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A two-step controller synthesis method is proposed in this paper for a class of uncertain nonlinear
systems described by piecewise affine differential inclusions. In the first step, a robust linear con-
troller is designed for the linear differential inclusion that describes the dynamics of the nonlinear
system close to the equilibrium point. In the second step, a stabilizing piecewise affine controller
is designed that coincides with the linear controller in a region around the equilibrium point. The
proposed method has two objectives: global stability and local performance. It thus enables to use
well known techniques in linear control design for local stability and performance while delivering a
global piecewise affine controller that is guaranteed to stabilize the nonlinear system. To construct the
required theoretical framework, a stability theorem for nonsmooth Lyapunov functions is presented
and proved. The new method will be applied to two examples.

1 Introduction

Linear control theory provides a variety of well established tools to guarantee
robust stability and performance (Doyle et al. 1990). This is, however, valid
only locally if the controller is designed for the linearization of a nonlinear sys-
tem. In fact, the linear controller may not even stabilize the nonlinear system
if the initial condition is far from the linearization point. On the other hand,
most of the methods in nonlinear control theory address global asymptotic sta-
bility but not necessarily performance. Designing a controller that has both a
large region of attraction and a good local performance is therefore one of the
most interesting research problems in nonlinear control theory (Murray 1996).
Having this problem in mind, a two-step method is proposed in this paper
to design a piecewise affine (PWA) controller for uncertain nonlinear systems
described by piecewise affine differential inclusions (PWADI). The objective
of the proposed method is to design a controller to satisfy a local performance
requirement and to globally stabilize the nonlinear system. This is done by
extending a linear controller designed for performance to a globally stabilizing
PWA controller. One of the main advantages of this method is that it can
be employed in many practical problems for which linear controllers currently
exist without changing the local performance of the system.

The structure of the proposed method is shown in figure 1. In the first
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2 Extension of local linear controllers to global piecewise affine controllers

step, a robust linear controller is designed for the linear differential inclusion
(LDI) that approximates the local behaviour of the nonlinear system in a
neighbourhood of the desired operating point. Then, a PWA controller that
coincides with the linear controller in a region around the equilibrium point
and globally stabilizes the nonlinear system is designed in the second step.
Since the design approach is based on finding a piecewise quadratic Lyapunov
function, it is only approximate in the sense that there is no guarantee that
a Lyapunov function can be found. If one is found, the global stability is
achieved. Otherwise, the method is inconclusive. In spite of their approximate
nature, Lyapunov-based methods for PWA controller design appear to work
well in practice and are widely used in the literature (Hassibi & Boyd 1998,
Rantzer & Johansson 2000, Feng 2002, Johansson 2003, Rodrigues & How
2003a,b).

Figure 1. Structure of the proposed PWA controller design method

The literature on stability analysis and feedback control of continuous time
PWA systems has concentrated on Lyapunov-based methods (Hassibi & Boyd
1998, Johansson 2003). Analysis of continuous time PWA systems by search-
ing for a Lyapunov function to prove stability, are formulated in Hassibi &
Boyd (1998) as convex programs involving Linear Matrix Inequalities (LMIs).
These mathematical programs can then be solved efficiently using polynomial-
time algorithms. It is shown in Rantzer & Johansson (2000) that given a PWA
controller, an upper bound and a lower bound to a piecewise quadratic cost
function can be obtained by semidefinite programming. Piecewise quadratic
Lyapunov functions are demonstrated in the same reference to be a much richer
class of Lyapunov function candidates than globally quadratic Lyapunov func-
tions. Stability analysis of smooth nonlinear systems using PWADIs or PWA
approximations is also presented in Johansson (2003). Based on the approach
in Rantzer & Johansson (2000), it is shown in Feng (2002) that PWA con-
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troller design for an uncertain PWA system to establish global stability with
H∞ performance of the resulting closed-loop system can be formulated as a
set of linear matrix inequalities (LMI). However, it is required that all local
subsystems be stable which is a conservative assumption. Rodrigues & How
(2003b) extend the stability analysis reported in Hassibi (2000) to obtain a
synthesis method for PWA state and output feedback controllers. This refer-
ence also shows that other desired features can be included in the design, such
as continuity of the control input, boundedness of the control gains and avoid-
ance of attractive sliding modes. This method was later extended in Rodrigues
& How (2003a) to stabilize nonlinear systems that can be approximated by
PWADIs.

The main result of this paper is proved in Theorem 5.2. The contribution of
this result is to provide the theoretical framework for extending a local linear
controller to a global PWA controller based on piecewise quadratic Lyapunov
functions. In previous research, Rodrigues & How (2003b) have also used piece-
wise quadratic Lyapunov functions to synthesize PWA controllers. However,
the method of Rodrigues & How does not enable one to extend a local linear
controller to a global PWA controller. Futhermore, it is assumed in Rodrigues
& How (2003b) that there is one equilibrium point for the dynamic equations
of each region. The equilibrium points of all regions are then selected a priori
by solving an optimization problem. It is also required that each of the equi-
librium points be the extrema of the corresponding sector of any candidate
Lyapunov function. By contrast, Theorem 5.2 now shows that it is in fact
not necessary to compute those equilibrium points. This has the important
advantage of relieving the designer from this tedious and non-intuitive task.

Note that a piecewise quadratic function is not differentiable everywhere and
therefore it is a nonsmooth function. Despite this fact, none of the previously
existing approaches to PWA controller design have developed a nonsmooth
theory nor have they considered using well-developed nonsmooth analysis the-
ory in the literature e.g. Clarke et al. (1998). By contrast, in this paper, we
depart from previous approaches to PWA controller design by providing a
Lyapunov theorem for nonsmooth Lyapunov functions. The theorem has the
advantage of including the standard Lyapunov stability theorem in Khalil
(2002) as its special case for C1 Lyapunov functions. The proposed PWA con-
troller in this paper has the additional advantage of coinciding locally with
a robust linear controller designed using linear control methods. It combines
local performance with global stability. One important application of the pro-
posed method can thus be to extend the region of convergence of existing
linear controllers for nonlinear systems.

The paper is organized as follows. An illustrative example is employed in
section 2 to clarify the need for the proposed method. In section 3, a Lya-
punov stability theorem for general nonsmooth Lyapunov functions is proved.
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Continuous PWADIs are defined and sufficient conditions for monotonicity of
piecewise smooth Lyapunov functions for continuous PWADIs are proved in
section 4. Section 5 then explains the proposed method which consists of robust
linear controller design and its PWA extension. Finally, PWA controllers are
designed for two examples in section 6 and conclusions are drawn in section 7.

2 Illustrative example

In this section, the following nonlinear system is used to illustrate the design
procedure:

ẋ = 0.5(1 − x2) + u (1)

The open loop system has two equilibrium points (figure 2), one at x = −1 (un-
stable) and the other one at x = 1 (stable). The goal is to design a controller
so that for any x(0) ∈ X =

[

−4, 4
]

, the trajectory of the system asymptot-

ically converges to x? = 1. It is also required that for any x(0) ∈
(

0, 2
)

, the
following cost function

J =

∫ ∞

0
(Q(x− 1)2 + Ru2)dt (2)

be minimized where Q = 2 and R = 1.
To achieve this goal, continuous PWA functions σ1(x) and σ2(x) (figure 3)

are first defined so that

ẋ ∈ conv{σ1(x) + u, σ2(x) + u} (3)

where conv stands for the closed convex hull (Royden 1988) of a set and σ1(x)
and σ2(x) are affine in x inside each of the following regions:

R1 =
(

−4,−2
)

,R2 =
(

−2, 0
)

,R3 =
(

0, 2
)

,R4 =
(

2, 4
)

(4)

In R3 (where x? is located), the dynamics of the system are described by
the following LDI,

ẋ ∈ conv{−1.6(x − 1) + u,−0.4(x − 1) + u} (5)

Defining z = x− 1, we have

ż ∈ conv{−1.6z + u,−0.4z + u} (6)
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Figure 2. The trajectory of the open loop system.
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Figure 3. PWA differential inclusion

An LQR controller can be designed for (6) using the design method for robust
linear controllers described in subsection 5.1. The resulting controller for R3

is then described by

u = −1.07x + 1.07 (7)

Figure 4 shows the trajectory of the nonlinear system in feedback connection
with the linear controller. It can be clearly seen that the system still has two
equilibrium points. Therefore, although the closed-loop system locally satisfies
the required performance measure, it is not globally stable. In the following
sections, a method for extending the designed LQR controller to a PWA con-
troller will be presented. It will be shown in section 6 that the resulting PWA
controller has the same local performance and is globally stabling.
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Figure 4. The trajectory of the system with the linear controller.

3 Stability analysis based on nonsmooth Lyapunov functions

In this section, a Lyapunov stability theorem is proved for nonsmooth Lya-
punov functions. This theorem forms the theoretical framework for using piece-
wise smooth Lyapunov functions in stability analysis of nonlinear systems.
There are other nonsmooth versions of Lyapunov theorems in the literature
e.g. Rouche et al. (1977), Sontag (1983), Clarke et al. (1998), Ceragioli (1999).
However, certain conditions in these theorems (such as, for example, the con-
ditions on the Dini derivative or the proximal subdifferential of the Lyapunov
function) are difficult to check in the case described in this paper. The objec-
tive of Theorem 3.1 will thus be to extend the standard Lyapunov stability
theorem in Khalil (2002) to nonsmooth Lyapunov functions and to fit the
framework needed in this paper. To the best of knowledge, this theorem in
this exact form does not appear in the literature.

Consider the following autonomous nonlinear system

ẋ(t) = f(x(t)) (8)

where x(t) ∈  n is the state vector, the initial state is x(0) = x0 and f : X → n is bounded in X ⊂  n. The following theorem describes sufficient conditions
for stability of system (8) in the sense of Lyapunov based on a continuous
Lyapunov function that is not necessarily differentiable everywhere. Because
of its importance, the theorem is proved here. The proof combines the proof
of the standard Lyapunov theorem in Khalil (2002) for stability and the proof
of the nonsmooth Lyapunov theorem in Clarke et al. (1998) for asymptotic
stability.

Theorem 3.1 For nonlinear system (8), if f(x?) = 0 and there exists a
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continuous function V (x) such that

V (x?) = 0 (9)

V (x) > 0 for all x 6= x? in X (10)

t1 ≤ t2 ⇒ V (x(t1)) ≥ V (x(t2)) (11)

then x = x? is a stable equilibrium point. Moreover if there exists a continuous
function W (x) such that

W (x?) = 0 (12)

W (x) > 0 for all x 6= x? in X (13)

t1 ≤ t2 ⇒ V (x(t1)) ≥ V (x(t2)) +

∫ t2

t1

W (x(τ))dτ (14)

and

‖x‖ → ∞⇒ V (x) →∞ (15)

then all trajectories in X asymptotically converge to x = x?.

Proof Since f(x?) = 0 then x = x? is an equilibrium point for system (8). For
stability, we want to prove

∀ε > 0,∃δ(ε) > 0 s.t. ‖x0 − x?‖ < δ ⇒ ‖x(t)− x?‖ < ε,∀t ≥ 0 (16)

Following Khalil (2002), we choose r ∈ (0, ε] for a given ε > 0 such that

Br = {x : ‖x− x?‖ ≤ r} ⊂ X (17)

Let α = min‖x−x?‖=r V (x). Then α > 0 by (10). Take β ∈ (0, α) and let
Ωβ = {x ∈ Br|V (x) ≤ β}. Then Ωβ is in the interior of Br (Figure 5). If
x0 ∈ Ωβ then (11) implies that x(t) ∈ Ωβ for all t ≥ 0. As V (x) is continuous
and V (x?) = 0, there is a δ > 0 such that ‖x− x?‖ ≤ δ ⇒ V (x) < β. Then

Bδ = {x : ‖x− x?‖ ≤ δ} ⊂ Ωβ ⊂ Br (18)

and x0 ∈ Bδ ⇒ x0 ∈ Ωβ ⇒ x(t) ∈ Ωβ ⇒ x(t) ∈ Br ⇒ x(t) ∈ Bε. Therefore

‖x0 − x?‖ < δ ⇒ ‖x(t)− x?‖ < r ≤ ε,∀t ≥ 0 (19)

This implies that x = x? is a stable equilibrium point.
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Figure 5. Geometric illustration of sets in the proof of Theorem 3.1.

To prove asymptotic stability, following Clarke et al. (1998), we show that
x(t) converges to x? as t→∞. It follows from x(0) = x0 and (14) that

V (x(t)) +

∫ t

0
W (x(t))dτ ≤ V (x0) (20)

Then (10), (13) and (20) imply that V (x(t)) and
∫ t
0 W (x(t))dτ are bounded.

Because V (x(t)) is bounded, it follows from (15) that ‖x(t)‖ is bounded. Since
f(x) is bounded in X , ẋ(t) is bounded and x(t) satisfies a global Lipschitz
condition on t ∈ [0,+∞) with constant L.

Assume that x(t) fails to converge to x?. Then for some ε > 0 there exists
a sequence of points ti tending to infinity such that

‖x(ti)− x?‖ ≥ ε, i = 1, 2, . . . (21)

Without loss of generality the sequence ti can always be chosen such that

|ti+1 − ti| >
ε

2L
(22)

Since ‖x(t)‖ is bounded, there exists a λ > 0 such that ‖x(t) − x?‖ ≤ λ.
Consider

A[ ε

2
,λ] = {x :

ε

2
≤ ‖x− x?‖ ≤ λ} (23)
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A[ ε

2
,λ] is not empty since λ ≥ ε > ε

2 . Let η > 0 be such that

x ∈ A[ ε

2
,λ] ⇒W (x) ≥ η (24)

Such η exists because of (13) and the fact that A[ ε

2
,λ] is not empty. Consider t

such that |t−ti| <
ε

2L . Since x(t) is globally Lipschitz continuous with constant
L, we have

‖x(t)− x(ti)‖ <
ε

2
(25)

Inequalities (21), (25) and the following triangle inequality

‖x(t)− x?‖ ≥ ‖x(ti)− x?‖ − ‖x(t)− x(ti)‖ (26)

imply ‖x(t)− x?‖ > ε
2 and consequently x(t) ∈ A[ ε

2
,λ]. Therefore, from (24)

∫ ti+
ε

2L

ti−
ε

2L

W (x(τ))dτ ≥
ηε

L
(27)

and then using (22) and (13)

∫ ti+1

ti−1

W (x(τ))dτ >
ηε

L
(28)

This would imply that
∫ t
0 W (x(t))dτ diverges as t→∞, which is a contradic-

tion with (20) and the conclusion that
∫ t
0 W (x(t))dτ is bounded. This proves

that x(t) converges to x? as t→∞. �

Theorem 3.1, together with the monotonicity conditions in the following
section, will be employed to construct a PWA controller synthesis method in
section 5.

4 Piecewise affine differential inclusions and monotonicity conditions

In this section, sufficient conditions for monotonicity of nonsmooth functions
V (x) will be provided for the following differential inclusion

ẋ ∈ conv{σ1(x), . . . , σK(x)} (29)
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where x ∈ X ⊂  n and σκ(x) for κ = 1, . . . ,K are PWA functions defined in
X as

σκ(x) = Aiκx + aiκ, x ∈ Ri (30)

where Aiκ ∈  n×n, aiκ ∈  n and X is partitioned into polytopic cells Ri, i =
1, . . . ,M such that

∪M
i=1Ri = X ,

Ri ∩Rj = ∅, i 6= j (31)

and Ri denotes the closure of Ri. It is assumed that σκ(x) for κ = 1, . . . ,K
are continuous functions. Hence for neighbour regions Ri and Rj

Aiκx + aiκ = Ajκx + ajκ, ∀x ∈ Ri ∩Rj, κ = 1, . . . ,K (32)

In the following, the concept of generalized gradient is introduced. Note
that the monotonicity condition on V (x) can also be described by the Dini
derivative (such as it is done in Rouche et al. (1977)). However, in this paper,
the theorem of Rademacher (see page 93 in Clarke et al. 1998) is used to
define the generalized gradient. This definition enables one to formulate the
monotonicity condition for nonsmooth functions as Proposition 4.2. Then, the
monotonicity condition for piecewise quadratic functions and PWA differential
inclusions can be easily proved (Proposition 4.3).

Definition 4.1 (Clarke et al. 1998) For a locally Lipschitz continuous func-
tion V :  n →  , the generalized gradient is defined as

∂CV (x) = conv{ lim
i→+∞

∇V (xi) : xi → x, xi /∈ N} (33)

where N is the set of measure zero where the gradient of V does not exist.

Proposition 4.2 (Section 2.4 of Ceragioli 1999) Let F :  n → 2 n

\ ∅ be
continuous and let V :  n →  be Lipschitz continuous. V is nonincreasing
along all solutions of

ẋ ∈ F(x) (34)

if and only if

∀x ∈  n,∀f ∈ F(x),max{p.f : p ∈ ∂CV (x)} ≤ 0 (35)
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where ‘.’ stands for the inner product of two vectors.

The following proposition is a special realization of Proposition 4.2 for the
case of PWA differential inclusions and piecewise differentiable functions.

Proposition 4.3 (Monotonicity of piecewise differentiable functions) Con-
sider a Lipschitz continuous function V : X →  where

V (x) = Vi(x), x ∈ Ri (36)

and Vi(x) is a C1 function. V (x) is nonincreasing along all solutions of the
differential inclusion (29) if for all x ∈ Ri, i = 1, . . . ,M and κ = 1, . . . ,K

∇Vi(x).(Aiκx + aiκ) ≤ 0 (37)

Proof Let x(t) be a solution of (29). The proof is divided into two parts. The
first part considers the case when x(t) is inside one of the regions and the
second part addresses the case when x(t) is at the boundary of two or more
regions.

• If x(t) ∈ Ri for any i ∈ {1, . . . ,M},

∂CV (x) = {∇Vi(x)} (38)

and ẋ ∈ F(x) where

F(x) = conv{Ai1x + ai1, . . . , AiKx + aiK} (39)

It follows from (37) that for any f in F(x),

∇Vi(x).f ≤ 0 (40)

This implies that (35) is satisfied in
⋃M

i=1Ri.

• If x(t) ∈
⋂

i∈I(x)Ri where I(x) = {i|x ∈ Ri},

∂CV (x) = conv{∇Vi(x) : i ∈ I(x)} (41)

From (37) and (32), it follows that for all l and j in I(x) and κ = 1, . . . ,K

∇Vl(x).(Ajκx + ajκ) = ∇Vl(x).(Alκx + alκ) ≤ 0 (42)
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and therefore for any f in F(x) = conv{σ1(x), . . . , σK(x)}

∇Vi(x).f ≤ 0,∀i ∈ I(x) (43)

Expressions (43) and (41) imply that

p.f ≤ 0,∀p ∈ ∂CV (x),∀f ∈ F(x) (44)

Hence, (35) is satisfied in
⋂

i∈I(x)Ri

In conclusion, (35) is satisfied in
⋃M

i=1Ri = X and by Proposition 4.2, V (x)
is nonincreasing along the solutions of (29) in X . �

The importance of Proposition 4.3 lies in the fact that to check the mono-
tonicity of V (x), it is enough to check each quadratic piece Vi(x) with the
vector fields of all the subsystems in the same region. There is therefore no
need to check it with the vector fields of the neighbour regions. Proposition
4.3 will be used in the proof of Theorem 5.2.

5 Extension of a Linear Controller to a PWA Controller

This section proposes a method to extend a local linear controller to a global
PWA controller. The method consists of two steps. In the first step, a robust
linear controller will be designed for the nonlinear system. In this step, the
designer can benefit from well established methods for designing robust linear
controllers to make the nonlinear system locally stable and to satisfy a per-
formance requirement in a neighbourhood of the desired equilibrium point. In
the second step, the objective is to design a PWA controller that coincides
with the linear controller in the neighbourhood of the equilibrium point and
guarantees global stability of the nonlinear closed-loop system.

Consider the following nonlinear system

ẋ = f(x) + g(x)u (45)

where x ∈ X ⊂  n and u ∈  m. Let

ẋ ∈ conv{σ1(x, u), . . . , σK(x, u)} (46)

where σκ(x, u) is defined as

σκ(x, u) = Aiκx + aiκ + Biκu, x ∈ Ri, (47)
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with Aiκ ∈  n×n, aiκ ∈  n, Biκ ∈  n×m for i = 1, . . . ,M . Polytopic regions
Ri are constructed as the intersection of a finite number of half spaces

Ri = {x : Eix + ei � 0}, for i = 1, . . . ,M (48)

where Ei ∈  pi×n, ei ∈  pi and � represents an elementwise inequality.
The objective is to stabilize system (45) to x = x? while satisfying a perfor-

mance requirement for x close to x?. The two steps of the proposed method
will be presented in the following subsections.

5.1 Step 1: Robust linear controller design

The first step is to design a robust linear controller for the LDI describing
local behaviour of the nonlinear system. Consider a region Ri? such that

x? ∈ Ri?

The dynamics of system (45) in this region can be described by the following
LDI.

ẋ ∈ conv{Ai?κx + ai?κ + Bi?κu : κ = 1, . . . ,K} (49)

Changing variables to z = x− x? and assuming u = Ki?x + ki? yields

ż ∈ conv{(Ai?κ + Bi?κKi?)(z + x?) + ai?κ + Bi?κki? : κ = 1, . . . ,K} (50)

To make z = 0 an equilibrium of the system, the following condition must be
satisfied.

(Ai?κ + Bi?κKi?κ)x? + ai?κ + Biκki?κ = 0, κ = 1, . . . ,K (51)

The closed-loop dynamics of the system can then be written as

ż ∈ conv{(Ai?κ + Bi?κKi?κ)z : κ = 1, . . . ,K} (52)

The matrix gain Ki? can be designed using robust linear control methodologies
to satisfy desired design objectives. The affine term of the controller ki? is
then computed as the solution of equation (51). The choice of the required
performance measure depends on the application. In this work, a robust LQR
is designed for the LDI (49). The following result is taken from Jadbabaie
(1997).
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Theorem 5.1 (Jadbabaie 1997) Consider the cost function

J =

∫ ∞

0
(zT Qz + uT Ru)dt (53)

where Q ≥ 0 and R > 0 for the following LDI

ż ∈ conv{Aκz + Bκu : κ = 1, . . . ,K} (54)

where z ∈  n and u ∈  m. If there exist S and Y so that

S > 0 (55)




SAT
κ + AκS + Y T BT

κ + BκY SQ1/2 Y TR1/2

Q1/2S −In 0

R1/2Y 0 −Im



 < 0 (56)

for κ = 1, . . . ,K , then for u = Kz where K = Y S−1, we have

J < z(0)T S−1z(0) (57)

�

To avoid the dependency of the upper bound of the cost function on initial
conditions of the system, it is proposed in Jadbabaie (1997) to assume that the
initial condition is a random vector with zero mean and identity covariance,
i.e., !{z(0)} = 0!{z(0)z(0)T } = I (58)

It is shown in Jadbabaie (1997) that tr(S−1) (tr stands for trace of a matrix)
is an upper bound on !{J}. Therefore it is proposed in the same reference to
solve the following optimization problem to minimize the upper bound on the
cost function.

max tr(S)

subject to (55) and (56) (59)

This optimization problem can be solved using SeDuMi Strum (2001) and
Yalmip Löfberg (2004) to compute the controller gain Ki? . The affine term ki?
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can then be computed by solving (51). The controller in region Ri? can then
be written as

u = K̄i? x̄, where K̄i? =
[

Ki? ki?

]

and x̄ =

[

x
1

]

(60)

The next step is to find a PWA controller that coincides with the linear con-
troller (60) in Ri? and guarantees the stability of the closed-loop system in
X .

5.2 Step 2: Piecewise-affine state feedback design

The second step is to extend the robust linear controller to a PWA state
feedback controller for the following differential inclusion that describes the
global behaviour of the nonlinear system.

ẋ ∈ conv{σ1(x, u), . . . , σK(x, u)} (61)

where the σκ(x, u) for κ = 1, . . . ,K are defined in (47). Considering the regions
defined in (48), each region Ri can be outer approximated by a (possibly
degenerate) quadratic curve εi

Ri ⊆ εi = {x : x̄T ĒT
i Λ̄iĒix̄ > 0} (62)

where Λ̄i ∈  (pi+1)×(pi+1) is a matrix with nonnegative entries and

Ēi =

[

Ei ei

0 1

]

(63)

A parametric description of the boundaries between two regions Ri and Rj

where Ri ∩ Rj 6= ∅ can also be obtained as (see Hassibi & Boyd (1998) and
Rodrigues & How (2003b) for more details)

Ri ∩Rj ⊆ {x : x = Fijs + fij, s ∈  n−1} (64)

To stabilize the equilibrium point x? of the nonlinear system (45) a PWA
control input of the following form is considered

u = Kix + ki = K̄ix̄, for x ∈ Ri (65)
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where

K̄i =
[

Ki ki

]

(66)

Consider the piecewise quadratic candidate Lyapunov function continuous at
the boundaries and defined in X by the expression

V (x) = x̄T P̄ix̄, for x ∈ Ri (67)

where P̄i = P̄ T
i ∈  (n+1)×(n+1) and

P̄i =

[

Pi qi

qT
i ri

]

(68)

with Pi ∈  n×n, qi ∈  n and ri ∈  . To simplify the notation, define

Āiκ =

[

Aiκ aiκ

0 1

]

, B̄iκ =

[

Biκ

0

]

, F̄ij =

[

Fij fij

0 1

]

,

Ī =

[

I −x?

−x?T x?Tx?

]

, x̄? =

[

x?

1

]

(69)

The following theorem describes sufficient conditions for the existence of a
continuous piecewise quadratic Lyapunov function of the form (67) and a PWA
controller of the form (65) that coincides with the robust linear controller in
the region where x? lies and guarantees global stability.

Theorem 5.2 Let there exist matrices P̄i = P̄ T
i defined in (68), K̄i defined

in (66), Zi, Z̄i, Λiκ and Λ̄iκ that verify the following conditions for all i =
1, . . . ,M , κ = 1, . . . ,K and for a given decay rate α > 0, desired equilibrium
point x?, linear controller gain K̄i? defined in (60) and ε > 0

• Conditions on the PWA controller:

K̄i = K̄i? , if x? ∈ Ri (70)

(Āiκ + B̄κK̄i)x̄
? = 0, if x? ∈ Ri (71)

(Āiκ + B̄iκK̄i)F̄ij = (Ājκ + B̄jκK̄j)F̄ij , if Ri

⋂

Rj 6= ∅ (72)

• Continuity of the Lyapunov function:

F̄ T
ij (P̄i − P̄j)F̄ij = 0, if Ri

⋂

Rj 6= ∅ (73)
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• Positive definiteness of the Lyapunov function:

P̄ix̄
? = 0, if x? ∈ Ri (74)

Pi > εI, if x? ∈ Ri, Eix
? + ei 6= 0 (75)

{

Zi ∈  n×n, Zi � 0
Pi − ET

i ZiEi > εI
, if x? ∈ Ri, Eix

? + ei = 0 (76)

{

Z̄i ∈  (n+1)×(n+1), Z̄i � 0
P̄i − ĒT

i ZiĒi > εĪ
, if x? /∈ Ri (77)

• Monotonicity of the Lyapunov function:

for i such that x? ∈ Ri, Eix
? + ei 6= 0,

Pi(Aiκ + BiκKi) + (Aiκ + BiκKi)
T Pi < −αPi (78)

for i such that x? ∈ Ri, Eix
? + ei = 0,

{

Λiκ ∈  n×n, Λiκ � 0
Pi(Aiκ + BiκKi) + (Aiκ + BiκKi)

TPi + ET
i ΛiκEi < −αPi

(79)

for i such that x? /∈ Ri,
{

Λ̄iκ ∈  (n+1)×(n+1), Λ̄iκ � 0
P̄i(Āiκ + B̄iκK̄i) + (Āiκ + B̄iκK̄i)

T P̄i + ĒT
i Λ̄iκĒi < −αP̄i

(80)

Then for the following nonlinear system

ẋ = f(x) + g(x)u with u = K̄ix̄ for x ∈ Ri, (81)

all trajectories in X asymptotically converge to x = x?.

Proof The conditions on the PWA controller guarantee that it is an extension
of the linear controller. The proof starts by analyzing each of these conditions
in detail:

(i) Condition (70) makes the PWA controller coincide with the linear con-
troller u = K̄i? x̄ in the region(s) where x? is located.

(ii) Condition (71) implies that σκ(x?, K̄i? x̄?) = 0 for κ = 1, . . . ,K. It follows
from this and (46) that ẋ = 0 at x = x? for the nonlinear system (81).
Therefore x? is an equilibrium point for (81) with u = K̄ix̄ for x ∈ Ri.
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(iii) If Ri ∩Rj 6= ∅, using (64) for x ∈ Ri ∩Rj, we can write x̄ = F̄ij s̄ where

s̄ =

[

s
1

]

(82)

Condition (72) then leads to (Āiκ +B̄iκK̄i)F̄ij s̄ = (Ājκ+B̄jκK̄j)F̄ij s̄ for all
s ∈  n−1, which means that the PWA functions σκ(x, K̄ix̄) for κ = 1, . . . ,K
are continuous across the boundaries of the regions. Therefore, Proposition
4.3 can be used in the rest of the proof.

The main idea of the rest of the proof is to show that all conditions of Theorem
3.1 are satisfied for the nonlinear system (81) with u = K̄ix̄ for x ∈ Ri.

• Conditions on the Lyapunov function:
(i) Continuity: Similarly to (72), continuity of V (x) is guaranteed by (73).
(ii) Positive definiteness: For V (x) defined in (67) and i such that x? ∈ Ri,

condition (74) implies that

V (x) = (x− x?)TPi(x− x?) for x ∈ Ri where x? ∈ Ri (83)

and therefore V (x?) = 0.
To prove that V (x) is positive definite, we will show that

V (x) > ε(x− x?)T(x− x?) for x 6= x? (84)

Consider Ri such that x? ∈ Ri and Eix
? + ei 6= 0. Inequality (84) is

then implied by condition (75) and equation (83). Condition (75) can
be relaxed for regions Ri where x? ∈ Ri and Eix

? + ei = 0. For these
regions, it follows from condition (76) that

(x−x?)TPi(x−x?)−(x−x?)TET
i ZiEi(x−x?) > ε(x−x?)T(x−x?) (85)

Inequality (85) and Eix
? + ei = 0 yields

(x−x?)TPi(x−x?)−(Eix+ei)
TZi(Eix+ei) > ε(x−x?)T(x−x?) (86)

However, we know that Eix + ei > 0 for x ∈ Ri. Since all the entries
of Zi are nonnegative, we have V (x) > ε(x − x?)T(x − x?) for x 6= x?

in Ri. Finally, for regions where x? /∈ Ri, it can be shown in a similar
way that condition (77) implies that V (x) > ε(x − x?)T(x − x?) for
x ∈ Ri.
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(iii) Monotonicity: Similarly, it follows from (78)-(80) that for i = 1, . . . ,M
and κ = 1, . . . ,K

∇Vi(x).(Aiκx + aiκ + Biκ(Kix + ki)) + αV (x) ≤ 0 (87)

where x ∈ Ri. This can be written as

[

∇Vi(x)
αV (x)

]

.

[

Aiκx + aiκ + Biκ(Kix + ki)
1

]

≤ 0 (88)

where, as before, the ‘.’ stands for the inner product of two vectors.
Therefore, invoking Proposition 4.3 for the following differential inclu-
sion

[

ẋ
ṫ

]

∈

[

conv{σ1(x, u), . . . , σK(x, u)}
1

]

(89)

where t is the time variable, it follows that V (x) +
∫ t
0 αV (x(τ))dτ is

nonincreasing along the trajectories of the differential inclusion (89).
Therefore condition (14) in Theorem 3.1 with W (x) = αV (x) is satis-
fied for the nonlinear system (81).

The above results imply that all conditions of Theorem 3.1 are satisfied for the
nonlinear system (81) and therefore all the trajectories in X asymptotically
converge to x = x?. �

Theorem 5.2 separates the conditions for positive-definiteness and monoton-
icty of the candidate Lyapunov function into three cases:

• The desired equilibrium point is inside the region or at some, but not all, of
the boundaries.

• The desired equilibrium point is located at the intersection of all the bound-
aries.

• The desired equilibrium point is outside the region.

It also shows that there is no need to assume that there is one equilibrium
point for the dynamic equations of each region and to select them a priori
by solving an optimization problem (such as it was done in Rodrigues & How
(2003b)).

Remark 1 One of the limitations of the method proposed in Theorem 5.2 is
that it addresses the regulation problem for a fixed desired equilibrium point.
It is however possible to apply the same method to a set of multiple desired
equilibrium points at the cost of designing one controller for each equilibrium
point.
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Figure 6. The computed Lyapunov function - Example 6.1

Remark 2 The conditions in Theorem 5.2 include bilinear matrix inequalities
(BMI) which make the problem nonconvex. Toker & Özbay (1995) showed that
the problem of checking the solvability of a BMI is NP-hard. The complexity
of the synthesis problem increases with the order of the system, the dimension
of the partitioned space and the number of regions. However, PENBMI (Koc-
vara et al. 2004), a recent software package providing algorithms with local
optimality guarantees, can be used in practice to search for a local solution to
the problem.

6 Numerical Examples

Example 6.1 For the illustrative example in section 2, a PWA controller is
designed to extend the region of convergence of the robust LQR controller.
A feasible solution to the synthesis problem described in Theorem 5.2, was
calculated using PENBMI (Kocvara et al. 2004) and Yalmip (Löfberg 2004).
Figure 6 depicts the resulting piecewise quadratic Lyapunov function. The
designed PWA controller (figure 7) is described by the following gains.

K̄1 =
[

−4.08 −0.437
]

, K̄2 =
[

−3.32 1.07
]

K̄3 =
[

−1.07 1.07
]

, K̄4 =
[

2.45 −5.97
]

(90)

Note that the PWA controller coincides with the linear LQR controller in
(

0, 2
)

. Figure 8 shows the trajectory of the closed-loop system consisting of
the nonlinear system in feedback connection with the PWA controller. Notice
that the closed-loop system has now only one equilibrium point in X = [−4, 4]
and it is stable for all initial conditions in X .
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Figure 7. The designed PWA controller - Example 6.1
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Figure 8. Trajectories of the closed-loop system with the PWA controller (solid) and the linear
controller (dashed) - Example 6.1

Example 6.2 Consider the following simple PWA system (adopted from
Rantzer & Johansson 2000, with slight modification)

ẋ1 = x2

ẋ2 = −0.1x2 + g(x1) + u (91)

where g(x1) is the PWA function depicted in Figure 9. It is desired to stabilize
the origin (x1 = x2 = 0) for this system. The local performance criterion is

J(x, u) =

∫ ∞

0
4x2

1(t) + 4x2(t)
2 + u(t)2dt (92)

At first, we designed a PWA controller by applying the synthesis method pro-
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Figure 10. Trajectories of the closed-loop system for the PWA controller proposed in Rantzer &
Johansson (2000) - Example 6.2

posed by Rantzer & Johansson (2000) using PWLTOOL (Hedlund & Johans-
son March 1999). Figure 10 shows the trajectories of the closed loop system.
It can be seen that, in this case, the PWA controller designed by PWLTOOL
does not stabilize the origin even locally.

We then employ Theorem 5.2 to stabilize the origin and to extend the fol-
lowing LQR controller with the cost function (92) to a PWA controller

u = −3.2361x1 − 3.1376x2 (93)

Figure 11 depicts the trajectories of the closed loop system. The PWA con-
troller stabilizes the origin while it coincides with the LQR controller (93) for
the center region (−1 < x1 < 1).
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Figure 11. Trajectories of the closed-loop system for the proposed PWA controller - Example 6.2

Example 6.3 Consider the following second order system

ẋ1 = x2

ẋ2 = −x1 + 0.5x2 − 0.5x2
1x2 + u (94)

Figure 12 shows the trajectories of the open loop system. A linear controller
u = −198x1 − 101x2 can extend the region of convergence to the origin as
depicted in Figure 13. However, there still exist initial conditions in

X =

{[

x1

x2

]
∣

∣

∣

∣

− 30 < x1 < 30, −60 < x2 < 60

}

(95)

for which the trajectories of the system do not converge to the origin.
To design a PWA controller, the nonlinear system (94) should first be in-

cluded by a PWADI. This is done by computing upper and lower PWA bounds
on the nonlinear function h(x) = 0.5x2

1x2 and then substituting the nonlinear
function in (94) by its PWA bounds. Figure 14 shows the regions (triangles)
for which the PWA bounds are computed.

A PWA controller was then designed that satisfies all the conditions of
Theorem 5.2. The corresponding piecewise quadratic Lyapunov function is
depicted in Figure 15. The trajectories in Figure 14 clearly show that the
PWA controller enlarges the region of convergence.

7 Conclusions

This paper proposed a two-step synthesis method to achieve both local perfor-
mance and global stability for a class of uncertain nonlinear systems. In this
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Figure 13. Trajectories of the closed-loop system for the linear controller - Example 6.3

method, a local robust linear controller is first designed for a neighbourhood
of the desired equilibrium point to satisfy a local performance requirement.
The local linear controller is then extended to a PWA controller to globally
stabilize the nonlinear system. The PWA controller locally coincides with the
linear controller. A stability theorem for nonsmooth piecewise quadratic Lya-
punov functions was also presented that constructs the required theoretical
framework.
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Clarke, F. H., Ledyaev, Y. S., Stern, R. J. & Wolenski, P. R. (1998), Nonsmooth
Analysis and Control Theory, Springer Verlag, New York.

Doyle, J. C., Francis, B. A. & Tannenbaum, A. R. (1990), Feedback Control
Theory, Macmillan.

Feng, G. (2002), ‘Controller design and analysis of uncertain piecewise-linear
systems’, IEEE Trans. Circuits Syst. I 49, 224–232.



26 REFERENCES

Hassibi, A. (2000), Lyapunov methods in the analysis of complex dynamical
systems, PhD thesis, Stanford University.

Hassibi, A. & Boyd, S. (1998), Quadratic stabilization and control of piecewise-
linear systems, in ‘Proc. American Control Conference’, Philadelphia, PA,
pp. 3659–3664.

Hedlund, S. & Johansson, M. (March 1999), PWLTOOL: A MATLAB toolbox for
analysis of piecewise linear systems, Technical report, Department of Au-
tomatic Control, Lund Institute of Technology.

Jadbabaie, A. (1997), Robust, Non-Fragile Controller Synthesis Using Model
Based Fuzzy System: A Linear Matrix Inequality Approach, M.Sc. thesis,
The University of New Mexico, Albuquerque, New Mexico.

Johansson, M. (2003), Piecewise Linear Control Systems, Springer, Berlin.
Khalil, H. (2002), Nonlinear Systems, Prentice-Hal. Inc., 3rd ed.
Kocvara, M., Leibfritz, F., Stingl, M. & Henrion, D. (2004), A nonlinear SDP

algorithm for static output feedback problems in COMPleib, Technical
report, University of Trier, Germany.
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