
AGraphTheoreticMethod toFindDecentralizedFixed

Modes of LTISystems

Javad Lavaei and Amir G. Aghdam

Department of Electrical and Computer Engineering, Concordia University
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Abstract

This paper deals with the decentralized control of systems with distinct modes. A simple graph-theoretic based approach

is proposed to identify those modes of the system which cannot be moved by means of a linear time-invariant decentralized

controller. First, the system is transformed into its Jordan state-space representation. Then, a matrix is computed, which has

the same order as the transfer function matrix of the system. A bipartite graph is constructed accordingly in terms of the

computed matrix. Now, the problem of identifying the DFMs of the system reduces to verifying if this graph has a complete

bipartite subgraph with a certain property. The proposed approach is quite simpler than the existing ones, which often require

calculating the rank of a huge number of matrices.

1 Introduction

Numerous real-world systems can be envisaged as the

interconnected systems consisting of a number of sub-

systems. Usually, the desirable control structure for this

class of systems is decentralized, which comprises a set

of local controllers for the subsystems (Wang and Davi-

son, 1973; Davison and Chang, 1990; Lavaei and Agh-

dam (a), 2006). Decentralized control system theory has

found applications in large space structure, communica-

tion networks, power systems, etc. (Inalhan, Stipanovic

and Tomlin, 2002; Lavaei, Momeni and Aghdam, 2006;
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and Engineering Research Council of Canada under grant
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Lavaei and Aghdam (b), 2006).

The notion of decentralized fixed mode (DFM) was in-

troduced in (Wang and Davison, 1973), where it was

shown that any mode of a system which is not a DFM

can be placed freely everywhere in the complex plane

by means of a linear time-invariant (LTI) controller.

An algebraic characterization of DFMs was presented

in (Anderson and Clements, 1981). A method was then

proposed in (Anderson et al., 1982) to characterize the

DFMs of a system in terms of its transfer function. It was

shown in (Davison and Wang, 1985) that the DFMs of

any system can be attained by computing the transmis-

sion zeros of a set of systems derived from the original

system. In (Davison and Chang, 1990), an algorithm was
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presented to identify the DFMs of the system by check-

ing the rank of a set of matrices. It is worth noting that

the number of the systems whose transmission zeros need

to be checked in (Davison and Wang, 1985) and the num-

ber of matrices whose ranks are to be computed in (Davi-

son and Chang, 1990) depend exponentially on the num-

ber of the subsystems of the original system. This means

that while these methods are theoretically applicable

to any multi-input multi-output (MIMO) system, they

are computationally ill-conditioned. The method intro-

duced in (Gong and Aldeen, 1992) addresses this practi-

cal problem by partitioning the system into a number of

modified subsystems, obtained based on the strong con-

nectivity of the system’s graph. Then, instead of finding

the DFMs of the original system, one can compute the

DFMs of the modified subsystems to reduce the corre-

sponding computational complexity. However, the com-

putational burden can still be high when the system con-

sists of several strongly connected subsystems. In gen-

eral, the method given in (Gong and Aldeen, 1992) is

more effective for medium-sized systems, while the one

in (Davison and Chang, 1990) is only appropriate for

small-sized systems. It is to be noted that the method

introduced in (Davison and Chang, 1990) is widely used

in the literature for the characterization of the DFMs.

This paper aims to present a quite simple approach to

find the DFMs of a system with distinct modes. To this

end, a matrix is obtained first, which resembles the trans-

fer function matrix of the system at one point. Then, a

bipartite graph is constructed in terms of this matrix. It

is shown that having a complete bipartite subgraph with

a certain property is equivalent to having a DFM. The

combinatorial approach proposed in the present paper is

substantially simpler than the conventional methods for

finding the DFMs. The efficacy of the proposed method

is demonstrated in a numerical example.

This paper is organized as follows. The problem formu-

lation and main development are presented in Section II,

which are followed by a numerical example in Section III.

Some concluding remarks are then given in Section IV.

2 Main results

Consider a LTI interconnected system S consisting of ν

subsystems S1, S2, ..., Sν , represented by:

ẋ(t) = Ax(t) +
ν∑

j=1

Bjuj(t)

yi(t) = Cix(t) +
ν∑

j=1

Dijuj(t), i ∈ ν̄ := {1, 2, ..., ν}

(1)

where x(t) ∈ <n is the state, and ui(t) ∈ <mi and

yi(t) ∈ <ri , i ∈ ν̄, are the input and the output of the

ith subsystem, respectively. Assume that each subsys-

tem is desired to be controlled by a local controller. The

ith local controller observes only the local output yi(t)

to construct the local input ui(t) of the ith subsystem,

i ∈ ν̄. Throughout this paper, the term ”decentralized

controller” is referred to the union of all local controllers.

It is desired now to find the DFMs of the system S, if

any.

Suppose the eigenvalues of A are distinct. Write the ma-

trix A as TAT−1, where T is the eigenvector matrix of

A. Denote the matrix A as follows:

A =




σ1 0 · · · 0

0 σ2 · · · 0

... · · · . . .
...

0 0 · · · σn




(2)

where σi, i ∈ {1, 2, ..., n} denote the modes of the system

S. Therefore, the system S can be represented in the
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decoupled form as:

ẋ(t) = Ax(t) +
ν∑

j=1

Bjuj(t)

yi(t) = Cix(t) +
ν∑

j=1

Dijuj(t), i ∈ ν̄

(3)

where:
[
B1 · · · Bν

]
= T−1

[
B1 · · · Bν

]
,

[
C1 · · · Cν

]
=

[
C1 · · · Cν

]
T,

Dij = Dij , i, j ∈ ν̄

(4)

NOtation: For any i, j ∈ ν̄:

• Denote the (µ1, µ2) entry of Bi with bµ1,µ2
i , for any

1 ≤ µ1 ≤ n, 1 ≤ µ2 ≤ mi.

• Denote the (µ1, µ2) entry of Ci with cµ1,µ2
i , for any

1 ≤ µ1 ≤ ri, 1 ≤ µ2 ≤ n.

• Denote the (µ1, µ2) entry of Dij with dµ1,µ2
ij , for any

1 ≤ µ1 ≤ ri, 1 ≤ µ2 ≤ mj .

The following theorem formulates the DFMs of the sys-

tem S.

Theorem 1 Assume that the mode σi, i ∈ {1, 2, ..., n},
is controllable as well as observable. σi is a DFM of the

system S, ν ≥ 2, if and only if there exist a permutation

of {1, 2, ..., ν} denoted by distinct integers i1, i2, ..., iν and

an integer p ∈ [1, ν − 1] such that bi,α
η = cβ,i

γ = 0, and:

n∑

µ=1, µ 6=i

bµ,α
η cβ,µ

γ

σµ − σi
= dβ,α

γη (5)

for all η, γ, α and β given by:

η ∈ {i1, i2, ..., ip}, γ ∈ {ip+1, ip+2, ..., iν}
1 ≤ α ≤ mη, 1 ≤ β ≤ rγ

(6)

Proof: It is known that σi is a DFM of the system

S(S1, S2, ..., Sν) if and only if there exist a permutation

of {1, 2, ..., ν} denoted by distinct integers i1, i2, ..., iν

and an integer p ∈ [0, ν] such that the rank of the fol-

lowing matrix is less than n (Davison and Chang, 1990):




A− σiIn Bi1 Bi2 . . . Bip

Cip+1 Dip+1i1 Dip+1i2 . . . Dip+1ip

Cip+2 Dip+2i1 Dip+2i2 . . . Dip+2ip

...
...

...
. . .

...

Ciν Diνi1 Diν i2 . . . Diνip




(7)

In addition, since it is assumed that the mode σi is con-

trollable and observable, the rank of the matrix (7) is

equal to n for p = 0 and p = ν . Therefore, the condition

0 ≤ p ≤ ν given above can be reduced to 1 ≤ p ≤ ν − 1.

It is clear that the rank of the matrix A− σiIn is n− 1,

and also, the ith column and the ith row of this matrix

are both zeros. Hence, if there exists a nonzero entry ei-

ther in the ith column or in the ith row of the matrix

given in (7), its rank will be at least n. As a result, the

rank of the matrix in (7) is less than n, if and only if

both of the following conditions hold:

i) All of the entries of the ith column and the ith row of

the matrix given in (7) are zero, i.e., bi,α
η = cβ,i

γ = 0

for any α, β, η, and γ satisfying (6).
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ii) The rank of the following matrix:




σi
1 . . . 0 0 . . . 0 b1,α

η

...
. . .

...
...

. . .
...

...

0 . . . σi
i−1 0 . . . 0 bi−1,α

η

0 . . . 0 σi
i+1 . . . 0 bi+1,α

η

...
. . .

...
...

. . .
...

...

0 . . . 0 0 . . . σi
n bn,α

η

cβ,1
γ . . . cβ,i−1

γ cβ,i+1
γ . . . cβ,n

γ dβ,α
γη




(8)

(which is a sub-matrix of the one given by (7)) is less

than n for any α, β, η, and γ satisfying (6), where

σi
j := σj − σi, i, j ∈ {1, 2, ..., n}. Partition the ma-

trix given by (8) into four sub-matrices, and denote

it with




Ai Φ1

Φ2 dβ,α
γη


, where Ai ∈ <(n−1)×(n−1), Φ1 ∈

<(n−1)×1, and Φ2 ∈ <1×(n−1). Since the matrix Ai is

nonsingular (because it is assumed that σ1, ..., σn are

distinct), one can write:

det




Ai Φ1

Φ2 dβ,α
γη


 = det(Ai)× det

(
dβ,α

γη − Φ2A
−1
i Φ1

)

(9)

Thus, the rank of the matrix given in (8) is less than

n, if and only if the scalar Φ2A
−1
i Φ1 is equal to dβ,α

γη ,

i.e.:

n∑

µ=1, µ 6=i

bµ,α
η cβ,µ

γ

σi
µ

= dβ,α
γη (10)

¥

Define now the matrix Mi as:

Mi : = C× diag
([

1
σ1 − σi

, . . . ,
1

σi−1 − σi
, 0 ,

1
σi+1 − σi

, . . . ,
1

σν − σi

])
B−D

(11)

and denote its (µ1, µ2) block entry with Mµ1,µ2
i ∈

<rµ1×mµ2 , for any µ1, µ2 ∈ ν̄. Note that the expression

of Mi resembles that of the transfer function matrix of

the system S, while the sign of D is different in Mi.

Theorem 2 The mode σi, i ∈ {1, 2, ..., n}, is a DFM of

the system S, ν ≥ 2, if and only if any of the following

conditions holds:

(i) The ith row of the matrices B1,B2, ....,Bν are zero.

ii) The ith column of the matrices C1,C2, ....,Cν are zero.

iii) There exist a permutation of {1, 2, ..., ν} denoted

by distinct integers i1, i2, ..., iν and an integer

p ∈ [1, ν − 1] such that Mγ,η
i is a zero matrix for

any η ∈ {i1, i2, ..., ip} and γ ∈ {ip+1, ip+2, ..., iν}, and

moreover the ith row of the matrices B1,B2, ....,Bip

and the ith column of Cip+1 ,Cip+2 , ....,Ciν are all zero.

Proof: Criteria (i) and (ii) are equivalent to the uncon-

trollability and the unobservability, respectively. Fur-

thermore, Criterion (iii) is resulted from Theorem 1, on

noting that Mγ,η
i is a rγ×mη matrix whose (β, α) entry

is equal to:

n∑

µ=1, µ 6=i

bµ,α
η cβ,µ

γ

σµ − σi
− dβ,α

γη (12)

for any β ∈ [1, rγ ], α ∈ [1, mη]. ¥

It is desired now to construct a graph based on the ma-

trix Mi. Consider a bipartite graph Gi with ν vertices

1, 2, ..., ν in each of its vertex sets, namely set 1 and set

2. For any µ1, µ2 ∈ ν̄, connect vertex µ1 of set 1 to vertex

µ2 of set 2 if the matrix Mµ1,µ2
i is a zero matrix. Then,

mark vertex µ1 of set 1 if the ith column of the matrix

4



Cµ1 is a zero vector, for any µ1 ∈ ν̄. Likewise, mark ver-

tex µ2 of set 2 if the ith row of the matrix Bµ2 is a zero

vector, for any µ2 ∈ ν̄.

The following algorithm results from Theorem 2 for ver-

ifying whether or not the mode σi is a DFM of the sys-

tem S.

Algorithm 1:

Step 1) Compute the matrix Mi, and construct the

graph Gi in terms of it, as pointed out earlier.

Step 2) Verify if all of the vertices in set 1 of the graph

Gi are marked. If yes, go to Step 6.

Step 3) Verify if all of the vertices in set 2 of the graph

Gi are marked. If yes, go to Step 6.

Step 4) Check whether the graph Gi includes a com-

plete bipartite subgraph such that all of its vertices

are marked and moreover the set of the indices of its

vertices is equal to the set ν̄. If yes, go to Step 6.

Step 5) The mode σi is not a DFM of the system S.

Stop the algorithm.

Step 6) The mode σi is a DFM of the system S. Stop

the algorithm.

Algorithm 1 proposes a simple graph-theoretic approach

to find the DFMs of the system S. This method requires

deriving a certain matrix, and then checking the exis-

tence of a complete subgraph in a graph, which can be ac-

complished using numerous efficient algorithms. In con-

trast, the existing methods require the rank of several

matrices (say 2ν) to be checked, which can be cumber-

some when the matrix is of high dimension. In fact, the

above algorithm presents a simple combinatorial proce-

dure as a more efficient alternative to find the DFMs of

a system (with distinct modes).

Corollary 1 Denote the number of matricesB1,B2, ...,Bν

whose ith row are zero with Γi. Furthermore, denote the

number of matrices C1,C2, ...,Cν whose ith column are

zero with Γ̄i. If Γi + Γ̄i is less than ν, then σi is not a

DFM of the system S.

Proof: It is straightforward to show that if Γi + Γ̄i is

less than ν, none of Steps 1, 2 or 3 of Algorithm 1 is

fulfilled. ¥

Corollary 1 presents a quite simple test as a sufficient

condition to verify whether σi can be a DFM of the

system or not.

3 Illustrative example

Consider the system S consisting of five single-input

single-output (SISO) subsystems with the following
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state-space matrices:

A = diag([1 , 2 , 3 , 4 , 5]),

B =




0 0 0 1 2

2 1 3 1 4

0 2 4 −1 5

0 0 3 0 −3

0 0 0 3 −1




,

C =




0 3 2 1 4

0 3 4 2 −1

5 4 3 −2 4

0 2 3 1 3

0 −2 −3 −2 −4




,

D =




6 5 14 3 2

6 7 19 4 2

8 7 16 −2 −4

4 5 13 0 1

−4 −5 −14 −1 2




(13)

It is desired to verify which of the modes σi = i, i ∈ ν̄ =

{1, 2, 3, 4, 5}, are DFMs of the system S. First, let the

test given in Corollary 1 be carried out. Since the first

entries of B1,B2,B3,C1,C2,C4 and C5 are all zero,

Γ1 + Γ̄1 is equal to 7. Similarly, one can conclude that:

Γ2 + Γ̄2 = 0, Γ3 + Γ̄3 = 1, Γ4 + Γ̄4 = 3, Γ5 + Γ̄5 = 3

(14)

Due to the fact that Γi + Γ̄i < 5 for i = 2, 3, 4, 5, it

follows from Corollary 1 that none of the modes 2, 3, 4

and 5 is a DFM of the system S. Algorithm 1 will now be

used to find out whether σ1 = 1 is a DFM. The matrix

M1 will be obtained as:

M1 = C× diag
([

0 , 1 ,
1
2

,
1
3

,
1
4

])
B−D

=




0 0 0 2 13

0 0 0 −3.75 18.25

0 0 0 7.5 28.5

0 0 0 2.75 12.75

0 0 0 −2.5 −14.5




(15)

The graph G1 corresponding to the matrix M1

is sketched in Figure 1. Since the first entries of

B1,B2,B3,C1,C2,C4 and C5 are all zero, vertices 1, 2

and 3 from set 2, and vertices 1, 2, 4 and 5 from set 1 of

the graph G1 are marked by filled circles, as shown in the

figure. It can be easily observed that vertices 4, 5 of set

1 and vertices 1, 2, 3 of set 2 fulfill the following criteria:

• All of them are marked.

• They constitute a complete bipartite graph.

• The set of their labels is equal to ν̄.

Therefore, σ1 = 1 is a DFM of the system (from Step 3

of Algorithm 1).

Fig. 1. The graph G1 corresponding to the matrix M1 given

in (15).

Regarding the mode σ3 = 3, let Algorithm 1 be pursued

for this mode regardless of the observation that it failed
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the test given in Corollary 1. The matrix M3 is equal to:

M3 = C× diag
([
−1 , 0 , 1 ,

1
2

,
1
3

])
B−D

=




−12 −8 −20 0 −19

−12 −10 −22 −8.5 −19

−16 −11 −34 1.5 −13

−8 −7 −16 2.5 −13

8 7 14 −3 14




(16)

The corresponding graph G3 is depicted in Figure 2.

Since there are not enough edges in the graph to create

a complete bipartite subgraph which spans all the in-

dices, thus σ3 = 3 is not a DFM of the system (which

also confirms the result obtained from Corollary 1).

Fig. 2. The graph G3 corresponding to the matrix M3 given

in (16).

Consequently, the system has only one DFM at 1.This

result could also be obtained by using the method given

in (Davison and Chang, 1990) or (Davison and Wang,

1985), which require the rank of 5×25 matrices with the

dimensions between 5 and 10 be checked. The sizable

difference between the computational costs required by

the method presented in this paper and the ones given

in (Davison and Chang, 1990; Davison and Wang, 1985)

demonstrates the efficacy of this work. It is worth men-

tioning that the results obtained here by using the pro-

posed method are attained by hand, while the methods

given in (Davison and Chang, 1990; Davison and Wang,

1985) require a proper software (such as MATLAB) to

solve the problem.

4 Conclusions

This paper aims to find the modes of a system (with dis-

tinct modes) which are fixed with respect to any LTI de-

centralized controller. Unlike the existing methods which

require the computation of the rank of numerous matri-

ces, the approach proposed here transforms the knowl-

edge of the system into a bipartite graph. Then, it is

shown that a mode is decentrally fixed if there exists

a complete bipartite subgraph with a certain property.

The efficacy of the proposed method is demonstrated in

a numerical example.
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