because of 

the false negative problem due to the over-approximation of the abstraction. In this case, 

refinement techniques are introduced. 

Discrete-time AMS Verification 

For the discrete-time AMS designs, the proposed verification algorithm is based on com­

bining induction and bounded model checking to generate a correctness proof for the sys­

tem as shown in Figure 1.5. Given an AMS described using standard recurrence equations 

and a set of properties, the bounded model checking is applied using interval analysis [85] 
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over the normal structure of the recurrence equations. Interval analysis is used to simulate 

the set of all input conditions with a given length that drives the discrete-time system from 

given initial states to a given set of final states satisfying the property of interest. If for 

all time steps, the property is satisfied, then verification is ensured otherwise we provide 

counter-examples for the non-proved property. Due to the over-approximation associated 

with interval analysis, divergence can occur leading to false negative. To overcome this 

drawback, unbounded verification can be achieved using the principle of induction over 

the structure of the recurrence equations. A positive proof by induction ensures that the 

property of interest is always satisfied, otherwise a witness can be generated that identifies 

a counter-example. One drawback of this method is the requirement of predefined con­

straints to achieve the verification. In order to find a suitable set of constraints, we resort to 

the d-induction verification method. The method is an algebraic version of the induction 

based bounded model checking developed recently for the verification of digital designs 

[6]. We start with an initial set of states encoded as intervals. Then iteratively the possible 

reachable successors states from the previous states are evaluated using interval analysis 

based computation rules over the system equations. If there exists a path for which the 

property evaluates to false, then we search for a concrete counter-example. Otherwise, if 

all paths give true, then we transform the set of current states to constraints and we try to 

prove by induction that the property holds for all future states. If a proof is obtained, then 

the property is verified. Otherwise, if the proof fails then, the BMC step is incremented; 

we compute the next set of interval states and the operations are re-executed. 

1.4 Thesis Contribution 

The main contribution of the thesis is the development of a formal verification frame­

work that brings together a set of mathematical and computational tools for reasoning 

about properties of AMS designs. The contribution can be summarized with the follow­

ing points: 
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Figure 1.5: Verification Methodology for Discrete-Time AMS Designs 

• We provide an extensive survey of the research activities in the AMS formal verifi­

cation [Bio:Jr-02, Bio:Cf-12]. 

• We introduce a functional modeling method for AMS designs, which allows the 

hybrid representation of the digital and continuous part of the designs [Bio:Jr-03, 

Bio:Jr-05, Bio:Cf-10]. 

• For CT-AMS systems, we propose a bounded model checking algorithm extended 

with counter-example analysis and refinement procedure. The algorithm is based 

on Taylor model arithmetics and symbolic simulation [Bio:Jr-05, Bio:Cf-05]. 

• We propose a bounded model checking algorithm for DT-AMS. The underlying 

idea of the BMC is based on combining symbolic simulation, and interval analysis 
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[Bio:Jr-03, Bio:Cf-06]. 

• We develop an induction based verification engine for unbounded properties of DT-

AMS, which extends the BMC to form the d-induction bounded model checking 

algorithm [Bio:Jr-03, Bio:Cf-10, Bio:Cf-09]. 

• We develop a qualitative based predicate abstraction for checking unbounded prop­

erties of CT-AMS designs. The idea is based on using constraint solving to check 

for invariants. Additionally, qualitative predicates are extracted from the system 

equations to construct an abstract state space in a lazy abstraction fashion [Bio:Jr-

01, Bio:Jr-04, Bio:Cf-l 1, Bio:Cf-08]. 

• We implemented the proposed algorithms and techniques in the computer algebra 

system Mathematica [Bio:Jr-01, Bio:Jr-03, Bio:Jr-04, Bio:Jr-05]. The advantage 

of using Mathematica over other systems is the availability of numerous built-in 

functions and proof capabilities that allows the implementation of the verification 

algorithms proposed in the thesis. 

• We applied the verification on a variety of AMS designs at several levels of design 

abstraction. We checked different types of functional and timing properties. Among 

the examples are oscillator circuits [Bio:Jr-01, Bio:Jr-04, Bio:Jr-05], switched ca­

pacitor based designs [Bio:Jr-03] and Sigma-Delta modulators [Bio:Jr-03, Bio:Jr-

05]. 

1.5 Thesis Organization 

In this thesis, we propose a formal verification methodology for AMS designs. The dis­

sertation is divided into seven chapters with each chapter beginning with an introductory 

paragraph and a section in which the subject of the chapter is informally introduced. A 

chapter is devoted to each central contribution. We conclude each chapter with a sum­

mary. In addition, experimental studies are provided whenever is needed to support the 
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corresponding theoretical development. 

A sketch of the content of the next chapters is given in the following: 

Chapter 2 provides a literature overview on the relevant work on formal verification 

of AMS designs, along with a critical review of the various schemes used in the modeling 

and analyzing. We provide summary tables comparing the different techniques based on 

several criteria relevant to the thesis. We also highlight the pros and cons of the surveyed 

approaches 2. 

After having surveyed through the prior research in Chapter 3, we recall some basic 

definitions, fundamental analysis concept and results used throughout the thesis. The 

remainder of Chapter 3 is devoted to the modeling portion of the verification flow. We 

introduce the modeling and specification approaches used to represent the behavior and 

the properties of AMS designs. The modeling framework is built upon a discrete-time 

representation. We also present for the case of continuous-time AMS, an approximation 

criteria and establish a formal relation ensuring that the devised model preserves the main 

behavioral aspects of the AMS design under verification. 

In the next two chapters, we address the verification problem for continuous-time 

designs using two complementary approaches. In Chapter 4, we present the bounded 

model checking approach developed for continuous-time AMS designs. After providing 

background material related to the verification, a detailed description of a new symbolic 

verification algorithm is provided. A counter-example refinement procedure is also intro­

duced to enhance the verification results. We end the chapter with an application section, 

where we experimented with the verification of basic circuits. Invariant checking and 

predicate abstraction are described in Chapter 5. In this chapter we explain the method 

for representing the verification as constraint based problem in a way that allows un­

bounded verification. After introducing the technical background we describe in detail 

the verification steps before we provide illustrative results for the proposed approach. We 
2 An expert of the field may pass directly from Chapter 1 to Chapter 3. 
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also show how such a verification approach can complement the bounded model check­

ing to provide a complete verification framework. This is illustrated with the tunnel diode 

oscillator circuit. 

In Chapter 6, we focus on the verification problem of discrete-time designs. We 

present a bounded verification algorithm based on interval analysis. To enhance the ver­

ification, we extend the verification with an induction engine in order to prove safety 

properties of the system. We apply the technique on several classes of discrete-time AMS 

designs. 

Chapter 7 summarizes the results of this thesis, where a critical analysis of the 

contributions of the thesis is presented. The successes and limitations of this approach to 

verifying AMS circuits are discussed. Finally, we propose perspectives for future work, 

with several ideas for extending this research. 
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Chapter 2 

Literature Overview 

2.1 Introduction 

During the last two decades, formal verification has been applied to digital hardware and 

software systems. Recently, however, formal verification techniques have been adapted 

and applied to the verification of AMS systems as a way to tackle the limitations of con­

ventional simulation techniques [57]. In addition, hybrid semi-formal techniques combin­

ing simulation and formal based methods have been developed as a way to benefit from 

the advantages of these methods, where logical models are used to analyze the simulation 

results. 

In this chapter, we provide a survey and comparison of the research activities in the 

field of formal verification of AMS design with the proposed approaches in this thesis. 

We point out the different strengths and weaknesses of the methods and compare to our 

proposed model checking approaches. In the remaining of this chapter we overview of 

equivalence checking methods applied to AMS designs, followed by deductive methods 

and run-time verification. We devot the last part of the chapter for a survey of the different 

research directions in model checking and reachability techniques for AMS designs. 
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2.2 Equivalence Checking 

Equivalence checking is a problem where we are given two system models and are asked 

whether these systems are equivalent with respect to some notion of conformance, or 

functionally similar with respect to their input-output behavior [66]. Verification can 

be based on specific properties like transient or steady state response properties, in time 

domain or frequency domain. Such correspondence relation between designs is classically 

done through exhaustive testing by proving that two expressions are equivalent, which can 

be a difficult task for any reasonably large circuit. Instead, symbolic reasoning methods 

can prove or disprove equivalence using decision procedures over the whole range of 

inputs described symbolically. 

An important requirement in behavior equivalence is the specification of tolerance 

or bounds on parameters and signals which may be needed. A failure occurs if the com­

parison finds that the results of both design levels are different or different beyond a 

certain tolerance. In the rest of this section, we survey the relevant work dealing with the 

equivalence checking problem. A comparison between these work is outlined in the end 

of the section. 

2.2.1 Relevant Work 

In [9], the authors proposed a method for applying equivalence checking between two 

designs (e.g., specification and implementation) of analog systems described by their lin­

ear transfer function. The verification idea is based on the discretization of the transfer 

functions to the Z-domain using bilinear transformation, thereby, the design can be rep­

resented in terms of discrete-time components and encoded into FSM representation like 

Binary Decision Diagrams (BDDs). The verification problem can be stated as follows: the 

transient behavior of the implementation mimics that of the specification iff for any initial 

state of the specification, there exists a state in the implementation such that the FSMs 

representing the two circuits produce identical output sequences for all input sequences. 
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The discretization of the behavior raises issues like the error analysis which must 

account for tolerance between the output sequences for both models must be specified. 

Another issue is state space explosion when the inherited discretization of the design is 

encoded. This is largely due to the large word size used to encode real signals. Finally, 

the methodology is only practical for linearized systems as transfer function generation 

for non-linear circuits is very difficult in general. 

Realizing the coefficient of a transfer function exactly using actual components and 

devices is not always possible as the tolerance region around nominal characteristic must 

be taken into account. The ideas in [9] have been extended in [99] in the following way. 

Given the transfer function description of both the specification and implementation, ver­

ify the conformance of the magnitude and phase response of the implementation against 

the specification over a desired frequency range. The equivalence verification problem is 

modeled in [99] as an optimization problem by ensuring that the implementation response 

is bounded within an envelope around the specification under the influence of parameter 

variation. 

The conformance in [99] is defined using the notion of different frequency bands 

product response functions of both design models and which serve as objective functions 

for the global optimization routine. Such definition allows s-domain verification, hence 

avoiding loss of precision due to the bilinear transformation used in [9]. 

Conformance checking with parameters variation was also investigated in [63], 

where the authors present an equivalence checking for linear analog circuits to prove that 

an actual circuit fulfills a specification in a given frequency interval for all parameter vari­

ations. Linear analog circuits can be described by transfer functions, extracted from the 

netlist by symbolic analysis methods (in case of implementation), resulting in a parame­

terized description of the circuit behavior. The main idea of the procedure is to compare 

by inclusion the value sets of the transfer functions of specification and implementation. 

To ensure soundness, the authors chose an over-approximation for the implementation 

transfer function while an under-approximation is chosen for the specification transfer 
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function. 

Comparing [9] with [63], we see that in the first work, the authors trade-off accu­

racy for practicality. They adapt the developed technology based on BDD equivalence 

checking for verification of analog systems. This comes at the cost of precision which 

is affected by the discretization process. In contrast, the authors in the second work in­

sist on soundness by checking that the implementation of the behavior is included in the 

specification behavior. 

While the above-mentioned work are concerned with frequency domain verifica­

tion, others tend to focus on verification in time domain. For instance, in [62], the authors 

proposed an equivalence checking approach based on qualitative comparison between 

two representations of the non-linear analog system. However, direct comparison of vec­

tor fields for non-linear systems is usually not possible. Therefore, the authors propose 

to apply non-linear transformations on the sample state spaces to make the comparison 

possible. The difference between the evaluations of the sampled equations is then cal­

culated allowing the identification of behavior similarity between the two designs under 

verification by giving an explicit error measure. Unfortunately, finding the correct trans­

formations is a non trivial task and automation is not possible, leading to the introduction 

of some heuristics to analyze and approximate qualitative behaviors of the circuits, but 

affecting the soundness of the methodology. The authors applied their methodology for 

comparison verification of two CMOS inverters with different parameters as well as the 

verification of an Opamp against its specification. 

Another equivalence checking verification approach was proposed in [97] for veri­

fying VHDL-AMS designs. The idea is based on combining equivalence checking, rewrit­

ing systems and simulation into one verification environment. The verification method­

ology consists of partitioning the specification and implementation codes into digital, 

analog and data converter components. Digital components are verified using classical 

equivalence checking, while analog specification and implementation are simplified us­

ing rewriting rules and pattern matching. Furthermore, the outputs are fed to comparators 
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to be verified using simulation. This syntactic method can only be performed on simple 

designs where rewriting techniques can be easily applied. While the presented methodol­

ogy is practical, it ignores the coupling between the analog and digital parts. 

Such syntactic verification for analog circuits can only be applied when the designs 

are treated at higher level (architectural or behavioral and functional levels) as at low level, 

non-linear behavior makes such approaches impractical for verification. Instead of direct 

simulation, advanced verification techniques mentioned earlier can be used to compare 

analog model behaviors. 

2.2.2 Discussion 

In general, the nature of analog circuits, most notably the presence of tolerance mar­

gins, makes equivalence verification a difficult problem. However, with careful definition 

of bounds on the parameters as well as the signals, certain compliance relations can be 

checked. In addition, in contrast to equivalence checking for digital systems where a 

canonical representation allows easy comparison of two functions representation, no such 

form exists for analog systems and all the methods presented are design driven in the 

sense that a priori knowledge of the qualitative and quantitative properties of the design 

under verification is a requirement for the methodology application. Table 6.2 draws a 

brief comparison among the above mentioned projects. The table describes the class of 

system verified, the models used, the analysis regions and domains, the adopted analysis 

techniques, the tool used, and the case studies verified. 

In summary, equivalence checking as it currently stands is premature and is compu­

tationally expensive. The extensive use of over-simplification of the designs cast doubts 

on the soundness of the proposed approaches. A trade-off between automation and sound­

ness was explored using deductive methods as shown next. 
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Table 2.1: Equivalence Checking Techniques 

"type of Systems 

Models 

Analysis Regions 

Analysis Domain 
Techniques 

and Analysis 
Tools 

Case Studies 

[9] 
Linear 
Analog 
Transfer 
function 
Transient 
response 

Z-domain 
OBDDs 

comparisons 
N/A 

Low Pass 
filter 

[99] 
Linear 
Analog 
Transfer 
function 
Transient 
response 
S-domain 

Global 
optimization 

Matlab 
Filters 
Opamp 

[63] 
Linear 
Analog 
Transfer 
function 
Transient 
response 
S domain 
Interval 
analysis 
MAPLE 

Band pass 
filter, opamp 

[62] 
Non-linear 

Analog 
ODE - DAE 

Near operating 
point 
Time 

Qualitative 
analysis 
MAPLE 

CMOS inverter 
opamp 

[97] 
Non linear 

AMS 
ODE- DAE 

FSM 
N/A 

Time 
Rewriting, SAT 

simulation 
M-CHECK 

D/A 
converter 

2.3 Proof Based and Symbolic Methods 

Theorem provers are formal systems that were developed to prove design properties us­

ing formal deduction based on a set of inference rules [66]. Even though these deductive 

methods are not constrained by any decidability frontiers, their application requires exper­

tise and significant human intervention which makes their application to complex systems 

very difficult. A lot of research has been focusing on extending theorem provers with 

decision procedures for verification assistance and automation, as well as formalizing im­

portant theories like the real analysis theory. Some primary efforts on verifying AMS 

systems using theorem provers started recently. In addition to deductive based methods, 

induction and symbolic based methods were also proposed to prove properties of some 

classes of AMS designs. 

2.3.1 Relevant Work 

In [41], the authors used the PVS theorem prover to formally prove the functional equiv­

alence between behavioral specification of VHDL-AMS designs and approximated lin­

earized models of their synthesized netlist. The verification was applied for DC and small 

signal analysis. The ideas presented can be considered as a starting point for a method­

ology to verify analog designs, yet important extensions should be studied more, like 

35 



avoiding informal linearization, in addition to tackling more complex verification issues 

especially related to AC analysis. 

Similar but more elaborate research was done in [54]. The author proposed an ap­

proach for specifying and reasoning about implementations of digital systems that are 

described at the analog level of abstraction. The approach relies upon specifying the be­

haviors of analog components (such as transistors) by conservative approximation tech­

niques based on piecewise-linear predicates on voltages and currents. Theorem proving 

was initially used to check for the implication relation between the implementation and 

the specification [52]. In order to automate the verification process, the author proposed 

afterwards the usage of constraint based techniques instead [53]. 

2.3.2 Discussion 

In Table 2.2, we highlight the main points of the work surveyed. The table describes 

the class of system verified, the models used, the analysis domains, the adopted analysis 

techniques, the tools used, and the case studies verified. 

Comparing with the equivalence checking methods proposed earlier, theorem prov­

ing provides a sound answer to the verification problem. However, verifying complex 

behavior of the designs is a laborious and challenging task and only primitive properties 

of the designs can be checked. In order to verify more complex properties, and to make 

the verification process more efficient, run-time verification approaches were proposed as 

discussed in the next section. 

2.4 Run-Time Verification 

Run-time verification (logic based monitoring) methods were developed where no com­

putational model is needed prior to the verification, avoiding state space explosion [116]. 

By employing logical monitors, an efficient analysis of the results is achieved, avoid­

ing exhaustive inspection, by testing whether a given behavior satisfies a property [104]. 

36 



Table 2.2: Theorem Proving 

Type of systems 

Modelling 

Domain Analysis 
Verification Method 

Tool 
Case Studies 

[41] 
Piecewise 

linear 
set of predicates 

over real 
Time 

Deduction 

PVS 
Analog Receiver 

Transmitter 

[52, 53,54] 
Piecewise 

linear 
set of predicates 

over real 
Time 

Deduction and constraint 
solving 
N / A 
TTL 

Monitors for hybrid systems have been developed in [104], where the authors developed 

tools for monitoring real-time and hybrid systems. Timed and linear hybrid automata can 

be used to monitor real-time and hybrid behavior, respectively. 

Property monitoring of AMS designs is performed in general using assertions and 

tests. The monitoring can be described in general as follows: the AMS design under ver­

ification is simulated by attaching it to a testbench which provides the inputs necessary 

to drive while monitoring its output. Assertions have the property that they are always 

checked, regardless of what tests are running. An assertion is a piece of code that contin­

ually observes one or more signals and raises a fault when it detects an error condition. 

They can be placed in the models or in the circuit where they check that the design is 

being used correctly. The monitor could be as simple as observing a current or voltage, 

or could be more complicated, taking several signals, processing them and then compare 

against the expected results. 

The main challenges in this technique is the development of adequate monitors. 

This process can be performed in two different fashions: namely, Offline and Online 

monitoring [79]. Offline monitoring starts after the whole sequence is given. Online mon­

itoring is interleaved with the process of reading the sequence and is similar to the way 

the sequence is read by an automaton. The two types of monitoring have their strengthes 

and weaknesses. Offline monitoring allows the verification of more complex properties 
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like those described backward in time (e.g., using past operators). However, offline mon­

itoring requires the gathering of simulation or execution data in advance which can cost 

lots of time and memory resources. In addition, violations are not detected as soon as 

they happen but only after simulation is finished. On the other hand online monitoring is 

more practical when simpler properties are needed to be verified and violations are iden­

tified as soon as they occur. In the following we survey the main projects concerned with 

monitoring AMS designs 

2.4.1 Relevant Work 

In [78], the authors proposed an offline methodology for monitoring the simulation of 

continuous signals described by differential equations. This work is based on extending 

the PSL (Property Specification Language) [1] logic to support monitoring analog signals, 

by defining the syntax and semantics of metric timed linear temporal logic (MTL) [105] 

and extending it with predicates over reals to define the signal temporal logic (STL) [78]. 

STL is then synthesized into timed automata [80, 79] which monitor simulation traces to 

check for property violation in an online fashion. The approach was implemented in [90], 

No techniques for test case generation is proposed. 

A different effort for using PSL properties to monitor AMS designs was proposed 

in [Bio:Cf-04], where the authors generated observers from PSL properties to monitor the 

simulation behavior of discrete-time designs using symbolic methods. While the approach 

is applicable only to discrete-time circuits, it has the advantage of using the standard PSL 

language making it attractive to be incorporated in the design flow. 

In [29, 30], the authors use an extended temporal logic, AnaCTL (CTL for analog 

circuit verification), for monitoring the transient behavior of non-linear analog circuits. 

The transient response of a circuit under all possible input waveforms is represented as an 

FSM created by means of repeated SPICE simulations, bounding and discretizing the con­

tinuous state space of an analog circuit. Exhaustive simulation is again a drawback as the 

created FSM is not guaranteed to cover the total transient behavior leading to soundness 
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problem. 

An online monitoring technique was proposed in [36], where the authors used linear 

hybrid automata as template monitors for time domain features of oscillatory behaviors, 

such as bounds on signal amplitude and jitter. For the automata with an error state, the 

reachability computation can be stopped as soon as this state is reachable. The moni­

tors are used within the PHAver tool where nonlinear circuit equations are modeled with 

piecewise affme differential inclusions. 

In [Bio:Cf-13], the authors propose an online monitoring methodology for ana­

log systems. They present a run-time verification methodology based on monitoring the 

behavior (solution flow) of analog circuits validated using interval analysis. Given the 

system description and its specification described by non-linear differential equations and 

timed computational temporal logic (T-CTL) formulas, respectively, the authors build a 

timed automata monitor which can detect bad behavior within a specified time period of 

the interval arithmetics simulation. 

2.4.2 Discussion 

Run-time verification, although considered only a partial verification technique, combines 

desirable properties from simulation and formal verification while avoiding the undesir­

able ones. No computational model needs to be generated prior to the verification, avoid­

ing state space explosion. By employing logical monitors, an efficient analysis of the 

results is achieved, avoiding exhaustive inspection by engineers. 

Table 2.3 summarizes the main characteristics of the described projects. The table 

describes the class of systems verified, the models used, the monitors language, the mon­

itoring methods, analysis regions and domains, the adopted analysis techniques, the tools 

used, and the case studies verified. 

Run-time verification is considered an enhancement of simulation methods. It al­

lows the detection of faulty properties that are usually hard to detect by simple observation 
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Table 2.3: Run-time Verification Techniques 

Type of 
Systems 
Models 

Monitors 
Monitoring Type 

Analysis 
Regions 

Analysis Domain 
Techniques 

Tools 
Case Studies 

[78,79, 80, 90] 
Non-linear 

ODE 
STL 

Offline/Online 
No 

restriction 
Time 

Numerical 
simulation 

AMT & Matlab 
Sine wave 

signals, memory 

[29] 
Non-linear 

ODE 
AnaCTL 

Offline 
Transient 
response 

Time 
Numerical 
simulation 

Spice simulator 
VCO 

Opamp 

[36] 
Piecewise 

affine 
ODE 

Linear HA 
Online 

No 
restriction 

Time 
Numerical 

approx. 
PHAver 

Tunnel diode 
circuit 

[Bio:Cf-13] 
Non-linear 

ODE 
TCTL, Timed Automata 

Online 
No 

restriction 
Time 

Numerical 
approx. 
AWA 

Tunnel diode 
circuit 

[Bio:Cf-04] 
Non-linear 

SRE 
PSL observers 

Offline 
No 

restriction 
Time 

Numerical 
simulation 

Matlab 
PLL 

A£Mod 

of simulation results. Yet, run-time verification suffers from the major problems of simu­

lation which lacks the exhaustive machinery needed to gain confidence in the verification 

results. We believe that model checking techniques stand at a middle ground between 

the above mentioned approaches. Model checking offers the rigors needed in verification 

while allowing the automatic verification of complex properties. 

2.5 Model Checking and Reachability Analysis 

Model checking was initially developed for discrete finite state systems and has been 

successful in validating communication protocols and hardware circuits. In recent years 

[61], model-checking algorithms have also been developed for real-time systems that are 

described by discrete programs with real-valued clocks as well as for hybrid systems. 

Model checking and reachability analysis of AMS designs have the potential of validat­

ing designs over a range of parameters and for all possible input signals all at once such 

that none of them drives the system into a bad state. An important issue is the solution of 

the system of differential equations; that is, the collection of continuous time trajectories 

starting from a set of initial states where in practice the initial conditions are usually not 

known exactly but only known to lie within some range. However, the effectiveness of 

model checking is severely constrained by the state space explosion problem and even 
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undecidability limitations when systems are described by differential equations [65]. It 

is not always possible to generate a computational model representing all possible execu­

tions (behaviors) of a program as well as all its possible execution environments. In such 

cases, abstraction techniques are usually required in order to achieve the verification task 

[68]. 

2.5.1 Relevant Work 

The first effort in applying model checking for electronic designs is the work in [76], 

where the authors proposed verification of digital designs at the transistor level. Given 

a circuit, they construct a finite-state discrete abstraction by partitioning the continuous 

state space representing the characteristics of transistors into fixed size multidimensional 

cubes. Heuristics methods are then used to predict possible transitions between these 

cubes. The final constructed model is then encoded into an automata that is verified 

subsequently against some properties using conventional model checking techniques. 

In a series of papers [48, 47, 117], the authors proposed overcoming the expensive 

computational method in [76], by using discretization and projection techniques of the 

state space into category of geometric polygons called projectahedra (projected polyhe-

dra) [49]. Such models have the property of reducing the dimension of the state space, 

while maintaining an over-approximation of the dynamic behavior of the design. While 

this method results in less precise analysis due to projection, it still allows sound verifi­

cation. Such approach proved useful for the verification of designs with high dimension 

state space as reported in [117]. Variant approaches of polyhedral based analysis were 

adapted in [28, 50]. 

In [28], the authors used techniques developed for hybrid system verification to 

verify AMS designs. For systems described using differential equations, they use the 

tool d/dt [8] to overapproximate the reachability analysis. In [50], the authors use the 

Checkmate tool for the verification of AMS designs. The tool is based on constructing 
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abstractions of the continuous dynamics, using flow pipes approximations, which are se­

quences of polyhedra that follow the natural contour of the vector field. Therefore, the 

state space is partitioned along the waveforms that the system can generate for the given 

set of initial conditions and there is no need to discretize the entire state space. Checkmate 

specifications to be verified can be provided as ACTL formulas. For the verification of 

systems like A-E modulator, which is described by discrete time components, a modifica­

tion of the tool to support discrete time analysis was proposed [50]. 

The work in [50] has been extended further in [37] for the PHAver tool. In this 

work, the authors proposed a refinement process for the state space, which is carried out 

using iterations between forward and backward reachability. Such technique as claimed 

in [37] allows generating more precise bounds for the reachable states. 

In [74], the authors proposed modeling analog designs using timed hybrid petri 

nets (THPN), which is an extension of petri nets for real-time and hybrid systems. They 

proposed two methods for the generation of the THPNs verification model. In the first 

method, they translate the circuits differential equation into THPNs. This is done by 

first discretizing the state space as in [55, 56] and then encoding the state space into 

THPNs. Additionally, they developed an algorithm in [75], to generate THPNs from 

simulation data. Over-approximation based analysis is applied on the generated model. In 

[86], the authors compared verification using their methodology in [74] against simulation 

results, by examining the effect of variable delays caused by parasitic capacitances and 

interconnect capacitances on the performance and functionality of the circuits. In [73], 

they enhanced their methodology in [74] by using a variant of petri nets named labeled 

hybrid petri nets (LHPNs), that offer a more efficient representation. BDD based symbolic 

algorithms and satisfiability modulo theories (SMT) [82] techniques are then applied in 

[112, 113] to check for properties of the design. 

The bounded verification for continuous-time designs we present in this thesis is 

in the same spirit as the above mentioned works in terms of requirement for state explo­

ration. However, we identify two distinct points. First, we rely on a functional based 
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modeling form as a way to model the hybrid behavior design rather than a computational 

model like an automata. Such modeling provides us with more compact representation 

amenable to the rich application of symbolic analysis, hence leveraging the verification. 

Second, we apply the verification over Taylor model forms which provide tight bounds for 

the reachable states by using non-convex over approximation. In addition, Taylor mod­

els allow the symbolic representation of the reachable states using polynomials terms, 

therefore minimizing the risk of state explosion. 

In contrast to the on-the-fly techniques mentioned above, a priori state space di­

vision have been explored as a way to obtain abstractions of the analog behavior of the 

systems. In [55, 56], the authors proposed to use an automatic state space subdivision 

method, by discretizing the whole continuous state space into variable sized regions where 

each of these regions represents a homogeneous part of the state space and is treated as a 

discrete state of the simplified system. Some kind of estimation techniques are then pro­

posed to describe possible transitions between partitions under the condition of retaining 

the essential nonlinear behavior of the analog system. Different criteria take care of the 

resulting error during discretization and try to automatically minimize the error by choos­

ing a suitable subdivision of the state space. The discretized state space is then encoded 

and CTL based model checking is applied. The proposed approach was implemented in 

a tool called Amcheck [57]. 

In [44], the authors proposed extending their previous work for the verification of 

time constraints of analog signals like rise and fall time. The presented extensions are 

based on developing the analog specification language ASL [100] tailored to represent 

properties of interest in analog circuit design, such as offset, gain, rise time, and slew 

rate. 

The a priori abstraction of the state space developed in [76, 57] is computationally 

expensive to apply. Moreover, such exploration technique is not practical in general as for 

a given set of initial condition, only some parts of the state space needs to be explored. In 

this thesis, we try an alternative approach where we propose to partition the state space 
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into non-linear regions and use qualitative characteristics of the state space in order to 

define the transition between the regions. Such qualitative based partitioning is usually 

more precise and also leads to smaller abstract models. 

In order to tackle the state explosion problem for the class of discrete time AMS 

designs, they proposed to use techniques from optimal control (i.e., hybrid constrained op­

timization) in order to find bounds of the reachability. The idea is to reformulate bounded 

time reachability analysis as a hybrid constrained based optimization problem that can be 

solved by techniques such as mixed-integer linear programming (MILP)[12]. The basic 

idea is to compute a set of worst case trajectories which implies the safety of all other 

trajectories. 

In [38], the authors developed a bounded model checking tool (Property-Checker) 

for the verification of the quasi-static behavior of AMS designs. The basic idea is based 

on validity checking of first order formulas over a finite interval of time steps using SMT. 

In contrast to other approaches, the work presented in [38] trades-off accuracy with effi­

ciency by basing the analysis on rational numbers rather than real numbers. 

The approach used in [38], while it avoids the overapproximation issue, is limited 

to simplified models of AMS design. In fact, the approach does not support systems 

described using differential equations, however, it is more suitable for systems described 

using difference equations. 

2.5.2 Discussion 

Tables 2.4(a) and 2.4(b) give a comparison between the work presented in this section. 

They describe the class of system verified, the models used, the analysis regions and 

domains, the adopted analysis and state space partitioning techniques, the tools used, and 

the case studies verified. 

Unlike the presented works, in this thesis we provide a methodology that combines 

several model checking techniques in an effort to enhance the verification results. We pro­

vide a novel on-the-fly model checking approach for AMS designs, which provides tight 

44 



Table 2.4: Model Checking Techniques 

(a) Comparisons Table 
Project 

•type of Systems 
Models 

Analysis Regions 
Analysis Domain 

Techniques 
and Analysis 
State Space 
partitions 

Temporal Logic 
Verification 

Method 
Tools 

Case Studies 

[76] 
Non-linear 

ODE 
No restriction 

Time 
Simulation 

lang. containment 
Fixed size 

hyperCubes 
N/A 

Abstract 
model checking 

COSPAN 
Interlock circuits 

[49,117] 
Non-linear 

ODE 
No restriction 

Time 
Projection 

numerical appro. 
Projectaherda 

-
On-the-fly 

reachability 
Matlab/ Coho 
Van der Pool 

oscillator, toggle circuit 

[50] 
Non-Linear 

HA/ ODE - DAE 
No restriction 

Time 
Numerical 

approx. 
Convex 

polyhedra 
ACTL 

On-the-fly 
model checking 

Checkmate 
Tunnel diode 

A - Z mod 

[28] 
Non-linear 

HA/ODE -DAE 
No restriction 

Time 
Numerical 

approx., MILP 
Orthogonal 
polyhedra 

-
On-the-fly 

reachability 
d/dt 

Low pass filter 
A - £ m o d . 

(b) Comparisons Table (Conf) 
Project 

Type of Systems 
Models 

Analysis 
Regions 

Analysis Domain 
Techniques 

and Analysis 
State Space 
partitions 

Temporal Logic 
Verification 

Method 
Tools 

Case Studies 

[57, 100] 
Non-linear 
ODE, DAE 

No 
restriction 

Time 
Numerical 

analysis 
HyperCubes 

ASL/CTL-AT 
Abstract 

model checking 
Amcheck 

Schmidt trigger, 
Opamp, VCO 

[74, 112,113] 
Non-linear 

THPN/ODE 

No 
restriction 

Time 
Numerical 

approx. 
Convex 

polygons 
ACTL 

On-the-fly/Symbolic 
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bounds for the reachable states by using non-convex over-approximation. In addition, the 

symbolic nature of the chosen representation of the reachable states using polynomials 

terms, have the advantage of minimizing the risk of state explosion. However, as this 

kind of verification is not complete in general as stated earlier, we complement the verifi­

cation with abstract model checking approach, in order to provide a complete verification 

framework. 

2.6 Summary 

In this chapter, we provided a summary of the research activities in the application of 

formal methods for the verification of AMS systems. We tried to be as exhaustive as 

possible in collecting the different related work as well as giving comparisons among the 

research proposed. 

As the field of research did not reach the maturity phase yet, standard aspects for 

comparisons of the various projects are not well defined and there is a lack of a coherent 

framework and criteria that allows a theoretical analysis and comparison of the methods. 

We made some efforts in this direction by categorizing and comparing the available state-

of-art projects in several aspects which we believe are important to identify the qualitative 

strengths and weaknesses of each project. 

One drawback of our comparison is the lack of testing of the several approaches. 

This is due to different reasons. First the public unavailability of the prototypes developed 

in the various projects. Second the lack of benchmarks required for comparison. We hope 

that in the future, these two obstacles could be overcome so that more insights can be 

gained about the available methodologies for AMS formal verification. 

In the next chapter, we will provide the necessary theoretical concepts required for 

the development of the verification methodologies proposed in this thesis. We will also 

tackle one of the main challenges of the verification, which is the development of an 

adequate model that preserves the required behavior. In this respect, we will provide a 
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modeling framework for the different classes of AMS designs. 
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Chapter 3 

Preliminaries 

During the AMS analysis and verification phase, we usually provide mathematical mod­

els that capture the relevant behavior of the designs at different levels of abstraction. For 

instance, continuous-time models can express a designs' behavior in great details and can 

thus be seen as residing at the lower end of the abstraction scale. Such models are gener­

ally based on differential equations that capture the corresponding functional behavior of 

the given design as well as its physical characteristics. 

Typically, an AMS design can be seen as a composition of two main components, 

i.e., a continuous-time or a discrete-time analog component and a discrete event con­

troller (digital component) connected through signal interfaces. The analog component 

is usually composed of circuits built from basic passive and active components (resistors, 

capacitance, inductance, transistors, etc), connected to various current and voltage sources 

in a certain topology, achieving a specific desirable behavior (e.g., filtering, amplification, 

etc.). The digital component is generally modeled at higher level of abstraction (i.e., reg­

ister level or behavioral model). An interface converting between the components signals 

(analog and digital signals) can be of the form of a threshold event generator based on 

comparator circuits. An interface can be also a set of electronic switches that choose be­

tween different dynamics based on applied signals at their input. We can therefore view 

AMS designs as a class of hybrid systems described generally using piecewise modeling, 
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with piecewise constraints (threshold detection and/or switching conditions) to determine 

the choice of the appropriate analog dynamics. In case of continuous-time AMS designs, 

the dynamics of the analog circuits are usually described using differential algebraic equa­

tions (DAEs) or system of ordinary differential equations (ODE), while for discrete-time 

AMS designs, the dynamics of the analog circuits are usually described using system of 

difference (recurrence) equations (DE). 

In this chapter, we provide a unified modeling framework for both continuous-time 

and discrete-time AMS designs. Such modeling can be seen as a generalization of piece-

wise modeling which is suitable for symbolic analysis and formal verification. How­

ever, due to the difficulty of obtaining a closed form solution for the system of ODEs of 

continues-time AMS [111], for practical analysis, we also provide necessary condition 

for obtaining precise approximation of the design models, hence, ensuring the soundness 

of the verification. 

The first part of this chapter reviews some basic definitions and concepts that will 

be used through the thesis. We will define the concept of generalized If-formula, overview 

the basics of symbolic simulation and interval arithmetics and Taylor approximation the­

ory. Next, we provide a modeling scheme for AMS designs based on generalized If-

formulas, followed by an abstraction approach preserving the behavior of the continues-

time designs. After that, we introduce the specification languages necessary for repre­

senting the properties of interest. Following these introductory materials, we show how 

symbolic simulation can be used to obtain a simplified form of the design equations. 

3.1 Basic Concepts 

3.1.1 Generalized If-Formula 

Conditional constructs like (if — then — else) statements are features of many program­

ming languages which perform selected actions depending on whether a specified condi­

tion evaluates to true or false. In the context of functional programming, these constructs 
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are referred to as conditional expressions (if expressions) as the outcome of the selection 

is usually evaluated expressions [3]. Moreover, a conditional expression can be seen as 

an algorithmic generalization of piecewise modeling, where nested expressions can be 

allowed. 

In the context of hardware modeling and verification, the concept of generalized If — 

formula expression was defined by Moore [84] and subsequently used by Al-Sammane 

in order to model VHDL designs [3]. In this thesis, generalized If - formula expres­

sions extend piecewise expressions to describe hybrid behavior of AMS designs. A 

generalized If — formula is formally defined as follows: 

Definition 3.1.1. Generalized If-formula. 

Let K be a numerical domain (N,Z,Q, M or 1), a generalized If-formula is one of the 

following: 

• A variablexi(n) E x(n), with i 6 {1 , . . . ,d}, n 6 N or n e l and x(n) = {x\(n),..., 

xd{n)}. 

• A constant C € K 

• Any arithmetic operation <>€{+, —,-r,x} between x,(«) 6 K 

• A comparison formula: any expression constructed using a set of xt(n) e K and 

comparison operator a € {=, ^ , < , < , > , > } . 

• A logical formula: any expression constructed using a set of x,(n) € B and logical 

operators: not,and,or,xor,nor,,.., etc. 

• An expression IF(X,Y,Z), where X is a logical formula or a comparison formula 

and Y,Z are any generalized If-formula. Here, IF(x,y,z) : B x K x K —> IK sat­

isfies the axioms: 

(1) IF(True,X,Y)=X 

(2) IF(False,X,Y) = Y 
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Note: When modeling continuous-time AMS designs, continuous-time If-formula de­

notes generalized If-formula where n is interpreted as the continuous time variable and 

we will refer to the index n by t € R. Otherwise for a discrete-time description we under­

stand that the index n € N refers to the discrete-time variable. 

3.1.2 Taylor Approximation 

Classical numerical approaches for solving an initial value problem consider a sequence 

of discrete points to,h,...,tm for which the solution is approximated. At each new point 

tt+\, the solution x(/,-+i) is approximated by a value xt+\ computed from the approxi­

mated values at the previous points. Taylor series methods [39] are single-step methods 

that use the Taylor series expansion of the solution function around a point, to obtain an 

approximation of its value at the next point. This series is computed up to a given order, 

requiring the evaluation of higher order derivatives of the function. The basic idea is to 

use the approximation x[^+i] = f(x[tk]) + %m of the ODE x = /(x) as a truncated Taylor 

series for x(t), expanded about time instant tk, with a remainder term %m. 

Theorem 3.1.1. Taylor Approximation [39]. 

Suppose a function / : Rrf —> R over state vector x € Rd is m + 1 time partially differen-

tiable on the interval [a, b]. Assume xo € [a, b], such that a, b € Rrf, then for each x € [a, b], 

3XeR, 0 < X < 1, such that: 

where V = ii ̂ . + . . . + irf J ^ and A = x0 + A,(x - x0) 

One way of defining solutions is to specify how to generate a future behavior x{t) of 

the system from any initial state. This approach is closely related to providing a simulation 

algorithm, in a specific discrete location, integration of the equation gives the unique 
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solutions inside this location. In general, to obtain an approximate solution of the ODE 

system, we consider a sequence of discrete time points to, t\,..., tm for which the solution 

is approximated, with hi — f,+i — r,-. If the solution \(t) of an ODE system x = /(x) is 

a function which is p+ 1 times continuously differentiable on the open interval (?,-..f;+i), 

then, from the Taylor approximation theorem, we have: 

P uk up+l 
x(ti+i) = x(ti) + £ (^xW(r»)) + (jj^Ty*(p+1)®) 

with h = ti+i -ti and £ = [?,-,f;+i] and VA: € [ l , p+ l].xW = f(k~l\x(t),t), where the 

vector function / is composed by d elementary functions fq(x\,...,Xd), q & {1,•. • ,d}, 

such that: 

Jq {x\,---,Xd)= 2 ^ 1 5 fm{xi,...,Xd)) 
m=\ aXm 

3.1.3 Interval Arithmetics 

Interval domains make it possible to extend the notion of real numbers by introducing a 

sound computation framework [85]. In fact, the computer representation of real numbers 

suffers from the problem of a precision approximation due to limited digits. However, in 

interval arithmetics, we deal with domains, represented by their endpoints. Thus, compu­

tation is carried over intervals that include the real number with full precision. The basic 

interval arithmetics is denned as follows: 

Let I\ and h be two real intervals (bounded and closed), the basic arithmetic oper­

ations on intervals are defined by: 

h®h = {n®r2\ri ehAr2eh) 

with <3>e{+, - ,x , /} except that I\ jh is not defined if 0 e h as shown below [85]: 
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' [a,bf = M 

[a,b]+'[a',b'} 4 [a + a',b + b'} 

[a,b]-l[a',b'} 4 [a-b',b-a'} 

< [a,b] x l [a',b'] = [min(ad,ab',ba', bb'), 

max(aa',ab', ba',bb')] 

l+l[a,b] ± [l-r&,l-ra]//0^[a,6] 

^ M - M ^ ' ] = [a,b]x[l + W,b>]] 

In addition, other elementary functions can be included as basic interval arithmetic 

operators. For example, exp may be defined as exp(\a,b}) = [exp{a),exp{b)}. The fun­

damental property of interval analysis that ensures soundness of the analysis is described 

using the following definition: 

Definition 3.1.2. Inclusion Function [85], 

Let / : Rd —> R be a continuous function, then F: ld —* I is an interval extension (inclusion 

function) of / if 

{/(xi,.. .,xd)\xi EXu...,Xd€Xd}C F(Xi,... ,Xd) 

where I is the interval domain and X,- 6 I, i € {1 , . . . ,d}. 

In order to deal with the discrete part of the AMS design, as a generalization of 

the inclusion function, interval analysis provides efficient and safe methods for checking 

truth values of Boolean propositions over intervals by using the notion of an inclusion test. 

Definition 3.1.3. Inclusion Test. 

Given a constraint c : Rd —» B, we define Q : Id —> Bj to be an inclusion test of c, with a 

boolean interval domain defined with three values set; Bn = {0,1, [0,1]}, where 0 stands 
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for false, 1 for true and [0,1] for indeterminate, iff: 

{c(x\,...,xd)\x\ eX\,...,xdeXd} CQ(X\,...,xd) 

whereX; e I, i € {l,...,d}. 

Inclusion test can be used during the verification algorithm to prove whether the 

reachable interval states satisfy a given property, or not. We define the inclusion test as 

follows: Q(X) = 1 =*• Vx G X,c(x) = 1 and Q(X) = 0 =• Vx 6 X,c(x) = 0. 

Let xj = [a,b] and yj = [a',b'] be two real intervals. Boolean intervals will be used 

to extend predicates over reals to intervals. For instance: 

x\ < l yi = 1 •& b<a' 

< xi G l yi = 1 <£> x i G vi 

<̂ - a>a' and b <b' 

A set of the main logical rules that define the inclusion test is given as follows: 

xin lyi 

xiUlyn 

xiVlyi 

XiAlyn 

-ilxn 

_A 

A^ 

t± 

_A_ 

A_ 

{max(a, a'), min(b, b1)} 

{min(a, a'), maxib, b')} 

{xVy|xGxnory€yi} 

{xAy|xexiandy eyi} 

{-ix|x6xn} 

3.1.4 Taylor Models 

Taylor model arithmetics were developed by Berz et. al [13, 77] as an interval exten­

sion to Taylor approximations allowing the non-linear approximation of system reachable 

states using non-convex enclosure sets. Formally, a Taylor model Tf := pn(x) +1 for a 

given function / consists of a multivariate polynomial pr(x) of order r in d variables, 
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and a remainder interval /, which encloses the Lagrange remainder of the Taylor approx­

imation. Hence, the Taylor model arithmetics use interval computation to obtain reliable 

enclosures not only for the error term but also for every term of the series, allowing the 

computation of an over-approximation of the solution function at each time point. In 

addition, symbolic simplifications are applied at each step, hence reducing the interval 

calculations and consequently delaying divergence problems, usually, associated with in­

terval based techniques. 

Definition 3.1.4. Taylor Model. 

Tf :— (Prj,Irj) is called a Taylor model of order r of a function / <$• \/x 6 X : f(x) € 

Prj{x — xo) +Ir,f, where X is an interval, Prj(x — XQ) is a Taylor approximation polyno­

mial of order r around the point XQ. An interval Irj is called a remainder bound of order r 

of / on X o Vx <E X : Rrj{x-x0) € Irj-

The basic arithmetic rules on Taylor models are defined as follows [13, 77]: 

• Addition: TrJ+g = Trj + Tr# = (Pr,f + Pr,g,Ir,f + Ir,g) 

• Scalar multiplication: Tr<af = oTrj = (ctPri/, cc/rj), (a € R) 

• Multiplication: Trjg = TrjTr>g — {PrjgJrjg) 

with: 

- Pr,fPr,g = Prjg + Pe 

- Pe e iPe 

~ Pr,8 € IPr,g 

~ Jrjg - lPe + IprJIr,g + Irj{Iprig + Ir,g) 
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where Iprf and Iprg are the interval evaluations of Prj and Png respectively. Ipe is the 

interval evaluation of Pe, which is a polynomial composed of terms with order greater 

than r. 

Similar to interval arithmetics, algorithms supporting such Taylor models are used 

to produce bounded envelopes for the reachable states not only at some discrete time 

points but also for all continuous ranges of intermediate states between any two consecu­

tive time discrete points. The fact that the generated bounds provide a sound abstraction 

for the reachable states, makes it attractive for use with formal verification techniques. 

Based on the above rules, the Taylor model method extends mathematical operations and 

functions to Taylor models such that the inclusion relationships are preserved. This is 

demonstrated by the following theorem: 

Theorem 3.1.2. [77] Let / : Rd —> M. be a continuous function, F be an inclusion function 

of / as in Definition 3.1.3 and / € T, where T is the Taylor model of / , then T C F. 

Moreover, for two functions fa e T\ and fa e T%, we have (fa +fa) E Ts and (fa .fa) € 7>, 

where 7s and Tp are Taylor models for the sum and product of T\ and 72, respectively. 

In practice, the evaluation of a function is transformed to symbolically computing 

the Taylor polynomial pr(x) of the function, which will be propagated throughout the 

evaluation steps. Only the interval remainder term and polynomial terms of orders higher 

than r, which are usually small, are bounded using intervals as described by the rules 

mentioned above and are processed according to the rules of interval arithmetic. This will 

be demonstrated by the following example: 

Example 3.1.1. In non-linear analog circuits, voltages and currents can be described us­

ing analytic functions. For example, in the differential stage shown in Figure 3.1 [46], the 

BJT transistor collector current is described as ic — Ise~*r (1 + -^£) , where 1$ is the satu­

ration current, VV is the thermal voltage, VCE is the output voltage of a differential stage 

and VA is the Early voltage and VBE is the base emitter voltage. In such case, for transistor 
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Figure 3.1: Emitter Collector Differential Stage 

£?4> VCE — tanh(y) + K, where K is an arbitrary voltage, y = ^-, with V\ = V2 = ^ . Con­

sider the Taylor models 7i and r2 of the functions eK, and tanh(y), respectively, where 

x = ^ £ , the multiplication e?tarih{y) can be done using Taylor model arithmetic of two 

Taylor models of order 3. 

Let*,y€ W = [-0.693,0.693] and7i(;c) := 1 + * + y + [-0.11,0.11] and72(y) := 

y- ^ + [-0.108,0.108]. It holds that: 

7i(*)r2()0€ (l+x+4)(y-4) + (l+x + 4) 
[-0.108,0.108] + ( j - 4 ) [ - 0 . H , 0.11] + 

[-0.11,0.11][-0.108,0.108] 

( l + W + ^)[-0.108,0.108]+ 

(W-3f)[-0.11,0.11] + [-0.218,0.218] 

- ~i + ^+xy + y+ [-0.62,0.54] 

3.1.5 Symbolic Simulation 

Symbolic simulation is a form of simulation where many possible executions of a sys­

tem are considered simultaneously. This is typically achieved by abstracting the domain 
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over which the simulation takes place. A symbolic variable can be used in the simula­

tion state representation in order to refer to multiple executions of the system. For each 

possible valuation of these variables, there is a concrete system state that is being indi­

rectly simulated. The symbolic simulation described in this section rely on rewriting rules 

based on the algorithms developed in [3] for digital systems. In the context of functional 

programming and symbolic expressions, we define the following functions. 

Definition 3.1.5. Substitution. 

Let u and t be two distinct terms, and x a variable. We call x —»• t a substitution rule. We 

use Replace(u,x —• t), read "replace in u any occurrence of x by f", to apply the rule x —* t 

on the expression u. 

The function Replace can be generalized to include a list of rules. ReplaceList takes 

as arguments an expression expr and a list of substitution rules %,= { ^ 1 , ^ , . . . , % } . 

It applies each rule sequentially on the expression. The symbolic simulation function 

ReplaceRepeated(Expr,HQ shown in Definition 3.1.6 below is based on rewriting by 

repetitive substitution, which applies recursively a set of rewriting of rules %. on an ex­

pression Expr until a fixpoint is reached. 

Definition 3.1.6. Repetitive Substitution. 

Repetitive Substitution is defined using the following procedure: 

ReplaceRepeated(expr, 3Q 

Begin 

Do 

exprt = ReplaceList(expr, %) 

expr = expr, 

Until FP(exprt,2Q 

End 

ReplaceRepeated(expr, HQ applies a set of rules %. on an expression expr until a 

fixpoint is reached, as shown in Definition 3.1.7. 
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Definition 3.1.7. Substitution Fixpoint. 

A substitution fixpoint FP(expr, HQ is obtained, if: 

Replace(expr,R) = Replace(Replace(expr, %), $Q 

Depending on the type of expressions, we distinguish the following kinds of rewrit­

ing rules: 

Polynomial Symbolic Expressions RMMK- are rules intended for the simplification of poly­

nomial expressions (R"[JC]). 

Logical Symbolic Expressions RLogic' are rules intended for the simplification of Boolean 

expressions and to eliminate obvious ones like (and(a,a) —> a) and (not(not(a)) —> a). 

If-formula Expressions RIF: are rules intended for the simplification of computations 

over If-formulae. The definition and properties of the IF function, like reduction and 

distribution, are defined as follows (see [84] for more details): 

• IF Reduction: IF(x,y,y) —>y 

• IF Distribution: f(A\,.. .,IF(x,y,z),... ,An) —> 

IF{xJ{A\,..., y,... ,An),f(A\,... ,z, . . . ,An)) 

Interval Expressions Rjnt: are rules intended for the simplification of interval expressions. 

Interval-Logical Symbolic Expressions Rim-Logic'- a r e r u l e s intended for the simplifica­

tion of Boolean expressions over intervals. 

Taylor expressions: Rnr are rules intended for the simplification of Taylor model ex­

pressions (Trj) 
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Example 3.1.2. Horner Form Rules. One interval expressions Rim simplification rule 

we use is the Homer form transformation [85] of a polynomial. For instance, for the 

univariate p{x) = ao + a\x + a2*2 + • • • + a***, the horner form is a polynomial q(x) = 

ciQ+x(ai + .. .+x(aic-i +ajcx)). The interval evaluation of q{x) is often more precise than 

the one of p{x). This property is a direct consequence of the subdistributivity property of 

interval arithmetics. For example, let x € [—1,1], we have x4 € [0,1] C [—1,1] Bxxx3 

The symbolic computation uses the repetitive substitution ReplaceRepeated(Expr, 

HQ (Definition 3.1.6) over the set of rules defined above as follows: 

Definition 3.1.8. Symbolic Computation. 

A symbolic computation over an expression X;(n) is defined as: 

Symbolic-Comp(Xi(n)) = ReplaceRepeated(Xi(n),RSimp) 

where Rsimp — RMath U Rlogic U RlF U RTW U Rint U Rlnt-Logic 

The correctness of this algorithm and the proof of termination and confluence of the 

rewriting system formed by all above rules are discussed in [3]. 

Example 3.1.3. The objective of the symbolic computation is to obtain a normal form 

(as defined in [84]) for cases like a + IF(x > 0,b,a). This expression will be normalized 

using two rules: 

• IF Distribution : a + IF(x > 0,b,a) —* IF(x > 0,b + a,a + a) 

• Polynomial Addition: IF(x> 0,b-\-a,a + a) —>IF(x > 0,b + a,2a) 

3.2 Modeling AMS Designs 

The dynamical behavior of AMS designs is usually represented through equations de­

scribing the progressive change of the state variables. These state variables can be re­

garded as memory elements that are able to preserve previous states for a certain time 
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interval. For instance at the circuit level capacitance can be seen as a voltage storage 

element while inductance as a current storage element1. At higher level of design abstrac­

tion, a delay element can be used to affect the notion of state. In digital design, sequential 

logic circuits are clocked designs that have memory characteristic. An AMS model can 

be defined formally as follows: 

Definition 3.2.1. AMS Model. 

An AMS Model is a tuple &MS = (X,XQ, £>, Do, Zl, f), with X C Rd is the analog state 

space with ^-dimensions, where d is the total number of state variables in the design. 

XQ C X is the set of initial states (e.g., initial voltages on the capacitances and initial 

currents through the inductance). (D C Kd2 are discrete variables (i.e., K is a numerical 

domain (B or N))2, with initialization (DQ C (D. UEW is the set of possible input signal 

to the AMS design and 7 : X x <D x 11 -> Rd is the vector field. 

3.2.1 Discrete-Time AMS Designs 

The notion of recurrence equation was extended in [3] to describe digital circuits using 

what is called generalized If - f ormula. 

Definition 3.2.2. A System of Recurrence Equations (SRE). 

Consider a set of variables x,-(n) € K, i € {1 , . . . ,d}, n € N, an SRE is a system consisting 

of a set of equations of the form: 

•*<(") = Mxj(n - y)), (;',Y) G £«, V« € Z 

where fi(xj(n — y)) is a generalized If-f ormula. The set £, is a finite non-empty subset 

of 1,... ,d x N, with j G {1 , . . . ,d}. The integer yis called the delay. 

'it is worth noting that a resistance is a memoryless element. 
2We refer to variables with discrete amplitudes as discrete variables. This should not be confused with 

discrete-time variables which are variables that are assigned values at discrete time points. For example, 
if the discrete domain is (0,1), then the variable is called boolean variable. In addition, in here, discrete 
variables are not states, rather they can be thought of as discrete locations such that we assign to each 
location a set of continuous states based on a predefined (switching ) conditions. 
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Figure 3.2: First-order AE Modulator 

Example 3.2.1. Figure 3.2 shows a first-order AE of one-bit with two quantization levels, 

+ 1V and —IV. The quantizer (input signal y(n)) should be between —2V and +2V in 

order to not be overload. The SRE of the AE is : 

y(ri) = y(n — 1) + u(n) — v(n — 1) 

v(n-l)=IF(y(n-l)> 0,1,-1) 

3.2.2 Continuous-time AMS Designs 

Continuous-time AMS (CT-AMS) designs can be simplified to the composition of ba­

sic analog components, connected to some digital components, i.e., sequential logic and 

combinational logic. In this thesis, we will restrict our focus to the class of AMS, whose 

memory constituents are only capacitance (voltage storage) and inductance (current stor­

age). In other words, we will assume that the digital parts can be only composed of 

combinational logic. The reason for such restriction is the requirement to restrict the 

notion of time over which the states evolve to only continuous time. 

The behavior of a CT-AMS design, is governed by a system of generalized differ­

ential equations. A generalized differential equation is a non-linear equation of the form 

x = jF(x,u,f), whose right hand side is a generalized!f — formula. More formally, the 

behavior of a CT-AMS design is described as follows: 

Definition 3.2.3. Generalized System ofODEs. 

Consider a set of variables jc*(r) € R, i 6 {1 , . . . ,d}, t e R, a Generalized System of ODEs 

is a system consisting of a set of equations of the form: 

4 = -^=*=5*(x(0,u(0,0 
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where \(t) is a vector of analog state variables defining the voltage across the capacitance 

and the current through the inductance. u(r) € W are variables defining the input signal. 

The vector field % is defined as continuous-time If-formula. 

For example, the discrete behavior of the CT-AMS can be due to a change in the 

input signal amplitude u, or abrupt changes in design parameters or even changes in the 

function jF based on some control logic or switching conditions. The most common situ­

ation, however, is when the system equations are piecewise in the system states x. Such 

a model arises for example in the linearization of the nonlinear system around different 

operating points. 

The semantics of the AMS model3. AMS = (X,XQ, £>, (Do, U,7) over a continu­

ous time period Tc — [xo,Xi] C R+ (t\ = oo in case of complete behavior) can be described 

as a trajectory &x : Tc —• X for* € XQ such that &x(t) is the solution of x\ = 7k{x\ > • • • >•*«/)> 

with initial condition ^ ( 0 ) = x and t € Tc, is a time point. 

Example 3.2.2. One of the interesting circuits used in RF designs is the Colpitts oscillator. 

The circuit diagram for the Colpitts circuit is shown in Figure 3.3 [33]. The circuit is 

composed of a MOS transistor with a constant Vg = 0.6, Vcc = 1.2, two capacitors C\ and 

C2, an inductor L, a resistance Ri and a current source Iee connected to the source of the 

transistor. 

The simplified equations are described as follows: 

Vc\ 

Vc2 

h 

i.2-(vCi+vc2) /, ids 

R*Ci "•" Ci C, 
-lee 1 l.Z-(Vci+Vc2) . 7; 
C2 + R*C2 "+" C2 

1.2-(Vci+Vc2) 

3Throughout the thesis, we refer to the AMS model in Definition 3.2.1 as CT-AMS model and DT-AMS 
model if the vector field !f is defined using ODEs and SREs respectively. 
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with 

Ids '• — / / [ (Vc 1 +Vc2>0.3AV C 2 <0.3) ,^*f*(0 .3 -Vc 2 ) 2 ) , 

/ / [ (Vci+Vc2<0.3AVC 2<0.3) , 

Ap*¥*((0.3-Vc2)*(Vci)-0.5*(Vci)2),0]] 

where w is the gate width, / is the gate length, \Vt\ = 0.3 is the threshold voltage of the 

device and Kp is a constant depending on the physics of the device. 

V c c 1 
RL: 

vg—| 

l e e 

? 

V c l 

Vc2 

Figure 3.3: Colpitts Circuit Diagram 

Note: We assume that we have correct initial conditions that are consistent with the laws 

of voltages and currents in the circuit [111]. We also assume that the generalized differ­

ential equation has a unique solution for each initial value (see [7] for more information 

about existence and uniqueness of solutions for piecewise systems). 

We can model explicitly the possible trajectories of the AMS model using the notion 

of timed state sequence, which we refer to as CT-AMS Trace. 

Definition 3.2.4. CT-AMS Trace. 

Given a sequence of time stamps x, a trace of an AMS model is an extended timed state 
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sequence (c,x,X), where: 

• c = Co, 0 1 , . . . , on is a sequence of states, for every n G N, G; G Krf 

• X = fo, ̂ l, • • •, tn is an increasing sequence of time intervals with the following con­

dition: 

VJ G N, 37} G K+ such that there exists a trajectory ^>x(7}) = a, and 7} = r,- and 

JceAh4 

• ?i» is a mapping function described as X : M^ —> W, which is a function associating 

each analog state with a set of predicates B such that X,(a,) = B iff B(4> (̂7})) = 

7>we. 

Note: It is clear from the above definition that the behavior of a CT-AMS design 

can be described using analog states. In here, the discrete/digital part of the design is 

reduced to some predicates that control the switching between the different analog behav­

iors of the design. We can think of a CT-AMS trace as a concatenation of simple analog 

traces for which the initial state of an analog trace is in fact the final state of the previous 

analog trace in the concatenation. We assume that there is no ambiguity in switching 

conditions, meaning that each switching condition leads to only one new analog dynamic, 

thus avoiding non-determinism. 

The complete behavior of the CT-AMS design can be specified as the set of all pos­

sible CT-AMS traces which can be used to construct the corresponding transition system: 

Definition 3.2.5. CT-AMS Transition System. 

The transition system for CT-AMS model SVM.S is described as a tuple T^MS ~ (2 ' 2o, 0, 

L) where q G Q is a configuration (x, z, T), x € X, z € W and set of time intervals T where 

Ui>oti C R+, ti G T. We have t\,t2 G T for 3v(/i) = 4>y/(?2) = x and xf\x" e XQ. q G Qo, 

when to e T and fo is the singular interval (to = 0), L is an interpretation function such that 
4Note that we slightly abused the definition of a trajectory, where we assume that the domain is a set of 

time intervals rather than a set of time points, i.e., <&x{Ti) = {®x{T{)\Ti e Tt,l G N,x; e I}. 
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L: Q->R" x 2W x 2R . Finally, oCQxQisatransition relation such that (q„,qm) G c 

iff Btn G r„, 3?m G Tm. f„ < fm and lim,B_,B 4>2"(^) = *Im(fm). xG^b, where trajectory 

<£* : Tc —• X for x G XQ over a continuous time period Tc — [TO^I] Q R+
 (?I — °° m c a s e 

of complete behavior), such that <E>*(f) is the solution of x\ = ^lt(xi,... ,*</), with initial 

condition ^ ( 0 ) = x and t € Tc, is a time point. 

3.2.3 Approximating the Behavior of CT-AMS Designs 

Obtaining the complete behavior of CT-AMS designs is often a hard problem as it requires 

finding a closed form solution of the system equations. Such a solution is hard to get in 

practice for the general equations. Therefore, an approximation that guarantees preserving 

the behavior of the system must be used instead. One possible methods to approximate 

the continuous behavior is by using Taylor approximation described in Section 3.1.2. 

Example 3.2.3. Consider the analog circuit in Figure 3.4, composed of a network of 

passive components (capacitors and conductances), along with non-linear current sources 

and two switches. The switches can be designed using CMOS transistors working in 

saturation mode as shown in the figure. This circuit exhibits an oscillatory behavior when 

the initial capacitor voltages are within a specified range, based on the switches positions. 

The voltages across the capacitors can be described using ODEs as follows: 

v'c\ = vc2 or Vci = vc2 + vl2 

< 

v̂'c2 = -v c i + v ĵ or v'c2 = -v c \ + (1 /2)v^j 

Suppose that we specify the switching conditions as 

Condi = Cond.2 \— vc\ (n — 1) < vain — 1) 

For illustration purposes and for clarity, we use Taylor approximation limited to order 2 

to obtain the corresponding SREs: 

vci(n):=IF(CondhXi,X2) and vc2(n) :-IF(Cond2,Yl,Y2) 

66 



vcl vc2 

il=fl<vcl,vc2)Q Q ir=Jl(vcl,vc2) 
J 

Electronic Switch 

cl = 1 
i2=f2(vc!,vc2) 

fl=vcl 

Jl = vcl+(vc2)A3 
"X 

Q Q J2'rJ2(vcl,vc2) 

c2 = 

Te^i 
f2=-2(vcl)+(vc!)A3+2(vc2) 

J2 = -2(vcl)+0.5(vcl)"3+2(vc2) 

Figure 3.4: Switched Analog Circuit 

with: 

. X 1 : = y - ^ + vci(«-l) + M"-l)+^iWl 

. X 2 : = ^v i^z i l i + | ^ 2 V c 2 ( n _ 1 ) 2 v c l ( „ _ 1 ) 3 _ ^ M f r l i _ f^v^Cn - l)2vcl (n -

\) + vc\{n-\) + hvC2{n-\f + hvc2{n-\) + %m2[v7\,Vdi) 

• YX :=hvcx{n-\f + \h2vc2{n-\)vcx{n-\)2- hvcX{n-\) - ^ f ' 1 ? + v c 2 ( « -

• F 2 ; = ^ ^ - l ) 3
+ 3 / l 2 V c 2 ( w _ 1 ) 3 V c l ( n _ 1 ) 2 + 3 ^ 2 V c 2 ( n _ 1 ) v c l ( ? z _ 1 ) 2 _ ^ c l ( w _ 

where !̂ /n,- [v£i, v^] are the Taylor approximation remainders, i = {1 , . . . ,4} and ft is the 

time step. 

However, in order to ensure the correctness of the analysis, we must define a suffi­

cient condition for an adequate approximation. In order to define a notion of abstraction 

precisely, we establish a correspondence between a discrete 9 : N H-» X and a continuous 

trajectories &x : [0,°°) i—• X. This is done using discrete sampling. 
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Definition 3.2.6. Sufficient Trajectory Discretization. 

A discrete evolution 9 : N i—• X is a sufficiently complete discretization of a continuous 

evolution <&x '• [0>°°) •-> JC if there exists a strictly increasing sequence of reals in the 

interval [0,°°) such that to = 0, 4>x does not change in either the domain (?;,f|+i] or the 

domain [ti,ti+\), that is either \\®x(t)-&x(t')\\ < e f o r a l l f / e (UA+i] or t,t' € [ti,ti+i), 

where e is the sampling error and 0(i) = ®x{u) for all i. 

Intuitively, a sufficiently complete discretization captures all the different continu­

ous states in the continuous evolution. In general, we have ||6(/) — <&JC(?;)|| < £ for all i, 

where £ is the discretization error and exact valuation cannot be achieved. We can ex­

plicitly model the possible trajectories of the sampled AMS model as a Sampled CT-AMS 

Trace. 

Definition 3.2.7. Sampled CT-AMS Trace. 

A timed state sequence (G',X',)J) is a sampled CT-AMS trace of a CT-AMS model such 

that: 

• If (CT,T) is a CT-AMS trace of a continuous evolution <bx and 9 : N »-» X is a suf­

ficiently complete discretization of <&x : [0, <») i—> X, then there exists a trajectory 

such that:Vi € N, 0(0 = o< with ||o, - a-|| < £ and t[ e {ti,ti+\} or t\ e [ti,ti+\). 

• V is a mapping function described as X': Rdl —> B ; , which is a function associating 

to each analog state a set of predicates B such that A/(c,-) = B iff B(<E>̂ (7])) = True. 

We can then view the sampled behavior of an CT-AMS model as a transition system, 

which can be constructed from the set of all possible sampled traces (trajectories). We 

define a sampled CT-AMS transition system as follows: 

Definition 3.2.8. Sampled CT-AMS Transition System. 

A Sampled CT-AMS Transition System % is a tuple (Q',Q'Q,5',L'), q e Q' is a con­

figuration (x,z,Ax), x e X, z € W and set Ax where Uvti2 G A* if 0(i'i) = 0(12) = x. 

Q'o Q Q' is the set of all initial configurations. L' is an interpretation function such that 
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L' : Q! -> W x 2B x 2N. Finally, S ' C Q ' x Q' is a transition relation such that such 

that 0 : N w I satisfying initial condition: 9(0) € Q'0 and discrete evolution Vz e N, 

(e(«),e(j+i))6 8/. 

Statement 1. We say that a Sampled AMS Transition System Tj is an approximation of 

a CT-AMS Transition System " T ^ j , denoted 1$ 2 ^ 5 ^ 5 . if the discrete evolution in the 

former and the continuous evolution of the latter are related according to Definition 3.2.6. 

It is thus natural to look for a model that gives a sufficiently accurate answer to 

the analysis. In practice, it is hard to fulfill such condition; however, some approxima­

tion techniques under certain conditions can lead to a model that preserve the original 

behavior of the system but with the cost of introducing more (undesirable) behaviors. 

Such approximations are referred to in formal methods literature as over-approximation 

techniques [25]. 

In practice, to ensure the sufficient approximation criteria, the goal of a numerical 

approach (like Taylor approximation) for solving an initial value problem (IVP) over an 

interval range of? is to approximate as accurately as possible its solution at some discrete 

points placed along that interval. Usually, by starting at point to (whose solution value is 

known: x(?o) — xo) an increasing (decreasing) sequence of discrete points is considered 

by adjusting the step size (the gap between two consecutive discrete points) as the calcu­

lation proceeds. The purpose of this adaptive step size policy is to keep some control over 

the accuracy of the approximation. However, a common source of errors is the discretiza­

tion error (also known as truncation error), which is partially due to propagation of errors 

made at previous steps (from to to ti) along with the current step. To preserve the inherited 

behavior of the actual solution, the remainder term should not be discarded and instead 

bounds must be specified. Interval approaches attempt to produce bounds for the solution 

flow not only at some discrete points of t but also for all the continuous range of interme­

diate values between any two consecutive discrete points. In this case, we can allow for 

over-approximation of behavior, but guaranteeing the sufficient approximation required 
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to ensure sound construction of approximate model of the CT-AMS designs. Having at­

tained this goal, we can claim that achieved recurrence equations can be suitable under 

certain conditions for modeling continuous-time AMS systems, hence allowing a unified 

modeling framework for discrete-time and continuous-time AMS designs. In the remain­

der of this section, we will provide a procedure to obtain such approximation based on 

Taylor theorem and interval arithmetics. 

3.2.4 Interval Abstraction 

As outlined earlier, to preserve the inherited behavior of the actual solution, the remainder 

term of the Taylor approximation should not be discarded and instead bounds must be 

specified. Interval approaches [85] attempt to produce bounds for the solution flow not 

only at some discrete points of / but also for all the continuous range of intermediate 

values between any two consecutive discrete points. In this case, we can allow for over-

approximation of behavior, but guaranteeing a sufficient approximation requires a sound 

construction of the approximate model of the AMS design. 

Interval domains are numerical domains that enclose the original states of a system 

of equations at each discrete step [85]. Interval methods produce boundeding envelopes 

for the reachable states not only at some discrete time points but also for all continuous 

ranges of intermediate states between any two consecutive time discrete points. Solution 

methods for ODEs based on Interval arithmetics, also known as validated methods[%5], 

are an attractive tool to use in the verification of the behavior of systems with uncertainty 

on the design parameters or initial conditions as they allow sound discretization. 

Interval Abstraction for the Traces. Given a Taylor based approximation of a system of 

ODEs, we can describe its trajectories starting from a set of initial conditions by the notion 

of interval analog traces. 

Definition 3.2.9. Interval AMS Trace. 

An interval AMS trace of a CT-AMS design is a timed state sequence (d,T, %), such that: 
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• c = cfo, G\, • • •, <5n is a sequence of states for every n e N, c, e Id. 

• x — to, t\,..., tn is a sequence of time intervals stamps with the following condition: 

Vi G N, there exists an interval evaluation of a Taylor approximation trajectory 

x(7}) = dl,-with?l- = (7i-i,2}]. 

• 51 is a mapping function described as X : Mrfl —> B-', which is a function associating 

to each analog state a set of predicates B such that X(c,) = B iff B(x(7})) 7̂  False. 

The concepts of inclusion function and inclusion test can be used to define an ab­

straction from the concrete traces to corresponding interval traces as follows: 

Definition 3.2.10. Trace Abstraction. 

Let Tra = (a,x,X) be a CT-AMS trace and Tri = (a,T, A.) be an Interval AMS trace. We 

say Tri is an abstraction of tra if there exists a map abs: X —>• Id such that abs(oo) C OQ 

and for every o", € 0, if o"£ is a sufficiently complete discretization of o,-, then abs(Gj) — 

abs(a'i) e a' 

We can argue that for each concrete trace, we can find an associated interval trace 

that over-approximates it, in a way that preserves its properties and that for a given ab­

straction, the set of all possible concrete traces is a subset of the set of interval based 

traces that can be generated by the system. 

Lemma 3.2.1. Existence of Trace Abstraction. 

Given a bounded time CT-AMS trace, we can always find an interval AMS trace which is 

an abstraction of that trace. 

Proof. By Weierstrass Approximation [39] and existence of solution for validated meth­

ods [85]. 

Weierstrass Approximation ensures that any continuous function on a closed and bounded 

interval can be uniformly approximated on that interval by polynomials to any degree of 

71 



accuracy. Validated methods provide techniques to construct such approximation. 

We can represent the AMS design behavior over intervals using a state transition 

system as follows: 

Definition 3.2.11. Interval based State Transition System. 

An Interval based State Transition System is a tuple % = (Si,Sifi,—>§,), where 5/ is the 

interval state space, S/,o C 5/ is the set of initial interval states, —>s,C Si x 5/ is a relation 

denned using SRE forms 5/ and capturing the abstract transition between interval states 

such that: 

{s —*s; s'\3a € s, 3b € s': b — 8/(a) and 8 € 8/} 

where a,be Rd, s, s' € Si, 8 = {f\,..., fd} with f: Rd —> M is an if-formula, i£{l,...,d}, 

8/ = {/(,..., fd} and f e fj, where / / is the interval extension of the if-formula /,. 

Statement 2. We say that an Interval based State Transition System Ti is an abstraction 

of a CT-AMS State Transition System 1^ if Abs(Tjn) C T,, and we denote it as T^ ^ % 

Unfortunately, due to the over-approximation nature of interval analysis, a quick 

divergence in the reachability calculation generally happens. This is mainly due to the 

following issues [85]: 

• The dependency problem which is the inability of interval arithmetic to identify 

different occurrences of the same variable. For example, x — x = 0 holds for each 

x€ [1,2], bu tX-Xfo rX = [1,2] yields [-1,1]. 

• The wrapping effect which appears when the results of a computation are overes­

timated when enclosed into intervals, hence leading to error accumulation at each 

time step. 

The undesirable properties associated with interval analysis can be partially avoided 

if instead of relying on interval traces with loose accuracy (large overapproximation), 
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we search for tighter enclosures that still preserve the original traces. This goal can be 

guaranteed with the following lemma: 

Lemma 3.2.2. Let Trset{Tra) be the set of all AMS traces and Trset{Tri) be the set of all 

Interval AMS traces of a given analog systems, then Abs(Trset(Tra)) C Trset(Trj) 

Proof. This lemma is a direct consequence of Definition 3.2.10. 

In more concrete sense, Taylor models described in Section 3.1.4 satisfies these proper­

ties; moreover, they have been proved to be the best available interval based approxima­

tion [88]. 

3.3 Specification Languages 

In order to reason about the functional properties of the designs under verification, we 

need a language that describes the temporal relations between the different signals of 

the system, including input, output and internal signals. Temporal logics are a special 

kind of modal logics that include operators (modalities) to reason about the truth values 

of assertions at different times during the execution of a program. There are two basic 

types of temporal logic: Linear time (e.g., Linear Temporal Logic (LTL)) and branching 

time (e.g., Computational Tree Logic (CTL)). Temporal logics distinguishing a linear 

and a branching view on time respectively. In the linear view, each point in time has 

exactly one future. A specification is interpreted over a linear structure, i.e., a computation 

is a sequence of events. In the branching view, there is a (non-deterministic) choice 

between several potential futures at each point in time. This results in a tree of potential 

computations. Neither view can, on its own, express all properties that the other can, 

however, there are subset of properties that can be supported by both kind of logics. In 

general temporal logic formulas are interpreted over state sequences of labeled transition 

systems called Kripke structures. The semantics of formulas is formally defined for a 

model (state sequence) and a formula (|> by means of the satisfaction relation f=. a f= (|> 
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denotes that the formula (|) holds for the state sequence a. A survey on temporal logic is 

available in [32]. 

For the verification purposes in this thesis, we provide the basics of two types of 

temporal logic; namely MITL which is timed linear temporal logic and \/CTL which is 

a subset of the standard CTL. The motivation for choosing two different logics in the 

proposed verification methodology is based on the following. For BMC verification, we 

are interested in checking properties over a set of traces for a given amount of time. The 

verification idea is based on encoding each property as a set of constraints to be satisfied. 

In particular, LTL has been shown to be practical for such verification technique [14]. 

As we are extending BMC for AMS designs, which are characterized by their real-time 

behavior, choosing MITL as specification logic provides us with an intuitive formalism 

to express the required properties as will be demonstrated below. On the other hand, the 

predicate abstraction proposed in the thesis is based on the qualitative analysis of the AMS 

design state space rather than particular traces. Therefore, an untimed logic like VCTL 

suffices for describing the desired properties. 

3.3.1 MITL 

We use a variant of Metric Interval Temporal Logic (MITL) which is an extension of LTL 

tailored for specifying desired timed properties of real-time designs. In MITL, temporal 

modalities are restricted to intervals of the form / = [a,b] with a,b e Q>o- The benefit 

of bounding the temporal properties is to restrict the verification for a specific amount 

of time avoiding the non-termination. To specify analog behavior of the AMS designs, 

the logic is augmented with a mapping from continuous domains into propositions. We 

extended the MITL language with predicates over real constants and real variables. We 

can define atomic properties as follows: 

Definition 3.3.1. Atomic Property. 

An atomic property X(x\,...,x„) is a logical formula defined as follows: X(x\,...,xn) = 
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%oc, where o € {< ,< ,> ,> ,= , ^} ,%i san arithmetic formula over the design state vari­

ables x and c is an arbitrary value (c € R) 

The main temporal operators describing properties of a trace: 

• F ("eventually or in the future") asserts that a property will hold at some states on 

the path. 

• G ("always or globally") specifies that a property holds at every state on the path. 

The syntax of MITL is defined by the following grammar: 

Syntax of MITL. The basic formulae of the MITL are defined by the following 

grammar: 

9 := X(xi,...,*»)h<p|<Pi V(p2|F/9|G/(p|frae 

where A. belongs to a set of atomic properties over the design state variables and XJ is a 

term (that is a constant or a variable). 5 G and F are temporal operators and I is an interval 

/ = [a, b] with 0 <a< b and a, b € Q>o and a^b. 

Semantics of MITL. We define the Kripke structure which is a transition system 

as in Definition 3.2.5 T&MS
 = (<2>Qo,0",L), extended with an interpretation function [.], 

written as K = {T^MS, \-\). The semantics of the language is provided by the interpreta­

tion [.] as follows: 

• For a constant C, [C] is an element of R 

• For a state variable x € x (where x is the set of state variables), \x\ is a function 

M + ->R 

• For an n-ary predicate X,n> 1, the meaning [A,] is a function R" —> B. 

The interpretation [.] extends to arbitrary terms, inductively: 

lX(xu...xn)} = m(lx,l...lxnj) 
5To describe properties on analog signals like current and voltages, atomic propositions, X(x\ ,,..,xn)(n), 

are predicates (inequalities) over reals, with time index n. The provided propositions are algebraic relations 
between signals (variables) of the system. 
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In addition, we have the concretisation function Y^ : B —>• 2R such that Y(|X(x)]) = 

Tx(b) = {x € R"|X-(x) = b}. Intuitively, T^ is a set of states, where X holds with the 

condition Y^ D Y_,̂  = 0 

In general in real-time temporal logic, observations have to be extended with in­

formation about their timing. This is done by representing a the timed state sequence as 

a timed word over state observations. Thus, it is a pair E = (c , r ) , consisting of a state 

sequence O" and an interval sequence /. We use the notations s(L) and T(E) for the states 

and respectively of timed part of the timed state sequence. 

Let E = (a,/) be a state sequence associated with the Kripke structure, with / = 

[a,b], the satisfaction relation E (= cp, indicating that a state sequence satisfies a property 

cp starting from position To and To S r is defined inductively as follows: 

• a |= true 

. o\=X(yh...yn)iffLx(o0)emx(yh---yn)]) 

• a |= ->(p iff a y= (p 

• a |= 91 V 92 iff o (= <Pi or a |= 92 

• a |= F/(p iff starting from position t_, where ? = [t,t] and ? e To, 3t' e [f -+- a,£ + 

fc].of=<p 

• a |= G/(p iff starting from position f, where t = [i,T\ and t € To, V?' € [l + a,t_ + 

b].o\=y 

Note: The verification algorithms in this thesis consider abstract models overap-

proximating the original behaviors. Therefore, correctness must be proved for all pos­

sible abstract behaviors. In fact, MITL has implicit universal quantifiers in front of its 

formulas. For example, M \= V/ means that M satisfies / over all initialized paths. Such 

property makes MITL an adequate for writing specifications. 
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3.3.2 \/CTL 

In Chapter 5, we will be using temporal logic to verify properties on discrete abstractions 

of AMS designs. For the purpose of verification, we need a temporal logic for reasoning 

over the possible behaviors of the design. We use a subset of CTL which only allows the 

use of the universal path quantifier V. We refer to this subset as VCTL [72]. VCTL formu­

las are specified and evaluated over the semantic model of the system; usually modelled 

as a Kripke structure. Beside boolean connectives, VCTL provides linear time operators 

and path quantifier. The linear time operators allow expressing properties of a particular 

behaviour of the system given by a series of events in time. Path quantifiers used with 

time operators account for the possible existence of multiple future scenarios starting at a 

given state at a point in time. 

The main temporal operators describing properties of a path through the tree are : 

• F ("eventually or in the future") asserts that a property will hold at some states on 

the path. 

• G ("always or globally") specifies that a property holds at every state on the path. 

Based on the path quantifiers and temporal operators, we can define state formulas 

and path formulas as follows. 

Syntax of VCTL. Let AP be the set of atomic propositions. The VCTL is the set of 

state formulas on AP inductively defined as follow: 

• Any boolean formula over atoms from AP using the connectives V, Aand-< is a pure 

state formula. 

• If (|> and cp are state formulas, then <p A cpand <|) V 9 are state formulas. 

• If (j) and (p are state formulas, then F(|>, Gcp are path formulas. 

• If (]) is a path formula, then A((p) is a state formula. 
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The semantic of a discrete model ° under verification is usually represented by a 

Kripke structure. 

Semantics of VCTL. The Kripke structure of a discrete model is a tuple M — 

(C, Co, R, L), where C is the set of all possible states for the model, Co C C is the set of ini­

tial states, R is a transition relation between two states such that R C C x C. L : C, —> 2AP 

is a labeling function associating each state with a non-empty set of atomic propositions 

(AP). 

Definition 3.3.2. A path n of a Kripke structure M is a finite sequence of states n — 

[CQ, C\ ,...., q] such that z > 0. Given an integer i > 0 and a path 71, we denote by 7t,- the f-th 

state of 7t. 

Definition 3.3.3. Let c and % be a generic state and path respectively in the Kripke struc­

ture of discrete model M. Then the satisfaction relation (= for state and path formulas is 

defined as follow : 

• c (= p iff p G L(c) where L(c) is the labelling function of state c 

• c |= -i/7 iff -i/7 G L(c) 

• c|=(pA\|/iffc|=(p and c \= \|A 

• c |= (p V \|/ iff c |= (p or c (= \|/. 

• c |= A(G(p) iff for every path % starting at the state c, for all states 7t,- along the path 

such that %i (= (p 

• c j= A(F(p) iff for every path % starting at the state c, there is some states 7t; along 

the path such that 7i,- f= (p 

6In here, a discrete model is model representing the approximation of an AMS design using predicate 
abstraction as described in Chapter 5. 
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Figure 3.5: Third-order AE Modulator 

3.4 Symbolic Simplification 

The AMS description is composed in general of a digital part and an analog part. The 

analog part can be approximated using recurrence equations. The digital part can be 

described using event driven models. The properties that we verify are temporal relations 

between signals of the system. Starting with an AMS description and a set of properties, 

the symbolic simulator performs a set of transformations by rewriting rules in order to 

obtain a normal mathematical representation called a generalized system of recurrence 

equations (SRE) [3]. These are combined recurrence relations that describe each property 

blended directly with the behavior of the system. 

Given a model representing the behavior of the design and a property of interest 

expressed in LTL, the symbolic simulation defined in Section 3.1.5 is used to obtain a 

unified representation adequate for applying the verification methods developed in the 

subsequent chapters (mainly in Chapter 4 and Chapter 6). This is illustrated with the 

following example. 

Example 3.4.1. Data converters are needed at the interface of analog and digital pro­

cessing units. The AE architecture uses several stages to make rough evaluations of the 

signal, measure the error, integrate it and then compensate for that error. Higher-order sin­

gle stage modulators have been proposed to increase the converter's resolution by adding 

more integral and feedback paths. The number of integrators, and consequently, the num­

bers of feedback loops, indicates the order of a AE modulator. Consider the third-order 
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discrete-time A£ modulator illustrated in Figure 3.5. Such class of AE design can be 

described using the vector recurrence equations: 

X(k+\)=CX(k)+Bu(k)+Av(k) 

where A, B and C are matrices providing the parameters of the circuit and u(k) is the input 

signal, v(k) is the digital part of the system and b^ = 1. In more detail, the recurrence 

equations for the analog part of the system are: 

xi(k+l) = x\(k) + b\u(k) + a\v(k) 

X2(k+l) = c\x\(k)+X2(k) + b2u(k) + ci2v(k) 

xi(k+\) = C2X2(k)+x^(k) + b^u(k) + a3v(k) 

The condition of the threshold of the quantizer is computed to be equal to c3x3 (k) + 

u(k). The digital description of the quantizer is transformed into a recurrence equation 

using the approach defined in [3]. Thus, the equivalent recurrence equation that describes 

v(k) is 

v(k) = IF(csxs(k) + b^u(k) > 0,—a,a) 

Applying symbolic simulation (Definition 3.1.6) for the AZ modulator, we obtain 

the following unified modeling for both the analog and discrete parts. 

x\(k+l) = if(c?,X's(k) + u>=0,x\(k)+b\u — a\a, 

x\(k) + b\u-\-a\d) 

X2{k+\) — if(c^X3(k) + u>=0,c\xi(k)+X2(k) + b2u(k) 

—a2d, c\x\ (k) +X2(k) + b2u(k) + <X2a) 

X2,{k+\) = if(cj,x-s{k) + u >= 0,C2X2(k)+X'i(k) + bj,u(k) 

—a^a,C2X2(k) + xs(k) + bj,u{k) + a^a) 

The modulator is said to be stable if the integrator output remains bounded under 

a bounded input signal, thus avoiding overloading of the quantizer. This property is of 
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a great importance since the integrator saturation can deteriorate circuit performance. If 

the signal level at the quantizer input exceeds the maximum output level by more than 

the maximum error value, a quantizer overload occurs. The quantizer in the modulator 

shown in Figure 3.5 is a one-bit quantizer with two quantization levels, +1V and —IV. 

Hence, the quantizer input should be always between —2V and +2V in order to avoid 

overloading [50]. 

The stability property of the AE modulator is written as GP(k + 1), where 

P(k+ 1) = (*3(*+1) > - 2 Ax3(fc+ 1) < 2) 

Applying Symbolic simulation (Definition 3.1.6), the state variable x^(k+ 1) is re­

placed by its corresponding expression and the expression of the property is defined as: 

P(k+1) = if(c3x3(k) + u>=0, 

—2 < C2X2(k) + xs(k) + bzu{k) — a^a, 

C2Xi(k) +xj,(k) + b'iu(k) +asa < 2) 

The techniques for verifying the AE modulator will be presented in Chapter 4. 

In this chapter, we presented the necessary concepts required for the verification 

approaches described in the thesis. In the next chapter, we will present a bounded model 

checking algorithm for continuous-time AMS designs. The basic idea will be to combine 

symbolic simulation and Taylor model arithmetics to verify properties on the SRE model. 
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Chapter 4 

Bounded Model Checking for CT-AMS 

Designs 

Model checking was initially developed as a method of complete verification through 

the exploration of the whole state space of the given design. But with the limited space 

(memory) and time resources, such complete exploration was severely limited with the 

state space explosion problem. The bounded model checking (BMC) [14] approach has 

been advocated recently as means to combat this problem, by limiting the explored state 

space. This is done by providing bounds on the number of cycles that should be explored. 

In BMC, the transition relation and the property are unwound up to a given depth 

(number of cycles) to obtain a formula, which is then checked using constraints satisfia­

bility techniques. If a counter-example is found or a fixpoint is reached, the verification 

task is achieved, else the number of steps can be increased for further verification. This 

implies that the method is incomplete in general as a priori calculation of the maximum 

cycles (depth) needed to ensure the verification is not always possible. Hence, BMC is 

typically used for refutation of a property rather for ensuring safety and reachability prop­

erties. Nevertheless, BMC can be an attractive tool for verification rather than refutation 

if some limitations are to be imposed on the type of properties to verify (e.g., bounds on 

the temporal operator as in the MITL language described in Chapter 3, Section 3.3). 
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As a matter of fact, AMS designs are usually characterized by a bounded state space 

(i.e., voltages and currents across a circuit are always confined within a specific ranges 

denned through the connection settings of the circuit components as well as the voltages 

applied across it.). Furthermore, many properties related to the characteristics of the 

designs are associated with its time bounded functionality. For instance, one interesting 

property is to check whether a switching will occur within a specific amount of time. In 

this perspective, we propose in this chapter, an approach for CT-AMS designs based on 

bounded model checking [14]. 

The proposed methodology as shown in Figure 4.1 is composed of two distinct 

phases: a modeling phase and a verification one. In the modeling phase, continuous-time 

based analog components are described using ordinary differential equations, while the 

digital parts of the AMS design are described using event based models. In order to ob­

tain the verification model, which is a formed of a set of recurrence equation (Chapter 

3, Section 3.2.3), the differential equations are approximated using the Taylor Approxi­

mation Theorem (Chapter 3, Section 3.1.2 ). Therefore the recurrence model gives the 

possibility of handling continuous behaviors like that of current and voltages, but in dis­

crete time intervals, which cover a non-trivial class of mixed behaviors. In the next step, 

the AMS description and the MITL property of interest are input to a symbolic simulator 

that performs a set of transformations by rewriting rules in order to obtain the system of 

generalized recurrence equations (SREs). 

The next phase is to prove the desired property using a verification engine that per­

forms the state space exploration and BMC over Taylor model forms. The Taylor model 

form is a combined symbolic-numerical representation of the system equations using 

polynomials and interval terms that ensure enclosure of the reachable states. Such arith­

metics allows the computation over continuous quantities while avoiding the unsoundness 

inherent in the numerical Taylor approximation by providing an overapproximation of the 

possible reachable states of the system. The BMC is composed of two sequential steps. 

In the first step, rules are applied on the SREs to set up the Taylor model forms (See 
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Figure 4.1: CT-AMS BMC Verification Methodology 

Chapter 3, Section 3.1.4) for the current cycle, in the verification step, constraint solving 

approaches are applied to check for property satisfaction. In case the property could not 

be verified a counter-example is generated. A validation and refinement procedure is then 

applied to identify spurious counter-examples and discard them, while returning concrete 

ones. 

The verification procedure terminates into one of the following cases: 

• Complete verification: 

- Fixed point is reached and the timed property is proved True. 

- The property is false and a concrete counter-example is found. 

• Bounded Verification: 

- The resource limits have been attained (memory or CPU) as the verification is 

growing exponentially with increasing number of reachability analysis steps. 

- The constraints extracted from the interval states are divergent with respect to 

some pre-specified criteria (e.g., width of computed interval states). 
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In the remaining of this chapter, we will also describe the main verification algo­

rithms based on Taylor models reachability analysis. We will also provide a counter­

example analysis and refinement used in order to enhance the bounded verification. We 

will end the chapter by applying the verification to different AMS examples, including 

oscillator circuits and a continuous-time AZ modulator. 

4.1 Reachability Analysis 

In Chapter 3, we defined the reachable behavior of the AMS design as a set of traces repre­

senting the possible solution of a system of ODEs. We also proposed interval traces as an 

overapproximating abstraction of the reachable behavior. However, no specific way has 

been proposed to build such trace. In this chapter, we will explicitly tackle the issue of ob­

taining such traces. Several techniques have been proposed in literature to obtain abstract 

traces (See Chapter 2 for an overview of the methods used), mainly based on techniques 

inspired from computational geometry and optimization. In this chapter, we are taking 

a different approach based on symbolic simulation and rewriting techniques. Obtaining 

the set of traces and applying bounded reachability analysis is based on the concept of 

the semi-symbolic Taylor models. In the remaining, we will be giving an overview to the 

problem of reachability in general, followed by an exposition to Taylor models and in­

terval arithmetics, before presenting our reachability analysis algorithm based on Taylor 

model symbolic simulation. We will also show how to enforce the sufficient approxima­

tion condition necessary to ensure the correctness of the results. 

The set of reachable states from given states Xo at time t can be defined as the set 

of all states visited by the trajectories starting from states Xo. 

Definition 4.1.1. CT-AMS Model Reachable States. 

The set of reachable states Reach can then be defined as: 

Reach = {x1 e X\3x E Reach0 such that ®x(t) = x'} 
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where Reach0 — XQ. The set of reachable states in less than k steps (0 < / < k), from a 

given set of XQ of states, is denoted by ^<k(Xo), and is defined as: 

Kk 

with *Rl is the set of states reached during one step. 

Obtaining the exact set of reachable states is not possible unless a closed form so­

lution of the design equations is known. The goal is to construct an over-approximation 

that includes the original behavior. We propose a novel approach for reachability analysis 

using Taylor model arithmetics. As explained in Chapter 3, Taylor model arithmetics use 

interval methods allowing the computation of an over-approximation of the solution func­

tion at each time point. Furthermore, symbolic simplifications are applied at each step, 

thereby reducing the interval calculations and consequently delaying divergence problems 

that are typically associated with interval based techniques. 

4.1.1 Taylor Model Based Reachability 

We describe now the reachability analysis algorithm based on Taylor model arithmetics. 

The image computation is the set of states reachable during one execution step. 

Definition 4.1.2. Taylor Model State Machine. 

A Taylor Model State Machine is a tuple T\ = (Si, Sifl, —*T/), where Si is the interval state 

space, 57,0 Q Si is the set of initial interval states, —>7yC Si x 5/ is a relation defined using 

Taylor model forms Tf and capturing the abstract transition between interval states such 

that: 

{s ->7y s/\3a G s,3b e s': b = f(a) and f £ T/} 

where a,beRd, s,s'eSi, / = { / i , . . . , fd},T = {Tfv...,Tfd} with/;-: R ^ ^ R is a con­

tinuous function, i € {1 , . . . ,d} and ft € Tjp where Tf. is the Taylor model of ft. 
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Definition 4.1.3. 1-Step Image Computation. 

The set of reachable states in 1-step from a given set of states Sk C Id, is denoted by 

% (Sk) and is defined as: 

where S*+i CI r f , F = (Fi,... ,Fd), with F; : Id —> I is an interval evaluation of of the 

if-formula fi: Rd -> R, i 6 {1 , . . . ,rf}. 

Definition 4.1.4. k-Step Image Computation. 

The set of reachable states in less than k steps (0 < / < k), from a given set of SQ of states, 

is denoted by 4(.<k(So), and is defined as: 

/<* 

The advantage of using Taylor model arithmetics over Interval arithmetics is based 

on the following points: first, Taylor model avoids or minimize common issues inherited 

in the interval arithmetics like the dependency problem and the wrapping effect. Second, 

Taylor model provides a non-convex enclosure of the concrete reachable states, hence 

tighter abstract reachable states leading to more precise verification results as demon­

strated by Lemma 4.1.1 below. Another advantage lies in the generation and validation of 

counter-examples. The structure of the Taylor models allows an efficient way to analyze 

counter-examples as will be shown in more detail in Section 4.3.1. 

Starting from the initial conditions, the reachable states of the system of recurrence 

equations are an overapproximation of the reachable states of the system of piecewise 

equations. 

Statement. Given a set Xo Q Rd of initial states which is described as an interval of di­

mension d, a final time t/ and a corresponding CT-AMS Trace Reach, compute an interval 

AMS Trace Reach = abs{Reach), where abs(.) is described as in Definition 3.2.10. 
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Lemma 4.1.1. A Taylor Model Transition System T^M is a refinement of Interval Tran­

sition System "T/, such that 1/ £= ' Z ^ £= T^, where "T̂  is the original CT-AMS Transition 

System. 

The Taylor model based reachability analysis is illustrated with Algorithm 1. The 

function TMJleach(.) accepts as input the SREs representing the CT-AMS behavior, the 

maximum duration of the reachability Tf, the order Ot of the Taylor model approximation, 

the initial time step Ao and the initial time 7b. If the reachability terminates successfully, 

then 1'M Jteach(.) returns the set of reachable states $J, where / index denotes the 

analysis termination index, otherwise it returns the reachable states 3^" up to time step 

n < f. There are two possible reasons for early termination of the algorithm; either an 

inclusion fixed point is reached, therefore no new states will be explored. The other reason 

if the precision of the approximation cannot capture accurately the complete behavior of 

the design equations. This is generally when the time step reaches a lower bound 

The details of the algorithm are described as follows. At the beginning, the algo­

rithm initializes the index n and the time step Tn-\. Initial conditions are provided as 

intervals written as a combination of two terms; a numerical term and symbolic term 

representing the variations. For example if x[0] = [1,2], then this can be represented as 

x[0] = 1.5 + a, where a = [—0.5,0.5]. In this way, symbolic terms can be propagated 

through the different cycles, without being evaluated, unless it is required1. This is more 

efficient than representing the initial condition with a single term with interval width, 

which is larger when evaluated. Additionally, the set of reachable states $(? are initial­

ized, the time step A is set to the initial time step Ao and the corresponding recurrence 

equations are generated from the ODEs system using the SRE(.) function as described in 

Section 3.2 (Chapter 3). 

1 The choice of the evaluation of a symbolic term by its original interval value is done according the 
Taylor model rules Rnr described in Chapter 3, Section 3.1.4. 
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The reachability algorithm is applied for a maximum time Tf (Line 3) and if suc­

cessful, returns the updated set of reachable states (Lines 9, 16 and 19). For each reacha­

bility step, we start by generating the Taylor model polynomial form with order Ot from 

the SRE equation (Line 4). Due to over-approximation nature of the method, imprecise 

results might be obtained, in this case a flag Flag-Reachability-Imprecise (Line 23) is set 

indicating a problem with the reachability and only reachable states up till the current 

cycle are returned. Otherwise, the reachability algorithm proceeds (Lines 5- 23). We 

check the accuracy of the reachable states using the sufficienMppwx{.) function (Line 5) 

if accuracy is bad 2, we end the reachability as stated before, otherwise we continue the 

algorithm. We define the intermediate Taylor model forms; i.e., x[n] where the time step 

is evaluated (Line 6) and x[n] which is the interval based evaluation of the Taylor model 

(Line 7). The evaluation is done by the function eval(.) which takes a Taylor model form 

and the parameters to evaluate. If an inclusion fixed point is reached (Lines 8 -10), the 

algorithm stops as all reachable states have been visited. 

The next part of the algorithm (Lines 12-20) is concerned with checking for pos­

sible changes in the switching conditions using the function EvaLCond(.). A trajectory 

of the CT-AMS design in the continuous state space can be though of as a sequence of 

continuous trajectories segments with discrete components describing the switching con­

ditions defined using predicates. The valuation over interval domains of the predicates 

hence lead to a three valued logic; the image of EvalJOond{.) is {T, F,X}. Therefore, 

starting from an initial state, there could me more than on trace as some switching con­

ditions might not be evaluated to either true or false. If EvaLCond(.) is evaluated to F, 

then the dynamics of the design are unchanged (Line 18), and the set of reachable states 

is updated (Line 19) before proceeding to the next time step. However, if EvaLCond(.) is 

evaluated to T (Line 14), then a new initialization of the dynamics is needed (Line 15-17), 

2We say the accuracy of the approximation is bad, if the minimum delta time step used is insufficient to 
capture the changes in the behavior, this is explained in more derails in Algorithm 2. 
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which is the states at the intersection of the last reachable states and the threshold con­

dition 3. When EvaLCond(.) is evaluated to X (Line 12), a function Switch-Check(.) is 

called in order to enhance the precision of the reachability and remove spurious nondeter-

minism (Line 13). the function SwitchJCheck{.) is described in more detail in Algorithm 

3. 

Note. Concerning the termination of the algorithm, setting bounds on the maximum 

number of iterations ensures that the algorithm will eventually terminate in one of the 

possibilities described earlier. However, this is only guaranteed under the condition that 

each of the functions called by the algorithm (e.g., Suffic_Approx(.), Switch_Check(.)) 

will eventually terminate. 

4.1.2 Sufficient Discretization Conditions 

Time discretization is employed as a means to allow the formal verification of CT-AMS 

designs. Hence, the discretization must capture correctly the behavior of the CT-AMS 

design (See Chapter 3 for more details). In general, for the case where the time step x is 

fixed, to ensure a precise coverage approximation of the reachable states, the assumption 

can be made that a switching condition is satisfied only at fixed instant defined in terms 

of X. 4 In practice, for CT-AMS designs, a switching condition can be satisfied anywhere 

during the continuous trajectory. Consequently, the continuous evolution must be relaxed 

by allowing the time-step to change in the range [0, T] to capture all the required behaviors 

in a more precise manner. 

On the other hand, interval methods for solving the initial value problem (IVP) of 

ODEs provides a simple form for the error term of the discrete methods which can be 

bound as long as some enclosure of the actual solution function is provided. Moreover, 

the step size may be easily modified during the approximation process. One advantage of 

3This is done using the interval-logical rules Rim-Logic described in Chapter 3, Section 3.1.3 
4This constraints is similar to the constraints in the verification of DT-AMS which will be described in 

Chapter 6 
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Algorithm 1 Taylor Model Bounded Reachability: TfWJ?eac/i(x[«],7/,0,,Ao,7b) 

Require: n = 1 
Require: Tn-\ = TQ 
Require: x[n - 1] = j + a, with y € Nd, a € Irf 

Require: ^°*-x[n-l] 
Require: Tf and A <— Ao 
Require: x[n}= SRE(x(t)) 

1: x[n-l] = x[n-l] 
Tn = IncJStep(Tn-i, A0) 
while r„ < 7/ do 

x[n] = T ^ i X H ( 5 [ n - l ] ) 
if Swĵ c_A/?prax:(x[n],x[ra — l],Ao) is Good then 

x[n] — eval(x[n],{A}) 
x[n] = eva/(x[«],{a,A}) 
if x[n] C !/(,"-2 then 

<t>n _ n?n—\ 

Return FlagJ'ix-Point-Reached = Trae 
end if 
if EvaLCond(x[n],x[n— 1]) = = X then 

Call SwitchJCheck(x[n],x[n-l],3C) 
else if EvaLCond(x[n],x[n — 1]) = = T then 

x[n] =x[n] n ||SvWfcA/|| 
^,n = UpdateJieach{^n-\x[n}) 
x[n]=j + a' 

else 
^." = UpdateJteach(3C-\x[n]) 

end if 
inc{n) 
Tn «- IncJStep(Tn-\, A0) 

else 
Return Flag-Reachability-Imprecise = 7>we 

end if 
end while 
Return FlagJieachability-Done = True 
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interval based methods over conventional numerical methods is that a validation proce­

dure for the existence of a unique solution is applied before finding the adequate enclosure 

of this solution between the two time steps. Usually the validation and enclosure of so­

lutions of an ODE system between two discrete points u and ti+\ is based on the Banach 

fixed-point theorem [89] and the application of the Picard operator [89]. 

Moreover, we need to guarantee the sufficient discretization to ensure not only 

that the reachability guarantees covering all the reachable states, but also that it cap­

tures the main qualitative aspects of the trajectory. Enclosing the original trajectories 

using interval methods is sound (See Chapter 3, Section 3.1.3), but due to the associated 

over-approximation, the qualitative aspects of the behavior might be lost thus rendering 

verification of certain properties intractable. Accordingly, complementary methods are 

necessary in order to capture the desired qualitative properties. 

An essential qualitative criterion is to guarantee that monotonicity is preserved dur­

ing a time step %. In order to check this condition, we use the generalized mean value 

theorem, which is an extension of the mean value theorem (MVT) for n-dimension that 

was proposed in [40]: 

Theorem 4.1.1. Generalized Mean Value Theorem. Given x(r) that is continuous on a 

time interval a<t <b, and differentiable on a < t < b, assume that there exists a vector 

V orthogonal to x(a) and to x(b). Then 3tc : a < tc < b such that V is orthogonal to \(tc) 

For instance in the case of a 2-dimensional system, x = (x(t),y(t)), the generalized 

MVT is reduced to the standard Cauchy MVT [39]: 

*(tcMb)-y(<*)] = y(tc)[x(b) -*(«)] 

For a 3-dimensional system, x = (x(t),y(t),z(t)), we have [40]: 

x(a)\y(b)i(tc)-z(b)y(tc)} + z(a)[x(b)y(tc) -y(b)x(tc)\ = y(a)[x(b)i(tc) -z(b)x(tc)] 

Practically, we use quantified constraint based methods [11] and symbolic algebraic tech­

niques [83] in order to simplify (e.g., eliminate quantifiers) and decide the satisfiability 
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of formulas representing the mean value theorem. The procedure to check for sufficient 

discretization is described in Algorithm 2. 

The function SufficApproxQ is a recursive function that accepts as input the Tay­

lor model forms x[n] and x[n - 1] with the last chosen time step A and returns one of the 

two possible values {Good, Bad} and when possible a time step that ensures capturing the 

qualitative behavior. The algorithm requires the index n of last reached state and e > 0, 

the smallest allowed time step. In order to ensure the termination of the algorithm, we add 

a limit to the minimum possible value of A = e, beyond which the verification process is 

stopped. If monotonicity is preserved (Line 16), then we do not chose a smaller time step 

and the algorithm terminates. However, in case the monotonicity property is violated, 

we get x' which violates the monotonicity criteria and refine the time step (Line 1-7 and 

8-15). This is done in a recursive fashion until an adequate time step is chosen or the time 

step e is reached. In such case, Suffic-Approx(.) will be evaluated to Bad and the verifi­

cation stops as the accuracy might not lead to a precise result. This means that a sufficient 

approximation for the reachability cannot be found. The function Sign(Slope(.)) returns 

the sign of the vector field; whether it is increasing or decreasing on the boundaries of the 

time interval [0,x']. 

We use T!ft(j(x,%) to denote the Taylor polynomial of degree j relative to the solu­

tion x(t) centered in x(0) with a step size of x. For instance, TM\ (x(0),x) is the vector 

expression x(0) +/(x(0))x + 7. 

Note. The termination of this algorithm can be ensured if the recursion depth is not 

infinite. In this respect, we choose a lower bound for the time step as a main criteria to 

avoid such problem. Additionally, we assume the non existence of a Zeno behavior 5 

when looking for an adequate time step. 

informally, a Zeno behavior leads to an execution that takes an infinite number of discrete computations 
during a finite time interval [4]. 
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Algorithm 2 Sufficient Approximation: SufficJ\.ppwx(x[n],x[n — 1],A) 

Require: n € N 
Require: e € E 
Require: A = Ao 
Require: x[n] = TfW0(iX[n](x[n- 1]) 
Require: x[n] =eva/(x[«],{A}) 
Require: x[n] = eva/(x[n],{a,A}) 
Require: x[n — 1] = eva/(x[«- 1], {a,A}) 

1: if [3x'.x[/t] = eval(x[n],{a,x'}) AO < x' < AA5/gn(5/ope(i[n])) 7̂  Sign(Slope(x[n-
1]))]== True then 

2: if T' > e then 
3: A = X1 

4: Call SM//z'cA/?/?rax:(x[n|, x[n — 1], A) 
5: else 
6: Return Bad 
7: end if 
8: else if [3x'.x[n] = eval(x[n], {a,x'}) AO < %' <xASign(Slope(x[n))) = = 0] == True 

then 
9 

10: 
11 
12; 
13 
14: 
15 
16 

if 1' > e then 
A = x' 
Call 5w///c.j4pprox(x[n], x[n — 1], A) 

else 
Return Bad 

end if 
end if 
Return Good 
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4.1.3 Checking Switching Condition 

Due to the overapproximation nature of Taylor model evaluation, the evaluation of switch­

ing conditions in the AMS model might not be decided in a precise way. More specifi­

cally, there could be more than one successor for a given state if the decision on which 

switching condition holds at a given instant cannot be uniquely identified. In order to 

guarantee correct verification results, all possible reachability paths must be explored. On 

the other hand, from a correct design point of view, nondeterminism cannot exist in AMS 

models. In other words, we have a valid assumption that at any instant, in reality, only 

one switching condition (or its compliment condition) can be satisfied. 

In order to check whether a switching condition occurs between two time steps, we 

apply the intermediate value theorem. In the context of abstraction, a transition between 

two abstract states exists if a predicate valuation changes during the execution over an 

interval domain. We check for such conditional abstract transitions between two states by 

means of the intermediate value theorem (IVT) [39] as follows: 

Theorem 4.1.2. Intermediate Value Theorem. Given a predicate X, two states S\ and 

52 = differing only on the valuation of X and a time step interval solution I : {a\ < 

x < a2}, there is a transition between S\ and 52 if 5i f= |[X,|fll (i.e., X(a\) € abs~x(Si)), 

$2 (= lXja2 (i.e., X(a2) e abS-
1{S2)) and [k]fll / [X]a2 + 0, 3x such that fXjx = 0, with 

the interpretation function | . | : W1 —> {+, —,0} 

To check for the above condition, we use interval analysis to guarantee that the solu­

tion is reliable; the real solutions are enclosed by the computed intervals. Such guarantee 

is derived from the fundamental theorem of interval analysis [85]. 

The procedure for checking the switching conditions evaluation is described in Al­

gorithm 3. The main function Switch-Check(.) is called whenever EvaLCond(.) evaluates 

to X in Algorithm 1, in an effort to obtain more precise results concerning the evaluation 

of the switching conditions. The function accepts as input the Taylor model forms x[n] 
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and x[n — 1] with the updated set of reachable states ${? and returns one of the two possi­

ble values {Switching_Occurs, No_Switching} or call the function RefineJSwitch{.) for 

more precise analysis. The function Switch-Check(.) requires the initial time step Ao, the 

current time Tn as well as the Taylor models evaluations x[n] and \[n — 1] 

Suppose that there exists a switching condition Switchn at cycle n, which is eval­

uated to X, then we make a temporary assumption that switching did not occur and we 

check for the reachable states at the next time step n + 1 using the TM-ReachStep(.) 

function(Line 1), which is a simplified version of the function l!MJteach(.), with the 

assumptions that SufficJipprox{.) = = Good and Switchn is set to F. We have the op­

tions shown below, where || Switchn || denotes the set of all states that evaluate Switchn to 

T. 

• if Switchn+\ = T (Lines 2-5), then indeed the switching occured at the previous 

time tn. The reachable states are updated (Line 3) and an initialization is set for the 

newly selected dynamics (Line 4). 

• if Switchn+\ = F (Lines 6-7), then indeed switching did not occur. This follows 

from the interval evaluation property that ensures that the evaluation at step n + 1 

encloses all previous states up to time after tn. 

• if Switchi+i = X (Lines 9), then we allow checking with robustness, whether or not 

the switching occurs by calling the function Refine_Switch. Informally speaking, 

given a robustness measure e, check the distance between the switching condition 

and the current state. If its is less than e, then we say that there is fragile switching 

|| Switch% || nXn+i ^ 0 

Note. The algorithm will eventually terminate in one of the possibilities described earlier. 

However, this is only guaranteed under the condition that each of the functions called by 

the algorithm (e.g., EvaLCondQ, Refine_Switch(.)) will eventually terminate. 
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Algorithm 3 Checking Switching Condition: SwitchjCheck(x[n),\[n — 1]), ^ " 

Require: A <— Ao 
Require: Tf = Tn-\-A 
Require: x[n] = T0i{Ot(x[n\,x[n — 1]) 
Require: x[n] — eval(x[n], {A}) 
Require: x[n} = eval(x[n],{a,A}) 
Require: x[n— 1] =eval{x[n — l],{a,A}) 

1 

2 
3 
4: 
5: 
6 
7 
8 
9 

10: 

x[n + 1] = TM-ReachJStep(x[n],Tf,Ot,Tn) 
if EvaLCond(x[n+ 1]) = = T then 

^,n = Update Jieach^'1 ,x[»]) 
x[n] = x[n] n ||Swzfc/in|| = ;' + a 
Return Switching. Occurs 

else if EvaLCond(x[n+ 1]) = = F then 
Return No_ Switching 

else 
Call RefineSwitch(x[n],A, \\ Switch* ||) 

end if 

Example 4.1.1. Consider the circuit in Figure 3.4, with the voltages across the capacitors 

described using ODEs as follows: 

Model: v'c\ = vC2 and v'C2 = —vc\ + v ^ 

Model: v'c\ = v^x + 2vc\vc2 + 3v^2 and v'c2 = 4vcivC2 + 2v^2 

and the switching conditions as 

Condi = Cond2 = —0.5vci («) 4- vC2(n) < 4 

Suppose that the circuits starts at Mode 2, with initial conditions vc\ = —10 +a , where 

a = [—0.3,0.3] and vC2 = 5 + b, where Z? = [—0.3,0.3]. The switching condition threshold 

is satisfied at voltage values vc\ — —6.6+a' with a' = [—0.16361,0.125] and vC2 = 0.5+b' 

with 6' = [0.118195,0.2625], which are in turn the initial states for the dynamics at mode 

1. The trajectory of the circuit with the switching condition are illustrated in Figure 4.2. 
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0.5 Vc1 + Vc2 <= 4 

Figure 4.2: Switching Condition Satisfaction 

4.2 Bounded Model Checking 

Given an AMS system, an initial set Xo, and a bad set Bx, the verification problem is 

to determine if there is an execution of AMS, starting in Xo and ending in Bx. If the 

system is safe (i.e., Bx is unreachable), a complete verification strategy should be able to 

demonstrate this. In such a case, the bounded model checking (BMC) technique is often 

used. 

The general BMC problem can be encoded as follows [14]: 

k-\ 
BMC{P,k) 4 /(JO) A / \ T(Si - si+l) - P(sk) 

i=0 

where I(so) is the initial valuation for the state variables, S( is the state variable valuation 

at step i, T defines the transition between two states and P{s^) is the property at step 

k. In practice, the inverse of the property (->P) under verification is used in the BMC 

algorithm. When a satisfying valuation is returned by the solver, it is interpreted as a 

counter-example of length k and the property P is proved unsatisfied (->P is satisfied). 

However, if the problem is determined to be unsatisfiable, the solver produces a proof (of 

unsatisfiability) of the fact that there are no counter-examples of length k. For instance, 

the BMC problem for safety properties P(k) = Gp(k) can be encoded as follows [14]: 
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j f c - 1 k 

BMC(P,k) 4 /(,0) A f\ T(Si - J / + 1) A V -P te ) 
i'=0 i'=0 

while the BMC problem for liveness properties P{k) = Fp(&) can be encoded as follows 

[14]: 

k-\ k 

BMC(P,k) 41(S0) A / \ tffo -> s,-+1) A / \ -npfo) 
i=0 i=0 

Bounded model checking is then defined as follows: 

Definition 4.2.1. Bounded Model Checking. 

Given a natural number k > 0, a state transition machine (Si,Sjfi, —>Tf) as defined above, 

and a property P, we say that property P is verified for k steps if: 

V J € & * ( S 0 ) : S | = P 

where So is the set of initial states. 

Generally, a symbolic algorithm that computes the set of reachable states from XQ 

by iteratively computing the set of states reachable in discrete (or continuous steps) can­

not be guaranteed to terminate after a bounded number of iterations. In addition, unlike 

BMC for discrete systems, it is not possible to calculate an upper bound on the number 

of future/past iterations for which the formula should be checked in order to guarantee 

that the property holds. However, incorporating time constraints into the temporal logic 

property can overcome such problems, i.e., we ask if a property holds until we are no 

longer in the time-frame of interest, as opposed to asking if the property holds forever. 

In the bounded version of the model-checking task, we are only interested in the system 

evolution over a bounded time horizon or a bounded number of steps. This is achieved 

using timed temporal logic MITL as the property languages. 
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4.2.1 Interval Based Bounded Model Checking 

In this section, we present a BMC algorithm for AMS designs. We explore a solution 

relying on symbolic and interval computational methods. Our BMC approach is based 

on modeling the transition function as SREs over the Taylor model forms. We proceed 

on the SREs traces using a time step h which implies that our answer is relative to a 

limited time interval. For recurrence equations, we have h — \. For differential equations, 

we approximate them using Taylor model with h € K+, ensuring the accumulated error 

due to /i-approximation is confined in the Interval part of the Taylor model. We consider 

properties specified in a MITL like language. 

According to the standard semantics for temporal logic, the satisfaction of a formula 

with unbounded modalities can be hard to determine. In fact, given an atomic proposition 

p only the satisfaction of Fp or violation of Gp can be detected in finite time. By using 

bounded modalities we avoid the problems arising from the ambiguity of \=. We restrict 

ourselves to traces which are sufficiently long. The necessary length associated with a 

formula $, denoted by ||(|>||, is inductively defined on the structure of the formula. 

Nil = 11*11 

|^iV(h||=max(||<h||,||(|>2||) 

|GM<|>i|| = ||<M| + 6 

|F[a,fc]<MI = IMI+2> 

We now have that a |= <|> is well defined whenever |a| > 11<|>| | 

Example 4.2.1. The interpretation of the MITL properties in a bounded model checking 

context can be made clear with the examples below. 

Case 1: xis fixed 
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• G<iooF<5/> := A " U V S P A ("i x x < 100) A (n2 x x < 5) 

• F<100G<5p := V : ; = 0 A S M ( « I x x < 100) A (n2 x x < 5) 

. G<ioo(<7 -+ F<5P) := A " U ( ^ V F < 5 P ) = A « , U ( ^ V V S p) A («, x x < 

100) A (n2 x x < 5) 

Case 2: x is Variable 

. G<100F<5P := A £ U V S 1 P A (IS1 ^ < 100) A (E^2 x„2 < 5) 

. F<100G<5p := V:,U A S 1 P A (I^1 x„, < 100) A ( ^ 2 T„2 < 5) 

. G < , w ( ^ F < 5 / » ) : = A : U ( ^ F < j p ) = A : U ( ^ v f f i 1 i ' ) A ( E S 1 X k 1 < 

1 0 0 ) A ( E S 2 ^ < 5 ) 

As n,- G N, x G IR+ and the clock constraint is in N, then in the general case, we can 

only have n,- and ny such that j — i + 1 and («,• x x < C) and (nj x x > C). We need to 

add the notion of time tolerance, where we check for properties with clocks C + e, where 

e < X and C + e < nj xx. It is worth noting that Q<rf is equivalent to Q[o,7V]> where Q 

is a quantifier F or G and Tf is the maximum time length associated with the temporal 

quantifier. 

4.2.2 BMC Algorithms 

The bounded timed safety verification is illustrated with Algorithm 4. The function 

GJVerify(.) accepts as input the SREs representing the CT-AMS behavior, the order Ot 

of the Taylor model approximation, the initial time step Ao and the property predicate p. 

The verification terminates successfully, if the time steps chosen captures the necessary 

behavior of the design. This is ensured using the function Suffic-Approx(.) (Line 4). In 

this case, either the property is verified to True (Lines 5 - 8), otherwise an abstract counter­

example is generated (Lines 9-11) demonstrating the violation of the property. The func­

tion Generate-CE(.) (Line 11) is used to generate and validate the counter-example. In 
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case the function SufficApprox(.) cannot capture the behavior correctly, the verification 

stops in a failed state (Line 21). 

The details of the algorithm are described as follows. The algorithm starts by re­

setting the index n and the time step Tn~\. Initial conditions described as intervals are 

written as a combination of two terms; a numerical term and symbolic term representing 

the variations. The next step is the generation of the corresponding recurrence equations 

from the ODEs system using the SRE{.) function and the time step A is set to the initial 

time step Ao- The maximum time length of the verification is measured according to the 

rules in Section 4.2.2. The loop (Lines 4-13) describes the verification procedure for a 

period of time equal to the length of the property under verification. 

The function Prop .Check is described as follows: Given the Taylor model forms 

representing the transition function and the property -iPropQ, apply symbolic algebraic 

techniques [83] to check for satisfiability. The safety verification at a given step n can be 

defined with the following formula: 

PropJOheck = (x[n\ = T0l^n](x[n - 1])) A ^Prop(x[n}) A x[n - i] 6 ld 

Note. The algorithm will eventually terminate in one of the possibilities described earlier. 

However, this is only guaranteed under the condition that each of the functions called by 

the algorithm (e.g., Suffic_Approx(.), Prop_Check(.) and TfW_Reach(.)) will eventually 

terminate. 

The bounded timed liveness verification for checking F<7/p properties is illustrated 

with Algorithm 5. The function F.Verify(.) accepts as input the SREs representing the 

CT-AMS behavior, the order Ot of the Taylor model approximation, the initial time step 

Ao and the property predicate p. The loop (Lines 4-13) describes the verification pro­

cedure for a period of time equal to the length of the property under verification. The 

verification terminates successfully, if the time steps chosen captures the necessary be­

havior of the design. This is ensured using the function Sufficj\pprox(.) (Line 4). In 

this case, either the property is verified to True (Lines 10 -11), or is verified to false at the 

current verification step (Lines 5 - 8) and the time step is incremented. 
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Algorithm 4 Bounded Timed Safety Verification G<r//?: G-Verify(p,x[n],Ot,Ao, TQ) 

Require: n = 1 
Require: Tn-\ = TQ 
Require: x[n - 1] = ;' + a, with j 6 Nd, a € Irf 

Require: ^"_ 1 <- x[n - 1] 
Require: x[«] = SRE(x(t)) 
Require: A <— Ao 
Require: Tf — Length(G<Tfp) 
Require: G-Verify-flg —= 1 

x[n — 1] =x[n— 1] 
x[n] = TfW0, iXH(5[n-l]) 
Praj9[n] = Symfro/JC-Com/^j/^xfrc]}) 
while T„ < 7/ and Flag-Fix-Point-Reached == False and Sw//jC-A/?/?rox(x[n],x[n — 
1]) is Good do 

if Pra^_C/iec^(Prop[n],x[n],^n_1) = = 7>Me then 
^ " = (TiWJ?eac/i(x[/i],rn_i +A,0,,A,7'B_i) 
inc(n) 
t„ = IncStep(tn-i,A) 

else 
G_Ven/y_//g = 0 
Call Genera?e_C£(x[n]) 

end if 
end while 
if Flag-Reachability-Imprecise == False then 

if G-Verify-flg == 1 then 
return Property Js_True 

else 
return Verification_Failed 

end if 
else 

return Verification_Failed 
end if 
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If the maximum time step is reached or an inclusion fixpoint occurs having reached 

no state satisfying the property, then an abstract counter-example is generated (Lines 15 

- 16) demonstrating the violation of the property. The function Generate-CE(.) (Line 

16) is used for the generation and validation of the counter-example. In case the function 

Suffic-Approx(.) cannot capture the behavior correctly, the verification stops in a failed 

state (Line 23). Other details concerning the algorithms are the following. The algorithm 

starts by resetting the index n and the time step Tn-\. Initial conditions described as 

intervals are written as a combination of a numerical and symbolic terms. The time step A 

is set to the initial time step Ao- The maximum time length of the verification is measured 

according to the rules in Section . 

Note. Similar to Algorithm 4, the liveness algorithm will eventually terminate in one of 

the possibilities described earlier. However, this is only guaranteed under the condition 

that each of the functions called by the algorithm (e.g., Suffic_Approx(.), Prop_Check(.) 

and <ZJi^_Reach(.)) will eventually terminate. 

The Algorithms 4 and 5 define the procedures for checking basic properties of CT-

AMS designs. However, the verification approach we propose supports properties that 

can be written using the MITL subset defined in Section 3.3 (Chapter 3). For instance, 

general time bounded safety property can be described using the Algorithm below. 

In Algorithm 6. The function GJVerifyjty(.) accepts as input the SREs represent­

ing the CT-AMS behavior, the order Ot of the Taylor model approximation, the initial 

time step Ao and the property (j). Similar to Algorithm 4, the verification terminates suc­

cessfully, if the time steps chosen captures the necessary behavior of the design. This 

is ensured using the function SufficApprox(.) (Line 3). In this case, either the prop­

erty is verified to True using the function §_Verify(.)(Lines 4 - 7), otherwise an abstract 

counter-example is generated (Lines 9-10) demonstrating the violation of the property. 

The function Generate JOE _<)>(.) (Line 10) is used for the generation and validation of 

the counter-example. In case the function SufficApprox(.) cannot capture the behavior 

correctly, the verification stops in a failed state (Line 17). 
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Algorithm 5 TimedLiveness Verification F<7yp: F.Verify(p,x[n],Ot,Ao,TQ) 

Require: n — 0 
Require: Tn-\ — TQ 
Require: x[0] = j + a, with ;' e N ^ a e ld 

Require: H^n~l <— x[n — 1] 
Require: x[n}= SRE(x(t)) 
Require: A <— Ao 
Require: FJ/erify-flg = 0 
Require: Tf = Length(¥'<rfp) 

x[n — 1] —x[n— 1] 
x[n] = <TM0tAn]&[n-l]) 
Pwp[n] = Symbolic jComp({p,x[n]}) 

while T„ < Tf and FlagJFix-Point-Reached == False and 5M//j'cj4pprox(x[n],x[n — 
1]) is Good do 

if Pro/? J ^ e c ^ P r o p ^ x H ^ " - 1 ) = = F a t e then 
2(" = TfWj?eac/i(x[«],r„_1 +A,Or,A,T„_i) 
inc(n) 
tn = Inc-Step(tn-\, A0) 

else 
F-Verify-fig = 1 
return Property Js_ True 

end if 
end while 
if FlagJReachability-Imprecise == False then 

if (Flag-Fix-Point-Reached == False or Tn > Tf) & F .Verify-fig = 0 then 
Call GenerateJCE{x[n\) 

else 
if F-Verify-fig = = 1 then 

return Propertyis_ True 
end if 

end if 
else 

return Verification-Failed 
end if 
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The functions §J/erify(.) and Generate JOE J§{.) are functions that are chosen 

based on the property $. For example, if the main property to verify is Gp, then (|) refers 

to p and §J/erify(.) corresponds to GJVerify(.), while Generate JOE _<])(.) corresponds 

to Generate JOE (.) which be described in the next section. 

Algorithm 6 Bounded Timed Safety Verification G<r/(|): G-Verifyjy(§,x[n},Ot,Ao,To) 

Require: n = 1 
Require: Tn-\ = TQ 
Require: x[n - 1] = j + a, with ;' e N ^ a e ld 

Require: <R?~X < -x [n - l ] 
Require: x[n] = SRE(x{t)) 
Require: A *— Ao 
Require: 7/ = Length(G<Tf§) 
Require: GJ/erify.flgJf — 1 

1: x[n-\] = x [ n - l ] 
x[n] = T ^ ) X [ B ] ( x [ n - l ] ) 
while T„ < Ty and FlagJFix-Point-Reached == False and SufficJipprox(x{n])x[n — 
1]) is Good do 

if ty-Verify(x(n),Ot,A,Tn-i) = = 7>we then 
5L" = r!MJieach(x(n),Tn^+A,Ot,A,Tn-\) 
inc{n) 
tn = IncStep(tn-\, Ao) 

8: else 
9: G-Verify-flg4==0 

10: Generate_C£'_<|>(x[n]) 
11: end if 
12: end while 
13: if Flag^Reachability-Imprecise == False then 
14: if G-Verify JlgJf == 1 then 
15: return Property is True 
16: else 
17: return Verification Failed 
18: end if 
19: end if 

Note. Similar to Algorithm 4, the general safety algorithm will terminate in one of the 

above mentioned possibilities under the condition that the functions called by the algo­

rithm (e.g., Suffic_Approx(.), (|)_Verify(.)) will eventually terminate. 
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Example 4.2.2. Oscillators play a critical role in communication systems, providing the 

periodic signals needed for the timing of digital circuits and for frequency translation. 

While an oscillator can mean anything that exhibits periodically time-varying character­

istics, we are concerned with the type that provides an electrical signal (voltage or current) 

at a specific frequency when supplied only with DC power. An electrical oscillator gen­

erates a periodically time-varying signal when only supplied with DC power 

For instance, consider the circuit in Example 4.1.1, with one of the dynamics is 

described by v'c\ — v& and v'& — —vc\ + v^j. The oscillation property can be formally 

described as: 

Propx : G[0i7e-3](F[0i2e-3]p2) AG[o)7e-3](F[0i2e_3]Pi) 

where p\ = ->p2 := Vc\ < Vc2. 

Applying the Algorithm 1 for building the Taylor models based reachable states, 

we can observe the oscillation behavior as illustrated in Figure 4.3. Where the reachable 

states are bounded by the corresponding Taylor model polynomials. 

In order to check the satisfaction of the oscillation property, we apply the Algorithm 

6. 

We also checked several safety properties, e.g., 

Propi: G(-0.5 < VcX < 0.5) A (-0.5 < Vc2 < 0.5) 

and 

P r a / 7 3 : G ( - l < y c 2 < l ) 

which are verified by applying Algorithm 4. 

For the illustration purposes, we provided two different sets of initial states x[0] and 

y[0] as well as a fixed step size h as shown below: 
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Vc2 

0.15H 

1.1 -0.05 0.05 0.1 

Figure 4.3: Oscillation Behavior for Circuit in Example 3.4 (Chapter 3) 

Parameters\ 

Parametersz • 

a -)• [-0.03,0.03] b -» [-0.03,0.03] 

A-+0.01 

x[0]=0.3 + a y[0] = -03 + b 

a -* [-0.03,0.03] b - • [-0.03,0.03] 

/i-*0.01 

x[Q] = l+a y[0] =0.2 + b 

The verification algorithms we implemented in Mathematica and applied on the design. 

The verification results for the two possible switching cases of this circuit (we refer to 

these as circuit 1 and circuit 2) are shown in Table 4.1. For the first set of initial condi­

tions shown above, we find that the circuit is behaving in accordance with the properties, 

hence the properties are satisfied. For the second set of initial conditions, the safety prop­

erties Prop2 and Prop^ are violated while divergence prevents us from checking whether 

the circuits are oscillating or not6. 

When a property is not verified, a counter-example is generated to help identify the 

reasons for the property violation. Due to the over-approximation of the BMC algorithms, 

the generated counter-example is an abstract one. Therefore, the counter-example must 
6The experiments were performed on Intel Core2 1900 MHz processor with 2GB of RAM 
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Table 4.1: Oscillator Verification Results 

Circuit & 
Properties 

Circuit 1 (Parameters 1) 
Oscillation Property 

Propi 
Props 

Circuit 1 (Parameters 2) 
Oscillation Property 

Prop2 
Props 

Circuit 2 (Parameters 1) 
Oscillation Property 

Prop2 
Props 

Circuit 2 (Parameters 2) 
Oscillation Property 

Pwp2 
Props 

BMC Verification 
for k — 0 to Nmax Steps 

Nmax = 700 
Proved True 
Proved True 
Proved True 
Nmax = 700 

Not Verified (Divergence) 
Proved False at k — 18 
Proved False at k = 18 

N^ = 1200 
Proved True 
Proved True 
Proved True 
Nmax = 1200 

Not Verified (Divergence) 
Proved False at k = 4 
Proved False at & = 9 

CPU & Memory 
Used 

107.39 sec 
7.93 MB 

108.41 sec 
7.14 MB 

583.75 sec 
51.15 MB 

584.05 sec 
50.60 MB 

be validated and when possible, in case it is a spurious one, use the information from it in 

order refine the abstract reachable states. In this respect, we extend the BMC algorithm 

with a counter-example analysis engine as shown in Figure 4.1. 

4.3 Finding Counter-example 

This section present the counter-example analysis for safety properties. In the verifica­

tion approach, safety of an over-approximation implies safety of the actual system. On 

the other hand, if the over-approximation is unsafe, it is not necessarily the case that 

the design is faulty; in this case, the generated counter-examples might be spurious. A 

counter-example is defined as follows: 

Definition 4.3.1. Counter-example. 

A trace Q. = (a, x, X) of the AMS system is called an abstract counter-example with respect 
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to the property Gp, if onDT(p) ^ 0, where Y is the concretization function abs~'. Q, 

is a corresponding abstract counter-example of a concrete one if 3p G Y(o") and p = 

Y(CTO),Y(CT)I, ... ,Y(a)„ is a real trajectory of the system and p„ ClY(p) ^ 0. 

The validation algorithm as proposed has two possible outcomes: either it is proved 

that a forbidden state cannot be reached within the time limit considered or that there 

exists a counter-example that cannot be refuted. Since the validation procedure relies on 

over-approximations, it cannot be guaranteed that this abstract counter-example corre­

sponds to a concrete one. An abstract counter-example is true if it includes a concrete 

one, otherwise it is spurious. This fact is due to the over-approximation of the abstrac­

tion. Informally speaking, a concretization of a counter-example adds more trajectories 

that might not correspond to real ones. We say that a counter-example is spurious accord­

ing to the following definition: 

Definition 4.3.2. Spurious Counter-example. 

A trace Q = (0, x, X) of the AMS system is a spurious counter-example with respect to 

the property Gp, if a„ n T(p) ^ 0 but ^p e T(o) and pn n T(p) ^ 0. 

When using over-approximations, there is no guarantee that a spurious counter­

example can be refuted. Technically, this happens if the approximation is too coarse 

because the current bounds are too large and permit behaviors that are impossible in real­

ity. It is indicative of a very slim error margin separating the reachable states from the bad 

ones. The likelihood of refuting spurious counter-examples can be increased, however, 

by using tighter approximations. Hence, refining the over-approximation is necessary 

until the system is proven safe after closer analysis, or the system is considered fragile 

because it is unsafe for a sufficiently small value of bound tolerance e. In other words, 

if a counter-example that reaches a bad state with a distance < 8 has been found, we say 

that the concrete system is unsafe with fragility [20], 

Definition 4.3.3. A counter-example is called fragile if any disturbance of arbitrarily 
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small positive tolerance level of its states makes it safe. 

Such property is of great importance in the termination of the counter-example re­

finement as proposed in [34] and hinted in [20]. If we have a trace of counter-example, 

before going to refinement procedure, we measure the fragility of the trace, if it is fragile, 

then we conclude that the design is overall fragile with respect to the safety property and 

therefore we need to redesign the parameters. 

4.3.1 Counter-example Generation and Validation 

The straightforward method to obtain tighter enclosure of the reachable flow is to increase 

the order of the Taylor polynomial expansion of the dynamics. Starting from an abstract 

initial set of states and with increased polynomial order check the validity of the trace. If 

bad states are not reachable, then we are done and verification terminates. If bad states 

are reached, a counter-example is generated. If the counter-example is a valid one then 

verification terminates; otherwise, a refinement procedure is applied, and verification is 

re-applied. 

Inevitably, increasing the order of the Taylor expansion, will require the symbolic 

analysis algorithms to deal with more polynomial terms which can be expensive in terms 

of memory and time resources. Instead, we propose a counter-example procedure that 

takes advantage of the symbolic representation of the structure of Taylor models in order 

to generate counter-examples and validate them. 

As was described before, at any time instant, the system of equations are func­

tions only of the initial states represented symbolically using first order polynomial terms. 

Thus, we are not obliged to generate a whole trace for the counter-example, it is only 

sufficient to identify the initial states that might cause the bad behavior. A validation pro­

cedure validates whether those initial states will eventually lead to bad states violating the 

property of interest or that the counter-example was spurious due to over-approximation. 

The AMS behavior can be described using a concatenation of continuous traces ac­

cording to switching rules (discrete) as described in Chapter 3. Thus showing that any 
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one of the discrete transitions in the counter-example is spurious is a sufficient condition 

for the non-existence of a corresponding concrete trace. This is clear from the fact that 

given an initial condition, if a state cannot be reached using the Algorithm 1, then no trace 

can exists that includes this state and starting from the same initial condition. Technically, 

two procedures for the refinement of the discrete and continuous dynamics can be used to 

implement this observation. Refinement of the discrete dynamics is is based on checking 

whether a switching condition changes from X to F. If this is the case, then the counter­

example is refuted. The refinement of the continuous dynamics first subdivides of the the 

initial states and then calls the Liveness Verification F<7yp function FJVerify(.) for vali­

dation. If the function returns True, then the counter-example is a concrete one, otherwise 

we call a procedure to check wether the counter-example is spurious or fragile. 

The counter-example procedure is described in Algorithm 7. Given the reachable 

states that are a subset of the bad states (Line 1), we identify the corresponding initial 

interval states V € a (Line 2). Next, we verify whether those initial states will truly lead 

to a bad behavior or not (Lines 3 -16). This can be done through two complementary 

methods. First, we check the switching conditions (Lines 6 - 8). If the valuation of 

a switch is proved not satisfied, then we conclude that no trajectory initiated from the 

selected initial condition will lead to a property violation. Otherwise, we construct the 

corresponding trajectory starting(Lines 12 - 13). If the bad region is reached (Line 12), 

then we have a concrete counter-example. Otherwise a fragility based refinement and 

analysis of the trace is applied (Lines 17-19). 

Note. Counter-example generation and validation for Fp can be obtained by val­

idating the dual property G->p. If G-ip if True, then the reachable states form a non-

spurious counter-example, this is due to the over-approximation of the reachable states. 

If the property is False, then get a counter-example. If the counter-example is proved not 

spurious, then Fp is True, otherwise, the counter-example is refined to check its validity. 

Example 4.3.1. Consider the circuit in Figure 3.4, where we would like to check the 

safety property that the voltage will never go below a certain value GVc2 > —0.60 for 
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Algorithm 7 Counter-example Generation and Refutation for Safety Properties: 
CE _Analysis{p, x[k], tk) 

Require: X[n] = {x[n]\n € N & n < &} 
Require: x[k] = eval(x[k], {a, A}) 
Require: B =|| p \\ 

Bk = \[k]nB 
Q = {*a\ 3*a.x[k] C B t A a " e a } 
for m = | Q,| Down To 1 do 

for n = 0 to k - 1 do 
XC£[n] = eval(x[n],{*nm}) 
if EvaLCond(xcE[n]) —= F and EvaLCond(x[n]) —— X then 

0=QAm 
ExitJLoop 

end if 
end for 
if ^m € Othen 

if F„Verify(p,xcE[n},Ot,Ao,To) == True then 
Return CE — a m 

end if 
end if 

end for 
if OT^ ©then 

Call CheckJ^ragile^XcEln], A, || p ||e) 
end if 
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Vc2 

- 0 . 1 0 .1 0.2 0.3 0.4 

Figure 4.4: Behavior Violation for Circuit in Example 3.4 

a given set of initial condition a e [-0.03,0.05] and b € [-0.03,0.03]. We see that the 

property is violated as shown in Figure 4.4. 

By applying the counter-example algorithm, we can identify that the property is 

verified for a € [—0.03,0.04034[ (See Figure 4.5(a)). Left is to check whether counter­

examples in a € [0.04034,0.05] are spurious or not. Using the notion of fragility, by mea­

suring the distance from the bad states, we find that the initial constraint a € [0.04034,0.05] 

leads to a counter-example as shown in Figure 4.5(b). 

0.1 0.2 0.3 0.4 
Vcl 

-0.45 

-0.5 

ihlii 
Wu 

0.1 0.2 0.3 0.4 
Vcl 

(a) Safe Behavior (b) Counter-Example 

Figure 4.5: Behavior Analysis for Circuit in Example 3.4 

In general the efficiency of the counter-example validation depends on the algo­

rithms used in order to minimize the possible counter-example candidates. In this chapter, 
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we propose a validation algorithm based on checking fragments of the provided counter­

example. If one can refute a fragment of a counter-example, e.g., a single transition, then 

the entire counter-example is spurious. 

4.4 Applications 

We have implemented the algorithms described in this chapter in Mathematica (See Ap­

pendix A for more details). We have applied the proposed verification methodology to 

different classes of AMS designs representing various design levels, e.g., continuous-time 

AZ modulator at the behavioral level, Schmitt trigger at the macro-level and oscillators at 

the circuits level. 

4.4.1 T\innel Diode Circuit 

The tunnel diodes exploit a phenomenon called resonant tunneling to provide interesting 

forward-bias characteristics, due to its negative incremental resistance characteristic at 

very low forward bias voltages. This means that for some range of voltages, the current 

decreases with increasing voltage. This is in contrast with conventional diodes that have 

a non-linear I-V characteristic, but the slope of the curve is always positive. This char­

acteristic makes the tunnel diode useful in oscillator circuits. When a small forward-bias 

voltage is applied across a tunnel diode, it begins to conduct current. As the voltage is 

increased, the current increases and reaches a peak value called the peak current. If the 

voltage is increased a little more, the current actually begins to decrease until it reaches 

a low point called the valley current. If the voltage is increased further yet, the current 

begins to increase again, this time without decreasing into another valley. 

We focus on the current II and the voltage Vc across the tunnel diode in parallel 

with the capacitor of a serial RLC circuit (see Figure 4.6). The state equations of the 

circuits are given as 
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in 

1 ^ - ^ 
Figure 4.6: Tunnel Diode Oscillator 

and 
4 = ^(-Vc-^/z. + ViB) 

where IdiVc) describes the non-linear tunnel diode behavior. We analyze the circuit in two 

modes. The first when the circuit is in stable oscillation for a given set of parameters, the 

other case when this oscillation dies out. We chose these two different sets of parameters 

values of the oscillator circuit {C = 1000<T12, L = le~6, G = 5000*r3, Vin = 0.3} 

and {C = lOOOe-12, L = le~6, G = 2000<T3, Vin = 0.3} along with the set of initial 

values of voltages [0.8 V, 0.9 V] and currents 0.04 mA and the analysis region of interest 

— IV < Vc < 1 V and 0.01 mA<Ii< 0.9 mA. Suppose we want to verify the following 

property on the set of trajectories [50]: 

S , W F [ o , 6 ^ ] ( 4 < 0 . 0 2 ) ) A G[0)le-«,(F[0i6e-7](/t>0.06)) 

which can be understood as within the time interval [0, le~6] on every computation path, 

the Ii amplitude will always reach 0.02 within the time interval [0,0,6e~7], the same goes 

for the II amplitude 0.06. This property checks for oscillation behavior of the circuit. 

By applying Algorithm 6, with the first set of parameters, we have the property 

satisfied, which means that the circuit is oscillating for the given set of initial conditions, 

within the specified time interval. The Taylor model based reachable states are shown in 

Figure 4.7.a. 

By following the same procedure for the system with the second set of parameters, 

but with the same initial conditions, we can find out that the circuit is non oscillating. 
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Physically, when the circuit starts up, the energy of the system is lost due to the positive 

circuit resistance. Starting from any point in the analysis region, the oscillations die down 

to the equilibrium point as illustrated in Figure 4.7.b. 

0.2 0.4 0.6 0.B 

a. Oscillations 

0.2 0 .4 0 . 6 O.i 

b. No Oscillation 

Figure 4.7: Oscillator Behavior 

4.4.2 Schmitt Trigger 

In electronics, a Schmitt trigger is a comparator circuit that incorporates positive feed­

back. When the input is higher than a certain chosen threshold, the output is high; when 

the input is below another (lower) chosen threshold, the output is low; when the input is 

between the two, the output retains its value, until the input changes sufficiently to trigger 

a change. This dual threshold action is called hysteresis, and implies that the Schmitt 

trigger has some memory. Schmitt trigger can be used as an oscillator as shown in Figure 

4.8 with the following configuration (The state equations): 

dvCl _ vout - vCl vCx 
Cv 

dt Ri /?i 

and 

where 

„ dVc2 Vout ~ VC2 
C2- "~ 

dt Rs 

Vout = VMAxTan^—1— 2-) 
VT 
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Vout 

Figure 4.8: Schmitt Trigger Oscillator 

Vc2 

Figure 4.9: Schmitt Trigger Oscillator Behavior 

with Vmax = 5 and VT = 0.025. 

Similar to the tunnel diode, we check for the oscillation property: 

G[o,2,-3](F1o,o.2,-3](K2 < -4)) A G[oi2e-3](F[0>o.2e-3](K2 > 4)) 

which can be understood as within the time interval [0,2e~3] on every computation path, 

whenever the VC2 amplitude will reach —4 Volts, it will reach this value again within 

the time interval [0,0.2e~3], the same goes for Vci reaching this amplitude 4 Volts. By 

applying Algorithm 6, we have the property satisfied, which means that the circuit is 

oscillating for the given set of initial conditions, within the specified time interval. The 

possible Taylor model based reachable states are shown in Figure 4.9. 
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4.4.3 Continuous-Time AE Modulator 

Data converters are needed at the interface of analog and digital processing units. The 

principle of the AZ architecture is to make rough evaluations of the signal over several 

stages, to measure the error, integrate it and then compensate for that error. 

A AE modulator is said to be stable if the integrator output remains bounded under 

a bounded input signal, thus avoiding overloading the quantizer in the modulator. This 

property is of a great importance since the integrator saturation can deteriorate circuit 

performance, hence leading to instability. The quantizer in the modulator is a one-bit 

quantizer with two quantization levels, +1V and —IV. Hence, the quantizer input should 

be between —TV and +2V in order to avoid overloading. The Continuous-time AE shown 

in Figure 4.10 can be represented by the following equations: 

dxQ pxo(t-x) 
—-— = 00*1 — ko*o — boaoMtanh — 
dt M 

and 

^ * i i i \ i i ,* i Px\ ( f _ T ) —— — b\u[t) — k\x\ — b\a\Mtann 
at M 

Stability criteria can be formalized as a safety property ensuring that the integrators' 

output voltage will never exceed certain bounds. The property can be stated as follows: 

G - K V C 2 < 3 . 5 

The reachable states for different initial conditions and input voltages are shown in Figure 

4.11. 

As illustrated in Figure 4.11(a), the voltage VC2 will be confined with the region 

specified in the property and applying Algorithm 4, we find that the property will be 

satisfied. Increasing the input signal voltage leads to instability and the property is not 

verified as illustrated in Figure 4.11(b). 
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Figure 4.10: Continuous-Time AE Modulator 

Vc2 

cVcl 
.1 0.15 

(a) Stability (b) Instability 

Figure 4.11: DSM Modulator 

4.5 Summary 

In this chapter, we have defined a bounded model checking approach for AMS systems 

modeled using a combination of SREs and differential equations. We have proposed a 

symbolic-interval modeling of the state space using the principle of Taylor models which 

provide a way for representing a combination of representation using a combination of 

polynomials and interval terms. The main advantage of such modeling is the fact, that the 

polynomial representation helps slowing the divergence due to the over-approximated in­

tervals, while the interval part provides an important abstraction to handle the continuous 

behavior. In order to enhance the methodology, we extended the verification is a counter­

example generation/refinement procedure. We have implemented our methodology using 

libraries for symbolic computation available in Mathematica. Experimental results have 

shown the feasibility and the utility of the approach. 
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The proposed BMC algorithm can verify properties for only a bounded time, how­

ever, confidence in the verification process would be increase by removing this constraint. 

To this end, in the next chapter, we complement the BMC algorithm by an abstraction 

methodology based on using invariant checking and predicate abstraction. 
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Chapter 5 

Qualitative Abstraction for CT-AMS 

Verification 

5.1 Overview 

Bounded model checking is an attractive method for verifying properties by partial explo­

ration of the state space for a finite time period. This approach was shown in the previous 

chapter to be successful in proving properties such as oscillatory behavior. Neverthe­

less, confidence in the verification is limited due to the incompleteness of the verification. 

Consider for instance, the proof of nonexistence of oscillatory behavior. Such an exam­

ple among others, motivate the development of a complementary methods to increase 

confidence in the verification process. 

Predicate abstraction is one of the most successful abstraction approaches origi­

nally developed in [45], for the verification of systems with infinite state space. In this 

approach, the state space is divided into a finite set of regions and a set of rules is used to 

build the transition relation between these regions in a way that the generated state transi­

tion system can be verified using model checking. Among the proposed enhancements of 

predicate abstraction is the lazy abstraction approach [58]. The basic idea here is instead 

of generating the entire abstract model, a region is abstracted only when it is needed in 
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the verification step. Refinement is applied starting from the earliest state at which the 

abstract counterexample fails to have a concrete counterpart. 

Inspired by the concept of lazy abstraction, we propose a qualitative abstraction 

approach for continuous-time AMS designs, such that satisfaction of the property in the 

abstract model guarantees its satisfaction in the original design. In the proposed abstrac­

tion, the state space is initially partitioned based on the qualitative properties of the analog 

behavior and symbolic constrained based methods are applied to check for property vali­

dation. In case of failure, an iterative verification/refinement process is applied where the 

regions violating the property are refined and symbolic model checking is applied for the 

property validation. 

The verification methodology we propose is illustrated in Figure 5.1. Starting with a 

circuit description as a system of ODEs (See Definition 3.2.3, Chapter 3), along with spec­

ification properties provided in computational temporal logic (VCTL) (See Section 3.3.2, 

Chapter 3), we symbolically extract qualitative predicates of the system. The abstract 

model is constructed in successive steps. In the basis step, we only consider predicates 

that define the invariant regions for the system of equations based on the Darboux theory 

of integrability [43]. Informally, the Darboux theory is concerned with the identification 

of the different qualitative behaviors of the continuous state space of the system. We make 

use of this idea to divide the analog behaviors of the design into qualitatively distinct re­

gions where no transition is possible between states of the different regions. Satisfaction 

of properties is verified on these regions using constraint based methods, which rely on 

qualitative properties of the system, by generating new constraints that prove or disprove 

a property. The property verification hence provides the advantage of avoiding explicit 

computation of reachable sets. 

If the property cannot be verified at this stage, refinement is needed only for the non-

verified regions by adding more predicates. Conventional model checking is then applied 

on the newly generated abstract model. The extraction of the predicates is incremental in 

the sense that more precision can be achieved by adding more information to the original 
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construction of the system. When the property is marked violated, one possible reason is 

because of the false negative problem due to the over-approximation of the abstraction. 

In this case, refinement techniques may be introduced. 
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Figure 5.1: Qualitative Abstraction based Verification Methodology 

5.1.1 Predicate Abstraction 

In the abstraction method, we start first by defining the abstract states and the maps from 

concrete to abstract states. An abstract transition system is then created by constructing 

the abstract initial states and abstract transition relations. In order to fulfill these steps a 

sound relationship between the concrete and abstract domain should be defined. 

Predicate abstraction is a method where the set of abstract states is encoded by a set 

of Boolean variables representing each a concrete predicate. Based on [5], we define a 

discrete abstraction of the CT-AMS model with respect to a given n-dimensional vector of 

predicates 4* = (\\fi,..., \|/„), where \)/n : R
d —> B, with 1 = {0,1} and d is the dimension 

of the system of ODEs. A polynomial predicate is of the form \\f(x) := £(x\ ,...,Xd) ~ 0, 
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where ~G {<, >} . Hence, the infinite state space X of the system is reduced to 2" states 

in the abstract system, corresponding to the 2" possible Boolean truth valuations of ¥ . 

Definition 5.1.1. Abstract Transition System. 

An abstract transition system is a tuple %> — (Qy, ~->, Qy,o), where: 

• Qy C L x B" is the abstract state space for a n-dimensional vector predicates, where 

an abstract state is defined as a tuple (/,£>), with / G L is a label and b G B". 

• -wC Qy x Qy is a relation capturing abstract transitions such that {b ~> b'\3x e 

Yy(b),t € R+ : x' == <J>̂ (?) G T(V(&') Ax —> V}, where the concretization function: Y>j/: 

B" - • 2R" is defined as Tv(b) := {* G Rd|V; G {1,,. . . ,n} : y;-(*) = bj}. 

• 2^,0 := {(^ b) € Q*I/|3JC € Yvi<(£>),jt G ^b} is the set of abstract initial states. 

We define the set of reachable states as: Reach^ — {J^QReach^,', where Reachiy = 

Qyfi,Reach%+X) =Postc(Reach§), Vz >0andPostc(l,b) := {(/',&') G £&!(*,&) ~* ( /> ' )}• 

We can then deduce the following property between concrete and abstract reachable 

states. 

Statement. Given a CT-AMS transition system (See Definition 3.2.5) and an abstract 

transition system with a vector of predicates \P, the following holds: Reach C {q G 

Q\3(l,b) G Reachy : x G Yy{b)/\Lx{q) =x} 

5.1.2 Abstraction Based Verification 

Given a CT-AMS model transition system 'TsaMs anc* a ProPerty 9 expressed in VCTL, the 

problem of checking that the property holds in this model written as T^MS H 9 c a n ^ e 

simplified to the problem of checking that a related property holds on an approximation 

of the model %>, i.e., %> (= (p, with (j> = /u(cp), where /u is a mapping function: ^ : Rrf —> B 

which is a function associating to each predicate X(x\,... ,xa) an atomic proposition P. 

The main preservation theorem can be stated as follows [20]: 
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Theorem 5.1.1. Suppose %> is an abstract model of t^^y then for all V CTL state 

formulas describing %; and every state of T^MS*
 w e n a v e •? |= 9 => S h= 9> w n e r e s € y{s). 

Moreover, Ty \= 9 =4> Tsi'Ms H <P-

If a property is proved on an abstract model Ty, then we are done. If the verification of %> 

reveals %< ¥• 9, then we cannot conclude that T^MS *S n o t safe w i m respect to 9, since the 

counterexample for %> may be spurious. In order to remove spurious counterexamples, 

refinement methods on the abstract model can be applied [20]. 

5.1.3 Invariants 

Usually, a system with continuous dynamics (e.g., an AMS design) has a behavior that 

varies in different regions of the phase space whose boundaries are defined by special 

system solutions known in the literature as Darboux invariants [43]. These invariants 

partition the concrete state space into a set of qualitative distinctive regions '. 

Definition 5.1.2. Given the system of ODEs ^ = (Pk(xi(t),... ,xd(t)), with k = l,...d 

(w = **(x)' x e ^-d anc* ** = ( ^ 1 > • • • > ^ r f ) ) *s a polynomial vector field, we define the 

corresponding vector field as (Dp = P.3X = Y&=\ ^k^~-

The correspondence between the system of ODEs and the vector field 2?p is ob­

tained by defining the time derivative of functions of x as follows. Let Q be a function 

of x: g : Rk -> R, then ^ := g = (D?(g) - V.dxg. The time derivative is called the 

derivative along the flow since it describes the variation of function g of x with respect to 

t as x evolves according to the differential system. When Dp(g) = 0, Vx e R*, we have 

a time independent first integral of Dp. Several methods were developed recently based 

on Darboux integrability theory [43], which is a theory concerned with finding closed 

form solutions of system of ODEs, to tackle the problem by looking for a basis set of 

invariants, i.e., Darboux invariants. Rather than looking at functions which are constant 

]We will focus on the analog part of the AMS design. Therefore, from now on, when we mention ODEs, 
we will assume a system of equation with no discrete part. 
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on all solutions, we look at functions which are constant on their zero level set. Darboux 

polynomials J7,- provide the essential skeleton for the phase space from which all other 

behaviors can be qualitatively determined. 

Definition 5.1.3. Darboux Polynomials [43]. 
d 9 

Given a vector field ©^ = £ ^ v ~ associated with the system ^ = P(x), a Darboux 

polynomial is of the form J/(x) = 0 with J G M[x], with DJ7 = %3, where % = 3C(x) is a 

polynomial called the cofactor of J = 0. 

Lemma 5.1.1. [43] Given a system of ODEs and a vector field (Df, J is an invariant of the 

system if J divides (D{, more formally, if there exists %_ e K[x] such that £V(J7) = %J. 

The solution set of the system vanishes on the curve of J. 

Proof. We can always represent the system by the associated vector field at each 

point !F(x) = P(x) and VJ7 • 7 = kJJ, where Vj7 denotes the gradient vector related to J7(x) 

and • is the scalar product. When J — 0, Vj7 • f — 0, meaning that Vj? is orthogonal to 

the vector field jF at these points. Therefore 7 is tangent to 3 = 0. 

In the context of abstraction, we define the invariant regions as conjunctions of 

Darboux invariant predicates. An invariant region can be considered as an abstraction of 

the state space that confines all the system dynamics initiated in that region: 

Definition 5.1.4. We say that a region V is an invariant region of a CT-AMS model 

such that !P(x(0)) =sQ\=V, $(*{<;)) = ss |= V and Vf e [0,3,«P(x(f)) =st\=V. Let 

V — {x € M.k\x (= T}, be an invariant region, where T is a conjunct of Darboux predicates 

(each is of the form p(x) ~ 0, where p is a polynomial function and ~ € {<, >}). If x(0) 

is some initial state, then V = 1^(x(0)) denotes an over-approximation of the set of states 

reachable from x(0). 

Example 5.1.1. Consider the non-linear circuit shown in Figure 5.2.a, where the non-

linearity comes from the voltage controlled current sources that produce currents 7ĉ i and 

ICS2 , respectively, with f\ = — x\ + x\ —xi and fa = — x\ + 2x2. The voltages across 
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the capacitors c\ and c% can be described using ODEs, respectively, as follows: x\ = 

—x\ and x'2 = x\ — x\. We identify the corresponding invariants: j \ = \—x\—x\ and 

72 = 1 — x\ -\-x\, which are used to form three invariant regions: R\ — j \ > 0 A 72 > 0, 

R2 = 71 < 0 A 72 < 0 and R3 = j \ < 0 A 72 > 0 as shown in Figure 5.2.b. Note that 

71 > 0 A 72 < 0 is infeasible and therefore discarded. 

Icsl= fl(xl,x2) 

cl = 1 

g l = l 

82 = 1 

t2(xl,x2) 

c2 = l 

(a) Circuit Schematic (b) Darboux Invariants 

Figure 5.2: Illustrative Non-linear Circuit 

5.2 Invariants Based Verification 

In this section, we propose a qualitative verification approach for the AMS designs using 

constraint based methods. The basic idea is to apply quantified constraint based tech­

niques to answer questions about qualitative behaviors of the designs, by constructing 

functions that validate or falsify the property. The idea is different from conventional ap­

proaches as it does not require an explicit reachable states computation. We consider two 

types of properties that can be verified using this approach, namely safety and switching 

properties. 
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5.2.1 Safety Properties 

Safety properties can be expressed in CTL [22] as \/Gp; meaning that always on all execu­

tions the constraint predicate p is satisfied for a set of initial conditions. The verification 

starts by getting the negated property 3F->p (which means that there is an execution fal­

sifying the constraint p) and applies constraint solving on the dual property within the 

invariant regions of interest. In case of unsatisfiability, we conclude that the original 

property is satisfied in the region, otherwise we cannot conclude the truth of the property 

and a refinement model providing more details of the region is constructed. 

Proposition 5.2.1. Safety Property Verification. 

VG!P is always satisfied in an invariant region V, if its dual property 3F-i!P is never 

satisfied in that region. 

Proof. The proof is straightforward as 3¥~i(P is the complement of VG!P. One and only 

one of both properties can be satisfied in a given invariant region. 

Example 5.2.1. Consider the circuit in Example 5.1.1, with initial conditions JCI(O) G 

[-1.1, -0.7] and x2(0) G [0.5,0.9]. Suppose the property to check is VG P̂ :=x\ +x2 - 3 < 

0 (see Figure 5.3 for details), meaning that all flows initiated from x(0) = (JCI (0),;c2(0)), 

will be bounded by x\ -\-X2 — 3. The following regions satisfy the initial conditions R\ — 

j \ > 0 A 72 > 0 and /?3 = 71 < 0 A 72 > 0. We check whether 3¥(P := x\ + x2 - 3 > 

0 is satisfiable in the invariant regions R\ and R3. By applying constraint solving in 

Mathematica, we find that for the region R^, the constraints system is satisfiable, hence 

the original property cannot be verified, and the state space of the region needs to be 

refined. For the region R\, the constraints system is infeasible, therefore we conclude that 

the safety property is satisfied. 

It is worth noting that the barrier-certificate method developed in [92] can be applied as 

complementary to our method. In fact, Darboux predicates used as basis of invariant 

regions can be considered as natural barrier certificates that are constructed without the 
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Figure 5.3: Safety Verification (Example 5.2.1) 

need of initial and final constraints. Therefore the main advantage is that they can be used 

in the verification for several initial and properties, hence reducing computational efforts. 

5.2.2 Switching Properties 

A special case of the reachability verification 3FQ,is the switching condition verification, 

i.e., starting from a set of initial conditions, the system will eventually cross a threshold, 

triggering a switching condition. Such property is of great importance, for instance, a 

MOS transistor acting as switch changes states based on the voltage condition applied on 

its gate. We consider here a restricted form of the switching property, where we assume 

that threshold predicates divide the invariant region by intersecting the invariant region 

boundaries (at least two Darboux predicates). Given an invariant region V, a predicate 
k 

Q, is a switching condition if f\ 3x.(Q,(x) = 0) A (ij(x) — 0), where k < 2 and I is a 
;=o 

Darboux invariant. The switching verification can be stated as follows: 

Proposition 5.2.2. Switching Property Verification. 

3FQ, is satisfied in a region V, if Q,(x(0)) < 0 and <Dp(Q) > 0 or if Q,(x(0)) > 0 and 

'Dp(Q) < 0, in the region V. If these conditions are satisfiable, we conclude that the 

property is verified and switching occurs. 
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Proof, proof by contradiction. Suppose that: 

k 

1. The condition that f\ 3x.(Q,(x) = 0) A (7,(x) = 0) holds 
;=o 

2. QJx(O)) < 0 and©t>(Q) > 0 is satisfied 

3. 3FQ,is not satisfied. 

From the condition in (1) and the vector field behavior in (2), we deduce that there 

exists a trajectory starting from a state x(0) to a state x(/) such that x(/) |= Q,. Therefore, 

contradicting assumption (3). The proof is similar for a vector field with the following 

behavior: Q,(x(0)) > 0 and £>P(Q.) < 0. 

Example 5.2.2. Consider the circuit shown in Figure 5.2.a, where the voltages across the 

capacitors c\ and C2 are described, respectively, as follows: x\ — x\ + 2xiX2 + 3x| and X2 — 

Ax\X2 + 2x\. Suppose that the switching condition property to check is 3Fxi + X2 — 5 = 0, 

meaning that switching occurs when a certain trajectory will cross the threshold Q\ :— 

x\ +X2 — 5 = 0 (see Figure 5.4). We construct the Darboux functions: j \ := X2, h '=x\ + 

X2J3 :=x\ —X2. The region/?] — j \ >0AJ2 >0AJ3 > 0 satisfies the initial conditions. In 

addition, the predicate x\ +X2 — 5 < 0 satisfies the initial condition and 1>p(xi +X2 — 5) > 

0 because (Dp(x\ +X2 — 5) = (x\ +^2)(-^i + 5x2) is always positive in R\. Consider the 

initial conditions X(0)i := (xi(0) e [-10,-8] andx2(0) G [4,5]) and X(0)2 := (xi(0) € 

[-0.5,-1] andx2(0) G [0.3,0.5]) in the invariant region R2 = j \ > OAJ2 < 0A;3 < 0. For 

the switching condition Q2 := — x\ +X2 — 5 = 0, we find that the initial condition X(0)i 

satisfies -xi +x2 — 5 > 0, and X(0)2 satisfies —x\ +x2 — 5 < 0 while <Dp(—x\ +X2 — 5) = 

— (xi — X2)2 will be always negative in region R2, therefore we conclude that the switching 

will occur for the initial condition X(0)i but not for X(0)2. 

5.2.3 Reachability Verification 

A failure in safety verification does not guarantee that the final set is reachable from 

the initial set. This is the problem of reachability verification, which is concerned with 
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Figure 5.4: Switching Verification (Example 5.2.2) 

proving that at least one trajectory of the system starting from a set of initial states will 

reach another given set of states in a finite time. The reachability property is expressed as 

3F(P, which means, eventually, there exists an execution that will satisfy the constraint P. 

The main idea of the verification is to find bounds that include a trajectory from an initial 

to a final state. Reachability can be verified using the following proposition: 

Proposition 5.2.3. Sufficient Condition for Reachability. 

Given initial (S,-„) and reachable (S/„) states bounded by convex functions, B,-„ and B/„ 

such that 

Vs e Sin.Bin(s) < 0 with <D(Bin) > 0|Bi„=o 

and 

Vs £ Sfn.Bfn(s) < 0 with 2>(B/„) < 0|B/„=o 

respectively, construct two functions Bri and Br2, such that their existence implies the 

existence of trajectory <E>: 3SQ € 5m3*i € S/„.3>(fo) = SQ and <l>(f/) = s\, where to and tf 

are time points with to <tf, bounded by 

Bri < 0 A B r 2 > 0 or Brl > 0 A B r 2 < 0 

with the following conditions: 
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1. (Bri = 0) n (Bin = 0) ^ 0 and (Brl = 0) D (B /n = 0) ^ 0 

2. (Br2 = 0) n (Bin = 0) ^ 0 and (Br2 = 0) n (B/„ = 0) ^ 0 

3. 2>(Brl) > 0|Brl=o A©(Br2) < 0|Br2=o or £>(Br2) > 0|Br2=o A©(Brl) < 0|Brl=o-

Proof. Assume that there exists functions Br\ and B r2 satisfying the conditions 

(1 — 3), while at the same time there are no reachable states from B,„ to B/n . We have 

four cases: 

1. 2?(Bri) > 0|BH=O A2)(Br2) < 0|Br2=o and all the flow crossing Bri and B r2 is going 

out of the bounded region Br\ < 0 A B r2 > 0. 

2. ®(Bri) > 0|BH=O A©(Br2) < 0|Br2=o and all the flow crossing Bri and B r2 is going 

inside the bounded region Bri > 0 A B r2 < 0. 

3. !Z>(Br2) > 018^=0 A 2)(Bri) < 0 | B H = O and all the flow crossing Bri and B r2 is going 

out of the bounded region Bri < 0 A B r2 > 0. 

4. 2>(Br2) > 0|Br2=o A D(Br\) < 0|Br]=o and all the flow crossing Bri and B r2 is going 

inside the bounded region Bri > 0 A B r2 < 0. 

Assume that all flows crossing Bri and B r2 are going inside a bounded region and 

that this bounded region does not include a fixpoint, then, we will have at least a function 

with (D(Br^) = £fir3, confined in the region and connecting the initial and final regions, 

hence leading to contradiction. Similar argument for the case where all flows are going 

outside the bounded region. 

It is worth noting that this method gives sufficient condition to prove the existence 

of a reachable flow. This is a loose condition for the sufficient condition which states 

that a reachable flow exists in the confined region if there exists 2?(F) = 0 in that region. 

However, this latest condition is hard to implement as such a condition corresponds to 

finding a first integral as discussed in Section 5.1.3. We limit ourselves in this thesis to 

the first sufficient condition only. 
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Example 5.2.3. Consider the non-linear circuit shown in Figure 5.2(a), connected to dif­

ferent current sources with the voltages across the capacitors c\ and c% described using 

ODEs, respectively, as follows: 

x\ — 3(x2 — 4) and ±2 = 3 +x\X2—x\ 

Suppose we provide the initial condition B,„ := ( -1 + xi )2 + ( -4 + X2)2 < 0.5. We want 

to verify the following property 

3FB / n 

where 

B / n := (2 + x,)2 + (-1.8 + x2)2 < 0.5 

Using quantified constraint solving capabilities in Mathematica, we constructed the fol­

lowing bounds: 

Bi :=2.4 + 89x2 + 235.8x2 = 1000 

and 

B 2 : = - 7 4 x i + 1.3x^ = 130 

Therefore, we can deduce that the reachability property will indeed be satisfied (a sample 

reachable trajectory is shown inside the region Figure 5.5). 

Sometimes constraint based verification fails to provide answers for the verification 

problem due to several reasons: 

1. The above mentioned verification methods are not complete in general. 

2. Sometimes the constraint solver fails to provide an answer (e.g., not able to con­

struct bounds for reachability). 

3. More complex properties like oscillation cannot be proved using the above method. 

We complement the approaches described in this section, by the predicate abstrac­

tion method allowing conventional model checking to be applied. In the next section, we 

134 



Figure 5.5: Reachability (Example 5.2.3) 

will describe how to find useful predicates of the abstract states to refine the regions of 

interest, and to identify rules to build transitions between the abstract states. Symbolic 

model checking can then be applied on the constructed model. 

5.3 Predicate Abstraction 

5.3.1 Abstract State Space 

In general, the effectiveness of the predicate abstraction method depends on the choice 

of predicates. In addition to using Darboux predicates as described in Section 5.1.3, we 

choose predicates identified in the properties of interest. In addition to temporal property 

predicates, basic ideas from the qualitative theory of continuous systems can be adapted 

within the predicate abstraction framework. The termination of the predicate generation 

phase is not necessary for creating an abstraction. We can stop at any point and construct 

the abstract model. A larger predicate set yields a finer abstraction as it results in a larger 

state space in the abstract model. 

We define first the notion of critical point as follows: 

Definition 5.3.1. A fixed point is a point at which the vector field vanishes. For the ODE 
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system x = P(x(f)), we look for solutions x(t) = v ,veK" such that P(v) = 0. 

A set of predicates can be constructed using the notion of critical forms, which are 

special functions along which, the vector field direction is either vertical or horizontal. In 

between these forms, there can be no vertical nor horizontal vectors. In a region (abstract 

state) determined by the critical forms, all vectors follow one direction. These predicates 

can be obtained easily by setting x = 0. 

A generalization of critical forms is the concept of isoclines. Isoclines are functions 

over which the system trajectories have a constant slope. 

Definition 5.3.2. A predicate n is an isocline of ODEs system if and only if 3a,- G M with 

i = 1,... d such that 

Ef=1a^-(x)U = 0 

Isocline and critical forms provide qualitative information about the system be­

havior. Hence, such information can be used in refuting certain behavior that is shown 

unreachable. For instance by knowing different constants a,-, we deduce the direction 

of the flow crossing the isoclines and therefore we decide how to build transitions be­

tween abstract states. Finding different isocline predicates within an invariant region can 

be achieved by solving constraints on the parameters of predefined forms of an isocline 

predicate. 

Another kind of predicate, we propose, is referred to as a conditioned predicate. 

These predicates have the property that under specific conditions, they provide certain 

information about the solution flow. For instance, consider the 3-dimensional system 

with the state variables x,y,z. and the property predicate z > 1. We can construct another 

predicate that intersects z > 1 at a specific condition, say | = 0. Then, the new predicate 

is of the form 

y-(z-l)x = 0 

These kind of predicates are important during refinement, when an abstract state needs 

to be subdivided into a new set of abstract states. The conditioned predicates are defined 
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formally as follows: 

Definition 5.3.3. A predicate 71 is a conditioned predicate of an ODEs system with con­

ditions T\,..., Fd, if it is of the form 

E { L I W 0 | W = O 

where the conditions T,- are polynomials with i=l,...d and d is the system dimension. 

Example 5.3.1. Consider the analog circuit in Example 5.1.1. The critical forms pred­

icates are p\ := x\, P2 := x%, pj, := l—x\ and P4 :— I +x\, as shown in Figure 5.6.a. 

For illustration purposes, we choose two isocline predicates ps :— x\ — x\ -\-x\ and pe := 

x\ —• x^ — x\ as shown in Figure 5.6.b. Suppose, we wish to verify a property includ­

ing the predicate p~j :— x^ — x\ > 0.3. We can construct the conditioned predicate p% := 

x'2 — (x2 — x\ —0.3)^i = 0 as shown in Figure 5.6.c. To build the abstract state space, 

we have three invariant regions and eight predicates. As certain combination of predi­

cates are infeasible, the number of abstract states is < 28 abstracts states. In fact, region 

R\ = j \ > 0 A J2 > 0 is subdivided into 29 abstract states. 

(a) Critical Forms Predicates (b) Isocline Predicates (c) Conditioned Predicates 

Figure 5.6: Predicates for the Circuit in Figure 5.2.a 

Other methods for finding useful predicates were developed in [106], where the 

authors proposed a way to extract predicates from polynomial ODEs by looking at higher 
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derivatives. If p 6 P, then add p, the derivative (with respect to time) of p, to the set P 

unless p is a constant or a constant factor multiple of some existing polynomial in P. 

5.3.2 Computing Abstract Transitions 

One main issue in constructing abstract state transition systems is the identification of the 

possible transitions. As we divide the state space into invariant regions, we need only to 

construct transitions between abstract states within a region. Therefore, we do not need 

to construct an abstract model for the whole state space. In general, information from 

the solution of the ODEs is required to describe transitions between abstract states. In 

practice, the abstract transition relation is initialized to the trivial relation relating all states 

and then stepwise refined by eliminating unfeasible transitions. This guarantees that any 

intermediate result represents an overapproximating abstraction and the refinement can 

be stopped at any point of time. In the remainder of this section, we use a set of different 

rules to construct transitions between abstract states. 

The simplest rule to use is the Hamming distance rule [106]. The Hamming dis­

tance (HD) is the number of predicates for which the corresponding valuations are differ­

ent in different abstract states. For instance, the Hamming distance between state s\ := 

(p\ = 1 Ap2 = 0A/?3 = 1 Ap4 = 1) and s ta tes := (pi = 1 /\p2 = 0A/?3 = 0Ap4 = 1) 

is 1, written HD(si,S2) = 1. Given two abstract states s\ and S2, we say that a transition 

can exist between two abstract states only if HD{s\,S2) = 1. The next rule we apply is 

based on the generalized mean value theorem [40], which is an extension of the mean 

value theorem (MVT) for n-dimension (See Definition 4.1.1, Chapter 4). 

We use quantified constraint based methods to check whether the MVT condition 

is satisfied between two abstract states. If the MVT is not satisfied, we deduce that no 

transition exists between the two states. The above rules give an over-approximation of 

the transition system as no information about the vector field direction is used. In order 

to remove such redundant transitions in the region of interest, we complement the above 

rules by applying the intermediate value theorem (See Definition 4.1.2, Chapter 4) as a 
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way to identify the flow direction. In the context of abstraction, a transition between two 

abstract states exists if a predicate valuation changes during the execution over an interval 

domain. This can be checked using the intermediate value theorem. 

5.3.3 Abstract Model Refinement 

In general, if the abstract model is not suitable for the property analysis, then a global 

refinement procedure is required in order to increase the precision of the model. In fact, 

the refinement procedure is applied iteratively until verification reveals whether or not the 

property in question is satisfied. Practically, this is based on the abstract counter-example 

validation and refinement as explained in Section 4.3. 

The main task for the counter-example validation procedure is the computation of 

the exact successor states starting from the initialization of the counter-example. The 

outcome of the procedure is either that a bad state is reached or a transition is determined 

to be spurious. Unfortunately, the required concretization of the given counterexample 

adds more trajectories that might not correspond to real ones. Therefore, only an over-

approximation of the exact set of states can be defined. 

The intuitive method to validate a counter-example is based on applying the bounded 

reachability analysis described by Algorithm 1. 

Statement. Given an abstract counter-example trace Q, = (o,x,X) (See Definition 4.3.1, 

Chapter 4) 2 and the trace corresponding to the set of reachable states D. = (a, x, X). Q. is 

a concrete counterpart of £1 if both traces are related according to Definition 4.3.1. 

Because the applied reachability analysis (using Algorithm 1) is time bounded, 

therefore it is not always possible to validate an abstract counter-example. In this case, a 

refinement procedure is required. 

The reachability based validation cannot always establish the nonexistence of an 

abstract transition. However, we propose a practical method to remove redundant transi­

tions by considering a transition across the boundary of two abstract states as a switching 

2In the current definition, x is sequence of steps n € N 
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condition problem as described in Section 5.2.2. 

5.4 Applications 

In Chapter 4, most of the properties we were interested in verifying were positive behav­

iors (e.g., something good will eventually happens like occurrence of oscillation). In this 

chapter we are interested in verifying safety properties (e.g., something bad will never 

happen such as transistor will never go to a certain mode of operation). In this respect, 

we apply the verification methodology proposed in this chapter to a variety of circuits 

including a BJT Colpitts circuit, a Tunnel diode oscillator in addition to other basic RLC 

circuits. Implementation details are described in Appendix A. 

5.4.1 BJT Colpitts Circuit 

In order to understand the circuit behaviour, it is important to identify the different modes 

of operations of the transistor when connected with other circuit components. Circuit 

analysis is usually done by hand as simulation data is not conclusive. We can apply con­

straint solving to ensure that the transistor will never go into a specific mode of operation. 

Consider the BJT based Colpitts oscillator shown in Figure 5.7. Correct function­

ality ensures that the BJT will never go into saturation region [64]. In fact, the BJT will 

either be in the Cut-off mode or Forward active mode. The state space is subdivided into 

four regions according to the BJT modes of operations (Cut-off, Reverse active, Forward 

active and Saturation) with threshold voltage Vth — 0.75. For instance, the property that 

no transition can occur from Forward active (m\) to Saturation (m^), can be validated by 

proving that VG Vc2 < 0.75 A Vcr + Vc2 < 0 is False, where Vc, and Vq, are voltages across 

the capacitors C\ and C2. 
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Vcc 

Figure 5.7: BJT Colpitts Circuit 

5.4.2 Non-Linear Analog Circuit 

Consider the circuit in Example 5.1.1, with initial conditions x\(0) € [—0.7,-1.1] and 

*2(0) <E [0.5,0.9]. We want to verify the following VCTL property on the set of trajecto­

ries: 

V F f P : = x ? + x 2 - 3 > 0 

which can be understood given the set of initial conditions, on every computation path, 

in the future the vector field will always cross a threshold condition. We already verified 

in Example 5.2.1 that this cannot happen for the initial conditions inside Region R\, but 

with the invariant checking method used, we could not deduce information regarding the 

behaviour in region R3. After providing the required set of predicates, we only construct 

corresponding abstract state transition graphs (ASTG) for regions R\ ,Rs. Using the SMV 

model checker [22], we find that given the initial conditions such property will be indeed 

satisfied in region Rj. 

5.4.3 RLC Circuit Oscillator 

Checking for occurrence of oscillation is not always possible using predicate abstraction, 

due to the difficulty of generating an abstract model with no spurious transitions. In some 
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cases we succeeded in accomplishing the verification. 

We verified the oscillation property for the circuit shown in Figure 5.8(a), with 

non-linear voltage source vs and non-linear current source cs described using ODEs, re­

spectively, as follows: 

/; = -Vc ~ \v? and Vc = -27, -lf + if 

After that we generate using Mathematica the following invariants: 

jl = i-sif-isif+v! + ̂  + ^ 

We can therefore construct two invariant regions Rl := j \ < 0 and R2 := j \ > 

0. Given the state space and invariant regions as shown in Figure 5.8(b), we verify the 

following VCTL property on the set of trajectories: 

VG(VF(VC > /,)) A VG(VF(VC < /,)) 

which can be understood as on every computation path, whenever the capacitor voltage Vc 

value exceeds the inductor current value //, it will eventually decrease below 7/ again and 

vise-versa. This property checks for oscillatory behaviour of the circuit. We constructed 

the abstract transition graph for each region and verified the property using SMV. We 

found indeed that the circuit will always oscillate only inside the bounded regions as 

illustrated in Figure 5.8. 

5.5 Summary 

In this chapter, we developed a qualitative verification approach of continuous-time AMS 

designs circuits. The approach is based on abstracting and verifying the qualitative be­

havior of the circuits using a combination of techniques from predicate abstraction and 

constraint solving along with model checking. The principle novelties in this work are: 
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Figure 5.8: Non-Linear Oscillator 

• We adapted the concept of lazy abstraction for the verification of CT-AMS designs. 

To this aim, we identified a set of basic qualitative predicates (Darboux polyno­

mials) as invariance predicates which helps avoid the construction of an abstract 

model for the whole state space. 

• We proposed a constraint solving approach for the verification of safety and reach­

ability properties. This method does not require explicit representation of the state 

space but relies on generating functions that prove or disapprove the properties. 

Our methodology overcomes the time bound limitations of exhaustive methods de­

veloped in related work. 

Up till now, we addressed the verification of CT-AMS designs using a variety of 

model checking techniques. The remaining contribution in the thesis which will be pre­

sented in next chapter, is devoted to the verification of another important class of AMS 

designs, that is the discrete-time(DT) AMS. 

143 



Chapter 6 

Verification of DT-AMS Designs 

In this chapter, we are concerned with the class of AMS designs described using discrete-

time models. This category of designs are usually developed as simulation models at 

a high level of abstraction in order to gain insight at the main properties of the AMS 

systems. In addition, discrete-time models are used to describe the behavior of switched 

capacitor based designs or clocked AMS designs. 

In this chapter, we define a bounded model checking algorithm on the SRE model 

by means of an algebraic computation theory based on Interval Arithmetics [85]. We 

associate the bounded model checking with a powerful and fully decidable equational 

theorem proving method to verify properties for unbounded time using induction. We 

applied the verification on several AMS designs including AZ modulators and switched 

capacitor circuits. 

Our methodology aims to prove that an AMS description satisfies a set of properties. 

This is achieved in two phases: modeling and verification, as shown in Figure 6.1. 

Starting with an AMS description and a set of properties, the symbolic simulator 

performs a set of transformations using rewrite rules in order to obtain the generalized 

system of recurrence equations (SREs). These are combined recurrence relations that 

describe each property blended directly with the behavior of the system. The next step 

is to prove these properties using an algebraic verification engine that combines Bounded 

144 



Model Checking over Interval Arithmetic [85] and induction over the normal structure of 

the generalized recurrence equations. 

D7-AMS Design 

Discrete-Time Digital 
Analog Components 

Temporal 
Property 

I 
. Recurrence ; Symbolic 
• Equations... '• Simulation T ... . ^ . .... 

I Combined SRE 
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Refinement " Model Checking with * 
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Figure 6.1: DT-AMS Verification Methodology 

In summary, the verification loop terminates in one of the following situations: 

• Complete verification: 

- The property is proved by induction for all future states. 

- The property is false and a concrete counterexample is found. 

• Bounded Verification: 

- The resource limits have been attained (memory or CPU) as the verification 

can grow exponentially with the number of reachability analysis steps. 

- The constraints extracted from the interval states are divergent with respect to 

some pre-specified criteria (e.g., width of computed interval states). 

In the following, we will describe the two main verification engines we propose, 

namely bounded model checking using interval arithmetics and inductive verification. 
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We will also provide an algorithmic view of how to combine both of them together as 

proposed in our methodology. 

6.1 The Verification Algorithms 

6.1.1 Interval based BMC 

Interval arithmetics based algorithms are an attractive tool to use in the verification of 

the behavior of systems with uncertainty on the design parameters or initial conditions. 

Interval arithmetics as explained before provide an overapproximation of the possible 

reachable states of the system, hence guaranteeing the soundness of the verification re­

sults. In this section, we propose a BMC verification algorithm for DT-AMS design. The 

algorithm is based on modeling the transition relation as an SRE and modeling the state 

space using intervals. The recurrence model makes it possible to handle continuous be­

haviors like those of current and voltages, but in discrete time, which cover a non-trivial 

class of mixed behaviors. The basics of BMC have already been discussed in Chapter 4, 

Section 4.2. In the following, we will introduce the verification algorithm1. 

The image computation is the set of states reachable during one execution step. 

Definition 6.1.1. Image Computation. 

The set of reachable states in one step from a given set of states Sk C ld, is denoted by 

^i (Sk) and is defined as: 

% (Sk) ± {s' G Sk+l \3se Sk : F (s) = s'} 

where Sk+i C ld, F = (Fh...,Fd) and Ft : l
d -»• I is an interval evaluation of the if-

formula ft: Rd - • R, i G {1, . . .,</}. 

'For compactness purposes, in the remaining of the chapter, we will deal with properties of the form 
Gp{k). Verifying properties of the form Fp(k) can be easily derived. This is due to the duality of the G and 
F operators [23]. 
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The bounded forward reachability algorithm starts at the initial states and at each 

step computes the image, which is the set of reachable interval states. This procedure 

is continued until either the property is falsified in some state or no new states are en­

countered. We evaluate the reachable states over interval domains, at arbitrary time steps, 

according to the following definition: 

Definition 6.1.2. The set of reachable states in less than k steps (0 < / < k), from a given 

set SQ of states, is denoted by ${,<k(So), and is defined as: 

i<k 

The bounded model checking over interval domains is then defined as follows: 

Definition 6.1.3. Interval based Bounded Model Checking. 

Given a natural number k > 0, an interval based state machine 1/ = (5/,5/,o,—>S/) (See 

Definition 3.2.11, Chapter 3), and a property Prop, we say that Prop is verified for k steps 

if: 

Vse2(.k(So):s\=Prvp 

where So is the set of initial states and 9(.k(So) is the set of states reachable from SQ in k 

steps. 

The verification steps for safety properties are shown in Algorithm 8. The AMS 

modeling described as a set of recurrence equations is provided along with the (negated) 

property -iProp[n] under verification. Initial and environment constraints Env-Const are 

also defined prior to the verification procedure described in lines (1-12) as a loop for 

Nmax time steps. At each step n, we check whether the property is satisfied or not (Line 

2). If ->Prop[n] is satisfied then a counterexample is generated (Line 9), if not, then we 

check if fixpoint inclusion is reached (Line 3), otherwise, we update the reachable states 

(Line 11) and go to the next time step of the verification. The functions Pro p.Check, 

Find -Counterexample and Update-Reach are described below. 
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Algorithm 8 Safety BMC 

Require: x[n] 
Require: -iProp(x[n]) 
Require: ^ ° = S0 

Require: Env-Const 
1 
2: 
3 
4 
5 
6 
7 
8 
9 

10: 
11 
12 

for n — 1 to Nmax do 
if PropjCheck(-iProp[n},x[n)) —— False then 

if Reach[T0tAn]] C f^T1 then 
return fixpoint reached 

else 
IncJStep(n) 
^ - \ = Update Jleach{$in-2,Reach[x[n-\}}) 

end if 
else 

FindJCounterexample(~iProp{n] ,x[n], EnvJConst) 
end if 

end for 

Prop.Check: Given the property -iPropQ, apply algebraic decision procedures to check 

for satisfiability. The safety verification at a given step n can be defined with the following 

formula: 

PropJCheck = \[n] = f(x[n - 1]) A -uPrap(x[n]) Ax[n - 1] € Id 

Practically, this can be done using equational theorem proving capabilities as will 

described in Appendix A. 

Update JReach(/?i, R2): This function returns the union of the states in the sets R\ and Ri-

Reach[x[n]] evaluates the reachable states over interval domains at an arbitrary time step. 

Find_Counterexample(-iProp[n],x[n],£nv_Coni,0: This function returns a counterex­

ample indicating a violation of the property within the environment constraints (cf. Ap­

pendix A). 
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Setting bounds on the maximum number of iterations ensures that the algorithm 

will eventually terminate with one of the following possibilities. If at a given time step 

" < Nmax,
 n o n e w interval states are explored, then fixpoint inclusion guarantees that the 

property will be always satisfied; otherwise, if the property is proved to be incorrect, 

then a counterexample is generated. If we reach the maximum number of steps n — Nmax, 

and no counterexample is generated, then the property is verified up to bounded step Nmax. 

Example 6.1.1. Given the AS design and the safety property in Example 3.4.1, we apply 

Algorithm 8. For instance, the correctness of the property P(k+ 1) depends on the param­

eters A,B and C shown in Figure 3.5, the values of variables x\ (k), X2(k) and x^(k), the 

time k, and the input signal u(k) (See Table 6.1). Using an implementation of the Algo­

rithm 8 in Mathematica, we verify the AZ modulator for the following set of parameters 

inspired from the analysis in [50]: 

I a = \ a\= 0.044 a2 = 0.2881 a3 = 0.7997 

b\= 0.07333 b2 = 0.2881 fc3 = 0.7997 

C\ = \ C2 = 1 C3 = 1 

The initial constraints define the set of test cases over which interval based simu­

lation is applied. If the property is false, as in the first and third cases in Table 6.1, then 

the verification is completed and a counterexample is generated from the simulated in­

tervals. On the contrary, when the property is True, we have a partial verification result 

as it is bounded in terms of simulation steps. The second case in Table 6.1 illustrates 

this limitation. Counter-examples on the third column are generated using the function 

Find-Counterexample^.). 

Unfortunately, we note that in some cases (last row in Table 6.1), divergence hap­

pens quickly, so we cannot deduce useful information on the property. We tackle this 

problem by extending the bounded model checking with an induction engine as proposed 

in the methodology. 
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Table 6.1: Interval Based BMC Verification Results for AE Modulator in Example 6.1.1 

Initial 
Constraints 

0.028 <* i (0 )< 0.03 
-0.03 < x 2 ( 0 ) < - 0 . 0 2 

0.8<*3(0) < 0.82, u:= 0.8 
0.012 < x i ( 0 ) < 0.013 

0.01 < x2(0) < 0.02 
0.8<*3(0) < 0.82, u := 0.54 

0.163 < * i ( 0 ) < 0.164 
-0.022 < *2(0) < -0.021 

0.8<x3(0) < 0.82, u:= 0.6 
0.012 < x i ( 0 ) < 0.013 

0.01 <x 2 (0 )< 0.02 
0.8 < x3(0) < 0.82, 0.58 < u < 0.6 

Property Evaluation 
for n = 0 to Nmax Cycles 

Nmax = A0 

« = 0tol5True 
n > 15 False 
Nmax = 38 

True 

Nmax = 40 
« = 0to 17 True 

n > 17 False 
Divergent at 
Timestep 4 

CPU Time Used 
Counter-Example 

1.5 sec 
x\ [16] t-> 0.263 

*2[16]t-> 1.25, *3[16]i-> 2.42 
31 sec 

0.8 sec 
xx [19] t-4 0.163 

*2[19]i-* 0.88, *3[19] t->2.47 
0.5 sec 

6.1.2 Constrained Induction based Verification 

In formal verification, induction has been used to prove a property P in a transition sys­

tem by showing that P holds in the initial states of the system and that P is maintained 

by the transition relation of the system. In the following, we will define an induction en­

gine over SREs for the safety property verification of AMS designs. The inductive proof 

for verifying a safety property P(n) = Gp(n) can be derived by checking the formula 

JndpWof = Vfbase A yindue* where ytbase is the induction base and \\fi„duc is the induction 

step defined as follows: 

Vbase - Vs € SQ : I (so) =*> p(s0) 

and 

Vindue - Vsk,sk+\ € S : T(sk,Sk+\)Ap(sk) => p(sk+i) 

The core of the induction engine is a decision procedure function that checks satis­

fiability of algebraic formulas under certain constraints on quantified state variables. 
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Definition 6.1.4. The Prove Function. 

Prove(quant(X,cond,expr)) = 

If(Prop-Verify(quant (X, cond ,expr))) = True, 

True, 

Find-Counterexample(cond A -*expr) 

The decision procedure function Prove tries to prove a property of the form quant (X, 

cond,expr), using PropJ/erify, otherwise it gives a counterexample using the function 

Find-Counterexample, where quant € {V, 3} define quantifiers over a set of state vari­

ables x, cond is a logical combination of comparison formulae constructed over the vari­

ables x describing initial and environment constraints and expr is an If-formula expression 

representing the property of interest, obtained after applying the symbolic rule outlined 

earlier. 

Similar to PropJCheck, PropJ/erify applies algebraic decision procedures to check 

for satisfiability, but for all time steps n. The safety verification can be defined with the 

following formula: 

Prop-Verify = Vn.(x[/i] = SRE(x[n})) AProp(x[n}) 

The Prove Function uses Find-Count erexampie (cond A -^expr) to generate a counterex­

ample if the property of interest cannot be proved to hold. If a proof cannot be obtained, 

then we may need to find a particular combination of inputs and local signals values for 

which the property is not satisfied. 

The properties verification using Prove starts by checking the validity at time t — 1, then 

at time t — n assuming the properties are satisfied at time t = n — 1. Case splitting divides 

the property into subproperties for which validation results are conjuncted to check the 

validation of the original property. 

Let P be a property of the form quant(X, cond, expr). We define the function Split-

Prove that depending on the If-formula structure of expr, applies the function Prove or 
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splits the verification. SplitProve is defined recursively as follows: 

Definition 6.1.5. The SplitProve Function. 

According to the nature of expr, SplitProve can be one of the following: 

• expr is a comparison formula C, SplitProve(quant(X, cond,C)) — 

Prove(quant(X, cond, C)) 

• expr is a logical formula of the form aob, with • € {->, A, V,©,...} and a,b are 

If-formulae that take values in B 

SplitProve (P)) ^ 

SplitProve(quant(X,cond, a)) 

o 

SplitProve{quant{X, cond, b)) 

• expr is an expression of the form IF(q, I, r) SplitProve(P) — 

SplitProve(quant(X, cond /\q,l)) 

V 

SplitProve(quant(X, cond A -iq, r)) 

According to algebraic laws of the quantifiers, we have the following four cases: 

• For a A b and quant := 3 

Split Prove(P)) => 

SplitProve(3(X, cond, a)) 

A 

Split Prove (3(X, cond, b)) 

• For a A b and gwanf := V 

SplitProve{P)) <& 
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SplitProve(V(X, cond, a)) 

A 

SplitProve(V(X, cond, b)) 

• For a V b and quant := 3 

SplitProve(P)) 4$ 

SplitProve(3(X, cond, a)) 

V 

Spl it Prove (3(X, cond ,b)) 

• For a V b and quant := V 

Split Prove (P)) =^ 

SplitProve(V(X, cond, a)) 

V 

SplitProve(V(X,cond, b)) 

Let P(n) be the recurrence equation of the property P written as an If-formula. Let 

condno be the initial condition at time no, condn the constraints that are true for all n > no, 

and X the set of dependency variables of P{n). The proof by induction over n is defined 

as follows: 

Definition 6.1.6. Proof by Induction. 

Split Prove(ForAll(Xno, cond^, P(no))) 

A 

SplitProve{ForAll{n > no/\X„,n € Nt\condn AP(n),P(n+ 1))) 
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Example 6.1.2. We verify the AZ modulator in Example 3.4.1 for two sets of parameters 

inspired from the analysis in [50]: 

Param\ 

a=\ ax= 0.044 a2 = 0.2881 a 3 = 0.7997 

bx = 0.044 b2 = 0.2881 b3 = 0.7997 

C\ = 1 C2 = 1 C3 = 1 

Parami • 

a=\ a\= 0.044 a2 = 0.2881 a 3 = 0.7997 

fei = 0.07333 fc2 = 0.2881 fc3 = 0.7997 

Cl = 1 C2 = 1 C3 = 1 

We apply the induction implemented in Mathematica, in order to verify the AE 

modulator stability for the above sets of parameters and for two cases of conditions (state 

space constraints). Table 6.2 summarizes the verification results. The property is True if 

it is proved under the set of conditions and the set of parameters for all k > 0. If there is 

no k for which the property is valid then it is False, and a counterexample is provided. 

When the property is valid for some values of k and not for other values, we say that the 

property is not proved and counterexamples are provided. 

6.2 d-Induction BMC Methodology 

The proposed verification algorithm is based on combining induction and bounded model 

checking to generate a correctness proof for the system. This method is an algebraic 

version of the induction based bounded model checking developed recently for the ver­

ification of digital designs [6]. We start with an initial set of states encoded as intervals 

as shown in Figure 6.2. Then iteratively the possible reachable successor states from 

the previous states are evaluated using interval analysis based computation rules over the 

SREs, i.e., the output of this step is an If-formula where all variables are substituted by 

intervals. If there exits a path that evaluates the property to false, then we search for a 
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Table 6.2: Induction based Verification Results for AZ modulator in Example 6.1.2 

easel 

case2 

State Space 
Constraints 
Values at t=0 

0 < * i ( 0 ) < 0.01 
- 0 . 0 1 < x 2 ( 0 ) < 0 

0.8 <x 3 (0 )< 0.82, u:= 0.6 
Values at t=n 

-0.1 <*i( / i )<0.1 
- 0 . 5 < x 2 ( « ) < 0 . 5 

0.5<x3(«) < 1 . 5 , K : = 0 . 6 
Values at t=0 

0 < x i ( 0 ) < 0 . 0 2 
-0.03 <x2(0)< -0.01 
1 <*3(0) < 1.4, w:=0.8 

Values at t=n 
-0.1 <Xi(n)<0.l 
- 1 <x2(n) <0.5 

- l < x 3 ( n ) < 2 . 5 , w:=0.8 

Property with 
Paranii 

True 

False 

x2[k]>-* 0.4237 
*3 [*:]>-> 1-8378 

Property with 
Parani2 

True 

False 

x2[k]t-+ 0.2103 
x3[k}^2 

concrete counterexample. Otherwise, if all paths give true, then we transform the set of 

current states to constraints and we try to prove by induction that the property holds for 

all future states. If a proof is obtained, then the property is verified. Otherwise, if the 

proof fails then, the BMC step is incremented; we compute the next set of interval states 

and the operations are re-executed. 

6.2.1 d-induction 

In formal verification, induction has been used to prove a property GP(n) in a transition 

system by showing that P holds in the initial states of the system and that P is main­

tained by the transition relation of the system. As such, the induction hypotheses are 

typically much simpler than a full reachable state description. Besides being a complete 

proof technique, when it succeeds, induction is able to handle larger models than bounded 

model checking, since the induction step has to consider only paths of length 1, whereas 
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ombined 
SRE 

Initial 
conditions 

-*••' BMC Step 
L . ' - False 

True 

Next interval 
states Extract constraints b 

i Divergence 

Proof by induction 

Counter-Example 
Provided 

Property is verified 
for a bounded time 

Proved True 

Property is verified 
for a unbounded time 

Figure 6.2: Overview of the Verification Algorithm 

bounded model checking needs to check sufficiently long paths to get a reasonable confi­

dence. Hence, simple induction is not powerful enough to verify many properties. 

d-induction [6] is a modified induction technique, where one attempts to prove that 

a property holds in the current state, assuming that it holds in the previous d consecu­

tive states. Essentially, induction with depth corresponds to strengthening the induction 

hypothesis, by imposing the original induction hypothesis on d consecutive time-frames. 

Given a state transition system (S,/, I"), where S is the set of states, / C 5 is the set of 

initial states, 1 C S x S, the d-induction proof is defined as 

d - Indproof = Vd-base A Vd-induc 

where Vd-base is the induction base and ^fd-induc is the induction step defined as follows: 

d-\ d 

VbaSe=l(so)/\ A T ( j i , * i+ l ) => f\p(Si) 
i'=0 !=0 

and 
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k+d k+d 

Vd-induc = A f f a i ^ i + l ) A A P(si) =*" P(5*+rf+l) 
i=k i=k 

It is worth noting that when d = 1, we have exactly the basic induction steps defined 

in classical induction. 

Similar to the general induction methods, (un)satisfiability based induction d — 

Indsat is the dual of the induction proof -ilndsat = d — lndproof. Checking the formula 

d - Indsat = §d-base V §d -indue f° r unsatisfiability, where the formulas §d-base (the base 

step) and §d-induc ( t n e induction step) are defined as follows: 

d-\ d 

§d-base = I(SQ) A A T(Si,Si+i)A \f -ipfa) 
(=0 !=0 

and 

k+d k+d 

§d-induc = A ^(si,Si+\)/\ A P(si) A ~'P(sk+d+\) 
i=k i=k 

The d-induction based verification (Algorithm 9 as in [6]) is an incremental algo­

rithm, where the depth bound d (Line 10) is incremented at each step and induction (Lines 

3, 6) is applied on the new formulas until a d-length counterexample is generated (Line 

4) or the property is proved over a suitable length (Line 7). 

Algorithm 9 d-induction based procedure [6] 

1 

2 
3 
4 
5 
6: 
7: 

9 
10: 
11 

initialize d — 0 
for d = 0 to dmax do 

it <^d-base is Trm then 
return counterexample 

else 
if §d-induc is False then 

return verified 
end if 

end if 
d = d+l 

end for 
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The advantage of d-induction over classical induction is that it provides the user 

with ways of strengthening the induction hypothesis by lengthening the time steps d com­

puted. Practically speaking, ^a-base is a bounded model checking (BMC) as defined ear­

lier in this section. For the case of systems with variables interpreted over real domains 

like AMS designs, the satisfiability of the formulae with a given set of initial conditions, 

requires algorithms to produce bounded envelopes for all the reachable states at the dis­

crete time points. 

6.2.2 Combining d-induction and Interval based BMC 

The d-induction based verification algorithm is an incremental algorithm, where depth is 

incremented at each step and induction is applied on the new formulas until a d-length 

counterexample is generated or the property is proved. The verification steps are given in 

Algorithm 10. 

The AMS model described as a set of recurrence equations is provided along with 

the (negated) property -^Prop[n\ under verification. Initial and environment constraints 

are also defined prior to the the verification procedure described in lines (1-18) as a loop 

of depth Nmax steps. For each depth d < Nmax, we first check the initial d-induction step 

by verifying whether the property is verified for all steps up to this depth d (Line 3). If the 

property is false, we generate a counterexample (Line 4). Before checking the induction 

step (Line 10), we verify whether an inclusion fixed point is reached. If so, the verification 

ends as it will be trivial to check for the induction step as no new verification information 

can be implied. When we apply the induction step, either the property is verified for un­

bounded time (Line 11), otherwise, we conclude that the current depth is not enough to 

verify the property and the depth in incremented (Line 14). 

It is worth noting, that constraints used in the induction steps are extracted from the 

previous reachable states. Hence, we strengthen the induction hypothesis by lengthening 

the time steps d computed. In case a counterexample needs to be generated, the extracted 
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Algorithm 10 d-induction based BMC 

Require: x[n] := SRE(A) 
Require: ->Prop{x[ri\) 
Require: %? = 50 

Require: EnvJOonst 
initialize d — 1 
for d = 1 to Nmax do 

if Prop-Check^ /\f=QProp[i],x[n]) == True then 
Find-Counterexample(->Prop\n],x\n\, Env-Const) 

else 
if Prop-Check(-iProp[d],x[d]) = = Fa/se then 

if/teacA[x[d]] C ^ ~ 1 then 
return fixpoint reached 

else 
if Prop-Verify(-n/\^Prop[i\,f\f^x[i\) = = Fa/se then 

return verified 
end if 

end if 
IncJStep(d) 
f̂ ™-1 = Update-Reach($C-2,Reach[x[n- 1]]) 

end if 
end if 

end for 
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constraints allow for finding a partial path violating the property. 

Setting bounds on the maximum number of iterations ensures that Algorithm 10 

will eventually terminate in one of the following possibilities. If the initial induction 

step fails, a counterexample is generated; otherwise if at a given time step n < Nmax, no 

new interval states are explored, then fixpoint inclusion guarantees that the property will 

be always verified. In this case, the induction step is verified as true, and the algorithm 

terminates. Otherwise we increase the induction depth and restart the verification. If we 

reach the maximum number of steps n — Nmax, and no counterexample is generated, then 

the property is verified up to bounded step Nmax. 

6.3 Applications 

We have applied the verification methodology proposed in this chapter to different classes 

of DT-AMS designs spanning various design levels, e.g., AT modulator at the functional 

level, digitally controlled analog computers at the macromodel level, and switched capac­

itor designs at the circuit level. 

We implemented the algorithms described in this Chapter in Mathematica. As an in­

put to the algorithms, we supply the recurrence equations and the initialization constraints 

(plus environment constraints for the induction method). The output is either a message 

signaling that verification succeeds, divergence occurs (only in BMC or D-induction ver­

ification) or a counter-example is provided. 

6.3.1 Third-order AZ Modulator 

We extended the verification results outlined throughout the chapter and summarized in 

Tables 6.1 and 6.2 by applying the d-induction algorithm to verify the stability of the third-

order AE modulator for different combinations of design parameters, inputs and initial 

conditions. Using a Mathematica implementation for Algorithm 10, we were able to prove 
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properties using the inductive BMC method, that we were unable to verify perviously 

using the conventional BMC method. In row 2 (Table 6.1), we were able only to verify 

the property for a bounded time step, with the d-induction BMC method, however, we 

were able to prove that the property will always hold (second row with parami in Table 

6.3). On the other hand, in row 4 (Table 6.1), the divergence occurs quickly, however, the 

property is proven True as shown in Table 6.3, row 4 with parani2. On the other hand, 

when comparing the d-induction verification results with the induction based verification 

results in Table 6.2, we get the expected results with the exception of Table 6.3, row 2 

with param\. The verification in Table 6.2 (Case2 with param\) identifies a counter­

example, while in Table 6.3, we were unable to complete the verification because of 

divergence of the interval calculations. The fact that simple induction was successful was 

due to an appropriate choice of environment constraints which are supplied manually, 

unlike in d-induction, where the constraints are extracted automatically from previous 

verification steps. A better implementation of interval arithmetics would allow therefore 

an enhancement in the verification results. 

6.3.2 Non-Linear Voltage Switching Circuit 

We studied the applicability of our methodology to the verification of a simple non-linear 

analog computer constructed from different components like opamp and voltage mul­

tipliers (Figure 6.3). For instance, a voltage multiplier is a non-linear analog system, 

which can be constructed using voltage controlled current sources like transconductance 

as shown in Figure 6.3.b followed by current to voltage converters. The design under ver­

ification is shown in Figure 6.3.a. We propose a circuit where the positive and negative 

feedbacks are externally controlled digitally, hence providing different configurations of 

the circuit. The circuit extends the design in [38] by adding a positive feedback section 

and supporting voltage multiplication making the circuit verification more challenging to 
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Table 6.3: d-induction BMC Verification Results for AZ modulator 

Design 

Param\ 

Paramt 

State Space 
Constraints 

Verification 
Results 

Verification 
Details 

Third order AE modulator 
0<x i (0 )<0 .01 

- 0 . 0 1 < x 2 ( 0 ) < 0 
0.8 <x 3 (0 )< 0.82, M:= 0.6 

0 < xi (0) < 0.02 
-0.03 <x 2 (0 )< -0.01 
1 <*3(0)< 1.4,«:=0.8 

0<x i (0 )<0 .01 
-0.01 < x 2 ( 0 ) < 0 

0.8 <x 3 (0 )< 0.82, u:= 0.6 
0.012 < xi (0)< 0.013 
0.01 <x 2 (0)<0.02 

0.8<x3(0) < 0.82, u:= 0.54 
0<x i (0 )<0 .02 

-0.03 < x 2 ( 0 ) < - 0 . 0 1 
1 <* 3 (0 )< 1 . 4 , M : = 0 . 8 
0.012 < XI (0)< 0.013 
0.01 <x 2 (0 )< 0.02 

0.8 < x3(0) < 0.82, 0.58 < u < 0.6 

Proved True 
by d-induction 

Proved True 
by BMC 

then divergent 
Proved True 

by d-induction 

Proved True 
by d-induction 

Proved False 
by Counterexample 

Proved True 
by d-induction 

k-step= 3 

k-step= 14 

k-step= 3 

k-step= 3 

k-step= 16 

k-step= 3 

achieve. The circuit SRE is described as follows: 

v2[n+l] = if[vd[n],times[vl[n],vO[n]],times{—2,vl[n}]] 

vin[n+ 1] = divide[(times[r\[n],v2[n+ 1]]), (plus[1000,r\[n]])] 

v0[n + 1] = divide[(times[vin[n + 1], (plus[r2[n], 1000])]), r2[n]]] 

rl[n+l] = if[rdl[n],a,b] 

r2[n + l] = if[rd2[n],c,d] 

where vl[n] is the input signal, a,b,c,d are different resistors values, chosen according 

to the logical conditions rd\[n] and rdl[«], which can be specified using a controller. 

Suppose we want to check the bounds on output voltage amplitude. We need to make sure 
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that a correct controller will ensure that the output voltage will never increase infinitely 

and will always be within certain range. This can be written as: 

G(P(k) = - 5 < Vo{k) < 5) 

After symbolic simulation, we obtain the following SREs. 

rl(n)r2(»)v0(n)vl(n) , 1000rl(/t)v0(n)vl(n) 

-5<if[vd(n),-
rl(rc)+1000 • + • rl(rc) + 1000' 

r2(n) 
2rl(n)r2(n)vl(n) 2000rl(n)vl(n) 

rl(n)+1000 rl(rc) + 1000 •, , 

r2(/i) J -

We choose several selector control frequencies to control the resistor as well as the 

input signal. The verification results for a different set of variable resistors ({250,500,1000, 

2000}), initial values and inputs are shown in Table 6.4. 

(a). Main Circuit (b). Voltage Multiplier 

Figure 6.3: Digitally Controlled Analog Computer 

6.3.3 Discussions 

In this section, we highlighted some experimental studies we conducted on different 

classes of AMS designs that can be described using the SRE model proposed in this 

thesis. From the experimental results, we observed that the choice of the initial intervals 
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Table 6.4: d-induction BMC Verification Results for Analog Computer 

Design 

Parm-sl 

Parm-s2 

Parm-s3 

Parm-s4 

State Space 
Constraints 

Verification 
Results 

Verification 
Details 

Digitally Control Analog Computer 
- 0 . 5 < v l ( 0 ) < 1 . 5 
0.02 < v0(0) < 2.21 

0.1 < v2(0) < 0.2, a,b,c,d £ {500,2000} 
- 0 . 5 < v l ( 0 ) < 1 . 5 
0.02 < v0(0) < 2.21 

0.1 < v2(0) < 0.2, a,b,c,d € {500,2000} 
- 0 . 5 < v l ( 0 ) < 1 . 5 
0.02 < v0(0) < 0.21 

0.1 < v2(0) < 0.2, a,b,c,d e {500,2000} 
- 0 . 5 < v l ( 0 ) < 1 . 5 
0.02 < v0(0) < 0.21 
0 .1<v2(0)<0.2 

a,b,c,d£ {250,1000,500,2000} 
- 0 . 5 < v l ( 0 ) < 1 . 5 
0.02 < v0(0) < 0.21 

0.1 < v2(0) < 0.2, a,b,c,d G {500,2000} 
- 0 . 5 < v l ( 0 ) < 1 . 5 
0.02 < v0(0) < 0.21 

0.1 <v2(0)<0.2 
a,b,c,d £ {250,1000,500,2000} 

Proved False 
by Counterexample 

Proved False 
by Counterexample 

Proved True 
by BMC 

then divergent 
Proved True 

by d-induction 

Proved True 
by d-induction 

Proved True 
by d-induction 

k-step= 10 

k-step= 2 

k-step= 22 

k-step= 3 

k-step= 3 

k-step= 3 

for the parameters and the state variables affect greatly the divergence, rather than the size 

of the designs (number of equations). This is due to the over-approximation nature of the 

interval arithmetics. We have used some simplification rules such as the Horner rule in 

order to have a better narrow bound for the reachable states. 

6.4 Summary 

In this chapter, we have defined and implemented an induction based bounded model 

checking technique that traverses the structure of the normalized properties and provides 

a formal correctness proof or a counterexample, otherwise. Image computations have 
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been achieved using interval arithmetics over these symbolic expressions. We have im­

plemented our methodology using standard libraries for symbolic computation available 

in Mathematica, allowing the development of a fully automated verification engine. Ex­

perimental results have shown the feasibility of the approach. To the best of our knowl­

edge, this is the first proposal for a d-induction approach for the verification of analog and 

mixed signals designs. 
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Chapter 7 

Conclusion 

The need for formal verification methods in the design flow of embedded systems is be­

coming more of a requirement rather than a luxury. That was motivated by the previous 

successes in the verification of corner cases in digital designs and the tight time-to-market 

constraints. In fact, the verification of AMS designs is a great challenge because of two 

main obstacles: infinite continuous state space and the density of the time space. In this 

thesis, we have presented a formal verification methodology that addresses both obstacle. 

We proposed a recurrence equation (SRE) modeling framework for AMS designs 

based on the concept of generalized If-formula. Such model is adequate to describe the 

designs at several levels of abstraction and well suited for symbolic analysis in addition 

to formal verification. In fact, generalized system of recurrence equations (SREs)are a 

mathematical model that can represent both the digital behavior using If-formulae and 

the analog continuous state space using symbolic algebra. The symbolic computation 

algorithm produces a set of recurrence relations for each property that we wish to verify. 

For discrete-time systems, the design equations can be directly expressed by the SRE; 

while for continuous-time systems, a Taylor polynomials based approximation is applied 

with the necessary conditions to ensure preservation of the original behavior of the design. 

For the verification, we developed bounded model checking algorithms for continuous-

time AMS designs. We have proposed a semi-symbolic modeling of the state space using 
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the principle of Taylor models which provide a way for representing a combination of 

representations using a combination of polynomials and interval terms. The main advan­

tage of such modeling is the fact, that the polynomial representation helps slowing the 

divergence due to the over-approximated intervals. Moreover, the interval part provides 

an important abstraction to handle the continuous behavior. 

To overcome the time bound limitations of exhaustive methods associated with the 

bounded verification presented, we complement the approach with a qualitative abstrac­

tion verification approach. The approach is based on abstracting and verifying the qualita­

tive behavior of the circuits using a combination of techniques from predicate abstraction 

and constraint solving along with bounded model checking. The principle novelties in this 

work is adapting the concept of lazy abstraction for the verification of CT-AMS designs. 

To this aim, we identified a set of basic qualitative predicates (Darboux polynomials) 

as invariance predicates which helps avoid the construction of an abstract model for the 

whole state space. We also proposed a constraint solving approach for the verification of 

safety, switching and reachability properties. This method does not require explicit rep­

resentation of the state space but relies on generating functions that prove or disapprove 

the properties. 

To tackle the verification of discrete-time AMS designs, we have defined an in­

duction based bounded model checking technique that traverses the structure of the nor­

malized properties and provides a formal correctness proof or a counterexample. Image 

computations for induction are performed using interval arithmetics over these symbolic 

expressions. 

We have applied the verification methodology proposed in this thesis to example 

from several classes of AMS designs spanning various abstraction levels. We have imple­

mented our methodology using standard libraries for symbolic computation available in 

Mathematica, allowing the development of a fully automated verification engine. Experi­

mental results have proven the feasibility of the proposed approach. 

167 



Future Work. 

The formal verification of AMS designs is a relatively young research field and 

still under-developed, which is a bad and a good sign at the same time. It is bad be­

cause this shows the lack of extensive research which is due mainly to the complexity of 

the verification process and the challenging problems mostly inherited from the hybrid 

systems. Also, it is due to the different scientific backgrounds between AMS engineers, 

control engineers and computer scientists. However, this can motivate interdisciplinary 

collaborations. The good news is that room for exploration is yet wide open. Among the 

interesting directions is developing an AMS theory with high-order logic, process alge­

braic languages for AMS designs and formalizing the AMS theory within a formal theory 

like abstract interpretation, and developing specification logics for frequency properties 

among others. Another important direction is incorporating formal verification within the 

design flow, hence complementing simulation, testing and symbolic analysis. Also, the 

problem of extending classical temporal logics to derive suitable descriptions of analog 

properties is of great interest. 

From our point of view, our priority future work can be summarized as follows: 

• More investigation is needed to improve the implementation to verify more com­

plex circuits and to measure the limitation of the proposed methodology. Another 

challenge is to define and to verify more important properties related to industrial 

problems like audio and RF systems. 

• Investigating alternative implementations to improve the experimental capacity over 

more complex systems and to measure the limitation of the proposed methodology. 

• Also, an important effort is needed to classify the kind of properties and AMS 

systems that can be verified using this verification approach. 

• Extraction of the design equations from the circuit descriptions (Schematic dia­

grams or HDL-AMS designs). We are currently looking for methods to extract and 
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simplify the system equations using Bond graph analysis. 

Extracting the system equations to be used in behavioral modeling is a challenging 

task in the AMS design process. Nodal analysis techniques have been developed 

to this aim by extracting equations from the circuit netlist. However such extracted 

equation are very large in general and complicated to be used for behavioral analysis 

required at higher level in the design process. To overcome such problem, abstrac­

tion techniques have been developed as to generate simplified models preserving 

some characteristics of the initial designs. 
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Appendix A 

Mathematica Implementations 

A.l Mathematica Functions 

We have implemented a prototype for the presented verification algorithms using sym­

bolic algebraic manipulation and real number theorem proving developed inside the com­

puter algebra tool Mathematica [114]. Proposed verification functions like Prop-Check 

and PropJ/erify can be done using equational theorem proving function in Mathematica 

such as Reduce. Reduce[expr,vars] simplifies the statement expr by solving equations or 

inequalities for vars and by eliminating quantifiers. The statement expr can be any logical 

combination of: 

• Ihs — rhs Equations 

• Ihs o rhs, where o e { ^ , ^ , < , > , ^ } Inequalities 

• expr e dom Domain Specifications 

• ForAll[x,cond,expr] Universal Quantifiers 

• Exists[x, cond, expr] Existential Quantifiers 

Reduce gives True if the expr is proved to be always true, False if expr is proved 
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to be always false and a reduced expr otherwise. The Mathematica implementation of 

Reduce is inspired by a real polynomial decision algorithm defined in [101]. 

Example A.l.l. For example, the safety verification problem in Example 5.2.1 can be 

formulated using Reduce as follows: 

Reduce[Exists[{x\,X2},l —xl—X2> 0&&1 — x\ + x2 > 0, —3+Xj +x2 > = 0],{xi,X2}] 

Example A.1.2. For simplicity of visualization, we provide details about applying the 

induction for the verification of first order AE modulator of one-bit with two quantization 

levels, +1V and —IV. The quantizer (input signaly(n)) should be between —2V and +2V 

in order not to be overloaded. The SRE of the AL is : 

y(n) = y(n — 1) + u(n) — v(n — 1) 

v(n-l)=IF(y(n-l)> 0,1,-1) 

Stability is expressed with the following property: G|y(«)| < 2, with the input 

\u\ < 1 and the initial condition |y(0)| < 1. Informally, the property means that to en­

sure that the modulator will always be stable starting from initial conditions, we must 

ensure that the modulator quantizer is in the interval [—2,2], if the input of the quantizer 

initially bounded in the interval [—1,1] and the modulator input in the interval [—1,1]. 

The property proof at time n can be formulated as follows: 

in:= Reduce [ 

ForAll[{u,y[n-l]}, And[-1 < u < 1, 

-2<y[n-l]<2], 

And[(-l+u+y[n-l] ^ 2), 

(l+u+y[n-l]£ -2)]], 

{u,y[n-l]}, Reals] 

out:= True 
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The function Findlnstance[expr,vars,assum] finds an instance of vars that makes 

expr True if an instance exists, and gives {} if it does not. The result of Findlnstance is 

of the form: 

{{vi —> instance\,V2 —* instance^..., vm —> instancem}} 

where vars = {vi,V2,...,vm}. Furthermore, Findlnstance may be able to find instances 

even if Reduce cannot give a complete reduction. The Mathematica implementation of 

Findlnstance is based on variants of Newton's, Secant and Brent's methods [17]. 

Example A.1.3. Consider the First-order AT Modulator in Example A. 1.2, with the input 

signal V|w| > 1 and initial condition |v(0)| < 1. The property: G|y(n)| < 2 fails to be veri­

fied. In fact, since the input to the modulator does not conform to the stability requirement, 

the modulator indeed will be unstable. For this property, we can find a counter-example: 

in:= FindInstance[And[ 1 < u, 1 > y[n — 1] > 0, 

( - l + « + y[n-l]>2)],u,y[n-l]] 

out:= {u —>2, y[n- l ] —> \ } 

The problem of finding invariants is an important part of the methodology. We 

need to find Darboux invariants and in the case of reachability verification, we look for 

invariants bounding the reachable states. Finding invariants is based on the evaluation of 

the coefficients of the predefined forms of polynomials. In this algorithm, we start with an 

invariant form with an initial degree and check if such invariant exists, if not, we increase 

the degree to form a new polynomial. A bound on the degree must also be specified 

to ensure termination of the search of the invariants. An arbitrarily assigned bound at 

the beginning of the algorithm is usually proposed hence ensuring termination. This is 

possible using the Mathematica Findlnstance function, for example. For example, to find 

the Darboux invariants j we apply Findlnstance as follows: 

FindInstance[ForAll[{x,y}, (Dj = = 9(j], {coefs}] 
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where j is a polynomial in x,y, with unknown coefficients coefs and K is the cofactor. 
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