Defining Substitutability Criteria
for Object Oriented Components

Venera Arnaoudova

A Thesis
in
The Department
of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements
For the Degree of Master of Computer Science
Concordia University
Montreal, Quebec, Canada
September 2008

(© Venera Arnaoudova, 2008

i+l

Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A ON4
Canada

NOTICE:

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,

publish, archive, preserve, conserve,

communicate to the public by

telecommunication or on the Internet,

loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Bibliothéque et
Archives Canada

Direction du
Patrimoine de I'édition

395, rue Wellington
Ottawa ON K1A ON4
Canada

Your file Votre référence
ISBN: 978-0-494-45512-8
Our file Notre référence
ISBN: 978-0-494-45512-8

AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, €lectronique
et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette thése.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canad;

Conformément a la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thése.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

Defining Substitutability Criteria for Object Oriented Components

Venera Arnaoudova

Component-Based Software Development (CBSD) promotes software reusability
by allowing new functionalities to be added and existing funétionalities to be removed
or replaced easily. However, high reusability comes with its own cost, namely the dif-
ficulty in selecting suitable candidates for adaptation tasks. Even though research has
been conducted toward identification of such components, current methods rely on an
existing system specification, which is more often either not available or inconsistent
with other artifacts such as implementation. In this dissertation, we complement
current works by proposing a novel approach to compare software components at
source code level independent on the existence, or otherwise, of the specification.
We consider Open-Source Software (OSS) components written in Java at three lev-
els of granularity, namely methods, types and packages. Consequently, we define
substitutability criteria at three levels of abstraction and provide metrics indicating
the degree of matching of two components. We provide automation and tool support
through an Eclipse plug-in and we demonstrate our method through a case study. We

expect our approach to be beneficial to maintainers during the selection of suitable

candidate components.

iii

Acknowledgments

I would like to express my gratitude to my supervisor, Dr. Constantinos Constan-
tinides, whose knowledge and guidance contributed to my graduate work and expe-
rience.

A sincere thank to Laleh Eshkevari for her contributions and encouragements
during those two years. I would also like to thank Hamoun Ghanbari for his advices
and suggestions during this research.

I would like to acknowledge the debt I owe to my fiancé Julien Pireaud for being
always beside me. Without him, this work would not be possible.

I would also like to thank my family for supporting me during my studies.

This project has been partially funded by Defence Research and Development

Canada - Valcartier.

iv

Contents

List of Figures viii
List of Tables X
1 Introduction 1
1.1 Objectives o o 3
1.2 Organization 3
2 Background 4
2.1 Software maintenance 4
2.2 Software components 6
3 Problem and motivation 9
4 Proposal 12
4.1 Expected contributions and benefits 13
5 Methodology 15
5.1 What is a component? 15
5.2 Component substitutability criteria 20

5.2.1 Method level criteria e
5.2.2 (Qlass level criteria

5.2.3 Package level criteria o0

6 Case study

6.1 High level matching examples
6.1.1 Definition
6.1.2 State

6.1.3 Required types
6.1.4 Overall matching
6.2 Low level matching examples
6.21 HDIVcasestudy,

6.2.2 OPSIScasestudy

7 Automation and tool support

8 Related work
8.1 Component retrieval and matching
82 Clonedetection

8.3 Discussion

9 Conclusion and recommendations for future work

Glossary

Bibliography

vi

61

61

62

64

68

71

83

83

84

89

97

97

103

104

106

115

115

Appendices 116

A Source code fragments 116

B Tool installation guide 123

vii

List of Figures

10

11

12

13

14

15

Component specification. o000 16
Definition at method level (ml). 17
State at method level (ml). 19
Behavior at method level (mi). 20
Definition at class level (¢).o 0oL 21
State at class level (¢l).. oo 22
Behavior at class level (¢l). oo 22
Definition at package level (pl). 23
State at package level (pl). 23
Behavior at package level (pl). 24
Required packages, types, and features of method aMethod. 44
State diagram of C. L o 66
State diagram of method encrypt (Appendix A, Listing 3). 67
Required packages, types and features for C. 69

Required packages, types and features for method encrypt (Appendix A,

Listing 3). o o 70

Vviii

16

17

18

19

20

21

22

23

24

State diagram of method encrypt (Appendix A, Listing 2). 73

Required types for method encrypt (Appendix A, Listing 2). 74
CM Selection View - workspace. 91
CM Selection View - settings. 92
CM Definition View. 93
CM State View. 94
CM Behavior View., 95
CM Results View. 96
Views of the Component Matching category. 124

ix

List of Tables

10

Minimal words of C' and their occurrence. 41
Input definition matching grp(C, C’) for method encrypt (Appendix A,
Listing 3). 64
Overall definition matching odm.;(C,C") for method encrypt (Ap-
pendix A, Listing 3). 64
Minimal words of C' and their occurrence. 68
Minimal words of C’ and their occurrence for method encrypt (Ap-
pendix A, Listing 3). 71
Overall state matching (ostm,,;(C, C")) for method encrypt (Appendix A,
Listing 3). 72
Overall behavior matching for method encrypt (Appendix A, Listing 3). 72
Overall matching for method encrypt (Appendix A, Listing 3). 75
Overall definition matching (odm) for method encrypt (Appendix A,
Listing 2). 75
Minimal words of C’ and their occurrence for method encrypt (Ap-

pendix A, Listing 2). 76

11

12

13

14

15

16

17

18

19

20

21

22

23

Overall state matching (ostm,; (C, C")) for method encrypt (Appendix A,
Listing 2). o o o 77
Overall matching for method encrypt (Appendix A, Listing 2). 77
Minimal words of C' and their occurrence, considering the complete

flow for method encrypt (Appendix A, Listing 1). 78
Minimal words of C’ and their occurrence, considering the complete

flow for method encrypt (Appendix A, Listing 3). 79
State matching considering the complete flow for method encrypt (Ap-
pendix A, Listing 3). 80
Minimal words for the complete flow of method encrypt (Appendix A,
Listing 2). 81
State matching considering the complete flow for method encrypt (Ap-
pendix A, Listing 2). 82
Overall definition matching odm,;(C,C") for method validate (Ap-
pendix A, Listing 4). 84

State matching considering the basic flow for method walidate (Ap-

pendix A, Listing 4). 85
Behavior matching for method validate (Appendix A, Listing 4).. . . 85
Overall matching for method validate (Appendix A, Listing 4). . .. 86

Overall definition matching odmy, (C,C’) for method duplicate_tree
(Appendix A, Listings 5and 6). 86
State matching considering the basic flow for method duplicate_tree

(Appendix A, Listings 5and 6). 87

xi

24

25

Behavior matching for method duplicate tree (Appendix A, Listings 5

xii

Chapter 1

Introduction

In software engineering, the main goal of developing new software or maintaining an
existing one is to provide functionalities to satisfy stakeholders’ needs. In order to do
this, sometimes new functionalities are added, existing functionalities are replaced,
or unused functionalities are removed. More often during the maintenance phase of
the software life cycle, some part of the software that provides a specific feature needs
to be replaced with a new one for different reasons (costly maintainability, upgrade
to new technology, etc.). These changes, together with the time consumed during
their implementation and their associated costs, constitute the motivation behind
Component-Based Software Development (CBSD) [6]. CBSD focuses on building
software by plugging Commercial Off-The-Shelf (COTS) components or Open-Source
Software (OSS) components in the system rather than building functionalities from
scratch. CBSD is widely used despite its associated risks and challenges [64]. Its
advantages are well-known and have been discussed in the literature [59].

During maintenance, a request for change is followed by a comprehension task,

after which system dependencies are identified and the impact of the potential change
is measured before any actual change takes place. Should a change be implemented,
the process is completed by a verification step [2]. In order to perform comprehension

and change impact analysis, one should:
1. understand both, what and where, functionalities should be added/ replaced.

2. select a component (or a group of components) that provides these functional-

ities.
3. evaluate the effort and changes needed to integrate the selected component(s).

The second activity indicated above is accomplished by comparing the required in-
formation with that provided by available components. Existing approaches on com-
ponent matching in the literature perform this comparison based on quality charac-
teristics, metrics, and attributes of COTS. The difficulty of applying such approaches
comes from i) the lack of standard type of information for COTS components [9],
ii) incomplete information [3], and iil) inapplicability of these approaches to OSS
components. Other approaches which are applicable to the comparison of OSS com-
ponents are code clone detection approaches. The limitation of these approaches for
the purpose of identifying substitutable components however is that they only identify

identical code.

1.1 Objectives

The objective of this research is to complement existing approaches by addressing
those cases where the lack of specification and the unavailability of documentation
increase the difficulty of comparing two components. We provide support for users
to select appropriate OSS/COTS object-oriented components by extracting the nec-

essary information from their source code.

1.2 Organization

The remainder of this thesis is organized as follows: in Chapter 2 we provide the
necessary background for this research. In Chapter 3 we discuss the problem and
motivation behind this research. We discuss our proposal in Chapter 4. In Chap-
ter 5 we discuss how to implement our proposal and in Chapter 6 we demonstrate
our methodology through a case study. In Chapter 7 we describe the automation
and tool support. In Chapter 8 we discuss related work. We list conclusions and

recommendations for further work in Chapter 9.

Chapter 2

Background

In this chapter we discuss the necessary background to this research.

2.1 Software maintenance

ISO/IEC and IEEE define maintenance as the modification of a software product after
delivery in order to correct faults, improve performance (or other attributes) or adapt
the product to a modified environment [43]. Four different types of maintenance are
identified: corrective, preventive, adaptive and perfective. Corrective maintenance
includes all changes made to a system after deployment to correct problems. Preven-
tive maintenance includes all changes made to a system after deployment to prevent

2, Adaptive maintenance includes all changes made to a

faults! to become failures
system after deployment to support operability in a different (software or hardware)

environment. Perfective maintenance includes all changes made to a system after

1Software errors which can cause improper functioning of the system [43].
2 Activated software faults [43].

deployment to address new requirements.

Bennett and Rajlich [2] define a model whereby a software system undergoes
distinctive stages during its life: initial development, evolution, servicing, phase-out,
and closedown. Initial development would produce a deployable system (the first
operating version). After deployment, evolution would extend the capabilities of the
system, possibly in major ways. Once evolution is no longer viable, the software
would enter the servicing stage (often referred to as maturity, or most commonly
legacy stage). As the term suggests, only small changes are possible during this stage.
Finally, once servicing is no longer viable, the system enters a phase-out stage where
deficiencies are known but not addressed. At closedown, the system is withdrawn
from the market. In an alternative model (versioned staged model), during evolution,
a version is publicly released and subsequently enters the servicing stage. Meanwhile,
the system continues to evolve in order to produce the next version.

To ease the maintenance phase, we feel that one can follow two paths that are
mutually supportive: In the first path, one looks into development and focuses on
the provision of quality attributes which can affect maintainability (predeployment
approach). In the second path, one improves current methods that have been utilized
to perform the various maintenance activities (postdeployment approach) [12].

Currently, there are a number of methods and tool support to ease these activities,
focusing on comprehension, which tends to consume a large proportion of time during
maintenance. The analysis of artifacts can be categorized as static and dynamic.
Static analysis is performed by examining design or implementation artifacts and

reasoning over possible behaviors that might arise during execution. Dynamic analysis

is performed by executing a program and observing the executions.

One method for performing either kind of analysis is program slicing [66]. A
slice includes all program statements affecting variables at a certain position in the
program. A forward slice consists of all program points that are affected by a given
point in the program. A backward slice consists of all program points that affect a

given point in the program.

2.2 Software components

Component-Based Software Development (CBSD) is based on the idea that there are
many software components already built, and that building new systems by selecting
the appropriate existing components and assembling them following a well defined
software architecture can be more rapid and cost effective approach than building a

system from scratch [49]. CBSD has a potential for:

1. reducing the cost and time of the software development and maintenance, thus

increasing productivity.

2. improving the system maintainability and flexibility by allowing replacement of

old components.

3. enhancing the system quality by allowing components to be built by experts in

the domain.
CBSD consists of the following activities:

1. Requirement analysis.

2. Architecture selection and creation.
3. Component selection.

4. Component integration.

5. System testing.

Of interest to this thesis is component selection which requires the identification
of functional and quality requirements, identification of the trade-offs, evaluation of
the impact of those trade-offs on the system, and identification of the components to
be adapted to this integration [50].

In the literature there is no standardized definition for the term component.
Szyperski defines a component as “a unit of composition with contractually specified
interfaces and explicit context dependencies only. It can be deployed independently
and is subject to composition by third parties” [59]%. Brown and Wallnau [4] discuss
four established definitions in order to determine the characteristics of a component.

Cai et al. [6] summarize those characteristics to be as follows: A component
1. is an independent and replaceable part of the system that fulfills a clear function.
2. works in the context of a well defined architecture.
3. communicates with other components via their interfaces.

Components are grouped into two main categories: Commercial Off-The-Shelf

(COTS), usually closed source, and Open-Source Software (OSS), usually non-commercial.

3The definition initially appeared as an outcome of the ECOOP Workshop on Component-
Oriented Programming in 1996 [60].

Even though both COTS and OSS components have similar main advantages from a
software maintenance point of view, each has its own advantages and disadvantages.
Li et al. [39] investigate the decision making while choosing components. COTS com-
ponents are usually delivered as binaries rather than as source code in order to protect
the rights of developers. OSS components are provided as source code, which is more
often the only available documentation. Some of the disadvantages of OSS compo-
nents discussed in the literature are the lack of a face-to-face development process,
code quality [20], and nonmaintainability [55].

Popular sources for components include ComponentSource [11], SourceForge [57],

JARS [30], FreshMeat [22] etc.

In the next chapter, we discuss the problem that has motivated this research.

Chapter 3

Problem and motivation

In this chapter we discuss the problem and the motivation behind the research that
constitutes the scope of this dissertation.

In the domain of CBSD, a critical question that maintainers should answer is Buy
or build? In order to decide on a viable option, one should go through the following

process:
1. Specify the desired functionalities.
2. Identify potential component candidates.

3. Compare the specifications provided by the component candidates with the one

requested by maintainers.
4. Filter out non-suitable component candidates.

5. Analyze the changes necessary for integrating the components.

6. Decide whether it is more viable to deploy one of the selected components or

build a new one from scratch.

While going through these steps and searching for an answer to the main question,
other questions surface, such as: How to identify potential components? How to
specify a component? How to compare two specifications? How to ensure that the
most suitable component has been chosen?

Some of the existing approaches which deal with software classification and identi-
fication problems deploy description logic to develop ontologies or propose taxonomies
for classification (Cechich et al. provide a summary of these approaches [9]). Some
research has been done to measure the semantic distance between required and pro-
vided components [31], while other researchers propose early measurement of the
functionality suitability of COTS [8].

Research also has been done in the domain of component matching, where a
clear distinction is made between component interface and component behavior. An
existing approach involves behavior matching and defines different types of matching
(from exact to more relaxed matching). It uses a formal language (Larch) to specify
and compare the components in terms of pre-conditions/post-conditions [69]. There
exist other approaches which deploy different formal specification languages for the
same purpose [18, 19, 29, 46].

The common assumption of these approaches is the existence of a component
specification. Research toward such a standard specification has been done [9, 51, 63],

but the current lack of such a specification [3] makes those approaches difficult to

10

adopt in practice. Moreover, even if such a standard existed, it would probably
be adopted for COTS components, since to formally specify a component requires
expertise which is not generally part of the development process of OSS components.

The motivation behind this research is to provide support for maintainers during
the component substitution task, when nothing but source code is available. Without
such support, maintainers should analyze and filter the irrelevant information manu-
ally by going throughout the entire source code. Therefore, we believe that there is a
need for an automated environment which would allow automatic filtering of that part
of the information which is either not relevant or is too detailed, as well as automatic
analysis of the extracted information. Automatic filtering should allow maintainers
to focus and further analyze only part of the source code. Automatic analysis should
provide an indication of the degree of substitutability of two components, based on
predefined metrics which take into account the essential characteristics (in this case
object-oriented concepts) of the components.

We discuss our proposal to the above problem in the next chapter.

11

Chapter 4

Proposal

In this chapter, we discuss our research proposal.

Different aspects of a component are taken into consideration by current ap-
proaches. Most of them rely on an existing specification, which often is either missing
or incomplete. What is irrefutable, however, is that for some COTS components and
for all OSS components the source code is available.

We believe that components can be characterized by their definition (signature),
state and behavior, which can be extracted from their source code. Thus, for calcu-
lating the degree of substitutability of two components, their definition, state, and
behavior should be compared.

To this end, we propose to implement the following:

1. Identify criteria for component substitutability in an object-oriented context at

various levels of granularity.

2. Extract the necessary information from the source code (at an appropriate level)

12

in order to be able to apply the criteria defined in (1).
3. Provide automation and tool support and integrate them into a popular IDE.
4. Demonstrate a proof of concept through a case study.

In order to reach these goals, we plan to define important characteristics for an
object-oriented component by taking Java as an example environment. However,
our approach is based on fundamental object-oriented principles, thus keeping the
concepts general enough in order to be applicable to other languages in the same
paradigm. Next, we will extract the information needed for these characteristics
through static analysis. We will then define metrics for measuring the degree of
matching of two components at different levels of granularity: package, class, and
method. Finally, we will deploy our automation over a case study in order to demon-

strate our approach in a practical situation.

4.1 Expected contributions and benefits

The expected contributions of our proposal are to provide support during the main-
tenance phase of the software life cycle while evaluating the degree of substitutability
of two components when the source code is available. We will provide an automated
environment for extracting information from the source code following the identified
important characteristics of the analyzed components. We will then define mea-
surement procedures, which will allow us to explore the extracted information, thus

providing an indicator of substitutability.

13

In the next chapter we specify what a component is and we define guidelines for

the substitutability of two components at three levels of granularity.

14

Chapter 5

Methodology

In this chapter, we discuss the methodology of our research proposal. In Section 5.1,
we define what is a component in the scope of this research. Next, in Section 5.2, we
define component substitutability criteria by discussing its definition, state, and be-
havior. Based on those criteria, we calculate the percentage of the degree of matching
of two components which represents a quantitative matching. We then define thresh-
olds based on the percentage of matching from which three categories of qualitative
matching are formed: low, medium, and high. The methodology is illustrated on a

case study in Chapter 6.

5.1 What is a component?

Before discussing the possibility of comparing two components, we will define what
we consider to be a component.

We restrict our discussion to Java source code, which allows us to distinguish

15

[Component.evels }

_{ Definitiongeyer»]

"'“"{ Statedeve1>]

| Behaviorgeyvel>]

Figure 1: Component specification.

between three levels of granularity of a component: method level, class level, and
package level. All three levels will be considered.

At all levels, a component is specified by its definition, state, and behavior (see
Figure 1).

At method level (ml), the definition of a component corresponds to the signature
of the method. Thus, the important factors for a component here are its formal
parameters (name!, type and position are considered), the type of its outbut, its
name, its visibility, its modifiers, and its declared exceptions (only type is important).
The structure of the definition of a component at method level is shown in Figure 2.

The state of a component at method level is characterized by its state variables and

the flow of events which affect these variables (see Figure 3). A state is represented
by the set of important variables which are possibly modified after an event occurs.

Thus, a new state is created every time an event involving one or more state variables

In this dissertation, names are considered to be important as, when assigned properly, they
reflect the concepts of the variables, events, types etc.

16

Definition, J

T_“{ Input definition ID}

{ Type Lype{id,)

‘ Hame name {id,)

! Position pos{idy}

output type ot }

___{ Type

,,w{ Method name mn

{ vigibility v |
___{ Modifiers MoOD
___{ Exceptions EXC

~m»»{ Type

Figure 2: Definition at method level (ml).

17

occurs.

The behavior of a component at method level is represented by the set of its
required types (see Figure 4). A required type is characterized by the name of the
package in which it is defined, by its name, its attributes (visibility, type, and name),
and its methods (only the definition of the methods are considered as shown in Fig-
ure 2).

The definition of a component at class level (cl) is characterized by its visibility,
modifiers, type, parent modules, name, defined attributes, and defined methods (see
Figure 5).

The state of a component at class level is represented by the states of its methods
(see Figure 6).

The behavior of a component at class level is represented by the required types of
its methods (see Figure 7) and the types of its defined attributes.

At package level (pl), a component is defined on the basis of its name and its
defined types (see Figure 8).

The state of a component at package level is defined based on the state of its
defined types (see Figure 9).

The behavior of a component at package level is represented by the behavior of
its defined types (see Figure 10).

Equivalence for all criteria is defined formally in the following section.

18

Staten }

...__{ State variables sV }

_.[Formal parameters I;]

_____{ Name

...‘ Output op]

._..{ Name

.__{ Return method input AP]

.....{ Name

ﬁ__.[Class attributes A,]

__....i Hame

{ Flow of events E J

.__{ Assignment statement]

_..[Declaration statement]

...._....[Method call j
_—-{ Instance creation]
_[Beturn statement j

__..[if,do ,while, for st atements]

Figure 3: State at method level (mi).

19

Behaviorm }

L—.{ Required types RT }

» ____(Package name pn:: }

_{ Hamae nx }

__{ Attributes A]

____{ visibility]
e)
__r Name]
._(Methods M. }

Definitiony (Figure 2)}

Figure 4: Behavior at method level (ml).

5.2 Component substitutability criteria

We consider all three levels of granularity by defining substitutability criteria for each
level.

When comparing two components, intuitively, one tends to compare their defini-
tions: name, kind. Having the same definition, however, often does not imply sub-
stitutability. For example, the same component often is designed and implemented
differently by different users. Each implementation is adapted to a specific need
or environment, thereby providing different functionality. Consequently, comparing
component definitions is necessary but not sufficient.

If we see a component as a mathematical function, we may say that for C being

the component to be substituted and C’ being a candidate component to substitute

20

pefinition, ‘;

Mﬂ_ﬂ{ visibility v

Modifiers MOD

Type tm

Parent modules PM

Name ¢cn

[Defined attributes Da

. Vigibility v)
] ‘ Modifiers MOD

P

Type &

Name ' an

(o

Defined methods DM }

‘ ‘ Definitiony (Figure 2)]

Figure 5: Definition at class level (cl).

21

f Methods j

._.{ Statem (Figure 3) j

Figure 6: State at class level (cl).

L Behavior,;]

Required types RT}

___L Methods]

L_{Behaviorm (Fiqure 4)]

[Attributes]
| -

._.{ Type t]

Figure 7: Behavior at class level (cl).

22

[Definitiony }
[S
_[Name pn }

___{ Defined types DT }
E Definition. (Figure 5)]

Figure 8: Definition at package level (pl).

[statey)

—-{Defined types D:r']

_{ State.: (Fiqure 6) J

Figure 9: State at package level (pl).

23

Behaviory)

é Defined types DT}

! Behaviors (Figure 7) J

Figure 10: Behavior at package level (pl).

C, then the two components are equivalent and thus entirely substitutable if they
have the same domain (see equation 1), the same codomain (see equation 2), and
the same association of values of the codomain with values of the domain [26] (see

equation 3).

Domain C = Domain C' (1)
Codomain C = Codomain C’ (2)
Vo € Dom C 32’ € Dom C'e z=2' N C(z) = C'() (3)

where C(z) € Codomain C and C'(z') € Codomain C'.
Components, as viewed in the context of object-oriented programming, are char-

acterized by their state and their behavior. Thus, we can say that two components
are equivalent if they satisfy equations 4, 5, 6, 7, and 8 defined in the following

paragraphs.

24

Let £ and E’ be the sets of events of C' and C’ respectively upon which the
components change from one state to another. Let S and S’ represent the sets of
states of C' and C’ respectively, and let MAP and M AP’ be the sets of elements
associating an event with the state where it occurs and the state in which it transits.

C and C’ have the same state if for every state of C, an equivalent state in C'
exists, and for every event e; in C, changing the state from s, to s,,, an equivalent

event e; in (', triggering the change of state from s, to s,, exists (Vn,m € [1..]S]]).

Ve, € Ede; € E'e ¢; =g (4)

where |E| = |F'|.
Vs; € S3s; € S'e s5= (5)

where |S| = [5|.
Vmap € MAP 3map’ € MAP' e map = map’ (6)

where 'MAP| = |MAP/|> map = < Sstart; €, Send >, € € L, and Sgiare, Sena € S.
Let RT and RT" be the sets of types being in interaction with C' and C’ respec-
tively, that is, types to which the components have visibility, and let M.y, and M,

be the sets of events sent to instance rt;, where rt; € RT. Equivalent behavior with

25

respect to other components can be then defined based on equations 7 and &:

Vrt, € RT 3rt; € RT' o 1t; = 1t; (7)
vm'f'ti € MTti Hm/rt’. € M;t’. ® My, = m;t’. (8)

which implies that C and C’ interact with the same set of objects in the same manner.
The above criteria define 100% substitutability for two components. However,
strict matching of C' and C’ may not be always needed. In that case, the definition
of C' can be more general than the definition of C. Also, it may be sufficient that
E is a subset of E’, and S is a subset of S’. Regarding the behavior with respect to
other components, it may be sufficient that RT € RT’ and M, C My
These criteria are general and are refined at the different levels of granularity in

the subsequent subsections, where each subsection compares C' and C’ in terms of:

e their definitions.
e their states at a specific moment after an event has taken place.

e their required types and the way these types are used.

We restrict the discussion to activities related to static analysis. Thus, comparing

the runtime behavior of the components is beyond the scope of this research.

5.2.1 Method level criteria

Two cases may occur at this level. The first is when one knows both the method which

needs to be substituted and the potential method for this substitution. The second

26

case occurs when one knows the method which needs to be substituted but does not
know which method exactly from the candidate component is the most suitable one.
The second case may be reduced to the first one by comparing the method to be
substituted with each method of the candidate component.

In the following subsections, we refine the criteria defined above for the cases

where components are represented by methods.

Method definition

When components correspond to methods, by definition we imply method signature
(input and name) and some additional criteria (output, visibility, modifiers, and ex-
ceptions). Thus, two methods are said to have the same method definition if the

following six conditions hold:

1. They take equivalent ordered sets as input, where an element of this set is
represented by its type and its name. The input of the method is important
because this is the data that the method will operate on. The name and type
of the formal parameters correspond to the concerns they represent. The num-
ber of formal parameters and their position affect the easiness of the actual
substitution. For example if the component to be substituted operates on two
parameters while the candidate component only takes one parameter, more
modifications will be performed in order to adapt the candidate component to
the system. Let ID = Domain C and ID' = Domain C’ be the ordered sets

containing the input definitions of C' and C’ respectively. Every element in

27

these sets is represented as the pair < type, name >. Assume k € [1.. |ID|]:

Vidy, € ID 3id}, € ID' o idy, = id, 9)

For strict method matching the types of idy and id), should be the same as well
as their names. For more lax matching however, |ID| < [ID'|; the type of idy
is of type or subtype? of the type of id}, (“contravariance of arguments” [40]);

the name of idy, is a substring of the name of idj, or vice versa.

2. They return a value of the same type. The type of the output is important
because it reflects the concern representing the data returned by the method.

Assume ot and ot’ be the defined returned types of C' and C’ respectively, then:
y

ot = ot’ (10)

For less strict method matching the equivalence is transformed into subtype

relation, that is ot’ < ot (“covariance of result” [40]).

3. They have the same name. The name of a method when assigned properly is
essential because it reflects the functionality provided by this method. Assume

mmn and mn’ be the names of C' and C’ respectively, then

mn = mn/ (11)

?Liskov and Wing [40] introduced < for denoting a subtype relation. In this dissertation we
follow this notation and we use < for “type of, or subtype of”.

28

For more lax method matching mn may be a substring of mn’ or vice versa.

. They have the same visibility modifiers. Visibility modifiers are important and
should be compared because they define who will be able to use the components.
Assume v and ¢’ be the visibility modifiers of C' and C’ respectively and V
= {public, protected,default, private} [38] and V' = {public, protected,default,
private} ordered from the least to the most restrictive visibility (default visibil-
ity is applied when no explicit visibility is specified, in which case it is equivalent

to protected visibility). Equation 12 should hold:

YoeV VW eVey=1 (12)

For less strict method matching the visibility of the new method may be less

restrictive, compared to the visibility of the substituted method.

. They have the same modifiers. Comparing modifiers is vital because it affects
the easiness of the substitution. For example if the candidate component is
defined as final it will not be possible to extend it, which may be a prob-
lem if maintainers were planning to do so. Let MOD and MOD’ be the
sets of modifiers of C' and C’ respectively, where MOD = {abstract, final,

native, static, synchronized} [38] and MOD' = {abstract, final, native,

static, synchronized}. Assume k € [1..|[MOD|], equation 13 should hold:

VYmody € MOD 3mod;, € MOD' @ mody, = mod, (13)

29

6. They throw the same exceptions. The types of the thrown exceptions reflect how
this method handle abnormal situations. They also affect the level of adaptation
of the system to the candidate component in cases where it throws more or
different exceptions than the one thrown by the component to be substituted.
Let EXC and EXC' be the sets of exceptions thrown by C and C’ respectively,

where [EXC| = |EXC’|. Equation 14 should hold:

Vexc € EXC Jexc € EXC' e exc = exd (14)

For non strict matching exc¢ may be a subtype of exc, or EXC’ be a subset of

EXC.

Example Consider C and C’ as defined in Listings 1 and 2 respectively. Following
is the comparison for the level of substitutability of the two components considering
lax matching. Regarding equation 9, the two components take the same number of
parameters, equal to two. The first parameter of C, which is Vector is a subtype of
the first parameter of C’, which is AbstractCollection, but their names are different.
The second parameters of the two components are of the same type, which is int
and their names are equivalent. Equation 10 is satisfied since the return type of C’
(String) is a subtype of the return type of C' (Object). Equation 11 is satisfied since
the names of C' and C' are equivalent (access). Equation 12 is satisfied since the
visibility modifier of C' (protected) is more restrictive than the visibility modifier of

C" (public). Equation 13 is not satisfied because C is declared static and not C'.

30

Equation 14 is satisfied since EXC = {Exzception} and EXC’ = {}, and thus we

can conclude that EXC' C EXC.

protected static Object access(Vector v, int index) throws Exception{

// method body

Listing 1: Method definition for the component to be substituted.

public String access(AbstractCollection ac, int index){

// method body

Listing 2: Method definition for the candidate component.

Overall definition matching The overall definition matching at method level for
two components C and C’, namely odm,,,;(C, (") is calculated based on the degree of
matching of their input definitions, their return types, their names, their visibilities,
their modifiers, and their exceptions. The importance of all these criteria is defined

by their respective weights (see formula 15).

odmum(C,C") = wip * gip(C, C") + wet * got(C, C') +
Winn * Gmn(C, C') + wy * g,(C, C") +

warop * gmop(C, C) + wexc * gexo(C, C") (15)

31

where wip, Wot, Wimn, Wy, WaoD, and wgxc are percentages indicating the importance
of the associated grade, wrp, Wot, Wimn, Wy, Waon, Wexc € [0..100], and wrp + we: +
Wynn + Wy + Wyop + Wexc = 100;
91p(C, C"), 9o:(C,C"), gmn(C,C"), g,(C,C"), gnop(C,C"), and gexc(C,C’) are per-
centages defining the degree of matching of the associated element, g;p(C, C"), go:(C, C"),
9mn(C, C"), 9,(C,C"), grmon(C,C"), gpxc(C,C") € [0..100].

The grade ¢g;p(C, C") is calculated based on the grades obtained during the com-

parison of all input definitions, idy vs id}?, as shown in formula 16:

l1D|

91p(C,C") = > 614, (C, C') * wyg, (16)

k=1

where id; € ID. Considering the example on Listings 1 and 2, k € [1..2].
The weight of each element in 1D, namely w;q, is calculated based on the number

of arguments in C, as shown in equation 17 where k € [1..|ID|], idy € ID:

1

Y =TI

(17)

In the previous example wig, = wig, = 50%.
The grade of id vs id}, namely giq, (C,C") is calculated with regards to its type,

name, and position (see equation 18).

9ia,(C,C") = Wiype * Grype(idy, idy,) +

3We use this notation in order to show that the grade of each element represents the result of
the comparison of this element in both components, here idy is compared versus id}.

32

Wname * Jname (de; /ld;g) + wpos * gpos (idkv Zd;c) (18)

where Wiype, Wpos, ald Wname are percentages indicating the weight of the associated
grade, Wiype, Wpos, Wname € [0..100], and Wyype + Wpos + Wname = 100.

The percentages of type, position and name are given by maintainers and may
vary based on their importance.

The grade guype(idk, id)) returns 1 if idy is of type or subtype of id); 0 otherwise
(see equation 19).

o 1 if type(idy,) > type(idy)
gtype(de:)?'dk:) = (19)

0 otherwise
Thus, in the example on Listings 1 and 2, guype(id1, idy) = geype(ida, id;) = 1.
The grade gname(idk, id},) returns 1 if the name of idy, is equivalent to the name of

id}, or if idj, is substring of id}, or vice versa; 0 otherwise (see equation 20).

1 if name(idy) = name(id},)
Vsubstr(name(idy), name(idy))
gname(idk,z.d;c) = 4 (20)

Vsubstr(name(id},), name(idy))

0 otherwise

where substr(a, b) returns true if a is a substring of 6. Thus, continuing on the example
on Listings 1 and 2, we obtain gname(id1,id}) = 0 whereas gname(idz, idy) = 1.

The grade gpos(idy, id},) returns 1 if the position of idy is equal to the position of

33

id),; 0 otherwise (see equation 21).

1 if pos(id),) = pos(idy)
Gpos (1d, idy,) = (21)
0 otherwise
We can thus obtain gpes(idi, id}) = gpos(ida, id;) = 1 corresponding to the previous
example.

The grade of ot vs ot’, namely go,(C,C’) returns 1 if ot’ is of type or subtype of

ot; 0 otherwise (see equation 22).

1 if ot > ot
got(C, Cl) = (22)

0 otherwise
Based on equation 22, we obtain g,(C,C’) = 1 in the example in Listings 1 and 2.
The grade of mn vs mn/, namely ¢,,,(C, C’) returns 1 if mn is equivalent to mn’

or if mn is substring of mn’ or vice versa; 0 otherwise (see equation 23).

1 if mn=mn
Vsubstr(mn, mn')
gmn(ca C/) = (23)

Vsubstr(mn', mn)

0 otherwise

Considering the example on Listings 1 and 2, we obtain g,,,(C,C") = 1.

The grade of v vs v/, namely g,(C, C’) returns 1 if v is equivalent to v’ or if v’ is

34

less restrictive than v; 0 otherwise (see equation 24).

1 ifo<?d
9(C,C") = (24)

0 otherwise

Equation 24 results in g,(C,C’) = 1 in the previous example.
The grade of MOD vs MOD', namely gpop(C,C’) is calculated as shown in

formula 25:

|[MODUMOD/|
940p(C,CY =" > Gmoa,(C,C") * Wineq, (25)

k=1

Vmod, € MOD U MOD', and where gpmoq, (C,C") and wmeq, are defined in equa-

tions 26 and 28 respectively. In the previous example k = 1.

Gmod,, (C, C") = z’n’g"dk * z’n’gf’d’“ (26)

Ymody € MOD U MOD', and where in[2*% is defined as shown in equation 27:

p 1 if mod, € MOD
ing ™ = (27)

0 otherwise

In the example on Listings 1 and 2, inJ°" = 1, ™" = 0, which results in

Gmod, (C> Cl) =0 and gMOD(Ca CI) = 0.

35

The weight of each element in MOD, namely wWmeq, is calculated as shown in

equation 28.

1

- 2
Wmode = TMOD U MOD'| (28)

Vke N, k=1..|MODUMOD'|,Ymod;, € MODUMOD'. In the previous example,
wmodk = 100%
The grade of EXC vs EXC', namely grpxc(C, C') is calculated as shown in for-

mula 29.

|EXC|

gEXC(Oa O/) = Z Gexcy, (Ca C/) * Wegey, (29)

k=1

where exc, € EXC'. gpxc(C,C’) = 100% if EXC' = {}. In the previous example,
gExc(C, C’) = 100%.
The weight weg, is calculated based on the number of exceptions thrown by C’

as shown in equation 30, where k € [1.. |[EX(|], excy € EXC'.

1

Wegey, = m (30)

The grade gesc, (C, C’) returns 1 if Vezc, € EXC' Jexc; € EXC such that excy

is of type or subtype of exc;; 0 otherwise (see equation 31).

, 1 if Vexc, € EXC' Jexc; € EXC e exc; > excy
Jexe (C, C') = (31)

0 otherwise

36

where k € [1..|EXC"}], and j € [1.. |[EXC]].

Method state

The variables which are important for a method are 1) attributes of the class to
which the method belongs to, because they reflect the state of the main concern
(the class) in which the method is defined, 2) input of the method (its parameters),
because they are needed by the method in order to provide the expected functionality,
and 3) output of the method (what the method returns), because it represents the
result of the performed calculations. In case the output corresponds to the result of
a method call, the actual parameters of this call are taken as important variables,
because this method call is the final functionality which needs to be performed before
the method ends. Therefore, we consider the state of a component being represented
by its important variables at each moment. We refer to them “state variables” (SV))

and we define them as follows:

SV = I, U 0y U APy U A, (32)

where [, denotes the ordered set of the method formal parameters, o,, denotes the
output of the method, AP, denotes the actual parameters passed to the method call
in the return statements, and A. denotes the set of attributes of the class to which
the method belongs to. The elements in the set of state variables are represented by
their names in order to be able to compare the concerns which they reflect.

By applying backward slicing [66] on each element in SV, we can obtain all state-

37

ments and variables which affect the state variables. These statements are called
complete flow of events. At this level of granularity, £ and E’ represent the set of
statements of C' and (', respectively, that modify the state variables and the variables
affecting them. Every element in S and S’ is represented by the set of variables which
are modified after an event occurs. The two components are said to have the same
states if equations 4, 5, and 6 hold.

If we filter the complete flow of events by considering only the statements which
directly affect the elements of SV, we can obtain the basic flow of events. For less
strict method matching, F and E’ are represented by the basic flows of events of C
and C’ respectively. Here, Vi € [1..|S]], s; € S, s, € 5, 5, C SV, and s, C SV".

We define a statement as directly affecting a variable var if at least one of the

following holds:

1. This statement is an assignment statement, where the left hand side is var.

2. This statement is a variable declaration statement, where the left hand side is

var.

3. This statement is a method call, where var is the callee or is part of the actual

parameters of the method, in case the type of var is not a primitive type.

4. If the type of var is not a primitive type and this statement is an instance
creation (constructor call), where var is part of the actual parameters of the

constructor.

5. This statement is a return statement returning var or 1, 3 or 4.

38

6. This statement is a conditional statement or an ¢f statement, where 1, 2, 3 or

4 hold for at least one statement in then and/or else part.

7. This statement is a do statement, a while statement, or a for statement, where

1, 2, 3 or 4 hold for at least one statement in the body of the statement.

Example Consider C in Listing 3. We can extract the set of state variables as
follows: I,, = {firstArgument, secondArgument}, o, = a, AP, = {}, and A, =
{a}, which result in the following set of state variables for C: SV = { firstArgument,

secondArgument, a}.

public class C {

private Object a;

public Object aMethod(Object firstArgument, int secondArgument){
System.out.println("Beginning of aMethod.");
secondArgument=second Argument--1;
if (firstArgument==null)

firstArgument = new Object();

a = firstArgument;
System.out.println("End of aMethod.");
return a;

}

// other methods . ..

Listing 3: Example for calculating the state of method aMethod.

39

Extracting the basic flow of events of method aMethod results in the set of statements

shown in Listing 4.

second Argument=second Argument+1;

if (first Argument==null){
firsstArgument = new Object();

}

a = firstArgument;

return a;

Listing 4: Basic flow of events of method aMethod.

Overall state matching We define a “minimal word” as a meaningful substring
which is extracted from the basic/complete flow of events. For defining a meaningful
substring, we follow the Java convention for naming variables and methods, where
every word (except the first one) should start with an upper case (e.g. the variable
method Name, results in two minimal words, namely method and name).

We define occy as the number of occurrences of the minimal word w; in C.

The overall state matching at method level of two components C and C’, namely
ostm, (C,C"), is calculated based on formula 33. This formula calculates the state
matching of the two components based on the degree of matching of all minimal words
extracted from C and those extracted from C’. The importance of each minimal word
is reflected through the number of occurrences of this word in C. Thus the weighted

grade of each minimal word is the product of the word’s existence in C’ and its number

40

of occurrences in C. The degree of matching of two states is equal to the sum of the
weighted grades for all minimal words extracted from C, divided by the total number
of considered minimal words (which is the sum of all occurrences of all minimal words
extracted from C).

Y oiq oceet ® ing
n Wy
Yo oceet

ostm,(C,C") = (33)

where n € N, and corresponds to the number of minimal words extracted from C, w;
is a minimal word extracted from C, occp' is the number of occurrences of w; in C,

1 < occyi. The value returned by ing; is 1 if w; occurs at least once in C’; 0 otherwise.

Example The minimal words and their number of occurrences resulting from the

basic flow of events of Listing 4 are shown in Table 1. If we assume that the set

Minimal word | Occurrence
a 2
null 1
object 1
second 2
1 1
argument 5
first 3

Table 1: Minimal words of C and their occurrence.

of minimal words of the candidate component C’ is equivalent to the one shown in

Table 1, then we obtain ostmm, (C,C’) = 1.

41

Required types

Objects interact through message passing. This interaction requires a visibility from
the caller type to the callee type. Visibility is categorized as: attribute visibility,
parameter visibility, local visibility, and global visibility [37]. If a component has
visibility to a given type and if this component is calling a method or accessing an
attribute of this type, then the type and the specific method/attribute are required
for the proper functioning of the component.

A required type rt; is characterized by the name of the package in which it is
defined (pn,;,) because it represents the main concern the type of which it is part
of, its name (n,) because it indicates the concern the type represents, the set of
attributes accessed or modified by the requiring type (A,;,) because it indicates the
required state of this type, and the set of methods called by the requiring type (M.,,)

because it represents the required behavior of the type, i.e.

Tt =< Pty Mty Artyy Mrg; > (34)

The sets of required types RT and RT" (of C' and C' respectively) are considered

to be equivalent if equation 35 holds:

Vrt; € RT 3rt, € RT o rt; = 1t} (35)

where i € [1..|RT|], and |RT| = |RT"|.

Equation 35 holds if and only if r¢; and rt; have the same name (see equation 36),

42

the name of the package in which they are defined is the same (see equation 37), and
the required attributes and methods of rt; are equivalent to the required attributes

and methods of rt; (equations 38 and 39).

Mty = Nr (36)
Pt = Phyg: (37)
A, = Apy, (38)
My, = Moy, (39)

Each element in A,; is represented by the triplet < wvisibility, type, name >. The
equivalence should then hold for each of these elements.

At method level, however, one may be more interested in the methods and at-
tributes of a required type rather than its name only. Thus, at this level, more
detailed information will be compared and the possibility of abstracting it to class
level (the name of the required types) and package level (the required packages) will
be provided.

For less strict component matching, equivalence between required types is defined
as shown in equation 40, where the order in which the required types are used is not

important.

Vrt € RT 3rt' € RT' e rt =t (40)

For less strict component matching, similarly to the comparison of method names

43

in Section 5.2.1, the equivalence relation in equations 36 and 37 is replaced with
symmetric substring. In addition, in equation 38 Ay, is a subset of A,;. Assume ay,
€ An,, type, , is a subtype of typea,., ; visibility,,,, is equal or more restrictive to

visibility, ,,; name,,, s equal to or is substring of name, , O Vice versa.
0 H

Example Consider the example shown in Listing 3. The extracted required pack-

ages, types, and features of method aMethod are shown in Figure 11.

"Component C

-8 java.io

% E]'@ PrinkStream
3 e @ printin(String): void
= java.lang

E“J@ Object

i

~~~~~ @ string
@ System
oo m put: PrintStream

Figure 11: Required packages, types, and features of method aMethod.

Overall behavior matching The overall behavior matching at method level of
two components C' and C’, obm,,(C,C"), is given by equation 41, which calculates
the summation of all grades given to the existence of the required features of C in

C"; the result is divided by the total number of required features in C.

obmml(C, C,) = ——-——Zi:l

n

44



where rf; is a required feature by C, mg’j’ as the existence of feature rf; in C’, and
where n corresponds to the total number of the features required by C.
The same formula is defined at type level in order to zoom out as shown in

formula 42.

rt;

obmp(C, C") = iz te (42)

n

where rt; is a required type by C, éng}' as the existence of 7t; in C’, and where n

corresponds to the total number of the types required by C.
Formula 43 allows yet another level of abstraction where the required packages

are analyzed.

n . TDi

b (C, ') = =1 1" (43)

n

where rp; is a required package by C, in/' as the existence of rp; in C’, and where n

corresponds to the total number of the packages required by C.

Overall component matching The overall component matching, ocm.,(C,C"),
is calculated based on the overall definition matching, overall state matching, and

overall behavior matching, where the importance of all these factors is defined by

their respective weights (see equation 44):

ocmu (C,C") = Wogm * odm (C, C") +

Wostm * OStmml(C7 O/> + Wobm * Obmml(c’ C/) (44)

45



where Wogm, Wostm, Wosm are percentages indicating the importance of the associ-
ated grade) Wodm, Wostms Wobm € [0100]) Wodm + Wostm T Wobm = 1007 and where

obm;(C, C") is calculated based on formula 41, 42 or 43.

5.2.2 Class level criteria

The Liskov principle of substitutability [40] states that if {2 is a subtype of #1, then
an instance of type t2 can be used every time an instance of type t1 is expected.
Consequently, a type can be substituted with any of its subtypes. The situation
where one would like to substitute a class with one of its subclasses, however, does
not represent a challenge. More often, one would substitute a component C' with a
component C’ where the two components are completely different and thus do not
hold the is-a relationship.

We define substitutability criteria for components which are not related in the

class hierarchy.

Classes definition

Two classes are said to have the same definition if the following six conditions hold:

1. They have the same visibility modifiers. The discussion on why visibility modi-
fiers are important at method level also applies here. At this level V' = {public,
default, private} [38]. For less strict matching the visibility of the new class

may be less restrictive, compared to the visibility of the substituted class.

2. They have the same modifiers. At this level of granularity Vmod € MOD,

46



mod = abstract | final (final being applicable only for classes [38]).

. They belong to the same type of module. It is important to compare the type
of the modules because different types have different purposes. For example,
a class provides state and behavior whereas an interface imposes to its sub-
types to provide this behavior. Assume tm € TM and tm’ € TM' be the
module types of C' and C' respectively and TM = {class,inter face}, TM'

= {class, inter face}, then:

tm = tm/ (45)

. They have equivalent upper inheritance chain. Upper inheritance chain should
be compared because it reflects the state and behavior that this class implicitly
provides. Assume PM and PM’ be the ordered sets containing the parent

modules for C and C' respectively. Equation 46 should hold:

Vpm; € PM 3pm) € PM' e pm; = pmi, (46)

where ¢ € [1..|PM]|] and |PM| = |PM’|. For non strict class matching PM C

PM' or vice versa, and pm; can be a subtype of pm;.

. They have the same name. Comparing the names of two components is equiv-
alent to comparing the concerns these components implement. Similarly to
method level specification, the strict class specification matching requires equiv-

alence whereas more lax matching allows that the name of one of the components

47



is a substring of the name of the other.

. They declare equivalent interfaces, that is, equivalent definitions for attributes
and methods. It is essential to compare attributes and methods because they
represent the state and functionality the class provides. Only definitions will be
compared at this stage whereas the state and behavior of the defined methods
will be compared in the state and behavior of the class. Let DA and DA’ be
the defined attributes and DM and DM’ be the defined methods in C' and
C’ respectively. The two components are said to have equivalent interfaces if

equations 47 and 48 hold.

Vda € DA 3dd’ € DA’ o da = dd/ (47)

which means that the set of defined attributes in C' is equivalent to the set of
defined attributes in C'. Every element in DA and DA’ is defined similarly
to the elements in A,; in Section 5.2.1 and thus the discussion regarding lax

attribute matching is also applicable here.

Vdm € DM 3dm’ € DM’ o dm = dm/ (48)

which means that the set of defined methods in C' is equivalent to the set of
defined methods in C’. It is important to note that only the method definitions

are compared here. To decide whether two methods have equivalent definitions,

48



their definition should be compared (see Section 5.2.1).

More often, we do not need one to one correspondence (bijection). That is, we
require that for every defined attribute/method in C' there exists an equivalent
attribute/method defined in C’. Consequently, it is sufficient that DA and DM
are subsets of DA’ and DM’ respectively (injection). However, maintainers
should be aware that introducing non-required attributes/methods may result
in non-intended behavior of the system caused by attribute hiding, method

overriding [38] etc.

Overall definition matching The overall definition matching at class level for
two components C' and C', namely odm(C,C") is calculated based on the level of
matching of their visibility, modifiers, type, parent types, name, defined attributes,
and defined methods (see equation 49). The importance of these factors is defined by

their respective weights.

odma(C,C") wy * 64(C, C") + wymop * gnon(C, C") +
Wi, * gtm(oa C/) + Wppn * gPM(Oa C/) +.
Wen * an(ca Cl) + Wp4 * gDA(C> C,) +

Wpaz * gDM<Ca C’) (49)

where Wy, WaroD, Wim, WM, Wen, WpAa, and wpps are percentages corresponding to the

weight of the corresponding grade; wy,, Waprop, Wim, Wpar, Wen, Wpa, wpn € [0..100],

49



and W, + Waop + Wim + Wpp + Wen, + Wpa + wpar = 100,
95(C, C"), gron(C, C"), gam(C, C"), gpae(C, C'), gen(C, C'), gpa(C, C'), and gpi(C, C')
are percentages indicating the degree of matching of the associated element, and
9:(C, C"), gm0p(C,C"), 9em(C,C"), gpu(C,C"), gen(C, C"), gpa(C, C"), gpm(C,C") €
[0..100].

The grade of v vs v/, g,(C,C") and the grade of MOD vs MOD', grop(C,C")
are calculated as defined at method level (see Section 5.2.1).

The grade of tm vs tm/, g4, (C, C") returns 1 if ¢m is equivalent to tm’; 0 otherwise

(see equation 50).

1 iftm=tm
gim(C,C") = (50)
0 otherwise

The grade of PM vs PM’, gpp(C, C’) is calculated as shown in formula 51.

|PM]|

9pu(C,C") = Z Gomi(C, C") * wpm, (51)

k=1

where pmy € PM.
The weight wpm,, is calculated based on the number of parents of C' as shown in

equation 52, where k € [1.. |PM]|], and pmy € PM.

(52)

The grade gpm, (C, C") returns 1 if Ypmy € PM, 3pmj € PM’ such that pm/; is of

50



type or subtype of pmy; 0 otherwise (see equation 53).

1 if Ypmy € PM 3pmj € PM' o pmy, > pm;;
Gpm,, (C,C") = (53)

0 otherwise
where k € [1..|PM]|], and j € [1.. |[PM]].
The grade of cn vs cn/, gen(C, C’) returns 1 if cn is equivalent to cn’ or if cn is

substring of c¢n’ or vice versa; 0 otherwise (see equation 54):

1 ifen=cn/
Vsubstr(cn, cn’)
gcn(c, Ol) = 9 (54)

Vsubstr(en', cn)

0 otherwise

The grade of DA vs DA', that is gp4(C, (") is calculated based on the average of

the grades gg,, (C, C’) as shown in formula 55, where da, € DA:

|DA
9p4(C,C") =" 94a, (C, C') * wgg, (55)

k=1

The weight of each element in DA, namely wq,, is calculated based on the number

of defined attributes in C' (see equation 56):

1

m (56)

wdak =

where & € [1..|DA]], and day € DA.

51



The grade ggq, (C, C’) is calculated with regards to its visibility, modifiers, type,

and name and their corresponding weights (see equation 57):

94, (C,C") = wy * gy(dar) + wrrop * guop(day) +

Weype * gtype(dak) + Wname * gname(dak) (57)

where Wy, WpmoD, Wiype, a0d Wneme are percentages corresponding to the weights of
their corresponding grades, w.,, WyoD, Wiype, Wname € [0..100], and w, + wymop +
Wiype + Wname = 100.

The grade g,(day) returns 1 if the visibility of dag, namely v is equivalent to the
visibility of daj (da; € DA'), namely v' or if ¢’ is less restrictive than v; 0 otherwise

(see equation 58).

1 fo<?
gv(day) = (58)

0 otherwise

The grade gmop(dax), is calculated as defined in Section 5.2.1 (see equation 25).
The grade of giype(day), returns 1 if the type ¢’ of da} is of type or subtype of the

type t of day; 0 otherwise (see equation 59).

1 ift>¢
gtype(dak:) = (59)

0 otherwise

The grade of gname(dak) returns 1 if the name of day, namely an is equivalent to

52



the name of daj, namely an’ or if an is substring of an’ or vice versa; 0 otherwise (see

equation 60).

1 ifan =an/

\/substr(aﬁ, an')
gname(dak) = (60)

Vsubstr(an, an)

0 otherwise

The grade of DM vs DM, that is gppy(C, C') is calculated based on the average

of the grades gam, (C,C’) as shown in formula 61, where dmy € DM:

|DM|

9pue(C,C") = > Gam, (C, C") % W, (61)

k=1

The weight of each element in DM, namely wgn,, is calculated based on the
number of defined methods in C' as shown in equation 62, where k € [1..|DAJ], and

day € DM.

1

DM (62)

wdmk =

The grade ggm, (C, C’) is calculated based on formula 15.

Class state

The state of a component C is defined by the state of the set of its methods M.

In order to compare the states of C' and C’, one should compare the states of ever
Yy

53



method m; € M and m) € M’ defined in the components (see Section 5.2.1). The
attributes of a class also express its state but we do not address them explicitly. They
are implicitly taken into consideration through the state of the methods because they
are part of the set of state variables for each method.

For less strict state matching, one may be interested only in having part of the
provided functionality of C. This may be the case when some functionality is never
used. Thus it would be sufficient to compare the states only of a subset of the

functionalities provided by C.

Overall state matching The overall state matching of two components C' and C’
at class level, namely ostm(C, C") is defined as shown in formula 63, where m; € M,
and m}; € M":

|M]|
ostmq(C,C") = Z ostmm (m;, m;) * Wi, (63)
i=1

The weight of the grade of each overall state matching at method level, wyp,,
is calculated based on the number methods in C' as shown in equation 64, where

i € [1..|M]], and m; € M:

Wy, = 1 (64)

The overall state matching at method level, ostmg, (m;, m}), is calculated as shown

in formula 33.

54



Required types

At this level, the required types of C represent the union of the required types of
the methods of C because they constitute the set of functionalities that C' provides
and the declared types of its attributes because these types are necessary in order to
express the state of C. Assume ¢ being the type of a defined attribute da, da € DA,

and rt being a required type of method of C, rt € RT. Equation 65 should hold:

RT = {z|lz =tV z = rt} (65)

A matching based on a one-to-one correspondence between RT and RT’ may not
be required. It may be sufficient that RT is a subset of RT’. However, should RT
be a subset of RT”’, the effort for substituting the components may increase in some
cases since new types may be introduced and/or conflicts may occur between existing
types in the system and the newly introduced required types.

At this level of granularity, one may be interested in omitting detailed information.
Thus, it would be interesting here to take into consideration the required types as
black boxes with the possibility to zoom in (and have the methods and attributes of
the required types) or to zoom out (take into consideration only the packages) when

necessary.

55



Overall behavior matching The overall behavior matching of two components C

and C’ at class level, namely obmg(C, C") is defined as shown in formula 66.

|M| |DA|
0obme(C, C") = wy, * (O obmmy(mi, m}) + > gaa, (C, C")) (66)

i=]1 k=1

where h = |M| + |DA|, m; € M, m; € M, and day, € DA.
The weight w,, is calculated based on the number methods and attributes in C'

(see equation 67).

1

Yon = M| + | DA

obMy (m,-,m;-) is calculated as shown in formula 41, 42 or 43.

Overall component matching The overall component matching, oemy(C, C"), is

calculated as shown in equation 68.

ocmg(C,C") = Wogm * 0dmy(C,C") +

Wostm * OStmcl(Ca C,) + Wobm * Obmcl(ca C,) (68>

where Wogm, Wostm, and wepy, are percentages defining the importance of the corre-

sponding grade, Wodm, Wostms Wobm € [0..100], and wWogm + Wostm + Wepm = 100.

56



5.2.3 Package level criteria

Similar to the abstraction made in 5.2.2, the criteria for substituting packages are
defined by reusing the criteria defined in the level below. The definition, state, and
behavior of a package are defined mainly by the definition, state, and behavior of the

modules defined in it.

Package definition

Two packages are said to have the same definition if the following two conditions

hold:

1. They have the same name and hierarchy pn. The complete package name is

important because it contains the high level concern the package represents.

2. They define the same modules. Modules are vital to compare because they
fulfill the functionality which the package is expected to provide. Let DT and

DT’ be the sets of defined types of C' and C’ respectively:

Vdt € DT 3dt’ € DT' o dt = d¥ (69)

Overall definition matching The overall definition matching at package level for

two components C' and C’, namely odm,;(C,C") is calculated based on the level of

matching of their names and the types they define compared at class level (see formula

57



70):

|DT|
0dmy(C,C') = Wpn * gou(C,C") + Z wgti * odme(dt;, dt}) (70)

i=1

where odme(C, C") is defined in formula 49, ¢ € [1..|DT|], j € [1..|DT"|], dt; € DT,
dt; € DT', and where wy, + o7 wg, = 100.

The grade g,,(C,C’) returns 1 if pn is equivalent to pn’ or if pn is a substring of
pn' or vice versa; 0 otherwise (see equation 71).

’ 1 if pn = pn' V substr(pn, pn’) V substr(pn’, pn)
gpn(07 ') = (71)

0 otherwise

Package state

The set of defined modules in a package constitute the package itself. Thus, the states
of C and C' are said to be equivalent if they define modules with equivalent states

(see Section 5.2.2).

Overall state matching The overall state matching of two components C and C’

at package level, namely ostmy(C, C") is defined as shown in formula 72.

|DT)
ostmy (C,C") = Z ostmg (dt;, dt;) * wy, (72)

=1

where dt; € DT, dt; € DT".

The weight of each element wj,. is calculated based on the number types in C as

o8



shown in equation 73, where i € [1.. |DT|], t;, € DT

(73)

1
Wy,

= o]

The overall state matching at class level ostm(dt;, dt;.) is calculated as shown in

formula 63.

Required types

As for the state at package level, the behavior of a package consists of the behavior of
its defined modules. Thus, the required types of C represent the union of the required
types of the modules defined in C. Similarly to the class level criteria, it may not
be necessary to perform exact matching. In either case, the consequences should be

analyzed.

Overall behavior matching The overall behavior matching of two components C
and C’ at package level, namely obm,,;(C, C’) is defined based on the overall behavior
matching at class level calculated for all types in C as shown in formula 74, where

j € [1..|DT"[], dt; € DT, and dt} € DT":

|DT|
obmy (C,C") = Z obm (dts, dt;) * wh,, (74)

i=1

The weight of each element wgti is calculated based on the number of types in C

59



as shown in equation 75, where ¢ € [1.. |DT|], and dt; € DT

b 1

Wit = T57] (75)

The overall behavior matching at class level obm(dt;, dt;-) is calculated as shown

in formula 66.

Overall component matching The overall component matching, ocmy, (C, C’), is

calculated as shown in equation 76.

ocmp(C,C") = Weam * odmy (C,C") +

Wostm * OStmpl(Oa Ol) + Wopm * Obmpl<oa Cl) (76)

where Wogm, Wostm, and wepy, are percentages indicating the importance of the asso-
ciated grade, Wogm, Wostm, Worm € [0..100], and wogm + Wostm + Wopm = 100.
In the next chapter, we apply our methodology on different case studies in order to

show cases where the compared components have high or low level of substitutability.

60



Chapter 6

Case study

In this chapter we illustrate our approach on different case studies. We first describe
cases where the compared components have high level of matching (see Section 6.1)

followed by examples where the components are not substitutable (see Section 6.2).

6.1 High level matching examples

We illustrate our approach on a modified version of Debrief - an open source Java
application used for viewing maritime vessel tracks in two and three dimensions [14].
Debrief utilizes XML as an exchange format to retrieve and store plot data to analyze
and create tracks. XML itself is the most popular technology for structuring data
and thus XML-based encryption is the natural way to handle complex requirements
for security in data interchange applications.

For the purpose of this research, we modified the original Debrief application by

adding an encrypt/decrypt component [27]. The encryption in Debrief is performed

61



using method encrypt in class Debrief.Tools.Operations.Encrypt Test. Its imple-
mentation is as shown in Appendix A, Listing 1 and we will refer to this method as
C (which represents the component to be substituted).

Our approach is applied should one want to substitute the encryption component
in Debrief. Let this be the case and let the candidate secure component be the XML
encryption component by Ray Djajadinata [16]. We deploy our approach to decide
on the substitutability level on these components.

The choice of the candidate method in class X M LEncryption is intuitive based
on the name of the method. Since there exist two methods called encrypt (see Ap-
pendix A, Listings 2 and 3), we decided to analyze both components starting with the
method in Listing 3. We refer to it as C' (which represents the candidate component
for the substitution).

In the rest of this chapter we apply the substitutability criteria for non strict

matching at method level defined in Section 5.2.1 on C and C'.

6.1.1 Definition

Extracting the necessary information at method level from the definitions of C' and
C’ result in the following:

ID = {String output, String xmloutput}

ot = void

mn = encrypt

v = public

62



MOD = {static}

EXC = {Ezception}

ID' = {String select, KeyInfoResolver kiResolver, EncryptedType encT'ype, String
type, EncryptionMethod method, KeyInfo keyInfo}

ot' = Node

mn’ = encrypt

v’ = public

MOD' ={}

EXC' = {XMLEncryptionEzception}

The weight of each element w;q, is calculated based on the number of arguments
in C (see equation 17). In this case wiy, = 50% where & € [1..2]. g4, (C,C) is
calculated based on the average of the grades obtained during the comparison of each
input definition idy vs id) (see Table 2). The grade of idy vs id}, is calculated with
regards to its type (here 40%), position (here 40%) and name (here 20%). Thus, for
example since id; and id) are declared of the same type (40/40), are at the same
position (40/40) but have different name (0/20) the grade after the comparison is
80%. In a similar manner we obtain 40% of matching between ids and id,. After the
normalization we obtain grp(C, C") = 60%.

The result of matching of g,(C, C") is 0% because Node is not of type void.

However, gmn(C,C"), together with g,(C, C’), result in 100% matching because C

and C’ have the same name and visibility.

63



Input Grade | Weight Weighted
definition grade

5 (C. O | 80% | 50% 40%
9ia,(C,C) | 40% 50% 20%

gu_)(C, C,)Z 60%

Table 2: Input definition matching g;p(C,C") for method encrypt (Appendix A,
Listing 3).

gnmop(C, C") results in 0% because MOD and MOD’ do not match.

gexc(C,C") results in 100% match because EXC and EXC’ contain the same
number of elements and each element in EX C is a super type of the element in EXC’.

We calculate the overall definition matching odm,,;(C, C') while giving more weight

on the input, output, and name of a component (see Table 3).

Compared el- | Grade | Weight Weighted
ements grade
9ot(C, C") 0% 25% 0%
gmn(C,C") 100% 20% 20%
g,(C,C") 100% 10% 10%
gMOD(C, C') 0% 10% 0%

odmm (C, C"): | 55%

Table 3: Overall definition matching odm;(C, C") for method encrypt (Appendix A,
Listing 3).

The weight of each element in Table 3 is given by maintainers and may vary based

on its importance.

6.1.2 State

For extracting the state of the two components we first construct the set of important

variables as follows:

64



I, = {output, xmloutput}
O, = null
AP,,, = {document, zmloutput}

Acz{}

Note that since there is no return statement in C, the last statement will be
considered as the result of this component. Thus the elements of AP,,, are the actual
parameters of the last statement. The set of state variables for C is the union of I,
Om, APy, and Ag:

SV = {output, xmloutput, document}

Similarly, the important variables for C’ are as follows:

I, = {select, kiResolver, encT'ype, type, method, keyInfo}

-
m =

o null
AP|. = {select, kiResolver, encTypeElement, type, method Element,
keyInfoElement}

Al = {_node}

Resulting in the following set of state variables for C”:
SV’ = {_node, select, kiResolver, enclype, type, method, keylnfo,

encl'ypeElement, methodElement, keyInfoElement}

By applying backward slicing on every element in SV and SV’, we extract the

65



‘Component C

Figure 12: State diagram of C.

basic flow of events for the two components (see Figures 12 and 13).
The minimal words of C' and C’ are next extracted from their basic flow of events
(see Tables 4 and 5 respectively).

Applying formula 33 to C and C” results in 39% lax matching of the states of the

two components (see Table 6).

66



Figure 13: State diagram of method encrypt (Appendix A, Listing 3).

67



Minimal word | Occurrence
cipher
xmloutput
element

to

final

xml

store
symmetric
output
only
encrypt
parse
document
do

root
contents
write

info
encrypted
file

get

doc

key

[l B Rl I N Y it B e B e B B M B e M Ml B S KPS RS NS

©

Table 4: Minimal words of C' and their occurrence.

6.1.3 Required types

The required types of the two components are summarized in Figures 14 and 15. A
type with no features may correspond to parameter passing, a return type or a local
variable assignment /declaration.

As defined in Section 5.2.1, it may be interesting to omit detailed information by
zooming out on the required types and taking into consideration only the names of
the packages in which they are defined, rather than the names of the required types
and features.

The comparison of the required types is calculated at package level and the details

68



" Component €

= @ Debrief  Tools.Operations
= . Encrypt_Test
\\\\ & GenerateKevEncryptionKev(): Secretkey
-~ @ GenerateSymmetricKey(): SecretKey
***** & parseFile(String): Document
- @ storeKeyFile(Key, String): void
- @ writeEncryptedDocToFile(Document, String): void
& % java.lang
''''' @ Exception
,,,,,, @ String
b java.security
- @ Key
E} % javax.crypto
f """" & SecretKey
IZ-Z-Q 4 org.apache.xml.security .encryption
- EncryptedData
8 Encryptedkey
@ @ EncryptedType
- & setkevInfolKevInfo): void
B @ XMLCipher
b g AES_128: String
- @ doFinal{Document, Element, boolean): Documert
-+ 8 ENCRYPT_MODE: int
fffff @ encryptkey{Document, Key): Encrvptedkey
t @ getEncryptedData(): EncryptedData
««««« @ getInstance(String): ¥MLCipher
o @ inik(int, Key): void
b TRIPLEDES_Key'Wrap: String
fm WRAP_MODE: int
org,apache.xml.security keys
8- @ KevInfo
- @ add{Encryptedkey): void
- @ KeyInfo(Document)
tf1 org.w3c.dom
& Document
b @ getDocumentElement(): Element
8 Element

Figure 14: Required packages, types and features for C.

69



nent .’

@ com.ibm,xml.enc
: ----- @ KeyInfoResolver
& % com.ibm.xml.enc.type
N C EncryptedTyvpe
. =RC) EncryptionMethod
T createElement{Document, boolean): Element
ZJ @ KevInfo
i ‘- @ createElement{Document, boolean): Element
l @ Tvpe
: - @ createElement{Document, boolean): Element
=88 com.javaworld.xmlsec.enc
&3@ XMLEncryption
P @ encrypk{String, KevInfoResalver, Element, String,
E;] @ XMLEncryptionException
2 ‘o @ XMLEncryptionException(String, Throwable)
5;—3% com.javaworld. xmlsec, util
- 20 g
5 “~ @ createNewDocument(): Document
&} java.lang
- D string

: %mrg.w.’:*u:.dnfn*
@ Document
.8 Element

Figure 15: Required packages, types and features for method encrypt (Appendix A,
Listing 3).

70



Minimal word | Occurrence
method 5
ki 1
info 5
resolver 1
enc 5
element 12
create 3
null 6
encrypt 1
type 6
select 1
doc 3
key 5
false 3

Table 5: Minimal words of C’ and their occurrence for method encrypt (Appendix A,
Listing 3).

are shown in Table 7.

6.1.4 Overall matching

Finally, the result of the overall matching is summarized in Table 8, where wygm,
Wostm, and Wepm has been assigned 40%, 30% and 30% respectively.

Similarly, we analyzed the other method encrypt in class X M L Encryption as a
candidate component for the substitution (see Appendix A, Listing 2). The results of
this analysis are summarized in Table 9 regarding the definition matching, in Figure 16
and in Tables 10 and 11 regarding the state matching, and in Figure 17 regarding the
behavior matching. Table 12 presents the overall matching results.

Once this analysis completed, one may want to proceed with the more expensive
analysis, which is to consider complete flow of events. The results of this analysis are

summarized in Table 13 for method encrypt (Appendix A, Listing 1), in Tables 14

71



Wi oceg! ines Weighted
grade
0

cipher
xmloutput
element
to

final

xml

store
symmetric
output
only
encrypt
parse
document
do

root
contents
write

info
encrypted
file

get

doc

key

I IS LI 1A ) T e e e N e N N I e e e e D ST AN T R N
el el K=>] Hen)] Renl B o) Nen] Nl Hen] Nl Nen] Nenl i Tl Nen)] Nen) Nen ] N en] Ron) Nenl Nan) i g Neo) Han]

W OO (OO OO O = OO OO O | WO

ostm, (C,C"): | 39%

Table 6: Overall state matching (ostm, (C, C")) for method encrypt (Appendix A,
Listing 3).

D; m’é’}
javax.crypto 0
Debrief. Tools.Operations 0
org.apache.xml.security.keys 0
org.w3c.dom 1
org.apache.xml.security.encryption 0
java.lang 1
java.security 0

| obmm (C, C"): 29%

Table 7: Overall behavior matching for method encrypt (Appendix A, Listing 3).

72



Figure 16: State diagram of method encrypt (Appendix A, Listing 2).

73



‘ lf;:;mrmnant «

m com.ibm.xml,enc

=@

=0

é @

a@

AlgorithmFactoryExtn

@ AlgorithmFactoryExtn()

EncryptionContext

€ encrypt(): void

& EncryptionContext()

® replace(); void

@ setalgorithmFactory({AlgorithmFactaryExtn): vaoid

@ setData(Element): void

@ setEncryptedType(Element, String, Element, Element): void
& setKev(Key): void

@ setkKevInfoResolver(KeyInfaResalver): void
KevInfoResolver

o ENCRYPT_MODE: int

& setOperationMode(int): void

com. javaworld. xmlsec.enc

#MLEncryptionException
« & XMLEncryptionException(String, Throwable)

=88 java.lang

@
,,,,,, LG

String
Throwable

E%é% java.security

ﬁ;%org
- =20

123 @ org.

é@

Key
apache.xpath
#PathAPI
& selectNodelist{Node, String): ModeList
w3c.dom
Element
MNode
& cloneMode(boolean): Mode
B ELEMENT_MNODE: short
@ getNodeType(): short
ModeList

i @ getlength(): int

Figure 17: Required types for method encrypt (Appendix A, Listing 2).

@& item(int): Mode

74



Criterion Grade | Weight Weighted
grade
odm,,(C,C") 55% 40% 22%
ostm, (C, C") 39% 30% 12%
obm, (C, C") 29% 30% 9%
ocmm (C,C"): | 43%

Table 8: Overall matching for method encrypt (Appendix A, Listing 3).

Compared el- | Grade | Weight Weighted
ements grade
g]D(C, C/) 60% 25% 15%
90(C,C") 0% 25% 0%
9mn(C, C") 100% 20% 20%
9,(C, C") 100% 10% 10%
gMop(C, C’) O% 10% 0%
g,gxc(c, 0/) 100% 10% 10%

odm (C,C"): | 55%

Table 9: Overall definition matching (odm) for method encrypt (Appendix A, Listing
2).

and 15 for method encrypt (Appendix A, Listing 3), and in Tables 16 and 17 for
method encrypt (Appendix A, Listing 2).

Thus, the comparison considering the complete flow of events for method encrypt
(Appendix A, Listing 3) results in ocm,,(C, C") = 46% o;ferall matching, whereas for
method encrypt (Appendix A, Listing 2) oem,(C, C') = 50%.

We recognize the fact that thresholds may be defined subjectively and in this
dissertation we apply our own. We believe that for ocm below 20% the component
does not worth substituting (low level of matching). Between 20% and 40% the
substitution needs further analysis in order to reach any conclusion (medium level
of matching). Above 40% the substitution is promising and should be considered
(high level of matching). However, we believe that maintainers should be given an

indication of initial thresholds and weights based on statistical data. To this end, we

75



Minimal word | Occurrence
true 4

old
element
method
nl

type

ki

enc

ec
resolver

X
operation
set

mode

api

null

path
encrypt
select

n

node

J
i

list

info

clone
encrypted
get,

key

B

w

(e}

O ==Y = === = =N W ] N W DO =W —

Table 10: Minimal words of C’ and their occurrence for method encrypt (Appendix A,
Listing 2).

76



w; ocet ings Weighted
grade
0

cipher
xmloutput
element
to

final

xml

store
symmetric
output
only
encrypt
parse
document
do

root
contents
write

info
encrypted
file

get

doc

key

QO WI N NP P = 3] =R NN
[ K=l Rl Resl Bogd B Renl Foo) Han) Hen] Honl Ren) B Sl Fen] Nen) N an] Nan) Hav] Beo] Rewl § ol Ren] N an)

OO OINNO]|OOO|O|O OO OO O OO w| o

08tm,,;(C,C"): | 43%

Table 11: Overall state matching (ostm;(C, C")) for method encrypt (Appendix A,
Listing 2).

Criterion Grade | Weight Weighted
grade
odm, (C, C") 55% 40% 22%
0stmy, (C, C") 43% 30% 13%
obmm (C, C") 43% 30% 13%
0cMuy (C, C"): | 48%

Table 12: Overall matching for method encrypt (Appendix A, Listing 2).

77



Minimal word | Occurrence
store 3

generate 4

add 2

document 23

encrypted 18

cipher 32

doc

write

true

do

mode
element
only

key

parse

xml

file

128
xmloutput
symmetric
root

set

output
tripledes
aes

final
contents
encryption
instance
wrap

init

get

info

data
encrypt

to

w

Q|| OY N x| WOl
=

[\]
at

S

N

QO N} COf | O x| x| x| D] O W DN D WD O O | N} O

Table 13: Minimal words of C' and their occurrence, considering the complete flow
for method encrypt (Appendix A, Listing 1).

78



Minimal word | Occurrence
util 1
element 27
false 6
method 10
type 12
xml 1
ki 2
enc 10
resolver 2
create 7
null 12
encrypt 2
select 2
document 2
new 1
info 10
key 10
doc 7

Table 14: Minimal words of C' and their occurrence, considering the complete flow
for method encrypt (Appendix A, Listing 3).

plan to conduct more investigation in our future research in order to verify and refine
the thresholds and weights defined in this work.

The results of matching for each component are above 40% and thus promising.
Meanwhile there is no much difference between their ocm,;(C,C’), therefore both
components are to be considered.

In the rest of this chapter we illustrate with two case studies situations where the

components are not expected to match.

79



w; occe! ing Weighted
grade

0

0

w

store
generate
add
document
encrypted
cipher
doc

write

true

do

mode
element
only

key

parse

xml

file

128
xmloutput
symmetric
root

set

output
tripledes
aes

final
contents
encryption
instance
wrap

init

get

info

data
encrypt
to

NN

[ \)

[N
w
N|O
w

b
o0

w
[\™)

w

—_
—

ﬂ
EN|

(@]
ot

B

N O OO0 OO0 OO OO DO N O OO O|W OO

\V]

2

[e] Bo Nanl EY Hen) Rew) Noo) Feo] Nao] Nen] Nus] el Neo] Fan] Nen] Neo] Hen] K] Newl Feol B ool Neol o0l Reo) B ol Neo) Reo] end ew] I ot Nao) Reo] Bl Jen) Ran] fan]

00] N} OO | O Wi x| =] D] O Lol DO DO o D] O O] O DO O DD W O OY DO | QO DN W

0
ostm, (C,C"): | 51%

Table 15: State matching considering the complete flow for method encrypt (Ap-
pendix A, Listing 3).

80



Minimal word | Occurrence
api
encrypted
true

mode

null

af

element
enc

length

key

clone

list

replace

0

set

factory
extn

item

node
resolver
operation
algorithm
X
encryption
path

select

n

old

J
get

i

info
method
data
encrypt
nl

ki
context
€ec 10
type 12

DN 3| = 0o DO DD

N
-J

—_

Do Wl Ol = =] wl ool || O

[\]
w

o] QO = O = O QO QO | i) i DN DO DO OGO N OO

Do

Table 16: Minimal words for the complete flow of method encrypt (Appendix A,
Listing 2).

81



W;

Wi

=]

o

o
Q

Weighted
grade

store

0

generate

0

add

DO | o

document

encrypted

D)
oof

—| OO
[0 9]

cipher

doc

Ll W
N

write

true

do

mode

element

—_

—

only

key

\]

parse

xml

(@)

file

128

xmloutput

symmetric

root

set

output

tripledes

aes

final

contents

encryption

instance

wrap

init

get

info

e

data

encrypt

\V]

N} OO OO OO0 O OO O|O|O|O|OOIN OO OO

2

to

00| D[ OO | O] | W] x| D] O I DS O D] O O OO N O DO W O O DN i~ QO D[ W

[=IE I T N Nl Fon] Kol B o] Nl Fol Hen] ool Nl ol N o] Renl o} Nen) Nl Yol Reol ol Rend il Bl Rew) ol Rewl Neaw] Rand ooy en] Nan] Nan] Ran)

0

ostmm (C, C'):

50%

Table 17: State matching considering the complete flow for method encrypt (Ap-
pendix A, Listing 2).

82



6.2 Low level matching examples

In this section, we illustrate two examples where the compared components do not
match. In the first example, the compared components are in the same domain
(security), whereas in the second case they are performing completely different func-

tionalities.

6.2.1 HDIV case study

HDIV [28] is a Java Web Application Security Framework which can be obtained
from SourceForge. HDIV extends web application frameworks behavior (Struts 1.x,
Struts 2.x, Spring MVC) in order to avoid most common web application security
vulnerabilities.

In this case study, we estimated the level of substitutability for our component
C and method wvalidate in class org.hdiv.dataValidator.DataV alidator (see Ap-
pendix A, Listing 4). We obtained 40% matching for the overall definition matching
(see Table 18), 0% for the overall state matching (see Table 19), and 14% for the
overall behavior matching (see Table 20). Thus, the overall component matching re-
sults in 20% (see Table 21). The result is at the limit of low and medium matching.
The distribution of this matching however comes predominantly from the overall def-

inition matching. Maintainers can then conclude that the matching is definitely low

rather than medium.
The result can be verified by retrieving the documentation for method walidate

which reads as follows: Checks if the value data sent by the user to the server in

83



Compared el- | Grade | Weight Weighted

ements grade

9u(C, O 0% 55% 0%

gmn(C, C") 0% 20% 0%

g,(C, C") 100% 10% 10%

gMOD(C’, C,) 0% 10% 0%

9exc(C,C") 100% 10% 10%
odm ., (C,C"): | 40%

Table 18: Overall definition matching odm,;(C, C’) for method validate (Appendix A,
Listing 4).

the parameter parameter is correct or not. The received value is checked with the
one stored in the state to decide if it is correct. We can conclude that although the
domain of HDIV, which is security, is the same as the domain for method encrypt
the functionality provided by method wvalidate can not substitute the functionality

provided by method encrypt.

6.2.2 OPSIS case study

Opsis [44] is a Java applet designed to teach binary search tree algorithms. It uses
visual programming in an abstract way. Opsis combines elements of programming,
proof, and animation to enhance the learning experience.

We estimated the level of substitutability of component C' with method duplicate
_tree defined in class Fragment (see Appendix A, Listings 5 and 6). It is clear from
the description of this system and from the name of the candidate method for the
substitution that the provided functionality by the candidate component will most
probably not match. The results of the comparison are 15% for the overall definition

matching (see Table 22), 18% for the overall state matching (see Table 23), and

84



W; occy’ iNe Weighted
grade

)

cipher
xmloutput
element
to

final

xml

store
symmetric
output
only
encrypt
parse
document
do

root
contents
write

info
encrypted
file

get

doc

key

O == w| o o =] = =] = ] = s = =] =] = =] = o o o
O OO0 O OO0 OO OO OO oo O
O OO OO OO QOO O OO OO OO O OO OO

ostmm (C,C"): | 0%

Table 19: State matching considering the basic flow for method validate (Appendix A,
Listing 4).

Di Z’I'L%?/
javax.crypto 0
Debrief. Tools.Operations 0
org.apache.xml.security.keys 0
org.w3c.dom 0
org.apache.xml.security.encryption 0
java.lang 1
java.security 0

| obmy (C, C"): 14%

Table 20: Behavior matching for method validate (Appendix A, Listing 4).

85



Criterion Grade | Weight Weighted
grade
odm. (C,C") 40% 40% 16%
ostm,(C, C") 0% 30% 0%
obmm (C,C") 14% 30% 4%
ocmy (C, C"): | 20%

Table 21: Overall matching for method validate (Appendix A, Listing 4).

Compared el- | Grade | Weight Weighted
ements grade
g[D(C, C/) 20% 25% 5%
90(C, C") 0% 25% 0%
9mn(C,C") 0% 20% 0%
9,(C,C") 0% 10% 0%
gMQD(C, Cl) O% 10% 0%
ggxc(c, Cl) 100% 10% 10%

odmy, (C, C"): | 15%

Table 22: Overall definition matching odm,,;(C, C") for method duplicate_tree (Ap-
pendix A, Listings 5 and 6).

14% for the overall behavior matching (see Table 24). We thus obtain 15% overall

component matching which confirms the low level of substitutability.

86



w; oceg! ingcs Weighted
grade
0

cipher
xmloutput
element
to

final

xml

store
symmetric
output
only
encrypt
parse
document
do

root
contents
write

info
encrypted
file

get

doc

key

O = —| ol o |~ =~~~ = & =] =] ] =] = o] ol o] o
= k=] Kke») oo Nen] Nen] Han] N ] Fen] Fen) Hen] Hen] Fen] Nav] Heo) Hen] Noo) Nen} Nes] Hes) Hen] Nan] o)
[ed K{*] k=] Ke»)] Fen] N ev] Hen] Nen] Nen] Fen] Kes] Nev] Nan] Fen)] Nen) Nen] Neo) Nen] Hen] Nen] Neno] Han) Nan]

ostm, (C,C"): 8%

Table 23: State matching considering the basic flow for method duplicate_tree (Ap-
pendix A, Listings 5 and 6).

Di ing
javax.crypto 0
Debrief. Tools.Operations 0
org.apache.xml.security.keys 0
org.w3c.dom 0
org.apache.xml.security.encryption 0
java.lang 1
java.security 0

| obmm (C, C"): 14%

Table 24: Behavior matching for method duplicate_tree (Appendix A, Listings 5 and
6).

87



Criterion Grade | Weight Weighted
grade
odm, (C,C") 15% 40% 6%
ostm, (C, C") 18% 30% 5%
obm, (C, C") 14% 30% 4%
ocmy (C,CN): | 15%

Table 25: Overall matching for method duplicate_tree (Appendix A, Listings 5 and
6).

88



Chapter 7

Automation and tool support

The automation of our approach is provided through an Eclipse [17] plug-in.
It is composed of three main parts: code processor, the metrics implementation,

and the plug-in interface.

1. The code processor uses the Eclipse AST in order to extract the needed infor-
mation. The AST is traversed using the Visitor pattern in order to collect the

component definition, state!, and behavior.

2. The metrics implementation performs the analysis of the extracted information.
This part is independent of the language environment and can be reused for

other object-oriented languages than Java.

3. The plug-in interface is developed using the Standard Widget Toolkit (SWT),

JFace [54] and ZEST (Zoomable Eclipse SHriMP Tool [5]) libraries.

1'We initially planned to use Bandera, a tool for automatic extraction of finite-state models from
Java source code by Corbett et al. [13]. However, we find that the process of writing the required
XML file which specifies the settings for the tool is unnecessarily tedious.

&9



In order to select the components to be analyzed, maintainers are given a tree rep-
resentation of the current workspace. Maintainers can navigate through the tree and
select the two components to be analyzed by a right click, choosing Set as first/second
component (see Figure 18). In order to increase the performance, the analysis is per-
formed following the lazy load approach, which allows an element of the tree and its
direct children to be analyzed only if the maintainer clicks on it.

Maintainers are given default values for the measurement metrics which can be
adjusted with regard to their needs (see Figure 19).

The results of the analysis are shown in three different views: Definition View (see
Figure 20), State View (see Figure 21), and Behavior View (see Figure 22), while the

results of the measurements are summarized in Results View (see Figure 23).

90



TR

s dh 7

B8 Debrief Readeriwriter xML, Ut
Debrief , Tools.FilkerOperations
Debrief. Tools. Operations

‘ @ Closesession

@ copyFile

-8 DebriefWriteYRML

&5@ Decrypt_Test
ES@ Encrypt_Test
{ B-e EEtE
GenerateKeyvEncryptionkey[]
GenerataSymmetrickey([]
main[String args[]]
parseFile[String fileName]
storeKeyFile[Key keyEncryptk
usage[]

- @ writeEncryptedDocToFile[Daocy
ExitApplication

ImpottAction

@ Importaction

@' ImpartData

® @ mportDataz

]
@
]
&
&

@& ImportRangeData
F © Newsession
{&3@ OpenPlot
@ OpenPlatAction
&3@ OpenPlotAction
- @ OpenPlotxML
@ Redo

- RedoAction
m@ SavePlot

@@ saveplotaction

m@ SavePlotaction
EB@ SavePlotAs
@@ SavePlotaskML
' SavePlot¥ML

50

Figure 18: CM Selection

91

A A AR AN

krirng i:nutpi.st, Sti‘ing wrfoukout]

1 Bekas Firsk comporent

Set as second component

G Mo
v o Back

=P Go Into

T

View - workspace.



Definition settings

Definition weight | 40 %
Weight of 1D vs ID' | 25 %
Weight of ot vs ot' 25 %
Weight of mn vs mn' 20 %
Weight of v vs v' 10 %
Weight of MOD vs MOD' 10 %
Weight of EXC vs EXC' 10 %
' State settings

State weight E 30 %
Basic Flow &

Complete Flow Y

‘Behavior settmgs

Behavior weight } 30 %
Package oy
Class O
Method O

Figure 19: CM Selection View - settings.

92



AT

Tomp c

ID = {String output, String xmioutput}
ot = void

mn = encrypt

v = public

MOD = {static}

EXC = {Exception}

" Enﬁﬁhﬁnen c

ID' = {String select, KeyInfoResolver kiResolver, EncryptedType encType, S
ot' = Node !
mn' = encrypt

v' = public

MOD' = {}

EXC' = {XMLEncryptionException}

Figure 20: CM Definition View.

93



G

" component ¢

Figure 21: CM State View.

94



"Component

= fﬁ‘ Debrief; Tools:Operations
L @ Encrypt_Test
o @ GenerateKeyEncryptionkey(): Secretkey
el ‘GengrateSymmetricKey(): Secretkey
- @ parseFile(String): Document
i @ storeKeyFile{Key, String): void
‘o @ writeEncryptedDocToFile{Document, String
- java.lang
‘:9 Exception
@ shing
=% java.security
i : Key
‘ % javax.crypto
' Secretkey
3 org.apache.xml.security . encryption
@ EncryptedData
B Encryptedkey
LJ @ EncryptedType
@ setKevInfo{KeyInfo): void
LTJ @ XMLCipher
AES_128: String
doFinal{Document, Element, boolean): Doc
ENCRYPT_MODE: int
encryptkKey(Dacument, Key): Encryptedke
getEncryptedData(): EncryptedData
getInstance(String): XMLCipher
inik{int, Key): void
TRIPLEDES_KeyWrap: String
WRAP_MODE: int

522 % org.apache.xml.security. keys

s @ KeyInfo
- @ add{Encryptedkey): void
@ KeyInfo{Document)

@~ org.w3c.dom

=E @ Document
¢ e getDocumentElsment(): Element
@ Element:

Cnrﬁpnnent L'

B8 com.ibm.xml.enc

ﬁﬁ@ AlgorithmFactoryExtn
lle AlgorithmFactaryExtn()
C} @ EncryptionContext
i encrypt(): void
EncryptionContext()
replace(): void
setalgorithmFactory(algorithmFactoryExtn
setData(Element): void
setEncryptedType(Element, String, Elemer
setkey(Key): void
i setkeyInfoResolver(KeyInfoResclver): voi
E;%J @‘ KeyInfoResolver
<8 ENCRYPT_MODE: int
© setOperationMode(ing): void

188 com.javaworld.xmisec.enc

{ﬂ@ ¥MLEncryptionException ;
oo @ XMLEnNcryptionException{String, Throwable j

E Qﬁ' java.lang

@ String
A8 Throwable

=B {3& java.security

-8 org.apache.xpath

& ' xPathAPI
woog seleckNodelist(Node, String): NodeList

% org.w3c.dom

i Element
f“} @ Mode
{ @ cloneMode(boolean): Node
~® ELEMENT_NODE: short
- & gethNodeType(): short
B @ NodeList
o4 getLength():-int
-~ @ lkem{int): Mode

Figure 22: CM Behavior View.

95



Definition

ID vsID' = 15,00 %

ot vs ot' = 0,00 %

mn vs mn' = 20,00 %

v ysy' = 10,00 %

MOD vs MOD' = 0,00 %
EXC ws EXC' = 10,00 %

Overall definition matching : 22,00 %

tate

COverall state matching : 12,00 %

ayior

Overall behavior matching ¢ 9,00 %

Overall

Overall component matching : 43,00 %

Figure 23: CM Results View.

96



Chapter 8

Related work

The approaches that are relevant to our work can be categorized into two main groups.
The first group focuses on component retrieval and component matching, whereas the
second group explores the detection of code clones. These two groups are presented
in Sections 8.1 and 8.2. Next, we compare our approach with the existing work in

Section &8.3.

8.1 Component retrieval and matching

Khemakhem, Drira, and Jmaiel [33] present an approach for discovering software
components in a repository, thereby helping the developer to integrate the selected
component by developing two ontologies: discovery ontology and integration ontol-
ogy. A query is automatically generated from the specification of the component,
after which the components that correspond to the result of this query in a spe-

cific repository are indexed. The specifications of the components are described in

97



the Unified Problem-Solving Method Language (UPML) by the component suppli-
ers. The authors recognize this limitation and plan to address it in the future by
deducting the description from the source code of the components. When identify-
ing potential components from the repository, the authors distinguish four degrees
of similarities: exact (when the two components are equivalent), plugIn (when the
requested component is a sub-concept of the component in the repository), subsume
(when the requested component is a super-concept of the component of the reposi-
tory), and disjoint (when there is no element of the repository component description
corresponding to the requested description).

Andreou, Vogiatzis, and Papadopoulos [1] propose a method for intelligent classifi-
cation and retrieval of software components. The method is based on a predefined set
of characteristics (such as general functionality, implementation language, platform,
memory utilization, price, etc.) from which users will choose those of interest. Once
users have chosen the desired threshold, the preferences are encoded using binary
strings in order to return the components corresponding to the closest classifier. The
classification/retrieval procedures are based on a dedicated genetic algorithm that
processes the set of predefined characteristics.

Vitharana, Zahedi, and Jain [65] describe a facet-based approach, relying on XML
to design a knowledge-based repository for business components. They propose iden-
tifiers (such as name and industry type) for representing the structural information
of components and descriptor facets (such as synonym, role, etc.) for the unstruc-
tured information. A prototype version of a component knowledge-based repository

was developed and the experiments conducted showed that classifying components

98



according to their hierarchical structure at different levels of abstraction and on the
basis of their structured and unstructured information can be promising in the domain
of component retrieval.

Nakkrasae and Sophatsathit [42] propose the use of computational intelligence, us-
ing clustering algorithms for component classification where components are grouped
on the basis of Rival Penalized Competitive Learning algorithm. Components are
formally specified in the Z language based on three aspects: structural, functional,
and behavioral [41].

Systa [58] presents a tool called SCED for modeling both the static and dynamic
behavior of object-oriented software systems from source code. The dynamic behavior
of the software is extracted, based on behavioral patterns detection from event traces.
The total behavior of objects is represented by a synthesized state diagram.

Yu et al. [67] discuss a methodology to extract user goal models from legacy code.
Their approach consists of refactoring the source code by applying the extract method
strategy based on comments. If the refactored code is not structured, statecharts are
constructed to achieve this. An abstract syntax tree (AST) is subsequently built from
the structured program, based on which goal models are extracted. In their future
work, the authors intend to compare the reverse engineered goal models with those
derived from requirements elicitation. The process is not fully automated.

Zaremski and Wing [69] describe an approach which involves the comparison of
the behavior of two software components. The authors specifically examine retrieval
for reuse, substitution for subtyping, and interoperability. They define components

as a function or a module (a set of functions) and use formal specifications of com-

99



ponents in terms of pre- and post-condition predicates. Thus, the authors rely on
theorem proving to determine match and mismatch and define a lattice of potential
satisfaction relationships over axiomatic specifications (they distinguish four kinds
of pre/post matches starting from the strongest match, which is an exact match,
followed by progressively weaker matches). The theory is illustrated with examples
of the implementation of specification matching using the Larch Prover (LP). The
signature [68] is used as a filter in order to eliminate the obvious non-matches before
trying the more expensive specification matching.

A similar approach is described by Fischer, Kievernagel, and Struckmann [19]
where the authors use signature matching to filter promising candidates out of a
component library. They build proof obligations from VDM specifications of key and
components and feed them into a theorem prover. The validated obligations denote
matching components. The components are implemented in imperative languages
(VDM and Modula-2) and annotated with implicit VDM specifications. In the first
phase, the authors filter one part of the components by signature matching. They
consider that a candidate component matches a given search key if it simultaneously
has weaker pre-conditions and stronger post-conditions than the key. In other words,
if a component requires less than specified but grants more, it can be plugged-in.
In the next phase the authors take the remaining components in order to test them
for specification matching using OTTER, a general purpose theorem prover based
on resolution principle. Overall, the provided automation is able to locate software
components via the matching of implicit VDM specifications. The computational

effort, however, is high.

100



Hemer [29] discusses how existing specification matching techniques can be ex-
tended to handle matching state based components. The author restricted his ap-
proach to three kinds of unit in a modulé: state schema, initialization schema, and
operation schema. A modular extension of the Z specification language is deployed,
called Sum specification language.

Feiks and Hemer [18] extend previous approaches in order to reason about class
matching in object-oriented programming, with particular attention to information
hiding, inheritance, and overriding (redefining). Class matching extends the notation
of function matching while taking inheritance into consideration. If the features
(attributes and methods) of two classes match, then the two classes are considered to
match. For method matching the authors extend the function matching discussed by
Zaremski and Wing [69], and for attribute matching they consider the state schema
matching routines used for matching state based modules [29].

Penix and Alexander [46, 47] propose the retrieval and reuse of components by
using semantic information provided by the formal specifications. Component re-
trieval is made efficient by using a feature-based classification scheme. Features are
assigned to components based on specific necessary conditions that are implied by
the component specifications. The formally described features are used as retrieval
keys to prune bad solutions before evaluating the satisfaction condition.

Rosa et al. [52] also propose a formal approach. In this work however, non-
functional requirements (formally specified in the Z language) are used to filter com-
ponents.

Gannnod and Cheng [24] derive formal specifications from imperative source code.

101



These specifications are considered to be at the “as-built” level of abstraction, which
indeed facilitates the traceability between specifications and code but which may be
difficult to use for higher level reasoning. Gannod and Cheng [25] describe a formal
approach for deriving abstract functional specifications from “as-built” specifications
while Gannod, Chen and Cheng [23] show the applicability of abstract specifications
to support the population of component libraries.

For component retrieval, Podgurski and Pierce [48] propose a method based on
the executability of the components, namely, behavior sampling. In this approach,
users specify a sample input and the corresponding output. Any component whose
output is compatible to the sample output specified by users is retrieved. The authors
show that the method is precise for small sample input.

Cechich and Piattini [8] introduce early measurements for identifying suitable
COTS components. The authors argue that a first filtering, based on the function-
ality of the components, should be conducted before proceeding to a comparison of
other properties. They focus on semantic mapping and define two groups of measures:
component-level measures and solution-level measures. This approach requires that
the functionality of the components is described through the functional user require-
ments (FUR) documents either by scenarios or by using an architectural description
language (ADL) [10, 45] which, when not available, should be derived from other soft-
ware engineering artifacts. The approach is part of a wider iterative process based
on Six-Sigma precepts [7].

Approaches such as the one proposed by Andreou, Vogiatzis and Papadopoulos [1]

are based on attributes that assume values. Even though they are considered to be

102



more flexible than controlled vocabulary [21], they are hardly applicable for OSS
components. Approaches based on facet classification [65] are similar to attribute-
values approaches and require manual classification which, however, may be time
consuming. Similarly, the specification of the components proposed by Khemakhem,

Drira and Jmaiel [33] could be expensive.

8.2 Clone detection

Sager et al. [53] detect similar Java classes using tree similarity algorithms. The
comparison is performed on the FAMIX [15] model level which is generated from the
AST representation of the compared classes. The end objective of this approach,
however, is to detect similar code fragments more often in different versions of the
same code.

Kakimoto et al. [32] propose an approach to identify similar Java classes using
Java birthmarks [62]. The authors extract four types of birthmarks: constant values
in field variables, sequence of method calls, inheritance structure, and used classes.
This approach is applicable for finding similar classes that are often constructed by
copy-and-paste.

Similarly, Schuler, Dallmeier, and Lindig [56] instrument bytecode and identify

similar birthmarks in order to protect a program’s copyright. The authors use dy-

namic birthmarks and observe sequences of method calls per objects, instead of the
global traces proposed by Tamada, Nakamura, and Monden [61].

Krinke [36] identifies similar code based on finding maximal similar subgraphs in

103



fine-grained program dependence graphs (PDG). As possible problems which can be
solved by this approach, the author suggests errors that should be fixed or modifica-
tions to be applied in both original and duplicated code. Another approach which is
based on PDG is proposed by Komondoor and Horwitz [34], this time for the purpose
of refactoring. The authors propose the identification of duplicated code and the
subsequent extraction and replacement of the repeated code with method calls.
Kontogiannis [35] presents an approach for clone detection based on five data and
control flow related metrics which are calculated using the AST of the compared

programs.

8.3 Discussion

Approaches for component matching generally assume the existence of specifications.
The component to be substituted as well as the candidate components should be
formally specified. Formal specification languages are utilized in order to specify
components rigorously. When specification is available, those methods [1, 33] should
be applied to filter irrelevant components in the repository. However, formally speci-
fying a component requires expertise which is not generally part of the development
process of OSS components. Our approach does not require any information other

than source code and thus can address those cases where specification is not avail-

able. At the same time, our approach may be used to complement already existing
approaches when the formal specification is part of the documentation.

On the other hand, clone detection approaches rely on source code only. They

104



can thus be applicable to OSS components. However, these approaches are suitable
in order to identify different versions of the same source code or to identify code
constructed through copy and paste techniques. They are hardly applicable in cases
where one tries to compare two different components.

One limitation of our approach is its dependency on the quality of the source
code when comparing the state of the components. We assume that developers follow
some minimum coding standards thus giving meaningful names to types, attributes,

methods, and local variables while programming,.

105



Chapter 9

Conclusion and recommendations

for future work

In this dissertation, we proposed an approach for comparing object-oriented compo-
nents based on source code analysis. We defined substitutability criteria for com-
paring the extracted information at three levels of granularity, namely i) method, ii)
class, and iii) package. The addressed criteria use static information representing the
definition, state and behavior of the components. Our method provides maintainers
with an indication for the level of substitutability of two components. This work
complements current work on component retrieval which is to be applied prior to our
approach in order to select candidate components for analysis.

For future developments, we believe that more investigation is needed in order to
verify and refine the initial values for the thresholds and weight of each criterion in
this comparison. Moreover, we plan to complement this work with dynamic analysis.

Dynamic analysis will allow us to address some non-functional requirements of the

106



components, such as performance. In addition, dynamic analysis will allow us to
compare the components seen as black boxes (in terms of input/output) and to extract
and compare the values of the important variables for the state of a component. It
would be also interesting to apply similar analysis on COTS components where source
code is not available. Another direction for future work is to adapt the in-memory

storage in order to increase the performance and analysis of large-scale components.

107



Glossary

AP

A’I‘ti

DA
DM
DT

EXC
ID

MAP
MOD
M?"ti
PM
RT

SV

a/?”ti

da

dm

The actual parameters passed to the method
call in the return statement of C' at method
level, part of the set of state variables SV, 37
The set of attributes of the class to which, at
method level, C belongs to, part of the set of
state variables SV, 37

The set of attributes of the required type rt;,
42

Component, 20

The set of defined attributes of C, 48

The set of defined methods of C, 48

Set of defined types of C' at package level, 57
Set of events upon which C changes from one
state to another, 24

Exceptions of C' at method level, 29

Input definitions of C, 27

The set of formal parameters of C' at method
level, part of the set of state variables SV, 37
The set of methods’ states of C, class level, 53
Set of elements associating an event of C' with
its originating and destination states, 24
Modifiers of C, 29

Methods of the required type rt; of C, 26

Set of parent modules of C, 47

Required types of C, 25

Set of states of C, 24

The set of state variables of C, at method
level, 37

The set of visibility modifiers that v may take,
29

Attribute of the required type rt; of C, 43
Defined attribute of C' at class level, element
of DA, 48

Defined method of C at class level, element of
DM, 48

108



dt

exC

QDA(O, C/)

gDM(C7 C/)

gexc (C, Cl)

QID(C, C/)

gmon(C,C")

gmoD (07 Cl)

9pm(C,C")

9en(C,C")

gdak (Ca Cl)

gdmk (03 C/)

Gexcy, (O, C/)

Defined type, element of DT, package level,
57

Event, element of £, 25

Exception, element of EXC, 30

Grade of matching for the set of defined
attributes DA of C, used for calculating
the overall definition matching at class level
odmcl(C, C’), 50

Grade of matching for the set of defined meth-
ods DM of C, used for calculating the overall
definition matching at class level odmg(C, C"),
50

Grade of the set of exceptions EXC of C', used
for calculating the overall definition matching
at method level odm,(C,C"), 32

Grade of the set of input definitions ID of
C, used for calculating the overall definition
matching at method level odm,;(C, C"), 32
Grade of matching for the set of modifiers
MOD of C, used for calculating the overall
definition matching at class level odmy(C, C"),
50

Grade of the set of modifiers MOD of C, used
for calculating the overall definition matching
at method level odm, (C,C"), 32

Grade of matching for the set of parent mod-
ules PM of C, used for calculating the overall
definition matching at class level odmq (C, C"),
50

Grade of matching for the name cn of C, used
for calculating the overall definition matching
at class level odmy(C,C"), 50

Grade of matching for a defined attribute day
of C, used for calculating the grade of match-
ing for the defined attributes gpa(C,C’) in
the overall definition matching at class level
odmg(C,C"), 51

Grade of matching for a defined method dmy,
used for calculating the grade of matching of
the defined methods gpy(C,C"), class level,
53

The grade of each exception exc, in
gexc(C, C") in the overall definition matching
at method level odm,;(C,C"), 36

109



Gidy, (07 )

gmﬂ(ca C/)

9mod;, (O, Cl)

Gname (’idk, Zd;c)

904(C, C")

Gpmy, (C, )

9pn(C, C")

gpos (idka Zd;g)

g9em(C, C)

Gtype (de ) Zd;c)

9.(C,C")

g.(C, C")

tdy

The grade of each input definition idy in
g1p(C,C'") in the overall definition matching
at method level odm (C,C"), 32

Grade of the method name mn of C, used for
calculating the overall definition matching at
method level odm,,;(C,C"), 32

The grade of matching for each modifier mod;,
in gprop(C, C') in the overall definition match-
ing at method level odm;(C,C"), 35

The grade of name matching for each input
definition idy in g4, (C, C’) in the overall defi-
nition matching at method level odm,,,(C, C"),
33

Grade of the output type ot of C, used for
calculating the overall definition matching at
method level odm, (C, C"), 32

Grade of matching for parent module pmy of
C, used for calculating the grade of match-
ing for the parent modules gpp(C,C’) in
the overall definition matching at class level
odm(C,C"), 50

Grade of name matching pn at package level,
58

The grade of position matching for each input
definition idy, in g4, (C, C') in the overall defi-
nition matching at method level odm, (C, C'),
33

Grade of matching for the type tm of C, used
for calculating the overall definition matching
at class level odmy(C,C"), 50

The grade of type matching for each input def-
inition idy in g4, (C, C’) in the overall defini-
tion matching at method level odm.,(C,C"),
33

Grade of the visibility v of C, used for calcu-
lating the overall definition matching at class
level odmy(C,C"), 50

Grade of the visibility v of C, used for calculat-
ing the overall definition matching at method
level odmy, (C,C"), 32

Input definition, element of 1D, 27

110



in’g"d‘“

v
mé’
mé.’,’

ings

m;
map
mody,

nrti
nameam

Om

obmy (C, C")
obm (C, C")

obmy (C, C")
occe

oemg (C, C)
ocmyy (C, C")

ocmp(C, C')
odm(C,C")
odm, (C, C")
odmy, (C, C7)
ostmg(C, C")
ostm, (C, C")

ostmy (C, C")
ot

Returns 1 if mody, is a modifier of C; 0 other-
wise. Used in gmoa, (C, C’) in the overall defi-
nition matching at method level odm,,,(C, C"),
35

Existence of the required feature rf; by C, 44
Existence of the required package rp; by C in
', 45

Returns 1 if w; occurs in C’; 0 otherwise, used
in the overall state matching at method level
ostm,, (C,C"), 41

Method state of C' at class level, element of
M, 53

Association, element of M AP, 25

Name of C' at method level, 28

Modifier, element of MOD, 29

The name of the required type rt;, 42

The name of attribute a,, of the required type
rt; of C, 43

The output of C' at method level, part of the
set of state variables SV, 37

Overall behavior matching at class level, 55
The overall behavior matching at method
level, 44

Overall behavior matching at package level, 59
The number of occurrences of the minimal
word w; in the extracted flow of C, used in
the overall state matching at method level
ostm, (C, C"), 40

Overall component matching at class level, 56
Overall component matching at method level,
45

Overall component matching at package level,
60

Overall definition matching of C at class level,
49

Overall definition matching at method level
for two components C' and C’, 31

Overall definition matching at package level,
57

Overall state matching at class level, 54

The overall state matching at method level, 40
Overall state matching at package level, 58
Output type of C at method level, 28

111



pmy;

pn
DPTirt;

Tfi
TDi
T ti
Sn

tm
typeal?‘tl'

v
vistbility,,,,

WpA

WpmM

WExC

Wrp

WpmoDp

Parent module of C' at class level, element of
PM, 47

Name of C, package level, 57

The name of the package in which the required
type rt; is defined, 42

Required feature by C in C’, 44

Required package by C, 45

Required type, element of RT', 25

State, element of S, 25

Type of a defined attribute da used in the def-
inition of the set of required types RT' at class
level, 54

Type of C at class level, 47

The type of attribute a4 of the required type
Tt of O, 43

Visibility modifier of C, 29

The visibility of attribute a,, of the required
type rt; of C, 43

Weight of the grade of matching of a defined
type dt; of C, used for the overall behavior
matching at package level obmy(C,C"), 59
Weight of the grade of matching of a defined
type dt; of C, used for the overall definition
matching at package level odmy(C, C"), 58
Weight of the grade of matching of a defined
type dt; of C, used for the overall state match-
ing at package level ostmy, (C, C’), 58

Weight of the set of defined attributes DA of
C, used for calculating the overall definition
matching at class level odmy(C, C"), 49
Weight of the set of defined methods DM of
C, used for calculating the overall definition
matching at class level odmy(C,C'), 49
Weight of the set of exceptions EXC of
C, used for calculating the overall definition
matching at method level odm,,(C, C"), 31
Weight of the set of input definitions ID of
C, used for calculating the overall definition
matching at method level odm,(C, C"), 31
Weight of the grade of matching for the modi-
fiers of a defined attribute gyrop(dag), used for
calculating the grade of matching g4,(C, C"),
class level, 52

112



WpmOoD

WpmoD

WpMm

wbh

wcn

Wy,

wdmk

Wezgcy,

Wid,,

Wmody,

wname

Weight of the set of modifiers MOD of C, used
for calculating the overall definition matching
at class level odmy(C,C"), 49

Weight of the set of modifiers MOD of C, used
for calculating the overall definition matching
at method level odm,;(C,C"), 31

Weight of the set of parent modules PM of
C, used for calculating the overall definition
matching at class level odmy(C, C"), 49
Weight of each element in the overall behavior
matching at class level obm(C, C"), 56
Weight of the name cn of C, used for calcu-
lating the overall definition matching at class
level odmy(C,C"), 49

Weight of the grade of matching gqq, (C, C")
used for calculating the grade of matching for
the defined attributes gpa(C, C") in the overall
definition matching at class level odmy(C, C"),
51

Weight of the grade of matching for a de-
fined method ggm, (C, C’), used for calculating
the grade of matching of the defined methods
9pm(C, C"), class level, 53

The weight of each exception excy in
gexc(C, C') in the overall definition matching
at method level odm,,; (C,C"), 36

The weight of each input definition id; in
grp(C,C") in the overall definition matching
at method level odm, (C,C"), 32

Weight of the grade for state matching for a
method 0stm(m;, m;) used for the overall
state matching at class level ostmy(C,C"), 54
Weight of the method name mn of C, used for
calculating the overall definition matching at
method level odm,,,(C, C"), 31

The weight of each modifier mod, in
gmop(C,C") in the overall definition match-
ing at method level odm,,,(C,C"), 36

Weight of the grade of name matching for an
input definition gngme(idi, id},) in g4, (C, C").,
33

113



Wname

Wobm

Wobm

Wobm

Wodm

Wodm

Wodm

Wostm

Wostm

Wostm

Wpos

Weight of the grade of name matching for the
defined attribute gpeme(dax), used for calcu-
lating the grade of matching g4,(C, C"), class
level, 52

Weight of the overall behavior matching in
the overall component matching at class level
ocmq(C,C"), 56

Weight of the overall behavior matching in the
overall component matching at method level
ocmm(C, C'"), 45

Weight of the overall behavior matching in the
overall component matching at package level
ocmp (C, C"), 60

Weight of the overall definition matching in
the overall component matching at class level
ocmy(C, C"), 56

Weight of the overall definition matching in
the overall component matching at method
level ocm(C,C"), 45

Weight of the overall definition matching in
the overall component matching at package
level ocmy (C,C"), 60

Weight of the overall state matching in the
overall component matching at class level
ocmy(C, C"), 56

Weight of the overall state matching in the
overall component matching at method level
ocmm(C, C"), 45

Weight of the overall state matching in the
overall component matching at package level
ocmyu (C,C"), 60

Weight of the output type ot of C, used for
calculating the overall definition matching at
method level odm,,,(C, C"), 31

Weight of the grade of matching for a parent
module gpm, (C,C") in gpp(C, C"), 50

Weight of the grade of name matching
gon(C,C"), used in the overall definition
matching at package level odm,(C,C"), 58
Weight of the grade of position matching for
an input definition gpes(idy, idy,) in g44, (C, C').,
33

114



Wim

Weype

wtype

Wy

Wy

Wy

Weight of the type tm of C, used for calcu-
lating the overall definition matching at class
level odmq(C,C"), 49

Weight of the grade of type matching for a de-
fined attribute gyype(dax), used for calculating
the grade of matching g4 (C,C"), class level,
52

Weight of the grade of type matching for an
input definition gyype(2d,idy) in g, (C,C").,
33

Weight of the grade of visibility matching for a
defined attribute day of C', used for calculating
the grade of matching g4,(C, C’), class level,
52

Weight of the visibility v of C, used for calcu-
lating the overall definition matching at class
level odmy(C, C"), 49

Weight of the visibility modifier v of C, used
for calculating the overall definition matching
at method level odm,,;(C,C"), 31

115



Appendix A

Source code fragments

116



public static void encrypt(String output, String xmloutput)
throws Exception
{
// parse file into document
Document document = parseFile(output);
// generate symmetric key
Key symmetricKey = GenerateSymmetricKey();
// Get a key to be used for encrypting the symmetric key
Key keyEncryptKey = GenerateKeyEncryptionKey();
// Write the key to a file
storeKeyFile(keyEncryptKey,xmloutput);
// initialize cipher
XMLCipher keyCipher =
XMLCipher.getInstance(XMLCipher TRIPLEDES _KeyWrap);
keyCipher.init(XMLCipher, WRAP_MODE, keyEncryptKey);
// encrypt symmetric key
EncryptedKey encryptedKey = keyCipher.encryptKey(document,
symmetricKey);
// specify the element to encrypt
Element rootElement = document.getDocumentElement();
Element elementToEncrypt = rootElement;
// initialize cipher
XMLCipher xmlCipher =
XMLCipher.getInstance(XMLCipher. AES._128);
xmlCipher.init(XMLCipher ENCRYPT_MODE, symmetricKey);
// add key info to encrypted data element
EncryptedData encryptedDataElement =
xmlCipher.getEncryptedData();
KeyInfo keyInfo = new KeyInfo(document);
keyInfo.add(encryptedKey);
encryptedDataElement.setKeyInfo(keyInfo);
// do the actual encryption
boolean encryptContentsOnly = true;
xmlCipher.doFinal(document,
elementToEncrypt,
encryptContentsOunly);
// write the results to a file
writeEncryptedDocToFile(document, xmloutput);

Listing 1: Implementation of method encrypt in class Encrypt_Test.

117



public Node encrypt(

String select,

KeyInfoResolver kiResolver,

Element encTypeElement,

String type,

Element methodElement,

Element keyInfoElement)

throws
XMLEncryptionException {
try {
Node old = _node.cloneNode(true);

// Setting up encryption context
AlgorithmFactoryExtn af = new AlgorithmFactoryExtn();

EncryptionContext ec = new EncryptionContext();
ec.setAlgorithmFactory(af);

// now set the key resolver
kiResolver.setOperationMode(KeyInfoResolver ENCRYPT_MODE);
ec.setKeyInfoResolver(kiResolver);

NodeList nl = XPathAPIselectNodeList(_node, select);

for (int i = 0, j = nl.getLength(); i < j; i++) {

Node n = nl.item(i);

if (n.getNodeType() == Node. ELEMENT_NODE) {

ec.setData((Element)n);
ec.setEncrypted Type(
(encTypeElement != null) ?
(Element)encTypeElement.cloneNode(true) : encTypeElement,
type,
(methodElement != null) ?
(Element)methodElement.cloneNode(true) : methodElement,
(keyInfoElement != null) 7
(Element)keyInfoElement.cloneNode(true) : keyInfoElement);

ec.setKey(null);
ec.encrypt();
ec.replace();
}
}
return old;

} catch(Exception ex) {
throw new XMLEncryptionException("Exception raised during encryption!", ex);
}

}

Listing 2: Implementation of first method encrypt in class X M L Encryption.

118



public Node encrypt(

String select,
KeyInfoResolver kiResolver,
EncryptedType encType,
String type,
EncryptionMethod method,
KeyInfo keyInfo)

throws
XMLEncryptionException {

try {
Document doc = XMLUtil.createNewDocument();
Element encTypeElement = null;
if(encType != null) {

encTypeElement = encType.createElement(doc, false);

}

Element methodElement = null;
if (method != null) {

methodElement = method.createElement(doc, false);
}

Element keyInfoElement = null;
if (keyInfo != null) {

keyInfoElement = keylInfo.createElement(doc, false);
}

return encrypt(select, kiResolver, encTypeElement, type, methodElement, keyInfoElement);
} catch(Exception ex) {
throw new XMLEncryptionException("Exception raised during encryption!", ex);

}
}

Listing 3: Implementation of second method encrypt in class X M L Encryption.

119



public IValidationResult validate(String value, String target, String parameter) {
if (Boolean. TRUE.equals(this.confidentiality) && (!this.isInt(value))) {
validationResult.setLegal(false);
return validationResult;
}
IParameter stateParameter = this.state.getParameter(parameter);
if (Boolean.FALSE.equals(this.confidentiality)) {
if (stateParameter.existValue(value)) {
validationResult.setResult(value);
validationResult.setLegal(true);
} else {
validationResult.setLegal(false);
}

return validationResult;
} else {
// confidentiality assures that data is int value
int position = new Integer(value).intValue();
if (stateParameter.existPosition(position)) {
validationResult.setLegal(true);
// update position value with the original value
validationResult.setResult(stateParameter.get ValuePosition(position));
return validationResult;
} else {
validationResult.setLegal(false);
return validationResult;
}
}
}

Listing 4: Implementation of method validate in class DataV alidator.

120



Fragment duplicate_tree(boolean with_selected) {
// create another copy of structure and return pointer to it
Fragment new_fragment;
if (this instanceof DummyNode) {
new._fragment = new DummyNode(max_no_children);

else if (this instanceof ValueNode) {
ValueNode q = (ValueNode) this;
new_fragment = new ValueNode(q.Value, max_no_children);
ValueNode p = (ValueNode) new_fragment;
p.Value = q.Value;

else if ( this instanceof Node ) {
new.fragment = new Node(max_no_children);

else if ( this instanceof EmptySubtree ) {
new_fragment = new EmptySubtree();

} else if ( this instanceof Subtree ) {
new_fragment = new Subtree();

} else { // assert failure here?
System.out.println("PROBLEM HERE");
new_fragment = new Subtree();

}

new_fragment.example_node = example_node;

if (this instanceof Subtree) {

Subtree p = (Subtree)new_fragment;
Subtree q = (Subtree)this;
p.descend_kind = q.descend_kind;

if (this instanceof Node) {
Node p = (Node)new_fragment;
Node q = (Node)this;
p.text = q.text;
p.updated = q.updated;
p.piece_width = q.piece_width;
p.piece_height = q.piece_height;

}

Listing 5: Implementation of method duplicate_tree in class Fragment - part 1.

121



new_fragment.box_debug = box_debug;
new_{fragment.contains_key = contains_key;
new_fragment.deleted_key = deleted_key;
new_fragment.inserted_key = inserted_key;
new_fragment.no_key = no_key;
new._fragment.greater_than_key = greater_than_key;
new_fragment.less_than_key = less_than_key;
new._fragment.definitely_inorder_pred = definitely_inorder_pred;
new_fragment.definitely_inorder_succ = definitely_inorder_succ;
// don’t copy selected, this simplifies code where we keep selected
// region on where op activated so this way the successor doesn’t have
// a selected region also
if ( with_selected ) {

new_fragment.selected = selected;
}

new_fragment.explicit_in_abstract_state = explicit_in-abstract_state;
for (int i = 0; i < max_no_children; i++4 ) {
if ( child[i] !'= null ) {
new_fragment.child[i] = child[i].duplicate_tree(with_selected);
new_fragment.child[i].parent = new_fragment;

else {
new_fragment.child[i] = null;
}
}

if ( parent == this ) {
// we are at root
new_fragment.parent = new_fragment;

}

return new_fragment;

Listing 6: Implementation of method duplicate_tree in class Fragment - part 2.

122



Appendix B

Tool installation guide

This tool is provided as plug-in for the Eclipse IDE. In order install it the .jar file
should be placed in the plugin folder of Eclipse.

To start using the plug-in the following steps should be performed:

1. Window — > Show View — > Other (which is equivalent to Alt+Shift+Q,Q).

2. Choose the views under Component Matching category.

123



= Show View

type filker text

@@” Aspect]
G- Cheat Sheets
=R rimponznt Matching
i CM Behavior
& CM Definition
& CMResults
& M Selection
| o 8 CMState
w2 Cvs
@& Debug
- E Help
- Java
ﬁ‘ Call Hierarchy
@, Declaration
Eg Hierarchy
- @ Javadoc

Figure 24: Views of the Component Matching category.

124



Bibliography

[1]

Andreas S. Andreou, Dimitrios G. Vogiatzis, and George A. Papadopoulos. In-
telligent classification and retrieval of software components. In Proceedings of
the 30th Annual International Computer Software and Applications Conference

(COMPSAC’06), volume 2, pages 37 — 40, 2006.

Keith H. Bennett and Véclav T. Rajlich. Software maintenance and evolution:
A roadmap. In Proceedings of the 22nd International Conference on Software
Engineering (ICSE’00) track on The Future of Software Engineering, pages 73 —

87, New York, NY, USA, 2000. ACM Press.

Manuel F. Bertoa, José M. Troya, and Antonio Vallecillo. A survey on the
quality information provided by software component vendors. In Proceedings
of the 7th ECOOP Workshop on Quantitative Approaches in Object-Oriented

Software Engineering (QAOOSE’03), pages 25 — 30, 2003.

[4] Alan W. Brown and Kurt C. Wallnau. The current state of CBSE. I[EEE

Software, 15(5):37 — 46, September/October 1998.

125



[5]

R. Ian Bull, Casey Best, and Margaret-Anne Storey. Advanced widgets for
Eclipse. In Proceedings of the 2nd OOPSLA Workshop on Eclipse Technology

Ezxchange, pages 6 — 11, New York, NY, USA, 2004. ACM Press.

Xia Cai, Michael R. Lyu, Kam-Fai Wong, and Roy Ko. Component-based soft-
ware engineering: Technologies, development frameworks, and quality assurance
schemes. In Proceedings of the 7th Asia-Pacific Software Engineering Conference
(APSEC’00), pages 372 — 379, Washington, DC, USA, 2000. IEEE Computer So-

ciety.

Alejandra Cechich and Mario Piattini. Managing COTS components using a
six sigma-based process. In Proceedings of the 5th International Conference on
Product Focused Software Process Improvement (PROFES’04), pages 553 — 567.

Springer-Verlag Berlin Heidelberg, 2004.

Alejandra Cechich and Mario Piattini. Early detection of COTS component
functional suitability. Information and Software Technology, 49(2):108 — 121,

2007.

Alejandra Cechich, Annya Réquilé-Romanczuk, Javier Aguirre, and Juan M.
Luzuriaga. Trends on COTS Component Identification. In Proceedings of the 5th
International Conference on Commercial-off-the-Shelf (COTS)-Based Software
Systems (ICCBSS’06), page 90, Washington, DC, USA, 2006. IEEE Computer

Society.

126



[10]

1)

[12]

[14]

Paul C. Clements. A survey of architecture description languages. In Proceed-
ings of the 8th International Workshop on Software Specification and Design

(IWSSD’96), pages 16 — 25, Washington, DC, USA, 1996. IEEE Computer So-

ciety.

ComponentSource website.

http://www.componentsource.com/

Constantinos Constantinides and Venera Arnaoudova. Prolonging the aging of
software systems. In M. Khosrow-Pour, editor, Encyclopedia of Computer Science

and Information Technology Management, Hershey, PA, USA, 2008. IGI Global.

James C. Corbett, Matthew B. Dwyer, John Hatcliff, Shawn Laubach, Corina S.
Pasareanu, Robby, and Hongjun Zheng. Bandera: Extracting finite-state models
from Java source code. In Proceedings of the 22nd International Conference on
Software Engineering (ICSE’00), pages 439 — 448, New York, NY, USA, 2000.

ACM Press.

Debrief website.

http://www.debrief.info/index.php

Serge Demeyer, Sander Tichelaar, and Patrick Steyaert. FAMIX 2.0 - The

FAMOOS Information Exchange Model. Technical report, University of Berne,

August 1999.

Ray Djajadinata. Yes, you can secure your web services documents, Part 1: XML

encryption keeps your XML documents safe and secure. Java World, August 2002.

127



[17]

18]

[20]

21

Eclipse website. http://www.eclipse.org/

Frank Feiks and David Hemer. Specification matching of object-oriented com-
ponents. In Proceedings of the First International Conference on Software En-
gineering and Formal Methods (SEFM’03), pages 182 — 190, Los Alamitos, CA,

USA, 2003. IEEE Computer Society.

Bernd Fischer, Matthias Kievernagel, and Werner Struckmann. VCR: A VDM-

based software component retrieval tool. Technical Report 94-08, Technical Uni-

versity of Braunschweig, Germany, November 1994.

Brian Fitzgerald. A critical look at open source. IEEE Computer, 37(7):92 — 94,

July 2004.

William B. Frakes and Thomas P. Pole. An empirical study of representation
methods for reusable software components. JEEE Transactions on Software En-

gineering, 20(8):617 — 630, 1994.

FreshMeat website.

http://freshmeat.net/

Gerald C. Gannod, Yonghao Chen, and Betty H. C. Cheng. An automated

approach for supporting software reuse via reverse engineering. In Proceedings
of the 13th IEEE International Conference on Automated Software Engineering

(ASE’98), pages 94 — 104, Washington, DC, USA, 1998. IEEE Computer Society.

128



[24]

[25]

[29]

Gerald C. Gannod and Betty H. C. Cheng. Strongest postcondition semantics
as the formal basis for reverse engineering. The Journal of Automated Software

FEngineering, 3(1,2), 1996.

Gerald C. Gannod and Betty H. C. Cheng. A specification matching based
approach to reverse engineering. In Proceedings of the 21st International Con-
ference on Software Engineering (ICSE’99), pages 389 — 398, Los Alamitos, CA,

USA, 1999. IEEE Computer Society Press.

Judith L. Gersting. Mathematical Structures for Computer Science. W. H. Free-

man and Company, New York, NY, USA, 1998.
Jeff Hanson. Managing XML encryption with Java. DevX, July 2005.

HDIV website.

http://sourceforge.net/projects/hdiv/

David Hemer. Specification matching of state-based modular components.
In Proceedings of the 10th Asia-Pacific Software FEngineering Conference
(APSEC’03), pages 446 — 455, Washington, DC, USA, 2003. IEEE Computer

Society.

JARS website.

http://www. jars.com/

Lamia Labed Jilani, Jules Desharnais, and Ali Mili. Defining and applying
measures of distance between specifications. IEEE Transactions on Software

Engineering, 27(8):673-703, 2001.

129



[32]

[33]

[36]

[37]

Takeshi Kakimoto, Akito Monden, Yasutaka Kamei, Haruaki Tamada, Masateru
Tsunoda, and Ken ichi Matsumoto. Using software birthmarks to identify similar
classes and major functionalities. In Proceedings of the 3rd International Work-
shop on Mining Software Repositories (MSR’06), pages 171 — 172, New York,

NY, USA, 2006. ACM Press.

Sofien Khemakhem, Khalil Drira, and Mohamed Jmaiel. SEC: A search engine
for component based software development. In Proceedings of the 21st Annual
ACM Symposium on Applied Computing (SAC’06), pages 1745 — 1750, New

York, NY, USA, 2006. ACM Press.

Raghavan Komondoor and Susan Horwitz. Using slicing to identify duplication
in source code. In Proceedings of the 8th International Symposium on Static

Analysis (SAS’01), pages 40 — 56, London, UK, 2001. Springer-Verlag,.

Kostas Kontogiannis. Evaluation experiments on the detection of programming
patterns using software metrics. In Proceedings of the 4th Working Conference on
Reverse Engineering (WCRE’97), pages 44 - 54, Washington, DC, USA, 1997.

IEEE Computer Society.

Jens Krinke. Identifying similar code with program dependence graphs. In

Proceedings of the 8th Working Conference on Reverse Engineering (WCRE’01),

pages 301 — 309, Los Alamitos, CA, USA, 2001. IEEE Computer Society.

Craig Larman. Applying UML and patterns: An introduction to object-oriented

analysis and design and iterative development (3rd Edition). Pearson Education,

130



38

[39]

[42]

Inc., Upper Saddle River, NJ, USA, 2004.

John Lewis, Peter J. DePasquale, and Joe Chase. Java Foundations: Introduction
to Program Design and Data Structures. Addison-Wesley, Boston, MA, USA,

2008.

Jingyue Li, Reidar Conradi, Odd Petter N. Slyngstad, Christian Bunse, Marco
Torchiano, and Maurizio Morisio. An empirical study on decision making in off-
the-shelf component-based development. In Proceedings of the 28th International
Conference on Software Engineering (ICSE’06), pages 897 — 900, New York, NY,

USA, 2006. ACM Press.

Barbara H. Liskov and Jeannette M. Wing. A behavioral notion of subtyp-
ing. ACM Transactions on Programming Languages and Systems (TOPLAS),

16(6):1811 — 1841, 1994.

Sathit Nakkrasae and Peraphon Sophatsathit. A formal approach for specifi-
cation and classification of software components. In Proceedings of the 14th
International Conference on Software Engineering and Knowledge Engineering

(SEKE’02), pages 773 — 780, New York, NY, USA, 2002. ACM Press.

Sathit Nakkrasae and Peraphon Sophatsathit. An RPCL-based indexing ap-
proach for software components classification. International Journal of Software
Engineering and Knowledge Engineering (IJSEKE), 14(5):497 — 518, October

2004.

131



[43]

[44]

[45]

[49]

International Standards Organization/ International Electrotechnical Commis-
sion; Institute of Electrical and Electronics Engineers. ISO/IEC 14764:2006(E);
IEEE Std 14764-2006: International standard: Software engineering - Software

life cycle processes - Maintenance (2nd ed.), 2006.

Opsis website.

http://sourceforge.net/projects/opsis/

Flavio Oquendo. Formally modelling software architectures with the UML 2.0
profile for 7-ADL. ACM SIGSOFT Software Engineering Notes, 31(1):1 — 13,

January 2006.

John Penix and Perry Alexander. Using formal specification for component

retrieval and reuse. In Proceedings of the 31st Annual Hawaii International Con-
ference on System Sciences (HICSS’98), volume 3, pages 356 — 365, Washington,

DC, USA, 1998. IEEE Computer Society.

John Penix and Perry Alexander. Efficient specification-based component re-

trieval. Automated Software Engineering, 6(2):139 — 170, April 1999.

Andy Podgurski and Lynn Pierce. Behavior sampling: A technique for auto-
mated retrieval of reusable components. In Proceedings of the 14th International

Conference on Software Engineering (ICSE’92), pages 349 — 361, New York, NY,

USA, 1992. ACM Press.

Gilda Pour. Component-based software development approach: New opportu-

nities and challenges. In Proceedings of the 26th International Conference and

132



[51]

[52]

[54]

Ezhibition on Technology of Object-Oriented Languages and Systems (TOOLS
USA’98), pages 376 — 383, Los Alamitos, CA, USA, 1998. IEEE Computer So-

ciety.

Gilda Pour. Moving toward component-based software development approach.
In In Proceedings of the 27th International Conference on Technology of Object-
Oriented Languages and Systems (TOOLS Asia’98), pages 296 — 300, Los Alami-

tos, CA, USA, 1998. IEEE Computer Society.

Annya Réquilé-Romanczuk, Alejandra Cechich, Anne Dourgnon-Hanoune, and
Jean-Christophe Mielnik. Towards a knowledge-based framework for COTS com-
ponent identification. ACM SIGSOFT Software Engineering Notes, 30(4):1 - 4,

2005.

Nelson S. Rosa, Paulo R. F. Cunha, George R. R. Justo, Jaelson F. B. Castro,
and Carina F. Alves. Using non-functional requirements to select components: A
formal approach. In Proceedings of the 4th Ibero-American Workshop on Software

Engineering and Software Environment (IDEAS’01), 2001.

Tobias Sager, Abraham Bernstein, Martin Pinzger, and Christoph Kiefer. De-
tecting similar Java classes using tree algorithms. In Proceedings of the 3rd

International Workshop on Mining Software Repositories (MSR’06), pages 65 —

71, New York, NY, USA, 2006. ACM Press.

Matthew Scarpino, Stephen Holder, Stanford Ng, and Laurent Mihalkovic.

SWT/JFace in Action: GUI Design with Eclipse 3.0. Manning Publications

133



[55]

[56]

[57]

(58]

[59]

Co., Greenwich, CT, USA, 2005.

Stephen R. Schach and A. Jefferson Offutt. On the nonmaintainability of open-
source software. In Proceedings of the 2nd ICSE Workshop on Open Source
Software Engineering: Meeting Challenges and Surviving Success, pages 52 — 54.

ACM Press, 2002.

David Schuler, Valentin Dallmeier, and Christian Lindig. A dynamic birthmark
for Java. In Proceedings of the 22nd IEEE/ACM International Conference on
Automated Software Engineering (ASE’07), pages 274 — 283, New York, NY,

USA, 2007. ACM Press.

SourceForge website.

http://sourceforge.net/

Tarja Systéa. Dynamic modeling in forward and reverse engineering of object-
oriented software systems. In Proceedings of Doctoral Symposium of the 13th

IEEE International Conference of Automated Software Engineering (ASE’98),

1998.

Clemens Szyperski. Component Software: Beyond Object-Oriented Program-
ming. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, second

edition, 2002.

Clemens Szyperski and Cuno Pfister. Workshop on Component-Oriented Pro-

gramming, Summary. In M. Muehlhaeuser, editor, Special Issues in Object-

134



[63]

[65]

Oriented Programming - ECOOP’96 Workshop Reader, Heidelberg, Germany,

1997. dpunkt Verlag.

Haruaki Tamada, Masahide Nakamura, and Akito Monden. Design and evalu-
ation of birthmarks for detecting theft of Java programs. In Proceedings of the
IASTED International Conference on Software Engineering, part of the 22nd
Multi-Conference on Applied Informatics, pages 569 — 575. IASTED/ACTA

Press, 2004.

Haruaki Tamada, Masahide Nakamura, Akito Monden, and Ken-Ichi Mat-
sumoto. Java birthmarks - Detecting the software theft. IFICE Transactions

on Information and Systems, E88-D(9):2148 — 2158, 2005.

Marco Torchiano, Letizia Jaccheri, Carl-Fredrik Sgrensen, and Alf Inge Wang.
COTS products characterization. In Proceedings of the 14th International Con-

ference on Software Engineering and Knowledge Engineering (SEKE’02), pages

335 — 338, New York, NY, USA, 2002. ACM Press.

Padmal Vitharana. Risks and challenges of component-based software develop-

ment. Communications of the ACM, 46(8):67 — 72, 2003.

Padmal Vitharana, Fatemeh Mariam Zahedi, and Hemant Jain. Knowledge-

based repository scheme for storing and retrieving business components: A the-
oretical design and an empirical analysis. JEEE Transactions on Software Engi-

neering, 29(7):649 — 664, July 2003.

135



66

[69]

Mark Weiser. Program slicing. In Proceedings of the 5th International Conference
on Software Engineering (ICSE’81), pages 439 — 449, Piscataway, NJ, USA, 1981.

IEEE Press.

Yijun Yu, Yigiao Wang, John Mylopoulos, Sotirios Liaskos, Alexei Lapouchnian,
and Julio Cesar Sampaio do Prado Leite. Reverse engineering goal models from
legacy code. In Proceedings of the 13th IEEE International Conference on Re-
quirements Engineering (RE’05), pages 363 — 372, Washington, DC, USA, 2005.

IEEE Computer Society.

Amy Moormann Zaremski and Jeannette M. Wing. Signature matching: A tool
for using software libraries. ACM Transactions on Software Engineering and

Methodology, 4(2):146 — 170, April 1995.

Amy Moormann Zaremski and Jeannette M. Wing. Specification matching of
software components. In Proceedings of the 8rd ACM SIGSOFT Symposium on
Foundations of Software Engineering (SIGSOFT’95), pages 6 — 17, New York,

NY, USA, 1995. ACM Press.

136



