
DYNAMIC MATCHING AND WEAVING SEMANTICS FOR

EXECUTABLE UML MODELS

Raha Ziarati

A thesis

in

The Department

of

Concordia Institute for Information Systems Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of Master of Applied Science in Information System

Security

Concordia University

Montréal, Québec, Canada

October 2012

c© Raha Ziarati, 2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Concordia University Research Repository

https://core.ac.uk/display/211514528?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Concordia University

School of Graduate Studies

This is to certify that the thesis prepared

By: Raha Ziarati

Entitled: Dynamic Matching and Weaving Semantics for Exe-

cutable UML Models

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science in Information System Security

complies with the regulations of this University and meets the accepted standards

with respect to originality and quality.

Signed by the final examining commitee:

Dr. Anjali Awasthi Chair

Dr. Peter Grogono Examiner

Dr. Benjamin Fung Examiner

Dr. Mourad Debbabi Supervisor

Dr. Lingyu Wang Co-supervisor

Approved
Chair of Department or Graduate Program Director

20

Dr. Robin Drew, Dean

Faculty of Engineering and Computer Science

Abstract

Dynamic Matching and Weaving Semantics for Executable UML Models

Raha Ziarati

To develop more secure software, security concerns should be considered as an essen-

tial part of all phases of software development lifecycle. It has been observed that

incorporation of security concerns after the completion of software development may

result in conflicts between functional and security requirements and leads to severe

security vulnerabilities. On the other hand, security is a crosscutting concern and

consequently the integration of security solutions at the software design phase may

result in scattering and tangling of security features throughout the entire design.

Therefore, in the case of large scale software (e.g., hundreds of UML classes), the

resulting UML design models may become more complex and difficult to understand.

Moreover, adding security manually is tedious and may lead to additional security

flaws.

Aspect-Oriented Modeling is an appropriate approach to systematically integrate

security at the design phase as it allows the separation of crosscutting concerns from

the core functionality. In this research work, we provide formal semantics for aspect

matching and weaving on executable UML models, particularly for activity diagrams.

The semantics is based on a defunctionalized continuation-passing style since it pro-

vides a concise and elegant description of aspect-oriented mechanisms. In addition,

we have extended our framework and provided semantics for control and data flow

pointcuts as these pointcuts are beneficial from a security perspective and are used

to detect vulnerabilities related to information flow.

iii

Acknowledgments

It is my pleasure to thank all those who made this thesis possible.

I must firstly thank my supervisor and mentor, Prof. Mourad Debbabi, for his endless

support and guidance and patience. He helped me to become a better researcher and

believed in me more than myself.

My sincere and warm thanks go to my friend and colleague, Djedjiga Mouheb, with

whom I closely collaborated in my research. She was a great support and provided

me invaluable assistance from the first day that I started the program.

I want to express my deepest gratitude to my parents for being on my side and sup-

porting me all the years I was studying.

I specially want to thank my dear husband Soheil. Without his unending support,

patience, and love, this thesis would not exist.

Many thanks to the following for their friendship and support: Andrei Michescu,

Levon Apikian, Mariam Nouh, and Yosr Jarraya. Thanks to all those at CIISE de-

partment who helped me learn more and made my time there enjoyable.

My final debt of gratitude goes to my sister Roya to whom I owe much of who I am;

I will always be thankful for your love. I dedicate this thesis to you.

iv

Contents

List of Figures viii

List of Tables xi

1 Introduction 1

1.1 Motivations . 1

1.2 Objectives . 5

1.3 Thesis Structure . 5

2 Background 8

2.1 Unified Modeling Language . 8

2.1.1 UML Diagrams . 9

2.1.2 UML Extension Mechanisms 10

2.2 Executable UML . 12

2.2.1 Foundational UML . 14

2.2.2 Action Language for Foundational UML 16

2.3 Aspect-Oriented Paradigm . 16

2.4 Security Hardening on Software Design Models 18

2.4.1 Security Design Patterns . 19

2.4.2 Mechanism-Directed Meta-Languages 19

2.4.3 Aspect-Oriented Modeling . 20

2.5 λ-calculus . 21

2.6 Denotational Semantics . 23

2.7 Continuation-Passing Style . 25

2.8 Defunctionalization . 28

v

3 Static Matching and Weaving on UML Models 31

3.1 Overview . 32

3.2 Aspect Specification . 34

3.2.1 Adaptations . 34

3.2.2 Pointcuts . 36

3.3 Aspect Weaving . 38

3.3.1 Aspect Specialization . 39

3.3.2 Pointcut Parsing . 40

3.3.3 Actual Weaving . 40

3.4 Case Study . 41

3.5 Summary . 46

4 Dynamic Aspect Semantics for a Language Based on λ-calculus 48

4.1 Syntax and Denotational Semantics 50

4.2 CPS Semantics . 52

4.2.1 Function-Based Representation 53

4.2.2 Frame-Based Representation 54

4.3 Aspect Syntax and Semantics . 58

4.4 Matching Semantics . 59

4.5 Weaving Semantics . 61

4.6 Flow-Based Pointcuts Semantics . 65

4.6.1 Control-Flow Pointcut . 65

4.6.2 Data-Flow Pointcut . 67

4.6.3 Example . 72

4.7 Related Work . 74

4.8 Summary . 76

5 Dynamic Aspect Semantics for Executable UML Models 78

5.1 Syntax and Denotational Semantics 79

5.2 CPS Semantics . 85

5.2.1 Representation of Continuations as Functions 85

5.2.2 Representation of Continuations as Frames 86

5.3 Aspect Syntax and Semantics . 91

5.3.1 Aspect Syntax . 91

5.3.2 Matching Semantics . 93

vi

5.3.3 Weaving Semantics . 94

5.4 Semantics of the Dataflow Pointcut 97

5.4.1 Example . 100

5.5 Related Work . 103

5.6 Summary . 106

6 Conclusion 108

Bibliography 109

vii

List of Figures

1 Establish Customer Order Activity 13

2 Establish Customer Order Alf Code 13

3 Example of an Activity . 15

4 Example of Alf Code . 16

5 Example of Weaving . 18

6 Syntax of λ-Calculus . 22

7 Denotational Semantics of λ-Calculus 24

8 Function in Direct Style . 26

9 Function in CPS Style . 27

10 Higher-order Program . 29

11 New Types . 29

12 Apply Function . 29

13 Redefined Program . 30

14 Overview of our Approach . 33

15 Meta-Language for Specifying Aspects and their Adaptations 35

16 Meta-Language for Specifying Adaptation Rules 35

17 Overview of Weaving . 39

18 Class Diagram for a Social Networking Application 42

19 Sequence Diagram Representing the Login Interaction 42

20 TLS Aspect . 43

21 Sequence Diagram Representing Secure Login Interaction 44

22 The Resulting OCL Expression . 45

23 Social Networking Application Class Diagram 45

24 Sequence Diagram Representing the Secure Login Process 46

25 The Core Syntax . 50

26 Denotational Semantics . 52

27 CPS Semantics (Continuations as Functions) 53

viii

28 Apply Function . 54

29 Frames . 55

30 Frame-Based CPS Semantics: Expression Side 56

31 Frame-Based CPS Semantics: Frame Side 56

32 Aspect Syntax . 58

33 The proceed Expression . 59

34 Matching Semantics . 60

35 Redefined Apply Function . 62

36 Advice Matching . 63

37 Advice Execution . 64

38 Syntax of cflow and dflow Pointcuts 65

39 Matching Semantics of the cflow Pointcut 66

40 Exists Function . 67

41 Frame-Based CPS Semantics with the dflow Pointcut: Expression Side 69

42 Frame-Based CPS Semantics with the dflow Pointcut: Frame Side . 70

43 Matching Semantics of the dflow Pointcut 71

44 Syntax of Activity Diagrams . 80

45 Syntax of Alf Language . 81

46 Denotational Semantics of Activity Diagrams 82

47 Semantic Functions and Types . 83

48 Denotational Semantics of Alf Language 84

49 Redefined Semantic Functions and Types 86

50 CPS Semantics of Activity Diagrams (Continuations as Functions) . . 86

51 CPS Semantics of Alf Language (Continuations as Functions) 87

52 Frames . 88

53 Apply Function . 89

54 Apply Function . 89

55 Frame-Based Semantics of Activity Diagrams 90

56 Frame-Based Semantics of Alf Language 90

57 Semantics of Frames . 91

58 Aspect Syntax . 92

59 The proceed Expression . 93

60 Matching Semantics . 93

61 Redefined Apply Function . 95

62 Advice Matching . 96

ix

63 Advice Execution . 97

64 Semantics of Frames with the dflow Pointcut 99

65 Matching Semantics of the dflow Pointcut 101

66 Dflow Example . 102

x

List of Tables

1 UML Structural Diagrams . 9

2 UML Behavioral Diagrams . 10

3 Supported Adaptation Rules . 37

xi

Chapter 1

Introduction

1.1 Motivations

Undoubtedly, software systems play a significant role in human life and are being used

in different sectors from military to government to banking and healthcare. Such high

reliance has resulted in the fact that huge amounts of critical and sensitive information

are stored within these systems. Military secrets, bank accounts and health records

are examples of them. Due to the sensitiveness of such information, security flaws can

enormously impact our lives and lead to huge losses. For instance, in 2009, Albert

Gonzalez and his accomplices stole more than 170 million credit/debit card numbers

by hacking into the databases of retail stores [39]. They took advantage of SQL

injection vulnerability [83], which is a very common flaw in web applications.

Therefore, these days security has became a necessity rather than an option in

software systems. Every year, organizations across the globe spend millions of dollars

on securing their software and infrastructures. Their spending on security is mostly

1

focused on detecting and fixing software vulnerabilities and proposing new methods

to reduce risks associated with using such software. In fact, rewriting software to fix a

defect may lead to fundamental modifications in the software and result in tremendous

corporate expenditures in future [55]. In addition, such new modifications may also

bring conflicts between functional and security requirements and produce additional

security vulnerabilities.

Recent research has shown that detecting and fixing vulnerabilities as early as

possible in the software development lifecycle decreases the cost of software develop-

ment dramatically [5, 28, 38]. According to [38], the cost to resolve a security defect

is approximately 60 times the cost of fixing the security bug in an early stage of the

development. Furthermore, software that is developed with security in mind is typi-

cally more resistant against intentional attack and unintentional failures [Allen et al.,

2008]. Therefore, to prevent tremendous cost growing and producing more reliable

software, security concerns should be considered from the early phase of software de-

velopment life cycle. In this case, vulnerabilities are remediated earlier and will not

transfer from one phase to another phase.

There are two important issues in adopting such practice. First, to be able to take

security into consideration in every phase of the software development, all individ-

uals involved in entire development process need to have a sound understanding of

security. Also, they should be aware of the best security solutions and recent security

vulnerabilities. Unfortunately, most of the time neither a novice nor an experienced

software designer (or developer) necessarily has such knowledge. As an example, in

a recent State of Software Security Report [80] from one of the pioneers of secure

2

software development, Veracode, it is stated that most developers are in dire need of

additional application security training and knowledge. They assessed 4,835 appli-

cations and more than half of them failed to meet acceptable security quality, and

more than 8 out of 10 web applications failed in passing OWASP Top 10 [68]. The

second issue is that security is a crosscutting concern and usually remain tangled and

scattered throughout the entire software (design model or code). Therefore, in case

of large scale software (e.g., hundreds of classes or million lines of code), the resulting

UML design models or code may become cumbersome and hard to understand. Also,

injecting security manually is tedious and generally may lead to additional security

flaws.

Aspect-oriented paradigm is a promising model for addressing the previously men-

tioned issues. In this model, security solutions can be specified independently from ap-

plications, as general solutions, and automatically integrated into software. Therefore,

without the need to be knowledgeable in security, developers can generate secure soft-

ware. The usefulness of aspect-oriented techniques for enforcing security requirements

in software systems has been already demonstrated in the literature [9, 59, 84, 87].

During the last decade, several Aspect-oriented Modeling (AOM) approaches have

been proposed to address security concerns on UML models [32, 34, 70, 71, 88, 90].

However, in spite of the increasing interest, to date, there is neither a standard

language that supports AOM, nor a standard mechanism for weaving aspects into

the UML models.

Executable UML model (xUML) is a major step forward in software design phase

since it enables software designers to specify models with detailed behaviors by using

3

action languages. In fact, the possibility of executing xUML models, allows modelers

to gain a better understanding of the dynamic behaviors of their design. Additionally,

since xUML models are defined in a higher level of abstraction and behaviors are

specified more precisely, in-dept security concerns can be addressed in the modeling

phase. For example, fixing vulnerabilities related to data flow is possible in such

models, as xUML supports the assignment expression and provides actions for reading

and writing variables.

There are few AOM approaches that handle xUML models [31, 40, 91] and they

mainly focus on providing a framework for executing the woven model for the pur-

poses of simulation and verification. Moreover, they are presented from a practical

perspective; to date, we are not aware of any research work that explores the semantic

foundations of aspect matching and weaving on xUML models.

Thus, the necessity of providing a formal semantics of aspect matching and weav-

ing on xUML models becomes evident, as it is claimed that xUML will be the future

of software modeling and such formal framework can serve as a guidelines for con-

crete implementations of AOM approaches with xUML supports. In addition, such

semantics allow us to provide precise semantics for more security-related pointcut

primitives, such as dataflow pointcut [52], which are often complex and difficult to

express. Also, such semantics framework can be further used to prove some key

properties or to establish some internal consistency properties.

4

1.2 Objectives

The main objectives of this research are as follows:

• Conduct a comparative study of the state-of-the-art research proposals in ap-

plying AOM techniques for the specification and execution of security hardening

practices on software design models.

• Provide a formal semantics of aspect matching and weaving on xUML models,

particularly activity diagram.

• Provide precise semantics of information flow pointcuts, which are beneficial

from a security perspective as they can be used to detect a considerable number

of vulnerabilities such as Cross-site scripting (XSS) [15].

1.3 Thesis Structure

The remaining of this thesis is organized as follows:

• Chapter 2 briefly presents the background related to this research topic. It intro-

duces the UML language, Executable UML, and the aspect-oriented paradigm.

Then, we describe the different techniques exists in the literature that are pro-

posed in the literature for enforcing security on software design models. Sub-

sequently we debate about the pros and cons of those techniques. Afterwards,

we briefly reviw the concepts of λ-calculus, denotational semantics, continua-

tions, and defunctionalization. These concepts are required for understanding

the contributions of this thesis.

5

• Chapter 3 briefly describes an aspect-oriented modeling and weaving framework

for specification and integration of security solutions into UML software design

models. First, a high-level overview of the framework is presented. Then, it

describes how security solutions can be specified as UML aspects. Subsequently,

it presents the process of customization and integration of aspects into core UML

models. Finally, a case study is provided to illustrate the approach.

• Chapter 4 provides a dynamic semantics for aspect matching and weaving for

a core language based on λ-calculus. We start by presenting the syntax of the

language and its denotational semantics. Then, we transform the semantics into

a frame-based continuation-passing style. Afterwards, we extend the language

by considering aspect-oriented constructs and provide semantics of matching and

weaving. Then, we enhance our work by considering flow-based pointcuts and

present an example to illustrate our proposed framework. Finally, we discuss the

existing approaches that are related to our work.

• Chapter 5 provides formal semantics of aspect matching and weaving on xUML

models, particularly activity diagrams. Following a similar methodology as in

the previous chapter, we present the syntax of UML activity diagrams and Alf

language and the associated denotational semantics. Then, we transform the

semantics into continuation-passing style. Afterwards, we extend the language

by considering aspect-oriented constructs and provide a semantics of matching

and weaving. Afterwards, we extend the semantics with the dataflow pointcut

and provide an illustrating example. Finally, we discuss the existing approaches

6

that are related to our work.

• Chapter 6 presents concluding remarks on our contributions. In addition, it

presents a discussion of potential future research in this area.

7

Chapter 2

Background

In this chapter, we briefly recall the concepts that are required for understanding the

contributions of this thesis. The notations that are used throughout this chapter are

introduced in the appendix.

2.1 Unified Modeling Language

The Unified Modeling Language (UML) [65] is a standard modeling language, pro-

posed by the Object Management Group (OMG), for creating an abstract model

of a system, referred to as a UML model. In a few words, UML includes graphical

notations used to construct and detail and document systems’ artifacts. It has a four-

layered architecture: (1) M0 layer, which basically contains instances (called objects),

(2) M1 layer, which is the model of a system, (3) M2 layer, which is the model of

the model (called meta-model), (4) M3 layer, which is the model of the meta-model

(called meta-metamodel).

Currently, UML is at version 2.4.1 [65]. A major update has been done at version

8

2.0 compared to version 1.x. Providing more precise definitions of abstract syntax

and semantics and a more modular language structure, and also improving capability

for modeling large-scale systems are the significant enhancements of UML 2.0 over

its previous version. In addition, UML now is defined in terms of the Meta Object

Facility (MOF) [62], which makes it compliant with other meta-models defined by

OMG. It should be noted that MOF is a modeling language that is provided for

describing the elements of the M3 layer.

2.1.1 UML Diagrams

To capture different aspects of the systems, UML provides different types of diagrams.

The provided diagrams can be grouped into two main categories: structural and

behavioral. Table 1 and Table 2, summarize the diagrams provided in UML 2.0.

Diagrams Description
Class Diagram It is used to describe each individual class with its type

in a system. Also, it shows that how statically classes are
related to each other. This diagram is the fundamental
diagram of a system design and the most frequently used
UML diagram too.

Object Diagram It is used to specify objects and their relationship at run-
time.

Component Diagram It is used to describe all component in a system, their rela-
tionships and interactions.

Composite Diagram It is used to describe the inner structure of a component
including all classes within the components and the com-
ponent interfaces.

Package Diagram It is used to structure the organization and structure of
packages. Packages may contain classes or other packages
within.

Deployment Diagram It is used to describe systems hardware, software and net-
work configurations.

Table 1: UML Structural Diagrams

9

Diagrams Description
Use case Diagram It is used to capture systems requirements and demon-

strates how the systems react to requests from external
users.

Activity Diagram It is used to describe complex processes. It gives a detailed
dynamic view of a specific task (process). Data flows and
control flows among objects are precisely defined by using
this diagram.

State Machine Diagram It is used to describe the life cycle of objects using a finite
state machine.

Sequence Diagram It is used to describe sequence of messages passed among
objects in a timeline.

Interaction Diagram It is used to model the control flow of a system and the
underlying processes.

Communication Diagram It is used to describe the sequence of messages passed
among objects in a system. It is similar to a sequence dia-
gram, expect that it focuses more on the objects roles.

Time Sequence Diagram It is used to describe how dynamic states change events
over time. Changes may be caused by messages in state,
conditions or events.

Table 2: UML Behavioral Diagrams

Structural diagrams are used to describe the static structural of elements of a

system as well as relationships and dependencies between the objects. Behavioral

diagrams are provided to specify the behavior of objects in a system.

2.1.2 UML Extension Mechanisms

UML is a general purpose modeling language that can be applied to all application

domains. However, there are situations, in which a general language may not be suit-

able for modeling applications of some specific domains. To address this issue, OMG

defines two possible approaches for specializing its elements, allowing customized ex-

tensions of UML for particular application domains. Introducing UML profiles which,

10

come as a UML Profile Package included in UML 2.0 is the first approach. The second

approach is to support specifications of constraints. In the following, we provide an

overview of these extension mechanisms.

UML Profiles

UML profile defines a set of UML artifacts that allows the specification of an MOF

model. Stereotypes and tagged values are the main elements of the UML profile

package. A stereotype adds new semantics and properties to existing model elements.

In more details, a stereotype extends an existing meta element by providing additional

properties (tags) that are specific to a particular domain. A tag is the name of the

new property associated with a value which, is the actual value of that property for

a given element. It is important to differentiate between class attributes and tagged

values, as the value of the former applies to instances of the class while the value of

the latter applies to the element itself.

UML Constraints

Constraints also extend the semantics of UML by specifying restrictions or conditions

on model elements. There are some predefined constraints in UML, in addition, some

constraint language are proposed to allow the specification of user-defined constraints.

Object Constraint Language (OCL) [63] is a standard declarative language proposed

by OMG for describing constrains on UML models. The main purposes for which

OCL can be used are to: (1) query UML elements, (2) specify invariants on classes

and types in the class model, (3) specify type invariants for stereotypes, (4) describe

11

pre and post conditions on operations, and (5) describe guards [63]. It should be noted

that OCL is a pure specification language and the evaluation of OCL expressions over

UML elements simply returns a value and does not change anything in the model.

2.2 Executable UML

Behaviors specified using UML diagrams are abstract and high level. In addition, no

precise execution semantics is provided for all UML diagrams elements. Therefore,

it is not possible for software designers to define fully executable models that can be

simulated and validated before development.

The Foundational UML (fUML) [67] standard proposed by OMG to address this

issue by specifying precise semantics for a subset of UML. But, the creation of exe-

cutable models still remained a difficult task as the UML primitives provided in fUML

are too low-level and creating reasonable sized executable UML models is close to im-

possible. In addition, the graphical modeling notations of UML is not always suitable

for specifying detailed behaviors and it is often much more easy to do so using textual

notations. To illustrate the dispute, let us consider the following example, which is

taken from [54]. Figure 1 shows an activity diagram that describes the process of

establishing customers’ orderers. This process can be concisely expressed by few lines

of Alf code as it is presented in Figure 2. Notice that the provided example describes

a simple process and in the case of complex processes their corresponding activities

would be much more complicated.

12

Figure 1: Establish Customer Order Activity

this.lineItems = checkOut.items;

Customer_Order.addLink(checkOut.customer,this);

this.datePlace = CurrentDate();

this.totalAmount = this.lineItems.amount -> reduce Add;

this.SubmitCharge (checkOut.card);

Figure 2: Establish Customer Order Alf Code

Therefore, for these reasons, OMG issued an RFP for a concrete syntax for an

action language based on fUML. Accordingly, several UML action languages have

been proposed as a high level programming languages that conform to UML action

semantics such as Action Language for Foundational UML (Alf) [66], Object Action

Language (OAL) [37], Action Specification Language (ASL) [49], Platform Indepen-

dent Action Language (PAL) [78] , and [48]. In the following, we briefly present the

13

main elements of executable UML. Afterwards, we provide a brief introduction to Alf

as it is the target language of this research.

2.2.1 Foundational UML

The Foundational UML (fUML) is an executable subset of standard UML that can

be used to specify, in an operational style, the structural and behavioral seman-

tics of systems. The main elements of fUML are activities, actions, structures, and

asynchronous communications. In the following, we go through the basic features of

activities and actions as they are used in Chapter 5. For more details, please refer to

fUML specification [67].

Activities are specifications of behaviors. Nodes, edges (control/object flows),

and tokens are the main elements of activities. Activity nodes mainly have three

types: action nodes, object nodes, and control nodes. Actions are fundamental units

of executable behaviors, which represent single steps within activities. The fUML

supports various kinds of actions, which can be classified into five groups as shown

below:

1. Invocations actions are provided for invoking behaviors and operations (calling

activities/operations are examples of such actions)

2. Object manipulation actions are provided for objects operations (creating/destroying

objects are examples of such actions)

3. Structural feature manipulation actions are provided for operations on structural

features (reading/writing objects attributes are examples of such actions)

14

4. Association manipulation actions are provided for operations on associations.

(creating/destroying objects links are examples of such actions)

5. Communication actions such as sending signals are provided for generating a

synchronous form of message sending

Figure 3: Example of an Activity

Figure 3 illustrates a simple activity. The activity is invoked with an argument 1

for its input parameter. Consequently an object token with a value of 1 is placed on

the input activity parameter node. The object token flows to the input pin of action

A along the object flow a. consequently, the action A fires and after the execution it

produces a result as an object token and put it on its output pin. In addition, the

action A produces a control token which follows to action B along the control flow b.

The object flow that is produced by action A flows to the output activity parameter

node along the object flow c. Meanwhile, the action B accepts the control token and

fires, producing an object token on its output pin. The generated object token flows

to the output activity parameter node along the object flow d.

15

2.2.2 Action Language for Foundational UML

Action Language for Foundational UML (Alf) is a textual surface representation for

specifying executable (fUML). In addition of being a standard, Alf is highly expressive

and provides the facilities required to express the actions in UML models in clear and

precise and yet abstract manner. As mentioned before, the semantics of the Alf

notation is defined by its mapping to fUML. Figure 4 presents the Alf notation of

the activity provided in Figure 3. For extended treatment of the Alf notation, please

refer to the language specifications [66].

Figure 4: Example of Alf Code

In the following section, we present the main concepts of aspect-oriented paradigm.

2.3 Aspect-Oriented Paradigm

The complexity of software is increasing day by day due to sophisticated function-

alities required to be realized in newly developed software. During the development

phase, it can be clearly observed that there are certain non-functional concerns, such

as security, which have a tendency to get interleaved with the core functionalities

and cannot be decomposed efficiently into single entities. Dealing with such cross-

cutting concerns is a major challenge in the development of software systems as they

16

are scattered in various places and become inseparable from main functionalities. In

this respect, Aspect-Oriented paradigm [46] is an appealing approach as it allows the

encapsulation of a crosscutting concern in single unit of modularization called aspect.

The main terms of aspect-oriented terminology are:

Aspect: As mentioned previously, aspects are elements that encapsulate concerns

that crosscut the core functionalities of an application. Typically, an aspect consists

of two elements; a set of adaptations (advice) and a set of pointcuts. Advice is a set

of treatments, i.e., behaviors, which need to be injected at particular points during

the execution time. These points are called join points, and the set of join points are

called pointcuts.

Pointcut: A pointcut is an expression that allows the selection of a set of points in

the execution flow where pieces of advice need to be injected. Each point in this set

is called a join point. By analogy, a pointcut classifies join points in the same way a

type classifies values.

Matching: Matching is the process of identifying join points in the execution flow.

Weaving: Weaving is the process of injecting the advice specified in the aspect at

the identified join points selected by pointcuts. Figure 5 shows a high-level example

of the weaving process.

The aspect-oriented paradigm originally emerged at the programming level. Many

aspect-oriented programming (AOP) languages have been developed, such as, AspectJ

[44] , AspectC [14], and AspectC++ [79]. However, due to the increasing interest,

AOP has recently stretched over earlier stages of the software development lifecycle.

Aspect-Oriented Modeling (AOM) [7] applies aspect-oriented techniques to software

17

Figure 5: Example of Weaving

models with the aim of modularizing crosscutting concerns. Indeed, handling those

concerns at the modeling level would significantly help in alleviating the complexity

of software models and application code, as well as reducing development costs and

maintenance time. In the following section, we briefly present the different methods

that are proposed for security hardening on software design models.

2.4 Security Hardening on Software Design Models

Different approaches have been proposed to comfort the process of specification and

integration of security solutions into software design models. Mainly, the proposed

approaches can be classified into three groups; (1) security design patterns, (2)

mechanism-directed meta-languages, (3) aspect-oriented modeling. In the following

we briefly explain each of these categories.

18

2.4.1 Security Design Patterns

“A pattern for software architecture describes a particular recurring design problem

that arises in specific design contexts and presents a well-proven generic scheme for

its solution” [77]. Likewise, security patterns encapsulate security experts knowledge

in the form of proven solutions to common problems. These solutions allow soft-

ware designers to satisfy security properties of their design without having in depth

knowledge about security.

Many security design patterns for security concerns such as access control, logging,

cryptography, and electric signature have been proposed in the literature [8,11,12,26,

42, 75, 77]. Although security design patterns provide reusable solutions to integrate

security best practices during the software design phase, they have some shortcom-

ings. Generally, the provided patterns are high-level and abstract and information

about the behavior of security solutions is missed. In addition, usually structures

and methodologies needed for their applications are not provided. Moreover, some of

the patterns are merely textual descriptions written in English, which require manual

implementation.

2.4.2 Mechanism-Directed Meta-Languages

Extension of the UML meta-language for specifying security solutions is another

method that is proposed for the integration of security into design models. By pro-

viding new stereotypes and specific tagged values for defining security solutions, these

approaches enable software modelers to design more secure models. In addition, UML

standard extension mechanisms benefit from a good tool support since any standard

19

UML modeling framework supports profile specification. Many UML meta-language

extensions have been proposed in the literature. The majority of them targets the

specification of RBAC security policies [22,50,72]. Other security requirements, such

as authentication, have been also addressed in [57]. In addition, mostly proposed

approaches require continuous interaction between software designers and security

experts in order to ensure the appropriate enforcement of security requirements.

2.4.3 Aspect-Oriented Modeling

We know that security solutions have a crosscutting nature and pervade the entire

software. Also, as previously mentioned, AOM supports the idea of separating cross-

cutting concerns from the software core functionalities at the software modeling level.

Therefore, the AOM paradigm can be a promising treatment for incorporating secu-

rity at the modeling level as it enables security specialists to provide generic security

solutions as aspects that can be systematically applied to design models. A security

solution aspect consists of two main parts: (1) security functionalities, (2) locations

where these functionalities should be applied on core software models. Concisely,

when a security aspect is applied to a design model, the locations where the solution

needed to be injected are identified and the functionalities specified by the aspect are

injected into those locations.

Several AOM approaches have been proposed for integration of security into soft-

ware models [16, 33, 34, 43, 69, 70, 71, 89, 90]. However, these approaches suffer from

the lack of standardization for aspect specification and integration.

The aspect-oriented paradigm overcomes the limitations observed in the previous

20

approaches (see Subsection 2.4.3 and Subsection 2.4.2). By adopting aspect-oriented

techniques, security experts independently specify security solutions as generic as-

pects. Moreover, it provides a method to automate the process of integrating security

solutions into primary models. In the following section, we briefly present the main

concepts of Lambda calculus.

2.5 λ-calculus

Lambda calculus (or λ-calculus) is a theory of functions introduced by Alonzo Church

in the 1930s. It provides a simple notation for defining and applying functions. The

notation consists of a set of λ-expressions, each of which denotes a function. A key

characteristic of λ-calculus is that functions are values, just like booleans and integers.

In other words, functions in λ-calculus can be passed as arguments to other functions

or returned as values from other functions. First, we introduce the notations that

will be used throughout this research work.

Notations

• The algorithms are written with respect to the OCaml notations [1].

• Given a record D = {f1 : D1; f2 : D2; . . . ; fn : Dn} and an element e of type D,

the access to the field fi of an element e is written as e.fi.

• Given a record D and an element e, the notation D e in pattern matching denotes

that e is of type D.

• The type Identifier classifies identifiers.

21

• Given identifiers a and b, we write a �→ b to denote a mapping from a to b.

• Given two maps m and m′, we write m † m′ the overwriting of the map m by

the associations of the map m′.

Syntax

As it is presented in [36], the pure λ-calculus contains three kinds of λ-expressions

namely variables, function abstractions, and function applications. (see Figure 6)

e ::= x variable

| λx. e abstraction

| e e′ application

Figure 6: Syntax of λ-Calculus

1. Variables: represented by x , y , z , etc.

2. Function abstractions (or function definitions): represented by the expression

λx . e, where x is a variable that represents the argument and e is a λ-expression

that represents the body of the function. For example: the expression λx . square x

is a function abstraction that takes a variable x and returns the square of x .

3. Function applications: represented by the expression e e ′, where e and e ′ are λ-

expressions. The expression e should evaluate to a function that is then applied

to the expression e ′. For example, the expression (λx . square x) 3 evaluates, in-

tuitively, to 9, which is the result of applying the squaring function λx . square x

to 3. Notice that there are many strategies for evaluating function applications,

and what we explained above is one way of it.

22

Free and Bound Variables

An occurrence of a variable in a λ-expression is either bound or free. An occurrence

of a variable x in a λ-expression is bound if there is an enclosing λx . e; otherwise, it

is free. Let us consider the following λ-expression:

e = λx . (x (λy . y z) x) y

In that expression:

• Both occurrences of x are bound since they are within the scope of λx .

• The first occurrence of y is bound since it is within the scope of λy .

• The last occurrence of y is free since it is outside the scope of the λy .

• The variable z is free since there is no enclosing λz .

For extensive treatment on λ-calculus please refer to [36]. In the following section,

we briefly present the main concepts of denotational semantics.

2.6 Denotational Semantics

Denotational semantics is an approach proposed by Christopher Strachey and Dana

Scott in the late 1960s to provide a formal semantics of programming languages.

Concisely, denotational semantics gives programs meaning (denotation) by mapping

syntactic constructs of a language into mathematical objects. The important charac-

teristic of this approach is that it is compositional and the denotation of a program

built out of the denotations of its subphrases. Denotational semantics are mostly

used to illustrate the essence of a language feature, without specifying how these

23

features are actually realized. Hence, semantics are abstract and do not provide full

implementation details.

In this style, each language construct is mapped directly into its meaning by defin-

ing a semantic function F and a semantic domain D such that every syntactic con-

structs in S is mapped by F into elements of D, which is a structured set of abstract

values such as integers, truth values, tuples of values, and functions. [56] Therefore,

for each syntactic construct a semantic equation is defined to describe how the se-

mantic function act on the construct. Figure 7 presents the denotational semantics

of the λ-expressions presented in the previous section.

Env : Identifier → Value
[[]] : Expression → Environment → Value

[[x]]ε = ε(x)

[[λx. e]]ε = 〈x , e, ε′〉

[[e e′]]ε = let v = [[e′]]ε in
let 〈x , e ′′, ε′〉 = [[e]]ε in

[[e ′′]]ε′ † [x �→ v]
end

end

Figure 7: Denotational Semantics of λ-Calculus

Given an expression e, a dynamic environment ε, the semantic function [[]] yields

the computed value v . In the case of:

• Variables: the denotation (computed value) is the value that the variable is

bound to in the environment.

• Function abstractions : the denotation is a closure 〈x , e, ε′〉 capturing the func-

tion parameter x , the function body e, and the evaluation environment ε′, which

24

maps each free variable of e to its value at the time of the declaration of the

function.

• Function applications: the denotation is computed in three steps: (1) the ex-

pression e ′ is evaluated, (2) the function abstraction is evaluated and the closure

〈x , e, ε′〉 is computed, (3) the expression e ′′ is evaluated in the environment that

x is bound to the result of the evaluation of the first step.

For extensive treatment on denotational semantics please refer to [76]. In the following

section, we briefly present the main concepts of continuation-passing style.

2.7 Continuation-Passing Style

Continuations first introduced in 1964 by Van Wijngaarden [74]. Later in the 1970s,

many researchers [47,73,82] have applied the idea to the wide variety of settings [74].

In the following, we start by explaining the concept and afterward we provide the

main steps of transforming direct style semantics to continuation-passing Style (CPS)

semantics.

Continuations

A continuation is a function that describes the semantics of the rest of a computation.

Instead of returning a value as in the familiar direct style, a function in CPS style

takes another function as an additional argument to which it will pass the current

computational result. This additional function argument is the continuation. To il-

lustrate the idea of continuations, let us consider the example presented in Figure 8,

25

which is initially provided in [6].

let prodprimes n =

if (n = 1) then 1

else if (isprime(n)) then n ∗ prodprimes(n − 1)

else prodprimes(n − 1)

Figure 8: Function in Direct Style

The function prodprimes computes the product of all prime numbers that are less

than or equal to a given number n. There are several points in the control flow of

this program where control is returned. For example, the call to the function isprime

returns to a point κ1 with a boolean value b. The first call to the function prodprimes

(in the then clause of the second if) returns to a point κ2 with an integer i and the

second call to prodprimes returns to a point κ3 with an integer j. Similarly, the call

to the main function prodprimes returns to a point κ with a result r. These return

points represent continuations. In addition, each of these points can be considered

as an additional argument to the corresponding function. When the function call

terminates, this additional argument will tell us where to continue the computation.

For example, the function prodprimes can be given as additional argument the return

point (the continuation) κ and when it has computed its result r, it will continue by

applying κ to r. The same treatment can be done to the other function calls. Figure

9 shows another version of the example presented above using continuations.

26

let prodprimes n κ =

if (n = 1) then κ (1)

else let κ1 b =
if (b) then

let κ2 i = κ(n ∗ i) in prodprimes(n − 1, κ2) end
else

let κ3 j = κ(j) in prodprimes(n − 1, κ3) end
in

isprime(n, κ1)
end

Figure 9: Function in CPS Style

CPS Transformation

Given a λ-expression e, it is possible to translate it into CPS. This translation is

known as CPS conversion. In the following, we provide the main steps of this con-

version:

1. Each function definition should be augmented with an additional argument; the

continuation function to which it will pass the current computational result.

let f args = e ⇒ let f args κ = e

2. A variable or a constant in a tail position should be passed as an argument to

the continuation function instead of being returned.

return e ⇒ κ e

3. Each function call in a tail position should be augmented with the current contin-

uation. This is because in CPS, each function passes the result forward instead

of returning it.

return f args ⇒ f args κ

27

4. Each function call, which is not in a tail position, needs to be converted into a new

continuation, containing the old continuation and the rest of the computation.

Here, op represents a primitive operation, which could include an application.

op (f args) ⇒ f args (λr. κ op r)

In the following section, we briefly present the main concepts of defuctionalization.

2.8 Defunctionalization

Defunctionalization proposed by Reynolds in [73], is a transformation that transforms

higher-order functional programs into semantically equivalent first-order programs.

The transformation consists of two main steps:

1. Represent each function abstraction to a data structure holding the free vari-

ables of the function abstraction and replace all function abstractions with their

corresponding data structures.

2. Define a second-class apply function and replace all function applications with

application of the apply function to a value and an argument. Basically, the

apply function is a collection of the bodies of all functions and dispatches based

on the type of its first argument.

Therefore, the result of the transformation is a program that contains only first-

order functions. However, the original higher-order structure is implicit in the pro-

gram.

28

Example: For a better understanding, let us consider the following example, shown

in Figure 10, which is initially provided by Danvy in [19].

aux : (Int → Int) → Int
main : Int× Int× Bool → Int

let aux f = f 1 + f 10

let main x y b = aux(λz. z + x) ∗ aux(λz. if b then y + z else y − z)

Figure 10: Higher-order Program

The function aux takes a first-class function as an argument and it applies it to

1 and 10 and outputs the summation of the applications. The main function calls

aux twice and outputs the multiplication of the results. There are two function

abstractions in the main function. To defunctionalize the program, we should define

data types for these function abstractions and their corresponding apply function.

The newly defined data types are shown in Figure 11 and their corresponding apply

function is presented in Figure 12.

type Lam = Lam1 | Lam2

type Lam1 = {id : Int}

type Lam2 = {id : Int; cond : Bool}

Figure 11: New Types

apply : Lam× Int → Int

let apply l z = match l with

(Lam1 l) ⇒ l .id + z

| (Lam2 l) ⇒ if l .cond then l .id + z else l .id − z

Figure 12: Apply Function

29

Lastly, we rewrite the program by replacing the function abstractions with their

corresponding data types and their applications with the application of the newly

defined apply function. The defunctionalized program is presented in Figure 13.

re-aux : Lam → Int
re-main : Int× Int× Bool → Int

let re-aux f = apply(f , 1) + apply(f , 10)

let re-main x y b = re-aux(Lam1(x)) ∗ re-aux(Lam2(y , b))

Figure 13: Redefined Program

30

Chapter 3

Static Matching and Weaving on

UML Models

In this chapter, we present an aspect-oriented modeling approach for the specifica-

tion and the integration of security solutions into UML software design models in a

systematic manner. This approach allows software designers to focus on the main

functionalities of software, and do not get diverted by non-functional requirements

such as security. Later on, security solutions, which are provided by security experts,

in the form of UML aspects, will be blended into the core models and target models

will be generated.

I should mention that the work that is presented in this chapter is done by a team,

which I was a member of it. The work had two main parts: (1) creating an AOM

profile [58], and (2) implementing a model weaver [61]. I particularly was involved in

the second part, which is described in subsection 3.3.3.

31

The remainder of this chapter is organized as follows. Section 3.1 presents a high-

level overview of our AOM framework. In Section 3.2, we describe how security

solutions can be specified as UML aspects. In section 3.3, we explain how an aspect

is weaved into a core UML model. A case study is provided in section 3.4 to illustrate

our approach. Finally, a summary of the chapter and a discussion about future work

in this area are provided in Section 3.5.

3.1 Overview

A high-level overview of our approach is illustrated in Figure 14. There are two actors

involved in our approach; (1) a security expert (on the right side) who is responsible

for providing security solutions in form of UML aspects, and (2) software designer

(on the left side) who is responsible for designing a software base model that only

addresses the main functionalities of software.

The aspects designed by the security expert are generic templates representing the

security features independently from the software model. In few words, each aspect

consists of two main elements: security treatments that are specified as adaptations

and the places where such treatments should be injected, which are designated by

pointcuts. To come up with generic aspects, pointcuts are specified with parame-

ters and are application-independent. Afterwards, by mapping the aspect parame-

ters to elements of software base models, application-specific aspects are generated.

The process of transforming an application-independent aspect to a customized and

32

application-specific aspect is called aspect specialization. The idea is similar to func-

tions arguments that are unbound during the definition of the functions and will be

bounds to their values when they are called.

Figure 14: Overview of our Approach

Our approach works as follows. Software designers focus on the main functional-

ities of the software and do not get diverted by security concerns. When the base

model is fully designed and created, it is the time to add the security features into the

base model. Based on the security requirements specified for the software, software

designers select appropriate security aspects from a security library and weave them

into their base model. To facilitate the process of integration of security aspects into

the model, we provide an interface that is called a weaving interface. This interface

33

takes both the model and the aspect as inputs and outputs a customized (application-

specific) aspect. Afterwards, the weaving engine takes both the base model and the

customized aspect, and automatically weaves the aspect into the model.

3.2 Aspect Specification

In order to assist security experts in designing the security aspects, an AOM profile

is developed as part of our framework. This profile allows security experts to specify

security solutions in the form of aspects by attaching stereotypes that are parame-

terized by tagged values to UML elements. The profile is designed to allow as many

modification capabilities as possible.

As mentioned earlier, an aspect contains a set of adaptations and pointcuts. In

our profile, an aspect is represented as a stereotyped package. In the following sub-

sections, we show how adaptations and pointcuts can be specified using our AOM

profile.

3.2.1 Adaptations

An adaptation specifies modifications that an aspect performs on the base model.

Since UML allows the specification of software from multiple points of view using

different types of diagrams, adaptations should also enable the specification of modi-

fications on different types of diagrams. In our approach, we focus on those diagrams

that are the most used by software designers and define two types of adaptations:

structural and behavioral adaptations as depicted in Figure 15. Structural adapta-

tions specify the modifications that affect structural diagrams and likewise behavioral

34

adaptations specify the modifications that affect behavioral diagrams.

Figure 15: Meta-Language for Specifying Aspects and their Adaptations

The effects that an aspect performs on the base model elements are defined through

the adaptations rules. We support two types of adaptation rules: adding a new

element to the base model and removing an existing element from the base model.

Figure 16 depicts our specified meta-model for adaptation rules.

Figure 16: Meta-Language for Specifying Adaptation Rules

35

The addition of a new diagram element to the base model is modeled as a special

kind of operation stereotyped 	Add
. Three tagged values are attached to this

stereotype namely Name, Type and Position. The Name tagged value indicates the

name of the element to be added to the base model. The Type tagged value specifies

the type of the element to be added to the base model. The values of this tag are

provided in the enumerations. Lastly, the Position tagged value that designates the

position where the new element needs to be added. The values of this tag are given in

the enumeration PositionType. This tag is needed for some elements (e.g., a message,

an action) to state where exactly the new element should be added (e.g., before/after

a join point). For some other elements (e.g., a class or an operation), this tag is

optional. The location where the new element should be added is specified by the

meta-element Pointcut, which will be explained in the next subsection.

The deletion of an existing element from the base model is modeled as a special kind

of operation stereotyped	Remove
. The set of elements that should be removed are

given by a pointcut expression specified by the meta-element Pointcut (Subsection

3.2.2). Notice that, no tagged value is required for the specification of a Remove

adaptation rule as the pointcut specification is enough to select the elements that

should be removed.

Table 3 summarizes the main adaptation rules that are supported by our approach.

3.2.2 Pointcuts

A pointcut is an expression that allows the selection of a set of locations in the base

model where adaptations should be performed. Since the targeted join points are

36

UML Diagram Supported Adaptation Rules
Adding/Removing a Class

Class Adding/Removing a Property
Diagram Adding/Removing an Operation

Adding/Removing an Association
Adding/Removing a Package

State Adding/Removing a State Machine
Machine Adding/Removing a State
Diagram Adding/Removing a Transition

Adding/Removing a Region
Adding/Removing an Interaction

Sequence Adding/Removing an Interaction Use
Diagram Adding/Removing a Lifeline

Adding/Removing a Message
Adding/Removing an Activity

Activity Adding/Removing an Action
Diagram Adding/Removing a Structured Activity Node

Adding/Removing a Control Flow

Table 3: Supported Adaptation Rules

UML elements, pointcuts should be defined based on designators that are specific

to the UML language. To this end, we define in our approach a pointcut language

that provides UML-specific pointcut designators that are needed to select UML join

points. The proposed pointcut language is enough expressive to designate the main

UML elements that are used in a software design. A UML element can be designated

by its name, type, properties, or by its relations to other UML elements. For example,

the pointcut language allows to designate a class that has a specific name and/or has

its visibility property set to public. In addition, our proposed pointcut language

provides high-level and user-friendly primitives that can be used intuitively by the

security expert to designate UML elements.

As shown in Figure 16, the meta-element Pointcut is defined as stereotyped opera-

tion with two tagged values attached to it namely TextExpression and OCLExpression.

The TextExpression tagged value is the pointcut expression specified in our proposed

37

textual pointcut language. An OCL expression is equivalent to the text expression,

which will be generated automatically during the weaving process as we will see in the

next section. The idea behind having these two tagged values is to benefit from the

expressiveness of the OCL language and at the same time eliminating the overhead of

writing such complex expressions by software designers. In fact, the text expression

pointcut language is a high-level language, which is easy to learn and understand.

However, textual expressions cannot be used to query UML elements and select the

appropriate join points. Thus, in our framework, we translate the textual pointcut

expressions into OCL expressions to query UML elements.

3.3 Aspect Weaving

In the previous section, we explained how we can specify UML aspects using our AOM

profile. In this section, we briefly describe our proposed weaver that automatically

weaves aspects that are compliant with our AOM profile into UML design models

using model transformation technology.

Figure 17 presents an overview of the weaving process. As it is shown in the figure,

the weaving process has three main steps: (1) aspect specialization, (2) pointcut

translation, and (3) actual weaving. In the following sub-sections, we describe these

three steps in more details.

38

Figure 17: Overview of Weaving

3.3.1 Aspect Specialization

As we said before, the security aspects provided in the security aspect library are

generic solutions. Therefore, before weaning aspects into the base models, the application-

specific version of the aspects needs to be generated. This step is called aspect spe-

cialization.

To specialize an aspect, the software designer should map elements of the base

model to the generic pointcuts specified in the aspect. In order to do so, we provide

39

a weaving interface. This interface hides the complexity of the security solutions

and only exposes the generic pointcuts to the software designer. From this weaving

interface and based on his/her understanding of the application, the software designer

has the possibility of mapping each generic element of the aspect to its corresponding

element(s) in the base model. After mapping all the generic elements, the application-

specific aspect will be automatically generated.

3.3.2 Pointcut Parsing

After generating the application-specific aspect, the next step is to translate the

textual pointcuts specified in the aspect to a language that can navigate through the

base model and select the corresponding join points. In our approach, we chose to

translate the textual pointcut expressions into the standard OCL language [63] due

to the high expressiveness of the OCL language, and its conformance with UML.

This translation is done by implementing a parser that is capable of parsing and

translating any textual pointcut expression, written in our high-level proposed point-

cut language, to its equivalent OCL expression. Indeed, this process will be executed

automatically and in a total transparent way from the user.

3.3.3 Actual Weaving

During this step, the aspect adaptations are automatically woven into the base model.

In our framework, we adopt a model-to-model transformation using the standard QVT

(Query/View/Transformation) language [64]. The input models of the QVT trans-

formation are the base model and the specialized aspect model, and the generated

40

output model is the woven model.

Weaving is specified as a set of transformation definitions, each of which consists

of a set of mapping rules. These mapping rules specify how elements of the source

model should be transformed to elements in the target model. In our weaving engine,

we classify the transformation definitions according to the supported UML diagrams.

Thus, we provide four types of transformation definitions: class transformation defini-

tion, sequence transformation definition, activity transformation definition, and state

machine transformation definition. For instance, the class transformation definition

consists of a set of mapping rules, which specify how each element of the class diagram

can be transformed or woven into the base model.

The actual weaving starts by parsing the adaptations specified in the aspect. Then,

according to the adaptation rules, the equivalent transformation definitions will be

generated. Each adaptation rule will then be translated to QVT mapping rules.

These mapping rules are then interpreted by the QVT transformation engine that

transforms the base model into a woven model.

3.4 Case Study

In this section, we present a case study to demonstrate the feasibility of our approach.

Our case study, which is adopted from [35], presents a social networking application

which has a generic login process in place. Current login process only verifies the

user’s username and password and either allows or blocks user access accordingly. In

this scenario, a Client requests login page from LoginManager class and then calls

41

the Login method with his username and password. The LoginManger then validates

the user credentials by contacting the AccountManager class. If the user credentials

are valid, then the LoginManager requests the user’s profile from ProfileManager

class, and returns the user’s homepage to the client (See Figures 18 and 19).

Figure 18: Class Diagram for a Social Networking Application

Figure 19: Sequence Diagram Representing the Login Interaction

The current login mechanism is vulnerable to different kinds of security threats,

42

e.g., man-in-the-middle attacks, where an attacker may intercept the user’s creden-

tials, as they are sent in plain text, and impersonate the user. To fix this problem,

we replace the current login authentication mechanism with a certificate-based au-

thentication over the Transport Layer Security (TLS) protocol [20].

To do so, we specify a TLS aspect as presented in Figure 20. The TLS aspect

is designed using our AOM profile. The aspect defines two kinds of adaptations:

class adaptation, and sequence adaptation. The class adaptation adds the different

attributes needed by the TLS protocol, e.g., nonce, public/private keys, certificates,

etc. to the Client and LoginManager classes. Additionally, it removes the current

login method and replaces it with a secure one.

Figure 20: TLS Aspect

43

The sequence adaption on the other hand, adds the interaction behavior (Fig-

ure 21) that specifies the TLS protocol. This is accomplished by defining an adapta-

tion rule AddSecureLogin, which specifies the injection of the secure login behavior

as an interaction used around any call to the login method that is picked out by the

pointcut LoginPointcut.

Figure 21: Sequence Diagram Representing Secure Login Interaction

The first step of the weaving is the automatic identification of the join points

44

where the secure login behavior (Figure 21) should be injected. To achieve this, our

framework first translates the textual expression of the pointcut LoginPointcut to its

equivalent OCL expression. This step is done automatically and in a total transparent

way from the user. The resulting OCL expression is shown in Figure 22.

self.oclIsTypeOf(Message) and self.name= “Login” and
(self.messageSort= MessageSort::synchCall or
self.messageSort= MessageSort::asynchCall) and
self.connector. end->at(1).role.name=“Client” and
self.connector. end->at(2).role.name=“LoginManager”

Figure 22: The Resulting OCL Expression

Then, the join point matching module evaluates the generated OCL expression and

returns all the message calls to the login operation as join points. For instance, in

the example of Figure 19, the message call Login is selected as a matched join point.

The last step of the weaving is the automatic injection of the secure login behavior

into the base model at the identified join points. This is achieved by executing the

QVT mapping rule that corresponds to the adaptation rule AddSecureLogin.

Figure 23: Social Networking Application Class Diagram

45

Finally, the resulting woven model is automatically generated (Figures 23and 24).

Figure 24: Sequence Diagram Representing the Secure Login Process

3.5 Summary

In this chapter, we present an AOM framework for weaving crosscutting concerns

into UML models. To this end, we presented a UML profile allowing the specifica-

tion of typical aspect-oriented primitives. In addition, we described a UML-specific

pointcut language to designate the main UML join points. Furthermore, we elabo-

rated a framework to specialize the generic aspects provided by security experts and

automatically weave the security mechanisms into the base models. By adopting

the standard OCL language for evaluating the high-level pointcuts, our approach is

46

generic enough to specify a wide set of pointcut expressions covering various UML

diagrams. The adoption of the standard QVT language for implementing the adap-

tation rules extends portability of the designed weaver to all tools supporting QVT

language.

We decide to enrich our framework to support executable UML models. There are

two main motives for taking this decision. First, executable models enable security

experts to enrich their security aspect libraries and provide aspects with more precise

behaviors. Second, such models allow the security experts to provide more advanced

security aspects (such as an aspect for capturing data dependencies) due to their

detailed behavior specifications and execution capability.

47

Chapter 4

Dynamic Aspect Semantics for a

Language Based on λ-calculus

Proposing a formal semantics for aspect matching and weaving on xUML models is

the main objective of this research. As we mentioned before, an xUML model is a

combination of UML elements and code written in an action language. Therefore,

neither AOM nor AOP techniques are merely enough to perform matching and weav-

ing on xUML models. In fact, a combination of both these techniques is needed to

be able to achieve the goal.

We reach our goal by taking two steps. As the first step, we focus on the AOP

side, and provide a semantics for aspects matching and weaving for a core language

based on λ-calculus. We chose this language because λ-calculus serves as a basis

for many programming languages, and it does not have the complexity of high-level

programming languages. As the second step, we elaborate our approach to take into

account model elements (the AOM side), and provide an aspect-oriented semantics

48

framework for xUML models. In this chapter we go through the first step and we

explain the second step in the following chapter.

In our approach, we perform advice matching and weaving during the evaluation

of λ-expressions. We choose Continuation-Passing Style (CPS) [81] as the basis of

our semantics because, as previously demonstrated in [23], modeling aspect-oriented

constructs (i.e., join points, pointcuts), in a frame-based continuation-passing style

provides a concise, accurate, and elegant description of these mechanisms. Indeed,

in CPS, join points arise naturally as continuation frames during the evaluation of

the language expressions. In this setting, pointcuts are expressions that designate a

set of continuation frames. Advice specifies actions to be performed when contin-

uation frames satisfying a particular pointcut are activated. As it is shown in the

following, by modeling join points as continuation frames, matching and weaving can

be described in a simplified and unified way for different kinds of primitives and no

additional structures are required to maintain the order of join points.

The remainder of this paper is organized as follows. Section 4.1 presents the syntax

of a core language based on λ-calculus and its denotational semantics. We transform

the semantics into a frame-based CPS style in Section 4.2. In Section 4.3, we extend

the language by considering aspect-oriented constructs and subsequently we explore

semantics of matching and weaving in Subsection 4.4 and Subsection 4.5 respectively.

In Section 4.6, we enhance our work by considering flow-based pointcuts and present

an example to illustrate the proposed framework in Subsection 4.6.3. We discuss

related work in Section 4.7. Finally, a summary is presented in Section 4.8.

49

4.1 Syntax and Denotational Semantics

In this section, we present the syntax of the language and its denotational semantics.

The notations that are used bellow are introduced in Subsection 2.5. For the sake

of illustration, we choose a small core syntax that captures the essence of functional

languages. The syntax is presented in Figure 25.

e ::= c constant
| x variable
| λx. e abstraction
| e e′ application
| let x = e in e′ local definition
| if e1 then e2 else e3 conditional
| e1; e2 sequence
| ref e referencing
| ! e dereferencing
| e := e′ assignment

Figure 25: The Core Syntax

We consider the following expressions:

• Constants and variables

• Functional constructs (function abstraction and function application)

• Let expressions

• Conditional expressions

• Sequential expressions

• Imperative features (referencing, dereferencing, and assignment expressions).

The expression ref e allocates a new reference and initializes it with the value

of e. The expression !e reads the value stored at the location referenced by the

50

value of e. The expression e := e′ writes the value of e′ to the location referenced

by the value of e.

The denotational semantics of the language is presented in Figure 26. The func-

tions and the types used are defined as follows:

Env : Identifier → Value

Store : Location → Value

Value : Int | Bool | Unit | Location | Closure

Result : Value× Store

[[]] : Exp → Env → Store → Result

alloc : Store → Location

Given an expression e, a dynamic environment ε, and a store σ, the dynamic

evaluation function [[]] yields the computed value v and the updated store σ′. The

environment ε maps identifiers to values. The store σ maps locations to values. A

value can be either a constant, a location, or a closure. Notice that in the case of an

abstraction expression λx. e, the computed value is a closure 〈x , e, ε′〉 capturing the

function parameter x , the function body e, and the evaluation environment ε′, which

maps each free variable of e to its value at the time of the declaration of the function.

The function alloc used in the semantics allocates a new cell in the store and returns

a reference to it.

51

[[c]]ε σ = (c, σ)

[[x]]ε σ = (ε(x), σ)

[[λx. e]]ε σ = (〈x , e, ε′〉, σ)

[[e e′]]ε σ = let (v , σ′) = [[e′]]ε σ in
let (〈x , e ′′, ε′〉, σ′′) = [[e]]ε σ′ in [[e ′′]]ε′ † [x �→ v] σ′′ end

end

[[let x = e in e′]]ε σ = let (v , σ′) = [[e]]ε σ in [[e ′]]ε † [x �→ v] σ′ end

[[if e1 then e2 else e3]]ε σ = let (v , σ′) = [[e1]]ε σ in
if (v) then [[e2]]ε σ′ else [[e3]]ε σ′

end

[[e1; e2]]ε σ = let (v , σ′) = [[e1]]ε σ in [[e2]]ε σ′ end

[[ref e]]ε σ = let (v , σ′) = [[e]]ε σ in
let � = alloc(σ′) in (�, σ′ † [� �→ v]) end

end

[[! e]]ε σ = let (�, σ′) = [[e]]ε σ in (σ′(�), σ′) end

[[e := e′]]ε σ = let (�, σ′) = [[e]]ε σ in
let (v , σ′′) = [[e ′]]ε σ′ in ((), σ′′ † [� �→ v]) end

end

Figure 26: Denotational Semantics

4.2 CPS Semantics

In this section, we transform the previously defined denotational semantics into a

continuation-passing style. As we mentioned earlier, frame-based semantics allows

describing AOP semantics in a precise and unified way. To help understanding this

transformation, we proceed in two steps. First, we elaborate a CPS semantics by

representing continuations as functions. Then, we provide CPS semantics by repre-

senting continuations as frames. Continuations describe the semantics of the rest of

a computation. Instead of returning a value as in the familiar direct style, a function

in CPS style takes another function as an additional argument to which it will pass

52

the current computational result. This additional argument is called a continuation.

Continuations are represented as functions, however, for the purpose of modeling join

points, we need to move to a frame-based representation.

4.2.1 Function-Based Representation

The CPS semantics is presented in Figure 27. We translate the denotational semantics

into CPS following the original formulation of the CPS transformation [27]. In essence,

we modify the evaluation function to take a continuation as an additional argument

as follows:

[[]] : Exp → Env → Store → Cont → Result

Cont = Result → Result

[[c]]ε σ κ = κ(c, σ)

[[x]]ε σ κ = κ(ε(x), σ)

[[λx. e]]ε σ κ = κ(λ(v , κ′). [[e]]ε † [x �→ v] σ κ′)

[[e e′]]ε σ κ = [[e′]]ε σ (λ(v, σ′). [[e]]ε σ′ (λf . f v κ))

[[let x = e in e′]]ε σ κ = [[e]]ε σ (λ(v, σ′). [[e′]]ε † [x �→ v] σ′ κ)

[[if e1 then e2 else e3]]ε σ κ =
[[e1]]ε (λ(v, σ′). if (v) then [[e2]]ε σ′ κ else [[e3]]ε σ′ κ)

[[e1; e2]]ε σ κ = [[e1]]ε σ (λ(v, σ′). [[e2]]ε σ′ κ)

[[ref e]]ε σ κ = [[e]]ε σ (λ(v, σ′). let � = alloc(σ′) in κ(�, σ′ † [� �→ v]) end)

[[! e]]ε σ κ = [[e]]ε σ (λ(�, σ′). κ(σ′(�), σ′))

[[e := e′]]ε σ κ = [[e]]ε σ (λ(�, σ′). [[e′]]ε σ′ (λ(v, σ′′). κ((), (σ′′ † [� �→ v]))))

Figure 27: CPS Semantics (Continuations as Functions)

The continuation, represented as a λ-expression, receives the result of the current

evaluation and provides the semantics of the rest of the computation.

53

4.2.2 Frame-Based Representation

Continuations, which are λ-expressions, are often represented as closures. Ager et

al. [2] have provided a systematic conversion of these closures into data structures

(or frames) and an apply function interpreting the operations of those closures. This

conversion is based on the concept of defunctionalization [73]. The latter is a technique

by which higher-order programs, i.e., programs where functions can represent values,

are transformed into first-order programs. Each frame stores the value(s) of the free

variable(s) of the original continuation function and awaits the value(s) of the previous

computation.

Following this technique, we transform the continuation functions obtained from

the previous step into frames as shown in Figure 29. Using frame-based semantics,

the continuation κ consists of a list of frames. Before presenting the semantics, we

first define the primitive functions that will be used. The primitive apply, defined

in Figure 28, pops the top frame from a continuation list and evaluates it based on

its corresponding continuation function. When the list becomes empty, the primitive

apply returns the current value and store as a result.

apply : Cont → (Value× Store) → (Value× Store)
let apply κ (v , σ) = match κ with

[] ⇒ (v , σ)
| f :: κ′ ⇒ F [[f]]σ v κ′

Figure 28: Apply Function

The primitive push extends a continuation list with another frame.

push : Frame → Cont → Cont

let push f κ = f :: κ

54

GetF frame does not store any value. It awaits a location and a store.

type GetF = {}
SetF frame stores a location. It awaits a value and a store.

type SetF = {loc : Value}
CallF frame stores a function abstraction and an environment.
It awaits the value of the function argument.

type CallF = {fun : Exp; env : Env}
ExecF frame stores the value of the argument.
It awaits a closure, which is the result of the evaluation of the function
abstraction and a store.

type ExecF = {arg : Value}
LetF frame stores an identifier, a body of a let expression and an environment.
It awaits the value of the identifier and a store.

type LetF = {id : Identifier; exp : Exp; env : Env}
IfF frame stores then and else expressions and an environment.
It awaits the value of the condition and a store.

type IfF = {thenExp : Exp; elseExp : Exp; env : Env}
SeqF frame stores the next expression and an environment.
It awaits the value of the first expression and a store.

type SeqF = {nextExp : Exp; env : Env}
AllocF frame does not store any value.
It awaits the value to be stored in the newly allocated cell and a store.

type AllocF = {}
RhsF frame stores the right-hand side expression of an assignment
and an environment.
It awaits a location and a store.

type RhsF = {exp : Exp; env : Env}
Figure 29: Frames

In this style, the semantics is defined in two parts: the expression side (Figure 30),

provides the evaluation of the language expressions, and the frame side (Figure 31),

provides the evaluation of the frames that are needed for computations.

55

[[c]]ε σ κ = apply(κ, (c, σ))

[[x]]ε σ κ = apply(κ, (ε(x), σ))

[[λx. e]]ε σ κ = apply(κ, (〈x , e, ε′〉, σ))

[[e e′]]ε σ κ = [[e′]]ε σ (push(CallF(e, ε), κ))

[[let x = e in e′]]ε σ κ = [[e]]ε σ (push(LetF(x ,e′, ε), κ))

[[if e1 then e2 else e3]]ε σ κ = [[e1]]ε σ (push(IfF(e2, e3, ε), κ))

[[e1; e2]]ε σ κ = [[e1]]ε σ (push(SeqF(e2, ε), κ))

[[ref e]]ε σ κ = [[e]]ε σ (push(AllocF(), κ))

[[! e]]ε σ κ = [[e]]ε σ (push(GetF(), κ))

[[e := e′]]ε σ κ = [[e]]ε σ (push(RhsF(e′, ε), κ))

Figure 30: Frame-Based CPS Semantics: Expression Side

F [[]] : Frame → Store → Value → Cont → Result

F [[GetF f]]σ v κ = apply(κ, (σ(v), σ))

F [[SetF f]]σ v κ = apply(κ, ((), σ † [f .loc �→ v]))

F [[CallF f]]σ v κ = [[f .fun]](f .env) σ (push(ExecF(v), κ))

F [[ExecF f]]σ v κ = [[e]]ε′ † [x �→ f .arg] σ κ where v = 〈x, e, ε′〉

F [[LetF f]]σ v κ = [[f.exp]](f .env) † [f .id �→ v] σ κ

F [[IfF f]]σ v κ = if (v) then [[f.thenExp]](f .env) σ κ else [[f.elseExp]](f .env) σ κ

F [[SeqF f]]σ v κ = [[f.nextExp]](f .env) σ κ

F [[AllocF f]]σ v κ = let � = alloc(σ) in apply(κ, (�, σ † [� �→ v])) end

F [[RhsF f]]σ v κ = [[f .exp]](f .env) σ (push(SetF(v), κ))

Figure 31: Frame-Based CPS Semantics: Frame Side

56

Example: To illustrate this transformation, let us consider the following very simple

expression:

e = (λx . x)(1)

By applying the CPS semantics presented in Figure 27, the expression evaluation

is as follows:

[[e]]ε σ κ = [[1]]ε σ (λ(v, σ′). [[λx. x]]ε σ′ (λf. f v κ))

The defunctionalization process consists of transforming the following λ-expressions

into frames as shown below:

λ(v, σ′). [[λx. x]]ε σ′ (λf. f v κ) transformed into CallF(λx. x)

λf. f v κ transformed into ExecF(1)

Using these frames, the evaluation of the expression e is provided as follows by

applying the frame semantics presented in Figure 30 and Figure 31:

[[e]]ε σ κ = [[1]]ε σ (push(CallF(λx. x), κ))

= apply(κ, (1, σ))

= [[λx. x]]ε σ (push(ExecF(1), κ))

= apply(κ, (〈x, x, ε〉, σ))

= [[x]]ε † [x �→ 1] σ κ

= apply(κ, (ε(x), σ))

= (ε(x), σ)

= (1, σ)

The frames CallF(λx. x) and ExecF(1) correspond respectively to the moments where

the function λx. x is being called and executed with an argument equal to 1. In

57

AOP, these moments are considered as join points where a certain advice can be ap-

plied. Thus, by transforming the denotational semantics into a frame-based style, the

join points automatically arise within the semantics, which makes it an appropriate

approach for defining the semantics of AOP.

4.3 Aspect Syntax and Semantics

In this section, we present our aspect extension to the language and elaborate its

semantics. Our methodology in using CPS is based on a previous effort describing

the semantics of a first-order procedural language (PROC) [23]. In the following,

we start by presenting the aspect syntax. Then, we elaborate the matching and the

weaving semantics.

An aspect, depicted in Figure 32, includes a list of advice. Advice specifies actions

to be performed when join points satisfying a particular pointcut are reached.

type Aspect = Advice list

type Advice = {body : Exp; pc : Pointcut}

type Pointcut = GetPC | SetPC | CallPC | ExecPC | NotPC | AndPC

type GetPC = {id : Identifier}

type SetPC = {id : Identifier; val : Value}

type CallPC = {id : Identifier; arg : Identifier}

type ExecPC = {id : Identifier; arg : Identifier}

type NotPC = {pc : Pointcut}

type AndPC = {pc1 : Pointcut; pc2 : Pointcut}

Figure 32: Aspect Syntax

58

Syntactically, an advice contains two parts: (1) a body, which is an expression and

(2) a pointcut, which designates a set of join points. Advice can be applied before,

after, or around a join point. However, before and after advice can be expressed as

around advice using the proceed expression. Hence, we consider all kinds of advice

as around advice as this does not restrict the generality of the approach.

A pointcut is an expression that designates a set of join points. We first consider

the following basic pointcuts: GetPC, SetPC, CallPC, and ExecPC. The pointcut GetPC

(resp. SetPC) picks out join points where the value of a variable is got from (resp.

set to) the store. The pointcut CallPC (resp. ExecPC) picks out join points where a

function is called (resp. executed).

As in AspectJ, advice may also compute the original join point through a special

expression named proceed [45]. Hence, as shown in Figure 33, we extend the core

syntax with an additional expression proceed (e) to denote the computation of the

original join point with possibly a new argument e.

e ::= ...
| proceed (e) proceed

Figure 33: The proceed Expression

4.4 Matching Semantics

Matching is a mechanism for identifying the join points that are targeted by an

advice. In a defunctionalized continuation-passing style, join points correspond to

continuation frames and arise naturally when a particular continuation frame receives

the value that it awaits. The matching semantics is shown in Figure 34.

59

match pc : Pointcut → Frame → Value → Store → Env → Cont → Bool

let match pc p f v σ ε κ = match (p, f) with

(GetPC p,GetF f) ⇒ ε(p.id) = v

| (SetPC p, SetF f) ⇒ ε(p.id) = f .loc

| (CallPC p,CallF f) ⇒ let (v ′, σ′) = [[f .fun]] ε σ κ in
let (v ′′, σ′′) = [[ε(p.id)]]ε σ κ in v ′ = v ′′ end

end

| (ExecPC p,ExecF f) ⇒ let (v ′, σ′) = [[ε(p.id)]] ε σ κ in v = v ′ end

| (NotPC p,Frame f) ⇒ not match pc(p.pc, f, v, σ, ε, κ)

| (AndPC p,Frame f) ⇒ match pc(p.pc1, f, v, σ, ε, κ) and
match pc(p.pc2, f, v, σ, ε, κ)

| otherwise ⇒ false

Figure 34: Matching Semantics

Given a pointcut p, the current frame f, the current value v, an environment ε, a

store σ, and a continuation κ, the matching semantics examines whether f matches

p. Matching depends on three factors, the kind and the content of the frame f and

the current value v that f receives.

In the case of:

• GetPC pointcut, there is a match if f is a GetF frame and the location of the

identifier given in p is equal to the location that f receives.

• SetPC pointcut, there is a match if f is a SetF frame and the location of the

identifier given in p is equal to the location that is stored in f.

• CallPC pointcut, there is a match if f is a CallF frame and it holds a function

equal to the one given in p. Notice that the pointcut p contains only the function

identifier id and ε(id) gives its abstraction, assuming that in the environment

60

identifiers map to values in case of variables, and map to function abstractions

in case of functions.

• ExecPC pointcut, there is a match if f is an ExecF frame and the evaluation of

the function given in p is equal to the closure that f receives.

• NotPC pointcut, there is a match if f does not match the sub-pointcut of p. (The

sub-pointcut of pointcut p is the pointcut, which is enclosed in p)

• AndPC pointcut, there is a match if f matches both its sub-pointcuts.

Example: Let us consider the previous expression (slightly changed to define a

function f):

e = (let f = λx . x in f(1) end)

and a pointcut p that captures any call to the function f with an argument x:

CallPC p = {id = f ; arg = x}

As shown in the previous section, the frame-based semantics of the expression e

usees the frames CallF(λx. x) and ExecF(1), which correspond to the moments where

the function λx. x is called and executed respectively. By applying the matching

semantics presented in Figure 34, it is clear that the pointcut p matches the frame

CallF(λx. x).

4.5 Weaving Semantics

The weaving semantics describes how to apply the matching advice at the identified

join points. Since join points correspond to continuation frames, the advice body

61

provides a means to modify the behavior of those continuation frames. The weaving

is performed directly in the evaluation function. To do so, we redefine the apply func-

tion, as shown in Figure 35, to take an aspect α and an environment ε into account.

Accordingly, the signatures of the evaluation functions as well as the matching one

are also modified to take the aspect and the environment as additional arguments.

apply : Cont → (Value× Store) → Env → Aspect → (Value× Store)

let apply κ (v , σ) ε α = match κ with

[] ⇒ (v, σ)

| f :: κ′ ⇒ let ms = get matches(f , v , σ, ε, α, κ′) in
if ms = [] then F [[f]]ε σ v α κ′
else
let argV = match f with

SetF f ⇒ v
| CallF f ⇒ v
| ExecF f ⇒ f .arg
| otherwise ⇒ ()

in execute advice(ms, f, argV, σ, ε, α, κ′)
end

end

Figure 35: Redefined Apply Function

The weaving is done in two steps. When a continuation frame is activated, we

first check for a matching advice by calling the get matches function. If there is

any applicable advice, the function execute advice is called. Otherwise, the original

computation is performed. In the following, we explain these two steps.

Advice Matching

Advice matching is shown in Figure 36. To get applicable advice, we go through the

aspect and check whether their enclosed pointcuts match the current frame. This is

done by using the function match pc defined previously in Figure 34. In case there

62

is a match, we return a structure MatchedAD containing the advice itself and the

pointcut arguments that will pass values to the advice execution.

type MatchedAD = {arg : Identifier; ad : Advice}
get matches : Frame → Value → Store → Env → Aspect → Cont →

MatchedAD list

let get matches f v σ ε α κ = match α with

[] ⇒ []

| ad :: α′ ⇒ let p = ad .pc in
if match pc(p, f, v, σ, ε, α, κ) then

let arg = match p with
SetPC p ⇒ p.id

| CallPC p | ExecPC p ⇒ p.arg
| otherwise ⇒ ()

in MatchedAD(arg , ad) :: get matches(f, v, σ, ε, α′, κ)
end

else get matches(f, v, σ, ε, α′, κ)
end

Figure 36: Advice Matching

Advice Execution

Advice execution is shown in Figure 37. It starts by evaluating the body of the first

applicable advice. The remaining applicable pieces of advice as well as the current

frame are stored in the environment by binding them to auxiliary variables &proceed

and &jp respectively. To evaluate the advice body, we define a new continuation

frame, AdvExecF, as follows:

type AdvExecF = {matches : MatchedAD list; jp : Frame}

F [[AdvExecF f]]ε σ v α κ = execute advice(f .matches , f .jp, v , σ, ε, α, κ)

The evaluation of the proceed expression is provided below. The value of its

argument is passed to the next advice or to the current join point if there is no

63

execute advice :
MatchedAD list → Frame → Value → Store → Env → Aspect → Cont → Result

let execute advice ms f v σ ε α κ = match ms with

[] ⇒ apply(push(MarkerF(), (push(f , κ))), (v , σ), ε, α)
| m :: ms ′ ⇒ let ad = m.ad in

[[ad.body]]ε † [&proceed �→ ms ′,&jp �→ f ,m.arg �→ v] σ α κ
end

Figure 37: Advice Execution

further advice. To execute the remaining pieces of advice, the AdvExecF frame is

added to the list of frames.

[[proceed (e)]]ε σ α κ = [[e]]ε σ α (push(AdvExecF(ε(&proceed), ε(&jp)), κ))

When all applicable pieces of advice are executed, the original computation, i.e.,

the current join point is invoked. To avoid matching the currently matched frame

repeatedly, we introduce a new frame, MarkerF, which invokes the primary apply

function, renamed here as apply prim.

type MarkerF = { }

F [[MarkerF f]]ε σ v α κ = apply prim(κ, (v , σ))

Example: If we consider the previous example:

Expression: e = (let f = λx . x in f(1) end)

Pointcut: CallPC p = {id = f ; arg = x}

and we define the advice a as:

Advice a = {body = proceed (2); pc = p}

As we have seen in the matching semantics, the CallF(λx. x) frame is matched as a

64

join point. Advice a is then executed at the moment when this frame is extracted from

the continuation list, i.e., when it receives the value of the argument. Since advice

body is proceed (2), the frame CallF(λx. x) will be evaluated with an argument equal

to 2 instead of 1.

4.6 Flow-Based Pointcuts Semantics

In this section, we extend our framework by considering flow-based pointcuts, namely,

control flow (cflow) and dataflow (dflow) pointcuts. These pointcuts are useful from

a security perspective since they can detect a considerable number of vulnerabilities

related to information flow, such as Cross-site Scripting (XSS) and SQL injection

attacks [29]. First, we extend the aspect syntax with these two pointcuts as shown

in Figure 38 and then we provide their semantics in the following sub-sections.

type Pointcut = ... | CFlowPC | DFlowPC

type CFlowPC = {pc : Pointcut}

type DFlowPC = {pc : Pointcut; tag : Identifier}

Figure 38: Syntax of cflow and dflow Pointcuts

4.6.1 Control-Flow Pointcut

The control flow pointcut, cflow(p), picks out each join point in the control flow of

the join points picked out by the pointcut p [45]. One of the techniques that are

used to implement cflow is the stack-based approach [21, 53]. The latter maintains

a stack of join points. The algorithm for matching a cflow pointcut starts from the

65

top of the stack and matches each join point against p. If there is a match then the

current join point satisfies the cflow pointcut [53]. Implementing the cflow pointcut

by adopting this approach in our framework is straightforward as the stack of join

points corresponds to the list of continuation frames in our model. Figure 39 shows

the cflow matching semantics.

type JpF = GetF | SetF | CallF | ExecF

let match pc p f v σ ε α κ = match (p, f) with
...
| (CFlowPC p, JpF f) ⇒ let b1 = match pc(p.pc, f, v, σ, ε, α, κ) in

if (b1) then
let κ′ = push(CflowF(p.pc), κ) in b1 end

else
exists(CflowF(p.pc), κ)

end

Figure 39: Matching Semantics of the cflow Pointcut

When a frame matches the sub-pointcut p of a cflow pointcut, a special marker

frame, CFlowF, is pushed into the continuation list. The purpose of using this marker

frame is to detect exit points of join points that match p. For example, if p is a

call pointcut, the marker frame is pushed into the continuation list if the top frame

matches p. Then, the marker frame will be popped when the evaluation of the function

call terminates. The CFlowF is defined as follows:

type CFlowF = {pc : Pointcut}

F [[CFlowF f]]ε σ v α κ = apply(κ, (v , σ), ε, α)

In summary, a join point frame fmatches a cflow pointcut that contains a pointcut

p if: (1) f matches the sub-pointcut p, or (2) a CFlowF marker frame that contains

p exists in the continuation list. The primitive function exists used in the matching

66

semantics is defined in Figure 40. This function takes a frame f and a continuation

list κ and checks whether f exists in the list or not.

exists : Frame → Cont → Bool

let exists f κ = match κ with

[] ⇒ false

| f ′ :: κ′ ⇒ let b = match f ′ with
CflowF f ′ ⇒ f ′.pc = f .pc

| otherwise ⇒ false
in b or exists(f , κ′)
end

Figure 40: Exists Function

4.6.2 Data-Flow Pointcut

The dataflow pointcut, as defined in [52], picks out join points based on the origins of

values, i.e., dflow[x, x′](p) matches a join point if the value of x originates from the

value of x′. Variable x should be bound to a value in the current join point whereas

variable x′ should be bound to a value in a past join point matched by p. Therefore,

dflow must be used in conjunction with some other pointcut that binds x to a value

in the current join point [52].

To match dflow pointcuts, particular tags are assigned to the dflow pointcuts to

discriminate dflow pointcuts and track dependencies between values [52]. Briefly,

if an expression matches the sub-pointcut of a dflow pointcut, p, this expression

is tagged with the tag of this dflow pointcut. This tag is then propagated to other

expressions that are data-dependent on the expression that matches the sub-pointcut.

The dflow pointcut is useful where information flow is important, such as to detect

67

input validation vulnerabilities in Web applications.

As defined in Figure 38, the dflow pointcut has a sub-pointcut pc and a unique

tag that discriminates this dflow pointcut from other dflow pointcuts. In order to

track dependencies between values, we use a tagging environment γ that maps values

to tags. As shown in Figures 41 and 42, tag propagation is performed dynamically at

the same time we evaluate expressions. Thus, we augment the signatures of the eval-

uation functions as well as the apply function with the tagging environment as follows:

[[]] : Exp → Env → Tag Env → Store → Aspect → Cont

→ Result

F [[]] : Frame → Env → Tag Env → Store → Value → Aspect

→ Cont → Result

apply : Cont → (Value× Store) → Env → Tag Env → Aspect

→ (Value× Store)

Notice that the definition of the apply function (see Figure 35) does not change.

Only the tagging environment is passed to the matching function. Notice also that in

the case of an abstraction expression, the closure 〈x , e, ε′〉 is extended with a tagging

environment γ′ to capture the tags generated during the execution of the function. In

addition, we define a marker frame DflowF that is used for tag propagation in the case

of an application expression. The frame stores a tagging environment before entering

a function call and awaits the result of the call.

type DflowF = {tag env : Env}

68

[[c]]ε γ σ α κ = apply(κ, (c, σ), ε, γ † [c �→ { }], α)

[[x]]ε γ σ α κ = apply(κ, (ε(x), σ), ε, γ, α)

[[λx. e]]ε γ σ α κ = apply(κ, (〈x , e, ε′, γ′〉, σ), ε, γ, α)

[[e e′]]ε γ σ α κ = [[e′]]ε γ σ α (push(CallF(e, ε), κ))

[[let x = e in e′]]ε γ σ α κ = [[e]]ε γ σ α (push(LetF(x ,e′, ε), κ))

[[if e1 then e2 else e3]]ε γ σ α κ = [[e1]]ε γ σ α (push(IfF(e2, e3, ε), κ))

[[e1; e2]]ε γ σ α κ = [[e1]]ε γ σ α (push(SeqF(e2, ε), κ))

[[ref e]]ε γ σ α κ = [[e]]ε γ σ α (push(AllocF(), κ))

[[! e]]ε γ σ α κ = [[e]]ε γ σ α (push(GetF(), κ))

[[e := e′]]ε γ σ α κ = [[e]]ε γ σ α (push(RhsF(e′, ε), κ))

[[proceed (e)]]ε γ σ α κ = [[e]]ε γ σ α (push(AdvExecF(ε(&proceed), ε(&jp)), κ))

Figure 41: Frame-Based CPS Semantics with the dflow Pointcut: Expression Side

In the following, we explain the tag propagation rules for the affected expressions:

• The value of a constant is associated with an empty set.

• In the case of an application expression e e′, the tags of the value of the ar-

gument e′ propagate to the value of the variable x. This is performed during

the evaluation of the ExecF frame as shown in Figure 42. In addition, the tags

of the argument as well as the tags that are generated during the execution of

the function body propagate to the result of the function call. For this reason,

we use a DflowF frame to access the result of the function call and restore the

tagging environment after returning from the call. The function getTags(γ) is

used to retrieve all the tags stored in the tagging environment γ.

• In the case of a let expression (let x = e in e ′), the tags of the value of the

69

F [[GetF f]]ε γ σ v α κ = apply(κ, (σ(v), σ), ε, γ † [σ(v) �→ γ(v)], α)

F [[SetF f]]ε γ σ v α κ = apply(κ, ((), σ † [f .loc �→ v]), ε, γ † [f .loc �→ γ(v)], α)

F [[CallF f]]ε γ σ v α κ = [[f .fun]](f .env) γ σ α (push(ExecF(v), κ))

F [[ExecF f]]ε γ σ v α κ = [[e]](ε′ † [x �→ f .arg])
(γ′ † [ε(x) �→ γ(f.arg)]) σ α (push(DflowF(γ), κ))
where v = 〈x , e, ε′, γ′〉

F [[LetF f]]ε γ σ v α κ = [[f.exp]](f .env † [f .id �→ v])(γ † [ε(f .id) �→ γ(v)]) σ κ

F [[IfF f]]ε γ σ v α κ = if (v) then [[f.thenExp]](f .env) γ σ α κ
else [[f.elseExp]](f .env) γ σ α κ

F [[SeqF f]]ε γ σ v α κ = [[f.nextExp]](f .env) γ σ α κ

F [[AllocF f]]ε γ σ v α κ = let � = alloc(σ) in
apply(κ, (�, σ † [� �→ v]), ε, γ † [� �→ γ(v)], α)

end

F [[RhsF f]]ε γ σ v α κ = [[f .exp]](f .env) γ σ α (push(SetF(v), κ))

F [[AdvExecF f]]ε γ σ v α κ = execute advice(f .matches, f .jp, v , σ, ε, γ, α, κ)

F [[MarkerF f]]ε γ σ v α κ = apply prim(κ, (v , σ))

F [[CFlowF f]]ε γ σ v α κ = apply(κ, (v , σ), ε, γ, α)

F [[DFlowF f]]ε γ σ v α κ = apply(κ, (v , σ), ε, f .tag env † [v �→ getTags(γ)], α)

Figure 42: Frame-Based CPS Semantics with the dflow Pointcut: Frame Side

expression e propagate to the value of x. This is performed during the evaluation

of the LetF frame as shown in Figure 42.

• In the case of a referencing expression ref e, the tags of the value of the expression

e propagate to the value of the expression ref e. This is performed during the

evaluation of the AllocF frame as shown in Figure 42.

• In the case of a dereferencing expression !e, the tags of the value of the reference

e propagate to the value stored at that reference. This is performed during the

70

evaluation of the GetF frame as shown in Figure 42.

• In the case of an assignment expression e := e′, the tags of the value of the

expression e′ propagate to the value of the expression e. This is performed

during the evaluation of the SetF frame as shown in Figure 42.

The matching semantics of the dflow pointcut is presented in Figure 43. A join

point frame f matches a dflow pointcut that contains a pointcut pc and a tag t if: (1)

the frame f matches the pointcut pc of the dflow pointcut, or (2) the set of tags of

the value that the frame f awaits (captured by the variable val′) contains the tag t.

In case a frame f matches the pointcut pc of the dflow pointcut, the tag t propagates

to the value associated with the frame f (captured by the variable val).

let match pc p f v σ ε γ α κ = match (p, f) with
...
| (DFlowPC p, JpF f) ⇒ let (b, γ′) = match pc(p.pc, f, v, σ, ε, γ, α, κ) in

let val = match f with
GetF f ⇒ v
SetF f ⇒ v
CallF f ⇒ let p = p.pc in

let (v ′, σ′) =
[[ε(p.id)]]ε γ σ α κ in
v ′

end
end

ExecF f ⇒ v
in
if (b)
then (true, γ′ † [val �→ γ′(val) ∪ {p.tag}])
else let val ′ = match f with

CallF f ⇒ v
otherwise ⇒ val

in (p.tag ∈ γ′(val ′), γ′)
end

end
end

Figure 43: Matching Semantics of the dflow Pointcut

71

4.6.3 Example

To illustrate the semantics of the dflow pointcut, let us consider the following example:

Expression:

let userId = 1 in

let getInput = λx. e1 in # getInput : gets a user input

let write = λx′. e2 in # write : writes a string on a web page

z = getInput(userId);

w = write(z)

The presented example is vulnerable to Cross-Site Scripting (XSS) attacks [29] since

an untrusted input received from a user has not been sanitized before being placed

into the contents of a web page. Therefore, it enables an attacker to inject malicious

scripts into a web page and reveal confidential information. The dflow pointcut can

be remarkably used to address XSS flaws as shown in [52]. Below, we provide a

sanitizing aspect to fix the discussed vulnerability.

Aspect (Pointcuts and Advice):

CallPC p1 = {id = getInput ; arg = x}

DFlowPC p2 = {pc = p1; tag = t}

CallPC p3 = {id = write; arg = y}

AndPC p = {pc1 = p2; pc2 = p3}

Advice a = {body = let sanitize = λr. e3 in proceed (sanitize(y));

pc = p}
The pointcut p1 is a call pointcut that captures all calls to the getInput function.

72

Likewise, the pointcut p3 captures all calls to the write function. The pointcut p2 is a

dflow pointcut that captures all join points that depend on the join points captured

by pointcut p1. Finally, pointcut p picks out all calls to the write function that are

dependent on the results of invoking the getInput function. Advice a, first sanitizes

the arguments of join points captured by p and then invokes original join points

with the sanitized arguments. More precisely, advice a picks out all calls to write(z)

that depend on the result of getInput and replaces them with write(sanitize(z)) by the

following justification:

• The call to getInput(userId) matches p2 pointcut and consequently the tag t is

added to the tagging environment of the function and is given to the result of

the function evaluation.

• Then, according to the tag propagation rule for assignment expressions, the value

of z gets the tag t.

• Subsequently, the call to write(z) matches the pointcut p since it matches both

sub-pointcuts of p. More precisely, it matches the pointcut p3 as it is a call to

the write function. It also matches p2 pointcut as the value of the argument z

has the tag t.

Therefore, advice a will be woven at this point and the function write will be called

with the sanitized input, which is the result of calling sanitize(z).

73

4.7 Related Work

There are many research contributions that have addressed AOP semantics [3, 4, 10,

13, 17, 23, 25, 30, 41, 51, 53, 85, 86]. Among these contributions, we explore those that

are more relevant to our work, mainly contributions that are based on CPS and

contributions that target flow-based pointcuts.

Dutchyn [23] has presented a formal model of dynamic join points, pointcuts, and

advice using a first-order procedural language called PROC [23]. The proposed se-

mantic model is based on defunctionalization and continuation-passing style. The

author has demonstrated that modeling AOP concepts in this style provides a nat-

ural way of describing these mechanisms. The proposed model supports get, set,

call, and exec pointcuts. The author has also provided some hints for implementing

the cflow pointcut but did not provide the matching algorithm. Compared to [23],

our contribution provides a clear presentation allowing a better view of this style of

semantics. In addition, we extend the aspect layer with flow-based pointcuts.

Masuhara et al. [51] have proposed the point-in-time join point model, where they

redefine join points as the moments at the beginning and the end of certain events.

Based on this new model, the authors have designed a small AOP language and

defined its formal semantics in CPS. Moreover, they demonstrate that this approach

is useful to model advanced pointcuts, such as exception handling and control flow.

The idea of this work is similar to ours in using continuations to model matching and

weaving semantics. However, the main difference is that our semantics is based on

frames while in [51] the semantics follows the style of Danvy and Filinski [18] that

74

represent continuations as λ-functions.

Wand et al. [86] have proposed semantics for AOP that handles dynamic join

points and recursive procedures. They have provided a denotational semantics for

a mini-language that embodies the key features of dynamic join points, pointcuts,

and advice. Three kinds of join points were supported, namely pcall, pexecution,

and aexecution. The proposed model is implemented as part of Aspect Sandbox

(ASB) [24], which is a framework for modeling AOP systems. This model is based on

a direct denotational semantics. Consequently, separate data-structures are required

for maintaining the dynamic join points while in our semantics the join points arise

within the continuation list.

By adopting operational semantics and partial evaluation approaches, Masuhara

et al. [53] have provided a compilation framework for a simple AOP language named

AJD. They have also provided two methods for implementing the cflow pointcut,

namely, Stack-based and State-based implementations. However, no formal semantics

is given for the defined pointcut.

Djoko et al. [21] have defined an operational semantics for the main features of

AspectJ including cflow. The semantics of the cflow pointcut presented in this

approach is slightly different from AspectJ as they restricted the sub-pointcut to just

call pointcut. Comparing to this approach, our semantics of the cflow pointcut is

more general as we support all kinds of pointcuts as a sub-pointcut. In addition, this

approach requires additional structures to maintain the join points, which is not the

case in our framework.

The dflow pointcut was initially proposed by Masuhara and Kawauchi [52]. The

75

authors have argued about the usefulness of this pointcut in the field of security

through an example of a Web-based application. They have also provided the design

of the dflow pointcut and its matching rules based on the origins of values. The

dflow pointcut has been implemented as an extension to Aspect Sandbox (ASB) [24].

However, no formal semantics has been provided for this pointcut.

Alhadidi et al. [4] have presented the first formal framework for the dflow pointcut

based on λ-calculus. In this work, dataflow tags are propagated statically to track

data dependencies between λ-expressions. Compared to our framework, [4] makes use

of the effect-based type system for propagating dataflow tags, matching pointcuts,

and weaving advice. Though a static approach can help in reducing the runtime

overhead, expressions in this approach need to be typed since matching depends

primarily on types. The authors have also provided dynamic semantics and proved

that it is consistent with the static semantics. The pointcut enclosed in a dflow

pointcut is restricted to call and get pointcuts while we consider the general case in

our framework.

4.8 Summary

In this chapter, we have provided formal semantics for aspect matching and weaving.

We chose CPS as the basis of our semantics because it provides a concise, accurate,

and elegant description of AOP mechanisms. In addition, we have extended our

semantic framework with flow-based pointcuts, namely, cflow and dflow pointcuts,

since they are important from a security perspective and are widely used to detect

76

vulnerabilities related to information flow. Using this style of semantics, one can easily

notice that CPS and defunctionalization make join points explicit and facilitate the

aspect matching and weaving mechanisms.

77

Chapter 5

Dynamic Aspect Semantics for

Executable UML Models

In previous chapter, we presented a formal semantics for aspects matching and weav-

ing for a core language based on λ-calculus. Now, we are ready to apply the same

technique on xUML models and present a formal semantics of aspect matching and

weaving on executable UML activity diagrams. The target language is Action Lan-

guage for Foundational UML (Alf) [66] proposed by OMG. In addition to being a

standard, Alf is highly expressive and provides precise semantics for specifying de-

tailed behaviors at the modeling level. However, for the sake of illustration, we choose

a small core syntax that captures the essence of Alf language as we believe that read-

ability should prevail over completeness.

Similar to the previous chapter, our semantics has a frame-based CPS style as

it provides a concise, accurate, and elegant description for modeling aspect-oriented

constructs. In our approach, we transfer both the executable activity diagram and

78

action language expressions into a frame-based representation and provide matching

and weaving semantics on frames. In fact, providing a frame-based representation

for both UML elements and action language expressions, simplifies and unifies the

matching and weaving semantics.

The structure of this chapter is as follows. Section 5.1 presents our proposed

syntax and denotational semantics. We transform the semantics into CPS in Section

5.2. In Section 5.3, we extend the language by considering aspect-oriented constructs

and subsequently we explore semantics of matching and weaving in Subsection 5.3.2

and Subsection 5.3.3 respectively. In Section 5.4, we extend the semantics with the

dataflow pointcut and provide an illustrating example. We discuss related work in

Section 5.5. Finally, a summary together with concluding remarks are presented in

Section 5.6.

5.1 Syntax and Denotational Semantics

In this section, we present the syntax of UML activity diagrams and Alf language.

The notations that are used bellow are introduced in Subsection 2.5. An activity

diagram consists of a set of nodes connected by edges. A node can be either an exe-

cutable node (e.g., action) or a control node (e.g., initial or final). As we mentioned,

for the sake of illustration, we choose a small subset of nodes that captures the essence

of activity diagrams and omit complex features, such as concurrency and exception

handling. Our proposed syntax is shown in Figure 44. The purpose of using labels is

to uniquely refer to already defined nodes.

79

ad ::= • → n activity
n ::= a action

| l : decision (e, n1, n2) decision
| l : merge → n merge
| l : activity final
| a → n node sequence
| l label

a ::= l : opaque (e) opaque action
| l : callOp (f) call operation
| l : read (x) read variable
| l : write (x) write variable

Figure 44: Syntax of Activity Diagrams

In the following, we explain the constructs of the syntax:

1. • → n denotes an activity diagram where • is the initial node and n is the

subsequent flow of nodes.

2. a is an action node, that can be either:

• l : opaque (e), a labeled opaque action where e is an Alf expression specifying

its behavior.

• l : callOp (f), a labeled call operation action that invokes an operation f.

• l : read (x), a labeled read variable action that reads the value of x.

• l : write (x), a labeled write variable action that updates the value of x.

3. l : decision (e, n1, n2) denotes a labeled decision node having two alternative

flows n1 and n2.

4. l : merge → n denotes a labeled merge node with the subsequent flow of nodes n.

5. l : denotes a labeled activity final node.

80

6. a → n denotes an action that is connected to the subsequent flow of nodes n.

7. l denotes a label that uniquely refers to a node.

Figure 45 presents the syntax of Alf language. To keep the presentation simple

and readable, we choose the main constructs of Alf and remove the object-oriented

characteristic of the language.

e ::= c constant
| x variable
| f (x) = e operation def.
| f (e) operation call
| if e1 then e2 else e3 conditional exp.
| e1; e2 sequential exp.
| new e referencing
| ! e dereferencing
| x := e assignment

Figure 45: Syntax of Alf Language

We consider the following expressions:

• Constants and variables

• Functional constructs

• Conditional expressions

• Sequential expressions

• Imperative features (referencing, dereferencing, and assignment expressions).

The expression new e allocates a new reference and initializes it with the value

of e. The expression !e reads the value stored at the location referenced by the

value of e.

81

The denotational semantics of activity diagrams is presented in Figure 46. The

functions and the types are defined in Figure 47.

A[[• → n]]ε σ = let t = createToken() in η[[n]]ε σ t () end

η[[l : opaque (e)]]ε σ t v = ξ[[e]] ε σ

η[[l : callOp (f)]]ε σ t v = let (〈x, e, ε′〉, σ′) = ξ[[ε(f)]]ε σ in
ξ[[e]]ε′ † [x �→ v] σ′

end

η[[l : read (x)]]ε σ t v = let (�, σ′) = ξ[[x]]ε σ in (σ′(�), σ′) end

η[[l : write (x)]]ε σ t v = let (�, σ′) = ξ[[x]]ε σ in ((), σ′ † [� �→ v]) end

η[[l : decision (e, n1, n2)]]ε σ t v = let (v ′, σ′) = ξ[[e]]ε σ in
if (v ′) then η[[n1]]ε σ′ t v
else η[[n2]]ε σ′ t v

end

η[[l : merge → n]]ε σ t v = η[[n]]ε σ t v

η[[l :]]ε σ t v = let b = destroyAllTokens() in (v , σ) end

η[[a → n]]ε σ t v = let (v ′, σ′) = η[[a]]ε σ t v in η[[n]]ε σ′ t v ′ end

η[[l]]ε σ t v = η[[ε(l)]]ε σ t v

Figure 46: Denotational Semantics of Activity Diagrams

The semantics that is presented in Figure 46, depicts the behavior of an activity

diagram during its execution. Given an activity diagram ad , a dynamic environment

ε, and a store σ, the function A[[]] yields the computed value v and the updated

store σ′ after the termination of the activity execution.

When an activity activated, a control token is created by the function createToken

and placed on the initial node. This token then propagates along the edges to the

subsequent nodes. A node starts executing when it gets the required control tokens

and data values. Thus, the evaluation function for nodes η[[]] takes a token t and a

82

A[[]] : Activity → Env → Store → Result

η[[]] : Node → Env → Store → Token → Value → Result

ξ[[]] : Exp → Env → Store → Result

Result : Value× Store

Env : Identifier → Value

Store : Location → Value

Value : Boolean | Natural | String | Unit | Location | Closure

Figure 47: Semantic Functions and Types

value v as inputs in addition to the environment ε and the store σ.

When the execution of a node terminates, it returns a value, which will be passed

to the subsequent nodes through the activity edges, and the updated store. The

semantics of an opaque action l : opaque (e) depends on the semantics of its Alf

expression e. A call operation action l : callOp (f) invokes the function f with the

argument value v that it receives from its input. A read variable action l : read (x)

reads the value of the variable x from the store. A write variable action l : write

(x) updates the value of the variable x with the value v it receives from its input. A

decision node l : decision (e, n1, n2) guides the flow depending on the value of the

condition e. If e evaluates to true, the node n1 is executed, otherwise the node n2 is

executed. A merge node l : merge → n passes the token and the data that it receives to

its subsequent node n. An activity final node l : terminates the activity execution.

Accordingly, all tokens in the activity are destroyed by the function destroyAllTokens.

Finally, the semantics of a label l depends on the semantics of the referenced node.

83

ξ[[c]]ε σ = (c, σ)

ξ[[x]]ε σ = (ε(x), σ)

ξ[[f (x) = e]]ε σ = (〈x, e, ε′〉, σ)

ξ[[f (e)]]ε σ = let (v , σ′) = ξ[[e]]ε σ in
let (〈x, e′, ε′〉, σ′′) = ξ[[ε(f)]]ε σ′ in ξ[[e′]]ε′ † [x �→ v] σ′′ end

end

ξ[[if e1 then e2 else e3]]ε σ = let (v , σ′) = ξ[[e1]]ε σ in
if (v) then ξ[[e2]]ε σ′
else ξ[[e3]]ε σ′

end

ξ[[e1; e2]]ε σ = let (v , σ′) = ξ[[e1]]ε σ in ξ[[e2]]ε σ′ end

ξ[[new e]]ε σ = let (v , σ′) = ξ[[e]]ε σ in
let � = alloc(σ′) in (�, σ′ † [� �→ v]) end

end

ξ[[! e]]ε σ = let (�, σ′) = ξ[[e]]ε σ in (σ′(�), σ′) end

ξ[[x := e]]ε σ = let (v , σ′) = ξ[[e]]ε σ in
let (�, σ′′) = ξ[[x]]ε σ′ in ((), σ′′ † [� �→ v]) end

end

Figure 48: Denotational Semantics of Alf Language

The denotational semantics of Alf language is presented in Figure 48. Given an

expression e, a dynamic environment ε, and a store σ, the dynamic evaluation function

ξ[[]] yields the computed value v and the updated store σ′. Notice that in the case of

a function definition f (x) = e, the computed value is a closure 〈x , e, ε′〉 capturing the

function parameter x, the function body e, and the evaluation environment ε′, which

maps each free variable of e to its value at the time of the function declaration. The

function alloc used in the semantics allocates a new cell in the store and returns a

reference to it.

84

5.2 CPS Semantics

In this section, we transform the previously defined denotational semantics into a

CPS. As we mentioned earlier, frame-based semantics allows describing matching

and weaving processes in activity diagrams and Alf language in a precise and unified

way. To help understanding this transformation, we proceed in two steps. First, we

elaborate a CPS semantics by representing continuations as functions. Then, we pro-

vide CPS semantics by representing continuations as frames. Briefly, continuations

describe the semantics of the rest of a computation. Instead of returning a value

as in the familiar direct style, a function in CPS style takes another function as an

additional argument to which it will pass the current computational result. This addi-

tional argument is called a continuation. Continuations are represented as functions,

however, for the purpose of modeling join points, we need to move to a frame-based

representation. Hence, we perform CPS transformation in two steps.

5.2.1 Representation of Continuations as Functions

We translate the denotational semantics into CPS following the original formulation

of the CPS transformation [27]. The continuation κ, represented as a λ-expression,

receives the result of the current evaluation and provides the semantics of the rest of

the computation. In essence, we modify the evaluation functions to take a continua-

tion as an additional argument. The redefined functions and the types are presented

in Figure 49. The CPS semantics of activity diagrams and Alf are presented in Figure

50 and Figure 51 respectively.

85

A[[]] : Activity → Env → Store → Cont → Result

η[[]] : Node → Env → Store → Token → Value → Cont → Result

ξ[[]] : Exp → Env → Store → Cont → Result

Cont : Result → Result

Figure 49: Redefined Semantic Functions and Types

A[[• → n]]ε σ κ = let t = createToken() in η[[n]]ε σ t () κ end

η[[l : opaque (e)]]ε σ t v κ = ξ[[e]] ε σ κ

η[[l : callOp (f)]]ε σ t v κ = ξ[[ε(f)]]ε σ (λ(v ′, σ′). ξ[[e]]ε′ † [x �→ v] σ′ κ)
where v ′ = 〈x, e, ε′〉

η[[l : read (x)]]ε σ t v κ = ξ[[x]]ε σ (λ(�, σ′). κ(σ′(�), σ′))

η[[l : write (x)]]ε σ t v κ = ξ[[x]]ε σ (λ(�, σ′). κ((), σ′ † [� �→ v]))

η[[l : decision (e, n1, n2)]]ε σ t v κ = ξ[[e]]ε σ (λ(v ′, σ′).
if (v ′) then η[[n1]]ε σ′ t v κ
else η[[n2]]ε σ′ t v κ)

η[[l : merge → n]]ε σ t v κ = η[[n]]ε σ t v κ

η[[l :]]ε σ t v κ = let b = destroyAllTokens() in κ(v , σ) end

η[[a → n]]ε σ t v κ = η[[a]]ε σ t v (λ(v ′, σ′). η[[n]]ε σ′ t v ′κ)

η[[l]]ε σ t v κ = η[[ε(l)]]ε σ t v κ

Figure 50: CPS Semantics of Activity Diagrams (Continuations as Functions)

5.2.2 Representation of Continuations as Frames

Continuations, which are λ-expressions, are often represented as closures. Ager et

al. [2] have provided a systematic conversion of these closures into data structures

(or frames) and an apply function interpreting the operations of those closures. This

conversion is based on the concept of defunctionalization [73]. The latter is a tech-

nique by which higher-order programs, i.e., programs where functions can represent

values, are transformed into first-order programs. Each frame stores the value(s) of

86

ξ[[c]]ε σ κ = κ(c, σ)

ξ[[x]]ε σ κ = κ(ε(x), σ)

ξ[[f (x) = e]]ε σ κ = κ(λ(v , κ′). [[e]]ε † [x �→ v] σ κ′)

ξ[[f (e)]]ε σ κ = ξ[[e]]ε σ (λ(v , σ′). ξ[[ε(f)]]ε σ′ (λ(v ′, σ′′). ξ[[e′]]ε′ † [x �→ v] σ′′κ))
where v ′ = 〈x, e′, ε′〉

ξ[[if e1 then e2 else e3]]ε σ κ = ξ[[e1]]ε σ (λ(v , σ′).
if (v) then ξ[[e2]]ε σ′ κ
else ξ[[e3]]ε σ′ κ)

ξ[[e1; e2]]ε σ κ = ξ[[e1]]ε σ (λ(v , σ′). ξ[[e2]]ε σ′ κ)

ξ[[new e]]ε σ κ = ξ[[e]]ε σ (λ(v , σ′). let � = alloc(σ′) in κ(�, σ′ † [� �→ v])) end

ξ[[! e]]ε σ κ = ξ[[e]]ε σ (λ(�, σ′). κ(σ′(�), σ′))

ξ[[x := e]]ε σ κ = ξ[[e]]ε σ (λ(v , σ′). ξ[[x]]ε σ′ (λ(�, σ′′). κ((), σ′′ † [� �→ v])))

Figure 51: CPS Semantics of Alf Language (Continuations as Functions)

the free variable(s) of the original continuation function and awaits the value(s) of

the previous computation. Following this technique, we transform the continuation

functions obtained from the previous step into frames as shown in Figure 52. In the

following, we provide details about each frame:

• GetF does not store any value. It awaits a location and a store.

• SetF stores a value. It awaits a location and a store.

• CallF stores a function identifier and an environment. It awaits the value of the

function argument.

• ExecF stores the value of the argument. It awaits a closure, which is the result

of the evaluation of the function definition, and a store.

• IfF stores then and else expressions and an environment. It awaits the value of

87

type GetF = {}

type SetF = {val : Value}

type CallF = {fun : Identifier; env : Env}

type ExecF = {arg : Value}

type IfF = {thenExp : Exp; elseExp : Exp; env : Env}

type DecisionF = {thenNode : Node; elseNode : Node;
env : Env; token : Token; val : Value}

type ExpSeqF = {nextExp : Exp; env : Env}

type NodeSeqF = {nextNode : Node; env : Env; token : Token}

type AllocF = {}

type RhsF = {id : Identifier; env : Env}

Figure 52: Frames

the condition and a store.

• DecisionF stores then and else nodes, an environment, a control token, and a

value. It awaits the value of the condition and a store.

• ExpSeqF stores the next expression and an environment. It awaits the value of

the first expression and a store.

• NodeSeqF stores the next node, an environment, and a control token. It awaits

the output value of the first node and a store.

• AllocF does not store any value. It awaits the value to be stored in the newly

allocated cell and a store.

• RhsF stores an identifier and an environment. It awaits a location and a store.

88

Using frame-based semantics, the continuation κ consists of a list of frames. Before

presenting the semantics, we first define the primitive functions that will be used. The

primitive push extends a continuation list with another frame. (Figure 53)

push : Frame → Cont → Cont

let push f κ = f :: κ

Figure 53: Apply Function

The primitive apply, defined in Figure 54, pops the top frame from a continuation

list and evaluates it based on its corresponding continuation function. When the list

becomes empty, the primitive apply returns the current value and the store as a result.

apply : Cont → (Value× Store) → (Value× Store)

let apply κ (v , σ) = match κ with

[] ⇒ (v , σ)

| f :: κ′ ⇒ F [[f]]σ v κ′

Figure 54: Apply Function

The frame-based semantics of the activity diagrams is presented in Figure 55 and

the frame-based semantics of Alf is presented in Figure 56. Figure 57 shows the

evaluation of the frames that are needed for computations.

89

A[[• → n]]ε σ κ = let t = createToken() in η[[n]]ε σ t () κ end
η[[l : opaque (e)]]ε σ t v κ = ξ[[e]] ε σ κ

η[[l : callOp (f)]]ε σ t v κ = apply(push(CallF(f , ε), κ), (v , σ))

η[[l : read (x)]]ε σ t v κ = ξ[[x]]ε σ (push(GetF(), κ))

η[[l : write (x)]]ε σ t v κ = ξ[[x]]ε σ (push(SetF(v), κ))

η[[l : decision (e, n1, n2)]]ε σ t v κ = ξ[[e]]ε σ (push(DecisionF (n1,n2, ε, t , v), κ))

η[[l : merge → n]]ε σ t v κ = η[[n]]ε σ t v κ

η[[l :]]ε σ t v κ = let b = destroyAllTokens() in κ(v , σ) end

η[[a → n]]ε σ t v κ = η[[a]]ε σ t v (push(NodeSeqF(n, ε, t), κ))
η[[l]]ε σ t v κ = η[[ε(l)]]ε σ t v κ

Figure 55: Frame-Based Semantics of Activity Diagrams

ξ[[c]]ε σ κ = apply(κ, (c, σ))

ξ[[x]]ε σ κ = apply(κ, (ε(x), σ))

ξ[[f (x) = e]]ε σ κ = apply(κ, (〈x, e, ε′〉, σ))

ξ[[f (e)]]ε σ κ = ξ[[e]]ε σ (push(CallF(f , ε), κ))

ξ[[if e1 then e2 else e3]]ε σ κ = ξ[[e1]]ε σ (push(IfF(e2, e3, ε), κ))

ξ[[e1; e2]]ε σ κ = ξ[[e1]]ε σ (push(ExpSeqF(e2, ε), κ))

ξ[[new e]]ε σ κ = ξ[[e]]ε σ (push(AllocF(), κ))

ξ[[! e]]ε σ κ = ξ[[e]]ε σ (push(GetF(), κ))

ξ[[x := e]]ε σ κ = ξ[[e]]ε σ (push(RhsF(x, ε), κ))

Figure 56: Frame-Based Semantics of Alf Language

90

F [[GetF f]]σ v κ = apply(κ, (σ(v), σ))

F [[SetF f]]σ v κ = apply(κ, ((), σ † [v �→ f .val]))

F [[CallF f]]σ v κ = ξ[[(f .env)(f .fun)]](f .env) σ (push(ExecF(v), κ))

F [[ExecF f]]σ v κ = ξ[[e]]ε′ † [x �→ f .arg] σ κ where v = 〈x, e, ε′〉

F [[IfF f]]σ v κ = if (v) then ξ[[f.thenExp]](f .env) σ κ
else ξ[[f.elseExp]](f .env) σ κ

F [[DecisionF f]]σ v κ = if (v) then η[[f.thenNode]](f .env) σ (f .token) (f .val) κ
else η[[f.elseNode]](f .env) σ (f .token) (f .val) κ

F [[ExpSeqF f]]σ v κ = ξ[[f.nextExp]](f .env) σ κ

F [[NodeSeqF f]]σ v κ = η[[f.nextNode]](f .env) σ (f .token) v κ

F [[AllocF f]]σ v κ = let � = alloc(σ) in apply(κ, (�, σ † [� �→ v])) end

F [[RhsF f]]σ v κ = ξ[[f .id]](f .env) σ (push(SetF(v), κ))

Figure 57: Semantics of Frames

5.3 Aspect Syntax and Semantics

In this section, we present our aspect language and elaborate its semantics. We start

by presenting the aspect syntax. Then, we elaborate the matching and the weaving

semantics.

5.3.1 Aspect Syntax

An aspect, depicted in Figure 58, includes a list of advice. Advice specifies actions

to be performed when join points satisfying a particular pointcut are reached. In

our approach, join points are specific points in the execution of both activity and

Alf expressions. Syntactically, advice contains two parts: (1) a body, which is an

91

expression and (2) a pointcut, which designates a set of join points. Advice can be

applied before, after, or around a join point. However, before and after advice can be

expressed as around advice using the proceed expression. Hence, we consider all kinds

of advice as around advice as this does not restrict the generality of the approach.

A pointcut designates a set of join points. We first consider basic pointcuts: GetPC,

SetPC, CallPC, and ExecPC. The pointcut GetPC (resp. SetPC) picks out join points

where the value of a variable is got from (resp. set to) the store. The pointcut CallPC

(resp. ExecPC) picks out join points where a function is called (resp. executed).

type Aspect = Advice list

type Advice = {body : Exp; pc : Pointcut}

type Pointcut = GetPC | SetPC | CallPC | ExecPC | NotPC — AndPC

type GetPC = {id : Identifier}

type SetPC = {id : Identifier; val : Value}

type CallPC = {id : Identifier; arg : Identifier}

type ExecPC = {id : Identifier; arg : Identifier}

type NotPC = {pc : Pointcut}

type AndPC = {pc1 : Pointcut; pc2 : Pointcut}

Figure 58: Aspect Syntax

As in AspectJ [45], advice may also compute the original join point through a

special expression named proceed. Hence, as shown in Figure59, we extend the core

syntax with an additional expression proceed (e) to denote the computation of the

original join point with possibly a new argument e.

92

e ::= ...
| proceed (e) proceed

Figure 59: The proceed Expression

5.3.2 Matching Semantics

Matching is a mechanism for identifying the join points that are targeted by an advice.

In our approach, join points correspond to specific points in the execution of activity

diagrams actions and Alf expressions. However, since the execution semantics is

presented in a frame-based style, both kinds of join points are continuation frames

and arise naturally within the semantics. Therefore, our matching semantics, as

shown in Figure 60, examines whether a continuation frame satisfies a given pointcut

or not.

match pc : Pointcut → Frame → Value → Store → Env → Cont → Boolean

let match pc p f v σ ε κ = match (p, f) with

(GetPC p,GetF f) ⇒ ε(p.id) = v

| (SetPC p, SetF f) ⇒ ε(p.id) = v

| (CallPC p,CallF f) ⇒ p.id = f .fun

| (ExecPC p,ExecF f) ⇒ let (v ′, σ′) = ξ[[ε(p.id)]] ε σ κ in
v = v ′

end

| (NotPC p,Frame f) ⇒ not match pc(p.pc, f, v, σ, ε, κ)

| (AndPC p,Frame f) ⇒ match pc(p.pc1, f, v, σ, ε, κ) and
match pc(p.pc2, f, v, σ, ε, κ)

| otherwise ⇒ false

Figure 60: Matching Semantics

93

Given a pointcut p, the current frame f, the current value v, a store σ, an environ-

ment ε, and a continuation κ, the matching semantics examines whether f matches p.

Matching depends on three factors, the kind and the content of the frame f and the

current value v that f receives. In the case of:

• GetPC, there is a match if f is a GetF frame and the location of the identifier

given in p is equal to the location that f receives.

• SetPC, there is a match if f is a SetF frame and the location of the identifier given

in p is equal to the location that f receives.

• CallPC, there is a match if f is a CallF frame and it holds a function equal to the

one given in p.

• ExecPC, there is a match if f is an ExecF frame and the evaluation of the function

given in p is equal to the closure that f receives.

• NotPC, there is a match if f does not match the sub-pointcut of p. (The sub-

pointcut of pointcut p is the pointcut, which is enclosed in p)

• AndPC, there is a match if f matches both its sub-pointcuts.

5.3.3 Weaving Semantics

The weaving semantics describes how to apply matching the advice at the identified

join points. Since join points correspond to frames, the advice body provides a means

to modify the behavior of those frames. The weaving is performed automatically

during the execution. Therefore, we redefine the apply function, as shown in Figure

94

61, to take an aspect α and an environment ε into account. Similarly, the signatures

of the functions are also modified.

apply : Cont → (Value× Store) → Env → Aspect → (Value× Store)

let apply κ (v , σ) ε α = match κ with

[] ⇒ (v, σ)
| f :: κ′ ⇒ let ms = get matches(f , v , σ, ε, α, κ′) in

if ms = [] then F [[f]]ε σ v α κ′
else
let argV = match f with

SetF f ⇒ f .val
| CallF f ⇒ v
| ExecF f ⇒ f .arg
| otherwise ⇒ ()

in execute advice(ms, f, argV, σ, ε, α, κ′)
end

end

Figure 61: Redefined Apply Function

The weaving is done in two steps. When a frame is activated, we first check

for a matching advice by calling the get matches function. If there is any applicable

advice, the function execute advice is called. Otherwise, the original computation is

performed. In the following, we explain these two steps.

Advice Matching

Advice matching is shown in Figure 62.

To get applicable advice, we go through the aspect and check whether their en-

closed pointcuts match the current frame. This is done by calling the function

match pc defined previously in Figure 60. In case there is a match, we return a

structure MatchedAD containing the advice itself and the pointcut arguments that

will pass values to the advice.

95

type MatchedAD = {arg : Identifier; ad : Advice}
get matches : Frame → Value → Store → Env → Aspect → Cont

→ MatchedAD list

let get matches f v σ ε α κ = match α with

[] ⇒ []
|ad :: α′ ⇒ let p = ad .pc in

if match pc(p, f, v, σ, ε, α, κ) then
let arg = match p with

SetPC p ⇒ p.id
| CallPC p | ExecPC p ⇒ p.arg
| otherwise ⇒ () in
MatchedAD(arg , ad) :: get matches(f, v, σ, ε, α′, κ)

end
else get matches(f, v, σ, ε, α′, κ)

end

Figure 62: Advice Matching

Advice Execution

Advice execution is shown in Figure 63. It starts by evaluating the first applicable

advice. The remaining pieces of advice as well as the current frame are stored in the

environment by binding them to auxiliary variables &proceed and &jp respectively. To

evaluate the advice body, we define a new frame, AdvExecF, as follows:

type AdvExecF = {matches : MatchedAD list; jp : Frame}

F [[AdvExecF f]]ε σ v α κ = execute advice(f .matches, f .jp, v , σ, ε, α, κ)

The evaluation of proceed is provided below. The value of its argument is passed

to the next advice or to the current join point if there is no further advice. To execute

the remaining advice, the AdvExecF frame is added to the frame list.

[[proceed (e)]]ε σ α κ = [[e]]ε σ α (push(AdvExecF(ε(&proceed), ε(&jp)), κ))

96

execute advice : MatchedAD list → Frame → Value → Store → Env
→ Aspect → Cont → Result

let execute advice ms f v σ ε α κ = match ms with

[] ⇒ apply(push(MarkerF(), (push(f , κ))), (v , σ), ε, α)

|m :: ms ′ ⇒ let ad = m.ad in
ξ[[ad.body]]ε † [&proceed �→ ms ′,
&jp �→ f ,m.arg �→ v] σ α κ

end

Figure 63: Advice Execution

When all applicable pieces of advice are executed, the original computation, i.e.,

the current frame is invoked. To avoid matching the currently matched frame repeat-

edly, we introduce a new frame, MarkerF, which invokes the primary apply function,

renamed here as apply prim.

type MarkerF = { }

F [[MarkerF f]]ε σ v α κ = apply prim(κ, (v , σ))

5.4 Semantics of the Dataflow Pointcut

In this section, we extend our framework with the semantics of the dataflow pointcut

(dflow) [52]. This pointcut is useful from a security perspective since it can de-

tect important vulnerabilities that are related to information flow, such as Cross-site

Scripting (XSS) [15] and SQL injection [83].

The dflow pointcut picks out join points based on the origins of values, i.e.,

dflow[x, x′](p) matches a join point if the value of x originates from the value of

x′. Variable x should be bound to a value in the current join point whereas variable

97

x′ should be bound to a value in a past join point matched by p.

To match dflow pointcuts, particular tags are assigned to the dflow pointcuts to

discriminate dflow pointcuts and track dependencies between values [52]. Briefly, if an

expression matches the sub-pointcut of a dflow pointcut, p, this expression is tagged

with the tag of this dflow pointcut. This tag is then propagated to other expressions

that are data-dependent on the expression that matches the sub-pointcut. As defined

below, the dflow pointcut has a sub-pointcut pc and a unique tag that discriminates

it from other dflow pointcuts.

type DFlowPC = {pc : Pointcut; tag : Identifier}

In order to track dependencies between values, we use a tagging environment γ

that maps values to tags. Tag propagation is performed dynamically during the

execution of the activity diagram and Alf expressions. In particular, this is done

at the frames side as shown in Figure 64. Notice that now the functions take the

tagging environment γ as an additional argument, however their definitions remain

the same. Notice also that in the case of an ExecF frame, the closure v = 〈x, e, ε′, γ′〉

is extended with a tagging environment γ′ to capture the tags generated during the

function execution. In addition, we define a marker frame DflowF that is used for

tag propagation in the case of a function call. The DflowF frame stores a tagging

environment before entering a function call and awaits the result of the call.

type DflowF = {tag env : Env}

In the following, we explain the tag propagation rules for the affected frames:

98

F [[GetF f]]ε γ σ v α κ = apply(κ, (σ(v), σ), ε, γ † [σ(v) �→ γ(v)], α)

F [[SetF f]]ε γ σ v α κ = apply(κ, ((), σ † [v �→ f .val]), ε, γ † [v �→ γ(f .val)], α)

F [[CallF f]]ε γ σ v α κ = ξ[[(f .env)(f .fun)]](f .env) γ σ α (push(ExecF(v), κ))

F [[ExecF f]]ε γ σ v α κ = ξ[[e]](ε′ † [x �→ f .arg])
(γ′ † [ε(x) �→ γ(f.arg)]) σ α (push(DflowF(γ), κ))

where v = 〈x, e, ε′, γ′〉

F [[IfF f]]ε γ σ v α κ = if (v) then ξ[[f.thenExp]](f .env) γ σ α κ
else ξ[[f.elseExp]](f .env) γ σ α κ

F [[DecisionF f]]ε γ σ v α κ = if (v) then η[[f.thenNode]](f .env) γ σ (f .token) (f .val) α κ
else η[[f.elseNode]](f .env) γ σ (f .token) (f .val) α κ

F [[ExpSeqF f]]ε γ σ v α κ = ξ[[f.nextExp]](f .env) γ σ α κ

F [[NodeSeqF f]]ε γ σ v α κ = η[[f.nextNode]](f .env) γ σ (f .token) v α κ

F [[AllocF f]]ε γ σ v α κ = let � = alloc(σ) in
apply(κ, (�, σ † [� �→ v]), ε, γ † [� �→ γ(v)], α)

end

F [[RhsF f]]ε γ σ v α κ = ξ[[f .id]](f .env) γ σ α (push(SetF(v), κ))

F [[AdvExecF f]]ε γ σ v α κ = execute advice(f .matches, f .jp, v , σ, ε, γ, α, κ)

F [[MarkerF f]]ε γ σ v α κ = apply prim(κ, (v , σ))

F [[DFlowF f]]ε γ σ v α κ = apply(κ, (v , σ), ε, f .tag env † [v �→ getTags(γ)], α)

Figure 64: Semantics of Frames with the dflow Pointcut

• In the case of a GetF frame, the tags of the location v propagate to the value

stored at that location.

• In the case of a SetF frame, the tags of the value of the right-hand side of

an assignment stored in the frame propagate to the location of the assignment

identifier.

• In the case of a ExecF frame, the tags of the argument value f .arg propagate

to the value of the variable x. In addition, the tags of the argument and the

99

tags that are generated during the function execution propagate to the result of

the function. For this reason, we use a DflowF frame to access the result of the

function call and restore the tagging environment after returning from the call.

The function getTags(γ) used in F [[DFlowF f]] retrieves all the tags stored in the

tagging environment γ.

• In the case of an AllocF frame, the tags of the value v propagate to the created

location �.

The matching semantics of the dflow pointcut is presented in Figure 65. A join

point frame f matches a dflow pointcut that contains a pointcut pc and a tag t if: (1)

the frame f matches the pointcut pc of the dflow pointcut, or (2) the set of tags of

the value that the frame f awaits (captured by the variable val ′) contains the tag t .

In case a frame f matches the pointcut pc of the dflow pointcut, the tag t propagates

to the value associated with the frame f (captured by the variable val).

5.4.1 Example

To illustrate the dflow pointcut, let us consider the SearchPage activity diagram pre-

sented in Figure 66. It starts by accepting a search request. Then, the searched

phrase is extracted by the GetQuery operation. If the requested phrase is empty, an

error message is generated. Otherwise, the Search action is executed and the result

message, containing both the requested phrase and the search result, is generated.

Finally, the generated message is printed on the web page.

The presented example is vulnerable to XSS attacks since the untrusted input

received from the user has not been sanitized before being placed into the contents

100

type JpF = GetF | SetF | CallF | ExecF
let match pc p f v σ ε γ α κ = match (p, f) with
...
| (DFlowPC p, JpF f) ⇒
let (b, γ′) = match pc(p.pc, f, v, σ, ε, γ, α, κ) in
let val = match f with
GetF f ⇒ v
SetF f ⇒ f .val
CallF f ⇒ let (v ′, σ′) = ξ[[ε(f .fun)]]ε γ σ α κ in

v ′
end

ExecF f ⇒ v
in
if (b)
then (true, γ′ † [val �→ γ′(val) ∪ {p.tag}])
else let val ′ = match f with

CallF f ⇒ v
otherwise ⇒ val

in (p.tag ∈ γ′(val ′), γ′)
end

end
end

Figure 65: Matching Semantics of the dflow Pointcut

of the web page. Therefore, it enables an attacker to inject malicious scripts into the

web page and reveal confidential information. To fix this vulnerability, we need to

sanitize the untrusted input and all data that originated from it before printing them

on the web page. The dflow pointcut can be remarkably used to address this problem.

As mentioned before, the dflow pointcut, dflow(p), picks out all points in the activity

execution where values are dependent on the join points that are previously picked

out by p. Therefore, by defining pointcut p as CallPC(GetQuery), dflow(p) picks all

join points that are originated from the search phrase, which is the user input. Below,

we provide a sanitizing aspect for fixing the discussed vulnerability.

Aspect (Pointcuts and Advice):

101

Figure 66: Dflow Example

CallPC p1 = {id = GetQuery ; arg = x}

DFlowPC p2 = {pc = p1; tag = t}

CallPC p3 = {id = Print ; arg = y}

AndPC p4 = {pc1 = p2; pc2 = p3}

Advice a = {body = proceed (Sanitize(y)); pc = p4}

Briefly, the aspect captures points where the Print operation is called with an ar-

gument that is originated from the user input. The aspect first sanitizes the argument

by calling the Sanitize operation and then calls the Print operation with the sanitized

argument based on the following justification:

102

• The GetQuery operation matches p2 since it matches its subpointcut p1 . Con-

sequently, the tag t is added to the tagging environment of the function and is

given to the result of the function evaluation.

• Then, if the search phrase is not empty, the Search action is executed. According

to the tag propagation rule for assignment and call operation expressions, the

values of the variables result and resultMessage get the tag t .

• Subsequently, the Print operation matches p4 since it matches both its sub-

pointcuts. More precisely, it matches p3 as it is a call to the Print operation.

And also matches p2 as the value of its argument has the tag t . Therefore, the

sanitizing advice will be woven at this point.

5.5 Related Work

We categorize related work into three main areas:

(1) AOM and xUML: Fuentes and Sanchez [31] have extended UML to sup-

port aspect-oriented concept by proposing Aspect-Oriented Executable Modelling

(AOEM) UML 2.0 Profile. In this profile, an aspect is modeled as a UML class which

contains common methods and distinct methods as advice. The behaviors of advice

pieces are modeled as activity diagrams and injected into the base model as structured

activities. Additionally, pointcuts are defined as composition rules specified with se-

quence diagrams. The pointcuts matching process is based on method interception

technique. Briefly, it observes sending and receiving messages and injects correspond-

ing advice when a certain condition is satisfied during execution of a model. Based on

103

the profile, the authers designed and built an aspect-oriented dynamic model weaver

that can be used for running aspect-oriented models where aspects are woven dur-

ing model execution. This weaver supports adding new behaviors before, after, and

around join points, but does not support removing behaviors. In addition, this ap-

proach considers a small subset of actions defined in executable UML elements and

does not support complicated actions such as Opaque action which allows modelers

to specify behaviors using Alf expressions. Also, due to their application of method

interception technique, advice can merely be injected before, after or around method

calls. Moreover, there are no theoretical foundations for the defined approach.

Zhang et al. [91] have presented Motorola WEAVR; a tool for weaving aspects

into executable UML state machines. The aspects are woven into the base models

following two ways: (1) wrapping where original join points are replaced by an oper-

ation call to the corresponding advices, and (2) inlining where advices are inlined in

the base model. This weaver supports two types of join points: actions and transi-

tions. However, this weaver is based on the Telelogic TAU G2 implementation, which

makes it tool-dependent and not portable. Additionally, there are also no theoretical

foundations for the defined approach.

Jackson et al. have introduced an approach for specifying and weaving KerThemes.

[40] A KerTheme comprises an executable class diagram and a sequence diagram.

This weaver is based on KerMeta action language [60] to define precise behaviors and

provide executability. It only supports weaving of executable class diagrams as all

behavioral diagrams, such as sequence diagrams, are defined as methods. Further-

more, KerMeta has been designed for specifying meta-model behaviors and it is not

104

as expressive as UML action languages.

(2) AOP Semantics: There are many research contributions that have addressed

AOP semantics [3, 4, 10, 17, 23, 25, 30, 51, 53, 85, 86]. Among these contributions, we

explore those that are more relevant to our work, mainly contributions that are based

on CPS semantics.

Dutchyn [23] has presented a formal model of dynamic join points, pointcuts, and

advice using a first-order procedural language called PROC [23]. The proposed seman-

tic model is based on defunctionalization and continuation-passing style. The author

has demonstrated that modeling join points, pointcuts, and advices in a frame-based

continuation-passing style provides a natural way of describing these mechanisms.

The proposed model supports get, set, call, and exec pointcuts. The author has

also provided some hints for implementing the CFlow pointcut but did not provide the

matching algorithm. Compared to this work, our contribution provides a clean repre-

sentation allowing a better view of this style of semantics. In addition, we extend the

syntax with imperative features to handle references and assignments. Moreover, in

addition to the basic pointcuts, our framework provides also semantics of the CFlow

and DFlow pointcuts.

Masuhara et al. [51] have proposed the point-in-time join point model, where they

redefine join points as the moments at the beginning and the end of certain events.

Based on this new model, the authors have designed a small AOP language and

defined its formal semantics in CPS style. Moreover, they demonstrated that this

approach is useful to model advanced pointcuts, such as, exception handling and

control flow. The idea of this work is similar to ours in using continuations to model

105

matching and weaving semantics. However, the main difference is that our semantics

is based on frames while in [51], the semantics follows the style of Danvy and Filinski

[18] that represent continuations as λ-functions.

Wand et al. [86] have proposed the first semantics for AOP that handles dynamic

join points and recursive procedures. They have provided a denotational semantics

for a mini-language that embodies the key features of dynamic join points, pointcuts,

and advice. Three kinds of join points were supported, namely pcall, pexecution,

and aexecution. The proposed model is implemented as part of Aspect Sandbox

(ASB) [24], which is a framework for modeling AOP systems. This model is based on

a direct denotational semantics. Consequently, separate data-structures are required

for maintaining the dynamic join points, while in our semantics the join points arise

within the continuation structure.

(3) The dflow pointcut: The dflow pointcut was initially proposed by Masuhara

[52]. He presented the design of the pointcut and its prototype implementation. Also

he argued about the usefulness of the pointcut specially in the field of security. In [4]

the authors presented a formal framework for the dflow pointcut based on lambda

calculus. A static and a dynamic semantics are elaborated for tags propagations and

proved to be consistent.

5.6 Summary

In this chapter, we have presented a semantic framework for aspect matching and

weaving on executable UML activity diagrams, including dflow pointcut, which is

106

important from a security perspective. We chose CPS as it provides a concise and

elegant description of aspect-oriented mechanisms. In fact, one can easily notice that

CPS and defunctionalization make join points explicit and facilitate aspect matching

and weaving. In addition, frame-based representation unifies these processes for both

activity diagrams elements and Alf expressions.

107

Chapter 6

Conclusion

In our previous work, briefly presented in Chapter 3, we implemented an Aspect-

Oriented Modeling (AOM) framework for weaving crosscutting concerns into UML

models. In this research work, we decided to enhance our approach and provide a

framework for aspect matching and weaving on Executable UML models (xUML) as

such models are expected to play a significant role in the future of software modeling.

There are two main motives for taking this decision. First, executable models enable

security experts to enrich their security aspect libraries and provide aspects with more

precise behaviors. Second, such models allow the security experts to provide more

advanced security aspects (such as an aspect for capturing data dependencies) due to

their detailed behavior specifications and execution capability.

However, since a xUML model is a combination of UML elements and code written

in an action language, neither AOM nor AOP approaches are merely enough for

addressing crosscutting concerns in such models. In fact, we need to come up with

an approach that handles matching and weaving on both UML elements and code. in

108

order to break down the problem, we decided to first focus on providing a semantics

for aspects matching and weaving for a core language based on λ-calculus (Chapter

4) and then apply the technique on xUML models and deal with both model elements

and codes simultaneously (Chapter 5).

Our semantics has a frame-based CPS style as it provides a concise, accurate, and

elegant description for modeling aspect-oriented constructs. In our proposed seman-

tics for aspect matching and weaving on executable UML activity, we transferred

both the executable activity diagram and action language expressions into a frame-

based representation and defined matching and weaving semantics on frames. In fact,

providing a frame-based representation for both UML elements and action language

expressions simplifies and unifies the matching and weaving semantics. In addition,

we have extended our semantic framework with DFlow pointcuts, since it is impor-

tant from a security perspective and is widely used to detect vulnerabilities related

to information flow.

As a future work, we plan to extend our framework by considering other activity

elements, such as fork, join, and exception handling. Also, such semantics framework

can be further used to prove some key properties or to establish some internal consis-

tency properties. It is worth noting that, we leave the implementation of the proposed

semantic framework as a future work since Alf language has not been finalized. In

addition, there were no execution engines available for Alf at the time we conducted

this work.

109

Bibliography

[1] OCaml for Scientists. Available at http://caml.inria.fr/pub/docs/manual-ocaml,

2011.

[2] M. S. Ager, O. Danvy, and J. Midtgaard. A Functional Correspondence Between

Monadic Evaluators and Abstract Machines for Languages with Computational

Effects. Theoretical Computer Science, 342:04–28, 2005.

[3] D. Alhadidi, N. Belblidia, M. Debbabi, and P. Bhattacharya. An AOP Ex-

tended Lambda-Calculus. In Proceedings of the 5th IEEE International Conference

on Software Engineering and Formal Methods (SEFM’2007), pages 183–194. IEEE

Computer Society, 2007.

[4] D. Alhadidi, A. Boukhtouta, N. Belblidia, M. Debbabi, and P. Bhattacharya.

The Dataflow Pointcut: A Formal and Practical Framework. In Proceedings

of the 8th ACM International Conference on Aspect-Oriented Software Development,

(AOSD’09), pages 15–26, New York, NY, USA, 2009. ACM.

[5] J. H. Allen. Software Security Engineering: A Guide for Project Managers. Sei Series

in Software Engineering. Addison-Wesley, 2008.

110

[6] A. W. Appel. Compiling with Continuations (corr. version). Cambridge University

Press, 2006.

[7] Aspect-Oriented Modeling Workshop. http://www.aspect-modeling.org/. Last

visited: January 2010.

[8] B. Blakley, C. Heath, and members of The Open Group Security Forum. Security

Design Patterns. Technical Report G031, Open Group, 2004.

[9] R. Bodkin. Enterprise Security Aspects. In Proc. of the 4th Workshop on AOSD

Technology for Application-Level Security, 2004.

[10] G. Bruns, R. Jagadeesan, A. Jeffrey, and J. Riely. ABC: A Minimal Aspect

Calculus. In Proceedings of the International Conference on Concurrency Theory,

volume 3170 of LNCS, pages 209–224. Springer, 2004.

[11] R. C. Seacord D. Svoboda K. Togashi C. Dougherty, K. Sayre. Secure Design Pat-

terns. Technical Report, CMU/SEI-2009-TR-010, ESC-TR-2009-010, Software

Engineering Institute, Carnegie Mellon University, 2009.

[12] M-T. Chan and L-F. Kwok. Integrating Security Design into the Software Devel-

opment Process for E-commerce Systems. Information Management & Computer

Security, 9(3):112–122, 2001.

[13] C. Clifton and G. T. Leavens. MiniMAO: An imperative core language for study-

ing aspect-oriented reasoning. Sci. Comput. Program., 63(3):321–374, 2006.

111

[14] Y. Coady, G. Kiczales, M. Feeley, and G. Smolyn. Using AspectC to Improve

the Modularity of Path-Specific Customization in Operating System Code. In

Proceedings of Foundations of Software Engineering, pages 88–98. ACM Press, 2001.

[15] Cross-site Scripting (XSS). https://www.owasp.org/index.php/Cross-

site Scripting XSS. Last visited: June 2012.

[16] L. Dai and K. Cooper. Modeling and Analysis of Non-Functional Requirements

as Aspects in a UML Based Architecture Design. In Proceedings of the 6th In-

ternational Conference on Software Engineering, Artificial Intelligence, Networking

and Parallel/Distributed Computing and First ACIS International Workshop on Self-

Assembling Wireless Networks, pages 178–183, Washington, DC, USA, 2005. IEEE

Computer Society.

[17] D. S. Dantas, D. Walker, G. Washburn, and S. Weirich. AspectML: A Polymor-

phic Aspect-Oriented Functional Programming Language. ACM Transactions on

Programming Languages and Systems, 30:14:1–14:60, 2008.

[18] O. Danvy and A. Filinski. Abstracting Control. In Proceedings of the 1990 ACM

Conference on LISP and Functional Programming, LFP’90, pages 151–160, New

York, NY, USA, 1990. ACM.

[19] O. Danvy and L. R. Nielsen. Defunctionalization at work. In PPDP, pages

162–174. ACM, 2001.

[20] T. Dierks and E. Rescorla. The transport layer security (tls) protocol. In IETF

RFC 4346, 2006.

112

[21] S. D. Djoko, R. Douence, P. Fradet, and D. Le Botlan. CASB: Common Aspect

Semantics Base - AOSD Europe Deliverable No. 41, 2006.

[22] T. Doan, L. D. Michel, and S. A. Demurjian. A Formal Framework for Secure

Design and Constraint Checking in UML. In Proceedings of the International Sym-

posium on Secure Software Engineering (ISSSE’06), Washington, DC, 2006.

[23] C. Dutchyn. Specializing Continuations: a Model for Dynamic Join Points.

In Proceedings of the 6th International Workshop on Foundations of Aspect-Oriented

Languages, pages 45–57. ACM, 2007.

[24] C. Dutchyn, G. Kiczales, and H. Masuhara. Aspect SandBox. Available at

http://www.cs.ubc.ca/labs/spl/projects/asb.html, 2002.

[25] C. Dutchyn, D. B. Tucker, and S. Krishnamurthi. Semantics and Scoping of

Aspects in Higher-Order Languages. Science of Computer Programming, 63:207–

239, 2006.

[26] E. B. Fernandez and R. Warrier. Remote Authenticator/Authorizer. In Proceed-

ings of the 10th Conference on Pattern Languages of Programs (PLoP’03), 2003.

[27] M. J. Fischer. Lambda Calculus Schemata. In Proceedings of the ACM Conference

on Proving Assertions about Programs, pages 104–109, New York,USA, 1972. ACM.

[28] Fortify. Available at https://www.fortify.com/downloads2/user/Fortify Case For

Application Security.pdf. Last visited: June 2012.

[29] Fortify. Software security, protect your software at the source. Available at:

http://www.fortify.com/vulncat/en/vulncat/IPV.html, 2011.

113

[30] B. De Fraine, M. Südholt, and V. Jonckers. StrongAspectJ: Flexible and Safe

Pointcut/Advice Bindings. In Proceedings of the 7th International Conference on

Aspect-Oriented Software Development, AOSD’08, pages 60–71, New York, NY,

USA, 2008. ACM.

[31] L. Fuentes and P. Sánchez. Transactions on aspect-oriented software development

vi. chapter Dynamic Weaving of Aspect-Oriented Executable UMLModels, pages

1–38. Springer-Verlag, Berlin, Heidelberg, 2009.

[32] S. Gao, Y. Deng, H. Yu, X. He, K. Beznosov, and K. Cooper. Applying Aspect-

Orientation in Designing Security Systems: A Case Study. In Proceedings of

International Conference of Software Engineering and Knowledge Engineering, 2004.

[33] G. Georg, R. B. France, and I. Ray. An Aspect-Based Approach to Modeling

Security Concerns. In J. Jürjens, M. V. Cengarle, E. B. Fernandez, B. Rumpe,

and R. Sandner, editors, Critical Systems Development with UML – Proceedings of

the UML’02 Workshop, pages 107–120. Technische Universität München, Institut

für Informatik, 2002.

[34] G. Georg, S. H. Houmb, and I. Ray. Aspect-Oriented Risk-Driven Development

of Secure Applications. In Ernesto Damiani and Peng Liu, editors, Proceedings of

the 20th Annual IFIP WG 11.3 Working Conference on Data and Applications Security

(DBSec’2006), volume 4127 of Lecture Notes in Computer Science, pages 282–296.

Springer, 2006.

[35] G. Georg, I. Ray, K. Anastasakis, B. Bordbar, M. Toahchoodee, and S. H.

114

Houmb. An aspect-oriented methodology for designing secure applications. In-

formation & Software Technology, 51(5):846–864, 2009.

[36] M. J. C. Gordon. Programming language theory and its implementation - applicative

and imperative paradigms. Prentice Hall International series in Computer Science.

Prentice Hall, 1988.

[37] Mentor Graphics. Object Action Language Reference Manual. Available at

http://www.mentor.com/products/sm/techpubs/object-action-language

-reference-manual-38098, 2009.

[38] K. S. Hoo, A. W. Sudbury, and A. R. Jaquith. Tangible ROI through Secure

Software Engineering. Secure Business Quarterly, 1(2), Fourth Quarter 2001.

[39] J. Vijayan. Available at:http://www.computerworld.com/s/article/

9136805/SQL injection attacks led to Heartland Hannaford breaches. Last vis-

ited: June 2012.

[40] A. Jackson, J. Kleinand B. Baudry, and S. Clarke. KerTheme: Testing Aspect

Oriented Models. In Proceedings of the ECMDA Wshop. on Integration of Model

Driven Development and Model Driven Testing., 2006.

[41] R. Jagadeesan, A. Jeffrey, and J. Riely. A Calculus of Untyped Aspect-Oriented

Programs. In Proceedings of the European Conference on Object-Oriented Program-

ming, pages 54–73. Springer-Verlag, 2003.

115

[42] L. Brown Jr, F. L. Brown, J. Divietri, G. Diaz De Villegas, and E. B. Fernan-

dez. The Authenticator Pattern. In Proceedings of the 10th Conference on Pattern

Languages of Programs (PLoP’03), page 6. Wiley, 1999.

[43] J. Jürjens and S. H. Houmb. Dynamic Secure Aspect Modeling with UML: From

Models to Code. In L. C. Briand and C. Williams, editors, MoDELS, volume

3713 of Lecture Notes in Computer Science, pages 142–155. Springer, 2005.

[44] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold.

An Overview of AspectJ. In Proceedings of the 15th European Conference on Object-

Oriented Programming (ECOOP’01), pages 327–353, London, UK, 2001. Springer-

Verlag.

[45] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold.

An Overview of AspectJ. pages 327–353. Springer-Verlag, 2001.

[46] G. Kiczales, J. Lamping, A. Mendhekar, Ch. Maeda, C. V. Lopes, J-M Loingtier,

and J. Irwin. Aspect-oriented programming. In ECOOP, pages 220–242, 1997.

[47] P. J. Landin. A Generalization of Jumps and Labels. In Report, UNIVAC Systems

Programming Research, 1965.

[48] C. L. Lazar, I. Lazar, B. Parv, S. Motogna, and I. G. Czibula. Using a fuml action

language to construct uml models. In Proceedings of the 2009 11th International

Symposium on Symbolic and Numeric Algorithms for Scientific Computing, SYNASC

’09, pages 93–101, Washington, DC, USA, 2009. IEEE Computer Society.

116

[49] Kennedy Carter Limited. UML ASL Reference Guide. Available

athttp://www.ooatool.com/docs/ASL03.pdf, 2003.

[50] T. Lodderstedt, D. Basin, and J. Doser. Model-Driven Security: from UML Mod-

els to Access Control Infrastructures. ACM Transactions on Software Engineering

and Methodology (TOSEM), 15(1):39–91, 2006.

[51] H. Masuhara, Y. Endoh, and A. Yonezawa. A Fine-Grained Join Point Model for

More Reusable Aspects. In Proceedings of the 4th Asian Symposium on Programming

Languages and Systems (APLAS’2006), volume 4279 of LNCS, pages 131–147, 2006.

[52] H. Masuhara and K. Kawauchi. Dataflow Pointcut in Aspect-Oriented Program-

ming. In Proceedings of the first Asian Symposium on Programming Languages and

Systems (APLAS), pages 105–121, 2003.

[53] H. Masuhara, G. Kiczales, and Ch. Dutchyn. A Compilation and Optimization

Model for Aspect-Oriented Programs. In Proceedings of the 12th International Con-

ference on Compiler Construction, CC’03, pages 46–60, Berlin, Heidelberg, 2003.

Springer-Verlag.

[54] S. J. Mellor and M. Balcer. Executable UML: A Foundation for Model-Driven Ar-

chitectures. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,

2002.

[55] M. S. Merkow and L. Raghavan. Secure and Resilient Software Development. Auer-

bach Publications, London, UK, 2010.

117

[56] W. De Meuter and N. Boyen. An Informal Tour On Denotational Semantics.

Technical Report vub-prog-tr-94-08, Programming Technology Lab, Vrije Uni-

versiteit Brussel, 1994.

[57] C. Montangero, M. Buchholtz, L. Perrone, and S. Semprini. For-LySa: UML for

Authentication Analysis. In Global Computing: IST/FET International Workshop

(GC’04), volume 3267 of Lecture Notes in Computer Science, pages 93–106. Springer

Verlag, 2005.

[58] D. Mouheb, Ch. Talhi, M. Nouh, V. Lima, M. Debbabi, L. Wang, and

M. Pourzandi. Aspect-oriented modeling for representing and integrating se-

curity concerns in uml. In Proceedings of the International Conference on Software

Engineering Research, Management and Applications (SERA), pages 197–213, 2010.

[59] A. Mourad, M. A. Laverdière, and M. Debbabi. A High-Level Aspect-Oriented

Based Framework for Software Security Hardening. Information Security Journal:

A Global Perspective, 17(2):56–74, 2008.

[60] P. A. Muller, F. Fleurey, and J. M. Jzquel. Weaving Executability into OO Meta-

languages. In Intl. Conference on Model Driven Engineering Languages and Systems,

LNCS 3713, pages 264–278. Springer, 2005.

[61] M. Nouh, R. Ziarati, D. Mouheb, D. Alhadidi, M. Debbabi, L. Wang, and

M. Pourzandi. Aspect Weaver: A Model Transformation Approach for UML

Models. In Proceedings of the 2010 conference of the Centre for Advanced Studies on

Collaborative Research, pages 139–153, 2010.

118

[62] Object Management Group (OMG). Meta Object Facility Specification, Version

2.0, 2006.

[63] Object Management Group (OMG). Object Constraint Language Specification,

Version 2.0, 2006.

[64] Object Management Group (OMG). Meta Object Facility (MOF) 2.0

Query/View/Transformation Specification, Version 1.0, 2008.

[65] Object Management Group (OMG). Unified Modeling Language (OMG UML):

Superstructure, Version 2.4.1, 2011.

[66] Object Management Group (OMG). Action Language for Foundational

UML (ALF): Concrete Syntax for UML Action Language. Available

athttp://www.omg.org/spec/ALF/, 2011.

[67] Object Management Group (OMG). Semantics Of A Foundational Subset For

Executable UML Models (FUML). Available athttp://www.omg.org/spec/FUML/,

2011.

[68] OWASP Top 10. https://www.owasp.org/index.php/

Category:OWASP Top Ten Project. Last visited: September 2012.

[69] J. Pavlich-Mariscal, T. Doan, L. Michel, S. Demurjian, and T. Ting. Role Slices:

A Notation for RBAC Permission Assignment and Enforcement. In Proceedings

of the 19th Annual IFIP WG 11.3, pages 40–53, Connecticut, USA, 2005.

119

[70] J. Pavlich-Mariscal, L. Michel, and S. Demurjian. Enhancing UML to Model

Custom Security Aspects. In Proceedings of the 11th International Workshop on

Aspect-Oriented Modeling (AOM@AOSD’07), 2007.

[71] I. Ray, R. France, N. Li, and G. Georg. An Aspect-Based Approach to Modeling

Access Control Concerns. Information and Software Technology, 46(9):575–587,

2004.

[72] I. Ray, N. Li, D. K. Kim, and R. France. Using Parameterized UML to Specify

and Compose Access Control Models. In Proceedings of the 6th IFIP TC-11 WG

11.5 Working Confrence on Integrity and Internal Control in Information Systems

(IICIS’03), Lausanne, Switzerland, 2003.

[73] J. C. Reynolds. Definitional Interpreters for Higher-Order Programming Lan-

guages. In Proceedings of the ACM Annual Conference, volume 2 of ACM’72, pages

717–740, New York, NY, USA, 1972. ACM.

[74] J. C. Reynolds. The Discoveries of Continuations. Journal of Lisp and Symbolic

Computation, Special issue on continuations, 6(3-4), 1993.

[75] S. Romanosky. Enterprise Security Design Patterns. In Proceedings of the European

Conference on Pattern Languages of Programs (EuroPLoP’02), 2002.

[76] D. A. Schmidt. Denotational semantics: a methodology for language development.

William C. Brown Publishers, Dubuque, IA, USA, 1986.

120

[77] M. Schumacher, E. Fernandez-Buglioni, D. Hybertson, F. Buschmann, and

P. Sommerlad. Security Patterns: Integrating Security and Systems Engineering (Wi-

ley Software Patterns Series). John Wiley & Sons, 2006.

[78] Pathfinder Solutions. Platform Independent Action Language. Available

athttp://www.ooatool.com/docs/PAL04.pdf, 2004.

[79] O. Spinczyk, A. Gal, and W. Schröder-Preikschat. AspectC++: An Aspect-

Oriented Extension to the C++ Programming Language. In Proceedings of the 40th

International Conference on Tools Pacific (CRPIT’02), pages 53–60, Darlinghurst,

Australia, 2002.

[80] State of Software Security Report Volume 3.

http://www.veracode.com/reports/index.html. Last visited: September

2012.

[81] J. E. Stoy. Denotational Semantics: The Scott-Strachey Approach to Programming

Language Theory. MIT Press, 1981.

[82] C. Strachey and C. P. Wadsworth. Continuations: A Mathematical Semantics for

Handling Full Jumps. technical monograph prg 11, oxford university computing

laboratory, 1974.

[83] The Open Web Application Security Project (OWASP).

https://www.owasp.org/index.php/SQL Injection. Last visited: June 2012.

[84] J. Viega, J. T. Bloch, and P. Chandra. Applying Aspect-Oriented Programming

to Security. Cutter IT Journal, 14:31–39, 2001.

121

[85] D. Walker, S. Zdancewic, and J. Ligatti. A Theory of Aspects. volume 38 of

ICFP’03, pages 127–139, New York, NY, USA, 2003. ACM.

[86] M. Wand, G. Kiczales, and C. Dutchyn. A Semantics for Advice and Dynamic

Join Points in Aspect-Oriented Programming. ACM Transactions on Programming

Languages and Systems, 26:890–910, 2004.

[87] B. De Win. Engineering Application Level Security through Aspect-Oriented

Software Development. PhD Thesis, Katholieke Universiteit Leuven, 2004.

[88] M. Woodside, D. C. Petriu, D. B. Petriu, J. Xu, T. Israr, G. Georg, R. France,

J. M. Bieman, S. H. Houmb, and J. Jürjens. Performance Analysis of Security

Aspects by Weaving Scenarios Extracted from UML Models. Journal of Systems

and Software, 82(1):56–74, 2009.

[89] S. G. Yi, Y. Deng, H. Yu, X. He, K. Beznosov, and K. Cooper. Applying Aspect-

Orientation in Designing Security Systems: A Case Study. In Proceedings of the

International Conference of Software Engineering and Knowledge Engineering, 2004.

[90] G. Zhang, H. Baumeister, N. Koch, and A. Knapp. Aspect-Oriented Modeling of

Access Control in Web Applications. In Proceedings of the 6th Workshop on Aspect

Oriented Modeling, 2005.

[91] J. Zhang, T. Cottenier, A. Berg, and J. Gray. Aspect Composition in the Mo-

torola Aspect-Oriented Modeling Weaver. Journal of Object Technology. Special

Issue on AOM, 6(7):89–108, 2007.

122

