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ABSTRACT

This paper presents a multivariable extension to a recently
proposed wavelet-based technique for fault detection. In the
original formulation, the Discrete Wavelet Transform is used
to carry out dynamic consistency checks between pairs of
signals within frequency subbands. For this purpose, mov-
ing average models with an integrative term are employed to
reproduce the dynamics of the system in each subband un-
der consideration. The present work introduces a new archi-
tecture allowing the use of subband models with more gen-
eral multivariable structures. More specifically, a multivari-
able ARX (autoregressive with exogenous input) structure is
adopted for each subband model. The proposed technique is
illustrated in a case study involving a nonlinear simulation
model for an aircraft with a sensor fault. The results show
that the multivariable approach outperforms the original for-
mulation in terms of residue amplification following the fault
onset.
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RESUMO

Uma abordagem multivariável baseada em wavelets para
detecção de falhas em sistemas dinâmicos
Este artigo apresenta uma extensão multivariável para uma
técnica recentemente proposta de detecção de falhas baseada
em wavelets. Na formulação original, a Transformada Wa-
velet Discreta é utilizada para realizar testes de consistência
dinâmica entre pares de sinais dentro de faixas de freqüência.
Para isso, são empregados modelos do tipo média móvel com
termo integrativo para reproduzir a dinâmica do sistema em
cada faixa considerada. O presente trabalho introduz uma
nova arquitetura, que possibilita o uso de modelos em sub-
bandas com estruturas multivariáveis mais gerais. Mais es-
pecificamente, uma estrutura ARX (autoregressiva com en-
trada exógena) multivariável é adotada para cada modelo em
sub-bandas. A técnica proposta é ilustrada em um estudo
de caso envolvendo um modelo de simulação não-linear para
uma aeronave com falha de sensor. Os resultados mostram
que a abordagem multivariável é superior à formulação ori-
ginal em termos de amplificação do resı́duo após a ocorrência
da falha.

PALAVRAS-CHAVE: Sistemas Dinâmicos, Redundância
Analı́tica, Detecção de Falhas, Wavelets, Sistemas Multi-
variáveis.
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Figure 1: Original wavelet-based analytical redundancy architecture for (a) input-output and (b) output-output consistency
checks. The subband model is of the form M(z) =

(

1 − z−1
)−s (

α + β z−1
)

, s ∈ Z ; α , β ∈ R.

1 INTRODUCTION

Prompt fault detection is essential for the improvement of
reliability and dependability in complex control systems
(Ranganathan et al., 2001), especially for safety-critical ap-
plications such as industrial plants (Kallesoe et al., 2006),
chemical processes (Simani and Fantuzzi, 2006), automo-
tive systems (Fischer et al., 2007) and aircraft (Amato et al.,
2006), (Narasimhan and Biswas, 2007).

In this context, the Wavelet Transform (Daubechies, 1992) is
a useful tool to detect transient behaviors caused by the on-
set of a fault. In (Bhunia and Roy, 2005), a wavelet-based
strategy was employed to detect faults in digital CMOS cir-
cuits by transient current testing. For this purpose, wavelet
coefficients of the current waveform were compared with co-
efficients obtained from a fault-free device. In (Zanardelli
et al., 2005), the wavelet coefficients of a current signal were
used in a classification framework to discriminate between
different types of motor faults. In (Kim and Parlos, 2002),
a dynamic neural network model was employed to predict
the transient response of the system under monitoring. The
residues thus generated were then processed by the wavelet
transform to compute fault indicators. A combination of
model-based residue generation and wavelet processing was
also adopted in (Manders and Biswas, 2003), in which a tem-
poral causal graph was employed to represent the normal be-
havior of the plant.

Most wavelet-related papers in the fault-detection litera-
ture exploit two basic approaches, namely: (a) decomposi-
tion of a sensor signal containing fault-related information
(Zanardelli et al., 2005) or (b) decomposition of a residual

signal calculated as the difference between the predictions of
a model (or fault-free system) and the actual process output
(Bhunia and Roy, 2005; Kim and Parlos, 2002; Manders and
Biswas, 2003). A third approach, which was recently pro-
posed in (Paiva, Galvão and Yoneyama, 2008), employs the
wavelet transform to identify a subband model for the nor-
mal behavior of the system, which is then used to generate
a residual signal. Such a formulation can be employed to
monitor the input-output integrity of the plant (Fig. 1a) or
the consistency between two plant outputs (Fig. 1b). A fault
is indicated if the filtered difference between plant and model
outputs exceeds a pre-defined threshold.

In (Paiva, Galvão and Yoneyama, 2008), this fault detection
approach was favorably compared with a standard observer-
based method in terms of sensitivity and false alarm ratio.
However, the formulation was restricted to the analysis of
pairwise consistency between dissimilar measurements. No
provision was proposed for the simultaneous monitoring of
more than two signals. Moreover, the case studies presented
for illustration were restricted to linear, time-invariant sys-
tems. Aspects of robustness with respect to non-linearities or
changes in the plant parameters were not investigated.

The present paper extends the technique proposed in (Paiva,
Galvão and Yoneyama, 2008) to the multivariable case, in
which several inputs and/or outputs are to be simultaneously
checked for mutual consistency. For this purpose, the ar-
chitecture adopted in (Paiva, Galvão and Yoneyama, 2008)
is modified to allow the use of MIMO (multiple-input,
multiple-output) system identification methods. In particu-
lar, a multivariable ARX (autoregressive with external input)
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Figure 2: Frequency-Subband Analytical Redundancy Architecture adopted for the multivariable approach. (a) Input-output
and (b) output-output consistency check.

structure is adopted for each subband model. Preliminary
results obtained with this extension were reported in (Paiva,
Galvão and Rodrigues, 2008), where a simplified example
involving the linear model of a Boeing 747 aircraft was dis-
cussed. In the present work, the effectiveness of the extended
technique is demonstrated in a case study involving the non-
linear aircraft simulation model ADMIRE (Forssell and Nils-
son, 2005), which represents a generic small single-seat
fighter aircraft with a delta-canard configuration. A sensor
fault is considered for illustration. The fault detection perfor-
mance is evaluated under the effect of model uncertainties,
sensor dynamics, measurement noise and exogenous distur-
bances. The results of the proposed multivariable technique
are compared with those obtained by using the original for-
mulation presented in (Paiva, Galvão and Yoneyama, 2008).

2 PROPOSED MULTIVARIABLE FAULT
DETECTION TECHNIQUE

In the SISO (single-input, single-output) architecture
adopted in (Paiva, Galvão and Yoneyama, 2008) (Fig. 1),
the subband model parameters α, β, s are adjusted in order
to minimize the norm of the subband residue under normal
operation conditions. However, standard identification tech-
niques cannot be directly employed because the transmission
path between the subband model input (u in Fig. 1a or yb in
Fig. 1b) and the subband residue involves the wavelet filter
bank, which has to be taken into account. To circumvent
this problem, an ad-hoc least-squares identification proce-
dure was proposed in (Paiva, Galvão and Yoneyama, 2008).
In the present paper, a different architecture (Fig. 2) is

adopted in order to facilitate the extension to the MIMO case.
In this new architecture, the subband model is placed after
the wavelet filter bank.

The remaining of this section will be focused on the input-
output scheme (Fig. 2a) for brevity. However, the discussion
can be easily extended to the output-output scheme (Fig. 2b)
by replacing plant input u and plant output y by plant outputs
yb and ya, respectively.

Fig. 3 shows a more detailed representation of the scheme
presented in Fig. 2a. Filters H and G indicate the lowpass
and highpass filters associated to a particular wavelet, respec-
tively.

The choice of wavelet filters for a particular problem is still
a matter of much research. Finite impulse response (FIR) fil-
ters, such as those of the Symlet (Zanardelli et al., 2005),
Coiflet (Zanardelli et al., 2005) and specially Daubechies
(Kim and Parlos, 2002), (Bhunia and Roy, 2005), (Paiva and
Galvão, 2006), (Paiva, Galvão and Yoneyama, 2008), (Paiva,
Galvão and Rodrigues, 2008), (Zanardelli et al., 2005) fam-
ilies, are usually employed in most applications. In gen-
eral, longer filters have better frequency resolution, which
improves the match between subband model and plant dy-
namics, as well as the rejection of noise. The drawback is the
loss of time resolution, which causes larger detection delays.
In previous papers (Paiva and Galvão, 2006), (Paiva, Galvão
and Rodrigues, 2008), (Paiva, Galvão and Yoneyama, 2008),
the db8 filters were found to provide a good tradeoff between
noise rejection and time resolution. These filters will thus be
adopted in the present work.
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Figure 3: Wavelet-Based Frequency-Subband Analytical Redundancy Scheme

In the wavelet filter bank, the number of filtering iterations
leading to a given layer is termed the decomposition level of
that layer. In Fig. 3, for example, the filter bank has three
decomposition levels. The best decomposition level for fault
detection depends on the spectral signature of the fault, as
well as the power spectrum density of the input signal and the
signal-to-noise ratio of the measurements (Paiva, Galvão and
Yoneyama, 2008). If the fault effect has not been previously
characterized, all levels should be monitored simultaneously.

The outputs of the lowpass and highpass filters are termed
approximation and detail, respectively. Subscripts iA and iD
will be used to indicate the approximation and detail at the
i-th decomposition level, respectively. The wavelet coeffi-
cients DuiA (approximation) and DuiD (detail) of the input
signal u at the i-th decomposition level, i > 0, are calculated
as

DuiA = (↓ 2) [ h ∗ Du(i−1)A ] (1)

DuiD = (↓ 2) [ g ∗ Du(i−1)A ] (2)

where (↓ 2) and * denote the downsampling and convolu-
tion operations, and h and g are the discrete-time impulse re-
sponses of filters H and G, respectively. The approximation
Du0A at level 0 is equal to signal u itself. Similar equations
can be used to obtain the wavelet coefficients DyiA (approx-
imation) and DyiD (detail) of the output signal y.

The configuration adopted for each subband model in Fig. 3
is a multivariable ARX (autoregressive with exogenous in-

put) structure of the form (Ljung, 1999):

D̂y(k) =

na
∑

i=1

AiD̂y(k − i) +

nb
∑

i=1

BiDu(k − i),

Ai ∈ R
p×p, Bi ∈ R

p×m (3)

where Du(k) ∈ R
m and D̂y(k) ∈ R

p correspond to the in-
put and output of the subband model at time index k. Since
each subband model is intended to represent the plant behav-
ior only within a limited frequency band, the orders na and
nb can be made small. Matrices Ai, Bi can be identified
in order to minimize the 2-norm of the difference between
the model predictions D̂y and the wavelet coefficients Dy

of the actual plant output. For this purpose, a standard multi-
variable least-squares identification method can be employed
(Ljung, 1999).

After the identification has been carried out, the threshold
for each subband detector can be established on the basis of
the subband residue (Dy−D̂y) obtained for nominal (fault-
free) conditions. In this work, the threshold is set to three
times the standard deviation of the residue calculated by us-
ing signals u, y different from those employed for identifi-
cation.

As shown in Fig. 3, the system is monitored over differ-
ent frequency subbands. The information of all threshold
devices is submitted to a voting algorithm that determines
whether the overall fault monitor will indicate a fault or
not. The simultaneous monitoring of several frequency sub-
bands is important because the fault effect may be more no-
ticeable in some bands, which can vary according to the
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system under study and the fault effect (Paiva, Galvão and
Yoneyama, 2008). In the present work, the overall fault mon-
itor declares a fault if any threshold detector is activated.

It is worth noting that time resolution decreases as the de-
composition is carried out from one level to the next. As a
result, longer detection delays may be expected at the final
levels of the filter bank. This feature may impose a restric-
tion on the maximum number of resolution levels that can be
employed in the fault monitor.

Summary

In what follows, the algorithm to construct the fault-detection
structure presented in Fig. 3 is shortly summarized.

1. Collect signals u and y to perform the identification of
the subband models.

2. Choose wavelet filters H and G and the number of de-
composition levels of the wavelet tree.

3. Calculate the wavelet coefficients Du and Dy at each
decomposition level.

4. Use an ARX identification procedure (Ljung, 1999) to
identify the subband model matrices in Eq. (3).

5. Collect new signals u and y to establish the thresholds.

6. Calculate, at each decomposition level, the wavelet co-
efficients Du and Dy of the new signals, and obtain the
corresponding subband model output D̂y.

7. Establish the thresholds as a function of the residue
(Dy − D̂y).

The ARX model order could be selected by using tech-
niques such as Akaike’s information theoretic criterion
(AIC) (Ljung, 1999), Rissanen’s minimum description
length (MDL) principle (Ljung, 1999) or generalized cross-
validation (GCV) (Sjöberg et al., 1995), (Paiva and Galvão,
2006). Alternatively, the order may be increased, starting
from a small value, until the fault detection performance is
deemed acceptable. It is worth noting that, as the identifica-
tion only concerns the system dynamics within a restricted
frequency range, the subband model order can be small as
compared to a time-domain ARX representation.

As a general rule, the thresholds should be set to the small-
est values that still result in a satisfactory false alarm rate,
according to the requirements of the application at hand. If
faulty data were available, the thresholds could be chosen to
achieve an appropriate trade-off between fault detection and
false alarm rates.

3 APPLICATION EXAMPLE

In this section, a case study involving the nonlinear aircraft
simulation model ADMIRE (Aero-Data Model In a Research
Environment) will be presented.

3.1 System Description

ADMIRE is a generic model of a small single-seat fighter
aircraft with a delta-canard configuration. The model is aug-
mented with longitudinal and lateral flight control systems to
provide stability and handling qualities and contains a rudi-
mentary speed controller. The model envelope extends up to
Mach 1.2 and altitude of 6 km. A detailed description of this
model, as well as the electronic files required for simulation,
can be found in (Forssell and Nilsson, 2005).

In the present study, turbulence and wind gust models were
incorporated in the simulation. The turbulence models fol-
low the Dryden form (U.S. Military Specification MIL-F-
8785C, 1980). The turbulence scale lengths, turbulence
intensities, and gust magnitude were adopted according to
(U.S. Military Specification MIL-F-8785C, 1980) in order
to simulate light, moderate and severe atmospheric distur-
bances, as shown in Table 1.

Table 1: Atmospheric disturbance parameters.

Severity Light Moderate Severe
Turbulence

Scale Length (ft) 1750 1750 1750
(Lu = Lv = Lw)

Turbulence
Intensity (ft/s) 5 15 25

(σu = σv = σw)
Gust

Magnitude 16.7 33.3 50
(ft/s)

ADMIRE contains dynamic models of the rate gyros respon-
sible for measuring the body-fixed roll-rate pb, pitch rate qb

and yaw-rate rb. In this study, zero-mean white noise with
standard deviation of 0.2 deg/s was added to the output of
each rate gyro. This noise level is realistic for aeronautical
sensors, as discussed in (Bacon et al., 2001).

3.2 Simulations

The following sets of simulations were conducted:

- Model Identification
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A set of fault-free simulations was carried out to identify
the subband system models. In each simulation, the aircraft
was initially trimmed at straight level. Since the dynamic
response of the aircraft varies with the velocity and altitude
of operation, twelve points in the envelope (three velocities
versus four altitudes) were chosen for trimming: Mach 0.6,
0.9 and 1.2; altitude of 3, 4, 5 and 6 km. For each point, the
system was simulated during 20 s under light atmospheric
disturbance. In order to enrich the spectral content of the ex-
citation signals, small slow-varying augmentation commands
were added to the rudder and canard commands generated by
the control law. Such augmentation commands consist of a
zero-mean square wave with peak-to-peak amplitude of 2.8
deg and frequency of 0.5 Hz. Fig. 4 shows, for a particular
simulation, the total rudder and canard commands, as well as
the angular rates.

- Threshold definition

A second set of twelve fault-free simulations (one for each
point of the envelope) was carried out to establish the thresh-
old for each detector. The simulation conditions were similar
to those employed in the identification phase, but with differ-
ent realizations of atmospheric disturbance and sensor noise.

- Fault simulations

The fault detection problem consisted of detecting a bias of
1.0 deg/s in the yaw rate (rb) gyro. The bias was inserted at t
= 20 s in a simulation lasting 40 s. Three different cases were
considered:

Case 1 - Straight level: The aircraft was trimmed in straight
level at the twelve envelope points specified above. In order
to illustrate the robustness of the technique to exogenous dis-
turbances, three simulations were carried out for each point,
considering different atmospheric disturbance levels (light,
moderate and severe). Therefore, a total of 36 simulations
were performed. Fig. 5 shows the angular rates obtained in
a particular simulation. As can be seen, the fault in the rb

sensor also induced a change in the behavior of pb. Such a
coupling effect is caused by the closed-loop control system.

Case 2 - Straight level with uncertainties: In order to il-
lustrate the robustness of the technique to model uncertain-
ties, the system was simulated considering the mass, inertia
and center of gravity (CG) uncertainties specified in Table 2.
These are the maximum uncertainties that can be used with
the ADMIRE model (Forssell and Nilsson, 2005). Each of
the 36 simulations described in Case 1 was repeated twice:
first with the positive uncertainties in Table 2, and then with
the negative ones. Therefore, a total of 72 simulations were
carried out.

Case 3 - Altitude Change: In this case, the fault detection per-

Table 2: ADMIRE uncertainty parameters.

Parameter Uncertainty
Inertia Ixx ± 20 %

Iyy ± 5 %
Izz ± 8 %
Ixz ± 15 %

Mass M ± 20 %
CG Position xCG ± 0.15 m

yCG ± 0.1 m

formance was evaluated during an altitude change manoeu-
ver, rather than in straight flight. The airplane was initially
trimmed at Mach 1, altitude of 6 km, and then descended to
an altitude of 4 km. The system was simulated under light,
moderate and severe atmospheric disturbance.
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Figure 5: Angular rates obtained in one of the fault simula-
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at Mach 0.9 and altitude of 6 km, and was subjected to mod-
erate atmospheric disturbance.
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Figure 6: Subband residues for the details at decomposition levels 1 to 6 (indicated as 1D to 6D) and approximation at
decomposition level 6 (indicated as 6A). In this particular simulation, the aircraft was trimmed at Mach 0.9 and altitude of 6
km, and was subjected to (A) light, (B) moderate and (C) severe atmospheric disturbance.

3.3 Fault detection results

The fault detection results obtained with the original formu-
lation proposed in (Paiva, Galvão and Yoneyama, 2008) and
the extended multivariable formulation presented in this pa-
per will now be compared. The original formulation was em-
ployed to check the consistency between sensors (pb,rb) and
(qb,rb). In this case, signal ya in Fig. 1b corresponds to rb,
and yb corresponds to either pb or qb. In the extended ap-
proach, the consistency between sensors (pb, qb) and rb was
evaluated. In this case, signal ya in Fig. 2b corresponds to
rb and yb corresponds to vector [pb qb]

T . Six decomposition
levels were used in the wavelet filter banks. The ARX orders

na = 1 and nb = 2 were adopted for each subband model.

As a result, all faults were correctly detected, that is, at least
one subband residue exceeded the threshold for fault detec-
tion after the fault onset, and no subband residue exceeded
the threshold before the fault. The time for detection was al-
ways less than 0.1 s. Such a delay may be considered accept-
able in view of the response speed of the system (the peak
time for the yaw rate following a 1 deg step in the rudder
command varies from 1.4 s to 2.0 s, depending on the flight
condition).
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For illustration, Fig. 6 shows the residues obtained using the
multivariable technique for a particular fault simulation. In
this figure, the horizontal dashed lines indicate the threshold
for fault detection, and the vertical dashed lines indicate the
fault onset at t = 20 s. This figure shows that the fault under
study causes an almost immediate response in the residues
associated to the higher frequencies (1D, 2D and 3D), which
rise and then fall shortly after. On the other hand, the residue
associated to the lower frequencies (6A) responds to the fault
after a delay, but is kept on a high level afterwards. The
figure also shows that the residue tends to increase with the
atmospheric disturbance (especially at levels 5D and 6A), but
does not exceed the threshold before the fault onset.

In order to clarify the advantage of the multivariable formu-
lation over the original approach, the following metric Γ was
evaluated (Paiva, Galvão and Yoneyama, 2008):

Γ =
max t ( abs ( residue after fault ) )

max t ( abs ( residue before fault ) )

=
max t∈(20,40s] ( abs ( residue ) )

max t∈[0s,20s] ( abs ( residue ) )
(4)

The definition above applies to the residue at each decom-
position level. For the overall fault monitor, the value of Γ
is defined as the maximum value obtained over all decom-
position levels. This index is calculated offline (that is, after
the simulation is carried out) and reflects the sensitivity of the
detector with respect to the fault effects. The larger the Γ, the
larger the probability of correctly detecting a fault for a fixed
false alarm ratio. Therefore, index Γ can be used as a metric
to compare different fault detection methods, as discussed in
(Paiva, Galvão and Yoneyama, 2008).

Table 3 presents the values of Γ (average and standard de-
viation) obtained in the three fault-detection cases, which
together comprised 111 simulations. As can be seen, the
largest values of Γ were always obtained with the multivari-
able approach. A comparison between cases 1, 2 and 3 re-
veals that both model uncertainties and variations in the flight
condition tend to reduce the value of Γ. Nevertheless, the re-
sult remains satisfactory, as the monitor was always able to
detect the fault with no false alarms.

Table 3: After-fault residue amplification Γ.

Multivariable Original Original
(pb, qb) to (rb) pb to rb qb to rb

Case 1 29.4 ± 8.1 12.8 ± 3.0 13.3 ± 1.5
Case 2 28.0 ± 9.9 11.8 ± 3.9 12.0 ± 1.4
Case 3 27.7 ± 8.1 10.5 ± 2.7 10.4 ± 1.5
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Figure 7: Γ values for faults of different magnitudes.

Finally, Figure 7 presents a comparative evaluation of the
fault monitors for faults of different magnitudes (i.e. differ-
ent values of bias added to the yaw rate gyro). As can be
seen, the values of Γ for the multivariable approach ((pb, qb)
to rb) are always larger as compared to those obtained with
the original formulation (pb to rb and qb to rb).

4 CONCLUSIONS

This paper extended a recent wavelet-based fault detection
method to the multivariable case, in which more than two sig-
nals can be simultaneously checked for mutual consistency.
In the proposed technique, consistency checks are performed
within frequency bands established by a wavelet filter bank.
Subband models are identified at each specified frequency
band. A new architecture was proposed, allowing the use
of a general structure for the subband models and the use of
standard identification techniques to identify their parame-
ters. An ARX structure was adopted for each subband model.

A case study involving simulations of a fighter aircraft model
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with a simulated sensor fault was presented. Fault detection
was carried out by checking the mutual dynamic consistency
of three different sensor signals. The results indicate that the
proposed technique can provide high standards of reliability.
In fact, the fault was successfully detected in all simulations
and no false alarm occurred, even in the presence of non-
linearities, model uncertainties, measurement noise, sensor
dynamics, altitude change commands and exogenous distur-
bances. An analysis of the residues in normal and faulty
conditions also revealed an improvement in sensitivity with
respect to the previous formulation, in which the sensors
are compared in a pairwise manner. If necessary, robust-
ness against false alarm sources could be further improved
by declaring a fault only if the residue exceeds the threshold
at more than one frequency subband. In addition, the tech-
nique could be used together with standard approaches such
as those based on state observers.

Future studies could circumvent the restriction of constant
relative bandwidth of the wavelet filter bank by using wavelet
packets, which yield more general frequency partitions, as
adopted in (Paiva and Galvão, 2006). Furthermore, the
choice of the wavelet filters could be addressed by us-
ing adaptive wavelets (Paiva et al., 2009). Moreover, im-
provements in the wavelet fault monitor might possibly be
achieved by using subband models with different structures.
With the general architecture proposed in this paper, modifi-
cations in the structure of the subband models can be easily
implemented. Finally, future works could be concerned with
the problem of fault isolation, which has not been addressed
in the present paper.
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