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ABSTRACT

Optimal Vibration Suppression of Beam-Type Structures using Passive and Semi-

Active Tuned Mass Dampers

Fan Yang, Ph.D.
Concordia University, 2008

The overall aim of this dissertation is to conduct a comprehensive investigation on the
design optimization for passive and semi-active vibration suppression of beam-type
structures utilizing the Tuned Mass Damper (TMD) and Semi-Active Mass Damper
(SAMD) to prevent discomfort, damage or outright structural failure through dissipating

the vibratory energy cffectively.

The finite element model for general curved beams with variable curvatures under
different assumptions (including/excluding the effects of the axial extensibility, shear
deformation and rotary inertia) are developed and then utilized to solve the governing
differential equations of motion for beam-type structures with the attached TMD system.
The developed equations of motion in finite element form are then solved through the
random vibration state-space analysis method to effectively find the variance of response

under stationary random loading.

A hybrid optimization methodology, which combines the global optimization method
based on Genetic Algorithm (GA) and the powerful local optimization method based on
Sequential Quadratic Programming (SQP), is developed and then utilized to find the
optimal design parameters (damping, stiffness and position) of the attached single and

multiple TMD systems. Based on the extensive numerical investigation, a design
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framework for vibration suppression of beam-type structures using TMD technology is

then presented.

An in-house experimental set-up is designed to demonstrate the effectiveness of the
developed optimal design approach for vibration suppression of beam-type structures

using TMD technology.

Next, the Magneto-Rheological (MR) fluid damper is utilized to design the SAMD
system. A new hysteresis model based on the LuGre friction model is developed to
analyze the dynamic behavior of large-scale MR-damper (MR-9000 type) accurately and
efficiently. The gradient based optimization technique and least square estimation method
have been utilized to identify the characteristic parameters of MR-damper. Moreover,
based on the developed hysteresis model, an effective inverse MR-damper model has also
been proposed, which can be readily used in the design of semi-active vibration

suppression devices.

The controller for SAMD system using MR-damper is designed based on the
proposed inverse MR-damper model and H,/LQG controller design methodology. The
developed SAMD system along with the MR-damper model is then implemented to
beam-type structures to suppress the vibration. It has been shown that the designed
SAMD system using MR-damper can effectively suppress the vibration in a robust and

fail-safe manner.
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CHAPTER 1

INTRODUCTION AND LITERATURE REVIEW

1.1 Motivation

Beam-type structures have many applications in mechanical, aerospace and civil
engineering fields. Due to their inherent low damping and recent trend for light weight
design, these structures may easily vibrate in their low modes, which may subsequently
lead to failure of structure . Thus, one of the biggest challenges structural engineers face

today is to protect structures from the damaging effects due to excessive vibrations.

One of the commonly adopted structural protecting devices is based on the Tuned Mass
Damper (TMD) technology, which dissipates vibratory energy through a set of damper
and spring connecting a small mass to the main structure. The natural frequency of this
secondary structure is usually tuned to the dominant mode of the primary structure. Due
to mechanical simplicity and low cost, TMD devices are effectively used for vibration
suppression in many civil and mechanical engineering applications. A successful optimal
TMD system design for beam-type structures requires not only a robust optimization
approach, but also a reliable mathematical model to model beam-type structures and their

combination with the TMD system.

As the stiffness and damping of an optimally designed TMD system are typically

invariant, to improve the vibration suppression effectiveness of the TMD system, the



Active Mass Damper (AMD) or Semi-Active Mass Damper (SAMD) systems, in which a
controllable device can be added to or replace the damper in TMD system, are developed.
Magneto-Rheological (MR) fluid dampers are one of the most promising devices to
provide controllable damping force. They offer large range damping force capacity with
very low power consumption, highly reliable operation and robustness in a fail-safe

manner.

Based on the above introduction, the main purpose of this dissertation is to present a
comprehensive investigation on beam-type structures’ vibration suppression using TMD,

SAMD and MR-damper technologies.

1.2 Literature Review of the Pertinent Works
In the following sections, a brief introduction and relevant literature review of different

aspects of the present subject are provided in a systematic way.

1.2.1 Finite element analysis for beam-type structures
The slim straight beam-type structures can be modeled as Euler-Bernoulli beam, and its

equations of motion in the finite element form can be obtained utilizing the Hermitian
. . 2,3 . . . 3 o
interpolation™ ~, which can be found in most finite element methods™ and vibration

theory4 textbooks. For beams in which the effect of the cross-sectional dimension on
frequencies cannot be neglected, and the study of higher modes are required (for instance
for the case of random type loading), the Timoshenko theory which considers the effects
of rotary inertia and shear dcformation provides a better approximation to the true

behavior of the beam.



The governing differential equations of motion for Timoshenko beam can be found in
many vibration textbooks’. Most of works about solving Timoshenko beam using finite
element method were published in the 705" and the related interpolation methodology
are available in commercial finite element method software packages, such as the
Beam188/189 elements from Ansys®9, in which the transverse displacement and rotation
due to bending are assumed to be independent variables. Recently, Reddy10 and
Mukherjee et al' proposed a set of new shape functions, which were named as
Interdependent Interpolation Element (IIE)IO, to study Timoshenko beam. As the
interpolation methodology utilized by Ansys®9 for the Beam188/189 elements is widely

accepted by most of researchers, in this dissertation it will also be utilized to model the

Timoshenko beam.

The study of the free in-plane vibration of a curved beam using the beam theory is more
complicated than that of a straight beam, since the structural deformations in a curved
beam depend on not only the rotation and radial displacement but also the coupled
tangential displacement caused by the curvature of the structure. Many theories have
been evolved to derive, simplify and solve the equations of motion for the free in-plane
vibration of the curved beam. Henrych12 utilized the first order equilibrium conditions for
the external and internal forces to derive the general expression of the differential
equations of motion for the curved (circular) beam and then provided sets of
methodologies to solve the differential equations of motion based on different
assumptions, considering and/or neglecting the shear deformation, rotary inertia and axial

extensibility.



It should be noted that the solution of the differential equations of motion for curved
(circular) beams are very complicated, if one takes into account the effects of shear
deformation, rotary inertia and axial extensibility. Therefore, most of works in this area
are to simplify the curved beam model based on different deformational assumptions.
Auciello and Rosa” modeled the curved (circular) beam neglecting the shear
deformation, rotary inertia and axial extensibility, and then summarized the results
obtained through different numerical methodologies, which were available in published
literatures, such as the Rayleigh-Ritz methodology by Laura et alM, the Rayleigh-
Schmidt methodology by Schmidt'” and Bert'® and the cell discretization method by
Raithel and Franciosi' . Tong et al'® modeled the curved (circular) beam using the same
assumption as those adopted by Auciello and Rosala, and further simplified the tapered
arch as sets of stepped arches. Veletsos et al’” and Lee and Hsiao" modeled the curved
(circular) beam neglecting the shear deformation and rotary inertia. Chidamparam and
Leissa” studied the influence of axial extensibility for curved (circular) beams. The
results’ show that the axial extensibility causes a decrease in the natural frequencies, and
it is significant for shallow arches. Thus, the model neglecting the axial extensibility,
which has been adopted by many researchers in studying the vibration problem for
circular beams, may not be accurate especially when the high vibration modes study is

required, such as in random vibration analysis.

Henrych12 has modcled the curved (circular) beam considering the shear deformation,

rotary inertia and axial extensibility, and then provided a general approach to solve the

related differential equations of motion. However, the approach presented by Henrych]2



is quite complicated. In fact many methodologies, which are available in published
literatures, have been successfully presented to solve the circular beam model. Austin and
Veletsos™ improved their study19 and developed an approximation and simplified
procedure to estimate the natural frequencies of circular arches. Irie et al” utilized the
transfer matrix methodology to solve the curved beam, in which the central lines were
modeled as different types of function. Issa et al’* derived the general dynamic stiffness
matrix for a uniform curved (circular) beam. Kang et al” utilized the Differential
Quadrate Method (DQM) to compute the eigenvalues of the differential equations of
motion governing the uniform curved (circular) beams. Tseng et al’® adopted the
Frobenius method’ to solve the problem. Yildirim” utilized the transfer matrix method
and then solved the problem based on the Cayley-Hamilton theorem” . The same method
has also been adopted by Tiifek¢i and Arpaci30 and Tiifek¢i and Ozdemirci’ . Rubin and
Tiifekg:i32 adopted the Cosserat point methodology, which was proposed by Rubin”> 34, to
extend the study to three-dimension problem. The natural frequencies for the elliptical,

parabolic and sinusoidal arches can also be found in Oh et ar”’,

There are still many papers in this area (curved (circular) beams’ vibration problem,
considering the shear deformation, rotary inertia and axial extensibility), in which their
main differences are in the methodologies adopted to solve the governing differential

equations of motion. However one assumption, which is commonly adopted in previous

works, is to separatc the radial and tangential displacements and the rotation variables,

12, 22-28, 30-35

and then assume those variables as independent . Although the methodologies



22-28, 30-35

adopted in these literatures are simpler than those provided by Henrychlz, they

are still too complicated to be utilized in engineering design optimization problem.

The earliest works about utilizing finite element method to solve the curved (circular)
beams problem can be found in the 70’s. In 1971 Petyr and Fleischer ® utilized three
kinds of interpolation functions and then proposed three two-node curved (circular) arch

elements, in which two of them have three degree-of-freedom per node and the other one

has four degree-of-freedom per node. In 1972 Davis et al’’ proposed the other two-node
curved (circular) arch element with three degree-of-freedom per node. In 1974 Dawe”’

presented different kinds of two-node curved (circular) beam elements based on the
polynomial interpolation with different definitions of the nodal degree of freedom.
Balasubramanian and Prathap39 utilized a three-order polynomial function to interpolate
the radial and tangential displacements and rotation variables separately and finally
developed a two-node curved (circular) beam element with six degree-of-freedom per
node. Recently, Friedman and Kosmatka'~ utilized a set of interpolation function to
describe the radial and tangential displacements and the rotation variables separately, and
then derived a two-node curved (circular) beam element with three degree-of-freedom
per node. Through comparison, one can easily find that the interpolation function utilized
by Friedman and Kosmatka® is similar to that adopted by Davis et al’ to interpolate the
tangential direction displacement. Raveendranath et al” proposed three kinds of two-
node curved (circular) beam elements, which are similar to those presented by Petyr and
Fleischer’® and Dawe"". Litewka and Rakowski also utilized the similar methodology as

those adopted by Friedman and Kosmatka® . Eisenberger and Efraim” again utilized the



polynomial function to interpolate the radial and tangential displacements and the
rotation variable separately. Wu and Chiang44 utilized the similar interpolation
methodology as Davis et al’ to study the curved (circular) beam problem. Ribeiro"
studied the curved (circular) beam based on the p-version (high order) finite element
method. OztUrk ef al®® utilized the similar interpolation function as Dawe"® to study the

non-uniform circular beam.

Based on the above analysis, it can be found that: (1) most of works related to the curved
(circular) beam using finite element method are based on the papers published by Petyr
and Fleischer36, Davis et al ' and Dawe38; (2) the basic methodology is to interpolate the
radial and tangential direction displacement variables (some papers adding the rotation
variable) with a set of selected admissible functions, and then transfer the interpolation to
be expressed as the nodal degrees of freedom to obtain a two-node element; (3) all papers
are based on the circular type beam, in which the radius of curvature is constant and thus

the problem can be simplified by interchanging the curvilinear coordinates with the arch

angle. In 2008, Zhu and Meguid47 extended the study to three-dimension case (an in-
plane and out-plane vibration problem). Although they mentioned that the methodology
can be utilized to study the curved beam with different curvatures, the provided

numerical examples are all based on the circular beam-type structures.

In the present work, sets of curved beam elements, which can be utilized to investigate
the curved beam-type structure with changing curvatures, will be presented and evaluated
numerically based on the curvilinear integral along the central line of curve beam-type

structures. The results perfectly agree with those available in published literatures. The



developed finite element method is then utilized in the optimal design of beam-type

structures with the attached TMD system.

1.2.2 Tuned mass damper technology
One commonly adopted damping technology is to install damper between the structures
and their related install bases, such as the passive base isolation system. Generally big
size damping devices are required for this technology. The other type of damping method
is based on the TMD technology, which dissipates vibratory energy through a set of
damper and spring connecting a small mass to the main structure, as illustrated in Figure

1.1(a).

(2) (©)
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Tuned Mass Damper system. (c) Distributed Tuned Mass Damper system (DTMD).

The TMD technology is developed based on the Tuned Mass system proposed by
Frahm48, in which a secondary system composed of a mass and a spring is implemented
to a primary structure and its natural frequency is tuned to be very close to the dominant
mode of the primary structure. Thus, a large reduction in the dynamic responses of the

primary structure around the natural frequency of the dominant mode can be achieved.



However the combined system adds two resonant frequencies, one before the frequency
of the primary system’s dominant mode, and the other after that. The TMD system is to
add a damper in the Tuned Mass system to suppress the vibration in these two added
resonant frequencies. Here, it should be noted that in some papers and textbooks, the

TMD system was also named as vibration absorber or Dynamic Vibration Absorber

ovA)®.

Although the basic design concept of a TMD system is quite simple, its parameters
(mass, damping and stiffness) must be determined through an optimal design procedure
to attain the best vibration suppression performance. Therefore, the major task is to
obtain the optimal design parameters of the TMD system to enhance the vibration
suppression effectiveness. Since Den Hartog49 first proposed an optimal design approach
of TMD for an un-damped Single-Degree-of-Freedom (SDOF) structure, many optimal
design methods of TMD system have been developed to suppress the structural vibration
induced by various types of excitation sources. Crandall and Mark ™’ adopted the random
vibration theory to analyze a SDOF structure attached with a single TMD system under
white noise base excitation. The results demonstrated that the TMD system can
effectively reduce the vibration of the base-excited structure. Warburton’” > studied
SDOF system vibration suppression using TMD under different loading conditions. The
topic for vibration suppression of a SDOF system using the attached optimal TMD
system is not novel, and its optimal parameters for different loading conditions has been
widely accepted and also can be found in many textbooks - in structural vibration area.
Therefore, just some typical literatures published recently would be presented here.

Kwok and Samali’* studied a SDOF system’s vibration suppression problem using TMD
9



system under wind loading. Rana and Soongss summarized some optimal TMD system’s

results published before. Riidingers6 studied the relationship between the structural

damper and the optimal TMD system.

The discrete Multi-Degree-of-Freedom (MDOF) system’s vibration suppression using the
optimal TMD system can also be found in many research works™ " >, As the modeling
procedures and the adopted optimization methodologies are similar to those for SDOF
system, here only some typical papers published recently will be presented. Hadi and
Arfiadi’’ studied a discrete MDOF system, which represented a typical building structure,
with the attached TMD system at the top floor, and selected the H, norm of the transfer
function as the objective function for an optimization procedure, and then utilized the
Genetic Algorithm (GA) optimization methodology to obtain the solution. Hwang et al”
investigated the SDOF and discrete MDOF structures with the attached TMD system.
Lee etal’ studied the discrete MDOF structure with the attached single or multiple TMD
system and utilized a gradient based optimization methodology. Marano e¢ al” studied a

MDOF structure with the attached single TMD system utilizing a constrained reliability-

based optimization method.

There are two modified TMD design methodologies that can be found in published
literatures, as illustrated in Figures 1.1(b) and 1.1(c). Based on the introduction presented
by Nishimura et al’ 1, the modified TMD design illustrated in Figure 1.1(b) was named as
Composite Tuned Mass Damper and invented by Yamada in 1998 (Japan Patent Bureau,
S63-156171). Unfortunately we cannot find the original report about this patent.
Lewandowski and Grzymislawska62 investigated the performance of the Composite

10



Tuned Mass Damper system and added one controllable damper on the second TMD. Li

and Zhu” studied Composite Tuned Mass Damper system utilizing the Dynamic

Magnification Factors (DMF), which represents the magnitude of the structural response.

The other type of modified TMD design shown in Figure 11(c) was developed by Xu and

]

Igusa64 > and named as multiple Tuned Mass Dampers. In this dissertation, to distinguish
it with the multiple Tuned Mass Damper design based on multiple natural frequencies of
the main structure, the multiple Tuned Mass Damper design based on one special natural
frequency, as illustrated in Figure 1.1(c), was named as Distributed Tuned Mass Damper
(DTMD). As the modeling procedure for this kind of problem is simple, the main
differences in this area arc the adopted optimization methodologies, especially the
selected (generated) objective function. Basically, two typical approaches have been
utilized to solve this problem. The first one is to directly obtain the transfer function and
then define the variance or the Dynamic Magnification Factors (DMF) as objective

4’

functions, which was utilized by most of researchers such as Xu and Igusa6 65, Kareem
and Kline“, Joshi and Jangid67, Li®, Li and Qu 69, Liand Ni" and Febbo and Veraﬂ. The
other methodology was developed by Zuo and Nayfeh72'74, in which the transfer function
was expressed as a dynamic model with an optimal H; controller. Although the vibration
suppression performance for a DTMD system is better than the TMD system, one can
improve the performance of the TMD system through adding one active or semi-active

device with suitably designed controller, which can provide the same or better

effectiveness and is more practical in real application than the DTMD system.
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Previous introduction are mainly related to attaching single TMD or its modifications
onto a structure modeled as SDOF or discrete MDOF systems. As the equations of
motion for a SDOF or discrete MDOF structures with the attached TMD system is simple
and the location of the attached TMD is usually obvious, the main differences in previous
works' " are typically the adopted optimization methodologies. For continuous systems,
such as uniform beams, the optimal TMD design problem is more complicated than that
for the SDOF or discrete MDOF structure, as the related mathematical model is not easy
to be obtained and the design variables include not only the damping and the stiffness of
the attached TMD system, but also the locations and number of the attached TMD

system.

The earlier work about beam-type structures with the attached TMD system can be found

by Jacquot75 in 1978, in which a cantilever beam was modeled as Euler-Bernoulli beam

and a single TMD was attached to the mid-span of the beam. Manikanahally and
Crocker © studied a mass-load beam’s vibration suppression with TMD. Recently, Gu et
al’’ designed an optimal DTMD system based on the first vibration mode of the beam
structure. You and Yang78’ ? investigated the optimal DTMD system for different bridge
structures. Kwon and Park"_ studied the same example as You and Yangn’ " and utilized
the Genetic Algorithm (GA) optimization methodology to obtain the solution. Chen et

al" ¥ adopted the Timoshenko beam theory to model the bridge and design a set of
TMD distributed symmetrically along the beam length to suppress the vibration related to
the first vibration mode. Esmailzadeh and Jalili83 and Younesian et al ** studied the

Timoshenko beam with the attached TMD system under different loading conditions.
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wu® analyzed the natural frequencies of a cantilever beam with the attached TMD

system.

7L E s to typically simplify the

The basic methodology adopted in these literatures
equations of motion to a SDOF system based on the fundamental modal shape of the
continuous system. However, this methodology has some restrictions as: (1) the
fundamental modal shape of the continuous system will change with different boundary
condition, thus one should repeat the whole procedure for different boundary conditions;
(2) it 1s difficult to obtain the fundamental modal shape for the non-uniform structure and
also the curved beam structure; (3) before utilizing the fundamental modal shape to
decouple the differential equations of motion, the position of the attached TMD should be
given, thus it is difficult to identify the position of the attached TMD as one of the design
variables in an optimization procedure. The finite element method appears to be

particularly promising in addressing those restrictions, which is one of the main topics of

this dissertation.

1.2.3 Design optimization of the tuned mass damper system
As mentioned above, the basic design concept of a TMD system is quite simple, its
parameters (mass, damping and stiffness) must be determined through an optimal design
procedure to attain the best vibration suppression performance. Moreover, for beam-type
structures one should also take into account the optimal position and number of the
attached TMD system. Therefore, after establishing a reliable dynamic model for

structures with the attached TMD system, the next essential part is the optimization.
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Selecting a suitable objective function with design boundary is the most important issue
for an optimization problem. Here, the classical TMD system design illustrated in Figure

1.1(a) will be utilized to introduce the objective function for the optimal TMD design.

. D . . 52,56,61

For random type loading, the objective function can be selected as the variance or
, 57, 59 . .

norm of the transfer function (H; norm) ", and then one can utilized some available

command provided by MATLAB®" or function® to obtain the value of the objective

function. These kinds of definitions are very clear.

However, there is not a criterion in average sense for harmonic type loading. Den
Hartog49 proposed a methodology to solve this problem, which was popularly accepted
by researchers. As this is the first document related to the optimization methodology for
the TMD system and the only available methodology to identify the optimal TMD design
based on harmonic loading, a short discussion of the methodology adopted by Den
Hartog49 would be presented. As the design variables of a TMD system includes the
damping and stiffness under a known input mass, in the first step Den Hartog49 separated
these two design variables. Let us recall a SDOF structure subjected to harmonic type
base excitation, as illustrated in Figure 1.2(a). The related magnitude of the transfer

. 49,53
function can be expressed as

2 2
‘i’z\/ k2 +(Co) (n

Y| V(K -Ma?)? +(Cw)
This type of transfer function has an important property, which is the value of the

magnitude is independent to the damping when excitation frequency equal to V2K /M .
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The similar property can be found for the TMD system, as illustrated in Figure 1.2(b), in

. . . 49
which the magnitude of transfer function can be expressed as :

X
Fy

(1.2)

_ (k—-ma*)* +(cw)?
[(K = Ma? Yk —mw?) —mka? 1 +(co)? (K - Mw® —ma?)?
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Figure 1.2 Typical SDOF system and SDOF system with the attached TMD system
subjected to harmonic loading. (a) SDOF system. (b) SDOF system with the attached TMD

system.

Den Hartog49 utilized the properties of the transfer function stated in Equation (1.2), in
which the magnitude is independent of damping (c) at two frequency values (w; and w;)
under given M, K, m and k, to separate the design variables (k and c¢). The second step
adopted by Den Hartog49 was to tune the magnitudes at these two special excitation
frequencies (w; and w;) are identical through suitably selected stiffness (k). The last step
is to make the magnitude at these two special excitation frequencies (w, and w;) to be the
maximum value in the whole frequency domain response through an optimally designed
damping (c). In fact, the methodology adopted by Den Hartog49 is equal to minimize the

maximum magnitude under the entire frequency range, which is also utilized in the
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Distributed Tuned Mass Damper (DTMD) design based on Dynamic Magnification

Factors (DMF).

Here it should be noted that one can also select the response of velocity or acceleration as

objective52 and the values of optimal damping (c) and stiffness (k) have slight difference
from those utilized the displacement as objective under harmonic or random loading. As
the adopted methodologies are exactly the same as those for displacement, in this
dissertation the displacement will be utilized as the objective for an optimization

procedure.

Optimization methodology is another important issue for an optimal design problem.
Generally, the optimization methodologies adopted in the optimally designed TMD
system can be classified into three main categories: (1) the analytical methodology‘w; 2)
the gradient based optimization; (3) the global optimization methodologies, such as
Genetic Algorithm (GA)57 and Simulated Annealing(SA)ﬂ. Here, the gradient based
optimization methodology plays an important role in the TMD design area. The simplest
one can be seen in Den Hartog49, in which the optimal damping (c) was obtained directly
utilizing the first order (gradient function) and second order (Hessian matrix) criterion,
which can be identified as the Karush-Kuhn-Tucker (KKT) conditions without constraint.
Here, it should be noted that most gradient based optimization methodologies presented
in published papers in the TMD area can be found in most optimization textbooks 89,
such as Lee et al, Li et al’ and Zuo and Nayfeh73 utilized the Steepest Decent

Algorithm method. As the Sequential Quadratic Programming (SQP) is the most recently
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developed and perhaps one of the best and most powerful methods of optimizationsg,

84 ... . . . .
recently some researchers  utilized this method to obtain the optimal TMD design.

In present work, the SQP optimization technology will be utilized to find the optimal
design variables (damping and stiffness) for an optimal TMD system. Then, a hybrid
optimization methodology will be developed to obtain not only the optimal damping and
stiffness, but also the optimal location of the attached TMD system in beam-type

structures.

1.2.4 Active and semi-active mass dampers
The so-called Active Mass Damper (AMD) or Semi-Active Mass Damper (SAMD)
system is developed to improve the vibration suppression performance of the optimal

TMD system. Here, it should be mentioned that some researchers also called AMD as
active TMD (ATMD). Nishimura et al’"™ developed the basic ATMD design method,
and assumed the control force generated through a simple constant acceleration feedback
gain. Chang and Yang91 also studied ATMD design and utilized the constant

displacement and velocity feedback gain to represent the control force. Both studies did

not take into account the active device’s dynamic properties.

The AMD system can provide good vibration suppression effectiveness’ 91, however
there is a serious challenge regarding the device that can provide required control force,
which should be considered before AMD can be used practically. Dyke er al’? also
summarized some other challenges such as the system reliability and robustness,

reduction of capital cost and maintenance, eliminating reliance on external power and
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gaining acceptance of nontraditional technology. On the other hand, the SAMD system
provides controllable energy dissipation rate utilizing the controlled damper which does
not induce energy to the controlled structure. Thus, it appears to be particularly promising

in addressing those challenges.

Different kinds of semi-active devices have been investigated for the SAMD system

design, such as variable orifice hydraulic actuator ', Active Variable Stiffness (AVS)98'

103 104-112

, Tuned Liquid Column Damper (TLCD) , Electro-Rheological (ER) fluid

damperm'”7 and Magneto-Rheological (MR) fluid damper. In the following, the

commonly adopted semi-active devices mentioned above will be briefly reviewed.

1.2.4.1 Variable Orifice Hydraulic Actuator

The operating principle for variable orifice hydraulic actuator is very simple, which is to
change the energy dissipation rate through adjusting the orifice of the hydraulic actuator.
This kind of device has been widely used in many areas, such as the commercial
. . 93 94 95 96
airplane’s landing gear system . Dyke  and Spencer Jr et a/” and Zhuang  and Zhuang
et al utilized a hydraulic actuator as an semi-active device in the SAMD system, and
combined the hydraulic actuator’s dynamic properties with the structural dynamic
equations to design a controller through adjusting the orifice of the hydraulic actuator to

change the energy dissipation rate.

1.2.4.2 Active Variable Stiffness
The operating principle for Active Variable Stiffness (AVS) is to produce a non-

stationary, non-resonant condition during severe external excitation through altering the
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structural stiffness based on the nature of the excitationgs, which has been successfully
utilized in building structure’ . The Variable Stiffness Device (VSD) is the active (semi-
active) device for an AVS system. Leavitt et al” proposed a VSD design. Renzi and De

Angelis100 studied the dynamic response of structure with AVS system. Nagarajaiahlo1
proposed a Semi-Active Variable Stiffness (SAVIS), as illustrated in Figure 1.3, in which
the stiffness (K) between points 4 and B can be adjusted through the relative

displacement between points p; and p,.

t (ﬂ EJ Actuator

Spring

Spring

; ........... -p I s
/'1 15 Acwator B

K

Figure 1.3 Schematic of Semi-Active Variable Stiffness (SAVIS) device.

Agrawal102 studied the dynamic properties of the SAVIS devices illustrated in Figure 1.3.
Recently Varadarajan and Nagarajaiah103 combined the proposed SAVIS device with

TMD system to present a SAVIS-TMD design.

1.2.4.3 Tuned Liquid Column Damper

The original design of Tuned Liquid Column Damper (TLCD)IOS'IW, as illustrated in

Figure 1.4(b) is a passive device and a special type of Tuned Liquid Damper (TLD)104,

which suppresses the structural vibration through shallow liquid sloshing in a rigid tank,
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108-112

as illustrated in Figure 1.4(a). The semi-active TLCD is to adjust the damping

through an added device illustrated in Figures 1.4(c)-(e).

(e)

MR Fluid

(@) (b) ©

TLD v

N . » H——ﬂ
| ————— I~

Mass(M) AL —
(d) M«g}nmc Jield

Figure 1.4 Schematics of typical Liquid Damper design. (a) Traditional Tuned Liquid
Damper (TLD). (b) TLCD. (c) Semi-active TLCD with variable orifice. (d) Semi-active
TLCD with propellers. (e) Semi-active TLCD using MR fluid with adjustable magnetic
field.

108, 109
Yalla et al

and Hochrainer”oproposed a device through adjusting the dimension of
orifice to change the damping factor of TLCD, as illustrated in Figure 1.4(c). Chen and
Ko'" incorporated a set of controllable propellers in TLCD and then changed the
damping factor of TLCD through adjusting the rotation speed of the propellers, as
illustrated in Figure 1.4(d). Recently, Wang et al'? replaced the liquid in the TLCD
system with Magneto-Rheological (MR) fluid and then changed the damping factor of
TLCD system through adjusting the magnetic field around the MR fluid, as illustrated in

Figure 1.4(e).

1.2.4.4 Electro-Rheological Fluid and Damper

Electro-Rheological (ER) fluids are suspensions of extremely fine non-conducting

particles in an electrically insulating ﬂuidm, which was invented by Winslow' . The
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change in viscosity of ER fluids directly depends on the applied electric field and this
characteristic makes ER fluids attractive for providing a rapid response interface in
controlled mechanical devices. The most common application of ER fluids is the
hydraulic valve, clutch, brake and absorber (damper)“s'm. As the key operation modes
for ER and MR fluids are similar and the mathematical model utilized to describe
dynamic behavior of ER/MR devices are also similar, detail information about ER fluid
operation modes and its relative devices will be presented in the next section, which is

mainly focused on the MR fluid devices.

1.2.5 Magneto-Rheological fluid and damper
Magneto-Rheological (MR) fluids are a class of novel intelligent materials whose
dynamic characteristics change rapidly and can be controlled easily in the presence of an

applied magnetic field controlled by input current (voltage). Figure 1.5 illustrated the

working principle of MR fluids'"*,

= (b)

Pariicles form chains
direction of flux line

£
Carnier oil &

------ Magnetic particles

Direction of magnetic flux

Figure 1.5 Operation principle of Magneto-Rheological (MR) fluids' ", (a) Before applying
magnetic field. (b) After applying magnetic field.

From Figure 1.5(a), it can be found that the magnetic particles are suspended within the
carrier oil and distributed randomly. When a magnetic field is applied, as shown in Figure
1.5(b), the magnetic particles would be aligned along the magnetic flux line.

Subsequently, the resulting chains of particles restrict the movement of the fluid, which is
21



perpendicular to the direction of flux, and thus increasing its viscosity. It should be noted
that the working principle of ER fluids can also be illustrated through Figures 1.5 by

changing the applied magnetic field to electric field and also the magnetic particles to
. . . , 119 . .
non-conducting particles. There are three key operation modes' , as illustrated in

Figure 1.6’ 19, for ER and MR fluids.

Arpplaceissent foree

Fressure \

Figure 1.6 Schematics of ER/MR fluids’ key operation modes' . (a) The flow mode. (b) The
sheer mode. (¢) The squeeze-flow mode. Note: “H” represents the applied magnetic or

electric field.

In the flow mode illustrated in Figure 1.6(a), the smart fluid is contained between a pair
of stationary plates. The resistance to the fluid flow is controlled by varying the strength
of the electric or magnetic field across the electrodes (ER fluid) or poles (MR fluid).
Practical application of the flow mode includes hydralic servo valve, damper and
absorber' '~ . The shear mode shown in Figure 1.6(b) allows the relative motion, either

rotational or translational, perpendicular to the direction of the applied field. Practical

application of the shear mode includes controllable clutch and brake "

. The squeeze-
flow mode shown in Figure 1.6(c) allows the smart fluid subject to tension/comperssion
and some shearing of the fluid also occurs . The squeeze-flow mode is most suitable for

— . - . . 118
applications controlling small, millimeter-order movements but involving large forces

2! As the MR fluid type device has larger working temperature range and working force
22



with smaller electric source than that for ER fluild type devices, the commercial

applications of smart fluid are mainly based on MR fluid.

To date, MR fluid dampers are one of the typical devices for MR fluid’s commercial

applicationsm. This kind of devices can offer large range of damping force capacity,
high reliable operation, and robustness in a reliable fail-safe manner with very low power
requirements and then it is one of the most promising devices for structural semi-active
control. A successful semi-active control system depends on two important issues, which
are the selected semi-active device and its relative controller. This section will be focused
on the mathematical model for MR-damper and the controller design for MR-damper will

be presented in the next section.

Different mathematical models have been developed to model the dynamic behavior of
ER/MR-dampers. Stanway et al'™ ' and Peel et al' > proposed the Bingham model, in
which a coulomb friction element is placed in parallel with a linear viscous damper.
Gamota and Filisko' * presented the parametric viscoelastic-plastic model based on
Bingham model' >, Wereley et al'”’ provided the nonlinear hysteretic biviscous model
which can improve the pre-yield hysteresis behavior. Spencer et al'™ proposed a
phenomenological model, which can capture the force roll-off in the low velocity region,
based on the Bouc-Wen hysteresis model, which is a numerical model developed by

Wen'” in 1976 for modeling the hysteretic systems. Yang119 summarized four types of

modification of the Bouc-Wen models.

Recently, many research works have been conducted to model the dynamic behavior of

MR-dampers. Li et al'™ developed a polynomial model. Choi et al”! proposed a model
23



in which the MR-damper operates in two rheological domains, the pre-yield and pose-
yield regions. Oh and Onode proposed an equivalent structural model based on the
combination of springs, dashpot and friction elements. Wang et al™> gave a numerical

model based on the mathematical analysis of hysteresis behavior. Jimenez and Alvarez'”

proposed the modified LuGre friction model, and then they introduced the improved
LuGre friction mode1136, which can simulate the dynamic behavior of MR-damper more

accurately than the modified LuGre friction model >, Xia' utilized the optimal neural

network technique to model the dynamic behavior of MR-damper and then proposed an
inverse MR-damper model. Kim et al™ utilized the ANFIS toolbox provided by
MATLAB®" directly to estimate the MR-damper’s fuzzy model based on the
experimental data. Dominguez et al™® proposed a numerical model based on the solution
of Bouc-Wen hysteresis equation, and then l:hey140 improved the model incorporating the
frequency, current and magnitude relationships. Jin ef al'*' utilized the nonlinear black
box identification techniques to model the MR-damper. Wang and Kamath'* utilized the
phase-transition theory to model the MR-damper. Ikhouane and Dyke143 adopted the Dahl
friction model to characterize the hysteretic properties of MR-damper. Shivaram and
Gangadharan144 proposed a quadratic equation to predict the Root Mean Square (RMS) of

the MR-damper’s damping force.

Based on the above introduction, it can be found that although the earliest work for
modeling the dynamic behavior of ER/MR-damper can be found in 1987123, a significant

number of papers continue to appear in this area. It is due to the fact that no mathematical

24



model is perfect, which can not only characterize the dynamic behavior accurately, but

also be easily to be used.

1.2.6 Magneto-Rheological damper control methodology
The controller design is the other important issue for semi-active structure using MR-
dampers. Basically, five most reported approaches have been utilized in designing the

controller for MR-dampers:

(1) The first one is based on the Lyapunov stability theory. Leitmann'® applied the

Lyapunov’s direct approach and selected the Lyapunov function as the 2-norm of state

vector. McClamroch and Gavin' " selected the Lyapunov function as the total vibratory
energy (kinetic energy and potential energy) and then designed the decentralized Bang-
Bang controller. Jansen and Dykc:147 selected the Lyapunov function as the relative
vibratory energy. In numerical expression, these design methodologies will make
controllers switch in two states utilized the Heaviside step function, and it is an “on-off”
relationship. This type of controller has been popularly adopted by many
researchers' "% 145-148;

(2) The second approach is based on the linear quadratic controller design method, such
as Zhang and Roschke'* designed a LQG/LTR controller;

(3) The third approach is based on the inverse MR-damper model, which is a numerical
model to calculate the MR-damper’s required control current (voltage) under a known

150, 151

control force ;

(4) The forth methodology is based on fuzzy controller design methodology, which has

" 152 .
been conducted by many researchers recently. Battaini et al ? designed a fuzzy
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controller, which utilized the bell-shape membership function and the Mean Center of

Gravity (COG) defuzzificaiton method. Schurter and Roschke' proposed a fuzzy
controller design approach for vibration suppression using MR-damper , in which a target
controller was design firstly, and then the structure response under the developed target
controller were simulated and collected, finally utilized the ANFIS toolbox provided by
MATLAB®"® and the collected response data to train a fuzzy controller. Choi et al™ and
Liu ef al > designed a fuzzy controller based on the triangular-shape membership
function and the COG defuzzificaiton method. Wilson and Abdullah'” utilized the same
methodology as Liu et al'’” but proposed the other set of scaling factor for normalizing
the universes of discourse, and then they157 improved their study156 by adding a self tuned
scaling device, which can tune the scaling factor automatically. Zhou et al'™ proposed a
fuzzy controller with adaptive tuning properties. Reigles and Symans159 presented a fuzzy
supervisory controller. The other direction in the fuzzy controller design is to utilize the
GA optimization method to tune the parameters in membership function' 160’]61;

(5) The last methodology is the stochastic optimal controller by Zhu and Yingm, Ying et

al'® and Cheng et al'®,

In practical applications, some of above basic methodologies were combined together.
Dyke94 and Dyke and Spencer Jr et al’>'® combined linear quadratic optimal controller
design method and Lyapunov stability theory and then proposed the Clipped-Optimal
controller. Recently, Yoshioka ef al'® improved the Clipped-Optimal switching by
adding a threshold. Yoshida and Dyke167 added a function in the Clipped-Optimal
switching, which can make the control current to obtain any values between zero and
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. . . 168 ... . . 135
maximum prescribed value. Sakai ef al  utilized the modified LuGre friction model

to derive the inverse MR-damper model and then combined it with the Linear Quadratic

Gaussian (LQG) controller to control the MR-damper command voltage. Wang et al™
introduced the inverse MR-damper model based on the numerical model proposed by

them, in which the dependence of the hysteresis property of MR-damper to input current

has been neglected, and then combined it with the “on-off” controller .

In this dissertation, an inverse MR-damper model has been proposed based on the LuGre
friction model, and then combined with a H,/LQG controller, to provide effective

vibration suppression performance for structure under random loading.

1.3 Present Works

This work is generally aimed to establish a comprehensive framework for design
optimization and vibration suppression of structures using Tuned Mass Damper (TMD)
and Semi-Active Mass Damper (SAMD) technologies. In particular, this work improves
the design procedure for vibration suppression of beam-type structures using TMD
technology through the development of finite element analysis and design optimization
algorithm, and demonstrates the functionality and performance of vibration suppression
using TMD technology and the validity of Magneto-Rheological (MR) fluid damper

utilized as the semi-active device to design the SAMD system

Specifically, the important components and contributions in this dissertation can be

summarized as:
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» Design Optimization of TMD system for beam-type structures
v Developing a hybrid optimization methodology, which combines the
global optimization method based on Genetic Algorithm (GA) and the
powerful local optimization method based on SQP.
v Utilizing the developed hybrid optimization methodology to obtain the
optimal design for vibration suppression of beam-type structures using
TMD technology through the developments of finite element model and
optimization approach.
» Magneto-Rheological (MR) damper modeling

v Proposing a LuGre friction model to model the dynamic behavior of large-

scale MR-damper (MR-9000 typezz) effectively and accurately.

v Developing an inverse MR-damper model based on the LuGre friction
model, which can be readily used in the design of semi—active vibration
suppression devices.

» Vibration Suppression

4 The effectiveness of vibration suppression for beam-type structure using
the developed optimal MTMD design is investigated.

v Developing an effective control methodology to suppress vibration using

SAMD based on MR-damper technology.

1.4 Dissertation Organization

The first chapter contains the motivation and objective of the present work, an
introduction of the concepts and methodologies used in this dissertation, and also a

detailed review of the recent pertinent works in the relative area. The important
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components and contributions of this research work have been summarized at the end of

this chapter.

The straight Timoshenko beam and the curved beam-type structure’s finite element
models are formulated in Chapter 2. First, a simple procedure for the straight
Timoshenko beam’s finite element model is presented. Then, the whole investigation for
the curved beam’s finite element model is developed in a systemic way. Finally
numerical examples are presented to verify the validity of the developed finite element

models.

Chapter 3 addresses the optimal Tuned Mass Damper (TMD) design for Timoshenko
beam using the finite element methodology. The equations of motion in finite element
form for Timoshenko beam with the attached TMD system are derived first, and then

utilized to establish the optimization problem for both random and harmonic excitations.

Chapter 4 is the extension of the study presented in Chapter 3 to curved beam-type
structures. Through extensive numerical investigations, a throughout TMD design
framework for beam-type structures with the attached TMD system is established in this

chapter.

The validity of the developed design methodology for vibration suppression of beam-type
structures using optimal TMD system is testified in Chapter 5 through experimental

study. The structural response under both random and harmonic excitations is studied.
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The MR-damper’s numerical model is presented in Chapter 6. A detailed introduction of

MR-damper model is presented followed by the proposed LuGre friction model for MR-

9000 type damperzz.

Chapter 7 is devoted to semi-active vibration control using MR-damper. The whole
control strategy for SAMD system using MR-damper is presented in this chapter. The
simulation results are then utilized to verify the validity of the developed control strategy

through different examples.

To conclude, a summary of work and major contributions of the dissertation and

recommendations for future works are presented in Chapter 8.
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CHAPTER 2

FINITE ELEMENT MODEL FOR BEAM-TYPE STRUCTURES

2.1 Introduction

The finite element model for beam-type structures, which will be utilized in the optimal
Tuned Mass Damper (TMD) design, will be presented in this chapter. The differential
equations of motion for the Timoshenko beam have been clarified in many vibration

4 . . . . . .
textbooks , and its equations of motion in finite element form can be obtained through the

. . .9
polynomial interpolation function’.

Based on the introduction presented in Chapter 1, it can be realized that although the
circular beam-type structure has been studied by many researchers, not much work has
been done on either uniform or non-uniform curved beams with variable curvatures. In
particular, no further work based on the finite element approach has been reported on
curved beams with variable curvatures. Considering this fact, one of the main objectives
of this chapter is to develop the finite element model for the general curved beam with
variable curvature. The geometrical relationships for the curved beam’s deformations will
be introduced first, and then the governing differential equations of motion are derived

using the extended Hamilton principle. Finally the weighted residual technique based on
the Galerkin method is utilized to transfer the governing differential equations into the

finite element form.
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Initially, the finite element model of the curved beam including the effects of the axial
extensibility, shear deformation and the rotary inertia (Case 1) is developed.
Subsequently, the curved beam model excluding the axial extensibility, shear
deformation and rotary inertia (Case 2) is investigated. Efficient numerical techniques,
based on the curvilinear integral applied on the central line of the curvilinear beam and
the Gaussian integral method’ have been implemented to obtain the governing equations
of motion in finite element form. The results for the natural frequencies, modal shapes
and deformed configurations of different curved beams with different boundary

conditions are obtained and compared with those available in published literatures.

2.2 Finite Element Model of Timoshenko Beam

A Timoshenko beam and its rotary deformations are illustrated in Figure 2.1.

e
R
e
™ +
g o
. .
.
o
+ :
0
v
ot
v o
K] 5

Un-deformed Bending deformation Shear deformation

Figure 2.1 Typical Timoshenko beam and its rotary deformations.

In Figure 2.1, variables y and f represent the rotation due to bending and angle of
distortion due to shear, respectively. Therefore, the deformation relationship for the

Timoshenko beam can be expressed as:
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ow(x, 1)

Ox -

w(x,0)+ f(x,1) 2.1

where w represents the transverse displacement. Based on Equation (2.1), one can easily
obtain the governing differential equations of motion for free vibration, as stated in

Equations (2.2)4, by applying the extended Hamilton principle.

*w(x,t) @ ow(x,
- m(x)% + a—x{quA(x)(% e r))} ~0 (2.22)
62 (at) a a ,t 6w ,t
- J(x)—%tzi— + -6;(151():) ia(f-—)J + quA(x)(——-é—E—)— —y(x, r)) =0 (2.2b)

where E, G and £, are the elastic modulus, shear modulus and sectional shear coefficient
of the Timoshenko beam, respectively. The m(x), A(x), I(x) and J(x) are the linear density,
cross-sectional area, arca moment of inertia and mass moment of inertia density per unit
length along the X coordinate, respectively. Here it should be noted that J(x) is related to
I(x) as J(x) = y I(x), where y is the material volumetric density. The sectional shear
coefficient (k;) is depended on the material and the cross-sectional geometrical
propertieslﬁg’ ' For beams with circular and thin rectangular cross-section, the widely
accepted shear coefficient (k,) are 6(1 +v)2/(7+12v+4v2) and 5(1+v)A6+5v), respectively,

where v is the Poisson’s ratio.

The governing differential equations of motion, as stated in Equations (2.2), will be
solved by the finite element method using the natural coordinate system and appropriate
Lagrangian type shape functions. Beams’ deformations (transverse displacement w(x) and
rotation due to the bending w(x)), coordinates (x) and geometrical properties (cross-

section area A(x) and area moment of inertia /(x)) can be related to their nodal values as:
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w(n O=IN WD}, win H=INDI{PO}, x(n)=[N(mIHX],

A(m)=[N(m)]{4} and I(n)=[N(n)]{1}

where # is the natural coordinate (-1< n <l) and {#W(¥)} and {¥(f)} are the nodal

2.3)

displacement and rotation vectors for w and y deflection functions, respectively. {X},
{A} and {I} are the nodal vectors for x, A and / functions, respectively. [N(#)] is the
Lagrangian type shape function. Here it should be noted that one can utilize different
order polynomial functions to interpolate the deformation (w and y), geometrical
coordinate (x) and geometrical properties (4 and ) separately, which will not affect the
integral procedure to obtain the finite element formulation. Therefore, for the sake of
simple expression, in this dissertation the shape function utilized to interpolate the
deformation, geometrical coordinate and properties are assumed to be the same, except

those defined specifically.

Now applying Galerkin weighted residual technique to Equations (2.2) and substituting
the interpolation functions provided in Equations (2.3), the following governing

equations of motion in finite element form can be obtained:

[M{g(")} +[K1{g()} =0 (2.4)
where
| M1 [0] | K] Ky ] _w@s
e[ 0] e ] (0O

The sub-matrices for mass and stiffness matrices given in Equations (2.5) are provided in

“Appendix A” and evaluated numerically using Gauss Quadrate technique.
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2.3 Finite Element Model of Curved Beams

Based on the introduction presented in Chapter 1, it can be found that two basic
assumptions for curved beam-type structures were widely studied by researchers, which
are the curved beam including the effects of the axial extensibility, shear deformation and
the rotary inertia (Case 1) and the curved beam model neglecting the effects of the axial
extensibility, shear deformation and rotary inertia (Case 2). Therefore, both models will
be studied in this dissertation. The geometry of the general curved beam is illustrated in
Figure 2.2, in which L, @ and 4 are the span length, curve angle and rise of the curved
beam, respectively. The coordinate S is along the central line and y(x) is the function
describing the central line. Here, it should be noted that the coordinate definition is
adopted the same as Tseng et al 6, Oh et al’” and Chidamparam and Leissa' . The
geometrical and deformational relationships for both curved beam models (Cases 1 and
2) are summarized in Table 2.1.

A u(s) Curved beam's central
line function: y=y(x)

------------------------------------------- i--v
.
.
.

h:

PO
av
e
.....
aet
.....

.....
.

P
.....
......
.....
.,
e,

Figure 2.2 Curved beam’s geometry.
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Table 2.1 Geometrical and deformational relationships for different curved beam models.

Curved beam model Case 1 Case 2

Radial displacement w(s) w(s)

Differential of the total
dur(s)/ds =du(s)/ds + w(s)/p(s) 0=du(s)/ds+w(s)/p(s)
tangential displacement
Rotation due to the tangential
, p(s)=u(s)/p(s) p()=u(s)/p(s)
displacement

Total rotation aw(s)/ds=p(s)+w(s)+o(s) aw(s)Yds=y(s)+e(s)

In Figure 2.2 and Table 2.1, w(s), u(s), ¢(s), w(s) and f(s) are the beam’s radial
displacement, tangential displacement, rotation due to tangential displacement, rotation
due to bending and rotation due to shear along the S coordinate, respectively. Variables
p(s), ur(s), dw(s)/ds and w(s)/p(s) are the radius of curvature, beam’s total tangential
displacement, slope of radial deflection (w) curve and tangential displacement due to

radial displacement along the S coordinate, respectively.

Next, the procedure for deriving the governing differential equations of motion and the
equations of motion in finite element form for both curved beam models (Cases 1 and 2)
will be presented. The extended Hamilton principle stated in Equation (2.6) will be

utilized to derive the governing differential equations of motion.

3
[r-sv+ow,ydat=0; d()=0atr=1,1 (2.6)

h
where T, V and W, represent the kinetic energy, potential energy and non-conservative
virtual work, respectively. As the main purpose of this chapter is to study the free
vibration of curved beam-type structures, the non-conservative virtual work (6/,.), as

stated in Equation (2.6), is assumed to be zero in the following sections.
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2.3.1 Equations of motion for curved beam model (Case 1)
The curved beam model (Case 1) takes into account the rotary inertial, axial extensibility
(dur(s)/ds) and also the shear deformation. Therefore the kinetic energy (7) and the

potential energy (¥) in its most general form can be written as:

=“IL ()(8w(st)j ILJ( )[6|//(st)] J-L()(Bu(st)j @7

1 By (s,f) Bur (s,1)
V=EILE’(S)( V’a(: ) —J'quGA(s),B (s,)ds +— jLEA( )( s ) (2.8)

where m(s), A(s), /(s) and J(s) are the linear density, area, area moment and mass moment
of inertia density along S coordinate, respectively. Here it should be noted that the
integral (I;[.]) represents curvilinear integral applied on S coordinate. The geometrical
and deformational expressions for Case 1 in Table 2.1 were substituted into Equations
(2.7) and (2.8), and then by identifying w(s), u(s) and w(s) as the independent variables,

and applying Hamilton’s principle stated in Equation (2.6), the following three governing

. . : . 26,35,171 . .
differential equations of motion will be obtained as:

B o? w(s ) 08 ow(s,1) _u(s,1) _ EA(s)( ou(s,t)  w(s,t) _
m(s)——— [k GA(s )[ % ) '//(S:t)]:| p(s)( Pt p(s)j 0 (2.9a)

~ O*u(s,1)  kyGAG) (ow(s,t) u(s,t) d duls,t)  w(s,))|_
"0 T e ( 5 o YO ’)J {EA( )[ 5 e ) @

(LD Oy (s,0) W(s,t) _us0) -
J(s)L L0 R (EI() ) quA(s)( 5 o0 w(s,t)J—O (2.9¢)
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The finite element model of the system will now be developed based on Equations (2.9).
By using the natural coordinate system and the appropriate Lagrangian type shape
functions, the Cartesian coordinate x(s) and y(s), radial displacement w(s), tangential
displacement u(s), rotation due to bending w(s), cross-sectional area A(s) and area

moment of inertia /(s) can be related to their relative nodal values as:

x(m=INDIX}; y=INmI{ Y} wln =[N ]{W ()} 5
u(n, =[NMILUQ@}; win O=INI{@)}; A=INmI{A}; In)=[N){T}

(2.10)

where # is the natural coordinate (-1< # <1) and [M(#)] is the Lagrangian type shape
function and the vectors {#(?)}, {U(Y)} and {¥(r)} are the nodal radial displacement,
nodal tangential displacement and nodal rotation vectors associated with the radial
displacement function (w), tangential displacement function () and rotation function (y),
respectively. Similarly, {X}, {¥}, {4} and {I} are the nodal values associated with the x,

¥, A and [ functions, respectively.

By applying the Galerkin weighted residual technique to Equations (2.9), substituting the
functions with respect to their nodal values given in Equations (2.10), and then utilizing
the Jacobin relationship between the Cartesian coordinate (X and Y), the curvilinear
coordinate (S) and the natural coordinate (y), the following governing equations of

motion in the finite element form can be obtained.

[MI{G(")} +[K1{g(®)} =0 (2.11)
where
(M,,] [0] [0] K]  [Ku] [Kuy] W)}
M]=| [0] [M,] [0] |»[K1=|[K,, " [Ku] [K,1|>{@@r={U®O} (2.12)
0] [0 [M,,] Ky 1T K1 [Kyy ] t40)

38



The mass and stiffness sub-matrices in Equations (2.12), are presented in “Appendix B”,
and evaluated numerically using the Gauss Quadrate technique and the curvilinear

integral applied on the central line of curvilinear.

2.3.2 Equations of motion for curved beam model (Case 2)
The curved beam model (Case 2) neglects the rotary inertial, axial extensibility
(dur(s)/ds) and also shear deformation. Therefore, one can easily cancel the energy
related to the rotary inertial, axis extensibility (dur(s)/ds) and also shear deformation in

Equations (2.7) and (2.8) to obtain:

—j({w“ﬂ J({““ﬂ @.13)

L (s,
V_ZJLEI(s)( ~ )ds (2.14)

Substituting the geometrical and deformation relationships for Case 2 listed in Table 2.1
into Equations (2.13) and (2.14), and selecting w(s) and u(s) as the variables and then
applying the Hamilton’s principle stated in Equation (2.6), the following two governing

differential equations for Case 2 can be obtained:

o*w(s,n)  &? ’wis,n)) (El(s) du(s, z)j
EI 0
) a2 s ( © o p(s) Os @15)

m(s)

Qu(s.) , {El(s)62W(st)J G{EI(S) 514(3”)} (2.16)

ar? p(s) a5’ os| p2(s) Os
The detailed procedure for obtaining the above different equations of motion has been

provided in “Appendix C”. These two equations can be combined together by utilizing
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the inextensibility assumption (dur(s)/ds=0) for Case 2 listed in Table 2.1 to obtain a

single governing differential equation of order 6 with respect to the tangential

displacement (u), which will be identical to that provided by Chidamparam and Leissa’

for uniform circular beam as:

6 4 2
2 0 u(‘;7t) +2E16u (Zat) +_E;§_au (i’t) =
Os Os p-  Os

n{pz *u(s,n)  8%u(s,1) 0 @.17)

+ E],

as*arr or ] i
Here, the equations of motion in finite element form for curved beam model (Case 2) will
be developed based on Equations (2.15) and (2.16). For this case, the Lagrangian type

shape function, similar to Case 1, is utilized to interpolate the Cartesian coordinate x(s)

and y(s), cross-sectional area function A(s) and area moment of inertia function I(s) as:

x(m=INIRXS s y=INILYE, A=[NIAY, I=INeHD (2.18)

A polynomial equation of order 5, as stated in Equation (2.19), would then be used to
interpolate the tangential displacement (u) for this case, as it will satisfy the governing

differential equation with respect to the tangential displacement stated in Equation (2.17).

u(n) = Co + Ci +Cyn® + Cyn® + Cyn* + Csn® (2.19)
Using the deformation relationship for the beam model (Case 2 listed in Table 2.1), the
radial displacement (w) and rotation (i) are related to the tangential displacement («) as:

aw(n) 1  u(n)

_du(m) () _
dn J.(n)  p1)

dn  J.(n)

w(n) = and y(7) = (2.20)

where Jacobian J, () and radius p() can be evaluated using the same methodology as
that for curved beam model (Case 1), as the geometrical properties were interpolated

using the same Lagrangian type shape function. The displacement function u(#) can be
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related to a two-node curved beam element (each node has three degrees of freedom U,

W, ¥) with nodes i and ; as:

u) =N, W, % Uy Wy ) (2.21)

where [NN(n)] is the shape function matrix, which can be obtained using Equations
(2.19) and (2.20). The detailed information has been provided in “Appendix D”. Finally,
by applying the Galerkin weighted residual technique to the governing differential
equations listed in Equations (2.15) and (2.16), the governing equations of motion in
finite element form for Case 2, similar to that in Equation (2.11), can be obtained. For
this case, the nodal displacement vector and the mass and the stiffness matrices for this

case can be expressed as:

(@) ={U,LW, ¥, U, W, 80 (2.22)

! &[BN(H)]T}’A@])[BN(W)]
M= ¥ 4 [T an 2.23)

element | -1 H NN(?))]T },A(;;)[NN(U)]jC(U))

2
1 %[DN(n)JTEI(m[DN(mH fﬁ?’) [y )Y By ]+
c c 7
" E f0 B Dy o | &2
Tim N Ty N

where 7 is the total number of nodes to model the curved beam, [Bx(n)] = d[NN(n)]/dy,
and [Dm(n)] = P[NN(n))/dn’. The detailed procedure for obtaining Equations (2.23) and

(2.24) has been provided in “Appendix E”.
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2.4 Numerical Results

In this section, illustrative examples are presented to clarify the generality and accuracy
of the developed methodologies. As the dimensionless natural frequency, which will be
studied in this section, has different definition in available published literatures, Table 2.2

will summarize those definitions for dimensionless natural frequency.

Table 2.2 Definitions of the dimensionless natural frequency.

Definition 1 Definition 2

Dimensionless natural frequency Q= \/:11— 12 Vo ! El ;= \/}'1— R? Ny 1 El

In Table 2.2, ©; and A; represent the i™ dimensionless natural frequency and eigenvalue,
respectively. Ay, I, E and y represent the area and area moment of the beam structure, and
the material elastic modulus and volumetric density, respectively. / and R represent the

beam length (curvilinear length) and the radius of circular beam, respectively.

2.4.1 Timoshenko beam

A typical non-uniform beamm, as shown in Figure 2.3, will be utilized to investigate the

presented methodology.

Ay, Iy :7“,
(Central line)

zZ

Figure 2.3 A typical non-uniform Timoshenko beam.
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Here, the Timoshenko beam is modeled using 7 Timoshenko beam elements with 4 nodes

per element. The dimensionless geometrical and physical properties of this beam have

been summarized in Table 2.3.

172
Table 2.3 Dimensionless properties of the non-uniform Timoshenko beam

Elastic modulus (£)/ Shear modulus (G) 2.6 Area moment (/p)/Area (A4y) 0.0707°
Shear coefficient(k,) 5/6 Beam Length (L) 1
Density(y) 1 Tapped rate (a) -0.5,0,1
Beam Area function A=Ay(1+ax), 0<x<L
Beam Area moment function I=l(1+ax)’,  0<x<L

Note: (1) the original reference papers did not provide the unit of each parameter and the value of
density, as the dimensionless natural frequency will be studied, the effect of unit and detail value of
physical properties will be cancelled finally; (2) The tapped rate (o) is utilized to evaluate the area and
area moment function.

In this example, the dimensionless natural frequency, as defined in “Definition 1” in

Table 2.2, will be utilized to study the dynamic properties of the beam. The first five

dimensionless natural frequencies evaluated through the presented finite element method,

which is programmed utilizing the MATLAB®" software, have been provided in Table

2.4, and compared with those solved analytically in available literatures.

Table 2.4 The first five dimensionless natural frequencies comparison for non-uniform

Timoshenko beam with pinned-pinned boundary.

a -0.5 0 (uniform) 1

£; | Ref[172] Ref[173] Present | Ref[172] Ref[173] Present | Ref[172] Ref[174] Present
Q, 6.765 6.754 6.754 9.023 9.023 9.021 11.901 11.896  11.893
2, | 24.462 24,539 24353 | 29914 29912 29.9 36.427 36.424  36.402
;| 47371 47302  47.281 55.201 55207 55.173 | 63.004 62.849  62.798
2, 72.674 72672  72.632 | 81.817 81.815 81.756 | 68.143 68.048  67.975
s 1 99.231 99.039 98982 | 108.856 108.695 108.61 89.984 89.696  89.615
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From Table 2.4, one can easily find that the results are in perfect agreement with those in
published literatures. Here, it should be noted that the results are provided for both

uniform (a=0) and non-uniform Timoshenko beams.

2.4.2 Curved beam model (Case 1)
The curved beam model (Case 1) takes into account the axial extensibility (dui(s)/ds),
shear deformation and rotary inertia. The challenge for the finite element methodology
developed in this dissertation is to evaluate the mass, stiffness (also the damping and
force) matrices utilizing the curvilinear integral applied on the central line of curvilinear
beam numerically. Therefore in this section, first the circular beam-type structure will be
studied to validate the developed finite element formulation, and then the study will be
extended to non-circular beam with variable curvature, finally a non-circular beam with
non-uniform cross-section will be presented. Here, it should be noted that all the curved
beams studied in this section, are modeled using 10 developed ‘curved beam element’

with 4 nodes per element.

Example 1: Uniform circular curved beam with pinned-pinned boundary conditions

The uniform circular curved beam, as illustrated in Figure 2.2, with the pinned-pinned
boundary condition is considered here. The beam’s dimensionless material and

geometrical characteristics are given in Table 2.5:

Table 2.5 Dimensionless properties of circular beamzz’ 43.
Physical properties (k,G/E) 0.3 Beam arca Moment () 0.01
Beam Radius (R) 0.75 Beam area (4y) 4
Density(y) 1 Acre angle (@) /2

Note: the original reference papers did not provide the unit of each parameter and the value of density,
as the dimensionless natural frequency will be studied, the effect of unit and detail value of physical
properties will be cancelled finally.
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The other parameters can be obtained through those listed in Table 2.5 as:
I = R®, r=N(Iy/ 4p)=0.05, R/r =15 and I/r = 23.56 (2.25)

The results for the first 10 dimensionless natural frequencies defined as “Definition 1” in
Table 2.2, and the associated modal shapes and deformed configurations are provided in
Table 2.6 and Figures 2.4 and 2.5, respectively. It can be realized that very good
agreement between the present results and those presented by Austin and Veletsos” and
Eisenberger and Efraim” does exist. It should be noted that the horizontal axis “non-
dimensional beam curvilinear length” in Figure 2.4 is defined by the non-dimensional
parameter s//, in which, s is measured along the curved beam central line. Therefore, s/

varies between zero and one.

Table 2.6 Dimensionless frequencies of a uniform circular curved beam with the pinned-

pinned boundary conditions (Case 1).

Mode Austin and Vele‘csos22 Eisenberger and Efraim43 Present study

1 29.61 29.2799 29.2760
2 33.01 33.3049 33.3176
3 67.24 67.1235 67.1231
4 79.6 79.9708 79.9752
5 107.7 107.8511 107.8559
6 144.5 143.6175 143.6287
7 155.2 156.6656 156.6790
8 191.3 190.4771 190.5445
9 223.7 225.3611 225.3700
10 235.3 234.5235 234.7116
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Figure 2.4 The first 10 vibration modal shapes of uniform circular curved beam with

pinned-pinned boundary conditions. Solid, dashed and dotted lines represent modal shapes

for «4, w and y, respectively.
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Figure 2.5 The deformations relative to the first 10 vibration modes for uniform circular

curved beam with pinned-pinned boundary condition. Solid and dashed lines represent

deformed and un-deformed configurations, respectively.
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Example 2: Uniform circular curved beam with clamped-clamped boundary conditions

In this example, a uniform circular curved beam with the clamped-clamped boundary is

studied. The dimensionless geometrical and material properties are given in Table 2.7.

Table 2.7 Dimensionless properties of circular beam

Physical properties (k,G/E) 0.3 Beam area Moment (/) 0.0016
Beam arch length (/) 1 Beam area (A4¢) 1
Density(y) 1 Acre angle (D) /2

Note: the original reference papers did not provide the unit of each parameter and the value of density,
as the dimensionless natural frequency will be studied, the effect of unit and detail value of physical
properties will be cancelled finally.

The other parameters can be obtained through those listed in Table 2.7 as:

R =l/® =0.6366, r=N( Iy/ 49)=0.04, R/r =15.91 and I/r = 25 (2.26)
The results for the first 10 dimensionless natural frequencies (£2) defined as “Definition
17 in Table 2.2, and the associated modal shapes and the deformed configurations are

presented in Table 2.8 and Figures 2.6 and 2.7, respectively.

Table 2.8 Dimensionless frequencies of uniform circular curved beam with clamped-

clamped boundary conditions (Case 1).

Mode Austin and Vf:lf:tsos22 Eisenberger and Efraim43 Present study
1 36.81 36.7031 36.7130
2 42.44 42.2635 42,2588
3 82.5 82.2330 82.2328
4 84.3 84.4915 84.4935
5 122.5 122.3053 122.3108
6 155.1 154.9447 154.9510
7 167.7 168.2026 168.2192
8 204.4718 204.5467
9 238.9920 ‘ 238.9938
10 249.6 249.0114 249.2148
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Once again, it can be seen the results are in very close agreement with those reported in

works by Austin and Veletsos” and Eisenberger and Efraim" .

Example 3: Uniform circular beam with different arch angle

Above two examples are concentrated on the uniform circular beam with 90° arch angle.
This example will be focused on circular beam with different arch angle. The
dimensionless natural frequency defined as “Definition 2” in Table 2.2, will be evaluated
utilizing the developed finite element methodology and then the results will be compared
with those in available literatures. In this example, the cross-section of uniform circular

beam is circular and the geometrical and physical parameters are listed in Table 2.9.

Table 2.9 Properties of circular beam” *'”,

Elastic module (E) 2.1x10"'(N/m®)  Shear coefficient (k,) 0.909
Poisson’s ratio (v) 0.3 Beam area (4y) 0.0004 (m?)
Density(y) 7850 (N/m?) Slenderness ratio 20

In Table 2.9, the slenderness ratio is defined as 2R/r43, in which R and r represent the
radius of circular beam and the beam’s cross-section, respectively. As it is a circular
cross-section beam, the area moment can be casily obtained through I=r (2r)* /64. The
shear modules can be obtained through G=FE/2(1+v). The results for the first four
dimensionless natural frequencies defined as “definition 2” in Table 2.2, are listed in
Table 2.10. Again, excellent agreement is observed with the results in published

literatures.

Now, the natural frequency of the circular beam with different boundary conditions and

arch angles has been evaluated using the developed methodology, and the results show
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perfect agreement with those in available literatures. Next, the proposed finite element

approach will be utilized to evaluate the natural frequency of non-circular curved beam.

Table 2.10 Dimensionless frequencies of uniform circular beam with clamped-clamped

boundary conditions (Case 1).

Arch angle e 28 . . 43 . 175

(@) Mode  Yildirim Eisenberger and Efraim Irie et al Present
1 23.799 23.799185 23.75 23.8013
60° 2 39.144 39.144203 39.05 39.1433
3 62.976 62.976120 62.38 62.9772
4 71.042 71.041569 70.71 71.0424
1 10.629 10.629336 10.61 10.6266
120° 2 15.194 15.193805 15.19 15.2006
3 24,756 24755831 24,72 24.7613

4 30.598 30.598384 30.47 30.6

1 4.160 4.160407 4,151 4,156
. 2 8.546 8.545747 8.542 8.5437
180 3 15.481 15.480691 15.46 15.4796
4 17.921 17.921279 17.91 17.9454

Example 4: Parabolic, elliptical and sinusoidal uniform curved beams

In this example, the parabolic, sinusoidal and elliptical arches, as shown in Figure 2.8, are
investigated for their dimensionless natural frequencies. To facilitate the numerical study,
the following dimensionless variables are defined: f = h/L (arch rise to the span length),
SR = LA(I/4) (slenderness ratio) and & = x/L. The cross-sectional area, second moment
of area of the beam, and all beam material properties are similar to those given in
Example 1. The Dimensionless equation for the parabolic arch (Figure 2.8a) is defined

35
as o

y=4f1-¢); 0=¢<l (2.27)
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And the dimensionless equation for the sinusoidal arch (Figure 2.8b) 1s defined as”:

y=f—c; +c sin(c,é+cy); 0S¢ (2.28)

where
¢y = l(1+2&);¢; = f /[l -sin(ec,)] (2.29)

The dimensionless equation for the elliptical arch (Figure 2.8c) can be written as:

y=b ‘/1 —{1-[€~b cos(a)]/by}* ~b,sin(a); 0 E<I] (2.30)

where
b =£+0.5; a=arccos(0.5/b)); b, = f/[1-sin(a)] (2.31)

The numerical results for the first four dimensionless natural frequencies defined as

“Definition 1” in Table 2.2, are listed in Table 2.11. As it can be realized that the results

. . 5
are in excellent agreement with those reported by Oh et al”.
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Table 2.11 Dimensionless frequencies for the parabolic, elliptical and sinusoidal curved

beams with different boundary conditions (Case 1).

Geometry of arch Mode Ohetal” Present study
Parabolic 1 21.83 21.7478
pinned-pinned 2 56.00 55.4894
f=03,5R =175, 3 102.3 100.7214
k,G/E=0.3 4 1134 113.4976
Elliptic (¢ =0.5) 1 35.25 34.892
pinned-clamped 2 57.11 56.766
f=0.2, SR =50, 3 83.00 81.420
k,G/E=0.3 4 128.2 124.288
Sinusoid (¢ = 0.5) 1 56.3 56.0836
clamped-clamped 2 66.14 66.0952
f=0.1, SR =100, 3 114.3 113.4277
k,G/E =0.3 4 181.7 179.3567

Example 5: General non-uniform and non-circular curved beams

In above four examples, the natural frequencies for circular beams with different arch
angles (@) and also different type of non-circular beam with different boundary
conditions have been investigated and by comparing the results with those in available
literatures, the validity of the proposed finite element approach has been verified. In this
section a general curved beam with clamped-clamped boundary condition, which
represents an overpass bridge shown in Figure 2.9, will be investigated. It should be
noted that this type of curved beam has a variable radius of curvature. The physical

properties of the curved beam are listed in Table 2.12.
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Figure 2.9 General non-uniform and non-circular curved beam representing an overpass

bridge.

Table 2.12 Properties of the general non-uniform and non-circular curved beam.

Elastic modulus(E) 70 (GPa) Shear coefficient(k,) 0.8438
Shear modulus(G) 24.50 (GPa) Beam width 2 (m)
Density( v) 2777 (Kg/m®)  Beam span length 40 (m)
Beam upper and lower surface functions y =2 (m), y=-0.005x*+0.2x -2 (m)
Central line function y =-0.0025x> + 0.1x (m)

The variations of the first four natural frequencies with respect to the number of elements
for the finite element model are shown in Figure 2.10. The first four associated modal

shapes and the beam’s deformations are also illustrated in Figures 2.11 and 2.12,

respectively.
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Figure 2.10 Finite element model convergence analysis for the clamped-clamped general

non-uniform and non-circular curved beam.

55



-,
0,2 ’, (N
g. : s’ ‘\
H 4
204 d AN
o 4 N,
g ’ AN
’ ~,
s I“’ \N
I e
o’ """.-:-pnqnqcuAi1llﬂ"
0o 0. 0.4 06 0. 1
Non-Bimensiona Beam (’:urvoltnear{enmh
PLLN Caud
'I \\ ,f -
’l \\ I’ "
@ 0. s 5 s b
% Vs \ R Foun N,
s e \ A N
U’ c s, kY ." ,l re craxvertt
" o .;.»" Fi
204 N J
=7 \ ’
N ,'
%2 The third mode -

0.4
Non %?menslonal Beam 3urvmnear Length

e
S

The second mode

C it
- S,

e
»

,Modal Shape
&

0.2 patet

0.4
40 Non-g'lmensionoafseam C?urvmnear I.'.enqlh 1
The forth mode

2 77N o~

Modat Shape

0.2 bl

I T T T o5
Non-D'*:mensional Beam %urvilinear Eengtn 1

Figure 2.11 The first four vibration modal shapes of the general non-uniform and non-

circular curved beam with the clamped-clamped boundary condition. Solid, dashed and

dotted lines represent mode shapes for u, w and y, respectively.

% The first mode
0.03

Deformation

B T S 1
ﬁon»mmenslonal gpan Length

The third mode

e

1

. .6 0.8
oﬁon-mmgr‘\‘slonal sopan Length

The second mode
0.03

Deformation
g
Q
-

-

'°'°'o 0.2 0.4 0.6 0.8 1
Won-Dimensionat Span Length

The forth mode
0.0}

£ 0.02

0.01

Deformation

-0.010 g 1

l&on-mmgfﬁsional Soﬁgn Lenggﬁs

Figure 2.12 The deformations relative to the first four vibration modes for the general non-

uniform and non-circular curved beam with the clamped-clamped boundary condition.

Solid and dashed lines represent deformed and un-dcformed configuration, respectively.

56



It can be realized from Figure 2.10 that the natural frequencies converge rapidly with the
increase of the number of elements in the finite element model and there is no significant

changes in the natural frequencies for the number of elements higher than 6.

2.4.3 Curved beam model (Case 2)
The natural frequencies of a uniform circular beam are once again studied in this section,
but this time the effects of the axial extensibility (du(s)/ds), shear deformation and rotary
inertia of the curved beam have all been neglected. The parameters related to the
tangential inertial force, which are presented in Equations (2.13), (2.16) and (2.23), have
also been neglected in order to compare the results with those reported in available
literature . The first 10 dimensionless natural frequencies defined as “Definition 2” in
Table 2.2, of the circular beam with various curve angles and different boundary
conditions are listed in Tables 2.13 to 2.16, and were compared with those presented by
Henrychlz. In this example 10 ‘curved beam elements’ (4 nodes per element), similar to
that for Case 1, is utilized to evaluate the nodal cross-sectional area, moment of inertia,
radius of curvature and geometrical Jacobian matrix, and then 10 ‘curved beam e¢lements’
(2 nodes per element), as given in Equation (2.21), are employed to evaluate the nodal

displacement vector for Case 2.

To compare the related results with those for curved beam model (Case 1), the last
columns of Tables 2.13 and 2.14 are the dimensionless natural frequencies defined by
“Definition 1" in Table 2.2 for the pinned-pinned and the clamped-clamped circular beam

with the curve angle @ of 90°, respectively.
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One can realize form Tables 2.13-2.16 that the dimensionless natural frequencies
evaluated using the developed finite element approach agree perfectly with those
provided by Henrychlz. Comparing the natural frequencies listed in the last column of
Tables 2.13 and 2.14 with the corresponding values in Tables 2.6 and 2.8 for Case 1, one
can realize the significant effects of the shear deformation, rotary inertia and axial
extensibility (dui(s)/ds), especially, for the higher modes. For instance, the first non-
dimensional fundamental natural frequency for the pinned-pinned circular beam with @
= 90° is 29.276 for Case 1 compared to 37.011 for Case 2, while the 10" natural
frequency of the beam is 234.116 for Case 1 compared to 1195.293 for Case 2. Similarly,
the first non-dimensional fundamental natural frequency for the clamped-clamped
circular beam with @ = 90° is 36.713 in Case 1 compared to 59.851 in Case 2 while the
10" natural frequency of the beam is 249.2148 in Case 1 compared to 1302.093 in Case

2.

2.5 Conclusions and Summary

In this Chapter, the governing differential equations for the Timoshenko beam and
general curved beam (including and excluding the effects of the axial extensity
(dur(s)/ds), shear deformation and rotary inertia) are derived using the extended Hamilton

principle and then cast into finite element method.

A ‘4-node’ Lagrangian type Timoshenko beam element with two-degree of freedom per
node has been presented to solve both uniform and non-uniform Timoshenko beams. The
results are in excellent agreement with those reported in published literatures. Moreover,

a ‘4-node’ Lagrangian type curved beam element with three-degree of freedom per node
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has been developed to study the curved beam model considering the axial extensibility
(du1(s)/ds), shear deformation and rotary inertia (Case 1), and then combined with the
curvilinear integral method to solve both the uniform and non-uniform curved beam with
variable curvatures. The results for the conventional geometry (circular, parabolic,
sinusoidal and elliptical curves) are in excellent agreement with those reported in

published literatures.

Furthermore, a ‘two-node’ curved beam element with three-degree of freedom per node
has also been proposed to study the curved beams’ deformation relationship excluding
the effects of the axial extensibility (dur(s)/ds), shear deformation and rotary inertia (Case
2). The ‘4-node’ Lagrangian type shape function are utilized to interpolate the
geometrical properties of the curved beams. The equations of motion in finite element
form were obtained by the curvilinear integral method and Gauss Quadrate technique.
Results obtained are in excellent agreement with those available in literature for different

boundary conditions and curve angles. It has been shown that the effect of the axial

extensibility (du(s)/ds), shear deformation and rotary inertia is signiﬁcantﬂ.

It has also been shown that by using the finite element method with appropriate shape
functions, the dynamic property of the curved beam with different geometry and
boundary conditions can be accurately obtained. Therefore, the beam elements developed
in this chapter will be utilized to model and investigate the vibration suppression problem
for beam-type structures using TMD and SAMD technologies, which will be presented in

the following chapters.
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CHAPTER 3

VIBRATION SUPPRESSION OF TIMOSHENKO BEAM USING

TUNED MASS DAMPER

3.1 Introduction

Based on the literature review presented in Chapter 1, one can easily find that previous
works about the Tuned Mass damper (TMD) system are mainly focused on attaching
TMD onto Single-Degree-of-Freedom (SDOF) or discrete Multi-Degree-of-Freedom
(MDOF) systems. For continuous systems, such as uniform beams, the problems are

typically simplified to a SDOF system based on the fundamental modal shape of the

continuous system84. This methodology has some restrictions, which have been
summarized in Chapter 1. Therefore, this chapter concentrates on studying the uniform
Timoshenko beam with one attached TMD. Subsequently, the optimal TMD parameters
will be compared with those reported in published literatures, to verify the validity of the
optimal TMD design for beam-type structures using the developed design optimization

algorithm.

3.2 Equations of Motion for Timoshenko Beam with Attached TMD

In this section, a detailed and comprehensive procedure for the equations of motion in
finite element form for Timoshenko beam with the attached TMD system, as illustrated in

Figure 3.1, is presented. Here, for the sake of simplicity, the formulation for the
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Timoshenko beam with one TMD system has been derived using the extended Hamilton
principle. However, the mathematical modeling procedure can be casily extended to

multiple TMD system.

M

Figure 3.1 The Timoshenko beam with the attached Tuned Mass Damper (TMD) system.

In Figure 3.1, Krmp, Crap and Mypyp represent the spring stiffness, damping and mass of
the designed TMD system, respectively, and L is the beam length. The extended

Hamilton principle can be described as:

)
[(6T -6V + 6w, )dt =0; 3()=0att=t;,t, G.D

4
where the kinetic (T) and potential (¥) energies and the non—conservative virtual work

(6W,.) for the Timoshenko beam with one attached TMD system could be described as:

L
T=%j‘m(x){aL((;"—0') IJ( )(6|//(x t)) dx+'1"MTMD2T(t)2 (3.2)
0 ! 2

L L
__;.j El(x )(a“’(x ’)) +—é—_[quA(x)ﬂ2(x,t)dx+—;—KTMD(w(xT,t)—zT(t))2 (3.3)
0 0

L L
W,e = [ £ (x,0)8wedx + L [~ Civ(x, £)dwdx = Crpp (WCxp , 8) = 27 (D)S(wW(xr,0) ~27(1)  (3.4)
0 0
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where E, G, k, m(x), A(x), I(x), J(x), I, w, B and y have the same definitions as those
presented in Equations (2.2). C represents the viscous damping. zy and w(xy,f) represent
the displacement of the attached TMD and beam’s transverse displacement at the point
(xr) of attachment TMD system, respectively. f{x,f) represents the external force.
Considering the Timoshenko beam’s deformation relationship (ow/0x = y + f), as stated
in Equation (2.1), and Equations (3.2)-(3.4), and then applying the Hamilton’s principle,
as stated in Equation (3.1), the following three governing differential equations of motion

may be obtained.

0w ow(xt) B (Ow(x,t)_ )
m(x) o7 C Py +ax|:quA(x) ——-———6x wx,t) ||+ f(x,t)

P (3.53)
- CTMD( (.0 zr (’)}9(" = x7) = Kppp Wxp, 1) = 20 (1) S(x —x7) =0
2
- J(x)g—"if”—) + %(EI(x)a—"’a(}’f’—’l] + quA(x)(ial”%ﬁ —y(x, t)j =0 (3.5b)
MpvpzZr + Crap(Zr (1) =Wz, 1) + Kppp (20 = Wxp, 1)) =0 (3.5¢)

where the symbol $(x- x;) is set to unity when x = x;, otherwise is equal to zero. Now,

utilizing Equations (3.5), and the finite element approach presented in Chapter 2, the

following equations of motion in the finite element form can be obtained:

[M1GO}+[C1HGO} +[K1{g(0)} = (F ()} (3.6)
where
@={wey oy Zof (3.72)
[M,,] [0] (0]

(M]=| [0] (M, ] [O] (3.7b)
{0] [0 Mnpp
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[Con]+[Commp] [01 -IC.np]
[C]= [0] 0]  [0] (3.7¢)
~[Comp]”  [0]  Crp

[Kywl+[Kyrmp] [Kwyl —[Kpl

K1=| [K,,T (K, 1 0] (3.7d)
~[K.np]” 0]  Kmp
1 T
{F(t)}={12 [f{[N(n)lf(mt)j(n)dﬂ}, {0y,, 0}} , (3.7e)
eiement | -1

where [M(y)] and J() are the shape function and Jacobian between the natural

coordinates and physical coordinates, which have been defined in Chapter 2 and
presented in “Appendix A”. In equivalent nodal force vector {F(f)}, expression {0},
represents the null vector with the same size as {¥(7)}. The sub-matrices [M,.], [Myy],
[Kww], [Kwy] and [K,,] in the mass and stiffness matrices have the same definitions as
Equations (2.5) and presented in “Appendix A”. All the other sub-matrices are defined in
the “Appendix F”. For the sake of numerical stability, the following transform matrix is
defined to transfer the nodal displacement vector to a dimensionless vector.
L1}, [0] [0}

[T1=} [01 [1], [0] (3.8)
[0 [0 L,

where L. is the length between two nodes for Timoshenko beam element and [/}, and [/],

are the identity matrices with sizes corresponding to vectors {W} and {¥}, respectively.

Thus the nodal displacement vector {g} can be expressed as {q}=[T]{q.}, where {q.} is a

dimensionless vector, and then Equation (3.6) can be transferred to the following form:

[My14Ga (D} +[Ca1ga (D} +[K g 1gq ()} = {F4 (1)} (3.9)

67


file:///CzTMD

where [M=[TV'[M[T), [CA=[TVICNT. [KJ=[TY'IKIIT] and {FANI=T){F()}.
Therefore, the response, which will be defined in numerical example, will be also

dimensionless.

3.3 Random Vibration State-Space Analysis

Structural systems are typically subjected to the random type loading. In this work, the
optimal design of TMD systems are also been studied for structures under random
loading. For a typical random vibration problem, the mean value of the response can be
obtained through static analysis, thus the problem would be focused on structures subject
to random loading with zero mean value. In general, the random vibration analysis are
concentrated on two important criterions, the variance and Power Spectral Density (PSD)
function, in which the first one reflects the performance in time domain and the second
one represents that in frequency domain. The PSD function can be obtained directly
through the transfer function. The general procedure to obtain the variance of response
can be summarized as: Decoupling the equations of motion utilizing the fundamental
modal shape (eigenvector), then analyzing each vibration mode as a SDOF system,
finally using some numerical methodologies, such as Square Root of the Sum of Squares

method, Absolute Method, Naval Research Laboratory method, Closed Method,
Modified Root Sum of Squares method or Combined Quadratic Combination method87,
to obtain the variance of response. For more detail information about the methodologies

presented above, one can consult the textbook by Wirsching87.

In this dissertation, the random vibration matrix analysis method176 will be utilized to find
the variance of structural response, which will be considered subsequently as the
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objective function of the optimal TMD design problem. The basic idea of the random
vibration matrix analysis method is to transfer the equations of motion stated in Equation

(3.9) to the following state-space form, which is a first-order differential equation.

{2(0)} =4z} + [BI{F, (0} = [41z(0)} +{Q(1)} (3.10)

where {z} is the state vector {g,,4,}" , and

[0] 7] [0]
4]= d [B]=
[4] {:_[Md]—l[Kd] -[Md]‘l[Cd]} and [B] [[Md]"'} (3.11)

It should be noted that the mean value is assumed to be zero, thus the variance is equal to
the mean-square-value, the covariance is equal to the correlation and the autocovariance
is also equal to the autocorrelation. In the frequency domain, knowing the PSD function

of external excitation [Sgg(w)], the PSD of state-space vector, as stated in Equation

(3.10), can be obtained through:

[S . (@)] =[iafI1+[ 4,11 [S g (@))([~ief 11 +[4, 117" (3.12)
where [4;]=-[A4]. It is noted that for the stationary random process, the PSD of external
excitation is a constant matrix, and thus [Sgg(w)] can be simplified as [Sy), and then the

. . . T 176
expression of state-space covariance equation can be simplified as

[4,][C1+[C 14,1 =22(S,] (3.13)
where [C;;] represents the covariance matrix, in which the diagonal components are the

variance of every variables in the state-space vector {z(f)} and other components are the
covariance. A simple derivative procedure for Equation (3.13) has been provided in

“Appendix G”, and for more information one can consult the textbook by Lutes and
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Sarkani' *. In fact, the Equation (3.13) is a Lyapunov equation and can be easily solved.

The RMS of response is basically the square root of variance.

3.4 Optimization Approach

In this section the objective function for the optimal TMD design approach will be
established first. As the established objective function will be utilized in this chapter and
also next chapter (Chapter 4), the objective function in general form will also be
presented in this section. Then, the Sequential Quadratic Programming (SQP) method

will be implemented to find the optimal design TMD parameters in this chapter.

3.4.1 Optimization problem
In this dissertation, the objective of the design optimization problem is to find the optimal
values of the location, damping coefficient and stiffness of the TMD system in order to
minimize the RMS of the beam’s deflection subjected to random loading. For the sake of
numerical stability, the following dimensionless parameters are defined for the attached

TMD system.

My Drypi Crvpi

M

H; = > Jrvp, = and &pyp; =

structure n 2K TMDi M TMDi

(3.14)

where w, and M,y cnre are the n™ natural frequency and mass of the main structure. Mryp;,
Krupi, Crumi and opyp; = /Kyypi / Mpyp; are the mass, stiffness, viscous damping and

natural frequency of the i attached TMD, respectively. Dimensionless variables u;, framp;
and &ryp; are mass ratio, frequency ratio and damping factor of the i attached TMD,
respectively. Now the optimization problem for the beam with attached TMD system

under given mass ratio (x), subjected to random excitation can be described as:
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Find the design variables: {DVy={&rmpi, frmpi> NTMDI}
To minimize: RMS of Deflection (3.15)
Subjected to: 0= &rmpi <1, 0= frupi 2.5, -1< i < 1.

where #ryp; represents the position of the i/ attached TMD system in the natural
coordinate (77), and the objective function is the solution of Equation (3.13). It is noted
that the mass ratio (1) is a given input in the optimization problem and practically the
ratio of the total mass of the attached TMD system to the mass of the beam should not be
greater than 10%, otherwise the attached TMD will change the structural dynamic
properties signiﬁcantlygz. As the numerical examples provided in this chapter are based
on the single attached TMD with fixed position, the design optimization problem stated

in Equation (3.15) would be simplified as:

Find the design variables: {DV}={frmp> rp}
To minimize: RMS of Deflection (3.16)
Subjected to: 0<frmp<2.5,0<¢mp< 1

3.4.2 Optimization algorithm
Sequential Quadratic Program (SQP) technique, which is a powerful and robust gradient
based optimization algorithm, has been employed to solve the optimization problem
stated in Equation (3.16). Here the most essential issues of the SQP technique will be

reviewed. For more details information about SQP optimization methodology, one may

consult the books by Arora” or Rao' . The main idea of the SQP optimization method is

to generate a Quadratic Programming (QP) problem based on the quadratic

o . . . 88, 89
approximation of the Lagrangian function described as ~ :

LDV}, 2) = f((DVY) + 5 Ay ((DV}) (3.17)

i=1
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where {DV}, {g:} and {4;} are the design variable vector, the i constraint and Lagrange
multiplier, respectively. f{.) represents the objective function. The SQP implementation
consists of three main steps: (1) a QP Sub-problem solution; (2) a linear scarching based
on the value of objective function; (3) updating the Hessian matrix of the Lagrangian
function given by Equation (3.17). The procedure proceeds by solving a QP sub-problem
at each major iteration. The solution of the QP sub-problem generates an estimate of the
Lagrange multiplier (1) and a search direction vector {d} in each iteration (k), which is
utilized to generate a new iteration as:

(@i =la}y + o {d}y (3.18)
where oy represents the step length at the &” iteration and it should be determined by
using an appropriate line search technique (one-dimensional minimization) in order to
produce a sufficient decrease in the merit function. Then the Hessian of the Lagrangian,
which is required for the solution of the next positive definitive quadratic programming
problem, is updated using the Broyden Fletcher Goldfarb Shanno (BFGS) formula™ . It
should be noted that the SQP optimization methodology is a typical local optimization
technology, which is capable to find the local optimum points. In this chapter the SQP
algorithm has been executed for multitude of random initial points to ensure that the

global optimal point has been caught.

3.5 Numerical Results
A uniform Timoshenko beam with the attached mid-span TMD, as illustrated in Figure
3.1, will be investigated in this section. The boundary condition is clamped-clamped. The

physical and geometrical properties of the beam have been listed in Table 3.1.

72



84
Table 3.1 Properties of the Timoshenko beam .

Elastic Modulus 29.43 (GPa) Second moment of area 8.72 (m")

Shear Modulus 24.50 (GPa) Shear coefficient (k,) 041
Mass per unit length 36056 (Kg/m) Beam structural damping 0
Cross Sectional Area 7.94 (m%) Beam length (L) 40 (m)

The first five natural frequencies of the beam are evaluated using the finite element

method presented in Chapter 2, and then compared with those obtained analytica11y84, as
provided in Table 3.2.

Table 3.2 The first five natural frequencies of the Timoshenko beam.

o (rad/s) o, (rad/s) o (rad/s) w4 (radls)  ws(rad/s)
Analytical Solutions”  36.280 93.550 168.125
finite element Method 35.451 92.084 168.609 259.10 359.64

In this chapter, the optimal TMD design based on both random and harmonic loadings
will be presented, and the results will be compared with those available in published
literatures. Here, it should be noted that the beam has been modeled using 7 Timoshenko

beam elements with 4 nodes per element, which has been presented in Chapter 2.

3.5.1 Optimization based on random excitation
In this section, the random loading is assumed to be in the form of white noise with PSD
function of 10'° (N*rad/s) applied uniformly perpendicular to the central line of beam.
Here three different cases have been investigated. In Case (1), the RMS of the first
vibration modal response has been considered as the objective function, in Case (2), the
RMS of the beam’s mid-span transverse response (w) has been selected as objective
function and in Case (3) the optimal results based on simplified SDOF system under

random loading would be investigated, which is obtained based on utilizing the
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eigenvector of ([M,]'[K,]), as stated in Equation (3.9), to separate the first vibration
mode as:

Mg, (1) + K11 () = F (1) (3.19)
where M;, K;, and g, represent the modal mass, modal stiffness and modal displacement
for the first vibration mode, respectively. It is also assumed that the structural damping is
zero and the mass ratio (u), as defined in Equation (3.14), is changed to u=Mnyp/M;. As
the effect of attached TMD has been assumed to be restricted in the first vibration mode’
in the numerical model, The problem in Case (3) can be considered as a classical TMD
design problem, in which a single TMD is attached to an un-damped SDOF structure.
The analytical solution for optimal TMD parameters for an un-damped SDOF structure

. . L } 52
under the white noise random excitation can be found in Warburton™ ~ as:

(3.20)

J+ul2 and §TMD=\/ w1 +3u/4)

Joup =~ 40+ (i +u/2)
For Case (3), the obtained optimal parameters are compared with those based on
Equation (3.20) to verify the validity the proposed optimization approach for TMD
system as well as the random vibration state-space analysis methodology utilized in this
dissertation for TMD design. The optimal frequency ratio (frap) and damping factor
(&rmp) for Cases (1)-(3) and the value of objective function for Cases (1) and (2) with
respect to the input mass ratio (changing from 0.01-0.1) have been obtained based on the

design optimization problem stated in Equation (3.16). The results are shown in Figure

3.2 and compared with those obtained analytically based on Equation (3.20).
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Figure 3.2 Optimal Tuned Mass Damper (TMD) parameters and objective function vs.
input mass ratio (#). (a) Optimal frequency ratio (fryp). (b) Optimal damping factor (Eryp).
(c) Value of objective function. Seolid, dashed and dotted lines represent Cases (1), (2) and
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One can realize from Figure 3.2 that the optimal parameters for Cases (1) and (2) are in
close agreement as expected. This is mainly due to the fact that the first vibration mode is

the dominant mode in this example. The optimal results for Case (3) are exactly matching

those obtained by Warburton52, as stated in Equation (3.20), however, they are
significantly different from those in Cases (1) and (2). Thus, one can make the conclusion
that for the continuous structure with the attached TMD system under the random loading
the simplified assumptions made in Case (3) would not generate accurate optimal results.
Furthermore, based on the result for Case (3) and its comparison with the analytical
solution, one can also find that the developed optimization approach stated in Equation

(3.16) are effective in optimal TMD design.

To illustrate the efficiency of the optimal TMD design and also the system response for
different cases, typical optimal TMD parameters for mass ratio (u) equal to 0.01 are
selected and provided in Table 3.3. As expected there is not significant different for the
optimal frequency ratio (frup) between Case (1) and Case (2), which is exactly in
agreement with the working principle of the optimal TMD system and also due to the fact

that the first vibration mode is the dominant mode in this example.

Table 3.3 Optimal Tuned Mass Damper (TMD) parameters for mass ratio (#=0.01) under

random excitation.

Optimal Damping Factor ({rnp ) Optimal Frequency Ratio (frap)
Case (1) 0.0779367 0.982632
Case (2) 0.0915456 0.982311

The PSD of the beam mid-span transverse displacement (w) without and with the optimal

TMD systems given in Table 3.3 for Cases (1) and (2) are compared in Figure 3.3.
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Figure 3.3 PSD of the beam’s mid-span transverse displacement (w). Solid, dashed and
dotted lines represent the uncontrolled structure, structure with optimal TMD Case (1) and

Case (2) listed in Table 3.3, respectively.

It can be seen from Figure 3.3 that the TMD system significantly decreases the system
response corresponding to the fundamental frequency. Furthermore, it can also be
realized that in this example as the fundamental mode is the dominant vibration mode,

the PSD of the middle point deflection for Cases (1) and (2) are close to each other.

To illustrate the efficiency of these optimal parameters of the TMD system, the
sensitivity analysis has been carried around optimal point provided in Table 3.3 for Case
(2). The PSD of the beam mid-span transverse displacement (w) with respect to 20%
deviation of the optimal TMD parameters provided in Table 3.3 for Case (2) are
illustrated in Figure 3.4. Figure 3.5 shows how the off-tuning of the damping factor
(¢érmp) and the frequency ratio (frup) of the TMD can affect the performance of the

system response. In Figure 3.5 the horizontal axis is the percentage of the TMD design
parameter off—tunings, <mp/Soprmp, and frap/foprmp, the vertical axis shows the

deviations of the objective function with respect to the optimal system.
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From Figures 3.4 and 3.5, it can be realized that: (1) the cffect of the deviation of

frequency ratio (frup) from its optimal value is higher than that of the damping factor

(¢rmp) and small deviation of frequency ratio (fryp) from its optimal value may cause
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significant change in the system performance; (2) the effect of the negative deviation of
the damping factor is more than the positive deviation. The results shown here are exactly

agreed with the working principle of optimally designed TMD system and also perfectly

. . 84
agreed with those presented by Younesian ef al .

3.5.2 Optimization based on harmonic excitation
The optimal TMD design based on harmonic excitation will be studied in this section.
The objective function in this section would be to minimize the maximum magnitude in
the frequency range around the first mode, which is different from that for random
excitation, as stated in Equation (3.16). Thus the optimization problem in this section can

be expressed as:

Find the design variables: {DVY={ frsp, <}
To minimize: Max (Magnitude(w) of the transfer function) (3.21)
Subjected to: 0.7 o1 Lws 1.3 ), OSfTMD S25, 0 < fTMDS 1

where ; represents the structural first natural frequency, which is 35.451 (rad/s)
provided in Table 3.2. The harmonic loading is assumed to be applied uniformly
perpendicular to the central line of beam. Three different cases, similar to those for
random loading will be investigated. In Case (1), the magnitude of the transfer function
for the first vibration mode has been considered as the objective function, in Case (2), the
magnitude of the transfer function for the beam’s mid-span transverse displacement (w)
has been selected as objective function and Case (3) is the optimal results based on SDOF
system under harmonic loading. As discussed in the last section, the optimization

problem in Case (3) is an simplified un-damped SDOF system with one attached TMD,
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and the analytical solutions for optimal TMD parameters based on harmonic loading have

been proposed by Den Hartog49 as:

1 3u
=—— and =
Jrmp T+ 2 Srvp 8(L+ 2)

(3.22)

The optimal frequency ratio (fryp) and damping factor (&rup) for Cases (1)-(3) and the
value of objective function for Cases (1) and (2) with respect to the input mass ratio
(changing from 0.01-0.1) have been obtained based on the optimization problem stated in
Equation (3.21). The results are shown in Figure 3.6 and compared with those obtained
analytically based on Equation (3.22). Here it should be noted that for the sake of

stability of the SQP method, in this section the value of the objective function has been

enlarged by 10'°.

From Figure 3.6, it can be found that the optimal results for Case (3) are exactly similar
to those obtained by Den Hartogsz, as stated in Equation (3.22), however they are
significantly different from those for Cases (1) and (2). This confirms that for continue
structures with attached TMD, the simplified assumptions made in Case (3) would not
gencrate accurate optimal results. Through comparing the optimal results with those
shown in Figure 3.2, one can also find that no significant difference exist between the
optimal TMD frequency ratio (frmp) obtained based on random loading and harmonic
loading. This is due to the fact that the basic working principle of the TMD system is to

tune its natural frequency to one of the natural frequency of main structure.
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Figure 3.6 Optimal Tuned Mass Damper (TMD) parameters and objective function vs.
input mass ratio (u). (a) Optimal frequency ratio (frap). (b) Optimal damping factor (Erpp).
(c) Value of objective function. Solid, dashed and dotted lines represent Cases (1), (2) and

(3), respectively. Note: in (a) and (b) the solid and dashed lines coincide with each other and

dotted line coincides with Equation (3.22).
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Again, to illustrate the efficiency of the optimal TMD design and the system response for
different cases, typical optimal TMD parameters for the mass ratio () equal to 0.01 are

selected and have been listed in Table 3.4,

Table 3.4 Optimal Tuned Mass Damper (TMD) parameters for mass ratio (#=0.01) under

harmonic loading,

Optimal Damping Factor ({np ) Optimal Frequency Ratio (frup)
Case (1) 0.0951483 0.976533
Case (2) 0.0952205 0.976364

From Table 3.4, it can be found that the optimal results for these two cases are almost
identical. The magnitude (transfer function) of the mid-span transverse displacement (w)
of the beam without and with the optimal TMD system provided in Table 3.4 for Case (2)

under harmonic loading is illustrated in Figure 3.7.
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Figure 3.7 Magnitude (transfer function) of the beam’s mid-span transverse displacement

(w) under harmonic excitation. Solid and dashed lines represent the response for

uncontrolled structure and structure with the optimal TMD provided in Table 3.4 for Case

(2), respectively.
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It can be found from Figure 3.7 that the TMD system significantly decreases the system
response corresponding to the fundamental frequency. It is interesting to note that

extremes of the magnitude for structure with attached optimal TMD are the same which

actually agrees with that reported by Den Hartog49.

Similar to the random excitation analysis, and in order to illustrate the efficiency of these
optimal parameters of the TMD system for harmonic excitation, the sensitivity analysis
has also been performed. The magnitude (transfer function) of the beam’s mid-span
transverse displacement (w) with respect to 20% deviations from the optimal TMD

parameters listed in Table 3.4 for Case (2) are illustrated in Figure 3.8.
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Figure 3.8 Magnitude (transfer function) of the beam mid-span transverse displacement (w)
with respect to the optimal TMD parameters’ off-tuning under harmonic excitation. Solid,
dashed, dotted, dashed-dotted and solid (light) lines represent structure with optimal TMD,
TMD with -20% and +20% deviations from optimal damping factor (7ap) and frequency

ratio (frap), respectively.

The results show that the deviations from the optimal TMD parameters may result in the

system response to be far from the optimal condition and the effect of the deviations of
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the frequency ratio from the optimal value is significantly higher than that for damping
factor. Similarly, Figure 3.9 shows how the off~tuning of the damping factor and the
frequency ratio of the TMD system can affect the performance of the system response. In
this figure the definitions of the axes are the same as those in Figure 3.5. The same

phenomenon can be found in Figure 3.9 as those illustrated in Figure 3.5.
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Figure 3.9 Analysis for optimal TMD’s parameters’ off-tunings under harmonic loading.
Solid and dotted lines represent the off-tunings for damping factor ({5yp) and frequency

ratio (fryp), respectively,

3.6 Conclusions and Summary

In this chapter, the equations of motion for the Timoshenko beam with the attached
Tuned Mass Damper (TMD) system has been successfully derived utilizing the finite
element methodology derived in Chapter 2, and been combined with the gradient based
numerical optimization technique based on Sequential Quadratic Programming (SQP) to
find the optimal parameters of the TMD system subjected to both random and harmonic
loadings. The effectiveness of the developed techniques, which include the equations of

motion in finite element form for beam structures with the attached TMD system, the
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selected objective function and the optimization methodology, have been testified
through the illustrated example, in which the structural response comparison for
uncontrolled structure and structure with attached optimal TMD and optimal TMD design
parameters’ sensitivity analysis have been conducted and also the results has been

compared with those available in published literatures.

The numerical examples provided in this chapter were based on the symmetry beam with
symmetry boundary condition and the first vibration mode is the dominant mode. Due to
these, the optimal TMD parameters are very close for Case (1) and (2) under both random
and harmonic excitation. However, if multiple dominant vibration modes exist for a beam
structure, the optimal design for the attached TMD system would be more complicated

than those investigated in this chapter. This issue will be discussed in Chapter 4.
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CHAPTER 4

MUTIPLE TUNED MASS DAMPERS DESIGN

4.1 Introduction

In previous chapters, the developed finite element formulation for general curved beam-
type structures and the design optimization approach of the attached single Tuned Mass
Damper (TMD) system for the Timoshenko beam were validated. This chapter will
extend the study to the structural vibration suppression of the curved beam using multiple
Tuned Mass Damper (MTMD) technology. As investigated in Chapter 2 that the curved
beam modeled considering the axial extensibility (dui(s)/ds), shear deformation and
rotary inertia provides better approximation to the true behavior of the beam, in this
chapter this curved beam model will be utilized to investigate the optimal TMD system

design for curved beam-type structures.

First, the governing differential equations of motion of curved beams with the attached
MTMD system are derived through the extended Hamilton principle, and then
transformed to the finite element form using the Galerkin weighted residual method. The
Root Mean Square (RMS) of the curved beam’s responses under random loading is
obtained through the random vibration state-space analysis methodology and considered
as the objective function for an optimization procedure, as discussed in Chapter 3. A
hybrid optimization methodology, which combines the global optimization method based

on Genetic Algorithm (GA) and the powerful local optimization method based on
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Sequential Quadratic Programming (SQP), has been developed and then utilized to obtain
the optimally designed parameters of the TMD system, which includes not only the
damping factor and stiffness but also the position of the attached TMD system. Illustrated
examples have been provided to verify the validity of the proposed methodology. A
parametric sensitivity study for the system response with respect to small deviations from
the parameters of the optimally designed TMD system has also been carried out.
Furthermore, the theoretical principle for the optimum number and also the optimum
position of the attached TMD system will be established based on the results obtained

from the numerical examples.

4.2 Equations of Motion for Curved Beams with Attached TMD

Considering a general curved beam with attached MTMD system, as shown in Figure 4.1.

y b Arch axis: p=y(x)
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Figure 4.1 General curved beam with the attached MTMD system.

In Figure 4.1, L, @, A, y(x) and p(s) have the same definitions as those shown in Figure
2.2 and S7;, Krupi, Crmpi and Mpyp; are the position along the S coordinate, stiffness,

viscous damping and mass of the i attached TMD, respectively. The curved beam’s
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deformation relationships considering the effects of the axial extensibility (duz(s)/ds),

shear deformation and rotary inertia have been listed in Table 2.1 for Case 1.

In this section the governing differential equations of motion will be derived through the
extended Hamilton principle, as stated in Equation (3.1). For the sake of simplicity, the
formulations presented here are based on two attached TMD. One can easily extend the
formulations to any desired number of TMD utilizing the same approach. The kinetic
energy (7), potential energy (V) and non-conservative virtual work (dW,.) for curved

beams with two attached TMD can be described as:

IL ()[8w(s t))d+ [ /s )(c'h//(s r))d L1 .[L ()(5u(.j t))

(4.1a)
+5Mrm12n(f)2 +*2"Mrmzérz(f)2
V=% LEI(s)(aW;:’t)j Lk GA(s) B2 (s, s+~ LEA( )(a“T(s ’)]
+%KTMD sy, D) cos@y, ) +ulsp,t)sin@y, )—zp OF (4.1b)

+ ; Krvp 2[WMista, ) cos@y, ) +u(sry, Dsinly,, ) —zp OF

Wy = [, f(s,0)5wds + jL— CoW(s,)dwds + [ — C,ii(s,1)buds

= Crvp1[W(srys ) cos(a,,, ) + sy, ) sin(a,, ) — 271(0)]

x S[w(syy,?) cos(asﬂ ) +u(spy,t)sin(ay, ) -z (1)] (4.1¢c)
= Crvpa[Wlsra, D) cos(ay,, ) +u(sry, ) sin(ay, ) — 275 (F)

x 8[w(syy,t)cos(ay, ) + ulsry,t)sin(a, ) — zr ()]

where m(s), A(s), I(s), J(s), E, G and %k, have the same definitions as those illustrated in
Equations (2.7) and (2.8). C,, and C, are the viscous damping of the curve beam’s radial
and tangential direction, réspectively. Krvpr (Krmpz) and Crvpr (Crupz) are the stiffness

and damping of the attached first (second) TMD, respectively. St; (St2) and asrs (asr2)
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represent the position and the angle between the curved beam central line tangential
direction and the X axis at the location of the attached first (second) TMD along the S
coordinate, respectively. w(sri,f) (W(stz2,?)) and u(sri,f) (u(sr2,t)) are the radial and
tangential displacements of the curved beam at the position of the attached first (second)
TMD, respectively. zz; (zr;) represents the displacement of the attached first (second)
TMD. The integral [;[.]ds is the curvilinear integral applied on the S coordinate. fs,?) is
the external force perpendicular to the central line of curved beam. It should be noted that
through parameter S7, one can easily extend Equations (4.1) to any desired number of

attached TMD.

Substituting the geometrical and deformational relations for the curved beam model Case
1 listed in Table 2.1, into Equations (4.1), and then applying Hamilton’s principle stated
in Equation (3.1), the following five governing differential equations of motion for the

curved beam with the attached MTMD system can be obtained:

P ws,h) O ow(s, ) u(s,t) EA(s)( Bu(s,t)  w(s,f)
" E{k"GA(S)( s o0 T s e

— Kypp [Wsty, ) coslag, ) +u(sry, f)sin(a,,, ) — z1]cos(@, )IH(s — 1)
- CTMD] [VIV(STI ) t) COS(asﬂ ) + l'l(sﬂ N t) Sin(asﬂ ) - Zl ]COS(aSTl )g(s - sTl )
= Krupa [WsTa, D) cos(as,, ) +ulsya, 1) sin(ay,, ) — za]cos(@,,, )H(s —s77) — C,,w(s, 1)

= Crypa [Wsry, ) cos(a,,, ) + ulspy, Dsin(a,, ) — 2;1cos(@,,, )9(s — s72) + f(5,0)=0

(4.2a)

—m(s) azu(j”) ) (— wis.ty+ 2480 —MJ + Q(EA(S)(M + M))
ot e[ Os p@s) ) o Os p(5)

= Kpppi[Wsri, 1) cos(a, ) +ulsry,Dsinag, ) -z Isin(a,, )Hs —s71)

= Cryp D (s, 0) coslas,, ) +ulsry, ) sinfey, ) — 2 Isin(a,, ) 9(s —s71)

= Koppo[WMsra, 1) cos(a,, ) +u(srs, 1)sin(a,, ) — 2, 1sin(a;,, )9(s —sr3)

— Crymp [Wsra,0) cos(@s, ) ) +u(sra,0)sin(a,, ) — 25 1sin(ag, ) (s —s,) — C, (s, 1) =0

(4.2b)
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NI G IS ( a"'(s”)j ow(s,0) oo (s, _
J(s) poe + Py EI(s) e +k,GA(s) p” w(s,t) o) =0 (4.2¢)
MrymiZy + Cramn[ 2 — W(sp1, D) cos(ay,, ) — sy, )sin(a, )]

+ KTml[zl - W(STI ,t)COS(aST] )—u(sTl,t)Sin(asn )] =0

(4.2d)

MTMDzzz + CTAlD[ZZ - W(STz,t) COS(aA.T2 ) —L'I(Sz,t)Sin(aSﬂ )]

+ KTmz[ZZ - W(STZ ,t) COS((ZST] ) - U(STZ ,t) Sin(asﬂ )] =0 (4‘26)

where the symbol 9(s - s,) is unity when S=S7; (S72), otherwise zero. Utilizing the same

approach derived in Chapter 3, the governing differential equations of motion stated in

Equations (4.2) can be transferred to the finite element form as:

(MG} +[CI{g(} +[K){q()} = {F (D)} (4.3)

where

@={rey vey w0y 70 z,0f (4.4a)

(M,.,] [0] [0] [0] [0]
(0] [M,] [0] [0] [0]
[M]=| [0] (0] [M,,1 0] [0] (4.4b)
[0] (0] 0] Mpp [0]
[0] [0] (0] 01  Mnp,

[Kuw ]+ [Kupri ]+ [Kuyr2] (K 14 [ K 11K 2] [Kwy ] [Kun] [Kizal
[Kwu ]T +[Kqu1]T +[Kqu2]T [Kuu]+[KuuT1]+[KuuT2] [Kuu/] [Kuzl] [KuZZ]

(K]= (K, 17 (K. 1" [K,,] [0 [0] | (44c)
(K mr 1 (K] 0]  Kmpi 0]
K2 1" (K2l [0] 0] K

[wa] + [waTl ]+ [waTZ ] [Cwu ] + [Cqul ]+ [CquZ ] [0] [szl ] [CW22 ]
[Cwu ]T + [Cqul ]T + [CWuTZ ]T [Cuu ]+ [CuuTl ]+ [CuuT2 ] [0] [Cuzl] [CuZZ ]

[C]= [0] [0] [01 [0 [0] (4.4d)
[C]” [Crr]” [0] Cnpn [0
[Coe)” [Coa]” 01 [01 Crumpa
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T
{F(} ={ 12 ’“([N @ (0T, {0}, {0, O, OH (4.4¢)
where in equivalent nodal force vector {F(#)}, expression {0}, and {0}, represents the
null vector with the same size as {U(¢)} and {¥(f)}, respectively. J,(;) is the Jacobian
between Cartesian coordinate (x, y), curvilinear coordinate (S) and natural coordinate (7),
which has been defined in Chapter 2. The sub-matrices [Myw], [Maul, [Myy], [Kuww]s [Kuu],
[Kuwls [Kwul, [Kwy] and [K,,] in the mass, stiffness and damping matrices have the same
definitions as those in Chapter 2. All other sub-matrices have been defined in “Appendix
H”. For the sake of numerical stability, the following transform matrix has been defined
to transfer the nodal displacement vector to a dimensionless vector.

L1, [0 [0] [0] [O]

[0y L[z, [0 [0] [0]
[T1=| [0] (o) 1, [0] [0] 4.5)

(0] [0y [0 L, [0]

[0] (o) [0 [o] L
where L. is the curvilinear length between two nodes for a curved beam element. [/]., [/].
and [/], are the identity matrices with sizes corresponding to vectors {W}, {U} and {¥},
respectively. Thus the nodal displacement vector {g} can be expressed as {g}=[T]{qa},

where {q4} is a dimensionless vector, and then the equations of motion described in

Equation (4.3), can be transferred as:

[M;184a (D} +[CaH{ga (D} + Ky 1{ga (O} = {Fa (1)} (4.6)

where [Ma=[TVIMIIT], [Ca=[T1(CIT], [KA=[TVIKIIT] and {FADI=[T]{F (O}
Therefore, the response, which will be defined in numerical example, will be also

dimensionless.
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4.3 Hybrid Design Optimization

The optimization problem in a general form has been established in Equation (3.15), and
the methodology to obtain the solution of objective function has also been presented in
Section 3.3. Here it should be noted that the optimization problem established in this
chapter includes the position of the attached TMD system as well, and thus its relative
objective function would have complex cost (objective) surface. Therefore the local
optimization technique based on SQP presented in Chapter 3 may not provide accurate
optimum results. Considering these, a hybrid optimization methodology, which combines
the global optimization method based on GA and the powerful local optimization method
based on SQP, has been developed to accurately find the global optimal solution. Figure
4.2 illustrates the schematic of the developed hybrid optimization methodology for a
typical global optimization problem, in which the curve represents the variation of the

objective function with respect to a design variable.

>
P

Objective Function

—|Global optimal ares

Design Variable

........:,.‘ ......................... ’:‘..,:‘: ...................... "mm.:.. .....................
Initial value range 1 Initial value range 2 Initial value range 3

Figure 4.2 The schematic of the hybrid optimization method for a global optimization

problem.
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For an optimization problem illustrated in Figure 4.2, solved by a local optimization
technology, in general (not always, this will depend on the selected optimization
parameters, such as step size, and also the properties of a practical optimization problem)
one would obtain the “Optimal points 1, 2 and 3” related to the initial values located in
“Initial value ranges 1, 2 and 3”, respectively. Obviously, only “Optimal point 2” is the
global optimal point, thus the local optimization techniques may not be able to solve the
global problem accurately. The developed hybrid optimization method consists of two
procedures: (1) utilizing the global optimization technology to obtain the approximate
optimum value, which is illustrated in Figure 4.2 as “Global optimal area”; (2) utilizing
the results obtained in the last procedure as the initial value, which is illustrated in Figure
4.2 as “Initial value range 4”, for a local optimization procedure. Finally the whole hybrid
optimization procedure can catch the global optimum point —“Optimal point 2”
accurately and efficiently. The essential issue for this developed hybrid optimization
methodology is to make the global optimization procedure be able to catch the “Global
optimal area”. In this study the GA global optimization methodology will be utilized to

search for the “Global optimal areca”.

The GA is a global optimization technique based on the principle of genetics and natural
selection developed by Holland'"". Goldberg178 summarized the original work proposed

by Holland'" and then developed the theoretical basis for the GA through his schema
theorem. Since then many versions of modification of GA programming have been
published and successfully utilized to solve different problems. The advantages of GA
include: it can be used to solve optimization problems with complex cost (objective)
surface; optimization can be carried out with continuous or discrete variables; it does not
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. C e . 179 )
require derivative information. Haupt ” also presented other advantages and summarized
the previous work about GA. The schematic of GA for continuous design variables,

which will be utilized in this dissertation, has been illustrated in Figure 4.3.

Define Optimal Problem: Design Variables, Objective Function
and Design Variable boundary

Y
[ Generate initial population|

[ Calculate the Objective of each chromosome |

et Sort Objective and Select mates |
Mutation

[Update population|

{Calculate the Objective of new chromosome

<o LConvergence Check |

YES
A 4
l Endf

Figure 4.3 The schematic of GA global optimization method for continuous design

variables.

The required steps in GA, as illustrated in Figure 4.3, will be discussed in following sub-
sections. For the sake of programming simplicity, in GA programming all design
variables will be transferred in the range of [0.0, 1.0]. This can be done by the mapping

technique based on the boundary of each design variable using the following equation:

qi= (DViay) / (brai) 4.7
where DV; is the i design variable and a;, b; and g; are the low and high boundaries and

the uniformed design variable for DV, respectively.
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4.3.1 Generating initial population
First, the definitions of population and chromosome will be presented. The chromosome
represents a set of design variables as:
Chromosome = {q; ... gn } (4.8)

where ¢; represents the i design variable. Here the chromosome has N variables (an N-
dimensional optimization problem). Population represents the number of chromosome.
Let us define N, and Ny to represent the dimension of chromosome (number of design
variables) and number of chromosome (size of population), respectively. One can simply
randomly generate a N, X Ny, size matrix with each element between 0 and 1 to

represent the initial population.

4.3.2 Sorting the objective and selecting the mates
The value of objective function for the initial population will be obtained first. Based on
the selected population size, the objective function would be evaluated Ny, times. Next,
the Np,p value of objective with the associated chromosomes will be sorted from the
lowest cost (objective) to highest cost (objective). Then, a selection rate (Xq.) Will be

defined to select Ny, population from the sorted list using the following equation:

Nieep = ceil (Xrate X Npop) 4.9)
where “ceil” represents the command to round the variable (X, % Npop) to the nearest

integer larger than or equal to it. Thus, only the first Ny, population with lowest (best)

cost (objective) would be kept, which can be defined as selection pool.

Next, the parents which will be utilized to generate (Npo—Niep) offspring (new

chromosome) would be picked from the selection pool. In this study, the rank weighting
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methodology179 will be adopted as the selection method. To present the rank weighting
methodology clearly, let us assume Ny, =8, Xwe =0.5 and thus Ni,=4, and then

establish the following table for the chromosomes in the selection pool.

Table 4.1 Rank weighting selection methodologym.

Index of Chromosome in selection pool () Value of Objective P, CP,
1 Lowest 0.4 0.4
2 l 0.3 0.7
3 0.2 0.9
4 Highest 0.1 1.0

In Table 4.1, P, and CP, represent the probability and cumulative probability related to

. . 179
each chromosome in the selection pool, and they are defined as :

Nkee n
Py = (Nieep —-n+1)/[ an] and CP, =) P, (4.10)

n=1 i=1
where » is the index of chromosome in the selection pool, as listed in Table 4.1. One 2-
component random vector on the unit interval, in which one component represents
“father” and the other for “mother”, will be generated to be compared with the
cumulative probability (CP,) given in Table 4.1. Starting from the top of Table 4.1, the
first chromosome that the related cumulative probability (CP,) is greater than the
generated random number will be selected as parents. For example, assuming the
generated random vector is [0.5, 0.8], then 0.4 < 0.5 < 0.7 and 0.7 < 0.8 < 0.9, thus

chromosome No. 2 and 3 in Table 4.1 will be selected as one set of parents. All the

selected parents can be defined as mating pool. Sometimes, the selected parents are

identical, which will lead to poor convergence or bad optimal result. In this case, one can
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easily exchange the “father” or “mother” with the other set of parents in the generated

mating pool.

4.3.3 Mating
Mating is the method to generate offspring from set of parents in the mating pool, which

has been established in last section. The mating methodology adopted in this dissertation

179
can be expressed as :

{Offspring 1} = {Ma}.—{f}.x ({Ma}.~ {Fa})

{Offspring »} = {Ma}.+{f}.x ({Ma}.— {Fa}) (4.11)

where {Ma} and {Fa} represent one set of parents. f is a 1X N,,, vector with the same
dimension as {Ma} and {Fa}, and generated randomly on the unit interval. Symbols “.-”,
“+” and “.x” represent element-element minus, plus and product, respectively. It should
be noted that using Equation (4.11) to generate the offspring, sometimes some elements
in the offspring would go outside of the boundary of design variable. One can simply
generate a random number on the unit interval to replace the element which goes outside
the design boundary or directly utilize the boundary to replace them. Utilizing the

methodology introduced above, Np,,—Ni.o, offspring will be generated, which will keep

the N,,, constant in every searching circle.

4.3.4 Mutation
Mutation is one of the essential steps in GA optimization methodology. Through
mutation, GA can search outside of the current design variable region freely. However,

too many mutation would lead to slow convergence. Here, we keep the best chromosome
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(the lowest cost) stable and define the mutation rate as M., and then the total mutation

of the variables in the population would be:

Nmutezceﬂ (M‘ate(Npop"l)N var) (4 12)
where “ceil” has the same definition as that in Equation (4.9). Then one can randomly
select N, elements in the population (excluding the best chromosome) to be replaced

with generated random elements on the unit interval.

4.3.5 Updating population
In this step, the objective function for each chromosome in the generated new population
will be evaluated and sorted from minimum to maximum. It should be noted that the best
chromosome in the last population does not need to be recalculated and will be

transferred to the new population without change.

4.3.6 Convergence checking
“Convergence checking” will depend on the property of a practical optimization problem.
In theory, an optimization problem can be solved and one can obtain the global optimum
point using GA through a suitably selected convergence checking method, but sometimes
it is computationally expensive. In this dissertation, we only require that GA can catch
the “Global optimal area”, as illustrated in Figure 4.2. Therefore, the following

convergence checking methodology would be utilized:

(Cost_list (Nieep)—Cost_list (1))/ Cost_list (1) <7 “4.13)

98



where “Cost_list” 1s the value of objective function for the sorted new generated
population, which has the same form as that shown in Table 4.1 and y is a selected small

value.

Now, assuming the optimization problem, as stated in Equation (3.15), has been solved
by the GA optimization methodology and the optimal solution obtained through GA is
located in the “Global optimal area”, as illustrated in Figure 4.2. Then, this optimal
solution will be used as the initial value for the powerful gradient based SQP technique

presented in Chapter 3 to find the optimal design variables accurately.

4.4 Numerical Analysis

Here illustrative examples are provided to demonstrate the developed methodology and
also the theoretical principle for designing the continuous structure with the attached
MTMD system is proposed based on the results obtained from the numerical examples.
The curved beam with the attached MTMD system shown in Figure 4.1 has been

considered. The material and geometrical properties of the curved (circular) beam are

given in Table 4.2.
Table 4.2 Properties of the circular uniform beam.
Elastic modulus 70 (GPa) Shear coefficient 0.8438
Shear modulus 24.50 (GPa) Beam Radius 40 (m)
Area moment 0.01 (m*) Cross-Sectional Area 4 (m?)
Density 2777 (Kg/m’®) Beam Curve Angle (P) 40°

It is noted that the other parameters such as the curve span (L), curve length (/) and rise of
curved beam (4), as shown in Figure 4.1, can be obtained from the parameters listed in

Table 4.2. The boundary condition for this example is clamped-clamped. The curved
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beam has been modeled using 7 curved beam elements with 4 nodes per element, as
derived in Chapter 2. Thus, the first five natural frequencies for the curved beam are
found to be 19.4705, 35.2407, 64.4729, 90.5644 and 123.2884 (rad/s), respectively. The
random loading is in the form of white noise with PSD of 10" (N*/rad/s) applied
uniformly perpendicular to the central line. The responses of beam’s mid-span transverse
displacement (w), tangential displacement (») and rotation (i) under this random loading

have been shown in Figure 4.4,
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Figure 4.4 PSD of curved beam’s mid-span responses. Solid, dashed and dotted lines
represent the transverse displacement (w), tangential displacement (#) and rotation (y),

respectively.

It can be found from Figure 4.4 that in the low frequency range (smaller than 140 rad/s),
the structural responses mainly depend on the 2™, 4™ and 5" vibration modes, and thus to
obtain the best vibration suppression performance, the TMD system should be designed
based on the 2™, 4™ and 5" vibration modes. Considering these, the illustrative numerical
examples presented in this chapter consists of four parts as:

(1) To design single TMD system based on the 2™, 4™ and 5™ vibration modes separately.

The optimal TMD parameters will be obtained by the GA, hybrid and SQP optimization
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methodologies, and then by comparing the results the validity of the developed GA and
hybrid optimization methods can be verified,

(2) To design two symmetrically attached TMD system using the developed hybrid
optimization methodology based on the 2™, 4™ and 5" vibration modes separately. The
validity of each set of optimal TMD design will be demonstrated by the sensitivity
analysis based on the small deviation of the design variables from their relative optimum
values and also the convergence analysis for the optimum results obtained by GA;

(3) To design three attached TMD system utilizing the developed hybrid optimization
methodology based on the 5™ vibration mode;

(4) Based on the results obtained in above parts, an optimal MTMD system will be
developed to suppress the structural vibration effectively.

Finally, based on the above investigations, the theoretical basis for optimally designed
TMD system for beam-type structures will be established. Here it should be emphasized
that as mentioned in Chapter 1, in order to distinguish the multiple TMD design based on
multiple vibration modes from that based on one special vibration mode, the former was

named as MTMD and the latter as Distributed TMD (DTMD).

4.4.1 Single attached tuned mass damper system
One TMD is assumed to be attached onto the beam mid-span, as the curved beam
structure and boundary condition studied in this chapter are both symmetry. The
optimization problem has th¢ same as that established in Equation (3.16). One of the
main purposes of this subsection is to verify the validity of the developed GA and hybrid
optimization methodologies through comparing the optimum results obtained by the GA

and hybrid optimization methods with those by the formal SQP technique. Four different
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cases have been investigated in this subsection: Case a- The response (RMS) of the 2n
vibration modal deflection is considered as the objective function; Case b- The response
(RMS) of the 4™ vibration modal deflection is considered as the objective function; Case
c- The response (RMS) of the 5™ vibration modal deflection is considered as the
objective function; Case d- The response (RMS) of circular beam’s mid-span transverse
displacement (w) is considered as the objective function and the 2" natural frequency is
assumed as the base frequency w, in Equation (3.14) for the evaluation of the frequency
ratio (frmp). The following parameters given in Table 4.3 have also been defined for the

GA optimization.

Table 4.3 Parameters of GA optimization.

Nyop 8 Xeae 0.5 x 1x10™
N var 2 M‘atz 04

Tables 4.4-4.6 compare the parameters of the optimally designed TMD system obtained
using the GA and hybrid optimization methodologies and also the SQP with initial values
of {0.1, 0.1} for the TMD with mass ratio (i) equal to 0.01, 0.015 and 0.02, respectively.
It should be noted that as mentioned in Section 4.3, the design variables for GA
optimization have been uniformed using Equation (4.7). Therefore, in Tables 4.4—4.6
(also the other tables related to GA optimum results in this chapter) the GA optimum
results have been transferred back based on Equation (4.7). Here, it should be emphasized

that in Tables 4.4-4.6 (also other tables in this chapter), the final parameters for the

optimally designed TMD system have been illustrated as Italic and bold form.
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Figures 4.5-4.7 illustrate the best value (lowest cost) of the objective function for each

generated population by GA versus the GA calculating cycle, which was defined as

“generation” by Haupt”g, for mass ratio (1) equal to 0.01, 0.015 and 0.02, respectively.

Table 4.4 Optimal result comparison for curved beam with the attached single TMD with

mass ratio (4=0.01).

Optimal Strategies

Optimal 2" vibration 4™ yibration 5" vibration Mid-span transverse
methodology  mode-Case a mode-Case b mode-Case ¢ displacement-Case d
gTMD f T™D gTMD f TMD gTMD f T™MD gTMD f T™D
GA 0.094 09512 0.0542 09814 0.1403 0.9946  0.6318 1.826
Hybrid 0.093 0.9592 0.0379 1.0063 0.0758 0.9634 0.6328 1,832
SQP 0.093 09592 0.0379 1.0063 0.0758 0.9634 0.6328 1,832

Table 4.5 Optimal result comparison for curved beam with the attached single TMD with

mass ratio (#=0.015).

Optimal Strategies

Ontimal 2™ vibration 4™ vibration 5™ vibration Mid-span transverse
tima
P mode-Case a mode-Case b mode-Case ¢ displacement-Case d
methodology
™D Jrvp Srmp frup Srup Jrvp Srap Jrmp
GA 0.1065 0.9508 0.0507 1.0055 0.103 0.9163 0.6688 1.9608

Hybrid 0.1118 0.9402 0.0487 1.0091 0.0923 0.9458
SQP 0.1118 0.9402 0.0487 1.0091 0.0923 0.9458

0.6484 1.7940
0.6484 1.7940

Table 4.6 Optimal result comparison for curved beam with the attached single TMD with

mass ratio (#=0.02).

Optimal Strategies

Optimal 2" vibration 4" vibration 5™ vibration Mid-span transverse

methodology mode-Case a mode-Case b mode-Case ¢ displacement-Case d
v Srp Sp oo Srmp Jrmp Srup Srup

GA 0.132 0.9249 0.082 1.0155 0.1574 0.8857 0.6947 1.6851

Hybrid 0.1265 0.9222 0.0589 10117 0.1059 0.9288 0.6328 1.7559

SQP 0.1265 0.9222 0.0589 1.0117 0.1059 0.9288 0.6328 1.7559
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Figure 4.5 GA convergence analysis for curved beam with the attached single mid-span
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Case b; (c) Based on the 5™ mode-Case c; (d) Based on the curved beam mid-span
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From Tables 4.4-4.6 and Figures 4.5-4.7, one can easily find that: (1) the optimum
results obtained using GA are closed to those obtained using hybrid optimization method,
especially for the obtained optimum frequency ratio (f7ap). This means that the GA has
successfully caught the neighborhood of the global optimum point; (2) the optimum
results obtained through the hybrid and SQP methods are the same. Also different initial
points for the SQP optimization method have been tested and similar optimum results are
found. From Tables 4.4-4.6, one can also find that the optimum frequency ratio (frap) for
Case b (based on the 4" vibration mode) will not exactly decrease with the increase of

input mass ratio (1), which is different from those for Cases a, ¢ and d. To investigate this

phenomenon, Figure 4.8 illustrates the optimal TMD parameters based on Cases a-d, for

mass ratio (¢) changing from 0.01 to 0.1.
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the dotted line has been divided by 2 and 6, and multiplied 100, respectively.
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Here, it should be noted that in Figure 4.8, the optimal frequency ratio (fzup), damping
factor (¢rmp) and value of objective function for Case d have been mapped by 1/2, 1/6
and 100, respectively, in order to facilitate the reader observing the trend of the optimal
TMD parameters with the increase of input mass ratio (x). It can be realized from Figure
4.8 that the value of objective function will decrease and the optimal damping factor
(&rup) will increase with the increase of input mass ration (i) for Cases a—d; the optimal
frequency ratio (frup) for Cases a, ¢ and d will decrease with the increase of input mass
ration (u), but the optimal frequency ratio (frup) for Case b will increase and then
decrease with the increase of input mass ration (x). Furthermore, one can also find that
the optimal frequency ratio (f7ap) for Case b changes in very small range. The reason is
that the single attached TMD system is not a suitable selection to suppress the vibration

due to the 4" vibration mode, which will be illustrated in the following sections.

From Tables 4.4-4.6 and Figure 4.8, one can also find that there are significant
differences for the optimal TMD parameters between Cases a and d, which is different
from the results shown in Chapter 3. This is mainly due to the fact that the structure

studied in this chapter does not have single dominant mode.

To illustrate the effect of the attached optimal single TMD design provided in Tables
4.4-4.6, optimal TMD parameters for Case a in Table 4.4 (4=0.01); Case b in Table 4.6
(u=0.02); Case c in Table 4.5 (u=0.015); Case d in Table 4.4 (1=0.01), have been selected
for studying the curved beam’s mid-span responses. The results for transverse
displacement (w) have been illustrated in Figure 4.9. The tangential displacement (x) and

rotation () responses have been presented in “Appendix I”.
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From Figure 4.9 and “Appendix 17, it can be found that: (1) the effects of the optimally
designed TMD systems for Cases a—c, as illustrated in Tables 4.4-4.6, are restricted in
their related tuned natural frequencies, and thus for the structure with multiple dominant
vibration modes, it is possible to design an optimal TMD system based on different
vibration modes, separately, and then combine them together to provide a MTMD design
to suppress vibration efficiently; (2) as single dominant mode dose not exist in this
example, thus although the optimal TMD design strategy based on Case d can also
suppress the vibration in each vibration mode effectively, its working principle is not
TMD any more, which is to tune the frequency of the secondary system to one of the

structural vibration modes.
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Next, the developed hybrid optimization methodology will be utilized to find the optimal
design variables of the attached DTMD system, which includes the position, damping
factor and frequency ratio, based on each vibration mode. In fact the number of the
attached DTMD system should also be identified as one of the design variables.
However, it is very difficult to find a suitable optimal criterion to combine the number of
the attached DTMD system in an optimization procedure. Therefore, at the beginning the
number of the attached DTMD system is assumed to be a given input, and finally, a
design principle will be established, which can be utilized to identify the best number of

the attached DTMD system.

4.4.2 Distributed tuned mass dampers design methodology

The design variable describing the position of the attached TMD includes one discrete
variable, which represents which elements the attached TMD would be located in, and
one continuous variable, which represents the location of TMD in those elements. It is
difficult to solve this kind of optimization problem, in which the design variables include
both discrete and continuous variables. One simple way is to solve the TMD located in
each different element’s combination and then compare the objective to find the optimal
TMD design. This is a simple approach but is computationally very expensive. In this
work, an efficient and accurate design optimization approach has been proposed to find
the location and parameters of the attached TMD system. The optimization procedure

consists of two steps, as illustrated in Figure 4.10.
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Figure 4.10 Optimization procedures.

In Step (1), the curved beam is modeled using 2 elements with 12 nodes per element, thus
the position of the attached TMD can be simply expressed by one continuous variable
defined in natural coordinate (). In Step (2), the curved beam is modeled using 7
elements with 4 nodes per clement. Then utilizing the optimal location of the attached
TMD system obtained from Step (1), one can easily find in which element the TMD
system should be located in this 7 elements model using Equation (4.14). The location of
TMD in one special element can still be a continuous variable defined in the natural
coordinate (7). Assuming the optimal position of the attached TMD obtained through
Step (1) can be defined as 7, and then its related position in Step (2) can be obtained

through:

X=0.25 N (1+n;) and N,=ceil (X) (4.14)
where N is the number of element to model the beam in Step (2), and “ceil” has the same
definition as that in Equation (4.9). N, represents the optimal element, in which the
attached TMD should be located in the N elements finite element model. This optimal

procedure is based on the fact that the 2-element model in Step (1) can describe the
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dynamic properties of the curved beam with acceptable accuracy, and then one can catch
the neighborhood of the optimal result. This issue has been verified through comparing
the structural response for the finite element models in Steps (1) and (2). Obviously, one
can model the curved beam using 1 or 2 elements with many nodes per element, which
can still model the dynamic behavior of the curved beam accurately and also obtain
accurate optimal TMD parameters, but it is computationally expensive due to the slow
convergence of the finite element model. Based on the methodology presented above, the

DTMD design will be presented in the following subsections.

4.4.3 Two symmetrically attached tuned mass damper system
For the curved beam, as shown in Figure 4.1, with symmetrical physical and geometrical
conditions and also symmetrical boundary condition, it is obvious that the attached
DTMD system should also be symmetry. As assuming two symmetrical TMD will be
designed to suppress the vibration with respect to each vibration mode separately, the
dimension of design variables can be simplified to 3, and the optimization problem can

be expressed as:

Find the design variables: {DVY={¢rmp , frmo , N1MD}
To minimize: RMS of response for 2", 4" and 5" (4.15)
vibration modes, respectively
Subjected to: 0=¢mmp <1, O<frmp 2.5, -1<nmmp < 1

Based on the optimization problem established in Equation (4.15), the parameters for GA

optimization methodology are defined as those listed in Table 4.7.

Table 4.7 Parameters of GA optimization.

Npop 8 Xrate 0.5 X 110
N var. 3 M’ate 0 4
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The optimal results based on each vibration modes obtained using the GA, hybrid and
SQP optimization methods and the convergence analysis for the GA optimization method

will be presented to illustrate the validity of the developed optimization approach.

4.4.3.1 Design based on the 2" vibration mode

Table 4.8 compares the optimal two symmetrical DTMD design parameters based on the
2" vibration mode obtained using the GA, hybrid optimization methods and the SQP
technique with different initial values for Step (1), as shown in Figure 4.10. The mass
ratio (1) is assumed to be 0.005 for each attached TMD, and thus total mass ratio ()
would be 0.01. Here it should be noted that for comparison purposes, in Table 4.8 (also
the other tables in this chapter) the value of TMD position has been expressed as the

relative position along the curved beam’s curvilinear length.

Table 4.8 The optimal two symmetrical DTMD parameters based on the 2™ vibration mode
with mass ratio (#=0.005) for each TMD—Step (1).

Design Optimal Methodologies
Variables GA Hybrid SQP-1 SQP-2 SQP-3
$rmp 0.0922 0.0936 0.0936 0.0537 0.0936
Jrvp 0.9615 0.9595 0.9595 1.0069 0.9595
Position_TMD1 0.4965 0.5 0.5 0.1915 0.5
Position_TMD2 0.5035 0.5 0.5 0.8085 0.5
Objective (x10°) 5.6633 5.6572 5.6572 7.5881 5.6572

In Table 4.8, the SQP-1, SQP-2 and SQP-3 represent the results obtained using the SQP
optimization method with the initial values of {0.1, 1, -0.9}, {0.1, 1, 0} and {0.1, 1, 1},
respectively. Examination of the results shows that: (1) the SQP provides different

optimal results with respect to different initial values. This means that the optimization
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problem has multiple local optimal points and SQP can easily trapped into one of the
local optimal points without any mechanism to climb out; (2) the optimal results obtained
using the GA methodology can catch the neighborhood of the global optimal values,

especially the obtained optimal location of the attached DTMD system.

Next, utilizing the optimal parameters obtained in Step (1) and Equation (4.14), one can
casily find that the optimal element that the two symmetrical DTMD should be located in
the 7 elements beam model in Step (2) is the Element 4. The Step (2), as shown in Figure
4.10, is basically designed to accurately find the optimal location and parameters for the
DTMD system. The optimal results for Step (2) based on the GA, hybrid and SQP

optimization techniques are provided in Table 4.9.

Table 4.9 The optimal two symmetrical DTMD parameters based on the 2" vibration mode
with mass ratio (4=0.005) for each TMD—Step (2).

Design Optimal Methodologies
Variables GA Hybrid SQP-1 SQP-2 SQP-3
ST 0.0927 0.093 0.093 0.093 0.093
Jrmp 0.9585 0.9592 0.9592 0.9592 0.9592
Position_TMD]1 0.4983 0.5 0.5 0.5 0.5
Position_ TMD2 0.5017 0.5 0.5 0.5 0.5
Objective (x10°) 5.6766 5.6762 5.6762 5.6762 5.6762

Here, the SQP-1, SQP-2, and SQP-3 represent the SQP optimization methodology using
the initial value as {0.1, 1, -0.9}, {0.1, 1, 1} and {0.0936, 0.9595, 0} (the optimal value
obtained from Step (1)), respectively. It can be realized from Table 4.9 that these two
symmetrical DTMD is exactly attached in the mid-span of the curved beam. Figure 4.11

illustrates the GA optimization convergence analysis for Steps (1) and (2).
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To illustrate the effectiveness of these set of optimal DTMD design, the structural
response of transverse displacement (w) comparison and sensitivity analysis based on
small deviation (+10%) from the optimal parameters have been investigated and shown in
Figure 4.12. The investigations for the tangential displacement (), rotation () and the

2" modal responses have been provided in “Appendix J”.
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Figure 4.12 PSD of curved beam mid-span transverse displacement (w) and design
parameters’ sensitivity analysis. (a) Frequency range 5-140 (radss). (b) Sensitivity analysis
for optimal damping factor (ryp). (c) Sensitivity analysis for optimal frequency ratio (f7ap).
Solid, dashed, dotted and dashed-dotted lines represent uncontrolled structure, structure
with optimal DTMD, as stated in Tables 4.9, structure with DTMD having -10% and +10%

deviations from designed optimal values, respectively.
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It can be realized from Figure 4.12 and “Appendix J” that the optimally design DTMD
system can significantly reduce the vibration due to the 2™ mode, and also it can be
concluded that: (1) the optimally designed DTMD system is much more sensitive to the
frequency ratio (frap) than to the damping factor (&rup); (2) the effectiveness of the
attached DTMD is restricted around its tuned natural frequency, thus it is possible to

design a MTMD system based on different vibration modes separately.

Comparing the optimal DTMD parameters with those for single TMD provided in Table
4.4 (Case 1) for the 2" mode with mass ratio (u=0.01), one can easily find that there are
approximately the same. Here it should be noted that the optimal two symmetrical
DTMD in this section has mass ratio of 0.005 for each TMD and thus total mass ratio is
0.01. Thus, one may make the conclusion that the effects of these two optimally designed
TMD systems are similar. Therefore, the final scheme for the optimal TMD design based
the 2" vibration mode would be selected as that listed in Table 4.4 for Case a, in which

one TMD with mass ratio (¢=0.01) would be attached in the curved beam’s mid-span.

4.4.3.2 Design based on the 4" vibration mode

Following the same procedure as those for studying the 2" vibration mode, the optimal
design procedure for two symmetrical DTMD system based on the 4" vibration mode
will be presented in this section. The optimization problem and parameters for the GA
optimization are the same as those provided in Equation (4.15) and Table 4.7. The mass
ratio (i) for each attached TMD is assumed as 0.01, thus total mass ratio (¢) is equal to
0.02. Table 4.10 compares the optimal results obtained using the GA, hybrid optimization

and SQP technique with different initial values for Step (1).
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Table 4.10 The optimal two symmetrical DTMD parameters based on the 4" vibration
mode with mass ratio (#=0.01) for each TMD—Step (1).

Design Optimal Methodologies
Variables GA Hybrid SQP-1 SQP-2 SQP-3
$rmp 0.1783 0.1402 0.1403 0.1401 0.0681
Jomp 0.9057 0.9278 0.9278 0.9256 1.0186
Position_ TMD1 0.3045 0.3170 0.3170 0.3095 0.5
Position_TMD2 0.6955 0.6830 0.6830 0.6905 0.5
Objective (x10°)  9.18428 9.0205 9.0205 9.0218 14.099

In Table 4.10, the SQP-1, SQP-2 and SQP-3 have the same definitions as those in Table
4.8. Tt can be realized that: using different initial points, the optimization approach based
on SQP presents different local optimum points; GA can catch near global optimum
solution; the hybrid optimization method can accurately catch the global optimum points.
The results based on Step (1) show that the two TMD should be attached to Elements 3
and S in Step (2). The accurate position and the optimal damping and stiffness of the
DTMD system in their relative elements for Step (2) are obtained. The results are
provided in Table 4.11.

Table 4.11 The optimal two symmetrical DTMD parameters based on the 4" vibration
mode with mass ratio (u=0.01) for each TMD—Step (2).

Design Optimal Methodologies
Variables GA Hybrid SQP-1 SQP-2 SQP-3
Erap 0.1409 0.1427 0.1427 0.1427 0.1427
Jrvo 0.9255 0. 9238 0.9238 0.9238 0.9238
Position_TMD1 0.3054 0.3058 0.3058 0.3058 0.3058
Position_TMD2 0.6945 0.6942 0.6942 0.6942 0.6942
Objective (x10°) 9.29139 9.29071 9.29071 9.29071 9.29071

In Table 4.11, the SQP-1, SQP-2 and SQP-3 represent the optimal results obtained from

SQP optimization methodology with initial values of {0.1, 1, -0.9}, {0.1, 1, 1} and
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{0.1403, 0.9278, -0.5616} (the optimal value obtained from Step (1)), respectively.
Figure 4.13 illustrates the GA optimal results convergence analysis for optimal Steps (1)

and (2) listed in Figure 4.10.
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Figure 4.13 Convergence analysis for two symmetrical DTMD based on the 4™ vibration
mode with mass ratio (4=0.01) for each TMD. (a) Step (1). (b) Step (2).

Again, to illustrate the validity of this set of optimal DTMD design, the structural
response comparison for transverse displacement (w) and sensitivity analysis based on
small deviation from the optimal parameters listed in Table 4.11 have been investigated
and shown in Figure 4.14. The investigations for the tangential displacement (), rotation
(w) and the 4™ modal responses have been provided in “Appendix K”. As the design
variables include the position of the attached DTMD system, the small deviation from the
optimal position is selected as 0.1 from the optimal parameter in the natural coordinate
(1), which is about £0.35% deviation relative to the beam’s curvilinear length, and the
small deviation for the damping and frequency ratio of the DTMD system are still
selected as +10% from their relative optimal values. It can be seen from Figure 4.14 and
“Appendix K” that the optimally designed DTMD system based on the 4" mode can

effectively suppress the vibration due to the 4™ mode.
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Figure 4.14 PSD of curved beam mid-span transverse displacement (w) and design
parameters’ sensitivity analysis. (a) Frequency range 5-140 (rad/’). (b) Sensitivity analysis
for optimal position. (c) Sensitivity analysis for optimal damping factor ({rap) (d) Sensitivity

analysis for optimal frequency ratio (fnp). Solid, dashed, dotted and dashed-dotted lines

represent uncontrolled structure, structure with optimal DTMD, as listed in Table 11,
structure with DTMD having -10% (-0.1) and +10% (+0.1) deviations from designed

optimal values, respectively.

Figure 4.15 compares the structural response around the 4™ vibration mode for curved
beam with the optimal two symmetrical DTMD system provided in this section and the
optimal single mid-span TMD presented in Table 4.6 for Case b, which has the same

mass (total) ratio as the optimal two symmetrical DTMD system presented in Table 4.11.

Results provided in Figures 4.14 and 4.15 show that: (1) the optimal two symmetrical
DTMD design proposed in this section can provide much better vibration suppression
effectiveness than that for the single attached mid-span optimal TMD under the same
mass (total) ratio; (2) the optimal DTMD design proposed in this section has almost no
effect on other vibration modes. This property is very important for the design of MTMD

system.
118



100
5 sof
g -100}
3
& 7
Q
("]
g = : — 200 : . _
8 4of) 80 70 80 90 100 110 "7 70 80 80 100 10
e
£ |(c)
-]
2
%5-150 | 1 =100
(=]
[7]
o —-—
.............................. 150 |
2000 e ]

80 90 100 110

70 80 90 100

Frecilt‘llgncy (rad7lg)

Figure 4.15 PSD of curved beam response comparison around the 4™ natural frequency for
different optimal TMD designs based on the 4" vibration mode. (a) The 4™ vibration modal
response. (b) Curved beam mid-span’s transverse displacement (w) (¢) Curved beam mid-
span’s tangential direction displacement (#). (d) Curved beam mid-span’s rotation (y).
Solid, dashed and dotted lines represent uncontrolled structure, structure with single

optimal TMD in Table 4.6 (Case b) and with optimal two symmetrical DTMD in Table 4.11,

respectively.

4.4.3.3 Design based on the 5" vibration mode

Following the same procedure as those for studying the 2™ and 4™ modes, the optimal
two symmetrical DTMD system related to the 5" vibration mode has been studied in this
section. The optimization problem and parameters for GA optimization was the same as
those listed in Equation (4.15) and Table 4.7. The mass ratio (u) for each attached TMD

is assumed to be 0.0075. Table 4.12 compares the optimal results obtained using the GA,

hybrid optimization methods and SQP with different initial values for Step (1).
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Table 4.12 The optimal two symmetrical DTMD parameters based on the 5 vibration
mode with mass ratio (#=0.0075) for each TMD—Step (1).

Design Optimal Methodologies
Variables GA Hybrid SQP-1 SQP-2 SQP-3
$rmp 0.0857 0.096 0.096 0.096 0.0994
Jrvo 0.9557 0.9679 0.9679 0.9679 0.9475
Position_TMD]1 0.1836 0.1873 0.1873 0.1873 0.5
Position_TMD2 0.8164 0.8127 0.8127 0.8127 0.5
Objective (x10°)  1.8573 1.8416 1.8416 1.8416 1.8744

In Table 4.12, the SQP-1, SQP-2, and SQP-3 have the same definition as those presented
in Tables 4.8 and 4.10. Again it can be realized from Table 4.12 that the hybrid
optimization can accurately catch the global optimum point. From the optimal results
obtained in Step (1) and Equation (4.14), it can be easily found that the two TMD should
be attached onto Elements 2 and 6 in Step (2). Table 4.13 compares the optimal results
obtained through the GA, hybrid methods and SQP with different initial values for Step
(2). In Table 4.13, the SQP-1, SQP-2, and SQP-3 represent the SQP optimization
methodology based on the initial values of {0.1, 1, -0.9}, {0.1, 1, 1} and {0.096, 0.9679,
-0.3887} (the optimal value obtained from Step (1)), respectively. Figure 4.16 illustrates
the GA optimization convergence analysis for Steps (1) and (2).

Table 4.13 The optimal two symmetrical DTMD parameters based on the 5" vibration
mode with mass ratio (#=0.0075) for cach TMD—Step (2).

Design Optimal Methodologies
Variables GA Hybrid SQP-1 SQP-2 SQP-3
Srmp 0.0992 0.0953 0.0953 0.0953 0.0953
Jrvp 0.9667 0.9634 0.9634 0.9634 0.9634
Position_TMDI1 0.1759 0.1715 0.1715 0.1715 0.1715
Position_TMD2 0.8241 0.8285 0.8285 0.8285 0.8285
Objective (x10%) 1.8584 1.8570 1.8570 1.8570 1.8570
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Figure 4.16 GA convergence analysis for two symmetrical DTMD based on the 5 vibration

mode with mass ratio (n=0.0075) for each TMD. (a) Step (1). (b) Step (2).

Similar to the previous cases, it can be realized from Table 4.13 that in Step (2) the
optimal results obtained from the proposed hybrid optimization method and the SQP
technique with different initial values are the same. Again, to illustrate the validity of this
set of optimal DTMD design, the response comparison for structural transverse
displacement (w) and sensitivity analysis based on small deviation from the optimal
parameters listed in Table 4.13 have been investigated and shown in Figure 4.17. The
investigations for the tangential displacement (u), rotation (y) and 5" modal response
have been provided in “Appendix L”. The definitions of small deviation from optimal

values are the same as those for Figure 4.14.

It can be seen from Figure 4.17 and “Appendix L” that this set of optimally designed
DTMD system for the 5™ vibration mode can effectively suppress the vibration due to the
5™ vibration mode. Figure 4.18 compares the structural response around the 5™ vibration
mode for the curved beam with the optimal symmetrical DTMD proposed in this section
and the single mid-span optimal TMD presented in Table 4.5 for Case ¢, which has the
same mass (total) ratio (u) as the optimal two symmetrical DTMD system provided in

Table 4.13.
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Figure 4.17 PSD of curved beam’s mid-span transverse displacement (w) and design
parameters’ sensitivity analysis. (a) Frequency range 5-140 (rad/s). (b) Sensitivity analysis
for optimal position. (c¢) Sensitivity analysis for optimal damping factor (&mmp). (d)
Sensitivity analysis for optimal frequency ratio (fryp). Solid, dashed, dotted and dashed-
dotted lines represent uncontrolled structure, structure with optimal DTMD, as stated in
Table 13, structure with DTMD having -10% (-0.1) and +10% (+0.1) deviations from
designed optimal values, respectively.
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Figure 4.18 PSD of curved beam response comparison around the 5™ natural frequency for
different optimal TMD designs based on the 5" vibration mode. (a) The 5 vibration modal
response comparison. (b) Curved beam mid-span’s transverse displacement (w). (¢) Curved
beam mid-span’s tangential direction displacement (#). (d) Curved beam mid-span’s
rotation (). Solid, dashed and dotted lines represent uncontrolled structure, structure with
single optimal TMD in Table 4.5 (Case c) and with optimal two symmetrical DTMD in
Table 4.13, respectively.
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It can be found from Figure 4.18 that the optimally designed two symmetrical DTMD
system developed in this section performs slightly better than those shown in Table 4.5
Case ¢ for one mid-span attached TMD under the same mass (total) ratio (#=0.015), but
not significantly compared with those for the 4™ mode. It may due to the fact that the
optimal two symmetrical DTMD system is not much effective and more TMD may be

required for 5" vibration mode. This issue has been discussed in the following sections.

4.4.4 Three attached tuned mass damper system
Now let us assume three TMD will be attached to the curved beam to suppress the
structural vibration due to the 5" vibration mode. As the curved beam structure and the
boundary in this example are both symmetry, obviously two of these three attached TMD
would be symmetry and one should be attached in the mid-span. Here, two design
methods have been adopted: Method (1), all attached TMD have the same values of
damping factor (&7ap) and frequency ratio (frup); Method (2), only the attached

symmetrical TMD have similar damping factor (&ryp) and frequency ratio (frap).

It is noted that the mass ratio (i) for each attached TMD has been assumed to be 0.005,
thus the total mass ratio for these three DTMD system would be 0.015, which is the same
as that for the optimal design of two symmetrical DTMD system and single mid-span

TMD system stated in Tables 4.13 and 4.5 for Case c, respectively.

Method (1)

As in this design method all the attached three TMD have the same damping factor (&rap)

and frequency ratio (frap), thus the optimal problem and the parameters of the GA
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optimization methodology will be similar to those stated in Equation (4.15) and Table
4.7, respectively. Following the same procedure as those for studying the two
symmetrical DTMD, the optimal results’ comparison for Steps (1) and (2), as illustrated
in Figure 4.10, are provided in Tables 4.14 and 4.15, respectively. As one of the three
TMD is attached to the mid-span, in Tables 4.14 and 4.15 only the position of the
symmetrical TMD has been listed. Here it should be noted that based on the results
obtained in Step (1), the symmetrical TMD is still located in Elements 2 and 6 for the 7-

element finite element model in Step (2).

Table 4.14 The optimal three DTMD based on the 5" vibration mode for Method (1) with
mass ratio (n=0.005) for each TMD —Step (1).

Design Optimal Methodologies
Variables GA Hybrid SQP-1 SQP-2 SQP-3
$rmp 0.118 0.0982 0.0982 0.0982 0.0994
Jrvp 0.9147 0.9759 0.9759 0.9759 0.9475
Position_TMD1 0.1713 0.1895 0.1895 0.1895 0.5
Position_TMD2 0.8287 0.8105 0.8105 0.8105 0.5
Objective (x10°%) 1.9632 1.8290 1.8290 1.8290 1.8744

Table 4.15 The optimal three DTMD based on the 5™ vibration mode for Method (1) with
mass ratio (p=0.005) for each TMD —Step (2).

Design Optimal Methodologies
Variables GA Hybrid SQP-1 SQP-2 SQP-3
Srmp 0.1322 0.0959 0.0959 0.0959 0.0959
Jrvp 1.0443 0.9709 0.9709 0.9709 0.9709
Position_TMD1 0.1905 0.1785 0.1785 0.1785 0.1785
Position_TMD2 0.8095 0.8215 0.8215 0.8215 0.8215
Objective (x10°) 2.1056 1.8587 1.8587 1.8587 1.8587

In Table 4.14, the SQP-1, SQP-2 and SQP-3 have the same definitions as those presented

in Tables 4.8, 4.10 and 4.12. In Table 4.15, the SQP-1, SQP-2 and SQP-3 represent the
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SQP optimization methodology based on the initial value of {0.1, 1, -0.9}, {0.1, 1, 1}
{0.0982, 0.9759, -0.3476} (the optimal value obtained from Step (1)), respectively.
Figure 4.19 also illustrates the GA convergence analysis for the optimal results shown in

Tables 4.14 and 4.15.
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Figure 4.19 GA convergence analysis for three DTMD design Method (1) based on the 5™
vibration mode with mass ratio (n=0.005). (a) Step (1). (b) Step (2).

Again, it can be seen from Figure 4.19 that the GA optimization methodology provides
good convergence property and also from the optimal results shown in Tables 4.14 and
4.15, it can be found that the optimal results obtained through the developed GA
optimization methodology have successfully caught the neighborhood of the global
optimum point. The structural response comparison for transverse displacement (w) and
the optimal parameters’ sensitivity analysis have been provided in Figure 4.20 to verify
the validity of this set of optimal DTMD design. The results for the tangential
displacement («), rotation () and 5™ modal responses have been provided in “Appendix
M?”. It should also be noted that the small deviations from the optimal parameters have

the same definitions as those in Figures 4.14 and 4.17.

It can be seen from Figure 4.20 and “Appendix M” that the optimally designed DTMD

system for design Method (1) is effective to suppress the vibration due to the 5™ mode.
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Figure 4.20 PSD of curved beam’s mid-span transverse displacement (w) and optimal
parameters’ sensitivity analysis for three DTMD design Method (1). (a) Frequency range 5-
140 (rad/s) (b) Sensitivity analysis for optimal damping factor for the twe symmetrical
TMD. (¢) Sensitivity analysis for optimal frequency ratio for the two symmetrical TMD. (d)
Sensitivity analysis for optimal damping factor for the mid-span TMD, (e) Sensitivity
analysis for optimal frequency ratio for the mid-span TMD. (f) Sensitivity analysis for
optimal position for the two symmetrical TMD. Solid, dashed, dotted and dashed-dotted
lines represent uncontrolled structure, structure with optimal DTMD listed in Table 4.15,
structure with DTMD having -10% (-0.1) and +10% (+0.1) deviations from designed
optimal values, respectively.

Method (2)

In this design method, the mid-span TMD is assumed to have different damping factor
(¢rmp) and frequency ratio (frmp) from those of the symmetrical TMD. Therefore, the

optimization problem has five design variables and can be stated as:

Find the design variables: {X3={srmp, fstmp, NTMD, STMD, STMD}
To minimize: RMS of response for the 5" vibration mode ~ (4.16)
Subjected to: A< <1, 0 & <1, 0= firap <2.5

0<¢mm <1, 0L frap 2.5

where parameters &ravp, firmp, Srmp and frup represent the damping factor, frequency

ratio for the symmetrical and mid-span TMD, respectively and #7p is the position of the
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symmetrical TMD. The mass ratio (i) for each attached TMD is assumed to be 0.005,
and thus the total mass ratio (u) is equal to 0.015. Based on Equation (4.16), the
parameters for the GA optimization method are defined in Table 4.16.

Table 4.16 Parameters of GA optimization.

Npop 12 Xate 0.5 X 1x10™*

N, var. 5 M‘ate 0.2

It should be noted that the GA optimization technique is kind of random searching
method, which can not guarantee that the GA optimum results can converge to the same
(close) values each time. In fact, all of the GA optimum results presented above for the 2
and 3-dimension design variables cases have been checked five times and each time they
all converged to the same (close) optimum values, which means that the GA optimization
technique developed in this study is very stable and robustness. However, the
optimization problem stated in Equation (4.16) has five design variables, thus to
investigate the accuracy and convergence of the developed hybrid and GA optimization
techniques, in this section the developed hybrid optimization technique has been repeated
6 times. The optimum results obtained by the GA and hybrid optimization methods in
Step (1), as illustrated in Figure 4.10, have been provided in Table 4.17. Figure 4.21

illustrates the GA convergence analysis for each calculation shown in Table 4.17.

Here, it should be noted that in Table 4.17 (also 4.18), the “position” represents the
position of one of the symmetrically attached TMD. One can easily find from Table 4.17

that the optimal locations obtained using the GA and also hybrid techniques converge to
two different points, one is around the middle of the beam (the 5™ and 6™ calculations),

the other is around 0.18 along the curved beam’s S coordinate (the 1% to 4™ calculations)
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with close values of objective function. It is noted that if DTMD system based on one

special vibration mode is attached in one point, we will replace them with single TMD

design as done for the 2™ vibration mode.

Table 4.17 The optimal three DTMD based on the 5™ vibration mode for Method (2) with
mass ratio (n=0.005) for each TMD —Step (1).

i Optimal Design Variables Objective
mecs
method Emvp fomp  Position  &Epp frup function (x10°)
: GA 0.0833 0.9362 0.1760 0.5418 2.48 2.1556
Hybrid 0.0767 0.9814 0.1915 0.5 2.5 2.0240
5 GA 0.0984 0.9825 0.1854  0.4372 1.2716 2.0485
Hybrid 0.0782 0.9780 0.1823  0.0001 1.128 2.0272
3 GA 0.1284 0.8902 0.1770  0.6436 1.0543 2.4564
Hybrid 0.0782 0.9781 0.1823 08115 2.42 2.0272
4 GA 0.0906 0.9429 0.1765 0.7063 1.2192 2.1176
Hybrid 0.0782 0.9781 0.1821 1 2.2892 2.0272
s GA 0.1370 0.9255 0.4999 0.0309 2.5 2.2298
Hybrid 0.081 0.9647 0.5 0.9985 248 2.044
6 GA 0.1655 0.9118 0.4870  0.2687 1.3450 2.3849
Hybrid 0.081 0.9647 0.5 0.0001 1.125 2.0436
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Figure 4.21 GA convergence analysis for each calculation as listed in Table 4.17. (a) For the

1* to 4™ calculation. (b) For the 5™ and 6™ calculations.
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From the 1% to 4" calculations in Table 4.17, one can find that different optimal values of
the design variables can provide the same (close) values of objective, which basically
means that the optimization problem established in Equation (4.16) is a very complex
problem having multiple optimal points with close value of objective function and the
developed GA and hybrid techniques are capable to catch all these points. As mentioned
before, the main purpose of Step (1) is to catch the optimal elements for the 7 elements
beam model in Step (2). Based on this, one can also find that although the optimal
damping factor and frequency ratio especially for the mid-span TMD are significantly
different in the 1 to 4™ calculations, the optimal locations for the symmetrically attached
TMD are very close, which are located in the Elements 2 and 6 for the 7 elements model
in Step (2). Therefore, one can make the conclusion that the developed GA optimization

method has successfully caught the global optimal region in Step (1).

In Step (2), the GA and hybrid optimization methods have been repeated 8 times, and the
results have converged to two sets of parameters, as provided in Table 4.18. Figure 4.22

illustrates the GA convergence analysis for all the 8 calculations stated in Table 4.18.
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Figure 4.22 GA convergence analysis for each calculation as stated in Table 4.18. (a) For the
1% 5" times. (b) For 6™ -8" times.
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Table 4.18 The optimal three DTMD based on the 5™ vibration mode for Method (2) with
mass ratio (p=0.005) for each TMD —Step (2).

Times Optimal Design Variables Objective

method Esrup forup Position Eup frup function (% 106)

: GA 0.098 0.9823  0.1751 0.226  0.2120 1.8509

Hybrid 0.0637  1.0245 0.1862  0.0525  0.9034 1.8076

5 GA 0.1222 1 0.1777  0.0755  0.9292 1.8652

Hybrid 0.0637  1.0245 0.1862  0.0525  0.9034 1.8076

3 GA 0.1119 09855 0.1709 0.0780  0.9308 1.8593

Hybrid 0.0637 1.0245  0.1862  0.0525  0.9034 1.8076

4 GA 0.0939 09742  0.1775 0.0995 0.9545 1.8571

Hybrid 0.0637  1.0245  0.1862  0.0525  0.9034 1.8076

5 GA 0.1038 09892  0.1799 0.0814  0.9447 1.8543

Hybrid 0.0637 1.0245  0.1862  0.0525  0.9034 1.8076

P GA 0.077  0.9283  0.1709  0.0692  1.0478 1.8233

Hybrid 0.0735 0.9280  0.1710  0.0288 1.0529 1.8136

. GA 0.0823 09442 0.1751 0.0795  1.0480 1.8323

Hybrid 0.0735  0.9280  0.1710  0.0288  1.0529 1.8136

GA 0.129 09127 0.1732  0.0776  0.9678 1.9133

Hybrid 0.0735  0.9280  0.1710  0.0288  1.0529 1.8136

From Table 4.18 and Figure 4.22, it can be found that: (1) in the 1¥ to 5™ calculations, the
optimal results obtained through the developed hybrid optimization method are exactly
the same, although the relative results obtained through GA have different values. This
means that the developed GA optimization method has successfully caught the global
optimal region; (2) From the 6™ to 8" calculations, the same conclusion can be found as
those in the 1% to 5™ calculations; (3) the optimization problem in this part has two
optimal regions with very close value of objective function; (4) comparing the optimal
result obtained from the 1% to 8" calculations, it can be found that the results for the 1% to

5" calculations is the best.
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Again the effectiveness of the optimally designed three DTMD system based on Method
(2) will be tested through the structural response comparison and the optimal parameter’s
sensitivity analysis. The result for the transverse displacement (w) has been shown in
Figure 4.23. The investigations for the tangential displacement (), rotation () and 5®
modal responses have been provided in “Appendix N”. Again it should also be noted that
the small deviations from the optimal parameters have the same definition as those in

Figures 4.14 and 4.17.
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Figure 4.23 PSD of curved beam’s mid-span transverse displacement (w) and optimal
parameters’ sensitivity analysis for three DTMD design Method (2). (a) Frequency range 5-
140 (rad/s). (b) Sensitivity analysis for optimal damping factor for the two symmetrical
attached TMD. (c) Sensitivity analysis for optimal frequency ratio for the two symmetrical
attached TMD, (d) Sensitivity analysis for optimal damping factor for the mid-span
attached TMD. (e) Sensitivity analysis for optimal frequency ratio for the mid-span
attached TMD. (f) Sensitivity analysis for optimal position for the two symmetrical attached
TMD. Solid, dashed, dotted and dashed-dotted lines represent uncontrolled structure,
structure with optimal DTMD, as stated in Table 4.18, structure with DTMD having -10%

(-0.1) and +10% (+0.1) deviations from designed optimal values, respectively.
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From Figure 4.23 and “Appendix N”, it can be found that: (1) this set of three optimally
designed DTMD system is effective; (2) this set of three optimally designed DTMD
system adds two sets of TMD around the 5™ mode of the uncontrolled structure, thus the
combined structure has three resonance frequencies around the 5™ mode, and the optimal

damping is to decrease the response at the added resonant frequencies.

Till now four different sets of optimal TMD system design based on the 5™ vibration
mode have been proposed with the same input mass (total) ratio of 0.0015, which
include: one mid-span attached TMD (Tables 4.5 Case c); two symmetry DTMD (Table
4.13); three DTMD (method (1) in Table 4.15); three DTMD ( Method (2) in Table 4.18).
Table 4.19 summarizes the optimal parameters and results for the TMD designs based on

the 5™ vibration mode.
Table 4.19 The TMD design based on the 5 vibration mode for total mass ratio (u=0.0015).

Method a: one mid-span TMD. Method b: two symmetrical DTMD. Method ¢: three DTMD
Method (1). Method d: three DTMD Method (2).

. Design Variables Objective
No of Mass ratio of
Methods function
TMD  each TMD Position Ermp Jrvp 6
(x107)
a (Table 4.5
1 0.015 0.5 0.0923  0.9458 1.9180
Case ¢)
b (Table 4.13) 2 0.0075 {0.1715,0.8285} 0.0953  0.9634 1.8570
{0.1785, 0.8215}
¢ (Table 4.15) 3 0.005 05 0.0959  0.9709 1.8587
{0.1862, 0.8138} 0.0637  1.0245
d (Table 4.18) 3 0.005 1.8076
0.5 0.0525 0.9034

Figure 4.24 compared the structural responses for the different optimal TMD designs

stated in Table 4.19. From Figure 4.24, one can easily find that: (1) the optimal Methods
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b and c listed in Table 4.19 provide almost the same vibration suppression performance;

(2) The optimal Method d listed in Table 4.19 is the best design based on the 5" mode.
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Figure 4.24 PSD of structural responses around the 5" vibration mode. (a) The 5" vibration
modal response. (b) The curved beam mid-span transverse displacement (w). (c) The curved
beam mid-span tangential displacement (). (d) The curved beam mid-span rotation (y).
Solid, dashed, dotted and dashed-dotted lines represent different optimal design methods
based on the 5™ vibration mode given in Methods a, b, ¢ and d listed in Table 4.19,

respectively. Note: in (2) the dashed and dotted lines almost coincides with each other.

4.4.5 Design based on multiple vibration modes
The curved beam’s vibration suppression using TMD technology based on the 2™, 4™ and
5" vibration modes has been investigated in above sections. The sensitivity analysis
based on small deviation from the optimal values and the response comparisons for each
part of optimally designed TMD system have been conducted to verify the validity of the
designed optimal TMD system. Based on the results presented above, the final optimal

MTMD system can be illustrated through Figure 4.25. It should be noted that to clearly
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show the position of the attached TMD, in Figure 4.25, the curved beam’s S coordinate

has been mapped to natural coordinate [0.0, 1.0].

Element 1 l Element 2 | Element 3 | Element 4 I Element 5 I Element 6 | Element 7

>
L I S )
' [1vb1] I [Twp1] ™
» > I'TMD3 i TMD4 < .
S; S,
’ ] T™MD2 } ] T™D2 l
N 0.5 >

Figure 4.25 Optimal MTMD design.

In Figure 4.25, “TMD3” is the optimal single TMD based on the 2™ vibration mode
listed in Table 4.4 for Case a. “TMD2” is the optimal DTMD based on the 4" vibration
mode listed in Table 4.11. “TMD1” and “TMD4” are the optimal DTMD based on the 5™
vibration mode listed in Table 4.18. Parameters S; and S; are the optimal locations of the
attached TMD system. It should be noted that the exact parameters of the optimal TMD
system will also depend on the selected mass ratio (). Next, to verify the validity of the
proposed optimal MTMD schematic, three sets of optimal MTMD design with the same
mass (total) ratio () for each vibration modes, as summarized in Table 4.20, will be

investigated.
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Table 4.20 Optimal MTMD design strategies: Strate

1, Three attached MTMD in the

curved beam mid-span and using the optimal parameters, as listed in Table 4.4 Case a,

Table 4.6 Case b and Table 4.5 Case c; Strategy 2, Six attached MTMD, as illustrated in

Figure 4.25, using the optimal parameters, as listed in Tables 4.4 Case a, Table 4.11 and

Table 4.18. Strategy 3, Six attached MTMD as illustrated in Figure 4.25, using the optimal

parameters, as listed in Tables 4.4 Case a, Table 4.11 and Table 4.15. Note: Parameters .S

and S; are defined in Figure 4.25.

Optimal o
. Optimal parameters Vibration modes
Strategies
2" (Table 4.4 4™ (Table4.6 5" (Tablc 4.5
Strateey 1 Case a) Case b) Casec)
rategy
Number of TMD 1 1 1
(Total mass ]
. Mass ratio 0.01 0.02 0.015
ratio (p) 4.5%)
(Mid-span) &np 0.093 0.0598 0.0923
(Mid-span) frup 0.9592 1.0117 0.9458
2" (Table44 )
4™ (Table 4.11) 5" (Table 4.18)
Case a)
Number of TMD 1 2 3
Strategy 2 Mass ratio 0.01 0.01 0.005
(Total mass (Mid-span) & 0.093 0.0525
ratio (p) 4.5%) (Mid-span) fram 0.9592 0.9034
Position Mid-span S=0.3058 S=0.1862
(Symmetry) énp 0.1427 0.0637
(Symmetry) frup 0. 9238 1.0245
2" (Table 4.4 .
4™ (Table 4.11) 5™ (Table 4.15)
Case a)
Strategy 3 Number of TMD 1 2 3
(Total mass Mass ratio 0.01 0.01 0.005
ratio (p) 4.5%) Position Mid-span §=0.3058 §=0.1785
Ermp 0.093 0.1427 0.0959
frmp 0.9592 0. 9238 0.9709
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As the optimal MTMD Strategies 2 and 3 listed in Table 4.20, includes 6 TMD: one for
the 2™ vibration mode, which is the same as that in the Strategy 1; two for the 4™
vibration mode with mass ratio (#=0.01) for each TMD, thus the mass ratio (x) in the
Strategy 1 for the 4™ vibration mode should be selected as 0.02 (Table 4.6 Case b); three
for the 5™ vibration mode with mass ratio (#=0.005) for each TMD, thus the mass ratio
(4) in the Strategy 1 for the 5" vibration mode should be selected as 0.015 (Table 4.5
Case c). Therefore, the total mass ratio (1) for each vibration mode and also for the whole
MTMD system is the same for the three strategies listed in Table 4.20. Figures 4.26-4.28
illustrate the beam mid-span responses for transverse displacement (w), tangential
displacement (u#) and rotation (w) for uncontrolled structure and the structure with

attached optimal MTMD system as listed in Table 4.20, respectively.
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Figure 4.26 PSD of curved beam mid-span transverse displacement (w) comparison. (a)
Frequency range 5-140 (rad/s). (b) Around the 2" natural frequency. (c) Around the 4"
natural frequency. (d) Around the 5™ natural frequency. Solid, dashed, dotted and dashed-
dotted lines represent the uncontrolled structure, structure with optimal MTMD Strategies
1, 2 and 3 listed in Table 4.20, respectively. Note: in (b) and (c) dotted and dashed-dotted
lines coincide with each other.

136



=100
-160

1a

=150

-180;

=200}

= f -2002
20 40 60 80 100 120 140_1732

]
-
[-1]
(=]

-180}
-180

direction response (20log(PSD}}

PSD of beam mid-span tangent

" 190}

208 85 9 95 100 100 110 120 130 140
Frequency (rad/s)

Figure 4.27 PSD of curved beam mid-span tangential (#) direction displacement
comparison. (a) Frequency range 5-140 (rad/s). (b) Around the 2" natural frequency. (c)
Around the 4™ natural frequency. (d) Around the 5" natural frequency. Solid, dashed,
dotted and dashed-dotted lines represent the uncontrolled structure, structure with optimal
MTMD Strategies 1, 2 and 3 listed in Table 4. 20, respectively. Note: in (b) and (c) dotted
and dashed-dotted lines coincide with each other.
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Figure 4.28 PSD of curved beam mid-span rotation (y) displacement comparison. (a)
Frequency range 5-140 (rad/s). (b) Around the 2" natural frequency. (¢) Around the 4®
natural frequency. (d) Around the 5™ natural frequency. Solid, dashed, dotted and dashed-
dotted lines represent the uncontrolled structure, structure with optimal MTMD Strategies
1, 2 and 3 listed in Table 20, respectively. Note: in (b) and (c) dotted and dashed-dotted lines
coincide with each other.
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From Figures 4.26-4.28, one can find that: (1) the optimal Strategies 2 and 3 listed in
Table 20 provide better vibration suppression effectiveness than the optimal Strategy 1;
(2) the structural response around the 2™ vibration mode for the optimal Strategy 1 has
significant deviation from its relative design condition, as shown in Figures 4.9 and 4.12.
The reason is due to the effect of the attached TMD system to the original structural
dynamic properties, which will be analyzed in detail through Table 4.21, which illustrates
the first 6 natural frequencies for the uncontrolled structure and the frequencies for the
structure with the attached optimal TMD system for different optimal methodologies

studied above.

From Table 4.21, it can be found that:
(1) For optimal TMD based on one special vibration mode:

(a) For the optimal one mid-span TMD based on the 2™ vibration mode (Table 4.4
Case a), the natural frequencies of the 4™ and 5" vibration modes would shift
+0.0378% (from 90.5644 to 90.5986 rad/s) and +0.0946 % (from 123.2884 to
123.405 rad/s) from the original condition, respectively. These are very small
deviation and then would not affect the structural response around the 4® and 5*
vibration modes, as shown in Figures 4.9 and 4.12.

(b) For the optimal one mid-span TMD based on the 4" vibration mode (Table 4.6
Case b), the natural frequencies of the 2™ and 5™ vibration modes would shift -
4.08% (from 35.2407 to 33.8045 rad/s) and +2.8588 % (from 123.2884 to
126.813 rad/s) from the original condition, respectively. These are very big
deviations and it is the main reason that the response for the optimal MTMD

Strategy 1 has significant deviation around the 2™ mode, as shown in Figures
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4.26-4.28. However, the natural frequencies of the 2™ and 5™ vibration modes
would just shift -0.0358% (from 35.2407 to 35.2281 rad/s) and +0.0913 % (from
123.2884 to 123.401 rad/s) from the original condition, respectively for two
symmetrical optimal DTMD design (Table 4.11). These small deviations would
not affect the structural response around the 2™ and 5" vibration modes, as shown
in Figures 4.26-4.28 for the Strategies 2 and 3.

(c) For the three types of optimal TMD methods based on the 5" vibration mode
(Tables 4.5 Case d, 4.15 and 4.18), no significant shifts for the 2™ and 4™
vibration modes from the original system exist. However the maximum deviation
happens in the one mid-span TMD optimal design method (Table 4.5 Case b).

(2) For optimal MTMD Strategies 1, 2 and 3 shown in Tables 4.20 and 4.21:

(a) For the optimal MTMD Strategy 1, one can easily find that: (1) the natural
frequencies around the 2™ vibration mode shift -2.96% (from 31.3078 to 30.3825
rad/s) and -3.8% (from 37.9841 to 36.5395 rad/s), from the design condition,
respectively; (2) the natural frequencies around the 4™ vibration mode shift -
0.24% (from 87.3188 to 87.108 rad/s) and -0.42% (from 95.7043 to 95.3023
rad/s) from the design condition, respectively; (3) the natural frequencies around
the 5™ vibration mode shift 0.56% (from 111.397 to 112.0194 rad/s) and 1.95%
(from 132.842 to 135.4281 rad/s) from the design condition, respectively.

(b) For optimal MTMD Strategies 2 and 3, no significant shifts from the design

condition for the natural frequencies around the 2™, 4™ and 5™ vibration modes.

139



ovi

TSTOLET TILLET SHSOET €€9L9€T  V6L69ET SPSOEl IVSLET  SPSOET SPSOET SPSOET 9
VOV EEl  LSIL'SEL T0P9°SET  TSLE €Ll -
I8TFSEL P8 ZEl
STLE T €10°821 8€S6'LZI  TLec 1Ll . _
TOV'€CT  €I89<1 SOV'ECl V88T €C1 S
POEICT  SOLT6L1 LSOZ6LT 9y ICl
P610°CIL L6ETIT
€690°'TIT  <0IZ 601 ZEIS80T  99ZL 011
808686 811686 SE8Y 66
- £20€°S6 - £POLS6 -
€LTSS 6¢LTSS R 61vT 06 81 06 £878°68 TELTSS 986506 79506 v
S0T°L8 —_____ S8icLs
78S6°SL 8S96'SL 8886°SL
I¥S1°€9 96£7°€9 6Ly V9 9rIL €9 SLTYE9 6TLY V9 9S10v9  6ZLYYY 6ZLY V9 6TLY ¥9 €
P65 LE 8065°LE S6ES 9t - TP86°LE _
- S80° V¢ T069°7€ S90TPE I8TCSE  SvOsEE LOVT SE 7
69CT° 1S AN TS SI8E0E 8LOCIE
9656°81 66681 SOLY 61 785¢61 v89€ 61 SOLY 61 SYSO'61  SOLY61 SOLY 61 SOLY'61 I
81y (sty (0 9se) (ary (qaseD (e ase)
(ozvy (ozv (ozv ) ) (s/per)
d[qel) J1qe]L) S'talqel)  2Iqel) 9P oIqel) i dlqel) amonns
J1qel) JIqel) J1qel) Kouonbaig
anle¢ ANl € anlL 1 ANLZ dnL 1 spow ,,z  pajjonuodus]
€ A3agens 7 A3x9eng | L39eng JexneN
spou G UO paseq spouwr 7 U0 paseq uo paseq

*sa13ageays rewmydo JudIa5JIp

Suisn wsAs AL poYdeNe 9Y) UM JINPNI)S puR JINPNIS PIf[oljuodun I0] sisA[eue sapduanbaiy [einyeu YL 174 2qelL



Based on the above investigations, one can easily make the conclusion that the Strategy 2
as stated in Tables 4.20 and 4.21 is the best MTMD design strategy which can provide
the best vibration suppression performance for the structural response due to the 2™, 4™
and 5™ vibration modes and have the smallest effect to the structural dynamic properties

and also the smallest deviation from their design condition.

4.4.6 Theoretical basis for the optimal MTMD design
In the above investigations, the optimal DTMD systems design based on each vibration
mode have been conducted through the proposed hybrid optimal methodology and then
combined together to provide an optimal MTMD design. As mentioned above, the
number and position of the attached DTMD system play important roles in an optimal
MTMD design problem and in above optimization procedure the number of the attached

DTMD system is assumed to be a given value.

Here, we will present a theoretical principle to explain why one, two and three attached
TMD are necessary for the optimal TMD system based on the 2™, 4™ and 5™ vibration
modes, respectively, and also the optimal positions for the attached TMD system. Table
4.22 summarizes the positions for the optimal TMD design based on the 2", 4™ and 5"
vibration modes taken from Tables 4.4 for Case a, 4.11, 4.15 and 4.18, respectively,
which were utilized to combined the optimal MTMD Strategies 2 and 3 listed in Table

4.20. Figure 4.29 illustrates the modal shapes for the 2™, 4™ and 5™ vibration modes in

the transverse displacement (w).
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Table 4.22 Optimal location summarization (Tables 4.4 for Case a, 4.11, 4.15 and 4.18).

2™ mode (Table 4™ mode

5" mode
4.4 Case a) (Table 4.11)
Number 3 (2 symmetry, 1 mid-span)
1 2 symmetry
of TMD (Table 4.15) (Table 4.18)
Position 1 0.3058 0.1785 0.1862
Position 2 0.6942 0.8215 0.8138
Position 3 0.5 0.5 0.5

medes in the radial direction

Modal shape for the second, forth and fifth

0 04702 Tes oA 0 T 0 0T 0 0 1
Dimensionless curved beam length

Figure 4.29 Modal shapes for the beam transverse displacement (w). Solid, dotted and

dotted-dashed lines represent the modal shapes for the 2", 4™ and 5™ modes, respectively.

Comparing the optimal position illustrated in Table 4.22 with Figure 4.29, one can easily
find that the optimal position of the attached DTMD system is located around the relative
maximum deflection points in the modal shapes and the required number of the DTMD
system is equal to the number of the maximum deflection points in the modal shape:

(1) For the 2™ vibration mode, one maximum deflection point in the modal shape is
located in the beam mid-span, thus the optimal locations obtained for the two
symmetrically attached DTMD system presented in Table 4.9 are exactly in the mid-
span;
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(2) For the 4™ vibration mode, two symmetrical maximum deflection points exist in the
modal shape. Therefore, one can easily explain some phenomenon investigated before:
(a) the two symmetrical DTMD design method provided in Table 4.11 can provide much
better vibration suppression performance around the 4™ natural frequency than the one
mid-span attached TMD provided in Table 4.6 (Case b); (b) from Figure 4.8 for the one
mid-span TMD design based on the 4™ vibration mode, one can find the optimal
frequency ratio will not exactly decrease with the increase of the mass ratio, which is also
due to the fact that the one mid-span TMD is not suitable choice for the vibration
suppression based on the 4" vibration mode;

(3) For the 5™ vibration mode, three maximum deflection points exist in the modal shape,
in which two are symmetry and one locates in the mid-span. Therefore, one can also
easily explain some phenomenon observed above: (a) the two symmetrical DTMD design
method stated in Table 4.13 can provide better vibration suppression performance around
the 5™ vibration mode than the one mid-span attached TMD stated in Table 4.5 for Case
¢, but not significantly comparing with those for the 4™ vibration mode illustrated in
Figure 4.15. This is due to the fact that the mid-span is one of the maximum deflection
points in the 5™ modal shape; (b) from the optimal results given in Table 4.17, one can
find that the one possible optimal locations for the symmetrical TMD is the mid-span,
which is also due to the fact that the mid-span is one of the maximum deflection points in

the 5™ modal shape.

Based on above analysis, one can easily make the conclusion that the theoretical principle
for continuous structure with attached MTMD system is the modal shape. For beam-type

structure, as the transverse displacement is more important than the other degrees of
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freedom, its modal shape should be utilized to design the optimal MTMD system.
Therefore a design procedure for beam-type structures with attached MTMD system
should include the following four main steps:

Step A: Through studying the uncontrolled structural dynamic properties, one can decide
which vibration mode(s) is dominant. For instance, the example shown in Chapter 3 has
single dominant mode, thus the TMD system design just need to be focused on this
dominant mode.

Step B: From the modal shape(s) of dominant mode(s), one can decide how many TMD
are required to suppress the vibration based on each dominant mode effectively.
Moreover one can also obtain the initial positions of the attached DTMD system, which
is close to the maximum deflection point(s) in the dominant modal shape(s).

Step C: Utilizing the optimization methodology proposed in this chapter to obtain the
optimal TMD parameters. Here it should be noted that in Step B, the initial position of
the DTMD system can be obtained through the modal shape, thus one can directly go to
the Step (2), as illustrated in Figure 4.10, and then utilize the proposed hybrid optimal
methodology to find the optimal DTMD parameters.

Step D: Based on the results obtained in above steps, the MTMD system can be obtained

by simply combining the designed optimal DTMD systems.

Here, it should be noted that although the proposed optimal design principle for beam-
type structures with the attached optimal MTMD system is derived based on the example
provided in this chapter, it is suitable for general beams with different boundary
condition. For example it can be utilized to analysis the optimal TMD design presented in

Chapter 3.
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4.5 Conclusions and Summary

This chapter presents a thorough investigation on vibration suppression of curved beam-
type structures under random loading using multiple Tuned Mass Dampers (MTMD)
technique. The finite element formulation for the curved beam with the attached MTMD
system has been successfully derived. The finite element method provides general
approach and can be efficiently used for design optimization of continuous curved
structures with the attached TMD system and also through finite element method the
position of the attached TMD can be identified as one of the design variables. It should
be noted that based on the developed finite element formulation one can easily extend the
study to curved beam with attached single or multiple TMD under different boundary and
geometrical conditions. A hybrid optimization methodology, which combines the global
optimization method based on GA and the powerful local optimization method based on
SQP, has been established and then utilized to find the optimal design parameters
(damping, stiffness and position) of the attached multiple TMD system. The validity of
the developed GA and hybrid optimization methodologies has been verified through

numerous illustrated examples.

Furthermore based on the results shown in the numerical examples, the theoretical
principle for designing optimal MTMD system for beam-type structures has been
proposed. Based on this, one can easily design the TMD system to suppress the vibration
of beam-type structures with different geometrical and boundary conditions effectively

and accurately.
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CHAPTER 5

EXPERIMENTAL SETUP

5.1 Introduction and Experimental Setup

A uniform cantilever steel beam subjected to base excitation is investigated in this
chapter. An optimally designed Tuned Mass Damper (TMD) system will be connected to
the steel beam to suppress the vibration effectively. The absolute acceleration of the steel
beam’s end-point with and without attaching the optimally designed TMD system will be
evaluated using the finite element approach presented in Chapters 2 and 3, and also

measured by the accelerometer.

The schematic and physical experimental setups are illustrated in Figures 5.1 and 5.2,
respectively. Here, a uniform aluminum beam with attached masses, which acts as a
MTMD system, is connected to the steel beam, and the aluminum beam’s natural
frequencies can be tuned to the steel beam’s vibration modes through an optimally
designed locations and weights of its attached masses. Therefore, through this
experimental study, one can validate the optimal design methodologies for the single and
multiple attached TMD systems presented in Chapters 3 and 4. Here it should be noted

that in Figure 5.1 the aluminum beam has been assumed to be connected to the tip of the

steel beam, and the reason for this will be presented in Section 5.3.1.
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LABVIEW
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| Accelerometer 2 Mags2 Mass]
Excitation Steel beam : e i | 0
! : Aluminam beam
A J
MA250-S062 A UD-VWIN Yibrafion controfler;
Shaker Waveform generator

Figure 5.1 Schematic diagram of the experimental setup.

Figure 5.2 Physical diagram of the experimental setup.

In Figure 5.1, “Accelerometer 1” is the accelerometer installed in the MA250-S062 type
shaker; “Accelerometer 2” is Minature DeltaTron type 4508 accelerometer, which is
utilized to measure the absolute acceleration of the steel beam’s end-point; “UD-VWIN
vibration controller” is utilized to control the random excitation generated by MA250-
S062 type shaker; Agilent 332204 type “Waveform generator” is utilized to control the
harmonic excitation generated by MA250-S062 type shaker; analysis software
“LABVIEW” with build-in Analogy-Digital-Card (ADC) will be utilized to analysis the

experimental data.
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It should be noted that in the following experimental study the beam has been subjected
to random base excitation with the PSD function of acceleration as the form shown in
Figure 5.3, in which the “Expected Excitation signal” is controlled by “UD-VWIN
vibration controller” with +3 (dB) boundary and the cutoff frequencies were set to 2 and

100 (Hz), respectively.

Uipper boundary

-------

-----------------------------------

lower boundary

{ Excitation
. i Frequency

1 (Hz) 2(Hz) 100 (1tz) 150 (Hz) >

PSD of Base Acceletation

Figure 5.3 Random excitation signal generated by MA250-S62 type shaker controlled by
“UD-VWIN vibration controller”.

5.2 Dynamic Properties of Beams

Table 5.1 lists the physical and geometrical parameters of the steel and aluminum beams,

which will be utilized in this experimental study.

189
Table 5.1 The physical and geometrical parameters of the steel and aluminum beams

Parameters Steel Beam Aluminum Beam
Material 1018-Steel 6061-T6 Aluminum
Elastic modules 2.05%10" (N/m?) 6.9x10° (N/m?)
Poisson’s ratio 0.29 0.33
Density 7870 (Kg/ m®) 2700 (Kg/ m*)
Length 1(m) 0.5(m)
Rectangle Width 38.1 (mm) (1.5 inch) 19.38 (mm) (0.76 inch)
Cross section | Height 6.4 (mm) (0.25 inch) 3.12 (mm) (0.123 inch)
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As both beams’ cross-sectional area is rectangle, the shear coefficient for the Timoshenko
beam theory can be obtained through k,=5(1+v)/(6+5v), where v is the Poisson’s ratio.
The equations of motion for beam-type structures subjected to the base excitation can be
expressed as:

M)} +[Cl{g()} +[K]{g(D)} =[E 1%, (5.1)
where mass [M] and stiffness [K] matrices have the same definitions as those stated in
Equation (2.5). The nodal displacement {q}, velocity {¢} and acceleration {4} vectors

are all relative to the base. ¥, represents the base excitation. Matrix [E;] is the direction

matrix for base excitation, which can be defined as:

T
1
[Es]={ ) {—yA [iNaTyn, {0}4} (5.2)

element -1

where y and 4 represent the density and the beam’s cross-sectional area, respectively.

[N(n)] and J(7) are the shape function and Jacobian between the natural and physical

coordinates, as defined in Chapter 2. Expression {0}, has the same definition as that in
Equation (3.5¢). Utilizing the same methodology as stated in Equations (3.10) and (3.11),

Equation (5.2) can be transferred to the state-space form as:
{z(} =[4{z(0)} +[Blxg =[41{z(1)} +{Q(D)}, (5.3)

where {z} is the state vector {g,4}" , and

[0] 1] [0]
4] l:—[M]”[K] —[M]‘I[C]ji and [5] [[M]"[Es]:l (54

Now utilizing Equation (3.12), one can easily obtain the PSD function of state vector {z}.
As the absolute acceleration would be measured in the experimental study, according to

the properties of PSD function, one can evaluate the PSD of absolute acceleration as:
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s, @=Lk —paia) s, ootk e 69
where {g,}represents the absolute acceleration of nodal variables; [SA{w)] and [S; (@)]

are the PSD of the state-space vector and absolute acceleration. Here it should be noted
that in this chapter the beams have been modeled using 7 Timoshenko beam elements

with 4 nodes per element, as discussed in Chapter 2.

Next, the dynamic behavior for both steel and aluminum beams will be evaluated using

the finite element model stated in Equation (5.1), and then the results would be compared

with the experimental data.

5.2.1 Dynamic properties of the steel beam
Figure 5.4 compares the PSD of absolute acceleration of the steel beam’ end-point

evaluated using the finite element model and obtained from the experimental data.
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Figure 5.4 Steel beam’s end-point acceleration response comparison. Solid and dotted lines

represent the results from the finite element model and experimental data, respectively.
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Here, it should be noted that in the finite element model, the steel beam’s damping
factors were selected as 0.031, 0.0161 and 0.0084 for the first three vibration modes,
respectively, and 0.0002 for all higher vibration modes. Table 5.2 compares the first three
natural frequencies evaluated using the finite element model and the resonant frequencies

obtained from the experimental data.

Table 5.2 Natural frequencies of the steel beam’s finite element model and the resonant

frequencies from experimental data.

o, (Hz) w, (Hz) 0, (Hz)
Experimental data 5 32.75 89.75
Finite element Method 5.2599 32.9612 92.3405

5.2.2 Dynamic properties of the aluminum beam
The PSD of the absolute acceleration of the aluminum beam’ end-point obtained from

experimental data and evaluated through the finite element model is compared in Figure

5.5.
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Figure 5.5 Aluminum beam’s end-point acceleration response comparison. Solid and dotted
lines represent the results from the finite element model and experimental data,
respectively.
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Here, the aluminum beam’s damping factors were selected as 0.0415 and 0.0184 for the
first and second vibration mode, and 0.002 for higher vibration modes. Table 5.3
illustrates the first three natural frequency evaluated using the finite element model and

the resonant frequencies obtained from the experimental data.

Table 5.3 Natural frequencies of the Aluminum beam’s finite element model and the

resonant frequencies from experimental data.

[ (HZ) [07) (HZ) w3 (HZ)
Experimental data 10.15 59.78
Finite element Method 10.1212 63.8634 178.9144

It can be seen from Figures 5.4 and 5.5 and Tables 5.2 and 5.3 that good agreement exists
between the numerical model and experimental data for natural frequencies of both steel
and aluminum beams. Therefore, in the following sections the established finite element

model for both steel and aluminum beams will be utilized to design the TMD system.

5.3 Optimal Tuned Mass Damper Design

Based on the experimental investigation for the steel beam shown in Figure 5.4 and Table
5.2, it can be found that it is a very flexible beam in which there is not just single
dominant mode. Therefore, to suppress the vibration effectively, in this chapter the TMD
system has been designed based on the steel beam’s first and second vibration modes, as
considering the dynamic properties of the aluminum beam, it is difficult to decrease the
aluminum beam’s third natural frequency from around 180 (Hz) to around 90 (Hz), which
is the third natural frequency of the steel beam, through adding small masses. The
theoretical basis for optimally designed TMD system proposed in Chapter 4 will be

utilized to determine the optimal location of attached aluminum beam, and then the whole
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optimization procedure will be redefined based on this designed experimental

investigation.

5.3.1 Optimal location of the attached aluminum beam
Based on the theory proposed in Chapter 4, one can utilize the modal shape to determine
the number and initial position of the attached MTMD system. Figure 5.6 illustrates the

steel beam’s first two vibration modal shapes for transverse response.

Modal shape for transverse response

] 0.1 0.2 0.3 0.4 0;5 0.6 0.7 0.8 0.9 1
Dimensionless length

Figure 5.6 Steel beam’s first two vibration modal shapes for transverse response, Solid and

dotted lines represent the first and second vibration modes, respectively.

It can be found from Figure 5.6 that the maximum deflections in the first two vibration
modal shapes are both located at the end of the beam and only one maximum point exists.
Therefore two TMD will be attached at the end of beam, in which the natural frequencies

of these two TMD were tuned to the steel beam’s first two vibration modes, separately.

Based on the above investigations, the natural frequencies of the aluminum beam, which
will be connected at the end of the steel beam, will be tuned to the steel beam’s first two

vibration modes through two attached small masses, as shown in Figure 5.1. Therefore,
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the aluminum beam with the attached masses would operate similar to two sets of optimal

TMD system.

The optimal TMD designs presented in Chapter 3 and 4 and those available in published

literatures " are all based on given mass of the attached TMD system and the optimal
parameters are the stiffness and damping of the attached TMD system. However, as the
properties of the attached aluminum beam can not be changed, the optimal problem in
this chapter would be transferred to select suitable masses and also their locations to tune
the natural frequencies of the aluminum beam to the stecl beam’s first two vibration

modes.

The equations of motion in finite element form for the steel beam end-connected to the
aluminum beam with the attached masses under base excitation can be also expressed as
Equation (5.1). Here it should be noted that the stiffness [K] and damping [C] matrices

and the nodal displacement {q}, velocity {4} and acceleration {4} vectors are the

combination of both steel and aluminum beams’ finite element models, and the mass [M]
and direction [E;] matrices are the combination of not only steel and aluminum beams’
finite element model but also the effect of the attached mass. Let us assumed one mass
(m) is connected to the / element of the aluminum beam’s finite element model and its
position in this j* element can be expressed as (4,,). Therefore, the effect of the attached

mass (m) to the mass [M] and direction [E;] matrices stated in Equation (5.1) can be

expressed as:

M= T {Na T IVG) and L= {WNa T ml, (54

element=j element=j
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where [M]. and [E). represent the effect of the attached mass (m) to the mass [M] and
direction [E;] matrices, as stated in Equation (5.1) and [N(5)] is the shape function. Here
it should be noted that the position of the attached mass (m) can be identified as a design
variable through parameter 7,. Next the optimization methodology utilized in this

experimental study will be presented in detail.

5.3.2 Design based on the steel beam’s first vibration mode
Based on the data listed in Tables 5.2 and 5.3, it can be found that the first natural
frequencies for the steel and aluminum beams are 5.2599 and 10.1212 (Hz), respectively.
Obviously, to decrease the natural frequency of the aluminum beam from 10.1212 (Hz) to
around 5 (Hz), a simple methodology is to connect a small mass (“Mass 1” shown in
Figure 5.1) at the end of the aluminum beam. Therefore, the optimal problem in this

section would be transferred to find the optimal value of this attached mass.

As mentioned before, in the traditional TMD design, the mass of the TMD system is a

given input and restricted to be not more than the 10% of the original structural mass,

otherwise the dynamic properties of the original structure will be changed signiﬁcantlysz.
Moreover, based on the investigations presented in Figure 3.2 and those in available
literatures84, one can find that with the increase of input mass ratio, the effectiveness of
the optimally designed TMD system would be increased. Based on those facts, as the
optimization problem in this section is to find optimal value of the attached mass, which
is the only design variable, it is difficult to define a suitable objective function for the

optimization problem presented in this section.
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Fortunately, based on the working principle of an optimally designed TMD system and
also the investigations presented in Chapters 3 and 4, one can find that the frequency ratio
defined in Equation (3.14) for an optimally designed TMD system is close to 1.
Moreover, considering the fact that in the next section a second mass will be attached to
the aluminum beam, which will also affect the dynamic property of the aluminum beam’s
first vibration mode. Therefore, in this section, the first natural frequency of the
aluminum beam will be tuned to around 5.3 (Hz), which is the first natural frequency of
the steel beam, through “Mass 1” illustrated in Figure 5.1, and the approach can be
expressed as the following optimization problem:

Find the design variables: {DV}={mass} 57

first natural frequency of the aluminum beam with
the attached tip mass equal to 5.3 (Hz)

To make:

Finally, one can easily find that the mass of the attached mass (“Mass 1” in Figure 5.1) is

about 50 (g). Figure 5.7 shows the dynamic property of the aluminum beam with end-

attached 50 (g) mass.

207

sponse/Excitaton (dB)
o

-20%

Re:

-40

20 40 80 ¢ oqueddy (Hzy 1°° 120 140
Figure 5.7 Aluminum beam’s end-point acceleration response comparison. Solid, dotted and
dashed-dotted lines represent the finite element model and experimental data for aluminum
beam with tip attached 50 (g) mass, and the finite element model for original aluminum

beam, respectively.
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From Figure 5.7, it can be found that the first natural frequency of the aluminum beam
has been tuned to 5.3 (Hz) through the end-attached mass. Next, a second mass (“Mass 2”
in Figure 5.1) will be connected to the aluminum beam to suppress the steel beam’s

vibration due to the second mode.

5.3.3 Design based on the steel beam’s second vibration mode
Here the end-attached mass 50 (g) will be kept, as it has successfully tuned the natural
frequency of the aluminum beam to the first mode of the steel beam, and then a 54 (g)
small mass (“Mass 2” in Figure 5.1) will be added to the aluminum beam to tuned the
second natural frequency of the aluminum beam to the second mode of the steel beam. As
the mass is given, the optimization problem is to find the best location for this attached
mass to suppress the steel beam’s vibration around the second vibration mode, which can

be expressed as:

Find the design variables: {DV}={location}
To minimize: RMS of the response of the 2" vibration mode (5.8)
Subjected to:  location along the length of the aluminum beam

One can easily utilize the hybrid optimization methodology proposed in Chapter 4 to
obtain the solution. However, as the optimization problem stated in Equation (5.8) is one-
dimensional case and then it can be solved graphically. In order to clearly clarify the
property of this optimization problem, Figure 5.8 illustrates the value of objective
function versus the changing of the design variable, form which one can easily find that
the optimal location of the attached second mass is around 0.66, which is about 32.5 (cm)

from the connection point of the steel and aluminum beams.
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Figure 5.8 Value of objective function vs. position of the attached second mass.

5.3.4 Vibration suppression comparison under random excitation
To verify the validity of the optimal TMD design presented in the above two subsections,
the vibration suppression performances will be compared in this section. Five different

cases, as shown in Table 5.4, have been investigated.

Table 5.4 Vibration suppression strategies comparison.

Strategies Schematics
Case 1 Excitation} H Steel beam
C 2 E‘c“aﬁm{ ﬂ Steel beam Aluminum beam
ase -
. 50 ()
I Steel beam Aluminum heam»—i e
|

Case 3 ExcmmonI ﬂ

Excitation Steel beam Aluminum beam— A ("‘.') 5.“ ®
Case 4 ‘ 32,8 (em) .

5 ; 54.(2) 50 (¢)
Case 5 mc“"ﬁ“"I 1 Steel beam Aluminum beam-, i X

| - 23(em) -

Here it should be noted that Case 3 in Table 5.4 is the optimal design based on the steel
beam’s first vibration mode and Case 4 in Table 5.4 is the optimal design based on the

beam’s both first and second vibration modes. For the sake of clear expression, the five
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cases listed in Table 5.4 have been categorized to two groups as: Group 1 for Cases 1, 2
and 3 and Group 2 for Cases 1, 3, 4 and S. Therefore, Case 2 can be treated as the
deviation from the optimal design based on the first vibration mode, as shown in Case 3;
Cases 3 and 5 can also be identified as the deviation from the optimal design based on the

second vibration mode, as shown in Case 4.

To testify the validity of the finite element model, Figure 5.9 compare the PSD of
absolute acceleration of steel beam’s end-point evaluated using the finite element model
and obtained from the experimental data for Cases 2 and 3 listed in Table 5.4. The
acceleration response of the tip point of the steel beam for Cases 4 and S based on finite
element analysis and experimental data are compared in Figure 5.10. From Figures 5.9
and 5.10, one can find that the results evaluated from the finite element model are very

close to the experimental data.
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Figure 5.9 Steel beam’s end point acceleration response comparison. Solid and dotted lines

represent the results from the finite element model and experimental data, respectively. (a)

For Case 2 listed in Table 5.4. (b) For Case 3 listed in Table 5.4.
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Figure 5.10 Frequency domain acceleration response comparison for steel beam’s end point,
Solid and dotted lines represent the results from the finite element model and experimental

data, respectively. (a) For Case 4 listed in Table 5.4. (b) For Case S listed in Table 5.4.

The steel beam’s dynamic property (end-point acceleration) for Cases 1, 2 and 3 (Group
1) for the results evaluated through the finite element model and obtained from the
experimental data are shown in Figure 5.11. The comparisons of the acceleration

response of the tip point of the steel beam for Cases 1, 3, 4 and 5 (Group 2) are shown in

Figure 5.12.

From Figures 5.11 and 5.12, one can also find that the proposed TMD design
methodology has successfully suppressed the vibration around the steel beam’s first and

second vibration modes.

160



ion (dB)
5 3

[ ]
=]

ponse/Excitati
[~

)
<

Res

-

1626 36 46 B0 86 70 86 86 400 110
Frequency {(Hz)
(b).

Toniinamma

>

rerese
0 et

8 70 86 80 100 10

107207 30 40 _ 56
Frequency (Hz)

Figure 5.11 Frequency domain acceleration response comparison for steel beam’s end point.
Solid, dashed and dotted lines represent the Cases 1, 2 and 3, as listed in Table 5.4,

respectively. (a) The results evaluated from finite element model. (b) The experimental data.
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Figure 5.12 Frequency domain acceleration response comparison for steel beam’s end point.

Solid, dashed, dotted and dashed-dotted lines represent the Cases 1, 3, 4 and 5 listed in

Table 5.4, respectively. (a) The result from finite element model. (b) The experimental data,

5.3.5 Vibration suppression comparison under harmonic excitation
The steel beam’s response (tip acceleration) comparison for random loading has been
conducted in above section, from which one can find that the vibration suppression
performance for Cases 3-5 listed in Table 5.4 are very close at excitation frequency equal
to 5 (Hz). Therefore, in this section only the Cases 1, 2 and 3 listed in Table 5.4 under
harmonic excitation with excitation frequencies at 5 (Hz), which is the first resonant

frequency of the steel beam, will be presented. Figure 5.13 illustrates the experimental
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data for steel beam’s end-point acceleration response in time domain under harmonic
excitation with 5 (Hz) excitation frequency for Cases 1, 2 and 3 listed in Table 5.4. Here
it should be noted that the data shown in Figure 5.13 have been filtered by a 5 order low-
pass Butterworth type filter with cut-off frequency of 10 (Hz) and directly recorded by
“LABVIEW?” and then simply divided by the amplitude of excitation without any average

processing.

Acceleration {Response/Excitation)

w8 : 4 i H e
0 0.2 0.4 0.8 0.8 Tl|]ne (s) 1.2 1.4 1.6 1.8 2

Figure 5.13 Steel beam’s end point acceleration time domain response comparison under
harmonic excitation with 5 (Hz) excitation frequency. Solid, dashed and dotted lines

represent Cases 1, 2 and 3 listed in Table 5.4, respectively.

From Figure 5.13, one can find that the proposed TMD design methodology has

successfully decreased the response around the steel beam’s first natural frequency.

5.3.6 Natural frequency analysis for tuned mass damper system
The optimal TMD design and their response under both random and harmonic excitation
have been investigated experimentally and computed using finite element model in above
sections, and the results shows that the proposed TMD design is very effective. Table 5.5

summarizes the natural frequencies around the original steel beam’s first two vibration
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modes for different cases listed in Table 5.4, to clearly clarify the effectiveness of the

proposed TMD design methodology.

Table 5.5 Natural frequencies comparison for Cases 1-5 listed in Table 5.4 around the first

two vibration modes of the steel beam.

Cases listed Steel beam’s natural frequency (Hz)
in Table 5.4 First mode Second mode
Case 1 5.2599 32.9612
Case 2 4.4731 10.8896 32,1163
Case 3 3.6269 7.2414 30.7476
Case 4 3.2803 7.1576 28.6578 39.8982
Case 5§ 3.4114 7.2372 26.7607 40.5519

From Table 5.5, one can easily find that the proposed TMD design methodology adds
two resonant frequencies around their relative tuned natural frequencies, which exactly

agrees with the working principle of the classical optimally designed TMD system.

5.4 Conclusions and Summary

Through the experimental study presented in this chapter, the validities of the finite
element model for Timoshenko beam presented in Chapter 2, the optimal Tuned Mass
Damper (TMD) design utilizing the finite element method and the optimization
methodologies proposed in Chapters 3 and 4, and also the optimal TMD design principle

for beam-type structures presented in Chapter 4 have been investigated.

Moreover, the optimal TMD design method presented in this chapter, which connects a

small beam with attached masses to the original beam structure, is novel.
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CHAPTER 6

MODEL DYNAMIC BEHAVIOR OF MAGNETO-RHEOLOGICAL

FLUID DAMPERS

6.1 Introduction

The finite element model for beam-type structures has been derived in the Chapter 2, and
then utilized to design the Timoshenko beam and curved beam with the attached Tuned
Mass Damper (TMD) system in Chapters 3 and 4. A design principle for beam-type
structures with the attached TMD system has also been proposed in Chapter 4. In this
chapter and the next chapter, the Semi-Active Mass Damper (SAMD) design using
Magneto-Rheological (MR) fluid dampers, which is one of the most promising devices to
provide semi-actively controlled damping force, will be investigated. The MR-damper
can offer large range of damping force capacity, robustness in a fail-safe manner with
very low power requirements. The two main issues regarding the SAMD system based on
MR-damper are: 1- Development of the mathematical models, which can not only
simulate the MR-damper’s dynamic behavior accurately but also can easily be used; 2-
Development of the control strategy. This chapter is dedicated to the aspect of modeling

the MR-damper’s dynamic behavior, and the development of control strategy will be

presented in the next chapter.

Many mathematical models'>"* for simulating the MR-damper’s dynamic behavior

have been developed. In general, all of these mathematical models can be categorized
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into two different groups. One group is the mechanical model, in which a set of
mechanical parts are utilized to model the MR-damper’s dynamic behavior, such as the
Bingham model' ™", The other group is the non-parametric model, in which a set of

numerical equations are utilized to interpolate the dynamic behavior of MR-damper, such

as the Fuzzy model ", polynomial model"" and the model proposed by Wang et al 13313,

The development of the mechanical models can be summarized in Figure 6.1.

’(a) e 1) -

Friction Model

I~ | Coulomb
f A Firction

.
() [ :
g Bouc-Wen
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VVVYV —
Co T 4
N | Coulomh

Firction

“ANN
Figure 6.1 Typical Magneto-Rheological (MR) fluid damper’s mechanical models. (a)

Friction model. (b) Mechanical model by Oh and Onode'”. (c) Phenomenological model by

Spencer Jr et al®. (d) Parametric viscoelastic-plastic model by Gamota and Filisko'**,

In Figure 6.1, parameters Ky (K;) and Cp (C;) represent the stiffness and viscous damping,
respectively and x, y and f are the MR-damper’s external excitation, the inner state of the
phenomenological model and the MR-damper’s output damping force, respectively. By
selecting different “friction model” illustrated in Figure 6.1(a), one can design different

. . 123-125 ... ..
mechanical models, such as the Bingham model * utilized a coulomb friction element
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. . .. 127 ... .
and K, is assumed to be zero; the nonlinear biviscous model = utilized a nonlinear

. - 128,139,140
biviscous friction element; Bouc-Wen model

utilized the Bouc-Wen hysteresis
element; LuGre friction model>” *° utilized the LuGre friction element. Figure 6.1(b)

shows the mechanical model proposed by Oh and Onode . Figure 6.1(c) illustrates the

phenomenological model (modified Bouc-Wen model) proposed by Spencer Jr et al'®
Figure 6.1(d) represents the parametric viscoelastic-plastic model proposed by Gamota

and Filisko *.

To date, most of the available literatures in this area are focused on small-scale MR-
damper, especially for RD-1005 type MR-damper provided by Lord Companym, but
large-scale MR-damper is seldom reported by researchers. Yang ef al 19, 180 developed a
phenomenological model'”* with mass element for MR-9000 type damper, which is a
large-scale MR-damper provided by Lord Companym, and then they181 proposed a
phenomenological model based on the modified Bouc-Wen hysteresis model > and
provided the relationships for the characteristic parameters with variable current input.
Investigations of different mathematical models for RD-1005 type MR-damper show that
although most of mathematical models can accurately simulate MR-damper’s dynamic
behavior, some of them are very difficult to be used in accurate control design. Among
different modes, the LuGre friction model"® is found to be simpler, more accurate and

easily to be used than other models.

In this chapter, a LuGre friction model for MR-9000 type damper will be proposed. The

gradient based optimization method ® and the least square techmque182 will be utilized to

identify the characteristic parameters of the proposed model. The dynamic properties of
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the proposed model will be compared with those obtained by the modified Bouc-Wen

model"" under different types of excitation and input current to validate the proposed

model.

6.2 Large-Scale MR-damper

The MR-9000 type damper is provided by Lord Companym. The schematic diagram of

this type MR-damper has been shown in Figure 6.2 and its design parameters have been

122,181

presented in Table 6.1

Thermal Expansion
Accumulator 3-Stage Piston

Wire
Coils MR Filuid

Diameter: 20 cm
Stroke: 16 cm
Power: < 50 watts, 22 volts

Figure 6.2 Schematic diagram of the MR-9000 type damper provided by Lord Companym.

Table 6.1 Design parameters for MR-9000 type damperln’ m.
Stroke + 8 (cm) Total mass 250 (Kg)
Max. input power <50 (w) Total length ~ 1(m)
Max. force (nominal) 200,000 (V)

Yang et al'™ proposed a modified Bouc-Wen model, as shown in Figure 6.1(c), for MR-

9000 type damper, in which the hysteresis damping force can be expressed as:
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f=ay+k(x-x) (6.1)

y= ety (x=) (62)
i=ylk=plzlzl B -zl +dGi-5) 63)

where kg, k;, co, and c; are the stiffness at high speed, the stiffness of the accumulator, the
viscous damping at high speed and for force roll-off at low speed, respectively. Variables
x and f are the MR-damper’s external excitation and output damping force, respectively.
xp, y and z are MR-damper’s initial displacement, inner state and the evolutionary variable
of modified Bouc-Wen model, respectively. The characteristic parameters 4, y, §, ko, k1,

xp and n are constant and current independent and their values have been provided in

181 81
Table 6.2 . The current dependent parameters (a, cp and ¢;) can be expressed as

a(i) =16566i° —87071i* +168326i+15114 (6.4)
co (i) = 437097i° ~1545407i% +1641376i + 457741 (6.5)
¢;(f) = —9363108:> + 5334183;2 + 48788640i — 2791630 (6.6)

where variable i is the input current.

Table 6.2 Current independent characteristics parameters for MR-9000 type damper181

A 2679.0 (m™) n 10
v B 647.46 (m™) X 0.18 (m)
ko 137,810 (N m™") k; 617.31 (Nm™")

Yang et al'™ compared the dynamic behavior evaluated using this modified Bouc-Wen
model with the experimental data, and found that this model can accurately simulate the

dynamic behavior of MR-9000 type damper in a large working range. Therefore, in this
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chapter we will utilize the simulation results of the dynamic behavior evaluated using the
modified Bouc-Wen model'™ provided Equations (6.1)-(6.6) and Table 6.2, to identify
the characteristic parameters of the proposed LuGre friction model. As the proposed
model is based on the LuGre friction modelm, in the next part a general description of
the LuGre friction model will be presented and also some properties of the LuGre friction
element will be studied in detail, which are very important to derive the LuGre friction

model for MR-9000 type damper.

6.3 LuGre Friction Model

The schematic diagram of the LuGre friction MR-damper model has been shown in

Figure 6.1(a), and the damping force can be expressed as'

1. ..
—y=x—|x|y (6.7a)
a

f=-ﬂ—y+7x+&+iy'+f0 (6.7b)
a a

where x and f are the MR-damper’s external excitation and output damping force,
respectively. y is the inner state of the LuGre friction model. Characteristic parameters y,
0 and fy represent the viscous damping, stiffness and initial force, respectively.

Parameters a, £ and ¢ are the characteristic parameters related to the inner state ().

Here, the hysteresis behavior equation (LuGre friction element) stated in Equation (6.7a)
plays an important role in this model. Thus the properties of Equation (6.7a) need to be
studied first. For a harmonic excitation x = X sin (w?), Equation (6.7a) can be expressed

as:

170



» = aXalcos(@l)-| cos(ar) | y] 6.8)
It can be found from Equation (6.8) that the inner state (y) depends on the value of
parameter (a) and the amplitude of excitation (X) for a given excitation frequency ().
The simulation results for inner state (y) under harmonic excitation (frequency o =1 Hz)

with aX of 3000, 30 and 0.3, respectively, are illustrated in Figure 6.3.
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Figure 6.3 Simulation of Equation (6.7a) under harmonic excitation (frequency=1 H7).

Solid, dashed, dotted, dotted-dashed and solid (light) lines represent dimensionless

displacement, dimensionless velocity and inner state (p) for aX of 3000, 30 and 0.3,

respectively.

In Figure 6.3, the “dimensionless displacement” and “dimensionless velocity” in the
caption mean the excitation displacement (x) and velocity (%) divided by their maximum
value, respectively; points “A” and “B” are related to the time points for harmonic
excitation reaching the maximum velocity and maximum displacement points,
respectively. It is noted that for the sake of clarity, the points “A” and “B” in Figure 6.3

are illustrated for one positive half period.
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Now using Figure 6.3, some important properties of Equation (6.7a) under harmonic
excitation (x = X sin (w?)) will be studied.

(1) The time point “B” represents the zero excitation velocity point, and also reflects the
point of inflection of the inner state (y). This property can be directly found in Equation
(6.7a) by assuming x=0, and then the differential of inner state (y) would also be zero,
thus it represents the extreme point of inner state ().

(2) The inner state (y) would be close to unit value between time point “A” and “B”

under large value of aX. To illustrate this property, one can rearrange Equation (6.7a) as:

yta|xly=ox (6.9)

. . . . . 27
This is a Bernoulli Equation and its solution can be expressed as” :

Y =elfelai@dt+Col, b= [al i) (6.10)
where Cj represents the initial condition. Now let us assume that the excitation is
harmonic loading (x = X sin (wf)), the initial condition is zero and 0 < ¢ < 7/2w (the first

quarter period). Therefore Equation (6.10) can be solved as:

P(t) = e~ XS [@XSND) oy cos(eot )it
= "M o sin(wr)e™ W) ~ [(aX)? e ) sin(wr) cos(wt)d(wt))
= aX sin(@r) — e ) [(ax)? ™5™ sin(at) cos(wt)d(wt)
= aX sin(wr) — e ) [(aX)? e sin(wt)d (sin(at))

(X sirzl(cot))2 te
(aX sin(wt))? L (X sin(at))3
2 6

(6.11)

. 3 .
= aX sin(wr) — —aX sin(ar) | i“;(—) sin? (wt)e ™ S d(sin(wt))

= aX sin(wt) -

) 4 .
_ gmeXsin(a) j—-—(“’é ) sin? (@or)e ™ @) g sin())

Then, one can obtain:
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_i (—aX sin(at))"

Y0 = , (6.12)
n=l n
This is part of Taylor series of the exponential function and can be expressed as:
y(t) =1-exp(—aX sin(et)) (6.13)

The solution in other quadrants is similar to Equation (6.13) with different initial values.
As the value of the exponential function in Equation (6.13) will converge to zero very
fast for large value of aX, Thus the inner state (y) in time range between points “A” and
“B”, which converges to (1 - exp (-aX)), will be close to unit value under large value of
aX, as illustrated in Figure 6.3 for aX equal to 3000 and 30.

(3) From Equation (6.13), one can also find that the boundary of inner state (y) is (-1, 1),
which has also been shown in Figure 6.3.

(4) From Equation (6.12), one can find that for small value of aX, the solution of inner

state can be simplified as y(f) = aX sin (w?), as shown in Figure 6.3 for oX equal to 0.3.

Based on the above investigations, the following assumption may be made: in most of
MR-damper’s working range, the inner state (y) for the LuGre friction model becomes
(close to) unity between time points “A” and “B”, as shown in Figure 6.3, under suitably
selected characteristic parameter a. In the following sections, a LuGre friction model for
MR-9000 type damper will be derived based on this assumption. Here, it should be
emphasized that since the identification of the characteristic parameters is based on this
assumption, the final value of characteristic parameter a should be checked for this
assumption under the MR-damper’s working range. It should be noted that the effect of
excitation frequency to the inner state (y) is to change the response frequency of inner

state and not the properties of time points “A” and “B”, as shown in Figure 6.3.
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6.4 Development of LuGre Friction Model for MR-9000 Type Damper

Comparing the Bouc-Wen modelm, as stated in Equations (6.1)-(6.6), with the general
form of LuGre friction model, as stated in Equations (6.7), one can easily find that it is
difficult to directly identify the characteristic parameters of LuGre friction model through
mathematical derivation. Therefore, we will identify the characteristic parameters of
LuGre friction model for MR-9000 type damper step by step, based on the simulation
data obtained from the modified Bouc-Wen model''. For the sake of generality, we
assume the characteristic parameters as stated in Equations (6.7) are all current,
frequency and amplitude dependent. Before characterizing the MR-damper, let us

examine a typical MR-damper’s force-velocity (/~v) relationship, as shown in Figure 6.4,

18% 10°

Force (N)
h—a

=1

. i ; ; ; i : i
1508 -0.06 -0.04 «0.02 L] 0.02 0.04 0.06 0.08
Velocity {m/s)

Figure 6.4 Typical MR-damper’s force-velocity (£~v) curve,

Here, points “D” and “E” represent the force at time points “A” and “B”, as shown in

Figure 6.3, respectively. Based on the analysis for inner state (y) presented in the last

section, these two special points will be utilized to evaluate the proposed LuGre friction

model for MR-9000 type damper. Substituting Equation (6.7a) into (6.7b), we have:

174



f=(§—a|x|>y+(y+a)x+@c+fo (6.14)

Next, Equation (6.14) will be utilized to identify the characteristic parameters for the

proposed LuGre friction model under harmonic excitation, x = X sin (wf).

6.4.1 Estimation of initial force “f,”
The parameter fj can easily be evaluated, because it represents the force when MR-
damper stays in the middle condition and it mainly reflects the effect of the gas

accumulator in the MR-damper. Thus, according to Equation (6.1) of the modified Bouc-

181 . .\
Wen model , “f;” can be estimated as —k;xy, as it is the only parameter related to the
damping force and also independent to the excitation and input current. Therefore,

considering Table 6.2, “fy” is equal to —111.1158 (N).

6.4.2 Estimation of characteristic parameters “y” and “g/a”
At point “D”, as shown in Figure 6.4, the inner state (y) is equal (close) to 1 and the
displacement is zero, as illustrated in Figure 6.3 for time point “A”. Thus the MR-

damper’s damping force, as stated in Equation (6.14), can be simplified as:

F=Lt i, +fo=—§-+y(Xw>+fo 6.15)

where X and o are the amplitude and frequency of the harmonic excitation, respectively.

The amplitude, frequency and current dependency of parameters y and f/a will be

examined through Equation (6.15) in the following subsections.

6.4.2.1 Amplitude dependency

Based on Equation (6.15), if parameters f/a and y are both amplitude independent, the

MR-damper’s damping force difference (4f) under the same input current, for harmonic
175



excitation with the same excitation frequency and different amplitudes, should be

proportional to the difference of amplitude as:

A =f,-fi=rX;-X))o=y4Xw® (6.16)
where f; and f> represent the damping force stated in Equation (6.15), under the same
input current for harmonic excitation with same excitation frequency (w) and different
amplitudes X; and X;, respectively. Here, two sets of harmonic test signals, as listed in

Table 6.3, will be utilized to study the amplitude dependency of the parameters y and f/a.

Table 6.3 Test signals for studying the amplitude dependency of parameters f/a and 7.

Test Signal Amplitude (cm)
X, (Test signal set 1) 0.5 1 2 3 4 5
X; (Test signal set 2) 0.75 1.5 3 4.5 6 7.5
AX= X, -X, 0.25 0.5 1 1.5 2 2.5

Now the difference of damping force (4f) measured at point “D” illustrated in Figure 6.4,

for the two sets of test signals listed in Table 6.3, are evaluated using the modified Bouc-

Wen model'" . Table 6.4 provides the results for the harmonic excitation with frequency

1 (Hz) and the input current of 1 (4).

Table 6.4 The damping force difference (Af) at point “D” (Figure 6.4) under harmonic
excitation (frequency=1 (Hz) and amplitude listed in Table 6.3) with input current of 1 (4).

Ji (N) (Test
signal set 1)

S2(N) (Test
signal set 2)

af=f—1; (V) 15203.85  30408.80  60818.20  91227.50 121636.68 152045.91

148950.27 179358.38 240176.25 300994.45 361812.79 422631.11

164154.12 209767.18 300994.45 392221.95 48344947 574677.02

It can be seen from Table 6.4 that the 4f is exactly proportional to 4X given in Table 6.3,

thus S/ and y should be amplitude independent parameters. The parameter 4f generated
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by the test signals given in Table 6.3 for different excitation frequencies (0.5, 1, 2, §, 7.5
and 10 (Hz)) and input currents (0, 0.1, 0.2, 0.4, 0.6, 0.8 and 1 (4)) has also been
obtained. The results are shown in Figure 6.5, in which the “Dimensionless force”
represents Af divided by its minimum value at 4X = 0.25 (cm) listed in Table 6.3 under
the same frequency and input current value, and “Amplitude-Difference” represents the
A4X given in Tables 6.3. It should be noted that in Figure 6.5 the results obtained for
different current input under the same frequency are exactly the same. Considering these,
it can be concluded that that Af is exactly proportional to 4X under different frequency
and input current. Thus, parameters /o and y are both independent of the amplitude of

harmonic excitation.

Dimensionless force

se%5s T IR 2
Amplitude-Difference AX (cm)

Figure 6.5 Variation of dimensionless force Af vs. AX under different input current and
excitation frequency. (a) 0.5 (Hz). (b) 1 (Hz?). (c) 2 (Hz). (d) 5 (H7). (e) 7.5 (H?). (f) 10 (H?).
Note: the results for different input current are coincided under the same excitation

frequency.

6.4.2.2 Frequency dependency

Based on Equation (6.15), if parameters f/a and y are frequency independent, the MR-

damper damping force difference (4f) under the same input current and fixed 4X with
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different excitation frequency, should be proportional to excitation frequency, as stated in
Equation (6.16). Therefore, using the same approaches as those for studying the
amplitude dependence relationship, we can verify whether parameters f/a and y are

frequency dependent using the frequency test signal given in Table 6.5.

Table 6.5 Test signals for studying the frequency dependency of parameters f/a and y.

Test signal amplitude Frequency (Hz)
Similar amplitude signals in Table 6.3 0.5 1 2 5 7.5 10

The damping forces difference (4f) measured at point “D” for these test signals are

evaluated using the modified Bouc-Wen model''. The results for the input current of 0.5

(4) and amplitudes of X;=1 (cm) and X>=1.5 (cm) (4X=0.5 cm), are listed in Table 6.6.

Table 6.6 The damping force difference (4f) measured at point “D” (Figure 6.4) for test
signals listed in Table 6.5 with input current =0.5 (4), amplitudes X;=1 (cm) and X,=1.5
(cm) (4X=0.5 cm).

Current=0.5 (4), Frequency (Hz)

4X=0.5 (em) 0.5 1 2 5 7.5 10

fi) (X=1 (cm))  110405.94 138908.61 195991.88 366923.37 509434.37 651943.61
H(N) (X=15(cm)) 124665.71 167410.25 252916.05 509434.53 723201.12 936966.09
Af=f~fi (N) 14259.77  28501.64  56924.17  142511.16 213766.75 285022.48

From Table 6.6, it can be found that the values of 4f are exactly proportional to the value
of frequency under the same input current and fixed 4X. Different excitation amplitudes
as given in Table 6.3 and current input (0, 0.1, 0.2, 0.4, 0.6, 0.8 and 1 (4)) have also been
tested to verify the frequency independent property. Figure 6.6 shows the variation of Af
with respect to excitation frequency under fixed amplitude difference (AX), in which the
“Dimensionless force” is 4f'divided by its minimum value at frequency @=0.5 (Hz) under

the same input current and fixed 4.X, as given in Table 6.3, and “Frequency” represents
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the test signals’ frequencies provided in Table 6.5. It should be noted that the results
obtained from different current input under the same value of amplitude difference (AX)
and excitation frequency are exactly the same. Considering these, it can be confirmed that
Af is exactly proportional to the frequency of harmonic excitation under the same input

current and the fixed amplitude difference.

Dimensionless force

) 5 75 1005 2 §TTE 0
Frequency(Hz)

Figure 6.6 Variation of dimensionless Af vs. @ under different amplitude difference and
current input: (a) AX = 0.25 (cm); (b) AX=0.5 (cm); (c) AX =1 (cm); (d) AX =1.5 (cm); (e) AX
=2 (cm); (f) AX =2.5 (cm). Note: the results for different input current are coincided under

the fixed AX.

Based on the above investigation, it can be concluded that based on the MR-damper’s

dynamic behaviors obtained from the modified Bouc-Wen modelm, the parameters f/a
and y for the proposed LuGre friction model are both independent of the excitation

frequency and amplitude.

6.4.2.3 Current dependency

It can be found that the damping force evaluated through the modified Bouc-Wen model

for MR-9000 type damperl81 will not exactly increase with the increase of input current
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when current value locates between 1 (4) and 2 (4) in the harmonic excitation test signal,
especially in high frequency range. Moreover, the experimental data for MR-9000 type

damper under harmonic excitation for currents between 1 (4) and 2 (4) can not be found

119, 180, 181

in available literatures , and the maximum difference of the damping force for

119, 180, 181

currents equal to 1 (4) and 2 (4) is around 10% . Therefore for the sake of model

accuracy, the working current range for MR-9000 type damper in this dissertation will be

limited between 0.0 (4) and 1.0 (4).

The difference of the damping force (4f) measured at point “D” shown in Figure 6.4 for
two set of harmonic test signals with same excitation frequency (w= 1Hz) and different
excitation amplitude (X;=1 (cm) and X,=1.5 (cm)) under different input current are
evaluated using the modified Bouc-Wen model'®' and the results are listed in Table 6.7.

Table 6.7 The damping force difference (Af) at point “D” (Figure 6.4) for harmonic
excitations (frequency w=1 (Hz), amplitudes X;=1 (cm) and X,=1.5 (cm) (AX=0.5 cm)).

Frequency=1 Current (4)

(Hz) 0 0.2 04 0.5 0.6 0.8 1

£i(N) (X)) |53733.60 85682.03 124382.33 138908.61 150895.80 168471.99 179358.38
) (X)) | 7093512 106418.27 151090.99 16741025 180598.59 199176.87 209767.18
Af= (N | 17201.52 2073624 26708.66  28501.64  29702.79  30704.88  30408.8

Based on the data provided in Table 6.7, one can utilize Equation (6.16) to evaluate the
parameter y with respect to the input current. The results are shown in Figure 6.7. A

second order polynomial function, as given in Equation (6.17), has been used to

interpolate the data.
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Figure 6.7 Variations of parameter y with the input current.

y(@) = pii* + pyi+ ps (6.17)
where parameters p;, p; and p; are identified using the least-square method'"” and found
to be -5.796x10° (N s m" 4%), 1.029x10° (N s m™ 4'") and 5.247x10° (N s m™),

respectively.

As discussed before, the parameter f/a is frequency and amplitude independent. Thus,
utilizing Equation (6.15), the data provided in Table 6.7, and the evaluated parameter y,

one can easily obtain the current relationship for the parameter f/a as:

Lo=7-r0xxo-f; (6.18)

The variation of the parameter f/a with respect to the current is shown in Figure 6.8 and
again a second order polynomial function, as described in Equation (6.19), is used to fit

the data.

—’2—(i)=q1i2 +q3i+4; (6.19)

where parameters ¢, ¢, and g3 are again evaluated using the least square method’82 and

found to be -5.103x10* (N 42), 1.518x10°> (N 4™") and 1.83x10* (N), respectively.
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Figure 6.8 Variations of parameter f/a with the input current.

6.4.3 Estimation of characteristic parameter “%”
The parameter J can be estimated through point “E” shown in Figure 6.4. Based on the
investigation presented in Section 6.3, the inner state (y) at point “E” is equal (close) to 1.
Thus, Equation (6.14) at point “E” can be simplified as:
f=—’§(i) X+ (6.20)

The parameter f/a is independent of the frequency and amplitude, as proven in Section
6.4.2, and hence, based on Equation (6.20), if the parameter J is independent of the
excitation amplitude, the damping force difference (4f) under two harmonic excitation
signals with same frequency and different amplitude for the same input current should be

proportional to the difference of amplitude (4X) as:

Af =6(X; - X))=d64X (6.21)
And also, if parameter ¢ is independent of the excitation frequency, Af defined in
Equation (6.21) should also be the same under different excitation frequency with fixed
AX. Here, the selected test signals are similar to those provided in Tables 6.3 and 6.5, and

the input current is set to zero. The results obtained from the modified Bouc-Wen
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model® are summarized in Table 6.8, in which the 4X and 4f have the same definitions

as those provided in Tables 6.3 and 6.4 and also defined in Equation (6.21).

Table 6.8 The damping force difference (4f) at point “E” (Figure 6.4) for two sets of test
signal as presented in Tables 6.3 and 6.5 for input current of 0 (4).

Amplitude Frequency (Hz)
difference (Table
1 2 5 7.5 10
6.3)

4X=0.25(cm) 507.4073  501.0564  496.5099  495.807  508.0312 495.1521
4X=0.5(cm) 1009.6208 999.2709  993.0594  991.035 1015.6646 990.0009

4X=1(cm) 2016.3592 1997.0383 1987.4742 1981.7836 2031.1314 1979.8507
4X=1.5(cm) 3023.6956 2995.1283 2980.9948 2972.599 3046.6429 2969.7347
A4X=2(cm) 4031.1925 3993.9021 3974.5578 3963.3433 4062.1657 3959.5874

4X=2.5(cm) 5038.756  4991.51  4967.9065 4953.3797 5077.692 4949.0786

Examination the results provided in Table 6.8 reveals that 4f is nearly constant with
respect to the variation of the frequency under fixed 4.X, and also 4f'is proportional to 4X
in each excitation frequency. Thus, it can be concluded that the parameter & is

independent of frequency and amplitude.

Therefore, one can utilize Equation (6.21) and the same current test signal utilized in
Table 6.7 to evaluate the current dependency of the parameter . Figure 6.9 illustrates the
variation of the parameter J with the increase of input current. It should be noted that to
study the parameter J in small current range, the input current 0.1 (4) was added to those

listed in Table 6.7.

It can be seen from Figure 6.9 that there is no significant change in J for the values of
current above 0.2 (4), and it is difficult to provide one simple function to interpolate the

variations of § with current especially for the current smaller than 0.1 (4). This is mainly
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due to the fact that the dynamic behavior described by the modified Bouc-Wen model '
is very complex for the input current below 0.1 (4). To better clarify this issue, Figure
6.10 shows the simulation results obtained through the modified Bouc-Wen modelm, as
shown in Equations (6.1)-(6.6) and Table 6.2, for the harmonic excitation with frequency
of 1 (Hz) and amplitude of 0.01 (m) for the input currents of 0, 0.05, 0.1 and 0.2 (4),

respectively.
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Figure 6.9 Variation of parameter J versus current.
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Figure 6.10 Simulation results for the modified Bouc-Wen Model181 under harmonic
excitation with frequency 1 of (Hz), amplitude of 0.01 (i), Solid, dashed, dashed-dotted and

dotted lines represent input currents equal to 0, 0.05, 0.1 and 0.2 (A4), respectively.
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It can be seen from Figure 6.10 that the damping force for the input current of 0.05 (4)
does not have the same pattern as those for other current inputs. Moreover, with the
increase of the input current, the strength of the magnetic field will be increased and
subsequently, the damping forces generated by the MR-damper are expected to naturally

be increased. Obviously, based on Figure 6.10, this trend cannot be observed from the

increase in the input current from 0 to 0.05 (4) by the modified Bouc-Wen model”’

Based on the above investigations, it has been found that the value of parameter ¢ at the 0

(4) (6 =228234.84 N m™") will generate acceptable results as will be shown later.

6.4.4 Estimation of characteristic parameter “a”
As stated in Equation (6.7a), the inner state (y) depends on the parameter a. Thus, to
estimate the parameter o, the inner state (y) for a whole period should first be obtained.
To accomplish this, a typical harmonic excitation (frequency w=1 (Hz), amplitude X=1
(cm)) under different current inputs (current i} =0.4 (4) and #,=0.5 (4)) are utilized as the
test signals. Now considering Equation (6.14) and above estimation for parameters J, f/a

and y, the inner state (y) in a whole period can be estimated as:

y={fs - fi ~[7(ir) - 7GD1) /(—f(iz)——fal » (6.22)

where f; and f; present the MR-damper’s damping force, obtained using the modified

Bouc-Wen modelm, for current being equal to 0.4 (4) and 0.5 (4), respectively, under
the same harmonic excitation. It should be noted that the parameter ¢ are assumed to be

current independent (See Section 6.4.5) and the velocity (x) for a whole period is known.

Thus, inner state (y) for a whole period can be obtained using Equation (6.22). Based on
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Equation (6.7a), the effect of the frequency and amplitude of harmonic excitation to the

inner state (¥) can be reflected through the velocity (x) . Furthermore, as shown above the

parameter fS/a is only current dependent, and hence it is possible to assume that the
parameter a is independent of the frequency, amplitude, and current. Based on this

assumption, the parameter a has been evaluated using the following optimal problem:

Find the design variables: {a}
To minimize: [(k+1)-y(k+1)]? (6.23)
Subjected to: 500 < a < 10000

where y(k+1) represents the inner state (y) in the time index (k+1) obtained from
Equation (6.22) evaluated through the modified Bouc-Wen model'® and ye(k+1)
represents the Fourth-Order Runge-Kutta (RK4)]83 simulation result of Equation (6.7a)
for the inner state (y) in time index (k+1) under the design variable a. The constraint is
selected based on the analysis presented in Section 6.3. The optimal problem is solved
using the SQP optimization technique88 and then repeated for the whole period. Finally,
the estimated parameter a is found to be 2531.8 (m™). Figure 6.11 shows the comparison
of the data for the inner state (y) based on Equation (6.22) obtained from the modified

Bouc-Wen model'' and that based on Equation (6.7a) under a of 2531.8 (m™).

It can be realized from Figure 6.11 that the estimated parameter o can provide accurate
inner state (y) simulation result compared with the data obtained from the modified Bouc-

Wen modelm. As mentioned in Section 6.3, by suitably selecting parameter a the inner
state (y) given in Equation (6.7a), is equal (close) to 1 between the time points “A” and

“B” shown in Figure 6.3, and the parameter identification procedure presented in this

(1]

chapter is based on this assumption. Here using the estimated parameter “a”, this
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behavior has been verified in Figure 6.12 and it must be noted that the time points “A”
and “B” and the “dimensionless displacement” and ‘“dimensionless velocity” in the

caption of Figure 6.12 have the same definitions as those seen in Figure 6.3.

1] . . s 1 !

{y)

Inner state

&
n
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o 0.1 0.2

0.4 0.5 0.6
Time (s)

Figure 6.11 Inner state (y). Solid and detted lines represent the result based on Equation

181
(6.22) evaluated through the modified Bouc-Wen model  and the simulation result for

Equation (6.7a) under o of 2531.8 (™).

tate (y)

Value of inner s

B.

“\, .

Time (sh?

Figure 6.12 Simulation of Equation (6.7a) under harmonic excitation (frequency @=1 (Hz),
a=2531.8 (m™)): Solid, dashed, dotted and dashed-dotted lines represent the dimensionless

displacement, the dimensionless velocity and the inner state (y) with amplitude equal to 1

and 0.2 (cm), respectively.
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One can find from Figure 6.12 that under this optimal parameter a of 2531.8 (m™), the
inner state (y) will be equal (close) to 1 between the time points “A” and “B” for
harmonic excitation with the amplitude bigger than around 2 (mm). Thus, the assumption

made in Section 6.3 is acceptable for most of the MR-9000 type damper’s working range.

6.4.5 Estimation of characteristic parameter “¢”

By rearranging Equation (6.14), one can easily obtain a function as:

f=~Eyy-(i-8- fy = o1 1y 624)
Then let us define:
g/e) =1 -Dry-(i-ai- fy and (2} =s-131y (6.25)

And thus based on the parameters evaluated in above sections, parameter g(z/e) and {z}

in Equation (6.25) can be easily obtained. Here, the least square parameter estimation

method' > will be adopted to evaluate the parameter ¢, and the procedure can be

expressed as:

g(z/e) =T {z} (6.26)
where £ represents the estimated value for parameter ¢. Based on equation (6.26) one can

obtain the estimated value for parameter ¢ under different input currents and the results

has been illustrated in Figure 6.13.

Similar to the estimated parameter J, one can easily find form Figure 6.13 that it is also

difficult to provide one simple function to interpolate the variations of parameter ¢ versus
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the input current, especially for the small range of the input current. Fortunately, the
effect of value of parameter ¢ to the damping force is negligible in large MR-damper’s
working range. This can be verified by using Equation (6.14). The effect of parameter ¢

on the damping force of the MR-damper can be described as:

Je=e(=1x]y) (6.27)

x10°

A S e Y TR T
Current (A)

Figure 6.13 Estimated parameter ¢ versus the input current.

Based on the analysis of the inner state (y) in Section 6.3, one can easily find that the
output f; would be close to zero in the working range (time point “A” to “B” shown in
Figure 6.4). Here, it has been found that the value of parameter ¢ at 0.5 (4)

(6=526051.9562 (N s m™") will generate acceptable results as will be shown later.

6.5 Proposed LuGre Friction MR-damper Model
Using the estimated characteristic parameters, the proposed LuGre friction MR-damper

model for MR-9000 type damper can be summarized as:
Ly=i-1%]
p y y (6.28)
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f=£y+}g'c+@c+iy+f0 (6.29)
a a
!%1"):%1'2 +qai+g3 and y() = pyi’ + pai+ ps (6.30)

where i is the input current, and the other parameters are given in Table 6.9.

Table 6.9 Estimated characteristics parameters for the proposed LuGre friction model for
MR-9000 type damper.

2531.8 (m™") q: 1.518x10° (W 4™)
228234.84 (N m™") qs 1.83x10% (V)
€ 526051.9562 (Ns m™) D -5.796x10° (N s m' 47%)
1o -111.1158 (V) P, 1.029x10° W s m™ 47
q; -5.103x10* (N 4% D3 5.247x10° (N s m’")

6.6 Validation of the Proposed Model
In this section, in order to verify the validity of the proposed LuGre friction model, the
dynamic hysteretic behaviors of the MR-9000 type damper will be simulated using the

proposed LuGre friction model and compared with those obtained using the modified

Bouc-Wen model'®’ under different test signals.

6.6.1 Harmonic excitation with frequency of 1 (Hz) and amplitude of

0.01(m) for different input currents
The dynamic performances of the MR-damper, which include the damping force versus
the displacement, velocity and time under harmonic excitation with frequency of 1 (Hz),

amplitude of 0.01 () under different input current evaluated using the proposed LuGre

friction model and the modified Bouc-Wen model'* ‘are compared in Figure 6.14.
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Figure 6.14 MR-damper’s dynamic behavior comparison under harmonic excitation with
frequency of 1 (Hz) and amplitude of 0.01 () for different input current. (a) Force-
Displacement. (b) Force-Velocity. (¢) Force-Time. Solid and dashed-dotted (red) lines
represent the results obtained from the proposed LuGre friction model and the modified
181

Bouc-Wen model , respectively. Along the arrow direction: current values are 0, 0.25, 0.5,
0.75 and 1 (A4).
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6.6.2 Harmonic excitation with frequency of 1 (Hz) and current of 0.5 (A)

for different excitation amplitudes
Figure 6.15 compares the dynamic performances of MR-damper, which include the
damping force versus the displacement, velocity and time under harmonic excitation with
frequency of 1 (Hz) and the input current of 0.5 (4) for different excitation amplitudes

evaluated using the proposed LuGre friction model and the modified Bouc-Wen

181 . o . . .

model . Here it should be noted that to facilitate the comparison, the “Dimensionless
displacement” and “Dimensionless velocity” in Figure 6.15 represent the excitation
displacement and velocity divided by their relative values of amplitude and maximum

velocity, respectively.

6.6.3 Harmonic excitation with amplitude of 0.02 (m) and current of 0.5 (A)

for different excitation frequencies
The dynamic performances of MR-damper, which include the damping force versus the
displacement, velocity and time under harmonic excitation with the amplitude of 0.02 ()
and input current 0.5 (4) for different excitation frequencies evaluated using the proposed
LuGre friction model and the modified Bouc-Wen model * are compared in Figure 6.16,
in which the “Dimensionless velocity” represents the excitation velocity divided by their

relative maximum values.

Based on above investigation for MR-damper’s damping force under harmonic excitation
with different frequency, amplitude and input current, one can realize that the predicted
dynamic behavior for MR-9000 type damper using the proposed LuGre friction model
agrees very well with that of the modified Bouc-Wen model'® under harmonic

excitation.
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Figure 6.15 MR-damper’s dynamic behavior comparison under harmonic excitation with
frequency of 1 (Hz), different amplitude and input current of 0.5 (4). (a) Force-
Displacement. (b) Force-Velocity. (¢) Force-Time. Solid and dashed-dotted (red) lines
represent the result obtained from the proposed LuGre friction model and the modified

Bouc-Wen modelm, respectively. Along the arrow direction: amplitude values are 0.005,
0.01, 0.02, 0.03, 0.05 and 0.07 (m).
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Displacement. (b) Force-Velocity. (¢) Force-Time. Solid and dashed-dotted (red) lines
represent the result obtained from the proposed LuGre friction model and the modified
Bouc-Wen modelm, respectively. Along the arrow direction: frequency values are 0.5, 1, 2,
5, 7.5 and 10 (Hz).
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Furthermore, as mentioned before, in the low range of input current, the modified Bouc-
Wen model'™ may not provide reasonable results. The proposed LuGre friction model
can provide smooth transition under the low current range. To demonstrate this issue,
Figure 6.17 illustrates the damping force evaluated using the proposed LuGre friction

model and the modified Bouc-Wen model' for the harmonic excitation with frequency
of 1 (Hz), amplitude X of 0.01 () and the input current of 0.05(4). The results show that

the proposed LuGre model can predict more reasonable MR-damper’s damping force in

the low current range compared with the modified Bouc-Wen model * .
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Figure 6.17 MR-damper’s dynamic behavior comparison under harmonic excitation with
amplitude of 0.01(m), frequency of 1(Hz) and current input of 0.05 (4). Solid and dotted

lines represent the results obtained from the proposed LuGre friction model and the

modified Bouc-Wen modelm.
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6.6.4 Harmonic excitation with amplitude of 0.01 (m) and frequency of 1
(Hz) for continuously changing input current

Here the input current is assumed as a harmonic wave with the amplitude of 0.5(4),
frequency of 1(Hz) and the bias 0.5 (4), as shown in Figure 6.18, which can cover the

whole MR-damper’s working current range.

Current (A)
s o
o &X£

e
>

e
)

GQ

62 04 68 68 1 {2
Time (s)

Figure 6.18 Test varying current input.

The simulation results for this test are shown in Figure 6.19 and it should be noted that in
this simulation the step size is selected as 1x10 (s). One can realize from Figure 6.19
that the singularity occurs for the modified Bouc-Wen modelm, however, the proposed
model does not experience this point. This singularity can be removed by selecting
smaller simulation step size, but using the step size smaller than 1x10° (s5) is
computationally expensive. One may also realize that except the singularity point, the
predicted damping force generated by the proposed LuGre friction model agrees very

well with that obtained by the modified Bouc-Wen model .
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Figure 6.19 MR-damper’s dynamic behavior comparison for harmonic excitation with
frequency of 1 (Hz), amplitude of 0.01 (7)) under harmonic current test signal with

simulation step size of 1x10°%(s). Solid and dotted lines represent the results obtained from

181
the proposed LuGre friction model and the modified Bouc-Wen model , respectively.

The MR-damper’s dynamic behavior under the same current test signal shown in Figure

6.18 but this time with simulation step size 1x10™ (s) s 1llustrated in Figure 6.20. It can

be seen that the modified Bouc-Wen model' is not capable to simulate the damping
force properly, the proposed model can still provide accurate results for large simulation
step size. Since the only controllable parameter in MR-damper is the input current,
therefore, the dynamic behavior of MR-damper with changing input current is very
important. However, as shown in Figures 6.19 and 6.20, the damping force generated by
modified Bouc-Wen model for this low-frequency current signal does not produce
reasonable results for relatively large simulation step size (10 s) or shows singularity for

small step size (106 s).
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Figure 6.20 MR-damper dynamic behavior comparison for harmonic excitation with
frequency of 1 (Hz), amplitude of 0.01 (m), and the test current shown in Figure 6.18, and

the simulation step size of 1x10™ (s) Solid and dotted lines represent the results obtained

181
from the proposed LuGre friction model and the modified Bouc-Wen model

respectively.

6.6.5 Random excitation
The dynamic behavior of MR-damper under random excitation will be investigated in

this section using the proposed model and the results will be compared with those

obtained from the modified Bouc-Wen model' . The random signal in this test is a
combination of 30 harmonic signals with frequency ranging from 0.01-10 (Hz), as
illustrated in Figure 6.21, and the input current in this test is selected as 0.5 (4). The
simulation results are shown in Figure 6.21, from which it can be realized that the
generated damping force under this set of random excitation signal evaluated using the
proposed LuGre friction model perfectly agrees with those obtained form the modified

Bouc-Wen modelm.

198



A " TFn PN |3 Y T T T T T ) T
0.055 » 7 W/ AW d \ - - -1
° N - - -, —an, s ‘s_ PINA) —~~_Y, |
ol T TN “~? s N AN ¥

E-0.05 g

| 1 | | L 1 { { {

0 0.2 04 0.6 0.8 .1 1.2 14 1.6 1.8 2
x 10° Time (s)

4 T T T T T T T T T

Displacement

Force (N)

o 1 1 1 | ] | 1 1 L
% 0.2 0.4 0.6 .1 1.2 14 1.6 1.8 2
Time (s)

Figure 6.21 MR-damper’s dynamic behavior comparisons under random excitation. Solid

and dotted (red) lines represent the results obtained from the proposed LuGre friction

181
model and the modified Bouc-Wen model , respectively. Dashed line represents the

random excitation signal.

In summary, the MR-damper’s damping force predicted by the proposed LuGre friction
model and the modified Bouc-Wen model181 under harmonic excitation, random
excitation, and different kind of input currents have been compared. The results show that
compared with the modified Bouc-Wen modelm, the proposed LuGre friction model can

provide accurate simulation results and easily be utilized in practical semi-active

vibration control applications.

6.7 Conclusions and Summary
A simple hysteresis model based on the LuGre friction model has been developed to

predict the dynamic behavior of large-scale MR-damper accurately and efficiently. It has
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been shown that the predicted dynamic behavior of MR-damper, using the proposed
model agrees very well with those obtained using the modified Bouc-Wen model " for
MR-9000 type damper under different working conditions (harmonic excitation with
different frequency and amplitude, changing current, and random excitation). Although
the proposed LuGre friction model is based on the simulation data of modified Bouc-
Wen modelm, the evaluation procedure provided in this dissertation can easily be

applied to the experimental data.

It has also been illustrated that the proposed model is stable (no singularity point) and
computationally more efficient than the modified Bouc-Wen model' . Since the only
controllable parameter in the MR-damper is the input current, in the next chapter
(Chapter 6) an effective inverse MR-damper model based on the proposed LuGre friction
model will be presented, which can be readily utilized in the design of semi-active

vibration suppression devices.
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CHAPTER 7

SEMI-ACTIVE MASS DAMPER DESIGN USING MAGNETO-

RHEOLOGICAL FLUID DAMPERS

7.1 Introduction

As the damping and stiffness of an optimally designed Tuned Mass Damper (TMD)
system can not change with different excitation condition, the effectiveness of the TMD
system is restricted to its tuned frequency. Subsequently, it provides limited vibration
suppression performance for the random type excitation or excitation frequency far away
from its tuned natural frequency. The so-called Active Mass Damper (AMD) or Semi-
Active Mass Damper (SAMD), in which a controllable device (full-active or semi-active)
will be added to or replace the damper in the TMD system, is developed to overcome the
restriction of the TMD system and also improve the vibration suppression performance
around the TMD’s tuned natural frequency. The detail introductions about the AMD and

SAMD systems have been presented in Chapter 1.

The Magneto-Rheological (MR) fluid damper is one of the most promising semi-active
devices and the detailed introductions about its development, modeling and control
methodologies have also been presented in Chapters 1 and 6. Here it should be noted that
most of researches related to MR-damper’s application are mainly focused on the base
isolation structure, for instance, Dyke et al’” and Dyke94 installed the MR-damper

between the base of building structures and the ground; Wang et al™ studied the vehicle
201



suspension system using MR-damper; Dominguez et o™ replaced one element of truss
structure with MR-damper. For this type of application, the simple “on-off’ control
method can provide good performance, as the “over-damping” phenomenon, in which the
MR-damper becomes too strong to suppress the vibratory energy, may not happen under
suitably selected MR-damper. However, for SAMD system using MR-damper, which is
seldom reported by researchers, the simple “on-off” control method may not work, as the
working principle of SAMD is to dissipate energy through MR-damper’s moving induced
by the movement of the attached small mass. Obviously, to maximize the energy
dissipation through MR-damper, it is required not only to control the damping force but
also to allow the free movement of the attached small mass. It should be noted that the
damping force provided by MR-damper in “orn” condition may become too large to allow
the free movement of the small attached mass, and subsequently, the MR-damper may

not dissipate energy cfficiently.

Based on the above discussions, this chapter will present a methodology to utilize the
MR-damper as the semi-active device in the SAMD system to suppress the structural
vibration effectively. The proposed methodology consists of four steps: (1) an inverse
MR-damper model will be developed based on the LuGre friction model proposed in
Chapter 6 for MR-9000 type damper and proposed by Jimenez and Alvarez'™ for RD-
1005-3 type MR-damper; (2) an effective Boolean algebra methodology will be provided
to calculate command current based on the proposed inverse MR-damper model; (3)
H,/LQG control design method will be utilized to design the controller for AMD system;
(4) a vibration suppression strategy will be developed to provide effective vibratory

suppression capacity for SAMD system using MR-damper. Finally numerical examples
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will be presented to compare the effect of SAMD with MR-damper using the proposed
control methodology with those using different vibration control methodologies available

in published literatures and that of optimal TMD and AMD systems.

7.2 MR-Damper and Inverse MR-Damper Models

The LuGre friction MR-damper model has been presented in Chapter 6 as:

. . .
—y=i=lily (7.1)
f=£y+}o'c+dx+—€-ji+f0 (7.2)
o [24
%l)qula +q,i+q; and }’(1')=P1i2 + Dol + p3 (7.3)

where i is the input current. The characteristic parameters in Equations (7.1)-(7.3) for

MR-9000 type damper have been listed in Table 6.9, and for RD-1005-3 type MR-

damper will be presented in Table 7.1 Be,

Table 7.1 Estimated characteristics parameters for the LuGre friction model for RD-1005-3

type MR-damperm.

a 3.2 (mm™) g 833.85 (N/A)

é 1.03 (N mm™) g3 14.72 (N)

€ 0.6 (N s mm™) D1 -10.80 (N s mm™' 472
fo -45.82 (N) D2 17.75 (N s mm™ A7)
q 0O(NAD D3 0.5 (Ns mm’")

To obtain the best vibration suppression performance using MR-damper, it is required to
obtain the precise MR-damper’s input current control. Assuming that the required control
force is known, the problem is how to derive the MR-damper’s command current to

generate the damping force as close as the required control force. The so called inverse
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MR-damper model is developed based on this requirement. The inverse MR-damper
model is developed based on the LuGre friction model given in Equations (7.1)-(7-3).
Rearranging Equations (7.1)-(7-3), one can easily obtain a simple binomial function as:
ai +bi+c=f (7.4)
where a=pix+q)y , b=q,y+p,x, c=(q; —€|x))y+(p3 +&)x+d + fy . Parameter |
represents the command current. Therefore, the inverse MR-damper model can be

expressed as the following optimization problem:

Find the design variables: command current (7).
To minimize: J=|u-f| (7.5)
Subjected to: 0<i<l1

where parameter u represents the required control force. Here it should be emphasized
that for the safety purpose, the working current for both types of MR-dampers is
restricted in the range of [0.0, 1.0] (4). It may be a simple and direct approach to use
formal optimization techniques to solve the optimization problem established in Equation
(7.5), however it is computationally expensive compared to the computational time
required to obtain the structural response and thus not effective for real time vibration
control applications. As the objective function of this optimization problem is a simple
binomial function, an effective calculating method based on the Boolean algebra has been
developed to obtain the command current based on this optimization problem. It is
difficult to clearly express the developed Boolean algebra methodology for solving the
optimization problem established in Equation (7.5) in one simple figure, thus the logic
algebra form, as shown in Figure 7.1, has been utilized to represent the proposed Boolean

algebra methodology. Based on Figure 7.1, one can easily replace the logic relationship
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with the Boolean algebra to obtain the solution for the optimization problem given in

Equation (7.5).

ai’+bi+c-f
'& YES
ok
No YES YES _
a=0&b#0 0= -(c-f)/bs1 »{ output = -(c-f)/b)
NO v 1\,0 V (LN ] I '
YES Block "A" -output 0 or I relative
b*-da(c-f) < 9——wgo 1o Block "A" n to Min (J) for i=0, 1
NO ;
X ves o4 YES
b’-da(c-f) =0 » 05-b2a <1 »{ output=-b/2a )
NO y NO
solving ai’+bi+e-f= YES output =

> 05 (ijori;) <1

as iy, andi; Min (i i, between [0,1])

Figure 7.1 The solution of optimization problem established in Equation (7.5).

The proposed calculation method has been tested in the numerical examples and
compared with the formal optimization techniques. It is found that the developed
calculation method based on Boolean algorism is at least 10 times faster than the

traditional optimization techniques, and can be effectively and easily used in simulation.

7.3 H2/LQG Optimal Control Method Based on the Active Mass Damper

Linear Quadratic optimal controller design method is adopted by many researchers in
structural vibration suppression area. However, most of studies are based on the Linear
Quadratic Regulator (LQR) method, which assumes that all of the state variables can be
measured directly. In practical application the structural displacement and velocity are

not absolute, and depend on their relative measured references. Furthermore, it is difficult
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to measure all of the state variables directly in real application. Therefore, the controller

design that is based on directly measured displacement and velocity is impractical.

Other linear quadratic controller design methods, such as Linear Quadratic Gaussian
(LQG) and Hy, utilize a state estimate to evaluate the state variables, and thus it is more
practical in real application. As the accelerometers can provide accurate measurements of
absolute acceleration, and it is easy to be installed in any place on the whole structure,
more and more researchers have adopted acceleration feedback to design the controller.
Here first a general introduction of the H, controller will be presented and then the
H2/LQG controller design method, which will be utilized to design the controller in this
chapter, will be introduced. The governing equations for a general vibratory problem can

be expressed as:

[M1{g}+ICI{g} + [K g} =[M]E, )%, +[Q,H{F} +[P1{/} (7.6)
where [M], [C] and [K] are the structural mass, damping and stiffness matrices,
respectively. [E;], [Os] and [P;] are the direction matrices related to base acceleration
(%, ), external force vector {F} and control force vector {f}, respectively. Parameters
{9}, {4} and {g} are the displacement, velocity and acceleration vectors, respectively.

The equations of motion stated in Equation (7.6), can be transferred to the state-space

form as:
{x} =[4ANx} +[ENx, +[QUF} +[PI{S} (7.7)

where {x} is the state vector {¢,4}” , and

(0] ] [0] [0] [0]
= El= ) = _ ] Pl= _ .
(4] [—[M]"[K] —[M]*‘[CJ’ L] [[Es]] (] {[M] ‘[Qs]] 7 [[M] ‘[PS]} (7.8)
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Based on the equations of motion stated in Equation (7.7), the control problem for a

general dynamic system can be expressed as:

{x} =[AHx} +[B {w} +[B, ]{/} (7.93)
{y} =1Ci1{x} +[Dy; {w} +[ Dy, 1{f} (7.9b)
{z} =[Co 1{x} +[Dy1 J{w} + [Dy 1{/f} (7.9¢)

and the controller is defined as:

{r}=[Gl{z} (7.9d)
where {x}, {y} and {z} are the state-space vector, dynamic system output vector and
measured vector, respectively; {f} is the control force; {w} represents the base excitation

{¥,} and/or external force {F} depended on different loading conditions; [G] is the
controller and [B;], [B:], [Ci], [C:], [Di1], [Diz], [D2:] and [D;;] are all the direction

matrices. The H, controller design is essentially an optimization problemm, in which the

solution is based on two Algebraic Riccati Equation (ARE)BG’ 184150 s

[A) [X1+[X1[4]- (X1[B, 1+ [NDIRT (B, 1" [X1+[NT") +[Q]=0 (7.10)

where [R]=[D,,1"[Dy,], N =[C, 1"[Dy,] and [Q]=[C,1"[C,1;

[YI[A) +[A][Y]-([Y1[C, 1" +[SDIR ] ((C,IYT+[ST ) +[Q,]1=0 (7.11)
where [R,]=[Dy;1[D,, 1", [S]1=[B,][Dy]" and [Q,]1=[B,1[B,] . Assuming the solution of

Equations (7.10) and (7.11), can be stated as [X] and [Y], respectively, then a full-state

feedback [K]} and Kalman estimate [L] can be obtained as:

[K]1=[R1" (8,17 [X1+[N1") and [L]=([¥Y][C,1" +[SDIR,.]™ (7.12)
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Finally the controller [G] can be expressed in transfer matrix form as:

[4;1] [B;]
Gl=| 2l — %2
[G] |:[Ck]| [Dk]il (7.13)

where
[4:1=[A1=[B,1[K1-[LI[C, 1+ [LI[D, 1K1, [Bx1=[L], [C;]=-K] and
(7.14)
[Dy]1=10]

This is the standard H; controller design method. It should be noted that the standard H,

controller design approach is based on the assumption that the matrix [D;;] is zero. A

. 186
transformation method from [D;;] non-zero to zero was proposed by Zhou ez al  as:

(4, 1=[4]-[B, (K] - [LI[C,1+[L][ D, )[K]+[B, ][ D 1[C, ]
(7.15)
[B,1=[L]1+[B,1[Dg], [C,1=-{K]1-[Dg]IC,] and [D,]=-Dg]

where [D;]1=[D,,]"[Dy,1[D,,]" . From the introduction of H controller design approach,

one can easily find that this controller design method is very flexible. Using the same
measured parameters provided in Equation (7.9c), one can easily design different
controller through changing the system output equation stated in Equation (7.9b), in order
to obtain suitable controller based on different design requirement. Here it should be
noted the LQR controller is one of the special cases of the standard H, controller, in
which the measure vector {z} and dynamic system output vector {y} are both equal to the
state-space vector {x}. This means that in Equations (7.9) the matrices [D;,], [Di2], [D::1]

and [D;2] are all null matrices and matrices [C;], [C;] are both identity matrices.

The standard H, controller does not take into account the processing and measured

noises. The LQG controller considers these two kinds of noise with covariance. The H;

controller design based on LQG framework is presented by Chiang and Safonov'"’
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Dyke94 and Spencer Jr et al'™ utilized H, controller design method based on LQG
framework (H,/LQG) to design the controller for SAMD system using hydraulic actuator,
and then they studied the building structural base isolation system with MR-damper using
the H/LQG controller”’ 94. As mentioned above, the standard H, controller design
consists of one full-state feedback and one Kalman estimate. In H./LQG controller, one
basically designs the Kalman estimate using LQG framework, which considers both the
processing and measured noises. Let us go back to system dynamic equations stated in
Equations (7.9). The full-state feedback for Hy/LQG controller is based on Equations

(7.9a) and (7.9b) as:

{x} =[41x} +[B, ]{ S} (7.16a)
{y} =[C Hx} +[Dy2 14/} (7.16b)
The Kalman estimate (based on LQG framework) for HyYLQG controller is based on

Equations (7.9a) and (7.9¢), as:

{x} =[4]{x} + [B1]{w} + B ]/} (7.172)
{z} =[C1{x} +[Dy 1w} + [ D 1T} + vy (7.17b)

where v, is the measured noise.

An important issue for LQG, H; and H»/LLQG controller designs is the stability analysis.
The standard LQR controller has at least 60° phase margin and 6 (dB) gain margin.
However there are no guaranteed stability margins for other linear quadratic controller
design methods, thus the stability properties of the controller especially for the proposed
H,/LQG controller should be verified. The stability properties of controller includes: ([4],

[B:], [C2]) should be stablizable and detectable; the controller should be stable itself and
209



can internally stabilize the controlled plant and also provide suitable stability margin. The
(I41. [B:], [C>)) stabilizable and detectable properties and stability of the controller itself
may be easily checked though the eigenvalue analysis of matrices [[4]-[B:][K]], [[4]-
[L][C:]] and [44] stated in Equations (7.12)-(7.15). If all the eigenvalue stay in the half
left plan ([[A4]-[B1[K]], [[4]-[L][C:]] and [A4«] are Hurwitz matrices), then the ([4], [B:],
[C;]) are stabilizable and detectable and controller is stable. Internal stability analysis can
be checked using the following method'™*. The equations of motion stated in Equations

(7.9), can be expressed as Linear Fractional Transformation (LFT) form as:

{V} ¢ Gyw G-.:f , {w}

Gow Gy 1

fef A
» G

Figure 7.2 Linear Fractional Transformation (LFT) form for controller design problem.

where [Gyw], [Gyyl, [Gzw] and [G] are the transformation matrices from input {w} to
output {y}, input {f} to output {y}, input {w} to output {z} and input {f} to output {z},
respectively. Based on Equations (7.9), all of these transformation matrices can be

expressed in the transfer matrix form as:

[4]] [B] [4] ] [By] [4] | (8]
G, l=|———=I, [Gr]=| —= G, ]=| d
(G [[CI]I[DHJ O] [[C1]|[D12]}[ : LCZ]I[DZIJ an

(7.18)

(4] | [8,]
G. 1= = 722
Gy ] [[Cz]I[Dzzl}

and controller [G] has the same form as stated in Equation (7.13). Now let us establish

the following matrix as
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-1
[ ;ﬂz[m [OJH[le [0] ][ (7] —[Dk]] [[0] [ck]] (7.19)
(01 [41] [0 [BI|-[Px] 1] ] [[C2] [0]

If and only if [4] is a Hurwitz matrix, the controller [G] can internally stabilize the sub-

plant [G;] and then the controlled plantl%. The stability margin can also be checked

through the Bode diagram for the open loop transfer function as:
H jpen = GGy ] (7.20)

7.4 Developed Control Methodology

In Section 7.2, the inverse MR-damper model for RD-1005-3 and MR-9000 type MR-
dampers and their respective calculation method has been proposed. Section 7.3
presented the Ho/LQG controller design method. Here the inverse MR-damper model will
be combined with the Hy/LLQG controller to present an effective vibration control strategy
for SAMD system using MR-damper. The schematic and essential issues of this proposed
control strategy (Controller A) is shown in Figure 7.3 and the design methodology can be

summarized as:

Step 1: Following the method presented in Chapters 3 and 4, an optimal TMD system
will be designed first.

Step 2: Based on the optimally designed TMD system, a SAMD system will be
designed, in which the damper of optimal TMD system will be replaced by the
selected MR-damper.

Step 3: The controller will be designed using Hz/LQG method presented in Section 7.3.

Step 4: The designed H,/LLQG controller is combined with the inverse MR-damper

model to establish a control methodology for SAMD system using MR-damper.
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Figure 7.3 Semi-Active Mass Damper (SAMD) system using MR-damper with the proposed

controller (Controller A).

The Clipped-Optimal controller for MR-damper was first proposed by Dyke et al’* for
the base isolation structure, and then many researchers utilized the same method or its
modifications. Here the essential issues of the Clipped-Optimal controller - will also be
utilized in the SAMD design, as illustrated in Figure 7.4, and also named as Clipped-

Optimal controller (Controller B).
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Figure 7.4 Semi-Active Mass Damper (SAMD) system using MR-damper with Clipped-
Optimal controller (Controller B).
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In Figure 7.4, the “Clipped” is based on the following mathematical method as

i = e H{(u~ f)f}

(7.21)

where ipg; is the MR-damper’s maximum working current, which is equal to 1 (4) in this

dissertation. H{.} is the Heaviside step function.

In this dissertation, we also combined the proposed controller shown in Figure 7.3 with

Clipped-Optimal controller and named it as Inverse-Clipped-Optimal controller

(Controller C), as shown in Figure 7.5.

The vibration suppression performance of the three control methodologies discussed

above will be studied and compared through numerical examples. Two kinds of

numerical examples have been provided. In Section 7.5, a three floors building model

will be investigated and RD-1005-3 type MR-damper will be utilized in the SAMD

design. The beam-type structures’ SAMD system using MR-9000 type damper will be

presented in the Section 7.6.

)
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MR
- Damper
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i >
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. control mg“l Fall-State

v, Noise

4 . damper Model | - Feedback ‘ Kalman Flltl‘l‘; !
L Invers o-Cilpped-Optimal H2/LQG Controller |
! Controller ;
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Figure 7.5 Semi-Active Mass Damper (SAMD) system using MR-damper with Inverse-

Clipped-Optimal controller (Controller C).
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As to illustrate the performance of the proposed control methodologies for SAMD system
using MR-damper, one should compare the vibration suppression performances for
uncontrolled structure; structure with optimal TMD; structure with SAMD using MR-
damper under MR-damper’s “fail-safe” condition; structure with SAMD using MR-
damper with the proposed controller designs and also structure with AMD. Therefore, in
the numerical examples, all the vibration suppression methodologies mentioned above

will be investigated.

7.5 Numerical Example 1—Building-Type Structures
A three-floor building model subjected to base excitation, as shown in Figure 7.6, will be

utilized to clarify the validity of the proposed SAMD design.

.................................... \
! passive, semi-active damper |
or full-active device

{Device | Xy Xgs Xy, Xy

/\/ spring |Mass

e B X Xy

W | )
. TheSecondfloor = —x,, X, X, X,

. Thefirstfloor | 2 088,

Lo bBase 0 ,,_}m»xg,xk,.x,‘,

Figure 7.6 Three-floor building model for TMD, AMD and SAMD design.

In Figure 7.6, X, presents the absolute acceleration and x, x and X are the relative

(relative to the base) displacement, velocity and acceleration, respectively. The building

model with two set of model parameters will be investigated in this section. The
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parameters of the Building model 1 (Section 7.5.1) are taken from Dyke et al’ > ", and the
Building model 2 (Section 7.5.2) is utilized to clarify robustness property of the proposed

control methods.

7.5.1 Building model 1

In this section, the parameters for the three-floor building model shown in Figure 7.6 are
taken from Dyke et al’>** and the equations of motion for this building model under base
excitation can be described using Equation (7.6), in which the displacement vector {x},

velocity vector {x} and accelerator vector {X} are all measured relative to the base and

983 0 0 175 -50 0
[M]=| 0 983 0 | (Kg),[C]=|-50 100 -50| (Ns/m),
0 0 983 0 -50 50
12 -684 0 1 (7.22)
[K]1=|-684 137 -684| 105(N/m), [E,]=—1|, {F}=0 and {f}=0
0 -684 684 1

7.5.1.1 TMD, AMD and SAMD design approaches

The equations of motion of structure with an attached TMD in the top floor under base

excitation can also be expressed as the form stated in Equation (7.6), by defining:

983 0 0

0 175 =50 0 0
0 98.3 0 0 -~50 100 - 50 0 Ns
[M]= (Kg), [C]= —)
0 0 983 0 0 -50 50+Cpp -Cpop| m
0 0 0 m 0 0 -C C
TMD TMD (7.23)
12 ~6.84 0 0 1
-6.84 13.7 —-6.84 0 N 1
{F)y={f)=0,[K]= 10°(=), [E,1=-
0 0 ~Krmp Kvp 1
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where the mass (m) of the TMD and AMD systems is selected as 10% of the total mass of
the main structure; the linear viscous damper and stiffness of TMD are represented by

Crup and Kryp, which are the design variables.

Transferring Equation (7.6), to the state-space form described in Equation (7.7), with the
parameters defined in Equation (7.8), and then utilizing the optimization procedure
provided in Chapter 3, one can easily obtain the optimal damping factor (7ap) and
frequency ratio (frap) defined in Equation (3.14) as 0.1903 and 0.8403, respectively.
Here it should be noted that the RMS of the top floor’s relative displacement (relative to
the base) has been selected as the objective function, as the first vibration mode is
dominant mode in this example. Subsequently, the linear viscous damper and stiffness for

the optimal TMD system would be 323.3 (Ns/m) and 24475(N/m), respectively.

Next, the damper of the developed optimal TMD system will be replaced by an active
device to establish an AMD system and the controller for the AMD system will be
designed following the procedure stated in Section 7.3. The equations of motion for the

controller design can also be expressed as the form stated in Equation (7.6), by defining:

983 0 0 0 175 =50 0 0]
0 983 0 0 -50 100 —50 0] Ns
= K ) C - -—)> {F}ZO(N)9
M=) 0 o g3 o [R& = 6 50 50 o’
0 0 0 2949 o 0 o0 o0
12 -6.84 0 0 1] 0 (7.24)
~684 137  -6.84 0 SN ]
Kl= 105(2%),[E.1=— | and [p.1=
KY=] 0 _684 68440245 —0245]'0 G EI= [Fl=1
0 0 0245 0245 1] -1

Transferring Equation (7.6) to the state-space form provided in Equations (7.9), by

defining:
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(0] 1] (0] [0] ]
Al= > = s B = _ ’
L] [—[M]“[K] —[M]“[C]] L5:] [[Es]] L8] [[M] R]

_|-[RIMT'[K] -[RIIM]'[C] - u [AIIM]'[A,]
= ,on]=[o 0 0 o, [p,]= 1,
[‘]{0010 0000}[“][ ][D’Z][ 0 (7.25)

0 0 -1 1 0 0 0 O 0 0
G, = , [Dy1=| | and [D,,]= _
[C] [-[le[M]‘l[K] ~[P2][M]“[CJ [Pz1] M (P22 {[Pz][M] ‘[Ps]}

where [M], [C], [K], [Ps] and [E;] have been defined in Equation (7.24). In this example,
the absolute acceleration of all three floors and the relative displacement (relative to the
base) of top floor are selected as the system output vector {y} stated in Equation (7.9b).
The absolute acceleration of top floor and the relative displacement (between the top

floor and the attached mass) are selected as the measured vector {z} stated in Equation

(7.9¢). Thus, the matrices [P;] and [P,] in Equations (7.25) can be defined as:

1 0 0O
[A1={0 1 0 O|and[A]=[0 0 1 O] (7.26)
0010

H2/LQG method is utilized to design the controller based on the system parameters stated

in Equations (7.25). A full-state feedback will be designed based on Equations. (7.10),
(7.12) and (7.16) with the definitions of [Q]=[C,17[C;] , [R]=3[D,,1 [D);]
and[N]=[C, 17[Dy,]1. The Kalman filter will be designed based on Equations (7.11),

(7.12) and (7.17) with the definitions of [Q.]=r[I], [R.]=[I] and [S]=[0]. Here, the

autocovariance of measurement noise (E(v.v» )=RJ[I]) and the process noise
(E(jc'gjc'gT)=Rg [I]1) are both assumed to be identically distributed and statistically

independent Gaussian white noise with the ratio (r=Rg/R,=25), furthermore the

covariance between excitation processing and measurement noise processes is assumed to
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be zero. Finally the H,/LQG controller can be obtained using Equation (7.13) and (7.14),

as matrix [Dy;] stated in Equations (7.25) is a null matrix.

The controller stability analysis based on eigenvalue analysis of [4k], as stated in
Equation (7.14), the internally stabilizing analysis based on Equation (7.19), the full-state
feedback [K] stability analysis based on the eigenvalue analysis of matrix [[4]-[B;][K]]
and the Kalman filter [L] stability analysis based on the eigenvalue analysis of matrix
[[4]-[L][C:]] have been conducted. All test matrices are Hurwitz matrices. The stability

margin analysis, as stated in Equation (7.20), is shown in Figure 7.7.

Magnitude (dB)

e
10 10

i by iy B
10 10 0 10 10
Frequency (radlsi

Figure 7.7 Open-loop stability margin analysis for Build model 1.

Based on experience study for this building model proposed by Dykr;a94 and Spencer Jr et

algs, the numerical model matches the experimental data very well for excitation
frequencies below 35 (Hz) (about 220 rad/s), which is after the natural frequency of the
third vibration mode (148.5 rad/s). However, significant modeling errors occur at higher
frequencies due to un-modeled dynamic properties. Herein, the controller design was

considered to be acceptable for implementation if the magnitude of the open loop gain at

218



high frequencies (higher than 35 (Hz)) was less than -5 (dB)94’ »

. Based on this, the
designed Ho/LQG controller provides at least -5.2 (dB) for the frequency more than 32

(Hz), as illustrated in Figure 7.7, so the designed controller is considered to be acceptable.

Figure 7.8 illustrates the frequency domain response (Bode diagram) for uncontrolled

structure, structure with optimal TMD and AMD system using the developed H»/LQG

controller.
50
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Figure 7.8 The structural frequency domain response (Bode diagram). (a) The first floor
absolute acceleration. (b) The second floor absolute acceleration. (c) The top floor absolute
acceleration. (d) The top floor relative displacement (relative to base). Solid, dashed

(brown) and dotted (red) lines represent uncontrolled structure and structure with optimal

TMD and AMD system, respectively.

Examination of the results shown in Figure 7.8 reveals that: (1) the optimal TMD system
attenuates vibrations effectively around the original structural first natural frequency,
which is the dominant mode in this example; (2) The AMD system not only can provide

better vibration suppression performance than the optimal TMD system around its tuned
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frequency but also it can effectively suppress the vibration due to higher modes (in this
example the effect of AMD can provide significant attenuation up to the third natural
frequency); (3) as expected after the third vibration mode no significant control force
exists, and thus the response for structures with AMD system almost coincides with
uncontrolled structure. As discussed in Chapter 1, the designed AMD system may be
unpractical, as it is very difficult to find a suitable device which can provide the active
force required by the controller. In the next part the SAMD system using MR-damper

will be introduced.

Following the proposed methodology presented in Section 7.4 and summarized in Figure
7.3, the developed Ho/LQG controller has been combined with the proposed inverse MR-
damper model (RD-1005-3 type MR-damper) to provide command current to MR-
damper and subsequently to provide damping force to the main structure. To make the
simulation close to the real application, before applying the proposed control method for
the SAMD system using MR-damper, the Hy/LQG controller should be transferred to

discrete-time form utilizing the z-transform method as:

z—1

s=2f,2" (7.27)

where f; is the sampling frequency. In the simulation, the time step size is selected as 10™
(s), and controller sampling frequency (measured signal sampling rate) is chosen as 1
(KHz), which can provide enough time for the controller to calculate the command
current. Using this sampling frequency, the H,/LLQG controller, as stated in Equation

(7.13), can be transferred to the discrete-time form as:
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{x(KT +T)} =[4,Hx(KT)} +[B; H{z(KT)} ; u(KT) =[C41{x(KT)} +[D41{z(KT)}  (7.28)
where T=1/f,, and matrices [4,], [B4], [C4] and [D,] are the bilinear transformation form

for matrices [4«), [Bx), [Ci] and [Dy], as stated in Equation (7.13), respectively.

A typical uniform (£50 m/s°) random signal is applied onto the structural base. Based on

the properties of RD-1005-3 type MR—damperm’ 136, the MR-damper’s relative

displacement is limited to +20 (mm), and the maximum damping force is limited to
+2700 (N). The structural response comparison in time domain between structure with
the SAMD system using MR-damper utilizing Controller A illustrated in Figure 7.3 and
uncontrolled structure; structure with the optimal TMD and AMD using H,/LQG
controller are illustrated in Figures 7.9-7.11, respectively. Table 7.2 summarized the

RMS of response for these different cases.
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Figure 7.9 Structural response comparison. (a) The first floor absolute acceleration. (b) The

second floor absolute acceleration. (c) The top floor absolute acceleration. (d) The top floor

relative (relative to base) displacement. Solid and dotted (red) lines represent uncontrolled

structure and structure with SAMD using MR-damper with Controller A, respectively.
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Figure 7.10 Structural response comparison. (a) The first floor absolute acceleration. (b)
The second floor absolute acceleration. (c) The top floor absolute acceleration. (d) The top
floor relative (relative to base) displacement. Solid and dotted (red) lines represent
structure with optimal TMD and SAMD using MR-damper with Controller A, respectively.
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Figure 7.11 Structural response comparison. (a) The first floor absolute acceleration. (b)
The second floor absolute acceleration. (c) The top floor absolute acceleration. (d) The top
floor relative (relative to base) displacement. Solid and dotted (red) lines represent
structure with AMD and SAMD using MR-damper with Controller A, respectively.

From Figures 7.9-7.11 and Table 7.2, one can find that: (1) the optimal TMD system can

decrease the RMS about 42.2%, 56.5%, 52.47% and 61.63% for the first, second and top
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floors’ absolute acceleration responses and the top floor’s relative displacement response,
respectively, compared with uncontrolled structure; (2) compared with the optimal TMD
system, the SAMD system decreases the RMS about 30.2%, 6.77%, and 13.92% for the
first, second and top floors’ absolute acceleration responses, respectively; (3) the AMD
system provide the best vibration suppression effectiveness. Compared with the optimal
TMD system, the AMD decreases the RMS about 47.62%, 33.47%, and 38.33% for the
first, second and top floors’ absolute acceleration responses, respectively; (4) the
vibration suppression performance of the SAMD system with MR-damper using
Controller A can match those of AMD well. This issue can also be realized through
Figure 7.12, from which one can find that the MR-damper with Controller A can provide

the damping force {f} very close to the H,/LQG controller requiring control force {u}.

Force (N)
, [~3

~200

800 ;
0 4 . 5 6
Time (s)

Figure 7.12 Hy/LLQG controller command control force ({#}) and MR-damper damping
force ({f}). Solid and dotted (red) lines represent {u} and {f}, respectively.

7.5.1.2 SAMD using MR-damper in its “fail-safe” condition

MR-damper can provide fail-safe protection, meaning that if the controller is failed, the

MR-damper can still act as a passive damper. In this example, two cases will be
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considered as the MR-damper’s fail-safe conditions: “passive-off’ means the command
current of MR-damper is hold as 0 (4); “passive-on” represents the case when the
command current is hold as its maximum value, which is 1 (4) in this example. Utilizing
the same random signal and discrete methodology as those presented in above section,
the simulation results for the structural responses have been obtained and shown in
Figures 7.13 and 7.14, which compare the structural response for SAMD with MR-
damper using Controller A and MR-damper’s “passive-off’ and “passive-on” condition,

respectively.
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Figure 7.13 Structural response comparison. (a) The first floor absolute acceleration, (b)
The second floor absolute acceleration, (c) The top floor absolute acceleration. (d) The top
floor relative (to base) displacement. Solid and dotted (red) lines represent structure with
SAMD using MR-damper with Controller A and MR-damper’s “passive-off”’ condition,

respectively.
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Figure 7.14 Structural response comparison. (a) The first floor absolute acceleration. (b)
The second floor absolute acceleration. (c) The top floor absolute acceleration. (d) The top
floor relative (to base) displacement. Solid and dotted (red) lines represent structure with
SAMD using MR-damper with Controller A and MR-damper’s “passive-on™ condition,

respectively.

From Figures 7.13 and 7.14, one can realize that MR-damper exactly provides the fail-
safe protection performance for “passive-off” condition in this example, and also the
“passive-on” case can not suppress the structural vibration effectively compared with
uncontrolled structure. This is mainly due to the fact that the RD-1005-3 type MR-
damper provides too much equivalent viscous damping in “passive-on” condition with
respect to the selected mass of the SAMD system. To clarify this issue one should
analysis the dynamic property of MR-damper model as listed in Equations (7.1)-(7.3) and
Table 7.1. It can be found that when the command current is set to zero, MR-damper
provides the minimum viscous damping coefficient about 1100 (Ns/m). Compared with
the viscous damping coefficient in the optimal TMD system, which is 323.3 (Ns/m), the

minimum damping coefficient provided by the selected MR-damper is too strong to
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suppress vibration effectively. This property can also be found from Figure 7.15, from
which one can realize that the selected MR-damper almost dose not move in the “passive-
on” condition and the relative displacement of MR-damper with Controller A shown in

13

Figure 7.3 are almost the same as those in MR-damper’s “passive-off’ condition.
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Figure 7.15 MR-damper relative displacement for different cases. Solid, dashed (red) and

dotted lines represent MR-damper using Controller A, MR-damper’s “passive-off”’ and

“passive-on” condition, respectively.

In this study RD-1005-3 type MR-damper is utilized as the semi-active device for the
SAMD system, thus selecting the suitable mass for the designed SAMD system related to
this special type of MR-damper becomes very important. Generally the mass of the TMD
or SAMD systems should not be more than 10% of the total mass of main structure;
otherwise the TMD or SAMD systems will significantly change the main structural
property. However, small mass will make RD-1005-3 type MR-damper become too
strong to allow the mass moving freely to dissipate energy. Basically the selected mass

should make the damping coefficient of the optimally designed TMD system located

around the equivalent damping coefficient that the selected MR-damper can provide. The
so-called equivalent damping coefficient is respected to the “passive-off” and “passive-

on” conditions of the MR-damper. Thus the SAMD system with the selected MR-damper
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using Controller A can provide the best vibration suppression effectiveness, which will
be illustrated in Section 7.5.2. Furthermore, based on above discussion, one can also find
that the simple “on-off” control methodology may not be suitable for the SAMD system

using MR-damper.

7.5.1.3 SAMD using MR-damper with different control methodologies

The performance of different control methodologies presented in Section 7.4 will be
investigated in this section. The same uniform random signal used in previous sections is
utilized to excite the structure at the base. Figure 7.16 shows the structural responses in
time domain for structure with different control methodologies. It should be noted that in
this example the structural response using MR-damper with Controllers A and C are very
close. Figure 17 illustrates the command current signals for these three control

methodologies. Table 7.2 also summarized the RMS of response for different cases.
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Figure 7.16 Structural response comparison. (a) The first floor absolute acceleration. (b)
The second floor absolute acceleration. (¢) The top floor absolute acceleration. (d) The top
floor relative (relative to base) displacement. Solid, dotted(blue) and dashed (red) lines

represent SAMD Structure using MR-damper with Controllers A, B and C, respectively.
Note: Solid and dashed (red) lines are very close.
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Figure 7.17 Command current comparison: (a) SAMD Structure with Controller A. (b)

SAMD Structure with Controller C. (c) SAMD Structure with Controller B.

From Figures 7.16 and 7.17 and also Table 7.2, one can easily realize that: (1) the
Clipped-Optimal controller (Controller B) illustrated in Figure 7.4 can not provide
effective vibration suppression performance in this example; (2) the proposed Inverse-
Clipped-Optimal controller (Controller C) illustrated in Figure 7.5 can improve the
vibration suppression performance compared with the proposed controller (Controller A)
illustrated in Figure 7.3 about 4%. However this small performance improvement is
associated with the cost of an extra force sensor; (3) the MR-damper’s command current
using Controller B oscillates between 0 and 1 in a very high frequency, which
subsequently causes the MR-damper’s magnetic field to be changed in high frequency
which is not practical for the MR-damper devices; (4) the MR-damper command current
using Controllers A and C, is much smoother than that for Controller B, thus it would be

more practical in real application. Based on the above discussion, it can be concluded that
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the Controller A, as illustrated in Figure 7.3, and Controller C, as illustrated in Figure 7.5,

are both acceptable controller designs in this example.

7.5.1.4 Summary of the results for Building model 1

Table 7.2 summarizes the RMS of structural responses for the simulation results
presented in the above sections. Therefore, one can clearly verify the conclusion made in

above sections from Table 7.2.

Table 7.2 RMS of response for different cases. Case A: Uncontrolled structure. Case B:
Structure with optimal TMD. Case C: Structure with SAMD under MR-damper’s “passive-off”

condition. Case D: Structure with SAMD under MR-damper’s “passive-on” condition. Case E:

Structure with SAMD using Controller A. Case F: Structure with SAMD using Controller B,
Case G: Structure with SAMD using Controller C. Case H: Structure with AMD using
developed HyLQG controller.

, 4 Top floor i
1¥ floor absolute 2™ floor absolute Top floor relative

Control i ) absolute )

acceleration acceleration ) displacement

Strategies 5 ) acceleration
(m/s%) (m/s%) ) (mm)
(m/s*)

Case A 7.3148 8.8649 10.9402 8.6
Case B 4.2268 3.8567 5.1999 33
Case C 3.6669 3.5943 4.4800 3.41
Case D 9.1772 12.9676 16.1391 15.71
Case E 2.9505 3.5957 4.4760 4.0
Case F 5.6345 8.3643 10.9801 10.18354
Case G 2.8275 3.3963 4.2459 3.8049
Case H 2.2141 2.5658 3.2070 3.0

7.5.2 Building model 2
In the previous example, we have shown that as the minimum damping coefficient of

RD-1005-3 type MR-damper is too strong for the given mass of the designed SAMD
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system, the vibration suppression effectiveness for SAMD with MR-damper using
Controller A and the MR-damper’s “passive-off’ condition is almost the same and also
the MR-damper’s “passive-on” condition can not suppress structural vibration
effectively. This example is presented to demonstrate those issues and also test the
robustness property of the Controllers A and C. In this example the mass of the building
model will be increased 10 times than that in Building model 1 (Section 7.5.1). The mass
of TMD and AMD systems is still selected as the 10% of the total mass of building.

Subsequently, it would be also 10 times of that in the previous example.

7.5.2.1 TMD, AMD and SAMD design approaches

Following exactly the same procedures presented in Section 7.5.1, an optimal TMD
system has been designed for Building model 2. The optimal TMD parameters for the
spring stiffness and viscous damping coefficient are 24585 (N/m) and 1031.1 (Ns/m),
respectively. One can find that the viscous damping coefficient for this designed optimal
TMD is now closed to the viscous damping coefficient (1100 Ns/m) at the “passive-off”’
condition for RD-1005-type MR-damper. The H,/LQG controller has been designed
following the same procedure and definitions presented in Section 7.5.1, and it should be

noted that in this example the parameter [R], which was utilized to design the full-state
feedback [K], is defined as [R] = 2[D12]T[D12]. Stability analysis has been performed and

all of the test matrices are Hurwitz matrices. Figure 7.18 provides the open-loop stability

margin analysis.
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Figure 7.18 Open-loop stability margin analysis for Building model 2.

Based on the same comment provided in Building model 1 (Section 7.5.1), one can find

that the design controller is acceptable for implementation, since after the third natural

frequency (47 rad/s), the magnitude of the open loop gain was less than -5 (dB)94’95,

Figure 7.19 illustrates the frequency domain response for uncontrolled structure, structure

with the optimal TMD and AMD with the developed H,/LQG controller.
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Figure 7.19 The structural frequency response/base excitation. (a) The first floor absolute
acceleration. (b) The second floor absolute acceleration. (¢) The top floor absolute
acceleration. (d) The top floor relative displacement (relative to base). Solid, dashed
(brown) and dotted (red) lines represent uncontrolled structure and structure with optimal
TMD and AMD system, respectively.
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The same conclusion can be drawn from Figure 7.19 as those from Figure 7.8. Using the
same uniform random test signal, sampling rate (1 KHz) and discrete method as those
utilized in Section 7.5.1, the simulation results for uncontrolled structure, structure with
SAMD system using MR-damper with the Controller A, optimal TMD and AMD
systems are compared in Figures 7.20-7.22, respectively. Table 7.3 summarized the RMS

of responses for these different cases.

From Figures 7.20-7.22 and Table 7.3, one can ecasily find that: (1) the optimal TMD
system can decrease the RMS about 45.99%, 52.48%, 56.63% and 71.43% for the first,
second and top floors’ absolute acceleration responses and the top floor’s relative
displacement response, respectively, compared with uncontrolled structure; (2) the
SAMD system also provides better vibration suppression effectiveness than the optimal
TMD structure. Compared with the optimal TMD system, SAMD decreases the RMS
about 53.43%, 34.75%, and 30.15% for the first, second and top floors’ absolute
acceleration responses, respectively; (3) the AMD system provide the best vibration
suppression effectiveness. Compared with the optimal TMD system, the ideal full-active
AMD decreases the RMS about 64.63%, 56.09%, and 50.16% for the first, second and
top floors’ absolute acceleration responses, respectively. Comparing the results with
those illustrated in Figure 7.9-7.11 and Table 7.2 for Building model 1 (Section 7.5.1),
one can also find that in this example, the SAMD system can provide much better
vibration performance than the optimal TMD system. This is mainly due to the fact that
the damping factor provided by RD-1005-3 type MR-damper is suitable for the mass of
SAMD system presented in this section, which confirms again the conclusion made in

Building model 1 (Section 7.5.1).
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Figure 7.21 Structural response comparison. (a) The first floor absolute acceleration. (b)
The second floor absolute acceleration. (¢) The top floor absolute acceleration. (d) The top
floor relative (relative to base) displacement. Solid and dotted (red) lines represent
structure with optimal TMD and SAMD using MR-damper with Controller A, respectively.
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Figure 7.22 Structural response comparison. (a) The first floor absolute acceleration. (b)
The second floor absolute acceleration. (¢) The top floor absolute acceleration. (d) The top
floor relative (relative to base) displacement. Solid and dotted (red) lines represent

structure with AMD and SAMD using MR-damper with Controller A, respectively.

7.5.2.2 SAMD using MR-damper in its “fail-safe” condition

Similar to Building model 1 (Section 7.5.1), MR-damper’s fail-safe condition will be
investigated in this section for Building model 2 utilizing the same random excitation
signal. The simulation results are shown in Figure 7.23, which compares the first, second
and top floors’ absolute acceleration and the top floor’s relative displacement responses
for SAMD with MR-damper using Controller A, “passive-off” and “passive-on”

conditions. Table 7.3 summarizes the RMS of responses for different cases.

Comparing Figure 7.23 with Figures 7.13 and 7.14, one can find significant difference
between these two examples. In this example, the MR-damper’s “passive-off” and
“passive-on” condition can both provide good “fail-safe” property and the vibration

suppression performance of MR-damper using Controller A is better than the fail-safe
234



conditions, which confirm the robustness of Controller A and also the conclusion made in

the Building model 1 (Section 7.5.1).
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Figure 7.23 Structural response comparison. (a) The first floor absolute acceleration. (b)

The second floor absolute acceleration. (c¢) The top floor absolute acceleration. (d) The top
floor relative (relative to base) displacement. Solid, dashed (blue) and dotted (red) lines
represent structure with SAMD using MR-damper with Controller A, and MR-damper’s

“passive-off’ and “passive-on” conditions, respectively.
/4 ’

7.5.2.3 SAMD using MR-damper with different control methodologies

The vibration suppression performance comparisons for SAMD system using MR-
damper with different control methodologies for Building model 2 are provided in Figure
7.24 and Table 7.3 summarizes the RMS of responses for each case. It can be realized
that in this example three different kinds of control methodologies provide almost the
same vibration suppression performance. Furthermore, comparing the results in this
example with those in Building model 1, it can be found that the Controllers A and C are
very robust compared with the Controller B. Moreover, examining Figure 7.24 carefully,

one can also find that the top floor absolute acceleration has been a little unstable under
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Controller B. The command current comparisons for these three different kinds of control

methodologies are illustrated in Figure 7.25.
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Figure 7.24 Structural response comparison. (a) The first floor absolute acceleration. (b)

The second floor absolute acceleration. (¢) The top floor absolute acceleration. (d) The top

floor relative (relative to base) displacement. Solid, dashed (blue) and dotted (red) lines
represent SAMD Structure with Controllers A, B and C, respectively.
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Figure 7.25 Command current comparison: (a) SAMD Structure with Controller A stated
in Figure 7.3. (b) SAMD Structure with Controller C stated in Figure 7.5. (c) SAMD
Structure with Controller B stated in Figure 7.4.

236



From Figure 7.25, one can obtain the same conclusion as those for Figure 7.17. Based on
above observations, it can be realized that the Controllers A and C are the best control

methodologies for the SMAD structure using MR-damper.

7.5.2.4 Summary of the results for Building model 2

Table 7.3 summarizes the RMS of structural response for the simulation results presented
in the above sections for Building model 2, from which one can clearly verify the

conclusions presented above.

Table 7.3 RMS of response for different cases. Case A: Uncontrolled structure. Case B:
Structure with optimal TMD. Case C: Structure with SAMD under MR-damper’s “passive-off”
condition. Case D: Structure with SAMD under MR-damper’s “passive-on” condition. Case E:
Structure with SAMD using Controller A). Case F: Structure with SAMD using Controller B.
Case G: Structure with SAMD using Controller C. Case H: Structure with AMD using
developed HyLQG controller.

Top floor

1" floor absolute 2™ floor absolute Top floor relative
Control . . absolute )
acceleration acceleration . displacement
Strategies , P acceleration
(m/s*) (m/s*) P (mm)
(m/s*)

Case A 6.0196 5.4393 6.7841 45.5
Case B 3.2511 2.5850 2.9424 13
Case C 3.9228 2.8397 3.3498 13.7
Case D 2.6096 2.7627 3.0498 26.7
Case E 1.5119 1.5812 2.0025 16.4
Case F 1.5139 1.6866 2.0554 17
Case G 1.4941 1.6344 2.0447 16.6
Case H 1.1499 1.1350 1.4665 13.2

The other advantage for using the proposed SAMD design procedures, as illustrated in
Figures 7.3 and 7.5, is that all components can be assembled as a compact module. Two

sensors are needed in Controller A, as stated in Figure 7.3: (1) accelerometer can be
237



installed on the case of MR-damper, which will provide the same measured signal as that
placed in the top floor; (2) Linear Variable Displacement Transducer (LVDT) can be
installed between the case and the acting rod of MR-damper, which will give us the same
measured signal as the relative displacement between top floor and the attached mass.
One extra force sensor is required to measure the damping force generated by MR-
damper for Controller C, which can also be installed inside the MR-damper. Therefore,
for different structural parameters of performance requirement, the only thing needed to
be changed is the controller, which is represented by [44], [Bal, [C4] and [D,] as stated in

Equation (5.28).

7.6 Numerical Example 2—Beam-Type Structures

The control methodologies for SAMD system using MR-damper has been testified
through the above two building models. In this section, the vibration suppression of
beam-type structures using SAMD technology with MR-damper will be presented. The
Timoshenko beam with the mid-span attached TMD presented in Chapter 3 will be
considered in this section. The geometrical and physical properties of the Timoshenko

beam have been listed in Table 3.1.

7.6.1 TMD, AMD and SAMD design approaches
The beam studied in Chapter 3 has been assumed to have no structural damping, as the
main purpose of Chapter 3 is to testify the validity of the finite element methodology for
studying the Timoshenko beam with the attached TMD system. In this section, the
beam’s damping factor will be assumed to be 2% for all vibration modes. Therefore,

following the same procedure provided in Chapter 3 and selecting the RMS of beam’s
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mid-span transverse response (w) as objective function and assuming mass ratio of the
attached TMD to be 4=0.07, one can find that the frequency ratio (frmp) and damping
factor (Ermp) for the optimal TMD would be 0.8861 and 0.1968, respectively.
Subsequently the spring stiffness (Krup) and viscous damping (Crap) of the attached
optimal TMD would be 9.9611x10" (N/m) and 12.48x10°(Ns/m), respectively. The
validity of this set of optimal TMD’s parameters will be illustrated through the frequency
domain response (Bode diagram) comparison, which will be shown in Figure 7.27. Here
it should be noted that the value of viscous damping of the attached optimal TMD is
located inside the proposed LuGre friction model for MR-9000 type damper’s working
range, as illustrated in Equations (6.28)-(6.30) and Table 6.9. Therefore, the MR-9000

type damper will be selected to design the SAMD system in this example.

Next, the damper of the proposed optimal TMD system will be replaced by an active
device to establish an AMD system and the controller for the AMD system will be
designed following the procedure provided in Section 7.3. The equations of motion can

also be expressed as the form stated in Equation (7.6), by defining:

[M,,]  [0]  [0] [C.] [0] O]
[M]=| 0] [M,,]1 [0 |,[Cl=| [0] [0] [0]], %, =0,
[0 [0 Mpp [0] [0] 0
[Kuwl+ [Kymp] [Kyyl —[Kupl —(C_pic)
[Kl=| [Kw]  [K,l (0] ,[Ps]={ N }and (7.29)
Kool 10]  Knp

T
1
{F(z)}={ > [I([N(n)]f(n,t)j(n))dn, {0}, 0}}

element | —1

where Kpyp is the spring stiffness of designed optimal TMD system, which is equal to
9.9611x10" (N/m), {C_pic} is the matrix to pick up the beam’s mid-span values, which
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can be defined as { Z[N(UTMD)]}: and the other parameters has been defined in

element
Equations (3.7). Here it should be noted that the loading is applied uniformly
perpendicular to the central line of beam. For simplifying expression, one can assumed
the loading as unit value and thus the result obtained from {F(¢)} stated in Equation

(7.29) would be equal to the direction matrix [(;], as stated in Equation (7.7).

In Chapter 3 the beam with clamped-clamped boundary condition has been modeled
using 7 Timoshenko beam elements with 4 nodes per element, thus the beam model has
total of 40 degree of freedom. In fact, it is un-necessary to design a controller taking into
account all of the degree of freedom. In this section the first five vibration modes of
Timoshenko beam will be utilized to design the controller for the AMD system. This is
due to the following facts that: (1) no matter how many numbers of elements one
selected, un-modeled dynamic properties in high vibration mode exist; (2) the AMD is
designed based on the optimal TMD system, which was tuned to the first vibration mode
(dominant mode) in this example, obviously the effect of the AMD would be also around
the first vibration mode; (3) if studying higher vibration modes is require, it is better to
follow the methodology proposed in Chapter 4 to design other TMD system based on
higher vibration mode and then go to the AMD design; (4) although in theory one can
directly design controller for the AMD system utilizing the Timoshenko beam’s finite
element model, but definitely in the high frequency range the required control force will

be outside of the MR-9000 type damper’s working range.

Based on the above discussions, total six modes of the Timoshenko beam with the

attached Tuned Mass system will be utilized to design the controller of the AMD system,
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as the first mode of Timoshenko beam has been modified to two modes by the attached
Tuned Mass system. Therefore, one can easily utilize the eigenvector of (M][KD), as
shown in Equation (7.29), to pick up the first six modes which will be utilize to calculate

the beam nodal displacement as:

{ay=1V.14e +-eq}” (7.30)
where [V,] represents the first six eigenvectors, and ¢; represents the response of the i
mode. Thus, the equations of motion for the controller design can be expressed as

Equations (7.7)-(7.9), by defining:

[0] ] [0]
A = ’ = s
L4] [—[Me]“[Ke] —[Me]“[ce]} (21 [[Me]'l[Ve]T{Q:}}

21 {[Me]"[[?/]e]T[Ps ]] ’ (7.31)
[Cl1=[R11V 1[4], [P} =[A1V 1B, ], [Dp1=[A1V,1[B,],
[C;]=[P1%,114], [D;1]=[B ]IV, 1[B,] and [D;,] =[P, ][V, 1[B,]
where [M]=[V.]"[M][Ve], [CI=[V.]'[CI[Ve] and [KJ=[V.]'[K][V.]. In this example, the
beam mid-span’s acceleration and displacement are selected as the system output vector
{v}, as stated in Equation (7.9b). The beam mid-span’s acceleration and the relative
displacement (between beam mid-span and the attached mass) are selected as the

measured vector {z}, as stated in Equation (7.9c). Therefore, the directional matrices [P;]

and [P;] can be defined as:

_[lc _ picy 0] {0} _[lc _picy ~1] {0}
[P‘]‘[ ©  lc_pig Oﬂ and [PZ]"[ o [c_pia OJ (7:32)
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H»/LQG method is utilized to design the controller based on the system parameters stated
in Equations (7.31) and (7.32). A full-state feedback will be designed based on Equations

(7.10) and (7.16) with the definitions:

[Q1=1.5¢[W,C, 1" [W,C,1, [R]1=5¢°[Dy,]7[Dy;] and [N]=[W,C,17 [Dy,] (7.33)
where [W,]=[5%10% 0; 0, 1]. Finally the full-state feedback [K] defined in Equation
(7.12) is equal to [R]™ (8,17 [X1+[N]"). The Kalman filter will also be designed based

on Equations (7.11) and (7.17) with the definitions:

0 0
[Qe]1=r{1], [Re]=le~10|: 0 2000} and [$]=[0] (7.34)

Here, the autocovariance of measurement noise, E(v,v, )=R,[I], and the process noise,
E(f )= o[1], are both assumed to be identically distributed and statistically independent
Gaussian white noise with the ratio, »=Rg/R,=1x 104, furthermore the covariance between

excitation processing and measurement noise processes is assumed to be zero. Then the
Kalman estimate [L] defined in Equation (7.12) is equal to[L]=([Y][C,]" +[SD[R. 1.

Finally the H»/LLQG controller can be obtained using Equation (7.13) and (7.15), as in this

example the matrix [D;;] is not a null matrix.

The controller stability analysis based on eigenvalue analysis of [A4;], as stated in
Equation (7.14), the internally stabilizing analysis based on Equation (7.19), the full-state
feedback [K] stability analysis based on the eigenvalue analysis of matrix [[4]-[B;][K]]
and the Kalman filter [L] stability analysis based on the eigenvalue analysis of matrix
[[4]-[L][C;]] have been conducted. All test matrices are Hurwitz matrices. The stability

margin analysis, as stated in Equation (7.20), has been shown in Figure 7.26, which
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includes the Bode diagram of open loop for design model, as stated in Equations (7.31)

and that for the beam finite element model, as stated in Equation (7.29)

Magnitude (dB)

7 S

%requency (rad?s)

Figure 7.26 Open-loop stability margin analysis. Solid and dotted lines represent the open

loop Bode diagram for design model and beam’s finite element model.

From Figure 7.26, one can easily find that: (1) as expected, the open loop Bode diagram
for design model is perfectly agreed with that for beam’s finite element model below
400(rad/s), which is right after the beam’s fifth natural frequency (359.64 rad/s), as listed
in Table 3.2; (2) above 400 (rad/s), both design model and beam’s finite element model
provide at least -10 (dB) margin, which means no control force after the beam’s 5"
vibration mode. Based on above analysis, it can be found that the proposed H./LQG

controller is acceptable.

Figure 7.27 illustrates the frequency domain response (Bode diagram) for uncontrolled
structure, structure with the optimal TMD and AMD system using the proposed H,/LLQG
controller. Examination of the results reveals that: (1) the optimal TMD attenuates
vibrations effectively around the original structural first natural frequency; (2) the AMD

system can provide better vibration suppression performance than the optimal TMD
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system around its tuned frequency as well as enlarge its vibration suppression frequency
range (in this example the effect of AMD can provide significantly attenuation up to the
5™ natural frequency (359.64 rad/s); (3) after the 5™ vibration mode, no control force

exists.

-120,

-140

wh
[id

M'agnitude {dB)
A
E- -3

10’ Frequency (radfs) 1

19 Frequency (radis) 19

Figure 7.27 The structural frequency response/excitation. (a) The beam mid-span
displacement. (b) The beam mid-span acceleration. Solid dashed (brown) and dotted (red)
lines represent uncontrolled structure and structure with optimal TMD and AMD system,

respectively.

As discussed before, the proposed AMD may be unpractical due to the difficulty to find a
suitable device to produce the required control force. Considering this, MR-9000 type
damper will be utilized to design the SAMD system. The whole procedure for the SAMD
design has been summarized in Section 7.4 and illustrated in Figure 7.3. Again before
applying the proposed control method for SAMD system using MR-damper, the H,/LQG
controller has been transferred to discrete-time form utilizing the z-transform method as

those shown in Equations (7.27) and (7.28).

A typical uniform (+7x10° N) random signal is utilized as excitation signal for the
uniformly distributed loading and a Butterworth low-pass filter was utilized to filter out

the excitation for frequency higher than 500 (rad/s). Based on the properties of MR-9000
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2’

type damper12 181, the MR-dampet’s relative displacement is limited to +8 (cm), and the
maximum damping force is limited to 42x10° (N). The structural response comparisons
for structure with SAMD using MR-damper with Controller A, with uncontrolled
structure, structure with optimal TMD and AMD using H,/LQG controller have been
illustrated in Figures 7.28-7.30, respectively. Table 7.4 also summarizes the RMS of

responses for these different cases.

From Figures 7.28-7.30 and Table 7.4, one can easily find that: (1) the optimal TMD
system can decrease the RMS about 64.28% and 29.84% for the beam mid-span
displacement and acceleration responses, respectively, compared with uncontrolled
structure; (2) the AMD system provides the best vibration suppression effectiveness.
Compared with the optimal TMD system, the AMD system decreases the RMS about
20.87% and 31.27% for the beam mid-span displacement and acceleration responses,

respectively.
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Figure 7.28 Structural response comparison. (a) The beam mid-span’s displacement. (b)
The beam mid-span’s acceleration. Solid and dotted (red) lines represent uncontrolled

structure and structure with SAMD using MR-damper with Controller A, respectively.
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Figure 7.29 Structural response comparison. (a) The beam mid-span’s displacement. (b)
The beam mid-span’s acceleration. Solid and dotted (red) lines represent structure with

optimal TMD and SAMD using MR-damper with Controller A, respectively.
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Figure 7.30 Structural response comparison. (a) The beam mid-span’s displacement. (b)
The beam mid-span’s acceleration. Solid and dotted (red) lines represent structure with

AMD and SAMD using MR-damper with Controller A, respectively.

246



One can also find from Figures 7.28-7.30 that the SAMD system also provides better
vibration suppression effectiveness than the optimal TMD system but not significantly.
This is mainly due to the fact that the H,/LQG controller requiring control force {u} has
gone beyond the MR-damper’s working range, which can be illustrated through Figure

7.31
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Figure 7.31 H,/LQG controller command control force {#} and MR-damper damping force
{f1. Solid and dotted (red) lines represent {f} and {u}, respectively.

7.6.2 SAMD using MR-damper in its “fail-safe” condition
Similar to the study presented in Section 7.5, MR-damper’s fail-safe condition will be
investigated in this section utilizing the same random excitation as that adopted above.
The simulation results are show in Figure 7.32, which compares the beam mid-span
acceleration and displacement responses for SAMD using MR-damper with Controller A
and MR-damper’s “passive-off” and “passive-on” condition. Table 7.4 summarizes the

RMS of responses for different cases.
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Figure 7.32 Structural response comparison. (a) The beam mid-span’s displacement. (b)
The beam mid-span’s acceleration. Solid, dashed (blue) and dotted (red) lines represent
structure with SAMD using MR-damper with Controller A and MR-damper’s “passive-off”’

and “passive-on” conditions, respectively.
p

From Figure 7.32 and Table 7.4, one can find that the MR-damper’s “passive-off” and
“passive-on” condition can both provide good fail-safe property and the vibration
suppression performance of MR-damper using Controller A, is better than the fail-safe

conditions, which confirms the robustness of Controller A.

7.6.3 SAMD using MR-damper with different control methodologies

The vibration suppression performance comparisons for SAMD system with different
control methodologies have been provided in Table 7.4, from which one can find that the
results are very close. However Similar to the study for building models, one still can
find that the command current signal, as illustrated in Figure 7.33, for the Clipped-

Optimal controller (Controller B) would also oscillate between 0 and 1 in a very high
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frequency, and subsequently causes the MR-damper’s magnetic field to be changed with

high frequency, which is not practical for the MR-damper devices, as illustrated in Figure
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Figure 7.33 Command current comparison: (a) SAMD Structure with Controller A. (b)
SAMD Structure with Controller C. (c) SAMD Structure with Controller B.
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Based on the above discussion, it can be realized that the Controllers A and C are the best

design control methodologies for the SMAD structure using MR-damper.

7.6.4 Summary of the results for the Beam model
Table 7.4 summarizes the RMS of structural response for the simulation results presented

in above sections, from which one can clearly verify the conclusions presented above.

Compared with those presented in Section 7.5.2 for building model using RD-1005-3
type MR-damper, one can easily find that in this example the effect of the SAMD design

using MR-9000 type damper is not significantly better than the optimal TMD design. The
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main reason is due to the MR-damper’s properties, which can be summarized in Table

7.5.

Table 7.4 RMS of response for different cases. Case A: Uncontrolled structure. Case B:
Structure with optimal TMD. Case C: Structure with SAMD under MR-damper’s “passive-off”
condition. Case D: Structure with SAMD under MR-damper’s “passive-on” condition. Case E:

Structure with SAMD using Controller A. Case F: Structure with SAMD using Controller B.

Case G: Structure with SAMD using Controller C. Case H: Structure with AMD using
HyLQG controller.

Control Strategies Mid-span displacement (#2m) Mid-span Acceleration (m/s°)

Case A 3.279 5.6492
Case B 1.2 3.8475
Case C 1.165 4.0181
Case D 1.198 3.8478
Case E 1.036 3.6434
Case F 1.039 3.6501
Case G 1.036 3.6311
Case H 0.8 2.7114

Table 7.5 Optimal TMD design and MR-damper equivalent viscous damping comparison.

Viscous damping (Ns/m)  Equivalent viscous damping for MR-damper (Ns/m)

Examples _ RD-1005-3 MR-9000
Optimal TMD ]
Min Max Min Max
Section
1031.1 1100 8050
7.5.2
Section 7.6 12.48x10° 10.50x10° 15.00x10°

It can be easily found from Table 7.5 that compared with the viscous damping for the
optimal TMD design the equivalent viscous damping provided by MR-9000 type damper
can only be changed in very small range. Therefore, it provides limited vibration
suppression performance for SAMD design but as shown even with this narrow damping

range, compared with the optimal TMD design, the SAMD design using MR-9000 type
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damper can still provide superior vibration suppression performance in both its fail-safe
condition and using Controllers A and C, thus one can make conclusion that the proposed

SAMD design methodology is very effective for both types of MR-dampers..

7.7 Conclusions and Summary

This chapter presents a comprehensive investigation on vibration suppression using
Semi-Active Mass Damper (SAMD) technology. A design approach for SAMD using
MR-damper has been proposed in which the Ho/LQG controller design method is
combined with the inverse MR-damper model to provide effective current control for the
MR-damper input command currents. It has been shown that the proposed control
method is robust as well as flexible. One can easily design different controllers depending

on different system requirement based on this proposed controller design approach.

The effectiveness of proposed methodology has been compared with different conditions
also with different controller design method available in published literatures through
illustrated examples. It is found that SAMD using MR-damper with proposed control

methodologies is robust and can provide good vibration suppression effectiveness.
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CHAPTER 8

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE

WORKS

8.1 Conclusions

A comprehensive framework is presented for vibration suppression of beam-type
structures using the optimal Tuned Mass Damper (TMD) technology and Semi-Active
Mass Damper (SAMD) technology using Magneto-Rheological (MR) fluid damper. This
work improves the design procedure for vibration suppression of beam-type structures
using optimally designed TMD system through the development of the finite element
analysis methodology and consequently the design optimization algorithm. It also
demonstrates the functionality and performance of vibration suppression using TMD
technology and the validity of MR-damper utilized as the semi-active device for a

designed SAMD system.

The finite element models for the general curved beam have been developed. The
governing differential equations of motion for the curved beam are derived using the
extended Hamilton principle and then transferred to the finite element form using
proposed elements. The Gauss Quadrate technique and the curvilinear integral applied on
the central line of curvilinear for curved beam are used to evaluate the required matrices
numerically. A ‘4-node’ Lagrangian type curved beams element with 3-degree of

freedom per node has been developed to solve the curved beam model including the
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effects of the extensibility of the curved axis, the shear deformation and the rotary inertia
and a novel ‘2-node’ curved beams element with 3-degree of freedom per node has been
developed to solve the curved beam model excluding the effects of the extensibility of the
curved axis, the shear deformation and the rotary inertia. Results obtained are in excellent

agreement with those available in published literatures. It has been shown that the effects

. T . . . . .. 21
of the axial extensibility, shear deformation and rotary inertia are quite significant .

The developed beam’s finite element models were then combined with the attached TMD
system, to investigate the optimal TMD design strategy for beam-type structures. To
testify the validity of the developed optimization design approach and methodology, first
the uniform Timoshenko beam with attached TMD has been studied and the results are
found to be in excellent agreement with those reported in literatures. Furthermore, the
study has been extended to the curved beam structure in the same way. As the dynamic
properties for the curved beam model has multiple dominant modes, a set of multiple
TMD system design has been proposed to suppress the vibration effectively and the
validity of optimal TMD parameters has been testified through the response comparison
and the sensitivity analysis based on small deviation from the optimal values. Finally,
based on the numerical results, a design principle (framework) for beam-type structures’

vibration suppression using TMD technology has been established.

The random vibration matrix analysis methodology has been utilized to obtain the value
of the objective function. This methodology allows us to solve the dynamic problem as
one first order differential equation and can obtain the random criterions (variance,
covariance) for all state variables. The validity of this methodology in optimal TMD

design has also been testified through numerical examples.
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A hybrid optimization methodology, which combines the global optimization method
based on Genetic Algorithm (GA) and the powerful local optimization method based on
Sequential Quadratic Programming (SQP), has been developed and then utilized to find
the optimally designed parameters of the TMD system for curved beam-type structures.
The validity of the proposed GA and hybrid optimization methodology has been verified
through the GA convergence analysis and can also be proven by the proposed design
principle for beam-type structures with the attached TMD system, as that shown in

Chapter 4.

The MR-damper has been selected as the semi-active damper for a SAMD design. Based
on the investigation of different numerical models for the MR-damper available in
published literatures, the LuGre friction model is utilized to model the dynamic behavior
the large-scale MR-damper. A LuGre friction model for MR-9000 type damper has been
developed. The MR-damper’s dynamic properties obtained through the proposed model
under different type excitations and also input currents have been compared with those
obtained form Bouc-Wen model proposed by Yang et al'®'. Perfect agreements can be

found between these two models. Furthermore, it has been shown that the proposed

model is easily to be used than the Bouc-Wen model proposed by Yang et al'®,

Based on MR-damper’s LuGre friction model, an effective inverse MR-damper model
has been proposed, which can be readily to design controller. The controller for Active
Mass Damper (AMD) system is designed based on the H./LQG methodology and then
combined with the Inverse-MR-damper model to provide effective vibration suppression

performance using SAMD technology with MR-damper.
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The major components of the present work and important observations are summarized

as following:

» Design Optimization of TMD system for beam-type structures

v Development of reliable curved beam element to investigate the dynamic
property for general curved beam-type structures using finite eclement
method.

v Formulating the beam-type structures with the attached Tuned Mass
Damper (TMD) system using finite element method.

v Developing a hybrid optimization methodology, which combines the
global optimization method based on GA and the powerful local
optimization method based on SQP, to obtain the optimal design for
vibration suppression of beam-type structures using TMD technology.

The validity of the developed curved beam element to investigate the dynamic

property of curved beam has been proven in Chapter 2 through comparing the

results with those in available literatures. Through the investigation provided in

Chapters 3 and 4, and also the experimental investigation presented in Chapter 5,

the effectiveness of utilizing the finite element methodology to design TMD

system for beam-type structures and the developed optimization approach have
been verified. The finite element method provides a straight forward way to
study the general beam with attached TMD, and then one can easily extend the

study to beam with different boundary conditions.

255



> Magneto-Rheological (MR) fluid damper modeling

v Developing a LuGre friction model to model the dynamic behavior of

large-scale MR-damper (MR-9000 type damper 122).

v Development an inverse MR-damper model based on the proposed LuGre
friction model, which can be readily used in the design of semi-active
vibration suppression devices

The dynamic behaviors of MR-9000 type damper have been evaluated using the

proposed LuGre friction model and then the results were compared with those

obtained by the Bouc-Wen model . It has been shown that the proposed model
can simulate the MR-damper’s dynamic behavior accurately and also can be

easily used to design the controller.

> Vibration Suppression

v The effectiveness of vibration suppression for beam-type structures using
the optimally designed MTMD system has been verified through the
numerical investigation and experimental study.

v The vibration suppression performance for Semi-Active Mass Damper
(SAMD) design using the MR-damper has been presented and compared
with other available control methodology.

The validity of the proposed SAMD design firstly testified through a classical

building type structures and then extended to the beam-type structures, which has

been presented in Chapter 7. Different vibration suppression strategies has been
compared, which includes the uncontrolled structure; structure with optimally
designed TMD system; structure with AMD system; structure with SAMD system
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using MR-damper with the proposed control methodologies; structure with
SAMD system under MR-damper’s “fail-safe” condition; and also structure with

SAMD system using MR-damper with different control methodologies.

8.2 Publications
Based on the conclusions and results obtained from the present work, the following

articles have been prepared and published/submitted in refereed journals/conferences:

v' Journal papers published or accepted:

e Yang, F., Sedaghati, R. and Esmailzadeh, E., “Free in-plane vibration of general
curved beams using finite element method”, Journal of Sound and Vibration, In
press (doi:10.1016/j.jsv.2008.04.041).

e Yang, F., Sedaghati, R. and Esmailzadch, E., “Vibration suppression of non-
uniform curved beam under random loading using optimal Tuned Mass Damper”,
Journal of Vibration and Control, In press (doi: 10.1177/1077546308091220).

e Yang, F., Sedaghati, R. and Esmailzadeh, E., “Development of LuGre friction
model for large-scale Magneto-Rheological fluid dampers”, Journal of Intelligent

Material Systems and Structures. 2008, tentatively Accepted.

v" Journal papers under review:
e Yang, F., Sedaghati, R. and Esmailzadeh, E., “Vibration control of structures

under random base excitations using active and semi-active mass damper”,

Journal of Sound and Vibration. Under review.
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Yang, F., Sedaghati, R. and Esmailzadeh, E., “Optimal vibration suppression of
Timoshenko beam with Tuned Mass Damper using finite element method”,

ASME Journal of Vibration and Acoustics. Under review.

v’ Conference papers:

Yang, F., Sedaghati, R. and Esmailzadeh, E., “A new LuGre friction model for
MR-9000 type MR damper”, Proceedings of ASME International Mechanical
Engineering congress and Exposition, Boston, Massachusetts, USA, 2008.

Yang, F., Sedaghati, R. and Esmailzadeh, E., “Seismic response controlled
structure with semi-active mass-damper”, Proceedings of ASME International
Mechanical Engineering congress and Exposition, Boston, Massachusetts, USA,
2008.

Yang, F., Sedaghati, R. and Esmailzadeh, E., “Passive vibration control of
Timoshenko beam using optimal Tuned Mass Dampers”, Proceedings of 21"
Canadian congress of applied mechanics, Toronto Canada, 2007.

Yang, F., Sedaghati, R. and Esmailzadeh, E., “In-plane free vibration of curved
beam using finite element method”, Proceedings of ASME International
Engineering Technical Conference, Las Vegas, Nevada, USA, 2007.

Yang, F., Sedaghati, R. and Esmailzadeh, E., “Random vibration suppression of
non-uniform curved beam using optimal tuned mass damper”, Proceedings‘of

ASME International Engineering Technical Conference, Las Vegas, Nevada,

USA, 2007.
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8.3 Recommendations for Future Works

The present work established a framework for design and application of optimal Tuned
Mass Damper (TMD) and Semi-Active Mass Damper (SAMD) in beam-type structures
for vibration suppression applications. The scope of this work can be further extended in

the following aspects:

Structural elements: The numerical model for Magneto-Rheological (MR) fluid dampers

can be extended especially for the small displacement range, as those presented in

Chapter 6.

Mathematical modeling: To improve the accuracy of mathematical model for the

Magneto-Rheological (MR) fluid damper, the dynamic performance of the MR-damper’s
electromagnet should also be considered, which includes the current driver’s properties;
the coil configuration and its amplifier saturation voltage for MR-damper’s multi-stage

electromagnetic coil.

Control methodologies: Other control methodologies should also be investigated, such as

the Fuzzy logic control method and the PID controller. Furthermore, it is a good idea to
combine the dynamic properties of the Magneto-Rheological (MR) fluid damper with the

original structures, and then design a controller directly to adjust the control current.

Semi-Active Devices: Application of other type of semi-active devices such as variable

orifice hydraulic actuator, Active Variable Stiffness, Tuned Liquid Column Damper, and

Electro-Rheological dampers could also be investigated.
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Experimental works: In order to achieve the higher level of confidence and reliability,

further experimental work is required to demonstrate the functionality and performance
of optimal Tuned Mass Damper (TMD) design. Particularly, effectiveness of the optimal
TMD in general curved beam-type structures under different random excitations is of
great importance. Moreover, the experimental study regarding the SAMD system using

MR-damper is needed.

Design optimization: The application of the global optimization methodology based on

Genetic Algorithm can be improved by suitably selecting its optimization parameters.
Furthermore, other type of global optimization methodology such as Simulated
Annealing should also be investigated to illustrate the efficiency of the design
optimization procedure and to facilitate the procedure of designing optimal TMD system

for beam-type structures.
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APPENDIX A:

Timoshenko beam’s mass, stiffness and damping sub-matrices

1
(Mom]= 5 {I [V[N(ﬂ)]TA(ﬂ)[N(ﬂ)]j(ﬂ)]]a'n} (A1)
element | -]
1
My )= 3 {j [7[N(77)]TI(U)[N(ﬂ)]j(ﬂ)]dﬂ} (A2)
element | |
1 -—
Ky ]= 12 { f[qu[B(ﬂ)]T AMIBmV ™ (ﬂ)}iﬂ} (A.3)
element | ~1

1 1
K, 1= 3 { [[EBaNT 16DBET i+ [k, GV A(n)[N(ﬂ)]f(ﬂ)]dn} (A4)
A

element (|

1
[Kuy 1=Ky ) == % {,[qu[[B(n)]T A(n)[N(n)]]dn} (A.5)

element | -1

where A(n)= [NmI{4}, I(n)= [N@pI{[} and y represent the density of material;

J =dx/dn is the Jacobian between the natural coordinates and the physical coordinates.
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APPENDIX B:

Sub-matrices of mass and stiffness in Equations (2.12)

1
M, 1= % {I[y[N(rz)]TA(n)[N(n)ljc(n)]dﬂ} (B.1)
element | —|
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where A(1)= [N()1{4}, In)= [NGY{I} and [B(n)]= d[N(7)l/dlp. The Jacobian 7, () can

be evaluated through:

- ds dx d) 3 >
Tem=30= G + (G =B + (B (B.10)

and the radius p(#) can be evaluated through the following equation:
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dn d dyldn, 1L d BT,

| __ dia® _ dvdy dx/dy_ [B@IX}dy (BOIXY _
P {1+(dy/do)})'s 1+ (dy/dn) s 1+ ([B(ﬂ)]{Y}) s
dx/dn (B)}{X} B.11)
1 [De)IVHBONIX}-[Bn)UVIDIIXS, '
[Bp1{X} [DI{X}
1+ ([B(ﬂ)]{Y}) s
[B(n)}{X}

where [D(n))=d[B(n))/dn. Here it should be noted that as the evaluation for the radius
requires second order differential respected to the natural coordinate (), the polynomial
interpolation function for the geometrical condition should at least 3 order, which means

the Lagrangian type shape function need at least 4 nodes.
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APPENDIX C:

Governing differential equations of motion for Curved beam model
(Case 2)

Based on Equations (2.13) and (2.14), the variation in kinetic and potential energies can

be expressed as:

7= {7t )22 (s, ks + [ s 2.2 5y (5, s .
Parll Parl2
o = [ E16) P02 oy 5,0 €2)

Part3
Substituting the deformation relationship for Case 2, as listed in Table 2.1 to Equations
(C.1) and (C.2), and then utilizing the Hamilton principle, as stated in Equation (2.6), the

following expressions for each part shown in Equations (C.1) and (C.2) can be obtained:

For Part I:
f f 74 )aw(s 1) 0 —(Bv(s,1))dsdl
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. hooy
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L

tl ]
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For Part 3:

6y/(s Ho

j [ Bl == (5y/(s 1))dsdt

ow(s,t) 3 u(s,t)
Os p(s) __6_(6(6w(s,t) N u(s,t)
Os Os Os p(s)

o(

= [{ ].EI(s) Y)dt}yds

Ly
62w(s f) 82w(s 0, El(s) 8*w(s,) &
EI 5
tJl.lJ,. ©) ( )= pls) os*  Os
_EI(s) ou(s, 1) ¢ a2 w(s, t)) EI(s) ou(s,t) 9 o (5. 0)ddl
p(s) Os os? () ds Os

aw(s, 02 Wi, 9|

Z bu(s, f)

5 ’))EI() - 5= (EI()‘”(S 0y

52
= L Lt +

2
[ (E1(s )a )5t )
A

8 El(s) 8*w(s,t)

L * J.as( ps)  os?

EI(s) Ou(s, )]
Os

— Su(s EI(s) o* 07 w(s,1)]
ps)  as® |

You(s, t)ds}dt +

Su(s,0) 2 0 (EI(s) ou(s, t))

——( (s, )) 5 o) s

L L

dt +
EI (s) ou(s,t)

6s /3(5) Os

&4( nE©) EI(s) 6u(s 1)
ll p*(s) s |

——)0(w(s, 1))

Ia (EI(s) ou(s,t)
. pi(s) Os

5N su(s t)ds} dt

(C.5)

Combining Equations (C.3)-(C.5) together and canceling the part related to the boundary

conditions then rearranging the equation respected to the dw and Ju separately. Finally

one can obtain the governing differential equations of motion as stated in Equations

(2.15). Here it should be noted in Equation (C.5), the following assumption has been

made:

b b
p(S)g;u(s,t) >> u(s,t)égp(S)
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APPENDIX D:

Shape function for curved beam model (Case 2)

Based on Equation (2.19), one can easily obtain the following equations:

du(n)/dn =C, +2C,n +3C;n* +4Cym +5Csn* (D.1)

d*u(n)/dn* = 2C, +6Csn +12C,4n* +20Csn° (D.2)
Then utilizing Equations (2.19), (2.20), (D.1) and (D.2), the deflection of nodes i and j
can be expressed as:
v, w, wou, ow, v =INeie, € 6 G G G (D.3)
Finally the shape function [NN] can be obtained through:
WI=f 7 n2 7 gt n et (D.4)
Here it should be noted that for circular beams, as the radius p(r) and the Jacobian
J.(n) is constant in one element, the matrix [NC], as shown in Equations (D.3) and (D.4)
is identical. However for non-circular beams, the radius p(n) and Jacobian J,(n) are

related to the geometrical coordinate properties, thus the matrix [NC] is also related to #.
This is one of the challengers of the proposed methodology and has been successfully
solved through the Gauss Quadrate technique, in which only the parameters of the
Gaussian point would be evaluated, thus the whole procedure can be summarized as: the
radius and Jacobian in Gaussian points would be evaluated, and then substituted to
Equations (D.3) and (D.4) to obtain the shape function in one Gaussian points, finally,

one can obtain the mass and stiffness matrices for one element.
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APPENDIX E:

Equations of motion in finite element form for curved beam model (Case 2)

The governing differential equations of motion as stated in Equations (2.15) and (2.16)

6w(s,t) o? 6w(s 0| 8% EI(s) dus,1)
m(s) 7 {EI() } (p(s) Pl (E.1)

Part2 Part3

Partl

d'uls,t) , 8 El(s) 8°Wis,0), 9  EI(s) ou(s,t),

m(s) - =
. ( 6t2 ) ?S ( ,D(S) 632 2 Os pz (s) Os (EZ)
P l-;;‘ 4 Paris Partb

Substituting the deformation relationship w(s) =—p(s)ou(s)/ds in Table 2.1 for Case 2,

and applying the Galerkin weighted residual technique, the following expressions for
each part shown in Equations (E.1) and (E.2) can be obtained: Here, for simplifying the
expression, in the following equations, the parts related to the boundary conditions have

been cancelled.

For Part 1
3
[ mts) Pkl - P92, .m0t 22D
AY
E.3
T NN NN()] " E-3)
=) 6 {q}j pm)E j oy O () AN ) j( in —=—=) o J (mdn{g}g ()
element

For Part 2

jaw(s )2 {EI( )a w(s, t)}d Ja 45D s )a w(s D 4

3
- Ji-sts )a X gy o) 250 ’))} ds (E.4)

=Y &g J{( p(n)i‘f—[M]—)ﬂ( )-p( )d—ﬁ—@l)}J (Mdnigig)
J 2 (mdn® *(mpn?

element
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For Part 3

EI(s) du(s,?) 2* du(s, ) EI(s) du(s,b)

3% EI(s) du(s,1) razMs ) .
jav(srx T e = = j{p( o o s s
=3 &g I{( P7) _[j:"’)g’;] X ’i’((n")))(‘j“‘(’"’)g’”)}Jc(n)dn{q}g(r)
element c
For Part 4
15}
Jats ot =2 21 “(s GUS) joe 3 571 I{[NN(U)] AN, ()dnighé ) (E.6)
element
For Part 5
0 EI(s) o° w(s, 1) EI(s)a w(s, 1) 0 EI(s) o’ u(s 1)
o ds = o ey = - | —
j( N RN ——yds Lja (s,)—= RN Ljas (s,0) ()( p(s) s .
d[NN(ﬂ)]T Elm) d’[NN(n)) '
= 5T e —_—t) ] d)
1:; {q} I{ T andn o) FDF (77)d773)} <(mdnigrg(®)
For Part 6
J El(s) ou(s,t) EI(s) ou(s,t)
LJ'&l(s,t)g( 2() = /2 s = Ljasm(st) 2()74
(E.8)

element

.Y g I{ AN E1(77) d[NN(m)]
J, (n)dﬂ p2(m) J.(dn

} (mdniqte()
where A(n)= [N(m)1{A4}, I(n)= [N(m)){I}. The shape function N(») and NMN(n) and
Jacobian matrix J,(n7) have been defined in Equations (2.10), (2.21) and (B.10),
respectively. Then combining Equations (E.3)-(E.8) together one can easily obtain the
equations of motion in finite element form, as stated in Equations (2.21)-(2.24). Here it

should be noted that the derivative procedure are based on the same assumption, as stated

in Equation (C.6).
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APPENDIX F:

Sub-matrices in Equations (3.7)

[Coram] =[INO1ap)) Cram[NOimup)] (F.1)
[Kwrup 1= [Nz N Ky [N Giagp )] (F.2)
[C.rnp 1= INOInp)V Cra (F.3)
(K. 1= INOap)) K (F.4)
(Cml= 3 {ljl [C[N(mJT[N(n)]i(n)]dn} (F.5)

where np,p represents the position of attached TMD system in the natural coordinate.
Therefore, utilizing 7y, , one can easily extend the study to multiple Tuned Mass

Damper (TMD) condition. N(x) represents the shape function, which was defined in

Equation (2.3).
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APPENDIX G:

Derivative procedure for Equation (3.13)

The equations of motion in state-space form, as shown in Equation (3.10), can be
expressed:
{20} +[4,{z(0} ={Q2("} (G.1)
Post-multiplying {z(s)}T, and then taking the expect value for Equation (G.1), one can
easily obtain:
Cip (6,5) +[4,1C, (6,5) = Cg (1,5) (G.2)
where Symbol C_ represent the autocorrelation, and they are defined as:
Cy(t,8) = E[2()27 ()], C,,(t,5) = E[z(t)z7 ()] and Cpy(t,5) = E[Q(NQ" ()]  (G.3)
It should be noted that in this dissertation autocorrelation is equal to the autocovariance,
as the mean value is assume to be zero. One can utilize the symmetry property of the
autocorreleaton function, or pre-multiplying {z(s)} to the transpose of Equation (G.1), to
obtain:
Cos (8,0 + Coy (8,0[ 4,17 = Cop(s,1) (G.4)
Adding Equations (G.2) and (G.4) together as:
Caiz (5,1) + Cyy (1,8) + Cop (8,014, 1 +[4,1C,; (1,8) = C,(5,) + Co, (1,5) (G.5)

Now, let us focus on the right part of Equation (G.5), and considering the general solution

of Equation (G.1) can be expressed as:

{20} = {2(19)} + [{Q@)}du ~[4;] [{z(u)}dlu (G.6)
10

Iy

Again, pre-mutiplying {Q(¥)} to the transpose of Equation (G.6), one can obtain:
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t t
Co:(8:0) = Cp, (s,10) + [Cop(s,u)du— [Co, (s,u)aul 4,1 (G.7)
t0

I
Here, {z(#)} represents the initial response, and obviously it is un-correlated with the
{Q(9)}, which represents the force at time ¢ after #p. The same analytical methodology can
be applied the last part of Equation (G.7), in which s represent the time after ¢. Therefore

Equation (G.7) can be simplified as:
t
Co:(5,0) = [Cpp(s,u)du (G.8)
t0

Again, following the same methodology, as the derivate procedure for Equation (G.8) or

utilizing the symmetry property of the autocorrelation function, one can also obtain:
C.p(t:8) = [Cop(t,v)dv (G.9)
t0
Then, substituting Equations (G.8) and (G.9) to Equation (G.5), it may be obtained:

Cp (5,0) + Cy, (1,8) + Cpy (5,0 A, 1 +[4,1C,, (1,5) = tjcQQ (s,u)du + sjcQQ tvdv  (G.10)
t0 t0

Assuming the autocorrelation function for a random excitation can be expressed in a
general form as:

Cog u,v) =278, (u)6(u~v) (G.11)

The following equation can be obtained through integrating Equation (G.11) for 1> s > ¢

ts ! !
[ [Cog . v)dvdu =27 [Sy(u)H (u - s)du =27 [ S (u)du (G.12)

folo f f

Now differentiating Equation (G.12) for both 7 and s, one can obtain:

[Coo(s,uyadu + [Coov,1)dv =275,(1) (G.13)

f f
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Next, let us focus on the left side of Equation (G.10), and take the derivative of
autocolleration Cx(Z,5), one can obtain:

‘gt‘czz(t,S)-’-'-'Céz(t,S)+sz-(S,t) (G.14)

Now, substituting Equations (G.13) and (G.14) to Equation (G.10), one may obtain:
d
= Ca(69)+ Cor (5,0 AT +14,1C (1) = 218, () (G.15)

For a stationary random process, the correlation is only depended on the time interval
between ¢ and s. Furthermore let us assuming the excitation is a whiter noise with Power
Spectrum density (PSD) function Sj, and autocolleration function of a white noise is

27Sp6(?). Finally Equation (G.15) can be simplified as:

C 14,17 +[4,1C,, =275, (G.16)
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APPENDIX H:

Sub-matrices in Equations (4.4)

K s 1= IO INGDIK g <052 @),

TITMDi

(K )= [N NG Ky costamsintam)],

=1rMDi

(K= [N V@) K pygp sin? (@),

=NTMDi

[Koei ] = [N Kpyp sin(a(m)},_

TMDi

K et 1= IV K puap cost@m)],

=TTMDI

1
[Col= T JCAINGT NG, (n)dn

element -]

1
Cul= Y JCIN@I NV, m)dn

element -1

[C oot 1= [N INGDIC i c08% (@),

[Coni 1= IV INGICrp costa@m)sinta(m), ., .

[Cours ] = NG INGODIC 1115 502 (@)

TITMDi
[Coui1=~EN DI Cryp sin(a(m)], -,
[Coui]= [N Cryp cos(a(r)},,

where cos(a(7)) and sin(a(n)) can be evaluated through

cos(@(ryp;)) = [Bmm) XY T . (ragpi)

sin(@(ap;) = [B@rap) 1YY T . (i)
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APPENDIX I:
Curved beam mid-span tangential displacement (u) and rotation (y)

response comparison
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Figure 1.1 Beam mid-span response. (A) Tangential displacement (). (B) Rotation (). (a)
Frequency range 20-140 (rad/s). (b) Around the 2" natural frequency. (c) Around the 4"
natural frequency. (d) Around the 5™ natural frequency. Solid (light), dashed, dotted,
dashed-dotted and solid lines represent uncontrolled structure, structure with optimal TMD
Case a in Table 4.4, Case b in Table 4.6, Case ¢ in Table 4.5 and Case d in Table 4.4,
respectively.
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APPENDIX J:

Response comparison and sensitivity analysis for optimal DTMD based on

2" mode
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Figure J.1 The curved beam’s response comparison. (A) Tangential displacement (). (B)
Rotation (). (a) Frequency range 5-140 (rad/s). (b) Sensitivity analysis for optimal damping

factor. (c) Sensitivity analysis for optimal frequency ratio. Solid, dashed, dotted and dashed-

dotted lines represent uncontrolled structure, structure with optimal DTMD, as stated in

Table 4.9, structure with DTMD having -10% and +10% deviations from designed optimal

values, respectively.
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Figure J.2 The curved beam’s 2" vibration modal response comparison. (a) Sensitivity

analysis for optimal damping factor. (b) Sensitivity analysis for optimal frequency ratio.

Solid, dashed, dotted and dashed-dotted lines represent uncontrolled structure, structure

with optimal DTMD, as stated in Table 4.9, structure with DTMD having -10% and +10%

deviations from designed optimal values, respectively.
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APPENDIX K:

Response comparison and sensitivity analysis for optimal DTMD based on
4™ mode
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Figure K.1 PSD of the curved beam’s response comparison. (A) The 4" mode. (B)
Tangential displacement (&). (C) Rotation (y). (a) Sensitivity analysis for optimal damping

factor. (b) Sensitivity analysis for optimal frequency ratio. Solid, dashed, dotted and

dashed-dotted lines represent uncontrolled structure, structure with optimal DTMD, as
stated in Table 4.11, structure with DTMD having -10% and +10% deviations from

designed optimal values, respectively.
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APPENDIX L:

Response comparison and sensitivity analysis for optimal two symmetrical
DTMD based on 5" mode
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Figure L.1 PSD of curved beam’s response comparison. (A) The 5" mode. (B) Tangential
displacement («#). (C) Rotation (). (a) Sensitivity analysis for optimal damping factor. (b)
Sensitivity analysis for optimal frequency ratio. Solid, dashed, dotted and dashed-dotted
lines represent uncontrolled structure, structure with optimal DTMD, as stated in Table
4,13, structure with DTMD having -10% and +10% deviations from designed optimal

values, respectively.
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APPENDIX M:

Response comparison and sensitivity analysis for optimal three DTMD
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Figure M.1 PSD of curved beam’s response comparison for three DTMD design Method (1)
with mass ratio () 0.005 for each TMD. (A) The 5" mode. (B) Tangential displacement ().
(C) Rotation (y). (a) Frequency range 5-140 (rad/s). (b) Sensitivity analysis for optimal
damping factor for the two symmetrical TMD. (c) Sensitivity analysis for optimal frequency
ratio for the two symmetrical TMD. (d) Sensitivity analysis for optimal damping factor for
the mid-span TMD. (e) Sensitivity analysis for optimal frequency ratio for the mid-span
TMD. (f) Sensitivity analysis for optimal position for the two symmetrical TMD. Solid,
dashed, dotted and dashed-dotted lines represent uncontrolled structure, structure with

optimal DTMD, as stated in Table 4.15, structure with DTMD having -10% (-0.1) and

+10% (+0.1) deviations from designed optimal values, respectively.
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APPENDIX N:

Response comparison and sensitivity analysis for optimal three DTMD

design method (2) based on 5" mode
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Figure N.1 PSD of curved beam’s response comparison) for three DTMD design Method (2)
with mass ratio (p) 0.005 for each TMD. (A) The 5™ mode. (B) Tangential displacement (z).
(C) Rotation (). (a) Response in 5-140 (rad/s) frequency range. (b) Sensitivity analysis for
optimal damping factor for the two symmetrical TMD. (c) Sensitivity analysis for optimal
frequency ratio for the two symmetrical TMD. (d) Sensitivity analysis for optimal damping
factor for the mid-span TMD. (e) Sensitivity analysis for optimal frequency ratio for the
mid-span TMD. (f) Sensitivity analysis for optimal position for the two symmetrical TMD.
Solid, dashed, dotted and dashed-dotted lines represent uncontrolled structure, structure
with optimal DTMD, as stated in Table 4.18, structure with DTMD having -10% (-0.1) and

+10% (+0.1) deviations from designed optimal values, respectively.
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