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Abstract

This paper deals with structurally constrained periodic control design for interconnected systems. It is assumed that the
system is linear time-invariant (LTI), observable and controllable, and that its modes are distinct and nonzero. It is shown
that the notions of quotient fixed mode (QFM) and structured decentralized fixed mode (SDFM) are equivalent for this class
of systems. Then, it is proved that if the system is decentrally stabilizable, then one candidate for the decentralized stabilizing
controller is a time-varying one consisting of a decentralized LTI discrete-time compensator and a zero-order hold. More
specifically, the non-quotient fixed modes of the system will be eliminated via sampling for almost all sampling periods, while
any QFM will still remain a fixed mode. The results obtained are ultimately extended to the case when the system has some
repeated modes, none of which is a DFM.
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1 Introduction

In control of large-scale interconnected systems, it is of-
ten desired to have some form of decentralization. In
fact, for such systems it is not realistic to assume that all
output measurements can be transmitted to every local
control station. Problems of this kind appear, for exam-
ple, in electric power systems, communication networks,
large space structures, robotic systems, economic sys-
tems and traffic networks, to name only a few. Typical
large-scale control systems have several local control sta-
tions, which observe only local outputs and control only
local inputs. All the controllers are involved, however, in
the overall operation of the control system. In the past
three decades, the problem of decentralized control has
been thoroughly investigated in the literature, and a va-
riety of its characteristics are studied (Jamshidi, 1997;
Siljak, 1991).

The notion of decentralized fixed modes (DFM) was in-
troduced in Wang and Davison (1973) to identify those
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modes of an interconnected system which are fixed with
respect to any linear time-invariant (LTI) decentralized
control law. In addition, structurally fixed modes were
defined in Sezer and Siljak (1981), and it was shown
that a mode is fixed due to either the structure of the
system, or the perfect matching of its parameters. This
idea was later used in Ozguner and Davison (1985) to
classify the DFMs of a decoupled decentralized system
as being either structured or unstructured. Moreover, it
was shown in Ozguner and Davison (1985) that the dis-
tinct and nonzero unstructured DFMs of a system can
be eliminated via sampling. It is noteworthy that the
structurally fixed modes of a system are not invariant
under similarity transformation and mainly depend on
the realization of the system. In contrast, the structured
or unstructured DFMs of a system are defined based on
the decoupled model of the system, while their funda-
mental properties (such as movability by means of sam-
pling) hold for any realization of the system.

As discussed above, the notion of a DFM was mainly in-
troduced to investigate stabilizability of a system with
respect to a decentralized LTI controller. In other words,
it does not provide any result on the stabilizability of
a system by means of a decentralized controller of any
general type, i.e. nonlinear or time-varying. On the other
hand, structured DFMs were basically defined to deter-
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mine whether or not a system is stabilizable by means
of merely a sampled-data controller, as a special class
of linear time-varying (LTV) controllers. Thus, this def-
inition does not address the more general question of
stabilizability with respect to a decentralized non-LTI
controller.

The notion of quotient fixed modes (QFM) was intro-
duced in Gong and Aldeen (1997) based on the graph
topology of the interconnected system, to identify the
modes that remain fixed with respect to a general nonlin-
ear or time-varying decentralized controller. This notion
provides a key result on the characterization of DFMs.
It was also shown in Gong and Aldeen (1997) that a
decentralized control system can be stabilized with any
arbitrary degree of exponential stability if and only if it
has no QFMs.

This paper investigates the decentralized control de-
sign problem for the controllable and observable finite-
dimensional LTI systems with distinct and nonzero
modes. It is shown that for this broad class of systems,
the notions of QFM and structured DFM are, in fact,
the same. Using this result, it is proved that if a system
(with said properties) is decentrally stabilizable under a
general control law, then there exists a decentralized LTI
discrete-time controller with a simple zero-order hold
(ZOH) to stabilize it. This results from the fact that the
non-quotient DFMs of the continuous-time system are
no longer fixed in the sampled system. It is noteworthy
that this result can be considered as a generalization of
the ones presented in Sezer and Siljak (1990), but for
single-rate linear systems. Furthermore, some impor-
tant properties of structured DFMs are investigated,
which lead to a simple approach to determine the QFMs
of a system. A numerical example is given to clarify the
main results of the paper step by step.

This paper is organized as follows. First, some of the
existing results and notions are reviewed in Section 2,
which are exploited to develop the main results of the
paper in Section 3. A numerical example is provided in
this section, which is further examined in Section 4 to
elucidate the ideas of the present work. Finally, some
concluding remarks are presented in Section 5.

2 Preliminaries

Consider an LTI interconnected system S consisting of
ν subsystems S1, S2, ..., Sν , and suppose that its modes
are all distinct and nonzero (this condition is assumed
to hold throughout the paper, unless stated otherwise).
One can employ a proper similarity transformation to
decouple the state-space model of the system. Let the

resultant model be given by:

ẋ(t) = Ax(t) +
ν∑

i=1

Biui(t)

yi(t) = Cix(t), i ∈ ν̄ := {1, 2, ..., ν}
(1)

where x(t) ∈ <n is the state, and ui(t) ∈ <mi and yi(t) ∈
<ri are the input and the output of the i-th subsystem,
respectively, and

A = diag([σ1 , σ2 , ... , σn]) (2)

(note that by assumption σi 6= 0, σi 6= σj , ∀i, j ∈
{1, 2, ..., n}, i 6= j). To avoid triviality, assume also that
the system S is controllable and observable. Define now:

B := [B1 B2 · · · Bν ],

C :=
[
CT

1 CT
2 · · · CT

ν

]T
,

u(t) := [u1(t)T u2(t)T · · · uν(t)T ]T ,

y(t) := [y1(t)T y2(t)T · · · yν(t)T ]T ,

m :=
ν∑

i=1

mi, r :=
ν∑

i=1

ri

(3)

Decentralized control is referred to the set of local con-
trollers, where each local controller is aimed to generate
the input of its corresponding subsystem in terms of only
the output of the same subsystem. In order to specify the
local subsystems associated with the local controllers,
the subsystems are enclosed within parentheses through-
out the paper, if necessary. For instance, a decentral-
ized controller for the system S(S1, S2, S3) is the union
of the local controllers ui(t) = gi(yi(t), t), i ∈ {1, 2, 3},
corresponding to the subsystems S1, S2, S3. Some im-
portant notions regarding different types of fixed modes
will be outlined next, which are essential for developing
the main results of the paper.

Definition 1 (Wang and Davison (1973)) The
mode λ ∈ sp(A) is said to be a decentralized fixed mode
(DFM) of the system S, if it remains a mode of the
closed-loop system under any arbitrary decentralized
static feedback. In other words, λ ∈ sp(A) is a DFM of
the system S if:

λ ∈ sp

(
A +

ν∑

i=1

BiKiCi

)
, ∀ Ki ∈ <mi×ri , i ∈ ν̄

(4)

It can be shown that a DFM is fixed with respect to not
only static decentralized controllers (by definition) but
also any arbitrary dynamic LTI decentralized controller.
However, it is interesting to note that a proper non-LTI
controller can eliminate certain types of DFMs (Gong
and Aldeen, 1997; Anderson and Moore, 1981; Ozguner
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and Davison, 1985). In other words, a DFM is not neces-
sarily fixed with respect to a time-varying or nonlinear
decentralized control law.

Definition 2 Assume that λ ∈ sp(A) is a DFM of the
system S(S1, S2, ..., Sν) given by (1). The mode λ is de-
fined to be a structured decentralized fixed mode (SDFM)
of the system, if it is a DFM of any system obtained from
S by arbitrarily perturbing the nonzero entries of its ma-
trices B and C.

It is to be noted that in the definition of SDFM given
in Ozguner and Davison (1985), the nonzero elements of
A (the elements on the main diagonal) are also assumed
to be perturbed. Nonetheless, it can be easily verified
that this assumption is not necessary, and hence can be
simply relaxed.

Definition 3 Assume that λ is a DFM of the system
S(S1, S2, ..., Sν). Then, λ is called an unstructured de-
centralized fixed mode (UDFM) if it is not an SDFM of
S(S1, S2, ..., Sν). In other words, UDFMs originate from
an exact matching of the system parameters, and any
perturbation in the nonzero entries of the system matri-
ces A, B and C would shift this type of modes (note that
Definition 3 is not a trivial extension of Definition 2).

In order to illustrate the concepts of SDFM and UDFM,
consider a system S consisting of three single-input
single-output (SISO) subsystems with the following
parameters:

A = diag([1 , −2 , −3]),
B1 = [0 0 − 1]T , B2 = [1 1 2]T , B3 = [2 1 5]T ,

C1 = [5 3 2], C2 = [0 − 1 0], C3 = [0 − 2 0]
(5)

It can be easily verified that if the nonzero entries of
the vectors Bi and Ci, ∀i ∈ {1, 2, 3}, are replaced by
any arbitrary numbers, the resultant system S still has a
DFM at λ = 1. In other words, this mode is immovable
with respect to LTI decentralized controllers in all of the
following systems:

A = diag([1 , −2 , −3]),
B1 = [0 0 ∗]T , B2 = [∗ ∗ ∗]T , B3 = [∗ ∗ ∗]T ,

C1 = [∗ ∗ ∗], C2 = [0 ∗ 0], C3 = [0 ∗ 0]
(6)

where the symbol ∗ represents the entries which can take
any arbitrary values. This means that λ = 1 is an SDFM
of the system S. Now, let the parameters B1, C2 and C3

of the system S in (5) be replaced by the following:

B1 = [0 3 − 4]T , C2 = [0 − 1 − 1],
C3 = [0 − 2 − 2]

(7)

It is straightforward to show that λ = 1 is a DFM of
the system in this case too. However, if for example the

second entry of C2 is replaced by any value other than
-1, this mode will no longer be a DFM of the resultant
system. As a result, λ = 1 is a UDFM of the system S.
Note that this DFM is resulted from the exact matching
of the nonzero entries of the matrices A, Bi and Ci, ∀i ∈
{1, 2, 3} as pointed out in Definition 3, and hence it is
no longer fixed after perturbing the nonzero parameters
of the system.

Define Sd as the discrete-time equivalent model of S, ob-
tained by using a constant sampling period h > 0 and a
zero-order hold (ZOH). Thus, the state-space represen-
tation of Sd is as follows:

x[κ + 1] = Āx[κ] +
ν∑

i=1

B̄iui[κ]

yi[κ] = Cix[κ], i ∈ ν̄

(8)

where the discrete argument corresponding to the sam-
ples of any signal is enclosed in brackets (e.g., x[κ] =
x(κh)). It can be easily shown that Ā = eAh, and B̄i =
A−1(Ā − In)Bi, i ∈ ν̄, where In represents the n × n
identity matrix (note that A is invertible because by as-
sumption its eigenvalues are all nonzero). Denote the
subsystems of Sd corresponding to S1, S2, ..., Sν with
Sd1 ,Sd2 , ...,Sdν . The following lemma is borrowed from
Ozguner and Davison (1985).

Lemma 1 Assume that the system S(S1, S2, ..., Sν) has
Pu unstructured and Ps structured DFMs, and denoted its
SDFMs with λi, i = 1, 2, ..., Ps. The discrete-time sys-
tem Sd(Sd1 ,Sd2 , ...,Sdν ) comprises Ps structured DFMs
eλih, i = 1, 2, ..., Ps and no UDFMs, for almost all val-
ues of h.

Remark 1 The term ”for almost all” in Lemma 1 means
that the sampling periods for which the discrete-time sys-
tem Sd(Sd1 ,Sd2 , ...,Sdν ) has UDFMs, either lie on a hy-
persurface in the one dimensional space (implying that
the number of such sampling periods is finite), or are
the pathological sampling periods which can potentially
make the discrete-time system unobservable or uncon-
trollable (for the definition of a hypersurface see Davison
and Wang (1973), and for the definition of pathological
sampling refer to Chen and Francis (1995)).

Lemma 1 states that the UDFMs of the system
S(S1, S2, ..., Sν) can (almost always) be displaced in
the sampled model, whereas SDFMs still remain fixed
after sampling. The questions arise as how to identify
the type of DFMs, and how to design a stabilizing con-
troller for a system with SDFMs (if possible). Note that
a procedure is proposed in Ozguner and Davison (1985)
to determine the type of the DFMs of the systems
consisting of only two SISO subsystems.

On the other hand, the notion of quotient fixed modes
(QFM) was introduced in Gong and Aldeen (1997) to
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investigate the stabilizability of interconnected systems
under a general decentralized control law (i.e. nonlinear
or time-varying). Since the definition of QFM is essential
in the development of the main results of this paper, it
is explained in the next two definitions.

Definition 4 Define the structural graph of the system
S as a digraph with ν vertices which has a directed edge
from the i-th vertex to the j-th vertex if and only if Cj(sI−
A)−1Bi 6= 0, for any i, j ∈ ν̄. The structural graph of
the system S is denoted by G.

Partition G into the minimum number of strongly con-
nected subgraphs denoted by G1, G2, ...., Gl (recall that
a digraph is strongly connected if and only if there ex-
ists a directed path from any vertex to any other vertices
of the graph (Gong and Aldeen, 1997; Anderson and
Moore, 1981)). Define the subsystem S̃i, i = 1, 2, ..., l,
as the union of all subsystems of S corresponding to the
vertices in the subgraph Gi (note that vertex j in the
graph G represents the subsystem Sj , for any j ∈ ν̄).

Definition 5 λ is said to be a QFM of the sys-
tem S(S1, S2, ..., Sν), if it is a DFM of the system
S(S̃1, S̃2, ..., S̃l).

In order to cast light on the definition of a QFM, consider
again the system S with the parameters given in (5).
The transfer function matrix of this system is equal to:




−2
s+3

12s2+35s+13
(s−1)(s+2)(s+3)

23s2+66s+31
(s−1)(s+2)(s+3)

0 −1
s+2

−1
s+2

0 −2
s+2

−2
s+2


 (9)

Hence, the structural graph of the system S is composed
of two strongly connected subgraphs corresponding to
vertex 1 (as the first subgraph), and vertices 2, 3 (as the
second subgraph). Therefore, the new subsystem S̃1 is
defined to be the subsystem S1, while S̃2 is the union
of S2 and S3. The union of the subsystems S̃1 and S̃2 is
sometimes referred to as a quotient system (Gong and
Aldeen, 1997). It is imperative to note that:

• The DFMs of the system S(S1, S2, S3) are also the
modes of the closed-loop system in Figure 1, for any
arbitrary LTI controllers K1, K2 and K3. It can be
easily verified that λ = 1 is the only DFM of the
system S given by (5).

• The QFMs of the system S(S1, S2, S3) are defined to
be the DFMs of the system S(S̃1, S̃2), i.e., the fixed
modes of the closed-loop system shown in Figure 2, for
any arbitrary LTI controllers K̃1 and K̃2. For instance,
it is easy to show that λ = 1 is a QFM of the system
S given by (5).

Lemma 2 (Gong and Aldeen (1997)) There exists
a decentralized controller to stabilize the system S(S1,

Fig. 1. The schematic of the decentralized control system S
used for obtaining the DFMs.

Fig. 2. The schematic of the decentralized control system S
used for obtaining the QFMs.

S2, ..., Sν) if and only if it does not have any QFM with
a nonnegative real part.

Based on the developments in Anderson and Moore
(1981), it is also shown in Gong and Aldeen (1997) that
if the system is decentrally stabilizable, then a candidate
stabilizing controller has the following LTV form:

żi(t) = P i
1(t)zi(t) + P i

2(t)yi(t)
ui(t) = P i

3(t)xi(t) + P i
4(t)yi(t), i ∈ ν̄

(10)

where the matrices P i
j (t), j ∈ {1, 2, 3, 4}, i ∈ ν̄, are ob-

tained from a number of observer-based controllers for
some LTV augmented systems. As an alternative, the
work Juan and Kabamba (1989) proposes a simpler class
of LTV controllers, which can eliminate the non-QFMs
of the system. It is worth mentioning that the results
of Anderson and Moore (1981) leading to the controller
(10) is extended in Khargonekar and Ozguler (1994) to
periodically time-varying systems, which illuminates the
necessity of having no QFMs for stabilization via peri-
odic controllers.

The objective of this work is to show that another can-
didate decentralized stabilizing controller is a sampled-
data control law, which can be obtained in a much sim-
pler manner compared to the previously proposed LTV
controllers. This will be addressed in the subsequent sec-
tion.

3 Effect of sampling on DFMs

It is desired first to present some formulas for attaining
the SDFMs of the system S. To do so, the following
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notation is required.

Notation 1 For any i ∈ ν̄:

• Denote the (j1, j2) entry of Bi with bj1,j2
i , for any

1 ≤ j1 ≤ n, 1 ≤ j2 ≤ mi.
• Denote the (j1, j2) entry of Ci with cj1,j2

i , for any
1 ≤ j1 ≤ ri, 1 ≤ j2 ≤ n.

In the case when there are only two SISO subsystems
(i.e. ν = 2, m1 = m2 = r1 = r2 = 1), it is shown in
Ozguner and Davison (1985) that σi is an SDFM of the
system S if and only if either one of the conditions given
below holds:

i) bi,1
1 = c1,i

2 = 0, bj,1
1 c1,j

2 = 0, ∀j ∈ {1, 2, ..., i−1, i+
1, ..., n}.

ii) bi,1
2 = c1,i

1 = 0, bj,1
2 c1,j

1 = 0, ∀j ∈ {1, 2, ..., i−1, i+
1, ..., n}.

In what follows, these simple formulas will be extended
to general interconnected systems.

Theorem 1 The mode σi, i ∈ {1, 2, ..., n}, is an SDFM
of the system S(S1, S2, ..., Sν), ν ≥ 2, if and only if there
exists a permutation of {1, 2, ..., ν} denoted by distinct
integers i1, i2, ..., iν , as well as an integer p between 1 and
ν − 1, such that bi,α

j1
= cβ,i

j2
= 0 and bµ,α

j1
cβ,µ
j2

= 0, for all
j1, j2, α, β and µ given by:

j1 ∈ {i1, i2, ..., ip}, j2 ∈ {ip+1, ip+2, ..., iν}
α ∈ {1, 2, ..., mj1}, β ∈ {1, 2, ..., rj2},
µ ∈ ν̄ − {i}

(11)

(note that ν̄ − {i} is the set ν̄ without the entry i).

Remark 2 The formulas given in Theorem 1 state that
σi is an SDFM of the system S if and only if one can
partition the set {1, 2, ..., ν} into two sets {i1, i2, ..., ip}
and {ip+1, ip+2, ..., iν} such that the matrices M1 and M2

defined as:

M1 =
[
Bi1 Bi2 · · · Bip

]
,

M2 =
[
CT

ip+1
CT

ip+2
· · · CT

iν

]T (12)

have the following properties:

a) The i-th row of the matrix M1 and the i-th column of
the matrix M2 are both equal to zero vectors.

b) The product of any two entries in the j-th row of M1

and the j-th column of M2 is zero for all j ∈ {1, 2, ..., i−
1, i + 1, ..., ν}.

Proof of Theorem 1: It is known that σi is a DFM of
the system S(S1, S2, ..., Sν) if and only if there exists a

permutation of {1, 2, ..., ν} denoted by distinct integers
i1, i2, ..., iν , as well as an integer p between 0 and ν,
such that the rank of the following matrix is less than n
(Davison and Chang, 1990):




A− σiIn Bi1 . . . Bip

Cip+1 0 . . . 0
...

...
. . .

...

Ciν
0 . . . 0




(13)

(note that 0 in the above matrix represents a zero block
entry of proper dimension). In addition, since it is as-
sumed that the system S is controllable and observable,
the rank of the matrix (13) is equal to n for p = 0 and
p = ν (note that the matrix (13) turns out to be the ob-
servability matrix for p = 0 and the controllability ma-
trix for p = ν). Therefore, the condition 0 ≤ p ≤ ν given
above can be replaced by 1 ≤ p ≤ ν − 1. It is clear that
the rank of the matrix A − σiIn is n − 1, and, in addi-
tion, the i-th column and the i-th row of this matrix are
both zero vectors. Hence, the rank of the matrix given
in (13) is at least n, if and only if there exists a nonzero
entry in either its i-th column or its i-th row. As a re-
sult, the rank of the matrix in (13) is less than n if and
only if both of the following conditions hold:

i) All of the entries of the i-th column and the i-th row
of the matrix given in (13) are zero, i.e. bi,α

j1
= cβ,i

j2
= 0

for any α, β, j1, and j2 satisfying (11).
ii) The rank of the following matrix (which is a sub-

matrix of the one given by (13)) is less than n:




σi
1 . . . 0 0 . . . 0 b1,α

j1
...

. . .
...

...
. . .

...
...

0 . . . σi
i−1 0 . . . 0 bi−1,α

j1

0 . . . 0 σi
i+1 . . . 0 bi+1,α

j1
...

. . .
...

...
. . .

...
...

0 . . . 0 0 . . . σi
n bn,α

j1

cβ,1
j2

. . . cβ,i−1
j2

cβ,i+1
j2

. . . cβ,n
j2

0




(14)

for any α, β, j1, and j2 satisfying (11), where σi
j :=

σj − σi, i, j ∈ {1, 2, ..., n}. Partition the matrix given
by (14) into four sub-matrices, and denote it with[

Ai Φ1

Φ2 0

]
, where Ai ∈ <(n−1)×(n−1), Φ1 ∈ <(n−1)×1,

and Φ2 ∈ <1×(n−1). Since the matrix Ai is nonsingu-
lar (because it is assumed that σ1, ..., σn are distinct),
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one can write:

det

[
Ai Φ1

Φ2 0

]
= −det(Ai)× det(Φ2A

−1
i Φ1) (15)

Thus, the rank of the matrix given in (14) is less than
n if and only if the scalar Φ2A

−1
i Φ1 is equal to 0.

It can be concluded from Definition 2 and the above
discussion that σi is an SDFM if and only if condition (i)
and the equality:

n∑

µ=1, µ 6=i

b̄µ,α
j1

c̄β,µ
j2

σi
µ

= 0 (16)

both hold, where b̄µ,α
j1

and c̄β,µ
j2

represent any arbitrary
nonzero multiples of bµ,α

j1
and cβ,µ

j2
, respectively, for µ =

1, 2, ..., n. This condition is equivalent to the equality
bµ,α
j1

cβ,µ
j2

= 0 for µ = 1, 2, ..., n, µ 6= i. ¥

Corollary 1 Assume that σi, i ∈ {1, 2, ..., n}, is an
SDFM of the system S(S1, S2, ..., Sν). There exists a
permutation of {1, 2, ..., ν} denoted by distinct integers
i1, i2, ..., iν , as well as an integer p between 1 and ν − 1,
such that:

i) The following two matrices are not full-rank:

[A− σiIn Bi1 Bi2 . . . Bip ],
[
A− σiIn CT

ip+1
CT

ip+2
. . . CT

iν

]T (17)

ii) The equality given below holds for any complex number
s 6= σj , j = 1, 2, ..., n:

[
CT

ip+1
CT

ip+2
. . . CT

iν

]T (A− sIn)−1

× [Bi1 Bi2 . . . Bip ] = 0
(18)

Proof: The proof follows directly from Theorem 1. ¥

Theorem 2 The SDFMs of the system S(S1, S2, ..., Sν)
are identical to its QFMs.

Proof: Assume that σi is an SDFM of the system
S(S1, S2, ..., Sν), and consider the integers i1, i2, ..., iν
in Corollary 1. Define now two new composite subsys-
tems S1 and S2, where S1 is composed of p subsystems
S1, S2, ..., Sp, and S2 is composed of ν − p subsystems
Sp+1, Sp+2, ..., Sν . One can easily conclude from (13)
and the characteristics of DFM given in Davison and
Chang (1990), that σi is a DFM of the system S(S1,S2).

On the other hand, condition (ii) of Corollary 1 implies
that there is no edge form S1 to S2 in the digraph of

the system; i.e., the system S consisting of the two sub-
systems S1 and S2 is not strongly connected (note that
a system consisting of two subsystems is strongly con-
nected if and only if the transfer function matrix from
each of its subsystems input to the other subsystems
output is not identically zero). Furthermore, since the
system S has already been broken down into the subsys-
tems S̃1, S̃2, ..., S̃l (where l denotes the minimum num-
ber of strongly connected subgraphs of G, as discussed
earlier) which are not strongly connected to each other,
it can be easily deduced that there exists a permutation
of {1, 2, ..., l} denoted by distinct integers j1, j2, ..., jl, as
well as an integer ζ, such that S1 = S̃j1 ∪ S̃j2 ∪ · · · ∪ S̃jζ

and S2 = S̃jζ+1 ∪ S̃jζ+2 ∪ · · · ∪ S̃jl
. This implies that any

DFM of the system S(S1,S2) is also a DFM of the sys-
tem S(S̃1, S̃2, ..., S̃l). Thus, since it was shown that σi

is a DFM of the system S(S1,S2), it is a DFM of the
system S(S̃1, S̃2, ..., S̃l) as well. On the other hand, it
is known from Definition 5 that the DFMs of the sys-
tem S(S̃1, S̃2, ..., S̃l) are, in fact, the QFMs of the system
S(S1, S2, ..., Sν). Therefore, σi is a QFM of the system
S(S1, S2, ..., Sν).

Assume now that λ is a QFM of the system S(S1, S2, ...,
Sν). Hence, λ is either an SDFM or a UDFM. If it is
a UDFM, then it follows from Lemma 1 that λ is not
fixed with respect to a discrete-time controller with a
ZOH. A well-known property of QFM, however, is that
λ is fixed with respect to any type of control law (Gong
and Aldeen, 1997). This contradicts the original assump-
tion, and hence proves that λ is an SDFM of the system
S(S1, S2, ..., Sν). This completes the proof. ¥

Remark 3 It can be concluded from Conditions (i)
and (ii) in Corollary 1 and the discussion in the proof
of Theorem 2, that if σi is an SDFM of the system
S(S1, S2, ..., Sν) (or equivalently a QFM of the system),
then the system can be partitioned into two subsystems
S1 and S2 such that σi is an uncontrollable mode of the
system S from the input of the subsystem S1, and an
unobservable mode of S from the output of the subsys-
tem S2. Moreover, the transfer function matrix from the
input of S1 to the output of S2 is zero.

The following result follows immediately from Theo-
rem 2 and Lemma 1.

Corollary 2 Assume that the system S(S1, S2, ..., Sν)
had Ps QFMs denoted by λi, i = 1, 2, ..., Ps, and Pu

non-quotient DFMs denote by λ̄i, i = 1, 2, ..., Pu. The
discrete-time equivalent model Sd(Sd1 ,Sd2 , ...,Sdν ) has
only Ps DFMs eλih, i = 1, 2, ..., Ps, which correspond
to the QFMs of S(S1, S2, ..., Sν), for almost all values
of h. In other words, the DFMs λ̄i, i = 1, 2, ..., Pu, of
S(S1, S2, ..., Sν) will be eliminated by sampling.

It is shown in Gong and Aldeen (1997) and Anderson
and Moore (1981), that a system with no unstable QFMs
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can be stabilized by using an appropriate time-varying
decentralized control law. However, as stated in Corol-
lary 2, one can use a sampled-data decentralized con-
troller as a time-varying control law for the continuous-
time system. It is to be noted that a discrete-time con-
troller has its unique advantages; moreover, it is easy
to design and implement. It is worth noticing that the
results obtained in this paper can be easily utilized to
design a discrete-time compensator with a generalized
sampled-data hold function to achieve a better perfor-
mance (Rossi and Miller, 1999; Juan and Kabamba,
1991; Lavaei and Aghdam, 2007a,b; Aghdam, Davison,
and Arreola, 2006; Aghdam and Davison, 2007).

Remark 4 The present work initially assumes that all
of the modes of the system S are distinct. In order to relax
this assumption to some degree, suppose that S has some
repeated modes, none of which is a DFM. Apply first a
generic static output feedback decentralized controller to
the system to move the repeated modes. The results de-
rived in this paper can then be applied to the resultant
closed-loop system. Therefore, those modes that are not
QFMs of the system S can be displaced via a hybrid con-
troller, comprising a decentralized static continuous-time
and a decentralized LTI discrete-time controllers.

Remark 5 Since the notion of structured DFMs was
merely defined based on the decoupled realization of the
system, S was initially transformed into a decoupled
form. Later on, it was shown that the QFMs of the de-
coupled system are tantamount to the structured DFMs
of the system. Nonetheless, it is important to note that
the QFMs of a system are invariant under any simi-
larity transformation. Thus, the QFMs of the system
S are properly characterized by the proposed method,
and the decentralized stabilizability results obtained here
are independent of the state-space representation of the
system.

4 Illustrative example

Consider a system S consisting of three SISO subsystems
with the state-space matrices give in (5). Let ij = j, j =
1, 2, 3 and p = 1 in Theorem 1 which yield that λ = 1
is an SDFM of the system S(S1, S2, S3). In other words,
if the nonzero entries of the vectors Bi, Ci, i = 1, 2, 3
are replaced by any arbitrary numbers, then λ = 1 still
remains a DFM of the resultant system. Moreover, it
was shown in the paper (by using the structural graph
of the system and the schematic depicted in Figure 2)
that λ = 1 is a QFM of the system S(S1, S2, S3). In
other words, λ = 1 is both an SDFM and a QFM of
the system S(S1, S2, S3). This is in accordance with the
result of Theorem 2.

Now, let the vectors B1, C2, and C3 in (5) be replaced
by the ones given in (7). As pointed out earlier, in this
case, λ = 1 is a DFM of the system S(S1, S2, S3), but it

is not a UDFM; hence, it is not a QFM either (according
to Theorem 2). Therefore, this mode can be eliminated
by means of sampling according to Corollary 2. For in-
stance, choose h = 1sec. It is straightforward to show
that the modes of the open-loop discrete-time equiva-
lent model are 0.0498, 0.1353, 2.7183, while those of the
discrete-time model under a static decentralized feed-
back with the unity gain are 2.0685± 0.7942i,−4.9743.
Since these two sets of modes are disjoint, it can be con-
cluded that the discrete-time equivalent model does not
have any DFMs, as expected from Corollary 2.

5 Conclusions

This paper deals with the decentralized control prob-
lem for a broad class of interconnected systems. It is
proved that the notions of a structured decentralized
fixed mode and a quotient fixed mode introduced in the
literature are identical for linear time-invariant, control-
lable and observable systems with distinct and nonzero
eigenvalues. As a result of this equivalency, it is shown
that if there exists a decentralized controller with a gen-
eral structure (e.g., nonlinear or time-varying) to sta-
bilize a system belonging to the aforementioned class,
then there also exists a decentralized LTI discrete-time
controller (with a zero-order hold), which stabilizes the
system. The numerical example confirms the results of
the paper.
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