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Abstract

This paper addresses stability analysis of closed-loop sampled-data piecewise affine (PWA) slab systems. In particular, we study the case
in which a PWA plant is in feedback with a discrete-time emulation of a PWA controller. We consider the sampled-data system as a
continuous-time system with a variable time delay. The contributions of this work are threefold. First, we present a modified Lyapunov-
Krasovskii functional (LKF) for studying PWA systems with time delays that is less conservative when compared to previously suggested
alternatives. Second, based on the new LKF, sufficient conditions are provided for asymptotic stability of sampled-data PWA slab systems
to the origin. These conditions become Linear Matrix Inequalities (LMIs) in the case of a piecewise linear (PWL) controller. Finally, we
present an algorithm for finding a lower bound on the maximum delay that preserves asymptotic stability. Therefore, the output of the
algorithm provides an upper bound on the minimum sampling frequency that guarantees asymptotic stability of the sampled data system.
The new results are successfully applied to a unicycle example.
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1 Introduction

PWA systems form a special class of hybrid systems that is
often considered as a framework for modeling and approx-
imating nonlinearities that arise in physical systems; Ro-
drigues and How (2001). Stability analysis of continuous-
time PWA systems was addressed using Lyapunov-based
methods in Johansson and Rantzer (1998); Hassibi and Boyd
(1998); Johansson (2002); Rodrigues (2004). Lyapunov-
based synthesis methods for PWA systems were presented
in Hassibi and Boyd (1998); Johansson (2002); Rodrigues
and Boyd (2005); Samadi and Rodrigues (2009a). How-
ever, to be implementable in microprocessors, the resulting
continuous-time controllers must be emulated as a discrete-
time controller. For a general framework for the design of
nonlinear controllers using the emulation method, the reader
is referred to Laila et al. (2002). For a direct discrete-time
controller design based on an approximate discrete-time
model of the plant, we refer the reader to Nešić et al. (1999);
Nešić and Teel (2004).

While sampled-data control of linear systems is a well-
studied subject (e.g. see Chen and Francis (1995)), its exten-
sion to PWA systems has not received many research contri-
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butions. The term “sampled-data PWA system” was proba-
bly used for the first time in Azuma and Imura (2003); Imura
(2003), although the systems described there do not possess
the typical structure of a continuous-time plant being con-
trolled by a discrete-time controller. By contrast, Rodrigues
(2007) addresses the classical structure of a sampled-data
system in which a continuous-time system is controlled in
discrete-time inside a computer. Assuming constant sam-
pling rate, the author studies the stability of sampled-data
PWA systems using a quadratic Lyapunov function. The pa-
per provides a set of LMIs as sufficient conditions for ex-
ponential convergence of the sampled-data system to an in-
variant set containing the origin.

In sampled-data systems, the discrete-time controller can
also be modeled as a continuous-time controller with time
varying delay. The time-delay representation has been imple-
mented in nonlinear and linear sampled-data systems using
Razumikhin-type theorems (Teel et al. (1998)), and LKFs
(Naghshtabrizi et al. (2008)). Following the time-delay ap-
proach, Samadi and Rodrigues (2009b) study the stability
of sampled-data PWA systems with variable sampling rate.
The paper uses an LKF to prove that if a set of LMIs are sat-
isfied, the trajectories of the sampled-data system converge
to an invariant set containing the origin.

In contrast to previous work, we address asymptotic stabil-
ity to the origin rather than stability to an invariant set for
sampled-data PWA slab systems. To the best of our knowl-
edge, asymptotic stability of sampled-data PWA systems to
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the origin was not proved before. We study a continuous-
time PWA slab plant in feedback with a PWA slab con-
troller that appears between a sampler, with variable sam-
pling rate, and a zero-order-hold. The contributions of this
work are threefold. First, we present a modified LKF for
studying PWA systems with time delays that is less con-
servative when compared to previously suggested alterna-
tives; Samadi and Rodrigues (2009b). Second, based on the
new LKF, sufficient conditions are provided for asymptotic
stability of sampled-data PWA slab systems to the origin.
Finally, following the time-delay approach, we present an
algorithm for finding a lower bound on the maximum de-
lay that preserves asymptotic stability. This result provides
an upper bound on the minimum sampling frequency that
guarantees asymptotic stability of the sampled data system.
Preliminary results on a simpler version of this problem ad-
dressing the case of PWL controllers can be found in Moar-
ref and Rodrigues (2011). That case will only be presented
in this paper as a corollary.

The paper is organized as follows. Section 2 presents basic
information about sampled-data PWA slab systems. In Sec-
tion 3, a modified LKF is introduced first. Next, we present
a theorem that provides sufficient conditions for asymptotic
stability of sampled-data PWA slab systems. Furthermore,
we present an algorithm for finding a lower bound on the
maximum delay that preserves asymptotic stability. Finally,
the new results are applied to a unicycle example in Sec-
tion 4, followed by conclusions.

2 Preliminaries

Consider the PWA slab system

ẋ(t) = Aix(t)+ai+Bu(t), for x(t) ∈ Ri and i ∈ I, (1)

where x ∈ X ⊂ Rnx denotes the state vector,Ai ∈ Rnx×nx ,
ai ∈ Rnx , B ∈ Rnx×nu , u ∈ Rnu is the control input, and
I = {1, ...,M} is the set of indices of the slab regions Ri
that partition the state space X . The slab regions are defined
as

Ri = {x ∈ Rnx |σi < cTx < σi+1}, i ∈ I, (2)
where c ∈ Rnx , c 6= 0, and σ1 < σ2 < ... < σM+1 are finite
scalars. We denote the closure of Ri by Ri. The state space
is represented by the union of the closure of all regions, i.e.

X =
⋃
i∈I
Ri = {x ∈ Rnx |σ1 ≤ cTx ≤ σM+1}. (3)

Based on (3) and (2), the state space X and the regions
Ri are only bounded in the direction of vector c. Each slab
regionRi can also be described by a degenerate ellipsoid as

Ri = {x|||Lix+ li|| < 1}, (4)

whereLi = 2cT /(σi+1−σi) and li = −(σi+1+σi)/(σi+1−
σi); Rodrigues and Boyd (2005).

Lemma 1 For the slab regions defined in (4), x ∈ Ri if and
only if

[
xT 1

]LTi Li LTi li

liLi l2i − 1

x
1

 < 0.

PROOF. According to (4), x ∈ Ri if and only if
||Lix+ li|| < 1. Therefore,

x ∈ Ri ⇐⇒ (Lix+ li)
2 < 1

⇐⇒

[xT 1
]LTi

li

[Li li

]x
1

 < 1

⇐⇒
[
xT 1

]LTi Li LTi li

liLi l2i − 1

x
1

 < 0. 2

Let a PWA controller for (1) be defined by

u(t) = Kix(t) + ki, for x(t) ∈ Ri,

where Ki ∈ Rnu×nx and ki ∈ Rnu . We now present the
assumptions used in this work.

Assumption 1 The vector field of the open-loop system (1)
for u(t) = 0 is continuous across the boundaries of any
neighboring regions.

We denote the region containing the origin by R∗.

Assumption 2 The open-loop and closed-loop systems are
linear in R∗, i.e. ai = 0 and ki = 0 for Ri = R∗.

Assumption 3 The state vector is measured at the sampling
instants tn, n ∈ N, where 0 < tε ≤ tn+1 − tn ≤ τ for all
n ∈ N.

The positive constant tε is an arbitrary small number that
models the fact that two transmissions cannot occur simul-
taneously in practice. It is also used later to rule out the ex-
istence of the Zeno phenomenon. The number τ denotes the
longest interval between two consecutive sampling times.

According to Assumption 3, the control input is rewritten as

u(t) = Kjxtn+kj , for t ∈ [tn, tn+1), xtn ∈ Rj , and j ∈ I,

where xtn = x(tn). We denote the time elapsed since the
last sampling instant by

ρ(t) = t− tn, for t ∈ [tn, tn+1). (5)

2



Assuming x(t) ∈ Ri and xtn ∈ Rj , for t ∈ [tn, tn+1), we
can rewrite (1) as

ẋ(t) =Aix(t) + ai +B(Kjxtn + kj) (6a)
=Aix(t) + ai +B(Kixtn + ki) +Bw(t), (6b)

where w ∈ Rnu is a piecewise constant vector defined by

w(t) = (Kj −Ki)xtn + (kj − ki). (7)

The vector w is associated with the fact that the state and
its most recent sample can possibly be in different regions.

To be of later use in the proofs we must define bounds
on the mismatch between controller gain matrices Ki

and affine vectors ki, i ∈ I. To that end, let Bµ(0) be
the ball with radius µ > 0 centered at the origin and
Iµ = {p ∈ I|Rp

⋂
Bµ(0) 6= ∅}. We define non-negative

scalars ∆Kµ and δkµ as

∆Kµ = max
i∈I, j∈Iµ

||Kj −Ki||, δkµ = max
i∈I, j∈Iµ

||kj − ki||.

(8)
Furthermore, let non-negative scalars ∆K and δk be defined
as

∆K = max
i,j∈I

||Kj −Ki||, δk = max
i,j∈I

||kj − ki||. (9)

We denote the zero matrix and the identity matrix of the ap-
propriate size by 0 and I , respectively. The symmetric entries
of a symmetric matrix are represented by ?. A block diag-
onal matrix with diagonal entries d1, . . . , dm is denoted by
diag(d1, . . . , dm). The following lemma presents a bound
on the vector w which is used in the proof of the main result.

Lemma 2 For t ∈ [tn, tn+1), if ||xtn || < µ, then−I (∆Kµµ+ δkµ)1

I (∆Kµµ+ δkµ)1

w(t)

1

 � 0, (10)

where 1T =
[
1 · · · 1

]
1×nu

and� represents an elementwise

inequality.

PROOF. If ||xtn || < µ, according to (7) and (8) we can
write

||w(t)|| ≤||Kj −Ki||||xtn ||+ ||kj − ki||
<∆Kµµ+ δkµ.

(11)

For single input systems, inequality (11) can be written as−1 ∆Kµµ+ δkµ

1 ∆Kµµ+ δkµ

w(t)

1

 � 0.

For the case of multi-input systems, a more conservative
inequality can be written as (10), i.e. the absolute value of
each element of w is less than ∆Kµµ+ δkµ. 2

3 Main Results

In this section, we first present a modified LKF for studying
PWA systems with time delays. Let

V : X × C([−τ, 0],X )× [0, τ ]→ R+

be an LKF, where C([−τ, 0],X ) is the space of absolutely
continuous functions mapping the interval [−τ, 0] to X . We
define xt ∈ C as xt(r) = x(t+ r), −τ ≤ r ≤ 0, and denote
its norm by

||xt||C = sup
−τ≤r≤0

||xt(r)||

(see Hale and Lunel (1993), Section 2.1). We now define

V (x, xt, ρ) = V1(x) + V2(xt) + V3(xt, ρ), (12)

with

V1(x) =xT (t)Px(t),

V2(xt) =

∫ 0

−τ

∫ t

t+r

[
ẋ(s)−B(Kjxtn + kj)

]T
R
[
ẋ(s)−B(Kjxtn + kj)

]
dsdr,

V3(xt, ρ) =(τ − ρ)(x(t)− xtn)TX(x(t)− xtn),

where P , R, and X are symmetric positive definite matrices
in Rnx×nx , tn ≤ t is the most recent sampling instant, and j
is the index of the region containing the most recent sampled
state, i.e. xtn ∈ Rj .

Note that the second component of the LKF introduced
in (12) is different from its corresponding term in previously
studied LKFs such as Naghshtabrizi et al. (2008); Samadi
and Rodrigues (2009b). By subtractingB(Kjxtn+kj) from
ẋ in the definition of V2, we omit an unfavorable positive def-
inite term involving wTw from V̇ . This modification consid-
erably improves the stability results as shown in Section 4.
We now define stability in the context of retarded functional
differential equations.

Definition [Gu et al. (2003)] The solution of (6a) is said to
be uniformly stable if for any ε > 0, there is a δ = δ(ε) such
that ||xt0 ||C < δ implies ||x(t)|| < ε for t ≥ t0. The solution
of (6a) is uniformly asymptotically stable if it is uniformly
stable and there is δa > 0 such that for any η > 0, there is
a T = T (δa, η), such that ||xt0 ||C < δa implies ||x(t)|| < η
for t ≥ t0 + T .

The following theorem provides a set of sufficient conditions
for which the trajectories of a sampled-data PWA slab system
asymptotically converge to the origin.

3



Theorem 1 Consider the sampled-data PWA slab system
defined in (6b) and (7) subject to Assumptions 1-3. The sys-
tem is uniformly asymptotically stable to the origin if there
exist symmetric positive definite matrices P ,R, andX , sym-
metric matrices Λi with non-negative entries, matrices Ñ
and Ni, with appropriate dimensions, and positive scalars
γ, θ < 1, η, λi, σ, and ε, with i ∈ I, satisfying

∆K2γ < θ (13)

• for all i such that Ri 6= R∗

Ωi + Ωi + Ω
T

i + τ(M1i +M
T

1i +M2i) + S1i +D < 0

(14)
Ωi + Ωi + Ω

T

i + S1i +D

+τ(M2i +M3i +M
T

3i)

 τNi

τNT
i − τR

 < 0 (15)

Ωi + Ωi + Ω
T

i + τ(M1i +M
T

1i +M2i) (16)
+ S1i + S3i + εI < 0

 Ωi + Ωi + Ω
T

i + S1i + S3i

+τ(M2i +M3i +M
T

3i) + εI

 τNi

τNT
i − τR

 < 0 (17)

• for i such that Ri = R∗

Ωi + τ(M1i +MT
1i +M2i) + S1i − S2i +D < 0 (18)

Ωi + τ(M2i +M3i +MT
3i)

+S1i − S2i +D

 τNi

τNT
i − τR

 < 0 (19)

Ωi + τ(M1i +MT
1i +M2i) + S1i − S2i + S3i + εI < 0

(20)
Ωi + τ(M2i +M3i +MT

3i)

+S1i − S2i + S3i + εI

 τNi

τNT
i − τR

 < 0 (21)

Ψi + τM̃1i + M̃3i + εI < 0 (22)Ψi + τM̃2i + M̃3i + εI τÑi

τÑT
i − τR

 < 0 (23)

where

Ωi =

Ψi

PB 0

0 0


? 0

− [Ni −Ni 0 0
]T

−
[
Ni −Ni 0 0

]
,

Ψi =

ATi P + PAi −X PBKi +X

? −X

 ,
Ωi =

[
P 0 0 0

]T [
0 0 0 ai +Bki

]
,

M1i =
[
X −X 0 0

]T [
Ai BKi B ai +Bki

]
,

M2i =
[
Ai 0 0 ai

]T
R
[
Ai 0 0 ai

]
,

M3i =Ni

[
0 BKi B Bki

]
,

S1i =− λi
([
Li 0 0 li

]T [
Li 0 0 li

]
−
[
0 0 0 1

]T [
0 0 0 1

])
,

S2i =− σ
([

0 Li 0 li

]T [
0 Li 0 li

]
−
[
0 0 0 1

]T [
0 0 0 1

])
,

S3i =

0 0 − I (∆Kµµτ + δkµ)1

0 0 I (∆Kµµτ + δkµ)1

T Λi0 0 − I (∆Kµµτ + δkµ)1

0 0 I (∆Kµµτ + δkµ)1

 ,
µτ =

δk√
θ/γ −∆K

, (24)

D =diag(ηI, I, − γI, η),

M1i =
[
X −X 0 0

]T [
Ai BKi B 0

]
,

M2i =
[
Ai 0 0 0

]T
R
[
Ai 0 0 0

]
,

M3i =Ni

[
0 BKi B 0

]
,

M̃1i =

ATi X +XAi +ATi RAi −ATi X +XBKi

? −KT
i B

TX −XBKi

 ,
M̃2i =

 0

KT
i B

T

 ÑT
i + Ñi

[
0 BKi

]
+

ATi RAi 0

? 0

 ,
M̃3i =−

[
Ñi − Ñi

]T
−
[
Ñi − Ñi

]
.

PROOF. Similar to the approach in Samadi and Rodrigues
(2009b), it can be shown that the LKF (12) is positive
definite, radially unbounded, and decrescent. The first two
components, V1 and V2, are continuous functions. The last
component, V3, is equal to zero at the sampling instants
(x(t)|t=tn = xtn ) and greater than zero at other times.
Therefore, the LKF is non-increasing at the sampling times.
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To prove uniform asymptotic stability of the closed-loop
trajectories to the origin, it suffices to show that inequali-
ties (13)-(23) are sufficient conditions for V to be strictly
decreasing between any two consecutive sampling times.

The time derivative of V for t ∈ (tn, tn+1) is computed as
follows. First, the time derivative of V1 is

V̇1 = ẋTPx+ xTPẋ. (25)

Second, applying the Leibniz integral rule to V2 yields

V̇2 =

∫ 0

−τ
[ẋ−B(Kjxtn + kj)]

T
R

[ẋ−B(Kjxtn + kj)] dr

−
∫ 0

−τ
[ẋ(t+ r)−B(Kjxtn + kj)]

T
R

[ẋ(t+ r)−B(Kjxtn + kj)] dr.

According to (5), we have ρ < τ . Therefore,

V̇2 ≤τ [ẋ−B(Kjxtn + kj)]
T
R [ẋ−B(Kjxtn + kj)]

−
∫ 0

−ρ
[ẋ(t+ r)−B(Kjxtn + kj)]

T

R [ẋ(t+ r)−B(Kjxtn + kj)] dr

=τ [ẋ−B(Kjxtn + kj)]
T
R [ẋ−B(Kjxtn + kj)]

−
∫ t

t−ρ
[ẋ(v)−B(Kjxtn + kj)]

T

R [ẋ(v)−B(Kjxtn + kj)] dv. (26)

Since R is positive definite, for any arbitrary time varying
vector hi(t) ∈ Rnx we can write[

(ẋ(v)−B(Kjxtn + kj))
T hTi

]
 R − I

−I R−1

ẋ(v)−B(Kjxtn + kj)

hi

 ≥ 0.

Therefore,

− [ẋ(v)−B(Kjxtn + kj)]
T
R [ẋ(v)−B(Kjxtn + kj)]

≤ hTi R−1hi − [ẋ(v)−B(Kjxtn + kj)]
T
hi

− hTi [ẋ(v)−B(Kjxtn + kj)] .

Integrating both sides from t− ρ to t, we have

−
∫ t

t−ρ
[ẋ(v)−B(Kjxtn + kj)]

T

R [ẋ(v)−B(Kjxtn + kj)] dv

≤ ρhTi R−1hi − [x− xtn − ρB(Kjxtn + kj)]
T
hi

− hTi [x− xtn − ρB(Kjxtn + kj)] . (27)

Here, we used the facts that for v ∈ [t−ρ, t], u = Kjxtn+kj
is constant and therefore ẋ(v) is continuous by Assump-
tion 1, and t− ρ = tn. Replacing (27) in (26), we have

V̇2 ≤τ [ẋ−B(Kjxtn + kj)]
T
R [ẋ−B(Kjxtn + kj)]

+ ρhTi R
−1hi − [x− xtn − ρB(Kjxtn + kj)]

T
hi

− hTi [x− xtn − ρB(Kjxtn + kj)] . (28)

Using (7) to replace Kjxtn + kj by (Kixtn + ki) + w in
the last two components of (28) yields

V̇2 ≤τ [ẋ−B(Kjxtn + kj)]
T
R [ẋ−B(Kjxtn + kj)]

+ ρhTi R
−1hi

− [x− xtn − ρB((Kixtn + ki) + w)]
T
hi

− hTi [x− xtn − ρB((Kixtn + ki) + w)] . (29)

From (5) we have ρ̇ = 1. Hence, the time derivative of V3
is computed as

V̇3 =(τ − ρ)
[
ẋTX(x− xtn)

]
+ (τ − ρ)

[
(x− xtn)TXẋ

]
− (x− xtn)TX(x− xtn). (30)

Since V̇ = V̇1 + V̇2 + V̇3, adding (25), (29), and (30) yields

V̇ ≤ẋTPx+ xTPẋ+ ρhTi R
−1hi

+ τ [ẋ−B(Kjxtn + kj)]
T
R [ẋ−B(Kjxtn + kj)]

− [x− xtn − ρB((Kixtn + ki) + w)]
T
hi

− hTi [x− xtn − ρB((Kixtn + ki) + w)]

+ (τ − ρ)
[
ẋTX(x− xtn)

]
+ (τ − ρ)

[
(x− xtn)TXẋ

]
− (x− xtn)TX(x− xtn). (31)

For t ∈ (tn, tn+1) and x(t) ∈ X we consider the following
three possibilities;

(1) x(t) /∈ R∗,
(2) x(t) ∈ R∗ and xtn /∈ R∗,
(3) x(t) ∈ R∗ and xtn ∈ R∗.

The rest of the proof is divided into three parts corresponding
to the above possibilities.

• Part 1: For x(t) ∈ Ri 6= R∗, based on (6), we have

ẋ(t) =
[
Ai BKi B ai +Bki

]
ζ(t), (32)

and

ẋ(t)−B(Kjxtn + kj) =
[
Ai 0 0 ai

]
ζ(t), (33)

with ζ(t) =
[
xT (t) xTtn wT (t) 1

]T
∈ R2nx+nu+1.
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Replacing (32) and (33) in (31) and setting hi(t) = NT
i ζ(t)

with Ni ∈ R(2nx+nu+1)×nx , we can write

V̇ ≤ ζT
([
Ai BKi B ai +Bki

]T
P
[
I 0 0 0

]
+
[
I 0 0 0

]T
P
[
Ai BKi B ai +Bki

]
+ρNiR

−1NT
i

+τ
[
Ai 0 0 ai

]T
R
[
Ai 0 0 ai

]
−
[
I − I − ρBKi − ρB − ρBki

]T
NT
i

−Ni
[
I − I − ρBKi − ρB − ρBki

]
+(τ − ρ)

[
Ai BKi B ai +Bki

]T
X[

I − I 0 0
]

+(τ − ρ)
[
I − I 0 0

]T
X[

Ai BKi B ai +Bki

]
−
[
I − I 0 0

]T
X
[
I − I 0 0

])
ζ.

(34)

Hence, for ρ = 0, LMI (14) implies

V̇ < −ηxTx− xTtnxtn + γwTw − η − ζTS1iζ. (35)

Using Schur complement, LMI (15) implies that (35) holds
for ρ = τ . Since (34) is affine in ρ, LMIs (14)-(15) are
sufficient conditions for (35) to hold for any ρ ∈ (0, τ).

Recalling (7) and (9), we can write

||w|| ≤ ∆K||xtn ||+ δk. (36)

Considering (24) and (13), for ||xtn || ≥ µτ we have√
θ/γ||xtn || −∆K||xtn || ≥ δk.

Therefore, based on (36), for ||xtn || ≥ µτ we can write√
θ/γ||xtn || ≥ ||w||. (37)

Adding and subtracting θxTtnxtn , 0 < θ < 1, in inequal-
ity (35) and using (37), for ||xtn || ≥ µτ , we get

V̇ < −ηxTx− (1− θ)xTtnxtn − η − ζ
TS1iζ. (38)

Furthermore, considering (34) for ρ = 0, inequality (16)
implies

V̇ < ζT (−εI − S1i − S3i)ζ. (39)

Using Schur complement, inequality (17) implies that (39)
holds at ρ = τ . Since (34) is affine in ρ, inequalities (16)-(17)
are sufficient conditions for (39) to hold for any ρ ∈ (0, τ).

According to Lemma 1, ζTS1iζ > 0 if x(t) ∈ Ri. Further-
more, using Lemma 2, ζTS3iζ > 0 if ||xtn || < µτ . Hence
considering (38), LMIs (13)-(15) are sufficient conditions
for V to be strictly decreasing between two consecutive sam-
pling times for ||xtn || ≥ µτ . Moreover, considering (39),
inequalities (16)-(17) are sufficient conditions for V to be
strictly decreasing between two consecutive sampling times
for ||xtn || < µτ .

Therefore, inequalities (13)-(17) are sufficient conditions for
V to be strictly decreasing for any t ∈ (tn, tn+1) and x(t) /∈
R∗, regardless of the magnitude of xtn .

• Part 2: For x(t) ∈ Ri = R∗ and xtn /∈ R∗, based on
Assumption 2, we have ai = 0 and ki = 0. Setting ai = 0
and ki = 0 in (34), for ρ = 0, LMI (18) implies

V̇ < −ηxTx− xTtnxtn + γwTw − η + ζT (−S1i + S2i)ζ.
(40)

Using Schur complement, LMI (19) implies that (40) holds
for ρ = τ . Since (34) is affine in ρ, LMIs (18)-(19) are
sufficient conditions for (40) to hold for any ρ ∈ (0, τ).

Adding and subtracting θxTtnxtn with 0 < θ < 1 in (40) and
recalling (37) for ||xtn || ≥ µτ , we get

V̇ < −ηxTx−(1−θ)xTtnxtn−η+ζT (−S1i+S2i)ζ. (41)

Furthermore, considering (34) with ai = 0, ki = 0, and for
ρ = 0, inequality (20) implies

V̇ < ζT (−εI − S1i + S2i − S3i)ζ. (42)

Using Schur complement, inequality (21) implies that (42)
holds for ρ = τ . Since (34) is affine in ρ, inequalities (20)-
(21) are sufficient conditions for (42) to hold for any
ρ ∈ (0, τ).

Based on Lemma 1, ζTS1iζ > 0 if x(t) ∈ Ri. Further-
more, ζTS2iζ < 0 if xtn /∈ Ri. Finally, using Lemma 2,
ζTS3iζ > 0 if ||xtn || < µτ . Hence considering (41),
LMIs (13) and (18)-(19) are sufficient conditions for V to
be strictly decreasing between two consecutive sampling
times for ||xtn || ≥ µτ . Moreover, considering (42), inequal-
ities (20)-(21) are sufficient conditions for V to be strictly
decreasing between two consecutive sampling times for
||xtn || < µτ .

Therefore, inequalities (13) and (18)-(21) are sufficient con-
ditions for V to be strictly decreasing for any t ∈ (tn, tn+1),
x(t) ∈ R∗, and xtn /∈ R∗, regardless of the magnitude of
xtn .

• Part 3: For x(t) ∈ Ri = R∗ and xtn ∈ Ri = R∗,
According to (7) and Assumption 2, we have ai = 0, ki = 0,
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and w = 0. Replacing Ni by
[
ÑT
i 0nx×(nu+1)

]T
, Ñi ∈

R2nx×nx , and setting ai = 0 and ki = 0 in (34), LMI (22)
implies

V̇ < −εζ̃T ζ̃ (43)

for ρ = 0, where ζ̃ =
[
xT (t) xTtn

]T
. Using Schur comple-

ment, LMI (23) implies that (43) holds for ρ = τ . Since (34)
is affine in ρ, LMIs (22)-(23) are sufficient conditions for V
to be strictly decreasing for any ρ ∈ (0, τ), x(t) ∈ R∗, and
xtn ∈ R∗.

Therefore, inequalities (13)-(23) are sufficient conditions for
V to be strictly decreasing between any two consecutive
sampling times over the state space. According to Assump-
tion 3, any sampling interval (tn, tn+1), n ∈ N, has a length
greater than or equal to tε > 0. Hence V |t−

n+1
< V |tn , where

V |t−
n+1

= limt↗tn+1 V .

Note that we computed V̇ for the three possibilities in which
the state vector x(t) belongs in the state space X . Therefore,
we must ensure that x(t) remains in X during the evolution
of the sampled-data system. To this end, consider the fol-
lowing bounds on V over the boundaries of the state space,

C1 = min
cT x=σ1

V (x, xt, ρ), ∀ xt ∈ C, ρ ∈ [0, τ), (44a)

CM+1 = min
cT x=σM+1

V (x, xt, ρ), ∀ xt ∈ C, ρ ∈ [0, τ),

(44b)
C = min {C1, CM+1} . (44c)

Note that the minima in (44) exist since V1 is positive definite
and radially unbounded, and V2 and V3 are non-negative.
Let C̃ ∈ (0, C) and define the set Ω as

Ω = {(x, xt, ρ)|V (x, xt, ρ) ≤ C̃}. (45)

Since V is strictly decreasing in the sampling intervals and
non-increasing at the sampling instants, the set Ω is forward
invariant. Considering (44), it can be shown by contradiction
that the projection of the set Ω onto X lies in the interior
of X . Therefore, for any trajectory starting in Ω, the state
vector remains in X . Assuming that the system’s trajectories
start in Ω, based on Lyapunov-Krasovskii theorem (Gu et al.
(2003)), the closed-loop sampled data PWA slab system is
uniformly asymptotically stable to the origin. Note that the
Zeno phenomenon does not occur since, by Assumption 3,
there exists tε > 0 such that tn+1− tn ≥ tε for all n ∈ N. 2

In the proof of Theorem 1, we showed that inequality (13)
and inequalities (14)-(23) are sufficient conditions for the
LKF to be decreasing, between two consecutive sampling
times. Table 1 summarizes the correspondence between in-
equalities (13)-(23) and the portion of the state space that
they refer to.

Table 1
The correspondence between inequalities of Theorem 1 and the
state space.

||xtn || ≥ µτ ||xtn || < µτ

x(t) /∈ R∗ (13) and (14)-(15) (16)-(17)
x(t) ∈ R∗ and xtn /∈ R∗ (13) and (18)-(19) (20)-(21)
x(t) ∈ R∗ and xtn ∈ R∗ (22)-(23)

Remark 1 In intuitive terms, relaxing Assumption 3 by let-
ting the sampling intervals approach zero, yields τ → 0 and
x(t) = xtn for tn ≤ t < tn+1. Therefore, V2 and V3 vanish
and the inequalities in Theorem 1 reduce to the LMI con-
ditions for stability of continuous-time PWA slab systems;
Rodrigues and Boyd (2005).

We now present the result for a PWA slab system in feedback
with a sampled-data PWL controller as a corollary.

Corollary 1 Consider the sampled-data PWA slab system
defined in (6) and (7) subject to Assumptions 1-3. Assume
that the controller is piecewise linear (PWL), i.e. ki =
0, ∀i ∈ I. The system is uniformly asymptotically stable to
the origin if there exist symmetric positive definite matrices
P , R, and X , matrices Ñ and Ni, with appropriate dimen-
sions, and positive scalars γ, θ < 1, η, λi, σ, and ε, with
i ∈ I, satisfying (13)-(15), (18)-(19), and (22)-(23).

PROOF. Since ki = 0 for all i ∈ I, we get δk = 0. Hence,
equation (24) yields µτ = 0. According to the proof of The-
orem 1, LMIs (13)-(15), (18)-(19), and (22)-(23) are suffi-
cient conditions for the LKF (12) to be strictly decreasing
for any t ∈ (tn, tn+1) and ||xtn || ≥ 0 (i.e. the whole state
space). Since the LKF is non-increasing at the sampling in-
stants, similar to the proof of Theorem 1, a forward invariant
set can be found. Assuming that the trajectories start in the
invariant set, the closed-loop sampled data PWA slab system
is uniformly asymptotically stable to the origin. 2

Remark 2 For PWL controllers we have µτ = 0. There-
fore according to Table 1, Corollary 1 contains only those
inequalities of Theorem 1 that correspond to ||xtn || ≥ µτ .
Consequently, the inequalities in Corollary 1 can be solved
efficiently as a set of LMIs. This case was studied in de-
tails in Moarref and Rodrigues (2011). For PWA controllers,
however, the inequalities in Theorem 1 do not constitute a
set of LMIs.

Note that the matrix S3i is a nonlinear function of the
variables γ and θ. Hence, inequalities (13)-(23) cannot be
solved simultaneously using LMI solvers. However, inequal-
ities (13)-(15), (18)-(19), and (22)-(23) are linear in γ and
θ and constitute a set of LMIs. Moreover, treating γ and θ
as constant parameters, inequalities (16)-(17) and (20)-(21)
become a set of LMIs. Based on the above observations, we
propose a two-phase algorithm for solving inequalities (13)-
(23). To this end, consider the following remark.
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Remark 3 The variable 0 < θ < 1 appears only in in-
equality (13) and the matrix S3i. Without loss of generality,
we assume θ=1-eps, where eps is the machine epsilon. To
justify this assumption, note that if (13) is satisfied for a θ,
it is also satisfied for any larger θ. Moreover, based on (24),
a larger θ yields a smaller µτ , which in turn provides a
tighter bound on the mismatch vector w (see Lemma 2). A
tighter bound on w makes LMIs (16)-(17) and (20)-(21) less
conservative through the S-procedure term S3i. This in turn
allows the algorithm to yield a larger lower bound on the
longest sampling interval that preserves asymptotic stability.

Algorithm 1 finds a lower bound on the longest interval be-
tween two consecutive sampling times τmax which preserves
asymptotic stability. In the first phase of the algorithm, given
τ , we solve the following optimization problem.

Problem 1

minimize γ

subject to P > 0, R > 0, X > 0, γ > 0,

η > 0, σ > 0, λi > 0, i ∈ I,
(13)− (15), (18)− (19), and (22)− (23).

If Problem 1 is feasible, according to Table 1, the LKF is
decreasing for any t ∈ (tn, tn+1) and ||xtn || ≥ µτ . Note
that minimizing γ leads to a smaller µτ which relaxes the
inequalities that will be solved in the next phase (see Re-
mark 3). Treating γ, P , R, and X as constant parameters
computed in Problem 1, we solve the following feasibility
problem in the second phase.

Problem 2

find ε > 0, σ > 0, λi > 0, Λi � 0, i ∈ I
subject to (16)− (17) and (20)− (21).

If Problem 2 is feasible, based on Table 1, the LKF is de-
creasing for any t ∈ (tn, tn+1) and ||xtn || < µτ .

Remark 4 In Problem 2, matrices P , R, and X are treated
as constant parameters and replaced with the numerical
values computed in Problem 1, so that the same LKF is used
both outside and inside the ball of radius µτ .

In the next section, we use Algorithm 1 to compute τmax in
a unicycle example.

4 Numerical Example

Consider the line following example of Rodrigues and Boyd
(2005), whose objective is to control a unicycle to follow
the line y = 0 in the x− y plane (see Fig. 1). The dynamics

Name Algorithm 1

Goal Find a lower bound on the longest interval be-
tween two consecutive sampling times (τmax)
that preserves asymptotic stability

Inputs A PWA slab system and a PWA slab
continuous-time controller

Outputs A lower bound on the longest interval between
two consecutive sampling times (τmax) and an
LKF which proves asymptotic stability

Initialization: set τmax := 0, θ := 1− eps, τl := 0, τu :=M,
whereM is a large number, and choose a finite threshold > 0

while τu − τl > threshold:

set τ := (τl + τu)/2

if Problem 1 is infeasible:

set τu := τ

elseif the controller is PWL:

set τmax := τ and τl := τ

else:

(Using γ, P , R, and X from solution of Problem 1)

if Problem 2 is infeasible:

set τu := τ

else:

set τmax := τ and τl := τ

of the system are represented by
ψ̇

ṙ

ẏ

 =


0 1 0

0 − k/I 0

0 0 0



ψ

r

y

+


0

0

v sin(ψ)

+


0

1/I

0

u,
(46)

where ψ and r are the heading angle and its time derivative,
respectively, y is the distance from the line y = 0, v repre-
sents the unicycle’s velocity, u is the torque input about the
z axis, I = 1 (kgm2) is the unicycle’s moment of inertia
with respect to its center of mass, and k =0.01 (Nms) is the
damping coefficient. The state vector of the system is rep-

resented by z =
[
ψ r y

]T
. We assume that the unicycle

has a constant velocity v =1 (m/s) and the heading angle
ψ is restricted to the interval [−3π/5, 3π/5], i.e. the state
space is defined as Z = [−3π/5, 3π/5]× R2.

The system’s nonlinearity, sin(ψ), is approximated by a
PWA function. The PWA approximation is defined over the
following five regions:

R1 =
{
z ∈ R3|ψ ∈ (−3π/5,−π/5)

}
,

R2 =
{
z ∈ R3|ψ ∈ (−π/5,−π/15)

}
,

R3 =
{
z ∈ R3|ψ ∈ (−π/15, π/15)

}
,

R4 =
{
z ∈ R3|ψ ∈ (π/15, π/5)

}
,
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Fig. 1. Unicycle path following example

R5 =
{
z ∈ R3|ψ ∈ (π/5, 3π/5)

}
.

Consider the PWA controller

u = Kiz + ki, for z ∈ Ri, i ∈ {1, ..., 5}, (47)

with

K1 = [−49.907 − 9.468 − 13.925], k1 = −0.617,

K2 = [−48.315 − 9.330 − 13.812], k2 = 0.384,

K3 = [−50.147 − 9.468 − 13.742], k3 = 0,

K4 = [−48.316 − 9.330 − 13.812], k4 = −0.384,

K5 = [−49.907 − 9.468 − 13.925], k5 = 0.617.

The vector gains Ki, i ∈ {1, ..., 5}, are taken from the
PWL controller proposed in Rodrigues and Boyd (2005).
The affine gains ki, i ∈ {1, ..., 5}, are added to the controller
such that the continuous-time PWA controller becomes con-
tinuous at the boundaries of the regions. Our goal is to find a
lower bound on the longest interval between two consecutive
sampling times such that asymptotic stability is guaranteed.
Using Algorithm 1, with τu = 0.2 and threshold=0.001, af-
ter eight iterations, we get

τmax = 0.104 (sec)

and

P =


14.75 0.45 4.20

0.45 0.19 0.13

4.20 0.13 5.80

 , X =


98.74 9.75 30.12

9.75 1.37 6.73

30.12 6.73 790.61

 ,

R =


8.29 72.57 1.18

72.57 7112.51 − 17.32

1.18 − 17.32 5.00

 . (48)

Similar to (45), an invariant set Ω′ can be computed
by considering the quadratic term V1 in the LKF, i.e.

Fig. 2. Unicycle’s states for Ts = τmax.

Fig. 3. Control input for Ts = τmax and Ts = 0.

Ω′ = {(z, zt, ρ)|V (z, zt, ρ) ≤ C̃ ′}, where C̃ ′ ∈ (0, C ′) and
C ′ = min|ψ|=3π/5 V1(z, zt, ρ) ≤ min|ψ|=3π/5 V (z, zt, ρ).
Since V1 = zTPz, with P computed in (48), we find
C ′ = 39.245. Let C̃ ′ = 39.24 < C ′ and choose the sys-
tem’s trajectories to start in Ω′. Theorem 1 guarantees
that if controller (47) is implemented in the unicycle via
sample-and-hold, with variable sampling rates greater than
1/τmax = 9.62 (Hz), the PWA closed-loop system asymp-
totically converges to the origin.

Figures 2- 3, illustrate the simulation results for the unicy-
cle system (46) with PWA feedback (47). The initial con-
dition is z0(α) = [π/2, 0,−1]T , −0.104 ≤ α ≤ 0, and
ρ(0) = 0. The simulation is performed for sampling time
Ts = τmax = 0.104 (sec). According to Fig. 2 the state vec-
tor asymptotically converges to the origin. The solid line in
Fig. 3 shows the torque input for the sampled-data PWA con-
troller. The dashed curve in Fig. 3 illustrates the torque input
if the PWA controller was implemented in continuous-time.
As expected, more control energy is required to stabilize the
system with the sample-and-hold controller.

Simulating the system with the same initial condition z0 for
Ts = 0.213 (sec), the closed-loop sampled-data trajectories
do not converge to the origin. Therefore, in this example, the
error in the computed lower bound on the longest sampling
interval that preserves asymptotic stability is at most 51%.
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Table 2
Comparison of two stability theorems applied to the unicycle problem

Method Stability Result τmax (sec)
Theorem 1 in Samadi and Rodrigues (2009b) Convergence to the invariant set {V ≤ 4.296× 106} 0.098

Algorithm 1 in this paper Asymptotic stability to the origin 0.104

Still, as shown in Table 2, the τmax provided by Algorithm 1
is less conservative than the previous results in the literature.
Moreover, Algorithm 1 provides a stronger stability result
(asymptotic stability to the origin) than Theorem 1 in Samadi
and Rodrigues (2009b).

5 Conclusion

In this paper we presented a less conservative LKF for study-
ing PWA systems with time delay. Based on the new LKF,
sufficient conditions were provided for asymptotic stabil-
ity of sampled-data PWA slab systems to the origin. It was
shown that these conditions become LMIs in the case of a
PWL controller. Finally, we presented an algorithm for find-
ing a lower bound on the maximum delay that preserves
asymptotic stability. The output of the algorithm provides
an upper bound on the minimum sampling frequency that
guarantees asymptotic stability of the sampled data system.
It was shown that our results compare favorably with the
results available in the literature.
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