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Abstract

This paper deals with the characterization of the fixed modes of multi-channel systems with respect to linear time-invariant
(LTI) structurally constrained controllers. Fixed modes can be found numerically for any LTI system with respect to any given
control structure, using a random number generator. The existing analytical methods, however, are not capable of characterizing
the fixed modes in the most general case of non-strictly proper systems with non-block diagonal (i.e., overlapping) control
structure efficiently. The notion of decentralized overlapping fixed mode (DOFM) is introduced in this paper to address the
above problem in the most general case. To this end, the knowledge of the overlapping control structure is translated into a
bipartite graph, whose vertices correspond to the input and output vectors of various control channels. An efficient technique
is extracted from the obtained graph to identify the DOFMs of the system. It is to be noted that a system is stabilizable via
an appropriate LTI decentralized overlapping controller if and only if it does not have any unstable DOFM. Moreover, it is
shown how those modes which are not DOFMs can be placed freely in the complex plane using a proper LTI decentralized
overlapping controller. The efficacy of this work is demonstrated through an example.

1 Introduction

In control of large-scale systems, it is often desired to
have some form of decentralization. In fact, for such sys-
tems it is not realistic to assume that all output mea-
surements can be employed to construct every input.
Problems of this kind appear, for example, in electric
power systems, communication networks, large space
structures, robotic systems, economic systems and traf-
fic networks, to name only a few (Li and Wang, 2005;
Movsichoff, Lagoa, and Che, 2005; Lavaei, Momeni, and
Aghdam, 2007; Becerril and Aghdam, 2007).

In the past three decades, the problem of decentralized
control has been thoroughly investigated in the litera-
ture, and a variety of its aspects are studied (Wang and
Davison, 1973; Davison and Chang, 1990; Pichai, Sezer,
and Siljak, 1984; Gong and Aldeen, 1997). More recently,
the problem of decentralized overlapping control has at-
tracted several researchers (Zecevic and Siljak , 2005;
Bakule, Rodellar, and Rossell, 2003). This problem has
applications in many real-world interconnected systems
such as chemical processes, power systems, and traffic
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networks (Li et al., 1999). The decentralized overlapping
control is fundamentally used in two types of problems:

i) when the subsystems of an interconnected system
(referred to as overlapping subsystems) share some
states (Iftar, 1993, 1991; Siljak and Zecevic, 2005).
In this case, it is usually desired that the structure
of the controller matches the overlapping structure
of the system (Siljak and Zecevic, 2005);

ii) when there are some limitations on the availabil-
ity of certain outputs to generate the control signal
for any specific input in the sense that such a data
transmission is very costly or sometimes impossible.
This case frequently occurs in practice; for instance,
in the formation of spacecraft in deep space where
communication between different spacecraft is cru-
cially exorbitant, and where some information may
not be available for certain spacecraft due to the
shadow phenomenon (Smith and Hadaegh, 2002).

The control constraint in both types of problems can be
represented by a binary information flow matrix. In the
case when this matrix is block diagonal with the entries
of the main diagonal blocks all equal to 1, the control
structure is indeed the conventional decentralized con-
figuration (this control structure will be simply referred
to as decentralized control throughout this paper). One
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particular structural constraint for the controller which
is investigated intensively in the literature, corresponds
to an information flow matrix with the entries of the
main diagonal blocks, as well as the last block column
and the last block row all equal to 1. This configuration
is often referred to as bordered block-diagonal structure
(BBD) or block array structure (BAS), and has found
several practical applications (Siljak and Zecevic, 2005;
Groumpos, 1994; Leros and Groumpos, 1987).

Designing a decentralized overlapping controller for an
interconnected system has been investigated extensively
in the literature by transforming the system into an ex-
panded form whose corresponding control structure is
decentralized (Siljak and Zecevic, 2005; Zecevic and Sil-
jak , 2005; Stankovic, Stanojevic, Siljak , 2000). This
expanded system should be obtained in such a way that
its subsystems be connected to each other by means of
weak interconnections. In this case, the interconnections
between the subsystems are ignored first, and the local
controllers for the disjoint subsystems are designed ac-
cordingly. As the last step of the design procedure, the
decentralized controller obtained should be contracted
in order to take the desirable overlapping form for the
original system. The mathematical framework for the
expansion and contraction is often referred to as the In-
clusion Principle (Chu and Siljak, 2005).

It is known that the stability of the expanded decentral-
ized closed-loop system is not equivalent to that of the
original overlapping closed-loop system. Thus, the ex-
panded system might not preserve the structural prop-
erties of the original system. More precisely, when the
original system is stabilizable by means of a static (dy-
namic) LTI decentralized overlapping controller, the ex-
panded system will likely not be stabilizable via static
(dynamic) LTI decentralized controller, unless it is de-
vised meticulously. It is shown in Bakule, Rodellar, and
Rossell (2001) that if the original system and its subsys-
tems are all controllable and observable, the expanded
system can be obtained in such a way that it is control-
lable and observable. Moreover, it is asserted in Chu and
Siljak (2005) that the properties of controllability, sta-
bilizability, observability, detectability, and stability of
the invariant zeros can be transferred from the original
system to the expanded one, if a proper transformation
is exploited.

If the original system has some unstable fixed modes
with respect to the LTI decentralized overlapping con-
trollers, the available control design methods using In-
clusion Principle are inefficient. Hence, the characteri-
zation of such undesirable modes is of particular impor-
tance. It is notable that this characterization can pri-
marily facilitate the decentralized overlapping control
design by using the expansion-contraction methods, and
can potentially solve some of the open problems in this
area (see Siljak and Zecevic (2005) for one of these open
problems regarding the contraction conditions).

The notion of decentralized fixed mode (DFM) was in-
troduced in Wang and Davison (1973) to identify the
modes of a strictly proper system which are fixed with
respect to any LTI decentralized controller. This no-
tion was later extended to general proper systems in
Davison and Chang (1990). Several methods are pro-
posed in the literature to characterize the DFMs of any
strictly proper system (Davison and Wang, 1985; Ander-
son, 1982; Anderson and Clements, 1981). It is shown
in Pichai, Sezer, and Siljak (1984) that the modes of a
strictly proper system which are fixed with respect to
any LTI decentralized overlapping controller can be ob-
tained from the DFMs of another system with some re-
dundant outputs. However, this method has two main
drawbacks. First, it has not tackled the problem for gen-
eral proper systems. Moreover, since it duplicates solely
the outputs of the system (not also the inputs), it often
results in a new decentralized system of unnecessarily
large dimension.

It is well known that graph theory provides a power-
ful tool in handling diverse problems, including various
problems in control systems. It is shown in Reinschke
(1988) how a square matrix can be characterized using a
graph-theoretic approach, and also how its determinant
can be found accordingly. Similar techniques are used
therein to model any LTI control system in terms of a
graph which is utilized to obtain its transfer function and
other properties. Different aspects of the control design
such as pole-placement, disturbance rejection, structural
controllability and structurally fixed modes, are inves-
tigated in the literature in the framework of graph the-
ory (Reinschke, 1988; Siljak, 1991; Mayeda, 1981; Laf-
ferriere, Caughman, and Williams, 2004).

The present work is concerned with the characterization
of the fixed modes of general proper systems with respect
to any class of LTI decentralized overlapping controllers.
To this end, the notion of decentralized overlapping fixed
mode (DOFM) is defined to characterize such modes
systematically. This is carried out via a graph-theoretic
approach which is utilized to translate the knowledge of
the desired control structure into several equivalent bi-
partite graphs. The DOFMs of the system can then be
obtained from any of these formed graphs. Thus, the de-
signer can choose the graph whose corresponding com-
putational complexity is the least in order to find such
modes.

This paper is organized as follows. The structurally con-
strained control problem is formulated in Section 2. The
information of the desired structure of the controller is
translated into some graphs in Section 3, and certain
transformation matrices are then obtained. These matri-
ces are employed in Section 4 to characterize the DOFMs
of a general proper system efficiently. A necessary and
sufficient condition for the stabilizability of the system
by means of structurally constrained LTI controllers is
also presented in Section 4 followed by a pole placement
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technique. An illustrative example is given in Section 5
to clarify the results of the present work. Finally, some
concluding remarks are provided in Section 6.

2 Problem formulation

Consider an LTI ν-channel system S with the following
state-space representation:

ẋ(t) = Ax(t) +
ν∑

i=1

Biui(t)

yi(t) = Cix(t) +
ν∑

j=1

Dijuj(t), i ∈ ν̄ := {1, 2, ..., ν}

(1)
where x(t) ∈ �n is the state, and ui(t) ∈ �mi and yi(t) ∈
�ri , i ∈ ν̄, are the input and the output of its ith channel,
respectively. Define the following matrices:

B :=
[

B1 B2 · · · Bν

]
,

C :=
[

CT
1 CT

2 · · · CT
ν

]T

,

D :=

⎡
⎢⎢⎢⎣

D11 · · · D1ν

...
. . .

...

Dν1 · · · Dνν

⎤
⎥⎥⎥⎦

(2)

Define also:

m :=
ν∑

i=1

mi, r :=
ν∑

i=1

ri (3)

It is desired to stabilize the system S via a structurally
constrained controller. These constraints determine
which outputs yj(t) (j ∈ ν̄) are available to construct
any specific input ui(t) (i ∈ ν̄) of the system. In order
to simplify the formulation of the control constraint, a
matrix K with binary elements is defined, where its (i, j)
block entry, i, j ∈ ν̄, is a mi × rj matrix whose elements
are all equal to 1 if the output yj(t) can contribute to
the construction of the input ui(t), and is a mi × rj zero
matrix otherwise. The matrix K represents the control
constraint, and will be referred to as the information
flow matrix.

To specify the structural constraint of the control for the
system, the corresponding information flow matrix will
be enclosed within parentheses as an argument through-
out the paper, if necessary. For instance, S(K) indicates
that the structure of the controller to be designed for the
system S is to comply with the information flow matrix
K. In the special case, when the entries of the matrix K
are all equal to 1, the corresponding controller is central-
ized, and when K is block diagonal, the corresponding
controller is decentralized.

Characterizing those modes of the system S which are
fixed with respect to any LTI controller complying with
the control structure K will be addressed in the sequel
using an efficient technique.

3 Computing the transformation matrices

Define the control interaction structure K as a matrix
whose (i, j) block entry, i, j ∈ ν̄, is a mi × rj matrix
denoted by kij if the output yj(t) can contribute to the
construction of the input ui(t), and is a mi×rj zero ma-
trix otherwise. Note that kij represents a component of
the controller, which transforms the output yj(t) to the
input ui(t). Note also that not only does the interaction
structure matrix K convey the information of the matrix
K, it also labels the control components. The matrices
K and K will henceforth be used for different purposes.

Procedure 1 Construct the graph G as follows:

(1) Define two sets of ν vertices. Label the sets as set 1
and set 2, and the vertices in each set as vertex 1 to
vertex ν.

(2) For any i, j ∈ ν̄, connect the ith vertex of set 1 to
the jth vertex of set 2 with an edge if the (i, j) block
entry of K is not a zero matrix. Label this edge with
kij .

Procedure 2 Partition the graph G into a set of com-
plete bipartite subgraphs such that each edge of the graph
G appears in only one of the subgraphs. It is to be noted
that this partition may require some of the vertices of the
graph G to appear in multiple subgraphs.

It can be easily verified that Procedure 2 does not nec-
essarily lead to a unique graph. Denote all the graphs
which can be obtained through this procedure with
G1,G2, ...,Gl.

The following procedure constructs a matrix Kμ corre-
sponding to the graph Gμ, for any μ ∈ l̄ := {1, 2, ..., l}.

Procedure 3 Label the complete bipartite subgraphs of
Gμ (μ ∈ l̄) as subgraphs 1 to νμ. Consider subgraph num-
ber σ (∀ σ ∈ {1, 2, ..., νμ}). Label those vertices of this
subgraph which belong to set 1 as vertex 1, ..., ημ

σ . This
group of vertices will be referred to as subset 1 (corre-
sponding to subgraph number σ). Similarly, label those
vertices which belong to set 2 of this subgraph as ver-
tex 1, ..., η̄μ

σ , and define subset 2 accordingly. Define Kμ

as a block diagonal matrix, where its (σ, σ) block entry,
σ = 1, ..., νμ, is a matrix itself, whose (i, j) block entry is
equal to the gain of the edge connecting vertex i of sub-
set 1 to vertex j of subset 2 in subgraph number σ of Gμ,
for any i ∈ {1, ..., ημ

σ} and j ∈ {1, ..., η̄μ
σ}. Denote the di-

mension of the (σ, σ) block entry of Kμ with mμ
σ ×rμ

σ, for
σ = 1, 2, ..., νμ, and the dimension of Kμ with mμ × rμ.
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As an example, consider a two-channel system with the
following control interaction structure:

K =

[
k11 0

k21 k22

]
(4)

The graph G corresponding to the matrix K (introduced
in Procedure 1) is depicted in Figure 1.

Fig. 1. The graph G of the system S with the matrix K given
by (4).

The graphs G1,G2 and G3 obtained from Procedure 2 are
sketched in Figure 2. As it can be seen from this figure,
some of the vertices are recurring in each graph.

Fig. 2. The graphs G1,G2 and G3 corresponding to the system
S with the matrix K given by (4).

Therefore, the matrices K1,K2 and K3 can be attained
using Procedure 3 as follows:

K1 =

[
k11 0 0

0 k21 k22

]
, K2 =

⎡
⎢⎢⎣

k11 0

k21 0

0 k22

⎤
⎥⎥⎦ ,

K3 =

⎡
⎢⎢⎣

k11 0 0

0 k21 0

0 0 k22

⎤
⎥⎥⎦

(5)

Remark 1 It can be easily concluded from Procedures
1, 2 and 3 that there exists an onto mapping between the
nonzero block entries of the matrix Kμ, μ ∈ l̄, and those
of the matrix K.

Theorem 1 There exist constant binary matrices Φμ

and Φ̄μ satisfying the following relation:

K = ΦμKμΦ̄μ (6)

for any μ ∈ l̄.

Sketch of proof: It is straightforward to show (by using
Procedures 1, 2 and 3) that the matrix Kμ can alter-
natively be constructed from K through a sequence of
matrices Kμ

1 ,Kμ
2 , ...,Kμ

L−1,K
μ
L, where K = Kμ

1 , Kμ =
Kμ

L, and moreover Kμ
j+1 is obtained from Kμ

j by one of
the following two operations (for any j ∈ {1, 2, ..., L −
1}):

1. Swapping either two columns or two rows of the
matrix Kμ

j .
2. Splitting one of the rows (or columns) of Kμ

j de-
noted by v, into two row vectors v1 and v2, i.e.,
v = [v1 v2] (or v = [v1 v2]′). Then, replacing that
row (or column) with [v1 0] (or [v1 0]′), where 0
represents a zero row vector, and inserting another
row (or column) equal to v = [0 v2] (or v = [0 v2]′)
into the matrix.

It can be easily shown that for any j ∈ {1, ..., L−1}, there
exist matrices Φμ

j and Φ̄μ
j such that Kμ

j = Φμ
j Kμ

j+1Φ̄
μ
j .

The matrices Φμ and Φ̄μ can now be obtained from the
following equations:

Φμ = Φμ
1Φμ

2 · · ·Φμ
(L−1), Φ̄μ = Φ̄μ

(L−1)Φ̄
μ
(L−2) · · · Φ̄μ

1

(7)
This completes the proof. �

Theorem 1 states that there exist matrices Φμ and Φ̄μ

such that they satisfy the equation (6). However, the
procedure proposed in the proof of the theorem for ob-
taining Φμ and Φ̄μ is computationally inefficient. The
following theorem presents a more efficient approach to
obtain Φμ and Φ̄μ.

Theorem 2 Choose at least one nonzero block entry
from each block column and each block row of Kμ, μ ∈ l̄,
and denote them with ki1j1 , ki2j2 , ..., kipjp . Suppose that
kiqjq , q = 1, 2, ..., p, is the (i′q, j′q) block entry of the ma-
trix Kμ. The relations:

Πi′q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0m1×miq

0m2×miq

...

0m(iq−1)×miq

Imiq

0m(iq+1)×miq

...

0mν×miq

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Π̄j′q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0rjq×r1

0rjq×r2

...

0rjq×r(jq−1)

Irjq

0rjq×r(jq+1)

...

0rjq×rν

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

(8)

hold for any q ∈ {1, 2, ..., p}, where Πi′q and Π̄j′q denote
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the i′thq block column of Φμ and the j′thq block row of Φ̄μ,
respectively.

Proof: It is shown in Theorem 1 that the matrices Φμ

and Φ̄μ exist to satisfy the equation (6). As a result,
this equation holds for any arbitrary values for the block
entries kσ1σ2 , σ1, σ2 ∈ ν̄. Replace all block entries kσ1σ2 ’s
in the equation (6), except kiqjq , with zero matrices. It
can be concluded from (6) that:

K̃iqjq = Πi′q kiqjq Π̄j′q (9)

where K̃iqjq is obtained from K by replacing all of its
block entries with zero matrices, except for its (iq, jq)
block entry kiqjq . The proof follows immediately from
the equation (9). �

4 Linear time-invariant control law

In this section, it is desired to find conditions for the ex-
istence of a structurally constrained stabilizing LTI con-
troller for the system S(K). Furthermore, a procedure
is given to achieve pole placement using a proper LTI
control law complying with K.

Definition 1 Define Sμ, μ ∈ l̄, as a system with the
following state-space representation:

ẋμ(t) = Axμ(t) + Bμuμ(t)
yμ(t) = Cμxμ(t) + Dμuμ(t)

(10)

where the parameters of the above system are related to
those of the original system S through the following equa-
tions:

Bμ = BΦμ, Cμ = Φ̄μC, Dμ = Φ̄μDΦμ (11)

uμ(t) ∈ �mμ

and yμ(t) ∈ �rμ

are the input and the
output of Sμ, respectively, and xμ(0) = x(0). For any
μ ∈ l̄, define the information flow matrix Kμ for the
system Sμ as a matrix obtained from Kμ by replacing
its nonzero block entry kij, with a mi × rj matrix whose
entries are all equal to one, for any i, j ∈ ν̄.

Definition 2 Consider two arbitrary systems Sd1 and
Sd2 associated with the information flow matrices Kd1

and Kd2 , where Sd1 and Sd2 are of the same order and
have the same initial state. Let M denote a given set
of controllers. The systems Sd1(Kd1) and Sd2(Kd2) are
called analogous with respect to M if for any controller
Kd1 in M complying with the information flow matrix
Kd1 , there also exists a controller Kd2 in M complying
with the information flow matrix Kd2 (and vice versa)
such that the state of the system Sd1 under the controller
Kd1 is equivalent to the state of Sd2 under Kd2, for all
t ≥ 0.

Theorem 3 For any μ ∈ l̄, the systems Sμ(Kμ) and
S(K) are analogous with respect to the set of all LTI
controllers.

Remark 2 The set of all LTI controllers in the above
theorem refers to any LTI controller whose input-output
description can be expressed via a transfer function. Ob-
viously, this set encompasses any LTI control law in the
form of state feedback, static and dynamic output feed-
back, and observer-based control.

Proof of Theorem 3: Denote the transfer function matrix
of any nonzero control component kij with Kij(s), i, j ∈
ν̄ (the dimension of Kij(s) is the same as kij but the
control function itself is yet to be designed). Replace
the block kij with Kij(s) in the matrices K and Kμ for
any i, j ∈ ν̄, and denote the resultant control transfer
function matrices with K(s) and Kμ(s), respectively. It
can be easily concluded from Theorem 1 that:

K(s) = ΦμKμ(s)Φ̄μ (12)

Assume the control transfer function matrix K(s) is such
that the matrix Ir −DK(s) is nonsingular. It is evident
that the state of the system S under the controller K(s)
satisfies the following equation (in the Laplace domain):

X(s) =
(
sIn − A − BK(s) (Ir − DK(s))−1

C
)−1

x(0)
(13)

On the other hand, it can be easily verified that
Irμ − Φ̄μDΦμKμ(s) is nonsingular due to the assump-
tion det(Ir − DK(s)) �= 0. Similarly, the state of the
system Sμ under the controller Kμ(s) can be obtained
as follows:

Xμ(s) =
(
sIn − A − BμKμ(s)

× (Irμ − DμKμ(s))−1 Cμ
)−1

xμ(0)
(14)

Using the equations (11) and (12), one can write:

BK(s)(Ir−DK(s))−1C = BΦμKμ(s)Φ̄μ

× (
Ir − DΦμKμ(s)Φ̄μ

)−1
C

= BΦμKμ(s)
(
Irμ − Φ̄μDΦμKμ(s)

)−1 Φ̄μC

= BμKμ(s) (Irμ − DμKμ(s))−1 Cμ

(15)

The proof follows from the relations (13), (14), and
(15). �

Corollary 1 For any μ ∈ l̄, the systems Sμ(Kμ) and
S(K) are analogous with respect to the set of all static
LTI controllers.

Proof: The proof is omitted due to its similarity to the
proof of Theorem 3 (note that the set of static controllers
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is a subset of the general LTI controllers; thus, the result
of Corollary 1 is not trivial). �

Remark 3 It can be easily concluded from The-
orem 3 and Corollary 1 that all of the systems
S(K), S1(K1), S2(K2), ..., Sl(Kl) are analogous with re-
spect to the set of LTI controllers, as well as the set of
static LTI controllers. As a result, in order to design
a continuous-time dynamic (or static) LTI controller
for the system S with respect to the information flow
structure K to achieve any design objective (such as pole
placement), one can equivalently design a continuous-
time LTI controller for the system Sμ, μ ∈ l̄, with re-
spect to the information flow structure Kμ, to attain the
same objective. The mapping between the components of
K and Kμ (derived from the equation (6)) can then be
used to find the corresponding controller for the system
S(K). The important advantage of this indirect design
procedure is that the information flow structure Kμ is
block diagonal, and hence the problem is converted to
the conventional decentralized control design problem,
which can be handled by the existing methods (Davison
and Chang, 1990; Ravi, Rosenthal, and Wang, 1995).

Now, partition the matrices Bμ,Cμ and Dμ, μ ∈ l̄, as
follows:

Bμ =
[
Bμ

1 Bμ
2 · · · Bμ

νμ

]
,

Cμ =

⎡
⎢⎢⎢⎢⎢⎣

Cμ
1

Cμ
2

. . .

Cμ
νμ

⎤
⎥⎥⎥⎥⎥⎦ , Dμ =

⎡
⎢⎢⎢⎣

Dμ
1,1 · · · Dμ

1,νμ

...
. . .

...

Dμ
νμ,1 · · · Dμ

νμ,νμ

⎤
⎥⎥⎥⎦

(16)

where:

Bμ
i ∈ �mμ

i , Cμ
i ∈ �rμ

i , Dμ
ij ∈ �rμ

i
×mμ

j (17)

for any i, j ∈ {1, 2, ..., νμ} (note that mμ
i and rμ

i are
defined in Procedure 3).

Theorem 4 Consider an arbitrary region R in the com-
plex plane. There exists an LTI decentralized overlapping
controller for the system S(K) to place all modes of the
resultant closed-loop system inside the region R, except
for those modes which are DFMs of the system Sμ with
respect to Kμ, μ ∈ l̄.

Proof: As pointed out in Remark 3, the systems S(K)
and Sμ(Kμ) are equivalent in terms of pole placement
capabilities. On the other hand, it results from the defi-
nition of DFM (Wang and Davison, 1973) that all of the
modes of the system Sμ(Kμ) except for its DFMs can
be placed arbitrarily by using a proper LTI controller.
This completes the proof. �

Definition 3 Define decentralized overlapping fixed
modes (DOFM) of S(K) as those modes of the system S
which are fixed with respect to any LTI controller with
the information flow structure K.

Theorem 4 states that the DOFMs of S(K) and the
DFMs of Sμ(Kμ), ∀ μ ∈ l̄ are the same. Hence, the
DOFMs of S(K) can be obtained from any of the sys-
tems S1(K1), ..., Sl(Kl). The following procedure is used
to determine the DOFMs of the system S(K) from the
DFMs of the system Sμ(Kμ), μ ∈ l̄.

Procedure 4 Consider any arbitrary integer g belong-
ing to l̄. Let sp(A) denote the set of eigenvalues of A. The
mode λ ∈ sp(A) is a DOFM of the system S with respect
to the information flow matrix K, if there exists a per-
mutation of {1, 2, ..., νμ} denoted by the distinct integers
i1, i2, ..., iνμ , such that the rank of the matrix:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

A − λIn Bμ
i1

Bμ
i2

. . . Bμ
iq

Cμ
iq+1

Dμ
iq+1,i1

Dμ
iq+1,i2

. . . Dμ
iq+1,iq

Cμ
iq+2

Dμ
iq+2,i1

Dμ
iq+2,i2

. . . Dμ
iq+2,iq

...
...

...
. . .

...

Cμ
iνμ

Dμ
iνμ ,i1

Dμ
iνμ ,i2

. . . Dμ
iνμ ,iq

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(18)

is less than n for some μ ∈ {0, 1, ..., νμ}.

Remark 4 According to Procedure 4, the ranks of a set
of matrices given in (18) are required to be checked to find
out if any of the eigenvalues of the matrix A is a DOFM
of the system S(K). It can be easily verified that the num-
ber of these matrices grows exponentially by νμ (the num-
ber of complete bipartite subgraphs of Gμ). Therefore, in
order to reduce the required computations, it is desirable
to choose a graph Gμ which has the minimum number
of complete bipartite subgraphs among the set of graphs
{G1, ...,Gl}. If there is more than one such candidate, the
one with fewer number of vertices is more preferable.

Corollary 2 The system S(K) is stabilizable by means
of LTI decentralized overlapping controllers if and only if
it does not have any DOFM in the closed right-half plane
with respect to the information flow matrix K.

Proof: The proof follows immediately from Theorem 4.�
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5 Numerical example

Consider a system S with the following state-space ma-
trices:

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6 2 2 4 2 5

−9 −5 −3 −4 −3 −6

0 0 −3 0 0 0

−1 −1 −1 −3 −1 −1

9 6 3 4 4 6

−8 −2 −2 −4 −2 −7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −4 1 1

0 7 −1 −4

0 1 0 0

0 1 0 −1

1 −7 1 4

0 7 −1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

C =

⎡
⎢⎢⎢⎢⎢⎣

2 0 1 0 0 1

0 1 1 0 1 0

1 0 −4 0 0 1

0 −1 −4 4 0 1

⎤
⎥⎥⎥⎥⎥⎦ , D =

⎡
⎢⎢⎢⎢⎢⎣

0 0 1 2

0 4 6 7

0 0 1 0

3 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

(19)

It can be easily verified that the modes of the system S
are −3,−3,−2,−2, 1, 1. It is desired to design a stabi-
lizing LTI controller for this system with the following
control structure:

K =

⎡
⎢⎢⎢⎢⎢⎣

0 0 k13 k14

0 k22 k23 k24

0 0 k33 k34

k41 0 0 0

⎤
⎥⎥⎥⎥⎥⎦ (20)

Using Procedure 1, the graph G can be straightforwardly
found, as depicted in Figure 3. Procedure 2 can now be
utilized to obtain a number of specific graphs denoted
by G1,G2, ...,Gμ associated with the graph G. For an ar-
bitrary numbering of these graphs, let the graph G1 be
the one drawn in Figure 4. The matrix K1 is attained
from the graph G1 accordingly by means of Procedure 3
as follows:

K1 =

⎡
⎢⎢⎢⎢⎢⎣

k13 k14 0 0 0 0 0 0

0 0 k22 k23 k24 0 0 0

0 0 0 0 0 k33 k34 0

0 0 0 0 0 0 0 k41

⎤
⎥⎥⎥⎥⎥⎦ (21)

Fig. 3. The graph G corresponding to the system S given
by (19).

Fig. 4. The graph G1 obtained from G sketched in Figure 3.

It follows from Theorem 1 that there exist two binary
matrices Φ1 and Φ̄1 of proper dimensions such that K =
Φ1K1Φ̄1. These two matrices can be obtained from The-
orem 2 as Φ1 = I and:

Φ̄1 =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0

1 0 0 1 0 1 0 0

0 1 0 0 1 0 1 0

⎤
⎥⎥⎥⎥⎥⎦

T

(22)

Consequently, the four-channel system S1 will have the
following state-space representation:

ẋ1(t) = Ax1(t) + BΦ1u1(t)
y1(t) = Φ̄1Cx1(t) + Φ̄1DΦ1u1(t)

(23)

Exploiting the method given in Davison and Chang
(1990), one can easily conclude that the system S1 has
an unstable DFM at λ = 1 with respect to the control
structure K1. Therefore, from the discussion given in
the main results of the paper, the system S has an
unstable DOFM at 1 with respect to the control inter-
action structure K. Thus, there is no LTI structurally
constrained controller complying with K to stabilize
the system S.

To arrive at the conclusion that the mode λ = 1 is a DFM
of the four-channel systemS1 using the method proposed
in Davison and Chang (1990), the rank of 24 matrices of
dimensions between 6 and 14 must be checked. In order
to reduce this computational burden, it is preferable to
attain a graph through Procedure 2 with the properties
that the number of its vertices and also the number of its
complete bipartite subgraphs are both relatively small
(see Remark 4). For instance, instead of the graph G1

derived from G, one can consider the graph G2 depicted
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in Figure 5, which is also found using Procedure 2. In
this case, the matrix K2 can be obtained as:

K2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

k13 k14 0 0

k23 k24 0 0

k33 k34 0 0

0 0 k22 0

0 0 0 k41

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(24)

The three-channel system S2 can be attained in the same
way that S1 was formed. To show that the mode λ = 1
is a DFM of S2, the rank of 23 matrices of dimensions
between 6 and 11 must be checked. This demonstrates
that the computation time can be noticeably diminished
by commencing from the graph G2 rather than G1. This
observation is an indication of the fact that the proper
choice of graph in Procedure 2 can be quite crucial.

Fig. 5. The graph G2 obtained from G sketched in Figure 3.

6 Conclusions

This work tackles the control design problem for the
systems with a constrained control structure. The no-
tion of decentralized fixed mode (DFM) which has been
introduced in the literature is extended here to define
the new notion of decentralized overlapping fixed mode
(DOFM). This definition is used to characterize those
modes of a system which are fixed with respect to any
LTI controller with a given overlapping structure. The
primary goal of this work is to identify the DOFMs of
the system efficiently. This is accomplished by employing
a graph-theoretic approach. More precisely, a graph is
obtained from which one can transform the overlapping
structure of the controller into a decentralized structure
for some other system. This brings about relating the
DOFMs of the system to the DFMs of another system
properly. Furthermore, a simple procedure is proposed
to achieve pole-placement for the system by means of
LTI structurally constrained controllers. The results ob-
tained are illustrated in a numerical example.
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Zecevic, A. I., & Šiljak, D. D. (2005). A new approach to
control design with overlapping information struc-
ture constraints. Automatica. 41(2), 265–272.

9


