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ABSTRACT 

Optimal Vibration Suppression of Beam-Type Structures using Passive and Semi-

Active Tuned Mass Dampers 

Fan Yang, Ph.D. 

Concordia University, 2008 

The overall aim of this dissertation is to conduct a comprehensive investigation on the 

design optimization for passive and semi-active vibration suppression of beam-type 

structures utilizing the Tuned Mass Damper (TMD) and Semi-Active Mass Damper 

(SAMD) to prevent discomfort, damage or outright structural failure through dissipating 

the vibratory energy effectively. 

The finite element model for general curved beams with variable curvatures under 

different assumptions (including/excluding the effects of the axial extensibility, shear 

deformation and rotary inertia) are developed and then utilized to solve the governing 

differential equations of motion for beam-type structures with the attached TMD system. 

The developed equations of motion in finite element form are then solved through the 

random vibration state-space analysis method to effectively find the variance of response 

under stationary random loading. 

A hybrid optimization methodology, which combines the global optimization method 

based on Genetic Algorithm (GA) and the powerful local optimization method based on 

Sequential Quadratic Programming (SQP), is developed and then utilized to find the 

optimal design parameters (damping, stiffness and position) of the attached single and 

multiple TMD systems. Based on the extensive numerical investigation, a design 
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framework for vibration suppression of beam-type structures using TMD technology is 

then presented. 

An in-house experimental set-up is designed to demonstrate the effectiveness of the 

developed optimal design approach for vibration suppression of beam-type structures 

using TMD technology. 

Next, the Magneto-Rheological (MR) fluid damper is utilized to design the SAMD 

system. A new hysteresis model based on the LuGre friction model is developed to 

analyze the dynamic behavior of large-scale MR-damper (MR-9000 type) accurately and 

efficiently. The gradient based optimization technique and least square estimation method 

have been utilized to identify the characteristic parameters of MR-damper. Moreover, 

based on the developed hysteresis model, an effective inverse MR-damper model has also 

been proposed, which can be readily used in the design of semi-active vibration 

suppression devices. 

The controller for SAMD system using MR-damper is designed based on the 

proposed inverse MR-damper model and H2/LQG controller design methodology. The 

developed SAMD system along with the MR-damper model is then implemented to 

beam-type structures to suppress the vibration. It has been shown that the designed 

SAMD system using MR-damper can effectively suppress the vibration in a robust and 

fail-safe manner. 
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

1.1 Motivation 

Beam-type structures have many applications in mechanical, aerospace and civil 

engineering fields. Due to their inherent low damping and recent trend for light weight 

design, these structures may easily vibrate in their low modes, which may subsequently 

lead to failure of structure . Thus, one of the biggest challenges structural engineers face 

today is to protect structures from the damaging effects due to excessive vibrations. 

One of the commonly adopted structural protecting devices is based on the Tuned Mass 

Damper (TMD) technology, which dissipates vibratory energy through a set of damper 

and spring connecting a small mass to the main structure. The natural frequency of this 

secondary structure is usually tuned to the dominant mode of the primary structure. Due 

to mechanical simplicity and low cost, TMD devices are effectively used for vibration 

suppression in many civil and mechanical engineering applications. A successful optimal 

TMD system design for beam-type structures requires not only a robust optimization 

approach, but also a reliable mathematical model to model beam-type structures and their 

combination with the TMD system. 

As the stiffness and damping of an optimally designed TMD system are typically 

invariant, to improve the vibration suppression effectiveness of the TMD system, the 

1 



Active Mass Damper (AMD) or Semi-Active Mass Damper (SAMD) systems, in which a 

controllable device can be added to or replace the damper in TMD system, are developed. 

Magneto-Rheological (MR) fluid dampers are one of the most promising devices to 

provide controllable damping force. They offer large range damping force capacity with 

very low power consumption, highly reliable operation and robustness in a fail-safe 

manner. 

Based on the above introduction, the main purpose of this dissertation is to present a 

comprehensive investigation on beam-type structures' vibration suppression using TMD, 

SAMD and MR-damper technologies. 

1.2 Literature Review of the Pertinent Works 

In the following sections, a brief introduction and relevant literature review of different 

aspects of the present subject are provided in a systematic way. 

1.2.1 Finite element analysis for beam-type structures 

The slim straight beam-type structures can be modeled as Euler-Bernoulli beam, and its 

equations of motion in the finite element form can be obtained utilizing the Hermitian 

2 3 . . 3 

interpolation ' , which can be found in most finite element methods and vibration 
4 

theory textbooks. For beams in which the effect of the cross-sectional dimension on 

frequencies cannot be neglected, and the study of higher modes are required (for instance 

for the case of random type loading), the Timoshenko theory which considers the effects 

of rotary inertia and shear deformation provides a better approximation to the true 

behavior of the beam. 

2 



The governing differential equations of motion for Timoshenko beam can be found in 

4 

many vibration textbooks . Most of works about solving Timoshenko beam using finite 

5-8 

element method were published in the 70s and the related interpolation methodology 

are available in commercial finite element method software packages, such as the 
9 

Beaml88/189 elements from Ansys® , in which the transverse displacement and rotation 

due to bending are assumed to be independent variables. Recently, Reddy and 

Mukherjee et al proposed a set of new shape functions, which were named as 

Interdependent Interpolation Element (HE) , to study Timoshenko beam. As the 
9 

interpolation methodology utilized by Ansys® for the Beaml88/189 elements is widely 

accepted by most of researchers, in this dissertation it will also be utilized to model the 

Timoshenko beam. 

The study of the free in-plane vibration of a curved beam using the beam theory is more 

complicated than that of a straight beam, since the structural deformations in a curved 

beam depend on not only the rotation and radial displacement but also the coupled 

tangential displacement caused by the curvature of the structure. Many theories have 

been evolved to derive, simplify and solve the equations of motion for the free in-plane 
12 

vibration of the curved beam. Henrych utilized the first order equilibrium conditions for 

the external and internal forces to derive the general expression of the differential 

equations of motion for the curved (circular) beam and then provided sets of 

methodologies to solve the differential equations of motion based on different 

assumptions, considering and/or neglecting the shear deformation, rotary inertia and axial 

extensibility. 
3 



It should be noted that the solution of the differential equations of motion for curved 

(circular) beams are very complicated, if one takes into account the effects of shear 

deformation, rotary inertia and axial extensibility. Therefore, most of works in this area 

are to simplify the curved beam model based on different deformational assumptions. 

13 

Auciello and Rosa modeled the curved (circular) beam neglecting the shear 

deformation, rotary inertia and axial extensibility, and then summarized the results 

obtained through different numerical methodologies, which were available in published 
14 

literatures, such as the Rayleigh-Ritz methodology by Laura et al , the Rayleigh-

Schmidt methodology by Schmidt and Bert and the cell discretization method by 
17 18 

Raithel and Franciosi . Tong et al modeled the curved (circular) beam using the same 
13 

assumption as those adopted by Auciello and Rosa , and further simplified the tapered 
19 20 

arch as sets of stepped arches. Veletsos et al and Lee and Hsiao modeled the curved 

(circular) beam neglecting the shear deformation and rotary inertia. Chidamparam and 
21 

Leissa studied the influence of axial extensibility for curved (circular) beams. The 
21 

results show that the axial extensibility causes a decrease in the natural frequencies, and 

it is significant for shallow arches. Thus, the model neglecting the axial extensibility, 

which has been adopted by many researchers in studying the vibration problem for 

circular beams, may not be accurate especially when the high vibration modes study is 

required, such as in random vibration analysis. 
12 

Henrych has modeled the curved (circular) beam considering the shear deformation, 

rotary inertia and axial extensibility, and then provided a general approach to solve the 

12 

related differential equations of motion. However, the approach presented by Henrych 

4 



is quite complicated. In fact many methodologies, which are available in published 

literatures, have been successfully presented to solve the circular beam model. Austin and 

22 19 

Veletsos improved their study and developed an approximation and simplified 

procedure to estimate the natural frequencies of circular arches. Irie et at utilized the 

transfer matrix methodology to solve the curved beam, in which the central lines were 

modeled as different types of function. Issa et at derived the general dynamic stiffness 

matrix for a uniform curved (circular) beam. Kang et at utilized the Differential 

Quadrate Method (DQM) to compute the eigenvalues of the differential equations of 

motion governing the uniform curved (circular) beams. Tseng et at adopted the 
27 28 

Frobenius method to solve the problem. Yildirim utilized the transfer matrix method 
29 

and then solved the problem based on the Cayley-Hamilton theorem . The same method 
30 31 

has also been adopted by Tufekci and Arpaci and Tufekci and Ozdemirci . Rubin and 
32 33 34 

Tufekci adopted the Cosserat point methodology, which was proposed by Rubin ' , to 

extend the study to three-dimension problem. The natural frequencies for the elliptical, 

parabolic and sinusoidal arches can also be found in Oh et at . 

There are still many papers in this area (curved (circular) beams' vibration problem, 

considering the shear deformation, rotary inertia and axial extensibility), in which their 

main differences are in the methodologies adopted to solve the governing differential 

equations of motion. However one assumption, which is commonly adopted in previous 

works, is to separate the radial and tangential displacements and the rotation variables, 

12 22-28 ^0-^5 

and then assume those variables as independent ' ' . Although the methodologies 

5 



adopted in these literatures ' are simpler than those provided by Henrych , they 

are still too complicated to be utilized in engineering design optimization problem. 

The earliest works about utilizing finite element method to solve the curved (circular) 

beams problem can be found in the 70's. In 1971 Petyr and Fleischer utilized three 

kinds of interpolation functions and then proposed three two-node curved (circular) arch 

elements, in which two of them have three degree-of-freedom per node and the other one 

has four degree-of-freedom per node. In 1972 Davis et at proposed the other two-node 

38 

curved (circular) arch element with three degree-of-freedom per node. In 1974 Dawe 

presented different kinds of two-node curved (circular) beam elements based on the 

polynomial interpolation with different definitions of the nodal degree of freedom. 
39 

Balasubramanian and Prathap utilized a three-order polynomial function to interpolate 

the radial and tangential displacements and rotation variables separately and finally 

developed a two-node curved (circular) beam element with six degree-of-freedom per 
40 

node. Recently, Friedman and Kosmatka utilized a set of interpolation function to 

describe the radial and tangential displacements and the rotation variables separately, and 

then derived a two-node curved (circular) beam element with three degree-of-freedom 

per node. Through comparison, one can easily find that the interpolation function utilized 
40 J7 

by Friedman and Kosmatka is similar to that adopted by Davis et at to interpolate the 
41 

tangential direction displacement. Raveendranath et al proposed three kinds of two-

node curved (circular) beam elements, which are similar to those presented by Petyr and 

Fleischer and Dawe . Litewka and Rakowski also utilized the similar methodology as 
40 43 

those adopted by Friedman and Kosmatka . Eisenberger and Efraim again utilized the 
6 



polynomial function to interpolate the radial and tangential displacements and the 

44 

rotation variable separately. Wu and Chiang utilized the similar interpolation 
37 45 

methodology as Davis et at to study the curved (circular) beam problem. Ribeiro 

studied the curved (circular) beam based on the /7-version (high order) finite element 

method. OztUrk et al utilized the similar interpolation function as Dawe to study the 

non-uniform circular beam. 

Based on the above analysis, it can be found that: (1) most of works related to the curved 

(circular) beam using finite element method are based on the papers published by Petyr 

and Fleischer , Davis et at and Dawe ; (2) the basic methodology is to interpolate the 

radial and tangential direction displacement variables (some papers adding the rotation 

variable) with a set of selected admissible functions, and then transfer the interpolation to 

be expressed as the nodal degrees of freedom to obtain a two-node element; (3) all papers 

are based on the circular type beam, in which the radius of curvature is constant and thus 

the problem can be simplified by interchanging the curvilinear coordinates with the arch 

47 

angle. In 2008, Zhu and Meguid extended the study to three-dimension case (an in-

plane and out-plane vibration problem). Although they mentioned that the methodology 

can be utilized to study the curved beam with different curvatures, the provided 

numerical examples are all based on the circular beam-type structures. 

In the present work, sets of curved beam elements, which can be utilized to investigate 

the curved beam-type structure with changing curvatures, will be presented and evaluated 

numerically based on the curvilinear integral along the central line of curve beam-type 

structures. The results perfectly agree with those available in published literatures. The 

7 



developed finite element method is then utilized in the optimal design of beam-type 

structures with the attached TMD system. 

1.2.2 Tuned mass damper technology 

One commonly adopted damping technology is to install damper between the structures 

and their related install bases, such as the passive base isolation system. Generally big 

size damping devices are required for this technology. The other type of damping method 

is based on the TMD technology, which dissipates vibratory energy through a set of 

damper and spring connecting a small mass to the main structure, as illustrated in Figure 

1.1(a). 
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Figure 1.1 Typical TMD system and its modifications, (a) TMD system, (b) Composite 

Tuned Mass Damper system, (c) Distributed Tuned Mass Damper system (DTMD). 

The TMD technology is developed based on the Tuned Mass system proposed by 

48 

Frahm , in which a secondary system composed of a mass and a spring is implemented 

to a primary structure and its natural frequency is tuned to be very close to the dominant 

mode of the primary structure. Thus, a large reduction in the dynamic responses of the 

primary structure around the natural frequency of the dominant mode can be achieved. 



However the combined system adds two resonant frequencies, one before the frequency 

of the primary system's dominant mode, and the other after that. The TMD system is to 

add a damper in the Tuned Mass system to suppress the vibration in these two added 

resonant frequencies. Here, it should be noted that in some papers and textbooks, the 

TMD system was also named as vibration absorber or Dynamic Vibration Absorber 

49 

(DVA) . 

Although the basic design concept of a TMD system is quite simple, its parameters 

(mass, damping and stiffness) must be determined through an optimal design procedure 

to attain the best vibration suppression performance. Therefore, the major task is to 

obtain the optimal design parameters of the TMD system to enhance the vibration 

49 

suppression effectiveness. Since Den Hartog first proposed an optimal design approach 

of TMD for an un-damped Single-Degree-of-Freedom (SDOF) structure, many optimal 

design methods of TMD system have been developed to suppress the structural vibration 

induced by various types of excitation sources. Crandall and Mark adopted the random 

vibration theory to analyze a SDOF structure attached with a single TMD system under 

white noise base excitation. The results demonstrated that the TMD system can 
51 52 

effectively reduce the vibration of the base-excited structure. Warburton ' studied 

SDOF system vibration suppression using TMD under different loading conditions. The 

topic for vibration suppression of a SDOF system using the attached optimal TMD 

system is not novel, and its optimal parameters for different loading conditions has been 
49 53 

widely accepted and also can be found in many textbooks ' in structural vibration area. 

Therefore, just some typical literatures published recently would be presented here. 
54 

Kwok and Samali studied a SDOF system's vibration suppression problem using TMD 
9 



system under wind loading. Rana and Soong summarized some optimal TMD system's 

results published before. Rtidinger studied the relationship between the structural 

damper and the optimal TMD system. 

The discrete Multi-Degree-of-Freedom (MDOF) system's vibration suppression using the 

52 55 

optimal TMD system can also be found in many research works ' . As the modeling 

procedures and the adopted optimization methodologies are similar to those for SDOF 

system, here only some typical papers published recently will be presented. Hadi and 
57 

Arfiadi studied a discrete MDOF system, which represented a typical building structure, 

with the attached TMD system at the top floor, and selected the H2 norm of the transfer 

function as the objective function for an optimization procedure, and then utilized the 

Genetic Algorithm (GA) optimization methodology to obtain the solution. Hwang et af 

investigated the SDOF and discrete MDOF structures with the attached TMD system. 

Lee et af studied the discrete MDOF structure with the attached single or multiple TMD 

system and utilized a gradient based optimization methodology. Marano et af studied a 

MDOF structure with the attached single TMD system utilizing a constrained reliability-

based optimization method. 

There are two modified TMD design methodologies that can be found in published 

literatures, as illustrated in Figures 1.1(b) and 1.1(c). Based on the introduction presented 

by Nishimura et af , the modified TMD design illustrated in Figure 1.1(b) was named as 

Composite Tuned Mass Damper and invented by Yamada in 1998 (Japan Patent Bureau, 

S63-156171). Unfortunately we cannot find the original report about this patent. 

Lewandowski and Grzymislawska investigated the performance of the Composite 

10 



Tuned Mass Damper system and added one controllable damper on the second TMD. Li 

and Zhu studied Composite Tuned Mass Damper system utilizing the Dynamic 

Magnification Factors (DMF), which represents the magnitude of the structural response. 

The other type of modified TMD design shown in Figure 11(c) was developed by Xu and 

Igusa ' and named as multiple Tuned Mass Dampers. In this dissertation, to distinguish 

it with the multiple Tuned Mass Damper design based on multiple natural frequencies of 

the main structure, the multiple Tuned Mass Damper design based on one special natural 

frequency, as illustrated in Figure 1.1(c), was named as Distributed Tuned Mass Damper 

(DTMD). As the modeling procedure for this kind of problem is simple, the main 

differences in this area are the adopted optimization methodologies, especially the 

selected (generated) objective function. Basically, two typical approaches have been 

utilized to solve this problem. The first one is to directly obtain the transfer function and 

then define the variance or the Dynamic Magnification Factors (DMF) as objective 

functions, which was utilized by most of researchers such as Xu and Igusa ' , Kareem 

and Kline , Joshi and Jangid , Li , Li and Qu s Li and Ni and Febbo and Vera . The 

72-74 

other methodology was developed by Zuo and Nayfeh , in which the transfer function 

was expressed as a dynamic model with an optimal H2 controller. Although the vibration 

suppression performance for a DTMD system is better than the TMD system, one can 

improve the performance of the TMD system through adding one active or semi-active 

device with suitably designed controller, which can provide the same or better 

effectiveness and is more practical in real application than the DTMD system. 

11 



Previous introduction are mainly related to attaching single TMD or its modifications 

onto a structure modeled as SDOF or discrete MDOF systems. As the equations of 

motion for a SDOF or discrete MDOF structures with the attached TMD system is simple 

and the location of the attached TMD is usually obvious, the main differences in previous 

49-74 

works are typically the adopted optimization methodologies. For continuous systems, 

such as uniform beams, the optimal TMD design problem is more complicated than that 

for the SDOF or discrete MDOF structure, as the related mathematical model is not easy 

to be obtained and the design variables include not only the damping and the stiffness of 

the attached TMD system, but also the locations and number of the attached TMD 

system. 

The earlier work about beam-type structures with the attached TMD system can be found 

75 

by Jacquot in 1978, in which a cantilever beam was modeled as Euler-Bernoulli beam 

and a single TMD was attached to the mid-span of the beam. Manikanahally and 

Crocker studied a mass-load beam's vibration suppression with TMD. Recently, Gu et 
77 

al designed an optimal DTMD system based on the first vibration mode of the beam 
78 79 

structure. You and Yang ' investigated the optimal DTMD system for different bridge 
80 78 79 

structures. Kwon and Park studied the same example as You and Yang ' and utilized 

the Genetic Algorithm (GA) optimization methodology to obtain the solution. Chen et 
.81 82 

at ' adopted the Timoshenko beam theory to model the bridge and design a set of 

TMD distributed symmetrically along the beam length to suppress the vibration related to 

the first vibration mode. Esmailzadeh and Jalili83 and Younesian et al84 studied the 

Timoshenko beam with the attached TMD system under different loading conditions. 

12 



Wu analyzed the natural frequencies of a cantilever beam with the attached TMD 

system. 

75-82 84 85 

The basic methodology adopted in these literatures ' is to typically simplify the 

equations of motion to a SDOF system based on the fundamental modal shape of the 

continuous system. However, this methodology has some restrictions as: (1) the 

fundamental modal shape of the continuous system will change with different boundary 

condition, thus one should repeat the whole procedure for different boundary conditions; 

(2) it is difficult to obtain the fundamental modal shape for the non-uniform structure and 

also the curved beam structure; (3) before utilizing the fundamental modal shape to 

decouple the differential equations of motion, the position of the attached TMD should be 

given, thus it is difficult to identify the position of the attached TMD as one of the design 

variables in an optimization procedure. The finite element method appears to be 

particularly promising in addressing those restrictions, which is one of the main topics of 

this dissertation. 

1.2.3 Design optimization of the tuned mass damper system 

As mentioned above, the basic design concept of a TMD system is quite simple, its 

parameters (mass, damping and stiffness) must be determined through an optimal design 

procedure to attain the best vibration suppression performance. Moreover, for beam-type 

structures one should also take into account the optimal position and number of the 

attached TMD system. Therefore, after establishing a reliable dynamic model for 

structures with the attached TMD system, the next essential part is the optimization. 

13 



Selecting a suitable objective function with design boundary is the most important issue 

for an optimization problem. Here, the classical TMD system design illustrated in Figure 

1.1(a) will be utilized to introduce the objective function for the optimal TMD design. 

For random type loading, the objective function can be selected as the variance ' ' or 

57 59 

norm of the transfer function (H2 norm) ' , and then one can utilized some available 

command provided by MATLAB® or function to obtain the value of the objective 

function. These kinds of definitions are very clear. 

However, there is not a criterion in average sense for harmonic type loading. Den 

49 
Hartog proposed a methodology to solve this problem, which was popularly accepted 

by researchers. As this is the first document related to the optimization methodology for 

the TMD system and the only available methodology to identify the optimal TMD design 

based on harmonic loading, a short discussion of the methodology adopted by Den 

49 
Hartog would be presented. As the design variables of a TMD system includes the 

49 
damping and stiffness under a known input mass, in the first step Den Hartog separated 

these two design variables. Let us recall a SDOF structure subjected to harmonic type 

base excitation, as illustrated in Figure 1.2(a). The related magnitude of the transfer 

function can be expressed as 

X_ 
Y 

This type of transfer function has an important property, which is the value of the 

magnitude is independent to the damping when excitation frequency equal to 4lKI M . 

K2+(Co))1 

l(K-Mco2)2+(Cco)2 (1.1) 
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The similar property can be found for the TMD system, as illustrated in Figure 1.2(b), in 

49 
which the magnitude of transfer function can be expressed as : 

X (k-mar) +(cco) 

\[(K-Mco2)(k-ma)2)-mkco2]2 + (ceo)2 (K - Mco2 -mco2) .2x2 
(1.2) 
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Figure 1.2 Typical SDOF system and SDOF system with the attached TMD system 

subjected to harmonic loading, (a) SDOF system, (b) SDOF system with the attached TMD 

system. 

49 
Den Hartog utilized the properties of the transfer function stated in Equation (1.2), in 

which the magnitude is independent of damping (c) at two frequency values (a>i and wi) 

under given M, K, m and k, to separate the design variables (k and c). The second step 

49 

adopted by Den Hartog was to tune the magnitudes at these two special excitation 

frequencies (a>i and C02) are identical through suitably selected stiffness (k). The last step 

is to make the magnitude at these two special excitation frequencies (a>i and co2) to be the 

maximum value in the whole frequency domain response through an optimally designed 
49 

damping (c). In fact, the methodology adopted by Den Hartog is equal to minimize the 

maximum magnitude under the entire frequency range, which is also utilized in the 

15 



Distributed Tuned Mass Damper (DTMD) design based on Dynamic Magnification 

Factors (DMF). 

Here it should be noted that one can also select the response of velocity or acceleration as 

52 

objective and the values of optimal damping (c) and stiffness (k) have slight difference 

from those utilized the displacement as objective under harmonic or random loading. As 

the adopted methodologies are exactly the same as those for displacement, in this 

dissertation the displacement will be utilized as the objective for an optimization 

procedure. 

Optimization methodology is another important issue for an optimal design problem. 

Generally, the optimization methodologies adopted in the optimally designed TMD 

49 

system can be classified into three main categories: (1) the analytical methodology ; (2) 

the gradient based optimization; (3) the global optimization methodologies, such as 
57 71 

Genetic Algorithm (GA) and Simulated Annealing(SA) . Here, the gradient based 

optimization methodology plays an important role in the TMD design area. The simplest 
49 

one can be seen in Den Hartog , in which the optimal damping (c) was obtained directly 

utilizing the first order (gradient function) and second order (Hessian matrix) criterion, 

which can be identified as the Karush-Kuhn-Tucker (KKT) conditions without constraint. 

Here, it should be noted that most gradient based optimization methodologies presented 
CO OQ 

in published papers in the TMD area can be found in most optimization textbooks ' , 
,59 70 73 

such as Lee et at , Li et al and Zuo and Nayfeh utilized the Steepest Decent 

Algorithm method. As the Sequential Quadratic Programming (SQP) is the most recently 

16 



developed and perhaps one of the best and most powerful methods of optimization , 

84 

recently some researchers utilized this method to obtain the optimal TMD design. 

In present work, the SQP optimization technology will be utilized to find the optimal 

design variables (damping and stiffness) for an optimal TMD system. Then, a hybrid 

optimization methodology will be developed to obtain not only the optimal damping and 

stiffness, but also the optimal location of the attached TMD system in beam-type 

structures. 

1.2.4 Active and semi-active mass dampers 

The so-called Active Mass Damper (AMD) or Semi-Active Mass Damper (SAMD) 

system is developed to improve the vibration suppression performance of the optimal 

TMD system. Here, it should be mentioned that some researchers also called AMD as 

active TMD (ATMD). Nishimura et at' developed the basic ATMD design method, 

and assumed the control force generated through a simple constant acceleration feedback 

91 

gain. Chang and Yang also studied ATMD design and utilized the constant 

displacement and velocity feedback gain to represent the control force. Both studies did 

not take into account the active device's dynamic properties. 
61 90 91 

The AMD system can provide good vibration suppression effectiveness ' ' , however 

there is a serious challenge regarding the device that can provide required control force, 
92 

which should be considered before AMD can be used practically. Dyke et al also 

summarized some other challenges such as the system reliability and robustness, 

reduction of capital cost and maintenance, eliminating reliance on external power and 

17 



gaining acceptance of nontraditional technology. On the other hand, the SAMD system 

provides controllable energy dissipation rate utilizing the controlled damper which does 

not induce energy to the controlled structure. Thus, it appears to be particularly promising 

in addressing those challenges. 

Different kinds of semi-active devices have been investigated for the SAMD system 

93-97 98-

design, such as variable orifice hydraulic actuator , Active Variable Stiffness (AVS) 

, Tuned Liquid Column Damper (TLCD) , Electro-Rheological (ER) fluid 
113-117 

damper and Magneto-Rheological (MR) fluid damper. In the following, the 
commonly adopted semi-active devices mentioned above will be briefly reviewed. 

1.2.4.1 Variable Orifice Hydraulic Actuator 

The operating principle for variable orifice hydraulic actuator is very simple, which is to 

change the energy dissipation rate through adjusting the orifice of the hydraulic actuator. 

This kind of device has been widely used in many areas, such as the commercial 

93 94 95 96 

airplane's landing gear system . Dyke and Spencer Jr et al and Zhuang and Zhuang 
97 

et al utilized a hydraulic actuator as an semi-active device in the SAMD system, and 

combined the hydraulic actuator's dynamic properties with the structural dynamic 

equations to design a controller through adjusting the orifice of the hydraulic actuator to 

change the energy dissipation rate. 

1.2.4.2 Active Variable Stiffness 

The operating principle for Active Variable Stiffness (AVS) is to produce a non-

stationary, non-resonant condition during severe external excitation through altering the 

18 



98 
structural stiffness based on the nature of the excitation , which has been successfully 

98 
utilized in building structure . The Variable Stiffness Device (VSD) is the active (semi-

99 

active) device for an AVS system. Leavitt et al proposed a VSD design. Renzi and De 

Angelis studied the dynamic response of structure with AVS system. Nagarajaiah 

proposed a Semi-Active Variable Stiffness (SAVIS), as illustrated in Figure 1.3, in which 

the stiffness (K) between points A and B can be adjusted through the relative 

displacement between points/?/ andp2-

Figure 1.3 Schematic of Semi-Active Variable Stiffness (SAVIS) device. 

102 

Agrawal studied the dynamic properties of the SAVIS devices illustrated in Figure 1.3. 
103 

Recently Varadarajan and Nagarajaiah combined the proposed SAVIS device with 

TMD system to present a SAVIS-TMD design. 

1.2.4.3 Tuned Liquid Column Damper 

105-107 
The original design of Tuned Liquid Column Damper (TLCD) , as illustrated in 

104 

Figure 1.4(b) is a passive device and a special type of Tuned Liquid Damper (TLD) , 

which suppresses the structural vibration through shallow liquid sloshing in a rigid tank, 

19 
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as illustrated in Figure 1.4(a). The semi-active TLCD is to adjust the damping 

through an added device illustrated in Figures 1.4(c)-(e). 
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Figure 1.4 Schematics of typical Liquid Damper design, (a) Traditional Tuned Liquid 

Damper (TLD). (b) TLCD. (c) Semi-active TLCD with variable orifice, (d) Semi-active 

TLCD with propellers, (e) Semi-active TLCD using MR fluid with adjustable magnetic 

field. 

Yalla et al ' and Hochrainer proposed a device through adjusting the dimension of 

orifice to change the damping factor of TLCD, as illustrated in Figure 1.4(c). Chen and 

Ko incorporated a set of controllable propellers in TLCD and then changed the 

damping factor of TLCD through adjusting the rotation speed of the propellers, as 

112 

illustrated in Figure 1.4(d). Recently, Wang et al replaced the liquid in the TLCD 

system with Magneto-Rheological (MR) fluid and then changed the damping factor of 

TLCD system through adjusting the magnetic field around the MR fluid, as illustrated in 

Figure 1.4(e). 

1.2.4.4 Electro-Rheolociical Fluid and Damper 

Electro-Rheological (ER) fluids are suspensions of extremely fine non-conducting 

particles in an electrically insulating fluid , which was invented by Winslow . The 

20 



change in viscosity of ER fluids directly depends on the applied electric field and this 

characteristic makes ER fluids attractive for providing a rapid response interface in 

controlled mechanical devices. The most common application of ER fluids is the 

hydraulic valve, clutch, brake and absorber (damper) . As the key operation modes 

for ER and MR fluids are similar and the mathematical model utilized to describe 

dynamic behavior of ER/MR devices are also similar, detail information about ER fluid 

operation modes and its relative devices will be presented in the next section, which is 

mainly focused on the MR fluid devices. 

1.2.5 Magneto-Rheological fluid and damper 

Magneto-Rheological (MR) fluids are a class of novel intelligent materials whose 

dynamic characteristics change rapidly and can be controlled easily in the presence of an 

applied magnetic field controlled by input current (voltage). Figure 1.5 illustrated the 

working principle of MR fluids . 
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118 
Figure 1.5 Operation principle of Magneto-Rheological (MR) fluids . (a) Before applying 

magnetic field, (b) After applying magnetic field. 

From Figure 1.5(a), it can be found that the magnetic particles are suspended within the 

carrier oil and distributed randomly. When a magnetic field is applied, as shown in Figure 

1.5(b), the magnetic particles would be aligned along the magnetic flux line. 

Subsequently, the resulting chains of particles restrict the movement of the fluid, which is 
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perpendicular to the direction of flux, and thus increasing its viscosity. It should be noted 

that the working principle of ER fluids can also be illustrated through Figures 1.5 by 

changing the applied magnetic field to electric field and also the magnetic particles to 

118 119 

non-conducting particles. There are three key operation modes ' , as illustrated in 
119 

Figure 1.6 , for ER and MR fluids. 
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Figure 1.6 Schematics of ER/MR fluids' key operation modes . (a) The flow mode, (b) The 

sheer mode, (c) The squeeze-flow mode. Note: "H" represents the applied magnetic or 

electric field. 

In the flow mode illustrated in Figure 1.6(a), the smart fluid is contained between a pair 

of stationary plates. The resistance to the fluid flow is controlled by varying the strength 

of the electric or magnetic field across the electrodes (ER fluid) or poles (MR fluid). 

Practical application of the flow mode includes hydralic servo valve, damper and 

118 119 

absorber ' . The shear mode shown in Figure 1.6(b) allows the relative motion, either 

rotational or translational, perpendicular to the direction of the applied field. Practical 

application of the shear mode includes controllable clutch and brake ' . The squeeze-

flow mode shown in Figure 1.6(c) allows the smart fluid subject to tension/comperssion 
I 1 O 

and some shearing of the fluid also occurs . The squeeze-flow mode is most suitable for 
n o 

applications controlling small, millimeter-order movements but involving large forces 

121 

. As the MR fluid type device has larger working temperature range and working force 
22 



with smaller electric source than that for ER fluild type devices, the commercial 

applications of smart fluid are mainly based on MR fluid. 

To date, MR fluid dampers are one of the typical devices for MR fluid's commercial 

122 

applications . This kind of devices can offer large range of damping force capacity, 

high reliable operation, and robustness in a reliable fail-safe manner with very low power 

requirements and then it is one of the most promising devices for structural semi-active 

control. A successful semi-active control system depends on two important issues, which 

are the selected semi-active device and its relative controller. This section will be focused 

on the mathematical model for MR-damper and the controller design for MR-damper will 

be presented in the next section. 

Different mathematical models have been developed to model the dynamic behavior of 

123 124 125 

ER/MR-dampers. Stanway et al ' and Peel et al proposed the Bingham model, in 

which a coulomb friction element is placed in parallel with a linear viscous damper. 

Gamota and Filisko presented the parametric viscoelastic-plastic model based on 
123 127 

Bingham model . Wereley et al provided the nonlinear hysteretic biviscous model 

which can improve the pre-yield hysteresis behavior. Spencer et al proposed a 

phenomenological model, which can capture the force roll-off in the low velocity region, 

based on the Bouc-Wen hysteresis model, which is a numerical model developed by 
129 119 

Wen in 1976 for modeling the hysteretic systems. Yang summarized four types of 

modification of the Bouc-Wen models. 
Recently, many research works have been conducted to model the dynamic behavior of 

130 131 

MR-dampers. Li et al developed a polynomial model. Choi et al proposed a model 
23 



in which the MR-damper operates in two rheological domains, the pre-yield and pose-

132 

yield regions. Oh and Onode proposed an equivalent structural model based on the 

combination of springs, dashpot and friction elements. Wang et al ' gave a numerical 
135 

model based on the mathematical analysis of hysteresis behavior. Jimenez and Alvarez 

proposed the modified LuGre friction model, and then they introduced the improved 

LuGre friction model , which can simulate the dynamic behavior of MR-damper more 
135 137 

accurately than the modified LuGre friction model . Xia utilized the optimal neural 

network technique to model the dynamic behavior of MR-damper and then proposed an 
138 

inverse MR-damper model. Kim et al utilized the ANFIS toolbox provided by 

MATLAB® directly to estimate the MR-damper's fuzzy model based on the 
139 

experimental data. Dominguez et al proposed a numerical model based on the solution 
140 

of Bouc-Wen hysteresis equation, and then they improved the model incorporating the 
141 

frequency, current and magnitude relationships. Jin et al utilized the nonlinear black 
142 

box identification techniques to model the MR-damper. Wang and Kamath utilized the 
143 

phase-transition theory to model the MR-damper. Ikhouane and Dyke adopted the Dahl 

friction model to characterize the hysteretic properties of MR-damper. Shivaram and 
144 

Gangadharan proposed a quadratic equation to predict the Root Mean Square (RMS) of 

the MR-damper's damping force. 
Based on the above introduction, it can be found that although the earliest work for 

123 

modeling the dynamic behavior of ER/MR-damper can be found in 1987 , a significant 

number of papers continue to appear in this area. It is due to the fact that no mathematical 
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model is perfect, which can not only characterize the dynamic behavior accurately, but 

also be easily to be used. 

1.2.6 Magneto-Rheological damper control methodology 

The controller design is the other important issue for semi-active structure using MR-

dampers. Basically, five most reported approaches have been utilized in designing the 

controller for MR-dampers: 

145 

(1) The first one is based on the Lyapunov stability theory. Leitmann applied the 

Lyapunov's direct approach and selected the Lyapunov function as the 2-norm of state 
146 

vector. McClamroch and Gavin selected the Lyapunov function as the total vibratory 

energy (kinetic energy and potential energy) and then designed the decentralized Bang-
147 

Bang controller. Jansen and Dyke selected the Lyapunov function as the relative 

vibratory energy. In numerical expression, these design methodologies will make 

controllers switch in two states utilized the Heaviside step function, and it is an "on-off" 

relationship. This type of controller has been popularly adopted by many 
, 133,134, 145-148 

researchers ; 
(2) The second approach is based on the linear quadratic controller design method, such 

149 

as Zhang and Roschke designed a LQG/LTR controller; 

(3) The third approach is based on the inverse MR-damper model, which is a numerical 

model to calculate the MR-damper's required control current (voltage) under a known 
^ , - 150, 151 

control force ; 
(4) The forth methodology is based on fuzzy controller design methodology, which has 

152 

been conducted by many researchers recently. Battaini et al designed a fuzzy 
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controller, which utilized the bell-shape membership function and the Mean Center of 

153 

Gravity (COG) defuzzificaiton method. Schurter and Roschke proposed a fuzzy 

controller design approach for vibration suppression using MR-damper, in which a target 

controller was design firstly, and then the structure response under the developed target 

controller were simulated and collected, finally utilized the ANFIS toolbox provided by 

MATLAB® and the collected response data to train a fuzzy controller. Choi et al and 

Liu et al designed a fuzzy controller based on the triangular-shape membership 

function and the COG defuzzificaiton method. Wilson and Abdullah utilized the same 

methodology as Liu et al but proposed the other set of scaling factor for normalizing 

the universes of discourse, and then they improved their study by adding a self tuned 
158 

scaling device, which can tune the scaling factor automatically. Zhou et al proposed a 
159 

fuzzy controller with adaptive tuning properties. Reigles and Symans presented a fuzzy 

supervisory controller. The other direction in the fuzzy controller design is to utilize the 
~ k . . . , , , . , . - 138,160,161 

GA optimization method to tune the parameters in membership function ; 
1 (\) 

(5) The last methodology is the stochastic optimal controller by Zhu and Ying , Ying et 
,163 , _,, ,164 

al and Cheng et al . 

In practical applications, some of above basic methodologies were combined together. 

94 92 165 

Dyke and Dyke and Spencer Jr et al ' combined linear quadratic optimal controller 

design method and Lyapunov stability theory and then proposed the Clipped-Optimal 

controller. Recently, Yoshioka et al improved the Clipped-Optimal switching by 

adding a threshold. Yoshida and Dyke added a function in the Clipped-Optimal 

switching, which can make the control current to obtain any values between zero and 
26 



maximum prescribed value. Sakai et al utilized the modified LuGre friction model 

to derive the inverse MR-damper model and then combined it with the Linear Quadratic 

134 

Gaussian (LQG) controller to control the MR-damper command voltage. Wang et al 

introduced the inverse MR-damper model based on the numerical model proposed by 

them, in which the dependence of the hysteresis property of MR-damper to input current 
134 

has been neglected, and then combined it with the "on-off controller . 

In this dissertation, an inverse MR-damper model has been proposed based on the LuGre 

friction model, and then combined with a H2/LQG controller, to provide effective 

vibration suppression performance for structure under random loading. 

1.3 Present Works 

This work is generally aimed to establish a comprehensive framework for design 

optimization and vibration suppression of structures using Tuned Mass Damper (TMD) 

and Semi-Active Mass Damper (SAMD) technologies. In particular, this work improves 

the design procedure for vibration suppression of beam-type structures using TMD 

technology through the development of finite element analysis and design optimization 

algorithm, and demonstrates the functionality and performance of vibration suppression 

using TMD technology and the validity of Magneto-Rheological (MR) fluid damper 

utilized as the semi-active device to design the SAMD system 

Specifically, the important components and contributions in this dissertation can be 

summarized as: 
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> Design Optimization of TMD system for beam-type structures 

•S Developing a hybrid optimization methodology, which combines the 

global optimization method based on Genetic Algorithm (GA) and the 

powerful local optimization method based on SQP. 

S Utilizing the developed hybrid optimization methodology to obtain the 

optimal design for vibration suppression of beam-type structures using 

TMD technology through the developments of finite element model and 

optimization approach. 

> Magneto-Rheological (MR) damper modeling 

S Proposing a LuGre friction model to model the dynamic behavior of large-

22 

scale MR-damper (MR-9000 type ) effectively and accurately. 

S Developing an inverse MR-damper model based on the LuGre friction 

model, which can be readily used in the design of semi-active vibration 

suppression devices. 

> Vibration Suppression 

•S The effectiveness of vibration suppression for beam-type structure using 

the developed optimal MTMD design is investigated. 

•S Developing an effective control methodology to suppress vibration using 

SAMD based on MR-damper technology. 

1.4 Dissertation Organization 

The first chapter contains the motivation and objective of the present work, an 

introduction of the concepts and methodologies used in this dissertation, and also a 

detailed review of the recent pertinent works in the relative area. The important 
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components and contributions of this research work have been summarized at the end of 

this chapter. 

The straight Timoshenko beam and the curved beam-type structure's finite element 

models are formulated in Chapter 2. First, a simple procedure for the straight 

Timoshenko beam's finite element model is presented. Then, the whole investigation for 

the curved beam's finite element model is developed in a systemic way. Finally 

numerical examples are presented to verify the validity of the developed finite element 

models. 

Chapter 3 addresses the optimal Tuned Mass Damper (TMD) design for Timoshenko 

beam using the finite element methodology. The equations of motion in finite element 

form for Timoshenko beam with the attached TMD system are derived first, and then 

utilized to establish the optimization problem for both random and harmonic excitations. 

Chapter 4 is the extension of the study presented in Chapter 3 to curved beam-type 

structures. Through extensive numerical investigations, a throughout TMD design 

framework for beam-type structures with the attached TMD system is established in this 

chapter. 

The validity of the developed design methodology for vibration suppression of beam-type 

structures using optimal TMD system is testified in Chapter 5 through experimental 

study. The structural response under both random and harmonic excitations is studied. 
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The MR-damper's numerical model is presented in Chapter 6. A detailed introduction of 

MR-damper model is presented followed by the proposed LuGre friction model for MR-

22 

9000 type damper . 

Chapter 7 is devoted to semi-active vibration control using MR-damper. The whole 

control strategy for SAMD system using MR-damper is presented in this chapter. The 

simulation results are then utilized to verify the validity of the developed control strategy 

through different examples. 

To conclude, a summary of work and major contributions of the dissertation and 

recommendations for future works are presented in Chapter 8. 
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CHAPTER 2 

FINITE ELEMENT MODEL FOR BEAM-TYPE STRUCTURES 

2.1 Introduction 

The finite element model for beam-type structures, which will be utilized in the optimal 

Tuned Mass Damper (TMD) design, will be presented in this chapter. The differential 

equations of motion for the Timoshenko beam have been clarified in many vibration 

4 

textbooks , and its equations of motion in finite element form can be obtained through the 
9 

polynomial interpolation function . 

Based on the introduction presented in Chapter 1, it can be realized that although the 

circular beam-type structure has been studied by many researchers, not much work has 

been done on either uniform or non-uniform curved beams with variable curvatures. In 

particular, no further work based on the finite element approach has been reported on 

curved beams with variable curvatures. Considering this fact, one of the main objectives 

of this chapter is to develop the finite element model for the general curved beam with 

variable curvature. The geometrical relationships for the curved beam's deformations will 

be introduced first, and then the governing differential equations of motion are derived 

using the extended Hamilton principle. Finally the weighted residual technique based on 

the Galerkin method is utilized to transfer the governing differential equations into the 

finite element form. 
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Initially, the finite element model of the curved beam including the effects of the axial 

extensibility, shear deformation and the rotary inertia (Case 1) is developed. 

Subsequently, the curved beam model excluding the axial extensibility, shear 

deformation and rotary inertia (Case 2) is investigated. Efficient numerical techniques, 

based on the curvilinear integral applied on the central line of the curvilinear beam and 

3 

the Gaussian integral method have been implemented to obtain the governing equations 

of motion in finite element form. The results for the natural frequencies, modal shapes 

and deformed configurations of different curved beams with different boundary 

conditions are obtained and compared with those available in published literatures. 

2.2 Finite Element Model of Timoshenko Beam 

A Timoshenko beam and its rotary deformations are illustrated in Figure 2.1. 

s 
cir + •±P 

I'in-deformed Bending deformation Shear deformation 

Figure 2.1 Typical Timoshenko beam and its rotary deformations. 

X 

In Figure 2.1, variables if/ and /? represent the rotation due to bending and angle of 

distortion due to shear, respectively. Therefore, the deformation relationship for the 

Timoshenko beam can be expressed as: 
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^ A = ¥{x,t) + p { x , t ) (2.1) 
ox 

where w represents the transverse displacement. Based on Equation (2.1), one can easily 

obtain the governing differential equations of motion for free vibration, as stated in 
4 

Equations (2.2) , by applying the extended Hamilton principle. 

. .d2w(x,t) d 
-mix) V-^ + — 

Ow{x_,t) ^ 

8x 
kqGA(x)\^-Hx,t) = 0 (2.2a) 

Jix)Sj^AMEIWM^U GAix{^-wM)^ (2.2b) 
dt2 dx dx dx 

where E, G and kq are the elastic modulus, shear modulus and sectional shear coefficient 

of the Timoshenko beam, respectively. The m(x), A(x), I(x) and J(x) are the linear density, 

cross-sectional area, area moment of inertia and mass moment of inertia density per unit 

length along the X coordinate, respectively. Here it should be noted that J(x) is related to 

I(x) as J(x) = y I(x), where y is the material volumetric density. The sectional shear 

coefficient {kq) is depended on the material and the cross-sectional geometrical 

properties ' . For beams with circular and thin rectangular cross-section, the widely 

accepted shear coefficient (kq) are 6(l+v)2/(7+12v+4v2) and 5(l+v)/(6+5v), respectively, 

where v is the Poisson's ratio. 

The governing differential equations of motion, as stated in Equations (2.2), will be 

solved by the finite element method using the natural coordinate system and appropriate 

Lagrangian type shape functions. Beams' deformations (transverse displacement w(x) and 

rotation due to the bending y/(x)), coordinates (x) and geometrical properties (cross-

section area A(x) and area moment of inertia I(x)) can be related to their nodal values as: 
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(2.3) 
A(tj)=[N(r,)]{A} andIitiMNmW 

where r\ is the natural coordinate (-1< rj <1) and {W(t}} and {f(t}} are the nodal 

displacement and rotation vectors for w and y/ deflection functions, respectively. {X}, 

{A} and {/} are the nodal vectors for x, A and I functions, respectively. [N(i])] is the 

Lagrangian type shape function. Here it should be noted that one can utilize different 

order polynomial functions to interpolate the deformation (w and if/), geometrical 

coordinate (x) and geometrical properties (A and 7) separately, which will not affect the 

integral procedure to obtain the finite element formulation. Therefore, for the sake of 

simple expression, in this dissertation the shape function utilized to interpolate the 

deformation, geometrical coordinate and properties are assumed to be the same, except 

those defined specifically. 

Now applying Galerkin weighted residual technique to Equations (2.2) and substituting 

the interpolation functions provided in Equations (2.3), the following governing 

equations of motion in finite element form can be obtained: 

[M]{q(t)} + [K]{q(t)} = 0 (2.4) 

where 

[M]: 
[Mww] [0] 

[0] \MVV\ 
[K]: a n d w ' , , = { n > ! } (2-5) 

The sub-matrices for mass and stiffness matrices given in Equations (2.5) are provided in 

"Appendix A" and evaluated numerically using Gauss Quadrate technique. 
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2.3 Finite Element Model of Curved Beams 

Based on the introduction presented in Chapter 1, it can be found that two basic 

assumptions for curved beam-type structures were widely studied by researchers, which 

are the curved beam including the effects of the axial extensibility, shear deformation and 

the rotary inertia (Case 1) and the curved beam model neglecting the effects of the axial 

extensibility, shear deformation and rotary inertia (Case 2). Therefore, both models will 

be studied in this dissertation. The geometry of the general curved beam is illustrated in 

Figure 2.2, in which L, 0 and h are the span length, curve angle and rise of the curved 

beam, respectively. The coordinate S is along the central line and y(x) is the function 

describing the central line. Here, it should be noted that the coordinate definition is 

adopted the same as Tseng et at , Oh et at and Chidamparam and Leissa . The 

geometrical and deformational relationships for both curved beam models (Cases 1 and 

2) are summarized in Table 2.1. 

Figure 2.2 Curved beam's geometry. 
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Table 2.1 Geometrical and deformational relationships for different curved beam models. 

Curved beam model Case 1 Case 2 

Radial displacement w(s) w(s) 

Differential of the total 
dui{s)lds =du{s)lds + w(s)/p(s) 0=du(s)/ds+w(s)/p(s) 

tangential displacement 

Rotation due to the tangential 
<p(s)=u(s)/p{s) <p(s)=u(s)/p(s) 

displacement 

Total rotation dw(s)/ds=P(s)+y/(s)+(p(s) dw(s)/ds=i//(s)+q>(s) 

In Figure 2.2 and Table 2.1, w(s), u(s), <p(s), ift(s) and fi(s) are the beam's radial 

displacement, tangential displacement, rotation due to tangential displacement, rotation 

due to bending and rotation due to shear along the S coordinate, respectively. Variables 

p(s), uj(s), dw(s)/ds and w(s)/p(s) are the radius of curvature, beam's total tangential 

displacement, slope of radial deflection (w) curve and tangential displacement due to 

radial displacement along the S coordinate, respectively. 

Next, the procedure for deriving the governing differential equations of motion and the 

equations of motion in finite element form for both curved beam models (Cases 1 and 2) 

will be presented. The extended Hamilton principle stated in Equation (2.6) will be 

utilized to derive the governing differential equations of motion. 

h 
\(dT-SV + dWnc)dt = 0; ($(.) =0 at t == tu t2 (2.6) 

'i 

where T, V and 8Wnc represent the kinetic energy, potential energy and non-conservative 

virtual work, respectively. As the main purpose of this chapter is to study the free 

vibration of curved beam-type structures, the non-conservative virtual work (SWnc), as 

stated in Equation (2.6), is assumed to be zero in the following sections. 
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2.3.1 Equations of motion for curved beam model (Case 1) 

The curved beam model (Case 1) takes into account the rotary inertial, axial extensibility 

{duj{s)lds) and also the shear deformation. Therefore the kinetic energy (7) and the 

potential energy (V) in its most general form can be written as: 

•lH^]*+il^ dJ^\ds+
X-\Lm{s)[8u{s^2 

Bt 
ds (2.7) 

UH dyjs,t) 

& 
ds + -\L kqGA(s)/32 (s, t)ds + -jL EA(s)\ 

duT(s,t)\ 

8s 
ds (2.8) 

where m(s), A(s), I(s) and J(s) are the linear density, area, area moment and mass moment 

of inertia density along S coordinate, respectively. Here it should be noted that the 

integral (Jt[.]) represents curvilinear integral applied on S coordinate. The geometrical 

and deformational expressions for Case 1 in Table 2.1 were substituted into Equations 

(2.7) and (2.8), and then by identifying wis), w(s) and y/(s) as the independent variables, 

and applying Hamilton's principle stated in Equation (2.6), the following three governing 

differential equations of motion ' ' will be obtained as: 

•m(s) 
d2w{s,t) d 

dt' ds 
kqGA(s) 

rdw{s,t) u{s,t) A 

y/{s,t) ds P(s) 

EA{s) 

Pis) 

du(s,t) | w(s,t) | Q 

ds f*s) 
(2.9a) 

•m(s) 
d2u(s,t) kqGA(s)fdw(s,t) u(s,t) 

dt2 p(s) { 8s p(s) 
•y/(s,t) 

ds 
' r^M) + ^ , o l 

ds Pis) 
= 0 (2.9b) 

-As) 
d2y/is,t) d 

dt 
2 + ds 

EI(s) 
dy/js,t) 

ds 
+ k,GA(s) 

8w(s,t) u(s,t) 

ds Pis) 
•y/{s,t) = 0 (2.9c) 
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The finite element model of the system will now be developed based on Equations (2.9). 

By using the natural coordinate system and the appropriate Lagrangian type shape 

functions, the Cartesian coordinate x(s) and y(s), radial displacement w(s), tangential 

displacement u(s), rotation due to bending y/(s), cross-sectional area A(s) and area 

moment of inertia I(s) can be related to their relative nodal values as: 

(2.10) 
x(r,)=[N(n)} {X}; y(rj)=[N(r,)] {Y}; w(r,, f)=[N{r,)] {W(t)}; 

u(rj,t)=[N(r])]{U(t)}; K ^ T O W ) } ; A{r,)=[N(r,)}{A}; %)=[^)]{7} 

where r\ is the natural coordinate (-1< rj <1) and [N(r])] is the Lagrangian type shape 

function and the vectors {W{t)}, {U(i}} and {^(t)} are the nodal radial displacement, 

nodal tangential displacement and nodal rotation vectors associated with the radial 

displacement function (w), tangential displacement function (w) and rotation function (y/), 

respectively. Similarly, {X}, {Y}, {A} and {/} are the nodal values associated with the x, 

y, A and I functions, respectively. 

By applying the Galerkin weighted residual technique to Equations (2.9), substituting the 

functions with respect to their nodal values given in Equations (2.10), and then utilizing 

the Jacobin relationship between the Cartesian coordinate (X and Y), the curvilinear 

coordinate (S) and the natural coordinate (77), the following governing equations of 

motion in the finite element form can be obtained. 

[M]{q(t)} + [K]{g(t)} = 0 

where 

[M} = 

[M^] [0] [0] 

[0] [Muu] [0] 

[0] [0] [Mvy/] 

[K] = 
[Kww\ [Kwu] iKwy/] 

lKwu] [Kuu] lKuy/] 

[Kwy/] [Kup] [Ky/y/] 

{q(t)}-

MO} 
P(t)} 

in*)) 

(2.11) 

(2.12) 
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The mass and stiffness sub-matrices in Equations (2.12), are presented in "Appendix B" , 

and evaluated numerically using the Gauss Quadrate technique and the curvilinear 

integral applied on the central line of curvilinear. 

2.3.2 Equations of motion for curved beam model (Case 2) 

The curved beam model (Case 2) neglects the rotary inertial, axial extensibility 

(duj{s)lds) and also shear deformation. Therefore, one can easily cancel the energy 

related to the rotary inertial, axis extensibility (duj{s)lds) and also shear deformation in 

Equations (2.7) and (2.8) to obtain: 

T = -lLm(s)\ 
dw(s, t) 

dt 
ds + — f m(s) 

7 iL v ' 2iL 

'du(s,i) 

dt 
ds (2.13) 

V-AEI{S)\ 
2 * 

dy(s,i) 

ds 
ds (2.14) 

Substituting the geometrical and deformation relationships for Case 2 listed in Table 2.1 

into Equations (2.13) and (2.14), and selecting w(s) and w(s) as the variables and then 

applying the Hamilton's principle stated in Equation (2.6), the following two governing 

differential equations for Case 2 can be obtained: 

m(s) 
d2w(s,t) d2 r 

dt1 ds2 
EI(s) 

a2w(5,oA 

ds2 

*2 ( 

ds2 

EI(s) du(s,t) 

p(s) ds 
= 0 (2.15) 

m(s) 
dlu(s,i) 8 

Dt' 
+ — 

ds 

EI(s) d2wjs,t) 

P(S) ds2 

d_ 
ds 

f EI(s) dujs.tf 

p2(s) ds 
= 0 (2.16) 

The detailed procedure for obtaining the above different equations of motion has been 

provided in "Appendix C". These two equations can be combined together by utilizing 

39 



the inextensibility assumption (duiis)/ds-0) for Case 2 listed in Table 2.1 to obtain a 

single governing differential equation of order 6 with respect to the tangential 

21 

displacement (w), which will be identical to that provided by Chidamparam and Leissa 

for uniform circular beam as: 

m\ 

f
 2d

4u(s,t) d2u(s,t)^ a6 . . ,_^ a..4/-„A ui A..2 
/> 

& 2 5 ? 2 5?2 
2 a°t/(y) i O r rg»4(^,0 , £/ du\s,t) 

h Z.H1 1 
ds6 & 4 p2 8s2 

+ £ V _ ^ + 2 £ / - ^ + - - ^ = 0 (2.17) 

Here, the equations of motion in finite element form for curved beam model (Case 2) will 

be developed based on Equations (2.15) and (2.16). For this case, the Lagrangian type 

shape function, similar to Case 1, is utilized to interpolate the Cartesian coordinate x(s) 

and y(s), cross-sectional area function A(s) and area moment of inertia function I(s) as: 

xinttm] w , yinMNm {n, A(tiy=wm {A }, m=[Nm {/} (2.18) 
A polynomial equation of order 5, as stated in Equation (2.19), would then be used to 

interpolate the tangential displacement (w) for this case, as it will satisfy the governing 

differential equation with respect to the tangential displacement stated in Equation (2.17). 

u(t]) = C0+C:ij + C2?]2+C3J]3+C4T]4 + C5Tj5 (2.19) 

Using the deformation relationship for the beam model (Case 2 listed in Table 2.1), the 

radial displacement (w) and rotation (y/) are related to the tangential displacement (w) as: 

w(7) = _ M x f M . and ¥(rj) = ̂ l J _ _ i l M (22Q) 
drj Jc(?j) drj Jc(rj) p(tj) v ' 

where Jacobian Jc(r/) and radius p{rj) can be evaluated using the same methodology as 

that for curved beam model (Case 1), as the geometrical properties were interpolated 

using the same Lagrangian type shape function. The displacement function u(rj) can be 
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related to a two-node curved beam element (each node has three degrees of freedom U, 

W, W) with nodes i andy as: 

«(7) = [ ^ ( 7 ) f c W, Yt Uj Wj Wjf (2.21) 

where [NN(rj)] is the shape function matrix, which can be obtained using Equations 

(2.19) and (2.20). The detailed information has been provided in "Appendix D". Finally, 

by applying the Galerkin weighted residual technique to the governing differential 

equations listed in Equations (2.15) and (2.16), the governing equations of motion in 

finite element form for Case 2, similar to that in Equation (2.11), can be obtained. For 

this case, the nodal displacement vector and the mass and the stiffness matrices for this 

case can be expressed as: 

{q) = {Ux,Wx,Tw-,Un,Wn^n}
1 (2.22) 

[M]= £ 
element 

^l[BN(Tj)frAiTj)[B(Tj)] 

+ [AW(/7)f yA(jj)[NN(tj)]Jc (r?)) 

dt] (2.23) 

element 

P ( /?) [DN(T})lTEm[DN(Tj)]+^-lDN(r1)]
T[BN(ri)]+ 

Jc
5(n) Jc\l) 

^-[BN(n)f[DNm+ 7
EI(H\ [BNmT[BN 

Jeil) p'toVM m 
dt] (2.24) 

where n is the total number of nodes to model the curved beam, \Bd?])\ - d[NN(rj)]/dri, 

and [DN(TI)] = c?[NN(f])]/dri3. The detailed procedure for obtaining Equations (2.23) and 

(2.24) has been provided in "Appendix E". 
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2.4 Numerical Results 

In this section, illustrative examples are presented to clarify the generality and accuracy 

of the developed methodologies. As the dimensionless natural frequency, which will be 

studied in this section, has different definition in available published literatures, Table 2.2 

will summarize those definitions for dimensionless natural frequency. 

Table 2.2 Definitions of the dimensionless natural frequency. 

Definition 1 Definition 2 

Dimensionless natural frequency A' - -\M< ̂  vAi I ̂ h A - y^i R \ /A) I EIQ 

In Table 2.2, Q-, and k represent the zth dimensionless natural frequency and eigenvalue, 

respectively. Ao, h, E and y represent the area and area moment of the beam structure, and 

the material elastic modulus and volumetric density, respectively. / and R represent the 

beam length (curvilinear length) and the radius of circular beam, respectively. 

2.4.1 Timoshenko beam 

172 
A typical non-uniform beam , as shown in Figure 2.3, will be utilized to investigate the 

presented methodology. 

(Centra/ line) 

Figure 2.3 A typical non-uniform Timoshenko beam. 
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Here, the Timoshenko beam is modeled using 7 Timoshenko beam elements with 4 nodes 

per element. The dimensionless geometrical and physical properties of this beam have 

been summarized in Table 2.3. 

172 
Table 2.3 Dimensionless properties of the non-uniform Timoshenko beam . 

Elastic modulus (£)/ Shear modulus (G) 2.6 Area moment (Io)/Area (Ao) 0.07072 

Shear coefficient^) 5/6 Beam Length (L) 1 

Density(y) 1 Tapped rate (a) -0 .5 ,0 , 1 

Beam Area function A=A0(\+ox), 0<x<L 

Beam Area moment function I=h(\ +ax)3, 0<x<L 
Note: (1) the original reference papers did not provide the unit of each parameter and the value of 
density, as the dimensionless natural frequency will be studied, the effect of unit and detail value of 
physical properties will be cancelled finally; (2) The tapped rate (a) is utilized to evaluate the area and 
area moment function. 

In this example, the dimensionless natural frequency, as defined in "Definition 1" in 

Table 2.2, will be utilized to study the dynamic properties of the beam. The first five 

dimensionless natural frequencies evaluated through the presented finite element method, 

which is programmed utilizing the MATLAB® software, have been provided in Table 

2.4, and compared with those solved analytically in available literatures. 

Table 2.4 The first five dimensionless natural frequencies comparison for non-uniform 

Timoshenko beam with pinned-pinned boundary. 

a 

Q, 

Q, 

Q2 

Q3 

Q4 

Q5 

-0.5 

Ref[1721 RefD731 Present 

6.765 6.754 6.754 

24.462 24.539 24.353 

47.371 47.302 47.281 

72.674 72.672 72.632 

99.231 99.039 98.982 

0 (uniform) 

RefT1721 RefT1731 Present 

9.023 9.023 9.021 

29.914 29.912 29.9 

55.201 55.207 55.173 

81.817 81.815 81.756 

108.856 108.695 108.61 

1 

RefT1721 RefT1741 Present 

11.901 11.896 11.893 

36.427 36.424 36.402 

63.004 62.849 62.798 

68.143 68.048 67.975 

89.984 89.696 89.615 
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From Table 2.4, one can easily find that the results are in perfect agreement with those in 

published literatures. Here, it should be noted that the results are provided for both 

uniform (a-0) and non-uniform Timoshenko beams. 

2.4.2 Curved beam model (Case 1) 

The curved beam model (Case 1) takes into account the axial extensibility (dui{s)lds), 

shear deformation and rotary inertia. The challenge for the finite element methodology 

developed in this dissertation is to evaluate the mass, stiffness (also the damping and 

force) matrices utilizing the curvilinear integral applied on the central line of curvilinear 

beam numerically. Therefore in this section, first the circular beam-type structure will be 

studied to validate the developed finite element formulation, and then the study will be 

extended to non-circular beam with variable curvature, finally a non-circular beam with 

non-uniform cross-section will be presented. Here, it should be noted that all the curved 

beams studied in this section, are modeled using 10 developed 'curved beam element' 

with 4 nodes per element. 

Example 1: Uniform circular curved beam with pinned-pinned boundary conditions 

The uniform circular curved beam, as illustrated in Figure 2.2, with the pinned-pinned 

boundary condition is considered here. The beam's dimensionless material and 

geometrical characteristics are given in Table 2.5: 

22 43 

Table 2.5 Dimensionless properties of circular beam ' . 

Physical properties {kqG/E) 0.3 Beam area Moment {I0) 0.01 

Beam Radius (R) 0.75 Beam area (A0) 4 

Density^) 1 Acre angle (0) id2 
Note: the original reference papers did not provide the unit of each parameter and the value of density, 
as the dimensionless natural frequency will be studied, the effect of unit and detail value of physical 
properties will be cancelled finally. 
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The other parameters can be obtained through those listed in Table 2.5 as: 

/ = R0, r=<{ Io/A0y=0.05, R/r=\5 and 1/r = 23.56 (2.25) 

The results for the first 10 dimensionless natural frequencies defined as "Definition 1" in 

Table 2.2, and the associated modal shapes and deformed configurations are provided in 

Table 2.6 and Figures 2.4 and 2.5, respectively. It can be realized that very good 

22 

agreement between the present results and those presented by Austin and Veletsos and 
43 

Eisenberger and Efraim does exist. It should be noted that the horizontal axis "non-

dimensional beam curvilinear length" in Figure 2.4 is defined by the non-dimensional 

parameter s/l, in which, 5 is measured along the curved beam central line. Therefore, s/l 

varies between zero and one. 

Table 2.6 Dimensionless frequencies of a uniform circular curved beam with the pinned-

pinned boundary conditions (Case 1). 

Mode 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

22 

Austin and Veletsos 
29.61 

33.01 

67.24 

79.6 

107.7 

144.5 

155.2 

191.3 

223.7 

235.3 

43 

Eisenberger and Efraim 
29.2799 

33.3049 

67.1235 

79.9708 

107.8511 

143.6175 

156.6656 

190.4771 

225.3611 

234.5235 

Present study 

29.2760 

33.3176 

67.1231 

79.9752 

107.8559 

143.6287 

156.6790 

190.5445 

225.3700 

234.7116 
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Figure 2.5 The deformations relative to the first 10 vibration modes for uniform circular 

curved beam with pinned-pinned boundary condition. Solid and dashed lines represent 

deformed and un-deformed configurations, respectively. 
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Example 2: Uniform circular curved beam with clamped-clamped boundary conditions 

In this example, a uniform circular curved beam with the clamped-clamped boundary is 

studied. The dimensionless geometrical and material properties are given in Table 2.7. 

22 43 

Table 2.7 Dimensionless properties of circular beam ' . 

Physical properties (kqG/E) 0.3 Beam area Moment (Id) 0.0016 

Beam arch length (/) 1 Beam area (Ao) 1 

Density(y) 1 Acre angle (0) n/2 
Note: the original reference papers did not provide the unit of each parameter and the value of density, 
as the dimensionless natural frequency will be studied, the effect of unit and detail value of physical 
properties will be cancelled finally. 

The other parameters can be obtained through those listed in Table 2.7 as: 

R =1/0 =0.6366, r=V( I</A0)=0.04, R/r =15.91 and l/r = 25 (2.26) 

The results for the first 10 dimensionless natural frequencies (Q) defined as "Definition 

1" in Table 2.2, and the associated modal shapes and the deformed configurations are 

presented in Table 2.8 and Figures 2.6 and 2.7, respectively. 

Table 2.8 Dimensionless frequencies of uniform circular curved beam with clamped-

clamped boundary conditions (Case 1). 

Mode 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

22 

Austin and Veletsos 
36.81 

42.44 

82.5 

84.3 

122.5 

155.1 

167.7 

249.6 

43 

Eisenberger and Efraim 
36.7031 

42.2635 

82.2330 

84.4915 

122.3053 

154.9447 

168.2026 

204.4718 

238.9920 

249.0114 

Present study 

36.7130 

42.2588 

82.2328 

84.4935 

122.3108 

154.9510 

168.2192 

204.5467 

238.9938 

249.2148 
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curved beam with clamped-clampcd boundary conditions. Solid and dashed lines represent 
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Once again, it can be seen the results are in very close agreement with those reported in 

22 43 

works by Austin and Veletsos and Eisenberger and Efraim . 

Example 3: Uniform circular beam with different arch angle 

Above two examples are concentrated on the uniform circular beam with 90° arch angle. 

This example will be focused on circular beam with different arch angle. The 

dimensionless natural frequency defined as "Definition 2" in Table 2.2, will be evaluated 

utilizing the developed finite element methodology and then the results will be compared 

with those in available literatures. In this example, the cross-section of uniform circular 

beam is circular and the geometrical and physical parameters are listed in Table 2.9. 

Table 2.9 Properties of circular beam ' ' . 

Elastic module (£) 2.1xl011(JV/w2) Shear coefficient (kq) 0.909 

Poisson's ratio (v) 0.3 Beam area (A0) 0.0004 (m2) 

DensityQ) 7850 (N/m3) Slenderness ratio 20 

43 

In Table 2.9, the slenderness ratio is defined as 2R/r , in which R and r represent the 

radius of circular beam and the beam's cross-section, respectively. As it is a circular 

cross-section beam, the area moment can be easily obtained through I=n (Irf /64. The 

shear modules can be obtained through G=E/2(l+v). The results for the first four 

dimensionless natural frequencies defined as "definition 2" in Table 2.2, are listed in 

Table 2.10. Again, excellent agreement is observed with the results in published 

literatures. 

Now, the natural frequency of the circular beam with different boundary conditions and 

arch angles has been evaluated using the developed methodology, and the results show 
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perfect agreement with those in available literatures. Next, the proposed finite element 

approach will be utilized to evaluate the natural frequency of non-circular curved beam. 

Table 2.10 Dimensionless frequencies of uniform circular beam with clamped-clamped 

boundary conditions (Case 1). 

Arch angle . . . 28 43 „ . ,175 

l&L 
Mode Yildirim Eisenberger and Efraim Irie et al Present 

1 23.799 23.799185 23.75 23.8013 

2 39.144 39.144203 39.05 39.1433 

3 62.976 62.976120 62.38 62.9772 

4 71.042 71.041569 70.71 71.0424 

60° 

1 10.629 10.629336 10.61 10.6266 

2 15.194 15.193805 15.19 15.2006 

3 24.756 24.755831 24.72 24.7613 

4 30.598 30.598384 30.47 30.6 

120° 

1 4.160 4.160407 4.151 4.156 

2 8.546 8.545747 8.542 8.5437 

3 15.481 15.480691 15.46 15.4796 

4 17.921 17.921279 17.91 17.9454 

180° 

Example 4: Parabolic, elliptical and sinusoidal uniform curved beams 

In this example, the parabolic, sinusoidal and elliptical arches, as shown in Figure 2.8, are 

investigated for their dimensionless natural frequencies. To facilitate the numerical study, 

the following dimensionless variables are defined: / = h/L (arch rise to the span length), 

SR = LM(I/A) (slenderness ratio) and df = x/L. The cross-sectional area, second moment 

of area of the beam, and all beam material properties are similar to those given in 

Example 1. The Dimensionless equation for the parabolic arch (Figure 2.8a) is defined 

35 

as : 

y = 4Ml-fi\ 0<£<1 (2.27) 
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35 
And the dimensionless equation for the sinusoidal arch (Figure 2.8b) is defined as : 

where 

3/ = /-c1+c1sin(c2^r + £c2); 0<f<l 

c2-n /(l + 2s); cx = / / [ ! - sin(s?2)] 

(2.28) 

(2.29) 

The dimensionless equation for the elliptical arch (Figure 2.8c) can be written as: 

where 

y = b2 Jl- {1 - [ | -bx cos(o)]lb,}2 -b2 sin(a); 0<^<1 

bx =f + 0.5; a = arccos(0.5/Z),); b2 = f /[l - sin(a)] 

(2.30) 

(2.31) 

The numerical results for the first four dimensionless natural frequencies defined as 

"Definition 1" in Table 2.2, are listed in Table 2.11. As it can be realized that the results 

are in excellent agreement with those reported by Oh et at . 

yi Arch 

Figure 2.8 Different types of curved beams: (a) Parabolic; (b) Sinusoidal; (c) Elliptical. 
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Table 2.11 Dimensionless frequencies for the parabolic, elliptical and sinusoidal curved 

beams with different boundary conditions (Case 1). 

Geometry of arch Mode Oh et at Present study 

Parabolic 1 21.83 21.7478 

pinned-pinned 2 56.00 55.4894 

/ = 0.3, SR = 75, 3 102.3 100.7214 

kaG/E = 0.3 4 U3A 113.4976 

Elliptic (e = 0.5) 1 35.25 34.892 

pinned-clamped 2 57.11 56.766 

/ = 0.2, SR = 50, 3 83.00 81.420 

kgG/E = 0.3 4 128.2 124.288 

Sinusoid (e = 0.5) 1 56.3 56.0836 

clamped-clamped 2 66.14 66.0952 

7=0.1, SR = 100, 3 114.3 113.4277 

kaG/E = 03 4 18L7 179.3567 

Example 5: General non-uniform and non-circular curved beams 

In above four examples, the natural frequencies for circular beams with different arch 

angles (0) and also different type of non-circular beam with different boundary 

conditions have been investigated and by comparing the results with those in available 

literatures, the validity of the proposed finite element approach has been verified. In this 

section a general curved beam with clamped-clamped boundary condition, which 

represents an overpass bridge shown in Figure 2.9, will be investigated. It should be 

noted that this type of curved beam has a variable radius of curvature. The physical 

properties of the curved beam are listed in Table 2.12. 
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'Beam upper surface 

Figure 2.9 General non-uniform and non-circular curved beam representing an overpass 

bridge. 

Table 2.12 Properties of the general non-uniform and non-circular curved beam. 

Elastic modulus(E) 

Shear modulus(G) 

Density( y) 

Beam upper and lower surface functions 

Central line function 

70 (GPa) Shear coefficient^) 0.8438 

24.50 (GPa) Beam width 2 (m) 

2777 (Kg/m?) Beam span length 40 (m) 

y = 2 (m), y = -0.005 x2 + 0.2x -2 (m) 

y = -0.0025x2 + 0.1x(m) 

The variations of the first four natural frequencies with respect to the number of elements 

for the finite element model are shown in Figure 2.10. The first four associated modal 

shapes and the beam's deformations are also illustrated in Figures 2.11 and 2.12, 

respectively. 
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Figure 2.12 The deformations relative to the first four vibration modes for the general non­
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Solid and dashed lines represent deformed and un-dcformcd configuration, respectively. 
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It can be realized from Figure 2.10 that the natural frequencies converge rapidly with the 

increase of the number of elements in the finite element model and there is no significant 

changes in the natural frequencies for the number of elements higher than 6. 

2.4.3 Curved beam model (Case 2) 

The natural frequencies of a uniform circular beam are once again studied in this section, 

but this time the effects of the axial extensibility {dui{s)lds), shear deformation and rotary 

inertia of the curved beam have all been neglected. The parameters related to the 

tangential inertial force, which are presented in Equations (2.13), (2.16) and (2.23), have 

also been neglected in order to compare the results with those reported in available 

12 

literature . The first 10 dimensionless natural frequencies defined as "Definition 2" in 

Table 2.2, of the circular beam with various curve angles and different boundary 

conditions are listed in Tables 2.13 to 2.16, and were compared with those presented by 
12 

Henrych . In this example 10 'curved beam elements' (4 nodes per element), similar to 

that for Case 1, is utilized to evaluate the nodal cross-sectional area, moment of inertia, 

radius of curvature and geometrical Jacobian matrix, and then 10 'curved beam elements' 

(2 nodes per element), as given in Equation (2.21), are employed to evaluate the nodal 

displacement vector for Case 2. 

To compare the related results with those for curved beam model (Case 1), the last 

columns of Tables 2.13 and 2.14 are the dimensionless natural frequencies defined by 

"Definition 1" in Table 2.2 for the pinned-pinned and the clamped-clamped circular beam 

with the curve angle 0 of 90°, respectively. 
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One can realize form Tables 2.13-2.16 that the dimensionless natural frequencies 

evaluated using the developed finite element approach agree perfectly with those 

12 

provided by Henrych . Comparing the natural frequencies listed in the last column of 

Tables 2.13 and 2.14 with the corresponding values in Tables 2.6 and 2.8 for Case 1, one 

can realize the significant effects of the shear deformation, rotary inertia and axial 

extensibility (duj{s)/ds), especially, for the higher modes. For instance, the first non-

dimensional fundamental natural frequency for the pinned-pinned circular beam with <£ 

= 90° is 29.276 for Case 1 compared to 37.011 for Case 2, while the 10th natural 

frequency of the beam is 234.116 for Case 1 compared to 1195.293 for Case 2. Similarly, 

the first non-dimensional fundamental natural frequency for the clamped-clamped 

circular beam with <P = 90° is 36.713 in Case 1 compared to 59.851 in Case 2 while the 

10th natural frequency of the beam is 249.2148 in Case 1 compared to 1302.093 in Case 

2. 

2.5 Conclusions and Summary 

In this Chapter, the governing differential equations for the Timoshenko beam and 

general curved beam (including and excluding the effects of the axial extensity 

(dui{s)/ds), shear deformation and rotary inertia) are derived using the extended Hamilton 

principle and then cast into finite element method. 

A '4-node' Lagrangian type Timoshenko beam element with two-degree of freedom per 

node has been presented to solve both uniform and non-uniform Timoshenko beams. The 

results are in excellent agreement with those reported in published literatures. Moreover, 

a '4-node' Lagrangian type curved beam element with three-degree of freedom per node 
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has been developed to study the curved beam model considering the axial extensibility 

(dui{s)lds), shear deformation and rotary inertia (Case 1), and then combined with the 

curvilinear integral method to solve both the uniform and non-uniform curved beam with 

variable curvatures. The results for the conventional geometry (circular, parabolic, 

sinusoidal and elliptical curves) are in excellent agreement with those reported in 

published literatures. 

Furthermore, a 'two-node' curved beam element with three-degree of freedom per node 

has also been proposed to study the curved beams' deformation relationship excluding 

the effects of the axial extensibility (dui(s)/ds), shear deformation and rotary inertia (Case 

2). The '4-node' Lagrangian type shape function are utilized to interpolate the 

geometrical properties of the curved beams. The equations of motion in finite element 

form were obtained by the curvilinear integral method and Gauss Quadrate technique. 

Results obtained are in excellent agreement with those available in literature for different 

boundary conditions and curve angles. It has been shown that the effect of the axial 

21 

extensibility (duj{s)lds), shear deformation and rotary inertia is significant . 

It has also been shown that by using the finite element method with appropriate shape 

functions, the dynamic property of the curved beam with different geometry and 

boundary conditions can be accurately obtained. Therefore, the beam elements developed 

in this chapter will be utilized to model and investigate the vibration suppression problem 

for beam-type structures using TMD and SAMD technologies, which will be presented in 

the following chapters. 
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CHAPTER 3 

VIBRATION SUPPRESSION OF TIMOSHENKO BEAM USING 

TUNED MASS DAMPER 

3.1 Introduction 

Based on the literature review presented in Chapter 1, one can easily find that previous 

works about the Tuned Mass damper (TMD) system are mainly focused on attaching 

TMD onto Single-Degree-of-Freedom (SDOF) or discrete Multi-Degree-of-Freedom 

(MDOF) systems. For continuous systems, such as uniform beams, the problems are 

typically simplified to a SDOF system based on the fundamental modal shape of the 

84 

continuous system . This methodology has some restrictions, which have been 

summarized in Chapter 1. Therefore, this chapter concentrates on studying the uniform 

Timoshenko beam with one attached TMD. Subsequently, the optimal TMD parameters 

will be compared with those reported in published literatures, to verify the validity of the 

optimal TMD design for beam-type structures using the developed design optimization 

algorithm. 

3.2 Equations of Motion for Timoshenko Beam with Attached TMD 

In this section, a detailed and comprehensive procedure for the equations of motion in 

finite element form for Timoshenko beam with the attached TMD system, as illustrated in 

Figure 3.1, is presented. Here, for the sake of simplicity, the formulation for the 
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Timoshenko beam with one TMD system has been derived using the extended Hamilton 

principle. However, the mathematical modeling procedure can be easily extended to 

multiple TMD system. 

i Y 
A 

• - • • w(x,l) 

t fc 
1 * 

xr 
.^j 

KniD< c3 < 

Mmt) 

"TMD ><ti(0 

X 

Figure 3.1 The Timoshenko beam with the attached Tuned Mass Damper (TMD) system. 

In Figure 3.1, KTMD, CTMD and MTMD represent the spring stiffness, damping and mass of 

the designed TMD system, respectively, and L is the beam length. The extended 

Hamilton principle can be described as: 

\{8T -SV + 5Wnc)dt = 0 ; <5(.)=0at t = t1,t2 (3.1) 

where the kinetic (7) and potential (V) energies and the non-conservative virtual work 

(SWnc) for the Timoshenko beam with one attached TMD system could be described as: 

T = L)m (J^l ) \ + L^J^fJl)2^ + lMmD iT ( 0 2 (3.2) 

V = UEI{X){^^\ dx + UkqGA(x)p2{x,t)dX + \KTMD{w(xT,t)-zT{tj)2 (3.3) 
20

J V 8x J 2 0 

SWnc = jf(x> t)5wdx + L j ~ Cw(x, t)dwdx - CTMD (w(xT ,t)-zT (t))S(w(xT ,t)-zT (t)) (3.4) 
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where E, G, kq, m(x), A(x), I(x), J{x), I, w, /? and i// have the same definitions as those 

presented in Equations (2.2). C represents the viscous damping, zr and w(xT,t) represent 

the displacement of the attached TMD and beam's transverse displacement at the point 

(XT) of attachment TMD system, respectively. J{x,t) represents the external force. 

Considering the Timoshenko beam's deformation relationship (dw/dx = y/ + fi), as stated 

in Equation (2.1), and Equations (3.2)-(3.4), and then applying the Hamilton's principle, 

as stated in Equation (3.1), the following three governing differential equations of motion 

may be obtained. 

, . 9 w(x,t) „dw(x,t) 8 
-m(x) V-^-C—T-Z-J- + 

' I ; dt 

dt dx 
k„GA(x) 

8w(x, t) 
v. dx 

-y/(x,i) + f(x,t) 

CTm(^p^-zT(t)\3(x-xT)-KTm(w(xT,t)-zT0))S(x-xT) = 0 

0 
., . d2w(x,t) d („T, . dw(x,t)\ , _ . . Jdw(x,t) , . 

dt1 dx\ dx dx 

(3.5a) 

(3.5b) 

MTMDzT+CTMD(zT(t)-w(xT,t)) + KmD{zT -w(x r ,0) = 0 (3.5c) 

where the symbol 9{x-xT) is set to unity when x = xT, otherwise is equal to zero. Now, 

utilizing Equations (3.5), and the finite element approach presented in Chapter 2, the 

following equations of motion in the finite element form can be obtained: 

where 

[M]{q(t)} + [C] {q(t)} + [K] {q(t)} = {F(t)} 

{q}={{w(t)} m m zT(t)Y 

[M] = 
[Mww] [0] [0] 

[0] [ M ^ ] [0] 

[0] [0] MTMD 

(3.6) 

(3.7a) 

(3.7b) 
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[C] = 

[Cww] + [CwTMD] [0] -[CzTMD] 

[0] [0] [0] 

~ \CzTMD ] [0] c TMD 

(3.7c) 

[K]-. [Kwy,f [K„] [0] 

~ [KzTMD ] [0] K-TMD 

{F{t)} = \ I 
element 

j{[N(riy\nrj,t)J(ri)drj}, {0}^ 0 

(3.7d) 

(3.7e) 

where [A (̂̂ )] and J{r/) are the shape function and Jacobian between the natural 

coordinates and physical coordinates, which have been defined in Chapter 2 and 

presented in "Appendix A". In equivalent nodal force vector {F(t)}, expression {0}^, 

represents the null vector with the same size as {!f(0}- The sub-matrices [Mww\, [Mvv\, 

[Kww], [Kwv\ and [K„] in the mass and stiffness matrices have the same definitions as 

Equations (2.5) and presented in "Appendix A". All the other sub-matrices are defined in 

the "Appendix F". For the sake of numerical stability, the following transform matrix is 

defined to transfer the nodal displacement vector to a dimensionless vector. 

[T] = 
Le[I]w [0] [0] 

[0] [I\ [0] 

[0] [0] Le 

(3.8) 

where Le is the length between two nodes for Timoshenko beam element and [I\w and [T\v 

are the identity matrices with sizes corresponding to vectors {W} and {¥), respectively. 

Thus the nodal displacement vector {q} can be expressed as {q}=[T]{qd}, where {qd} is a 

dimensionless vector, and then Equation (3.6) can be transferred to the following form: 

[Md]{qd(t)} + [Cd]{qd{t)} + [Kd}{qd{t)} = {Fd{t)} (3.9) 
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where [M,]=[T\T[M][T\, [Cd]=[T\T[Q[T\, [Ki\=[T\T[K\[T] and {F^)]=[7]r{F(0}-

Therefore, the response, which will be defined in numerical example, will be also 

dimensionless. 

3.3 Random Vibration State-Space Analysis 

Structural systems are typically subjected to the random type loading. In this work, the 

optimal design of TMD systems are also been studied for structures under random 

loading. For a typical random vibration problem, the mean value of the response can be 

obtained through static analysis, thus the problem would be focused on structures subject 

to random loading with zero mean value. In general, the random vibration analysis are 

concentrated on two important criterions, the variance and Power Spectral Density (PSD) 

function, in which the first one reflects the performance in time domain and the second 

one represents that in frequency domain. The PSD function can be obtained directly 

through the transfer function. The general procedure to obtain the variance of response 

can be summarized as: Decoupling the equations of motion utilizing the fundamental 

modal shape (eigenvector), then analyzing each vibration mode as a SDOF system, 

finally using some numerical methodologies, such as Square Root of the Sum of Squares 

method, Absolute Method, Naval Research Laboratory method, Closed Method, 

87 

Modified Root Sum of Squares method or Combined Quadratic Combination method , 

to obtain the variance of response. For more detail information about the methodologies 
87 

presented above, one can consult the textbook by Wirsching . 

In this dissertation, the random vibration matrix analysis method will be utilized to find 

the variance of structural response, which will be considered subsequently as the 

68 



objective function of the optimal TMD design problem. The basic idea of the random 

vibration matrix analysis method is to transfer the equations of motion stated in Equation 

(3.9) to the following state-space form, which is a first-order differential equation. 

{z(t)} = [A]{z(t)} + [B}{Fd(t)} = [A]{z(t)} + {Q(t)}, (3.10) 

where {z} is the state vector {qj,q(j}
T, and 

l-[MdT
x[Kd] -[MdT

l[Cd] 

It should be noted that the mean value is assumed to be zero, thus the variance is equal to 

the mean-square-value, the covariance is equal to the correlation and the autocovariance 

is also equal to the autocorrelation. In the frequency domain, knowing the PSD function 

of external excitation [SQQ(O>)], the PSD of state-space vector, as stated in Equation 

(3.10), can be obtained through: 

[5„(ffl)] = [iffl[/] + [^]]-1[5ee(fl>)]([-iffl[/] + [^ ] ] - , ) r (3.12) 

where [4s]=-[-*4L It is noted that for the stationary random process, the PSD of external 

excitation is a constant matrix, and thus [SQQ(CO)] can be simplified as [So], and then the 

expression of state-space covariance equation can be simplified as : 

[A,][Ca] + [Ca][A,]r =2x[S0] (3.13) 

where [Czz] represents the covariance matrix, in which the diagonal components are the 

variance of every variables in the state-space vector {z(f}} and other components are the 

covariance. A simple derivative procedure for Equation (3.13) has been provided in 

"Appendix G", and for more information one can consult the textbook by Lutes and 

and [B] = 
[0] 

(3.11) 
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Sarkani . In fact, the Equation (3.13) is a Lyapunov equation and can be easily solved. 

The RMS of response is basically the square root of variance. 

3.4 Optimization Approach 

In this section the objective function for the optimal TMD design approach will be 

established first. As the established objective function will be utilized in this chapter and 

also next chapter (Chapter 4), the objective function in general form will also be 

presented in this section. Then, the Sequential Quadratic Programming (SQP) method 

will be implemented to find the optimal design TMD parameters in this chapter. 

3.4.1 Optimization problem 

In this dissertation, the objective of the design optimization problem is to find the optimal 

values of the location, damping coefficient and stiffness of the TMD system in order to 

minimize the RMS of the beam's deflection subjected to random loading. For the sake of 

numerical stability, the following dimensionless parameters are defined for the attached 

TMD system. 

_ MTMDi f _ °>TMDi H r CmDi 

Mi-— ,hMDt- and 4TMDI - (3 . 1 4 ) 
J Y± structure wn ^ -ft- TMDi1V1 TMDi 

where co„ and Mstnicture are the n natural frequency and mass of the main structure. MTMDU 

KTMDI, CTMDI and coTMDi = -yjKTMDi/MTMDi are the mass, stiffness, viscous damping and 

natural frequency of the /"* attached TMD, respectively. Dimensionless variables HufrMDi 

and £,TMDI are mass ratio, frequency ratio and damping factor of the i'h attached TMD, 

respectively. Now the optimization problem for the beam with attached TMD system 

under given mass ratio (u), subjected to random excitation can be described as: 
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Find the design variables: {DV}={£TMDi,frMDi, rjTMDi) 
To minimize: RMS of Deflection (3.15) 

Subjected to: 0< & M » < 1 , 0<fTMDi<2.5, -1< nTMDi< 1 • 

where rjTMDt represents the position of the i'h attached TMD system in the natural 

coordinate (n), and the objective function is the solution of Equation (3.13). It is noted 

that the mass ratio (ju) is a given input in the optimization problem and practically the 

ratio of the total mass of the attached TMD system to the mass of the beam should not be 

greater than 10%, otherwise the attached TMD will change the structural dynamic 

82 

properties significantly . As the numerical examples provided in this chapter are based 

on the single attached TMD with fixed position, the design optimization problem stated 

in Equation (3.15) would be simplified as: 
Find the design variables: {DV)={[TMD, £TMD} 

To minimize: RMS of Deflection (3.16) 

Subjected to: 0<fTMD<2.5, 0 < $Tm< 1 

3.4.2 Optimization algorithm 

Sequential Quadratic Program (SQP) technique, which is a powerful and robust gradient 

based optimization algorithm, has been employed to solve the optimization problem 

stated in Equation (3.16). Here the most essential issues of the SQP technique will be 

reviewed. For more details information about SQP optimization methodology, one may 

88 89 

consult the books by Arora or Rao . The main idea of the SQP optimization method is 

to generate a Quadratic Programming (QP) problem based on the quadratic 
88 89 

approximation of the Lagrangian function described as ' : 

m 
L({DV},X) = mDV}) + ^iSi({DV}) (3.17) 

»=i 
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where {DV}, {g,} and {!,} are the design variable vector, the i constraint and Lagrange 

multiplier, respectively. /I-) represents the objective function. The SQP implementation 

consists of three main steps: (1) a QP Sub-problem solution; (2) a linear searching based 

on the value of objective function; (3) updating the Hessian matrix of the Lagrangian 

function given by Equation (3.17). The procedure proceeds by solving a QP sub-problem 

at each major iteration. The solution of the QP sub-problem generates an estimate of the 

Lagrange multiplier (A) and a search direction vector {d} in each iteration (k), which is 

utilized to generate a new iteration as: 

te}*+i ={*}*+«*{<*}* (3.18) 

where a* represents the step length at the kfh iteration and it should be determined by 

using an appropriate line search technique (one-dimensional minimization) in order to 

produce a sufficient decrease in the merit function. Then the Hessian of the Lagrangian, 

which is required for the solution of the next positive definitive quadratic programming 

88 89 

problem, is updated using the Broyden Fletcher Goldfarb Shanno (BFGS) formula ' . It 

should be noted that the SQP optimization methodology is a typical local optimization 

technology, which is capable to find the local optimum points. In this chapter the SQP 

algorithm has been executed for multitude of random initial points to ensure that the 

global optimal point has been caught. 

3.5 Numerical Results 

A uniform Timoshenko beam with the attached mid-span TMD, as illustrated in Figure 

3.1, will be investigated in this section. The boundary condition is clamped-clamped. The 

physical and geometrical properties of the beam have been listed in Table 3.1. 
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Table 3.1 Properties of the Timoshenko beam . 

Elastic Modulus 29.43 (GPa) Second moment of area 8.72 (m4) 

Shear Modulus 24.50 (GPa) Shear coefficient (A,) 0.41 

Mass per unit length 36056 (Kg/m) Beam structural damping 0 

Cross Sectional Area 7.94 (m2) Beam length (L) 40 (m) 

The first five natural frequencies of the beam are evaluated using the finite element 

84 
method presented in Chapter 2, and then compared with those obtained analytically , as 

provided in Table 3.2. 

Table 3.2 The first five natural frequencies of the Timoshenko beam. 

84 

Analytical Solutions 

finite element Method 

coj (rad/s) 

36.280 

35.451 

co2 (rad/s) 

93.550 

92.084 

co3 (rad/s) 

168.125 

168.609 

(O4 (rad/s) 

259.10 

005 (rad/s) 

359.64 

In this chapter, the optimal TMD design based on both random and harmonic loadings 

will be presented, and the results will be compared with those available in published 

literatures. Here, it should be noted that the beam has been modeled using 7 Timoshenko 

beam elements with 4 nodes per element, which has been presented in Chapter 2. 

3.5.1 Optimization based on random excitation 

In this section, the random loading is assumed to be in the form of white noise with PSD 

function of 1010 (N2rad/s) applied uniformly perpendicular to the central line of beam. 

Here three different cases have been investigated. In Case (1), the RMS of the first 

vibration modal response has been considered as the objective function, in Case (2), the 

RMS of the beam's mid-span transverse response (w) has been selected as objective 

function and in Case (3) the optimal results based on simplified SDOF system under 

random loading would be investigated, which is obtained based on utilizing the 
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eigenvector of ([Md] [Kd]), as stated in Equation (3.9), to separate the first vibration 

mode as: 

Mxq\(t) + Kxqx(t) = Fx(t) (3.19) 

where Mi, Ki, and qi represent the modal mass, modal stiffness and modal displacement 

for the first vibration mode, respectively. It is also assumed that the structural damping is 

zero and the mass ratio («), as defined in Equation (3.14), is changed to /J=MTMD/MI. AS 

84 

the effect of attached TMD has been assumed to be restricted in the first vibration mode 

in the numerical model, The problem in Case (3) can be considered as a classical TMD 

design problem, in which a single TMD is attached to an un-damped SDOF structure. 

The analytical solution for optimal TMD parameters for an un-damped SDOF structure 
52 

under the white noise random excitation can be found in Warburton as: 

fTMD = £±El and £TMD = p O ± W : (3.20) 
JTMD l + ju TMD \4(\ + ju)(\ + ju/2) K ' 

For Case (3), the obtained optimal parameters are compared with those based on 

Equation (3.20) to verify the validity the proposed optimization approach for TMD 

system as well as the random vibration state-space analysis methodology utilized in this 

dissertation for TMD design. The optimal frequency ratio (/TM)) and damping factor 

{ZTMD) for Cases (l)-(3) and the value of objective function for Cases (1) and (2) with 

respect to the input mass ratio (changing from 0.01-0.1) have been obtained based on the 

design optimization problem stated in Equation (3.16). The results are shown in Figure 

3.2 and compared with those obtained analytically based on Equation (3.20). 
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Figure 3.2 Optimal Tuned Mass Damper (TMD) parameters and objective function vs. 

input mass ratio Qi). (a) Optimal frequency ratio (/TMD)- (b) Optimal damping factor (^TMD)-

(c) Value of objective function. Solid, dashed and dotted lines represent Cases (1), (2) and 

(3), respectively. Note: in (a) and (b) the dotted line coincides with Equation (3.20). 
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One can realize from Figure 3.2 that the optimal parameters for Cases (1) and (2) are in 

close agreement as expected. This is mainly due to the fact that the first vibration mode is 

the dominant mode in this example. The optimal results for Case (3) are exactly matching 

52 

those obtained by Warburton , as stated in Equation (3.20), however, they are 

significantly different from those in Cases (1) and (2). Thus, one can make the conclusion 

that for the continuous structure with the attached TMD system under the random loading 

the simplified assumptions made in Case (3) would not generate accurate optimal results. 

Furthermore, based on the result for Case (3) and its comparison with the analytical 

solution, one can also find that the developed optimization approach stated in Equation 

(3.16) are effective in optimal TMD design. 

To illustrate the efficiency of the optimal TMD design and also the system response for 

different cases, typical optimal TMD parameters for mass ratio (JJ) equal to 0.01 are 

selected and provided in Table 3.3. As expected there is not significant different for the 

optimal frequency ratio (/TMD) between Case (1) and Case (2), which is exactly in 

agreement with the working principle of the optimal TMD system and also due to the fact 

that the first vibration mode is the dominant mode in this example. 

Table 3.3 Optimal Tuned Mass Damper (TMD) parameters for mass ratio (^=0.01) under 

random excitation. 

Optimal Damping Factor (£TMD ) Optimal Frequency Ratio jfrMp) 

Case (1) 0.0779367 0.982632 

Case (2) 0.0915456 0.982311 

The PSD of the beam mid-span transverse displacement (w) without and with the optimal 

TMD systems given in Table 3.3 for Cases (1) and (2) are compared in Figure 3.3. 
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Figure 3.3 PSD of the beam's mid-span transverse displacement (w). Solid, dashed and 

dotted lines represent the uncontrolled structure, structure with optimal TMD Case (1) and 

Case (2) listed in Table 3.3, respectively. 

It can be seen from Figure 3.3 that the TMD system significantly decreases the system 

response corresponding to the fundamental frequency. Furthermore, it can also be 

realized that in this example as the fundamental mode is the dominant vibration mode, 

the PSD of the middle point deflection for Cases (1) and (2) are close to each other. 

To illustrate the efficiency of these optimal parameters of the TMD system, the 

sensitivity analysis has been carried around optimal point provided in Table 3.3 for Case 

(2). The PSD of the beam mid-span transverse displacement (w) with respect to 20% 

deviation of the optimal TMD parameters provided in Table 3.3 for Case (2) are 

illustrated in Figure 3.4. Figure 3.5 shows how the off-tuning of the damping factor 

(€TMD) and the frequency ratio (/TMD) of the TMD can affect the performance of the 

system response. In Figure 3.5 the horizontal axis is the percentage of the TMD design 

parameter off-tunings, £TMD/£OPITMD, and frML/foptTMD, the vertical axis shows the 

deviations of the objective function with respect to the optimal system. 
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Figure 3.4 PSD of beam mid-span transverse displacement (w>) with respect to the optimal 

TMD parameters' off-tuning for Case (2) in Table 3.3. Solid, dashed, dotted, dashed-dotted 

and solid (light) lines represent structure with optimal TMD, TMD with -20% and +20% 

deviations from optimal damping factor (^TMD) and frequency ratio (/TMD), respectively. 
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Figure 3.5 Analysis for optimal TMD parameters' off-tunings under random excitation. 

Solid and dotted lines represent the off-tunings for optimal damping factor (£TMD) and 

frequency ratio (/TMD), respectively. 

From Figures 3.4 and 3.5, it can be realized that: (1) the effect of the deviation of 

frequency ratio (/TMD) from its optimal value is higher than that of the damping factor 

(£TMD) and small deviation of frequency ratio (/TMD) from its optimal value may cause 
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significant change in the system performance; (2) the effect of the negative deviation of 

the damping factor is more than the positive deviation. The results shown here are exactly 

agreed with the working principle of optimally designed TMD system and also perfectly 

84 

agreed with those presented by Younesian et al . 

3.5.2 Optimization based on harmonic excitation 

The optimal TMD design based on harmonic excitation will be studied in this section. 

The objective function in this section would be to minimize the maximum magnitude in 

the frequency range around the first mode, which is different from that for random 

excitation, as stated in Equation (3.16). Thus the optimization problem in this section can 

be expressed as: 

Find the design variables: {DV}={/TMD, ZTMD} 

To minimize: Max (Magnitude(co) ofthe transferfunction) (3.21) 

Subjected to: 0.7 COI<CO<13 a>u 0<fTMD<2.5, 0 < £TMD< 1 

where co\ represents the structural first natural frequency, which is 35.451 (rad/s) 

provided in Table 3.2. The harmonic loading is assumed to be applied uniformly 

perpendicular to the central line of beam. Three different cases, similar to those for 

random loading will be investigated. In Case (1), the magnitude of the transfer function 

for the first vibration mode has been considered as the objective function, in Case (2), the 

magnitude of the transfer function for the beam's mid-span transverse displacement (w) 

has been selected as objective function and Case (3) is the optimal results based on SDOF 

system under harmonic loading. As discussed in the last section, the optimization 

problem in Case (3) is an simplified un-damped SDOF system with one attached TMD, 
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and the analytical solutions for optimal TMD parameters based on harmonic loading have 

49 

been proposed by Den Hartog as: 

/ ^ = T i - a n d ^ = ^ I (3.22) 

The optimal frequency ratio (frm) and damping factor (£TMD) for Cases (l)-(3) and the 

value of objective function for Cases (1) and (2) with respect to the input mass ratio 

(changing from 0.01-0.1) have been obtained based on the optimization problem stated in 

Equation (3.21). The results are shown in Figure 3.6 and compared with those obtained 

analytically based on Equation (3.22). Here it should be noted that for the sake of 

stability of the SQP method, in this section the value of the objective function has been 

enlarged by 1010. 

From Figure 3.6, it can be found that the optimal results for Case (3) are exactly similar 

52 

to those obtained by Den Hartog , as stated in Equation (3.22), however they are 

significantly different from those for Cases (1) and (2). This confirms that for continue 

structures with attached TMD, the simplified assumptions made in Case (3) would not 

generate accurate optimal results. Through comparing the optimal results with those 

shown in Figure 3.2, one can also find that no significant difference exist between the 

optimal TMD frequency ratio (/TMD) obtained based on random loading and harmonic 

loading. This is due to the fact that the basic working principle of the TMD system is to 

tune its natural frequency to one of the natural frequency of main structure. 
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Figure 3.6 Optimal Tuned Mass Damper (TMD) parameters and objective function vs. 

input mass ratio (u). (a) Optimal frequency ratio (/TMD)- (b) Optimal damping factor (£TMD)-

(c) Value of objective function. Solid, dashed and dotted lines represent Cases (1), (2) and 

(3), respectively. Note: in (a) and (b) the solid and dashed lines coincide with each other and 

dotted line coincides with Equation (3.22). 
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Again, to illustrate the efficiency of the optimal TMD design and the system response for 

different cases, typical optimal TMD parameters for the mass ratio (ju) equal to 0.01 are 

selected and have been listed in Table 3.4. 

Table 3.4 Optimal Tuned Mass Damper (TMD) parameters for mass ratio (M=0.01) under 

harmonic loading. 

Optimal Damping Factor (&MP ) Optimal Frequency Ratio (fTMp) 

Case(l) 0.0951483 0.976533 

Case (2) 0.0952205 0.976364 

From Table 3.4, it can be found that the optimal results for these two cases are almost 

identical. The magnitude (transfer function) of the mid-span transverse displacement (w) 

of the beam without and with the optimal TMD system provided in Table 3.4 for Case (2) 

under harmonic loading is illustrated in Figure 3.7. 

_-280 

- • 3 8 $ 
Frequency (rad/s) 45 

Figure 3.7 Magnitude (transfer function) of the beam's mid-span transverse displacement 

(w) under harmonic excitation. Solid and dashed lines represent the response for 

uncontrolled structure and structure with the optimal TMD provided in Table 3.4 for Case 

(2), respectively. 

82 



It can be found from Figure 3.7 that the TMD system significantly decreases the system 

response corresponding to the fundamental frequency. It is interesting to note that 

extremes of the magnitude for structure with attached optimal TMD are the same which 

actually agrees with that reported by Den Hartog 
49 

Similar to the random excitation analysis, and in order to illustrate the efficiency of these 

optimal parameters of the TMD system for harmonic excitation, the sensitivity analysis 

has also been performed. The magnitude (transfer function) of the beam's mid-span 

transverse displacement (w) with respect to 20% deviations from the optimal TMD 

parameters listed in Table 3.4 for Case (2) are illustrated in Figure 3.8. 

— -280 

35 
Frequency (rad/s) 

Figure 3.8 Magnitude (transfer function) of the beam mid-span transverse displacement (w) 

with respect to the optimal TMD parameters' off-tuning under harmonic excitation. Solid, 

dashed, dotted, dashed-dotted and solid flight) lines represent structure with optimal TMD, 

TMD with -20% and +20% deviations from optimal damping factor {^TMD) and frequency 

ratio (/TMD), respectively. 

The results show that the deviations from the optimal TMD parameters may result in the 

system response to be far from the optimal condition and the effect of the deviations of 
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the frequency ratio from the optimal value is significantly higher than that for damping 

factor. Similarly, Figure 3.9 shows how the off-tuning of the damping factor and the 

frequency ratio of the TMD system can affect the performance of the system response. In 

this figure the definitions of the axes are the same as those in Figure 3.5. The same 

phenomenon can be found in Figure 3.9 as those illustrated in Figure 3.5. 
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Figure 3.9 Analysis for optimal TMD's parameters' off-tunings under harmonic loading. 

Solid and dotted lines represent the off-tunings for damping factor (ZTMD) and frequency 

ratio (/TIUD)) respectively. 

3.6 Conclusions and Summary 

In this chapter, the equations of motion for the Timoshenko beam with the attached 

Tuned Mass Damper (TMD) system has been successfully derived utilizing the finite 

element methodology derived in Chapter 2, and been combined with the gradient based 

numerical optimization technique based on Sequential Quadratic Programming (SQP) to 

find the optimal parameters of the TMD system subjected to both random and harmonic 

loadings. The effectiveness of the developed techniques, which include the equations of 

motion in finite element form for beam structures with the attached TMD system, the 
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selected objective function and the optimization methodology, have been testified 

through the illustrated example, in which the structural response comparison for 

uncontrolled structure and structure with attached optimal TMD and optimal TMD design 

parameters' sensitivity analysis have been conducted and also the results has been 

compared with those available in published literatures. 

The numerical examples provided in this chapter were based on the symmetry beam with 

symmetry boundary condition and the first vibration mode is the dominant mode. Due to 

these, the optimal TMD parameters are very close for Case (1) and (2) under both random 

and harmonic excitation. However, if multiple dominant vibration modes exist for a beam 

structure, the optimal design for the attached TMD system would be more complicated 

than those investigated in this chapter. This issue will be discussed in Chapter 4. 
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CHAPTER 4 

MUTIPLE TUNED MASS DAMPERS DESIGN 

4.1 Introduction 

In previous chapters, the developed finite element formulation for general curved beam-

type structures and the design optimization approach of the attached single Tuned Mass 

Damper (TMD) system for the Timoshenko beam were validated. This chapter will 

extend the study to the structural vibration suppression of the curved beam using multiple 

Tuned Mass Damper (MTMD) technology. As investigated in Chapter 2 that the curved 

beam modeled considering the axial extensibility (duj(s)/ds), shear deformation and 

rotary inertia provides better approximation to the true behavior of the beam, in this 

chapter this curved beam model will be utilized to investigate the optimal TMD system 

design for curved beam-type structures. 

First, the governing differential equations of motion of curved beams with the attached 

MTMD system are derived through the extended Hamilton principle, and then 

transformed to the finite element form using the Galerkin weighted residual method. The 

Root Mean Square (RMS) of the curved beam's responses under random loading is 

obtained through the random vibration state-space analysis methodology and considered 

as the objective function for an optimization procedure, as discussed in Chapter 3. A 

hybrid optimization methodology, which combines the global optimization method based 

on Genetic Algorithm (GA) and the powerful local optimization method based on 
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Sequential Quadratic Programming (SQP), has been developed and then utilized to obtain 

the optimally designed parameters of the TMD system, which includes not only the 

damping factor and stiffness but also the position of the attached TMD system. Illustrated 

examples have been provided to verify the validity of the proposed methodology. A 

parametric sensitivity study for the system response with respect to small deviations from 

the parameters of the optimally designed TMD system has also been carried out. 

Furthermore, the theoretical principle for the optimum number and also the optimum 

position of the attached TMD system will be established based on the results obtained 

from the numerical examples. 

4.2 Equations of Motion for Curved Beams with Attached TMD 

Considering a general curved beam with attached MTMD system, as shown in Figure 4.1. 

Figure 4.1 General curved beam with the attached MTMD system. 

In Figure 4.1, L, 0, h, y{x) and p(s) have the same definitions as those shown in Figure 

2.2 and Sn, KTMDI, CTMDI and MTMDI are the position along the S coordinate, stiffness, 

viscous damping and mass of the /'* attached TMD, respectively. The curved beam's 
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deformation relationships considering the effects of the axial extensibility (CIUT{S)ICIS), 

shear deformation and rotary inertia have been listed in Table 2.1 for Case 1. 

In this section the governing differential equations of motion will be derived through the 

extended Hamilton principle, as stated in Equation (3.1). For the sake of simplicity, the 

formulations presented here are based on two attached TMD. One can easily extend the 

formulations to any desired number of TMD utilizing the same approach. The kinetic 

energy (7), potential energy (V) and non-conservative virtual work (SWnc) for curved 

beams with two attached TMD can be described as: 

2 f ~, , A \ 2 , / „ , A x 2 

-H-«m *4M*H - I H ^ 1 -
1 , 1 , 

(4.1a) 

f ^ . l f ^ ^ ^ ^ ^ . l f ^ / ^ r ^ O ' 
8s 

ds V=X-[Elis^^j ds+
X-[kqGAs)P2(s,t)ds+

l-[EAs] 

+-^7M>i W^n.Ocos^ )+u(sTi,t)sm(aSn )-zn(t)f (4- lb) 

1 , 
+-KTMD2[M(sT2,t)cos(pcST2)+u(sT2,t)sm(aSn)-zin (?)] 

5Wnc = f f{s,t)Swds + j - Cww{s,t)dwds + j' - Cuii{s,t)5uds 

~ CTMm[w(sTUt)cos(aSTi) + u(sTUt)sm(aSu)-zn(t)] 

x ̂ [w(s7.,,0cos(«,n ) + u(sn,t)sin(aSn ) - zn(t)] (4.1c) 

- CTMD2[w(sT2,t)cos(aSr2) + ii(j7.2,Osin(a,7.2) - zT2(t) 

x S[w{sT2,t)coa{aJri ) + u(sT2,t)&m(aSTJ ) - zT2(t)] 

where m{s), A(s), I(s), J(s), E, G and kq have the same definitions as those illustrated in 

Equations (2.7) and (2.8). Cw and C„ are the viscous damping of the curve beam's radial 

and tangential direction, respectively. KTMDI (KTMD2) and CTMDI (CTMD2) are the stiffness 

and damping of the attached first (second) TMD, respectively. STI (Sn) and asn («sn) 



represent the position and the angle between the curved beam central line tangential 

direction and the X axis at the location of the attached first (second) TMD along the S 

coordinate, respectively. W(STJJ) (w(sn,t)) and u{sri,i) (u(sT2,t)) are the radial and 

tangential displacements of the curved beam at the position of the attached first (second) 

TMD, respectively, ZTI (ZT2) represents the displacement of the attached first (second) 

TMD. The integral JL[.]<& is the curvilinear integral applied on the S coordinate. j{s,i) is 

the external force perpendicular to the central line of curved beam. It should be noted that 

through parameter ST, one can easily extend Equations (4.1) to any desired number of 

attached TMD. 

Substituting the geometrical and deformational relations for the curved beam model Case 

1 listed in Table 2.1, into Equations (4.1), and then applying Hamilton's principle stated 

in Equation (3.1), the following five governing differential equations of motion for the 

curved beam with the attached MTMD system can be obtained: 

•m(s) 
d2w(s,t) d 

dtl ds 
kqGA{s)\ 

(dw(s,t) «(s,t)_HsiJ 
ds P(s) 

EA(s) 

P(s) 

(du(s,t) + w(s,t) 

8s />(*) 

- KTMD] [w(sn, 0 cos(a,n) + u{sn, t) sin(aSn ) - zx ] cos(a in )&(s - sT1) 

- CTMD\ \y<sT\. 0 cos(a,r]) + u(sn, 0 sin(a ) - z, ] cos(« )3(s - sn) 
(4.2a) 

• KTMD2 Msn > 0 cos(aSr2) + u(sT2, t) sin(aST2) - z2 ] cos(aSr2 )&(s -sT2)- Cww(s, t) 

- CTMD2 1™(ST2 > 0 cos(asu ) + u{sT2, t) sm{aSji) - z2 ] c o s ^ )3(s -sT2) + f(s, 0 = 0 

- m{s) V-^+— 
ft' P(s) 

-y/(s,t) + 
dw(s,t) u(s,t) 

ds 
EA(s)t 

du(s,t) wis,t) 

ds P(s) }J ds p(s) r 

- KTMD\ MsTu 0 c °sK n )+"C*n . 0 s i n K n ) - zi ] sin(aJn )S(s - sn) 

- CTMD\ \MSTI > 0 cos(asTl) + "On >') s in(<^n) - zi ] s'm(aSn )3(s-sTi) 

- KTMm N > n > 0 cos(aST2) + u(sT2, t) sin(a,n) - z2 ] sin(a^2 )&(s-sT2) 

- CTMDI [MST2 , t) cos(a in ) + u(sT2, i) sm{aSr2) - i 2 ] s\n{aSn )3{s -sT2)- Cuii(s, t) = 0 

(4.2b) 
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•As) 
d>fa>0 8 

dt 

dy/(s,t) 

* + * * ™ Os 
+ kaGA(s) 

'ftvfa.O _HSft)_u(s^ 

ds p(s) 

MTMD\'Z\ +CTMDl[z{ -w(sn,t)cos(aSTi)-u(sn,t)sin(aSn)] 

+ KTMD\ Vz\ - wfan. 0 C 0 S K n ) - "fan, t) sin(a i n)] = 0 

MTMDih +CTm[z2 -w(sT2,t)cos(aST2)-u(s2,t)sm(aSn)] 

+ KTMD2 l>2 ~ ^ f a n > 0 c o s ( a , n ) - u{sT2, t) sm(aSn)] = 0 

(4.2c) 

(4.2d) 

(4.2e) 

where the symbol 3(s-sT) is unity when S=STI (ST2), otherwise zero. Utilizing the same 

approach derived in Chapter 3, the governing differential equations of motion stated in 

Equations (4.2) can be transferred to the finite element form as: 

where 

[M] {q\t)} + [C] {q(t)} + [K] {q(t)} = {F(t)} 

{q} = {{w{t)} MO} {nm znw *TMT 

[M} = 

Www] [0] [0] [0] 

[0] [Mm] [0] [0] 

[0] [0] [Mvv] [0] 

[0] [0] [0] MTMDX 

[0] [0] [0] [0] M, 

[0] 

[0] 

[0] 

[0] 

TMD2 

[K]--

[Kww] + [K.wwn] + [KwwT1] [Kwu] + [Kwun} + [KwuT2] [KWI//] [Km]] [Km2] 

[Km,] +iKwuT\] +[KwuTi] [Kuu] + [KuuTX] + [KuuT2] [Kuy/] [Kuzl] [Kuz2] 

[Kwz2 ] 

[Kuz\ ] 

[K^] [0] [0] 

[0] Kmm [0] 
[0] [0] KTMD2, 

[C] = 

[Cww J + [CwwTl 1 + \PwwT2 1 

[0] 
[C>wJ +[C l T O n] +[C\vuT2] 

[CnMC^nMCnTi] TO [C„,] [Cwz2] 
[Cm] + [CmTll + [CuuT2l [0] [ C „ , ] [ C „ 2 ] 

[0] [0] [0] [0] 

[C W 2 l ]
T [ C „ z l ]

r 

[C„ , 2 ] 7 

[0] CTMm [0] 
[0] [0] C W D 2 

(4.3) 

(4.4a) 

(4.4b) 

(4.4c) 

(4.4d) 
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{F(t)} = \ Z 
element 

\iNmf{ri,t)JM)dri, {0}„, {0}^, 0, 0 (4.4e) 

where in equivalent nodal force vector {F{t)}, expression {0}M and {0}<„ represents the 

null vector with the same size as {U(i}} and {^(t)}, respectively. Jc(rj) is the Jacobian 

between Cartesian coordinate (x, y), curvilinear coordinate (S) and natural coordinate {rj), 

which has been defined in Chapter 2. The sub-matrices [M w ] , [Muu], [Mw], [Kww], [Kuu], 

[Kw], [Kwu], [Kwv] and [KUf\ in the mass, stiffness and damping matrices have the same 

definitions as those in Chapter 2. All other sub-matrices have been defined in "Appendix 

H". For the sake of numerical stability, the following transform matrix has been defined 

to transfer the nodal displacement vector to a dimensionless vector. 

IT]--

Le[I]w [0] [0] [0] [0] 
[0] Le[I]u [0] [0] [0] 
[0] [0] [I]v [0] [0] 
[0] [0] [0] Le [0] 
[0] [0] [0] [0] Le 

(4.5) 

where Le is the curvilinear length between two nodes for a curved beam element. [T]w, [/]„ 

and [ij^are the identity matrices with sizes corresponding to vectors {W}, {U} and {¥}, 

respectively. Thus the nodal displacement vector {q} can be expressed as {q}=[T\{qd}, 

where {qd} is a dimensionless vector, and then the equations of motion described in 

Equation (4.3), can be transferred as: 

\Md ] {<id (01 + [ Q ] {qd {t)} + [Kd ] {qd (0} = {Fd (?)} (4.6) 

where [m=\jfW\YT\, [Cdr[T]T[C][T], [Kd\={T\T[K\[T\ and {Fd{0]=[T]T {F(»}. 

Therefore, the response, which will be defined in numerical example, will be also 

dimensionless. 
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4.3 Hybrid Design Optimization 

The optimization problem in a general form has been established in Equation (3.15), and 

the methodology to obtain the solution of objective function has also been presented in 

Section 3.3. Here it should be noted that the optimization problem established in this 

chapter includes the position of the attached TMD system as well, and thus its relative 

objective function would have complex cost (objective) surface. Therefore the local 

optimization technique based on SQP presented in Chapter 3 may not provide accurate 

optimum results. Considering these, a hybrid optimization methodology, which combines 

the global optimization method based on GA and the powerful local optimization method 

based on SQP, has been developed to accurately find the global optimal solution. Figure 

4.2 illustrates the schematic of the developed hybrid optimization methodology for a 

typical global optimization problem, in which the curve represents the variation of the 

objective function with respect to a design variable. 

Initial value range 1 Initial value range 2 Initial value range 3 

Figure 4.2 The schematic of the hybrid optimization method for a global optimization 

problem. 
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For an optimization problem illustrated in Figure 4.2, solved by a local optimization 

technology, in general (not always, this will depend on the selected optimization 

parameters, such as step size, and also the properties of a practical optimization problem) 

one would obtain the "Optimal points 1, 2 and 3" related to the initial values located in 

"Initial value ranges 1, 2 and 3", respectively. Obviously, only "Optimal point 2" is the 

global optimal point, thus the local optimization techniques may not be able to solve the 

global problem accurately. The developed hybrid optimization method consists of two 

procedures: (1) utilizing the global optimization technology to obtain the approximate 

optimum value, which is illustrated in Figure 4.2 as "Global optimal area"; (2) utilizing 

the results obtained in the last procedure as the initial value, which is illustrated in Figure 

4.2 as "Initial value range 4", for a local optimization procedure. Finally the whole hybrid 

optimization procedure can catch the global optimum point —"Optimal point 2" 

accurately and efficiently. The essential issue for this developed hybrid optimization 

methodology is to make the global optimization procedure be able to catch the "Global 

optimal area". In this study the GA global optimization methodology will be utilized to 

search for the "Global optimal area". 

The GA is a global optimization technique based on the principle of genetics and natural 

177 178 

selection developed by Holland . Goldberg summarized the original work proposed 
177 

by Holland and then developed the theoretical basis for the GA through his schema 

theorem. Since then many versions of modification of GA programming have been 

published and successfully utilized to solve different problems. The advantages of GA 

include: it can be used to solve optimization problems with complex cost (objective) 

surface; optimization can be carried out with continuous or discrete variables; it does not 
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179 
require derivative information. Haupt also presented other advantages and summarized 

the previous work about GA. The schematic of GA for continuous design variables, 

which will be utilized in this dissertation, has been illustrated in Figure 4.3. 

Define Optimal Problem: Design Variables, Objective Function 
and Design Variable boundary 

Generate initial population 

Calculate the Objective of each chromosome 

I 
m Sort Objective and Select mates 

Mating 

| Mutation 

Update population 

I Calculate the Objective of new chromosome | 

NO 
T 

Convergence Check 
YES 

End 

Figure 4.3 The schematic of GA global optimization method for continuous design 

variables. 

The required steps in GA, as illustrated in Figure 4.3, will be discussed in following sub­

sections. For the sake of programming simplicity, in GA programming all design 

variables will be transferred in the range of [0.0, 1.0]. This can be done by the mapping 

technique based on the boundary of each design variable using the following equation: 

qi = {DVrabl(brai) (4.7) 

where DV\ is the i'h design variable and a,, b} and qi are the low and high boundaries and 

the uniformed design variable for DVh respectively. 
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4.3.1 Generating initial population 

First, the definitions of population and chromosome will be presented. The chromosome 

represents a set of design variables as: 

Chromosome = {qi ... qu} (4.8) 

where qi represents the i'h design variable. Here the chromosome has N variables (an N-

dimensional optimization problem). Population represents the number of chromosome. 

Let us define Nvar and Npop to represent the dimension of chromosome (number of design 

variables) and number of chromosome (size of population), respectively. One can simply 

randomly generate a Npop x Nvar size matrix with each element between 0 and 1 to 

represent the initial population. 

4.3.2 Sorting the objective and selecting the mates 

The value of objective function for the initial population will be obtained first. Based on 

the selected population size, the objective function would be evaluated Npop times. Next, 

the NPoP value of objective with the associated chromosomes will be sorted from the 

lowest cost (objective) to highest cost (objective). Then, a selection rate (Xra(e) will be 

defined to select N^ep population from the sorted list using the following equation: 

Nkeep = Ceil {Xrate x Npop) (4.9) 

where "ceiP' represents the command to round the variable {Xrate x Npop) to the nearest 

integer larger than or equal to it. Thus, only the first Nkeep population with lowest (best) 

cost (objective) would be kept, which can be defined as selection pool. 

Next, the parents which will be utilized to generate (Npop-Nkeep) offspring (new 

chromosome) would be picked from the selection pool. In this study, the rank weighting 
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methodology will be adopted as the selection method. To present the rank weighting 

methodology clearly, let us assume Npop =8, Xrate =0.5 and thus Nkeep-^, and then 

establish the following table for the chromosomes in the selection pool. 

179 

Table 4.1 Rank weighting selection methodology . 

Index of Chromosome in selection pool (n) Value of Objective Pj, CP„ 

1 Lowest 

2 

3 

4 Highest 

In Table 4.1, P„ and CP„ represent the probability and cumulative probability related to 

179 

each chromosome in the selection pool, and they are defined as : 

I 
0.4 

0.3 

0.2 

0.1 

0.4 

0.7 

0.9 

1.0 

Pn=(Nkeep -n + \)l 
^ keep 

I" andCP„=X^- (4.10) 
1=1 

where n is the index of chromosome in the selection pool, as listed in Table 4.1. One 2-

component random vector on the unit interval, in which one component represents 

"father" and the other for "mother", will be generated to be compared with the 

cumulative probability (CP„) given in Table 4.1. Starting from the top of Table 4.1, the 

first chromosome that the related cumulative probability (CP„) is greater than the 

generated random number will be selected as parents. For example, assuming the 

generated random vector is [0.5, 0.8], then 0.4 < 0.5 < 0.7 and 0.7 < 0.8 < 0.9, thus 

chromosome No. 2 and 3 in Table 4.1 will be selected as one set of parents. All the 

selected parents can be defined as mating pool. Sometimes, the selected parents are 

identical, which will lead to poor convergence or bad optimal result. In this case, one can 
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easily exchange the "father" or "mother" with the other set of parents in the generated 

mating pool. 

4.3.3 Mating 

Mating is the method to generate offspring from set of parents in the mating pool, which 

has been established in last section. The mating methodology adopted in this dissertation 

179 

can be expressed as : 

{Offspring ,} = {Ma}.-{0}.x({Ma}.-{Fa}) 
{Offspring 2} = {Ma}.+ {/]}.* ({Ma}.-{Fa}) ( 4 - U ) 

where {Ma} and {Fa} represent one set of parents. /? is a 1 x Nvar vector with the same 

dimension as {Ma} and {Fa}, and generated randomly on the unit interval. Symbols ".-", 

".+" and ".x" represent element-element minus, plus and product, respectively. It should 

be noted that using Equation (4.11) to generate the offspring, sometimes some elements 

in the offspring would go outside of the boundary of design variable. One can simply 

generate a random number on the unit interval to replace the element which goes outside 

the design boundary or directly utilize the boundary to replace them. Utilizing the 

methodology introduced above, Np0p-Nkeep offspring will be generated, which will keep 

the NPop constant in every searching circle. 

4.3.4 Mutation 

Mutation is one of the essential steps in GA optimization methodology. Through 

mutation, GA can search outside of the current design variable region freely. However, 

too many mutation would lead to slow convergence. Here, we keep the best chromosome 
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(the lowest cost) stable and define the mutation rate as Mrate, and then the total mutation 

of the variables in the population would be: 

Nmute=ceil (Mrate(Npop-l)Nvar) (4.12) 

where "cezT" has the same definition as that in Equation (4.9). Then one can randomly 

select Nmute elements in the population (excluding the best chromosome) to be replaced 

with generated random elements on the unit interval. 

4.3.5 Updating population 

In this step, the objective function for each chromosome in the generated new population 

will be evaluated and sorted from minimum to maximum. It should be noted that the best 

chromosome in the last population does not need to be recalculated and will be 

transferred to the new population without change. 

4.3.6 Convergence checking 

"Convergence checking" will depend on the property of a practical optimization problem. 

In theory, an optimization problem can be solved and one can obtain the global optimum 

point using GA through a suitably selected convergence checking method, but sometimes 

it is computationally expensive. In this dissertation, we only require that GA can catch 

the "Global optimal area", as illustrated in Figure 4.2. Therefore, the following 

convergence checking methodology would be utilized: 

(Costjist (Nkeq.y-Costjist (1))/ Costjist (1) < % (4.13) 
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where "Cost_list" is the value of objective function for the sorted new generated 

population, which has the same form as that shown in Table 4.1 and / is a selected small 

value. 

Now, assuming the optimization problem, as stated in Equation (3.15), has been solved 

by the GA optimization methodology and the optimal solution obtained through GA is 

located in the "Global optimal area", as illustrated in Figure 4.2. Then, this optimal 

solution will be used as the initial value for the powerful gradient based SQP technique 

presented in Chapter 3 to find the optimal design variables accurately. 

4.4 Numerical Analysis 

Here illustrative examples are provided to demonstrate the developed methodology and 

also the theoretical principle for designing the continuous structure with the attached 

MTMD system is proposed based on the results obtained from the numerical examples. 

The curved beam with the attached MTMD system shown in Figure 4.1 has been 

considered. The material and geometrical properties of the curved (circular) beam are 

given in Table 4.2. 

Table 4.2 Properties of the circular uniform beam. 

Elastic modulus 70 (GPa) Shear coefficient 0.8438 

Shear modulus 24.50 (GPa) Beam Radius 40 (m) 

Area moment 0.01 (m4) Cross-Sectional Area 4 (m2) 

Density 2777 (Kg/m3) Beam Curve Angle (<?) 40° 

It is noted that the other parameters such as the curve span (L), curve length (/) and rise of 

curved beam (h), as shown in Figure 4.1, can be obtained from the parameters listed in 

Table 4.2. The boundary condition for this example is clamped-clamped. The curved 
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beam has been modeled using 7 curved beam elements with 4 nodes per element, as 

derived in Chapter 2. Thus, the first five natural frequencies for the curved beam are 

found to be 19.4705, 35.2407, 64.4729, 90.5644 and 123.2884 (rad/s), respectively. The 

random loading is in the form of white noise with PSD of 1010 (N2/rad/s) applied 

uniformly perpendicular to the central line. The responses of beam's mid-span transverse 

displacement (w), tangential displacement (u) and rotation (if/) under this random loading 

have been shown in Figure 4.4. 

140 
Frequency (rad/s) 

Figure 4.4 PSD of curved beam's mid-span responses. Solid, dashed and dotted lines 

represent the transverse displacement (w), tangential displacement («) and rotation (y/), 

respectively. 

It can be found from Figure 4.4 that in the low frequency range (smaller than 140 rad/s), 

the structural responses mainly depend on the 2nd, 4th and 5th vibration modes, and thus to 

obtain the best vibration suppression performance, the TMD system should be designed 

based on the 2nd, 4th and 5th vibration modes. Considering these, the illustrative numerical 

examples presented in this chapter consists of four parts as: 

(1) To design single TMD system based on the 2nd, 4th and 5th vibration modes separately. 

The optimal TMD parameters will be obtained by the GA, hybrid and SQP optimization 
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methodologies, and then by comparing the results the validity of the developed GA and 

hybrid optimization methods can be verified; 

(2) To design two symmetrically attached TMD system using the developed hybrid 

optimization methodology based on the 2nd, 4th and 5th vibration modes separately. The 

validity of each set of optimal TMD design will be demonstrated by the sensitivity 

analysis based on the small deviation of the design variables from their relative optimum 

values and also the convergence analysis for the optimum results obtained by GA; 

(3) To design three attached TMD system utilizing the developed hybrid optimization 

methodology based on the 5th vibration mode; 

(4) Based on the results obtained in above parts, an optimal MTMD system will be 

developed to suppress the structural vibration effectively. 

Finally, based on the above investigations, the theoretical basis for optimally designed 

TMD system for beam-type structures will be established. Here it should be emphasized 

that as mentioned in Chapter 1, in order to distinguish the multiple TMD design based on 

multiple vibration modes from that based on one special vibration mode, the former was 

named as MTMD and the latter as Distributed TMD (DTMD). 

4.4.1 Single attached tuned mass damper system 

One TMD is assumed to be attached onto the beam mid-span, as the curved beam 

structure and boundary condition studied in this chapter are both symmetry. The 

optimization problem has the same as that established in Equation (3.16). One of the 

main purposes of this subsection is to verify the validity of the developed GA and hybrid 

optimization methodologies through comparing the optimum results obtained by the GA 

and hybrid optimization methods with those by the formal SQP technique. Four different 
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cases have been investigated in this subsection: Case a- The response (RMS) of the 2n 

vibration modal deflection is considered as the objective function; Case b- The response 

(RMS) of the 4th vibration modal deflection is considered as the objective function; Case 

c- The response (RMS) of the 5th vibration modal deflection is considered as the 

objective function; Case d- The response (RMS) of circular beam's mid-span transverse 

displacement (w) is considered as the objective function and the 2nd natural frequency is 

assumed as the base frequency con in Equation (3.14) for the evaluation of the frequency 

ratio (/TMD)- The following parameters given in Table 4.3 have also been defined for the 

GA optimization. 

Table 4.3 Parameters of GA optimization. 

Npap 8 Xmle 0.5 % lxlO"4 

Nvar 2 Mrate 0A 

Tables 4.4-4.6 compare the parameters of the optimally designed TMD system obtained 

using the GA and hybrid optimization methodologies and also the SQP with initial values 

of {0.1, 0.1} for the TMD with mass ratio (u) equal to 0.01, 0.015 and 0.02, respectively. 

It should be noted that as mentioned in Section 4.3, the design variables for GA 

optimization have been uniformed using Equation (4.7). Therefore, in Tables 4.4-4.6 

(also the other tables related to GA optimum results in this chapter) the GA optimum 

results have been transferred back based on Equation (4.7). Here, it should be emphasized 

that in Tables 4.4-4.6 (also other tables in this chapter), the final parameters for the 

optimally designed TMD system have been illustrated as Italic and bold form. 
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Figures 4 .5^ .7 illustrate the best value (lowest cost) of the objective function for each 

generated population by GA versus the GA calculating cycle, which was defined as 

179 

"generation" by Haupt , for mass ratio (ju) equal to 0.01, 0.015 and 0.02, respectively. 

Table 4.4 Optimal result comparison for curved beam with the attached single TMD with 

mass ratio (//=0.01). 

Optimal 

methodology 

GA 

Hybrid 

SOP 

2nd vibration 

mode-Case a 

£TMD 

0.094 

0.093 

0.093 

/TMD 

0.9512 

0.9592 

0.9592 

Optimal Strategies 

4th vibration 

mode-Case b 

QTMD JTMD 

0.0542 0.9814 

0.0379 1.0063 

0.0379 1.0063 

5th vibration 

mode-Case c 

£TMD /TMD 

0.1403 0.9946 

0.0758 0.9634 

0.0758 0.9634 

Mid-span transverse 

displacement 

&MD 

0.6318 

0.6328 

0.6328 

-Case d 

/TMD 

1.826 

1.832 

1.832 

Table 4.5 Optimal result comparison for curved beam with the attached single TMD with 

mass ratio (//=0.015). 

Optimal 

methodology 

GA 

Hybrid 

SOP 

2nd vibration 

mode-Case a 

CTMD 

0.1065 

0.1118 

0.1118 

/TMD 

0.9508 

0.9402 

0.9402 

Optimal Strategie 

4th vibration 

mode-Case b 

£TMD fTMD 

0.0507 1.0055 

0.0487 1.0091 

0.0487 1.0091 

s 

5th vibration 

mode-Case c 

£TMD 

0.103 

0.0923 

0.0923 

/TMD 

0.9163 

0.9458 

0.9458 

Mid-span transverse 

displacement-Case d 

&MD 

0.6688 

0.6484 

0.6484 

/TMD 

1.9608 

1.7940 

1.7940 

Table 4.6 Optimal result comparison for curved beam with the attached single TMD with 

mass ratio («=0.02). 

Optimal 

methodology 

GA 

Hybrid 

SOP 

2nd vibration 

mode-Case a 

<fTMD fTMD 

0.132 0.9249 

0.1265 0.9222 

0.1265 0.9222 

Optimal Strategies 

4th vibration 

mode-Case b 

<fTMD fTMD 

0.082 1.0155 

0.0589 1.0117 

0.0589 1.0117 

5th vibration 

mode-Case c 

£TMD /TMD 

0.1574 0.8857 

0.1059 0.9288 

0.1059 0.9288 

Mid-span transverse 

displacement-Case d 

£TMD 

0.6947 

0.6328 

0.6328 

/TMD 

1.6851 

1.7559 

1.7559 
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Figure 4.5 GA convergence analysis for curved beam with the attached single mid-span 

TMD with mass ratio (/*=0.01). (a) Based on the 2nd mode-Case a. (b) Based on the 4th mode-

Case b; (c) Based on the 5th mode-Case c; (d) Based on the curved beam mid-span 

transverse displacement (w)-Case d. 
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Figure 4.6 GA convergence analysis for curved beam with the attached single mid-span 

TMD with mass ratio (M=0.015). (a) Based on the 2nd mode-Case a. (b) Based on the 4th 

mode-Case b; (c) Based on the 5th mode-Case c; (d) Based on the curved beam mid-span 

transverse displacement (n')-Case d. 
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Figure 4.7 GA convergence analysis for curved beam with the attached single TMD with 

mass ratio (u=0.02). (a) Based on the 2nd mode-Case a. (b) Based on the 4th mode-Case b; (c) 

Based on the 5th mode-Case c; (d) Based on the curved beam mid-span transverse 

displacement (w)-Case d. 

From Tables 4.4-4.6 and Figures 4.5-4.7, one can easily find that: (1) the optimum 

results obtained using GA are closed to those obtained using hybrid optimization method, 

especially for the obtained optimum frequency ratio (/TMD)- This means that the GA has 

successfully caught the neighborhood of the global optimum point; (2) the optimum 

results obtained through the hybrid and SQP methods are the same. Also different initial 

points for the SQP optimization method have been tested and similar optimum results are 

found. From Tables 4.4—4.6, one can also find that the optimum frequency ratio (/TMD) for 

Case b (based on the 4 vibration mode) will not exactly decrease with the increase of 

input mass ratio (JA), which is different from those for Cases a, c and d. To investigate this 

phenomenon, Figure 4.8 illustrates the optimal TMD parameters based on Cases a-d, for 

mass ratio (u) changing from 0.01 to 0.1. 
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Figure 4.8 Optimal TMD parameters and value of objective function vs. input mass ratio (u) 

for the curved beam with the attached single mid-span TMD. (a) Optimal frequency ratio 

(/TMD)- (b) Optimal damping factor (£771/0). (C) Value of objective function. Solid, dashed-

dotted. dashed and dotted lines represent Cases a-d, respectively. Note: in (a), (b) and (c) 

the dotted line has been divided by 2 and 6, and multiplied 100, respectively. 
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Here, it should be noted that in Figure 4.8, the optimal frequency ratio (/™D), damping 

factor (£TMD) and value of objective function for Case d have been mapped by 1/2, 1/6 

and 100, respectively, in order to facilitate the reader observing the trend of the optimal 

TMD parameters with the increase of input mass ratio (ju). It can be realized from Figure 

4.8 that the value of objective function will decrease and the optimal damping factor 

(ZTMD) will increase with the increase of input mass ration (ju) for Cases a-d; the optimal 

frequency ratio (/™D) for Cases a, c and d will decrease with the increase of input mass 

ration (//), but the optimal frequency ratio (/™D) for Case b will increase and then 

decrease with the increase of input mass ration (ju). Furthermore, one can also find that 

the optimal frequency ratio (JTMD) for Case b changes in very small range. The reason is 

that the single attached TMD system is not a suitable selection to suppress the vibration 

due to the 4th vibration mode, which will be illustrated in the following sections. 

From Tables 4.4-4.6 and Figure 4.8, one can also find that there are significant 

differences for the optimal TMD parameters between Cases a and d, which is different 

from the results shown in Chapter 3. This is mainly due to the fact that the structure 

studied in this chapter does not have single dominant mode. 

To illustrate the effect of the attached optimal single TMD design provided in Tables 

4.4-4.6, optimal TMD parameters for Case a in Table 4.4 (u=0.01); Case b in Table 4.6 

(M=0.02); Case c in Table 4.5 (u=0.015); Case d in Table 4.4 (w=0.01), have been selected 

for studying the curved beam's mid-span responses. The results for transverse 

displacement (w) have been illustrated in Figure 4.9. The tangential displacement (w) and 

rotation (y/) responses have been presented in "Appendix I". 
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Figure 4.9 PSD of curved beam mid-span transverse displacement (w), (a) Frequency range 

20-140 (rad/s). (b) Around the 2nd natural frequency, (c) Around the 4th natural frequency, 

(d) Around the 5th natural frequency. Solid flight), dashed, dotted, dotted-dashed and solid 

lines represent uncontrolled structure, structure with optimal TMD Case a in Table 4.4, 

Case b in Table 4.6, Case c in Table 4.5 and Case d in Table 4.4, respectively. 

From Figure 4.9 and "Appendix I", it can be found that: (1) the effects of the optimally 

designed TMD systems for Cases a-c, as illustrated in Tables 4.4-4.6, are restricted in 

their related tuned natural frequencies, and thus for the structure with multiple dominant 

vibration modes, it is possible to design an optimal TMD system based on different 

vibration modes, separately, and then combine them together to provide a MTMD design 

to suppress vibration efficiently; (2) as single dominant mode dose not exist in this 

example, thus although the optimal TMD design strategy based on Case d can also 

suppress the vibration in each vibration mode effectively, its working principle is not 

TMD any more, which is to tune the frequency of the secondary system to one of the 

structural vibration modes. 
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Next, the developed hybrid optimization methodology will be utilized to find the optimal 

design variables of the attached DTMD system, which includes the position, damping 

factor and frequency ratio, based on each vibration mode. In fact the number of the 

attached DTMD system should also be identified as one of the design variables. 

However, it is very difficult to find a suitable optimal criterion to combine the number of 

the attached DTMD system in an optimization procedure. Therefore, at the beginning the 

number of the attached DTMD system is assumed to be a given input, and finally, a 

design principle will be established, which can be utilized to identify the best number of 

the attached DTMD system. 

4.4.2 Distributed tuned mass dampers design methodology 

The design variable describing the position of the attached TMD includes one discrete 

variable, which represents which elements the attached TMD would be located in, and 

one continuous variable, which represents the location of TMD in those elements. It is 

difficult to solve this kind of optimization problem, in which the design variables include 

both discrete and continuous variables. One simple way is to solve the TMD located in 

each different element's combination and then compare the objective to find the optimal 

TMD design. This is a simple approach but is computationally very expensive. In this 

work, an efficient and accurate design optimization approach has been proposed to find 

the location and parameters of the attached TMD system. The optimization procedure 

consists of two steps, as illustrated in Figure 4.10. 
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In Step (1), the curved beam is modeled using 2 elements with 12 nodes per element, thus 

the position of the attached TMD can be simply expressed by one continuous variable 

defined in natural coordinate {rj). In Step (2), the curved beam is modeled using 7 

elements with 4 nodes per element. Then utilizing the optimal location of the attached 

TMD system obtained from Step (1), one can easily find in which element the TMD 

system should be located in this 7 elements model using Equation (4.14). The location of 

TMD in one special element can still be a continuous variable defined in the natural 

coordinate {rj). Assuming the optimal position of the attached TMD obtained through 

Step (1) can be defined as r\u and then its related position in Step (2) can be obtained 

through: 

X=0.25 N(l+rj,) andNe=ceil (X) (4.14) 

where N is the number of element to model the beam in Step (2), and "ceiV has the same 

definition as that in Equation (4.9). Ne represents the optimal element, in which the 

attached TMD should be located in the N elements finite element model. This optimal 

procedure is based on the fact that the 2-element model in Step (1) can describe the 
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dynamic properties of the curved beam with acceptable accuracy, and then one can catch 

the neighborhood of the optimal result. This issue has been verified through comparing 

the structural response for the finite element models in Steps (1) and (2). Obviously, one 

can model the curved beam using 1 or 2 elements with many nodes per element, which 

can still model the dynamic behavior of the curved beam accurately and also obtain 

accurate optimal TMD parameters, but it is computationally expensive due to the slow 

convergence of the finite element model. Based on the methodology presented above, the 

DTMD design will be presented in the following subsections. 

4.4.3 Two symmetrically attached tuned mass damper system 

For the curved beam, as shown in Figure 4.1, with symmetrical physical and geometrical 

conditions and also symmetrical boundary condition, it is obvious that the attached 

DTMD system should also be symmetry. As assuming two symmetrical TMD will be 

designed to suppress the vibration with respect to each vibration mode separately, the 

dimension of design variables can be simplified to 3, and the optimization problem can 

be expressed as: 

Find the design variables: {DV}={£TMD ,/TMD , VTMD} 

To minimize: RMS of response for 2nd, 4th and 5th (4.15) 

vibration modes, respectively 

Subjected to: 0< &MD <1, 0</rMD <2.5, -1< nTMD < 1 

Based on the optimization problem established in Equation (4.15), the parameters for GA 

optimization methodology are defined as those listed in Table 4.7. 

Table 4.7 Parameters of GA optimization. 

A W 8 * * » 0.5 % lxlO"4 

Nvar 3 Mrau; 0,4 
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The optimal results based on each vibration modes obtained using the GA, hybrid and 

SQP optimization methods and the convergence analysis for the GA optimization method 

will be presented to illustrate the validity of the developed optimization approach. 

4.4.3.1 Design based on the 2nd vibration mode 

Table 4.8 compares the optimal two symmetrical DTMD design parameters based on the 

2nd vibration mode obtained using the GA, hybrid optimization methods and the SQP 

technique with different initial values for Step (1), as shown in Figure 4.10. The mass 

ratio (u) is assumed to be 0.005 for each attached TMD, and thus total mass ratio (a) 

would be 0.01. Here it should be noted that for comparison purposes, in Table 4.8 (also 

the other tables in this chapter) the value of TMD position has been expressed as the 

relative position along the curved beam's curvilinear length. 

Table 4.8 The optimal two symmetrical DTMD parameters based on the 2nd vibration mode 

with mass ratio («=0.005) for each TMD—Step (1). 

Design 

Variables 

£TMD 

/TMD 

PositionJTMDl 

Position_TMD2 

Objective (xlO5) 

GA 

0.0922 

0.9615 

0.4965 

0.5035 

5.6633 

Hybrid 

0.0936 

0.9 59 S 

0.5 

0.5 

5.6572 

Optimal Methodologies 

SQP-1 

0.0936 

0.9595 

0.5 

0.5 

5.6572 

SQP-2 

0.0537 

1.0069 

0.1915 

0.8085 

7.5881 

SQP-3 

0.0936 

0.9595 

0.5 

0.5 

5.6572 

In Table 4.8, the SQP-1, SQP-2 and SQP-3 represent the results obtained using the SQP 

optimization method with the initial values of {0.1, 1, -0.9}, {0.1, 1,0} and {0.1, 1, 1}, 

respectively. Examination of the results shows that: (1) the SQP provides different 

optimal results with respect to different initial values. This means that the optimization 
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problem has multiple local optimal points and SQP can easily trapped into one of the 

local optimal points without any mechanism to climb out; (2) the optimal results obtained 

using the GA methodology can catch the neighborhood of the global optimal values, 

especially the obtained optimal location of the attached DTMD system. 

Next, utilizing the optimal parameters obtained in Step (1) and Equation (4.14), one can 

easily find that the optimal element that the two symmetrical DTMD should be located in 

the 7 elements beam model in Step (2) is the Element 4. The Step (2), as shown in Figure 

4.10, is basically designed to accurately find the optimal location and parameters for the 

DTMD system. The optimal results for Step (2) based on the GA, hybrid and SQP 

optimization techniques are provided in Table 4.9. 

Table 4.9 The optimal two symmetrical DTMD parameters based on the 2nd vibration mode 

with mass ratio 0=0.005) for each TMD—Step (2). 

Design 

Variables 

£TMD 

/TMD 

PositionJTMDl 

Position_TMD2 

Objective (*105) 

GA 

0.0927 

0.9585 

0.4983 

0.5017 

5.6766 

Hybrid 

0.093 

0.9592 

0.5 

0.5 

5.6762 

Optimal Methodologies 

SQP-1 

0.093 

0.9592 

0.5 

0.5 

5.6762 

SQP-2 

0.093 

0.9592 

0.5 

0.5 

5.6762 

SQP-3 

0.093 

0.9592 

0.5 

0.5 

5.6762 

Here, the SQP-1, SQP-2, and SQP-3 represent the SQP optimization methodology using 

the initial value as {0.1, 1, -0.9}, {0.1, 1, 1} and {0.0936, 0.9595, 0} (the optimal value 

obtained from Step (1)), respectively. It can be realized from Table 4.9 that these two 

symmetrical DTMD is exactly attached in the mid-span of the curved beam. Figure 4.11 

illustrates the GA optimization convergence analysis for Steps (1) and (2). 

113 



!\ 

566333.1086 

w 

667661.0557 

>•% ! 0 4 0 60„„ 80 . . , 1 0 0 , 120 140 ISO"-" 10 M M . , * ) _ . , _ SO, SO 70 
GA calculating cycle OA calculating cycle 

Figure 4.11 GA convergence analysis for two symmetrical DTMD based on the 2nd vibration 
mode with mass ratio (>/=0.005) for each TMD. (a) Step (1). (b) Step (2). 

To illustrate the effectiveness of these set of optimal DTMD design, the structural 

response of transverse displacement (w) comparison and sensitivity analysis based on 

small deviation (±10%) from the optimal parameters have been investigated and shown in 

Figure 4.12. The investigations for the tangential displacement (w), rotation (if/) and the 

2nd modal responses have been provided in "Appendix J". 

38 40 '"30 32 
Frequency (rad/s) 

Figure 4.12 PSD of curved beam mid-span transverse displacement (w) and design 

parameters' sensitivity analysis, (a) Frequency range 5-140 (rad/s). (b) Sensitivity analysis 

for optimal damping factor (£TMD)- (C) Sensitivity analysis for optimal frequency ratio (/TMD). 

Solid, dashed, dotted and dashed-dotted lines represent uncontrolled structure, structure 

with optimal DTMD, as stated in Tables 4.9, structure with DTMD having -10% and +10% 

deviations from designed optimal values, respectively. 
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It can be realized from Figure 4.12 and "Appendix J" that the optimally design DTMD 

system can significantly reduce the vibration due to the 2nd mode, and also it can be 

concluded that: (1) the optimally designed DTMD system is much more sensitive to the 

frequency ratio (/TMD) than to the damping factor (<ZTMD)', (2) the effectiveness of the 

attached DTMD is restricted around its tuned natural frequency, thus it is possible to 

design a MTMD system based on different vibration modes separately. 

Comparing the optimal DTMD parameters with those for single TMD provided in Table 

4.4 (Case 1) for the 2nd mode with mass ratio («=0.01), one can easily find that there are 

approximately the same. Here it should be noted that the optimal two symmetrical 

DTMD in this section has mass ratio of 0.005 for each TMD and thus total mass ratio is 

0.01. Thus, one may make the conclusion that the effects of these two optimally designed 

TMD systems are similar. Therefore, the final scheme for the optimal TMD design based 

the 2n vibration mode would be selected as that listed in Table 4.4 for Case a, in which 

one TMD with mass ratio (jx=0.0l) would be attached in the curved beam's mid-span. 

4.4.3.2 Design based on the 4th vibration mode 

Following the same procedure as those for studying the 2nd vibration mode, the optimal 

design procedure for two symmetrical DTMD system based on the 4th vibration mode 

will be presented in this section. The optimization problem and parameters for the GA 

optimization are the same as those provided in Equation (4.15) and Table 4.7. The mass 

ratio {pi) for each attached TMD is assumed as 0.01, thus total mass ratio (p) is equal to 

0.02. Table 4.10 compares the optimal results obtained using the GA, hybrid optimization 

and SQP technique with different initial values for Step (1). 
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Table 4.10 The optimal two symmetrical DTMD parameters based on the 4th vibration 

mode with mass ratio Cu=0.01) for each TMD—Step (1). 

Design 

Variables 

&MD 

/TMD 

PositionTMDl 

Position_TMD2 

Objective (xlO5) 

GA 

0.1783 

0.9057 

0.3045 

0.6955 

9.18428 

Hybrid 

0.1402 

0.9278 

0.3170 

0.6830 

9.0205 

Optimal Methodologies 

SQP-1 

0.1403 

0.9278 

0.3170 

0.6830 

9.0205 

SQP-2 

0.1401 

0.9256 

0.3095 

0.6905 

9.0218 

SQP-3 

0.0681 

1.0186 

0.5 

0.5 

14.099 

In Table 4.10, the SQP-1, SQP-2 and SQP-3 have the same definitions as those in Table 

4.8. It can be realized that: using different initial points, the optimization approach based 

on SQP presents different local optimum points; GA can catch near global optimum 

solution; the hybrid optimization method can accurately catch the global optimum points. 

The results based on Step (1) show that the two TMD should be attached to Elements 3 

and 5 in Step (2). The accurate position and the optimal damping and stiffness of the 

DTMD system in their relative elements for Step (2) are obtained. The results are 

provided in Table 4.11. 

Table 4.11 The optimal two symmetrical DTMD parameters based on the 4,h vibration 

mode with mass ratio (u=0.01) for each TMD—Step (2). 

Design 

Variables 

£TMD 

/TMD 

Position_TMDl 

Position_TMD2 

Objective (xlO5) 

GA 

0.1409 

0.9255 

0.3054 

0.6945 

9.29139 

Hybrid 

0.1427 

0. 9238 

0.3058 

0.6942 

9.29071 

Optimal Methodologies 

SQP-1 

0.1427 

0. 9238 

0.3058 

0.6942 

9.29071 

SQP-2 

0.1427 

0. 9238 

0.3058 

0.6942 

9.29071 

SQP-3 

0.1427 

0. 9238 

0.3058 

0.6942 

9.29071 

In Table 4.11, the SQP-1, SQP-2 and SQP-3 represent the optimal results obtained from 

SQP optimization methodology with initial values of {0.1, 1, -0.9}, {0.1, 1, 1} and 
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{0.1403, 0.9278, -0.5616} (the optimal value obtained from Step (1)), respectively. 

Figure 4.13 illustrates the GA optimal results convergence analysis for optimal Steps (1) 

and (2) listed in Figure 4.10. 
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Figure 4.13 Convergence analysis for two symmetrical DTMD based on the 4th vibration 

mode with mass ratio Cw=0.01) for each TMD. (a) Step (1). (b) Step (2). 

Again, to illustrate the validity of this set of optimal DTMD design, the structural 

response comparison for transverse displacement (w) and sensitivity analysis based on 

small deviation from the optimal parameters listed in Table 4.11 have been investigated 

and shown in Figure 4.14. The investigations for the tangential displacement (w), rotation 

(y/) and the 4th modal responses have been provided in "Appendix K". As the design 

variables include the position of the attached DTMD system, the small deviation from the 

optimal position is selected as ±0.1 from the optimal parameter in the natural coordinate 

(rj), which is about ±0.35% deviation relative to the beam's curvilinear length, and the 

small deviation for the damping and frequency ratio of the DTMD system are still 

selected as ±10% from their relative optimal values. It can be seen from Figure 4.14 and 

"Appendix K" that the optimally designed DTMD system based on the 4 mode can 

effectively suppress the vibration due to the 4th mode. 
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Figure 4.14 PSD of curved beam mid-span transverse displacement (n>) and design 

parameters' sensitivity analysis, (a) Frequency range 5-140 (rad/s). (b) Sensitivity analysis 

for optimal position, (c) Sensitivity analysis for optimal damping factor (^TMD) (d) Sensitivity 

analysis for optimal frequency ratio (/TMD)- Solid, dashed, dotted and dashed-dotted lines 

represent uncontrolled structure, structure with optimal DTMD, as listed in Table 11, 

structure with DTMD having -10% (-0.1) and +10% (+0.1) deviations from designed 

optimal values, respectively. 

Figure 4.15 compares the structural response around the 4th vibration mode for curved 

beam with the optimal two symmetrical DTMD system provided in this section and the 

optimal single mid-span TMD presented in Table 4.6 for Case b, which has the same 

mass (total) ratio as the optimal two symmetrical DTMD system presented in Table 4.11. 

Results provided in Figures 4.14 and 4.15 show that: (1) the optimal two symmetrical 

DTMD design proposed in this section can provide much better vibration suppression 

effectiveness than that for the single attached mid-span optimal TMD under the same 

mass (total) ratio; (2) the optimal DTMD design proposed in this section has almost no 

effect on other vibration modes. This property is very important for the design of MTMD 

system. 
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.ith Figure 4.15 PSD of curved beam response comparison around the 4 natural frequency for 

different optimal TMD designs based on the 4th vibration mode, (a) The 4th vibration modal 

response, (b) Curved beam mid-span's transverse displacement (w) (c) Curved beam mid-

span's tangential direction displacement («)• (d) Curved beam mid-span's rotation (y/). 

Solid, dashed and dotted lines represent uncontrolled structure, structure with single 

optimal TMD in Table 4.6 (Case b) and with optimal two symmetrical DTMD in Table 4.11, 

respectively. 

4.4.3.3 Design based on the 5th vibration mode 

Following the same procedure as those for studying the 2nd and 4th modes, the optimal 

two symmetrical DTMD system related to the 5th vibration mode has been studied in this 

section. The optimization problem and parameters for GA optimization was the same as 

those listed in Equation (4.15) and Table 4.7. The mass ratio (ju) for each attached TMD 

is assumed to be 0.0075. Table 4.12 compares the optimal results obtained using the GA, 

hybrid optimization methods and SQP with different initial values for Step (1). 

119 



Table 4.12 The optimal two symmetrical DTMD parameters based on the 5 vibration 

mode with mass ratio (M=0.0075) for each TMD—Step (1). 

Design 

Variables 

<ZTMD 

/TMD 

Position_TMDl 

Position_TMD2 

Objective (xlO6) 

GA 

0.0857 

0.9557 

0.1836 

0.8164 

1.8573 

Hybrid 

0.096 

0.9679 

0.1873 

0.8127 

1.8416 

Optimal Methodologies 

SQP-1 

0.096 

0.9679 

0.1873 

0.8127 

1.8416 

SQP-2 

0.096 

0.9679 

0.1873 

0.8127 

1.8416 

SQP-3 

0.0994 

0.9475 

0.5 

0.5 

1.8744 

In Table 4.12, the SQP-1, SQP-2, and SQP-3 have the same definition as those presented 

in Tables 4.8 and 4.10. Again it can be realized from Table 4.12 that the hybrid 

optimization can accurately catch the global optimum point. From the optimal results 

obtained in Step (1) and Equation (4.14), it can be easily found that the two TMD should 

be attached onto Elements 2 and 6 in Step (2). Table 4.13 compares the optimal results 

obtained through the GA, hybrid methods and SQP with different initial values for Step 

(2). In Table 4.13, the SQP-1, SQP-2, and SQP-3 represent the SQP optimization 

methodology based on the initial values of {0.1, 1, -0.9}, {0.1, 1, 1} and {0.096, 0.9679, 

-0.3887} (the optimal value obtained from Step (1)), respectively. Figure 4.16 illustrates 

the GA optimization convergence analysis for Steps (1) and (2). 

Table 4.13 The optimal two symmetrical DTMD parameters based on the 5 vibration 

mode with mass ratio («=0.0075) for each TMD—Step (2). 

Design 

Variables 

£TMD 

/TMD 

PositionJTMDl 

Position_TMD2 

Objective (xlO6) 

GA 

0.0992 

0.9667 

0.1759 

0.8241 

1.8584 

Hybrid 

0.0953 

0.9634 

0.1715 

0.8285 

1.8570 

Optimal Methodologies 

SQP-1 

0.0953 

0.9634 

0.1715 

0.8285 

1.8570 

SQP-2 

0.0953 

0.9634 

0.1715 

0.8285 

1.8570 

SQP-3 

0.0953 

0.9634 

0.1715 

0.8285 

1.8570 
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Figure 4.16 GA convergence analysis for two symmetrical DTMD based on the 5th vibration 

mode with mass ratio (u=0.0075) for each TMD. (a) Step (1). (b) Step (2). 

Similar to the previous cases, it can be realized from Table 4.13 that in Step (2) the 

optimal results obtained from the proposed hybrid optimization method and the SQP 

technique with different initial values are the same. Again, to illustrate the validity of this 

set of optimal DTMD design, the response comparison for structural transverse 

displacement (w) and sensitivity analysis based on small deviation from the optimal 

parameters listed in Table 4.13 have been investigated and shown in Figure 4.17. The 

investigations for the tangential displacement (w), rotation (i//) and 5th modal response 

have been provided in "Appendix L". The definitions of small deviation from optimal 

values are the same as those for Figure 4.14. 

It can be seen from Figure 4.17 and "Appendix L" that this set of optimally designed 

DTMD system for the 5th vibration mode can effectively suppress the vibration due to the 

5th vibration mode. Figure 4.18 compares the structural response around the 5th vibration 

mode for the curved beam with the optimal symmetrical DTMD proposed in this section 

and the single mid-span optimal TMD presented in Table 4.5 for Case c, which has the 

same mass (total) ratio (ju) as the optimal two symmetrical DTMD system provided in 

Table 4.13. 

121 



110 120 130 140 100 110 
Frequency (rad/s) 

Figure 4.17 PSD of curved beam's mid-span transverse displacement (w) and design 
parameters' sensitivity analysis, (a) Frequency range 5-140 (rad/s). (b) Sensitivity analysis 
for optimal position, (c) Sensitivity analysis for optimal damping factor (£TMD)- (d) 
Sensitivity analysis for optimal frequency ratio (/TMD)' Solid, dashed, dotted and dashed-
dotted lines represent uncontrolled structure, structure with optimal DTMD, as stated in 
Table 13, structure with DTMD having -10% (-0.1) and +10% (+0.1) deviations from 
designed optimal values, respectively. 
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Figure 4.18 PSD of curved beam response comparison around the 5* natural frequency for 
different optimal TMD designs based on the 5th vibration mode, (a) The 5th vibration modal 
response comparison, (b) Curved beam mid-span's transverse displacement (w). (c) Curved 
beam mid-span's tangential direction displacement («). (d) Curved beam mid-span's 
rotation (y/). Solid, dashed and dotted lines represent uncontrolled structure, structure with 
single optimal TMD in Table 4.5 (Case c) and with optimal two symmetrical DTMD in 
Table 4.13, respectively. 
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It can be found from Figure 4.18 that the optimally designed two symmetrical DTMD 

system developed in this section performs slightly better than those shown in Table 4.5 

Case c for one mid-span attached TMD under the same mass (total) ratio (u=0.015), but 

not significantly compared with those for the 4th mode. It may due to the fact that the 

optimal two symmetrical DTMD system is not much effective and more TMD may be 

required for 5th vibration mode. This issue has been discussed in the following sections. 

4.4.4 Three attached tuned mass damper system 

Now let us assume three TMD will be attached to the curved beam to suppress the 

structural vibration due to the 5th vibration mode. As the curved beam structure and the 

boundary in this example are both symmetry, obviously two of these three attached TMD 

would be symmetry and one should be attached in the mid-span. Here, two design 

methods have been adopted: Method (1), all attached TMD have the same values of 

damping factor (<5m>) and frequency ratio (/TMD)', Method (2), only the attached 

symmetrical TMD have similar damping factor (&MD) and frequency ratio (/TMD)-

It is noted that the mass ratio (p) for each attached TMD has been assumed to be 0.005, 

thus the total mass ratio for these three DTMD system would be 0.015, which is the same 

as that for the optimal design of two symmetrical DTMD system and single mid-span 

TMD system stated in Tables 4.13 and 4.5 for Case c, respectively. 

Method (1) 

As in this design method all the attached three TMD have the same damping factor {E,TMD) 

and frequency ratio (/TMD), thus the optimal problem and the parameters of the GA 
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optimization methodology will be similar to those stated in Equation (4.15) and Table 

4.7, respectively. Following the same procedure as those for studying the two 

symmetrical DTMD, the optimal results' comparison for Steps (1) and (2), as illustrated 

in Figure 4.10, are provided in Tables 4.14 and 4.15, respectively. As one of the three 

TMD is attached to the mid-span, in Tables 4.14 and 4.15 only the position of the 

symmetrical TMD has been listed. Here it should be noted that based on the results 

obtained in Step (1), the symmetrical TMD is still located in Elements 2 and 6 for the 7-

element finite element model in Step (2). 

Table 4.14 The optimal three DTMD based on the 5th vibration mode for Method (1) with 

mass ratio (u=0.005) for each TMD —Step (1). 

Design 

Variables 

%TMD 

/TMD 

PositionJTMDl 

Position_TMD2 

Objective (xlO6) 

GA 

0.118 

0.9147 

0.1713 

0.8287 

1.9632 

Hybrid 

0.0982 

0.9759 

0.1895 

0.8105 

1.8290 

Optimal Methodologies 

SQP-1 

0.0982 

0.9759 

0.1895 

0.8105 

1.8290 

SQP-2 

0.0982 

0.9759 

0.1895 

0.8105 

1.8290 

SQP-3 

0.0994 

0.9475 

0.5 

0.5 

1.8744 

Table 4.15 The optimal three DTMD based on the 5 vibration mode for Method (1) with 

mass ratio (u=0.005) for each TMD —Step (2). 

Design 

Variables 

£TMD 

JTMD 

PositionJTMDl 

Position_TMD2 

Objective (xlO6) 

GA 

0.1322 

1.0443 

0.1905 

0.8095 

2.1056 

Hybrid 

0.0959 

0.9709 

0.1785 

0.8215 

1.8587 

Optimal Methodologies 

SQP-1 

0.0959 

0.9709 

0.1785 

0.8215 

1.8587 

SQP-2 

0.0959 

0.9709 

0.1785 

0.8215 

1.8587 

SQP-3 

0.0959 

0.9709 

0.1785 

0.8215 

1.8587 

In Table 4.14, the SQP-1, SQP-2 and SQP-3 have the same definitions as those presented 

in Tables 4.8, 4.10 and 4.12. In Table 4.15, the SQP-1, SQP-2 and SQP-3 represent the 
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SQP optimization methodology based on the initial value of {0.1, 1, -0.9}, {0.1, 1, 1} 

{0.0982, 0.9759, -0.3476} (the optimal value obtained from Step (1)), respectively. 

Figure 4.19 also illustrates the GA convergence analysis for the optimal results shown in 

Tables 4.14 and 4.15. 

x10 

(b) 

2105567.96 

S 10 15 20 25 30 ' 2 4 6 8 10 12 14 16 18 
GA calculating cycle 6A calculating cycle 

Figure 4.19 GA convergence analysis for three DTMD design Method (1) based on the 5th 

vibration mode with mass ratio (n=0.005). (a) Step (1). (b) Step (2). 

Again, it can be seen from Figure 4.19 that the GA optimization methodology provides 

good convergence property and also from the optimal results shown in Tables 4.14 and 

4.15, it can be found that the optimal results obtained through the developed GA 

optimization methodology have successfully caught the neighborhood of the global 

optimum point. The structural response comparison for transverse displacement (w) and 

the optimal parameters' sensitivity analysis have been provided in Figure 4.20 to verify 

the validity of this set of optimal DTMD design. The results for the tangential 

displacement (w), rotation (i//) and 5th modal responses have been provided in "Appendix 

M". It should also be noted that the small deviations from the optimal parameters have 

the same definitions as those in Figures 4.14 and 4.17. 

It can be seen from Figure 4.20 and "Appendix M" that the optimally designed DTMD 

system for design Method (1) is effective to suppress the vibration due to the 5th mode. 
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Figure 4.20 PSD of curved beam's mid-span transverse displacement (w) and optimal 
parameters' sensitivity analysis for three DTMD design Method (1). (a) Frequency range 5-
140 (rad/s) (b) Sensitivity analysis for optimal damping factor for the two symmetrical 
TMD. (c) Sensitivity analysis for optimal frequency ratio for the two symmetrical TMD. (d) 
Sensitivity analysis for optimal damping factor for the mid-span TMD. (e) Sensitivity 
analysis for optimal frequency ratio for the mid-span TMD. (f) Sensitivity analysis for 
optimal position for the two symmetrical TMD. Solid, dashed, dotted and dashed-dotted 
lines represent uncontrolled structure, structure with optimal DTMD listed in Table 4.15, 
structure with DTMD having -10% (-0.1) and +10% (+0.1) deviations from designed 
optimal values, respectively. 

Method (2) 

In this design method, the mid-span TMD is assumed to have different damping factor 

(€TMD) and frequency ratio {JTMD) from those of the symmetrical TMD. Therefore, the 

optimization problem has five design variables and can be stated as: 

Find the design variables: 

To minimize: 

Subjected to: 

{X}-{£sTMD,fsTMD, "TMD, €TMD,/TMD} 

RMS of response for the 5' vibration mode (4.16) 

- l< i / r«D<l , 0<&TMD<1, 0<fsTMD<2.5 

0< 

where parameters %STMD, fsTMD, £TMD and fi-MD represent the damping factor, frequency 

ratio for the symmetrical and mid-span TMD, respectively and nTMD is the position of the 
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symmetrical TMD. The mass ratio (ju) for each attached TMD is assumed to be 0.005, 

and thus the total mass ratio (ju) is equal to 0.015. Based on Equation (4.16), the 

parameters for the GA optimization method are defined in Table 4.16. 

Table 4.16 Parameters of GA optimization. 

Npap 12 Xmte 0.5 X 1*10"4 

Nvar 5 WM 02 

It should be noted that the GA optimization technique is kind of random searching 

method, which can not guarantee that the GA optimum results can converge to the same 

(close) values each time. In fact, all of the GA optimum results presented above for the 2 

and 3-dimension design variables cases have been checked five times and each time they 

all converged to the same (close) optimum values, which means that the GA optimization 

technique developed in this study is very stable and robustness. However, the 

optimization problem stated in Equation (4.16) has five design variables, thus to 

investigate the accuracy and convergence of the developed hybrid and GA optimization 

techniques, in this section the developed hybrid optimization technique has been repeated 

6 times. The optimum results obtained by the GA and hybrid optimization methods in 

Step (1), as illustrated in Figure 4.10, have been provided in Table 4.17. Figure 4.21 

illustrates the GA convergence analysis for each calculation shown in Table 4.17. 

Here, it should be noted that in Table 4.17 (also 4.18), the "position" represents the 

position of one of the symmetrically attached TMD. One can easily find from Table 4.17 

that the optimal locations obtained using the GA and also hybrid techniques converge to 

two different points, one is around the middle of the beam (the 5th and 6th calculations), 

the other is around 0.18 along the curved beam's S coordinate (the 1st to 4th calculations) 
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with close values of objective function. It is noted that if DTMD system based on one 

special vibration mode is attached in one point, we will replace them with single TMD 

design as done for the 2nd vibration mode. 

Table 4.17 The optimal three DTMD based on the 5th vibration mode for Method (2) with 

mass ratio (u=0.005) for each TMD —Step (1). 

Times 

1 

2 

3 

4 

5 

6 

Optimal 

method 

GA 

Hybrid 

GA 

Hybrid 

GA 

Hybrid 

GA 

Hybrid 

GA 

Hybrid 

GA 

Hybrid 

£sTMD 

0.0833 

0.0767 

0.0984 

0.0782 

0.1284 

0.0782 

0.0906 

0.0782 

0.1370 

0.081 

0.1655 

0.081 

De 

fsTMD 

0.9362 

0.9814 

0.9825 

0.9780 

0.8902 

0.9781 

0.9429 

0.9781 

0.9255 

0.9647 

0.9118 

0.9647 

sign Variab 

Position 

0.1760 

0.1915 

0.1854 

0.1823 

0.1770 

0.1823 

0.1765 

0.1821 

0.4999 

0.5 

0.4870 

0.5 

>les 

£TMD 

0.5418 

0.5 

0.4372 

0.0001 

0.6436 

0.8115 

0.7063 

1 

0.0309 

0.9985 

0.2687 

0.0001 

frMD 

2.48 

2.5 

1.2716 

1.128 

1.0543 

2.42 

1.2192 

2.2892 

2.5 

2.48 

1.3450 

1.125 

Objective 

function (xlO6) 

2.1556 

2.0240 

2.0485 

2.0272 

2.4564 

2.0272 

2.1176 

2.0272 

2.2298 

2.044 

2.3849 

2.0436 

GA calcualting cycle 

Figure 4.21 GA convergence analysis for each calculation as listed in Table 4.17. (a) For the 

1st to 4th calculation, (b) For the 5th and 6th calculations. 
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From the 1st to 4th calculations in Table 4.17, one can find that different optimal values of 

the design variables can provide the same (close) values of objective, which basically 

means that the optimization problem established in Equation (4.16) is a very complex 

problem having multiple optimal points with close value of objective function and the 

developed GA and hybrid techniques are capable to catch all these points. As mentioned 

before, the main purpose of Step (1) is to catch the optimal elements for the 7 elements 

beam model in Step (2). Based on this, one can also find that although the optimal 

damping factor and frequency ratio especially for the mid-span TMD are significantly 

different in the 1st to 4th calculations, the optimal locations for the symmetrically attached 

TMD are very close, which are located in the Elements 2 and 6 for the 7 elements model 

in Step (2). Therefore, one can make the conclusion that the developed GA optimization 

method has successfully caught the global optimal region in Step (1). 

In Step (2), the GA and hybrid optimization methods have been repeated 8 times, and the 

results have converged to two sets of parameters, as provided in Table 4.18. Figure 4.22 

illustrates the GA convergence analysis for all the 8 calculations stated in Table 4.18. 

50 
GA calculating cycle 

Figure 4.22 GA convergence analysis for each calculation as stated in Table 4.18. (a) For the 

1st -5,h times, (b) For 6th -8th times. 
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Table 4.18 The optimal three DTMD based on the 5th vibration mode for Method (2) with 

mass ratio (u=0.005) for each TMD —Step (2). 

Times 

1 

2 

3 

4 

5 

6 

7 

8 

Optimal 

method 

GA 

Hybrid 

GA 

Hybrid 

GA 

Hybrid 

GA 

Hybrid 

GA 

Hybrid 

GA 

Hybrid 

GA 

Hybrid 

GA 

Hybrid 

isTMD 

0.098 

0.0637 

0.1222 

0.0637 

0.1119 

0.0637 

0.0939 

0.0637 

0.1038 

0.0637 

0.077 

0.0735 

0.0823 

0.0735 

0.129 

0.0735 

Design Variables 

fsTMD Position £TM) 

0.9823 

1.0245 

1 

1.0245 

0.9855 

1.0245 

0.9742 

1.0245 

0.9892 

1.0245 

0.9283 

0.9280 

0.9442 

0.9280 

0.9127 

0.9280 

0.1751 

0.1862 

0.1777 

0.1862 

0.1709 

0.1862 

0.1775 

0.1862 

0.1799 

0.1862 

0.1709 

0.1710 

0.1751 

0.1710 

0.1732 

0.1710 

0.226 

0.0525 

0.0755 

0.0525 

0.0780 

0.0525 

0.0995 

0.0525 

0.0814 

0.0525 

0.0692 

0.0288 

0.0795 

0.0288 

0.0776 

0.0288 

/TMD 

0.2120 

0.9034 

0.9292 

0.9034 

0.9308 

0.9034 

0.9545 

0.9034 

0.9447 

0.9034 

1.0478 

1.0529 

1.0480 

1.0529 

0.9678 

1.0529 

Objective 

function (xlO6) 

1.8509 

1.8076 

1.8652 

1.8076 

1.8593 

1.8076 

1.8571 

1.8076 

1.8543 

1.8076 

1.8233 

1.8136 

1.8323 

1.8136 

1.9133 

1.8136 

From Table 4.18 and Figure 4.22, it can be found that: (1) in the 1st to 5th calculations, the 

optimal results obtained through the developed hybrid optimization method are exactly 

the same, although the relative results obtained through GA have different values. This 

means that the developed GA optimization method has successfully caught the global 

optimal region; (2) From the 6l to 8l calculations, the same conclusion can be found as 

those in the 1st to 5th calculations; (3) the optimization problem in this part has two 

optimal regions with very close value of objective function; (4) comparing the optimal 

result obtained from the 1st to 8th calculations, it can be found that the results for the 1st to 

5th calculations is the best. 
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Again the effectiveness of the optimally designed three DTMD system based on Method 

(2) will be tested through the structural response comparison and the optimal parameter's 

sensitivity analysis. The result for the transverse displacement (w) has been shown in 

Figure 4.23. The investigations for the tangential displacement (u), rotation (y/) and 5th 

modal responses have been provided in "Appendix N". Again it should also be noted that 

the small deviations from the optimal parameters have the same definition as those in 

Figures 4.14 and 4.17. 

Frequency (rad/s) 

Figure 4.23 PSD of curved beam's mid-span transverse displacement (w) and optimal 

parameters' sensitivity analysis for three DTMD design Method (2). (a) Frequency range 5-

140 (rad/s). (b) Sensitivity analysis for optimal damping factor for the two symmetrical 

attached TMD. (c) Sensitivity analysis for optimal frequency ratio for the two symmetrical 

attached TMD. (d) Sensitivity analysis for optimal damping factor for the mid-span 

attached TMD. (e) Sensitivity analysis for optimal frequency ratio for the mid-span 

attached TMD. (f) Sensitivity analysis for optimal position for the two symmetrical attached 

TMD. Solid, dashed, dotted and dashed-dotted lines represent uncontrolled structure, 

structure with optimal DTMD, as stated in Table 4.18, structure with DTMD having -10% 

(-0.1) and +10% (+0.1) deviations from designed optimal values, respectively. 
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From Figure 4.23 and "Appendix N", it can be found that: (1) this set of three optimally 

designed DTMD system is effective; (2) this set of three optimally designed DTMD 

system adds two sets of TMD around the 5th mode of the uncontrolled structure, thus the 

combined structure has three resonance frequencies around the 5th mode, and the optimal 

damping is to decrease the response at the added resonant frequencies. 

Till now four different sets of optimal TMD system design based on the 5 th vibration 

mode have been proposed with the same input mass (total) ratio of 0.0015, which 

include: one mid-span attached TMD (Tables 4.5 Case c); two symmetry DTMD (Table 

4.13); three DTMD (method (1) in Table 4.15); three DTMD (Method (2) in Table 4.18). 

Table 4.19 summarizes the optimal parameters and results for the TMD designs based on 

the 5l vibration mode. 

Table 4.19 The TMD design based on the 5 vibration mode for total mass ratio (>i=0.0015). 

Method a: one mid-span TMD. Method b: two symmetrical DTMD. Method c: three DTMD 

Method (1). Method d: three DTMD Method (2). 

Methods 

a (Table 4.5 

Case c) 

b (Table 4.13) 

c (Table 4.15) 

d (Table 4.18) 

No of 

TMD 

1 

2 

3 

3 

Mass ratio of 

each TMD 

0.015 

0.0075 

0.005 

0.005 

Design 

Position 

0.5 

{0.1715,0.8285} 

{0.1785,0.8215} 

0.5 

{0.1862,0.8138} 

0.5 

Variables 

%TMD 

0.0923 

0.0953 

0.0959 

0.0637 

0.0525 

/TMD 

0.9458 

0.9634 

0.9709 

1.0245 

0.9034 

Objective 

function 

(xlO6) 

1.9180 

1.8570 

1.8587 

1.8076 

Figure 4.24 compared the structural responses for the different optimal TMD designs 

stated in Table 4.19. From Figure 4.24, one can easily find that: (1) the optimal Methods 
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b and c listed in Table 4.19 provide almost the same vibration suppression performance; 

(2) The optimal Method d listed in Table 4.19 is the best design based on the 5th mode. 

Figure 4.24 PSD of structural responses around the 5 vibration mode, (a) The 5 vibration 

modal response, (b) The curved beam mid-span transverse displacement (w). (c) The curved 

beam mid-span tangential displacement («). (d) The curved beam mid-span rotation (if/). 

Solid, dashed, dotted and dashed-dotted lines represent different optimal design methods 

based on the 5th vibration mode given in Methods a, b, c and d listed in Table 4.19, 

respectively. Note: in (a) the dashed and dotted lines almost coincides with each other. 

4.4.5 Design based on multiple vibration modes 

The curved beam's vibration suppression using TMD technology based on the 2nd, 4th and 

5th vibration modes has been investigated in above sections. The sensitivity analysis 

based on small deviation from the optimal values and the response comparisons for each 

part of optimally designed TMD system have been conducted to verify the validity of the 

designed optimal TMD system. Based on the results presented above, the final optimal 

MTMD system can be illustrated through Figure 4.25. It should be noted that to clearly 
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show the position of the attached TMD, in Figure 4.25, the curved beam's S coordinate 

has been mapped to natural coordinate [0.0, 1.0]. 
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Figure 4.25 Optimal MTMD design. 

,nd 
In Figure 4.25, "TMD3" is the optimal single TMD based on the 2 vibration mode 

listed in Table 4.4 for Case a. "TMD2" is the optimal DTMD based on the 4th vibration 

mode listed in Table 4.11. "TMDI" and "TMD4" are the optimal DTMD based on the 5th 

vibration mode listed in Table 4.18. Parameters Si and S2 are the optimal locations of the 

attached TMD system. It should be noted that the exact parameters of the optimal TMD 

system will also depend on the selected mass ratio (p). Next, to verify the validity of the 

proposed optimal MTMD schematic, three sets of optimal MTMD design with the same 

mass (total) ratio (ju) for each vibration modes, as summarized in Table 4.20, will be 

investigated. 

134 



Table 4.20 Optimal MTMD design strategies: Strategy 1, Three attached MTMD in the 

curved beam mid-span and using the optimal parameters, as listed in Table 4.4 Case a, 

Table 4.6 Case b and Table 4.5 Case c; Strategy 2, Six attached MTMD, as illustrated in 

Figure 4.25, using the optimal parameters, as listed in Tables 4.4 Case a, Table 4.11 and 

Table 4.18. Strategy 3, Six attached MTMD as illustrated in Figure 4.25, using the optimal 

parameters, as listed in Tables 4.4 Case a, Table 4.11 and Table 4.15. Note: Parameters S] 

and S2 are defined in Figure 4.25. 

Optimal 

Strategies 
Optimal parameters Vibration modes 

Strategy 1 

(Total mass 

ratio (u) 4.5%) 

Strategy 2 

(Total mass 

ratio (u) 4.5%) 

Strategy 3 

(Total mass 

ratio (u) 4.5%) 

Number of TMD 

Mass ratio 

(Mid-span) S,TMD 

(Mid-span)/rMD 

Number of TMD 

Mass ratio 

(Mid-span) gTMD 

(Mid-span)/rAffl5 

Position 

(Symmetry) £TMD 

(Symmetry)/T-MD 

Number of TMD 

Mass ratio 

Position 

&MD 

frMD 

2nd (Table 4.4 

Case a) 

1 

0.01 

0.093 

0.9592 

2nd (Table 4.4 

Case a) 

1 

0.01 

0.093 

0.9592 

Mid-span 

2nd (Table 4.4 

Case a) 

1 

0.01 

Mid-span 

0.093 

0.9592 

4th (Table 4.6 

Case b) 

1 

0.02 

0.0598 

1.0117 

4th (Table 4.11) 

2 

0.01 

S2= 0.3058 

0.1427 

0. 9238 

4th (Table 4.11) 

2 

0.01 

S2= 0.3058 

0.1427 

0. 9238 

5th (Table 4.5 

Case c ) 

1 

0.015 

0.0923 

0.9458 

5th (Table 4.18) 

3 

0.005 

0.0525 

0.9034 

Sr 0.1862 

0.0637 

1.0245 

5th (Table 4.15) 

3 

0.005 

Sj= 0.1785 

0.0959 

0.9709 
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As the optimal MTMD Strategies 2 and 3 listed in Table 4.20, includes 6 TMD: one for 

the 2nd vibration mode, which is the same as that in the Strategy 1; two for the 4th 

vibration mode with mass ratio (u=0.01) for each TMD, thus the mass ratio (p) in the 

Strategy 1 for the 4th vibration mode should be selected as 0.02 (Table 4.6 Case b); three 

for the 5th vibration mode with mass ratio (u=0.005) for each TMD, thus the mass ratio 

(u) in the Strategy 1 for the 5th vibration mode should be selected as 0.015 (Table 4.5 

Case c). Therefore, the total mass ratio (w) for each vibration mode and also for the whole 

MTMD system is the same for the three strategies listed in Table 4.20. Figures 4.26-4.28 

illustrate the beam mid-span responses for transverse displacement (w), tangential 

displacement (u) and rotation (if/) for uncontrolled structure and the structure with 

attached optimal MTMD system as listed in Table 4.20, respectively. 

I !_/ , , 1 _1 1 0l _ , , , 1 
85 90 95 100 100 110 120 130 140 

Frequency (rad/s) 

Figure 4.26 PSD of curved beam mid-span transverse displacement (w) comparison, (a) 
Frequency range 5-140 (rad/s). (b) Around the 2nd natural frequency, (c) Around the 4th 

natural frequency, (d) Around the 5th natural frequency. Solid, dashed, dotted and dashed-
dotted lines represent the uncontrolled structure, structure with optimal MTMD Strategies 
1, 2 and 3 listed in Table 4.20, respectively. Note: in (b) and (c) dotted and dashed-dotted 
lines coincide with each other. 

136 



,nc , , , 1 i , , , V_J 

80 85 90 95 100 100 110 120 130 140 
Frequency (rad/s) 

Figure 4.27 PSD of curved beam mid-span tangential («) direction displacement 
comparison, (a) Frequency range 5-140 (rad/s). (b) Around the 2nd natural frequency, (c) 
Around the 4th natural frequency, (d) Around the 5th natural frequency. Solid, dashed. 
dotted and dashed-dotted lines represent the uncontrolled structure, structure with optimal 
MTMD Strategies 1, 2 and 3 listed in Table 4. 20, respectively. Note: in (b) and (c) dotted 
and dashed-dotted lines coincide with each other. 

in I , , , 1 .145l , , , VJ 
80 85 90 95 100 100 110 120 130 140 

Frequency (rad/s) 

Figure 4.28 PSD of curved beam mid-span rotation (<//) displacement comparison, (a) 
Frequency range 5-140 (rad/s). (b) Around the 2nd natural frequency, (c) Around the 4th 

natural frequency, (d) Around the 5th natural frequency. Solid, dashed, dotted and dashed-
dotted lines represent the uncontrolled structure, structure with optimal MTMD Strategies 
1, 2 and 3 listed in Table 20, respectively. Note: in (b) and (c) dotted and dashed-dotted lines 
coincide with each other. 
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From Figures 4.26-4.28, one can find that: (1) the optimal Strategies 2 and 3 listed in 

Table 20 provide better vibration suppression effectiveness than the optimal Strategy 1; 

(2) the structural response around the 2nd vibration mode for the optimal Strategy 1 has 

significant deviation from its relative design condition, as shown in Figures 4.9 and 4.12. 

The reason is due to the effect of the attached TMD system to the original structural 

dynamic properties, which will be analyzed in detail through Table 4.21, which illustrates 

the first 6 natural frequencies for the uncontrolled structure and the frequencies for the 

structure with the attached optimal TMD system for different optimal methodologies 

studied above. 

From Table 4.21, it can be found that: 

(1) For optimal TMD based on one special vibration mode: 

(a) For the optimal one mid-span TMD based on the 2nd vibration mode (Table 4.4 

Case a), the natural frequencies of the 4* and 5l vibration modes would shift 

+0.0378% (from 90.5644 to 90.5986 rad/s) and +0.0946 % (from 123.2884 to 

123.405 rad/s) from the original condition, respectively. These are very small 

deviation and then would not affect the structural response around the 4th and 5th 

vibration modes, as shown in Figures 4.9 and 4.12. 

(b) For the optimal one mid-span TMD based on the 4 vibration mode (Table 4.6 

Case b), the natural frequencies of the 2nd and 5th vibration modes would shift -

4.08% (from 35.2407 to 33.8045 rad/s) and +2.8588 % (from 123.2884 to 

126.813 rad/s) from the original condition, respectively. These are very big 

deviations and it is the main reason that the response for the optimal MTMD 

Strategy 1 has significant deviation around the 2nd mode, as shown in Figures 
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4.26-4.28. However, the natural frequencies of the 2 and 5 vibration modes 

would just shift -0.0358% (from 35.2407 to 35.2281 rad/s) and +0.0913 % (from 

123.2884 to 123.401 rad/s) from the original condition, respectively for two 

symmetrical optimal DTMD design (Table 4.11). These small deviations would 

not affect the structural response around the 2nd and 5th vibration modes, as shown 

in Figures 4.26-4.28 for the Strategies 2 and 3. 

(c) For the three types of optimal TMD methods based on the 5th vibration mode 

(Tables 4.5 Case d, 4.15 and 4.18), no significant shifts for the 2nd and 4th 

vibration modes from the original system exist. However the maximum deviation 

happens in the one mid-span TMD optimal design method (Table 4.5 Case b). 

(2) For optimal MTMD Strategies 1, 2 and 3 shown in Tables 4.20 and 4.21: 

(a) For the optimal MTMD Strategy 1, one can easily find that: (1) the natural 

frequencies around the 2nd vibration mode shift -2.96% (from 31.3078 to 30.3825 

rad/s) and -3.8% (from 37.9841 to 36.5395 rad/s), from the design condition, 

respectively; (2) the natural frequencies around the 4l vibration mode shift -

0.24% (from 87.3188 to 87.108 rad/s) and -0.42% (from 95.7043 to 95.3023 

rad/s) from the design condition, respectively; (3) the natural frequencies around 

the 5th vibration mode shift 0.56% (from 111.397 to 112.0194 rad/s) and 1.95% 

(from 132.842 to 135.4281 rad/s) from the design condition, respectively. 

(b) For optimal MTMD Strategies 2 and 3, no significant shifts from the design 

condition for the natural frequencies around the 2n , 4* and 5l vibration modes. 
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Based on the above investigations, one can easily make the conclusion that the Strategy 2 

as stated in Tables 4.20 and 4.21 is the best MTMD design strategy which can provide 

the best vibration suppression performance for the structural response due to the 2nd, 4th 

and 5th vibration modes and have the smallest effect to the structural dynamic properties 

and also the smallest deviation from their design condition. 

4.4.6 Theoretical basis for the optimal MTMD design 

In the above investigations, the optimal DTMD systems design based on each vibration 

mode have been conducted through the proposed hybrid optimal methodology and then 

combined together to provide an optimal MTMD design. As mentioned above, the 

number and position of the attached DTMD system play important roles in an optimal 

MTMD design problem and in above optimization procedure the number of the attached 

DTMD system is assumed to be a given value. 

Here, we will present a theoretical principle to explain why one, two and three attached 

TMD are necessary for the optimal TMD system based on the 2nd, 4th and 5th vibration 

modes, respectively, and also the optimal positions for the attached TMD system. Table 

4.22 summarizes the positions for the optimal TMD design based on the 2 n , 4th and 5th 

vibration modes taken from Tables 4.4 for Case a, 4.11, 4.15 and 4.18, respectively, 

which were utilized to combined the optimal MTMD Strategies 2 and 3 listed in Table 

4.20. Figure 4.29 illustrates the modal shapes for the 2nd, 4th and 5th vibration modes in 

the transverse displacement (w). 
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Table 4.22 Optimal location summarization (Tables 4.4 for Case a, 4.11,4.15 and 4.18). 

Number 

ofTMD 

2nd mode (Table 

4.4 Case a) 

1 

4th mode 

(Table 4.11) 

2 symmetry 

5th mode 

3 (2 symmetry, 1 mid-span) 

(Table 4.15) (Table 4.18) 

Position 1 

Position 2 

Position 3 

0.3058 

0.6942 
0.5 

0.1785 

0.8215 

0.5 

0.1862 

0.8138 

0.5 

*" 0.5 

! -

*' 
t 

* 0.1714 * 

' 0.3071 

-

i ' ( 

0.5 

T 

\ 

\ 
"v ,•• 

^ 

T 1— 

> 

0.1714 

0.3071 

0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1 
Dimensionless curved beam length 

Figure 4.29 Modal shapes for the beam transverse displacement (w>). Solid, dotted and 

dotted-dashed lines represent the modal shapes for the 2nd, 4th and 5th modes, respectively. 

Comparing the optimal position illustrated in Table 4.22 with Figure 4.29, one can easily 

find that the optimal position of the attached DTMD system is located around the relative 

maximum deflection points in the modal shapes and the required number of the DTMD 

system is equal to the number of the maximum deflection points in the modal shape: 

(1) For the 2nd vibration mode, one maximum deflection point in the modal shape is 

located in the beam mid-span, thus the optimal locations obtained for the two 

symmetrically attached DTMD system presented in Table 4.9 are exactly in the mid-

span; 
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(2) For the 4 vibration mode, two symmetrical maximum deflection points exist in the 

modal shape. Therefore, one can easily explain some phenomenon investigated before: 

(a) the two symmetrical DTMD design method provided in Table 4.11 can provide much 

better vibration suppression performance around the 4th natural frequency than the one 

mid-span attached TMD provided in Table 4.6 (Case b); (b) from Figure 4.8 for the one 

mid-span TMD design based on the 4th vibration mode, one can find the optimal 

frequency ratio will not exactly decrease with the increase of the mass ratio, which is also 

due to the fact that the one mid-span TMD is not suitable choice for the vibration 

suppression based on the 4th vibration mode; 

(3) For the 5th vibration mode, three maximum deflection points exist in the modal shape, 

in which two are symmetry and one locates in the mid-span. Therefore, one can also 

easily explain some phenomenon observed above: (a) the two symmetrical DTMD design 

method stated in Table 4.13 can provide better vibration suppression performance around 

the 5th vibration mode than the one mid-span attached TMD stated in Table 4.5 for Case 

c, but not significantly comparing with those for the 4l vibration mode illustrated in 

Figure 4.15. This is due to the fact that the mid-span is one of the maximum deflection 

points in the 5th modal shape; (b) from the optimal results given in Table 4.17, one can 

find that the one possible optimal locations for the symmetrical TMD is the mid-span, 

which is also due to the fact that the mid-span is one of the maximum deflection points in 

the 5th modal shape. 

Based on above analysis, one can easily make the conclusion that the theoretical principle 

for continuous structure with attached MTMD system is the modal shape. For beam-type 

structure, as the transverse displacement is more important than the other degrees of 
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freedom, its modal shape should be utilized to design the optimal MTMD system. 

Therefore a design procedure for beam-type structures with attached MTMD system 

should include the following four main steps: 

Step A: Through studying the uncontrolled structural dynamic properties, one can decide 

which vibration mode(s) is dominant. For instance, the example shown in Chapter 3 has 

single dominant mode, thus the TMD system design just need to be focused on this 

dominant mode. 

Step B: From the modal shape(s) of dominant mode(s), one can decide how many TMD 

are required to suppress the vibration based on each dominant mode effectively. 

Moreover one can also obtain the initial positions of the attached DTMD system, which 

is close to the maximum deflection point(s) in the dominant modal shape(s). 

Step C: Utilizing the optimization methodology proposed in this chapter to obtain the 

optimal TMD parameters. Here it should be noted that in Step B, the initial position of 

the DTMD system can be obtained through the modal shape, thus one can directly go to 

the Step (2), as illustrated in Figure 4.10, and then utilize the proposed hybrid optimal 

methodology to find the optimal DTMD parameters. 

Step D: Based on the results obtained in above steps, the MTMD system can be obtained 

by simply combining the designed optimal DTMD systems. 

Here, it should be noted that although the proposed optimal design principle for beam-

type structures with the attached optimal MTMD system is derived based on the example 

provided in this chapter, it is suitable for general beams with different boundary 

condition. For example it can be utilized to analysis the optimal TMD design presented in 

Chapter 3. 
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4.5 Conclusions and Summary 

This chapter presents a thorough investigation on vibration suppression of curved beam-

type structures under random loading using multiple Tuned Mass Dampers (MTMD) 

technique. The finite element formulation for the curved beam with the attached MTMD 

system has been successfully derived. The finite element method provides general 

approach and can be efficiently used for design optimization of continuous curved 

structures with the attached TMD system and also through finite element method the 

position of the attached TMD can be identified as one of the design variables. It should 

be noted that based on the developed finite element formulation one can easily extend the 

study to curved beam with attached single or multiple TMD under different boundary and 

geometrical conditions. A hybrid optimization methodology, which combines the global 

optimization method based on GA and the powerful local optimization method based on 

SQP, has been established and then utilized to find the optimal design parameters 

(damping, stiffness and position) of the attached multiple TMD system. The validity of 

the developed GA and hybrid optimization methodologies has been verified through 

numerous illustrated examples. 

Furthermore based on the results shown in the numerical examples, the theoretical 

principle for designing optimal MTMD system for beam-type structures has been 

proposed. Based on this, one can easily design the TMD system to suppress the vibration 

of beam-type structures with different geometrical and boundary conditions effectively 

and accurately. 

145 



CHAPTER 5 

EXPERIMENTAL SETUP 

5.1 Introduction and Experimental Setup 

A uniform cantilever steel beam subjected to base excitation is investigated in this 

chapter. An optimally designed Tuned Mass Damper (TMD) system will be connected to 

the steel beam to suppress the vibration effectively. The absolute acceleration of the steel 

beam's end-point with and without attaching the optimally designed TMD system will be 

evaluated using the finite element approach presented in Chapters 2 and 3, and also 

measured by the accelerometer. 

The schematic and physical experimental setups are illustrated in Figures 5.1 and 5.2, 

respectively. Here, a uniform aluminum beam with attached masses, which acts as a 

MTMD system, is connected to the steel beam, and the aluminum beam's natural 

frequencies can be tuned to the steel beam's vibration modes through an optimally 

designed locations and weights of its attached masses. Therefore, through this 

experimental study, one can validate the optimal design methodologies for the single and 

multiple attached TMD systems presented in Chapters 3 and 4. Here it should be noted 

that in Figure 5.1 the aluminum beam has been assumed to be connected to the tip of the 

steel beam, and the reason for this will be presented in Section 5.3.1. 
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LABVIEW 
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Steel beam 
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Aluminum beam 

MA250-S062 ^ . 
Shaker 

UD-VWiN* Vibration controller; 
Waveform fjcncmtor 

Figure 5.1 Schematic diagram of the experimental setup. 

Figure 5.2 Physical diagram of the experimental setup. 

In Figure 5.1, "Accelerometer 1" is the accelerometer installed in the MA250-S062 type 

shaker; "Accelerometer 2" is Minature DeltaTron type 4508 accelerometer, which is 

utilized to measure the absolute acceleration of the steel beam's end-point; "UD-VWIN 

vibration controller" is utilized to control the random excitation generated by MA250-

S062 type shaker; Agilent 332204 type "Waveform generator" is utilized to control the 

harmonic excitation generated by MA250-S062 type shaker; analysis software 

"LABVIEW" with build-in Analogy-Digital-Card (ADC) will be utilized to analysis the 

experimental data. 
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It should be noted that in the following experimental study the beam has been subjected 

to random base excitation with the PSD function of acceleration as the form shown in 

Figure 5.3, in which the "Expected Excitation signal" is controlled by "UD-VWIN 

vibration controller" with ±3 (dB) boundary and the cutoff frequencies were set to 2 and 

100 {Hz), respectively. 

e 

1 

Upper boundary 
WB) t 

3(dB) I Expected Excitation signal 

lower boundary 

Excitation 
Frequency 

I (Hz) 2 (Hz) 100(11/) 150 (Hz) 

Figure 5.3 Random excitation signal generated by MA2S0-S62 type shaker controlled by 

"UD-VWIN vibration controller". 

5.2 Dynamic Properties of Beams 

Table 5.1 lists the physical and geometrical parameters of the steel and aluminum beams, 

which will be utilized in this experimental study. 

Table 5.1 The physical and geometrical parameters of the steel and aluminum beams 
189 

Parameters 

Material 

Elastic modules 

Poisson's ratio 

Density 

Length 

Rectangle 

Cross section 

Width 

Height 

Steel Beam 

1018-Steel 

2.05x10" (N/m2) 

0.29 

7870 (Kg/ m2) 

\(m) 

38.1 (mm) (1.5 inch) 

6.4 (mm) (0.25 inch) 

Aluminum Beam 

6061-T6 Aluminum 

6.9xl09(7V/w2) 

0.33 

2700 (Kg/ m2) 

0.5(m) 

19.38 (mm) (0.76 inch) 

3.12 (mm) (0.123 inch) 
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As both beams' cross-sectional area is rectangle, the shear coefficient for the Timoshenko 

beam theory can be obtained through kq=5(l+v)/(6+5v), where v is the Poisson's ratio. 

The equations of motion for beam-type structures subjected to the base excitation can be 

expressed as: 

[M] {q(t)} + [Q W)} + [K] {q(t)} = [E, ]xg (5.1) 

where mass \M\ and stiffness [K] matrices have the same definitions as those stated in 

Equation (2.5). The nodal displacement {q}, velocity {q} and acceleration {q} vectors 

are all relative to the base. xg represents the base excitation. Matrix [Es] is the direction 

matrix for base excitation, which can be defined as: 

element 

•rAJ[N(Ti)V(ri)dri, {<>}„ (5.2) 

where y and A represent the density and the beam's cross-sectional area, respectively. 

[N(tj)] and J(r/) are the shape function and Jacobian between the natural and physical 

coordinates, as defined in Chapter 2. Expression {0} ,̂ has the same definition as that in 

Equation (3.5e). Utilizing the same methodology as stated in Equations (3.10) and (3.11), 

Equation (5.2) can be transferred to the state-space form as: 

{m} = [A]{z(t)} + lBVcg=[A]{z(t)} + {Q(t)}3 (5.3) 

^T where {z} is the state vector {q,q} , and 

[A] = 
[0] [/] 

-[MTl[K] -[MT\C] 
and [B] = 

[0] 
[MT\ES] (5.4) 

Now utilizing Equation (3.12), one can easily obtain the PSD function of state vector {z}. 

As the absolute acceleration would be measured in the experimental study, according to 

the properties of PSD function, one can evaluate the PSD of absolute acceleration as: 
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[SSa(a>)] = [-[Af\A[K] -[M]"'[C]] [Sz(co)] [-[Myl[K] -[M]-l[C]J (5.5) 

where {qa}represents the absolute acceleration of nodal variables; [Sz(co)] and [Sg (<»)] 

are the PSD of the state-space vector and absolute acceleration. Here it should be noted 

that in this chapter the beams have been modeled using 7 Timoshenko beam elements 

with 4 nodes per element, as discussed in Chapter 2. 

Next, the dynamic behavior for both steel and aluminum beams will be evaluated using 

the finite element model stated in Equation (5.1), and then the results would be compared 

with the experimental data. 

5.2.1 Dynamic properties of the steel beam 

Figure 5.4 compares the PSD of absolute acceleration of the steel beam' end-point 

evaluated using the finite element model and obtained from the experimental data. 
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Figure S.4 Steel beam's end-point acceleration response comparison. Solid and dotted lines 

represent the results from the finite element model and experimental data, respectively. 
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Here, it should be noted that in the finite element model, the steel beam's damping 

factors were selected as 0.031, 0.0161 and 0.0084 for the first three vibration modes, 

respectively, and 0.0002 for all higher vibration modes. Table 5.2 compares the first three 

natural frequencies evaluated using the finite element model and the resonant frequencies 

obtained from the experimental data. 

Table 5.2 Natural frequencies of the steel beam's finite element model and the resonant 
frequencies from experimental data. 

Experimental data 

Finite element Method 

co, (Hz) 

5 

5.2599 

co2 (Hz) 

32.75 

32.9612 

a>3(Hz) 

89.75 

92.3405 

5.2.2 Dynamic properties of the aluminum beam 

The PSD of the absolute acceleration of the aluminum beam' end-point obtained from 

experimental data and evaluated through the finite element model is compared in Figure 

5.5. 

60 

S" 50 
2-

.2 40 
5 
I 3 0 
"3 
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£10 

o 

Figure 5.5 Aluminum beam's end-point acceleration response comparison. Solid and dotted 

lines represent the results from the finite element model and experimental data, 

respectively. 
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Here, the aluminum beam's damping factors were selected as 0.0415 and 0.0184 for the 

first and second vibration mode, and 0.002 for higher vibration modes. Table 5.3 

illustrates the first three natural frequency evaluated using the finite element model and 

the resonant frequencies obtained from the experimental data. 

Table 5.3 Natural frequencies of the Aluminum beam's finite element model and the 

resonant frequencies from experimental data. 

Experimental data 

Finite element Method 

©i (Hz) 

10.15 

10.1212 

<ai(Hz) 

59.78 

63.8634 

co3 (Hz) 

178.9144 

It can be seen from Figures 5.4 and 5.5 and Tables 5.2 and 5.3 that good agreement exists 

between the numerical model and experimental data for natural frequencies of both steel 

and aluminum beams. Therefore, in the following sections the established finite element 

model for both steel and aluminum beams will be utilized to design the TMD system. 

5.3 Optimal Tuned Mass Damper Design 

Based on the experimental investigation for the steel beam shown in Figure 5.4 and Table 

5.2, it can be found that it is a very flexible beam in which there is not just single 

dominant mode. Therefore, to suppress the vibration effectively, in this chapter the TMD 

system has been designed based on the steel beam's first and second vibration modes, as 

considering the dynamic properties of the aluminum beam, it is difficult to decrease the 

aluminum beam's third natural frequency from around 180 (Hz) to around 90 (Hz), which 

is the third natural frequency of the steel beam, through adding small masses. The 

theoretical basis for optimally designed TMD system proposed in Chapter 4 will be 

utilized to determine the optimal location of attached aluminum beam, and then the whole 
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optimization procedure will be redefined based on this designed experimental 

investigation. 

5.3.1 Optimal location of the attached aluminum beam 

Based on the theory proposed in Chapter 4, one can utilize the modal shape to determine 

the number and initial position of the attached MTMD system. Figure 5.6 illustrates the 

steel beam's first two vibration modal shapes for transverse response. 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 
Dimensionless length 

Figure 5.6 Steel beam's first two vibration modal shapes for transverse response. Solid and 

dotted lines represent the first and second vibration modes, respectively. 

It can be found from Figure 5.6 that the maximum deflections in the first two vibration 

modal shapes are both located at the end of the beam and only one maximum point exists. 

Therefore two TMD will be attached at the end of beam, in which the natural frequencies 

of these two TMD were tuned to the steel beam's first two vibration modes, separately. 

Based on the above investigations, the natural frequencies of the aluminum beam, which 

will be connected at the end of the steel beam, will be tuned to the steel beam's first two 

vibration modes through two attached small masses, as shown in Figure 5.1. Therefore, 
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the aluminum beam with the attached masses would operate similar to two sets of optimal 

TMD system. 

The optimal TMD designs presented in Chapter 3 and 4 and those available in published 

literatures are all based on given mass of the attached TMD system and the optimal 

parameters are the stiffness and damping of the attached TMD system. However, as the 

properties of the attached aluminum beam can not be changed, the optimal problem in 

this chapter would be transferred to select suitable masses and also their locations to tune 

the natural frequencies of the aluminum beam to the steel beam's first two vibration 

modes. 

The equations of motion in finite element form for the steel beam end-connected to the 

aluminum beam with the attached masses under base excitation can be also expressed as 

Equation (5.1). Here it should be noted that the stiffness [K\ and damping [C] matrices 

and the nodal displacement {q}, velocity {q} and acceleration {q} vectors are the 

combination of both steel and aluminum beams' finite element models, and the mass [M] 

and direction [Es] matrices are the combination of not only steel and aluminum beams' 

finite element model but also the effect of the attached mass. Let us assumed one mass 

(m) is connected to the/* element of the aluminum beam's finite element model and its 

position in thisy^ element can be expressed as (//„,). Therefore, the effect of the attached 

mass (m) to the mass [Ad] and direction [Es] matrices stated in Equation (5.1) can be 

expressed as: 

[M]e= I { [ % ) f [ % ) ] « i and [Es]e = £ { [JV(7m)fm}. ( 5 6 ) 
element=j element-] 
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where [M\e and [Es]e represent the effect of the attached mass (m) to the mass [M] and 

direction [Es] matrices, as stated in Equation (5.1) and [N(ri)] is the shape function. Here 

it should be noted that the position of the attached mass (m) can be identified as a design 

variable through parameter tjm. Next the optimization methodology utilized in this 

experimental study will be presented in detail. 

5.3.2 Design based on the steel beam's first vibration mode 

Based on the data listed in Tables 5.2 and 5.3, it can be found that the first natural 

frequencies for the steel and aluminum beams are 5.2599 and 10.1212 {Hz), respectively. 

Obviously, to decrease the natural frequency of the aluminum beam from 10.1212 {Hz) to 

around 5 {Hz), a simple methodology is to connect a small mass ("Mass 1" shown in 

Figure 5.1) at the end of the aluminum beam. Therefore, the optimal problem in this 

section would be transferred to find the optimal value of this attached mass. 

As mentioned before, in the traditional TMD design, the mass of the TMD system is a 

given input and restricted to be not more than the 10% of the original structural mass, 

82 

otherwise the dynamic properties of the original structure will be changed significantly . 

Moreover, based on the investigations presented in Figure 3.2 and those in available 
84 

literatures , one can find that with the increase of input mass ratio, the effectiveness of 

the optimally designed TMD system would be increased. Based on those facts, as the 

optimization problem in this section is to find optimal value of the attached mass, which 

is the only design variable, it is difficult to define a suitable objective function for the 

optimization problem presented in this section. 
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Fortunately, based on the working principle of an optimally designed TMD system and 

also the investigations presented in Chapters 3 and 4, one can find that the frequency ratio 

defined in Equation (3.14) for an optimally designed TMD system is close to 1. 

Moreover, considering the fact that in the next section a second mass will be attached to 

the aluminum beam, which will also affect the dynamic property of the aluminum beam's 

first vibration mode. Therefore, in this section, the first natural frequency of the 

aluminum beam will be tuned to around 5.3 (Hz), which is the first natural frequency of 

the steel beam, through "Mass 1" illustrated in Figure 5.1, and the approach can be 

expressed as the following optimization problem: 

Find the design variables: {DV}={mass} 

first natural frequency of the aluminum beam with 

the attached tip mass equal to 5.3 (Hz) 

(5.7) 

To make: 

Finally, one can easily find that the mass of the attached mass ("Mass 1" in Figure 5.1) is 

about 50 (g). Figure 5.7 shows the dynamic property of the aluminum beam with end-

attached 50 (g) mass. 

60 _ 80 .,, , 100 
Frequency (Hz) 

Figure 5.7 Aluminum beam's end-point acceleration response comparison. Solid, dotted and 
dashed-dotted lines represent the finite element model and experimental data for aluminum 
beam with tip attached 50 (g) mass, and the finite element model for original aluminum 
beam, respectively. 
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From Figure 5.7, it can be found that the first natural frequency of the aluminum beam 

has been tuned to 5.3 (Hz) through the end-attached mass. Next, a second mass ("Mass 2" 

in Figure 5.1) will be connected to the aluminum beam to suppress the steel beam's 

vibration due to the second mode. 

5.3.3 Design based on the steel beam's second vibration mode 

Here the end-attached mass 50 (g) will be kept, as it has successfully tuned the natural 

frequency of the aluminum beam to the first mode of the steel beam, and then a 54 (g) 

small mass ("Mass 2" in Figure 5.1) will be added to the aluminum beam to tuned the 

second natural frequency of the aluminum beam to the second mode of the steel beam. As 

the mass is given, the optimization problem is to find the best location for this attached 

mass to suppress the steel beam's vibration around the second vibration mode, which can 

be expressed as: 

Find the design variables: {D V)={location} 

To minimize: RMS of the response of the 2" vibration mode (5.8) 

Subjected to: location along the length of the aluminum beam 

One can easily utilize the hybrid optimization methodology proposed in Chapter 4 to 

obtain the solution. However, as the optimization problem stated in Equation (5.8) is one-

dimensional case and then it can be solved graphically. In order to clearly clarify the 

property of this optimization problem, Figure 5.8 illustrates the value of objective 

function versus the changing of the design variable, form which one can easily find that 

the optimal location of the attached second mass is around 0.66, which is about 32.5 (cm) 

from the connection point of the steel and aluminum beams. 
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Figure 5.8 Value of objective function vs. position of the attached second mass. 

5.3.4 Vibration suppression comparison under random excitation 

To verify the validity of the optimal TMD design presented in the above two subsections, 

the vibration suppression performances will be compared in this section. Five different 

cases, as shown in Table 5.4, have been investigated. 

Table 5.4 Vibration suppression strategies comparison. 

Strategies Schematics 

Case 1 

Case 2 

Case 3 

Case 4 

Case 5 

Excitation Steel beam 

Excitation Steel beam Aluminum beam 

Excitation 

Excitation 

Steel beam Aluminum bea m—̂  
50(g) 

Steel beam Aluminum beam-} 54(g) 50 fe) 

4 n 

Excitation 

k 32.5 (cm) *i 
54 (g) 50 («) 

Steel beam _AJ£mjnum beain-̂  g | ' 
23(cm) 

Here it should be noted that Case 3 in Table 5.4 is the optimal design based on the steel 

beam's first vibration mode and Case 4 in Table 5.4 is the optimal design based on the 

beam's both first and second vibration modes. For the sake of clear expression, the five 
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cases listed in Table 5.4 have been categorized to two groups as: Group 1 for Cases 1, 2 

and 3 and Group 2 for Cases 1, 3, 4 and 5. Therefore, Case 2 can be treated as the 

deviation from the optimal design based on the first vibration mode, as shown in Case 3; 

Cases 3 and 5 can also be identified as the deviation from the optimal design based on the 

second vibration mode, as shown in Case 4. 

To testify the validity of the finite element model, Figure 5.9 compare the PSD of 

absolute acceleration of steel beam's end-point evaluated using the finite element model 

and obtained from the experimental data for Cases 2 and 3 listed in Table 5.4. The 

acceleration response of the tip point of the steel beam for Cases 4 and 5 based on finite 

element analysis and experimental data are compared in Figure 5.10. From Figures 5.9 

and 5.10, one can find that the results evaluated from the finite element model are very 

close to the experimental data. 

20 40 60 80 100 20 
Frequency (Hz) 

40 60 80 100 

Figure 5.9 Steel beam's end point acceleration response comparison. Solid and dotted lines 

represent the results from the finite element model and experimental data, respectively, (a) 

For Case 2 listed in Table 5.4. (b) For Case 3 listed in Table 5.4. 
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-401 
20 40 80 80 100 20 40 60 80 100 

Frequency (Hz) 

Figure 5.10 Frequency domain acceleration response comparison for steel beam's end point. 

Solid and dotted lines represent the results from the finite element model and experimental 

data, respectively, (a) For Case 4 listed in Table 5.4. (b) For Case 5 listed in Table 5.4. 

The steel beam's dynamic property (end-point acceleration) for Cases 1, 2 and 3 (Group 

1) for the results evaluated through the finite element model and obtained from the 

experimental data are shown in Figure 5.11. The comparisons of the acceleration 

response of the tip point of the steel beam for Cases 1, 3, 4 and 5 (Group 2) are shown in 

Figure 5.12. 

From Figures 5.11 and 5.12, one can also find that the proposed TMD design 

methodology has successfully suppressed the vibration around the steel beam's first and 

second vibration modes. 

160 



- » 6 0 

m 

O 

at
i 

•S 20 
o 
X 
UJ 
"S o « w 

i 
W-20 
0) 
D£ 

-40 

., 1 

fiu 
• : ' * « « W ^ 
>! > 

5 " 
- 1 '.{ 

? 
i ? . 

ifil 

,7 J l \ 

\ 

\ 

T — — ! -

ft 
n 

\ u^ 
X j — —f**^ 

?•-. ' 
. / - - ' 
\ / 
t j 
\ 

y ._ _ ,_ 

r - — m r " " • • ? " 

f't 
i > 

/ ' 5 
/ * • / ' 

/ ' / 

1 i ! 

(a). 
» 
i i 

V 
•AN \ V 

• V 
\ \^ 

'v» ^ v . 

***•* 

-

-

10 20 30 40 50 60 70 
Frequency (Hz) 

80 90 100 110 

20 40 50 60 70 
Frequency (Hz) 

110 

Figure 5.11 Frequency domain acceleration response comparison for steel beam's end point. 

Solid, dashed and dotted lines represent the Cases 1, 2 and 3, as listed in Table 5.4, 

respectively, (a) The results evaluated from finite element model, (b) The experimental data. 
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Frequency (Hz) 

Figure 5.12 Frequency domain acceleration response comparison for steel beam's end point. 

Solid., dashed, dotted and dashed-dotted lines represent the Cases 1, 3, 4 and 5 listed in 

Table 5.4, respectively, (a) The result from finite element model, (b) The experimental data. 

5.3.5 Vibration suppression comparison under harmonic excitation 

The steel beam's response (tip acceleration) comparison for random loading has been 

conducted in above section, from which one can find that the vibration suppression 

performance for Cases 3-5 listed in Table 5.4 are very close at excitation frequency equal 

to 5 {Hz). Therefore, in this section only the Cases 1, 2 and 3 listed in Table 5.4 under 

harmonic excitation with excitation frequencies at 5 (Hz), which is the first resonant 

frequency of the steel beam, will be presented. Figure 5.13 illustrates the experimental 
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data for steel beam's end-point acceleration response in time domain under harmonic 

excitation with 5 (Hz) excitation frequency for Cases 1, 2 and 3 listed in Table 5.4. Here 

it should be noted that the data shown in Figure 5.13 have been filtered by a 5 order low-

pass Butterworth type filter with cut-off frequency of 10 (Hz) and directly recorded by 

"LABVIEW" and then simply divided by the amplitude of excitation without any average 

processing. 

Figure 5.13 Steel beam's end point acceleration time domain response comparison under 

harmonic excitation with 5 (Hz) excitation frequency. Solid, dashed and dotted lines 

represent Cases 1, 2 and 3 listed in Table 5.4, respectively. 

From Figure 5.13, one can find that the proposed TMD design methodology has 

successfully decreased the response around the steel beam's first natural frequency. 

5.3.6 Natural frequency analysis for tuned mass damper system 

The optimal TMD design and their response under both random and harmonic excitation 

have been investigated experimentally and computed using finite element model in above 

sections, and the results shows that the proposed TMD design is very effective. Table 5.5 

summarizes the natural frequencies around the original steel beam's first two vibration 
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modes for different cases listed in Table 5.4, to clearly clarify the effectiveness of the 

proposed TMD design methodology. 

Table 5.5 Natural frequencies comparison for Cases 1-5 listed in Table 5.4 around the first 

two vibration modes of the steel beam. 

Cases listed Steel beam's natural frequency (Hz) 

in Table 5.4 First mode Second mode 

Case 1 5.2599 32.9612 

Case 2 4.4731 10.8896 32.1163 

Case 3 3.6269 7.2414 30.7476 

Case 4 3.2803 7.1576 28.6578 39.8982 

Case 5 3.4114 7.2372 26.7607 40.5519 

From Table 5.5, one can easily find that the proposed TMD design methodology adds 

two resonant frequencies around their relative tuned natural frequencies, which exactly 

agrees with the working principle of the classical optimally designed TMD system. 

5.4 Conclusions and Summary 

Through the experimental study presented in this chapter, the validities of the finite 

element model for Timoshenko beam presented in Chapter 2, the optimal Tuned Mass 

Damper (TMD) design utilizing the finite element method and the optimization 

methodologies proposed in Chapters 3 and 4, and also the optimal TMD design principle 

for beam-type structures presented in Chapter 4 have been investigated. 

Moreover, the optimal TMD design method presented in this chapter, which connects a 

small beam with attached masses to the original beam structure, is novel. 
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CHAPTER 6 

MODEL DYNAMIC BEHAVIOR OF MAGNETO-RHEOLOGICAL 

FLUID DAMPERS 

6.1 Introduction 

The finite element model for beam-type structures has been derived in the Chapter 2, and 

then utilized to design the Timoshenko beam and curved beam with the attached Tuned 

Mass Damper (TMD) system in Chapters 3 and 4. A design principle for beam-type 

structures with the attached TMD system has also been proposed in Chapter 4. In this 

chapter and the next chapter, the Semi-Active Mass Damper (SAMD) design using 

Magneto-Rheological (MR) fluid dampers, which is one of the most promising devices to 

provide semi-actively controlled damping force, will be investigated. The MR-damper 

can offer large range of damping force capacity, robustness in a fail-safe manner with 

very low power requirements. The two main issues regarding the SAMD system based on 

MR-damper are: 1- Development of the mathematical models, which can not only 

simulate the MR-damper's dynamic behavior accurately but also can easily be used; 2-

Development of the control strategy. This chapter is dedicated to the aspect of modeling 

the MR-damper's dynamic behavior, and the development of control strategy will be 

presented in the next chapter. 

123-144 

Many mathematical models for simulating the MR-damper's dynamic behavior 

have been developed. In general, all of these mathematical models can be categorized 
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into two different groups. One group is the mechanical model, in which a set of 

mechanical parts are utilized to model the MR-damper's dynamic behavior, such as the 

123-125 

Bingham model . The other group is the non-parametric model, in which a set of 

numerical equations are utilized to interpolate the dynamic behavior of MR-damper, such 

as the Fuzzy model , polynomial model and the model proposed by Wang et al ' . 

The development of the mechanical models can be summarized in Figure 6.1. 

(a) 

Friction Model 

Kt iLA/VW 
c0 

(c) 

c, BouoWen 

•^AAAAr 
c„ 

•^sAAAr 

/ 

(b) 

Coulomb 
Flrclion 

h—hWrr 

(d) 
•3} 

HWVWTI 

^ H 

/ 

Coulomb 
Flrction 

laJ—WW— 

Figure 6.1 Typical Magneto-Rheological (MR) fluid damper's mechanical models, (a) 
132 

Friction model, (b) Mechanical model by Oh and Onode . (c) Phenomenological model by 

Spencer Jr et at . (d) Parametric viscoelastic-plastic model by Gamota and Filisko . 

In Figure 6.1, parameters Ko(Kj) and Co (C/) represent the stiffness and viscous damping, 

respectively and x,y and / a r e the MR-damper's external excitation, the inner state of the 

phenomenological model and the MR-damper's output damping force, respectively. By 

selecting different "friction model" illustrated in Figure 6.1(a), one can design different 

123-125 

mechanical models, such as the Bingham model utilized a coulomb friction element 
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and K0 is assumed to be zero; the nonlinear biviscous model utilized a nonlinear 

128 139 140 

biviscous friction element; Bouc-Wen model ' ' utilized the Bouc-Wen hysteresis 

element; LuGre friction model ' utilized the LuGre friction element. Figure 6.1(b) 
132 

shows the mechanical model proposed by Oh and Onode . Figure 6.1(c) illustrates the 
128 

phenomenological model (modified Bouc-Wen model) proposed by Spencer Jr et al . 

Figure 6.1(d) represents the parametric viscoelastic-plastic model proposed by Gamota 

and Filisko . 

To date, most of the available literatures in this area are focused on small-scale MR-

122 

damper, especially for RD-1005 type MR-damper provided by Lord Company , but 
119 180 

large-scale MR-damper is seldom reported by researchers. Yang et al ' developed a 
128 

phenomenological model with mass element for MR-9000 type damper, which is a 
122 181 

large-scale MR-damper provided by Lord Company , and then they proposed a 
128 

phenomenological model based on the modified Bouc-Wen hysteresis model and 

provided the relationships for the characteristic parameters with variable current input. 

Investigations of different mathematical models for RD-1005 type MR-damper show that 

although most of mathematical models can accurately simulate MR-damper's dynamic 

behavior, some of them are very difficult to be used in accurate control design. Among 

different modes, the LuGre friction model is found to be simpler, more accurate and 

easily to be used than other models. 

In this chapter, a LuGre friction model for MR-9000 type damper will be proposed. The 

gradient based optimization method and the least square technique will be utilized to 

identify the characteristic parameters of the proposed model. The dynamic properties of 
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the proposed model will be compared with those obtained by the modified Bouc-Wen 

1 Q 1 

model under different types of excitation and input current to validate the proposed 

model. 

122 

6.2 Large-Scale MR-damper 

The MR-9000 type damper is provided by Lord Company'". The schematic diagram of 

this type MR-damper has been shown in Figure 6.2 and its design parameters have been 

presented in Table 6.1 122,181 

Thermal Expansion 
Accumulator 3-Stage Piston 

MR Fluid 

Diameter: 20 cm 
Stroke; 16 cm 
Power: < 50 watts, 22 volts 

Figure 6.2 Schematic diagram of the MR-9000 type damper provided by Lord Company 
122 

Table 6.1 Design parameters for MR-9000 type damper 
122,181 

Stroke 

Max. input power 

Max. force (nominal) 

± 8 (cm) 

< 50 (w) 

200,000 (N) 

Total mass 

Total length 

250 (Kg) 

~ \(m) 

,181 
Yang et al proposed a modified Bouc-Wen model, as shown in Figure 6.1(c), for MR-

9000 type damper, in which the hysteresis damping force can be expressed as: 
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f = cxy + kx(x-xQ) (6.1) 

y = [az + c0x + k0(x-y)] (6.2) 

z = -y\x-y\z\z\n~x -J3(x-y)\z\" +A{x-y) (6.3) 

where kg, kj, Co, and c/ are the stiffness at high speed, the stiffness of the accumulator, the 

viscous damping at high speed and for force roll-off at low speed, respectively. Variables 

x and/are the MR-damper's external excitation and output damping force, respectively. 

xo, .y and z are MR-damper's initial displacement, inner state and the evolutionary variable 

of modified Bouc-Wen model, respectively. The characteristic parameters A, y, p, ko, k\, 

xo and n are constant and current independent and their values have been provided in 

Table 6.2 . The current dependent parameters (a, eg and c;) can be expressed as : 

a(0 = 16566i3 -87071/2 +168326/ + 15114 (6.4) 

c0(i) = 437097i3 -1545407/2 +1641376/+ 457741 (6.5) 

c,(0 = -9363108i3 +5334183*'2 +48788640/-2791630 (6.6) 

where variable / is the input current. 

181 

Table 6.2 Current independent characteristics parameters for MR-9000 type damper . 

A 2679.0 (w-1) n 10 

y.fi 647.46 (ml) x0 0.18 (m) 

ko 137,810 (NmA) k, 617.31 {N mA) 

181 

Yang et al compared the dynamic behavior evaluated using this modified Bouc-Wen 

model with the experimental data, and found that this model can accurately simulate the 

dynamic behavior of MR-9000 type damper in a large working range. Therefore, in this 
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chapter we will utilize the simulation results of the dynamic behavior evaluated using the 

181 

modified Bouc-Wen model provided Equations (6.1)-(6.6) and Table 6.2, to identify 

the characteristic parameters of the proposed LuGre friction model. As the proposed 

model is based on the LuGre friction model , in the next part a general description of 

the LuGre friction model will be presented and also some properties of the LuGre friction 

element will be studied in detail, which are very important to derive the LuGre friction 

model for MR-9000 type damper. 

6.3 LuGre Friction Model 

The schematic diagram of the LuGre friction MR-damper model has been shown in 

1 •jf. 

Figure 6.1 (a), and the damping force can be expressed as : 

— y = x-\x\y (6.7a) 
a 

R e 

f=iLy + yx + SK + -y + f (675) 
a a 

where x and / are the MR-damper's external excitation and output damping force, 

respectively, y is the inner state of the LuGre friction model. Characteristic parameters y, 

3 and fo represent the viscous damping, stiffness and initial force, respectively. 

Parameters a, /? and e are the characteristic parameters related to the inner state (y). 

Here, the hysteresis behavior equation (LuGre friction element) stated in Equation (6.7a) 

plays an important role in this model. Thus the properties of Equation (6.7a) need to be 

studied first. For a harmonic excitation x - X sin {cot), Equation (6.7a) can be expressed 

as: 
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y = aXa{cos((Dt)-\cos(cot)\y] (6.8) 

It can be found from Equation (6.8) that the inner state (y) depends on the value of 

parameter (a) and the amplitude of excitation (X) for a given excitation frequency (co). 

The simulation results for inner state (y) under harmonic excitation (frequency co =1 Hz) 

with aXof 3000, 30 and 0.3, respectively, are illustrated in Figure 6.3. 

Time (s) 

Figure 6.3 Simulation of Equation (6.7a) under harmonic excitation (frequency=l Hz). 

Solid, dashed, dotted, dotted-dashed and solid flight) lines represent dimensionless 

displacement, dimensionless velocity and inner state (y) for aX of 3000, 30 and 0.3, 

respectively. 

In Figure 6.3, the "dimensionless displacement" and "dimensionless velocity" in the 

caption mean the excitation displacement (x) and velocity ( i ) divided by their maximum 

value, respectively; points "A" and "B" are related to the time points for harmonic 

excitation reaching the maximum velocity and maximum displacement points, 

respectively. It is noted that for the sake of clarity, the points "A" and "B" in Figure 6.3 

are illustrated for one positive half period. 
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Now using Figure 6.3, some important properties of Equation (6.7a) under harmonic 

excitation (x = Xsin (cot)) will be studied. 

(1) The time point "B" represents the zero excitation velocity point, and also reflects the 

point of inflection of the inner state (y). This property can be directly found in Equation 

(6.7a) by assuming x=0, and then the differential of inner state (y) would also be zero, 

thus it represents the extreme point of inner state (y). 

(2) The inner state (y) would be close to unit value between time point "A" and "B" 

under large value of aX. To illustrate this property, one can rearrange Equation (6.7a) as: 

y + a\x\y = ax (6.9) 

27 

This is a Bernoulli Equation and its solution can be expressed as : 

y(t) = e"h [ \ehax(i)dt + C0 ] , h = \a \ x(t) \Jt (6.10) 

where Co represents the initial condition. Now let us assume that the excitation is 

harmonic loading (x = X sin (cot)), the initial condition is zero and 0 < t < n/2co (the first 

quarter period). Therefore Equation (6.10) can be solved as: 

y(t) = e - 0 * 8 ^ ) ^s^aXcoco^cot)* 

= e-^^(aX)[aXsin^t)eaXsm(aH) _ J ^ ^ ^ s i n ^ ) Sm((Ot)cos((Ot)d((Ot)] 

= aXsm^-e-"*™^ J(aAT)2e<rfsin((y° sin(a>t) cos(cot)d(o)t) 

= aXsm((ot)-e-aX™(M) j(aX)2 e0*'sin(a") sm(<ot)d(sm(cot)) 

= aXsin(<*)- ( ^ s i n ( ^ ) ) 2 + «,-"*•*«*) j ( ^ O i s i n 2 ( ^ ^ ^ ( s i n ^ ) ) (6'U) 

., . , . ( cxX sin( cot))2 (aXsin( cot))3 

= aXsm(ct}t)-- — — + - v " 
2 6 
\4 

_ e-aXsin(^) f M L s i n 3 ( ^ ^ ( ^ ( s J n ^ ) ) 

J 6 

Then, one can obtain: 
172 



M.-it2*=&£ (6.12) 

This is part of Taylor series of the exponential function and can be expressed as: 

y(t) = l-exp(-aXsm(cot)) (6.13) 

The solution in other quadrants is similar to Equation (6.13) with different initial values. 

As the value of the exponential function in Equation (6.13) will converge to zero very 

fast for large value of aX, Thus the inner state (y) in time range between points "A" and 

"B", which converges to (1 - exp (-aXj), will be close to unit value under large value of 

aX, as illustrated in Figure 6.3 for aX equal to 3000 and 30. 

(3) From Equation (6.13), one can also find that the boundary of inner state (y) is (-1, 1), 

which has also been shown in Figure 6.3. 

(4) From Equation (6.12), one can find that for small value of aX, the solution of inner 

state can be simplified asy(t) = aZsin (cot), as shown in Figure 6.3 for oXequal to 0.3. 

Based on the above investigations, the following assumption may be made: in most of 

MR-damper's working range, the inner state (y) for the LuGre friction model becomes 

(close to) unity between time points "A" and "B", as shown in Figure 6.3, under suitably 

selected characteristic parameter a. In the following sections, a LuGre friction model for 

MR-9000 type damper will be derived based on this assumption. Here, it should be 

emphasized that since the identification of the characteristic parameters is based on this 

assumption, the final value of characteristic parameter ec should be checked for this 

assumption under the MR-damper's working range. It should be noted that the effect of 

excitation frequency to the inner state (y) is to change the response frequency of inner 

state and not the properties of time points "A" and "B", as shown in Figure 6.3. 
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6.4 Development of LuGre Friction Model for MR-9000 Type Damper 

181 

Comparing the Bouc-Wen model , as stated in Equations (6.1)-(6.6), with the general 

form of LuGre friction model, as stated in Equations (6.7), one can easily find that it is 

difficult to directly identify the characteristic parameters of LuGre friction model through 

mathematical derivation. Therefore, we will identify the characteristic parameters of 

LuGre friction model for MR-9000 type damper step by step, based on the simulation 
181 

data obtained from the modified Bouc-Wen model . For the sake of generality, we 

assume the characteristic parameters as stated in Equations (6.7) are all current, 

frequency and amplitude dependent. Before characterizing the MR-damper, let us 

examine a typical MR-damper's force-velocity (f-v) relationship, as shown in Figure 6.4. 
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Figure 6.4 Typical MR-damper's force-velocity (f-v) curve. 

Here, points "D" and "E" represent the force at time points "A" and "B", as shown in 

Figure 6.3, respectively. Based on the analysis for inner state (y) presented in the last 

section, these two special points will be utilized to evaluate the proposed LuGre friction 

model for MR-9000 type damper. Substituting Equation (6.7a) into (6.7b), we have: 
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f = (^-£\x\)y + (y + £)x + dX + f0 (6.14) 

a 

Next, Equation (6.14) will be utilized to identify the characteristic parameters for the 

proposed LuGre friction model under harmonic excitation, x = Xsin (cot). 

6.4.1 Estimation of initial force "f0" 

The parameter f0 can easily be evaluated, because it represents the force when MR-

damper stays in the middle condition and it mainly reflects the effect of the gas 

accumulator in the MR-damper. Thus, according to Equation (6.1) of the modified Bouc-

181 

Wen model , "fo" c a n be estimated as -kix0, as it is the only parameter related to the 

damping force and also independent to the excitation and input current. Therefore, 

considering Table 6.2, "f0" is equal to -111.1158 (N). 

6.4.2 Estimation of characteristic parameters "y" and "/3/cr" 

At point "D", as shown in Figure 6.4, the inner state (y) is equal (close) to 1 and the 

displacement is zero, as illustrated in Figure 6.3 for time point "A". Thus the MR-

damper's damping force, as stated in Equation (6.14), can be simplified as: 

f=- + yxmax+fo=- + r(X(o) + f0 (6.15) 

a a 

where X and co are the amplitude and frequency of the harmonic excitation, respectively. 

The amplitude, frequency and current dependency of parameters y and /?/cc will be 

examined through Equation (6.15) in the following subsections. 

6.4.2.1 Amplitude dependency 

Based on Equation (6.15), if parameters fi/a and y are both amplitude independent, the 

MR-damper's damping force difference (Af) under the same input current, for harmonic 
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excitation with the same excitation frequency and different amplitudes, should be 

proportional to the difference of amplitude as: 

4f = f2-f1=y{X2-X1)a> = yAXa> (6.16) 

where// a n d / represent the damping force stated in Equation (6.15), under the same 

input current for harmonic excitation with same excitation frequency (co) and different 

amplitudes Xi and X2, respectively. Here, two sets of harmonic test signals, as listed in 

Table 6.3, will be utilized to study the amplitude dependency of the parameters y and [}/a. 

Table 6.3 Test signals 

Test Signal 

X, (Test signal set 1) 

X2 (Test signal set 2) 

hX=X2-X, 

for studying the amplitude dependency of 

0.5 1 

0.75 1.5 

0.25 0.5 

Amplitude {cm) 

2 3 

3 4.5 

1 1.5 

parameters p/a and y. 

4 5 

6 7.5 

2 2.5 

Now the difference of damping force {Af) measured at point "D" illustrated in Figure 6.4, 

for the two sets of test signals listed in Table 6.3, are evaluated using the modified Bouc-

181 

Wen model . Table 6.4 provides the results for the harmonic excitation with frequency 

1 {Hz) and the input current of 1 {A). 

Table 6.4 The damping force difference (A/) at point "D" (Figure 6.4) under harmonic 

excitation (frequency=l {Hz) and amplitude listed in Table 6.3) with input current of 1 {A). 

f, (JV) (Test 
148950.27 179358.38 240176.25 300994.45 361812.79 422631.11 

signal set 1) 

f2{N) (Test 
164154.12 209767.18 300994.45 392221.95 483449.47 574677.02 

signal set 2) 

Af=f2-f,{N) 15203.85 30408.80 60818.20 91227.50 121636.68 152045.91 

It can be seen from Table 6.4 that the Af is exactly proportional to AX given in Table 6.3, 

thus p/a and y should be amplitude independent parameters. The parameter Af generated 
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by the test signals given in Table 6.3 for different excitation frequencies (0.5, 1,2, 5, 7.5 

and 10 (Hz)) and input currents (0, 0.1, 0.2, 0.4, 0.6, 0.8 and 1 (A)) has also been 

obtained. The results are shown in Figure 6.5, in which the "Dimensionless force" 

represents Af divided by its minimum value at AX = 0.25 (cm) listed in Table 6.3 under 

the same frequency and input current value, and "Amplitude-Difference" represents the 

AX given in Tables 6.3. It should be noted that in Figure 6.5 the results obtained for 

different current input under the same frequency are exactly the same. Considering these, 

it can be concluded that that Af is exactly proportional to AX under different frequency 

and input current. Thus, parameters ft/a and y are both independent of the amplitude of 

harmonic excitation. 

Amplitude-Difference M (cm) 

Figure 6.5 Variation of dimensionless force Af vs. AX under different input current and 

excitation frequency, (a) 0.5 (Hz), (b) 1 (Hz), (c) 2 (Hz), (d) 5 (Hz), (e) 7.5 (Hz), (f) 10 (Hz). 

Note: the results for different input current are coincided under the same excitation 

frequency. 

6.4.2.2 Frequency dependency 

Based on Equation (6.15), if parameters p/a and y are frequency independent, the MR-

damper damping force difference (Af) under the same input current and fixed AX with 
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different excitation frequency, should be proportional to excitation frequency, as stated in 

Equation (6.16). Therefore, using the same approaches as those for studying the 

amplitude dependence relationship, we can verify whether parameters fi/a and y are 

frequency dependent using the frequency test signal given in Table 6.5. 

Table 6.5 Test signals for studying the frequency dependency of parameters ft/a and y. 

Test signal amplitude 

Similar amplitude signals in Table 6.3 

Frequency (Hz) 

0.5 1 2 5 7.5 10 

The damping forces difference (Af) measured at point "D" for these test signals are 

1 01 

evaluated using the modified Bouc-Wen model . The results for the input current of 0.5 

(A) and amplitudes ofX/=l (cm) andX2=1.5 (cm) (AX=0.5 cm), are listed in Table 6.6. 

Table 6.6 The damping force difference (Af) measured at point "D" (Figure 6.4) for test 

signals listed in Table 6.5 with input current =0.5 (A), amplitudes Xj = 1 (cm) and X2 = 1.5 

(cm) (AX=0.5 cm). 

Current=0.5 (A), 

AX=0.5 (cm) 

f, (N) (Xr\ (cm)) 

f2(N)(X2=\.S(cm)) 

Af=f2-f, (N) 

0.5 

110405.94 

124665.71 

14259.77 

1 

138908.61 

167410.25 

28501.64 

Frequency (Hz) 

2 

195991.88 

252916.05 

56924.17 

5 

366923.37 

509434.53 

142511.16 

7.5 

509434.37 

723201.12 

213766.75 

10 

651943.61 

936966.09 

285022.48 

From Table 6.6, it can be found that the values of Af arc exactly proportional to the value 

of frequency under the same input current and fixed AX. Different excitation amplitudes 

as given in Table 6.3 and current input (0, 0.1, 0.2, 0.4, 0.6, 0.8 and 1 (A)) have also been 

tested to verify the frequency independent property. Figure 6.6 shows the variation of Af 

with respect to excitation frequency under fixed amplitude difference (AX), in which the 

"Dimensionless force" is Af divided by its minimum value at frequency co=0.5 (Hz) under 

the same input current and fixed AX, as given in Table 6.3, and "Frequency" represents 
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the test signals' frequencies provided in Table 6.5. It should be noted that the results 

obtained from different current input under the same value of amplitude difference (AX) 

and excitation frequency are exactly the same. Considering these, it can be confirmed that 

Af is exactly proportional to the frequency of harmonic excitation under the same input 

current and the fixed amplitude difference. 

Figure 6.6 Variation of dimensionless Af vs. a under different amplitude difference and 

current input: (a) AX = 0.25 (cm); (b) AA=0.5 (cm); (c) AA>1 (cm); (d) AX =1.5 (cm); (e) AX 

=2 (cm); (f) AX =2.5 (cm). Note: the results for different input current are coincided under 

the fixed AX. 

Based on the above investigation, it can be concluded that based on the MR-damper's 

181 

dynamic behaviors obtained from the modified Bouc-Wen model , the parameters fi/a 

and y for the proposed LuGre friction model are both independent of the excitation 

frequency and amplitude. 

6.4.2.3 Current dependency 

It can be found that the damping force evaluated through the modified Bouc-Wen model 

181 

for MR-9000 type damper will not exactly increase with the increase of input current 
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when current value locates between 1 (A) and 2 (A) in the harmonic excitation test signal, 

especially in high frequency range. Moreover, the experimental data for MR-9000 type 

damper under harmonic excitation for currents between 1 (A) and 2 (A) can not be found 

in available literatures ' ' , and the maximum difference of the damping force for 

currents equal to 1 (A) and 2 (A) is around 10% ' ' . Therefore for the sake of model 

accuracy, the working current range for MR-9000 type damper in this dissertation will be 

limited between 0.0 (A) and 1.0 (A). 

The difference of the damping force (Aj) measured at point "D" shown in Figure 6.4 for 

two set of harmonic test signals with same excitation frequency (oo= I Hz) and different 

excitation amplitude (Xi=l (cm) and Xf=l.5 (cm)) under different input current are 

181 

evaluated using the modified Bouc-Wen model and the results are listed in Table 6.7. 

Table 6.7 The damping force difference (A/) at point "D" (Figure 6.4) for harmonic excitations (frequency OJ=1 (Hz), amplitudes Xj =1 (cm) and X2 =1.5 (cm) (AAM1.5 cm)). 

Frequency=l 

(Hz) 

f, (N) (X,) 

f2(N) (X2) 

Af=fr-fAN) 

Current (A) 

0 

53733.60 

70935.12 

17201.52 

0.2 

85682.03 

106418.27 

20736.24 

0.4 

124382.33 

151090.99 

26708.66 

0.5 

138908.61 

167410.25 

28501.64 

0.6 

150895.80 

180598.59 

29702.79 

0.8 

168471.99 

199176.87 

30704.88 

1 

179358.38 

209767.18 

30408.8 

Based on the data provided in Table 6.7, one can utilize Equation (6.16) to evaluate the 

parameter y with respect to the input current. The results are shown in Figure 6.7. A 

second order polynomial function, as given in Equation (6.17), has been used to 

interpolate the data. 
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,x10 

Figure 6.7 Variations of parameter y with the input current. 

7(i) = P\i +P2i + P3 (6.17) 

,182 
where parameters pi, p2 and/?j are identified using the least-square method and found 

to be -5.796xl05 (N s mA X \ 1.029xl06 (N s mA A'1) and 5.247xl05 (N s m1), 

respectively. 

As discussed before, the parameter p/a is frequency and amplitude independent. Thus, 

utilizing Equation (6.15), the data provided in Table 6.7, and the evaluated parameter y, 

one can easily obtain the current relationship for the parameter/?/a as: 

-(0 = /-K0*x«-/o 
a 

(6.18) 

The variation of the parameter/?/cc with respect to the current is shown in Figure 6.8 and 

again a second order polynomial function, as described in Equation (6.19), is used to fit 

the data. 

— {}) = qli +q2'
 + <33 

a 
(6.19) 

182 
where parameters qi, q2 and q^ are again evaluated using the least square method and 

found to be -5.103xl04(JV/T2), 1.518xl05 (NA~l) and 1.83xl04 (N), respectively. 
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Figure 6.8 Variations of parameter p/a with the input current. 

6.4.3 Estimation of characteristic parameter "6"" 

The parameter 3 can be estimated through point "E" shown in Figure 6.4. Based on the 

investigation presented in Section 6.3, the inner state (y) at point "E" is equal (close) to 1. 

Thus, Equation (6.14) at point "E" can be simplified as: 

f = £(j) + SX + f0 (6.20) 

a 

The parameter p/a is independent of the frequency and amplitude, as proven in Section 

6.4.2, and hence, based on Equation (6.20), if the parameter 6 is independent of the 

excitation amplitude, the damping force difference (Aj) under two harmonic excitation 

signals with same frequency and different amplitude for the same input current should be 

proportional to the difference of amplitude (AX) as: 

Af = S{X2-Xx) = SAX (6.21) 

And also, if parameter 5 is independent of the excitation frequency, A/ defined in 

Equation (6.21) should also be the same under different excitation frequency with fixed 

AX. Here, the selected test signals are similar to those provided in Tables 6.3 and 6.5, and 

the input current is set to zero. The results obtained from the modified Bouc-Wen 
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model are summarized in Table 6.8, in which the AX and Afhave the same definitions 

as those provided in Tables 6.3 and 6.4 and also defined in Equation (6.21). 

Table 6.8 The damping force difference (Af) at point "E" (Figure 6.4) for two sets of test 

signal as presented in Tables 6.3 and 6.5 for input current of 0 (A). 

Amplitude 

difference (Table 

6.3) 

AX=0.25(cm) 

AX=0.5(cm) 

AX=\(cm) 

AX=\.5(cm) 

AX=2(cm) 

AX=2.5(cm) 

0.5 

507.4073 

1009.6208 

2016.3592 

3023.6956 

4031.1925 

5038.756 

1 

501.0564 

999.2709 

1997.0383 

2995.1283 

3993.9021 

4991.51 

Frequency (Hz) 

2 

496.5099 

993.0594 

1987.4742 

2980.9948 

3974.5578 

4967.9065 

5 

495.807 

991.035 

1981.7836 

2972.599 

3963.3433 

4953.3797 

7.5 

508.0312 

1015.6646 

2031.1314 

3046.6429 

4062.1657 

5077.692 

10 

495.1521 

990.0009 

1979.8507 

2969.7347 

3959.5874 

4949.0786 

Examination the results provided in Table 6.8 reveals that Af is nearly constant with 

respect to the variation of the frequency under fixed AX, and also Af 'is proportional to AX 

in each excitation frequency. Thus, it can be concluded that the parameter 8 is 

independent of frequency and amplitude. 

Therefore, one can utilize Equation (6.21) and the same current test signal utilized in 

Table 6.7 to evaluate the current dependency of the parameter 8, Figure 6.9 illustrates the 

variation of the parameter 8 with the increase of input current. It should be noted that to 

study the parameter 8 in small current range, the input current 0.1 (A) was added to those 

listed in Table 6.7. 

It can be seen from Figure 6.9 that there is no significant change in 8 for the values of 

current above 0.2 (A), and it is difficult to provide one simple function to interpolate the 

variations of 8 with current especially for the current smaller than 0.1 (A). This is mainly 
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due to the fact that the dynamic behavior described by the modified Bouc-Wen model 

is very complex for the input current below 0.1 (A). To better clarify this issue, Figure 
181 

6.10 shows the simulation results obtained through the modified Bouc-Wen model , as 

shown in Equations (6.1)-(6.6) and Table 6.2, for the harmonic excitation with frequency 

of 1 (Hz) and amplitude of 0.01 (m) for the input currents of 0, 0.05, 0.1 and 0.2 (A), 

respectively. 
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Figure 6.9 Variation of parameter S versus current. 
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181 
Figure 6.10 Simulation results for the modified Bouc-Wen Model under harmonic 

excitation with frequency 1 of (Hz), amplitude of 0.01 (m), Solid, dashed, dashed-dotted and 

dotted lines represent input currents equal to 0,0.05,0.1 and 0.2 (A), respectively. 
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It can be seen from Figure 6.10 that the damping force for the input current of 0.05 (A) 

does not have the same pattern as those for other current inputs. Moreover, with the 

increase of the input current, the strength of the magnetic field will be increased and 

subsequently, the damping forces generated by the MR-damper are expected to naturally 

be increased. Obviously, based on Figure 6.10, this trend cannot be observed from the 

increase in the input current from 0 to 0.05 (A) by the modified Bouc-Wen model 

Based on the above investigations, it has been found that the value of parameter 5 at the 0 

(A) (S =228234.84 N mA) will generate acceptable results as will be shown later. 

6.4.4 Estimation of characteristic parameter "a" 

As stated in Equation (6.7a), the inner state (y) depends on the parameter a. Thus, to 

estimate the parameter a, the inner state (y) for a whole period should first be obtained. 

To accomplish this, a typical harmonic excitation (frequency ar=\ (Hz), amplitude X-l 

(cm)) under different current inputs (current i\ =0.4 (A) and *2=0.5 (A)) are utilized as the 

test signals. Now considering Equation (6.14) and above estimation for parameters 3, p/a 

and y, the inner state (y) in a whole period can be estimated as: 

y = {h -h -\r(h)-r(hW\i(-(h)--(h)) (6.22) 
a a 

where/; a n d / present the MR-damper's damping force, obtained using the modified 

181 

Bouc-Wen model , for current being equal to 0.4 (A) and 0.5 (A), respectively, under 

the same harmonic excitation. It should be noted that the parameter e are assumed to be 

current independent (See Section 6.4.5) and the velocity (x) for a whole period is known. 

Thus, inner state (y) for a whole period can be obtained using Equation (6.22). Based on 
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Equation (6.7a), the effect of the frequency and amplitude of harmonic excitation to the 

inner state (y) can be reflected through the velocity (x). Furthermore, as shown above the 

parameter /?/a is only current dependent, and hence it is possible to assume that the 

parameter a is independent of the frequency, amplitude, and current. Based on this 

assumption, the parameter a has been evaluated using the following optimal problem: 

Find the design variables: {a} 

To minimize: \y(k+l)-ye(k+l)]2 (6.23) 

Subjected to: 500 < a < 10000 

where y(k+l) represents the inner state (y) in the time index (k+\) obtained from 

181 

Equation (6.22) evaluated through the modified Bouc-Wen model and ye(k+l) 
183 

represents the Fourth-Order Runge-Kutta (RK4) simulation result of Equation (6.7a) 

for the inner state (y) in time index (k+l) under the design variable a. The constraint is 

selected based on the analysis presented in Section 6.3. The optimal problem is solved 
88 

using the SQP optimization technique and then repeated for the whole period. Finally, 

the estimated parameter a is found to be 2531.8 (m"1). Figure 6.11 shows the comparison 

of the data for the inner state (y) based on Equation (6.22) obtained from the modified 

Bouc-Wen model and that based on Equation (6.7a) under a of 2531.8 (m"1). 

It can be realized from Figure 6.11 that the estimated parameter a can provide accurate 

inner state (y) simulation result compared with the data obtained from the modified Bouc-
181 

Wen model . As mentioned in Section 6.3, by suitably selecting parameter a the inner 

state (y) given in Equation (6.7a), is equal (close) to 1 between the time points "A" and 

"B" shown in Figure 6.3, and the parameter identification procedure presented in this 

chapter is based on this assumption. Here using the estimated parameter "a", this 
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behavior has been verified in Figure 6.12 and it must be noted that the time points "A" 

and "B" and the "dimensionless displacement" and "dimensionless velocity" in the 

caption of Figure 6.12 have the same definitions as those seen in Figure 6.3. 

s 0 - 5 

I. 
c 
c 
•-0.5 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
Time (s) 

Figure 6.11 Inner state (y). Solid and dotted lines represent the result based on Equation 
181 

(6.22) evaluated through the modified Bouc-Wen model and the simulation result for 

Equation (6.7a) under a of 2531.8 (m'1). 

Time 

Figure 6.12 Simulation of Equation (6.7a) under harmonic excitation (frequency <B=\ (Hz), 

a=2531.8 (nf1)): Solid, dashed, dotted and dashed-dotted lines represent the dimensionless 

displacement, the dimensionless velocity and the inner state (y) with amplitude equal to 1 

and 0.2 (cm), respectively. 
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One can find from Figure 6.12 that under this optimal parameter a of 2531.8 (mA), the 

inner state (y) will be equal (close) to 1 between the time points "A" and "B" for 

harmonic excitation with the amplitude bigger than around 2 {mm). Thus, the assumption 

made in Section 6.3 is acceptable for most of the MR-9000 type damper's working range. 

6.4.5 Estimation of characteristic parameter "e" 

By rearranging Equation (6.14), one can easily obtain a function as: 

/ - (—)y ~ (r)x - Sx - /„ = s(x~ | x \)y 
a 

Then let us define: 

g{zl'e) = f -<J-)y-{y)x-8x-f0 and {z} = x-\x\y 
a 

(6.24) 

(6.25) 

And thus based on the parameters evaluated in above sections, parameter g(z/e) and {z} 

in Equation (6.25) can be easily obtained. Here, the least square parameter estimation 
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method will be adopted to evaluate the parameter e, and the procedure can be 

expressed as: 

g{zls) = sT{z} (6.26) 

where e represents the estimated value for parameter e. Based on equation (6.26) one can 

obtain the estimated value for parameter e under different input currents and the results 

has been illustrated in Figure 6.13. 

Similar to the estimated parameter S, one can easily find form Figure 6.13 that it is also 

difficult to provide one simple function to interpolate the variations of parameter s versus 
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the input current, especially for the small range of the input current. Fortunately, the 

effect of value of parameter s to the damping force is negligible in large MR-damper's 

working range. This can be verified by using Equation (6.14). The effect of parameter s 

on the damping force of the MR-damper can be described as: 

f8=s(x-\x\y) (6.27) 
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Figure 6.13 Estimated parameter E versus the input current. 

Based on the analysis of the inner state (y) in Section 6.3, one can easily find that the 

output fe would be close to zero in the working range (time point "A" to "B" shown in 

Figure 6.4). Here, it has been found that the value of parameter e at 0.5 (A) 

(e=526051.9562 (Ns mA) will generate acceptable results as will be shown later. 

6.5 Proposed LuGre Friction MR-damper Model 

Using the estimated characteristic parameters, the proposed LuGre friction MR-damper 

model for MR-9000 type damper can be summarized as: 

1 . . . .. 
—y = x-\x\y (g_28) 

189 



a a v ' 

ZU- = qxi
L + q2i + q2 and yif) = pxi

l + p2i + p3 (6.30) 
a 

where i is the input current, and the other parameters are given in Table 6.9. 

Table 6.9 Estimated characteristics parameters for the proposed LuGre friction model for 
MR-9000 type damper. 

a 

S 

8 

fo 
Qi 

2531.8 (m"1) 

228234.84 (N mA) 

526051.9562 (Nsm1) 

-111.1158 (JV) 

-5.103xl04(7V^"2) 

<J2 

<13 

Pi 

Pi 

P3 

1.518xl05(7V^"') 

1.83xlO4(A0 

-5.796X10 5(7VJW"'^ 2) 

1.029xl06(iVsOT-1^-1) 

5.247xl05(7V^w"') 

6.6 Validation of the Proposed Model 

In this section, in order to verify the validity of the proposed LuGre friction model, the 

dynamic hysteretic behaviors of the MR-9000 type damper will be simulated using the 

proposed LuGre friction model and compared with those obtained using the modified 

181 

Bouc-Wen model under different test signals. 

6.6.1 Harmonic excitation with frequency of 1 {Hz) and amplitude of 

0.01 (m) for different input currents 

The dynamic performances of the MR-damper, which include the damping force versus 

the displacement, velocity and time under harmonic excitation with frequency of 1 (Hz), 

amplitude of 0.01 (m) under different input current evaluated using the proposed LuGre 

181 

friction model and the modified Bouc-Wen model are compared in Figure 6.14. 
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Figure 6.14 MR-damper's dynamic behavior comparison under harmonic excitation with 
frequency of 1 (Hz) and amplitude of 0.01 (m) for different input current, (a) Force-
Displacement, (b) Force-Velocity, (c) Force-Time. Solid and dashed-dotted (red) lines 
represent the results obtained from the proposed LuGre friction model and the modified 

181 
Bouc-Wen model , respectively. Along the arrow direction: current values are 0, 0.25, 0.5, 
0.75 and 1 (A). 
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6.6.2 Harmonic excitation with frequency of 1 (Hz) and current of 0.5 (A) 

for different excitation amplitudes 

Figure 6.15 compares the dynamic performances of MR-damper, which include the 

damping force versus the displacement, velocity and time under harmonic excitation with 

frequency of 1 (Hz) and the input current of 0.5 (A) for different excitation amplitudes 

evaluated using the proposed LuGre friction model and the modified Bouc-Wen 

181 

model . Here it should be noted that to facilitate the comparison, the "Dimensionless 

displacement" and "Dimensionless velocity" in Figure 6.15 represent the excitation 

displacement and velocity divided by their relative values of amplitude and maximum 

velocity, respectively. 

6.6.3 Harmonic excitation with amplitude of 0.02 (m) and current of 0.5 (A) 

for different excitation frequencies 

The dynamic performances of MR-damper, which include the damping force versus the 

displacement, velocity and time under harmonic excitation with the amplitude of 0.02 (m) 

and input current 0.5 (A) for different excitation frequencies evaluated using the proposed 

181 

LuGre friction model and the modified Bouc-Wen model are compared in Figure 6.16, 

in which the "Dimensionless velocity" represents the excitation velocity divided by their 

relative maximum values. 

Based on above investigation for MR-damper's damping force under harmonic excitation 

with different frequency, amplitude and input current, one can realize that the predicted 

dynamic behavior for MR-9000 type damper using the proposed LuGre friction model 

181 

agrees very well with that of the modified Bouc-Wen model under harmonic 

excitation. 
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Figure 6.15 MR-damper's dynamic behavior comparison under harmonic excitation with 
frequency of 1 (Hz), different amplitude and input current of 0.5 (A), (a) Force-
Displacement, (b) Force-Velocity, (c) Force-Time. Solid and dashed-dotted (red) lines 
represent the result obtained from the proposed LuGre friction model and the modified 

181 

Bouc-Wen model , respectively. Along the arrow direction: amplitude values are 0.005, 
0.01, 0.02, 0.03, 0.05 and 0.07 (m). 

193 



Figure 6.16 MR-damper's dynamic behavior comparison under harmonic excitation with 
Amplitude of 0.02 (#M), different frequency and input current of 0.5 (A), (a) Force-
Displacement, (b) Force-Velocity, (c) Force-Time. Solid and dashed-dotted (red) lines 
represent the result obtained from the proposed LuCre friction model and the modified 

181 

Bouc-Wen model , respectively. Along the arrow direction: frequency values are 0.5, 1, 2, 
5, 7.5 and 10 {Hz). 
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Furthermore, as mentioned before, in the low range of input current, the modified Bouc-

181 

Wen model may not provide reasonable results. The proposed LuGre friction model 

can provide smooth transition under the low current range. To demonstrate this issue, 

Figure 6.17 illustrates the damping force evaluated using the proposed LuGre friction 

model and the modified Bouc-Wen model for the harmonic excitation with frequency 

of 1 (Hz), amplitude X of 0.01 (m) and the input current of 0.05(̂ 4). The results show that 

the proposed LuGre model can predict more reasonable MR-damper's damping force in 
181 

the low current range compared with the modified Bouc-Wen model . 

xio xio 

0.8 T- 1 , , 1.2 Time (s) 

Figure 6.17 MR-damper's dynamic behavior comparison under harmonic excitation with 

amplitude of 0.01(»i), frequency of l(Hz) and current input of 0.05 (A). Solid and dotted 

lines represent the results obtained from the proposed LuGre friction model and the 

modified Bouc-Wen model 
181 

195 



6.6.4 Harmonic excitation with amplitude of 0.01 (m) and frequency of 1 

(Hz) for continuously changing input current 

Here the input current is assumed as a harmonic wave with the amplitude of 0.5(̂ 4), 

frequency of \{Hz) and the bias 0.5 (A), as shown in Figure 6.18, which can cover the 

whole MR-damper's working current range. 

Figure 6.18 Test varying current input. 

The simulation results for this test are shown in Figure 6.19 and it should be noted that in 

this simulation the step size is selected as lxlO"6 (s). One can realize from Figure 6.19 

181 

that the singularity occurs for the modified Bouc-Wen model , however, the proposed 

model does not experience this point. This singularity can be removed by selecting 

smaller simulation step size, but using the step size smaller than lxlO"6 (s) is 

computationally expensive. One may also realize that except the singularity point, the 

predicted damping force generated by the proposed LuGre friction model agrees very 
181 

well with that obtained by the modified Bouc-Wen model . 
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Figure 6.19 MR-damper's dynamic behavior comparison for harmonic excitation with 

frequency of 1 (Hz), amplitude of 0.01 (m) under harmonic current test signal with 

simulation step size of lxl0"6(s). Solid and dotted lines represent the results obtained from 
181 

the proposed LuGre friction model and the modified Bouc-Wen model , respectively. 

The MR-damper's dynamic behavior under the same current test signal shown in Figure 

6.18 but this time with simulation step size lxlO"4 (s) is illustrated in Figure 6.20. It can 

181 

be seen that the modified Bouc-Wen model is not capable to simulate the damping 

force properly, the proposed model can still provide accurate results for large simulation 

step size. Since the only controllable parameter in MR-damper is the input current, 

therefore, the dynamic behavior of MR-damper with changing input current is very 

important. However, as shown in Figures 6.19 and 6.20, the damping force generated by 

modified Bouc-Wen model for this low-frequency current signal does not produce 

reasonable results for relatively large simulation step size (10"4 s) or shows singularity for 

small step size (10"6 s). 
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Figure 6.20 MR-damper dynamic behavior comparison for harmonic excitation with 

frequency of 1 (Hz), amplitude of 0.01 (ni), and the test current shown in Figure 6.18, and 

the simulation step size of lxlO"4 («) Solid and dotted lines represent the results obtained 
181 

from the proposed LuGre friction model and the modified Bouc-Wen model , 

respectively. 

6.6.5 Random excitation 

The dynamic behavior of MR-damper under random excitation will be investigated in 

this section using the proposed model and the results will be compared with those 

181 

obtained from the modified Bouc-Wen model . The random signal in this test is a 

combination of 30 harmonic signals with frequency ranging from 0.01-10 (Hz), as 

illustrated in Figure 6.21, and the input current in this test is selected as 0.5 (A). The 

simulation results are shown in Figure 6.21, from which it can be realized that the 

generated damping force under this set of random excitation signal evaluated using the 

proposed LuGre friction model perfectly agrees with those obtained form the modified 
181 

Bouc-Wen model . 
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Figure 6.21 MR-damper's dynamic behavior comparisons under random excitation. Solid 

and dotted (red) lines represent the results obtained from the proposed LuGre friction 
181 

model and the modified Bouc-Wen model , respectively. Dashed line represents the 

random excitation signal. 

In summary, the MR-damper's damping force predicted by the proposed LuGre friction 

181 

model and the modified Bouc-Wen model under harmonic excitation, random 

excitation, and different kind of input currents have been compared. The results show that 
181 

compared with the modified Bouc-Wen model , the proposed LuGre friction model can 

provide accurate simulation results and easily be utilized in practical semi-active 

vibration control applications. 

6.7 Conclusions and Summary 

A simple hysteresis model based on the LuGre friction model has been developed to 

predict the dynamic behavior of large-scale MR-damper accurately and efficiently. It has 
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been shown that the predicted dynamic behavior of MR-damper, using the proposed 

181 

model agrees very well with those obtained using the modified Bouc-Wen model for 

MR-9000 type damper under different working conditions (harmonic excitation with 

different frequency and amplitude, changing current, and random excitation). Although 

the proposed LuGre friction model is based on the simulation data of modified Bouc-
181 

Wen model , the evaluation procedure provided in this dissertation can easily be 

applied to the experimental data. 

It has also been illustrated that the proposed model is stable (no singularity point) and 

181 

computationally more efficient than the modified Bouc-Wen model . Since the only 

controllable parameter in the MR-damper is the input current, in the next chapter 

(Chapter 6) an effective inverse MR-damper model based on the proposed LuGre friction 

model will be presented, which can be readily utilized in the design of semi-active 

vibration suppression devices. 
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CHAPTER 7 

SEMI-ACTIVE MASS DAMPER DESIGN USING MAGNETO-

RHEOLOGICAL FLUID DAMPERS 

7.1 Introduction 

As the damping and stiffness of an optimally designed Tuned Mass Damper (TMD) 

system can not change with different excitation condition, the effectiveness of the TMD 

system is restricted to its tuned frequency. Subsequently, it provides limited vibration 

suppression performance for the random type excitation or excitation frequency far away 

from its tuned natural frequency. The so-called Active Mass Damper (AMD) or Semi-

Active Mass Damper (SAMD), in which a controllable device (full-active or semi-active) 

will be added to or replace the damper in the TMD system, is developed to overcome the 

restriction of the TMD system and also improve the vibration suppression performance 

around the TMD's tuned natural frequency. The detail introductions about the AMD and 

SAMD systems have been presented in Chapter 1. 

The Magneto-Rheological (MR) fluid damper is one of the most promising semi-active 

devices and the detailed introductions about its development, modeling and control 

methodologies have also been presented in Chapters 1 and 6. Here it should be noted that 

most of researches related to MR-damper's application are mainly focused on the base 

92 94 

isolation structure, for instance, Dyke et al and Dyke installed the MR-damper 
134 

between the base of building structures and the ground; Wang et al studied the vehicle 
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suspension system using MR-damper; Dominguez et al replaced one element of truss 

structure with MR-damper. For this type of application, the simple "on-off control 

method can provide good performance, as the "over-damping" phenomenon, in which the 

MR-damper becomes too strong to suppress the vibratory energy, may not happen under 

suitably selected MR-damper. However, for SAMD system using MR-damper, which is 

seldom reported by researchers, the simple "on-off control method may not work, as the 

working principle of SAMD is to dissipate energy through MR-damper's moving induced 

by the movement of the attached small mass. Obviously, to maximize the energy 

dissipation through MR-damper, it is required not only to control the damping force but 

also to allow the free movement of the attached small mass. It should be noted that the 

damping force provided by MR-damper in "on" condition may become too large to allow 

the free movement of the small attached mass, and subsequently, the MR-damper may 

not dissipate energy efficiently. 

Based on the above discussions, this chapter will present a methodology to utilize the 

MR-damper as the semi-active device in the SAMD system to suppress the structural 

vibration effectively. The proposed methodology consists of four steps: (1) an inverse 

MR-damper model will be developed based on the LuGre friction model proposed in 

Chapter 6 for MR-9000 type damper and proposed by Jimenez and Alvarez for RD-

1005-3 type MR-damper; (2) an effective Boolean algebra methodology will be provided 

to calculate command current based on the proposed inverse MR-damper model; (3) 

H2/LQG control design method will be utilized to design the controller for AMD system; 

(4) a vibration suppression strategy will be developed to provide effective vibratory 

suppression capacity for SAMD system using MR-damper. Finally numerical examples 
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will be presented to compare the effect of SAMD with MR-damper using the proposed 

control methodology with those using different vibration control methodologies available 

in published literatures and that of optimal TMD and AMD systems. 

7.2 MR-Damper and Inverse MR-Damper Models 

The LuGre friction MR-damper model has been presented in Chapter 6 as: 

1 . . . .. -y = x-\x\y (7.1) 

R £ 

a a v ' 

/*(») .-2 , „ , . „ nnA „ ,~ _ „ ,.2 

a 
= qti + q2i + q3 and y(i) = P\i + P2I + P3 (7.3) 

where / is the input current. The characteristic parameters in Equations (7.1)-(7.3) for 

MR-9000 type damper have been listed in Table 6.9, and for RD-1005-3 type MR-

damper will be presented in Table 7.1 . 

Table 7.1 Estimated characteristics parameters for the LuGre friction model for RD-1005-3 
136 

type MR-damper . 

a 

5 

E 

fo 
Ql 

3.2 (mm') 

1.03 (NmmA) 

0.6 (N s mmx) 

-45.82 (N) 

0 (A^'2) 

<l2 

93 

Pi 

P2 

Pi 

833.85 (N/A) 

14.72 (N) 

-10.80 (Ns mm1 A'2) 

\1.15{NsmmAAA) 

0.5 (N smmA) 

To obtain the best vibration suppression performance using MR-damper, it is required to 

obtain the precise MR-damper's input current control. Assuming that the required control 

force is known, the problem is how to derive the MR-damper's command current to 

generate the damping force as close as the required control force. The so called inverse 
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MR-damper model is developed based on this requirement. The inverse MR-damper 

model is developed based on the LuGre friction model given in Equations (7.1)-(7-3). 

Rearranging Equations (7.1)-(7-3), one can easily obtain a simple binomial function as: 

ai2+bi + c = f (7.4) 

where a = p1x + q1y , b-q2y + p2x , c = (q3-s\x\)y + (p3+£)x + dx +f0 . Parameter i 

represents the command current. Therefore, the inverse MR-damper model can be 

expressed as the following optimization problem: 

Find the design variables: command current (z). 

To minimize: ^=IM:/I 0-$) 
Subjected to: 0 < i < 1 

where parameter u represents the required control force. Here it should be emphasized 

that for the safety purpose, the working current for both types of MR-dampers is 

restricted in the range of [0.0, 1.0] (A). It may be a simple and direct approach to use 

formal optimization techniques to solve the optimization problem established in Equation 

(7.5), however it is computationally expensive compared to the computational time 

required to obtain the structural response and thus not effective for real time vibration 

control applications. As the objective function of this optimization problem is a simple 

binomial function, an effective calculating method based on the Boolean algebra has been 

developed to obtain the command current based on this optimization problem. It is 

difficult to clearly express the developed Boolean algebra methodology for solving the 

optimization problem established in Equation (7.5) in one simple figure, thus the logic 

algebra form, as shown in Figure 7.1, has been utilized to represent the proposed Boolean 

algebra methodology. Based on Figure 7.1, one can easily replace the logic relationship 
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with the Boolean algebra to obtain the solution for the optimization problem given in 

Equation (7.5). 

ai2+bi + c-f 

a=0&b=0 
NO 

YES 
( output -0 j 

a=0&b#0 

NO 

YES 
0£-(c-/)/b£l 

NO 

b2-4a(c-J) < 0 

NO 

YES 

YES 
•{output = -(c-/)/b) 

go to Block "A " 

b2-4a(c-j) = 0 

NO t 

iJuut 
JVQf 

0<Z-b/2a £1 

NO 
solving ai2+bi+c-f=0 
as //, and i2 

_^ Block "A " -.output 0 or I relative 
" ^ toMin(J)fori=0,I 

YES 

0£ (ijori2)<t 
YES 

H 

*( output^ -b/2a j 

output = 
Min (ijti2 between 10,11) 

Figure 7.1 The solution of optimization problem established in Equation (7.5). 

The proposed calculation method has been tested in the numerical examples and 

compared with the formal optimization techniques. It is found that the developed 

calculation method based on Boolean algorism is at least 10 times faster than the 

traditional optimization techniques, and can be effectively and easily used in simulation. 

7.3 H2/LQG Optimal Control Method Based on the Active Mass Damper 

Linear Quadratic optimal controller design method is adopted by many researchers in 

structural vibration suppression area. However, most of studies are based on the Linear 

Quadratic Regulator (LQR) method, which assumes that all of the state variables can be 

measured directly. In practical application the structural displacement and velocity are 

not absolute, and depend on their relative measured references. Furthermore, it is difficult 
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to measure all of the state variables directly in real application. Therefore, the controller 

design that is based on directly measured displacement and velocity is impractical. 

Other linear quadratic controller design methods, such as Linear Quadratic Gaussian 

(LQG) and H2, utilize a state estimate to evaluate the state variables, and thus it is more 

practical in real application. As the accelerometers can provide accurate measurements of 

absolute acceleration, and it is easy to be installed in any place on the whole structure, 

more and more researchers have adopted acceleration feedback to design the controller. 

Here first a general introduction of the H2 controller will be presented and then the 

H2/LQG controller design method, which will be utilized to design the controller in this 

chapter, will be introduced. The governing equations for a general vibratory problem can 

be expressed as: 

[M] {q} + [C] {q} + [K] {q} = [M][ES ]xg + [Qs ] {F} + [Ps ] {/} (7.6) 

where [M], [C] and [K] are the structural mass, damping and stiffness matrices, 

respectively. [Es], [Qs] and [Ps] are the direction matrices related to base acceleration 

(xg), external force vector {F} and control force vector {/}, respectively. Parameters 

{q}, {q} and [q] are the displacement, velocity and acceleration vectors, respectively. 

The equations of motion stated in Equation (7.6), can be transferred to the state-space 

form as: 

{x} = [A] {x} + [E]xg + [Q] {F} + [P] {/} (7.7) 

where {x} is the state vector {q,q}T, and 

" [ 0 ] " 
,[fi] = 

[0] 

[MTX[QS\ 
,[P}= 

[0] 
[M]-\PS\ 

[A]: 
[0] [/] 

•[MTl[K] - [M]- ' [C] 
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Based on the equations of motion stated in Equation (7.7), the control problem for a 

general dynamic system can be expressed as: 

{*} = [A] {x} + [B, ] {w} + [B2 ] {/} (7.9a) 

{y} = [Q ] W + [A, ] M + [Dn ] {/} (7.9b) 

{z} = [C2 ] {*} + [Z)21 ] M + [£>22 ] {/} (7.9c) 

and the controller is defined as: 

{/} = [G]{z} (7.9d) 

where {x}, {y} and {z} are the state-space vector, dynamic system output vector and 

measured vector, respectively; {/} is the control force; {w} represents the base excitation 

{xg} and/or external force {F} depended on different loading conditions; [G] is the 

controller and [£/], [B2], [C{\, [C2], [Dn], [Du], \D2i\ and [D22] are all the direction 

184 

matrices. The H2 controller design is essentially an optimization problem , in which the 

solution is based on two Algebraic Riccati Equation (ARE) ' as: 

[A]T[X] + [X][A]-([X][B2] + [N])[RT\[B2f[X] + [N]T)HQ] = 0 (7.10) 

where [R] = [Di2f[Dn], tf = [C, f[Dn] and [e] = [C,] r[C,]; 

[Y][Af +[A][Y]-([Y][C2f +[S])[Rer\[C2][Y] + [S]T) + [Qe] = 0 (7Al>> 

where [Re] = [D21 ][£>21 ] r , [5] = [5, ][£>2, ]
r and [Qe] = [JBJ ][S, ] r . Assuming the solution of 

Equations (7.10) and (7.11), can be stated as [X] and [Y], respectively, then a full-state 

feedback [AT] and Kalman estimate [L] can be obtained as: 

[K] = [R]-\[B2f[X] + [N]T) and [L] = ( [7][C 2 f+[£]) [* , r 1 (7.12) 
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Finally the controller [G] can be expressed in transfer matrix form as: 

[G] = 

where 
[Ak] = [A]-[B2][K]-[L][C2] + [L][D22][K], [Bk] = [L], [Ck] = -[K] and 

(7.14) 

This is the standard H2 controller design method. It should be noted that the standard H2 

controller design approach is based on the assumption that the matrix [£>//] is zero. A 

transformation method from [Dn] non-zero to zero was proposed by Zhou et al as: 

[Ak] = [A]-[B2][K]-[L][C2] + [L][D22][K] + [B2][DE][C2], 
(7.15) 

[Bk] = [L] + [B2][DE], [Ck] = -[K]-[DE][C2] and [Dk] = -{DE} 

where [DE] = [Du]
T[Dn][D21]

T . From the introduction of H2 controller design approach, 

one can easily find that this controller design method is very flexible. Using the same 

measured parameters provided in Equation (7.9c), one can easily design different 

controller through changing the system output equation stated in Equation (7.9b), in order 

to obtain suitable controller based on different design requirement. Here it should be 

noted the LQR controller is one of the special cases of the standard H2 controller, in 

which the measure vector {z} and dynamic system output vector {y} are both equal to the 

state-space vector {x}. This means that in Equations (7.9) the matrices [Da], [D12], [D21] 

and [D22] are all null matrices and matrices [Ci], [C2] are both identity matrices. 

The standard H2 controller does not take into account the processing and measured 

noises. The LQG controller considers these two kinds of noise with covariance. The H2 
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controller design based on LQG framework is presented by Chiang and Safonov . 
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[Ak] 1 [Bk] 
[Ck]\ [Dk] 

(7.13) 



Dyke and Spencer Jr et al utilized H2 controller design method based on LQG 

framework (H2/LQG) to design the controller for SAMD system using hydraulic actuator, 

and then they studied the building structural base isolation system with MR-damper using 
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the H2/LQG controller ' . As mentioned above, the standard H2 controller design 

consists of one full-state feedback and one Kalman estimate. In H2/LQG controller, one 

basically designs the Kalman estimate using LQG framework, which considers both the 

processing and measured noises. Let us go back to system dynamic equations stated in 

Equations (7.9). The full-state feedback for H2/LQG controller is based on Equations 

(7.9a) and (7.9b) as: 

{x} = [A]{x} + [B2]{f} (7.16a) 

{y} = [Cl]{x}+[Dn]{f} (7.16b) 

The Kalman estimate (based on LQG framework) for H2/LQG controller is based on 

Equations (7.9a) and (7.9c), as: 

{i} = [̂ ]{x} + [S1]M + [52]{/} (7.17a) 

{z} = [C2]{x} + [D21]{w} + [D32]{f} + vn (7.17b) 

where v„ is the measured noise. 

An important issue for LQG, H2 and H2/LQG controller designs is the stability analysis. 

The standard LQR controller has at least 60° phase margin and 6 (dB) gain margin. 

However there are no guaranteed stability margins for other linear quadratic controller 

design methods, thus the stability properties of the controller especially for the proposed 

H2/LQG controller should be verified. The stability properties of controller includes: ([A], 

[B2], [C2]) should be stablizable and detectable; the controller should be stable itself and 
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can internally stabili2e the controlled plant and also provide suitable stability margin. The 

([,4], [B2], [O]) stabilizable and detectable properties and stability of the controller itself 

may be easily checked though the eigenvalue analysis of matrices [[-^H-^IXIL UA]-

[L][C2]] and [Ak] stated in Equations (7.12)-(7.15). If all the eigenvalue stay in the half 

left plan ([[^]-[52][^], [[^]-[I][C2]] and [Ak] are Hurwitz matrices), then the ([A], [B2], 

[C2]) are stabilizable and detectable and controller is stable. Internal stability analysis can 

be checked using the following method . The equations of motion stated in Equations 

(7.9), can be expressed as Linear Fractional Transformation (LFT) form as: 

M 

a n 

G 
w 

M 

Figure 7.2 Linear Fractional Transformation (LFT) form for controller design problem. 

where [Gyw], [Gyj\, [Gzw] and [Gzj\ are the transformation matrices from input {w} to 

output {y}, input {/} to output {y}, input {w} to output {z} and input {/} to output {z}, 

respectively. Based on Equations (7.9), all of these transformation matrices can be 

expressed in the transfer matrix form as: 

[GyJ 
[A] I [*i] 
[Q]|[Ai]. 

. WyA [C,]\[Dn] . [G w ] = 
[A] I [A] 
[C2]\[D2l] 

and 

(7.18) 

[Gj] = 
[A] I [B2] 
[C2]|[Z?22] 

and controller [G] has the same form as stated in Equation (7.13). Now let us establish 

the following matrix as : 
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[A] = 
[A] [0] 

[0] [Ak] 
\B2] [0]T [/] -[Dk] 

.[0] [5*]l-[£>22] m . 

' [0] [Ct] 
[C2] [0] 

(7.19) 

If and only if [A] is a Hurwitz matrix, the controller [G] can internally stabilize the sub-

1 86 

plant [Gz/] and then the controlled plant . The stability margin can also be checked 

through the Bode diagram for the open loop transfer function as: 

H0Pen=-[G][Gzf] (7.20) 

7.4 Developed Control Methodology 

In Section 7.2, the inverse MR-damper model for RD-1005-3 and MR-9000 type MR-

dampers and their respective calculation method has been proposed. Section 7.3 

presented the H2/LQG controller design method. Here the inverse MR-damper model will 

be combined with the H2/LQG controller to present an effective vibration control strategy 

for SAMD system using MR-damper. The schematic and essential issues of this proposed 

control strategy (Controller A) is shown in Figure 7.3 and the design methodology can be 

summarized as: 

Step 1: Following the method presented in Chapters 3 and 4, an optimal TMD system 

will be designed first. 

Step 2: Based on the optimally designed TMD system, a SAMD system will be 

designed, in which the damper of optimal TMD system will be replaced by the 

selected MR-damper. 

Step 3: The controller will be designed using H2/LQG method presented in Section 7.3. 

Step 4: The designed H2/LQG controller is combined with the inverse MR-damper 

model to establish a control methodology for SAMD system using MR-damper. 
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Figure 7.3 Semi-Active Mass Damper (SAMD) system using MR-damper with the proposed 

controller (Controller A). 

,92 
The Clipped-Optimal controller for MR-damper was first proposed by Dyke et al for 

the base isolation structure, and then many researchers utilized the same method or its 

92 

modifications. Here the essential issues of the Clipped-Optimal controller will also be 

utilized in the SAMD design, as illustrated in Figure 7.4, and also named as Clipped-

Optimal controller (Controller B). 

M 
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MR 
Damper 

j , command 
current 

Plant 

M 

plant inner state 

Clipped :-*-

*( plant output j 

\z\, Measured variables 

Full-State 
Feedback ksilman Filter *#-

!«j, required 
control force 

CilffledrQfHimaLCattlmlkr 
H2/LQG Controller 

Figure 7.4 Semi-Active Mass D a m p e r (SAMD) system using MR-damper with Clipped-

Optimal controller (Controller B). 
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In Figure 7.4, the "Clipped" is based on the following mathematical method as 
92 

i = imaxH{(u-f)f} (7.21) 

where imaxis the MR-damper's maximum working current, which is equal to 1 (A) in this 

dissertation. H{.) is the Heaviside step function. 

In this dissertation, we also combined the proposed controller shown in Figure 7.3 with 

Clipped-Optimal controller and named it as Inverse-Clipped-Optimal controller 

(Controller C), as shown in Figure 7.5. 

The vibration suppression performance of the three control methodologies discussed 

above will be studied and compared through numerical examples. Two kinds of 

numerical examples have been provided. In Section 7.5, a three floors building model 

will be investigated and RD-1005-3 type MR-damper will be utilized in the SAMD 

design. The beam-type structures' SAMD system using MR-9000 type damper will be 

presented in the Section 7.6. 

Inverse-Ctipped-OpHmal 
Cantrolkr 

H2/LQG Controller 

Figure 7.5 Semi-Active Mass Damper (SAMD) system using MR-damper with Inverse-

Clipped-Optimal controller (Controller C). 
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As to illustrate the performance of the proposed control methodologies for SAMD system 

using MR-damper, one should compare the vibration suppression performances for 

uncontrolled structure; structure with optimal TMD; structure with SAMD using MR-

damper under MR-damper's "fail-safe" condition; structure with SAMD using MR-

damper with the proposed controller designs and also structure with AMD. Therefore, in 

the numerical examples, all the vibration suppression methodologies mentioned above 

will be investigated. 

7.5 Numerical Example 1—Building-Type Structures 

A three-floor building model subjected to base excitation, as shown in Figure 7.6, will be 

utilized to clarify the validity of the proposed SAMD design. 

• passive, semi-active damper • 
i or full-active device • 

_A "i"'" IMass 

The top Hoor 

The Second floor 

The first floor 

~> .T,tX,,.V4,A"u4 

^ -X J « . V > * A^s* A..-' 

*x,.x„x„xa 

Base • W r * 

Figure 7.6 Three-floor building model for TMD, AMD and SAMD design. 

In Figure 7.6, xa presents the absolute acceleration and x, x and x are the relative 

(relative to the base) displacement, velocity and acceleration, respectively. The building 

model with two set of model parameters will be investigated in this section. The 
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parameters of the Building model 1 (Section 7.5.1) are taken from Dyke et al , and the 

Building model 2 (Section 7.5.2) is utilized to clarify robustness property of the proposed 

control methods. 

7.5.1 Building model 1 

In this section, the parameters for the three-floor building model shown in Figure 7.6 are 

92 94 

taken from Dyke et al ' and the equations of motion for this building model under base 

excitation can be described using Equation (7.6), in which the displacement vector {.x}, 

velocity vector {i} and accelerator vector {x} are all measured relative to the base and 

[M] = 

[K] = 

98.3 0 0 

0 98.3 0 

0 0 98.3 

12 -6.84 0 

-6.84 13.7 -6.84 
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0 -

\05(N/m),[Es} = -
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1 
1 

,{F) = 
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(7.22) 

7.5.1.1 TMD, AMD and SAMP design approaches 

The equations of motion of structure with an attached TMD in the top floor under base 

excitation can also be expressed as the form stated in Equation (7.6), by defining: 

[Af] = 

98.3 0 0 0 

0 98.3 0 0 

0 0 98.3 0 

0 0 0 m 
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(7.23) 
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where the mass (m) of the TMD and AMD systems is selected as 10% of the total mass of 

the main structure; the linear viscous damper and stiffness of TMD are represented by 

CTMD and KTMD, which are the design variables. 

Transferring Equation (7.6), to the state-space form described in Equation (7.7), with the 

parameters defined in Equation (7.8), and then utilizing the optimization procedure 

provided in Chapter 3, one can easily obtain the optimal damping factor (&MD) and 

frequency ratio (/TMD) defined in Equation (3.14) as 0.1903 and 0.8403, respectively. 

Here it should be noted that the RMS of the top floor's relative displacement (relative to 

the base) has been selected as the objective function, as the first vibration mode is 

dominant mode in this example. Subsequently, the linear viscous damper and stiffness for 

the optimal TMD system would be 323.3 (Ns/m) and 24475(N/m), respectively. 

Next, the damper of the developed optimal TMD system will be replaced by an active 

device to establish an AMD system and the controller for the AMD system will be 

designed following the procedure stated in Section 7.3. The equations of motion for the 

controller design can also be expressed as the form stated in Equation (7.6), by defining: 

[M] = (Kg),[C] = 

[K]-. 

98.3 0 0 0 

0 98.3 0 0 

0 0 98.3 0 

0 0 0 29.49 

12 -6.84 0 0 
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0 0 -0.245 0.245 

75 - 5 0 0 0 

50 100 - 5 0 0 

0 - 5 0 50 0 

0 0 0 0 

105 ( - )> [£ , ] = -
m 

Y 
1 

1 

1 
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m 

and[/>j = 

(7.24) 

Transferring Equation (7.6) to the state-space form provided in Equations (7.9), by 

defining: 
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[A] = 

[C,] = 

[C2] 

[0] [/] 
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-[PX][MY\K] -IP{\\.M\-\C] 
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0 

(7.25) 

[P2][M]-'[PJ 

where [M], [C], [K], [Ps] and [Es] have been defined in Equation (7.24). In this example, 

the absolute acceleration of all three floors and the relative displacement (relative to the 

base) of top floor are selected as the system output vector {y} stated in Equation (7.9b). 

The absolute acceleration of top floor and the relative displacement (between the top 

floor and the attached mass) are selected as the measured vector {z} stated in Equation 

(7.9c). Thus, the matrices [Pi] and [P{\ in Equations (7.25) can be defined as: 

W] = 
1 0 0 0 

0 1 0 0 

0 0 1 0 

and[P2] = [0 0 1 0] (7.26) 

H2/LQG method is utilized to design the controller based on the system parameters stated 

in Equations (7.25). A full-state feedback will be designed based on Equations. (7.10), 

(7.12) and (7.16) with the definitions of [Q] = [C, f [C,] , [R] = 3[Dn]
T[Dl2] 

and[N] = [Cx]
T[Dn]- The Kalman filter will be designed based on Equations (7.11), 

(7.12) and (7.17) with the definitions of [2J=r[7], [/?e]=[7] and [S]=[0]. Here, the 

autocovariance of measurement noise (E(v„v„T)=Rv[I]) and the process noise 

( E(xgx
T

g) = Rg[I] ) are both assumed to be identically distributed and statistically 

independent Gaussian white noise with the ratio {r=Rg/Rv=2S), furthermore the 

covariance between excitation processing and measurement noise processes is assumed to 
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be zero. Finally the Hb/LQG controller can be obtained using Equation (7.13) and (7.14), 

as matrix [£>//] stated in Equations (7.25) is a null matrix. 

The controller stability analysis based on eigenvalue analysis of [Ak], as stated in 

Equation (7.14), the internally stabilizing analysis based on Equation (7.19), the full-state 

feedback [K] stability analysis based on the eigenvalue analysis of matrix [[/4]-[i?2][£]] 

and the Kalman filter [L] stability analysis based on the eigenvalue analysis of matrix 

[[̂ 4]-[Z,][C ]̂] have been conducted. All test matrices are Hurwitz matrices. The stability 

margin analysis, as stated in Equation (7.20), is shown in Figure 7.7. 

Frequency {rad/sj0 

Figure 7.7 Open-loop stability margin analysis for Build model 1. 

10 

94 

Based on experience study for this building model proposed by Dyke and Spencer Jr et 
95 

al , the numerical model matches the experimental data very well for excitation 

frequencies below 35 {Hz) (about 220 rad/s), which is after the natural frequency of the 

third vibration mode (148.5 rad/s). However, significant modeling errors occur at higher 

frequencies due to un-modeled dynamic properties. Herein, the controller design was 

considered to be acceptable for implementation if the magnitude of the open loop gain at 
218 
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high frequencies (higher than 35 (Hz)) was less than -5 (dB) ' . Based on this, the 

designed H2/LQG controller provides at least -5.2 (dB) for the frequency more than 32 

(Hz), as illustrated in Figure 7.7, so the designed controller is considered to be acceptable. 

Figure 7.8 illustrates the frequency domain response (Bode diagram) for uncontrolled 

structure, structure with optimal TMD and AMD system using the developed H2/LQG 

controller. 

Frequency (radfe)10 Frequency (rad/s) 

Figure 7.8 The structural frequency domain response (Bode diagram), (a) The first floor 

absolute acceleration, (b) The second floor absolute acceleration, (c) The top floor absolute 

acceleration, (d) The top floor relative displacement (relative to base). Solid, dashed 

(brown) and dotted (red) lines represent uncontrolled structure and structure with optimal 

TMD and AMD system, respectively. 

Examination of the results shown in Figure 7.8 reveals that: (1) the optimal TMD system 

attenuates vibrations effectively around the original structural first natural frequency, 

which is the dominant mode in this example; (2) The AMD system not only can provide 

better vibration suppression performance than the optimal TMD system around its tuned 
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frequency but also it can effectively suppress the vibration due to higher modes (in this 

example the effect of AMD can provide significant attenuation up to the third natural 

frequency); (3) as expected after the third vibration mode no significant control force 

exists, and thus the response for structures with AMD system almost coincides with 

uncontrolled structure. As discussed in Chapter 1, the designed AMD system may be 

unpractical, as it is very difficult to find a suitable device which can provide the active 

force required by the controller. In the next part the SAMD system using MR-damper 

will be introduced. 

Following the proposed methodology presented in Section 7.4 and summarized in Figure 

7.3, the developed H2/LQG controller has been combined with the proposed inverse MR-

damper model (RD-1005-3 type MR-damper) to provide command current to MR-

damper and subsequently to provide damping force to the main structure. To make the 

simulation close to the real application, before applying the proposed control method for 

the SAMD system using MR-damper, the H2/LQG controller should be transferred to 

discrete-time form utilizing the z-transform method as: 

* = 2 / z ^ (7.27) 

z + 1 

where ̂  is the sampling frequency. In the simulation, the time step size is selected as 10"4 

(s), and controller sampling frequency (measured signal sampling rate) is chosen as 1 

(KHz), which can provide enough time for the controller to calculate the command 

current. Using this sampling frequency, the H2/LQG controller, as stated in Equation 

(7.13), can be transferred to the discrete-time form as: 
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{x(KT + T)} = [Ad]{x(KT)} + [Bd]{z(KT)}; u(KT) = [Cd]{x(KT)} + [Dd]{z(KT)} (7.28) 

where T-l/fz, and matrices [Ad], [BJ\, [CJ\ and [DJ\ are the bilinear transformation form 

for matrices [Ak], [Bk], [C*] and [Dk], as stated in Equation (7.13), respectively. 

A typical uniform (±50 m/s2) random signal is applied onto the structural base. Based on 

the properties of RD-1005-3 type MR-damper ' , the MR-damper's relative 

displacement is limited to ±20 {mm), and the maximum damping force is limited to 

±2700 (TV)- The structural response comparison in time domain between structure with 

the SAMD system using MR-damper utilizing Controller A illustrated in Figure 7.3 and 

uncontrolled structure; structure with the optimal TMD and AMD using H2/LQG 

controller are illustrated in Figures 7.9-7.11, respectively. Table 7.2 summarized the 

RMS of response for these different cases. 

Figure 7.9 Structural response comparison, (a) The first floor absolute acceleration, (b) The 

second floor absolute acceleration, (c) The top floor absolute acceleration, (d) The top floor 

relative (relative to base) displacement. Solid and dotted (red) lines represent uncontrolled 

structure and structure with SAMD using MR-damper with Controller A, respectively. 
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Figure 7.11 Structural response comparison, (a) The first floor absolute acceleration, (b) 
The second floor absolute acceleration, (c) The top floor absolute acceleration, (d) The top 
floor relative (relative to base) displacement. Solid and dotted (red) lines represent 
structure with AMD and SAMD using MR-damper with Controller A, respectively. 

From Figures 7.9-7.11 and Table 7.2, one can find that: (1) the optimal TMD system can 

decrease the RMS about 42.2%, 56.5%, 52.47% and 61.63% for the first, second and top 
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floors' absolute acceleration responses and the top floor's relative displacement response, 

respectively, compared with uncontrolled structure; (2) compared with the optimal TMD 

system, the SAMD system decreases the RMS about 30.2%, 6.77%, and 13.92% for the 

first, second and top floors' absolute acceleration responses, respectively; (3) the AMD 

system provide the best vibration suppression effectiveness. Compared with the optimal 

TMD system, the AMD decreases the RMS about 47.62%, 33.47%, and 38.33% for the 

first, second and top floors' absolute acceleration responses, respectively; (4) the 

vibration suppression performance of the SAMD system with MR-damper using 

Controller A can match those of AMD well. This issue can also be realized through 

Figure 7.12, from which one can find that the MR-damper with Controller A can provide 

the damping force {/) very close to the H2/LQG controller requiring control force {«}. 

Figure 7.12 H2/LQG controller command control force ({«}) and MR-damper damping 

force ({/}). Solid and dotted (red) lines represent {«} and {/}, respectively. 

7.5.1.2 SAMD using MR-damper in its "fail-safe" condition 

MR-damper can provide fail-safe protection, meaning that if the controller is failed, the 

MR-damper can still act as a passive damper. In this example, two cases will be 
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considered as the MR-damper's fail-safe conditions: "passive-off means the command 

current of MR-damper is hold as 0 (A); "passive-on" represents the case when the 

command current is hold as its maximum value, which is 1 (A) in this example. Utilizing 

the same random signal and discrete methodology as those presented in above section, 

the simulation results for the structural responses have been obtained and shown in 

Figures 7.13 and 7.14, which compare the structural response for SAMD with MR-

damper using Controller A and MR-damper's "passive-off and "passive-on" condition, 

respectively. 

Figure 7.13 Structural response comparison, (a) The first floor absolute acceleration, (b) 

The second floor absolute acceleration, (c) The top floor absolute acceleration, (d) The top 

floor relative (to base) displacement. Solid and dotted (red) lines represent structure with 

SAMD using MR-damper with Controller A and MR-damper's "passive-off condition, 

respectively. 
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Figure 7.14 Structural response comparison, (a) The first floor absolute acceleration, (b) 

The second floor absolute acceleration, (c) The top floor absolute acceleration, (d) The top 

floor relative (to base) displacement. Solid and dotted (red) lines represent structure with 

SAMD using MR-damper with Controller A and MR-damper's "passive-ori" condition, 

respectively. 

From Figures 7.13 and 7.14, one can realize that MR-damper exactly provides the fail­

safe protection performance for "passive-off condition in this example, and also the 

"passive-ori''' case can not suppress the structural vibration effectively compared with 

uncontrolled structure. This is mainly due to the fact that the RD-1005-3 type MR-

damper provides too much equivalent viscous damping in "passive-ori" condition with 

respect to the selected mass of the SAMD system. To clarify this issue one should 

analysis the dynamic property of MR-damper model as listed in Equations (7.1)-(7.3) and 

Table 7.1. It can be found that when the command current is set to zero, MR-damper 

provides the minimum viscous damping coefficient about 1100 (Ns/m). Compared with 

the viscous damping coefficient in the optimal TMD system, which is 323.3 (Ns/m), the 

minimum damping coefficient provided by the selected MR-damper is too strong to 
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suppress vibration effectively. This property can also be found from Figure 7.15, from 

which one can realize that the selected MR-damper almost dose not move in the "passive-

orC condition and the relative displacement of MR-damper with Controller A shown in 

Figure 7.3 are almost the same as those in MR-damper's "passive-off condition. 

Figure 7.15 MR-damper relative displacement for different cases. Solid, dashed (red) and 

dotted lines represent MR-damper using Controller A, MR-damper's "passive-off and 

"passive-on" condition, respectively. 

In this study RD-1005-3 type MR-damper is utilized as the semi-active device for the 

SAMD system, thus selecting the suitable mass for the designed SAMD system related to 

this special type of MR-damper becomes very important. Generally the mass of the TMD 

or SAMD systems should not be more than 10% of the total mass of main structure; 

otherwise the TMD or SAMD systems will significantly change the main structural 

property. However, small mass will make RD-1005-3 type MR-damper become too 

strong to allow the mass moving freely to dissipate energy. Basically the selected mass 

should make the damping coefficient of the optimally designed TMD system located 

around the equivalent damping coefficient that the selected MR-damper can provide. The 

so-called equivalent damping coefficient is respected to the "passive-off and "passive-

on" conditions of the MR-damper. Thus the SAMD system with the selected MR-damper 
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using Controller A can provide the best vibration suppression effectiveness, which will 

be illustrated in Section 7.5.2. Furthermore, based on above discussion, one can also find 

that the simple "on-off control methodology may not be suitable for the SAMD system 

using MR-damper. 

7.5.1.3 SAMD using MR-damper with different control methodologies 

The performance of different control methodologies presented in Section 7.4 will be 

investigated in this section. The same uniform random signal used in previous sections is 

utilized to excite the structure at the base. Figure 7.16 shows the structural responses in 

time domain for structure with different control methodologies. It should be noted that in 

this example the structural response using MR-damper with Controllers A and C are very 

close. Figure 17 illustrates the command current signals for these three control 

methodologies. Table 7.2 also summarized the RMS of response for different cases. 

. £ I I I * ' I ': I I I I I I I 
O 0 1 2 3 4 _ . 5 , . 6 7 8 9 10 

Time (s) 
Figure 7.16 Structural response comparison, (a) The first floor absolute acceleration, (b) 
The second floor absolute acceleration, (c) The top floor absolute acceleration, (d) The top 
floor relative (relative to base) displacement. Solid, dotted(blue) and dashed (red) lines 
represent SAMD Structure using MR-damper with Controllers A, B and C, respectively. 
Note: Solid and dashed (red) lines are very close. 
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Time (s) 
Figure 7.17 Command current comparison: (a) SAMD Structure with Controller 

SAMD Structure with Controller C. (c) SAMD Structure with Controller B. 

10 

A. (b) 

From Figures 7.16 and 7.17 and also Table 7.2, one can easily realize that: (1) the 

Clipped-Optimal controller (Controller B) illustrated in Figure 7.4 can not provide 

effective vibration suppression performance in this example; (2) the proposed Inverse-

Clipped-Optimal controller (Controller C) illustrated in Figure 7.5 can improve the 

vibration suppression performance compared with the proposed controller (Controller A) 

illustrated in Figure 7.3 about 4%. However this small performance improvement is 

associated with the cost of an extra force sensor; (3) the MR-damper's command current 

using Controller B oscillates between 0 and 1 in a very high frequency, which 

subsequently causes the MR-damper's magnetic field to be changed in high frequency 

which is not practical for the MR-damper devices; (4) the MR-damper command current 

using Controllers A and C, is much smoother than that for Controller B, thus it would be 

more practical in real application. Based on the above discussion, it can be concluded that 
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the Controller A, as illustrated in Figure 7.3, and Controller C, as illustrated in Figure 7.5, 

are both acceptable controller designs in this example. 

7.5.1.4 Summary of the results for Building model 1 

Table 7.2 summarizes the RMS of structural responses for the simulation results 

presented in the above sections. Therefore, one can clearly verify the conclusion made in 

above sections from Table 7.2. 

Table 7.2 RMS of response for different cases. Case A: Uncontrolled structure. Case B: 

Structure with optimal TMD. Case C: Structure with SAMD under MR-damper's "passive-o/f" 

condition. Case D: Structure with SAMD under MR-damper's "passive-on" condition. Case E: 

Structure with SAMD using Controller A. Case F: Structure with SAMD using Controller B. 

Case G: Structure with SAMD using Controller C. Case H: Structure with AMD using 

developed H/LQG controller. 

Control 

Strategies 

Is'floor absolute 

acceleration 

(m/s2) 

ind j 
2 floor absolute 

acceleration 

(m/s2) 

Top floor 

absolute 

acceleration 

(m/s2) 
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displacement 

(mm) 

Case A 

CaseB 

CaseC 

CaseD 

CaseE 

CaseF 

CaseG 

CaseH 

7.3148 

4.2268 

3.6669 

9.1772 

2.9505 

5.6345 

2.8275 

2.2141 

8.8649 

3.8567 

3.5943 

12.9676 

3.5957 

8.3643 

3.3963 

2.5658 

10.9402 

5.1999 

4.4800 

16.1391 

4.4760 

10.9801 

4.2459 

3.2070 

8.6 

3.3 

3.41 

15.71 

4.0 

10.1854 

3.8049 

3.0 

7.5.2 Building model 2 

In the previous example, we have shown that as the minimum damping coefficient of 

RD-1005-3 type MR-damper is too strong for the given mass of the designed SAMD 
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system, the vibration suppression effectiveness for SAMD with MR-damper using 

Controller A and the MR-damper's "passive-off" condition is almost the same and also 

the MR-damper's "passive-on" condition can not suppress structural vibration 

effectively. This example is presented to demonstrate those issues and also test the 

robustness property of the Controllers A and C. In this example the mass of the building 

model will be increased 10 times than that in Building model 1 (Section 7.5.1). The mass 

of TMD and AMD systems is still selected as the 10% of the total mass of building. 

Subsequently, it would be also 10 times of that in the previous example. 

7.5.2.1 TMD, AMD and SAMD design approaches 

Following exactly the same procedures presented in Section 7.5.1, an optimal TMD 

system has been designed for Building model 2. The optimal TMD parameters for the 

spring stiffness and viscous damping coefficient are 24585 (N/m) and 1031.1 (Ns/m), 

respectively. One can find that the viscous damping coefficient for this designed optimal 

TMD is now closed to the viscous damping coefficient (1100 Ns/m) at the "passive-off 

condition for RD-1005-type MR-damper. The H2/LQG controller has been designed 

following the same procedure and definitions presented in Section 7.5.1, and it should be 

noted that in this example the parameter [R], which was utilized to design the full-state 

feedback [K], is defined as [R] = 2[D]2]
T[D12]. Stability analysis has been performed and 

all of the test matrices are Hurwitz matrices. Figure 7.18 provides the open-loop stability 

margin analysis. 
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Figure 7.18 Open-loop stability margin analysis for Building model 2. 

Based on the same comment provided in Building model 1 (Section 7.5.1), one can find 

that the design controller is acceptable for implementation, since after the third natural 

94 95 

frequency (47 rad/s), the magnitude of the open loop gain was less than -5 (dB) ' . 

Figure 7.19 illustrates the frequency domain response for uncontrolled structure, structure 

with the optimal TMD and AMD with the developed H2/LQG controller. 

Frequency (rad/s) Frequency (rad/s) 10* 

absolute 
absolute 

dashed 

Figure 7.19 The structural frequency response/base excitation, (a) The first floor 
acceleration, (b) The second floor absolute acceleration, (c) The top floor 
acceleration, (d) The top floor relative displacement (relative to base). Solid, 
(brown) and dotted (red) lines represent uncontrolled structure and structure with optimal 
TMD and AMD system, respectively. 
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The same conclusion can be drawn from Figure 7.19 as those from Figure 7.8. Using the 

same uniform random test signal, sampling rate (1 KHz) and discrete method as those 

utilized in Section 7.5.1, the simulation results for uncontrolled structure, structure with 

SAMD system using MR-damper with the Controller A, optimal TMD and AMD 

systems are compared in Figures 7.20-7.22, respectively. Table 7.3 summarized the RMS 

of responses for these different cases. 

From Figures 7.20-7.22 and Table 7.3, one can easily find that: (1) the optimal TMD 

system can decrease the RMS about 45.99%, 52.48%, 56.63% and 71.43% for the first, 

second and top floors' absolute acceleration responses and the top floor's relative 

displacement response, respectively, compared with uncontrolled structure; (2) the 

SAMD system also provides better vibration suppression effectiveness than the optimal 

TMD structure. Compared with the optimal TMD system, SAMD decreases the RMS 

about 53.43%, 34.75%, and 30.15% for the first, second and top floors' absolute 

acceleration responses, respectively; (3) the AMD system provide the best vibration 

suppression effectiveness. Compared with the optimal TMD system, the ideal full-active 

AMD decreases the RMS about 64.63%, 56.09%, and 50.16% for the first, second and 

top floors' absolute acceleration responses, respectively. Comparing the results with 

those illustrated in Figure 7.9-7.11 and Table 7.2 for Building model 1 (Section 7.5.1), 

one can also find that in this example, the SAMD system can provide much better 

vibration performance than the optimal TMD system. This is mainly due to the fact that 

the damping factor provided by RD-1005-3 type MR-damper is suitable for the mass of 

SAMD system presented in this section, which confirms again the conclusion made in 

Building model 1 (Section 7.5.1). 
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Time (s) 
Figure 7.20 Structural response comparison, (a) The first floor absolute acceleration, (b) 
The second floor absolute acceleration, (c) The top floor absolute acceleration, (d) The top 
floor relative (relative to base) displacement. Solid and dotted (red) lines represent 
uncontrolled structure and structure with SAMD using MR-damper with Controller A, 
respectively. 
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Figure 7.21 Structural response comparison, (a) The first floor absolute acceleration, (b) 
The second floor absolute acceleration, (c) The top floor absolute acceleration, (d) The top 
floor relative (relative to base) displacement. Solid and dotted (red) lines represent 
structure with optimal TMD and SAMD using MR-damper with Controller A, respectively. 
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Figure 7.22 Structural response comparison, (a) The first floor absolute acceleration, (b) 

The second floor absolute acceleration, (c) The top floor absolute acceleration, (d) The top 

floor relative (relative to base) displacement. Solid and dotted (red) lines represent 

structure with AMD and SAMD using MR-damper with Controller A, respectively. 

7.5.2.2 SAMD using MR-damper in its "fail-safe" condition 

Similar to Building model 1 (Section 7.5.1), MR-damper's fail-safe condition will be 

investigated in this section for Building model 2 utilizing the same random excitation 

signal. The simulation results are shown in Figure 7.23, which compares the first, second 

and top floors' absolute acceleration and the top floor's relative displacement responses 

for SAMD with MR-damper using Controller A, "passive-off and "passive-on" 

conditions. Table 7.3 summarizes the RMS of responses for different cases. 

Comparing Figure 7.23 with Figures 7.13 and 7.14, one can find significant difference 

between these two examples. In this example, the MR-damper's "passive-off and 

"passive-on" condition can both provide good "fail-safe" property and the vibration 

suppression performance of MR-damper using Controller A is better than the fail-safe 
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conditions, which confirm the robustness of Controller A and also the conclusion made in 

the Building model 1 (Section 7.5.1). 

Figure 7.23 Structural response comparison, (a) The first floor absolute acceleration, (b) 

The second floor absolute acceleration, (c) The top floor absolute acceleration, (d) The top 

floor relative (relative to base) displacement. Solid, dashed (blue) and dotted (red) lines 

represent structure with SAMD using MR-damper with Controller A, and MR-damper's 

"•passive-off and "passive-on" conditions, respectively. 

7.5.2.3 SAMD using MR-damper with different control methodologies 

The vibration suppression performance comparisons for SAMD system using MR-

damper with different control methodologies for Building model 2 are provided in Figure 

7.24 and Table 7.3 summarizes the RMS of responses for each case. It can be realized 

that in this example three different kinds of control methodologies provide almost the 

same vibration suppression performance. Furthermore, comparing the results in this 

example with those in Building model 1, it can be found that the Controllers A and C are 

very robust compared with the Controller B. Moreover, examining Figure 7.24 carefully, 

one can also find that the top floor absolute acceleration has been a little unstable under 
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Controller B. The command current comparisons for these three different kinds of control 

methodologies are illustrated in Figure 7.25. 

4 Tim5e (s) 6 

Figure 7.24 Structural response comparison, (a) The first floor absolute acceleration, (b) 
The second floor absolute acceleration, (c) The top floor absolute acceleration, (d) The top 
floor relative (relative to base) displacement. Solid, dashed (blue) and dotted (red) lines 
represent SAMD Structure with Controllers A, B and C, respectively. 
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Figure 7.25 Command current comparison: (a) SAMD Structure with Controller A stated 
in Figure 7.3. (b) SAMD Structure with Controller C stated in Figure 7.5. (c) SAMD 
Structure with Controller B stated in Figure 7.4. 
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From Figure 7.25, one can obtain the same conclusion as those for Figure 7.17. Based on 

above observations, it can be realized that the Controllers A and C are the best control 

methodologies for the SMAD structure using MR-damper. 

7.5.2.4 Summary of the results for Building model 2 

Table 7.3 summarizes the RMS of structural response for the simulation results presented 

in the above sections for Building model 2, from which one can clearly verify the 

conclusions presented above. 

Table 7.3 RMS of response for different cases. Case A; Uncontrolled structure. Case B: 

Structure with optimal TMD. Case C: Structure with SAMD under MR-damper's "passive-off" 

condition. Case D: Structure with SAMD under MR-damper's "passive-on" condition. Case E: 

Structure with SAMD using Controller A). Case F: Structure with SAMD using Controller B. 

Case G: Structure with SAMD using Controller C. Case H: Structure with AMD using 

developed H/LQG controller. 

Control 

Strategies 

V floor absolute 

acceleration 

(m/s2) 

-,nd , 
2 floor absolute 

acceleration 

(m/s2) 

Top floor 

absolute 

acceleration 

(m/s2) 

Top floor relative 

displacement 

(mm) 

Case A 

CaseB 

CaseC 

CaseD 

CaseE 

CaseF 

CaseG 

CaseH 

6.0196 

3.2511 

3.9228 

2.6096 

1.5119 

1.5139 

1.4941 

1.1499 

5.4393 

2.5850 

2.8397 

2.7627 

1.5812 

1.6866 

1.6344 

1.1350 

6.7841 

2.9424 

3.3498 

3.0498 

2.0025 

2.0554 

2.0447 

1.4665 

45.5 

13 

13.7 

26.7 

16.4 

17 

16.6 

13.2 

The other advantage for using the proposed SAMD design procedures, as illustrated in 

Figures 7.3 and 7.5, is that all components can be assembled as a compact module. Two 

sensors are needed in Controller A, as stated in Figure 7.3: (1) accelerometer can be 
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installed on the case of MR-damper, which will provide the same measured signal as that 

placed in the top floor; (2) Linear Variable Displacement Transducer (LVDT) can be 

installed between the case and the acting rod of MR-damper, which will give us the same 

measured signal as the relative displacement between top floor and the attached mass. 

One extra force sensor is required to measure the damping force generated by MR-

damper for Controller C, which can also be installed inside the MR-damper. Therefore, 

for different structural parameters of performance requirement, the only thing needed to 

be changed is the controller, which is represented by [Ad], [Bd], [Cj] and [Dd] as stated in 

Equation (5.28). 

7.6 Numerical Example 2—Beam-Type Structures 

The control methodologies for SAMD system using MR-damper has been testified 

through the above two building models. In this section, the vibration suppression of 

beam-type structures using SAMD technology with MR-damper will be presented. The 

Timoshenko beam with the mid-span attached TMD presented in Chapter 3 will be 

considered in this section. The geometrical and physical properties of the Timoshenko 

beam have been listed in Table 3.1. 

7.6.1 TMD, AMD and SAMD design approaches 

The beam studied in Chapter 3 has been assumed to have no structural damping, as the 

main purpose of Chapter 3 is to testify the validity of the finite element methodology for 

studying the Timoshenko beam with the attached TMD system. In this section, the 

beam's damping factor will be assumed to be 2% for all vibration modes. Therefore, 

following the same procedure provided in Chapter 3 and selecting the RMS of beam's 
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mid-span transverse response (w) as objective function and assuming mass ratio of the 

attached TMD to be /*=0.07, one can find that the frequency ratio (/TJWD) and damping 

factor (£TMD) for the optimal TMD would be 0.8861 and 0.1968, respectively. 

Subsequently the spring stiffness (KTMD) and viscous damping (CTMD) of the attached 

optimal TMD would be 9.9611><107 (N/m) and 12.48><105(Afr/m), respectively. The 

validity of this set of optimal TMD's parameters will be illustrated through the frequency 

domain response (Bode diagram) comparison, which will be shown in Figure 7.27. Here 

it should be noted that the value of viscous damping of the attached optimal TMD is 

located inside the proposed LuGre friction model for MR-9000 type damper's working 

range, as illustrated in Equations (6.28)-(6.30) and Table 6.9. Therefore, the MR-9000 

type damper will be selected to design the SAMD system in this example. 

Next, the damper of the proposed optimal TMD system will be replaced by an active 

device to establish an AMD system and the controller for the AMD system will be 

designed following the procedure provided in Section 7.3. The equations of motion can 

also be expressed as the form stated in Equation (7.6), by defining: 

[M] = 

[Mww] [0] 

[0] \MW\ 

[0] 

[0] 

[0] [0] M, TMD 

, [C] = 

[ C w ] [0] [0] 

[0] [0] [0] 

[0] [0] 0 

,x=0, 

[K]-
[•^Hwl + l^wrM)] I ^ w f ] ~[KzTMD] 

' [KzTMD ] 

{^(0}= Z 
element 

[0] 

[0] 

K. TMD 

AFS] = 
-{C_pic} 

1 
and 

j(t^(/7)]/(750-/(7)W> {°V> ° 

(7.29) 

where KTMD is the spring stiffness of designed optimal TMD system, which is equal to 

9.9611*107 (N/m), {C_pic} is the matrix to pick up the beam's mid-span values, which 
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can be defined as i £![N(?7rM>)]f > anc* the other parameters has been defined in 
{element J 

Equations (3.7). Here it should be noted that the loading is applied uniformly 

perpendicular to the central line of beam. For simplifying expression, one can assumed 

the loading as unit value and thus the result obtained from {F(t}} stated in Equation 

(7.29) would be equal to the direction matrix [Qs], as stated in Equation (7.7). 

In Chapter 3 the beam with clamped-clamped boundary condition has been modeled 

using 7 Timoshenko beam elements with 4 nodes per element, thus the beam model has 

total of 40 degree of freedom. In fact, it is un-necessary to design a controller taking into 

account all of the degree of freedom. In this section the first five vibration modes of 

Timoshenko beam will be utilized to design the controller for the AMD system. This is 

due to the following facts that: (1) no matter how many numbers of elements one 

selected, un-modeled dynamic properties in high vibration mode exist; (2) the AMD is 

designed based on the optimal TMD system, which was tuned to the first vibration mode 

(dominant mode) in this example, obviously the effect of the AMD would be also around 

the first vibration mode; (3) if studying higher vibration modes is require, it is better to 

follow the methodology proposed in Chapter 4 to design other TMD system based on 

higher vibration mode and then go to the AMD design; (4) although in theory one can 

directly design controller for the AMD system utilizing the Timoshenko beam's finite 

element model, but definitely in the high frequency range the required control force will 

be outside of the MR-9000 type damper's working range. 

Based on the above discussions, total six modes of the Timoshenko beam with the 

attached Tuned Mass system will be utilized to design the controller of the AMD system, 
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as the first mode of Timoshenko beam has been modified to two modes by the attached 

Tuned Mass system. Therefore, one can easily utilize the eigenvector of ([MJ'^AT]), as 

shown in Equation (7.29), to pick up the first six modes which will be utilize to calculate 

the beam nodal displacement as: 

{q} = We-]{ev-e6)
T (7.30) 

where [Ve] represents the first six eigenvectors, and e, represents the response of the /th 

mode. Thus, the equations of motion for the controller design can be expressed as 

Equations (7.7)-(7.9), by defining: 

[A} = 
[0] [/] 

-[M„r[Ke] -[MeT
l[Ce] 

[5,] = 
[0] 

[MeY
X[Vef{Qs}_ 

[B2] = 
[0] 

[MeT'[Ve]
T[Ps] (7.31) 

[C2] = [P2We][A], [Z)21] = [P2][Ke][5,] and [D22] = [P2][Ve][B2] 

where [Me]=[Ve]
T[M][Ve], [Ce]=[Ve]

T[C][Ve] and [KeHVe]
T[K\[Ve]. In this example, the 

beam mid-span's acceleration and displacement are selected as the system output vector 

{y}, as stated in Equation (7.9b). The beam mid-span's acceleration and the relative 

displacement (between beam mid-span and the attached mass) are selected as the 

measured vector {z}, as stated in Equation (7.9c). Therefore, the directional matrices [Pi] 

and [P2] can be defined as: 

[/>,] = 
\{C_pic} 0] {0} 

{0} [{c_Pic} 6[ 
and[P2] = 

\{C_pic) - l ] {0} 

{0} [{C_pic} 0 [ 
(7.32) 
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H2/LQG method is utilized to design the controller based on the system parameters stated 

in Equations (7.31) and (7.32). A full-state feedback will be designed based on Equations 

(7.10) and (7.16) with the definitions: 

[fi] = 1.5e3[» r,CifF1C1], [R] = 5e3[Du]
r[Du] and [N] = [W,Clf[Dn] (7.33) 

where [^/]=[5xl03, 0; 0, 1]. Finally the full-state feedback [K] defined in Equation 

(7.12) is equal to [R]~l ([B2 ]
T[X] + [N]T). The Kalman filter will also be designed based 

on Equations (7.11) and (7.17) with the definitions: 

[Qe] = rV],[Re] = le~] 

Here, the autocovariance of measurement noise, E(v„vn
T)=Rv[I], and the process noise, 

HL(ff)=Rg[I\, are both assumed to be identically distributed and statistically independent 

Gaussian white noise with the ratio, r=Rg/Rv-\>
!-\(f, furthermore the covariance between 

excitation processing and measurement noise processes is assumed to be zero. Then the 

Kalman estimate [L] defined in Equation (7.12) is equal to[L] = ([Y][C2]
T +[S])[Re]"i. 

Finally the H2/LQG controller can be obtained using Equation (7.13) and (7.15), as in this 

example the matrix [Du] is not a null matrix. 

The controller stability analysis based on eigenvalue analysis of [Ak], as stated in 

Equation (7.14), the internally stabilizing analysis based on Equation (7.19), the full-state 

feedback [K\ stability analysis based on the eigenvalue analysis of matrix [|/4]-[i?2][/r|] 

and the Kalman filter [L] stability analysis based on the eigenvalue analysis of matrix 

[[J]-[Z,][C2]] have been conducted. All test matrices are Hurwitz matrices. The stability 

margin analysis, as stated in Equation (7.20), has been shown in Figure 7.26, which 
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includes the Bode diagram of open loop for design model, as stated in Equations (7.31) 

and that for the beam finite element model, as stated in Equation (7.29) 

-100-0 
10 

Frequency (raws) 

Figure 7.26 Open-loop stability margin analysis. Solid and dotted lines represent the open 

loop Bode diagram for design model and beam's finite element model. 

From Figure 7.26, one can easily find that: (1) as expected, the open loop Bode diagram 

for design model is perfectly agreed with that for beam's finite element model below 

400(rad/s), which is right after the beam's fifth natural frequency (359.64 rad/s), as listed 

in Table 3.2; (2) above 400 (rad/s), both design model and beam's finite element model 

provide at least -10 (dB) margin, which means no control force after the beam's 5th 

vibration mode. Based on above analysis, it can be found that the proposed H2/LQG 

controller is acceptable. 

Figure 7.27 illustrates the frequency domain response (Bode diagram) for uncontrolled 

structure, structure with the optimal TMD and AMD system using the proposed H2/LQG 

controller. Examination of the results reveals that: (1) the optimal TMD attenuates 

vibrations effectively around the original structural first natural frequency; (2) the AMD 

system can provide better vibration suppression performance than the optimal TMD 
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system around its tuned frequency as well as enlarge its vibration suppression frequency 

range (in this example the effect of AMD can provide significantly attenuation up to the 

5th natural frequency (359.64 rad/s); (3) after the 5th vibration mode, no control force 

exists. 
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Figure 7.27 The structural frequency response/excitation, (a) The beam mid-span 

displacement, (b) The beam mid-span acceleration. Solid dashed (brown) and dotted (red) 

lines represent uncontrolled structure and structure with optimal TMD and AMD system, 

respectively. 

As discussed before, the proposed AMD may be unpractical due to the difficulty to find a 

suitable device to produce the required control force. Considering this, MR-9000 type 

damper will be utilized to design the SAMD system. The whole procedure for the SAMD 

design has been summarized in Section 7.4 and illustrated in Figure 7.3. Again before 

applying the proposed control method for SAMD system using MR-damper, the H2/LQG 

controller has been transferred to discrete-time form utilizing the z-transform method as 

those shown in Equations (7.27) and (7.28). 

A typical uniform (±7x10 TV) random signal is utilized as excitation signal for the 

uniformly distributed loading and a Butterworth low-pass filter was utilized to filter out 

the excitation for frequency higher than 500 (rad/s). Based on the properties of MR-9000 
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122 181 

type damper ' , the MR-damper's relative displacement is limited to ±8 (cm), and the 

maximum damping force is limited to ±2x105 (JV). The structural response comparisons 

for structure with SAMD using MR-damper with Controller A, with uncontrolled 

structure, structure with optimal TMD and AMD using H2/LQG controller have been 

illustrated in Figures 7.28-7.30, respectively. Table 7.4 also summarizes the RMS of 

responses for these different cases. 

From Figures 7.28-7.30 and Table 7.4, one can easily find that: (1) the optimal TMD 

system can decrease the RMS about 64.28% and 29.84% for the beam mid-span 

displacement and acceleration responses, respectively, compared with uncontrolled 

structure; (2) the AMD system provides the best vibration suppression effectiveness. 

Compared with the optimal TMD system, the AMD system decreases the RMS about 

20.87% and 31.27% for the beam mid-span displacement and acceleration responses, 

respectively. 

Figure 7.28 Structural response comparison, (a) The beam mid-span's displacement, (b) 
The beam mid-span's acceleration. Solid and dotted (red) lines represent uncontrolled 
structure and structure with SAMD using MR-damper with Controller A, respectively. 
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X10* 

Figure 7.29 Structural response comparison, (a) The beam mid-span's displacement, (b) 

The beam mid-span's acceleration. Solid and dotted (red) lines represent structure with 

optimal TMD and SAMD using MR-damper with Controller A, respectively. 

Figure 7.30 Structural response comparison, (a) The beam mid-span's displacement, (b) 

The beam mid-span's acceleration. Solid and dotted (red) lines represent structure with 

AMD and SAMD using MR-damper with Controller A, respectively. 

246 



One can also find from Figures 7.28-7.30 that the SAMD system also provides better 

vibration suppression effectiveness than the optimal TMD system but not significantly. 

This is mainly due to the fact that the H2/LQG controller requiring control force {u} has 

gone beyond the MR-damper's working range, which can be illustrated through Figure 

Figure 7.31 H2/LQG controller command control force {«} and MR-damper damping force 

{/}. Solid and dotted (red) lines represent {/} and {«}, respectively. 

7.6.2 SAMD using MR-damper in its "fail-safe" condition 

Similar to the study presented in Section 7.5, MR-damper's fail-safe condition will be 

investigated in this section utilizing the same random excitation as that adopted above. 

The simulation results are show in Figure 7.32, which compares the beam mid-span 

acceleration and displacement responses for SAMD using MR-damper with Controller A 

and MR-damper's "passive-off" and "passive-on" condition. Table 7.4 summarizes the 

RMS of responses for different cases. 
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Figure 7.32 Structural response comparison, (a) The beam mid-span's displacement, (b) 

The beam mid-span's acceleration. Solid, dashed (blue) and dotted (red) lines represent 

structure with SAMD using MR-damper with Controller A and MR-damper's "passive-off 

and "passive-on" conditions, respectively. 

From Figure 7.32 and Table 7.4, one can find that the MR-damper's "passive-off and 

"passive-on" condition can both provide good fail-safe property and the vibration 

suppression performance of MR-damper using Controller A, is better than the fail-safe 

conditions, which confirms the robustness of Controller A. 

7.6.3 SAMD using MR-damper with different control methodologies 

The vibration suppression performance comparisons for SAMD system with different 

control methodologies have been provided in Table 7.4, from which one can find that the 

results are very close. However Similar to the study for building models, one still can 

find that the command current signal, as illustrated in Figure 7.33, for the Clipped-

Optimal controller (Controller B) would also oscillate between 0 and 1 in a very high 
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frequency, and subsequently causes the MR-damper's magnetic field to be changed with 

high frequency, which is not practical for the MR-damper devices, as illustrated in Figure 

7.33. 

Figure 7.33 Command current comparison: (a) SAMD Structure with Controller A. (b) 

SAMD Structure with Controller C. (c) SAMD Structure with Controller B. 

Based on the above discussion, it can be realized that the Controllers A and C are the best 

design control methodologies for the SMAD structure using MR-damper. 

7.6.4 Summary of the results for the Beam model 

Table 7.4 summarizes the RMS of structural response for the simulation results presented 

in above sections, from which one can clearly verify the conclusions presented above. 

Compared with those presented in Section 7.5.2 for building model using RD-1005-3 

type MR-damper, one can easily find that in this example the effect of the SAMD design 

using MR-9000 type damper is not significantly better than the optimal TMD design. The 
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main reason is due to the MR-damper's properties, which can be summarized in Table 

7.5. 

Table 7.4 RMS of response for different cases. Case A: Uncontrolled structure. Case B: 

Structure with optimal TMD. Case C: Structure with SAMD under MR-damper's "passive-off" 

condition. Case D: Structure with SAMD under MR-damper's "passive-on" condition. Case E: 

Structure with SAMD using Controller A. Case F: Structure with SAMD using Controller B. 

Case G: Structure with SAMD using Controller C. Case H: Structure with AMD using 

H/LQG controller. 

Control Strategies Mid-span displacement (mm) Mid-span Acceleration (m/s2) 

Case A 3.279 5.6492 

CaseB 1.2 3.8475 

CaseC 1.165 4.0181 

CaseD 1.198 3.8478 

CaseE 1.036 3.6434 

CaseF 1.039 3.6501 

CaseG 1.036 3.6311 

CaseH 08 2.7114 

Table 7.5 Optimal TMD design and MR-damper equivalent viscous damping comparison. 

Viscous damping (Ns/m) Equivalent viscous damping for MR-damper (Ns/m) 

Examples 

Section 

7.5.2 

Section 7.6 

Optimal TMD 

1031.1 

12.48x10s 

RD-1005-3 

Min Max 

1100 8050 

MR-9000 

Min Max 

10.50xl05 15.00xl05 

It can be easily found from Table 7.5 that compared with the viscous damping for the 

optimal TMD design the equivalent viscous damping provided by MR-9000 type damper 

can only be changed in very small range. Therefore, it provides limited vibration 

suppression performance for SAMD design but as shown even with this narrow damping 

range, compared with the optimal TMD design, the SAMD design using MR-9000 type 
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damper can still provide superior vibration suppression performance in both its fail-safe 

condition and using Controllers A and C, thus one can make conclusion that the proposed 

SAMD design methodology is very effective for both types of MR-dampers.. 

7.7 Conclusions and Summary 

This chapter presents a comprehensive investigation on vibration suppression using 

Semi-Active Mass Damper (SAMD) technology. A design approach for SAMD using 

MR-damper has been proposed in which the H2/LQG controller design method is 

combined with the inverse MR-damper model to provide effective current control for the 

MR-damper input command currents. It has been shown that the proposed control 

method is robust as well as flexible. One can easily design different controllers depending 

on different system requirement based on this proposed controller design approach. 

The effectiveness of proposed methodology has been compared with different conditions 

also with different controller design method available in published literatures through 

illustrated examples. It is found that SAMD using MR-damper with proposed control 

methodologies is robust and can provide good vibration suppression effectiveness. 
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CHAPTER 8 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE 

WORKS 

8.1 Conclusions 

A comprehensive framework is presented for vibration suppression of beam-type 

structures using the optimal Tuned Mass Damper (TMD) technology and Semi-Active 

Mass Damper (SAMD) technology using Magneto-Rheological (MR) fluid damper. This 

work improves the design procedure for vibration suppression of beam-type structures 

using optimally designed TMD system through the development of the finite element 

analysis methodology and consequently the design optimization algorithm. It also 

demonstrates the functionality and performance of vibration suppression using TMD 

technology and the validity of MR-damper utilized as the semi-active device for a 

designed SAMD system. 

The finite element models for the general curved beam have been developed. The 

governing differential equations of motion for the curved beam are derived using the 

extended Hamilton principle and then transferred to the finite element form using 

proposed elements. The Gauss Quadrate technique and the curvilinear integral applied on 

the central line of curvilinear for curved beam are used to evaluate the required matrices 

numerically. A '4-node' Lagrangian type curved beams element with 3-degree of 

freedom per node has been developed to solve the curved beam model including the 
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effects of the extensibility of the curved axis, the shear deformation and the rotary inertia 

and a novel '2-node' curved beams element with 3-degree of freedom per node has been 

developed to solve the curved beam model excluding the effects of the extensibility of the 

curved axis, the shear deformation and the rotary inertia. Results obtained are in excellent 

agreement with those available in published literatures. It has been shown that the effects 

21 

of the axial extensibility, shear deformation and rotary inertia are quite significant . 

The developed beam's finite element models were then combined with the attached TMD 

system, to investigate the optimal TMD design strategy for beam-type structures. To 

testify the validity of the developed optimization design approach and methodology, first 

the uniform Timoshenko beam with attached TMD has been studied and the results are 

found to be in excellent agreement with those reported in literatures. Furthermore, the 

study has been extended to the curved beam structure in the same way. As the dynamic 

properties for the curved beam model has multiple dominant modes, a set of multiple 

TMD system design has been proposed to suppress the vibration effectively and the 

validity of optimal TMD parameters has been testified through the response comparison 

and the sensitivity analysis based on small deviation from the optimal values. Finally, 

based on the numerical results, a design principle (framework) for beam-type structures' 

vibration suppression using TMD technology has been established. 

The random vibration matrix analysis methodology has been utilized to obtain the value 

of the objective function. This methodology allows us to solve the dynamic problem as 

one first order differential equation and can obtain the random criterions (variance, 

covariance) for all state variables. The validity of this methodology in optimal TMD 

design has also been testified through numerical examples. 
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A hybrid optimization methodology, which combines the global optimization method 

based on Genetic Algorithm (GA) and the powerful local optimization method based on 

Sequential Quadratic Programming (SQP), has been developed and then utilized to find 

the optimally designed parameters of the TMD system for curved beam-type structures. 

The validity of the proposed GA and hybrid optimization methodology has been verified 

through the GA convergence analysis and can also be proven by the proposed design 

principle for beam-type structures with the attached TMD system, as that shown in 

Chapter 4. 

The MR-damper has been selected as the semi-active damper for a SAMD design. Based 

on the investigation of different numerical models for the MR-damper available in 

published literatures, the LuGre friction model is utilized to model the dynamic behavior 

the large-scale MR-damper. A LuGre friction model for MR-9000 type damper has been 

developed. The MR-damper's dynamic properties obtained through the proposed model 

under different type excitations and also input currents have been compared with those 

181 

obtained form Bouc-Wen model proposed by Yang et al . Perfect agreements can be 

found between these two models. Furthermore, it has been shown that the proposed 
181 

model is easily to be used than the Bouc-Wen model proposed by Yang et al . 

Based on MR-damper's LuGre friction model, an effective inverse MR-damper model 

has been proposed, which can be readily to design controller. The controller for Active 

Mass Damper (AMD) system is designed based on the H2/LQG methodology and then 

combined with the Inverse-MR-damper model to provide effective vibration suppression 

performance using SAMD technology with MR-damper. 
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The major components of the present work and important observations are summarized 

as following: 

> Design Optimization of TMD system for beam-type structures 

S Development of reliable curved beam element to investigate the dynamic 

property for general curved beam-type structures using finite element 

method. 

•S Formulating the beam-type structures with the attached Tuned Mass 

Damper (TMD) system using finite element method. 

•f Developing a hybrid optimization methodology, which combines the 

global optimization method based on GA and the powerful local 

optimization method based on SQP, to obtain the optimal design for 

vibration suppression of beam-type structures using TMD technology. 

The validity of the developed curved beam element to investigate the dynamic 

property of curved beam has been proven in Chapter 2 through comparing the 

results with those in available literatures. Through the investigation provided in 

Chapters 3 and 4, and also the experimental investigation presented in Chapter 5, 

the effectiveness of utilizing the finite element methodology to design TMD 

system for beam-type structures and the developed optimization approach have 

been verified. The finite element method provides a straight forward way to 

study the general beam with attached TMD, and then one can easily extend the 

study to beam with different boundary conditions. 
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> Magneto-Rheological (MR) fluid damper modeling 

•S Developing a LuGre friction model to model the dynamic behavior of 

122 

large-scale MR-damper (MR-9000 type damper ). 

•S Development an inverse MR-damper model based on the proposed LuGre 

friction model, which can be readily used in the design of semi-active 

vibration suppression devices 

The dynamic behaviors of MR-9000 type damper have been evaluated using the 

proposed LuGre friction model and then the results were compared with those 
181 

obtained by the Bouc-Wen model . It has been shown that the proposed model 

can simulate the MR-damper's dynamic behavior accurately and also can be 

easily used to design the controller. 

> Vibration Suppression 

•/ The effectiveness of vibration suppression for beam-type structures using 

the optimally designed MTMD system has been verified through the 

numerical investigation and experimental study. 

•/ The vibration suppression performance for Semi-Active Mass Damper 

(SAMD) design using the MR-damper has been presented and compared 

with other available control methodology. 

The validity of the proposed SAMD design firstly testified through a classical 

building type structures and then extended to the beam-type structures, which has 

been presented in Chapter 7. Different vibration suppression strategies has been 

compared, which includes the uncontrolled structure; structure with optimally 

designed TMD system; structure with AMD system; structure with SAMD system 
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using MR-damper with the proposed control methodologies; structure with 

SAMD system under MR-damper's "fail-safe''' condition; and also structure with 

SAMD system using MR-damper with different control methodologies. 

8.2 Publications 

Based on the conclusions and results obtained from the present work, the following 

articles have been prepared and published/submitted in refereed journals/conferences: 

•f Journal papers published or accepted: 

• Yang, F., Sedaghati, R. and Esmailzadeh, E., "Free in-plane vibration of general 

curved beams using finite element method", Journal of Sound and Vibration, In 

press (doi:10.1016/j.jsv.2008.04.041). 

• Yang, F., Sedaghati, R. and Esmailzadeh, E., "Vibration suppression of non­

uniform curved beam under random loading using optimal Tuned Mass Damper", 

Journal of Vibration and Control, In press (doi: 10.1177/1077546308091220). 

• Yang, F., Sedaghati, R. and Esmailzadeh, E., "Development of LuGre friction 

model for large-scale Magneto-Rheological fluid dampers", Journal of Intelligent 

Material Systems and Structures. 2008, tentatively Accepted. 

S Journal papers under review: 

• Yang, F., Sedaghati, R. and Esmailzadeh, E., "Vibration control of structures 

under random base excitations using active and semi-active mass damper", 

Journal of Sound and Vibration. Under review. 
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• Yang, F., Sedaghati, R. and Esmailzadeh, E., "Optimal vibration suppression of 

Timoshenko beam with Tuned Mass Damper using finite element method", 

ASME Journal of Vibration and Acoustics. Under review. 

S Conference papers: 

• Yang, F., Sedaghati, R. and Esmailzadeh, E., "A new LuGre friction model for 

MR-9000 type MR damper", Proceedings of ASME International Mechanical 

Engineering congress and Exposition, Boston, Massachusetts, USA, 2008. 

• Yang, F., Sedaghati, R. and Esmailzadeh, E., "Seismic response controlled 

structure with semi-active mass-damper", Proceedings of ASME International 

Mechanical Engineering congress and Exposition, Boston, Massachusetts, USA, 

2008. 

• Yang, F., Sedaghati, R. and Esmailzadeh, E., "Passive vibration control of 

Timoshenko beam using optimal Tuned Mass Dampers", Proceedings of 21st 

Canadian congress of applied mechanics, Toronto Canada, 2007. 

• Yang, F., Sedaghati, R. and Esmailzadeh, E., "In-plane free vibration of curved 

beam using finite element method", Proceedings of ASME International 

Engineering Technical Conference, Las Vegas, Nevada, USA, 2007. 

• Yang, F., Sedaghati, R. and Esmailzadeh, E., "Random vibration suppression of 

non-uniform curved beam using optimal tuned mass damper", Proceedings of 

ASME International Engineering Technical Conference, Las Vegas, Nevada, 

USA, 2007. 
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8.3 Recommendations for Future Works 

The present work established a framework for design and application of optimal Tuned 

Mass Damper (TMD) and Semi-Active Mass Damper (SAMD) in beam-type structures 

for vibration suppression applications. The scope of this work can be further extended in 

the following aspects: 

Structural elements: The numerical model for Magneto-Rheological (MR) fluid dampers 

can be extended especially for the small displacement range, as those presented in 

Chapter 6. 

Mathematical modeling: To improve the accuracy of mathematical model for the 

Magneto-Rheological (MR) fluid damper, the dynamic performance of the MR-damper's 

electromagnet should also be considered, which includes the current driver's properties; 

the coil configuration and its amplifier saturation voltage for MR-damper's multi-stage 

electromagnetic coil. 

Control methodologies: Other control methodologies should also be investigated, such as 

the Fuzzy logic control method and the PID controller. Furthermore, it is a good idea to 

combine the dynamic properties of the Magneto-Rheological (MR) fluid damper with the 

original structures, and then design a controller directly to adjust the control current. 

Semi-Active Devices: Application of other type of semi-active devices such as variable 

orifice hydraulic actuator, Active Variable Stiffness, Tuned Liquid Column Damper, and 

Electro-Rheological dampers could also be investigated. 
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Experimental works: In order to achieve the higher level of confidence and reliability, 

further experimental work is required to demonstrate the functionality and performance 

of optimal Tuned Mass Damper (TMD) design. Particularly, effectiveness of the optimal 

TMD in general curved beam-type structures under different random excitations is of 

great importance. Moreover, the experimental study regarding the SAMD system using 

MR-damper is needed. 

Design optimization: The application of the global optimization methodology based on 

Genetic Algorithm can be improved by suitably selecting its optimization parameters. 

Furthermore, other type of global optimization methodology such as Simulated 

Annealing should also be investigated to illustrate the efficiency of the design 

optimization procedure and to facilitate the procedure of designing optimal TMD system 

for beam-type structures. 
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APPENDIX A: 

Timoshenko beam's mass, stiffness and damping sub-matrices 

Wm} = £ \)[r[N(Tl)]TA(7j)[N(tf]J(??)]\lr}\ (A.l) 
1 

element [-1 

W„\ = £ ] j[rfJV(7)f/(7)[tf(7)yfa)M (A.2) 
element [-) J 

[Kww]= Z \ \[kqG[B(n)]
TAmB(rj)]J-\rjM (A.3) 

element [-] 

[ ^ 1 = X |jfc*(7)]r'fo)[*fo)]^lfo)K^ (A.4) 

I 

element 
[ ^ ] = [ ^ f = - Z j ^ 4 5 W ] r ^ M ( ' 7 ) ] h l (A.5) 

where v4(?/)= [iV(?/)]{^}, /(?7)= [M^)]W and y represent the density of material; 

J = dx/dTj is the Jacobian between the natural coordinates and the physical coordinates. 
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APPENDIX B: 

Sub-matrices of mass and stiffness in Equations (2.12) 

Wm]= I \\[y{NmTA{Tj)[N{rj)}JM]iil 
element 1-1 

M J = Z \fawmTmmriWctofy'i 
element [-1 

t^]= Z j 
element \~\ 

element \^—\ 

[**J= Z I 
element [-1 

[ ^ ] = Z | - j|*,^(7)[Sft)f [#fo)]W 
element y -\ 

[Kuu]= Z J 
element \-\ 

I T V D / ^ Y I T - 1 / EAmBW [B{tj)yc-
1 (7) + - * — f 

Pfa) 
[NmT[N(rj)]JM 

(B.l) 

(B.2) 

(B.3) 

dn\ (B.4) 

(B.5) 

(B.6) 

drj\ (B.7) 

[*«,]= Z J 
element \-\ 

" [N(r,)f[N(rj)]Jc(T]) 
piv) 

\drj 

lKwrl= Z j[£/(/7)[5(/7)]7'[^)]Je-
1(?7) + ^G^W[JV(?7)]7'[^(?7)]yc (7)^/7 

element [-1 

(B.8) 

(B.9) 

where A(rjy= [N(rj)]{A}, I(rj)= [N(tj)]{I} and [B(rf)]= d[N(tj)]/dri. The Jacobian J c (7)can 

be evaluated through: 

and the radius p(/7) can be evaluated through the following equation: 

(B.10) 
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drj d dyldn 1 d ABj^W} 
d1yldx2 dx d^dxldri' [B(rj)]{X} drj [B(tj)]{Xy 

p(n) {\ + (dy/dx)2}h5 fi i (Jy'dtW-s ,U([B(J1)]{Y},2,1.5 
dxldt] [B(T])]{X} ' 

i ,[pm {Y} [Bm {x} - [Bin)] {Y} wm w , (B-11) 

<u ([B(rj)]{Y})2]i.5 
\B(Tj)] {XY 

where [D(r])]=d[B(r])]/dri. Here it should be noted that as the evaluation for the radius 

requires second order differential respected to the natural coordinate (rj), the polynomial 

interpolation function for the geometrical condition should at least 3 order, which means 

the Lagrangian type shape function need at least 4 nodes. 
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APPENDIX C: 

Governing differential equations of motion for Curved beam model 

(Case 2) 

Based on Equations (2.13) and (2.14), the variation in kinetic and potential energies can 

be expressed as: 

Part I Part 2 

^ - l f f W « > M > t ds a * v ^ " " (C.2) 
Pari 3 

Substituting the deformation relationship for Case 2, as listed in Table 2.1 to Equations 

(C.l) and (C.2), and then utilizing the Hamilton principle, as stated in Equation (2.6), the 

following expressions for each part shown in Equations (C.l) and (C.2) can be obtained: 

For Part 1: 

)\j{s)A{s)^f>^s,t))dsdt 

~dt 

h h 8w2(s,t) 
(C.3) 

= flrf,)^)"^*^,,) _ JKjM(j)f2L^*tf U 

For Part 2: 

)y{s)^!ll.{Sy/{sA¥sdt 
dt 8t 

,dy/(s,t) 
dt 

'2 h a , „ 2 , 

Jl * H I St2 

(C.4) 
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For Part 3: 

JlEI(s) dy/{s,t) 8 
ds ds 

{8y/{s,t))dsdt 

•.\{\EI{s)-
L h 

dwjs,t) _ u(s,t) 

ds pis) d (S(d^S,t) _uM))a]ds 

8s ds 8s Pis) 

J J 8s2 ds2 P(s) 8s2 8s 

EI(s) 8ujs,t) d2w(s,t) EI(s) 8u{s,t) d 
t\L 

p(s) ds ds' p2{s) 8s ds 
Su(s, t)dsdt 

a 

= \ 

{S^,t))Emd2
W(s,t) 

ds 8s2 
s. i t\

 d tvu \d2w(s>t) -Sw(s,t)—(EI(s) 
ds dsJ 

\-^(EI(s)^l)S(W(s,t))ds} 
[ds2 ds2 

•dt-

TMaJ)m*^o 
pis) 8s2 

a 8s pis) ds 

rd ,El(s)82wis,t)^ , 
+ J T - ( — 7 T y+)Suis,t)ds\dt + 

[ds pis) ds2 J 

+ Ms,t)^iEI(s)du{s't)) 
ds p(s) ds 

82 .EI(s) 8u(s,t) 
- f — C 

[ds2 Pis) 8s 

'}L(s,t)^dd-^l 
A P2is) 8s 

-Mwisj)) 

rd EIjs) dujs,t) 
[ds p\s) ds 

•dt + 

)duis,t)ds\dt 

(C.5) 

Combining Equations (C.3)-(C5) together and canceling the part related to the boundary 

conditions then rearranging the equation respected to the dw and Su separately. Finally 

one can obtain the governing differential equations of motion as stated in Equations 

(2.15). Here it should be noted in Equation (C.5), the following assumption has been 

made: 

Pis)—uis,t) »uis,i)—p(s) 
OS OS 

(C.6) 
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APPENDIX D: 

Shape function for curved beam model (Case 2) 

Based on Equation (2.19), one can easily obtain the following equations: 

du(Tj)/d?1 = Cl+2C2T] + 3C3rf2 +4C4?73
 +5C5TJ4 (DA) 

d2u(j])ldt]2 =2C2 +6C3Tj + \2C47]2+20C5Tj3 (D.2) 

Then utilizing Equations (2.19), (2.20), (D.l) and (D.2), the deflection of nodes i and/ 

can be expressed as: 

{[/,. W, % Uj Wj Vj}T=[NC]{C0 C, C2 C3 Q C5}
T (D.3) 

Finally the shape function [AW] can be obtained through: 

[AW] = {l j] T)2 t]3 t]4 75}x[^q_1 (D.4) 

Here it should be noted that for circular beams, as the radius p(rj) and the Jacobian 

Jc(rj) is constant in one element, the matrix [NC], as shown in Equations (D.3) and (D.4) 

is identical. However for non-circular beams, the radius p{rj) and Jacobian Jc(tj) are 

related to the geometrical coordinate properties, thus the matrix [NC] is also related to rj. 

This is one of the challengers of the proposed methodology and has been successfully 

solved through the Gauss Quadrate technique, in which only the parameters of the 

Gaussian point would be evaluated, thus the whole procedure can be summarized as: the 

radius and Jacobian in Gaussian points would be evaluated, and then substituted to 

Equations (D.3) and (D.4) to obtain the shape function in one Gaussian points, finally, 

one can obtain the mass and stiffness matrices for one element. 
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APPENDIX E: 

Equations of motion in finite element form for curved beam model (Case 2) 

The governing differential equations of motion as stated in Equations (2.15) and (2.16) 

m ( ^ 4 L ) ^ ) 4 ( ^ ^ i ) ) = „ 
( dr ds2 I as2 J ds2 p(s) ds ( b . l ) 

Parti 

_,_,d2«(j,Q , 5 I / ( s ) A f e O , 5 ,EI(s) du(s,t\ 
mis) 1 ( r—) (—z ) = 0 ,„ 

8t2 ds Pis) 8s2 dsp\s) ds (E.2) 
PartA PartS part6 

Substituting the deformation relationship w(s) = -p(s)du(s)/ds in Table 2.1 for Case 2, 

and applying the Galerkin weighted residual technique, the following expressions for 

each part shown in Equations (E.l) and (E.2) can be obtained: Here, for simplifying the 

expression, in the following equations, the parts related to the boundary conditions have 

been cancelled. 

For Part 1 

\&v(s,tMs)d W l M ) ds= \{-p{s)^-du(s,t)m{s){-p{s)d "(a'°)}<fe 
l 8t2 I 8s 8t28s 

element -X{ JciVWV JM^V J 

(E.3) 

For Part 2 

= S{-p(s)d-^EI(s)(-pis)^)}ds (E.4) 
i ds 8s 

element -\[ Jc (rj)drj Jc (rj)drj J 
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For Part 3 
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For Far/ J 

J ' ' ; a / P ( 5 ) a.2 /& ' PW a*2 i& /?(*) &3 

eleven, -1 ^ ( ' / V ' / P f a ) Jc (.T})dTJ3 ' 

For Par? (5 

la/(j,0—( 5 s — ) * = \—5u{s,t)— —ds 
[ ds p2(s) ds [ds p2(s) ds 

= I 
element 

41 JMdi P tn) JMdr]] 

(E.7) 

(E.8) 

where A(tj)= [N(rj)]{A}, I(ri)= [ /%) ]{ /} . The shape function N{rf) and NN(rj) and 

Jacobian matrix JC(TJ) have been defined in Equations (2.10), (2.21) and (B.10), 

respectively. Then combining Equations (E.3)-(E.8) together one can easily obtain the 

equations of motion in finite element form, as stated in Equations (2.21)-(2.24). Here it 

should be noted that the derivative procedure are based on the same assumption, as stated 

in Equation (C.6). 
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APPENDIX F: 

Sub-matrices in Equations (3.7) 

[CWTMD] = [N(lnm)]T CTMD[N{r,TMD)} (F. 1) 

[KwTMD ] = [N(nTMD )f KTMD [N(TJTMD )] (F.2) 

\-CzTMD ] = [N(HTMD ^ ^ -̂ViWD 

(F.3) 

[*,™D] = [tf(7m>)] r*m> (F-4) 

[C^]= I i[c[^(^)]r[^(/7)]7(77)^l (F.5) 
element [-1 J 

where ^ r M ) represents the position of attached TMD system in the natural coordinate. 

Therefore, utilizing TJTMD , one can easily extend the study to multiple Tuned Mass 

Damper (TMD) condition. N(rj) represents the shape function, which was defined in 

Equation (2.3). 
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APPENDIX G: 

Derivative procedure for Equation (3.13) 

The equations of motion in state-space form, as shown in Equation (3.10), can be 

expressed: 

{z(t)} + [As]{z(t)} = {Q(t)} (G.l) 

Post-multiplying {z(s)}T, and then taking the expect value for Equation (G.l), one can 

easily obtain: 

Czz(t,s) + [As }CZZ (t,s) = CQz (t,s) (G.2) 

where Symbol C. represent the autocorrelation, and they are defined as: 

Ciz{t,s) = E[z{t)zT{s)\, Czz(t,s) = E[z(t)zT(s)] and CQQ(t,s) = E[Q(t)QT(s)] (G.3) 

It should be noted that in this dissertation autocorrelation is equal to the autocovariance, 

as the mean value is assume to be zero. One can utilize the symmetry property of the 

autocorreleaton function, or pre-multiplying {z(s)} to the transpose of Equation (G.l), to 

obtain: 

Czz(S,t) + Czz(s,t)[As]
T = CzQ{s,t) (G.4) 

Adding Equations (G.2) and (G.4) together as: 

Czz(s,t) + Czz(t,s) + Czz(s,t)[Asf+[As]Czz(t,s) = CzQ(s,t) + CQz(t,S) (G.5) 

Now, let us focus on the right part of Equation (G.5), and considering the general solution 

of Equation (G.l) can be expressed as: 

{z(t)} = {z(t0 )} + ){Q(u)}du - [A, ] ){z(u)}du (G.6) 

Again, pre-mutiplying {Q(t}} to the transpose of Equation (G.6), one can obtain: 
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CQz{s,t) = CQz(s,t0) + \CQQ(s,u)du- \CQz(s,u)du[As-\
T (G.7) 

to t0 

Here, {z(to)} represents the initial response, and obviously it is un-correlated with the 

{Q(t}}, which represents the force at time t after to- The same analytical methodology can 

be applied the last part of Equation (G.7), in which s represent the time after t. Therefore 

Equation (G.7) can be simplified as: 

t 

CQz{s,t)=\CQQ(s,u)du (G.8) 
(0 

Again, following the same methodology, as the derivate procedure for Equation (G.8) or 

utilizing the symmetry property of the autocorrelation function, one can also obtain: 

s 

CzQ(t,s)=\CQQ(t,v)dv (G.9) 
to 

Then, substituting Equations (G.8) and (G.9) to Equation (G.5), it may be obtained: 

Czz (5,0 + Czz (t,s) + Czz (s,t)[As ]
T + [As }CZZ (t,s) = \CQQ (s,u)du + \CQQ (t,v)dv (G. 10) 

(0 10 

Assuming the autocorrelation function for a random excitation can be expressed in a 

general form as: 

CQQ(M,v) = 27£(i{u)S{u-v) (G.ll) 

The following equation can be obtained through integrating Equation (G.l 1) for t > s > to: 

t s t t 

\ l^QQ ("' V ) ^ ^ M = 2 T \SQ (U)H(U - s)du = In JS0 (u)du (Q. 12) 

'o 'o 'o 'o 

Now differentiating Equation (G.l2) for both t and 5, one can obtain: 

\CQQ{s,u)du + \CQQ{v,t)dv = 2nS0(t) (Q.13) 
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Next, let us focus on the left side of Equation (G.10), and take the derivative of 

autocolleration Cjj.s), one can obtain: 

^-Czz{t,s) = Czz{t,s) + Czz{s,t) (G.14) 
at 

Now, substituting Equations (G.13) and (G.14) to Equation (G.10), one may obtain: 

^-Czz{t,S) + Czz(s,t)[As]
T+[As]Czz(t,s) = 2x80(t) (G.15) 

at 

For a stationary random process, the correlation is only depended on the time interval 

between t and s. Furthermore let us assuming the excitation is a whiter noise with Power 

Spectrum density (PSD) function So, and autocolleration function of a white noise is 

2nSod(f). Finally Equation (G.15) can be simplified as: 
Czz[As]

T+[As]Czz=2nS0 (G.16) 
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APPENDIX H: 

Sub-matrices in Equations (4.4) 

[KwwTi] = Wn)f[NmKmDcoS
2(a(7?))[]=riTMDi 

[KnuTi] = [[N(rj)]T[N(Tj)]KTMD cos(a(77))sin(a(/7))]7: 

[KuuTi ] = [Wn)Y[N(n)]KTMD s i n 2 ( a (7 ) ) ^ 

[Kuzi] = -\N{V)]TKTMD s in tefo) )^ 

[KMi ] = -lN(rj)]T KTMD oos(a(7j))[ 

ITMDI 

VTMDI 

-ITMDI 

-VTMDI 

element—] 

[C„J= I |c„[yv(7)f[iv^)]yc(7)^ 
element -1 

-VTMDI 

[C^n 1 = [[JVWf [A^JCrA^ cos 2 (0 (7 ) ) ] , ^^ 

[Cw„r;] = [[̂ V('7)]7'[̂ ('7)]C7-MD cos(a(7))sin(a(7))l?^ 

lCmTi] = [ [ ^ ) ] r [ ^ ) ] C r M D sin2(a{V))\=nmm 

[Cuzi] = -lN(jj)]TCTMD sin(a(7))L 

[Cwz,] = -[[Af('7)]rcrM)Cos(a(7))l7= 

where cos(a(rj)) and sin(a(?/)) can be evaluated through 

cos(a(t]TMDi)) = [B(tjTMDi)] {X}IJC (i]TMDi) (H. 13) 

&Ha(TlTMD,)) = [B(nTMDi)W}/U«TMDi) (H-14) 

-iTMDi 

-ITMDI 

(H.1) 

(H.2) 

(H.3) 

(H.4) 

(H.5) 

(H.6) 

(H.7) 

(H.8) 

(H.9) 

(H.10) 

(H.ll) 

(H.12) 
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APPENDIX I: 

Curved beam mid-span tangential displacement (u) and rotation (<//) 

response comparison 
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Figure 1.1 Beam mid-span response. (A) Tangential displacement (u). (B) Rotation (if/), (a) 
Frequency range 20-140 (rad/s). (b) Around the 2nd natural frequency, (c) Around the 4th 

natural frequency, (d) Around the 5th natural frequency. Solid (light), dashed, dotted. 
dashed-dotted and solid lines represent uncontrolled structure, structure with optimal TMD 
Case a in Table 4.4, Case b in Table 4.6, Case c in Table 4.5 and Case d in Table 4.4, 
respectively. 
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APPENDIX J: 

Response comparison and sensitivity analysis for optimal DTMD based on 

2nd mode 

Frequency (rad/s) 

140 

Frequency (rad/s) 
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Figure J.l The curved beam's response comparison. (A) Tangential displacement (u). (B) 

Rotation (y/). (a) Frequency range 5-140 (rad/s). (b) Sensitivity analysis for optimal damping 

factor, (c) Sensitivity analysis for optimal frequency ratio. Solid, dashed, dotted and dashed-

dotted lines represent uncontrolled structure, structure with optimal DTMD, as stated in 

Table 4.9, structure with DTMD having -10% and +10% deviations from designed optimal 

values, respectively. 

45 50 " % 25 
Frequency (rad/s) 

,nd Figure J.2 The curved beam's 2 vibration modal response comparison, (a) Sensitivity 

analysis for optimal damping factor, (b) Sensitivity analysis for optimal frequency ratio. 

Solid, dashed, dotted and dashed-dotted lines represent uncontrolled structure, structure 

with optimal DTMD, as stated in Table 4.9, structure with DTMD having -10% and +10% 

deviations from designed optimal values, respectively. 
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APPENDIX K: 

Response comparison and sensitivity analysis for optimal DTMD based on 

4th mode 

(A) 
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110 70 80 
Frequency (rad/s) 

110 

Figure K.1 PSD of the curved beam's response comparison. (A) The 4th mode. (B) 

Tangential displacement («). (C) Rotation (y/). (a) Sensitivity analysis for optimal damping 

factor, (b) Sensitivity analysis for optimal frequency ratio. Solid, dashed, dotted and 

dashed-dotted lines represent uncontrolled structure, structure with optimal DTMD, as 

stated in Table 4.11, structure with DTMD having -10% and +10% deviations from 

designed optimal values, respectively. 
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Figure L.l PSD of curved beam's response comparison. (A) The 5th mode. (B) Tangential 

displacement («). (C) Rotation (y/). (a) Sensitivity analysis for optimal damping factor, (b) 

Sensitivity analysis for optimal frequency ratio. Solid, dashed, dotted and dashed-dotted 

lines represent uncontrolled structure, structure with optimal DTMD, as stated in Table 

4.13, structure with DTMD having -10% and +10% deviations from designed optimal 

values, respectively. 
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Figure M.l PSD of curved beam's response comparison for three DTMD design Method (1) 

with mass ratio C«) 0.005 for each TMD. (A) The 5th mode. (B) Tangential displacement (w). 

(C) Rotation (y/). (a) Frequency range 5-140 (rad/s). (b) Sensitivity analysis for optimal 

damping factor for the two symmetrical TMD. (c) Sensitivity analysis for optimal frequency 

ratio for the two symmetrical TMD. (d) Sensitivity analysis for optimal damping factor for 

the mid-span TMD. (e) Sensitivity analysis for optimal frequency ratio for the mid-span 

TMD. (f) Sensitivity analysis for optimal position for the two symmetrical TMD. Solid, 

dashed, dotted and dashed-dotted lines represent uncontrolled structure, structure with 

optimal DTMD, as stated in Table 4.15, structure with DTMD having -10% (-0.1) and 

+10% (+0.1) deviations from designed optimal values, respectively. 
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Figure N.l PSD of curved beam's response comparison) for three DTMD design Method (2) 

with mass ratio (u) 0.005 for each TMD. (A) The 5th mode. (B) Tangential displacement («). 

(C) Rotation (y/). (a) Response in 5-140 (rad/s) frequency range, (b) Sensitivity analysis for 

optimal damping factor for the two symmetrical TMD. (c) Sensitivity analysis for optimal 

frequency ratio for the two symmetrical TMD. (d) Sensitivity analysis for optimal damping 

factor for the mid-span TMD. (e) Sensitivity analysis for optimal frequency ratio for the 

mid-span TMD. (f) Sensitivity analysis for optimal position for the two symmetrical TMD. 

Solid, dashed, dotted and dashed-dotted lines represent uncontrolled structure, structure 

with optimal DTMD, as stated in Table 4.18, structure with DTMD having -10% (-0.1) and 

+10% (+0.1) deviations from designed optimal values, respectively. 
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