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Abstract 

Integrated Operational and Financial Approaches in Supply Chain Risk 

Management 

Dia Bandaly, Ph.D. 

Concordia University, 2012 

Like other relatively more established sub-areas of Supply Chain Management, 

Supply Chain Risk Management (SCRM) is an emerging field that mostly lacks 

integrative approaches across disciplines. This study attempts to narrow this gap by 

developing an integrated approach to SCRM using operational tools and financial 

instruments. The conceptualization of SCRM is examined with reference to the broader 

literature on risk management. A SCRM framework is developed based on our 

taxonomies of risk and risk management approaches.   

Our unit of analysis is a supply chain composed of an aluminum can supplier, a 

brewery and a distributor. We develop a (base) stochastic optimization model that 

incorporates operational and financial features of the aforementioned supply chain. The 

supply chain is exposed to aluminum price fluctuation and demand uncertainty. Through 

simulation based optimization, we compare the performance of the integrated model 

(under which operational and financial hedging decisions are made simultaneously) to a 

sequential model (under which the financial decisions are made after the operational 

decisions are finalized, a common practice for many supply chains even today). Using 

experimental designs and statistical analyses, we analyze the performance of the two 

models in minimizing the expected total opportunity cost of the supply chain. We 

examine the supply chain performance in different business environments defined by 
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three factors, each at three levels: risk aversion, demand variability and aluminum price 

volatility. We find that the integrated model outperforms the sequential model in most 

cases. The results also shed light on significant variations in supply chain performance 

under changing business environments. Managerial insights are offered based on 

optimization results and statistical analyses. 

 The base model developed is then extended in two directions. First, we incorporate 

lead time variability as a fourth factor and study the effects of this variability. For the 

second extension, we introduce exchange rate risk into our base model. We examine the 

variations in the benefits of hedging exchange rate risk under two risk aversion levels and 

different exchange rate volatilities. Managerial insights on the findings of both extensions 

are provided.  

The thesis concludes with a summary of overall findings. Areas for further research 

are also highlighted. 
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Chapter  1                                

Introduction 

Supply chain risk management (SCRM) entails assessment of risks that may cause 

disruptions along a supply chain, and the implementation of tools that can be employed to 

manage these risks. Risk management has been widely studied in various disciplines 

from finance to engineering. However, supply chain risk management is a relatively 

recent undertaking. Supported by advanced information technologies and faster and 

cheaper transportation, firms are expanding their supply networks. Supply chains are 

geographically scattered all around the world. This worldwide presence substantially 

increases the exposure of the supply chain to inherent risks.  The very structure of a 

supply chain results in exceptional far-reaching, global exposure. Such an exposure 

amplifies its vulnerability to traditional risks. Furthermore, the common business 

practices implemented in supply chains aggravate the impact of risks. For example, the 

just-in-time approach that characterizes the supply systems in most supply chains makes 

them vulnerable to stockouts, traditionally managed by inventory buffers. On the other 

hand, both the structure and the infrastructure of a supply chain can also positively 

contribute to its capability to manage risks. In this regard, the global presence of a supply 

chain increases its production flexibility and the partnership-like relationships among 

members of the supply chain make it more resilient to sudden changes in market 

conditions.  
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Identifying the imminent risks is the first step towards establishing a risk management 

strategy. Despite the significance of this task, the literature on SCRM is short on methods 

that help practitioners identify risks in a systematic manner. Once risks are identified, 

appropriate risk management tools are to be deployed. Literature in various disciplines is 

abundant with risk management methods. However, there isn’t much research reported 

on how to select ‘appropriate’ risk management tools. To fill this gap in the literature, we 

develop a supply chain risk management framework, presented in Chapter 2, that 

supports the tasks of risk identification and selection of the appropriate risk management 

tool.  

The purpose of our research is two-fold. First, we conduct a survey on supply chain 

risk management. The survey is based on an extensive review of the literature. In the first 

part of the review, we focus on risk identification and risk management in supply chains. 

We use our supply chain risk management framework in the second part of the review to 

classify the risks and risk management approaches found in the literature into categories.  

Based on these classifications, we associate risks with respective risk management tools. 

Second, we explore the benefits of integrating operational and financial approaches in 

mitigating risks in a supply chain. There is a profusion of risk management models in the 

operations and finance literatures. However, only a small number of studies reported 

investigate the advantages of integrating the two approaches. Moreover, few risk 

management models optimize the performance of the supply chain as a unit. Most of such 

models are buyer centric. We contribute to the SCRM literature by developing a model 

that integrates operational decisions (via procurement and inventory levels) and financial 
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hedging decisions (via financial derivatives) in order to minimize the opportunity cost of 

the supply chain as a whole. 

In Chapter 2, we review the literature on the main stream research of risk 

management and we elicit elements that are specific to risk management in supply chains. 

In the main stream of risk management, we identify two gaps in the literature pertinent to 

risk identification methods and systematic procedures to select the appropriate risk 

management approach. We attempt to fill this gap by developing a supply chain risk 

management framework. The principal components of the framework are the 

classification methods of risks and risk management approaches. Based on our literature 

review, we propose to identify risks through three different constructs: risk domain, 

source of risk and adverse events. We also propose to classify risk management 

approaches into three categories: avoidance, prevention and mitigation approaches. Such 

a classification facilitates the risk management selection decision. Finally, we develop a 

planning process that facilitates the implementation of our framework in the context of a 

supply chain risk management strategy. 

In Chapter 3, we present the findings of our literature survey on risk management 

approaches. The survey is based on an extensive review of the operations and finance 

literatures. The operational risk management approaches are reviewed in line with our 

supply chain risk management framework. In each of the four risk domains, defined in 

the framework, we associate various adverse events identified in the literature with 

sources of risks. Then, we discuss how different operational approaches reviewed can be 

deployed for avoiding, preventing or mitigating these risks. We also assign these 

approaches to functional areas. Our review for the finance literature focuses on the 
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financial derivatives that are commonly used in risk management to manage the operating 

cash flow of manufacturing firms. From our review of both literatures, we note the 

differences between operational and financial approaches in risk management. We also 

observe the presence of conflicting arguments. Some researchers contend that operational 

and financial approaches are substitutes, while others argue that they are complements. 

We complete our literature survey with a review on integrated operational and financial 

approaches. We recognize gaps in this relatively sparce literature. 

Motivated by the scarcity of research on integrating operational and financial tools to 

manage risks in supply chains, we develop a model to explore the benefits of integrating 

these two approaches. In Chapter 4, we present our base model in which our unit of 

analysis is a supply chain consisting of a brewery, a can supplier and a distribution 

center. The supply chain encounters two uncertainties: fluctuation in aluminum prices 

and variability in beer demand. The former affects the cost of an important input to the 

production process, which is the cost of aluminum cans. The latter leads to a mismatch 

between the output quantity and the realized demand. Before the demand is realized, the 

supply chain needs to make two decisions: i) quantity of aluminum to procure, and ii) 

inventory level to maintain in the distribution center. Associated with the first decision is 

an opportunity cost should the aluminum price decrease. The opportunity cost pertinent 

to the second decision stems from the stockout costs and the holding costs. The latter cost 

is also a function of the aluminum procurement price in the first decision. The supply 

chain hedges the aluminum price with inventory and options on aluminum futures and 

coordinates the flow of empty cans and beer across the supply chain. The above decisions 
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are made with an objective of minimizing the expected total opportunity cost along the 

supply chain.  

We formulate this stochastic problem in our base integrated model and find the 

solution using a simulation-based optimization algorithm. We use experimental design to 

study the effects of three factors on supply chain performance. These factors are risk 

aversion level, demand variability and aluminum price volatility. We create various 

treatments representing all possible permutations of these factors. Each factor is 

represented at three levels. We also compare the results of the integrated model with 

corresponding results of a sequential model. This latter model captures the situation in 

which the supply chain first makes decision on inventory levels and then makes decisions 

on financial hedging. Comparing the corresponding expected total opportunity costs of 

the two models sheds light on the benefits of integrating operational and financial tools in 

supply chain risk management. The findings reveal that, in most of the cases, the supply 

chain can better manage its risks when it integrates the operational and financial risk 

management approaches. However, under certain business conditions, integrating the 

decisions would not lead to significant improvements. We also find that the supply chain 

uses less operational hedging in the integrated model. More operational hedging is used 

when demand variability increases and when the supply chain is more risk averse. Our 

statistical analyses for the optimal solutions obtained in the various treatments 

substantiate the impact of each factor and explains the interaction effects among the three 

factors on the expected opportunity cost. 

In Chapter 5, we present an extension to our base model. In this extension, we 

incorporate a stochastic lead time in the supply of aluminum cans to the brewery. While 
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in the base model this lead time is assumed to be deterministic with a fixed duration of 

four weeks, it follows a discrete probability distribution with a mean of four weeks in this 

extended model. Similar to the experiments in the base model, we create a number of 

treatments representing all possible permutations of the factors. In addition to the three 

factors studied in the base model, lead time variability constitutes the fourth factor. Each 

factor is represented at two levels. We implement the same solution method (simulation-

based optimization) used in the base model. For analysis, we focus on the effects of lead 

time variability on the performances of the integrated and the sequential model. We also 

interpret the interaction effects involving lead time variability on the expected 

opportunity cost. Lead time variability is found to significantly alter the effects of the risk 

aversion level on the expected opportunity cost and the effects of demand variability on 

this cost. 

In Chapter 6, we examine the performance of an international supply chain in which 

the brewery and distribution center operate in Canada and the can supplier operates in the 

United States. In addition to the aluminum price volatility and demand variability which 

are considered in the base model, the supply chain is exposed to fluctuation in the 

CAD/USD exchange rate. We incorporate this new risk factor in an extension to the base 

model. We simulate various sets of exchange rate with different volatilities to better 

investigate the effects of this risk on the supply chain performance. We incorporate these 

volatilities in different treatments of the integrated model. We solve these treatments at 

two levels of the risk aversion factor, keeping the other two factors constant at their base 

levels. We perform parametric analyses on the optimal results and we present some 

managerial insights. While the positive effects of hedging the exchange rate are 
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predictable, the results reveal the influence of the risk aversion level and the exchange 

rate volatility on these effects.  

In the final chapter, we summarize the findings of the literature survey for the 

pertinent articles. We underline the major findings in the base model and the two model 

extensions. We highlight the major managerial insights elicited from the results of the 

three models. We conclude by proposing some directions for future research in SCRM 

. 
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Chapter  2                                                

Supply Chain Risk Management – I: 

Conceptualization, Framework and Planning 

Process 

2.1 Introduction 

While research on risk management is extensive and crosses over various academic 

disciplines at the firm level, it is imperative that risk management also be studied within a 

supply chain context in which the unit of analysis is the supply chain rather than the firm. 

Though the nature of risk does not change, the exposure profile of a supply chain to such 

risks is different from that of a single firm. On the one hand, the structure and practices of 

supply chains make the participating firms more vulnerable to the traditional risks 

encountered by single firms. The widely used just-in-time (JIT) inventory system is a 

typical example of a supply chain practice that exposes firms to material shortage risk. 

On the other hand, the structural characteristics of supply chains also allow firms to join 

forces to minimize such risks. For example, information sharing among members of the 

supply chain is known to reduce the bullwhip effect.  
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Supply Chain Risk Management (SCRM) entails managing risks that can hinder the 

performance of supply chains. SCRM is a developing area of research as indicated in, 

among others, Juttner et al (2003), Juttner (2005), Tang (2006a), Khan and Burnes 

(2007), and Manuj and Mentzer (2008b). This Chapter contributes to this research 

through the development of a SCRM framework and an accompanying risk management 

planning process that help the user set a comprehensive risk management strategy. The 

framework is based on a typology involving three constructs of risk. These constructs are 

‘risk domain’, ‘source of risk’ and ‘identified risk’. Risk management approaches are 

classified in the framework as ‘avoidance’, ‘prevention’ and ‘mitigation’ approaches. The 

developed framework associates various risk management methods found in the literature 

with identified risks.  

Manuj and Mentzer (2008a) define global SCRM as “the identification and evaluation 

of risks and consequent losses in the global supply chain, and implementation of 

appropriate strategies through a coordinated approach among supply chain members”. 

Three major elements can be elicited from this definition of SCRM: risk identification 

and evaluation/assessment, global supply chain and coordinated risk management 

strategies.  We structure our work in the next three sections around these elements. In 

Section 2.2, we review papers on risk identification and assessment. Because of scant 

coverage of risk identification and assessment methods in the literature, we underscore 

the role of proper risk classification in identifying risks and we emphasize the evaluation 

of risk dimensions as an assessment requirement. In Section 2.3, we accentuate the 

particular relationship between risks and global supply chains. Particularly, we highlight 

the vulnerability of these supply chains to risks, as well as their ability to alleviate risks. 
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In Section 2.4, we argue that the various risks in supply chains should be managed by the 

coordinated and collaborative efforts of the stakeholders involved. Despite the abundance 

of methods that can be used to manage risks, we highlight the lack of selection criteria in 

the literature when implementing these approaches. Based on the conceptualization and 

review in the preceding sections, we then present our SCRM framework in Section 2.5 

and the risk management planning process in Section 2.6. Our contribution to the 

literature is summarized in Section 2.7.  

2.2 Risk Identification and Assessment 

While the main objective of supply chain risk management is well articulated in terms of 

protecting the supply chain from any risk that can adversely affect its performance and 

continuity, the problem often lies in the difficulty in identifying the risks in the first 

place. Once risks are identified, supply chain practitioners face the subsequent challenge 

of assessing these risks in order to develop the appropriate risk management strategy. In 

the following sub-sections, we underline the lack of identification methods in the 

literature and review the assessment methods described by researchers. 

2.2.1 Risk Identification 

The first step in the risk management process is the identification of the risks posing 

threats to the supply chain. Kleindorfer and Saad (2005) and Svensson (2001) emphasize 

the necessity of identifying risks as well as their sources to enhance risk management. 

However, the literature suffers from a shortage of risk identification methods (Rao and 

Goldsby, 2009). Acknowledging this shortage, Neiger et al (2009) propose a 

methodology based on value-focused process engineering (VFPE). The perception of risk 
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as a process objective allows the authors to use the VFPE (a methodology usually used to 

identify objectives) in identifying supply chain risks.  

2.2.1.1 Risk Classification 

Risk classification is regarded as a prerequisite in identifying risks. Miller (1992) argues 

that his classification of the uncertainties encountered by international firms would 

clarify the “relevant dimensions” of these uncertainties. The author presents three major 

categories of uncertainties: general environment, industry and firm. Under each category, 

a number of major classes of uncertainties are identified. Specific factors are then listed 

under each class, encompassing the different dimensions of uncertainties. Triantis (2000) 

classifies risks into five major categories. These are the technological, economic, 

financial, performance and legal/regulatory risks. The financial category comprises four 

sub-categories, of which one is the foreign currency exchange rate risk. The author then 

discusses three distinct risks stemming from exchange rate risk: transaction, translation 

and competitive risks. The identification of these three risks illustrates the direct benefits 

of effective risk classification as the distinctions among the identified risks are useful in 

assigning the proper risk management approach. In their 1994 survey, Bodnar et al 

(1995) find that 80% of the firms which use derivatives hedge their commitments 

(transaction risks), 44% of the firms hedge the balance sheet (translation risks), and 40% 

hedge economic exposure (competitive risks). Risk classification is also essential for 

assessing the risks (Juttner et al, 2003). This argument is supported by Sheffi and Rice 

(2005) who identify three classes of possible disruptions to the firm: random events, 

accidents and intentional disruptions. They contend that the method of estimating the 

likelihood of each class differs. Consequently, risk classification is thus indispensable for 



 12 

setting the appropriate risk management strategies. Chopra and Sodhi (2004) call for 

managers to “understand the universe of risk categories as well as the events and 

conditions that drive them” to be able to develop effective supply chain risk management 

tools. In this context, one can refer to various categories defined by a number of 

researchers in their attempts to classify risks and sources of risks (e.g. Ghoshal, 1987; 

Miller, 1992; Ritchie and Marshall, 1993; Triantis, 2000; Svensson, 2001; Juttner et al, 

2003; Christopher and Peck, 2004; Chopra and Sodhi, 2004; Tang, 2006a; Ritchie and 

Brindley, 2007; Manuj and Mentzer, 2008a; Blos et al, 2009). In Section 5.1, we discuss 

our risk classification as part of our supply chain risk management framework and we 

compare our typology with some of the existing classifications.  

2.2.1.2 Risk Identification Factors 

Although risk classification facilitates a systematic identification of potential risks, 

identification of risk is argued to be a function of two factors: managers’ perceptions and 

characteristics of the industry (Miller, 1992; Juttner et al, 2003). Managers’ perceptions 

of risks may be influenced by personal factors such as emotions, gender, age and 

education level (Moen and Rundmo, 2006; Cohen and Kunreuther, 2007). The results of 

a survey carried out by Moen and Rundmo (2006) reveal that worry is the main predictor 

of the public’s perception of transport risk. The manager’s personal factors may be more 

objective such as his/her own evaluation of market movements (Servaes et al, 2009). 

Contending that such managers’ perceptions are “static or are seldom updated”, 

Blackhurst et al (2005) call for developing broader and dynamic risk models. On the 

other hand, with respect to industry characteristics, Sheffi and Rice (2005) argue that the 

exposure of different firms to a certain risk is distinctive. For example, while bad weather 
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is a major source of risk for Disney’s theme parks (Meulbrock, 2002), it is of small 

significance for a traditional manufacturing company. From their exploratory interviews 

with supply chain practitioners, Juttner et al (2003) find out that these managers 

conceptualize risk based on the specific supply chain they manage and the industry where 

they operate. 

2.2.2 Risk Assessment 

2.2.2.1 Risk Assessment Methods 

Once various risks are identified, managers then proceed to assess risk to evaluate its 

potential impact on the firm’s performance. Despite the lack of research concerning the 

process specific to supply chain risk assessment (Zsidisin et al, 2004), a number of 

researchers have a common understanding that risk assessment entails the evaluation of 

two variables: i) likelihood of occurrence of an adverse event and ii) magnitude of the 

impact on the supply chain’s performance should the event occur (e.g. Cox and 

Townsend, 1998; Chopra and Sodhi, 2004; Sheffi and Rice, 2005; Cohen and 

Kunreuther, 2007; Knemeyer et al, 2009; Thun and Hoeing, 2011). In the failure mode 

and effect analysis (FMEA) methodology, risk assessment entails a third variable, 

detection of failure, that needs also to be estimated (Stamatis, 2003). Due to the macro 

nature of supply chain risks (delayed shipments, change in demand, earthquake, etc.) we 

assume that adverse events are visible and thus we omit the failure detection variable 

from our discussions. The likelihood of occurrence and the magnitude of impact are 

largely agreed to be the basic dimensions of risks in the supply chain literature. March 

and Shapira (1987) define risk as "the variation in the distribution of possible supply 

chain outcomes, their likelihood and their subjective values." The “outcome” in this 
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definition clearly refers to the realization of risk in the form of an adverse event. The 

same term was used earlier by Moore (1983) who describes the two main components of 

risk to be the ‘future outcome’ and the occurrence likelihood of this outcome. Ritchie and 

Brindley (2007) elicit from the various definitions of risk a third dimension which is “the 

causal pathway leading to the event” (see also Kleindorfer and Saad, 2005). A similarity 

can be noted between this third risk dimension and one of the questions formulated by 

Sheffi and Rice (2005) for vulnerability assessment: “What can go wrong?” While 

occurrence probability and impact magnitude provide a two-dimensional construct 

defining a risk, this third dimension leads to another attribute of risk management: source 

of risk or risk driver. In Section 5.1, we recognize the source of risk as a major construct 

of our framework and we emphasize the benefits of explicitly highlighting the sources of 

risk when developing an effective supply chain risk management strategy. 

2.2.2.2 Risk Measurement 

In a supply chain context, risk assessment also involves locating parts of the chain that 

are most susceptible to risk and portraying the form of damage that may be endured in 

case the adverse event occurs (Cohen and Kunreuther, 2007; Knemeyer et al, 2009). At 

this stage, managers face the challenging task of quantifying the likelihood of occurrence 

of the adverse event and the magnitude of its impact on supply chain performance. While 

the likelihood of occurrence can be measured using historical data, the impact level can 

be measured in financial terms (e.g. loss in returns, value at risk), operational terms (e.g. 

production delay period, number of customers not served) or in strategic terms (e.g. loss 

of goodwill, loss of market share). The severity of impact may also be in itself a factor in 

determining the proper mitigation tool to use. Huang et al (2009) develop a model to 
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distinguish between ‘deviational’ and ‘disruptive’ risks. While the impact of the former is 

limited to variations in system parameters and outcomes, the latter would disrupt normal 

operations and result in unpredictable system performance. One challenge is to find the 

appropriate information to quantify the risk measures (Knemeyer et al, 2009). Haimes 

(1998) proposes the use of frequency data, scenarios and subjective probabilities or 

experts’ judgments. Sheffi and Rice (2005) contend that historical data may be used to 

measure the occurrence probabilities of ‘random events’ and ‘accidents’. However, the 

authors acknowledge that this task is more challenging in the case of ‘intentional 

disruptions.’ An example of the use of expert judgment to quantify the two risk 

dimensions is the empirical study done by Thun and Hoenig (2011). The authors 

surveyed supply chain managers and logistics managers in the German automotive 

industry to estimate the probability of occurrence and the consequences of a number of 

risks on a five-point Likert scale ranging from very low to very high. Measuring the 

occurrence likelihood and the adverse consequences are essential elements in quantifying 

risk, that Kleindorfer and Saad (2005) expect any “disciplined” risk assessment process 

would generate. The conversion of the two risk dimensions into a measure for the 

corresponding risk is formulated by Brindley (2004) as the product of the probability of a 

risk incident and its business impact. On the financial side, Huchzermeier and Cohen 

(1996) measure the downside risk of exchange rate variations as the expected deviation 

of a firm's discounted value from a specified level. In a more complex method, the 

exchange rate risk exposure is initially estimated using the standard two-factor market 

model (Jorion, 1990). Then, a multivariate regression model estimates the exposure as a 

function of operational and financial hedging positions (Allayannis et al, 2001; Kim et al, 
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2006). Canbolat et al (2007) estimate the dollar values of various sourcing risks based on 

their occurrence probabilities and impacts. The authors use these risk values in a 

simulation model that enables the user to perform a complete assessment for potential 

failures and, accordingly, identify an appropriate risk mitigation strategy.    

2.3 Risks in Supply Chains 

While risk management is extensively studied in the context of single firms, risk 

management in supply chains is a growing stream of research for two main reasons. First, 

interdependencies of firms through their traditional supply and demand transactions make 

the focal firm vulnerable when another firm on its upstream or downstream side 

encounters adverse events. This interdependence motivates studies of supply chain risks 

(Cohen and Kunreuther, 2007). Furthermore, the characteristics and practices of supply 

chains alter the nature of exposure of chain members to traditional risks, facilitating the 

emergence of new approaches to manage these risks. 

In the context of SCRM, we focus on two main characteristics of supply chains: 

structure and operational practices. The structure of a supply chain is typified by the 

global presence of the members of the chain and by the integrated business processes 

among these members. Some of the operational practices that are pertinent to risk 

management are the lean production system, single sourcing and information sharing 

across the supply chain. These practices can easily be contrasted to their conventional 

counterparts of mass production, multiple sourcing and unit-based information flow. To 

make our discussion more tractable, we elaborate more on the above two characteristics 

and on their implications for risk management. 
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2.3.1 Supply Chain Vulnerabilities 

The competitive advantages of a supply chain are made possible by the effective 

exploitation of its network design and the efficiency of its operational processes. Coupled 

with these benefits, however, are the threats to the supply chain that make it more 

vulnerable as its risk exposure is altered by its structure and practices.   

2.3.1.1 Supply Chain Structure 

Globalization, although a major attribute of a supply chain structure, is not an exclusive 

characteristic of supply chains. While many companies have overseas suppliers and 

market their products in foreign countries, other supply chains operate purely on a 

domestic level. However, operating globally exposes supply chains to a number of 

pertinent risks (Manuj and Mentzer, 2008a). In fact, the empirical results of Thun and 

Hoenig (2011) show that globalization is the most prominent supply chain risk driver 

perceived by the respondents of their study. Risks in supply chains stem from various 

sources including socio-political and economic developments, natural and man-made 

disasters and fast changes in market requirements (Tang, 2006a; Khan and Burnes, 2007). 

The worldwide location of production facilities and the flow of products across countries 

expose firms to uncertainties in exchange rates and input prices (Ding et al, 2007). 

Globalization is also found to be a statistically significant driver for catastrophic risks. In 

their large-scale empirical study, Wagner and Bode (2006) found that global sourcing 

makes supply chains vulnerable to catastrophic risks such as terrorist acts, socio-political 

crises, natural disasters and epidemics. 
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The complexity of a supply chain structure plays a significant role in its vulnerability 

(Harland et al, 2003; Tang, 2006b; Neiger et al, 2009). Lambert et al (1998) identify 

three aspects of the complex structure: members, structural dimensions and types of 

process links. The ‘focal’ firm, from whose perspective the network is designed, 

integrates its ‘value-adding’ processes with the ‘primary’ members and receives support 

from ‘supporting’ members. The number of tiers across the chain and the number of 

firms within each tier determine the ‘horizontal’ and the ‘vertical’ structure respectively. 

While these two structural dimensions reveal the breadth and depth of the whole 

structure, the ‘horizontal position’ is a dimension that locates a specific company along 

the width of the structure. Finally, the authors identify four types of business process 

links based on the extent of involvement of the focal firm. These links can be managed, 

monitored, non-managed or non-member process links. This classification facilitates the 

allocation of the appropriate resources to manage these business processes in an efficient 

manner. The links between firms in the supply chain structure are not independent 

business-to-business relationships, but collectively make the supply chain a “network of 

multiple businesses and relationships” (Lambert and Cooper, 2000). As competition 

between discrete firms is changing to competition between supply chains (Christopher, 

1992), a robust supply chain structure provides members of the chain a competitive edge. 

However, the complexity of the supply chain structure also gives rise to new sources of 

risks that are “network-related”, namely uncertainties due to three factors: chaos, lack of 

ownership and inertia (Juttner et al, 2003). An example of ‘chaos’ is the well-known 

‘bullwhip effect’ (Lee et al, 1997) that depicts increasing fluctuations of order quantities 

from the downstream to the upstream of the supply chain. In general, the lack of 
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confidence among members of the supply chain leads to such chaos and increases the 

vulnerability of the supply chain (Christopher and Lee, 2004). The lack of ownership 

stems from the complex relationships that a firm may develop with its upstream and 

downstream partners.  These relationships can be so complicated that the responsibilities 

of the various members in delivering the end product become uncertain. Inertia risks are 

associated with lack of responsiveness to changes in the business environment and 

market conditions.  

2.3.1.2 Supply Chain Practices 

The vulnerability of supply chains due to globalization and network complexity, as 

discussed above, can be classified as ‘structural’ as it is directly related to the physical 

and tangible configuration of the supply chain. Accordingly, one can categorize the 

vulnerabilities caused by the procedural and intangible configuration of the supply chain 

as ‘infrastructural’. The vulnerability to catastrophic events illustrates the distinction 

between these two categories. Knemeyer et al (2009) notes that not only the physical 

global spread of supply chains expose them to more natural or man-made catastrophes, 

but also the lower ‘slack’ in inventory diminishes the opportunities to deal with these 

events. Hence, one can intuitively conclude that the structural vulnerability of supply 

chains involves increases in the likelihood of adverse events, while the infrastructural 

vulnerability involves the ability to mitigate the consequences of these events.  

Blackhurst et al (2005) and Svensson (2002) relate the vulnerability of supply chains 

to an increase in the use of supply chain practices, such as increasing responsiveness to 

customers, achieving higher agility and operating lean systems. Many authors relate the 

adoption of lean management practices to the increase in the supply chain vulnerability 



 20 

(e.g. Norrman and Janson, 2004; Thun and Hoenig, 2011). Such practices encompass, 

among others, just-in-time (JIT) arrival of material at any production workstation when 

needed. The implementation of JIT creates time and functional dependencies within the 

supply chain, rendering it vulnerable to potential disruptions (Svensson, 2002), due to the 

fact that any adverse event occurring at any node of the chain will affect the other nodes 

(Norrman and Janson, 2004). Single sourcing is another practice widely used in supply 

chains. Despite  various benefits of single sourcing such as ease of management, quantity 

discounts from order consolidation, reduced order lead times and logistical cost 

reductions (Burke et al, 2007), purchasers are obviously affected by any problem 

encountered by their sole supplier (Kelle and Miller, 2001).  

2.3.2 Supply Chain Characteristics Contributing Positively to Risk 

Management 

In previous sections, we argued that various characteristics of supply chains make them 

more vulnerable to risks. However, one can contend that the characteristics of supply 

chains also enable firms to better implement some risk management strategies and even 

create new opportunities to manage risks. There is a direct relationship between the 

geographical dispersion of supply chains and their risk exposure. It is evident that the 

global activities of a supply chain expose the participating firms to various risks that 

emanate from this global environment. However, this global presence can provide a firm 

the ability to overcome risks originating from exchange rate fluctuations. Hommel (2003) 

argues that a firm’s global presence creates two risk management opportunities: 

operational flexibility and geographic diversification. The former provides the real option 

of switching production between facilities in two countries to offset any adverse change 
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in the exchange rate between the two currencies. The latter can perfectly substitute for a 

symmetric financial hedge, normally used by exporters, by locating a production facility 

in the foreign country to manage exchange rate risk. One other aspect of supply chain 

structure is the tight integration among its members. Braunscheidel and Suresh (2009) 

report that the external integration of a firm with key suppliers and customers is the 

strongest driver of the 'firm's supply chain agility'.  

‘Structural’ risk management capabilities of supply chains are complemented with 

‘infrastructural’ capabilities acquired by the supply chain practices. Information sharing 

is one such capability that integrates the supply chain. Information sharing can 

significantly reduce the possibility of a ‘bullwhip’ effect by efficiently exchanging the 

actual demand data from the point-of-sales to the multiple upstream suppliers. 

Eliminating distorted information makes the supply chain better prepared to respond to 

changing market needs (Masson et al, 2007). Information sharing also reduces 

uncertainties through more accurate demand forecasting (Guo et al, 2006), inventory 

levels, sales promotion strategies and marketing strategies (Mentzer et al, 2001). 

2.4 Supply Chain Risk Management  

The challenge that confronts the stakeholders along the supply chain is to develop an 

effective and comprehensive risk management strategy that i) exploits the partnership-

like relationships among the members, ii) attempts to manage all the risks concurrently 

and iii) employs the most suitable risk management approach for each type of risk 

(Cohen and Kunreuther, 2007). 
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2.4.1 Collaborative Risk Management 

Risk management should be regarded as a key business process that draws the 

contributions of the different firms of the supply chain as well as the input from their 

respective divisions. Relationships in a supply chain are different from a sequence of 

traditional buyer-seller relationships. Cooper and Ellram (1993) contrast these two types 

of relationships by using eleven characteristics. In supply chains, the firms work closely 

to manage the chain as one entity having a channel-wide inventory, cost evaluation, 

planning and risk sharing. Cooper et al (1997) elaborates this perspective for supply 

chains by depicting the major business processes infiltrating across the members of the 

chain and through the functional divisions of each firm. In a survey conducted by Servaes 

et al (2009), 63% of the participating companies acknowledge the benefits of a firm-wide 

approach to risk management. Previous studies had concluded that managing risk on a 

firm level is more effective than on a functional level (Miller, 1992). Companies may 

even incur losses when individual functional divisions attempt to implement risk 

management approaches in isolation from other departments. Proctor & Gamble and 

Metallgesellschaft suffered catastrophic losses after they took positions in financial 

derivatives that were not consistent with their corporate strategy (Froot et al, 1994). 

Triantis (2000) explains the rationale for sharing risk by highlighting two main 

capabilities of a firm which is willing to assume the risk. Such a firm will either have the 

capability to bear the risk or the capability to better control and manage this risk. The 

decision of which risks to bear and which risks to transfer to others is a central 

responsibility of corporate risk management. 
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2.4.2 Concurrent Risk Management 

Risk management along a supply chain can never be regarded as a set of independent 

approaches aimed at mitigating discrete risks. There are mainly three reasons for this. 

First, risks in supply chains are so interconnected that one risk gives rise to other risks or 

influences the outcome of another (Manuj and Mentzer, 2008a). Exchange rate risk 

directly impacts the demand for products produced in one country and sold in another. 

Fluctuations in the currency exchange rate would change the demand for a 

manufacturer’s product by foreign customers because of their diminished purchase 

power. Second, mitigating one risk can aggravate the exposure to another risk (Miller, 

1992; Chopra and Sodhi, 2004). For example, keeping inventory buffers to mitigate 

demand uncertainty increases the exposure to inventory obsolescence. Third, actions 

taken by one member of the supply chain to mitigate a risk which threatens his firm’s 

performance may create risks for other members (Chopra and Sodhi, 2004). Vendor 

managed inventory is a typical example in this regard under which inventory related risks 

are passed onto a supplier (or a third party). For all these reasons, the selection of risk 

management approaches should bear minimum contradiction (Braunscheidel and Suresh, 

2009). The principal objective should be to minimize the exposure of the supply chain, as 

a whole, to all types of risks. 

2.4.3 Selection of Risk Management Approaches 

The literature in the various disciplines, such as operations management, marketing, 

finance and strategy, are rich with numerous approaches that can be employed in risk 

management. Nevertheless, Khan and Burnes (2007) underscore a shortcoming of this 

abundance. The authors note that a strategy which is used to reduce a specific risk may 
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also become a source of another risk. For example, single sourcing is adopted by firms to 

exploit the exceptional relationship that they develop with their single supplier. While 

this strategy can minimize poor quality and lead time risks, the buyer is highly exposed to 

the risk of disruption in the supplier’s business. The effectiveness of a risk mitigation tool 

can also vary with the extent to which this tool is implemented. Swink and Zsidisin 

(2006) study the effects of a focused commitment strategy (FCS) to suppliers on five 

dimensions of manufacturers’ competitive performance: cost efficiency, quality, delivery, 

profitability and market share growth. As a result of their survey, the authors conclude 

that, except for ‘quality’, FCS has positive effects on four of the dimensions studied up to 

a certain implementation level beyond which these benefits can be offset by risks. 

Implementation of some mitigation tools may increase the complexity of supply chain 

systems and consequently aggravate their risk exposure (Yang and Yang, 2010). These 

authors evaluate the effects of mitigation tools on the system’s complexity in terms of 

two factors: tight coupling and interactive complexity. They refute a common belief that 

a postponement strategy aggravates supply risk, arguing that postponement, though 

characterized by tight coupling, can decrease interactive complexity and thus protect 

firms from supply disruptions.  

The method deployed to manage risk may depend on the firm’s specific 

circumstances. Considering an information gathering process as a means to reduce risk 

by buyers, Mitchell (1995) relates the nature of such a process to the level of expertise of 

the buyer, the level of risk and the company’s size. The selection of a risk management 

approach depends also on implementation costs. Firms should ensure that the cost does 
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not exceed the benefits of eliminating or reducing the risk (Miller, 1992; Chopra and 

Meindl, 2003; Servaes et al, 2009).  

The literature is short on providing guidelines for selecting suitable supply chain risk 

management approaches (Manuj and Mentzer, 2008a). This deficiency makes it difficult 

to come up with a general process to set a comprehensive risk management strategy. 

Froot et al (1994) observed that “there is no single, well-accepted set of principles” that 

guide the hedging programs of the various firms. Many researchers, nonetheless, provide 

a classification of the various risk management approaches which compensates for the 

absence of systematic guidelines to select a risk management approach that best fits a 

specific supply chain environment (e.g. Miller, 1992; Svensson, 2001; Juttner et al, 2003; 

Chopra and Sodhi, 2004; Sheffi and Rice, 2005; Tang, 2006a; Thun and Hoenig, 2011). 

Our work attempts to narrow this gap by developing a comprehensive taxonomy that 

classifies the various approaches used in risk management and the large number of 

discrete risk events listed in the literature. In the risk management paradigm developed by 

Kallman and Maric (2004), the authors describe the process of selecting the risk 

management tool to be a brain-storming activity. To facilitate such a selection activity, 

our taxonomy associates each approach with a well identified risk originating from a risk 

domain. In the following section, we present the supply chain risk management 

framework developed using our taxonomy. We also compare our taxonomy to the extant 

categories in the literature. 
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2.5 A Framework for Supply Chain Risk 

Management  

The supply chain risk management (SCRM) framework developed is presented in Figure 

2.1. The framework encapsulates various types of risks listed in the literature, as well as 

the diverse approaches used to manage these risks. A specific adverse event is associated 

with a source of risk and a source of risk is linked to a risk domain. The framework 

facilitates the classification of risk management approaches based on risk management 

objectives. Functional areas in the focal firm and supply chain stakeholders responsible 

for the implementation of the risk management approach are also incorporated in the 

framework. In the following sub-sections, we present the underlying constructs of our 

risk and SCRM approach taxonomies. We will clarify the distinctions among the three 

risk management approaches used, followed by a discussion on the distinction between  

source of risk and  identified risk. 

2.5.1 Risk Taxonomy 

To classify risk events, we identify three distinct constructs for our taxonomy: i) domain 

of risk, ii) source of risk and iii) adverse event. 

i) Domain of risk: We identify four domains in which the source of risk exists.  

‘Internal Operations’ is the domain that includes all the factors associated with 

performing the core process adopted by a firm in converting inputs into the desired 

output. ‘External Stakeholders’ is the domain related to the operations of the suppliers, 

outsourced companies, distributors and any other party who is involved in supplying 

materials / components and / or services.  The third domain, ‘Marketplace’, includes all 

the market-related factors pertinent to the specific industry in which the firm operates. 
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Lastly, ‘Environment’ is the domain covering all the non-market related factors, such as 

government regulations and natural disasters. A comparison of our four risk domains and 

other classifications reported in the literature is presented in Table 2.1. 

Table 2.1 Comparison of risk domains used in the SCRM literature 

Our Risk 

Domains 

Rao and Goldsby (2009), 

adapted from Ritchie and 

Marshall (1993) 

Juttner et al. 

(2003) 
Miller (1992) 

Christopher and 

Peck (2004) 

Internal 

Operations 
Organizational risk 

Organizational 

risk sources 

Firm 

uncertainties 
Internal to the firm 

External 

Stakeholders Industry risk 

Network-

related risk 

sources 

Industry 

uncertainties 

External to the firm 

but internal to the 

supply chain network 

Marketplace  

Environment Environmental risk 
Environmental 

risk sources 

General 

environmental 

uncertainties 

External to the 

network 

Identifying the domain for each source of risk is an important step in the risk 

management planning process. It is usually easier for a firm to reduce the occurrence 

likelihood of an event when its source originates from ‘Internal Operations’ rather than 

from ‘Environment’. On the other hand, avoiding a risk originating from ‘Marketplace’ 

may prove to be more difficult than avoiding a risk stemming from ‘Internal Operations’. 

Thun and Hoenig (2011) report statistical significance for the difference between their 

‘internal’ and ‘external’ supply chain risks in terms of occurrence likelihood and their 

impact. 

ii) Source of risk: This construct identifies source groupings for major risks within 

each risk domain. For example, for the risk domain ‘Marketplace’, the sources of major 

risks can be identified as: demand uncertainty, currency exchange rate fluctuation and 

marketplace randomness.  
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iii) Adverse event: Different events can emanate from the same source of risk. A 

separate analysis should be performed for each one of these events as the corresponding 

risk management approaches can be different. For example, an unreliable supplier is a 

source of shipment delays as well as quality problems.  

The distinction between the source of risk and the adverse event is crucial for the risk 

analysis process. While supplier unreliability is considered as one of the risks 

encountered by buyers, we recognize it as a source of different adverse events, such as 

poor quality, price fluctuations and delays in supply. The risk management approaches to 

deal with these three distinct events can vary substantially. In a similar vein, the 

identification of three distinct types of currency fluctuation risks in finance (transaction, 

translation and competitive/economic risks) enables firms to establish effective risk 

management strategies (Triantis, 2000). The approach used to manage transaction risk is 

completely different, in various aspects, from that used to manage competitive risk. Kim 

et al (2006) find from the results of their empirical study that firms exposed to currency 

exchange rate fluctuations effectively use currency derivatives to manage transaction 

risks and use operational geographic dispersion to manage competitive risks.  

2.5.2 Taxonomy for Risk Management Approaches 

To classify the various risk management approaches presented in the literature, we 

identify three distinct constructs: 

i) Avoidance approaches: These are methods that significantly reduce or eliminate the 

company’s exposure to specific sources of risk. For example, Disney theme parks are 

located in warm areas to avoid the negative impact of cold weather. 
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ii) Prevention approaches: These are methods that reduce the occurrence probability 

of an adverse event that may emanate from an existing source. For example, firms may 

use multiple suppliers for a given component to reduce the likelihood of one supplier’s 

failure to supply the right quantity and quality at the right time.  

iii) Mitigation approaches: These are the methods used to reduce (if possible, 

eliminate) the negative impact of the adverse events. For example, a flexible product 

strategy via postponement helps the firm minimize the impact of a change in demand in 

the product mix.  

The connection between risk management approaches and the definition of risk is 

evident in two of the risk dimensions. The ‘occurrence likelihood’ is decreased by the 

‘prevention approaches’ and the ‘impact level’ is reduced by the ‘mitigation approaches’. 

There is also a connection between the ‘avoidance approaches’ and the third dimension 

of risk as argued by Ritchie and Brindley (2007). This third dimension is the ‘causal 

pathway’ described as “the nature of the event and the sources and causes that generate 

it”. This connection is depicted in our SCRM framework in Figure 2.1 by the arrows 

originating from a ‘risk domain’ and reaching an ‘adverse event’ via a ‘source of risk’.  

A comparison of the above three categories of risk management approaches and 

similar typologies developed by other authors is presented in Table 2.2.  

Table 2.2 Comparison of classifications for risk management approaches used in the literature 

Our Classification 
Juttner et al. (2003), 

adapted from Miller (1992) 
Thun and 

Hoenig (2009) 
Servaes et al 

(2009) 

Avoidance approaches 
Avoidance 

Preventive 
instruments 

Hedging 

Prevention approaches 

Control 
Diversification 

Co-operation 

Mitigation approaches 
Flexibility 

Reactive 
instruments 

Insurance 
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2.6 Supply Chain Risk Management Planning Process 

In line with the framework presented in Figure 2.1, we propose the use of a risk 

management planning process (given in Figure 2.2) to set a comprehensive risk 

management strategy, potentially incorporating operational, financial and marketing 

elements. While the framework provides the building blocks of this strategy, the planning 

process navigates the user through a logical sequence of reasoning required to put these 

blocks together to come up with a comprehensive risk management strategy. The 

planning process organizes possible events and corresponding approaches in a 

chronological order that helps the user make a simulation-like risk analysis. This 

chronology applies for both the risk management approaches and the stages of risk. 

Figure 2.2 depicts each of the three risk management approaches in a specific position 

within the planning process that is in line with the implementation timing of the 

corresponding approach. Similarly, the different stages of risk are depicted in an 

increasing order of realization. While the upper half of the process chart depicts risk as an 

imminent threat, the lower half presents the advanced risk stages: occurrence of an 

adverse event, its consequences and mitigation actions taken once the outcomes have 

been evaluated. The upper and lower halves of the planning process are also different in 

terms of scope. While the upper half is pertinent to various risks identified by the focal 

firm, the lower half entails the management of the identified risk by the focal firm in 

close collaboration with various supply chain members. When all risks identified are 

assessed and measured, the firm can then prioritize risks in terms of the occurrence 

probability and impact level. The planning process then leads the user through the 

subsequent decisions and actions that may very well involve other stakeholders. Based on 
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its risk evaluation, the firm makes one of three possible risk management decisions: i) 

retain the risk, ii) transfer the risk or iii) share the risk with a partner / member of the 

supply chain. Whereas in the first option, the firm does not incur any cost a priori but 

would bear all the consequences should the adverse event occur, the second option 

shields the firm from adverse consequences for a pre-determined cost. The third option 

involves a compromise under which both the protection cost and the consequences are 

shared in a predetermined manner by the parties involved. The constructs of risk and risk 

management approaches, discussed in Sections 5.1 and 5.2, respectively are shown in 

Figure 2.2 as an oval shape to distinguish these from the decision (diamond shape) and 

action (rectangular shape) constructs.  

The illustrative example in Figure 2.3 shows how the planning process is deployed to 

set an ‘operations based’ risk management strategy that protects a firm from supplier’s 

unreliability. Emanating from the external stakeholders domain, the unreliability of a 

supplier that provides critical components is a source of risk that can result in a number 

of adverse events, namely poor quality, shipment delays and price hikes. One starts with 

evaluating the degree of exposure to such a source of risk. A firm with few suppliers for 

critical components is more exposed than a company with many suppliers. The former 

firm can significantly reduce its exposure by building a network of suppliers and 

implementing a stringent supplier selection process. These two strategies are identified as 

avoidance approaches due to their impact in terms of significant reduction in risk 

exposure. However, such approaches may not be applicable in the case of highly 

customized components which can only be produced by one or two suppliers. For the risk 

identified in terms of shipment delays, the firm can adopt a prevention approach to 
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reduce the likelihood of encountering delays by maintaining a closer relationship with the 

supplier, such as providing free technical support in production scheduling and / or in 

transportation. Should the delays continue to persist, the firm would then compare the 

estimated cost of the risk impact (such as, paying penalties to its own customers for late 

shipments of finished products) to the cost of implementing a mitigation approach (such 

as, holding higher levels of inventory). If the former cost outweighs the latter cost, the 

firm may decide to use higher inventory levels. As this lessens the impact of the 

supplier’s shipment delays, such an action is considered as a mitigation approach. The 

risk management strategy may need to be re-evaluated following the implementation of 

each avoidance, prevention and / or mitigation approach, as indicated in the last box in 

Figure 2.2. This re-evaluation is especially more pronounced following the 

implementation of an avoidance approach, due to its likely long term impact on the firm’s 

operations.  

2.7 Contribution to the Literature and Concluding 

Remarks 

The taxonomy (Table 2.1 – 2.2), framework (Figure 2.1) and planning process (Figure 

2.2) contribute to the literature on supply chain risk management in a number of ways. 

The taxonomy helps the user to make a goal-based classification of the risk management 

approaches. We identify three distinctive goals in this respect, namely: i) to eliminate or 

significantly reduce the company’s exposure to the source of risk, ii) to reduce the 

likelihood of occurrence of an adverse event and iii) to reduce the impact of such an 

occurrence. We refer to the risk management methods deployed to achieve these three 
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goals as ‘avoidance approaches’, ‘prevention approaches’ and ‘mitigation approaches’, 

respectively.  

Such a taxonomy helps the user to distinguish between the source of risk and the 

manifestation of that risk. For example, while some of the reviewed articles list ‘supplier 

unreliability’ as a risk, we interpret it as a source of risk which can be manifested in the 

different forms of longer lead time, poor quality and increased supply cost. This 

distinction is essential for the proper selection of the risk management approach to be 

deployed. 

The framework encompasses the assignment of risk management approaches to 

functional areas in the focal firm and / or to external stakeholders that are responsible for 

the implementation of these approaches. The inclusion of this assignment link in our 

framework stems from our vision of supply chain risk management as a business process 

that needs to be integrated within the functional areas of a firm and across the members 

of the supply chain. The same argument was promoted by various authors, such as Juttner 

(2005) and Seshadri and Subrahmanyam (2005), among others. This need for integration 

will be further elaborated on in Chapter 3. Lambert et al (1998) list a number of business 

processes that are integrated across the supply chain to become ’supply chain business 

processes’. The authors argue that such an integration requires coordination among the 

various departments within a company and among various companies along a supply 

chain. Through our work, we contribute to the list of Lambert et al (1998) a new set of 

processes:  supply chain risk management approaches of avoidance, prevention and 

mitigation.  
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The framework and the planning process developed can also be used by supply chain 

managers to establish a comprehensive company-wide risk management strategy. The 

distinction among the three categories of risk management approaches helps practitioners 

to evaluate the various strategies available for implementation based on the 

corresponding payoff. Chapter 3 provides an extensive literature review of operational 

and financial approaches used for supply chain risk management based on the taxonomy 

and the framework reported in this chapter. 
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Figure 2.1  Supply chain risk management framework 
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Figure 2.2  Risk management planning process 
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Figure 2.3  Illustrative example of risk management planning process 
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Chapter  3                                        

Supply Chain Risk Management – II: A 

Review of Operational, Financial and 

Integrated Approaches 

3.1 Introduction 

This review classifies and analyses operational, financial and integrated approaches used 

when dealing with supply chain risks. The review is structured around the supply chain 

risk management (SCRM) framework and typology presented in Chapter 2. The 

framework identifies four risk domains: internal operations, external stakeholders, 

marketplace and environment. The typology classifies risk management methods into 

avoidance, prevention and mitigation approaches. The primary focus of the review is on 

multinational manufacturing companies, although the risk management approaches of 

non-manufacturing firms, such as service providers, retailers and distributors, are also 

addressed. 

Section 3.2 reviews ‘operational’ risk management approaches with a focus on 

interaction between the firm and its supply chain partners. Section 3.3 reviews ‘financial’ 

risk management approaches, where the focus is on the use of financial derivatives. The 

section examines the key pertinent issues in integrating these instruments with 
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operational approaches. Section 3.4 highlights the distinctions between operational and 

financial approaches. ‘Integrated’ operational and financial approaches are reviewed in 

Section 3.5. Section 3.6 presents major gaps in research in the extant literature and 

proposes areas for future research. 

3.2 Operational Risk Management Approaches 

3.2.1 Internal Operations 

For the risk domain ‘internal operations’, three sources of risk are identified: process 

uncertainty, information system failures and labor uncertainty. The literature on 

operational approaches used when managing these risks is reviewed in the following sub-

sections. A summary is provided in Table 3.1. 

3.2.1.1 Avoidance Approaches 

Cucchiella and Gastaldi (2006) address risks such as insufficient production capacity or 

delays in receiving critical information and examine ‘real options’ risk avoidance 

strategies such as, deferring investment, outsourcing, scaling down and abandoning 

current operations. 

3.2.1.2 Prevention Approaches 

Turnbull (2007) suggests adoption of quality control processes with supportive 

information systems to detect defective products before shipment to the end user to 

protect against the risk of product contamination. Use of ‘P-Trans-net’ model is proposed 

in Blackhurst and O’Grady (2004) to identify those nodes along the supply chain that 

contribute to the longest lead times and delays. Using ‘real options’ as prevention 

strategies are argued in Cucchiella and Gastaldi (2006). These include: i) ‘stage’ option, 
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which provides the ability to abandon a project in midstream in light of new information 

unfavorable to continuing the project, ii) ‘lease option’ which provides the ability to lease 

an asset with an option to buy it at a later time, and iii) ‘growth option’ such as spending 

on research and development, leasing undeveloped land and strategic acquisitions, which 

could lead to future growth through access to new markets or strengthening core 

capabilities. 

3.2.1.3 Mitigation Approaches 

Sheffi and Rice (2005) argue that ‘conversion flexibility’, which involves the use of 

standard processes across facilities with built-in interoperability, allows a firm to operate 

in another facility when one is disrupted or to replace sick or otherwise unavailable 

operators. According to Tang and Tomlin (2008) and Thun and Hoenig (2011), a 

‘flexible process strategy’ allows the firm to produce multiple products efficiently and to 

compete on product variety and cost.  

3.2.2 External stakeholders 

The sources of risk are identified for the risk domain ‘external stakeholders’ are: supplier 

reliability, distribution and network. The literature on operational approaches used when 

managing these risks are reviewed in the following sub-sections and summarized in Table 

3.2. 

3.2.2.1 Avoidance Approaches 

The ‘real options’ cited by Cucchiella and Gastaldi (2006) and described in Section 

3.2.1.1 could be used to avoid supplier quality and reliability issues.  
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3.2.2.2 Prevention approaches 

Prevention methods can be classified into supply management and supply control 

approaches. 

Supply management approaches address the impact of supplier reliability and demand 

uncertainty on the cost and lead time of different configurations of supplier networks.  

These include:  i)  management of  supplier relationship, ii)  supplier selection process, 

iii) use of supplier certification programs and iv) allocation of orders among suppliers. 

Tang (2006a) identifies four types of ‘supplier relationships’ in terms of: vendor, 

preferred supplier, exclusive supplier and partner. Each may be differentiated on the basis 

of contract type, contract length, information exchange, pricing scheme and delivery 

schedule. Sheffi and Rice (2005) and Tang (2006a) contend that corporate strategy 

should be aligned with the type of supplier relationship. The latter study addresses the use 

of various models for the final supplier selection, which incorporate the supplier’s quality 

and the buyer’s quality control policies, as well as the buyer’s flexibility to shift the order 

quantity among suppliers dynamically in response to fluctuating exchange rates, when 

sourcing occurs in a multinational context. Various studies are classified in the area of 

allocation of orders among different suppliers while accounting for risks such as demand 

uncertainty, uncertainty in supply yields, supply lead times and supply costs. ‘Supplier 

certification programs’ to reduce supply-side quality and delivery reliability problems are 

suggested as a prevention approach in Thun and Hoenig (2011). Wu and Olson (2010) 

use stochastic DEA VaR (value-at-risk) approach and a stochastic dominance model to 

conduct a vendor evaluation study using twelve criteria over four categories of quality, 

price, performance and facilities / capabilities. The findings indicate that both the model 
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used and the risk level specified both affect the supplier ranking. However, both models 

used yield consistent rankings at extremes, for the most efficient and the worst 

performing vendors. 

Supply control approaches may take the form of vertical integration (Klibi et al 

2010), increased stockpiling, use of buffer inventory and excess capacity in production, 

storage, handling and / or transport or imposing contractual requirements on suppliers 

(Juttner et al 2003). With respect to disruptions in inbound or outbound shipments, Sheffi 

and Rice (2005) advocate building ‘tracking and tracing capabilities’ to detect disruptions 

and take corrective action across the supply chain. ‘Disruption discovery’ approaches, 

referred to in Blackhurst et al (2005), include ‘predictive analysis’ using technologies 

such as intelligent search agents (data/text mining) and ‘dynamic risk index’ tools, to 

search for disruption related information.  Early warning signs of potential or increasing 

risks provided by such tools would be used to highlight these areas within the supply 

chain that warrant attention. 

3.2.2.3 Mitigation Approaches 

Among the mitigation approaches, ‘flexibility’ approaches are aimed at reducing supply 

cost risks. Juttner et al (2003) suggest ‘localized sourcing’ to reduce lead times and 

improve response times. Tang and Tomlin (2008) suggest the use of quantity flexibility 

contracts, to mitigate supply commitment risks or the inability to change the order 

quantity once submitted. Tang (2006b) suggests the use of ‘time-based supply contracts’ 

to deal with uncertain wholesale prices imposed by the manufacturer. In a ‘time inflexible 

contract’, the buyer must state the purchase time upfront. In a ‘time flexible contract’, the 

buyer may observe price movements and decide dynamically when to buy. ‘Disruption 
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recovery’ strategies, reported in Blackhurst et al (2005), are about flexible, real time 

‘supply chain reconfiguration’ tools, which will take effect once a disruption occurs. An 

example of such a tool is an adaptive agent or configurable distributed software 

component that continually realigns goals and processes. Agents are used for task 

performance, task decomposition and distribution, even resource allocation among the 

distributed tasks, coordination of mixed initiative supply chain planning, scheduling and 

partner selection.  

‘Redundancy’ approaches such as the use of safety stocks or multiple sourcing are 

suggested by Thun and Hoenig (2011), who use a survey of the German automotive 

industry to conclude that redundancy strategies are effective (but inefficient) means to 

deal with supplier quality and unreliability issues. Tomlin (2006) offers possible risk 

mitigation strategies for ‘supplier order allocation’ for the case of two alternative 

suppliers, who differ on reliability, volume flexibility and unit price. This enables 

rerouting of supply in case the preferred supplier is down. The choice of supplier and the 

amount of inventory carried depends on the level of uptime.   

In Canbolat et al (2007), a comprehensive set of local and global sourcing risk factors 

(identified by six departments of a car company) are quantified into metrics. Expert 

judgments are used to determine the magnitude and the impact of these risks. Then, a 

process failure mode effects analysis is conducted and simulated  to rank causes of 

failures and failure modes, to calculate total risks in terms of dollars and to evaluate 

optimum risk mitigation strategies. Swink and Zsidisin (2006) hypothesize that, based on 

a survey of 224 manufacturing plant managers, the relationship between their focused 

commitment strategy to suppliers and buyer’s manufacturing performance (measured 
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over five dimensions of cost efficiency, quality, delivery, profitability and market share 

growth) is non-linear, taking the form of an inverted u-shaped curve, with the exception 

of ‘quality’ which exhibits a positive linear relation. 

3.2.3 Marketplace 

For the risk domain ‘marketplace’, three sources of risk are identified:  demand 

uncertainty, uncertainty in foreign exchange rates and uncertainty in prices of raw 

material, labor, energy and finished products. The literature on operational approaches 

used when managing these risks are reviewed in the following sub-sections and 

summarized in Table 3.3. 

3.2.3.1 Avoidance Approaches 

Thun and Hoenig (2011) advocate focusing on products with constant demand and few 

variants, or focusing on secure markets to manage uncertainty in demand volume and 

demand mix. Such a ‘focused factory’, which focuses on a narrow product mix for a 

particular market niche would outperform a conventional plant with a broader mission, 

since its equipment, support systems, and procedures can concentrate on a limited task 

for one set of customers, thus generating lower costs and overheads than those of the 

conventional plant . 

3.2.3.2 Prevention Approaches 

Prevention approaches incorporate demand management and information management 

strategies. 

Demand management strategies, as described by Tang (2006a), involve shifting 

demand across time, markets or products. This is to be achieved by offering advance 
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purchase discounts such as those used in travel service reservations, offering price 

discounts to customers who accept late shipments, phasing out old products and 

introducing new products. Other examples include ‘product substitution’ which aims to 

reduce the variance of aggregate demand by offering products with surplus inventory as a 

substitute for out of stock products and ‘product bundling’ which is used by retailers to 

force customers to buy a number of products as a bundle, such as computer and printer, 

shampoo and conditioner, to shape effective demand. 

Information management strategies as suggested in Tang (2006a) and Thun and 

Hoenig (2011) may take the form of quick response systems, use of RFID, tracking and 

tracing devices (used to respond to actual demand rather than demand forecasts) for 

fashion products with short life cycles. For functional products with longer life cycles, 

these approaches include sharing demand information with supply chain partners, vendor 

managed inventory and collaborative forecasting and replenishment planning strategies. 

Juttner et al (2003) suggest cooperation strategies among supply chain partners to share 

information on exposures to specific risk sources and prepare joint business continuity 

plans. Blackhurst et al (2005) suggest strategies to identify bottlenecks at different nodes 

of the supply chain. Short-term predictions relating to seasonality of demand, etc. can be 

used to exploit alternate routing, delaying/expediting product flows and/or inventory 

positioning. Swafford et. al. (2008) suggest the use of ERP to manage global supply 

chain activities to deal with supply/demand mismatch risk, shorten product life cycles 

and customize delivery, speed, mix and volume. 

3.2.3.3 Mitigation Approaches 

Mitigation approaches include postponement and flexibility strategies. 
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Postponement strategies are addressed in Juttner et al (2003), Yang et al (2004), Tang 

(2006a) and Tang and Tomlin (2008). ‘Product development’ postponement, which 

facilitates customization of the final product, is enabled by technologies such as virtual 

prototypes, web-based voice of the customer method, and automated and distributed 

service exchange systems. ‘Production postponement’, which is about downstream 

positioning of production activities to the distributor, retailer or end user, is useful in 

markets in which a single product may have multiple derivatives due to different 

language, culture, government or technological requirements, and greatly reduces 

inventory carrying and transportation costs. An example on the application of production 

postponement is the model developed by Cholette (2009). Options of labeling and 

packaging postponements by a winery to mitigate the variation risk of demands from 

distinct sales channels are incorporated into a two-stage stochastic linear model. The   

postponement value is quantified by comparing the expected profits between the 

scenarios with and without postponement. The profits in the former scenario are found to 

be higher by 18%. ‘Logistics postponement’ is conducted by frequent / smaller size 

shipments or use of a rolling warehouse to achieve savings in inventory  which would 

otherwise have to be stocked at numerous locations and to achieve improved matching of 

demand and inventory. Yang and Yang (2010) conclude, through drawing insights 

emerging from the theoretical principles in ‘normal accident theory’, that postponement 

may offer superior advantages over other risk mitigation strategies employed for supply 

chain disruptions.  

Flexibility strategies, discussed in Sheffi and Rice (2005) and Tang and Tomlin 

(2008), include ‘flexible pricing strategy via responsive pricing’, which is used to entice 
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customers to products with more secure components to reduce demand risks. ‘Flexible 

supply strategy via flexible supply contracts’, as reported in Tang (2006a), aims to 

achieve channel coordination. ‘Wholesale price contracts’ take the form of order up to 

newsvendor solution which is extended with the flexibility of placing two separate orders 

before the start of the selling season, hence allowing for demand updating. ‘Buyback 

contracts’ are used to induce the retailer to order more when faced with demand 

uncertainty. For products that do not have any buyback value, such as video rentals, 

‘revenue sharing contracts’ are used to provide an incentive to the retailer to stock more. 

‘Quantity based contracts’ are used to entice retailers to commit their orders in advance to 

achieve operational efficiency under demand uncertainty. ‘Backup agreements’ are used 

in the fashion apparel industry to allow the retailer to place his orders in two consecutive 

stages, after observing a few weeks of sales data, and to offer the flexibility for changing 

the order at a penalty cost.  

‘Contractual flexibility’ as a risk mitigation strategy is reported in reference to the 

market of specialty chemicals in Reimann and Schiltknecht (2009) as well as in reference 

to wafer manufacturing at Intel in Vaidyanathan et al (2005). In the former study, 

contractual flexibility is the capability of the manufacturer to select the product portfolio 

and the option of postponing delivery dates for that portion of final demand that is 

revealed on the due date to protect against cancellation risk / delivery failure penalties 

imposed by the customer. The selection of the product portfolio depends on the 

availability of ‘operational flexibility’ which is defined as the percentage of available 

capacity of volume, as well as changeover capabilities. In the latter study at Intel, 

‘contractual flexibility’ refers to the capability of the manufacturer to change order 
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specifications  of the required lithography exposure tools from their suppliers to protect 

against the risk of supply/demand mismatches resulting from short product life cycles. 

Tang (2006a) suggests that ‘flexible process sequencing’ can be used to reduce forecast 

uncertainty by reversing the sequencing of manufacturing processes as exemplified by 

Benetton’s knit-first-dye-later strategy. ‘Operational flexibility’, (referred to in Kogut and 

Kulatilaka (1994) and Huchzermeier and Cohen (1996), among others) denotes the 

capability of switching production among multiple countries to safeguard against 

exchange rate risk. Spinler and Huchzermeier (2006) use valuation of options on capacity 

as a measure against seller’s cost, buyer’s demand and market price uncertainties for 

storable goods or dated services. The authors show that options contracts offer risk 

sharing benefits for the buyer and the seller and superior capacity planning. In Mello et al 

(1995), ‘flexibility in sourcing’ is about switching sourcing among multiple countries, in 

response to sharp movements in exchange rates, thus reducing the need to hedge foreign 

currency denominated revenue.  The level of flexibility and the debt structure determine 

the level of hedging required. ‘Flexibility of production assets’ focuses on safeguarding 

against price uncertainty in power markets (Doege et al 2009) and derives from the 

power supplier’s entry into a long position in the virtual storage of some part of the 

production capacity over and above a short position in the constant supply of power.  

In Swafford et al (2008), supply chain flexibility covers procurement, distribution, 

manufacturing and product development functions and represents abilities to reduce 

supply chain lead times, ensure production capacity and provide product variety to 

improve customer responsiveness. ‘Supply chain network design’ is proposed in Klibi et 

al (2010) as a risk mitigation strategy to protect against fluctuations in prices of finished 
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products, raw material prices, energy costs, labor costs and exchange rates. In their two 

stage stochastic network design model with recourse anticipation structure, it is assumed 

that the design variables (such as the number, location and capacity of entities like 

suppliers, manufacturing plants, distribution and/or sales centers, demand zones and the 

means of transportation) are to be solved in the first stage. The outcome of the design 

variables is then observed and the network usage variables provide the recourses 

necessary to make sure that the design obtained is feasible. ‘Resource flexibility’ 

mechanisms, (such as, capacity buffers, production shifting, overtime and subcontracting, 

safety stock pooling and placement strategies, flexible sourcing contracts), and ‘shortage 

response actions’ (such as product substitution, lateral transfers, rerouting shipments or 

delaying shipments) are suggested as possible response policies. The authors argue that 

these policies can be reflected into the recourse anticipation structure of the network 

design model. They cite examples such as defining second stage flow variables between 

production and distribution centers, if lateral transfers are permitted, or adding recourse 

variables and constraints to reflect overtime policy, or defining flow variables from 

suppliers by considering dual sourcing. It is also argued that in order to take ‘aversion to 

value variability’ into account, risk measures such as mean-variance or conditional value 

at risk functions instead of the expected value criterion need to be incorporated into the 

models. 

Kumar et al (2010) offer optimal operating policies for a global firm conducting 

business in various countries. A stochastic multi-objective mixed integer programming 

model is developed. The model attempts to minimize the costs associated with supplier 

side risks, manufacturer / distributer / retailer risks and demand side risks, as well as, the 
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costs of operating the supply chain. An optimal policy is determined based on the initial 

information available. In the later stages, by considering changes in risks’ expected 

values, a shift in the flow quantities within the supply chain is determined in order to 

minimize disruptions and consequently the total cost of operations.  

3.2.4 Environment  

The five sources of risk identified for the risk domain ‘environment’ are:  natural 

disasters, major accidents, political / sociopolitical conditions, willful attacks and 

regulations. The literature on operational approaches used when managing these risks is 

reviewed in the following sub-sections. A summary is provided in Table 3.4. 

3.2.4.1 Avoidance Approaches 

Klibi et al (2010) address avoidance approaches for risks associated with product 

markets, suppliers or facility locations due to the instability of the associated 

geographical area. Possible strategies proposed are closing some network facilities, 

delaying an implementation, rejecting an opportunity or using outsourcing for high risk 

product markets. Cucchiella and Gastaldi (2006) cite ‘real options’ strategies to protect 

against risks associated with changes in taxation and local regulations.  

3.2.4.2 Prevention Approaches 

Prevention approaches include ‘catastrophe models’ which are used in the insurance 

industry to estimate the location, severity and frequency of potential future natural 

disasters, offering tradeoffs between economic loss and the probability that a certain level 

of loss will be exceeded on an annual basis.  Klibi et al (2010) claim that ‘supply chain 

network design’ models that incorporate assessment of hazards have not been proposed 
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yet, but qualitative approaches to identify and assess supply chain disruptions are 

available.  A two stage ‘supply network design’ model to examine the effects of 

financing, taxation, regional trading zones and local content rules on the design of a 

global supply chain is developed by Tang (2006a). Sheffi and Rice (2005) state that there 

is a need for situational awareness and initiative at levels closest to the disruptive event. 

‘Empowering frontline employees’ to take initiative and act quickly on the basis of 

available information would contribute to the resilience of the supply chain. 

3.2.4.3 Mitigation Approaches 

These include flexibility and redundancy approaches. 

Klibi et. al (2010) suggest incorporating flexibility approaches such as ‘resource 

flexibility mechanism’ and ‘shortage response actions’ into the supply chain network 

design as possible risk mitigation strategies, as explained in detail in Section 3.2.3.3. 

‘Resilience strategies’ would necessitate investing in supply chain network structures 

before they are needed. The authors provide examples of design decisions such as 

selecting production / warehousing systems that can support several product types and 

real time changes, choosing suppliers that are partially interchangeable and locating 

distribution centers to ensure that all customers can be supplied by a backup center with a 

reasonable service level if the primary supplier fails. On the other hand, redundancy 

approaches, which involve duplication of network resources in order to continue serving 

customers while rebuilding after a disruption, are costly to implement according to Klibi 

et al (2010).  ‘Insurance capacity’ is about maintaining production systems in excess of 

normal requirements, whereas ‘insurance inventory’ refers to a buffer position  kept for 

critical situations.   
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A ‘business continuity plan’ is about instantaneous development of alternate suppliers 

to ensure uninterrupted flow of work. Page (2008) reports that Cisco’s business 

continuity plan spared its global network from disruption after an earthquake hit China’s 

Sichuan province, home to a major Cisco supplier. Ratick et al (2008) suggest a 

‘geographical dispersion’ strategy to spread risks associated with single point of failure 

events, natural and anthropogenic events affecting the value stream (e.g. product 

contamination) or a node (e.g. damage to a facility). The authors cite Wal-Mart as a 

model resilient supply chain supported by a sufficient number of stores within reasonable 

proximity. An automated inventory management system identifies the location of needed 

resources, while trucks with onboard computers execute the shipments. 

3.3 A Synopsis of Financial Risk Management 

Approaches 

3.3.1 Introduction 

According to finance literature, there are different motives for risk management.  

Reducing the firm’s expected taxes, costs of financial distress and agency costs 

associated with debt and equity financing (Smith and Stulz, 1985), solving 

underinvestment problems (Froot et al, 1993), increasing debt capacity (Servaes et al, 

2009) and adding value (Mackay and Moeller, 2007) are among such motives. These risk 

management motives are correlated to some extent. Reducing expected taxes increases 

the firm’s cash flow, reducing financial distress costs increases the firm’s value and 

increasing debt capacity allows the firm to raise more capital for new investments.  

In this section, we focus on a number of financial risk management approaches that 

aim to eliminate or mitigate risks that have direct effects upon the operating cash flow of 
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manufacturing firms. Our focus is consistent with the results of the survey of Servaes et 

al (2009), which identified maximizing of operating cash flow as a high priority item for 

the participating firms and of Bodnar et al (1995) which reveals that manufacturing firms 

rank second among all industries in the usage of derivatives. 

Financial risk management approaches include the use of insurance policies, financial 

derivatives and foreign-currency denominated debt. Financial derivatives, which include 

forwards, futures, options and swaps, may be used with the objective of hedging or the 

objective of insuring the risk. Hedging is aimed at eliminating or minimizing the risk 

exposure at the expense of sacrificing any upside potential. Insuring the risk eliminates or 

minimizes the adverse consequences at the cost of an insurance premium. While 

forwards, futures and swaps are used as hedging instruments, options are used to achieve 

the insurance objective. Servaes et al (2009) reveals that most CFOs of participating non-

financial firms use derivatives to manage risk. We discuss the use of derivatives in the 

following sections. 

3.3.2 Risk Management Using Derivatives 

3.3.2.1 Types of derivatives 

A derivative is a “financial instrument whose value depends on (or derives from) the 

values of other, more basic underlying variables” (Hull, 2006). Japanese yen forwards, 

futures, and call and put options, for example, are derivatives whose underlying asset is 

the Japanese yen. The buyer (seller) of a Japanese yen forward contract has the obligation 

to buy (sell) a fixed number of Japanese yen at a particular date at a fixed exchange rate. 

Futures contracts are similar to forwards contracts with regards to the obligations of the 

buyer and the seller. While forward contracts are customized contracts whose terms are 
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fixed by agreement between the buyer and the seller, and are said to trade over-the-

counter (OTC), futures contracts are standardized contracts which are traded on futures 

exchanges. The buyer of a Japanese yen call (put) option has the right to buy (sell) a 

specified number of Japanese yen sometime in the future at a fixed exchange rate. A 

swap is an agreement between two parties to exchange a series of cash flows over the 

term of the swap. One series of cash flows could be fixed, and the other series could be 

floating, or both series could be floating. The floating cash flow is tied to an index such 

as an interest rate, currency exchange rate or the price of a particular commodity. 

Accordingly, swaps may be classified into interest rate swaps, currency swaps and 

commodity swaps. 

A key feature distinguishing the derivative is the ‘linearity’ of the instrument (Froot 

et al, 1994; Tufano, 1996; Servaes et al, 2009).  For example, the buyer (seller) of a 

forward contract is obliged to take (make) delivery of the underlying asset in exchange 

for a fixed delivery price. If the asset price rises (falls), the buyer (seller) makes a profit 

and vice versa. Hence, the payoff to the buyer (seller) is linearly dependent on the price 

of the underlying asset. This is also true in the case of a futures contract and a swap 

contract, under both of which the participants have certain obligations. This is not true in 

the case of options, however. A buyer of a call (put) option has the right to exercise the 

option on or before the expiration date and will do so only if the underlying asset price is 

higher (lower) than the option’s exercise price. When the option is not exercised, the 

buyer loses only the premium price initially paid to purchase the option. When the option 

is exercised, the buyer makes gain. Hence, the payoff to the option buyer is non-linear.  

When the quantity to be hedged is unknown it is argued that a non-linear financial 
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instrument provides better protection (Brown and Toft, 2002; Servaes et al, 2009). 

Another feature that distinguishes different derivatives is the characteristic of the market. 

While futures contracts are exchange-traded, forward contracts and swaps are OTC 

products, while options are traded both on exchanges as well as OTC (Bodnar et al, 

1995). This feature shapes the cost structure of the instrument and hence influences the 

selection decision (Smith and Stulz, 1985; Froot et al, 1994; Servaes et al, 2009).  

3.3.2.2 Use of derivatives in risk management 

Financial derivatives are used by firms to manage exchange rate risk, interest rate risk 

and commodity price risk. 

Exchange rate risk may be classified into transaction exposure, translation exposure 

and economic exposure. An example of transaction exposure is that of a Canadian 

manufacturer which procures some of its input components from Japan and is invoiced in 

Japanese yen. The manufacturer could hedge the risk of a rise in its input costs due to a 

rise in the value of the Japanese yen by buying a forward or futures contract on Japanese 

yen or buying a call option on Japanese yen. These derivative contracts would rise in 

value with the increase in value of the Japanese yen, allowing the manufacturer to offset 

the increased cost of the input components. An example of translation exposure is that 

faced by a firm which has a foreign subsidiary whose assets and liabilities are 

denominated in a foreign currency. As the foreign currency exchange rate changes, the 

consolidated financial statements of the parent firm, which are denominated in the 

parent’s home currency, could record changes in the value of the assets and liabilities of 

the foreign subsidiary, even if these have not changed when denominated in the foreign 

currency. Finally, economic exposure to exchange rate changes arises if the sales of a 
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company are threatened by changes in exchange rates. For example, a Canadian company 

with a Japan-based competitor could see its global sales decline if the Japanese yen 

declined in value relative to the Canadian dollar. Froot et al (1994) cite the case of 

Caterpillar, which saw its “real-dollar sales decline by 45% between 1981 and 1985” 

when the U. S. dollar increased in value, as an example of a U. S. exporter which could 

have benefited by using derivatives to hedge its exchange rate risk.  It is generally agreed 

that transaction and economic exposure should be hedged, while translation exposure 

should be hedged only if the parent company intends to liquidate its foreign subsidiary.  

Servaes et al (2009) reported that 93% of the participating firms reported an exposure to 

exchange rate risk, while 82% of the firms use foreign exchange derivatives. Geczy et al 

(1997) find that the source of foreign exchange risk influences the type of instrument 

used. Firms with foreign operations tend to use forwards or a combination of forwards 

with either futures or options. The surveys by Servaes et al (2009) and Bodnar et al 

(1995) both reveal that forward contracts are the instrument of choice of responding 

firms, followed by swaps and then OTC options. 

Interest rate risk arises from a mismatch between the maturity of a firm’s interest rate 

investments and debt.  For example, a firm’s debt may have three months to maturity, 

while its investments may have five years to maturity. If the short term interest rate 

increases, the firm will suffer a loss (Triantis, 2000). This is an example of interest rate 

risk exposure. The company could hedge its interest rate risk by entering into an interest 

rate swap with a swap dealer, under which it receives interest payments based on the 

three month interest rate (floating rate) and makes interest payments at a fixed interest 

rate. A company’s current and planned future positions in both borrowings and 
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investments determine its vulnerability to the future change in interest rates (Bacon and 

Williams, 1976). 73% of the firms surveyed by Servaes et al (2009) reported having at 

least 10% of debt with floating interest rates, and 79% of the responding firms use 

interest rate derivatives. The most used derivative is the interest rate swap (Bodnar et al, 

1995; Servaes et al, 2009).  

Exposure to commodity price risk is not as common as the exposure to exchange rate 

risk and interest rate risk, but is still a key risk (Froot et al, 1994) and stems from possible 

changes in the price of input and/or output commodities (Unterschultz, 2000).  For 

example, in January, a chocolate factory could take a long position in sugar futures 

contracts to hedge the price of sugar required for its November production. If the spot 

price of sugar increases in November, the factory could close out its futures position at a 

profit, which would offset the higher price that it would pay to buy sugar in the spot 

market.  While 49% of the firms surveyed by Servaes et al (2009) reported exposure to 

commodity price fluctuations, and 32% of the firms use commodity derivatives, most of 

the firms tend to manage commodity price risk with non-financial approaches like 

contractual arrangements, pricing plans and natural hedges in addition to the standard 

OTC financial derivative contracts. Bodnar et al (1995) concluded that there is no 

financial derivative that dominates commodity price risk management.  Instead, 

commodity price risk is hedged through a variety of financial contracts including swaps, 

options, futures and forward contracts (Bodnar et al, 1995; Carter et al, 2004). In their 

case study on fuel hedging Essaddam and Miller (2008) find that both futures contracts 

and futures options are effective in managing price risk.  



 58 

3.3.2.3 Limitations in using derivatives 

There are several limitations in using derivatives to manage risk. Firstly, not all assets 

have corresponding derivatives. For example, there are no futures contracts on jet fuel, 

which has led airlines to use heating oil futures to manage the price risk of jet fuel.  

Secondly, the effectiveness of the instrument in hedging risk depends on the correlation 

between the movements in the price of the asset which is being hedged and the asset 

underlying the futures. In the case of airline jet fuel hedging, this is the correlation 

between changes in the price of jet fuel and the price of heating oil.  Such a correlation 

may not always be high enough to make the derivative as effective as desired. Thirdly, 

the fixed size of the derivative contract may create difficulties in formulating the perfect 

hedge. For example, the Japanese yen futures contract traded on the Chicago Mercantile 

Exchange Group has a size of 12.5 million yen, making it difficult to hedge an exposure 

of 15 million yen.  Fourthly, it is possible that a multinational company anticipates that it 

will have foreign sales denominated in foreign currency, but has no idea of the magnitude 

of these sales. Finally, exchange-traded derivatives have specific delivery/expiration 

dates that may not coincide with the date of the anticipated transaction that a firm wishes 

to hedge. Furthermore, the price of the hedge can be a severe impediment and as such 

may discourage hedging in certain cases.  

3.4 Distinctions between Operational and Financial 

Risk Management Approaches 

While operational and financial risk management approaches share a common objective, 

which is to protect firms from the negative impact of various risks, such approaches also 

have a number of differences. In the following sub-sections, we describe the major 
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differences which have been highlighted by the reviewed articles. We initially focus on 

time horizon and cost. Next, we highlight the differences in their impacts on firm’s 

performance and risk exposure. Finally, we present the arguments that characterize 

operational and financial approaches as substitutes or complements.  

3.4.1 Time horizon 

The effects of some financial risk management approaches are largely limited to short 

term (Chowdhry and Howe, 1999; Aabo and Simkins, 2005), but do not provide the firm 

with the strategic position to sustain its competitive edge on a long term basis. For firms 

exposed to exchange rate risk, use of financial derivatives can mitigate the short term 

impact of  transaction risk but do not prevent the long term effects of competitive risk 

(Triantis, 2000).  In addition to the direct transaction advantage, some competitors can 

also exploit the change in demand for the firm’s product as the exchange rate has a direct 

correlation with the demand for imported products. Unlike financial contracts that have 

short term effects on risk exposure, the operational approaches, as discussed in Section 

3.2, are implemented to protect the firm from long term risk exposures (Dufey and 

Srinivasulu, 1983; Chowdhry and Howe, 1999; Carter et al, 2001; Kim et al, 2006, 

among others).  At a point in time, many airlines had increased their fuel price hedging 

horizons to an unprecedented period of six years, as demonstrated in the case of 

Southwest Airlines (Carter et al, 2006).  

3.4.2 Cost 

The long term competitive advantage achieved by employing operational risk 

management approaches is associated with high costs incurred in opening and closing 
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production facilities, changing product and process designs and many other operational 

options. The cost of financial hedging (for example, the transaction cost of currency 

hedging) is much lower than the cost of operational approaches (for example, the costs 

involved when opening a new production facility in a foreign country) (Chowdhry and 

Howe, 1999; Triantis, 2000; Hommel, 2003). Operational approaches tend to be very 

costly due to their strategic nature and firms may opt to implement lower level tactical 

approaches to avoid such costs. In their survey of non-financial Danish companies, Aabo 

and Simkins (2005) found that 54% of the surveyed companies would shift their sourcing 

among suppliers to manage their exposure to the currency rate, compared to only 25% 

that would take a more permanent action by opening or closing a production facility. 

However, operational approaches can be cost effective when implemented by firms that 

are part of a global network with diversified operations (Carter et al, 2001). Such 

approaches could be less costly than financial derivatives if the exchange rate volatility or 

the planning horizon increases (Triantis, 2000; Hommel, 2003). In this context, 

Huchzermeier and Cohen (1996) argue that as the time horizon gets longer, the cost of 

financial tools increases while the cost of operational approaches decreases.  

3.4.3 Impact on business performance 

The implementation of high cost operational approaches can be justified by the 

significant positive impact on the firm’s performance. Huchzermeier and Cohen (1996) 

develop a model to value operational flexibility (the options of switching among 

production plants and / or supply channels) in terms of the improvement in the expected 

after-tax profit a firm can achieve after exercising such options (see also Kogut and 

Kulatilaka, 1994). The increase in expected profits would consequently result in an 
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increase in the firm’s value (Hommel, 2003). The impact of the capacity allocation option 

on the firm’s performance is studied by Ding et al (2007). By exercising the capability to 

postpone foreign demand to avoid the adverse effects of the exchange rate change, the 

firm improves its expected profit and minimizes the exposure risk. This improvement in 

the firm’s profit due to operational flexibility and capacity allocation options seems to be 

a common impact of operational approaches as argued by Chowdhry and Howe (1999). 

The authors believe that this impact on profits cannot be achieved by financial hedging 

contracts alone. This conclusion is supported by Huchzermeier and Cohen (1996). 

Through a global manufacturing supply chain network model, Huchzermeier and Cohen 

(1996) found that financial hedging against exchange rate risk does not make a 

significant change in the expected after-tax profit of the firm. Although Ding et al (2007) 

agree that financial tools do not directly increase the firm’s profit, they point to the 

indirect impact of these tools. The authors argue that decreases in the variability of profits 

caused by financial contracts would motivate firms to invest in more capacity that 

provides a potential for profit increases.  

While the implementation of operational flexibility is shown to increase the firm’s 

value, there are inconsistencies in the findings of empirical studies on the relation 

between financial hedging and firm’s value as observed by Carter et al (2006). In a 

theoretical study, Smith and Stulz (1985) explain how hedging should increase firm 

value. This is confirmed in the empirical study by Allayannis and Weston (2001) who 

reveal a positive relationship between hedging and firm value. Similarly, Carter et al 

(2006) find that financial hedging increases firm values in the airline industry. However, 

Triantis (2000) contends that operational approaches are better strategies to increase firm 
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value. This perspective is supported by the empirical results of Kim et al (2006) where 

the added value due to operational tools was found to be higher than that due to financial 

instruments. While the positive effects of the financial tools on the firm’s value and profit 

are argued to be of some significance, the negative effects of the downside risks 

associated with these tools may prove to be more significant. Huchzermeier and Cohen 

(1996) argue that the financial hedging tools would have adverse consequences on the 

firm’s ability to enter new markets due to the predictability of its cost structure. Another 

negative effect can occur when a company decides to hedge fully (say against exchange 

rate or commodity price risk) resulting in an inability to make value-enhancing moves 

(Froot et al, 1994). 

3.4.4 Downside risk, upside potential and uncertainty exploitation 

While the positive impacts of operational and financial approaches on firm performance 

are important, the primary objective of these two approaches is to reduce the firm’s risk 

exposure. While both approaches are efficient in reducing exchange rate risk (Carter et 

al, 2001; Kim et al, 2006), forward contracts deprive the firm of the upside potential in 

order to eliminate the downside risk (Huchzermeier and Cohen, 1996; Triantis, 2000). 

For example, an exporting firm takes a short position in a forward contract on the foreign 

currency-denominated revenue that the firm expects to receive on a future date, to protect 

against a possible depreciation of the foreign currency. However, in case of depreciation 

of the home currency, the exporting firm loses the opportunity to profit as it is bound by 

the contract to sell the foreign currency at the forward rate rather than the now favorable 

spot rate. Blume (1971) and Moore (1983) emphasize that upside potential motivates one 

to take a certain risk in the first place. The loss of the opportunity to increase the cash 
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flow can be costly if, for example, the exporter in the above example has to raise new 

capital to finance a promising investment (Servaes et al, 2009).    

Operational approaches not only reduce risk, but also exploit the uncertainties 

underlying these risks to increase firm’s value (Triantis, 2000; Ding et al, 2007). Triantis 

(2000) provides an example of a manufacturer with overseas sales. When the home 

currency appreciates, the manufacturer experiences a decrease in its cash flow. By 

operating a production facility in a foreign country, the manufacturer can avoid the 

decrease in the cash flow by ensuring that costs and revenues are denominated in the 

same currency. This allows the manufacturer to outperform its competitors who do not 

have production facilities in that foreign country. While Huchzermeier and Cohen (1996) 

consider uncertainty exploitation to be exclusive to operational approaches, Carter et al 

(2006), among others, explain how financial hedging tools can also exploit uncertainty. 

Airline companies that efficiently hedge fuel prices can sustain their projected cash flow 

during “periods of distress” in which fuel prices are high, which provides them the 

opportunity to acquire weaker firms. In a survey on non-financial companies, 17% of 

CFOs find that risk management allows exploitation of trading opportunities in foreign 

exchange, interest rates and commodities (Servaes et al, 2009). 

3.4.5 Substitutes or complements 

Researchers on integrated risk management provide arguments to support operational and 

financial risk management approaches as both substitutes and complements. Hommel 

(2003) describes operational diversification as a substitute for financial derivatives when 

the asset to be hedged and the time horizon are not matched by available derivatives. 

Aabo and Simkins (2005) report that 52% of the non-financial firms surveyed believe 
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that currency exposure should be managed by operational approaches rather than by 

financial instruments. Mello et al (1995) study two cases of risk management and find 

that the number of financial hedging contracts decreases when the firm’s operational 

flexibility increases in one case and decreases in the second case.  A positive correlation 

between operational diversification and financial hedging is also observed in Allayannis 

et al (2001) and Kim et al (2006). Chod et al (2010) study the relationships between two 

types of operational flexibility and financial hedging under uncertainty in demand for two 

products. Although the authors find postponement flexibility and financial hedging to be 

substitutes, the relationship between product flexibility and financial hedging is found to 

depend on the correlation between the demands for the two products. The two approaches 

are complements when demands are positively correlated and substitutes when the 

demands are negatively correlated. 

3.5 Integrated Operational and Financial Approaches 

The differences between operational and financial risk management approaches in terms 

of cost, time horizon, firm performance and risk support the need to integrate these two 

approaches to counterbalance the shortcomings of one approach by the benefits of the 

other.  For example, limitations of financial instruments in reducing competitive risk can 

be overcome by a strategic operational initiative. The high cost of operational approaches 

can be alleviated by exploiting low cost financial instruments which are equally effective. 

In addition, operational and financial approaches can, when combined, manage risks that 

cannot be managed by a single approach. Firms are continuously exposed to a bundle of 

risks that cannot be reduced by financial instruments alone (Miller, 1992), but can only 

be managed by an integrated approach. We highlight these possibilities in the following 
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review of the rather scanty literature on integrated operational and financial risk 

management approaches. 

Weiss and Maher (2009) examine the effects of fuel hedging by focusing on the 

hedging capability of nine U.S. airline companies. The results show that fuel hedging 

does not significantly contribute to the firm’s hedging capability. The authors justify this 

finding by arguing that fuel hedging cannot protect airline companies against variations 

in demand for airline services. This demand uncertainty is one of the various operating 

problems that cannot be effectively tackled by financial instruments alone (Aabo and 

Simkins, 2005).  Chowdhry and Howe (1999) argue that a financial hedging tool can be 

effective in hedging exchange rate risk if demand is deterministic. It is therefore 

reasonable to conclude that in the case of uncertain demand, exchange rate risk should be 

managed by an integrated operational and financial approach.  

Financial derivatives support the implementation of operational approaches. 

Allayannis et al (2001) and Faseruk and Mishra (2008) conclude that operational hedging 

in the form of geographical dispersion does not protect multinational firms from  

exchange rate risk unless it is in addition to the use of currency derivatives and foreign 

debt. Triantis (2000) presents an example of a manufacturer who uses his production 

switching capability to mitigate his exposure to currency fluctuations. If the home 

currency depreciates, currency derivatives can offset the reduction in value of the 

overseas facility. Hommel (2003) describes such use of financial instruments as a ‘buffer’ 

for the implementation of operational approaches. Dufey and Srinivasulu (1983) explain 

that hedging eliminates risks of unexpected changes in the exchange rate, allowing 

operational approaches to deal with variations in business activity. The implementation of 
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financial tools would also have an impact on operational decisions. Gaur and Seshadri 

(2005) demonstrate how financial hedging allows a retailer to increase its optimal 

inventory level for a product when the demand for that product is correlated with the 

price of the asset underlying the financial instrument. 

The complementary effects of operational and financial approaches make the 

integrated implementation of these approaches more valuable than their separate 

implementation. Carter et al (2001) report that the integrated approaches reduce the 

firm’s risk exposure more effectively due to the ability to manage both long and short 

term risk exposure. Ding et al (2007) show that the simultaneous use of currency options 

and the capacity allocation options result in better performance measures than the use of 

each tool separately. Mello et al (1995) find that firm value is highest when operational 

flexibility is high and financial hedging is used.  Faseruk and Mishra (2008) argue that 

not only does the integrated strategy increase firm value, but that the utilization of a 

single approach in an isolated manner may not even increase the firm’s value at all. This 

is consistent with an earlier finding by Miller (1992) who argued that the implementation 

of one approach would give ‘suboptimal’ results since the two approaches are 

interrelated.   

We summarize in Table 3.5 the various combinations of operational and financial 

approaches along with the type of risk under which these combinations have been applied 

in the literature. 
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3.6 Areas for Future Research 

Table 3.5 facilitates making some observations as to the current state of the integrated 

SCRM literature. Exchange rate risk exposure is mostly incorporated in the models 

reported and most models use currency derivatives. As discussed in Section 3.3, 

commodity price risk and interest rate risk are also key risks to be managed. Hence, new 

models need to be developed to further incorporate these risks in integrated SCRM 

modelling. On the operational side, most often, three types of operational approaches 

(geographic dispersion, switching production and capacity allocation postponement) are 

integrated with financial instruments. Considering the large number of available 

operational strategies which were discussed in Section 3.2, the research opportunities of 

integrating these other operational approaches (such as, inventory management) with 

financial instruments could be substantial. The reviewed quantitative models tend to 

focus on downstream operations and mostly involve manufacturing plants and those 

markets in which they sell. Designing models that also incorporate the upstream partners 

of a firm could narrow this gap in the literature. It is also observed that the reviewed 

models have the common objective of optimizing a firm’s performance and hence are 

very much focal firm centric. As argued by Juttner et al (2003) and Rao and Goldsby 

(2009), among others, the objective of supply chain risk management is to reduce the 

vulnerability of the supply chain as a whole rather than of the focal firm. While building 

models that improve the performance of a supply chain as a whole could be challenging, 

the models would significantly contribute to developing novel risk management strategies 

that could provide contemporary supply chains a competitive edge. 
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Table 3.1 Risk management approaches for the risk domain 'internal operations' 
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Table 3.2 Risk management approaches for the risk domain 'external stakeholders' 
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c
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c
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c
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 c
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p
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p
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c
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 d
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 d
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v
e
 

a
n
a
ly

s
is

: 
in

te
lli

g
e
n
t 
s
e
a
rc

h
 a

g
e

n
ts

, 
d
y
n
a
m

ic
 

ri
s
k
 i
n

d
e
x
 t

o
o
ls

 (
9
) 

C
o
n
tr

o
l 
s
tr

a
te

g
ie

s
 (

5
7

) 

A
v
o

id
a

n
c
e
 

R
e
a
l 
o
p
ti
o

n
s
: 

d
e
fe

r,
 

o
u
ts

o
u
rc

e
, 
s
c
a
le

 

d
o
w

n
, 

a
b
a
n
d
o
n
 (

3
6

) 

       

Id
e

n
ti

fi
e
d

 R
is

k
s
 

Q
u
a
lit

y
 /
 d

e
liv

e
ry

 r
e
lia

b
ili

ty
 

(3
6
, 

8
6
, 

1
0
4
, 

1
0
2
, 
1
0
5

) 

B
u
s
in

e
s
s
 c

o
n
ti
n

u
it
y
 (

8
4
, 

1
0
2
, 

1
0
5
);

 R
is

k
 o

f 
p
a
rt

ic
u
la

r 

s
e
g
m

e
n
t 
o
f 
s
u
p
p
ly

 c
h
a
in

 

b
e
in

g
 c

ri
p

p
le

d
 (

9
) 

S
u
p
p
ly

 y
ie

ld
 /
 c

a
p
a
c
it
y
 

u
n
c
e
rt

a
in

ty
 (

1
0
2

) 

L
e
a
d
 t

im
e
 u

n
c
e
rt

a
in

ty
 (

1
0
2
) 

P
ri
c
e
 u

n
c
e
rt

a
in

ty
 (

6
, 
1
0
2
, 

1
0
4
) 

C
o
m

m
it
m

e
n
t 
(1

0
4
) 

S
h
ip

m
e

n
t 
d
is

ru
p
ti
o

n
s
 

(i
n

b
o
u
n
d
 /

 o
u
tb

o
u
n
d
) 

(9
4

) 

C
h
a
o
s
, 

la
c
k
 o

f 
o
w

n
e
rs

h
ip

, 
in

e
rt

ia
 (

5
7
) 

S
o

u
rc

e
s
 o

f 

M
a

jo
r 

R
is

k
s
 

S
u
p
p
lie

r 

re
lia

b
ili

ty
 

D
is

tr
ib

u
ti
o

n
 

N
e
tw

o
rk

 



 70 

Table 3.3 Risk management approaches for the risk domain 'marketplace' 
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Table 3.4 Risk management approaches for the risk domain 'environment' 
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Table 3.5 Risks managed by integrated operational and financial approaches 

 
Risks managed by integrated operational and financial approaches  
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Chapter  4                                             

Integrated SCRM Model via Operational 

and Financial Hedging 

4.1 Introduction 

Risk management provides a long-sought arena to visualize and understand the true 

nature of supply chain management: its interdisciplinary context. As risk management in 

business spans several disciplines such as procurement, finance, operations and 

marketing, the approaches used to manage risks along a supply chain need to be 

interdisciplinary as well. As reported in a large number of articles on supply chain risk 

management that appeared over the last decade (Chapter 2), studies using 

interdisciplinary and integrated approaches to supply chain risk management (SCRM) 

have recently gained momentum.  

This Chapter contributes to research on SCRM by examining an integrated approach 

to risk management using operational and financial hedging methods. The application 

venue considered is the beer industry with three members along its supply chain: an 

aluminum can supplier, a brewery and a beer distributor. Faced with beer demand 

uncertainty and volatile aluminum prices, a simulation based optimization model is 

developed incorporating both operational and financial risk management techniques. The 

operational hedging technique focuses on timing and quantities of aluminum sheet 
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procurements as well as inventory levels of raw material, work in process and finished 

goods maintained at all three supply chain members. The financial hedging technique 

focuses on the optimal purchase of call and put options on aluminum futures to hedge 

aluminum price uncertainty. The integrated model minimizes the expected total 

opportunity cost of the three supply chain members over the eight week peak demand 

period.  

Section 4.2 reviews previous research on integrated operational and financial risk 

management. Section 4.3 presents a conceptual background to our study which focuses 

on problem setting and the model framework. Section 4.4 discusses the risk management 

processes used in the integrated risk management model. Section 4.5 describes the 

integrated risk management model in detail. Section 4.6 discusses a sequential model 

which first applies operational hedging techniques to determine the optimal purchase 

quantities of the input commodity (aluminum) and inventory levels maintained by the 

different members of the supply chain, and then applies financial hedging techniques to 

determine the optimal purchase quantity of call and put options on aluminum futures 

contracts. Section 4.7 presents the experimental design used for the simulation based 

optimization. Section 4.8 discusses the results. These reveal that, in most of the cases 

addressed, the integrated model significantly outperforms the sequential model in 

minimizing the expected total opportunity cost. Section 4.9 presents conclusions and 

offers areas for further research.   

4.2 Literature Review 

Due to the limitations inherent in the individual approaches, research on integrated 

operational and financial approaches to manage risk is recently attracting more interest 
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from researchers and practitioners alike. For example, firms exposed to exchange rate 

risk can use financial derivatives to manage the short term impact of transaction risk but 

cannot affect the long term effects of competitive risk (Triantis, 2000). Through a survey, 

Servaes et al (2009) report that 63% of the participating companies recognize the benefits 

of enterprise risk management. Previous studies such as those of Miller (1992) and Carter 

et al (2001) conclude that managing risk on a firm level is more effective than managing 

it on a functional level. Companies may even incur losses when individual functional 

divisions attempt to implement risk management approaches in isolation from other 

departments. Proctor & Gamble and Metallgesellschaft suffered catastrophic losses after 

they assumed positions in financial derivatives that were not consistent with their firm’s 

corporate strategy (Froot et al 1994). In Chapter 3, we report in our review on 

operational, financial and integrated models that the results of a number of models which 

integrate operational and financial approaches support the above arguments.  In what 

follows, we review studies on theoretical models of integrated operational and financial 

approaches as well as empirical studies.     

4.2.1 Theoretical Models 

The real options approach provides operational flexibility by allowing the firm to switch 

production between plants located at different countries to supply various markets (Kogut 

and Kulatilaka 1994, Huchzermeier and Cohen 1996). Just as currency options do, the 

real options approach allows the firm to protect itself against fluctuations in a currency 

exchange rate. The use of real options is integrated with the use of financial instruments 

in models developed by Mello et al. (1995), Chowdhry and Howe (1999) and Hommel 

(2003) to mitigate risks arising from demand uncertainty and varying currency exchange 
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rates. For a firm which issues foreign-currency denominated debt to hedge foreign 

currency risk, Mello et al. (1995) discern a relationship between the firm’s liability 

structure and its operational flexibility. Chowdhry and Howe (1999) find that production 

flexibility can be used to hedge foreign currency cash flows.  Hommel (2003) 

distinguishes between two operational hedging strategies: diversification and flexibility. 

While diversification involves choosing the firm’s currency mix, flexibility allows the 

firm to alter this mix by switching production between plants according to observed 

changes in the currency exchange rate. The above models assume that the plants among 

which production can be switched always possess sufficient capacity. However, this 

assumption may not be realistic. Ding et al. (2007) assume that production capacity is 

limited and that the real option available to the firm is to postpone capacity allocation. 

Upon the realization of the demand for the firm’s output and of the currency exchange 

rate, the firm decides how much capacity to allocate to each market. The model 

determines the optimal capacity and the optimal position in foreign currency options that 

maximize the firm’s expected profit and minimize the variance of profit.  

The above models employ financial instruments to hedge against exchange rate 

changes, while the risk arising from output demand uncertainty is mitigated by 

operational flexibility. However, Chod et al. (2010) use financial tools to hedge against 

demand uncertainty. These authors examine the relationship between financial hedging 

and two forms of operational flexibilities: product choice and postponement of 

production. Product choice allows a firm to produce two different products with the same 

resource while the ability to postpone production allows the firm to delay production 

completion until demand is realized. These authors show that while postponement 
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flexibility is a substitute for financial hedging, product flexibility and financial hedging 

can be either complements or substitutes depending on the nature of the correlation 

between the demands for the two products. Gaur and Seshadri (2005) also  use financial 

instruments to hedge against demand uncertainty  They assume that demand is correlated 

with the price of the asset underlying the financial instrument and argue that the degree of 

this correlation influences hedging benefits. Their model determines an optimal inventory 

level and hedging strategy to maximize expected profit and minimize its variance.  

4.2.2 Empirical Studies 

Some empirical studies shed light on the benefits of integrating operational and financial 

hedging strategies. In their studies of multinational and non-financial firms, Allayannis et 

al. (2001), Kim et al. (2006) and Carter et al. (2001) find that geographical dispersion of a 

firm’s activities is an operational hedging strategy that is complemented by the use of 

currency derivatives to hedge against foreign exchange risk. Other operational hedging 

strategies include the real options of switching production, entering new markets and 

changing suppliers. Aabo and Simkins (2005) address the relationship between real 

options and financial hedging in managing foreign exchange risk and find that a majority 

of the surveyed firms do not use financial instruments to hedge this risk, but would rather 

manage the firm’s exposure with real options.   

4.3 Conceptual Background 

4.3.1 Problem Setting 

A brewery purchases aluminum cans from a can supplier, produces canned beer and then 

transports it to a distribution center which maintains an inventory of canned beer to meet 
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retailers’ demand. The supply chain, which consists of the aluminum can supplier, 

brewery and beer distributor, faces risks which originate from upstream and downstream. 

The can supplier, using aluminum sheets as the major material input for can production, 

faces aluminum price volatility, while the distribution center faces uncertainty in beer 

demand. Aluminum price volatility causes fluctuations in packaging cost while beer 

demand uncertainty causes either a shortage or a surplus in finished goods inventory. 

Firms can hedge commodity price uncertainty with financial hedging approaches, such as 

the use of commodity futures and options, and manage demand uncertainty with various 

operational hedging approaches, such as the use of rigorous forecasting methods and 

inventory management systems. We develop a model to capture the benefits of 

integrating operational and financial hedging approaches to manage the risks of 

aluminum price volatility and beer demand uncertainty. 

4.3.2 Model Framework 

The model assumes a partnership-like relationship among the members of the supply 

chain. In this vein, we assume that information on the demand at various stages across the 

supply chain is not distorted and that it flows in a timely manner across the supply chain.  

The beer industry faces a seasonal demand, characterized by highs in summer and lows in 

winter. Our model focuses on the supply chain’s financial and operational decisions 

pertinent to a period of eight weeks of peak demand during summer. The major breweries 

produce a variety of brands, all of which are packaged in the same type of aluminum can 

with different labels. We consider in our model the aggregate demand of all brands. 

The model incorporates inventory levels of three items: canned beer at the 

distribution center, empty aluminum cans at the brewery and aluminum sheets at the can 
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supplier. While the inventories of aluminum sheets and canned beer are physically 

maintained and managed solely by the can supplier and the distribution center, 

respectively, the inventory of empty aluminum cans requires a close coordination 

between the brewery and the can supplier. The empty cans could even be stored in a third 

party warehouse.      

The integrated model minimizes the expected total opportunity cost, E(TOC), of the 

supply chain as a whole, rather than merely minimizing the opportunity costs of one of 

the supply chain members. The total opportunity cost includes: i) inventory carrying costs 

at all stages of the supply chain, stock-out costs emanating from the mismatch between 

demand for beer and the inventory of canned beer, and ii) costs associated with hedging 

aluminum price volatility with inventory and with options on aluminum futures. Our 

model builds on the premise that the decisions on aluminum and canned beer inventories 

need to be made in an integrated manner to minimize the expected total opportunity cost 

while maintaining the value at risk (VaR) of total opportunity cost within a predefined 

limit. The VaR limit is incorporated in the model as a constraint and its value depends on 

the level of risk aversion of the supply chain, to be collectively agreed upon by the supply 

chain members.  

4.3.3 Supply Chain Risk Management Process 

Figure 4.1 presents the chronology of the risk management process used by the supply 

chain. In the figure, ‘w’ is used to represent a week, ‘T’ is used to represent a time period 

that can span a number of weeks, and ‘t’ represents a point in time, that is, the beginning 

of a week. All decision variables and some parameters in the model are associated with 

inventory type and/or a point in time. For these variables and parameters, we use two 
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subscripts, i and j, where i = {a, b, c} denotes aluminum sheets, canned beer and empty 

cans, respectively, and j = {0, 1, …, 13} represents a point in time.  

 

4.3.3.1 Hedging Aluminum Price Risk Uncertainty with Inventory and 

Options on Aluminum Futures.  

Time t0 represents the current point in time at which the can supplier places an order for 

aluminum sheets. These are required to produce a portion of the cans needed by the 

brewery to satisfy the beer demand anticipated to occur during the final eight weeks of a 

future time period T1. The time period T1 = {w1…w13} spans 13 weeks.  The first five 

weeks of T1 are reserved for the lead time Lc required by the can supplier to produce 

empty cans (4 weeks) and the lead time Lb required for the brewery to produce beer (1 

week).   Faced with aluminum price variability and uncertain demand for beer, the supply 

chain needs to make two strategic decisions on: i) the quantity of aluminum sheets to 

procure (Qa) and ii) the effective price to pay for the aluminum. The can supplier and the 

brewery make their decisions based on their mutual interest of optimizing the supply 

chain performance, defined as the minimization of the expected total opportunity cost 

along the supply chain over the total time span T0 and T1.   

At time t0, the can supplier purchases an initial quantity of aluminum Qa0 from the 

spot market at the spot price of S0 per unit. This purchase is a hedge against future 

T0 

t0 t1 

Production 

lead time Demand periods 

T1 

w6 w7 w13 w6 

t6 
t7 t2 t13 t5 

w1 w5 

Figure 4.1 Chronology of the risk management process 
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increases in the aluminum price. As the future demand for beer is revealed, and hence the 

future demand for aluminum cans, it is possible that the initial quantity of aluminum 

purchased is higher or lower than the quantity which is actually needed, thereby resulting 

in holding costs or stock-out costs.  At time t1, the can supplier purchases a second 

quantity of aluminum Qa1 from the spot market at a spot price S1.  The purchase of 

aluminum in two batches reduces the total holding costs associated with holding 

aluminum sheets in inventory and allows time for the buyer to respond to price changes 

in the market place since time t0. 

Considering the initial quantity of aluminum purchased at t0, if the aluminum price 

were to decline in the future, then the supply chain would incur an opportunity cost, since 

by waiting to purchase aluminum, it could have done so at a lower price. To offset the 

opportunity cost associated with aluminum price decreases, the can supplier buys at t0 a 

number Np of European put options on aluminum futures with a premium p0, an exercise 

price K and expiration date t1.  The put options are assumed to be at the money at 

purchase such that the exercise price K is equal to the underlying aluminum futures price 

F0 at time t0.  It is also assumed that the delivery date of the underlying futures contract 

coincides with the options’ expiration date t1.  

At time t1, if the observed aluminum spot price S1 is lower than the spot price S0 on 

the initial date t0, then the present value of the opportunity cost associated with the initial 

purchase of aluminum is given by Qa0(S0-S1e
-rT0

), where r represents the weekly risk free 

interest rate.  The futures contract price F1 should be equal to S1, since the spot and 

futures price should converge on the futures contract’s delivery date. As the options are at 

the money on purchase so that F0 = K, hence F1 < K. In this case, the can supplier 
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exercises the options, resulting in a payoff equal to Np(K-F1), which offsets the 

opportunity costs associated with the purchase of the initial quantity of aluminum. 

However, if S1  is greater than S0, the initial purchase of aluminum at a lower price 

provides an opportunity gain. In this case F1 > K, so the put options will be left to expire 

unexercised.  

Considering the second quantity of aluminum sheets (Qa1) purchased at time t1, the 

supply chain would incur an opportunity cost should the aluminum price increase.  To 

offset this latter cost, at t0, the supplier buys a number Nc of European call options on 

aluminum futures at a premium c0, an exercise price K, and expiration date t1. As with the 

put options, the call options are assumed to be at the money so that K = F0.  It is also 

assumed that the delivery date of the underlying futures contract coincides with the 

options’ expiration date t1.   

Associated with the decision to postpone a portion of the aluminum quantity purchase 

Qa1 to t1, an opportunity cost is incurred if the aluminum spot price S1 is higher than its 

initial value S0. This cost is given by Qa1(S1e
-rT0

-S0). In this case, F1 = S1 > K, and the can 

supplier exercises the call options with a payoff equal to Nc(F1-K), which offsets the 

opportunity cost associated with the postponement of the aluminum purchase.  On the 

other hand, if the aluminum spot price S1 decreases below its initial value S0, the decision 

to postpone the purchase of a quantity of aluminum to t1 results in an opportunity gain.  

In this case, the call options will be left unexercised. 

4.3.3.2 Production Schedule and Inventory Flows 

To manage the demand occurring over time span T1, the supply chain members maintain 

appropriate levels of the three inventory types in order to maximize the fill rate while 
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minimizing holding costs. The lead times Lc and Lb are considered in scheduling 

production lots. Inventory flows are determined using pull logic with estimated beer 

demand as the starting point.  

As an example, the following illustrates typical decision sequences corresponding to 

beer demand in week 6. This is the first demand period in our planning horizon. The 

same applies to all other weekly demands.  The brewery estimates the demand d6 that 

would be realized over week w6 and accordingly ships a quantity of beer Qb6 to the 

distribution center so as to have a beginning inventory Bb6 ready to fill customers’ orders 

over week 6. The brewery starts to fill and pack a corresponding quantity of beer cans Pb5 

at time t5 = t6 – Lb. Empty cans are transferred from the warehouse in which a beginning 

inventory level of empty cans Bc5 is replenished by an incoming quantity of empty cans 

Qc5 from the can supplier. After transferring Qc5 to the canning process the warehouse’s 

empty can inventory level drops to the ending value Ec5, to be transferred to the next 

week. To dispatch Qc5 on time, the first lot of can production Pc1 at the can supplier starts 

at t1, where t1 = t5 – Lc. The quantity of aluminum sheets required to produce Pc1 is 

transferred from the beginning aluminum sheets inventory Ba1 at the can supplier, which 

equals the sum of the aluminum quantities purchased at t0 and t1. Following the transfer, 

an inventory level Ea1 remains on hand at the can supplier ready to be used during the 

following weeks. 

At the start of week j, as demand for canned beer dj starts being realized, the 

distribution center satisfies this demand from available inventory Bbj ending up with 

remaining inventory Ebj. The total quantity of canned beer distributed during the week is 

Mbj. If Bbj < dj, the supply chain incurs a stock-out cost (s). On the other hand, if Bbj > dj 
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the surplus quantity is carried over to the next week, incurring a unit weekly holding cost 

(h
’
b).  

Our model determines the optimal inventory levels by controlling the flows among 

the three inventory types of canned beer, empty cans and aluminum sheets. Subject to 

associated lead times, beer inventory is to be kept to a minimum level, while inventories 

of unprocessed aluminum sheets and empty cans are used instead as buffers against 

demand surges in order to reduce holding costs. All inventory decisions are a function of 

customer demand and production lead times at different stages of the supply chain.  

4.4 Integrated Risk Management Model 

The integrated risk management model solves for the decision variables (Qa0, Qa1, Nc, Np, 

Qbj and Qcj) in order to minimize the expected total opportunity cost E(TOC) along the 

supply chain that is incurred over the two time spans, T0 and T1, while meeting, among 

others, the constraint related to the value-at-risk of TOC (VaR). 

4.4.1 Assumptions 

We consider an aggregate demand for beer across multiple brands from which the 

requirement for aluminum cans is determined. Satisfaction of this demand depends only 

on the availability of a sufficient quantity of empty cans. We assume that the can supplier 

has enough capacity to meet any demand from the brewery within a deterministic lead 

time, and that there is no limitation on the order quantity within the demand distribution 

defined. We assign a holding cost for stored empty cans that is higher than that of cans 

undergoing production (Pc). The holding cost of beer at the distribution center is also 

higher than that of beer undergoing production (Pb). We assume that there is no inventory 
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available from the past at time t0 and that aluminum sheets inventory can only be 

replenished during T0 but not during T1 due to lead times in producing cans and filling 

and packaging beer. All inventory flows are assumed to take place as of the beginning of 

a period and inventory costing is done as of the end of week. The time span T0 is taken to 

be 12 weeks and the lead times for empty can and beer production are assumed to be 

deterministic.  

4.4.2 Decisions and Costs in the First Time Span (T0) 

The decision variables in the first time span, T0, are the quantities of aluminum sheets to 

order (Qa0 and Qa1) and the number of put and call options on aluminum futures to buy 

(Np and Nc). The opportunity costs (gains) incurred over this time span are the costs 

(gains) of initial inventories and the costs (gains) of the call and put options. 

4.4.2.1 Cost of Initial Inventories 

The opportunity cost associated with initial inventories at time t0 is given by: 

00 -rT

0a0a0

-rT

10a0 eThfQ)eS
~

-(SQ                (1) 

where, r represents the weekly risk-free rate of return and f is an equivalence factor that 

converts aluminum tons into millions of cans. In (1) and all formulations that follow, hi0 

and hi1 are the weekly costs of carrying a quantity of inventory of type i = {a,b,c}, 

associated with aluminum sheet quantities purchased at times t0 and t1 respectively. The 

first term in (1) represents the present value of the opportunity cost as described in 

Section 4.3.3.1. The second term captures the present value of the cost of carrying Qa0 

over the time span from t0 to t1. 

The opportunity cost associated with Qa1 is given by: 
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)S-eS
~

(Q 0

-rT

1a1
0

                   (2) 

This term represents the present value of the opportunity cost (gain) described in 

Section 4.3.3.1.
 

4.4.2.2 Cost of Put and Call Options 

The cost associated with the purchase of put options is given by: 

}0 ,)F
~
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while the cost associated with the purchase of call options is given by: 
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          (4)
 

where, hop is the weekly holding cost associated with put and call options. The first two 

terms in each of (3) and (4) represent the premium paid for the options and the 

corresponding holding costs. The third term in (3) and (4) represents the present value of 

the payoff on the expiration date from the put and call options, respectively.  

4.4.3 Decisions and Costs in the Second Time Span (T1) 

Over the time period T1, can production and beer filling and packing precede the 

realization of the weekly demands as lead times are involved in these actions. The values 

of Qbj and Qcj are to be decided before the corresponding weekly demands occur. 

Following the realization of weekly demand (dj) at the beginning of each week (wj) 

starting from week 6, the quantity to be distributed to the market Mbj is set to satisfy 

demand as much as the beginning inventory allows. The integrated model determines 

these quantities in order to minimize holding and stockout costs while meeting lead time 

constraints.  



87 

4.4.3.1 Stockout Costs 

The present value of the stockout costs over an eight-week beer demand period are given 

by: 

13

6j
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bjj
j0)s,0}eB-d

~
(Max{                (5) 

This cost is incurred when the beginning inventory in distribution center (Bbj) is less 

than the weekly demand. 

4.4.3.2 Holding Costs 

The present value of the holding costs associated with the inventory of aluminum sheets 

are given by: 
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               (6) 

The present value of the holding costs associated with the inventory of empty cans are 

given by: 
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The present value of the holding costs associated with the inventory of canned beer are 

given by: 
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where, u0 and u1 are the proportions of aluminum sheet quantities purchased at time t0 

and t1, respectively. The unit inventory holding cost has two components, hi0 and hi1, that 

are proportional to the purchase price, S0 and S1, respectively. The contribution of each 

component is then weighted by u0 and u1. As units of empty cans and canned beer move 

downstream, warehousing requirements become more stringent and consequently unit 

holding costs increase. The model incorporates this increase in holding costs by setting 

 > hi0 and  > hi1. Equation (6) and the second term in each of (7) and (8) represent 

the present value of the cost of carrying a surplus quantity of the corresponding inventory 

type. This surplus is determined by the weekly ending inventory. This approach captures 

the concept of opportunity cost that is incorporated in our model. The first term in each of 

equations (7) and (8) represents the present value of the holding cost associated with 

carrying the surplus quantity during the production phase for the whole lead time period. 

Equations (9) and (10) ensure that the final ending inventory is carried over to the next 

planning period.

 

4.4.4 Objective Function 

The objective of our model is to optimize the performance of the supply chain which 

consists of the can supplier, brewery and distribution center by minimizing the expected 

total opportunity cost E(TOC) along the supply chain, where the TOC is the summation 

of equations (1) through (8).   

E(TOC)Min                    (11) 

4.4.5 Constraints 

The following constraints are used in formulating the integrated supply chain risk 
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management model. 

aa1 fQB                     (12) 

Constraint (12) ensures that the beginning aluminum sheets inventory in the second time 

period T1 equals the sum of the quantities of aluminum purchased at time t0 and t1.   

a1a0a QQQ                    (13) 

13} ..., {6,  jfor  )d
~

,Min(BM jbjbj
              (14) 

Constraint (14) ensures that, as long as there is sufficient inventory at the beginning of 

each week, all demand is to be satisfied. Having this constraint is important to avoid 

stockout costs that are rather high compared to holding costs. 

 vVaR                     (15) 

Constraint (15) captures the degree of risk aversion within the supply chain. The value of 

the upper bound v on the value at risk VAR of the total opportunity cost TOC is a 

function of the risk management policy to be collectively determined by the supply chain 

members (can supplier, brewery and distribution center). 

 qQ, Q aa1a0                    (16) 

nN, N cp                    (17) 

13} ..., {6,  jfor   q  Q bbj                 (18) 

12} ..., {5,  jfor   q  Q ccj                 (19) 

Constraints 16 to 19 set upper limits for the decision variables due to operational and 

financial restrictions. 

8} ..., {2,  jfor  EB 1)a(j-aj                (20) 
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8} ..., {1,  jfor  P-BE cjajaj
               (21) 

8} ..., {1,  jfor  QP )Lc(jcj c
                        (22) 

12} ..., {5,  jfor  Q  EB cj1)c(j-cj
             (23) 

12} ..., {5,  jfor  P-BE bjcjcj
              (24) 

12} ..., {5,  jfor  QP )Lb(jbj b
                    (25) 

13} ..., {6,  jfor  Q  EB bj1)b(j-bj               (26) 

13} ..., {6,  jfor  M-BE bjbjbj
              (27) 

Constraints (20), (23) and (26) ensure the transfer of inventories remaining at the end of 

one week to the next week. Constraints (21, 22), (24, 25), and (27) ensure the inventory 

flow conservation every week for the inventories of aluminum sheets, empty cans and 

beer, respectively. 

4.5 Sequential Model 

The integrated model represents a centralized decision approach based on which 

operational and financial hedging decisions are made simultaneously. This approach is 

not widely used by firms. Instead, different functional areas make operational hedging 

decisions and financial hedging decisions independently. We represent this latter 

approach with a sequential model that consists of two sub-models: i) the operational 

hedging sub-model and ii) the financial hedging sub-model. The operational sub-model is 

a replicate version of the integrated model with the exclusion of the financial variables 

and costs. Using the same problem parameters and probabilistic inputs used in the 

integrated model, the operational sub-model solves for all the decision variables in the 

integrated model excluding the number of put and call options Np and Nc. The optimal 
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values of the decision variables obtained in the operational sub-model are then entered as 

fixed parameters in the financial hedging sub-model that solves for Np and Nc to 

minimize the expected total opportunity cost. The optimal values of the decision 

variables associated with the sequential model are the values optimized by the operational 

sub-model and then by the financial hedging sub-model. Hence, it is important to note 

that for the experimental design and statistical analyses that follow, the performance of 

the sequential model is measured by the expected total opportunity cost obtained by the 

financial hedging sub-model.  

4.6 Experimental Design 

4.6.1 Factorial Design 

In order to study the performance of our integrated model under various operating 

environments and to compare the integrated model to the sequential model we conducted 

factorial experiments. The three models are run on the same problem parameters 

controlling for the values of the three major factors: i) the VAR of total opportunity cost 

ii) demand variability and iii) volatility of aluminum price. The upper bound v on the 

VAR of total opportunity cost in equation (15) is a managerial decision variable related to 

the supply chain stakeholders’ risk management policy. The level of the upper bound is 

implicitly defined by the degree of risk aversion of the supply chain with higher levels 

corresponding to lower levels of risk aversion. The base value of v of $1.8 million is 

selected after a large number of trial runs were performed. Even though the level of v is a 

managerial decision, the values tested in the trial runs are limited by two boundaries. 

When v is very high, the variation of TOC is found to be high which makes the statistical 

analyses problematic. When v is very low, a feasible solution cannot be obtained due to 
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the tight constraint limit. The second factor, the variability of the demand for beer, 

represents the uncertainty emanating from the supply chain’s downstream. We quantify 

this uncertainty by the standard deviation of weekly beer demand (SDD). The base level 

of SDD of 4.5 million cans corresponds to a figure obtained in private communication 

with a major brewery. The third factor, aluminum price volatility (APV), is a source of 

uncertainty encountered at the supply chain’s upstream. This volatility is captured by the 

annualized standard deviation of return on both the aluminum spot and aluminum futures, 

σ1 and σ2, that are used to estimate the spot and futures price, respectively, in equations 

(28) and (29), in Appendix A.1, which explains the process used to simulate aluminum 

spot and futures prices. We considered three levels of APV, each level being represented 

by a value of σ1 and a value of σ2. The values of σ1 of 25.9% and σ2 of 23.9% which were 

estimated from historical data according to the procedure explained in Appendix A.1, are 

considered as ‘base’ values.  

       Table 4.1 provides the base values of the three factors as well as the low (L) and high 

(H) values used in the experimental design.  The lower and upper levels of the three 

factors were selected based on observations made during a large number of trial runs at 

the model development stage. The deviations from the base level are in percentage terms 

and the range of 15 – 16.7%  are consistent for the three factors.  

Table 4.1 Descriptions of experimental design factors 

Factor Designation Code 
Level 

Units L B H 

Value-at-risk VAR A 1.5 1.8 2.1 Million $ 

Demand uncertainty SDD B 3.8 4.5 5.2 Million cans 

Aluminum price 

volatility* 
APV C 

(21.3 , 

20.3) 

(25.0 , 

23.9) 

(28.8 , 

27.4) 
% 

* APV levels are represented by pairs of values of σ1 and σ2 (σ1,σ2) 
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  The three factors are incorporated in each model as follows: i) VAR is the value of 

the upper limit (v) in constraint (15); ii) SDD is a parameter defining, along with the 

mean, the distribution function of the weekly demand (dj) that is simulated according to 

the procedure explained in Appendix A.2; iii) APV is incorporated through σ1 and σ2 that 

are used to simulate S1 and F1, respectively, as explained in Appendix A.1. 

4.6.2 Simulation Environment 

Using three levels for each of the three factors, we identify 27 treatment combinations 

(i.e. 3
3
) for each of the three models (operational, financial and integrated) for a total of 

81 model versions. To compare the effects of the various treatment combinations, we 

determine for each of the 81 model versions the minimum expected total opportunity 

cost, E(TOC). This cost is the response variable that we use to compare the effects of 

treatment combinations. We use a simulation-based optimization tool provided by 

@RISK, which is part of the Decision Tools Suite provided by Palisade, to determine the 

values of the decision variables that minimize E(TOC) under the relevant constraints. 

Starting with initial values of the decision variables, the optimization involves running a 

large number of simulations. Each simulation consists of 10,000 iterations. For each 

iteration, random values of the probabilistic inputs (S1, F1, and dj) are generated and used 

in the calculation of the expected total opportunity cost. The software uses genetic 

algorithms to find new solutions that improve the value of  the objective function. Using 

the optimal solution found for the decision variables, we run eight simulations as 

replications on each of the 81 model versions and record the values of E(TOC). These 

values then represent the response variable in eight replications for each treatment 

combination in the experimental design.  
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4.6.3 Values of Major Parameters 

The values used for the parameters in 81 model versions are summarized in Table 4.2. 

Table 4.2 Values used for the parameters 

Parameter Value Source/Justification 

S0 $2,287 London Metal Exchange (LME), spot price of aluminum on  March 31, 

2010  

F0 $2,319 LME, closest to maturity futures price of aluminum on  March 31, 2010  

c0 = p0 $105 Calculated using the Black model  (Hull (2006), pp. 332-333)) 

K $2,319 Exercise price of at-the-money options 

T0 12 weeks Assumed to capture significant fluctuations in aluminum spot and futures 

prices 

f 13.38 Kg/1,000 

cans 

Data provided by a major brewery 

r 10% Assumed  (Shanker and Balakrishnan (2008)) 

h 18% Estimated 

h
'
 36% Holding cost marked up to capture special logistics requirements 

n 4,000 tons Based on assumed financial constraint 

qa 4,000 tons Based on assumed operational constraint 

qb 30 million cans Based on operational constraint 

qc 60 million cans Based on operational constraint 

We used the data published by the LME for the dates from January 6 to March 30, 

2010 to estimate standard deviations on aluminum spot and futures prices. As the options 

are purchased at t0 and have maturity dates at t1, the number of trading days considered in 

the simulations of S1 and F1 and in pricing the options is 60 trading days. The option 

prices are determined using Black’s model as described in Hull (2006; pp 332-333). 

Considering the exploratory nature of our study, we incorporated a 12 week period 

between t0 and t1 to capture any significant fluctuations in aluminum spot and futures 

prices. Following Shanker and Balakrishnan (2008) and Ritchken and Tapiero (1986), a 

risk free rate of 10% was assumed. The value of the stockout cost used in our model is 

obtained through private communications with a major brewery.   
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4.7 Findings, Managerial Insights and Statistical 

Analyses 

In the following sections, we refer to the solutions obtained as the ‘optimal solutions’ 

since these are found by the optimization procedure using the genetic algorithms 

imbedded in @RISK software. However, as in any stochastic programming model, we 

optimize the expected value of the objective function. Random values of the probabilistic 

input with continuous distributions are generated using simulation. We believe that the 

obtained solutions are close to optimal.   

4.7.1 Findings 

Table 4.3 depicts the main optimization results of each model version. For easy reference, 

each model version representing a treatment combination is designated by letters O, S 

and I referring to the operational hedging sub-model, the financial hedging sub-model 

(hence, the sequential model) and the integrated model. For example, I10 is the integrated 

model in which VAR = 1.8 million dollars, SDD = 3.8 million cans and APV = Low 

(21.3%, 20.3%). For the statistical analyses and managerial insights to follow, we present 

in Table 4.3 the optimal solutions in terms of only four decision variables (Qa0, Qa1, Np 

and Nc) and the optimal value of E(TOC) and its standard deviation (Dev). @RISK fits a 

distribution to the values of TOC obtained for each of 10,000 iterations in a simulation 

run. This distribution has a mean of E(TOC) and a standard deviation. In Table 4.3, 

E(TOC) and Dev are the means of their corresponding values in the eight replications of 

each treatment.  
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Table 4.3  Optimization results for the experimental design 
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Table 4.3 reveals that E(TOC) obtained for each of the three models satisfies the 

following three intuitive patterns: 

 For the same demand standard deviation and the same aluminum price volatility: 

when VAR increases, E(TOC) decreases (e.g.: E(TOC)I19 > E(TOC)I10 > E(TOC)I01) 

 For the same VAR and the same aluminum price volatility: when demand standard 

deviation increases, E(TOC) increases (e.g. E(TOC)I07 < E(TOC)I04 < E(TOC)I01) 

 For the same VAR and the same demand standard deviation: when aluminum price 

volatility increases, E(TOC) increases (e.g. E(TOC)I03 < E(TOC)I02 < E(TOC)I01) 

4.7.2 Comparison of Integrated and Sequential Models and 

Managerial Insights 

In this section, we present the results from Table 4.3 in two-way Tables 4.4 to 4.6 for 

easy comparisons. In these tables, rows correspond to SDD levels and columns 

correspond to VAR levels. Each cell represents a range corresponding to the three levels 

of APV. As APV exhibits daily fluctuations while SDD and VAR are more stable (SDD 

has weekly variation and VAR represents a managerial decision), presenting the results in 

this manner makes it easier to draw managerial insights. 

4.7.2.1 Overall Superiority of the Integrated Model over the Sequential 

Model 

Table 4.3 reveals that the integrated model performs better than the sequential model in 

all the cases, except for cases 3 and 25. In these two cases, the difference between the two 

expected opportunity costs is not statistically significant. The superiority of the integrated 

model over the sequential model is measured by the percentage difference between the 

corresponding expected total opportunity costs, as given by: (E(TOC)financial hedging - 
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E(TOC)integrated ) / E(TOC)integrated) x 100. This percentage difference is presented in Table 

4.4. 

Table 4.4  E(TOC) percentage difference between integrated and sequential models 

 VAR 

SDD 1.5 1.8 2.1 

3.8 0.9 – 3.0% 4.0 – 8.4%
*
 1.4 – 8.5%

*
 

4.5 3.4 – 6.3%
*
 2.7 – 10%

*
 2.2 – 7.2%

*
 

5.2 5.2 – 5.7%
*
 4.5 – 5.8%

*
 0 – 1.7% 

 * Statistically significant at 0.05 significance level  

Managerial Insights: In the context of our experiment, a less risk averse supply chain 

chooses to be exposed to a VAR that is higher than that accepted by a more risk averse 

supply chain in order to achieve a lower expected total opportunity cost. Improvement in 

E(TOC) when VAR is 2.1 is statistically significant in only two cases of the possible 

nine, (SDD = 3.8, APV = H) and (SDD = 4.5, APV = H). Hence, a less risk averse supply 

chain may not find it compelling to integrate the operational and financial hedging 

decisions except for those situations in which the aluminum price volatility is high while 

the demand variability is low to medium. However, for a more risk averse supply chain 

(willing to accept VAR at 1.5 and 1.8 levels), the integrated model results in significantly 

lower opportunity costs in most of the cases studied. 

4.7.2.2 Operational and Financial Hedging 

In this section, we discuss the operational and financial hedging strategies incorporated in 

the integrated and sequential models. While financial hedging is executed through 

purchasing put and call options, operational hedging against aluminum price increase can 

be viewed by the ratio (u0) of the quantity of aluminum sheets purchased at t0 to the total 

quantity purchased at t0 and t1.  

Operational Hedging: A supply chain using the sequential model buys at time t0 a 

proportion of its total aluminum quantity that is larger than that purchased by a supply 
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chain using the integrated model. Table 4.5 depicts ranges of u0 in the two models. A 

range encompasses values of u0 at the three levels of APV at each (VAR / SDD) 

combination.  

Table 4.5  Ratio (u0) of aluminum sheets purchased at t0 to total purchased quantity 

 VAR 

 1.5 1.8 2.1 

SDD Integrated Sequential Integrated Sequential Integrated Sequential 

3.8 22 – 23% 27 – 28% 7 – 11% 14 – 24% 7 – 10% 8 – 22% 

4.5 29 – 33% 39% 10 – 11% 18 – 29% 4 – 5% 8 – 15% 

5.2 32 – 34% 44 – 45% 31% 37 – 41% 5 – 23% 8 – 25% 

As both inventory and financial decisions are made simultaneously in the integrated 

model, the supply chain is hedged against a possible increase in aluminum prices by the 

purchase of a quantity Qa0 of aluminum sheets and of call options. In the absence of the 

latter hedging instrument in the operational sub-model, only Qa0 can hedge against an 

aluminum price increase which explains the higher ratio in all cases. The following 

patterns can be observed in both models: 

 For the same SDD: as VAR increases, u0 decreases, indicating supply chain’s  

willingness to wait (and take chances) to buy a higher quantity of aluminum at t1. 

 For VAR values of 1.5 and 1.8, for a given VAR: as SDD increases, u0 increases, 

pointing to a cautious behavior in terms of  buying higher quantities of aluminum 

earlier at t0. 

Financial Hedging: Table 4.3 depicts the difference in the financial strategies adopted 

in the integrated and the sequential models. In the latter model, as financial hedging 

decisions are made after inventory levels are determined, we observe the contribution of 

financial hedging decisions in further reducing the E(TOC) optimized by the operational 

sub-model. This contribution is measured by the percentage difference between the 
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corresponding costs, as given by (E(TOC)operational - E(TOC)financial hedging/) 

E(TOC)operational) x 100 and is presented in Table 4.6.  

Table 4.6  E(TOC) percentage difference between operational and financial hedging sub-models 

  VAR 

SDD 1.5 1.8 2.1 

3.8 1.1 – 2.1% 3.8 – 6.4%
*
 5.5 – 6.7%

*
 

4.5 0.3 – 0.6% 0.6 – 3.1%
*
 2 – 5.1%

*
 

5.2 0% 0.2 – 1.2% 0.7 – 2.3% 

 * Statistically significant at 0.05 significance level  

The results depicted in Tables 4.5 and 4.6 reveal a negative relationship between the 

effects of financial hedging on E(TOC) in the sequential model and the degree of 

operational hedging (u0). At VAR = 1.5, u0 is the highest and financial hedging has no 

significant effect. At VAR = 1.8 and 2.1, the effects are most significant when SDD = 3.8 

in which case u0 is the lowest. When SDD = 4.5, financial hedging has a significant effect 

only when aluminum price volatility is low, in which case u0 is the lowest. 

Managerial Insights: Whether integrated or individual hedging models are used, a 

less risk averse supply chain hedges aluminum price risk with much less physical 

quantity of aluminum than does a more risk averse supply chain which would procure up 

to 45% of the total quantity at time t0. The latter tends to use more operational hedging as 

demand variability increases. A highly risk averse supply chain that hedges with higher 

levels of inventory would not further hedge in a significant manner with financial 

instruments. A less risk averse supply chain, on the other hand, does hedge further using 

financial instruments, especially when demand variability is low.  

4.7.3 Statistical Analyses 

As the main objective of our research is to study the benefits of integrating operational 

and financial hedging decisions, we perform statistical analyses on the integrated model 
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and the sequential model in order to explain their performances under varying levels of 

the three experimental design factors and to draw further managerial insights. Assessing 

the performance of the operational hedging sub-model by itself does not serve our 

research objective. However, its contribution to the sequential model is relevant for 

analysis. The functioning of the operational sub-model is incorporated in the sequential 

model by setting the values of the decision variables obtained from the former as input 

parameters for the latter. 

We use Design Expert® software to perform factorial analysis on the data generated 

from the optimization runs. The software generates a quadratic regression model that 

explains the variations in the response variable, E(TOC), for each of the integrated model 

and the sequential model. The quadratic regression model includes terms representing the 

three factors (VAR, SDD, APV) in addition to interaction terms. The regression model 

can be used to predict the value of the response variable for any combination of the 

factors within their corresponding lower and upper levels. We will refer to the quadratic 

model as the regression model to avoid confusion with the original hedging models used 

for optimization. Thus, in the following discussion, the regression integrated model is the 

model we use to predict E(TOC) that can be optimized by the integrated model. The same 

applies for the sequential model. We also used Design Expert® on the aggregated data 

obtained from the integrated and sequential models. For the analysis of this aggregated 

data, we introduced a fourth factor. This factor is categorical with two levels representing 

the source of the data: integrated model and sequential model. An aggregate quadratic 

regression model is generated in this respect to explain the variation of E(TOC) within 

and between the integrated and sequential models.  
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4.7.3.1 Regression Models 

For each of the three regression models the software runs an ANOVA to test for the 

overall model fit and for the significance of the effects of each term in the model on the 

response variable. Table 4.7 presents part of the ANOVA results for the aggregate 

regression model. In addition to the main effects of the factors, the interaction between 

factors have significant effects on E(TOC). We discuss these interactions and provide 

managerial insights in the following sub-section.    

Table 4.7  ANOVA results for aggregate regression model 

Source Sum of Squares df Mean Square F Value p-value 

Model 6.51E+12 52 1.25E+11 7,686 < 0.0001 

A-VAR 1.66E+11 1 1.66E+11 10,165 < 0.0001 

B-SDD 6.84E+11 1 6.84E+11 41,983 < 0.0001 

C-APV 1.79E+10 1 1.79E+10 1,098 < 0.0001 

D-Model 2.12E+10 1 2.12E+10 1,304 < 0.0001 

AB 2.24E+10 1 2.24E+10 1,374 < 0.0001 

AC 3.18E+09 1 3.18E+09 195 < 0.0001 

AD 6.16E+08 1 6.16E+08 38 < 0.0001 

BC 2.16E+09 1 2.16E+09 133 < 0.0001 

BD 9.51E+08 1 9.51E+08 58 < 0.0001 

CD 3.40E+09 1 3.40E+09 208 < 0.0001 

ABC 2.24E+09 1 2.24E+09 137 < 0.0001 

ABD 1.66E+09 1 1.66E+09 102 < 0.0001 

ACD 7.88E+08 1 7.88E+08 48 < 0.0001 

A number of diagnostic tests are performed to detect any abnormality in the models. 

These tests are: i) normal probability plot of Studentized residuals to check for normality 

of residuals, ii) Studentized residuals versus predicted values to test for assumption of 

constant variance, iii) externally Studentized residuals to look for outliers and iv) Box-

Cox plot for power transformations. All the three regression models passed the diagnostic 

tests. Figure 4.2 illustrates the test plots for the aggregate regression model. 
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Figure 4.2  Test plots for the aggregate quadratic regression model 

4.7.3.2 Main and Interaction Effects 

As illustrated in Table 4.7, all the factors, as well as their interactions, have significant 

effects on E(TOC). Figures 4.3 to 4.5 illustrate the main effects of the factors and their 

interaction effects. The bars at the end points of the graphs represent the least significant 

differences of the average values of the opportunity cost, corresponding to 95% 

confidence level. Each figure depicts the change in E(TOC) for both the integrated and 

sequential models as a function of one factor at four combinations of the other two 

factors (at their lowest and highest levels). We will now highlight some of these effects 

and draw managerial insights accordingly.  

The main effects of the three factors of VAR, SDD and APV on E(TOC) are visually 

evident in  Figures 4.3 - 4.5. As noted in Section 4.7.1, there is a negative relationship 

between VAR and E(TOC) and a positive relationship between each of SDD and APV 
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with E(TOC). However, the degree of impact of the three factors on E(TOC) vary 

between the integrated and sequential models. In Fig. 4.3c, for example, the marginal 

decline in E(TOC) as VAR increases is much lower in the sequential model than in the 

integrated model. On the other hand, while E(TOC) exhibits a continuous decline as 

VAR increases in the sequential model, the change is minimal in the integrated model 

once VAR reaches the level of 1.9. 

While in most of the cases the integrated model results in a lower E(TOC) compared 

to that of the sequential model, some exceptions can be observed nevertheless. Fig. 4.3b 

and 4.3c reveal cases where E(TOC) of the integrated model is higher than that of the 

sequential model. This occurs when VAR is above 2 in the former figure and below 1.54 

in the latter. Similar observations can be made in Fig. 4.4b when SDD is higher than 4.9 

and in Fig. 4.4c when SDD is below 3.94. Fig. 4.5a and 4.5d also reveal that the 

sequential model outperforms the integrated model when APV is higher than 26.4% and 

lower than 24.7%, respectively. However, we find no statistical significance in the 

difference between the expected opportunity costs of the integrated and sequential 

models in these cases.   

Managerial Insights: i) In general, a less risk averse (LRA) supply chain (willing to 

accept high VaR of total opportunity cost) can be at a substantial advantage with respect 

to a more risk averse (MRA) supply chain. ii) The LRA supply chain performs best when 

it operates under low demand variability and low aluminum price volatility. iii) The 

supply chain would not always be able to exploit the benefits of integrating operational 

and financial decisions. Under certain business environments, such as described above, 

the integrated model may not significantly outperform the sequential model.   



105 

While results in Table 4.3 show positive and negative relationships between each 

factor and E(TOC), Figures 4.3 to 4.5 provide visual insights about these relationships. 

Figure 4.3 exhibits clear changes in the response of E(TOC) to variations in VAR under 

the different combinations of SDD and APV. This is true for both the integrated and 

sequential models. For example, E(TOC) line changes from a concave to a convex 

curvature when SDD changes from 3.8 in Fig. 4.3a. to 5.2 in Fig. 4.3b. In the integrated 

model, when SDD is low, E(TOC) does not improve in the cases when VAR becomes 

higher than 1.9 million dollars. On the other hand, when SDD is high, E(TOC) continues 

declining as VAR increases and it reaches a minimum value at VAR = 2.1 million 

dollars. Similarly, Figure 4.5 exhibits clear changes in the response of E(TOC) to 

variations in APV under the different combinations of SDD and VAR. For example, the 

line of E(TOC) in the integrated model changes from curvilinear in Fig. 4.5c to linear 

with a mild slope in Fig. 4.5d.  

Managerial Insights: i) In contrast with the general relationship observed between 

VAR and E(TOC), in the case of low demand variability, the supply chain would find it 

unnecessary to accept higher risks (in terms of high VAR) as the marginal savings are not 

significant (as exhibited in flattening  curvature at the right tail of E(TOC)  in Fig. 4.3a 

and 4.3c). ii) Under low demand variability and using the integrated model, a MRA 

supply chain benefits from decline in aluminum price volatility much more than LRA 

supply chain. On the other hand, when demand variability is high, a LRA supply chain 

benefits from decline in aluminum price volatility much more than HRA supply chain. 

The quadratic regression model allows the prediction of E(TOC) for any factor level 

within the range defined. As examples, Figure 4.6 and Figure 4.7 depict a 3-dimenional 
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response surface that is a function of VAR and SDD for the integrated model and the 

sequential model, respectively, where the APV level is fixed at its base value. Design 

Expert® experimental design software allows the user to visualize the change in the 

response surface while changing the APV level on the sliding scale provided. As one 

changes the APV level in small increments on the sliding scale, the surface in Figure 4.6 

for the integrated model is observed to shift slightly up or down while the contour of the 

response surface remains almost identical during these shifts (not shown here). In 

contrast, when the same what-if analysis is done for the sequential model in Figure 4.7, 

not only the vertical shifts are more pronounced than those for the integrated model for 

the same APV change, but one also observes distortions in the contour of the surface 

given in Figure 4.7 (not shown here). This observation was repeated to a large extent 

when the factors on the graph and the third factor on the sliding scale were switched. This 

clearly suggests that the performance of the integrated model is more robust compared to 

that of the sequential model when subjected to variations in business conditions 

associated with the three experimental design factors used.    

4.8 Concluding remarks  

The SCRM integrated model developed captures the supply chain risk management 

process that requires the collaboration of supply chain members (aluminum can supplier, 

brewery and distributor) as well as the collaboration of functional units (operations and 

finance) of these members. The model integrates operational and financial hedging 

decisions to minimize the expected total opportunity cost of a beer supply chain exposed 

to uncertainties from upstream (commodity price fluctuations) and downstream (demand 

variability). Our findings reveal that the cost performance of the integrated model is not 
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only superior to that of the sequential model where hedging decisions are made 

independently by functional units, but also more robust when subjected to changing 

business environment. The findings also shed light on the business environment in which 

the integrated model significantly performs better. For example, a less risk averse supply 

chain can be at a substantial advantage with respect to a highly risk averse supply chain 

when it operates under low demand variability and low aluminum price volatility. For 

more risk averse supply chains, the integrated model proves to be more compelling as the 

decrease in total opportunity cost, compared to the sequential model, is significant. A less 

risk averse supply chain, however, can still exploit the integrated model by reducing its 

expected total opportunity cost for cases in which the aluminum price volatility is high. 

The type of hedging strategy used against input commodity price increase depends also 

on the risk aversion level and the demand variability. In general, the supply chain studied 

has hedged more with operational and less with financial instruments when faced with 

higher demand variability. However, as the supply chain becomes less risk averse, it 

tends to hedge less with operational and more with financial instruments.   

The SCRM integrated model developed can be extended and enriched in a number of 

different operational and financial hedging directions. As possible model extensions, 

multiple commodities (e.g. aluminum and barley) and multiple suppliers (of aluminum 

cans and barley) can be incorporated into the model. The model can further be enriched 

through considering variable lead times (for empty can production and beer filling) and 

incorporating foreign currency exchange rate fluctuations (when purchasing aluminum 

and barley from global markets).   
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Figure 4.3  Effects of VAR on E(TOC) at lowest and highest levels of SDD and APV 
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Figure 4.4  Effects of SDD on E(TOC) at lowest and highest levels of VAR and APV 
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Figure 4.5  Effects of APV on E(TOC) at lowest and highest levels of VAR and SDD 
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Figure 4.6  3D response surface (Model: integrated, APV: B) 

  

 
Figure 4.7  3D response surface (Model: sequential, APV: B) 
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Appendix A - Simulating the Probabilistic Input 

A.1. Aluminum Spot and Futures Prices 

Assuming that aluminum spot and futures prices are lognormal distributed, we simulate 

these prices at the future time t1, which coincides with the options’ expiration date, 

according to the procedure presented in Hull (2006).  Thus,  

11

2

1
101 εTσT

2

σ
-μexpSS         (28)         and  

22

2

2
201 εTσT

2

σ
-μexpFF         (29) 

where S0 and F0 are spot and futures prices, respectively, at the current time t0; μ1 and µ2 

are the annualized mean of the continuously compounded returns on the spot and on the 

futures, respectively; σ1 and σ2 are the annualized standard deviations of the continuously 

compounded returns on the spot and on the futures, respectively; μ1, µ2,  σ1 and σ2  are 

estimated using historical daily data on spot and futures prices obtained from Bloomberg 

for a 12 week period in which the last date coincides with the date just prior to the 

options’ purchase date.   T is the time (in years) to the options’ expiration dates. ε1 and ε2 

represent standard normal random variables whose correlation is ρ12 which is the 

coefficient of correlation between the returns on the spot and on the futures. This 

correlation is estimated from the same historical data used to estimate the mean and 

standard deviations of the continuously compounded returns on the  spot and futures. 

 ε1 and ε2 are simulated as follows: 

ε1 = x1, x1 ~ Ф(0,1)           (30) 

2

1221122 ρ1xxρε , x2 ~ Ф(0,1)       (31) 
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where, x1 and x2 represent independent standard normal random variables.   

A.2. Beer Demand 

To simulate the weekly beer demand during the time period T1, we assume that this 

demand has a lognormal distribution. The two parameters required to define this 

distribution are the mean and standard deviation. We obtain the values of these two 

parameters through private communication with a major brewery. During the simulation 

runs, a random sample is obtained from this distribution for each iteration.  
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Appendix B – Notations Used in Modeling 

Bij  : level of inventory type i at the beginning of week wj  

c0 : premium price at t0 of a call option 

dj  : demand for beer during week wj (in millions of cans) 

Eij  : level of inventory type i at the end of week wj 

f  : factor converting aluminum tons into millions of cans 

F0  : price at time t0 of aluminum futures with delivery date that follows t1 

F1  : price at time t1 of aluminum futures with delivery date that follows t1 

hi      : weekly holding cost of inventory type i ($/million cans) 

    : weekly holding cost of inventory type i, as it moves downstream ($/million cans, 

 >hi) 

hop  : weekly holding cost of put and call options  

K    : exercise price of the put and call options 

Lb  : lead time to replenish beer inventory 

Lc  : lead time to replenish cans inventory 

Mbj : quantity of beer distributed in the market during week j 

Nc : number of call options on aluminum futures with delivery date that follows t1 

Np : number of put options on aluminum futures with delivery date that follows t1 

p0 : premium price at t0 of a put option 

Pbj : quantity of cans being filled and packed by the brewery during week wj (in 

millions) 

Pcj : quantity of cans being produced by the supplier during week wj (in millions) 

Qa : total quantity of aluminum sheets purchased in period T0 (in tonnes) 

Qa0 : quantity of aluminum sheets purchased at time t0 (in tonnes) 

Qa1 : quantity of aluminum sheets purchased at time t1 (in tonnes) 

Qbj  : quantity of beer cans shipped to the distribution center at time tj (in millions) 

Qcj : quantity of aluminum cans shipped by the can supplier at time tj (in millions) 

r  : weekly interest-free interest rate 

s  : stockout cost due to loss of beer sales ($/unit of unsatisfied demand) 

S0  : aluminum spot price at time t0 

S1  : aluminum spot price at time t1 

T  : period of time where T  {T0, T1} 

tj  : point of time where j = {0, 1, …, 13} 

v  : value set by the supply chain as a limit for the VaR 

VaR : value at risk of the total expected opportunity cost 

wj  : week starting at time tj 
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Chapter  5                                             

Model Extension with Lead Time 

Variability 

5.1 Introduction 

This Chapter is a sequel to Chapter 4, where we develop a base model that integrates 

operational and financial hedging to minimize the expected total opportunity cost, 

E(TOC), of the supply chain. In the base model, we perform an experimental design to 

study the effects of three principal factors on the expected total opportunity cost: i) level 

of risk the supply chain is willing to assume; ii) demand variability, and; iii) volatility of 

the aluminum price. In this Chapter, we extend the base model by introducing an 

operational risk factor. In this extension to our base model, as described in Section 5.2, 

we incorporate a stochastic lead time in the supply of aluminum cans to the brewery.  

The main purpose of this Chapter is to study the alterations in the product flows 

across the supply chain and the consequent change in the opportunity cost in the presence 

of stochastic lead time. In the base model we assigned a deterministic duration of four 

weeks for the lead time in supplying empty cans. In this model extension, this lead time 

has a discrete probability distribution. We study the effects of the lead time variability 

factor at two levels: high and low. In both cases, the mean lead time duration is four 

weeks to facilitate comparison with the base model. With a stochastic lead time in our 
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model, an order quantity may not be completely produced on time. Only the completed 

portion is shipped to the brewery, as planned, at the end of the four weeks duration. The 

remaining balance is delivered the next week, and accordingly the supplier incurs an 

additional carrying cost. Under this condition, if the brewery increases the order quantity 

to avoid shortages in empty cans, the holding costs of these cans increase. 

We perform an experimental design that involves, in addition to the three 

aforementioned factors, lead time variability and model (integrated and sequential). With 

each factor represented at two levels, we create treatments from all possible permutations 

of these factors and we find the optimal solutions for these treatments. To examine the 

impact of the lead time variability on the supply chain performance, we compare the 

results of the extended model with the results in the base model. We also compare the 

solutions in the extended model between cases of high and low lead time variability. 

These comparisons allow us to make general observations on the effects of lead time 

variability on the opportunity cost, the operational hedging strategy and the product flow. 

Then, we conduct a factorial analysis on the results of the extended model to gain more 

insights on the interaction effects of the five factors on the opportunity cost. The 

generated regression model explains the variations in the opportunity cost. Based on this 

model, ANOVA is carried out to test the significance of the main and interaction effects 

of the five factors on the opportunity cost. 

In Section 5.2, we explain our method in incorporating lead time variability in our 

model. We highlight the changes in the production schedules and the product flows due 

to stochastic lead time and we describe the respective additional costs.  Changes in the 

base model formulations are also presented. In Section 5.3, we discuss the experimental 
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results and make general observations on the impact of lead time variability. In Section 

5.4, we perform a statistical analysis where the ANOVA results are provided and the 

significant effects of the various factors are examined. In Section 5.5, we summarize the 

main findings and draw some managerial insights. 

5.2 Extended model with lead time variability 

5.2.1 Incorporating the lead time factor 

In the base model, we assume a deterministic lead time in the supply of aluminum cans to 

the brewery. We considered that, irrespective of the order quantity, the can supplier 

completes the lot production in exactly four weeks and ships the produced empty cans to 

the brewery at the beginning of the fifth week. In this model extension, we incorporate 

uncertainty in the lead time by considering a stochastic lead time with a discrete 

probability distribution.  

5.2.1.1 Variability of the lead time 

We consider two levels of lead time variability that we denote as high and low. The high 

variability corresponds to the case to which we assign probabilities of 0.464, 0.214, 0.179 

and 0.143 to lead time durations of 3.5, 4, 4.5 and 5 weeks, respectively. The low 

variability corresponds to the case in which we assign the same probabilities to lead time 

durations of 3.75, 4, 4.25 and 4.5 weeks, respectively. With these discrete probability 

distributions the average lead time duration in both cases is four weeks, the same duration 

used in the base model. This facilitates the comparison between the base and the 

extended models. The standard deviations of the discrete probability distributions with 

high and low variability are 0.551 and 0.275 weeks, respectively.  
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5.2.1.2 Modeling the stochastic lead time duration 

To introduce the variability of the lead time duration into our model, we make a number 

of assumptions that are specific to the conceptual background of our model. These 

assumptions are necessary to justify our calculations of the relevant costs. First, we 

assume that the cans are produced in a continuous process with a production rate that is 

constant for each batch of cans ordered for the brewery’s consumption in a specific week. 

Second, the variability of the lead time duration stems from a change in this production 

rate (for example due to increased capacity allocation for another customer), and not from 

a delay in the production start time or a disruption in the production process. This 

assumption allows us to determine the quantity of cans produced at the end of the four 

weeks duration (the expected completion date) in a proportional manner as we will 

discuss in the following section. Third, we assume that shipments from the can supplier 

to the brewery are made once a week. This means that any unfinished portions of an 

order will be shipped with the next week’s order. Finally, we assume that no early 

shipments are allowed. This means that a batch of cans that is completed earlier than the 

expected delivery date remains at the supplier’s premises until the agreed shipping date. 

5.2.1.3 Impact of lead time variability on the SCRM process 

The introduction of a stochastic lead time duration has an impact on the production 

schedule and product flows discussed in the base model in which the quantity of 

aluminum cans shipped to the brewery (Qc) is equal to the quantity of a production lot 

that started four weeks earlier (Pc). That is, in the base model, the planned production 

quantity (Pc) is actually produced and the planned shipment quantity of cans (Qc) is thus 

actually delivered. However, in the extended model, the actual produced quantity of cans, 
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(Pc)Actual, may be less than the planned production quantity, Pc, due to a lead time duration 

longer than four weeks. Consequently, the actual quantity of cans shipped to the 

warehouse may be less than the planned quantity (Qc). Under this new situation, the 

brewery places an order with the can supplier for a quantity of cans (Qcj) that needs to be 

received at the beginning of week wj. The can supplier starts producing this planned 

quantity, Pc, four weeks before the expected delivery time. In the event that the lead time 

duration, represented by X, is longer than the expected four weeks, only a proportion of 

the ordered quantity would be ready for shipment. This proportion is equal to Pc x 4/X. 

The remaining balance that is still in production is shipped with the batch produced for 

the next week wj+1. In the event that the lead time duration is shorter than four weeks, the 

supplier holds all the produced quantity and delivers it, as scheduled, at the beginning of 

week wj.  

5.2.2 Modifications to the base model formulation 

As explained above, incorporating a stochastic lead time duration into the model makes 

the quantity actually produced by the can supplier every week a variable quantity that is 

not necessarily equal to the planned production lot (Pc). When the lead time is longer than 

four weeks, a proportion of Pc is produced on time while the remaining balance is still 

under production, and is shipped when completed the next week. Subsequently, a holding 

cost for the remaining balance is added to the total opportunity cost calculations. 

Accordingly, equation (7) in the base model is modified. The first term in this 

formulation represents the present value of the holding cost associated with carrying the 

surplus quantity of aluminum cans during the production phase for the whole lead time 

period. The surplus is determined by the weekly ending inventory. In other words, this 
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holding cost is the cost of insurance against uncertain demand. We only include the 

carrying cost corresponding to this surplus quantity, and not to the whole production lot, 

to be consistent with our definition of the opportunity cost. All the components of the 

opportunity cost penalize the supply chain for the deviations from ‘perfect’ decisions. 

Such decisions can be made only if ’perfect’ information on demand quantity and 

aluminum price is known a priori, which, of course, can never be the case in reality. In 

accordance with the opportunity cost concept that we adopt, we add to the cost in 

equation (7) the holding cost corresponding to the proportion of the production quantity 

that is delayed due to a longer lead time. This cost is perceived as the cost of insurance 

against uncertain lead time in supplying the cans. To determine this cost, we compute for 

every production week the actual quantity produced and, correspondingly, the remaining 

balance quantity still in production. These quantities are computed as follows. 
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The balance in production, BIP = Pc – (Pc)Actual   (ii) 

Substituting the value of (Pc)Actual in (ii) by the relevant values from (i), the balance in 

production is determined as follows. 
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As justified above, the cost of carrying this balance for four weeks is added to the 

cost of carrying the quantity produced in surplus. These two costs are calculated in (7a).   
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The cost in (7b) corresponds to the cost of carrying the surplus quantity of cans in the 

warehouse. The cost of carrying inventory in a downstream location along the supply 

chain would be higher than the cost of carrying the same inventory in an upstream 

location.  

5.3 Experimental Design and Discussions of Results 

5.3.1 Experimental Design 

To study the impact of the lead time variability on the model performance, in the 

presence of the other three factors incorporated in the base model (VAR, SDD & APV), 

we perform an experimental design in which each of the four factors is represented at two 

levels. Table 5.1 provides the values of the four factors used in the experimental design.      

Table 5.1  Descriptions of experimental design factors 

Factor Designation Code 
Level 

Units 
L H 

Value-at-risk VAR A 1.5 1.8 Million dollars 

Demand uncertainty SDD B 3.8 4.5 Million cans 

Aluminum price volatility APV C (21.3 , 20.3) (28.8 , 27.4) % 

Lead time variability LTV E 0.275 0.551 Weeks 

Similar to the optimizations in the base model, we found the optimal solutions for the 

extended model under different treatments. The results are presented in Table 5.2.  
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Table 5.2  Optimization Results 
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5.3.2 Impact of Lead Time Variability 

To avoid repeating our previous discussion on the base model results, in this section we 

only emphasize the significant changes in the supply chain performance attributed to lead 

time variability.  

5.3.2.1 Increase in opportunity cost 

While it is expected that lead time variability would increase the opportunity cost, our 

results reveal that this impact may not be significant under certain conditions. First, we 

compare the opportunity costs of the integrated model with lead time variability 

incorporated (extended model) with the opportunity costs in the corresponding treatments 

of the integrated model without lead time variability (base model). Table 5.3 shows the 

percentage increase in the expected total opportunity cost when lead time variability is 

incorporated. This increase, however, is statistically not significant in some instances. 

While in all the treatments with VAR 1.5, except one, the increase in the expected 

opportunity cost is significant, this is not always the case when VAR is 1.8. Under this 

lower risk aversion level, only a high lead time variability significantly increases the 

opportunity cost. This increase is higher when the demand uncertainty is lower. 

Table 5.3  Percentage increase in E(TOC) in presence of lead time variability 

  VAR: 1.5 VAR: 1.8 

  LTV: L LTV: H LTV: L LTV: H 

SDD: 3.8 
APV: L 5.3%* 14.5%* 3.8% 9.1%* 

APV: H 0.8% 11.2%* 4.0% 8.2%* 

SDD: 4.5 
APV: L 7.2%* 11.6%* 3.5% 5.9%* 

APV: H 5.4%* 11.1%* 3.0% 5.6%* 
* Statistically significant at 0.05 significance level  

Second, we compare the opportunity costs of the integrated extended model between 

the differing treatments. Table 5.4 shows the percentage increase in the expected total 

opportunity cost for the various treatments when lead time variability is higher. This 



124 

increase is, however, found not to be statistically significant for the instances of higher 

demand uncertainty at the lower risk aversion level. At both risk aversion levels, the 

increase in total opportunity cost is higher when the demand uncertainty is lower. This 

conclusion is consistent with the finding reported in Table 5.3. 

Table 5.4  Percentage increase in E(TOC) when LTV is higher 

  VAR: 1.5 VAR: 1.8 

SDD: 3.8 
APV: L 9.4%* 5.5%* 

APV: H 10.1%* 4.6%* 

SDD: 4.5 
APV: L 4.0%* 2.3% 

APV: H 5.7%* 2.3% 
* Statistically significant at 0.05 significance level  

5.3.2.2 Overall Superiority of the Integrated Model over the Sequential 

Model 

In this section, we study the impact of lead time variability on the superiority of the 

integrated model over the sequential model. Table 5.5 depicts the percentage difference 

in the expected opportunity cost between the integrated model and the sequential model 

in the presence of lead time variability.  

Table 5.5  Percentage difference in E(TOC) between integrated and sequential model with LTV 

  VAR: 1.5 VAR: 1.8 

  LTV: L LTV: H LTV: L LTV: H 

SDD: 3.8 
APV: L 4.3%* 2.8%* 0.4% 1.6% 

APV: H 3.4%* 1.4% 8.8%* 8.8%* 

SDD: 4.5 
APV: L 1.1% 0.0% 9.9%* 9.1%* 

APV: H 3.6%* 2.0%* 10.7%* 9.0%* 
* Statistically significant at 0.05 significance level  

First, we compare the superiority of the integrated model for differing treatments and 

for different lead time variability within the extended model. We observe that at the 

higher risk aversion level, the superiority of the integrated model is higher when the lead 

time variability is lower. At the lower risk aversion level, the lead time variability does 

not significantly affect the integrated model’s superiority. Second, we compare the 

superiority of the integrated model for differing treatments in the base model and the 
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extended model. The overall observations made for the base model also apply to the 

extended model. That is, the integrated model outperforms the sequential model mostly 

when the risk aversion level is higher. However, we observe a change in the conditions 

under which the integrated model is better. While in the base model, there was no 

significant superiority under a low demand uncertainty and a high risk aversion level, 

such superiority is found to be significant in the presence of lead time variability.  

The finding that the integrated model in the presence of lead time variability still 

outperforms the sequential model is important. Even in the presence of a risk which is 

traditionally managed by operational approaches, the integrated approach still proves to 

be superior.  

5.3.2.3 Operational Hedging Strategy 

In this section, we study the impact of lead time variability on the operational hedging 

strategy. Table 5.6 shows the ratio (u0) of the quantity of aluminum sheets purchased at t0 

over the total quantity purchased over the period T0. This ratio reflects the extent of 

hedging against aluminum price increases that the supply chain executes using the 

operational approach. The range of percentages in each cell of the table encompasses 

values of u0 at the two levels of APV for each treatment. 

Table 5.6  Ratio (u0) of aluminum sheets purchased at t0 to total purchased quantity 

  VAR: 1.5 VAR: 1.8 

  Integrated Sequential Integrated Sequential 

SDD: 3.8 
LTV: L 26% 29% 7-10% 8-18% 

LTV: H 36-37% 34-36% 11% 8-26% 

SDD: 4.5 
LTV: L 34% 36-41% 11% 20-28% 

LTV: H 38-39% 37-43% 11% 20-28% 

First, we observe, within the extended model treatments, how the operational hedging 

strategy varies at the two levels of lead time variability. We note that higher lead time 
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variability increases u0 for both the integrated and sequential models. However, this 

observation is valid mainly for the case of a high risk aversion level. Second, we compare 

the hedging strategy between treatments in the extended model and the corresponding 

treatments in the base model. We also observe that in the presence of lead time 

variability, only a more risk averse supply chain uses more operational hedging. A less 

risk averse supply chain would not significantly change its operational hedging when the 

lead time is variable, especially for the case of high demand variability.  

5.3.2.4 Change in the product flow across the supply chain 

An important change in the model performance in the presence of lead time variability is 

related to the product flow across the supply chain. In the base model, the can supplier 

converts all the aluminum quantity purchased (Qa) into cans and ships them to the 

warehouse (Qc). The brewery fills all these cans with beer and sends them to the 

distribution center (Qb). That is, Qa = Qb = Qc. On the other hand, under a stochastic lead 

time, a larger quantity of aluminum is purchased and converted into cans. Such an action 

is expected to mitigate against shortages of aluminum cans due to delays in shipment of a 

proportion of the ordered quantity. However, a portion of these empty cans is left in the 

warehouse unused. That is, Qa = Qc > Qb. Such a situation is justified due to higher 

carrying cost of beer. 

Table 5.7 shows eight different treatments and Figure 5.1 depicts the product flows in 

the base and extended models under these treatments. In each treatment, the first column 

represents the quantities flowing in the base model (B), the second and third columns 

represent the flows in the extended model with a low lead time variability (EL), and the 

fourth and fifth columns represent the flows in the extended model with a high lead time 
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variability(EH). In the base model Qa, Qb and Qc are equal and thus represented in a 

single column (Qa-B). In the extended model, Qa and Qc are equal and represented in 

single column (Qa-EL, Qa-EH), while Qb is represented in a separate column (Qb-EL, Qb-

EH). A number of observations can be made. First, when the risk aversion level is low, a 

lower product flow occurs across the supply chain. Second, under the same risk aversion 

level, a larger flow is observed when the demand variability increases. Third, a higher 

lead time variability requires a larger quantity of empty cans to be dispatched to the 

warehouse. However, this variability has a lower impact on the quantity of beer moved to 

the distribution center.    

Table 5.7  Description of treatments depicted in Figure 5.1 

Treatment VAR SDD APV Treatment VAR SDD APV 

T1 1.5 3.8 L T5 1.8 3.8 L 

T2 1.5 3.8 H T6 1.8 3.8 H 

T3 1.5 4.5 L T7 1.8 4.5 L 

T4 1.5 4.5 H T8 1.8 4.5 H 

  

 
Figure 5.1  Product flows in the base and extended models 
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5.4 Statistical Analysis 

The findings on the effects of lead time variability which are discussed above are based 

on general observations for the optimization results and presented in Table 5.2. We based 

our observations on comparisons made between treatments with and without lead time 

variability, and between treatments with different levels of lead time variability. 

However, to have better insights on the effects of lead time variability on the supply 

chain performance we need to study the interaction effects with the other three factors. 

That is, we need to understand how the impact of lead time variability changes when the 

other factors vary.  

Similar to the analysis carried out in the base model, we conduct a factorial analysis 

on the extended model using Design Expert®. The four factors presented in Table 5.1 

are: value at risk (A), demand uncertainty (B), aluminum price volatility (C) and lead 

time variability (E). In addition to these four factors , the model factor (coded as D) is 

incorporated in the analysis as a categorical factor with two values: integrated and 

sequential. The software generates a linear regression model that explains the variations 

in the response variable E(TOC). The linear regression model includes terms representing 

the five factors in addition to interaction terms. The linear regression model can be used 

to predict the value of the response variable for any combination of the factors within 

their corresponding lower and upper levels. We refer to the linear model as the regression 

model to avoid confusion with the original hedging models used for optimization.  

5.4.1 Regression Model 

The software runs ANOVA to test for the overall model fit and for the significance of the 

effects of each term in the model on the response variable. Table 5.8 presents part of the 
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ANOVA results for the regression model. Considering the main objective of this chapter, 

we show specifically the terms that include lead time variability (factor E). In addition to 

the main effects of the factors, the interaction between factors have significant effects on 

E(TOC). The table shows that lead time variability has a significant effect on the 

opportunity cost. Most of the interaction terms that include lead time variability are found 

to be significant. However, few of these interaction terms are not significant (CE, ABE 

and BDE). We discuss the significant interactions involving lead time variability and 

provide managerial insights in the following sub-section.  

Table 5.8  Part of ANOVA results for the linear regression model 

Source Sum of Squares df Mean Square F Value p-value 

Model 3,219,451 26 123,825 9,298 < 0.0001 

A-VAR 914,057 1 914,057 68,638 < 0.0001 

B-SDD 1,933,191 1 1,933,191 145,166 < 0.0001 

C-APV 102,418 1 102,418 7,691 < 0.0001 

D-Model 91,017 1 91,017 6,835 < 0.0001 

E-LTV 74,826 1 74,826 5,619 < 0.0001 

AE 10,409 1 10,409 782 < 0.0001 

BE 5,852 1 5,852 439 < 0.0001 

CE 56 1 56 4 0.0406 

DE 1,016 1 1,016 76 < 0.0001 

ABE 132 1 132 10 0.0018 

ACE 702 1 702 53 < 0.0001 

ADE 640 1 640 48 < 0.0001 

BDE 104 1 104 8 0.0055 

CDE 260 1 260 20 < 0.0001 

ABDE 293 1 293 22 < 0.0001 

5.4.2 Interaction effects of lead time variability 

The main effects of lead time variability on the opportunity cost were presented in Tables 

5.3 and 5.4 above. As expected, in general, the results reveal that lead time variability has 

a positive correlation with the opportunity cost. However, this effect is found not to be 

significant under certain conditions. To explain the variations in the impact of lead time 

variability on the expected opportunity cost, we study the interaction effects of lead time 

variability with other factors. 



130 

5.4.2.1 Two-way interactions 

The ANOVA table shows that the interaction of the lead time variability with the factors 

of risk aversion level, demand uncertainty and model factor is found to be significant on 

E(TOC). These two-way interactions are represented by the terms AE, BE and DE in the 

regression model. Figure 5.2 depicts one example illustrating each of these three 

interactions.  

The results reveal that, under any treatment condition, an increase in lead time 

variability amplifies the effect of the risk aversion level on the opportunity cost. Figure 

5.2a illustrates an example of such amplification for the integrated model. Under low 

demand uncertainty and high aluminum price volatility, when the risk aversion level 

decreases from $ 1.5 million to $ 1.8 million, the decline in the expected opportunity cost 

is a function of the lead time variability level. The decline is $ 78,000 at a low level of 

lead time variability and $ 118,000 at a high level of lead time variability. These figures 

are calculated by subtracting the costs at the two ends of each line in Figure 5.2a. The 

software allows the user to read these costs by placing the cursor on the endpoint of a 

line.  

In contrast, an increase in lead time variability diminishes the effect of demand 

uncertainty on the expected opportunity cost. Figure 5.2b illustrates an example of such a 

reduction for the integrated model. Under a high risk aversion level and a low aluminum 

price volatility, when the demand standard deviation increases from 3.8 million cans to 

4.5 million cans, the increase in the expected opportunity cost is largely a function of lead 

time variability level. This increase is $ 180,000 at a low level of lead time variability and 

$ 159,000 at a high level of lead time variability. 
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The impact of the lead time variability on the expected opportunity cost is higher in 

the integrated model than in the sequential model. Figure 5.2c illustrates the difference in 

the impact between the two models. Under a high risk aversion level, a low demand 

uncertainty and a high aluminum price volatility, the increase in the expected opportunity 

cost as the lead time variability increases is $ 64,000 in the integrated model and $ 47,000 

in the sequential model. 

On the other hand, the ANOVA results show that the interaction between the lead 

time variability and aluminum price volatility (term CE) is not significant. That is, the 

lead time variability does not alter the effects of the aluminum price volatility on the 

opportunity cost. This outcome is in line with everyday operational reality. 

5.4.2.2 Three-way interactions 

To further study the variations in the impact of lead time variability on the effects of the 

other factors on the expected opportunity cost, we examine the three-way interactions 

involving lead time variability. The ANOVA table shows that there are three three-way 

interactions involving lead time variability that are significant. These significant 

interactions are: i) value at risk – aluminum price volatility – lead time variability (term 

ACE), ii) value at risk – model – lead time variability (term ADE), iii) aluminum price 

volatility – model – lead time variability (term CDE).  

The interaction term ACE is the change in the impact of the lead time variability on 

the effect of the risk aversion level on the expected opportunity cost, when the aluminum 

price volatility changes. Figure 5.3 presents an example that illustrates this three-way 

interaction in the integrated model under low demand uncertainty. In the case of low 

aluminum price volatility, Figure 5.3a depicts the decline in the expected opportunity cost 
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as the risk aversion level decreases. A decline is shown for each level of lead time 

variability and the difference between the two declines is $ 28,000. That is, the impact of 

lead time variability on the decreasing effect of the risk aversion level on the expected 

opportunity cost is found to be $ 28,000. In the case of a high aluminum price volatility, 

this impact is $ 40,000, as illustrated in Figure 5.3b.    

The interaction term ADE is the change in the impact of the lead time variability on 

the effect of the risk aversion level on the expected opportunity cost, when the model 

changes from integrated to sequential, or vice versa. Figure 5.4 presents an example that 

illustrates this three-way interaction under a low demand uncertainty and a high 

aluminum price volatility. In the case of the integrated model, Figure 5.4a depicts the 

decline in the expected opportunity cost as the risk aversion level decreases. A decline is 

shown for each level of lead time variability and the difference between the two declines 

is $ 40,000. That is, the impact of lead time variability on the decreasing effect of the risk 

aversion level on the expected opportunity cost is found to be $ 40,000. In the case of the 

sequential model, this impact is $ 22,000, as illustrated in Figure 5.4b. 

The interaction term CDE is the change in the impact of the model factor on the effect 

of the lead time variability on the expected opportunity cost, when the aluminum price 

volatility changes. Figure 5.5 presents an example that illustrates this three-way 

interaction under a high risk aversion level and a high demand uncertainty. In the case of 

a low aluminum price volatility, Figure 5.5a depicts the increase in the expected 

opportunity cost as the lead time volatility increases. An increase is shown for each 

model and the difference between the two increases is $ 8,000. That is, the impact of the 

model factor on the increasing effect of lead time variability on the expected opportunity 
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cost is found to be $ 8,000. In the case of a high aluminum price volatility, this impact is 

$ 16,000, as illustrated in Figure 5.5b.    

Some interaction terms involving lead time variability are found not to be significant 

by ANOVA. Finding the term ABE not significant means that the impact of lead time 

variability on the effect of the risk aversion level on the expected opportunity cost does 

not change when the demand uncertainty changes. Finding the terms BCE and BDE not 

significant means that the impact of lead time variability on the effect of the demand 

uncertainty on the expected opportunity cost does not change when the aluminum price 

volatility changes or when the model used changes. 

5.4.2.3 Four-way interaction 

The term ABDE is the only four-way interaction involving lead time variability that is 

found to be significant by ANOVA. We interpret this interaction as the change in the 

three-way interaction ABE as the level of factor D changes. In the sequential model, the 

impact of lead time variability on the effect of the risk aversion level on the expected 

opportunity cost (term ABE) changes only by $ 2,000 between the two levels of demand 

uncertainty. However, in the integrated model, the same impact changes by $ 12,000 

between the two levels of demand uncertainty. 

5.4.2.4 Managerial insights 

Considering the main effect of lead time variability on the expected opportunity cost, it is 

evident that the supply chain would perform better by reducing this variability. This task 

calls for strong collaboration among the supply chain members. The brewery needs to 

share demand forecast information with the can supplier to facilitate the supplier’s 

production schedule. In turn, the can supplier needs to show commitment to comply with 
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the fluctuating weekly quantities. When lead time variability is unavoidable, decisions 

should then be made in accordance with the insights that the interaction effects of lead 

time variability with the other factors provide.  

As we discussed above, lead time variability intensifies the impact of the risk 

aversion level on the expected opportunity cost. That is, with higher lead time variability, 

the improvement in the expected opportunity cost becomes more pronounced when the 

risk aversion level is lower. This observation is explained by the ability of less risk averse 

supply chain to exploit uncertainties to minimize its expected opportunity cost. With lead 

time variability, the uncertainty increases and, in turn, the payoff from exploiting this 

uncertainty would increase. Similar interaction is observed with demand uncertainty. A 

supply chain can reduce the expected opportunity cost by being less risk averse, and the 

reduction would be larger under high demand uncertainty than under low demand 

uncertainty. The regression analysis confirms this argument. In the event that the supply 

chain cannot reduce the lead time variability, being less risk averse would balance the 

negative effect of lead time variability. Figure 5.2a illustrates this case with numerical 

example. If the supply chain is more risk averse, the expected opportunity cost increases 

by $ 64,000 when lead time variability increases. On the other hand, if the supply chain is 

less risk averse, the difference in the opportunity cost would be only $ 24,000. 

Furthermore, based on the three-way interactions discussed above, the supply chain 

would be even more compelled to be less risk averse when the aluminum price volatility 

is higher.  

The decreasing impact of lead time variability regarding the effect of demand 

uncertainty on the opportunity cost makes it less compelling for a supply chain operating 
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under high demand uncertainty to work on reducing the lead time variability. Figure 5.2b, 

for example, shows that under low demand uncertainty an increase in lead time 

variability increases the opportunity cost by $ 53,000. This increase drops to $ 32,000 

under high demand uncertainty. This is explained by the connection between the response 

of the supply chain to an increase in demand uncertainty and its response to an increase in 

lead time variability. When demand uncertainty increases, the supply chain would 

increase the beer quantity in the distribution center. Such increase necessitates a 

corresponding increase in cans quantity. The latter increase would also be necessary to 

mitigate higher variability in lead time.    

5.5 Conclusion 

In this Chapter, we study the changes in the product flows due to variability in the lead 

time of the supply of empty cans to the brewery. We also examine the impact of 

stochastic lead time on the expected opportunity cost and on the hedging decisions. In 

this model extension to the base model, we change the four-week deterministic duration 

to supply empty cans to the brewery to a stochastic duration following discrete 

probability distribution with a mean of four weeks lead time. 

We generate 16 treatments from the permutations of the four factors: value-at-risk, 

demand uncertainty, aluminum price volatility, and lead time variability. Each factor is 

represented at two levels. We solve these treatments using the integrated model and the 

sequential model. In the analyses of results, we focus on the effects of lead time 

variability as this is the main purpose of this Chapter. Based on experimental findings, we 

make a number of observations. While it is expected that lead time variability increases 

the opportunity cost, the results reveal that this increase may not be significant under 
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certain conditions. For example, under low risk aversion level, only high lead time 

variability would significantly increase the opportunity cost. Furthermore, while 

expecting that a high lead time variability would result in a larger increase in opportunity 

cost than a lower lead time variability, results reveal that this may not be the case under 

high demand uncertainty and low risk aversion level. This is explained by the dominating 

effects of the latter two factors, at these respective levels, on the expected opportunity 

cost, as revealed in the regression analysis.    

Knowing that the risk of stochastic lead time is traditionally managed with 

operational tools, it is important to note that the integrated model is found to outperform 

the sequential model under lead time variability. The superiority of the integrated model 

is, however, not influenced by the lead time variability level when the supply chain is less 

risk averse. In both the integrated and the sequential models, the results reveal that more 

risk averse supply chain would use operational hedging more as lead time variability 

increases.  

The statistical analysis sheds more light on the interaction effects of lead time 

variability with the other factors on the opportunity cost, and hence allows us to draw 

some managerial insights that can support decisions made by practitioners. In the base 

model, it was found that lower risk aversion level would decrease the opportunity cost, 

and that a higher demand uncertainty would increase the opportunity cost. The results in 

the extended model show that lead time variability amplifies the former effect and 

reduces the latter. In turn, this impact of lead time variability on the effect of risk 

aversion level on opportunity cost depends on the aluminum price volatility and on the 

model used.  
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The analysis also allows us to better understand the direct effect of lead time 

variability on the opportunity cost. According to the results, the impact of lead time 

variability on the opportunity cost is higher in the integrated model than in the sequential 

model. Furthermore, this impact is found to be positively correlated with the aluminum 

price volatility.   
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Figure 5.2  Illustrations of AE, BE and DE interactions 
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Figure 5.3  Illustration of ACE interaction 
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Figure 5.4  Illustration of ADE interaction 
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Figure 5.5  Illustration of CDE interaction 
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Chapter  6                                             

Model Extension with Exchange Rate Risk 

6.1 Introduction 

This Chapter is a sequel to Chapter 4, in which we develop a base model that integrates 

operational and financial hedging to minimize the expected total opportunity cost, 

E(TOC), of the supply chain. In the base model, we perform an experimental design to 

study the effects of three principal factors on the expected total opportunity cost: i) the 

level of risk the supply chain is willing to assume; ii) the demand variability, and; iii) the 

volatility of the aluminum price. In this Chapter, we extend the base model by 

introducing a financial risk factor. In this extension to our base model, described in 

Section 6.2, we incorporate the volatility in the Canadian dollar/U. S. dollar (CAD/USD) 

exchange rate that has an impact on the input price of aluminum.  

The main objective of this Chapter is to study the performance of an international 

supply chain that is exposed to exchange rate risk. The performance of the supply chain is 

measured in terms of an opportunity cost denominated in CAD. We use historical data on 

the CAD/USD exchange rate obtained from Datastream to simulate the probable rate that 

can be observed during the time period covered in our model. As the price of aluminum 

sheets is denominated in USD, the fluctuations in the exchange rate have a direct impact 

on inventory decisions. Similarly, as the futures contracts on aluminum are priced in 

USD, the premium paid to purchase options on these futures and the payoff are affected 

by the exchange rate. Hence, we use in this extended model options on an underlying 
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asset whose price is the product of the aluminum futures price, denominated in USD, and 

the CAD/USD exchange rate.  

We incorporate the exchange rate in the base model and we start our experiments on 

the integrated model, setting all the three factors at their base levels.  We create various 

treatments with different volatilities of the exchange rate. We run simulation-based 

optimizations on these treatments to find the inventory and financial decisions that 

minimize the total expected opportunity cost. The results prompted us to conduct similar 

experiments on another set of treatments in which the risk aversion factor is at a higher 

level. The results from the two sets of experiments shed light on the interaction effects 

between risk aversion and exchange rate volatility on the supply chain performance. 

Then, we introduce a new constraint that sets an upper limit for the quantity of aluminum 

sheets purchased during period T0 and we find new solutions for the above treatments. 

The new results allow us to underline the benefits of hedging the exchange rate, and the 

impacts of risk aversion and exchange rate volatility on these benefits.  

    In Section 6.2, we explain the new elements in the extended model. We describe 

how we simulate the exchange rate and discuss its impact on inventory and financial 

hedging decisions. We introduce a new factor, exchange rate volatility, and discuss the 

effects of this volatility on the exchange rate and on the index underlying the financial 

options. We present the changes in the base model formulations. In Section 6.3, we 

justify the sequence of optimization runs we made in the extended model and we exhibit 

the corresponding results obtained. We conduct parametric analyses on these results. In 

Section 6.4, we summarize the main findings and we draw some managerial insights. 
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6.2 Extended model with exchange rate risk 

6.2.1 Incorporating the exchange rate risk factor 

In the base model we study the performance of a supply chain operating in one country, 

the U.S., where all the relevant costs are denominated in USD. In this model extension 

we incorporate uncertainty in the foreign currency exchange rate as we examine the 

performance of an international supply chain, consisting of a brewery and a distribution 

center which operate in Canada and a can supplier which procures aluminum sheets and 

produces aluminum cans in the U.S. In such a supply chain, all the costs are denominated 

in CAD. We denote the rate of exchange from USD to CAD at any time t as Et, where Et 

is the number of CAD per USD at time t. 

6.2.1.1 Simulating the CAD/USD exchange rate 

In the base model we simulated the aluminum spot and futures prices by applying the 

Cholesky decomposition procedure (Hull 2006) for two correlated samples corresponding 

to these two variables. In this model extension, we follow the same procedure applied for 

three correlated samples, the exchange rate being the third variable. We use the same 

correlation between the aluminum spot price and the futures price (ρ12 = 0.9) that was 

used in the base model. To determine the correlation between the CAD/USD exchange 

rate and the spot and futures prices, we used one-year daily historical values of these 

variables. As in our model, t0 corresponds to March 31, 2010, we collected the historical 

data from April 1, 2009, till March 30, 2010. Data on spot and futures prices are obtained 

from Bloomberg and data on the CAD/USD exchange rate are obtained from Datastream.  

Figure 6.1 depicts a high correlation between the spot price (St) and the CAD/USD 

exchange rate (Et). A similar correlation is observed between the futures price (Ft) and the 
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CAD/USD exchange rate. The correlation coefficient between St and Et (ρ13) and that 

between Ft and Et (ρ23) are found to be – 0.87. In our model, to be more conservative, we 

assumed that ρ13 = ρ23 = -0.8. The procedure followed to simulate these three variables is 

described in Appendix C. 

 
Figure 6.1  Correlation between aluminum spot price and CAD/USD exchange rate 

6.2.1.2 Impact of foreign exchange risk on inventory decisions 

In the base model, the opportunity costs pertinent to the procurement of aluminum sheets 

at time t0 and t1 are functions of the change in the aluminum price between these two 

times. While a decrease in this price represents an opportunity cost associated with the 

quantity Qa0, an increase in the price is an opportunity cost that penalizes the 

postponement to t1 of procuring Qa1. In the model extension, these two opportunity costs 

are functions of the combined effect of the change in the aluminum price and the 

fluctuation in the CAD/USD exchange rate. The latter can have a significant effect on the 

aluminum procurement cost denominated in CAD. Figure 6.2 depicts the fluctuation of 

the exchange rate during the 60 days that precede the date of March 31, 2010, which is 

the date represented by t0 in our model. This period is the same that we used in the base 
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model to simulate the aluminum spot and futures prices and its duration is equal to the 

time period T0, between t0 and t1. The highest point of the graph corresponds to an 

exchange rate of 1.0745 CAD/USD, on February 8, 2010, and the lowest point 

corresponds to a rate of 1.0103 CAD/USD, on March 17, 2010. If a quantity of 2,400 

tonnes of aluminum was purchased at USD 2,319/tonne when the CAD/USD exchange 

rate was at its highest, the supply chain would then incur an opportunity cost of CAD 

350,000 for not purchasing this quantity when the exchange rate was at its lowest.   

 
Figure 6.2  Fluctuation of CAD/USD exchange rate from Jan 6 to Mar 30, 2010 

6.2.1.3 Impact of foreign exchange risk on financial hedging decisions 

The fluctuation in the exchange rate does not only affect the opportunity cost pertinent to 

the procurement of aluminum sheets, but also affects the opportunity cost corresponding 
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options to hedge against increases and decreases in the aluminum price, respectively. The 
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futures and the underlying asset are priced in USD, for a supply chain operating in 

Canada the premium and the payoff are directly affected by the CAD/USD exchange rate 

at t0 and t1, respectively. Therefore, the fluctuation in the exchange rate is now considered 

while making the purchase decision of the options on aluminum futures to hedge against 

aluminum price changes. Figure 6.3 illustrates the movements in the aluminum futures 

price (F) in the upper tree, and the joint movements of the aluminum futures price and the 

CAD/USD exchange rate (E) in the lower tree. The numbers on the arrows represent the 

probabilities of the corresponding movements and the numbers between brackets are the 

expected values of F and E at t1 (F1 and E1, respectively). In the upper tree, we simulate 

F1 10,000 times (same number of iterations as used in the model optimization). The 

probability of an upward/downward movement is the proportion of cases in which the 

simulated F1 is higher/lower than F0. The upward/downward value of F1 is the mean 

value in the cases in which the simulated F1 is higher/lower than F0. In the lower tree, we 

simulate both F1 and E1. The probabilities in the first step are determined as in the upper 

tree. In the second step the conditional probability of an upward/downward movement in 

E1, given that F1 had moved upward, is the proportion of cases (within the specific cases 

of an upward F1) in which the simulated E1 is higher/lower than E0. Similarly, the 

conditional probability of an upward/downward movement in E1, given that F1 had 

moved downward, is the proportion of cases (within the specific cases of a downward F1) 

in which the simulated E1 is higher/lower than E0. The values [F1, E1] are the mean values 

of these two variables in the cases that correspond to the specific joint movements of both 

F1 and E1. For example, F1 is found to be higher than F0 in 4,444 out of 10,000 simulation 

iterations (probability is thus 0.44). Then, within these cases, E1 is found to be higher 
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than E0 in 367 cases (probability is thus 367/4444 = 0.08). The mean values of F1 and E1 

in these 367 cases are $ 2,407 and CAD 1.0303/USD, respectively.  

To incorporate the joint movements of the futures price and CAD/USD exchange rate 

in the analysis underlying the decision to purchase the options, we use in our extended 

model options on aluminum futures, for which both the futures price and the option price 

are denominated in CAD. That is, the underlying asset price is the product of the 

aluminum futures price denominated in USD and the CAD/USD exchange rate. We 

determine the price of this index (designated as FE hereafter) by the product FxE, where 

F is the aluminum futures price and E is the CAD/USD exchange rate. Hence, F0E0 is the 

index price at t0 and F1E1 is the price at t1. The lower tree in Figure 6.3 depicts the paths 

of the index price. The probabilities and the corresponding expected values in these paths 

would determine the expected payoff of the index and hence the corresponding option 

premium. The probability corresponding to a value of F1E1 is the joint probability of F1 

and E1, that is, P(F1E1) = P(F1) x P(E1 F1). 
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6.2.1.4 Volatility of the CAD/USD exchange rate 

As described in Appendix C, two parameters used to simulate the CAD/USD exchange 

rate are the annualized mean (µ3) and the annualized standard deviation (σ3) of the 

continuously compounded return on the currency exchange rate. µ3 and σ3 are calculated 

using historical daily data on the CAD/USD exchange rate obtained from Datastream for 

a 12 week period in which the last date coincides with the date just prior to the options’ 

purchase date, assumed in our model to be March 31, 2010. The calculated values of µ3 

and σ3 are -0.051 and 8.4%, respectively.  

To better understand the effects of fluctuation in the foreign currency exchange rate, we 

study the performance of the extended model under different exchange rate volatilities. 

To do this, we designate the volatility calculated from the actual historical data to be our 

base volatility and we multiply it by a ratio to increase the volatility by a certain 

percentage. We use ratios of 1.1, 1.2, 1.3, 1.4, 1.6 and 1.8 in our experiments to increase 

the base volatility by 10%, 20%, 30%, 40% 60% and 80% respectively. Using each of 

these ratios, we generate new time series of the CAD/USD exchange rates in which the 

exchange rate has a volatility equal to the corresponding increased volatility. Figure 6.4 

depicts the different paths of the CAD/USD exchange rate with different volatilities over 

a period of 60 business days (corresponding to our 12 weeks period T0).  
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Figure 6.4  CAD/USD exchange rate paths with various volatilities 

The numbers at the right end of each graph indicates the volatility ratio. The graph 

with ratio 1.0 represents the CAD/USD exchange rate path with the actual volatility 

calculated from the historical data. As can be observed in Figure 6.4, the volatility impact 

intensifies when the exchange rate exhibits an upward or downward trend. In the first 10 

days of our time series, as the exchange rate exhibits an oscillating behavior, the volatility 

effects are not very significant (small gap between the graphs). The volatility effects are 

mostly observed in the periods between days 14 and 24 and between days 43 and 54 in 

which the wide gap between the different paths is caused by periods of upward and 

downward trends, respectively. 

Changing the volatility of the exchange rate (Et) consequently results in a change in the 

volatility of the FE index. Using the time series of exchange rates generated for each of 

the increased volatilities of Et, we generate corresponding time series of FtEt, the value of 

which equals the product of Et and Ft. Then we calculate the volatility of FtEt as the 

annualized standard deviation of the continuously compounded return on the index. This 
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volatility is used in the formula for pricing options on the FE index. Table 6.1 

summarizes the volatilities of the FX rate (Et) and the index (FtEt).   

Table 6.1  Volatilities of the exchange rate Et and the FtEt index 

  CAD/USD exchange rate (Et) volatility ratio 

  1.00 1.10 1.20 1.30 1.40 1.60 1.80 

Volatility of the 
exchange rate Et  

8.40% 9.24% 10.08% 10.92% 11.76% 13.43% 15.11% 

Volatility of the index 
FtEt  

23.09% 23.11% 23.22% 23.38% 23.56% 24.01% 24.57% 

6.2.2 Modifications to base model formulation 

As explained above, in this extended model we incorporate foreign exchange risk into our 

base model. We therefore evaluate our inventory decisions based on the difference in the 

aluminum spot price, now denominated in CAD. Similarly, as the underlying asset of the 

options is now the index FE, or the futures price denominated in CAD, we evaluate our 

decisions to purchase these options based on the premium price now denominated in 

CAD and the expected payoff due to the change in the index price, again denominated in 

CAD. Accordingly formulations (1) to (4) in the base model are modified as follows: 

The opportunity costs associated with inventories at time t0 and t1 are given by: 
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The costs associated with the purchase of put and call options are given by: 
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where K = F0E0 (since the options are assumed to be at the money). p0 and c0 are the 

premiums of put and call options on the FE index, respectively. Similar to calculations of 

these two prices in the base model, p0 and c0 are calculated here also using Black’s model 

(Hull 2006, pp. 332-333) with F0 replaced everywhere by F0E0.  
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The unit stockout cost and the unit holding costs of aluminum sheets, aluminum cans 

and canned beer are all denominated in CAD in the extended model. However, the 

formulations (5) to (8) in the base model do not change. All the other formulations 

remain the same. 

6.3 Results and parametric analyses 

In our study of the base model we created 27 treatments for each of the integrated, the 

operational and the sequential models. These treatments correspond to all possible 

permutations of the three factors (each at three levels): value-at-risk (VAR), demand 

uncertainty (SDD) and aluminum price volatility (APV). In order to study the effects of 

the CAD/USD exchange rate on the performance of the supply chain we incorporated the 

exchange rate into the integrated base model when all the three factors are at their central 

levels, that is, VAR = 1.8, SDD = 4.5, APV = B (base level corresponding to aluminum 

price volatility calculated from historical data). With the three factors at these levels, we 

generate a set of treatments for the extended model. Each treatment corresponds to one 

level of the abovementioned exchange rate volatility. As we did in the base model, at 

each treatment, we run simulation-based optimization to determine the optimal values of 

our decision variables that would minimize the total opportunity cost of the supply chain. 

The optimization results are summarized in Table 6.2. In this table and in all the 

following tables, E(TOC) and the standard deviation (SD) are denominated in CAD, the 

aluminum quantities are in million cans and the number of options is in tonnes of 

aluminum.  
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Table 6.2  Optimization results of extended model with VaR = 1.8 

 VAR = 1.8, SDD = 4.5, APV = B 

 CAD/USD exchange rate volatility ratio 

 1.00 1.10 1.20 1.30 1.40 1.60 1.80 

E(TOC) 468,154 466,528 461,235 464,999 464,179 451,923 432,489 

SD 888,149 873,869 865,948 834,308 851,764 856,666 862,880 

Qa0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Qa1 187.0 199.1 204.2 225.0 227.1 246.4 266.9 

Qa 187.0 199.1 204.2 225.0 227.1 246.4 266.9 

Np 1,518 1,127 981 0 0 0 0 

Nc 0 55 0 0 0 0 0 

6.3.1 Optimal hedging with and without exchange rate risk 

As the costs in the base and extended models are denominated in different currencies we 

cannot compare the values of E(TOC) in the two models, but we rather compare their 

operational and financial hedging strategies. In the base model, the optimal values of 

aluminum quantities and options purchased are (Qa0: 19; Qa1: 158.8; Np: 3,106; Nc: 

1,430). We compare these values to the optimal values of these decision variables in the 

extended model with an exchange rate volatility ratio of 1.0. When foreign exchange risk 

is incorporated, the supply chain does not hedge the aluminum price increase with an 

initial inventory (Qa0), but rather increases the quantity purchased at t1 (Qa1) and 

substantially decreases the use of financial hedging (the number of put options, Np, is 

reduced by half and the use of call options, Nc, is completely eliminated). 

6.3.1.1 Rationale for the change in the operational hedging strategy in the 

extended model 

To explain the change in the operational hedging strategy in the extended model we 

examine the cumulative probability distribution of the present values (PV) of the 

aluminum spot price at t1 in both models, as depicted in Figures 6.5 and 6.6, with 

delimiters indicating the values of S0E0 and S0. Buying Qa0 would yield an opportunity 
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profit when the present value of the aluminum price at t1 is higher than the price at t0. The 

parts of the two curves at the right side of the aluminum price at t0 indicate the 

probabilities of opportunity profit. For the same profit value the corresponding 

probability in the extended model is lower than the probability in the base model. For 

example, in the base model, P[PV(S1) > 2,400] = 30.1% which means that P(profit > 113) 

= 0.301; the profit being equal to PV(S1) minus the S0. To have the same profit in the 

extended model, the present value of the aluminum price should be at 2,436. The 

probability that the price is higher than this value is 14.5%. Thus P(profit > 113) = 0.145. 

Similar observations are made for any profit value, leading to the conclusion that the 

probability of any opportunity profit is lower in the extended model, which explains the 

decline in Qa0. 

 
Figure 6.5  Cumulative probability distribution of present value of S1E1 in the extended model 
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Figure 6.6  Cumulative probability distribution of present value of S1 in the base model 

6.3.1.2 Rationale for the change in financial hedging strategy in the 

extended model 

To explain the change in the financial hedging strategy in the extended model we 

examine the probability distributions of the futures price at t1 in both models, as depicted 

in Figures 6.7 and 6.8, with delimiters indicating the options’ strike price. Put options 

would yield a positive payoff when the futures price at t1 is lower than the strike price. 

The parts of the two curves at the left side of the strike price indicate the probabilities of 

positive payoffs. For the same payoff value the corresponding probability in the extended 

model is lower than the probability in the base model. For example, in the base model, 

P(F1 < 2,000) = 12.8% which means that P(payoff > 319) = 0.128; the payoff being equal 

to the strike price (2,319) minus the value of F1. To have the same payoff in the extended 

model, where the strike price is 2,356 the futures price should be at 2,037. The 

cumulative probability corresponding to this value is 9.2%. Thus, P(payoff > 319) = 
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conclusion that the probability of any positive payoff is lower in the extended model, 

which explains the decline in Np.  

On the other hand, call options would yield a positive payoff when the futures price at 

t1 is higher than the strike price. The parts of the two curves at the right side of the strike 

price indicate the probabilities of positive payoffs. For the same payoff value, the 

corresponding probability in the extended model is lower than the probability in the base 

model. For example, in the base model, P(F1 > 2,500) = 21.7% which means that 

P(payoff > 181) = 0.217; the payoff being equal to F1 minus the strike price. To have the 

same payoff in the extended model, the futures price should be at 2,537. The probability 

that the futures price is higher than this value is 12.2%. Thus, P(payoff > 181) = 0.122. 

Similar observations are made for any positive payoff value, leading to the conclusion 

that the probability of any positive payoff is lower in the extended model, which explains 

the decline in Nc. 

 
Figure 6.7  Cumulative probability distribution of F1E1 in the extended model  
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Figure 6.8  Cumulative probability distribution of F1 in the base model 

6.3.2 Impact of risk aversion level on optimal hedging against 
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which VAR = 1.5, SDD = 4.5, APV = B. We created a set of treatments for the different 

exchange rate volatility ratios. The optimization results are summarized in Table 6.3. 

Table 6.3 Optimization results of extended model with VaR = 1.5 

 VAR = 1.5, SDD = 4.5, APV = B 

 CAD/USD exchange rate volatility ratio 

 1.0 1.10 1.20 1.30 1.40 1.60 1.80 

E(TOC) 580,769 564,297 562,391 542,881 471,331 467,959 460,534 

SD 690,156 683,397 684,247 687,275 734,255 719,916 720,325 

Qa0 11.4 13.1 13.1 8.9 0.0 0.0 0.0 

Qa1 177.7 176.7 177.0 179.6 187.8 178.0 183.0 

Qa 189.1 189.8 190.1 188.5 187.8 178.0 183.0 

Np 200 142 178 0 0 0 0 

Nc 1,118 616 610 586 0 0 0 

A comparison between the results in Tables 6.2 and 6.3 sheds light on the impact of 

the risk aversion level on the strategies of hedging the exchange rate risk, and on the 

performance of the supply chain. As expected, a more risk averse supply chain (VaR = 

1.5) uses a smaller aluminum quantity in all the treatments except for the case when the 

volatility ratio is 1. In this latter case the supply chain uses a slightly higher Qa but also 

hedges against increases in the aluminum price by purchasing Qa0 units of aluminum and 

Nc call options at t0 that were not used by the less risk averse supply chain. Hedging 

using Qa0 and Nc is used in the treatments corresponding to exchange rate volatility ratios 

of 1.0 to 1.3. It is only when the volatility ratio is higher than 1.3 that all of the aluminum 

quantity is purchased at t1 and no financial hedging tool is used. As for the expected 

opportunity cost, the decrease in E(TOC) as volatility increases is found to be statistically 

significant when the volatility ratio increases from 1.0 to 1.1, from 1.2 to 1.3, and from 

1.3 to 1.4.  

Figure 6.9 illustrates a graphical comparison of the results presented in Tables 6.2 and 

6.3. As the exchange rate volatility changes, the change in the expected opportunity cost 
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is depicted by the solid lines and the change in the total aluminum quantity purchased is 

depicted by the dashed lines. The square marks tag the performance of the more risk 

averse supply chain (VaR = 1.5) at the respective exchange rate volatility, and the 

triangular marks tag the performance of the less risk averse supply chain (VaR = 1.8) at 

these volatilities.   

 
Figure 6.9  Exchange rate volatility effects on E(TOC) and Qa in base and extended models 
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6.3.3.1 Performance of a supply chain with unhedged exchange rate risk 

To study the performance of a supply chain that does not hedge its exchange rate risk, we 

denominate all the components of E(TOC) optimized in the base model in CAD. For 

most of these cost components, the calculations used to denominate them in CAD are 

based on simply replacing the USD values of the aluminum spot price by values 

converted into CAD (CAD S = USD S x E in CAD/USD) in the corresponding 

formulations. The only cost components that require a different approach are the payoffs 

from the call and put options. For these two components, the conversion calculations are 

based on the following procedure that describes the series of transactions made by the 

supply chain to hedge aluminum price risk using call options. At t0, the supply chain buys 

a number, Nc, of European call options on aluminum futures (traded in USD) with a 

strike price equal to USD K (equals to USD F0) for a premium equal to USD c. The 

supply chain buys an amount of USD equal to cNc for a price of CAD cNcE1. At t1, the 

futures price changes from USD F0 to USD F1 and the CAD/USD exchange rate changes 

from E0 to E1. When F1 > F0 the options payoff is USD Nc(F1 – K). The supply chain sells 

this USD amount for an equivalent CAD amount using the exchange rate of E1. A similar 

procedure applies for the put options. The results of the models with unhedged exchange 

rate risk are presented in Table 6.4. 

Table 6.4  Optimization results of model with unhedged exchange rate risk 

       VAR = 1.8, SDD = 4.5, APV = B VAR = 1.5, SDD = 4.5, APV = B 

  CAD/USD exchange rate volatility ratio CAD/USD exchange rate volatility ratio 

 1.00 1.10 1.20 1.30 1.40 1.00 1.10 1.20 1.30 1.40 

E(TOC) 573,557 571,005 568,460 565,911 563,359 725,667 724,720 723,766 722,809 721,850 

SD 909,476 903,181 897,106 891,228 885,549 631,866 630,361 628,942 627,602 626,643 
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6.3.3.2 Performance of a supply chain that hedges exchange rate risk 

The performance of a supply chain that hedges exchange rate risk is examined in the 

results of the extended model. However, the results in Tables 6.2 and 6.3 show that in the 

presence of exchange rate risk in the extended model, the total aluminum quantity 

purchased is much higher than that in the base model, especially in the treatments with 

VAR = 1.8. To better compare the performances of the base model (unhedged exchange 

rate risk) and extended model (hedged exchange rate risk), we eliminate the effects of 

purchasing a larger quantity of aluminum by adding a constraint to the extended model 

treatment with an exchange rate volatility ratio of 1.0. This constraint limits the total 

aluminum quantity to a maximum level equal to that optimized in the base model (177.8 

million cans for VAR = 1.8 and 178.0 million cans for VAR = 1.5). The optimal value of 

Qa is found to be 177.1 and 177.7 million cans for VAR = 1.8 and VAR = 1.5, 

respectively. For all the other treatments with an exchange rate volatility ratio higher than 

1.0, we added a constraint setting Qa to be equal to the optimized value in the treatment 

with a volatility ratio of 1.0. The optimization results are summarized in Table 6.5.  

Table 6.5  Optimization results of extended model with Qa constrained to be less than or equal to an 

upper value  

    VAR = 1.8, SDD = 4.5, APV = B VAR = 1.5, SDD = 4.5, APV = B 

  CAD/USD exchange rate volatility ratio CAD/USD exchange rate volatility ratio 

 1.00 1.10 1.20 1.30 1.40 1.00 1.10 1.20 1.30 1.40 

E(TOC) 495,182 493,189 490,290 493,200 491,055 595,937 583,165 568,255 557,776 537,629 

SD 863,254 879,361 893,778 778,668 771,866 677,700 687,217 690,760 700,840 700,907 

Qa0 0.0 0.0 0.0 0.0 0.0 19.8 17.1 13.8 1.7 0.6 

Qa1 177.1 177.1 177.1 177.1 177.1 157.9 160.6 163.9 176.0 177.1 

Qa 177.1 177.1 177.1 177.1 177.1 177.7 177.7 177.7 177.7 177.7 

Np 939 1,324 1,749 0 0 47 166 60 106 4 

Nc 0 0 0 0 0 330 315 309 928 674 
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6.3.3.3 Effects of exchange rate hedging at different risk aversion levels and 

exchange rate volatilities  

As expected, comparing E(TOC) values between Tables 6.4 and 6.5 shows that a supply 

chain that does not hedge exchange rate risk incurs a higher expected opportunity cost 

than a supply chain that hedges this risk. However, this difference in E(TOC) between 

these two supply chains is also a function of the risk level that the supply chains are 

willing to assume and the exchange rate volatility. For example, when the exchange rate 

volatility ratio is 1 the difference in E(TOC) between the hedged and unhedged cases is 

13.7% when VaR is 1.8, while this difference is 17.9% when VaR is 1.5. On the other 

hand, when VaR is 1.5 the difference in E(TOC) between the hedged and the unhedged 

cases is 17.9% when the exchange rate ratio is 1, while this difference is 19.5% when the 

volatility ratio is 1.1.  

Figure 6.10 depicts the percentage difference in E(TOC) between a supply chain that 

does not hedge its foreign exchange risk and one that hedges it (Unhedged versus 

Hedged). The upper line illustrates an increase in the difference in E(TOC) when these 

supply chains are more risk averse (VaR = 1.5). The lower line illustrates minor changes 

in the difference in E(TOC) when these supply chains are less risk averse (VaR = 1.8). 

The gap between the two lines reveals the impact of the risk aversion level on the 

difference in E(TOC). For the same exchange rate volatility, the difference in E(TOC) 

between the hedged and unhedged cases when VaR = 1.5 is higher than that when VaR = 

1.8. Moreover, the positive slope of the upper line indicates an influence of the exchange 

rate volatility on the difference in E(TOC) in the cases when VaR = 1.5. This influence is 

negligible in the cases when VaR = 1.8, as illustrated by the very mild slopes in the lower 

line.  
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Figure 6.10  Comparing effects on E(TOC) of hedging exchange rate risk at two risk aversion levels 
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Figure 6.11 depicts the percentage difference in E(TOC) between more risk averse 

and less risk averse supply chains (VaR 1.5 versus VaR 1.8). The upper line illustrates a 

mild increase in this difference in E(TOC) when these supply chains do not hedge foreign 

exchange risk. The lower line illustrates a decrease in the difference in E(TOC) when 

these supply chains hedge foreign exchange risk. The gap between the two lines reveals 

the impact of the hedging strategy on the difference in E(TOC). For the same exchange 

rate volatility, the difference in E(TOC) when the supply chains do not hedge foreign 

exchange  risk is higher than that when they do hedge. Moreover, the negative slope of 

the lower line indicates an influence of the exchange rate volatility on the difference in 

E(TOC) in the cases when the supply chains hedge foreign exchange risk. As this 

volatility increases, the percentage difference in E(TOC) decreases. This influence is 

negligible when the supply chains do not hedge, as illustrated by the very mild slopes in 

the upper line. 

 
Figure 6.11  Comparing effects of risk aversion level on E(TOC) in hedged & unhedged cases 
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6.4 Conclusion and managerial insights 

In this Chapter, we study the performance of an international supply chain that is exposed 

to exchange rate risk, in addition to fluctuation in aluminum prices and demand 

uncertainty. We extend our base integrated model by incorporating the exchange rate in 

the calculation of the expected opportunity cost and in using financial options on an index 

which consists of the product of the aluminum futures price denominated in USD and the 

CAD/USD exchange rate.  

We implement the model extension on the integrated model, setting the three factors 

at their base level.  We generate a set of treatments in which the exchange rate volatility 

changes by a ratio ranging from 1.0 to 1.8. We find the optimal solutions in these 

treatments. The results reveal that in the presence of exchange rate risk, the supply chain 

does not hedge the aluminum price increase with inventory procured at t0 as was the case 

in the base model. This is due to a lower probability of an opportunity profit resulting 

from hedging with Qa0. The numbers of put and call options are also found to decrease in 

the extended model, due to lower probability of positive payoff. On the other hand, the 

quantity purchased at t1 is higher in the extended model and it increases as the exchange 

rate volatility ratio increases. The increase in Qa1 exploits the high probability of decrease 

in the aluminum price, but results in an increase in the holding cost. According to the 

results, only when the volatility ratio is 1.8, the increase in Qa1 would yield a significant 

decline in the expected opportunity cost.  

To verify the feasibility of buying an excess aluminum quantity at t1 when the supply 

chain is more risk averse, we incorporate exchange rate risk in the treatment in which the 

risk aversion level is higher and the other two factors are kept at their base level. The 
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results show that, contrary to the cases of lower risk aversion level, as the exchange rate 

volatility increases the aluminum quantity does not change and the expected opportunity 

cost exhibits more significant declines. As the exchange rate volatility increases, a less 

risk averse supply chain tends to buy more aluminum and the expected opportunity cost 

is almost constant. On the other hand, a more risk averse supply chain buys almost the 

same quantity of aluminum and the expected opportunity cost declines as the exchange 

rate volatility increases. Moreover, the more risk averse supply chain keeps using 

operational hedging when the exchange rate volatility ratio is less than 1.4.  

To study the benefits of hedging exchange rate risk, we compare the performance of a 

supply chain, which is exposed to exchange rate risk, in two cases. In one case the supply 

chain hedges this risk and in the other case it does not.. As expected, a supply chain that 

hedges exchange rate risk performs better than a supply chain that does not hedge this 

risk. However, the difference in the two performances is found also to be function of the 

risk aversion level and the exchange rate volatility. In the case of a higher risk aversion 

level, the improvement in performance increases as the volatility increases, while it is the 

same in the case of lower risk aversion level. At any volatility ratio, the improvement in 

the former case is higher than the improvement in the latter case. A more risk averse 

supply chain achieves higher improvements in its performance when it hedges foreign 

exchange risk than a less risk averse supply chain. In the former case, the improvement 

rate significantly increases as the exchange rate volatility increases while it is almost 

constant in the latter.  

In line with the findings in the base model, a higher risk aversion level increases the 

opportunity cost. However, this relationship is also a function of the hedging position and 
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the exchange rate volatility. In the case when the supply chain hedges exchange rate risk, 

the increase in opportunity cost declines as the exchange rate volatility increases, while it 

is the same in the case when the supply chain does not hedge the exchange rate risk. At 

any volatility ratio, the opportunity cost increase in the former case is higher than the 

increase in the latter case. A supply chain that hedges exchange rate risk incurs less loss 

at a higher risk aversion level than a supply chain that does not hedge. In the former case, 

the loss rate significantly decreases as the exchange rate volatility increases while it is 

almost constant in the latter. 
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Appendix C - Simulating the Spot Price, Futures Price and the Foreign Currency 

Exchange Rate 

Assuming that aluminum spot prices, futures prices and currency exchange rates are 

lognormally distributed, we simulate values for these variables at the future time t1, 

which coincides with the options’ expiration date, according to the procedure presented 

in Hull (2006).  Thus,  
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where S0, F0 and E0 are the spot price, futures price and currency exchange rate, 

respectively, at the current time t0; μ1, μ2 and µ3 are the annualized mean of the 

continuously compounded returns on the spot price, on the futures price and on the 

currency exchange rate, respectively; and σ1, σ2 and σ3 are the annualized standard 

deviations of the continuously compounded returns on the spot price, on the futures price 

and on the currency exchange rate, respectively. μ1, µ2, σ1 and σ2 are estimated using 

historical daily data on spot and futures prices obtained from Bloomberg for a 12 week 

period in which the last date coincides with the date just prior to the options’ purchase 

date. µ3 and σ3 are estimated using historical daily data on currency exchange rates 

obtained from Datastream for a 12 week period in which the last date coincides with the 

date just prior to the options’ purchase date. T is the time (in years) to the options’ 

expiration dates. ε1, ε2 and ε3 represent standard normal random variables among with 

correlations ρ12 (between the returns on the spot and on the futures), ρ13 (between the 
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returns on the spot and on the exchange rate), and ρ23 (between the returns on the futures 

and on the exchange rate). These correlations are estimated from the same historical data 

used to estimate the mean and standard deviations of the continuously compounded 

returns on the spot, futures and currency exchange rate. 

ε1, ε2 and ε3 are simulated as follows: 

ε1 = α11x1, x1 ~ Ф(0,1)                 (C4) 

2221212 xαxαε , x2 ~ Ф(0,1)              (C5) 

3332321313 xαxαxαε , x3 ~ Ф(0,1)            (C6) 
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where x1, x2 and x3 represent independent standard normal random variables. 

 

 

 



170 

Chapter  7                                 

Conclusion 

7.1 Overall Results and Discussions   

Our literature survey had revealed shortages in systematic methods for risk identification 

and for selection of risk management tools. To identify risks, we proposed the use of 

three different constructs. We associated a specific adverse event to a source of risk that 

emanates from a risk domain. We recognized four risk domains: internal operations, 

external stakeholders, marketplace and environment. To support the decision of selecting 

the appropriate risk management method, we classified these methods into three 

categories: avoidance, prevention and mitigation approaches. These two classifications 

represent the main building blocks of our supply chain risk management framework. On 

the basis of this framework, we designed a planning process that can be used by 

practitioners in the context of a risk management strategy.  

 The literature review also revealed a shortage in papers integrating operational and 

financial approaches. We summarized the reviewed papers in Table 3.5. In almost all 

these papers, exchange rate risk is addressed. Eventually, the financial instruments that 

are most commonly used are currency derivatives. As for the operational methods, the 

most common approaches are geographic dispersion, switching production and capacity 

allocation. Our research is different from the reviewed papers in terms of the type of risk 

and the selection of the risk management approach. In our model, we incorporated 
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commodity price risk, in terms of aluminum price fluctuation, and we hedged this risk 

with inventory management and options on aluminum futures. 

 The risk management strategy incorporated in our base model is developed according 

to our SCRM framework. Figure 7.1 depicts the planning process that underlies this 

strategy. The supply chain is exposed to demand uncertainty and aluminum price 

fluctuation. Although some avoidance and prevention approaches can be deployed to 

manage these two risks, these are not in the scope of our research. To explore the benefits 

of integrating operational and financial methods, we develop a mitigation plan that 

involves an integrated approach. Under uncertain demand conditions, the supply chain 

decides on levels of beer inventory to maintain in the distribution center in order to 

minimize stockout and holding costs. The flow quantities of beer and empty cans along 

the supply chain are decided accordingly. To feed these flows, aluminum sheets need to 

be procured at an earlier time. The procurement price is a major determinant of 

packaging cost. Under a fluctuating aluminum price, the supply chain mitigates an 

increase in the packaging cost by hedging the price with a quantity of aluminum sheets 

and a number of call options. In case of a decline in the price, the supply chain would be 

at a disadvantage due to the quantity purchased at the higher price. To offset this 

opportunity cost, a number of put options are purchased. The supply chain evaluates its 

risk management performance in terms of the total expected opportunity cost. 

The quantitative part of our research is presented in three chapters. In Chapter 4, we 

discussed the supply chain problem and explained the base model that integrates 

operational and financial approaches to manage risks emanating from aluminum price 

fluctuation and demand uncertainty. The supply chain hedges the aluminum price with 
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inventory and options on aluminum futures. Demand uncertainty is managed by a 

coordinated inventory system across the supply chain. The inventory and financial 

decisions are made simultaneously in the integrated model. In the sequential model, the 

two decisions are made separately. The two models were solved with simulation-based 

optimization and results were compared to draw conclusions on the advantages of 

integrated approach over the other. Furthermore, experimental design was used to study 

the impact of three factors on the model performance. These factors are risk aversion 

level, aluminum price volatility and demand variability. Each factor was represented at 

three levels. 

 The supply chain risk management performance was evaluated in terms of the total 

expected opportunity cost. This performance was found to vary with the change of the 

business environment, which is defined by the levels of the aforementioned three factors. 

Results showed that the supply chain can significantly reduce the opportunity cost by 

adopting the integrated model rather than the sequential model. This reduction ranges 

from 5% to 10% depending on the business environment in which the supply chain 

operates. The reduction ranges from $ 25,000 to $ 65,000 over the eight week demand 

period. On the other hand, the improvement obtained with the integrated approach was 

found not to be significant in a number of cases, notably when a more risk averse supply 

chain operates under low demand uncertainty. The same was observed when a less risk 

averse supply chain operates under high demand uncertainty. This observation is very 

important and needs to be considered while setting the supply chain risk management 

strategy. Implementing the integrated model requires close collaboration among supply 

chain partners and between functions within each firm. As this collaboration can be very 
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costly, a supply chain that operates under a business environment in which the integrated 

approach is not beneficial would opt not to establish such collaboration  

Other than the difference in their opportunity costs, the integrated and sequential 

models are distinguished by their respective levels of operational hedging strategy. 

Operational hedging is implemented through the purchase at time t0 of a portion of the 

aluminum sheets that would be later needed when production starts at time t1. We 

measured the extent of operational hedging by the ratio, u0, of the quantity purchased at t0 

over the total quantity. According to the results, a supply chain adopting the sequential 

model would use more operational hedging than a supply chain adopting the integrated 

model. In both models, however, a more risk averse supply chain uses more operational 

hedging and the degree of this hedging increases when demand variability increases. 

Under such a business environment, the ratio u0 is at a maximum of 45% in the sequential 

model.  

The impacts of the three factors and their interaction effects on the models can be 

inferred from the overall results. However, deductions would be limited to the discrete 

values of the factors’ levels. To gain insights on the model performance as the values of 

the factors vary on continuous scale, within the range of the three levels of each factor, a 

quadratic regression model was developed. This model explained the variations of the 

expected opportunity cost and revealed significant interaction effects among the factors 

on this cost. Visual illustrations of these interactions are depicted in Figures 3.3. - 3.5. 

Important managerial insights were drawn from the regression model results. For 

example, in contrast to the inference made from the negative correlation between the risk 

aversion level and the opportunity cost, results from the regression model revealed that 
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the opportunity cost stops declining when the risk aversion level reaches a threshold 

level.  

Chapter 5 presents the first extension to our base model. In this extended model, we 

incorporated variability in the lead time duration to supply aluminum cans to the brewery. 

We modified the formulation of the base model accordingly. We used the same research 

methodology as in the base model with two changes: i) lead time variability was added to 

the three factors involved in the base model and ii) each factor was represented at only 

two levels in the experiments. We underlined two aspects pertinent to the inclusion of 

lead time variability in the model. First, with lead time variability, the product flow 

across the supply chain is different from the flow in the base model. In the latter, the total 

flow of aluminum sheets, empty cans and beer is identical in volume. In the extended 

model, the flow of aluminum sheets and cans is larger than the flow of beer. Second, lead 

time variability has significant interaction effects on the expected opportunity cost with 

the other factors. For example, the regression analysis results reveal that an increase in 

lead time variability would amplify (diminish) the effects of risk aversion level (demand 

uncertainty) on the expected opportunity cost. Important managerial insights can be 

drawn from these observations. If an increase in lead time variability is inevitable, then 

the supply chain can balance the ensuing increase in opportunity cost by being less risk 

averse. Other interaction effects and managerial insights are discussed in more detail in 

Chapter 5. 

In the second extension of the base model (Chapter 6) we incorporated foreign 

exchange rate risk. The aim of this extended model is to examine the performance of an 

international supply chain, which is the case for most supply chains today. In our model, 
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the brewery and the distribution center operate in Canada, while the can supplier operates 

in the United States. The supply chain is thus exposed to fluctuation in the CAD/USD 

exchange rate. We optimized the expected opportunity cost in various treatments of the 

integrated model under two risk aversion levels and different exchange rate volatilities. 

We performed a parametric analysis of the results and came out with a number of 

observations that emphasize the effects of exchange rate risk. At a lower risk aversion 

level, as the exchange rate volatility increases, the supply chain tends to purchase more 

aluminum, but the expected opportunity cost does not exhibit significant change. On the 

contrary, at the higher risk aversion level, as the exchange rate volatility increases, the 

aluminum quantity purchased stayed constant and the expected opportunity cost 

significantly declines.  

We produced another set of results for the same treatments after adding to the model 

formulation a constraint that limits the quantity of aluminum to the value optimized in the 

base model. We compared these results (case of hedged exchange rate) to the results of 

the base model, after denominating the opportunity cost in CAD (case of unhedged 

exchange rate). We find that the hedging effect on the opportunity cost is higher when the 

supply chain is more risk averse. In this latter case, the hedging benefits increase as the 

exchange rate volatility increases. This volatility has no influence on the hedging benefits 

when the supply chain is less risk averse. We also found that the positive effect of a lower 

risk aversion level on the opportunity cost diminishes when the supply chain hedges the 

exchange rate. In this latter case, the benefits of being less risk averse exhibit more 

reduction as the exchange rate volatility increases.  
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7.2 Areas for Future Research 

In the future, our research can be expanded in different directions. 

i) The operational and financial hedging decisions can be made through a dynamic 

process rather than making these decisions at a single fixed date. At the start of the 

process, the supply chain observes the aluminum price and based on the historical 

movement of this price it may decide to buy a quantity of aluminum sheets and a number 

of options on aluminum futures. After a specific time interval, taking into consideration 

the quantity of aluminum sheets on hand and the number of options it already holds, the 

supply chain evaluates new decisions. If the aluminum price has dropped, the supply 

chain may buy a second lot of aluminum sheets and a number of call options. On the 

other hand, if the aluminum price has increased, the supply chain buys only a number of 

put options. This process continues for a number of time intervals. The use of futures or 

forward contracts instead of options may be found to be more effective under this 

dynamic process. 

ii) The supply chain can include multiple can suppliers. In our current research, we 

examined the case in which the brewery operates in Canada and procures cans from a 

foreign supplier operating in the U.S. If the brewery has another domestic supplier for the 

cans, the supply chain can then manage the exchange rate risk by switching the source of 

supply accordingly. To incorporate this option in our model, one has to come out with an 

appropriate estimation method for the switching cost. Moreover, suppliers’ capacity 

constraints can also be incorporated.    
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iii) The demand involved in our model is assumed to be an aggregate demand for all 

brands of beer that the brewery produces. Major breweries have large varieties of beer 

brands with different demand characteristics. Including multiple brands in the model 

bring in new aspects that enrich the research. On one hand, correlations among demands 

for different brands would need to be determined. On the other hand, postponement of 

part of the process in which the cans are labeled would be part of the overall risk 

management strategy. 

iv) One component of the expected total opportunity cost in our model is the stockout 

cost. The supply chain makes decisions that would minimize the total expected 

opportunity cost without specific consideration for the proportion of unsatisfied demand. 

However, such approach may not be feasible for firms with aggressive marketing plans. 

The model can be modified to keep the unsatisfied demand within certain limits. Such 

model expansion can be combined with the addition of multiple brands as discussed 

above. Demand for one brand can be shifted to another brand to avoid excessive 

stockouts.   

v) In our model, we assumed a fixed selling price for the beer. The scope of the 

research can be expanded by considering this price as variable. For this case, the impact 

of pricing on demand would need to be considered.  

vi) As suggested by recent studies in the area of modeling under uncertainty, we can 

improve the solutions obtained by using stochastic optimization routines in which the 

response surface based outcome becomes an input to stochastic programming. 
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Figure 7.1  Planning process underlying our SCRM base model



179 

Bibliography 

[1] Aabo, T. and Simkins, B.J. (2005) Interaction between real options and financial 

hedging: fact or fiction in managerial decision-making. Review of Financial 

Economics 14 (3, 4): 353 - 369. 

[2] Allayannis, G. and Weston, J. (2001) The use of foreign currency derivatives and 

firm market value. The Review of Financial Studies 14 (1): 243 - 276. 

[3] Allayannis, G., Ihrig, J. and Weston, J.P. (2001) Exchange-rate hedging: Financial 

versus operational strategies. The American Economic Review, 91 (2): 391 - 395. 

[4] Bacon, P.W. and Williams, R.E. (1976) Interest rate futures: New tool for the 

financial manager. Financial Management 5 (1): 32 - 38. 

[5] Ballou, R.H. (2007) The evolution and future of logistics and supply chain 

management. European Business Review 19 (4): 332 - 348.  

[6] Bandaly, D., Satir, A., Kahyaoglu, Y. and Shanker, L. (2012a) Supply chain risk 

management – I: Conceptualization, framework and planning process. Risk 

Management, In Press.  

[7] Bandaly, D., Satir, A., Kahyaoglu, Y. and Shanker, L. (2012b) Supply chain risk 

management – II: A review of individual and integrated operational and financial 

approaches. Risk Management, In Press. 

[8] Bandaly, D., Satir, A. and Shanker, L. (2012c) Integrated Supply Chain Risk 

Management via Operational and Financial Hedging. European Journal of 

Operation Research, under editorial review. 



180 

[9] Blackhurst, J., Craighead, C.W., Elkins, D. and Handfield, R.B. (2005) An 

empirically derived agenda of critical research issues for managing supply-chain 

disruptions. International Journal of Production Research 43 (19): 4067 - 4081. 

[10] Blackhurst, J., Wu, T. and O'Grady, P. (2004) Network-based approach to 

modelling uncertainty in a supply chain. International Journal of Production 

Research 42 (8): 1639. 

[11] Blos, M.F., Quaddus, M., Wee, H.M. and Watanabe, K. (2009) Supply chain risk 

management (SCRM): A case study on the automotive and electronic industries in 

Brazil. Supply Chain Management 14 (4): 247 - 252. 

[12] Blume, M.E. (1971) On the assessment of risk. Journal of Finance 26 (1): 1 - 10. 

[13] Bodnar, G.M., Hayt, G.S., Marston, R.C. and Smithson, C.W. (1995) Wharton 

survey of derivatives usage by US non-financial firms. Financial Management 24 

(2): 104 - 114. 

[14] Bradley, K. and Moles, P. (2002) Managing strategic exchange rate exposures: 

Evidence from UK firms. Managerial Finance 28 (11): 28 - 42. 

[15] Braunscheidel, M. and Suresh, N. (2009) The organizational antecedents of a firm's 

supply chain agility for risk mitigation and response. Journal of Operations 

Management 27 (2): 119 - 140. 

[16] Brindley, C. (2004) Supply Chain Risk. Aldershot: Ashgate Publishing. 

[17] Brown, G.W. and Toft, K.B. (2002) How firms should hedge. The Review of 

Financial Studies 15 (4): 1283 - 1324. 



181 

[18] Burke, G.J., Carrillo, J.E. and Vakharia, A.J. (2007) Single vs. multiple supplier 

sourcing strategies. European Journal of Operational Research 182 (1): 95 - 112. 

[19] Canbolat, Y.B., Gupta, G., Matera, S. and Chelst, K. (2007) Analysing risk in 

sourcing design and manufacture of components and sub-systems to emerging 

markets. International Journal of Production Research 46 (18): 5145 - 5164. 

[20] Carter, D.A., Pantzalis, C. and Simkins, B.J. (2001) Firmwide risk management of 

foreign exchange exposure by US multinational corporations. Social Science 

Research Network, http://papers.ssrn.com/sol3/papers.cfm?abstract_id=255891, 

accessed 12 September 2011. 

[21] Carter, D.A., Rogers, D.A. and Simkins, B.J. (2004) Fuel hedging in the airline 

industry: The case of Southwest Airlines. Social Science Research Network, 

http://papers.ssrn.com/sol3/papers.cfm?abstract_id=578663, accessed 12 

September 2011. 

[22] Carter, D.A., Rogers, D.A. and Simkins, B.J. (2006) Does hedging affect firm 

value? Evidence from the US airline industry. Financial Management 35 (1): 53 - 

86. 

[23] Chod, J., Rudi, N. and Van Mieghem, J.A. (2010) Operational flexibility and 

financial hedging: Complements or substitutes? Management Science 56 (6): 1030 

- 1045. 

[24] Cholette, S. (2009) Mitigating demand uncertainty across a winery’s sales channels 

through postponement. International Journal of Production Research 47 (13): 3587 

- 3609. 



182 

[25] Chopra, S. and Meindl, P. (2003) Supply Chain Management: Strategy, Planning, 

and Operations. New Jersey: Prentice-Hall. 

[26] Chopra, S. and Sodhi, M.S. (2004) Managing risk to avoid supply-chain 

breakdown. MIT Sloan Management Review 46 (1): 53 - 61. 

[27] Chowdhry, B. and Howe, J.T.B. (1999) Corporate risk management for 

multinational corporations: Financial and operational hedging policies. European 

Finance Review 2: 229 - 246. 

[28] Christopher, M. (1992) Logistics and Supply Chain Management. London: Pitman 

Publishing. 

[29] Christopher, M. and Lee, H. (2004) Mitigating supply chain risk through improved 

confidence. International Journal of Physical Distribution & Logistics 

Management 34 (5): 388 - 396. 

[30] Christopher, M. and Peck, H. (2004) Building the resilient supply chain. 

International Journal of Logistics Management 15 (2): 1 - 14. 

[31] Cohen, M. and Kunreuther, H. (2007) Operations risk management: Overview of 

Paul Kleindorfer's contributions. Production and Operations Management 16 (5): 

525 - 541. 

[32] Cooper, M.C. and Ellram, L.M. (1993) Characteristics of supply chain management 

and the implications for purchasing and logistics strategy. International Journal of 

Logistics Management 4 (2): 13 - 24. 



183 

[33] Cooper, M.C., Lambert, D.M. and Pagh, J.D. (1997) Supply chain management: 

More than a new name for logistics. International Journal of Logistics 

Management 8 (1): 1 - 13. 

[34] Cox, A. and Townsend, M. (1998) Strategic Procurement in Construction. London: 

Thomas Telford. 

[35] Croxton, K.L., Garcia-Dastugue, S.J., Lambert, D.M. and Rogers, D.S. (2001) The 

supply chain management processes. International Journal of Logistics 

Management 12 (2): 13 - 36. 

[36] Cucchiella, F. and Gastaldi, M. (2006) Risk management in supply chain: A real 

option approach. Journal of Manufacturing Technology Management 17 (6): 700 - 

720. 

[37] Ding, Q., Dong, L. and Kouvelis, P. (2007) On the integration of production and 

financial hedging decisions in global markets. Operations Research 55 (3): 470 - 

489. 

[38] Doege, J., Fehr, M., Hinz, J., Lüthi, H. and Wilhelm, M. (2009) Risk management 

in power markets: The hedging value of production flexibility. European Journal 

of Operational Research 199 (3): 936 - 943. 

[39] Dufey, G. and Srinivasulu, S.L. (1983) The case for corporate management of 

foreign exchange risk. Financial Management 12 (4): 54 - 62. 

[40] Essaddam, N. and Miller, D. (2008) An application of hedging fuel price risk in the 

Canadian department of national defence. The Business Review Cambridge 9 (2): 

360 - 365. 



184 

[41] Faseruk, A. and Mishra, D.R. (2008) An examination of US dollar risk 

management by Canadian non-financial firms. Management Research News 31 (8): 

570 - 582. 

[42] Froot, K.A., Scharfstein, D.S. and Stein, J.C. (1993) Risk management: 

coordinating corporate investment and financing policies. The Journal of Finance 

48 (5): 1629 - 1658. 

[43] Froot, K.A., Scharfstein, D.S. and Stein, J.C. (1994) A framework for risk 

management. Journal of Applied Corporate Finance 7 (3): 22 - 32. 

[44] Gaur, V. and Seshadri, S. (2005) Hedging inventory risk through market 

instruments. Manufacturing and Service Operations Management 7 (2): 103 - 120. 

[45] Geczy, C., Minton, B.A. and Schrand, C. (1997) Why firms use currency 

derivatives. The Journal of Finance 52 (4): 1323 - 1354. 

[46] Ghoshal, S. (1987) Global strategy: An organizing framework. Strategic 

Management Journal 8 (5): 425 - 440. 

[47] Guo, Z., Fang, F. and Whinston, A.B. (2006) Supply chain information sharing in a 

macro prediction market. Decision Support Systems 42 (3): 1944 - 1958. 

[48] Haimes, Y. (1998) Risk Modeling, Assessment and Management. New York: John 

Wiley. 

[49] Harland, C., Brenchley, R. and Walker, H. (2003) Risk in supply networks. Journal 

of Purchasing and Supply Management 9 (2): 51 - 62. 

[50] Hendricks, K.B. and Singhal, V.R. (2003) The effect of supply chain glitches on 

shareholder wealth. Journal of Operations Management 21 (5): 501 - 522. 



185 

[51] Hommel, U. (2003) Financial versus operative hedging of currency risk. Global 

Finance Journal 14 (1): 1 - 18. 

[52] Huang, H.Y., Chou, Y.C. and Chang, S. (2009) A dynamic system model for 

proactive control of dynamic events in full-load states of manufacturing chains. 

International Journal of Production Research 47 (9): 2485 - 2506. 

[53] Huchzermeier, A. and Cohen, M.A. (1996) Valuing operational flexibility under 

exchange rate risk. Operations Research 44 (1): 100 - 113. 

[54] Hull, J.C. (2006) Options, futures, and other derivatives. 6
th

 ed. New Jersey: 

Prentice-Hall. 

[55] Jorion, P. (1990) The exchange-rate exposure of US multinationals. The Journal of 

Business 63 (3): 331 - 345. 

[56] Juttner, U. (2005) Supply chain risk management: Understanding the business 

requirements from a practitioner perspective. International Journal of Logistics 

Management 16 (1): 120 - 141. 

[57] Juttner, U., Peck, H. and Christopher, M. (2003) Supply chain risk management: 

Outlining an agenda for future research. International Journal of Logistics: 

Research and Applications 6 (4): 197 - 210. 

[58] Kallman, J.Wm. and Maric, R.M. (2004) A Refined Risk Management Paradigm. 

Risk Management: An International Journal 6 (3) : 57 - 68. 

[59] Kelle, P. and Miller, P.A. (2001) Stockout risk and order splitting. International 

Journal of Production Economics 71 (1 - 3): 407 - 415. 



186 

[60] Khan, O. and Burnes, B. (2007) Risk and supply chain management: Creating a 

research agenda. International Journal of Logistics Management 18 (2): 197 - 216. 

[61] Kim, Y.S., Mathur, I. and Nam, J. (2006) Is operational hedging a substitute for or 

a complement to financial hedging? Journal of Corporate Finance 12: 834 - 853. 

[62] Kleindorfer, P.R. and Saad, G.H. (2005) Managing disruption risks in supply 

chains. Production and Operations Management 14 (1): 53 - 68. 

[63] Klibi, W., Martel, A. and Guitouni, A. (2010) The design of robust value-creating 

supply chain networks: A critical review. European Journal of Operational 

Research 203 (2): 283 - 293. 

[64] Knemeyer, A., Zinn, W. and Eroglu, C. (2009) Proactive planning for catastrophic 

events in supply chains. Journal of Operations Management 27 (2): 141 - 153. 

[65] Kogut, B. and Kulatilaka, N. (1994) Operating flexibility, global manufacturing, 

and the option value of a multinational network. Management Science 40 (1): 123 - 

139. 

[66] Kumar, S.K., Tiwari, M. K. and Babiceanu, R.F. (2010) Minimization of supply 

chain cost with embedded risk using computational intelligence approaches. 

International Journal of Production Research 48 (13): 3717 - 3739.   

[67] Lambert, D.M. and Cooper, M.C. (2000) Issues in supply chain management. 

Industrial Marketing Management 29 (1): 65 - 83. 

[68] Lambert, D.M., Cooper, M.C. and Pagh, J.D. (1998) Supply chain management: 

implementation issues and research opportunities. International Journal of 

Logistics Management 9 (2): 1 - 19. 



187 

[69] Lee, H.L., Padmanabhan, V. and Whang, S. (1997) Information distortion in a 

supply chain: The bullwhip effect. Management Science 43 (4): 546 - 558. 

[70] Mackay, P. and Moeller, S.B. (2007) The value of corporate risk management. The 

Journal of Finance 62 (3): 1379 - 1419.  

[71] Manuj, I. and Mentzer, J. (2008a) Global supply chain risk management strategies. 

International Journal of Physical Distribution & Logistics Management 38 (3): 192 

- 223. 

[72] Manuj, I. and Mentzer, J. (2008b) Global supply chain risk management. Journal of 

Business Logistics 29 (1): 133 - 156. 

[73] March, J.G. and Shapira, Z. (1987) Managerial perspectives on risk and risk taking. 

Management Science 33 (11): 1404 - 1418. 

[74] Masson, R., Iosif, L., MacKerron, G. and Fernie, J. (2007) Managing complexity in 

agile global fashion industry supply chains. International Journal of Logistics 

Management 18 (2): 238 - 254. 

[75] Mello, A.S., Parsons, J.E. and Triantis, A.J. (1995) An integrated model of 

multinational flexibility and financial hedging. Journal of International Economics 

39 (1-2): 27 - 51. 

[76] Mentzer, J.T., DeWitt, W., Keebler, J.S. and Min, S. (2001) Defining supply chain 

management. Journal of Business Logistics 22 (2): 1 - 25. 

[77] Meulbrock, L.K. (2002) A senior manager’s guide to integrated risk management. 

Journal of Applied Corporate Finance 14 (4): 56 - 70. 



188 

[78] Miller, K.D. (1992) A framework for integrated risk management in international 

business. Journal of International Business Studies 23 (2): 311 - 331. 

[79] Mitchell, V-W. (1995) Organisational risk perception and reduction: A literature 

review. British Journal of Management 6 (2): 115 - 133. 

[80] Moen, B.E. and Rundmo, T. (2006) Perception of Transport Risk in the Norwegian 

Public. Risk Management: An International Journal 8 : 43 - 60. 

[81] Moore, P.G. (1983) The Business of Risk. Cambridge: Cambridge University Press. 

[82] Neiger, D., Rotaru, K. and Churilov, L. (2009) Supply chain risk identification with 

value-focused process engineering. Journal of Operations Management 27 (2): 154 

- 168. 

[83] Norrman, A. and Jansson, U. (2004) Ericsson's proactive supply chain risk 

management approach after a serious sub-supplier accident. International Journal 

of Physical Distribution & Logistics Management 34 (5): 434 - 456. 

[84] Page, P. (2008) Risk management is critical for protecting supply chains: Cisco’s 

plan spared its global network from disruption after earthquake in Sichuan. 

Shipping Digest: 11 - 13. 

[85] Rao, S. and Goldsby, T.J. (2009) Supply chain risks: A review and typology. 

International Journal of Logistics Management 20 (1): 97 - 123. 

[86] Ratick, S., Meacham, B. and Aoyama, Y. (2008) Locating backup facilities to 

enhance supply chain disaster resilience. Growth and Change 39 (4): 642 - 666. 



189 

[87] Reimann, M. and Schiltknecht, P. (2009) Studying the interdependence of 

contractual and operational flexibilities in the market of specialty chemicals. 

European Journal of Operational Research 198 (3): 760 - 772. 

[88] Ritchie, B. and Brindley, C. (2007) Supply chain risk management and 

performance. International Journal of Operations & Production Management 27 

(3): 303 - 322. 

[89] Ritchie, B. and Marshall, D. (1993) Business Risk Management. London: Chapman 

and Hall. 

[90] Ritchken, P.H. and Tapiero, C.S. 1986. Contingent Claims Contracting for 

Purchasing Decisions in Inventory Management. Operations Research. 34 (6), 864-

870. 

[91] Servaes, H., Tamayo, A. and Tufano, P. (2009) The theory and practice of 

corporate risk management. Journal of Applied Corporate Finance 21 (4): 60 - 78. 

[92] Seshadri, S. and Subrahmanyam, M. (2005) Introduction to the special issue on 

"risk management in operations". Production and Operations Management 14 (1): 

1 - 4. 

[93] Shanker, L. and Balakrishnan, N. 2008. Basis Risk and Optimal Hedging of a 

Purchase Decision. Review of Futures Markets. 16 (4), 391-420. 

[94] Sheffi, Y. and Rice, J.B. Jr. (2005) A supply chain view of the resilient enterprise. 

MIT Sloan Management Review 47 (1): 41 - 48. 

[95] Smith, C.W. and Stulz, R.M. (1985) The determinants of firms' hedging policies. 

Journal of Financial and Quantitative Analysis 20 (4): 391 - 405. 



190 

[96] Spinler, S. and Huchzermeier, A. (2006) The valuation of options on capacity with 

cost and demand uncertainty. European Journal of Operational Research 171 (3): 

915 - 934. 

[97] Stamatis, D.H. (2003) Failure Mode and Effect Analysis: FMEA from Theory to 

Execution. Milwaukee: ASQ Quality Press. 

[98] Svensson, G. (2001) Firms' preventive activities and the occurrence of disturbances 

in the inbound and outbound logistics flows. International Journal of Logistics: 

Research and Applications 4 (2): 207 - 236. 

[99] Svensson, G. (2002) A conceptual framework of vulnerability in firms' inbound and 

outbound logistics flows. International Journal of Physical Distribution & 

Logistics Management 32 (1, 2): 110 - 134. 

[100] Swafford, P., Ghosh, S. and Murthy, N. (2008) Achieving supply chain agility 

through IT integration and flexibility. International Journal of Production 

Economics 116 (2): 288 - 297. 

[101] Swink, M. and Zsidisin, G. (2006) On the benefits and risks of focused 

commitment to suppliers. International Journal of Production Research 44 (20): 

4223 - 4240. 

[102] Tang, C. (2006a) Perspectives in supply chain risk management. International 

Journal of Production Economics 103 (2): 451 - 488. 

[103] Tang, C. (2006b) Robust strategies for mitigating supply chain disruptions. 

International Journal of Logistics: Research and Applications 9 (1): 33 - 45. 



191 

[104] Tang, C. and Tomlin, B. (2008) The power of flexibility for mitigating supply 

chain risks. International Journal of Production Economics 116 (1): 12 - 27. 

[105] Thun, J. and Hoenig, D. (2011) An empirical analysis of supply chain risk 

management in the German automotive industry. International Journal of 

Production Economics 131 (1): 242 - 249.  

[106] Tomlin, B. (2006) On the value of mitigation and contingency strategies for 

managing supply chain disruption risks. Management Science 52 (5): 639 - 657. 

[107] Triantis, A.J. (2000) Real options and corporate risk management. Journal of 

Applied Corporate Finance 13 (2): 64 - 73. 

[108] Tufano, P. (1996) Who manages risk? An empirical examination of risk 

management practices in the gold mining industry. The Journal of Finance 51 (4): 

1097 - 1137.  

[109] Turnbull, L. (2007) Compliance and global logistics. Canadian Transportation 

Logistics 110 (8): 46. 

[110] Unterschultz, J.R. (2000) Managing market risk in Western Canadian agriculture. 

Canadian Journal of Agricultural Economics 48 (4): 527 - 537. 

[111] Vaidyanathan, V., Metcalf, D. and Martin D. (2005) Using capacity options to 

better enable our factory ramps. Intel Technology Journal 9 (3): 185 - 191. 

[112] Wagner, S.M. and Bode, C. (2006) An empirical investigation into supply chain 

vulnerability. Journal of Purchasing and Supply Management 12: 301 - 312. 

[113] Weiss, D. and Maher, M. (2009) Operational hedging against adverse 

circumstances. Journal of Operations Management 27 (5): 362 - 373. 



192 

[114] Wong, K.P. (2007) Operational and financial hedging for exporting firms. 

International Review of Economics and Finance 16 (4): 459 - 470. 

[115] Wu, D.D. and Olson, D. (2010) Enterprise risk management: a DEA VaR approach 

in vendor selection. International Journal of Production Research 48 (16): 4919 - 

4932. 

[116] Yang, B. and Yang, Y. (2010) Postponement in supply chain risk management: A 

complexity perspective. International Journal of Production Research 48 (7): 1901 

- 1912. 

[117] Yang, B., Burns, N. D. and Backhouse, C. J. (2004) Management of uncertainty 

through postponement. International Journal of Production Research 42 (6): 1049 

- 1064. 

[118] Zsidisin, G.A., Ellram, L.M., Carter, J.R. and Cavinato, J.L. (2004) An analysis of 

supply risk assessment techniques. International Journal of Physical Distribution 

& Logistics Management 34 (5): 397 - 413. 

 


