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Abstract

Higgs and Radion Phenomenology Beyond the Standard Model

Beste Korutlu, Ph.D.

Concordia University, 2012

In this thesis we study models Beyond the Standard Model including Left-Right

Supersymmetric Model and Warped Extra Dimensional Models with a Fourth

Generation.

First, we revisit the Higgs sector of Left-Right Supersymmetric Model by studying

the scalar potential in a version of the model in which the minimum is the charge and

R-parity conserving vacuum state, and there are no additional non-renormalizable

terms in the Lagrangian. We try to find a parameter space predicting at least one

light doubly-charged Higgs boson, light neutral flavor-conserving Higgs bosons. The

flavor-violating ones are heavy, and within the limits from ΔF = 1, 2 mixings. The

parameter space for such Higgs masses and mixings is very restrictive, thus making

the model more predictive.

Subsequently, we study warped extra-dimensional scenarios in the presence of a

fourth family of fermions and with the fermion fields lying in the bulk. We concentrate

on the flavor structure of the Higgs couplings with fermions in the flavor anarchy

ansatz. The occupancy of the fourth family in the model typically enhances the

misalignment effects and we show that one should expect them to be highly non-

symmetrical in the (34) inter-generational mixing. The radiative corrections from the

new fermions and their flavor violating couplings to the Higgs affect negligibly known

experimental precision measurements such as the oblique parameters and Z → bb̄

or Z → μ+μ−. On the other hand, ΔF = 1, 2 processes, mediated by tree-level

Higgs exchange, as well as radiative corrections to b → sγ and μ → eγ put some

pressure on the allowed size of the flavor violating couplings. These couplings produce

distinguishable signals in high energy colliders as they alter the Higgs decay patterns

as well as those of the new fermions. These signals might become very important

indirect signals for these type of models as they would be present even when the

Kaluza-Klein mass scale is high and no heavy Kaluza-Klein particle is discovered.
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Afterwards, we focus on the radion phenomenology in the same scenario with

and without an additional fourth family of fermions. The radion couplings with

the fermions are also generically misaligned with respect to the Standard Model

fermion mass matrices as in the Higgs case, therefore producing some amount of

flavor violating couplings and potentially influencing production and decay rates of the

radion. We present simple analytic expressions for the radion-fermion couplings with

three or four families. We also update and analyze the current experimental limits

on radion couplings and on the model parameters. The modified decay branching

ratios of the radion with an emphasis on the new channels involving flavor diagonal

and flavor violating decays into fourth generation quarks and leptons are provided.

Finally, we study the Higgs-radion mixing in a warped extra dimensional model in

the same scenario. The fourth generation Higgs is now severely constrained by Large

Hadron Collider data due to the large enhancement in the Higgs production cross-

section in the absence of Higgs-radion mixing. We analyze the production and decay

rates of the two physical states emerging from the mixing and confront them with

present Large Hadron Collider data. We show that the current signals observed can

be compatible with the presence of one, or both, of these Higgs-radion mixed states,

although with a severely restricted parameter space. We also present the modified

decay branching ratios of the mixed Higgs-radion states, including flavor violating

decays into fourth generation quarks and leptons. The windows of allowed parameter

space obtained are very sensitive to the increased precision of upcoming Large Hadron

Collider data. During the present year, a clear picture of this scenario will emerge,

either confirming or further severely constraining this scenario.
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Chapter 1

INTRODUCTION

Over the past century remarkable progress has been made to understand the building

blocks of matter. It has been identified that all the ordinary matter in the Universe is

made from twelve fundamental particles named fermions (six leptons and six quarks

which are divided into three generations of four particles each) and they are governed

by four fundamental forces (electromagnetic, weak, strong and gravitational forces).

The best description of how these twelve particles, their anti-partners and the three

out of four forces are related to each other has been encapsulated in the Standard

Model (SM) of particle physics by means of global and local gauge symmetries.

It is quite elegant and minimalistic in the sense that it has a unified picture of

electromagnetic and weak forces, the so called electroweak interactions, which are

introduced by Glashow-Weinberg-Salam (GWS) [2–7]. Afterwards, a gauge theory of

the strong interactions is also embedded into this framework by Fritzsch and Gell-

Mann [8]. The gravitational force on the other hand, cannot be put on the same

footing as the other interactions in the SM. In fact, fitting gravity into this scheme

has been proved to be a very difficult task. Fortunately, in particle physics at the

energy scales available to this generation of experiments the effects of gravity are so

weak as to be negligible. The three forces described by the SM result from exchange

of induced force carrier particles via local gauge symmetries, known as gauge bosons

(photon for electromagnetic, W and Z bosons for weak and eight gluons for strong

interactions), between the matter particles. Developed in the early 1970s, the SM has

successfully explained a surfeit of experiments at the quantum level and led to the

prediction of a wide variety of phenomena and particles prior to their experimental
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discovery. However, there is still one essential ingredient of the SM missing, the

so called SM Higgs Boson that has yet to be discovered experimentally. In fact,

Conseil Européen pour la Recherche Nucléaire (CERN) revealed preliminary data

from the Large Hadron Collider (LHC) on July the 4th, 2012 consistent with the

long-sought Higgs boson [9, 10]. However, further analysis regarding its properties

is still important for drawing conclusions concerning whether or not the discovered

particle is a SM Higgs boson. The Higgs boson is introduced [11–13] in the SM using

the Higgs mechanism to produce mass for the particles by spontaneously breaking

(SSB) its gauge symmetry. The problem with its discovery is that the mass of the

Higgs boson is an unknown parameter. Therefore, one has to search for it in a mass

range which unfortunately was not accessible by the previously built accelerators

(Large Electron-Positron Collider (LEP), The Stanford Linear Collider (SLC) and

Tevatron), even though they successfully verified many aspects of the SM and were

able to introduce the lower mass limit for the Higgs Boson. To fill the knowledge gap,

the LHC, the largest and most powerful particle accelerator in the world, has been

assembled by CERN within a 27 km circumference and 175 m beneath the Franco-

Swiss border near Geneva, Switzerland. Presently, it operates at 7-8 TeV center-of-

mass energy (half of its full capacity). It consists of two proton beams which are made

to collide at four locations around the accelerator ring, where the particle detectors

are situated, namely A Toroidal LHC Apparatus (ATLAS), Compact Muon Solenoid

(CMS), A Large Ion Collider Experiment (ALICE) and Large Hadron Collider beauty

(LHCb). Detecting the Higgs boson at LHC is a breakthrough for particle physics,

although its discovery would not be the whole story because the model leaves too

many open questions and suffers from several fine-tuning problems. In the modern

way of thinking, the SM is considered as an Effective Field Theory (EFT) by providing

a very good description of the physics of fundamental particles and their interactions

below the electroweak scale (MEW ≈ 102 GeV), whereas at higher energies it has to be

extended into Beyond the Standard Models (BSM) which include natural extensions

of the SM such as Grand Unified Theories (GUT) [14–16], Left-Right Symmetric

Models (LRSM) [17–19], supersymmetric extensions (SUSY) [20, 21], Left-Right

Supersymmetric Model (LRSUSY) [22–27], the Four-Generation Standard Model

(SM4) [28, 29], string theory [30] and extra dimensions: large extra dimensions

[31–33], universal extra dimensions (UED) [34–37], non-universal extra dimensions
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(NUED) [38, 39], Randall-Sundrum model (RS1) [40, 41]. Therefore, LHC does not

only search for the Higgs boson but also for some evidence of BSM. In this thesis,

we will focus mainly on LRSUSY and warped extra dimensions of RS1-type with a

fourth generation.

The SM is a “chiral”gauge theory. This means that different representations of the

Lorentz group transform differently not only under the Lorentz group transformations

but also with respect to the gauge group of the SM. The chirality of the matter

particles, for example, refers to whether they appear in the fundamental or anti-

fundamental representation of the Lorentz group. The ones represented in the

fundamental representation are called the left-chiral particles. Meanwhile their right-

chiral counterparts are represented in the anti-fundamental representation. The

symmetry transformation between these two chiral states is named “parity”which

is a violated symmetry by the weak interactions of the SM (it favors left-chiral

particles and their interactions). The main motivation for considering the left-right

symmetric extension of the SM is that it provides a dynamical explanation for the

violation of parity. At the fundamental level, parity is an underlying symmetry of

the LRSM which is broken spontaneously by the vacuum to yield the results of its

low-energy limit, the SM. An additional reason to study LRSM is the experimental

evidence [42, 43] supporting non-zero masses for the electrically neutral leptons, the

so called neutrinos. The SM with just left-chiral neutrinos and a Higgs doublet is

unable to provide masses for the neutrinos. The simplest route to include neutrino

masses is to insert the missing right-chiral neutrino states as proposed in LRSM

and then utilize the see-saw mechanism [19, 44]. To achieve the see-saw mechanism

the underlying gauge symmetry of the LRSM is spontaneously broken by scalar

right-chiral triplets, leaving the left-chiral neutrinos much more lighter than the

charged leptons of the corresponding family while, keeping the right-chiral ones heavy.

Furthermore, everything ever observed with all of our instruments adds up to less than

5% of the Universe, the rest being dark matter and dark energy (energy that is not

carried by any matter). The SM does not have a room for dark matter, however, the

introduced right-chiral neutrino in LRSM might serve as a dark matter candidate.

In 1974, a symmetry, different from all those defined in the scope of the SM,

supersymmetry was introduced by Wess and Zumino [20, 21]. It relates bosonic and

fermionic degrees of freedoms of particles simply by introducing a bosonic(fermionic)
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partner for each fermion(boson) of the SM. If SUSY was an exact symmetry of nature,

the partners would have the same masses as the original particles. We know that in

nature this is not the case, otherwise the partners would have been observed by

now. Despite the complete absence of experimental evidence that supersymmetry

exists in nature as an underlying symmetry, physicists continue to study SUSY,

considering the possibility of being spontaneously broken in low energies, because

of its undoubted mathematical fascination. It provides an attractive framework for

grand unification and the hierarchy problem of the SM. Without supersymmetry, the

running coupling constants of the strong, electromagnetic and weak interactions do

not meet at a single point, though they come really close at around ∼ 1014 GeV.

If one attempts to include SUSY with its additional radiative corrections, however,

the coupling constants meet exactly at one point, at an energy ∼ 1016 GeV, called

as GUT point. Another remarkable achievement of SUSY is that it offers an elegant

solution to the SM hierarchy problem. The hierarchy problem is the following: the

mass of Higgs boson receives quantum loop corrections from the virtual effect of every

particle that couples directly or indirectly to the Higgs field. The SUSY, on the other

hand, guarantees the cancellation of those loop corrections by the contributions from

the superpartners, leaving the Higgs boson mass relatively light. A supersymmetric

partner that does not decay and has the right mass and right interactions might

also be a dark matter candidate. The first step towards trying to build a more

complete theory as a prototype for SUSY theories is the Minimal Supersymmetric

Standard Model (MSSM) which is the smallest and the most basic model of SUSY that

includes SM. The SM relies on the conservation of lepton number1 (L) and the baryon

number2 (B) in all of its interactions. However, the most general gauge invariant and

renormalizable superpotential of MSSM would include B and L violating terms. One

could try to impose conservation of B and L as a postulate in the MSSM though it

seems like a step-back from the SM where the conservation of these quantum numbers

is not assumed, but appears naturally as a consequence of renormalizability of the

theory. Therefore, one has to add a new symmetry which has the effect of eliminating

the possibility of B and L violating terms in the superpotential. This new symmetry

1Lepton number is the number of leptons minus the number of anti-leptons. In equation form,
L = nl−nl̄ which gives a value of +1 for leptons, −1 for anti-leptons, and 0 for non-leptonic particles.

2Baryon number is one third of the number of quarks minus the number of anti-quarks. In
equation form, B = (nq − nq̄)/3.
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is called “R-parity” [45] and is assigned for SM particles to be even, while for their

superpartners have odd R-parity.

In the domain of flavor physics, including LR symmetry in SUSY resolves several

problems of the MSSM, the most important of all being the way R-parity is conserved

in the model. In LRSUSY, as opposed to MSSM where R-parity is introduced as an

external symmetry, its extended gauge symmetry forbids renormalizable terms that

violate B and L. However, this symmetry has to be broken spontaneously since

there exists no massless gauge boson observed of the corresponding gauge group.

Nevertheless, since the broken symmetry will be due to scalar fields that carry even

integer values of 3 (B−L), R-parity will still survive as an exact symmetry preventing

rapid proton decay [46–48] and ensuring the lightest supersymmetric particle (LSP) to

be stable designating it as a dark matter candidate. In addition, it offers a solution

to the strong Charge-conjugation and Parity (CP) problem of why even though it

is possible to write CP violating terms for strong interactions, experiments do not

indicate any such violation. In LRSUSY, this is accomplished by insuring that the

determinant of the quark mass matrix is real, which is possible due to the fact that

the Yukawa couplings are Hermitian and without the need for an axion [49,50].

Another obvious extension of the SM might be increasing the number of fermion

generations. It was considered extensively in the 1980s. However, in 1989 the number

of generations (or precisely the number of light neutrinos) were experimentally proven

to be equal to three from the Z boson total width, measured to high accuracy

in Stanford Linear Accelerator Center (SLAC) [51, 52] and CERN [53–55]. By

comparing the invisible width (subtracting from the total width of the Z boson the

part from decays to charged leptons and hadrons) with the theoretical predictions

for neutrino decays it was established that the number of neutrinos which interact

with the Z boson is equal to three [56]. This result is fundamentally important

since, by extrapolation, one can assume that there exist only three fermion families.

Nonetheless, this is not universally accepted partly because having an additional

family of fermions has some desired effects and is not necessarily in conflict with

electroweak precision observables such as the constraints from the W boson mass, the

effective leptonic mixing angle and the highly accurate measurements of the muon

lepton lifetime. As long as the fourth generation contains either very heavy neutrinos

(mν > mZ/2), or no neutrinos at all the Z invisible width is satisfied. The simplest
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extension of the SM is the Four-Generation Standard Model [28,29]. This might cure

certain problems of the SM in flavor physics, such as the CP violation in Bs-mixing [57]

and the baryogenesis problem [58,59] (see Section 2.7) by leading to a sizable increase

of the measurement of CP violation. In addition, the electroweak symmetry breaking

triggered via the fourth generation fermions without a Higgs boson could address the

hierarchy problem [60]. It has also been shown that bounds from electroweak precision

observables can be softened for the higher values of Higgs mass when the fourth

generation is considered [61–63]. Moreover, the gauge couplings can in principle be

unified without invoking SUSY [64]. Although none of these reasons are compelling,

they provide sufficient grounds to pursue keeping the study of the fourth generation

alive.

Warped extra dimensional models were introduced by Lisa Randall and Raman

Sundrum [40,41] as an attempt to resolve the hierarchy problem between the Planck

scale (MPl ≈ 2 × 1018 GeV), where quantum effects of gravity become strong, and

the MEW, by using an extra-dimensional warp factor to lower the natural scale of

the particles masses. In the original scenario, two branes are introduced, one with an

energy scale set atMPl, the other at the TeV scale on which the SM fields are localized,

and with gravity allowed to propagate in the space in between, called the bulk. Much

research has been done on the possible radius stabilization mechanism to fix the

inter-brane distance and on the radion field, emerging from the stabilization as an

excitation of the metric tensor [65–72]. At present, it is quite clear that, in an RS-type

scenario a realistic electroweak symmetry breaking can only be satisfied by extending

the gauge bosons and fermions into the bulk [73–85], which provides a compelling

theory of flavor where the hierarchies among the fermion masses and mixings arise

naturally [86–90] by assuming all the 5D Yukawa couplings to be O(1) and with

no definite structure. Another interesting feature of these models is the Randall-

Sundrum (RS)-Glashow-Iliopuolos-Maiani (GIM) mechanism [75, 91, 92] which gives

rise to suppressed contributions to low-energy phenomena due to the exchange of

Kaluza-Klein (KK) modes3. Despite this, ΔF = 2 processes still push the KK

excitations to be above ∼ 10 TeV [93–97]. These bounds can be relaxed by either

introducing additional flavor symmetries [95,96,98] or promoting a bulk Higgs instead

of a brane localized one.

3In RS1 the extra dimension is compact and its compactification leads to the appearance of
towers of heavy KK modes of particles which propagate in the extra dimension.
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While there have been many extensive studies of the SM4, there are few analyzes of

BSM scenarios with four generations (see however [99]). The reason is that the fourth

generation typically imposes severe restrictions on the models. In particular, there

are difficulties in incorporating a chiral fourth family scenario into any Higgs doublet

model, such as the MSSM [100]. It was initially shown that, due to large masses

for the fourth generation quarks and large Yukawa couplings, there are no values of

tan β = vu/vd > 1 for which the couplings are perturbative to the Grand Unification

Scale. (However, this condition does not apply to vector-like quarks [101].) Recently

the MSSM with four generations has received some more attention [102], as it was

shown that for tan β � 1 the model exhibits a strong first order phase transition [103].

The four generation scenario can easily be incorporated in models with warped extra

dimensions, as in [104,105], where it can be argued that the fourth generation arises

naturally. In these models the Higgs particle can be thought of as a generic composite

state, being a condensate of some of the fourth generation heavy quarks [105–109],

thus providing a solution to the hierarchy problem. An additional benefit of a fourth

generation extension in warped models, could be the inclusion of the fourth generation

neutrino, which may become a novel dark matter candidate [110], typically missing

in minimal models (see however [111] for different approaches).

The thesis is divided broadly into three parts. In total there will be eight chapters

and five appendices. The first part of the thesis is incorporated in Chapter 2 which

is dedicated to a review of SM as a description of physical phenomena at energies

below MEW. We describe the model in detail and mention why we consider the

SM as an EFT and the requirement for BSM. In Chapter 3, which is the second

part of the thesis, we introduce some of the BSM, which closely resemble the SM at

the energies that have already been explored. We start with perhaps the simplest

extension of the SM, LRSM, which treats the left and right-chiral particles and their

interactions on an equal basis. The next section introduces SUSY. Then, another

extension of the SM, Four-Generation Standard Model, is introduced, and finally we

give an extended treatment of Warped Extra Dimensional models. The final part

of the thesis will be on our works on LRSUSY [27] in Chapter 4 and Warped Extra

Dimensional models with a fourth generation [107–109] in Chapters 5-7 where each

work is presented in a separate chapter. A discussion and conclusion will be presented

in the last chapter. In addition, Appendix A presents notations and conventions used
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throughout the thesis, Appendix B is about the gauge group and transformations,

Appendix C includes the details of the Ricci Tensor and brane tensions calculations,

Appendix D covers Rotation and CKM4 Matrices in Warped Extra Dimensions with

Four Generation and finally, Appendix E addresses Feynman Rules in Warped Extra

Dimensions with Four Generations.

8



Chapter 2

THE STANDARD MODEL

The Standard Model of particle physics, which combines special relativity and

quantum mechanics into a Quantum Field Theory (QFT), is currently accepted as

an empirically adequate model describing the known elementary particles, together

with the three out of four fundamental interactions among them. It has been tested

over the scales from the Hubble radius of 1030 cm (∼ 10−45 GeV) all the way down to

10−16 cm (∼ 102 GeV) and still being tested by LHC at a center-of-mass energy

of 7-8 TeV in proton-proton collisions. The LHC has been able to deliver data

sets of several fb−1 to both ATLAS [9] and CMS [10] detectors and the SM so

far demonstrated an amazing success in (almost) all experimental data, with one

of its key prediction, the Higgs Particle, in the process of being confirmed with event

excesses measured around the mass window of 125-126 GeV. Previously, the SM had

led to many other successful predictions of particles and phenomena prior to their

discoveries experimentally, such as the existence of massive W±, Z gauge bosons,

the quark model which was introduced by Gell-Mann and Zweig mathematically, the

prediction of tau neutrino, charm, top and bottom quarks, and so on. Although, the

SM has a remarkable body of experimental support, it suffers from some shortcomings,

which we will mention in the last section of this chapter. The SM can be thought as

an EFT of a more fundamental theory. This is why there are BSM searches such as

SUSY, SM4 or extra dimensions etc., going on at the LHC, besides the searches for

the Higgs boson.

According to the SM, the elementary particles are called fermions (i.e., they have

spin-1/2 in the units of �), namely quarks and leptons (see Tables 1 and 2), and the
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fundamental interactions are the electromagnetic force, the weak force (responsible

for radioactive decay) and the strong force (which holds atomic nuclei together) (see

Table 4). The remaining force, the so called the gravitational force, is excluded in

the SM.

The dynamics of a system in QFT is given by the Lagrangian and gauge symmetry

plays a central role in determining this dynamical structure. Based on compelling

experimental evidence the gauge group of the SM is given by

GSM = SU(3)c ⊗ SU(2)L ⊗ U(1)Y . (2.1)

The SM Lagrangian exhibits invariance under SU(3)c gauge transformation for the

strong interactions, c indicating the group couples only to the colored particles, and

SU(2)L ⊗ U(1)Y for the electroweak interactions, which is the unified description of

electromagnetic and the weak interactions introduced by Glashow-Weinberg-Salam

[2–7] (Nobel Prize in Physics in 1979). The subscript, L means that, only the left-

chiral particles participate in the interactions of SU(2)L, and Y denotes that the

group U(1)Y couples to the weak hypercharged particles. The weak hypercharge of a

particle is obtained from a quasi-Gell-Mann-Nishijima relation [112,113]

Q = I3w +
Y

2
, (2.2)

where I3w, is the third generator of the group SU(2)L and Q is the electric charge.

However, the gauge symmetry of the SM Lagrangian is not an exact symmetry. At

low energies, it is spontaneously broken to the subgroup

SU(3)c ⊗ U(1)Q, (2.3)

via Higgs mechanism (which will be explained in the Section 2.5). The corresponding

gauge bosons (i.e., they have spin-1), introduced by the local gauge invariance for

mediating these interactions are the eight gluons for strong interactions, the W± and

Z0 bosons for weak interactions, and the photon for electromagnetic interactions (see

Table 3).

2.1 Elementary Particles in the Standard Model

The particle content of the SM is composed of quarks and leptons which are the

fundamental fermionic constituents of the matter discovered at the various collider
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experiments. They transform according to the fundamental representations of the

gauge symmetry group GSM given in eq. (2.1) (Appendix B explains more about

gauge transformations). Some of their properties and representations are summarized

in the Tables 1 and 2. It is important to note that, in the SM, both quarks and

leptons fall into three generations. We will indicate the generation of fermions by

a subscript, i (for example, Qα
i,L where i = 1, 2, 3). The subscript L(R) stands for

the left-chiral(right-chiral) components of the field operator Qα
i (U

α
i or Dα

i ), and they

are projected as Qα
i,L = PLQ

α
i (U

α
i,R = PRU

α
i or Dα

i,R = PRD
α
i ), where PL(PR) is the

projection operator whose the explicit form is given in Appendix A. Table 1 is devoted

to quarks which, in addition to the flavor also carry the color charge as another degree

of freedom such that, each quark can have three different colors, namely red (R), green

(G) and blue (B). The color indices are denoted as a superscript, α (for instance, Qα
i,L

where α = R,G,B). We give the approximate rest mass energies of quarks confined

in hadrons taken from Particle Data Group [114], since no free quarks have been

observed yet. Quarks possess six degrees of freedom (up, down, charm, strange, truth

and beauty), called flavor.
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Chiral Component SU(3)c ⊗ SU(2)L ⊗U(1)Y Masses

Field Fields Quantum Numbers (GeV)

Qα
1,L

⎛
⎝ uα

L

dαL

⎞
⎠ 3 2 1

3

(2.49+0.81
−0.79)× 10−3

(5.05+0.75
−0.95)× 10−3

Uα
1,R uα

R 3 1 4
3

(2.49+0.81
−0.79)× 10−3

Dα
1,R dαR 3 1 − 2

3
(5.05+0.75

−0.95)× 10−3

Qα
2,L

⎛
⎝ cαL

sαL

⎞
⎠ 3 2 1

3

1.270+0.07
−0.09

0.101+0.029
−0.021

Uα
2,R cαR 3 1 4

3
1.270+0.07

−0.09

D2,R sαR 3 1 − 2
3

0.101+0.029
−0.021

Qα
3,L

⎛
⎝ tαL

bαL

⎞
⎠ 3 2 1

3

172.0± 0.9± 1.3

4.19+0.18
−0.06

Uα
3,R tαR 3 1 4

3
172.0± 0.9± 1.3

Dα
3,R bαR 3 1 − 2

3
4.19+0.18

−0.06

Table 1: Quark content of the SM including the corresponding SU(3)c ⊗ SU(2)L ⊗
U(1)Y gauge quantum numbers together with the PDG values for the rest mass

energies of the quarks confined in hadrons.

Leptons, on the other hand, have three different flavors (electron number, muon

number and tau number) and they do not carry color. Table 2 summarizes the

leptons in the SM. In its original formulation, the right-chiral neutrinos were not

included in the SM to keep neutrinos massless. The mass values of the leptons are

taken from PDG [114].

Note that for each quark and lepton given in the tables there is a corresponding

anti-quark and anti-lepton of the same mass and the spin, but opposite charge and

opposite magnetic moment relative to the direction of spin.
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Chiral Component SU(3)c ⊗ SU(2)L ⊗U(1)Y Masses

Field Fields Quantum Numbers (MeV)

L1,L

⎛
⎝ νeL

eL

⎞
⎠ 1 2 − 1

< 0.225

0.510998910± 0.000000013

E1,R eR 1 1 − 2 0.510998910± 0.000000013

L2,L

⎛
⎝ νμL

μL

⎞
⎠ 1 2 − 1

105.658367± 0.000004

< 0.19

E2,R μR 1 1 − 2 105.658367± 0.000004

L3,L

⎛
⎝ ντL

τL

⎞
⎠ 1 2 − 1

1776.82± 0.16

< 18.2

E3,R τR 1 1 − 2 1776.82± 0.16

Table 2: Leptons in the SM with their corresponding SU(3)c⊗SU(2)L⊗U(1)Y gauge

quantum numbers together with the PDG values for their masses.

Let us explain how to get the SU(3)c ⊗SU(2)L ⊗U(1)Y gauge quantum numbers

for particles. Let us consider the right chiral electron state E1,R(1,1,−2) = eR as an

example. Leptons do not carry color charge. Therefore, they do not transform under

the group SU(3)c. Thus, we assign SU(3)c quantum number of E1,R (and also for all

the other leptons) as 1 to make it into a singlet under this group. Moreover, since

only the left-chiral particles participate in the interactions of SU(2)L, the quantum

number of L1,R is again 1. Finally, we use eq. (2.2) to get quantum number associated

with the group U(1)Y .

In addition to the fermions, there are also bosonic particles in the SM introduced

in order to keep the kinetic terms of the matter fields invariant under the Local Gauge

Transformations (LGT) of the symmetry group given in eq. (2.1) (see Appendix B).

Thus, the local gauge invariance under the gauge group GSM, restricts the interactions

of the fields mediated by the these gauge bosons which then act as force carriers. Some

of the properties of these induced gauge bosons are summarized in the Table 3. We

also introduce, the Higgs Boson in the last row.
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Chiral Component SU(3)c ⊗ SU(2)L ⊗U(1)Y
Spin

Field Fields Quantum Numbers

Bμ Bμ 1 1 0 1

Wμ W+
μ ,W−

μ ,W 3
μ 1 3 0 1

Ga
μ G1

μ, G
2
μ, ..., G

8
μ 8 1 0 1

Φ

⎛
⎝ φ+

φ0

⎞
⎠ = 1√

2

⎛
⎝ φ+

3 + iφ+
4

φ0
1 + iφ0

2

⎞
⎠ 1 2 1 0

Table 3: Bosonic field content of the SM with their corresponding SU(3)c⊗SU(2)L⊗
U(1)Y gauge and spin quantum numbers.

The Higgs boson is introduced in the model for generating masses. In local gauge

symmetries Spontaneous Symmetry Breaking (SSB) is used to give masses to gauge

bosons and fermions (see Section 2.5). Recently, it was announced that there is

significant evidence for the Higgs boson gathered at CERN LHC [9, 10], but further

data is needed to confirm this signal to be due to the SM Higgs Boson.

2.2 Interactions Between the Elementary Particles

in the Standard Model

It is well known that there are four interactions among the elementary particles which

are summarized in Table 4. The electromagnetic, weak, and strong forces are all gauge

forces and therefore are mediated by the exchange gauge bosons as given in the last

column of the Table 4. We include also the coupling strengths for each force which

are related to the coupling constants of the corresponding group by

αi(μ) =
gi(μ)

2

4π
, (2.4)

where gi = g′, g and gs are the corresponding coupling constants. These are running

coupling constants, as they are subjected to quantum loop corrections. Therefore

their values depend on the renormalization scale μ. Note that as the energy scale

considered becomes larger, the strong coupling becomes weaker. More specifically,
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at low energies such as μ = 200 MeV, αs(200)MeV � O(1), which calls for non-

perturbative methods; while αs becomes asymptotically free for high energies.

Force Coupling Strength Range Mediator

Strong αs =
g2s
4π

∼= 0.1 < 10−15m Gluon

Electromagnetic α = e2

4π
∼= 1

137
∞ Photon

Weak GF
∼= 1.16× 10−5 GeV−2 < 10−18m W±, Z

Gravitational GN
∼= 6.71× 10−39 GeV−2 ∞ Graviton

Table 4: The four fundamental forces in nature.

The electromagnetic force is described by Quantum Electrodynamics (QED) which

is an Abelian gauge theory with the U(1)Q symmetry. It is a renormalizable theory

and because of the smallness of the coupling constant (α) perturbation works well.

The mediator of electromagnetic force is the photon which is massless. Therefore,

due to the uncertainty principle, the electromagnetic force has an infinite range.

The theory of weak interactions (responsible for radioactive decay) was originally

formulated by Fermi [115], and it works well for low energies. However, the coupling

constant GF has the dimension of [mass]−2, so it is not a renormalizable theory. This

is why the Fermi theory is regarded as the effective model for weak processes. In

the 1960’s there were dedicated studies of weak interactions and Glashow-Weinberg-

Salam [2–7] formulated a renormalized theory based on the unified picture of weak

and electromagnetic interactions in the framework of the non-Abelian gauge theory

with SU(2)L ⊗ U(1)Y symmetry, which is now called as electroweak theory of the

SM. Unlike the photon, weak gauge bosons W±, Z have masses. Thus, the weak

interaction has a short range.

The field theory for strong interactions (which hold atomic nuclei together) is

formulated with SU(3)c color symmetry and is called as Quantum Chromodynamics

(QCD). The gluons, mediators of strong force, being massless are expected to have

infinite ranges, but unlike the electromagnetic field, gluon fields are confining, that is

they have a limited range.

Several attempts have been made to fit gravity, the remaining force, into this

gauge framework but these attempts have failed. However, the gravity is too weak to

change particle physics predictions in the current experimental energy scales.
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2.3 Cabibbo-Kobayashi-Maskawa Matrices

In the charged weak interactions of leptons, the coupling of W± takes place strictly

within a particular generation in the case of massless neutrinos. In other words,

upper members of left-chiral lepton doublets couple to the lower members in the

same doublet. That is, only the vertices e−νeW−, μ−νμW−, and τ−ντW− appear.

There is no cross generational vertices such as e−νμW−. However, the coupling of

W± to quarks is not so simple, since there exist cross generational vertices as well,

such as s̄uW−. The idea is that, the quark generations are rotated for the purposes

of weak interactions such that(
uL

d′L

)
;

(
cL

s′L

)
;

(
tL

b′L

)
, (2.5)

where (d′, s′, b′) are weak eigenstates not equal to the corresponding mass eigenstates

(d, s, b) but rather are linear combinations of them. The Cabibbo-Kobayashi-Maskawa

(CKM) matrix describes this mixing between three different families of quark in the

SM. Since there are three generations of quarks, the matrix is therefore a unitary

3× 3 matrix given as ⎛
⎜⎜⎝

d′

s′

b′

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

⎞
⎟⎟⎠
⎛
⎜⎜⎝

d

s

b

⎞
⎟⎟⎠ , (2.6)

where the off-diagonal elements of the CKM matrix allow flavor transitions between

different generations.

There are several parametrizations of the CKM matrix, VCKM. A convenient way,

been proposed by Wolfenstein [116], approximates VCKM by using four independent

parameters and expanding each element of V as a power series of the sine of the

Cabibbo angle, λ (λ = sin θC ≈ Vus). In the approximation up to order of λ3, the

CKM matrix is written as

VCKM =

⎛
⎜⎜⎝

1− λ2

2
λ Aλ3(ρ− iη)

−λ 1− λ2

2
Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

⎞
⎟⎟⎠+O(λ4), (2.7)

with λ = 0.2257, A = 0.814, ρ = 0.135, and η = 0.349 [117, 118]. A 3 × 3 unitary

matrix cannot be forced to have real values. As a result, the couplings for quarks
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differ from the corresponding couplings for antiquarks as they have different phases.

In mathematical terms VCKM �= V∗
CKM which implies CP violation in the quark

sector in weak interactions. In the Wolfenstein parametrization of the CKM matrix,

this is encoded in the η parameter.

2.4 The Standard Model Lagrangian

Before we start writing the SM Lagrangian density (LSM) I will give some preliminary

information about how to sort the Lagrangian according to the mass dimensions of

the products of field operators that they contain. In a Four Dimensional (4D) theory,

the Lagrangian has to carry a mass dimension D = 4 to keep the action dimensionless.

If there exist terms that have a mass dimension D > 4, then inverse powers of a new

physics (NP) mass scale M have to appear. In mathematical terms we can write the

most general Lagrangian of a fundamental theory as

L = L≤4 +
L5

M
+

L6

M2
+ ..., (2.8)

where the subscripts denote the mass dimension of the corresponding Lagrangian

with L≤4, including coefficients with positive mass dimensions. The mass scale M

can be considered as a cut-off scale for the theory, such that L≤4, the low energy part

of a more complete theory, will describe Nature at energies E < M . Consequently,

terms Li>4, will be suppressed by the powers of E/M . They could even be neglected

depending on the ratio E/M .

The SM Lagrangian is considered as the EFT of a more fundamental theory. Thus,

the part of the Lagrangian L given in eq. (2.8) with D ≤ 4 will be the SM Lagrangian,

and the rest will be the NP. Now, we will write the most general, gauge invariant,

renormalizable SM Lagrangian density based on the observed particle content and

symmetries.

It is divided into four parts:

LSM = LKin
F + LKin

GB + LΦ + LY (2.9)

The LKin
F term corresponds to the kinetic energy Lagrangian of the fermionic sector
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in the SM. For the representations of the fields see Tables 1 and 2.

LKin
F =

3∑
i=1

(
L̄i,Liγ

μDμLi,L + Ēi,Riγ
μDμEi,R + Q̄i,Liγ

μDμQi,L + Ūi,Riγ
μDμUi,R

+ D̄i,Riγ
μDμDi,R

)
, (2.10)

where ψ̄i ≡ ψ†
iγ

0, ψ = Q,U,D, L,E. The Dirac-gamma matrices are summarized

in Appendix A. The normal derivative, ∂μ, is replaced by the covariant derivative,

Dμ = ∂μ − igstaG
a
μ − igτiW

i
μ − ig′ Y

2
Bμ to preserve the gauge invariance in eq. (2.1).

Here, gs, g, and g′ are the coupling constants, which are not constants but functions

of the renormalization scale (μ), and they determine the strength of the interaction.

They are associated with the SU(3)c, SU(2)L and U(1)Y gauge groups, respectively.

The corresponding generators to each gauge group are ta(a = 1, ..., 8) = λa/2 for

SU(3)c, τi(i = 1, ..., 3) = σi/2 for SU(2)L, and Y for U(1)Y (see Appendix A), and

the corresponding gauge vector bosons are Ga
μ (a = 1, ..., 8), W i

μ(i = 1, ..., 3) and Bμ.

One can write the fermion kinetic term more explicitly by inserting the corresponding

covariant derivatives, hypercharge quantum numbers and also indicating the quark

color indices as follows

LKin
F =

3∑
i,j=1

(
L̄i,Liγ

μ
[
∂μ − i

g

2
σjW j

μ + i
g′

2
Bμ

]
Li,L + Ēi,Riγ

μ
[
∂μ + i

g′

2
Bμ

]
Ei,R

+
3∑

α,β=1

8∑
a=1

(
Q̄α

i,Liγ
μ
[{

∂μ − i
g

2
σjW j

μ − i
g′

6
Bμ

}
δαβ − i

gs
2
λαβaG

a
μ

]
Qβ

i,L

+ Ūα
i,Liγ

μ
[{

∂μ − i
2g′

3
Bμ

}
δαβ − i

gs
2
λαβaG

a
μ

]
Uβ
i,L

+ D̄α
i,Liγ

μ
[{

∂μ + i
g′

3
Bμ

}
δαβ − i

gs
2
λαβaG

a
μ

]
Dβ

i,L

))
(2.11)

We can construct further gauge invariant Lorentz scalars using the gauge vector

bosons as

LKin
GB = −1

4
BμνBμν − 1

4

3∑
i=1

W μνiW i
μν −

1

4

8∑
a=1

GμνaGa
μν , (2.12)

where

Bμν = ∂μBν − ∂νBμ,

W i
μν = ∂μW

i
ν − ∂νW

i
μ − gεijkW j

μW
k
ν , i, j, k = 1, ..., 3,

Ga
μν = ∂μG

a
ν − ∂νG

a
μ − gsf

abcGb
μG

c
ν , a, b, c = 1, ..., 8, (2.13)
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are the corresponding field strength tensors of the U(1)Y , SU(2)L and SU(3)c gauge

groups, respectively. Eq. (2.12) include the gauge boson kinetic energy terms as well

as the three and four-point self interactions for W i
μ and Ga

μ. The U(1)Y gauge boson

has no self interaction. In addition, εijk and fabc (see Appendix B) are the structure

constants of SU(2)L and SU(3)c, respectively. The generators of the group SU(2)L

obey an algebra of the form

[T i, T j] = iεijkT k, i, j, k = 1, ..., 3, (2.14)

whereas the generators of SU(3)c will satisfy

[T a, T b] = ifabcT k, a, b, c = 1, ..., 8. (2.15)

The masses of the fermions and the gauge bosons do not appear in the SM Lagrangian

because it is not possible to write down gauge invariant mass terms for the (non-

Abelian) vector bosons and chiral fermions. There is then a conflict between the

SM and the observations from particle accelerators that there exist massive particles

in nature. Otherwise, all the particles would be traveling with the speed of light

making it impossible to form atoms, compounds and so on. Therefore, a spin zero

complex scalar doublet under the group SU(2)L, called as the Higgs boson (Φ), is

introduced into the model through the Higgs mechanism [11–13] via which electroweak

gauge symmetry is broken in vacuum and SM particles receive mass, whereas the

fundamental Lagrangian remains gauge invariant. We will talk more about the Higgs

particle and describe the Higgs mechanism in the following section. For now, it is

sufficient to understand that an additional scalar particle Φ with GSM gauge quantum

numbers given in Table 3 has to be introduced to give masses to the SM particles.

The third part of the SM Lagrangian are the kinetic and potential terms for the

Higgs field, responsible for the interaction of the gauge bosons and Higgs particle.

The gauge invariant kinetic and potential terms for the Higgs field can be written as

follows

LΦ = (DμΦ)
†(DμΦ)− V (Φ†Φ), (2.16)

with

Φ(x) =

(
φ+(x)

φ0 (x)

)
=

1√
2

(
φ+
3 (x) + iφ+

4 (x)

φ0
1(x) + iφ0

2(x)

)
(2.17)

and the covariant derivative

Dμ = ∂μ − i
g

2
σiW i

μ − i
g′

2
Bμ. (2.18)
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The Higgs potential term is conventionally written as

V (Φ†Φ) = −μ2

2
(Φ†Φ)− λ

4
(Φ†Φ)2, (2.19)

where μ2 (mass term) and λ (Higgs quartic coupling term) are the free parameters

and λ should be positive to ensure a stable vacuum.

Now, let us turn our attention to the Yukawa Lagrangian that describes the

interactions among the fermions and the Higgs field. The general form can be

expressed as1

LY =
3∑

i,j=1

(
ydijQ̄i,LΦDj,R + yuij(Q̄i,L)Φ̃(Uj,R) + yeij(L̄i,L)Φ(Ej,R) + h.c.

)
, (2.20)

where

Φ̃(x) = iτ2Φ
∗(x) =

(
φ0∗(x)

−φ−(x)

)
, (2.21)

and yu,d,eij ’s are responsible for fermion masses. They are 3 × 3 completely arbitrary

matrices. Most of the free parameters of the SM are embedded in these couplings.

Note that the field Φ̃(x) has (1, 2∗,−1) as SU(3)c⊗SU(2)L⊗U(1)Y quantum numbers,

respectively. The Higgs field Φ is responsible for generating masses for the lower

components of fermions. The upper components, on the other hand, interact with Φ̃

to receive their masses.

The Yukawa terms are given with fermion fields in their gauge eigenstates, it will

be useful to summarize them

Le
L = {e0L, μ0

L. τ
0
L}T , Lν

L = {ν0
eL
, ν0

μL
. ν0

τL
}T ,

Ee
R = {e0R, μ0

R. τ
0
R}T ,

Qd
L = {d0L, s0L. b0L}T , Qu

L = {u0
L, c

0
L. t

0
L}T ,

DR = {d0R, s0R. b0R}T , UR = {u0
R, c

0
R. t

0
R}T . (2.22)

Notice that right-handed neutrinos Lν
R does not exist in the framework of the SM to

keep neutrinos massless.

1In the case of massive neutrinos, there is an additional term in the Lagrangian: L′SM
Y =

ηνijL̄i,LΦ̃νj,R + h.c.
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2.5 Higgs Mechanism

The Higgs mechanism, is introduced by Brout, Englert [11], Higgs [12], Guralnik,

Hagen and Kibble [13] in the SM to spontaneously (i.e., in the ground state not in

the fundamental level) break the gauge symmetry SU(3)c ⊗ SU(2)L ⊗ U(1)Y to the

subgroup SU(3)c ⊗ U(1)Q. Consecutively, it gives masses to the three electroweak

gauge bosons W±, Z but leaves the gluons and the photon, the gauge particles of the

unbroken symmetries SU(3)c and U(1)Q, respectively, massless. This process is called

as the electroweak symmetry breaking (EWSB) and it is achieved by introducing a

complex scalar doublet under SU(2)L, the Higgs boson. The mechanism works as

follows. The Higgs potential term, V (Φ†Φ), given in eq. (2.19) is minimized for λ > 0

(so that the Higgs potential will be bounded from below) and μ2 < 0. The minimum

of the potential occurs at a nontrivial value of Φ†Φ

(Φ†Φ)0 =
1

2
[(φ2

1)0 + (φ2
2)0 + (φ2

3)0 + (φ2
4)0] = υ2, υ =

√
−μ2/λ, (2.23)

instead of occurring at (Φ†Φ)0 = 0, which gives a local maximum. The subscript zero

indicates that, this specific solution produces a minimum value for the Higgs potential.

Therefore, the Higgs potential has the so called Mexican hat form as shown in Fig.

1.

Figure 1: The Higgs potential function for μ2 < 0 and λ > 0 on a real-imaginary

plane of φ.

Above MEW, the Higgs field resides at the local maximum point where υ = 0 and the

gauge symmetry GSM is preserved. However, if the energy falls below the electroweak
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scale Higgs field cannot stay on top of the local maximum anymore. It chooses an

arbitrary direction and spontaneously breaks the electroweak symmetry SU(2)L ⊗
U(1)Y into the subgroup U(1)Q. In summary, at the minimum configuration of the

potential, the Higgs field develops a vacuum expectation value (VEV)

Φ0 = 〈0|Φ|0〉 =
(

0

υ

)
, (2.24)

and consequently breaks the gauge symmetry spontaneously. In the minimum

configuration one can choose the Higgs parametrization to be

(φ1)0 =
√
2υ, (φ2)0 = 0, (φ3)0 = 0, (φ4)0 = 0. (2.25)

Experimentally, we know the VEV υ ∼ 174 GeV. Let us show that the generators I3w

and Y are broken at the vacuum:

I3wΦ0 =
1

2

(
1 0

0 −1

)(
0

υ

)
= −1

2

(
0

υ

)
= −1

2
Φ0,

Y Φ0 = Φ0. (2.26)

Therefore, e−iα3I3wΦ0 �= Φ0 and e−iβ Y
2 Φ0 �= Φ0, whereas the electric charge operator

Q remains as unbroken generator since

QΦ0 = (I3w +
Y

2
)Φ0 =

(
1 0

0 0

)(
0

υ

)
= 0, (2.27)

i.e., e−iεQΦ0 = Φ0. Since the symmetry is local we may perform a different isospin

rotation to each point in space so that Φ may be reduced to the form

Φ =

(
0

υ + h(x)√
2

)
, (2.28)

where h(x) is the famous Higgs particle.

2.5.1 Mass Generation of Gauge Bosons

The masses of gauge fields manifest themselves in the kinetic part of the Higgs

Lagrangian when the Higgs field receives a VEV. Therefore, the gauge fields acquire
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masses by the kinetic interaction with the Higgs field. At the vacuum, the covariant

derivative of Φ yields using eq. (2.18) yields

DμΦ =

(
0

1√
2
∂μh

)
−
[
i
g

2

(
W 3

μ

√
2W+

μ√
2W−

μ −W 3
μ

)
+ i

g′

2
Bμ

](
0

υ + h√
2

)

= − i

2

( √
2gυW+

μ + ghW+
μ

i
√
2∂μh+ υ(−gW 3

μ + g′Bμ) +
1√
2
h(−gW 3

μ + g′Bμ)

)
, (2.29)

where W±
μ = 1√

2
(W 1

μ ∓ iW 2
μ). Hence,

(DμΦ)
†(DμΦ) =

1

2
(∂μh)

2 +
g2υ2

2
W+

μ W μ− +
υ2

4
(gW 3

μ − g′Bμ)
2. (2.30)

We define an orthogonal transformation to remove the mixing of neutral fields (W 3
μ

and Bμ) such that(
Zμ

Aμ

)
=

(
cos θW − sin θW

sin θW cos θW

)(
W 3

μ

Bμ

)
, (2.31)

with

sin θW =
g′√

g2 + g′2
, cos θW =

g√
g2 + g′2

, (2.32)

where θW is the Weinberg angle. Substituting eq. (2.31) in eq. (2.30), the photon,

A, becomes massless while the mass eigenstates for W± and Z0 bosons are obtained

as

MW± =
gυ√
2
, MZ0 =

√
g2 + g′2

2
υ. (2.33)

2.5.2 Mass Generation for Fermions

The fermions acquire their masses from Yukawa interactions of Higgs field given in

eq. (2.20) in the vacuum state. For simplicity, let us show how the up-type quarks

receives their masses via Higgs mechanism. In the vacuum, the Yukawa Lagrangian

for up-type quarks reads

Lu
Y =

3∑
i,j=1

yuij Q̄i,L φ̃ Uj,R + h.c. =

(
υ +

h√
2

)
Q̄u

L Yu UR + h.c.

(2.34)
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Note that on the right-hand side the we have used the the representation of fermions

in their gauge eigenstates, introduced in eq. (2.22), and Yu is a 3×3 Yukawa coupling

matrix for the up-type quarks. We can rewrite eq. (2.34) as follows

Lu
Y = Q̄u

L (M
u +Yuh)UR + h.c., (2.35)

where Mu = υYu is the 3 × 3 fermion mass matrix for up-type quarks. However,

these are not the physical eigenstates since the mass matrix is not diagonal. We can

diagonalize Mu by separate unitary transformations UQu and Wu on the left- and

right- chiral fermion fields, respectively

UQu

†Qu
L = (uL cL tL)

T , Wu
†UR = (uR cR tR)

T , (2.36)

which will result in

UQu

†MuWu = Mdiag
u =

⎛
⎜⎜⎝

mu 0 0

0 mc 0

0 0 mt

⎞
⎟⎟⎠ , (2.37)

where the diagonal entries are real, non-negative eigenvalues corresponding to the

physical masses of up-type quarks. The down-type quark and charged lepton matrices

are also diagonalized in a similar way by

UQd

†MdWd = Mdiag
d , ULe

†MlWe = Mdiag
l . (2.38)

by making use of

UQd

†Qd
L = (dL sL bL)

T , Wd
†DR = (dR sR bR)

T ,

ULe

†Le
L = (eL μL τL)

T , We
†Ee

R = (eR μR τR)
T . (2.39)

2.6 Experimental Status of the Standard Model

There are three assumptions made for constructing SM. Its gauge group is SU(3)c ⊗
SU(2)L ⊗ U(1Y ). There is only one Higgs doublet. Fermion representations

compromise left-chiral weak isodoublets and right-chiral singlets.

There are 21 free parameters of which three are coupling constants, twelve fermion

masses, four fermion mixing parameters, one Higgs mass and one independent gauge
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boson mass. We have briefly introduced these essential ingredients of the SM in the

previous sections. We now summarize its successes. The theory is formulated as a

renormalizable quantum theory. Therefore, it preserves its predictive power beyond

tree-level computations and allows for the probing of quantum effects. In the mid

1980s, the elements of the SM which still awaited experimental confirmation were

the discovery of top quark to verify the multiplet structure of fermions, validation of

universality, demonstration of asymptotic freedom over a wide range of energy scale,

extraction of sin θW from numerous experiments, discovery of the properties of W

and Z bosons (predicted prior to their observation) and finding the Higgs. All those

confirmations, except for the Higgs properties, are accomplished at various levels of

sensitivity. The existence of the top quark was established in 1995 using 67 pb−1 data

sample of p̄p collisions at Fermilab [119, 120]. The universality, which is explained

as the coupling of the leptons to gauge bosons being flavor independent, has been

tested many times for instance, the probability that W− decay to l−νl is the same for

electron, muon and tau leptons to a very good precision. The weak current which was

discovered in 1973 [121–123] together with the W and Z bosons [124,125] have been

the primary predictions of the SM. In short, every feature of the theory is confirmed

to a high degree of precision by the experiments over the decades except the missing

Higgs boson. In the SM, the Higgs boson mass (mh =
√

λ/2 υ) is a free parameter

since the self coupling constant (λ) is unknown. The SM Higgs production cross

sections and its branching fractions has been calculated as a function of Higgs mass

At high-energy hadron colliders the relevant cross sections for Higgs production are

presented in Figure 2 as function of the Higgs mass. The main production mechanism

for the SM Higgs boson is the gluon fusion through a heavy quark loop over the all

mass range of the Higgs which is then followed by vector-boson fusion (VBF) channels

contributing significantly to the Higgs production for heavy Higgs where the coupling

to longitudinal polarized vector bosons is strong. We do not aim here at a detailed

discussion of the importance of each production channel, but only at providing the

most accurate and up-to-date theoretical predictions.
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Figure 2: Standard Model Higgs boson production cross sections at center-of-mass

energy of 8 TeV. Figure from [131].

Since the Higgs boson decays very rapidly, in order to get a complete and correct

vision of Higgs phenomenology, one has to look for its decay modes including both

tree level massive and loop level massless particles of the SM. Figure 3 shows the the

most relevant decay modes of the SM Higgs boson to the SM particles as functions

of its mass.
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Figure 3: Standard Model Higgs boson decay branching ratios. Figure from [131].

In the high mass region, the SM Higgs decays mainly to the vector bosons, whereas in
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the low mass region the decays to fermion pairs dominate. Despite the small expected

signal rate, decay of Higgs boson into a pair of photons is particularly relevant for the

discovery potential of Higgs boson at the LHC for a low mass Higgs boson since the

reconstructed mass resolution provides a way to separate signal from background.

Previously, production of Higgs mass below 114.4 GeV has been excluded by the

direct searches at the CERN LEP at 95% Confidence Level (CL) [126] and between

156 GeV and 177 GeV at the Fermilab Tevatron at 95% CL [127]. On July the

4th, 2012 both ATLAS [9] and CMS [10] experiments presented a preview of their

updated results on the search for the SM Higgs Boson. It has been announced that

they observed a particle consistent with the SM Higgs boson which is the first spin zero

fundamental scalar that has ever been discovered with 5σ deviation in the combination

of γγ and ZZ decay channels. The question is it the SM Higgs or not still remains

to be resolved. See Figure 4.
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Figure 4: The observed (full line) and expected (dashed line) 95% CL combined

upper limits on the SM Higgs boson production cross section divided by the SM

expectation as a function of mh in the full mass range. Left panel shows the ATLAS

results. Figure from [10]. The dotted curves show the median expected limit in the

absence of a signal and the green and yellow bands indicate the corresponding ±1σ

and ±2σ intervals. Right Panel shows CMS results. Figure from [11]. The green and

yellow bands indicate the ranges that are expected to contain 68% and 95% of all

observed excursions from the median, respectively.
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2.7 The Shortcomings of the Standard Model

Although the SM has been impressively successful in explaining all observed low-

energy phenomena, it is still unsatisfactory since it builds on many assumptions and

leaves some fundamental questions unanswered. Below we list the major drawbacks

of the SM.

• The Gauge Symmetry Problem: The SM is a complicated direct product

of three subgroups groups SU(3)c × SU(2)L × U(1)Y with their corresponding

gauge coupling constants, which are completely arbitrary. In a more satisfactory

theory, one should have a way of understanding the origin of the three different

gauge couplings. In addition, there is no explanation for electroweak part of

the SM being chiral (parity-violating).

• Fermion Problem:

– There are three generations of fermions in the SM. However, we know that

all the matter in the Universe can be constructed from the first family only.

The second and third generations are heavier copies of the first family with

no obvious role in the nature. The SM does not explain the reason of the

their existence and leaves the question: “Whether or not there are more

families ”without an answer.

– There is a hierarchical pattern in the masses of the fermions, i.e., mt,

mb � mc, ms � mu, md, mτ � mμ � me, which varies over 5 orders of

magnitude and not understood in the scope of SM.

– In the SM neutrinos are massless. However, recent neutrino oscillation

experiments show that neutrinos have small masses [42, 43].

• Hierarchy Problem: The SM introduces Higgs field to generate masses forW ,

Z bosons and fermions. For the model to be consistent, the Higgs mass should

not be too different from that of W . Otherwise, Higgs self-interactions would

be excessively strong. However, the Higgs mass receives enormous quantum

corrections (quadratically divergent) from virtual effects of every particle that

couples directly or indirectly to the Higgs field.

• Gravity Problem: SM does not include a quantum theory of gravity. Other

than gravity all the other forces follow from the local gauge invariance. However,
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gravity remains a mystery which is expected to become important at the Planck

scale. The mere fact that MPl/MEW is so huge is a powerful clue that new

physics exists in the higher energies.

• Baryogenesis Problem: It is a natural assumption that in the early Universe

matter and antimatter were created equally, but today we see a baryon2

asymmetry of the Universe as there is only protons, neutrons and electrons.

Baryogenesis, the elimination of antimatter while leaving behind some matter,

is one of the most fundamental problems of the SM.

• Dark Matter Problem: In recent years a remarkable concordance of

cosmological observations involving the acceleration of Universe has allowed

precise determinations of the cosmological parameters such that 74% Dark

energy, 21% Dark matter and 4 − 5% ordinary matter are constituents of the

Universe. The mysterious Dark energy which leads to the acceleration of the

expansion of the Universe is not accounted for in the SM neither is the Dark

matter.

This list of unanswered questions provides the primary motivation for the

consideration of physics beyond the SM. Numerous theories are studied in the hope

that they will address at least one of these issues. However, no single theory exists

that successfully addresses all of these questions simultaneously.

2A composite subatomic particle containing three quarks.
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Chapter 3

BEYOND THE STANDARD

MODEL

A decade of increasingly intense experimental studies has put the SM on strong footing

such that it is now firmly believed that the SM describes the nature extremely well

in quantum realm up to current collider energies. However, there are some strong

theoretical arguments and experimental hints (summarized in Section 2.7) indicating

that at higher energy scales the SM has to be extended to BSM. Nevertheless,

considering its successful predictions, any extension should reproduce the SM at the

energies that have been already explored. In the following sections we will introduce

LRSM, SUSY, SM4, and Warped Extra Dimensions.

3.1 The Left-Right Symmetric Model

Prior to 1956 the parity invariance (or mirror symmetry) of physical systems was taken

for granted as self-evident. However, that year, Lee and Yang [128] decided to carry

out an experiment to test this assumption, which was repeated later by Wu [129] to

settle the issue, on radioactive Cobalt 60 nuclei undergoing beta decay. In this famous

experiment, the spins of Cobalt 60 nuclei were aligned to be pointing in the same

direction and the direction of emitted electrons after the beta decay were recorded.

It was observed that the electrons came out in the same direction as the direction of

nuclear spin. Examining the mirror image of that same process (i.e., the Cobalt 60

nuclei were aligned to be pointing in the opposite direction to the initial set-up), the
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electrons were monitored to be emitted in the direction opposite to the nuclear spin,

thus violating the parity. Later, it has been realized that, the parity violation is not

only limited to beta decays but is actually typical for the weak interactions where it

is violated maximally. In the SM, the parity violation reveals itself most dramatically

in the behavior of neutrinos (they interact only weakly). As they are assumed to

be massless, there is no room for the right-chiral neutrinos. While chirality is an

elegant ingredient of the SM to explain the massless neutrinos, most of the nature is

actually left-right symmetric, suggesting the reasonable hypothesis that parity must

be a broken symmetry. In addition, the recent measurements in the solar [42] and

atmospheric neutrino [43] fluxes seem to indicate that the neutrinos should have small

masses, which is considered as a support for BSM. The most straightforward way for

including neutrino masses would be to insert the missing right-chiral neutrino states as

proposed in LRSM [17–19] extensions of the SM, where the smallness of the neutrino

masses is explained by the see-saw mechanism [19,44].

The main motivation, however, for studying the LRSM is that it provides a

dynamical explanation for the parity violation, observed in the low energy weak

interactions, on the same footing as the gauge symmetry breaking of the SM. As we

have already mentioned in Chapter 2, the SM accommodates the left- and right-chiral

fermions in different ways such that under SU(2)L gauge group transformations, the

left-chiral fermions transform as doublets, whereas the right-chiral ones transform as

singlets. LRSM, on the other hand, assumes that at the energy scales higher than

MEW the underlying symmetry of the nature is parity conserving (i.e., the left- and

right-chiral fermions enter into the theory in a symmetrical fashion, both placed in

doublets) which requires the gauge symmetry of the SM to be extended to

GLRSM = SU(3)c ⊗ SU(2)L ⊗ SU(2)R ⊗ U(1)B−L. (3.1)

In the subscript B − L, B and L correspond to the baryon and the lepton quantum

numbers, respectively. However, we know that at the current accessible energy scales

the theory should exhibit the symmetry of the SM. In order to meet this experimental

constraint, the LRSM is broken spontaneously. The SSB of the left-right symmetry

is accomplished in two stages. At the first stage the right-chiral sector breaks the

gauge symmetry SU(2)R ⊗ U(1)B−L down to U(1)Y at an energy scale υR and the

gauge bosons of SU(2)R become massive. The resulting symmetry is the SM gauge

symmetry given in eq. (2.1). The next step is EWSB which happens in the same
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manner as in the SM. Recall that, the SM symmetry is also is spontaneously broken

to the subgroup U(1)Q at MEW. The group generator Q is given by the modified

Gell-Mann-Nishijima formula

Q = I3w,L + I3w,R +
B − L

2
, (3.2)

where I3w,L and I3w,R are the third components of the SU(2)L and SU(2)R isospin

quantum numbers. We will show explicit calculations of the symmetry breaking

process in the Subsection 3.1.3.

3.1.1 Elementary Particles in the Left-Right Symmetric

Model

In this Subsection, we will briefly describe the field content of LRSM. Implementation

of the left-right symmetry requires the introduction of left-chiral partners of the

observed gauge bosons, neutrinos, and a Higgs sector containing at least one bi-

doublet, one right-chiral and one left-chiral triplets1. Table 5, summarizes the

representation of the matter fields and the corresponding quantum numbers under the

gauge group GLRSM for the first generation of fermions (the subscript i = 1). The Q1

and L1 are the first generation quark and lepton fields of the SM, respectively and Qc
1

and Lc
1 are the equivalent SU(2)R fields (see Appendix A for the detailed discussion

about the notation). As the LRSM treats the left- and right-chiral fermions on an

equal footing, right-chiral fermions are also represented as doublets under SU(2)R

group transformations . There are three generation of quarks and leptons as in the

case of the SM. The doublet representations of the other generations can be written

in a similar fashion by making sure that the charges of the fields satisfy eq. (3.2).

Note that the color charge of quarks are indicated by a superscript (α). In the last

column of the Table 5, the parity transformations for the corresponding matter fields

are stated.

1Doublets instead of triplets can also be used.
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Chiral Component SU(3)c ⊗ SU(2)L ⊗ SU(2)R ⊗U(1)B−L Parity

Field Fields Quantum Numbers Transformations

Qα
1

⎛
⎝ uα

dα

⎞
⎠ 3 2 1 1

3
Q1 → Qc∗

1

Qcα

1

⎛
⎝ dc

α

−ucα

⎞
⎠ 3∗ 1 2 − 1

3
Qc

1 → Q∗
1

L1

⎛
⎝ νe

e

⎞
⎠ 1 2 1 −1 L1 → Lc∗

1

Lc
1

⎛
⎝ ec

−νce

⎞
⎠ 1 1 2 1 Lc

1 → L∗
1

Table 5: First generation of fermions in the LRSM including the corresponding

SU(3)c ⊗ SU(2)L ⊗ SU(2)R ⊗ U(1)B−L gauge quantum numbers together with the

transformations under parity operator.

The addition of a new SU(2)R to the gauge group requires the existence of three

weakly interacting gauge bosons: two charged (W±
Rμ) and one neutral (ZRμ). While

an extra neutral gauge boson is predicted by extensions of the SM with an extra U(1)

gauge symmetry group, a charged gauge boson would be a more likely indication of

left-right symmetry. The bosonic (spin-1) field content of LRSM is encapsulated in

Table 6.

Chiral Component SU(3)c ⊗ SU(2)L ⊗ SU(2)R ⊗U(1)B−L

Field Fields Quantum Numbers

Vμ Vμ 1 1 1 0

WLμ W+
Lμ,W

−
Lμ,W

3
Lμ 1 3 1 0

WRμ W+
Rμ,W

−
Rμ,W

3
Rμ 1 1 3 0

Ga
μ G1

μ, G
2
μ, ..., G

8
μ 8 1 1 0

Table 6: Bosonic field content of the LRSM with their corresponding SU(3)c ⊗
SU(2)L ⊗ SU(2)R ⊗ U(1)B−L gauge quantum numbers.

While the SM contains one neutral Higgs boson only, most of the BSM predicts

more than one Higgs doublet which means there will be at least one singly-charged

Higgs boson. Recently, non-SM Higgs searches are taking place at CMS and ATLAS

[130–132]. Discovery of a singly-charged Higgs boson, would raise the question which
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fundamental gauge symmetry is responsible for its existence. Hence, the hope of

clearer signal rests on more exotic Higgs bosons, such as the ones predicted in the

LRSM where two triplets, which contain a doubly-charged, a singly-charged and

a neutral Higgs components, are introduced. The doubly-charged Higgs fields, if

light, would give distinctive and spectacular signals at the colliders. In Table 7 the

Higgs content of the LRSM and their GLRSM quantum numbers together with the

corresponding parity transformations are summarized.

Chiral Component SU(3)c ⊗ SU(2)L ⊗ SU(2)R ⊗U(1)B−L Parity

Field Fields Quantum Numbers Transformations

Φ

⎛
⎝ φ+

1 φ0
2

φ0
1 φ−

2

⎞
⎠ 1 2 2 0 Φ → Φ†

Δ

⎛
⎝

δ+√
2

δ++

δ0 − δ+√
2

⎞
⎠ 1 3 1 2 Δ → Δc∗

Δc

⎛
⎜⎝

δc
−

√
2

δc
0

δc
−− − δc

−
√
2

⎞
⎟⎠ 1 1 3 − 2 Δc → Δ∗

Table 7: Higgs content of the minimal LRSM with their corresponding SU(3)c ⊗
SU(2)L ⊗ SU(2)R ⊗ U(1)B−L gauge quantum numbers and corresponding parity

transformations.

We know that left-right symmetry is not an exact symmetry of nature. At low energy

scales it has to be broken spontaneously. In the Subsection 3.1.3, the breakdown of

the GLRSM will be explained in more details. The Higgs fields which are required to

break the underlying symmetry of the LRSM down to U(1)Q are not unique. The

choice with one bi-doublet (Φ) and two triplets Δ and Δc is the most common. The

latter field is responsible for the first stage of the symmetry breaking while giving

masses to the right-chiral weak bosons, and the second stage is accomplished by the

bi-doublet acquiring a VEV and giving masses to quarks and charged fermions as well

as left-chiral weak bosons. The remaining triplet, Δ is introduced into the theory to

maintain the left-right symmetry, does not have any significant role in the dynamics

of the theory.

It is important to note that for convenience the representations of triplets in Table

7 are rewritten by 2×2 matrices (fundamental representation) instead of 1×3 (adjoint

representation) so that we can use the fundamental representation of the covariant
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derivative for all Higgs fields. The procedure is as follows. The adjoint representation

of a triplet and its covariant derivative reads

Δadj.rep. =

⎛
⎜⎜⎝

δ1

δ2

δ3

⎞
⎟⎟⎠ , DμΔadj.rep. = (∂μ − igεijkWμ

j)Δk
adj.rep. (3.3)

By utilizing the following relation

Δfun.rep. →
3∑

i=1

σiΔi
adj.rep.√
2

, (3.4)

we rewrite them in fundamental representation as

Δfun.rep. =

(
δ+√
2

δ++

δ0 − δ+√
2

)
, (3.5)

where

δ1 + iδ2√
2

= δ0 ,
δ1 − iδ2√

2
= δ++ , δ3 = δ+. (3.6)

The covariant derivative can be written as

DμΔ = ∂μΔ− i
g

2
(σ ·W )Δ + i

g

2
Δ(σ ·W ). (3.7)

3.1.2 The Left-Right Symmetric Model Lagrangian

The Lagrangian density of the LRSM is divided into four parts as follows

LLRSM = LKin
F + LKin

GB + LH + LY . (3.8)

The first piece of the Lagrangian accommodates the kinetic terms for the matter fields

as well as the interactions of the matter fields with the gauge bosons.

LKin
F =

3∑
i,j=1

(
L̄iiγ

μ
[
∂μ − i

gL
2
σjW j

Lμ + i
gB−L

2
Vμ

]
Li

− L̄c
i iγ

μ
[
∂μ − i

gR
2
σjW j

Rμ + i
gB−L

2
Vμ

]
Lc
i

+
3∑

α,β=1

8∑
a=1

(
Q̄α

i iγ
μ
[{

∂μ − i
gL
2
σjW j

Lμ − i
gB−L

6
Vμ

}
δαβ − i

gs
2
λαβaG

a
μ

]
Qβ

i

− Q̄cα

i iγμ
[{

∂μ − i
gR
2
σjW j

Rμ − i
gB−L

6
Vμ

}
δαβ − i

gs
2
λαβaG

a
μ

]
Qcβ

i

))
. (3.9)
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The second part of the Lagrangian is devoted to gauge bosons. It contains kinetic

and self interaction terms for the vector fields.

LKin
GB = −1

4
V μνVμν − 1

4

3∑
i=1

W μνi
L W i

Lμν −
1

4

3∑
i=1

W μνi
R W i

Rμν −
1

4

8∑
a=1

GμνaGa
μν , (3.10)

where the field strength tensors are given by

V μν = ∂μVν − ∂νVμ,

W i
Lμν = ∂μW

i
Lν − ∂νW

i
Lμ − gLε

ijkW j
LμW

k
Lν , i, j, k = 1, ..., 3,

W i
Rμν = ∂μW

i
Rν − ∂νW

i
Rμ − gRε

ijkW j
RμW

k
Rν , i, j, k = 1, ..., 3,

Ga
μν = ∂μG

a
ν − ∂νG

a
μ − gsf

abcGb
μG

c
ν , a, b, c = 1, ..., 8. (3.11)

The gauge invariant kinetic term for the Higgs multiplets is

LH =
∑
i

Tr
[
(DμHi)

†DμHi

]
− VH, (3.12)

where Hi = Φ, Δ and Δc, and the covariant derivatives for each multiplet reads

DμΦ = ∂μΦ− i
gL
2
(σ ·WLμ)iσ2Φ + i

gR
2
iσ2Φ(σ ·WRμ), (3.13)

DμΔ = ∂μΔ− i
gL
2
(σ ·WLμ)Δ + i

gL
2
Δ(σ ·WLμ)− igB−LVμΔ, (3.14)

DμΔ
c = ∂μΔ

c − i
gR
2
(σ ·WRμ)Δ

c + i
gR
2
Δc(σ ·WRμ)− igB−LVμΔ

c. (3.15)

Finally, the Yukawa Lagrangian in LRSM reads

LY =
3∑

i,j=1

(
yQij Q

T
i σ2Φσ2 Q

c
j + ỹQij Q

T
i σ2Φ̃σ2 Q

c
j + yLij L

T
i σ2Φσ2L

c
j

+ỹLij L
T
i σ2Φ̃σ2L

c
j + fij(L

T
i iσ2ΔLj + LcT

i iσ2Δ
c Lc

j) + h.c.

)
, (3.16)

where Φ̃ is the conjugated Higgs bi-doublet given by

Φ̃ = σ2Φ
∗σ2 =

(
Φ0

2 −Φ+
2

−Φ−
1 Φ0

1

)
. (3.17)

3.1.3 Higgs Mechanism in the Left-Right Symmetric Model

In LRSM the SSB via Higgs mechanism arises in two steps. At the first step right-

chiral triplet develops a VEV

〈Δc〉 =
(

0 υR

0 0

)
, (3.18)
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and breaks the left-right symmetry as

SU(3)c ⊗ SU(2)R ⊗ SU(2)L ⊗ U(1)B−L → SU(3)c ⊗ SU(2)L ⊗ U(1)Y .(3.19)

The kinetic energy term of the right-chiral triplet then becomes

Tr
[
(DμΔc)†DμΔ

c
]
= g2Rυ

2
RW

μ+
R W−

Rμ + υ2
R

(
gRW

μ3
R − gB−LV

μ
)2
, (3.20)

where W±
Rμ = 1√

2
(W 1

Rμ ∓W 2
Rμ). By applying the orthogonal transformation(

ZRμ

Bμ

)
=

(
cosϕ − sinϕ

sinϕ cosϕ

)(
W 3

Rμ

Vμ

)
, (3.21)

to the gauge eigenstates we obtain the physical massive right-chiral neutral gauge

boson (ZRμ) and the massless hypercharge field (Bμ) where

MZR
= υR

√
2(g2R + g2B−L). (3.22)

The physical field ZRμ decouples from further breakdown process. The mixing angle

ϕ is given by

cosϕ =
gR√

g2R + g2B−L

, sinϕ =
gB−L√

g2R + g2B−L

. (3.23)

The following stage of the symmetry breaking is as follows

SU(3)c ⊗ SU(2)L ⊗ U(1)Y → SU(3)c ⊗ U(1)Q, (3.24)

where the bi-doublet Φ and possibly but not necessarily the left-chiral triplet Δ get

VEVs which are

〈Δ〉 =
(

0 0

υL 0

)
, 〈Φ〉 =

(
0 υu

υd 0

)
, (3.25)

and the value
√

υ2
u + υ2

d = υ ≡ 174 GeV. The kinetic term for the left-chiral triplet

Δ is

Tr
[
(DμΔ)†DμΔ

]
= g2Lυ

2
LW

μ+
L W−

Lμ + υ2
L

(
gLW

μ3
L − gB−L cosϕBμ

)2
, (3.26)

and for the bi-doublet we have

Tr[(DμΦ)†(DμΦ)] =
υ2

4

(
gLW

μ3
L − gR sinϕBμ

)2
+

υ2

2
(g2LW

μ+
L W−

Lμ + g2RW
μ+
R W−

Rμ)

+ gLgRυuυd(W
μ+
L W−

Rμ +W μ+
R W−

Lμ), (3.27)
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where W±
Lμ = 1√

2
(W 1

Lμ∓ iW 2
Lμ) and the compositions of physical gauge bosons at this

stage are (
ZLμ

Aμ

)
=

(
cos θW − sin θW

sin θW cos θW

)(
W 3

Lμ

Bμ

)
. (3.28)

Here the Weinberg mixing angle is defined as

cos θW =
gL√

g2L + g2Y
, sin θW =

gY√
g2L + g2Y

, gY =
gR gB−L√
g2R + g2B−L

, (3.29)

and gY is the hypercharge coupling constant. The masses

MZL
= υ

√
g2L + g2Y

2
, MA = 0. (3.30)

It is apparent from eq. (3.27) that the gauge bosons W±
R and W±

L states are mixed.

This is due to the bi-doublet Φ transforming non-trivially under both SU(2)L and

SU(2)R. One can easily write the mass-squared matrix in the basis {W±
Lμ,W

±
Rμ} in

the following manner

M2
W±

L,R
=

(
M2

L M2
LR

M2
LR M2

R

)
=

1

2

(
g2L (2υ

2
L + υ2) 2gL gR υu υd

2gL gR υu υd g2R (2υ2
R + υ2)

)
, (3.31)

The mass eigenstatesW±
1 andW±

2 will emerge after applying the following orthogonal

transformation on physical W gauge bosons(
W±

1μ

W±
2μ

)
=

(
cos ξ e−iω sin ξ

− sin ξ e−iω cos ξ

)(
W±

Lμ

W±
Rμ

)
. (3.32)

Here ξ is a mixing angle which is severely bounded (ξ < 10−3) [133] and ω is a phase.

The mixing angle is defined by

tan 2ξ =
2M2

LR

M2
L −M2

R

=
4gRgLυuυd

g2L(υ
2 + 2υ2

L) + g2R(υ
2 + 2υ2

R)
, (3.33)

In the limit υL → 0 we get

M2
W1

=
g2L
2

[
v2 cos2 ξ − 2

gR
gL

υuυd sin 2ξ +
g2R
g2L

(2υ2
R + v2) sin2 ξ

]
,

M2
W2

=
g2L
2

[
v2 sin2 ξ + 2

gR
gL

υuυd sin 2ξ +
g2R
g2L

(2υ2
R + v2) cos2 ξ

]
. (3.34)
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Notice that when there is no mixing (ξ → 0) the mass eigenstates will be exactly

MW1 = MWL
and MW2 = MWR

.

MWL
= υ

gL√
2
, MWR

= υRgR. (3.35)

The relation between the masses of W and Z bosons are

MWL

MZL

=
gL√

g2L + g2Y
= cos θW ,

MWR

MZR

=
gR√

2(g2R + g2B−L)
=

cosϕ√
2
. (3.36)

The fermion masses are generated through the Yukawa Lagrangian given in eq.

(3.16) when the Higgs fields acquire VEVs as in eqs. (3.18) and (3.25). The Dirac

fermions receive their masses by coupling to Φ and Φ̃ bi-doublets which give rise to

the following Dirac mass matrices for leptons and quarks

Mν = yLijυu + ỹLijυd, Me = yLijυd + ỹLijυu,

Mu = (yQijυu + ỹQijυd), Md = (yQijυd + ỹQijυu). (3.37)

The left-chiral triplet Δ (the right-chiral triplet Δc), on the other hand, only couple

to left-handed neutrinos generating light Majorana masses corresponding to the three

known neutrino flavors (right-handed neutrinos generating heavy Majorana masses

which has yet to be discovered). The mechanism to explain the relative sizes of

observed neutrino masses is called the see-saw mechanism and happens through

mixing

Mν ∼
(

0 MD

M †
D MM

)
, (3.38)

where MM is much more higher than MD. The eigen states are mν1 ∼ −M2
D/MM

and mν2 ∼ MM [19, 44].

3.2 The Supersymmetric Standard Model

Supersymmetry is a hypothetical symmetry and very different from those we have

encountered so far. It is a symmetry that relates bosonic and fermionic degrees of

freedoms of particles. Originally, the idea of an existing symmetry between bosons and

fermions has been introduced in two-dimensional string theory [134–136]. Afterward,

in 1974, a four-dimensional field theory, SUSY, was constructed by Wess and Zumino
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[20,21]. What is remarkable about SUSY is that it enlightens the gauge problem of the

SM by leading a coupling constant unification. Simple GUT predict that the gauge

couplings, when properly normalized, should all be equal at the GUT scale. Since

the dependence of the gauge couplings on the energy is very mild logarithmically, the

energy scale where the unification occurs is quite high, as can be seen in Figure 5.

Unification can be tested via the observed gauge couplings at the Z-boson mass scale.

At one loop one has
1

αi(Q2)
=

1

αi(M2
Z)

− 4πbi ln
Q2

M2
Z

, (3.39)

where ⎛
⎜⎜⎝

b1

b2

b3

⎞
⎟⎟⎠ =

1

16π2

⎛
⎜⎜⎝

41/10

−19/6

−7

⎞
⎟⎟⎠

SM

or
1

16π2

⎛
⎜⎜⎝

33/5

1

−3

⎞
⎟⎟⎠

MSSM

. (3.40)

As can be seen from the Figure 5, the couplings do not unify at a single point when

extrapolated assuming SM, but do meet at around 1016 GeV when the supersymmetric

partners contribution are taken into account.

Figure 5: Extrapolation of the gauge couplings in the SM (on the left), in SUSY (on

the right).

Another motivation to study SUSY is that it offers a solution to the SM Higgs

hierarchy problem in a most ingenuous manner. As discussed before the Higgs boson

receives a non-vanishing VEV when the Higgs potential term in the SM Lagrangian

is minimized. The experimental value for the VEV of Higgs is υ ∼ 174 GeV.

Based on the measurements of the properties of the weak interactions, the Higgs

mass is expected to be mh ∼ 100 GeV. However, it receives quadratically divergent
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contributions from the one-loop diagrams shown in Figure 6 left panel. The radiative

correction due to top quark will be

− i(Δm2
h) = −Nc(−iht)

2

∫
d4k

(2π)4
Tr

(
i

/k −mt

i

/k −mt

)
∼ i

Nch
2
t

4π2
Λ2, (3.41)

where −1 is because it is a closed fermion loop, Nc = 3 counts for the color charge

of quarks, ht = gmt/2MW is the vertex factor and Λ is the ultraviolet momentum

cut-off used to regulate the loop integral (energy scale at which new physics enters to

alter the high-energy behavior of the theory).

f

h

h

S

Figure 6: One loop correction to Higgs mass square (m2
h) due to fermion (f) loop on

the left and a scalar (S) on the right.

In SUSY, on the other hand, for every fermionic particle, there is a corresponding

bosonic superpartner. Therefore, there will be additional contributions to the Higgs

mass coming from superpartners as shown in Figure 6 right panel. It will couple to

the Higgs Lagrangian with a term −λSH
2S2 which yields a correction

− i(Δm2
h) = −2iλSNc

∫
d4k

(2π)4
i

k2 −m2
S

∼ −i
λSNc

8π2
Λ2, (3.42)

If each fermion in the SM is accompanied by two complex scalars with h2
t = λS

there is a systematic cancellation between those of the divergences coming from a

fermion loop and those of the loop containing its bosonic superpartner, since there

is a relative minus sign between them. Unfortunately, the exact cancellation implies

that, mass values of superpartners of the each existing particle have to be the same as

the corresponding SM particle. Clearly, the SM particles are not degenerate with their

superpartners, otherwise they would have been observed by now. Therefore, SUSY

cannot be an exact symmetry of nature, and it must be broken. Broken SUSY still

provides a solution to the hierarchy problem. Even in the presence of SUSY breaking,
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if we consider “soft” SUSY breaking, which is an explicit symmetry breaking,

containing only mass terms and coupling parameters with positive mass dimension,

the mass splittings between the known SM particles and their superpartners will be

determined by the mass scale, and keeping it as small, we will not lose the successful

cure for the hierarchy problem. However, general soft breaking terms introduce large

number of free parameters. Another motivation for SUSY is, in the case of local

supersymmetric gauge invariance of a theory, we must introduce new fields and that

will automatically reproduce Einstein’s general relativity, and the resulting theory

called supergravity. Moreover, the lightest supersymmetric partner that does not

decay and has the right mass and right interactions might also be a dark matter

candidate.

3.2.1 Elementary Particles in the Supersymmetric Standard

Model

Supersymmetry is elegant in its principles but not economical when it comes to its

particle content. It actually requires more than doubling the SM spectrum. In

SUSY, each SM particle is assigned a superpartner differing in spin by 1/2 unit

and its Higgs sector is extended. By virtue of the phenomenological reasons, none

of the SM bosons or fermions can be partners of each other. The name tagging

to differentiate the superparticles from their SM reciprocates is done as follows:

The spin-0 superpartners of fermions are prepended with an s, (for example the

superpartner of electron is named as “selectron”), and they are indicated by a tilde

on the top of the corresponding fermionic representation. The fermionic (spin 1/2)

superpartner of a bosonic particle, on the other hand, is appended with an ino in

the end, (for example the superpartner of W is named as “Wino”) and they are not

indicated by tilde on the top of the corresponding bosonic representation, but have

different symbols instead. Extensions to supergravity also predict a spin-3/2 partner

of the graviton(g), the gravitino (g3/2). In Table 8, the field contents, associated

gauge quantum numbers and spin quantum numbers for quarks, leptons and their

superpartners are summarized.
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Chiral Component SU(3)c ⊗ SU(2)L ⊗U(1)Y Spin

Field Fields Quantum Numbers

Qα
1

⎛
⎝ uα

dα

⎞
⎠ 3 2 1

3
1/2

Ucα

1 ucα 3∗ 1 4
3 1/2

Dcα

1 dc
α

3∗ 1 − 2
3

Q̃α
1

⎛
⎝ ũα

d̃α

⎞
⎠ 3 2 1

3
0

Ũcα

1 ũcα 3∗ 1 4
3 0

D̃cα

1 d̃c
α

3∗ 1 − 2
3

L1

⎛
⎝ νe

e

⎞
⎠ 1 2 −1 1/2

Ec
1 ec 1 2 −2 1/2

L̃1

⎛
⎝ ν̃e

ẽ

⎞
⎠ 1 2 −1 0

Ẽc
1 ẽc 1 1 −2 0

Table 8: First generation of fermions in the SUSY including the corresponding

SU(3)c ⊗ SU(2)L ⊗ U(1)Y gauge and spin quantum numbers together.

Note that the color charge of quarks are indicated by a superscript (α). The sparticles

carry the same gauge quantum numbers as their corresponding SM partners. As,

supersymmetry must be broken the squarks and sleptons are relatively heavy.

Some properties of gauge bosons and their spin-1/2 gaugino partners are

summarized in Table 9 and Table 10 lists the Higgs contents and their superpartners,

higgsinos. The higgsinos can mix with winos and bino to produce two mass eigenstate

Dirac charginos and four mass eigenstate neutralinos (we will not go into the details

of this discussion in this thesis). Also the lightest neutral Higgs boson acts very much

like the SM Higgs in the decoupling limit.

43



Chiral Component SU(3)c ⊗ SU(2)L ⊗U(1)B−L
Spin

Field Fields Quantum Numbers

Bμ Bμ 1 1 0 1

WLμ W+
Lμ,W

−
Lμ,W

3
Lμ 1 3 0 1

Ga
μ G1

μ, G
2
μ, ..., G

8
μ 8 1 0 1

λBμ λBμ 1 1 0 1/2

λLμ λ+
Lμ, λ

−
Lμ, λ

3
Lμ 1 3 0 1/2

λa
Gμ λ1

Gμ, λ
2
Gμ, ..., λ

8
Gμ 8 1 0 1/2

Table 9: Gauge Boson content of the SUSY with their corresponding SU(3)c ⊗
SU(2)L ⊗ U(1)Y gauge and spin quantum numbers.

Chiral Component SU(3)c ⊗ SU(2)L ⊗U(1)Y
Spin

Field Fields Quantum Numbers

Φd

⎛
⎝ φ+

d

φ0
d

⎞
⎠ 1 2 1 0

Φu

⎛
⎝ φ0

u

φ−
u

⎞
⎠ 1 2 − 1 0

Φ̃d

⎛
⎝ φ̃+

d

φ̃0
d

⎞
⎠ 1 2 1 1/2

Φ̃u

⎛
⎝ φ̃0

u

φ̃−
u

⎞
⎠ 1 2 − 1 1/2

Table 10: Higgs Boson content of the SUSY with their corresponding SU(3)c ⊗
SU(2)L ⊗ U(1)Y gauge and spin quantum numbers.

In the SM a single Higgs doublet generates masses for both up- and down-type quarks

by making use of the conjugate φ̃ = iσ2φ† (this tilde does not represent superpartner).

However, SUSY requires more than one Higgs doublet. One reason for this is that

if there is only one Higgs doublet, the fermionic superpartner of which will make
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nonzero contribution to the traces Tr[I3wY ] and Tr[Y ], as it carries Y = ±1 alone,

and therefore spoil the anomaly cancellation. This can be avoided if there exist two

Higgs doublet with opposite weak hypercharges. Therefore, SUSY does not allow the

φ̃ Yukawa couplings, one needs an extended Higgs sector. In the decoupling limit,

the superpartners and the extra Higgs fields are all heavier than the electroweak scale

and their contributions to electroweak precision is small, thus giving an excellent

agreement with the SM.

3.2.2 The Supersymmetric Lagrangians

In this Subsection we describe the construction of the SUSY Lagrangian by

considering a relatively simple supersymmetric model, which embodies a free massless

left-chiral Weyl spinor, χ and its superpartner, a free massless complex scalar field,

φ. A supersymmetry transformation turns a bosonic state into a fermionic one,

and vice versa. Let the generator of such transformation be Q, which must be an

anticommuting spinor, when applied to fermionic or bosonic states will result in

Q|Boson〉 = |Fermion〉, Q|Fermion〉 = |Boson〉. (3.43)

The hermition conjugate of Q is also a symmetry generator. Since they are spinors,

they carry spin-1/2 and satisfy the following relations

{Q,Q†} = P μ, {Q,Q} = {Q†, Q†} = 0, [P μ, Q] = [P μ, Q†] = 0, (3.44)

where P μ is the generator of four-momentum translations.

As mentioned before, SUSY requires the number of bosonic and fermionic degrees

of freedom to be equal. A Weyl spinor has two complex components, thus, has four

degrees of freedom when it is off-shell. On-shell, the equation of motion imposes

two constraints, leaving only two degrees of freedom. On the other hand, a complex

scalar field has two degrees of freedom. Therefore, on-shell the bosonic and fermionic

degrees of freedom are equal, but off-shell they do not match. This makes SUSY

algebra closed on-shell but not off-shell. To overcome this problem, we need to add

an auxiliary field, F , which is a field with no on-shell degrees of freedom. This could

be achieved by setting the equation of motion for this field to be F = F † = 0. The

simplest real term we can add in the Lagrangian satisfying this equation of motion is

FF †. So the Lagrangian will be:

Lfree = ∂μφ∂
μφ† + χ†iσ̄μ∂μχ+ FF †, (3.45)
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which is invariant up to a total derivative under the following SUSY transformations

δφ = ζ · χ,
δχ = −iσμ(iσ2ζ∗)∂μφ+ Fζ,

δF = −iζ†σ̄μ∂μχ, (3.46)

where ζ, being a left-chiral spinor, is the infinitesimal SUSY parameter. It is

important to note that we take ζ to be space-time independent; i.e., ∂μζ = 0. In

other words, we are considering global SUSY transformations. The inclusion of the

auxiliary field makes the SUSY algebra closed off-shell. One can easily prove that the

commutator of two SUSY transformations for all three fields, φ, χ, and F will be the

same without recourse to any equation of motion such that

δβδζX − δζδβX = −i(ζ†σ̄μβ − β†σ̄μζ)∂μX, (3.47)

where X stands for any of the three fields φ, χ, or F .

Now we include masses and interactions that will preserve SUSY. We must make

sure that all the terms added lead to a renormalizable theory, Lorentz invariant,

invariant under SUSY transformations given in Eq. (3.46), and finally, satisfy the

condition L† = L. Call these additional terms as Lint

Lint = G +W1F +W †
1F

† − 1

2
W11 χ · χ− 1

2
W †

11 χ̄ · χ̄, (3.48)

where G, W1, and W11 are functions of φ and φ†. Applying SUSY transformations

given in Eq. (3.46), we get, G = 0, W1 and W11 to be holomorphic in φ, and

W11 =
∂W1

∂φ
. The most general form for W1 is therefore,

W1(φ) = mφ+
1

2
yφ2 + C, (3.49)

with [m] = 1, [y] = 0. It is convenient to introduce a superpotential W such that

W1 =
∂W
∂φ

, (3.50)

where W is

W =
1

2
mφ2 +

1

6
yφ3 + Cφ+ f(φ†). (3.51)

In terms of superpotential, the interaction Lagrangian is given by

Lint =
∂W
∂φ

F − 1

2

∂2W
∂φ2

χ · χ+ h.c., (3.52)
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The obvious generalization of this Lagrangian to a set of n copies of fields reads

Lint =
∂W
∂φi

Fi − 1

2

∂2W
∂φi∂φj

χi · χj + h.c., (3.53)

where there is a sum over i and j. Since we now know that the free Lagrangian given

in eq. (3.45) is invariant under supersymmetry transformations, we consider now the

change in the interaction Lagrangian. The part involving the for spinors reads,

− 1

2

∂Wij

∂φk

(ζ · χk)(χi · χj)− 1

2

∂Wij

∂φ†
k

(ζ† · χ̄k)(χi · χj) + h.c. (3.54)

Neither of these terms can be canceled by the variation of the any other term. However

the first term will vanish assuming

∂Wij

∂φk

is symmetric in i, j, and k. (3.55)

There is an important identity involving products of three spinors

(ζ · χk)(χi · χj) + (ζ · χi)(χj · χk) + (ζ · χj)(χk · χi), (3.56)

from which it follows that if the condition in eq. (3.55) is true, then the first term in

eq. (3.54) will vanish identically. However, there is no corresponding identity for the

second term of eq. (3.54). The only way to get rid of this term is to say Wij cannot

depend on φ†
k. This is an additional reason for why SUSY requires more than one

Higgs doublet to the one given in Subsection 3.2.1. Bearing in mind the symmetry

properties the potential term is

W =
1

2
mijφiφj +

1

6
yijkφiφjφk + ciφi, (3.57)

and i, j = 1, ..., n. Finally, using the equation of motion for the auxiliary field F † =

F = 0, we get

F †
i = −Wi = −∂W

∂φi

, (3.58)

and

Fi = −W †
i = −

(
∂W
∂φi

)†
. (3.59)

Then the whole Lagrangian becomes

L = ∂μφ
†
i∂

μφi + χ†
i iσ̄

μ∂μχi −
∣∣∣∣mijφj +

1

2
yijkφjφk + ci

∣∣∣∣
2

− 1

2
(mijχi · χj + yijkφkχi · χj + h.c.), (3.60)
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which is called Wess-Zumino Lagrangian [20, 21], with the last two terms called the

F terms

VF =

∣∣∣∣mijφj +
1

2
yijkφjφk + ci

∣∣∣∣
2

− 1

2
(mijχi · χj + yijkφkχi · χj + h.c.), (3.61)

The gauge sector of SUSY Lagrangian contains a massless gauge boson field Aa
μ, its

superpartner gaugino λa, which is a left chiral Weyl spinor, and an auxiliary scalar

field Da in order to make SUSY algebra closed off-shell.

L = −1

4
F a
μνF

μνa + iλa†σ̄μDμλ
a +

1

2
DaDa. (3.62)

Note that the index a = 1, ..., 8 for SU(3)c, a = 1, 2, 3 for SU(2)L, and a = 1 for

U(1)Y . The SUSY transformations are

δλ =
i

2
σμσ̄νζFμν + ζD,

δD = −iζ†σ̄μDμλ+ i(Dμλ)
†σ̄μζ,

δAμ = ζ†σ̄μλ+ λ†σ̄μζ. (3.63)

In the same way as we obtained F terms of the potential, D terms can be obtained

as

VD =
g2

2
(φ†

iT
aφi)(φ

†
jT

aφj), (3.64)

where Ta are the group generators.

A realistic phenomenological model must contain breaking of SUSY. It could be

broken spontaneously, or explicitly. However, spontaneous SUSY breaking would

force extending the minimal model by adding new particles and interactions at very

high scales, and there is no consensus on exactly how this should be done. This is

why we consider explicitly breaking SUSY. The SUSY breaking couplings should be

soft (of positive mass dimension) to maintain naturally a hierarchy between the EW

scale and Plank scale. The possible soft symmetry breaking terms are

Lsoft = −
(
1

2
Maλaλa +

1

6
aijkφiφjφk +

1

2
bijφiφj + tiφi

)
+ h.c−m2

ijφiφ
†
j,

L′
soft = −1

2
cijkφ

†
iφjφk + h.c., (3.65)

where Ma are gaugino masses for each gauge group, mij and bij are scalar squared

mass terms, aijk and cijk are (scalar)3 couplings, and ti are tadpole couplings.
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Many supersymmetric models introduces a discrete R-parity symmetry [45]

which requires that every allowed interaction vertex involves an even number of

superpartners. It is given by

R = (−1)3(B−L)+2S, (3.66)

where S corresponds to the spin quantum number of the particle. The conservation

of R-parity ensures that the SUSY partners with R = −1 to be produced in pairs and

this implies the lightest supersymmetric particle to be absolutely stable, and therefore

candidate for dark matter. Neutralinos are the most promising possibility, although

scalar neutrinos or the gravitino cannot be excluded.

3.3 The Four-Generation Standard Model

The experimentally observed twelve building blocks of Nature (as summarized in

Section 2.1), known as fermions, are successfully described in the SM with three

fermion generations. In fact, the first family of fermions is all that is needed to form

the ordinary matter that we experience in everyday life. However, it turns out that

there are second and third generations of fermions with identical charges as the first

generation but larger masses and tendency to decay into particles of lower generations.

Presently, the reason for the existence of two other generations is unknown but the

presence of minimum three generations of fermions was predicted theoretically by

Kobayashi and Maskawa [137] to accommodate the observed CP violation in Weak

interactions [138]. The discoveries of the charm [139], bottom [140, 141] and top

[119,120] quarks together with the τ -neutrino in the following years then provided the

proof for the existence of three generations. However, there is no definite theoretical

reasoning restricting the number of fermion generations to be equal to three as in the

SM. Because the existence of the other generations is neither predicted nor disallowed

by the SM, we should keep an open mind regarding more generations. The simplest

extension will be the Four-Generation Standard Model [28, 29] as it obeys all the

symmetries of the SM and does not introduce new ones. In the Introduction, we

outlined some of the attractive features of the model. We present here an introduction

to the model.

The additional family of fermions will be considered as a heavier replica of the
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other three generations existing in the SM. In chiral representation they are given by

Q4,L =

(
t′L
b′L

)
, U4,R = t′R, D4,R = b′R,

L4,L =

(
ντ ′L
τ ′L

)
, E4,R = τ ′R. N4,R = ντ ′R . (3.67)

Note that we also have a right-chiral four-generation neutrino, as it is required to be

heavy.

The inclusion of the fourth generation fermions requires also 4 × 4 extension of

VCKM quark mixing matrix, given in eq. (2.6), to VCKM4

VCKM4 =

⎛
⎜⎜⎜⎜⎝

Ṽud Ṽus Ṽub Ṽub′

Ṽcd Ṽcs Ṽcb Ṽcb′

Ṽtd Ṽts Ṽtb Ṽtb′

Ṽt′d Ṽt′s Ṽt′b Ṽt′b′

⎞
⎟⎟⎟⎟⎠ . (3.68)

The values of the CKM elements which are obtained from the tree-level weak decays

are independent of the number of generations and the current results from the

measurements are [114]

|Ṽud| = 0.97418± 0.00027, |Ṽcd| = 0.23± 0.011,

|Ṽus| = 0.2255± 0.0019, |Ṽcs| = 1.04± 0.06,

|Ṽub| = (3.93± 0.36)× 10−3, |Ṽcb| = (41.2± 1.1)× 10−3. (3.69)

Since the Vtd, Vts elements of the CKM matrix cannot be measured directly (bounds

are obtained from decays involving loops) and Vtb varies notably with changes on

the degree of significance, σ, these three are mainly determined from the unitarity

conditions. However, in SM4 the assumption of 3× 3 unitarity is invalid, thus giving

more space for Vtq (q = d, s, b) entries. The VCKM4 matrix can also be parametrized

as it is done by Wolfenstein for VCKM, which is given in eq. (2.7), with appropriate

choices for the quark phases. The Dighe-Kim parametrization [142, 143] of VCKM4

introduces six real parameters and three phases as follows

VCKM4 =

⎛
⎜⎜⎜⎜⎝

# λ Aλ3Ce−iδub pλ3e−iδub′

# # Aλ2 qλ2e−iδcb′

# # # rλ

# # # #

⎞
⎟⎟⎟⎟⎠ , (3.70)
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where λ is the sine of Cabibbo angle, and the entries denoted by # can be obtained

uniquely by the unitarity condition V†
CKM4VCKM4 = I. They have been calculated

up to a multiplicative factor of [1 +O(λ3)] in [144] as

Ṽud = 1− λ2

2
+O(λ4),

Ṽcd = −λ+O(λ5),

Ṽcs = 1− λ2

2
+O(λ4),

Ṽtd = Aλ3(1− Ceiδub) + rλ4(qeiδcb′ − peiδub′ )

+
A

2
λ5(−r2 + (C + Cr2)eiδub) +O(λ6),

Ṽts = −Aλ2 − qrλ3eiδcb′ +
A

2
λ4(1 + r2 − 2Ceiδub) +O(λ5),

Ṽtb = 1− r2λ2

2
+O(λ4),

Ṽt′d = λ3(qeiδcb′ − peiδub′ ) + Arλ4(1 + Ceiδub)

+
λ5

2
(peiδub′ − qr2eiδcb′ + pr2eiδub′ ) +O(λ6)

Ṽt′s = qλ2eiδcb′ + Arλ3 + λ4

(
− peiδub′ +

q

2
eiδcb′ +

qr2

2
eiδcb′
)
+O(λ5),

Ṽt′b = −rλ+O(λ4),

Ṽt′b′ = 1− r2λ2

2
+O(λ4). (3.71)

The presence of additional phases make it possible to explain the deviation of the CP

violating measurements in the B-meson system [145–150] from the SM predictions

where there is only one single phase. Note that in the limit p = q = r = 0 together

with the redefinitions C =
√
ρ2 + η2 and δub = tan−1(η/ρ) the above expansion

reduces to the Wolfenstein parametrization given in eq. (2.7) [116].
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3.3.1 Experimental Status of the Four-Generation Standard

Model

Constraints on the fourth generation fermion masses

The electroweak oblique parameters are a set of three measurable quantities, called

S, T , and U which were originally introduced as

αS = 4e2
d

dq2

[
Π33(q

2)− Π3Q(q
2)
]∣∣∣∣

q2=0

,

αT = 4e2
e2

xW x̄WM2
Z

[
Π11(0)− Π33(0)

]
,

αU = 4e2
d

dq2

[
Π11(q

2)− Π33(q
2)
]∣∣∣∣

q2=0

, (3.72)

where α is the electromagnetic coupling and e is the electron charge. Πxy denotes

the virtual self energy contributions to the weak gauge bosons. xW = sin2 θW and

x̄W = 1 − xW where θW is the Weinberg angle. In the presence of the fourth

generation, the fermionic contribution to these parameters are calculated by [151]

and the measurements of the oblique parameters S and T indicates a correlation

between the masses of the fourth generation quarks [152–156]

mt′ ≥ 404 GeV,

mt′ −mb′ �
[
1 +

1

5
ln

(
mh

115 GeV

)]
× 50 GeV, (3.73)

where mt′ , mb′ and mh are the masses of the fourth generation up-type, down-type

quarks and the Higgs boson, respectively. The perturbativity of the Yukawa couplings

and unitarity of S-wave scattering amplitudes constraints the masses of the fourth

generation to a narrow band. These bounds, however, may be relaxed with the

introduction of heavy leptons which have a counter effect on the S and T parameters.

Electroweak precision measurements also restrict the mass difference [156,157] of the

fourth generation leptons to be

mτ ′ −mντ ′ � (30− 60) GeV, (3.74)

where mτ ′ , mντ ′ are the masses of the additional family of lepton and neutrino,

respectively. In addition, the invisible width of Z boson gives a mass constraint for

the fourth generation neutrino to be heavier than 45 GeV. Even though one would
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need a special mechanism for the fourth generation neutrino to be massive while the

other three are extremely light, phenomenologically this is allowed.

Recently, there are intensive searches at the LHC aimed at putting exclusion

limits on SM4. The direct searches for t′ and b′ quarks from pp collisions at center-

of-mass energy of 7 TeV give lower bounds for their masses. CMS search which

is performed with a data sample corresponding to an integrated luminosity of 5.0

fb−1 gives mt′ > 557 GeV at 95% CL with the assumption that it decays 100%

in the decay mode t′ → bW , and an integrated luminosity of 4.9 fb−1 brings the

constraint mb′ > 611 GeV at 95% CL assuming it decays 100% in the decay channel

b′ → tW [158, 159]. ATLAS detector, on the other hand, with 1.04 fb−1 integrated

luminosity at 95% CL restricts mb′ > 480 GeV via the decay channels b′ → Wt in

the lepton + jets channel as b′b′ → WtWt → lνbbqqqqqq. The mt′ > 450 limit also

comes from ATLAS at 95% CL with 1.04 fb−1 integrated luminosity [160,161].

Constraints on the Fourth-Generation Higgs Mass

Besides direct searches for heavy quarks, Higgs production in gluon-gluon fusion is

also an important channel for the SM4 searches [162]. In the SM this channel is

basically determined at the Leading Order (LO) by the one-loop diagram of the

top quark. Moving from SM to SM4, the LO the production cross-section of a Higgs

boson through the gluon-gluon fusion increases about nine times than that of the SM,

because in addition to the top quark there are also heavy t′ and b′ quarks propagating

in the loop. The latest results in ATLAS detector exclude the SM4 Higgs mass

mh > 120 GeV and mh < 600 GeV with the integrated luminosity of 2 − 2.3 fb−1

for h → ZZ∗ → l+l−l+l− searches and 1.7 fb−1 for h → WW ∗ → l+νl−ν̄ searches at

95% CL [163].

The CMS detector explored the Higgs boson mass in a range 110 − 600 GeV in

five different Higgs boson decay modes: γγ, bb, ττ , WW, and ZZ with an integrated

luminosity of 4.6 − 4.8 fb−1 and for an extension of the SM including a fourth

generation of fermions and excluded the region 120 < mh < 600 GeV at 95% CL [164].

If the bump in the signal announced by LHC is the Higgs boson, this would rule

out the SM4 at 95% CL formh0 ≥ 123 GeV, and at 99.6% ifmh0 = 125 GeV [165–167].

The limits from the Tevatron [168] also exclude a wide range of Higgs boson masses.

So maybe the SM4 is in peril, but not other BSM with four-generations.
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3.3.2 Two-Loop Electroweak Corrections to the Higgs Boson

Production

Recently, the two-loop electroweak corrections, δ4EW, to the Higgs boson production

via gluon-gluon fusion have been computed with respect to the LO cross section

σLO
SM4(gg → h) in [169–172]

σSM4(gg → h0) = σLO
SM4(gg → h)(1 + δ

(4)
EW). (3.75)

The Next-to-Leading Order (NLO) corrections are calculated to be positive for light

Higgs boson masses whereas above mh > 260 GeV, become negative as summarized

in the following Table 11.

mh (GeV) δ
(4)
EW[%] mh (GeV) δ

(4)
EW[%]

100 7.08 180 3.22

110 7.01 190 2.79

120 6.91 200 2.20

130 6.77 210 0.39

140 6.55 220 -1.11

150 6.16 230 -3.84

160 4.87 240 -8.71

170 4.38 250 -17.00

Table 11: Relative NLO electroweak corrections to the gg → h cross sections in SM4,

for the mass scenario mt′ = 500 GeV, mb′ = 450 GeV, mντ ′ = 375 GeV, mτ ′ = 450

GeV. Table is taken courtesy [172].

The decays of h → γγ in SM4 also receive corrections from t′ and b′ quarks running

in the loops. The amplitude can be written as

A = ALO +XWANLO +X2
WANNLO + ..., (3.76)

with the amplitude square for electroweak NLO corrections

|A|2 ∼ |ALO|2 + 2XWRe[ANLOA
†
LO] = |ALO|2(1 + δ

(4)
EW), (3.77)

where δ
(4)
EW = 2XWRe[ANLOA

†
LO]/|ALO|2. The problem is that in SM4 the cancellation

between the fermion and W boson loops is stronger than it is in SM, thus giving a
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suppressed LO by two times at the amplitude level. Therefore, one needs to include

X2
W|ANLO|2 term in the expansion such that

|A|2 ∼ |ALO +XWANLO|2 = |ALO|2(1 + δ̄
(4)
EW), (3.78)

where δ̄
(4)
EW = |ALO + XWANLO |2/|ALO|2 − 1. Unfortunately, it turns out that the

ALO is small and XWANLO is in the same order as ALO but with opposite sign which

make δ̄
(4)
EW large (close to one in absolute value) and non-perturbative. Therefore, it

is customary to give the following shifted quantities which include Next-to-Next-to

Leading Order (NNLO) corrections

ĀLO = ALO +XWANLO, ĀNLO = ANNLO, (3.79)

yielding the two loop corrected decay width to be

Γ̄LO = ΓLO(1 + δ̄EW) = ΓLO
|ALO +XWANLO|2

|ALO|2 . (3.80)

In [172] the ĀNLO is estimated with the assumption mb′ = mt′ = mQ and mτ ′ =

mντ ′ = mL such that the absolute value of the NLO leading coefficient is assigned

to the unknown coefficient of NNLO in leading behavior of m4
Q and m4

L, with no

accidental cancellations. Then, the decay rate is corrected by the estimate for the

missing higher-order corrections (δTHU) relative to Γ̄LO as

Γ = Γ̄LO(1± δTHU) = ΓLO(1 + δ̄EW)(1± δTHU). (3.81)

The numerical values are summarized in the Table 12 below

mh (GeV) ΓLO δ̄
(4)
EW[%] Γ̄LO δTHU[%]

100 0.602× 10−6 -99.4 0.004× 10−6 68.3

110 0.938× 10−6 -98.2 0.016× 10−6 37.1

120 1.466× 10−6 -96.3 0.054× 10−6 23.8

130 2.322× 10−6 -93.4 0.154× 10−6 16.4

140 3.802× 10−6 -89.2 0.412× 10−6 11.6

150 6.714× 10−6 -83.1 1.133× 10−6 8.3

Table 12: NLO electroweak corrections to the h → γγ decay width and estimate for

the missing higher-order corrections δTHU relative to ¯ΔLO. Table is taken courtesy

[172].
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3.4 The Warped Extra Dimensions

The SM explains Nature very well up to electroweak scale by providing a unified

picture for the electromagnetic, weak and strong forces. The gravitational interaction,

on the other hand, is not included in the SM since it is much weaker than the other

three forces. However, at the Planck scale the quantum effects of gravity become as

strong as the other interactions. One of the main drawbacks of the SM that there is an

unnaturally huge discrepancy between the energy scales MEW and MPl (MPl/MEW ≈
1016). Lisa Randall and Raman Sundrum [40, 41] proposed an elegant possibility to

explain this significant difference. In their model, two 4D Minkowskian space-time,

namely Plank Brane (or UV Brane) and TeV Brane (or IR Brane), are embedded

at the boundaries of five-dimensional (5D) anti-de-Sitter (AdS5) space
2, and the fifth

dimension is compactified on S1/Z2 orbifold of size r, labeled by a coordinate φ which

is invariant under the Z2 parity transformation (xμ, φ) ↔ (xμ,−φ), giving φ = 0,±π.

See Fig 7 for S1/Z2 orbifold.

S

S

 φ = π

φ = 0

r
φ

1

Z2

1

φ = 0

φ=−π

φ = π

φ=−π

Figure 7: The S1 and S1/Z2 Orbifolds.

In its original form, the metric of the model is given by

ds2 = gMNdx
MdxN = e−2σ(φ)ημνdx

μdxν − r2dφ2, (3.82)

2A maximally symmetric space-time with a constant negative scalar curvature.
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such that

gMN =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

e−2σ(φ) 0 0 0 0

0 −e−2σ(φ) 0 0 0

0 0 −e−2σ(φ) 0 0

0 0 0 −e−2σ(φ) 0

0 0 0 0 −r2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (3.83)

Here xM (M = μ, 5) are the 5D space-time coordinates, and xμ (μ = 0, ..., 3) denote

the coordinates in 4D Minkowskian space-time (see Appendix A for the convention

of the Minkowski metric). The 4D coordinates are rescaled by an exponential warp

factor for every constant value of φ. The coefficient, r, independent of φ, is the

compactification radius of the extra dimensional circle prior to orbifolding. After

orbifolding, the size of the extra dimension becomes L = πr. Planck and TeV branes

are placed at the orbifold fixed points φ = 0 and φ = π (or equivalently φ = −π),

respectively. The region in between the branes is called as the bulk, and it was

originally proposed that the only field allowed to propagate in the bulk is gravity,

whereas the SM fields are assumed to be confined on the TeV brane. The set-up for

the model is shown in Figure 8.

    T
eV BRANE

PLANCK BRANE

φ =
 0

φ =
 π

Gravity

3+1 Dimensions

3+1 Dimensions
BULK

5th Dimension

SM

Figure 8: Original setup of Randall-Sundrum model.

The action of the model is given by

S = Sbulk + SUV + SIR, (3.84)
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where

SBULK =

∫
d5x

√
g(−2M3R− Λ),

SUV =

∫
d4x
√

−gUV(LUV − VUV),

SIR =

∫
d4x
√

−gIR(LIR − VIR), (3.85)

whereM is the fundamental scale of the theory, Λ is the 5D cosmological constant and

R is the Ricci scalar. The Ricci scalar is simply the trace of the Ricci curvature tensor,

RMN , which carries information about the curvature of space-time, and constructed

out of the Riemann-Christoffel symbols and their derivatives with respect to space-

time as

RMN = ΓK
MN,K − ΓK

MK,N − ΓK
MLΓ

L
NK + ΓK

MNΓ
L
KL, (3.86)

where

ΓK
MK,N =

∂ΓK
MK

∂xN
, (3.87)

and Christoffel symbols are defined in terms of the space-time metric as

ΓK
MN = gKLΓLMN =

1

2
gKL(gLM,N + gLN,M − gMN,L), (3.88)

with

gMN,K =
∂gMN

∂xK
. (3.89)

As it can be seen from the eqs. (3.86) and (3.88), the Ricci scalar involves two powers

of derivative and gMN terms. Since gMN is dimensionless, the mass dimension of R

is 2 ([R] = 2) which, to keep the action dimensionless, is multiplied by the third

power of the fundamental scale of the theory ([M3] = 3) in eq. (3.85). We assume

LIR = LSM since the original scenario assigns the SM fields on the IR brane and

LUV = 0 with the reasoning of no UV localized field.
√
g in eq. (3.85) corresponds

to the square root of the determinant of the 5D metric needed to have an invariant

integration measure for the bulk. It can be calculated as

√
g =
√

det(gMN) =
√
e−8σ(φ) r2 = e−4σ(φ) r. (3.90)

The branes can support 4D field theories, therefore we need the brane induced metric

on them, which are given by

gUV
μν (xμ) ≡ gμν(x

μ, φ = 0),
√
−gUV = e−4σ(φ=0)

gIRμν(x
μ) ≡ gμν(x

μ, φ = π),
√

−gIR = e−4σ(φ=π). (3.91)
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Note that, the determinant of 4D metric on the branes is negative. Hence, we write

them with a negative sign in the square root. Let us write the action in eq. (3.85) in

a more compact form

S =

∫
d5x

√
g

(
− 2M3gMNR

MN − Λ− 1√−g55

∑
i

Vi δ(φ− φi)

)
, (3.92)

where i denote the UV and IR branes such that φi = 0 on UV brane whereas, φi = π

for IR brane. Varying it with respect to the special metric given in eq. (3.82) using

δ
√
g =

1

2
δgMNg

MN√g, δgMN = −gMKgNLδgKL, (3.93)

yields

δS =

∫
d5xδ

√
g

[
− 2M3R− Λ− 1√−g55

∑
i

Vi δ(φ− φi)

]
−√

g 2M3δgMNR
MN

=

∫
d5x

[
2M3GMN − 1

2

(
Λ +

1√−g55

∑
i

Vi δ(φ− φi)

)
gMN

]√
g δgMN , (3.94)

where the term GMN = RMN − 1
2
gMNR is known as the Einstein tensor and the

relation RMN − 1
2
gMNR = κ2TMN is the so called Einstein field equation, with TMN

the stress-energy tensor and κ2 = 1/2M3. Using δS = 0 (the action is required to be

coordinate invariant), the 5D Einstein equation then becomes

√
gGMN =

1

4M3

[
Λ
√
g gMN + VIR

√
−gIR gIRμν δ

μ
M δνN δ(φ− π)

+ VUV

√
−gUV gUV

μν δμM δνN δ(φ)
]
. (3.95)

Before going any further we will pause here to derive a relation between the stress-

energy tensor and Ricci curvature tensor which will serve for our purposes later.

RMN = κ2TMN +
1

2
gMNR. (3.96)

Multiplying both hand-sides with gMN and solve for R in 5D

R = −2

3
κ2T. (3.97)

Substituting into eq. (3.96) one gets

RMN = κ2

(
TMN − 1

3
gMNT

)
. (3.98)

59



3.4.1 Derivation of the Warp Factor

The components of the Ricci Tensor and the Ricci Scalar are calculated explicitly in

Appendix C-1 for the metric in eq. (3.82). The μν-, μ5- and 55-components of the

Ricci tensor are obtained as

Rμν =
e−2σ(φ)

r2
{
4[σ′(φ)]2 − σ′′(φ)

}
ημν ,

R55 = 4
{
σ′′(φ)− [σ′(φ)]2

}
,

Rμ5 = 0, (3.99)

and the Ricci Scalar is

R =
4

r2
{
5[σ′(φ)]2 − 2σ′′(φ)

}
. (3.100)

These yield the components of Einstein Tensor

Gμν = Rμν − 1

2
gμνR = −3gμν

r2
(σ′′(φ)− 2[σ′(φ)]2),

G55 = R55 − 1

2
g55R = −6[σ′(φ)]2,

Gμ5 = 0. (3.101)

The explicit for of σ(φ) can be obtained by equating the 55-component of the Einstein

Tensor from eq. (3.95) and (3.101)

6[σ′(φ)]2 =
1

4M3
Λ(−r2), (3.102)

and solving for σ(φ) by taking into account the orbifold symmetry one gets

σ(φ) =

√
−Λ

24M3
r|φ| = kr|φ|. (3.103)

The integration constant is taken as zero because it is nothing but a rescaling of xμ,

which could be absorbed into the redefinition of the 4D coordinates. Moreover, one

can conclude that, the warped geometry is allowed only if there is a negative non-

vanishing 5D cosmological constant in the model, resulting an AdS5 space-time. k is

called the RS curvature. Inserting this result in eq. (3.82) the metric becomes

ds2 = gMNdx
MdxN = e−2kr|φ|ημνdxμdxν − r2dφ2, (3.104)
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where the factor e−kr|φ|, named warp factor, describes the change in length scales when

moving along the fifth dimension. One can rewrite the metric in a more compact form

by a redefinition of the form y = r|φ| as

ds2 = gMNdx
MdxN = e−2kyημνdx

μdxν − dy2, (3.105)

Another widely used form of RS background is the conformally flat metric which can

be derived as follows

ds2 = gMNdx
MdxN = e−2ky(ημνdx

μdxν − e2kydy2). (3.106)

After making a change of variables ekydy = dz and solving for z we have

ds2 = gMNdx
MdxN =

(
R

z

)2

(ημνdx
μdxν − dz2), (3.107)

where 1/k = R, or in matrix form

gMN =

(
R

z

)2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0

0 −1 0 0 0

0 0 −1 0 0

0 0 0 −1 0

0 0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (3.108)

The orbifold boundaries will also change with the change of variables as φ ∈ [0, π] →
y ∈ [0, rπ] → z ∈ [R,R′] with R′ = 1

MKK
and for the conformally flat metric we can

write
√
g =

(
R

z

)5

,
√
−gUV = 1,

√
−gIR =

(
R

R′

)4

. (3.109)

Since we have the explicit form of the warp factor, σ(φ), we can calculate the

potentials VIR and VUV on the branes. We substitute the eqs. (3.102) and (3.103) in

the μν-component of the Einstein tensor given in eq. (3.101) and equate this to the

corresponding component obtained from eq. (3.95) which yields

3σ′′(φ)e−6kr|φ| =
r

4M3

[
VIRe

−6krπδ(φ− π) + VUVδ(φ)
]
. (3.110)

The requirement of the function σ(φ) having delta functions in the second derivatives

(see Appendix C-2) can be compensated by the brane vacuum energies such that

6kre−6kr|φ|
[
δ(φ)− δ(φ− π)

]
=

r

4M3

[
VIRe

−6krπδ(φ− π) + VUVδ(φ)
]
, (3.111)
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thus giving

VUV = −VIR = 24M3k. (3.112)

At this point the theory possesses three 5D parameters. The fundamental scale M ,

the RS curvature k and compactification radius r. The parameters of the 4D effective

theory, namely the 4D Planck scale, can be derived in terms of these fundamental

scales. Note that as for the fifth dimension is not found in present gravity testing

experiments the r is required to be small.

The first step is to extend the metric in eq. (3.104) by massless fluctuations around

the vacuum solution as

ds2 = e−2kb̄(x)|φ|[ημν + h̄μν(x)]dx
μdxν − b̄2dφ2, (3.113)

where h̄μν , the deviation from the flat metric, is the physical graviton of the 4D

effective theory. g55 = b2(x) is the radion and its zero mode b̄(x) determines the size

of the extra dimension, discussed in Subsection 3.4.3. Given that the 4D metric

ḡμν = ημν + h̄μν(x), (3.114)

is smooth, this extended metric can be considered locally the same as the vacuum

solution in eq. (3.104) since ḡμν is locally a 4D Minkowski metric and b(x) is locally

constant. Focusing on the curvature term from eq. (3.85) we can write the effective

4D action as

Seff ⊃
∫

d4x

∫ π

−π

dφ 2M3re−2kr|φ|√−ḡR̄, (3.115)

where R̄ and ḡ are the corresponding 4D parameters. Upon performing the φ integral

explicitly we obtain a purely 4D action which has to be in agreement with the 4D

description of gravity given by Einstein-Hilbert action

Seff =

∫
d4x 2M2

Pl

√−ḡR̄. (3.116)

Comparing the eqs. (3.115) and (3.116) the reduced 4D Plank scale MPl emerges

from the fundamental scale M

M2
Pl =

∫ π

−π

dφ 2M3re−2kr|φ| =
M3

k
[1− e2krπ]. (3.117)

For krπ � 1 (necessary for solving the Hierarchy problem), MPl only depends very

weakly on the compactification radius. In order not to produce large hierarchies

between the fundamental parameters introduced, we set k ∼ M which yields M ∼
MPl.
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3.4.2 The Higgs Lagrangian

We will consider the Higgs field as localized on the TeV brane (i.e., φ = π)

SHiggs =

∫
d4x r

∫ π

−π

dφLHiggs, (3.118)

where in analogy to the Higgs Lagrangian in SM given in eqs. (2.16) and (2.19) we

write

LHiggs = δ(|φ| − π)

√
g

r2

[
gμνIR (DμH)†DνH − V (H)

]
, (3.119)

and

V (H) = −μ2
5

2
(H†H) +

λ5

4
(H†H)2. (3.120)

Here the form of the Higgs field H is the same as the SM one introduced in eq. (2.28)

except the 4D VEV is replaced by υ5. We rewrite the action with a redefinition

υ5 =
√−μ2

5/λ5 as

SHiggs =

∫
d4x r

∫ π

−π

dφ δ(|φ| − π)

√
g

r2

[
gμνIR (DμH)†DνH − λ5

4

(
H†H − υ2

5

)2]
. (3.121)

After taking the integral along the extra dimension, we get the effective 4D action

SHiggs =

∫
d4x e−4krπ

√
−g̃
[
e2krπg̃μνIR (DμH)†DνH − λ5

4

(
H†H − υ2

5

)2]
, (3.122)

where g̃ corresponds to the metric of the effective 4D theory. In order to

obtain canonically normalized kinetic terms for the Higgs field, we perform the

transformation H → ekrπH.

SHiggs =

∫
d4x
√

−g̃
[
g̃μνIR (DμH)†DνH − λ5

4

(
H†H − e−2krπυ2

5

)2]
. (3.123)

One can conclude from the last term in the above equation that, an observer living

on the IR brane sees the 5D VEV (υ5) as rescaled by the warp factor, such that the

effective VEV (υ4) reads

υ4 = e−krπυ5. (3.124)

Note that the 5D self interaction constant does not receive any rescaling (λ5=λ)

whereas μ5 is rescaled (μ = e−krπμ5). Based on eq. (3.124), we observe that any

fundamental mass parameter in 5D theory, measured on the IR brane will receive

such a rescaling, which in turn explains the gauge hierarchy problem of the SM as

follows

MEW ≡ e−krπMPl ⇒ L = krπ ∼ 37 or kr ∼ 12. (3.125)
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Thus, one can conclude that all the dimensionful parameters of the fundamental

theory are almost at the same order, M ∼ MPl ∼ k ∼ 1/r ∼ υ5, and therefore

consistent with naturalness arguments.

3.4.3 The Radion Solution

In RS1, it is assumed that the two branes are located at a modest distance apart but

this distance is not determined by the dynamics of the model. For this scenario to be

relevant, a mechanism for stabilizing the separation of the two branes is necessary.

Small shifts in the separation between the two branes will not change the energy. In

an effective theory these shifts are described by the fluctuations of a massless particle,

the so called radion. However, to be able to recover the ordinary 4D Einstein gravity it

must be massive. Goldberger and Wise proposed a way to achieve these requirements

by introducing a scalar field (Φ) in the 5D bulk in addition to the graviton [65]

with a bulk potential V (Φ). To stabilize the size of the extra dimension the induced

potentials on 4D branes λIR,UV(Φ) are also included. The counteraction of the brane

and bulk Lagrangians generates a VEV for the radion field that gives rise to a 4D

vacuum energy which depends on the size of the extra dimension and is in agreement

with the solution of the gauge hierarchy problem without much fine tuning.

The bulk action for this scalar field is

SBULK
Φ =

1

2

∫
d5x

√
g
[
gMN∂

MΦ∂NΦ− V (Φ)
]
, (3.126)

and the induced potential terms on the UV- and IR-branes are

SUV
Φ = −

∫
d4x
√

−gUVλUV(Φ),

SIR
Φ = −

∫
d4x
√

−gIRλIR(Φ). (3.127)

As we deal with delta functions it is more practical to use the compact form of the

metric given in eq. (3.105) with the definition ky = A(y) where the TeV and Plank

branes are located at y = r0 and y = 0, respectively. To solve the large hierarchy

between the Planck and TeV scales, kr0 ∼ 37. Let the background VEV for Φ be

Φ(x, y) = Φ0(y). The variation of the radion bulk action with respect to the metric

yields

δSBULK
Φ =

∫
d5x

{
1

2
gMN
[1
2
(∂Φ)2 − V (Φ)

]
− 1

2
∂MΦ∂NΦ

}√
gδgMN .(3.128)
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Including the brane induced potential terms as calculated in eq. (3.94), the stress-

energy tensor

TMN =
1√
g

δS

δgMN
, (3.129)

reads

TMN =
1

2
gMN [

1

2
(gRS∂

RΦ∂SΦ)− V (Φ)]− 1

2
∂MΦ∂NΦ

− 1

2
√−g55

gMμ gNν gμν
∑
i

λi(φ)δ(φ− φi).
(3.130)

Using the relation for the stress-energy tensor and Ricci curvature scalar given in eq.

(3.98) for μν-component with the redefined Rμν in terms of A(y) instead of σ(φ) one

writes

4A′2 − A′′ = −2κ2

3
V (Φ0)− κ2

3

∑
i

λi(Φ0)δ(y − yi), (3.131)

In addition, the equation of motion for the radion field can be found by using

∂M
∂L

∂(∂MΦ)
− ∂L

∂Φ
= 0, (3.132)

as

Φ′′
0 − 4A′Φ′

0 =
∂V (Φ0)

∂Φ
+
∑
i

∂λi(Φ(0))

∂Φ
δ(y − yi). (3.133)

Here the primes denotes the derivative with respect to the extra dimension (y). The

metric itself is supposed to be continuous. However, there is no requirement that the

derivative of the metric to be continuous. The jump in the derivative from A′(0− ε)

to A′(0 + ε) can be expressed in the form

A′(y = 0) ∼ [A′(0 + ε)− A′(0− ε)]U(y), (3.134)

where U(y) is the unit step function. The second derivative reads

A′′(y = 0) ∼ [A′(0 + ε)− A′(0− ε)]δ(y). (3.135)

Thus, the delta function is proportional to the jump in the derivative of A′. In the

same way, the delta function in the bulk scalar equation of motion will be proportional

to the jump in the derivative Φ′. Therefore, the boundary conditions, (or jump

equations) are given by

[A′]|i = κ2

3
λi(Φ0), [Φ′

0]|i =
∂λi(Φ0)

∂Φ
. (3.136)
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These coupled second order differential equations are quite hard to solve. The solution

can be simplified only for specific potentials. We are interested in a bulk potential

with a cosmological constant term and a mass term which can be chosen as

W (Φ) =
6k

κ2
− uΦ2. (3.137)

One can define the potential W (Φ) such that

A′ ≡ κ2

6
W (Φ0), Φ′ ≡ 1

2

∂W

∂Φ0

, (3.138)

and solve for Φ0 using the boundary condition at y = 0, Φ0 = ΦP which gives

Φ0(y) = ΦP e
−uy. (3.139)

Then, at the TeV brane (i.e., y = r0) the scalar is determined to be

ΦT = ΦP e
−ur0 , (3.140)

which means that the the brane separation is no longer arbitrary but given by,

r0 =
1

u
ln
ΦP

ΦT

. (3.141)

This is the so called Golberger Wise mechanism [65]. The background metric will be

obtained as

A(y) = ky +
κ2Φ2

P

12
e−2uy, (3.142)

where the first term is the usual RS warp factor and the second term is the

backreaction of the metric to the non-vanishing scalar field in the bulk. The right

hierarchy betweenMPl andMEW will be generated ensuring that kr ∼ 30 as calculated

in eq. (3.125). Thus, we get
k

u
ln

(
ΦP

ΦT

)
∼ 37, (3.143)

which is the ratio that will set the hierarchy in the RS1 model. Since ΦP/ΦT is

constant, so u is kept constant.

Once we established the stabilization mechanism of radion, we realize that it is

no longer massless. Therefore, one has to extend the AdS metric including the scalar

perturbation such that

ds2 = e−2
(
A(y)+F (x,y)

)
ημνdx

μdxν − (1 + 2F (x, y)
)2
dy2, (3.144)
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where A(y) = ky and F (x, y) is the 5D radion field. In linear order in the fluctuation

F (x, y), the metric perturbation reads

δ(ds2) ≈ −2F (x, y)
(
e−2A(y)ημνdx

μdxν + 2dy2
)
. (3.145)

The perturbed metric can also be expressed as

ds2 =

(
R

z

)2(
e−2F (x,z)ημνdx

μdxν − (1 + 2F (x, z)
)2
dz2
)
. (3.146)

Note that even in z coordinates, the metric is no longer conformally flat. In linear

order in F (x, z) we obtain

δ(ds2) ≈ −2F (x, z)

(
R

z

)2

(ημνdx
μdxν + 2dz2

)
. (3.147)

The radion can be written as F (x, z) = φ0(x)R(z) where φ0(x) is the 4D radion field.

In the limit of small back-reaction, the relation between φ0(x) and F (x, z) is

F (x, z) =
1√
6

R2

R′

(
z

R

)2

φ0(x) =
φ0(x)

Λφ

(
z

R′

)2

, (3.148)

where Λφ =
√
6/R′ is the radion interaction scale. This relation of Λφ could be

slightly modified with the addition of gravity brane kinetic terms, and thus allow

some flexibility on the precise definition of Λφ in terms of the other model parameters.

The mass of the radion depends on the mechanism that stabilizes the size of

the extra dimension. In a simple model with a bulk scalar which generates a VEV,

the radion field emerges as a pseudo-Goldstone boson associated with breaking of

translation symmetry [65].

Generically, the radion may be the lightest new state in a Randall-Sundrum type

setup, with a mass typically suppressed with respect to KK fields by a volume factor

of ∼ 40 [70], which then might put its mass between a few tens to a few hundreds

of GeV, with suppressed couplings which allow it to have escaped detection at LEP,

and consistent with precision electroweak data.

3.4.4 The SM fields propagating in the bulk

In the original scenario of warped extra dimensions proposed by Randall and Sundrum

all the SM fields were localized on the TeV brane and gravity was the only field allowed
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to propagate in the bulk. However, this model was suffering from the shortcoming

that one can introduce higher dimensional operators of the IR fields which in the 4D

effective theory are only suppressed by TeV scales, leading to large flavor violation

and rapid proton decay. To address these issues the most popular venue has been to

allow the SM fermions and gauge bosons to propagate in the bulk [73–85] which not

only reduced the flavor problem, but also provided a compelling theory of flavor, in

which hierarchies among the fermion masses arise naturally [86–90].

Bulk Gauge Fields

We assume the gauge symmetry group for the warped extra dimensional scenarios to

be the same as the SM one which is given in eq. (2.1). The 4D gauge fields of the SM,

on the other hand, have to be extended into the corresponding 5D bulk gauge fields

such that Bμ → BM , W i
μ → W i

M and Ga
μ → Ga

M which later will be decomposed into

the representations of the 4D Lorentz group as the vector Bμ and the scalar B5, the

vector W i
μ and the scalar W i

5, and the vector Ga
μ and the scalar Ga

5. We choose the

vector components (to ensure zero modes corresponding to the SM gauge bosons) to

be even under the Z2 orbifold symmetry, while the scalar components are odd. Taking

into account the additional dimension in space-time and the non-trivial metric, the

action for the gauge fields reads

SKin
GB = −1

4

∫
d5x

√
ggKMgLN

(
BKLBMN +

3∑
i=1

W i
KLW

i
MN +

8∑
a=1

Ga
KLG

a
MN

)
, (3.149)

where the field strength tensors are defined in analogy to the 4D ones as given in eq.

(2.13)

BMN = ∂MBN − ∂NBM ,

W i
MN = ∂MW i

N − ∂NW
i
M + gεijkW j

MW k
N , i, j, k = 1, ..., 3,

Ga
MN = ∂MGa

N − ∂NG
a
M − gsf

abcGb
MGc

N , a, b, c = 1, ..., 8. (3.150)

After EWSB, to diagonalize the gauge boson mass terms we use the redefinitions

W±
M =

1√
2
(W 1

M ∓ iW 2
M), (3.151)

and (
ZM

AM

)
=

(
cos θw − sin θw

sin θw cos θw

)(
W 3

M

BM

)
, (3.152)
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where θw is the 5D Weinberg angle defined as

sin θw =
g′5√

g25 + g
′2
5

=
g′√

g2 + g′2
, cos θw =

g5√
g25 + g

′2
5

=
g√

g2 + g′2
, (3.153)

with the 4D gauge coupling introduced as

g =
g5√
2πr

=
g5√

2R ln(z/R)
, (3.154)

and similar for the other gauge couplings. Here, g5 and g′5 are the 5D gauge couplings

of the groups SU(2)L and U(1)Y , respectively. Evaluating the four-vector part of the

Higgs kinetic Lagrangian one can see that the bulk gauge fields get masses

MW =
g5υ√
2
, MZ =

√
g25 + g

′2
5

2
υ, (3.155)

while the photon remains massless MA = 0. The actions for the radion couplings to

the gauge bosons are

SW =

∫
d5x

√
g

(
− 1

2
gMNgKLW †

MKWNL + gμν
δ(z −R′)√−g55

(g5υ)
2W †

μWν

)
, (3.156)

and

SZ =

∫
d5x

√
g

(
− 1

4
gMNgKLZ†

MKZNL +
1

2
gμν

δ(z −R′)√−g55

×(
√
g25 + g′25 υ)

2Z†
μZν

)
. (3.157)

For the massless gauge bosons we have

Smassless = − 1

4g25

∫
d5x

√
gFMNF

MN − 1

4

∫
d5x

√−gIRτIRFμνF
μν

−1

4

∫
d5x

√−gUVτUVFμνF
μν , (3.158)

where τIR,UV parametrize the kinetic terms induced on Plank and TeV branes. The

Feynman rules are summarized in Appendix E-2.

Bulk Fermions

By allowing the SM fermions to propagate in the bulk of the extra dimension one can

suppress the contributions from higher dimensional operators leading to rapid proton

decay, and also explain the fermion mass hierarchy by fermion localization in the
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extra dimension [86–90]. The drawback is that, in the minimal models, excitations

of the bulk fields are subjected to tight bounds from precision electroweak tests and

flavor physics [93,94,173], and constrained to be heavier than a few TeV, which makes

it very hard to produce and observe heavy resonances of these masses at the LHC.

We will focus on 5D fermions of the down quark sector which are in Weyl notation

given by

Qi =

(
Qi

L

Q̄i
R

)
, Di =

(
Di

L

D̄i
R

)
. (3.159)

One can perform a “mixed” KK decomposition as

Qi
L(x, z) =

∑
j

Qij
L (z) q

j
L(x), Q̄i

R(x, z) =
∑
j

Qij
R(z) d̄

j
R(x),

Di
L(x, z) =

∑
j

Dij
L (z)q

j
L(x), D̄i

R(x, z) =
∑
j

Dij
R(z)d̄

j
R(x). (3.160)

Here qjL(x) and djR(x) are the 4D fermions and Qij
L,R(z) and Dij

L,R(z) are the

corresponding profiles along the extra dimension. The action for the bulk fermions

in 5D is

Sfermion =

∫
d5x

√
g

[
i

2
(Q̄ΓMDMQ−DMQ̄ΓMQ) +

cq
R
Q̄Q+ (Q → D)

]
, (3.161)

where cq and cd (cd comes with a minus sign) are the 5D fermion mass coefficients.

ΓM = γaeMa are the 5D gamma matrices with γa = (γμ, iγ5) providing an appropriate

4D representation of Dirac matrices in 5D, and eMa are 5D vielbeins defined by

eMa eNb η
ab = gMN . To linear order in F they are given by

eaM = diag
z

R
(1 + F, 1 + F, 1 + F, 1 + F, 1− 2F ). (3.162)

The covariant derivative is DM = ∂M + ωM and ωM = 1
2
ωbcMσbc where ω’s are the

spin connections and σbc = i
2
[γb, γc]. Substituting the explicit form of vielbeins, 5D

gamma matrices, 5D spinnors in Weyl notation (see Appendix A), and the covariant

derivative we obtain the action as

Sfermion =
φ0√
6

R2

R′2

∫
d5x

(
R

z

)2[
− i(QLσ

μ∂μQ̄R + Q̄Lσ̄
μ∂μQR)

+2(QL

←→
∂5QR)− Q̄L

←→
∂5 Q̄R) +

2c

z
(QLQR + Q̄LQ̄R)

]
. (3.163)
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To obtain a chiral spectrum choose boundary conditions as

QL(++), QR(−−), DL(−−), DR(++). (3.164)

where +(−) and − signs on the left(right) are the boundary condition for the vector

components (scalar component) and +(−) sign indicates that the components are

even(odd) under the Z2 orbifold symmetry. Then only QL and DL have zero modes

with the wave functions

Q0
L(z) = f(cq)

R′−1/2+cq

R2
z2−cq , (3.165)

D0
L(z) = f(cd)

R′−1/2+cd

R2
z2−cd , (3.166)

(3.167)

where

f(c) ≡
√

1− 2c

1− R
R′

1−2c . (3.168)

Note that for cq > 1/2 (cq < 1/2) the zero modes are localized towards UV-brane

(IR-brane). The KK modes are all localized at IR-brane. The wave functions of KK

modes of QL and DR are all localized on the IR-brane, whereas the ones for QR and

DL vanish due to their boundary conditions. The 4D SM fermions satisfies the Dirac

equation

− iσ̄μ∂μq
i
L +md

ij d̄
j
R = 0, (3.169)

−iσμ∂μd̄
i
R +md

ij q
j
L = 0. (3.170)

The 4D SM fermion mass matrixmij is the eigenvalue which emerges from the solution

of the coupled bulk equations of motion, and is not necessarily diagonal in flavor space.

The couplings between the radion and SM fermions can be obtained by inserting the

perturbed metric of eq. (3.146) and the 5D fermion KK decompositions of eq. (3.160)

into the action of eq. (3.163). We proceed by using a perturbative approach in treating

the 4D fermion masses mij as small expansion parameters and keeping only first

order terms. A 5D bulk Higgs field perturbation contains itself some radion degree

of freedom. Including all the contributions, the radion coupling to fermions can be

expressed finally as

LFV(φ0) = −φ0(x)

Λφ

(
qiLd

j
R + q̄iLd̄

j
R

)
md

ij

[I(cqi) + I(cdj)
]
+ (d → u), (3.171)
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with the definition

I(c) =
[

(1
2
− c)

1− (R/R′)1−2c + c

]
≈
{ c ( c > 1/2 )

1
2
( c < 1/2 )

. (3.172)

This result from [174] is consistent with the original calculation obtained for the case

of a brane Higgs and a single family of fermions in [70].

The terms of the Higgs field interacting with fermions are included in the Yukawa

Lagrangian. As mentioned before delocalized fermions provide a natural explanation

of the flavor structure of the SM. Starting from anarchic 5D Yukawa couplings (i.e.,

they are allO(1)), large hierarchies can be generated by localizing fermions at different

points in the fifth dimension. For the brane localized Higgs scenario we have

Sbrane =

∫
d4xdz δ(z −R′)

(
R

z

)4

H
(
Y 5D
1 RQ̄LDR + Y 5D

2 RQ̄RDL + h.c.
)
. (3.173)

Here the Yukawa couplings [Y 5D
1 ] and [Y 5D

2 ] are independent and dim[Y 5D
1,2 ]=0. The

equations of motions are obtained as follows

−mdQL − ∂zQR +
cq + 2

z
QR + υ4δ(z −R′)Y 5D

1 R′DR = 0,

−m∗
dQR − ∂zQL +

cq − 2

z
QL + υ4δ(z −R′)Y 5D

2 R′DL = 0,

−mdDL − ∂zDR +
cd + 2

z
DR + υ4δ(z −R′)Y 5D

2 R′QR = 0,

−m∗
dDR − ∂zDL +

cd − 2

z
DL + υ4δ(z −R′)Y 5D

1 R′DL = 0. (3.174)

The odd wave functions QR and DL vanish at the TeV brane due to their boundary

conditions. However, in the above equations the delta functions give a jump at

the TeV brane creating an ambiguity. To remove this ambiguity the following

regularization can be imposed on the delta function

δ(z −R′) = lim
ε→0

{
1
ε
, if R′ − ε < z < R′

0, if z < R′ − ε.
(3.175)

We use the Dirichlet boundary conditions

QR(R
′) = DL(R

′) = 0, (3.176)

and integrate the equations of motion to obtain the profiles near the IR brane as

QR(z) = υ4Y
5D
1 R′DR(R

′)
(
z −R′

ε

)
, for R′ − ε < z < R′,

DL(z) = −υ4Y
5D∗
1 R′QL(R

′)
(
z −R′

ε

)
. for R′ − ε < z < R′, (3.177)
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3.4.5 Flavor Misalignment

As mentioned in the beginning of the Subsection 2.4, in an effective field theory, it is

possible to have terms with mass dimension D > 4 as long as the inverse power of the

scale of new physics appears. Below we write the the lowest order operators which

generate misalignment in flavor space between the Higgs Yukawa couplings and the

SM fermion masses. For simplicity, we concentrate on the down-quark sector and

write the dimension six operators of the 4D effective Lagrangian [175–179]

λij
H2

Λ2
HQ̄Li

DRj
, kD

ij

H2

Λ2
D̄Ri

/∂DRj
, kQ

ij

H2

Λ2
Q̄Li

/∂QLj
, (3.178)

where λij, k
D
ij , and kQ

ij are complex couplings with i, j being the flavor indices andQLi
,

DRj
are the fermionic gauge eigen states. Upon EWSB the Higgs field will receive a

VEV such that H = h√
2
+ υ4, where h is the physical Higgs field and υ4 = 174 GeV.

The original Yukawa (ydij are the original Yukawa couplings) and kinetic terms are

modified as follows

ydij

(
h√
2
+ υ4

)
Q̄Li

DRj
+

λij

Λ2

(
h3

2
√
2
+

3h2

√
2
υ4 +

3h√
2
υ2
4 + υ3

4

)
Q̄Li

DRj
,

δij
2
D̄Ri

/∂DRj
+

kD
ij

Λ2

(
h2

2
+

2h√
2
υ4 + υ2

4

)
D̄Ri

/∂DRj
,

δij
2
Q̄Li

/∂QLj
+

kQ
ij

Λ2

(
h2

2
+

2h√
2
υ4 + υ2

4

)
Q̄Li

/∂QLj
. (3.179)

The addition of dimension six operators give rise to corrections to the fermion mass

and kinetic terms in the following way

υ4
(
ydij+λij

υ2
4

Λ2

)Q̄Li
DRj

,
(δij
2
+kD

ij

υ2
4

Λ2

)D̄Ri
/∂DRj

,
(δij
2
+kQ

ij

υ2
4

Λ2

)Q̄Li
/∂QLj

. (3.180)

As a result of these alterations, the mass and kinetic terms of the fermions are not

diagonal anymore. Therefore, one has to redefine the fermion fields to canonically

normalize the new kinetic energy terms and one more transformation will be needed

to diagonalize the resulting mass matrix. In addition, there will be corrections to

Higgs-fermion-fermion couplings given by

(
ydij + 3λij

υ2
4

Λ2

) h√
2
Q̄Li

DRj
,
(
2kD

ij

υ4
Λ2

) h√
2
D̄Ri

/∂DRj
,
(
2kQ

ij

υ4
Λ2

) h√
2
Q̄Li

/∂QLj
. (3.181)

These cannot be diagonalized with the fermion redefinitions and rotations obtained

from eq. (3.180), and thus generate tree-level flavor changing Higgs couplings, with

a generic size υ2
4/Λ

2.
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In warped extra dimensional scenarios we can easily estimate the size of a

misalignment of this kind by using mass insertion approximation. For a bulk

Higgs localized near the IR brane, the zero-zero-Higgs, zero-KK-Higgs, KK-KK-Higgs

Yukawa couplings are given approximately by

Yd,00 ∼ Y∗f(cq)f(cd), (3.182)

Yd,0n ∼ Y∗f(cq) or Y∗f(cd), (3.183)

Yd,nm ∼ Y∗, (3.184)

where Y∗ = Yd/
√
R is the O(1) dimensionless 5D Yukawa coupling, (typically not

larger than a value of 3 due to perturbativity constraints). Terms with O(1) factors

other than 5D Yukawa couplings are omitted in the previous equations. The SM

fermions are mostly zero mode fermions with some small amount of mixing with KK

mode fermions. Therefore, we can use the mass insertion approximation to calculate

the corrections to the masses and Yukawa couplings of SM fermions.

H H H H

qL dR qL DR DL QR QL dR
+

Figure 9: Correction to fermion masses and to physical Yukawa couplings (right

diagram) of SM fermions using the mass insertion approximation.

This is shown in Fig. 9. From the Feynman diagrams given in this Figure the SM

fermion mass can be written by

md
SM ≈ Yd,00 υ4 − Yd,0nYd,nmYd,m0 υ4

υ2
4

M2
KK

f(cd)Y∗ v4

≈ f(cq)Y∗f(cd) v4 − f(cq)
Y 2
∗ v

2
4

M2
KK

f(cd)Y∗ v4, (3.185)

where we assume that all KK fermion masses are of the same order (MKK). The 4D

effective Yukawa couplings of SM fermions can be calculated using the same diagram,

but the correction will be different. This is because in the second diagram of Figure

9, we have to set two external Higgs bosons H to their VEV υ4 while the other one
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becomes the physical Higgs h, and there are three different ways to do this. Thus,

we obtain the 4D Yukawa couplings

ydSM ≈ f(cq)Y∗f(cd)− 3f(cq)
Y 2
∗ υ

2
4

M2
KK

f(cd)Y∗. (3.186)

We see that the SM fermion masses and the 4D Yukawa couplings are not universally

proportional but there is a shift with respect to the SM prediction of md
SM = ydSMυ4.

This shift, or misalignment, is defined as Δd = md
SM − ydSMυ4 and equal to

Δd
1 ≈ 2f(cq)

Y 2
∗ υ

2
4

M2
KK

f(cd)υ4Y∗. (3.187)

We call this as the first misalignment and indicate it by a subscript 1. The second

source of the shift comes from the corrections to the kinetic terms as shown in Figure

10.

H H H

qL dR qL QR dR
+

Figure 10: Correction to kinetic terms using the insertion approximation.

The kinetic term also receives a correction induced by the mixing of SM fermions

with KK modes as(
1 + Yd,0nYd,n0

H2

M2
KK

)
q̄SML i/∂qSML ≈

(
1 + f(cq)

2Y 2
∗

H2

M2
KK

)
q̄ SM
L i/∂qSML . (3.188)

To get the canonically normalized kinetic terms we redefine the fields which leading

a new shift between the masses and the Yukawa couplings of the SM fields given by

Δd
2 ≈ f(cq)

3Y 2
∗

υ2
4

M2
KK

f(cd)υ4Y∗. (3.189)

Similarly for the down sector we have

Δd′
2 ≈ f(cq)Y

2
∗

υ2
4

M2
KK

f(cd)
3υ4Y∗. (3.190)

The total shift will be

Δd = Δd′
1 +Δd

2 +Δd′
2 ≈ f(cq)Y

2
∗

υ2
4

M2
KK

[2 + f(cq)
2 + f(cd)

2]. (3.191)
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For the first two generations f(cq,d) � 1. Therefore, the main misalignment comes

from the first shift.

In the case of an exactly brane localized Higgs there is a subtlety. Since the

wave functions of qKK
R and dKK

L vanish at the TeV brane, their couplings to brane

localized Higgs should also vanish. However, upon EWSB the wave functions of the

qKK
R and dKK

L fields become discontinuous at the brane location [180] and the jump

is proportional to υ4. The discontinuity requires a regularization which results in

infinitesimally small couplings with Higgs. But as we sum over an infinite tower of

fermion KK modes, this may yield a finite non-zero result in the end. The shift in

the masses and Yukawa couplings in the case of brane Higgs is shown in Figure 11

H H H H

qL dR qL DR DL QR QL dR

Y1 Y1 Y2 Y1+

Figure 11: Correction to fermion masses and to physical Yukawa couplings (right

diagram) of SM fermions using the mass insertion approximation for brane Higgs

scenario.

is

Δd
1 = 2(Y 5D

2 )∗(Y 5D
1 )2R′3υ3

4dR(R
′)q∗L(R

′)
(
R

R′

)4 ∫ R′

R′−ε

dz
1

ε

(
z −R′

ε

)2

=
2

3
md(Y

5D
2 )∗Y 5D

1 R′3υ3
4dR(R

′)q∗L(R
′)
(
R

R′

)4

(3.192)

and the SM fermion mass is given by

md ≈
(
R

R′

)4

υ4Y
5D
1 R′q∗L(R

′)dR(R′). (3.193)

The misalignment including O(1) terms only becomes [181]

Δd
1
=

2

3
mdY

5D
1 (Y 5D

2 )∗v24R
′2 =

2

3
|md|2mdR

′2
(
Y 5D
2

Y 5D
1

)∗
1

f(cq)2f(−cd)2
. (3.194)

Note the presence of the independent couplings Y 5D
2 which are not necessary for

generating fermion masses. It is technically possible to set their values as small as
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necessary and suppress the misalignment. Nevertheless this seems to go against the

main philosophy of our approach which assumes that the value of all dimensionless

5D parameters is of order one. Moreover in the case where the Higgs is a bulk scalar

field we have Y1 = Y2, which is the simplifying assumption we make for our numerical

computations.

There is another contribution to the misalignment can be also calculated and is

given by [181]

Δd
2 = md|md|2R′2 [K(cq) +K(−cd)] , (3.195)

with

K(c) ≡ 1

1− 2c

[
− 1

ε2c−1 − 1
+

ε2c−1 − ε2

(ε2c−1 − 1)(3− 2c)
+

ε1−2c − ε2

(1 + 2c)(ε2c−1 − 1)

]
. (3.196)

The two contributions to the misalignment, Δd
1 and Δd

2, can be of the same parametric

order only for IR localized fermions (heavy quarks). In the case of light fermions, the

Δd
2 contribution will be highly suppressed, effectively leaving only the contribution

from the Δd
1 term.

3.4.6 Radion-Higgs Mixing

Since the radion and the Higgs bosons have the same quantum numbers, it is possible

for them to mix via kinetic factors:3

Sξ = ξ

∫
d4x

√−gIRR(gIR)Ĥ†Ĥ, (3.197)

The effective 4D Lagrangian up to quadratic order is

L = −1

2

(
1 + 6γ2ξ

)
φ0�φ0 − 1

2
h0�h0 − 6γξφ0�h0 − 1

2
φ0m

2
φ0
φ0 − 1

2
h0m

2
h0
h0, (3.198)

where the first three are kinetic energy terms and the rest are mass terms with mh0

and mφ0 are being the Higgs and radion masses before mixing, respectively. Let the

states diagonalizing the kinetic terms be h′ and φ′. They can be introduce as(
h0

φ0

)
=

(
d′ c′

b′ a′

)(
h′

φ′

)
. (3.199)

3We note that in the case of a bulk Higgs, there will be Higgs-radion mixing at the level of the
bulk scalar potential, without the need to introduce kinetic mixing. For simplicity, we will assume
that the Higgs is highly localized on the brane and consider only brane kinetic mixing.
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Substituting the redefinitions from eq. (3.199) we obtain the kinetic terms as

LKin = −1

2

(
c′2 + (1 + 6γ2ξ)a′2 + 12γξa′c′

)
φ′�φ′

−1

2

(
d′2 + (1 + 6γ2ξ)b′2 + 12γξb′d′

)
h′�h′

−
(
c′d′ + (1 + 6γ2ξ)a′b′ + 6γξ(a′d′ + b′c′)

)
h′�φ′. (3.200)

Assuming φ′ and h′ to be the physical fields, the coefficients of φ′�φ′ and h′�h′ terms

are equal to (-1/2). Hence we have

c′2 + (1 + 6γ2ξ)a′2 + 12γξa′c′ − 1 = 0, (3.201)

d′2 + (1 + 6γ2ξ)b′2 + 12γξb′d′ − 1 = 0, (3.202)

and the coefficient of h′�φ′ is required to be zero which yields(
c′d′ + (1 + 6γ2ξ)a′b′ + 6γξ(a′d′ + b′c′)

)
h′�φ′ = 0. (3.203)

We have three equations and four unknowns. Solving for a′, c′ and d′ in terms of b′

d′ = −6γξb′ ±
√
1− b′2Z2, a′ = ±

√
1− b′2Z2

|Z| , c′ = ∓6γξ
√
1− b′2Z2

|Z| + |b′Z|,(3.204)

where Z2 = 1 + 6γ2ξ(1 − 6ξ) = β − 36ξ2γ2. After undoing the kinetic mixing Z

becomes the coefficient of the radion kinetic term, and is therefore required to be

positive definite bringing theoretical limits on the ξ parameter

1

12

(
1−
√

1 +
4

γ2

)
≤ ξ ≤ 1

12

(
1 +

√
1 +

4

γ2

)
. (3.205)

The parameter ξ is also subject to strong restrictions coming from precision

electroweak constraints (on S and T parameters), LEP/LEP2 data, and Tevatron

bounds [70, 72]. Assuming b′ = 0 the kinetic terms are diagonalized by the shift(
h0

φ0

)
=

(
1 6γξ

Z

0 − 1
Z

)(
h′

φ′

)
. (3.206)

We check whether or not this redefinition diagonalizes the mass terms as well.

Substituting the redefinitions from eq. (3.199) we obtain the mass terms

LMass = −1

2

(
a′2m2

φ0
+ c′2m2

h0

)
φ′2 − 1

2

(
b′2m2

φ0
+ d′2m2

h0

)
h′2

−(a′b′m2
φ0

+ c′d′m2
h0

)
h′φ′. (3.207)
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The coefficients of φ′2 and h′2 are required to be equal to (−1/2)m2
φ′ and (−1/2)m2

h′ ,

respectively where mh′ and mφ′ are assumed to be the corresponding masses after

mixing and the coefficient of the mass mixing term in eq. (3.207) has to be zero. By

focusing on the last term one can easily realize that

a′ b′ m2
φ0

+ c′ d′ m2
h0

=
6γξ

Z
m2

h0
�= 0. (3.208)

Therefore, we need one more transformation. Let(
h′

φ′

)
=

(
cos θ sin θ

− sin θ cos θ

)(
h

φ

)
. (3.209)

or equivalently(
h0

φ0

)
=

(
d c

b a

)(
h

φ

)
=

(
cos θ − 6γξ

Z
sin θ sin θ + 6γξ

Z
cos θ

sin θ
Z

− cos θ
Z

)(
h

φ

)
.(3.210)

It is important to remark that this transformation is not orthogonal. It is a

combination of an non-orthogonal transformation which diagonalizes the the kinetic

terms and an orthogonal transformation which diagonalizes the mass terms in the 4D

effective Lagrangian. The Lagrangian including the mass terms then becomes

LMass = −1

2

[
cos θ2

Z2
m2

φ0
+

(
sin θ2 +

6γξ sin 2θ

Z
+

36γ2ξ2 cos2 θ

Z2

)
m2

h0

]
φ2

−1

2

[
sin θ2

Z2
m2

φ0
+

(
cos θ2 − 6γξ sin 2θ

Z
+

36γ2ξ2 sin θ2

Z2

)
m2

h0

]
h2

+

[{
m2

φ0
− (Z2 − 36γ2ξ2)m2

h0

2Z2

}
sin 2θ − 6γξm2

h0

Z
cos 2θ

]
hφ. (3.211)

The coefficients of φ2 and h2 are supposed to be equal to −m2
φ/2 and −m2

h/2,

respectively, yielding

m2
φ =

cos θ2

Z2
m2

φ0
+

(
sin θ2 +

6γξ sin 2θ

Z
+

36γ2ξ2 cos2 θ

Z2

)
m2

h0
,

m2
h =

sin θ2

Z2
m2

φ0
+

(
cos θ2 − 6γξ sin 2θ

Z
+

36γ2ξ2 sin θ2

Z2

)
m2

h0
. (3.212)

Requiring the coefficient of the last term in eq. (3.211), which is the mixing between

the h and φ, to be zero we get the mixing angle θ of the orthogonal transformation

as

tan 2θ = 12γξZ
m2

h0

m2
φ0

−m2
h0
(Z2 − 36γ2ξ2)

. (3.213)
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The difference between the h and φ masses gives

m2
h −m2

φ =
m2

φ0
−m2

h0
(Z2 − 36γ2ξ2)

Z2
cos 2θ +

12γξ

Z
m2

h0
sin 2θ (3.214)

which yields using eq. (3.213) gives

sin 2θ =
12γξm2

h0

Z(m2
φ −m2

h)
. (3.215)

In addition, there are theoretically excluded parameter regions which do not satisfy

requirements of mh−mφ degeneracy. The mass squared values for the physical states

are obtained as

m2
± =

1

2Z2

(
mφ2

0
+ βm2

h0
±
√
(mφ2

0
+ βm2

h0
)2 − 4Z2mφ2

0
m2

h0

)
, (3.216)

where the larger(smaller) of mh and mφ will be identified as m+(m−) leading

m2
+ +m2

− =
1

Z2
(m2

φ0
+ βm2

h0
), m2

φ0
m2

h0
= Z2m2

+m
2
−. (3.217)

We solve for the bare masses in terms of the physical ones. Substituting the equation

for m2
+ +m2

− given above into m2
± we get

m2
± =

1

2Z2

[
(m2

+ +m2
−)Z

2 ±
√
(m2

+ +m2−)2Z4 − 4Z2mφ2
0
m2

h0

]
. (3.218)

Using eqs. (3.217) and (3.218) we solve for m2
h0

and m2
φ0

as follows

[βm2
h0
,m2

φ0
] =

Z2

2

[
m2

+ +m2
− ±
√
(m2

+ +m2−)2 −
4βm2

+m
2−

Z2

]
. (3.219)

To keep the masses real, the term inside the square root has to be positive

(m2
+ +m2

−)
2 − 4βm2

+m
2
−

Z2
> 0. (3.220)

Expanding and taking into the parenthesis of m4
−

m4
−

[
m4

+

m4−
+
(
2− 4β

Z2

)m2
+

m2−
+ 1

]
> 0. (3.221)

Since m4
− > 0, the remaining term in the parenthesis is required to be greater than

zero leaving the inequality

m2
+

m2−
> 1 +

2β

Z2

(
1− Z2

β

)
+

2β

Z2

(
1− Z2

β

)1/2
. (3.222)
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to keep the bare masses real.

There is an ambiguity regarding the bare masses about which one to take as larger.

We resolve this by assuming m2
h0

→ m2
h in the limit ξ → 0. In this limit Z → 1 and

β → 1 it yields

[m2
h0
,m2

φ0
] =

1

2

[
m2

+ +m2
− ±
√
(m2

+ +m2−)2 − 4m2
+m

2−

]
. (3.223)

When m2
h0

> m2
φ0

we take the plus sign and m2
h0

→ m2
+, and for m2

h0
< m2

φ0
we get

m2
h0

→ m2
− The presence of mixing will modify the couplings to fermions, gluons,

photons, W ′s and Z ′s of both the radion and the Higgs boson and thus change the

corresponding decay branching ratios as well as the production rates.
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Chapter 4

HIGGS BOSONS in a MINIMAL

R-PARITY CONSERVING

LEFT-RIGHT

SUPERSYMMETRIC MODEL

The LRSM, introduced in Section 3.1, has a hierarchy problem similar to the one in

the SM, where the masses of the fundamental Higgs scalars diverge quadratically. To

cancel these divergences, parameters of the theory have to be fine tuned. Including

SUSY can cure this problem with the cancellation of quadratic divergences by the

contributions from the corresponding superpartners.

There are also other arguments in favor of a left-right symmetric extension of

SUSY, as it resolves several problems of the popular MSSM. The most important one

is that the R-parity is an exact symmetry of the model, hence, preventing the rapid

proton decay [46–48]1. In addition, it offers a solution to the strong CP problem.

Originally, the term

LθQCD
= θQCD

g2s
64π2

εμνρσGa
μνG

a
νσ, (4.1)

was absent in the SM. It is induced, however, due to fermion field redefinitions while

diagonalizing the mass terms for quarks and leptons and violates the combined CP

invariance in the sector of strong interactions. As this term can contribute to the

neutron electric dipole moment, the current experimental limit for the parameter

1Note that R can be broken spontaneously, through < ν̃R > �= 0, but B is still conserved.
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θQCD is θQCD ≤ 10−9. Its being unnaturally small is called the strong CP problem.

In LRSUSY, since the Yukawa couplings are Hermitian the determinant of the quark

mass matrices are ensured to be real, thus proving a solution to the strong CP problem

[49,50].

However, the model in its minimal form seems to suffer from a serious shortcoming.

In the global minimum of the theory R-parity is conserved while parity is violated,

which breaks electric charge and is therefore unacceptable. Accordingly, the

minimization of the Higgs potential requires either spontaneous R−parity breaking by

the VEV of the right-chiral scalar neutrino [182] which consecutively results the SUSY

dark matter candidate to be lost; or introduction of higher scale non-renormalizable

operators [183,184] which make θQCD large. A new version of the theory is suggested

by Babu and Mohapatra [185], which allows for both R−parity conservation and the

absence of higher-dimensional operators by inclusion of the Yukawa coupling of the

heavy Majorana neutrino in the effective Lagrangian. The gauge group of the model

is the same as LRSM given in eq. (3.1).

4.1 The Particle Content of the Left-Right

Supersymmetric Model

In this Subsection we introduce the field content of the LRSUSY. In Table 13 we

give the first family of fermions and their bosonic partners, which differ in spin by

1/2, with the corresponding left-right symmetric assignments under the gauge group

GLRSM. Employing left-right symmetry requires the right-chiral fields to be doublets

under SU(2)R as their left-chiral counterparts are under SU(2)L (see Appendix A

for the representations of the fields). We use a superscript (c) for the right-chiral

conjugates of left-chiral fields and the supersymetric partners are denoted by tilde on

the top of the fermionic partner. Note that the color charge of quarks are indicated

by a superscript (α).
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Chiral Component SU(3)c ⊗ SU(2)L ⊗ SU(2)R ⊗U(1)B−L
Spin

Field Fields Quantum Numbers

Qα
1

⎛
⎝ uα

dα

⎞
⎠ 3 2 1 1

3 1/2

Qcα

1

⎛
⎝ dc

α

−ucα

⎞
⎠ 3∗ 1 2 − 1

3 1/2

Q̃α
1

⎛
⎝ ũα

d̃α

⎞
⎠ 3 2 1 1

3 0

Q̃cα

1

⎛
⎝ d̃c

α

−ũcα

⎞
⎠ 3∗ 1 2 − 1

3 0

L1

⎛
⎝ νe

e

⎞
⎠ 1 2 1 −1

1/2

Lc
1

⎛
⎝ ec

−νce

⎞
⎠ 1 1 2 1

1/2

L̃1

⎛
⎝ ν̃e

ẽ

⎞
⎠ 1 2 1 −1

0

L̃c
1

⎛
⎝ ẽc

−ν̃ce

⎞
⎠ 1 1 2 1

0

Table 13: First generation of fermions and their bosonic superpartners in the LRSUSY

including the corresponding SU(3)c ⊗ SU(2)L ⊗ SU(2)R ⊗ U(1)B−L gauge and spin

quantum numbers.

In Table 14, we give the field contents, associated gauge quantum numbers and spin

quantum numbers for the bosons and their fermionic superpartners in LRSUSY.
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Chiral Component SU(3)c ⊗ SU(2)L ⊗ SU(2)R ⊗U(1)B−L
Spin

Field Fields Quantum Numbers

Vμ Vμ 1 1 1 0 1

WLμ W+
Lμ,W

−
Lμ,W

3
Lμ 1 3 1 0 1

WRμ W+
Rμ,W

−
Rμ,W

3
Rμ 1 1 3 0 1

Ga
μ G1

μ, G
2
μ,...,G

8
μ 8 1 1 0 1

λV μ λV μ 1 1 1 0 1
2

λLμ λ+
Lμ, λ

−
Lμ, λ

3
Lμ 1 3 1 0 1

2

λRμ λ+
Rμ, λ

−
Rμ, λ

3
Rμ 1 1 3 0 1

2

G̃a
μ G̃1

μ, G̃
2
μ,...,G̃

8
μ 8 1 1 0 1

2

Table 14: Gauge Bosons and their fermionic partners in the LRSUSY.

A significant difference between the SUSY and LRSUSY concerns the Higgs sector. In

the supersymmetrization of the theory, the number of bi-doublets is doubled in order

to generate charged leptons and quark masses, and achieve a non-vanishing CKM

quark mixing matrix. The number of triplets is doubled for the sake of anomaly

cancellations. The right-chiral (Δc + Δ̄c) fields are needed for SU(2)R ⊗ U(1)B−L

symmetry breaking without R-parity violating couplings, and (Δ+Δ̄) fields are their

left-chiral partners, needed for parity invariance. A parity-odd singlet is appended to

the theory so that R-parity breaking occurs in the supersymmetric limit.
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Higgs Field Matrix Representation Vacuum Expectation Values

Δ(1, 3, 1, 2)

⎛
⎝

δ+√
2

δ++

δ0 − δ+√
2

⎞
⎠

⎛
⎝ 0 0

vL 0

⎞
⎠

Δ̄(1, 3, 1,−2)

⎛
⎝

δ̄−√
2

δ̄0

δ̄−− − δ̄−√
2

⎞
⎠

⎛
⎝ 0 v̄L

0 0

⎞
⎠

Δc(1, 1, 3,−2)

⎛
⎜⎝

δc
−

√
2

δc
0

δc
−− − δc

−
√
2

⎞
⎟⎠

⎛
⎝ 0 vR

0 0

⎞
⎠

Δ̄c(1, 1, 3, 2)

⎛
⎜⎝

δ̄c
+

√
2

δ̄c
++

δ̄c
0 − δ̄c

+

√
2

⎞
⎟⎠

⎛
⎝ 0 0

v̄R 0

⎞
⎠

Φ1(1, 2, 2, 0)

⎛
⎝ φ+

1 φ0
2

φ0
1 φ−

2

⎞
⎠

⎛
⎝ 0 κ′

1

κ1 0

⎞
⎠

Φ2(1, 2, 2, 0)

⎛
⎝ χ+

1 χ0
2

χ0
1 χ−

2

⎞
⎠

⎛
⎝ 0 κ2

κ′
2 0

⎞
⎠

S - S

Table 15: Minimal Higgs sector in the Supersymmetric Left-Right Model

Here the VEVs of the bi-doublets κ1,2 are of the order of electroweak scale. The VEV

of the right-chiral triplets υR and v̄R, on the other hand, has to be much more larger

in order the right-chiral gauge bosons to be sufficiently heavy. The VEVs of the left-

chiral triplet fields Δ, Δ̄, which determine the tree-level left-chiral neutrino masses,

must be extremely small and are assumed to be zero. In this case, the left-chiral

triplet fields decouple and thus their addition amounts only to the proliferation of

Higgs masses and representations in this model.
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Phenomenological aspects of LRSUSY has been studied previously in [22–26]. In

our work [27], we revisit the Higgs sector of minimal R-parity conserving LRSUSY

by constructing the mass matrices for the doubly-charged, singly charged and neutral

bosons (both scalar and pseudoscalar sectors). Although the model depends on many

parameters, we show that the masses are sensitive to only a few, and thus the model

is predictive. Light doubly-charged Higgs bosons emerge naturally. The LRSUSY

model predicts neutral scalar and pseudoscalar Higgs bosons that violate flavor at

tree level. We impose conditions coming from phenomenology: K0 − K̄0, D0 − D̄0

and B0
d,s − B̄0

d,s mixing. We show that one can have light neutral and charged Higgs

bosons that conserve flavor, while the flavor violating bosons are in the 600 GeV- 100

TeV scale, as required by meson mixing constraints. We pinpoint the parameters that

the masses are most sensitive to, and show that they satisfy the constraints in a limited

range of these parameters. We set up the structure of the Higgs potential, masses

and mixing, including the constraints, while leaving the study of the characteristic

signals at the LHC for a future study.

4.2 R-parity Conserving the Left-Right

Supersymmetric Model

As mentioned before, R-parity, given in eq. (3.66), is imposed in the MSSM to avoid

dangerous baryon and lepton number violating operators. Otherwise explicit Yukawa

terms that violate R-parity can exist in the Lagrangian. This explicit R-parity

breaking is forbidden in LRSUSY models by the symmetries of the model. In early

LRSUSY models SU(2)R doublets were used to break the gauge symmetry. Later

SU(2)L,R triplets were introduced to provide the see-saw mechanism for neutrino

masses [19], and both left- and right-chiral triplet Higgs bosons are required by parity

conservation. The model was described extensively in several previous works [24].

HoweverR-parity may not be conserved in this setup. The reason is that the minimum

of the potential prefers a solution in which the right-chiral scalar neutrino gets a

VEV, thus breaking R-parity spontaneously. Two scenarios have been proposed which

remedy this situation. One is the model of Babu and Mohapatra [185] where an extra

singlet Higgs boson is added to the model and one-loop corrections to the potential

show that an R-parity conserving minimum can be found. The second model is that
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of Aulakh et. al. [186], where the addition of two more triplets, Ω(1, 3, 1, 0) and

Ωc(1, 1, 3, 0), with zero lepton number, achieves left-right symmetry breaking with

conserved R-parity at tree-level. In our work, we adopt the former, as it is a minimal

model.

The superpotential of this model is given by

W = YuQ
T τ2Φ1τ2Q

c + YdQ
T τ2Φ2τ2Q

c + YνL
T τ2Φ1τ2L

c + Y�L
T τ2Φ2τ2L

c + h.c.

+ ifLcT τ2Δ
cLc

+ S
[
λTr
(
ΔcΔ̄c

)
+ λijTr

(
ΦT

i τ2Φjτ2
)−M2

R

]
+W ′, (4.2)

where

W ′ =
[
MΔTr(Δ

cΔ̄c)
]
+ μijTr

(
ΦT

i τ2Φjτ2
)
+MSS

2 + λSS
3. (4.3)

Here Yu,d and Yν,� in eq. (4.2) are quark and lepton Yukawa coupling matrices,

while f is the Majorana neutrino Yukawa coupling. We choose to work with W ′ =

0, which leads to an enhanced R−symmetry and a natural interpretation of the

supersymmetric μ term, as explained below.

The VEVs of the Higgs fields in this model needed to break the symmetries as

described above. If we assume that the VEVs of the bi-doublet Higgs are real, the

fermion mass matrices become Hermitian. In the supersymmetric limit, the VEV of

the singlet S Higgs boson is zero, but after SUSY breaking, 〈S〉 ∼ mSUSY. Thus the

μ term for the bidoublet Φ will arise from the coupling λij, with a magnitude of order

mSUSY [185]. In the SUSY limit,

|vR| = |v̄R|, λvRv̄R = M2
R, 〈S〉 = 0. (4.4)

The VEV of S field, generated after SUSY breaking, arises from linear terms in SUSY

breaking

Vsoft = AλλSTr(Δ
cΔ̄c)− CλM2

RS + h.c. (4.5)

Minimization of the resulting potential yields 〈S∗〉 = 1
2λ
(Cλ − Aλ), which is of order

mSUSY. If the coupling λ is small, then 〈S〉 can be above the SUSY breaking scale.

This feature can be used to make one pair of Higgs doublet superfields heavier than

the SUSY breaking scale. However, the masses of doubly charged fermionic fields,

which are equal to λ 〈S〉 must remain below a TeV. Consistency of the model (non-

vanishing CKM mixing angle) requires the asymmetry μ12 = μ21 + ε.
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The full potential of the model relevant for symmetry breaking includes the F

term, the D term and soft SUSY-breaking contributions as explained in Subsection

3.2.2. They are given by

VF =
∣∣λTr(ΔcΔ̄c) + λijTr(Φ

T
i τ2Φjτ2)−M2

R

∣∣2 + λ2|S|2 ∣∣Tr(ΔcΔc†) + Tr(Δ̄cΔ̄c†)
∣∣ ,

Vsoft = M2
1Tr(Δ

c†Δc) +M2
2Tr(Δ̄

c†Δ̄c) +M2
3Φ

†
1Φ1 +M2

4Φ
†
2Φ2 +M2

S|S|2

+ {AλλSTr(Δ
cΔ̄c)− CλM2

RS + h.c.},
VD =

g2L
8

∑
i

∣∣∣Tr(Φaτ
T
i Φ

†
b)
∣∣∣2 + g2R

8

∑
i

∣∣∣Tr(2Δc†τiΔc + 2Δ̄c†τiΔ̄c + Φaτ
T
i Φ

†
b)
∣∣∣2

+
g′2

2

∣∣Tr(−Δc†Δc + Δ̄c†Δ̄c)
∣∣2 . (4.6)

We use this potential and proceed the usual way to find the masses and mixing

matrices for the Higgs bosons in this model.

4.3 Higgs Boson Composition and Masses

The Higgs boson spectrum was previously analyzed in a variant of the model [187]

with R−parity violation. The new features of the present analysis are 1) we employ

a version of the model that uses the right-chiral neutrino couplings to the triplet

Higgs bosons to eliminate the need for L-number violation; and 2) we include

constraints from FCNC processes to predict the range of Higgs masses and parameters

in LRSUSY. Effectively, we are looking at a very different model and Higgs sector

than in [187].

We minimize the full potential of the model given in eq. (4.6) which is relevant

for symmetry breaking by using

∂V

∂κ1

=
∂V

∂κ2

=
∂V

∂vR
=

∂V

∂v̄R
=

∂V

∂〈S〉 = 0, (4.7)

to obtain masses and compositions of the Higgs bosons. However, this procedure

does not lead to the correct potential minimum. The reason is that all the terms in

the scalar potential are identical for the configurations in which VEVs are given to

the neutral right-chiral triplet Higgs, except for the D−term, which is lower for the

charge breaking configuration:

〈Δc〉 = 1√
2

(
0 vR

vR 0

)
, 〈Δ̄c〉 = 1√

2

(
0 v̄R

v̄R 0

)
. (4.8)
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Previous solutions suggested are breaking R−parity, which would have the attractive

feature that vR ∼ 1 TeV, but which abandons the LSP as the candidate for

dark matter [182]; or introducing higher dimensional operators to lower the charge

conserving vacuum, with vR ∼ 1011 GeV, but loosing the solution to strong and weak

CP violation [186]. More recently, a new version of the model [185] examined the

effects of introducing one loop Coleman-Weinberg effective potential generated by

one family right-chiral neutrino to the Δc field:

V 1−loop
eff =

1

16π2

∑
i

(−1)2s(2s+ 1)M4
i

[
ln

(
M2

i

μ2

)
− 3

2

]
. (4.9)

Expanding this potential in the limit in which the SUSY breaking parameters are

small with respect to the triplet VEVs (vR, v̄R), one obtains an effective form in

terms of the small parameter

x =
Tr(ΔcΔc)Tr((Δc†Δc†)

[Tr((Δc†Δc]2
,

the 1-loop potential becomes:

V 1−loop
eff � −|f |2m2

LcTr(ΔcΔc)Tr(Δc†Δc†)
128π2|vR|2

×
{
(a1 − a2)g

2
R

(
2 ln

|fvR|2
μ2

+ ln x− 2 ln 2− 2

)

− [2 + (a1 + a2)g
2
B−L

]
(ln x− 2 ln 2)

}
. (4.10)

Here a1 and a2 vanish in the SUSY limit (when D-terms vanish) and m2
Lc are soft

right-chiral scalar lepton masses. The effect of this potential is to mimic the effects of

the higher dimensional operators in previous versions, without the need to introduce

them explicitly, thus solving the problem of the global minimum. Whereas before the

global minimum contained at least one doubly-charged Higgs boson with zero mass,

after 1-loop corrections all the masses are positive. The advantage of such a formalism

is that the masses are very predictive, as they do not depend on coefficients of ad-hoc

higher order terms, or sneutrino VEVs. In the next section, we study explicitly the

implications for the Higgs masses in this model. Before, we wish to point out that,

should the model have included left-chiral triplet Higgs bosons, their mass would

remain negative and cannot be fixed by the first order loop corrections. A left-chiral

counterpart of the one loop correction would not work, as the VEV of this field vL
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is zero, or very small. Thus, one would have to consider higher order corrections or

additional Higgs representations.

In the explicit expressions of the bare and the physical Higgs boson mass terms,

we use the following abbreviations

κ2
dif = κ2

1 − κ2
2,

ρ2dif = v2R − v̄2R +
1

2
(κ2

1 − κ2
2),

Y = AλλS + λ(−M2
R − 2λ21κ1κ2 + λvRv̄R),

M = 2λ21(−M2
R − 2λ21κ1κ2 + λvRv̄R),

f(ε) = ε(
M

2λ21

− 2λ21κ1κ2 − εκ1κ2),

g(ε) = ελκ1κ2,

h(ε) = εκ1κ2(4λ21 + ε), (4.11)

with ε = μ21 − μ12, small but non-zero after symmetry breaking.

4.3.1 Doubly Charged Higgs Boson Masses

Mass matrices for the doubly charged Higgs fields are of block diagonal form of one

two by two matrix for (δc
−−∗

, δ̄c
++

) fields

M2
δc−−∗

δ̄c
++ =

(
−2g2Rρ

2
dif − v̄R

vR
Y ′ Y ′

Y ′ 2g2Rρ
2
dif − vR

v̄R
Y ′

)
, (4.12)

where Y ′ = Y − g(ε). From these expressions we can find the exact analytic forms

for the doubly charged Higgs masses. Setting tan δ = v̄R
vR
, these are:

M2
H++

1,2
= − Y ′

sin 2δ
±
√
4g4Rρ

4
dif +

Y ′2

sin2 2δ
− 4Y ′g2Rρ

2
dif cot 2δ. (4.13)

It is clear that one must require Y ′ < 0, but even so, one of the mass eigenvalues

will be negative. It is thus essential that we include the first order correction to the

doubly charged Higgs masses, which arises from derivatives of the quartic potential

(4.10) with respect to the doubly charged Higgs boson fields. The corrected (Mass2)
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matrix elements are

M2
δc−−∗

δc
−− = −f 2m2

Lc

16π2

[
a1g

2
R

(
2 ln(

|fvR|
μ

)− 1
)
+ ln 2

(
2− a1(g

2
R − g2B−L)

)]

− 2g2Rρ
2
dif −

v̄R
vR

Y ′,

M2
δ̄c++δc−− = Y ′,

M2
δc−−∗

δ̄c
++∗ = Y ′,

M2
δ̄c++

δ̄c
++∗ = 2g2Rρ

2
dif −

v̄R
vR

Y ′, (4.14)

yielding a positive correction to the masses, for m2
Lc < 0. The first order correction

is not finite at x = 0, however, the divergence is very mild (logarithmic) and higher

order effects cure it without altering the masses significantly.

4.3.2 Singly Charged Higgs Boson Masses

Mass matrices for the singly charged Higgs fields are of block diagonal form of one two

by two matrix for (φ+
1 , χ

−∗
2 ) fields and one four by four matrix for (δc

+
, δ̄c

−∗
, φ−∗

2 , χ+
1 )

fields respectively,

M2
φ+
1 ,χ−∗

2
=

(
κ2

κ1
M ′′ M ′

M ′ κ1

κ2
M ′

)
, (4.15)

where M ′ = M + f(ε). The elements of the four by four matrix are

M2
δc−∗δc− = g2Rv

2
R − g2Rρ

2
dif −

v̄R
vR

Y ′,

M2
δc−∗

δ̄c
+∗ = −g2RvRv̄R + Y ′,

M2
δc−∗φ−

2
= − 1√

2
g2Rκ1vR,

M2
δc−∗χ+∗

1
= − 1√

2
g2Rκ2vR,

M2
δ̄c+ δ̄c

+∗ = g2Rv̄
2
R + g2Rρ

2
dif −

vR
v̄R

Y ′,

M2
δ̄c+φ−

2
=

1√
2
g2Rκ1v̄R,

M2
δ̄c+χ+∗

1
=

1√
2
g2Rκ2v̄R,
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M2
φ−∗
2 φ−

2
=

1

2
κ2
1(g

2
L + g2R)−

1

2
g2Lκ

2
dif − g2Rρ

2
dif +

κ2

κ1

M ′,

M2
φ−∗
2 χ+∗

1
=

1

2
κ1κ2(g

2
L + g2R) +M ′,

M2
χ+
1 χ−

1
=

1

2
κ2
2(g

2
L + g2R) +

1

2
g2Lκ

2
dif + g2Rρ

2
dif +

κ1

κ2

M ′. (4.16)

4.3.3 Neutral Higgs Boson Masses

Mass matrices for the neutral scalar Higgs fields are of block diagonal form of one two

by two matrix for (φ0r
2 , χ0r

1 ) fields and one five by five matrix for (δc
0r
, δ̄c

0r
, φ0r

1 , χ0r
2 , S0r)

fields respectively,

M2
φ0r
2 ,χ0r

1
=

(
−1

2
g2Lκ

2
dif − g2Rρ

2
dif +

κ2

κ1
M ′ −M ′

−M ′ 1
2
g2Lκ

2
dif + g2Rρ

2
dif +

κ1

κ2
M ′.

)
.(4.17)

The elements of the five by five matrix are

M2
δc0r δc0r

= 2v2R(g
2
B−L + g2R) + λ2v̄2R − v̄R

vR
Y ′,

M2
δc0r δ̄c

0r = −2vRv̄R(g
2
B−L + g2R) + λ2vRv̄R + Y ′,

M2
δc0rφ0r

1
= g2Rκ1vR − 2λλ21κ2v̄R − 2

v̄R
κ1

g(ε),

M2
δc0rχ0r

2
= −g2Rκ2vR − 2λλ21κ1v̄R − v̄R

κ2

g(ε),

M2
δc0rS0r = 2λ2SvR + Aλλv̄R,

M2
δ̄c0r δ̄c

0r = 2(g2B−L + g2R)v̄
2
R + λ2v2R − vR

v̄R
Y ′,

M2
δ̄c0rφ0r

1
= −g2Rκ1v̄R − 2λλ21κ2vR − vR

κ1

g(ε),

M2
δ̄c0rχ0r

2
= g2Rκ2v̄R − 2λλ21κ1vR − vR

κ2

g(ε),

M2
δ̄c0rS0r = 2λ2Sv̄R + AλλvR,

M2
φ0r
1 φ0r

1
=

1

2
κ2
1(g

2
L + g2R) + 4λ2

21κ
2
2 +

κ2

κ1

[M ′ + h(ε)],

M2
φ0r
1 χ0r

2
= −1

2
κ1κ2(g

2
L + g2R) + 4λ2

21κ1κ2 − [M ′ − h(ε)],

M2
φ0r
1 S0r = 0,

M2
χ0r
2 χ0r

2
=

1

2
κ2
2(g

2
L + g2R) + 4λ2

21κ
2
1 +

κ1

κ2

[M ′ + h(ε)],

M2
χ0r
2 S0r = 0,

M2
S0rS0r = M2

S + λ2(v2R + v̄2R). (4.18)
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Mass matrices for the neutral pseudoscalar Higgs fields are similarly of block diagonal

form of one two by two matrix for (φ0i
2 , χ

0i
1 ) fields and one five by five matrix for

(δc
0i
, δ̄c

0i
, φ0i

1 , χ
0i
2 , S

0i) fields respectively,

M2
φ0i
2 ,χ0i

1
=

(
−1

2
g2Lκ

2
dif − g2Rρ

2
dif +

κ2

κ1
M ′ M ′

M ′ 1
2
g2Lκ

2
dif + g2Rρ

2
dif +

κ1

κ2
M ′

)
.(4.19)

The elements of the five by five matrix are

M2
δc

0iδc0i
= λ2v̄2R − v̄R

vR
Y ′,

M2
δc

0i
δ̄c

0i = λ2vRv̄R − Y ′,

M2
δc

0iφ0i
1

= −2λλ21κ2v̄R − v̄R
κ1

g(ε),

M2
δc

0iχ0i
2

= −2λλ21κ1v̄R − v̄R
κ2

g(ε),

M2
δc

0i
S0i = −Aλλv̄R,

M2
δ̄c

0i
δ̄c

0i = λ2v2R − vR
v̄R

Y ′,

M2
δ̄c

0iφ0i
1

= −2λλ21κ2vR − vR
κ1

g(ε),

M2
δ̄c

0iχ0i
2

= −2λλ21κ1vR − vR
κ2

g(ε),

M2
δ̄c

0iS0i = −AλλvR,

M2
φ0i
1 φ0i

1
= 4λ2

21κ
2
2 +

κ2

κ1

[M ′ + h(ε)],

M2
φ0i
1 χ0i

2
= 4λ2

21κ2κ2 + [M ′ + h(ε)],

M2
φ0i
1 Si = 0,

M2
χ0i
2 χ0r

2
= 4λ2

21κ
2
1 +

κ1

κ2

[M ′ + h(ε)],

M2
χ0i
2 S0i = 0,

M2
S0iS0i = M2

S + λ2(v2R + v̄2R). (4.20)

4.4 Constraints on the Higgs sector

4.4.1 Flavor Changing Neutral Higgs Bosons

As any model with more than one Higgs doublet, the LRSUSY is plagued by tree-level

FCNC-inducing Higgs bosons [188]. We proceed first by isolating the flavor-violating

and flavor-conserving field combinations, then subject them to constraints coming
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from mixings in the kaon, B and D neutral meson states. We show explicitly the

expressions for the down-quark sector; the up-quark sector can be obtained simply

by the same method. The Yukawa Lagrangian in the quark sector is given by

LY = d̄LYuφ
0
2dR + d̄LYdχ

0
2dR + ūLYuφ

0
1uR + ūLYdχ

0
1uR + h.c., (4.21)

where Yu and Yd are 3×3 Hermitian matrices in flavor space. When the bi-doublets

acquire VEVs as in Table 15, with κ1, κ2, κ
′
1 and κ′

2 real, the up and the down type

quark mass matrices are given by:

Mu = Yuκ1 +Ydκ
′
2 Md = Yuκ

′
1 +Ydκ2. (4.22)

Inserting the expressions obtained for Yu and Yd in terms of masses, the Yukawa

Lagrangian in the down type quark sector reads

LN
Y (d) =

[
di∗LM

ij
u djR(κ2φ

0
2 − κ′

2χ
0
2) + di∗LM

ij
d djR(κ1χ

0
2 − κ′

1φ
0
2)
]

κ1κ2 − κ′
1κ

′
2

+

[
dj∗RM ij∗

u diL(κ2φ
0∗
2 − κ′

2χ
0∗
2 ) + dj∗RM ij∗

d diL(κ1χ
0∗
2 − κ′

1φ
0∗
2 )
]

κ1κ2 − κ′
1κ

′
2

. (4.23)

To obtain the physical states we diagonalize the mass matrices by the unitary

transformations

M ij
u = U ik

u M̂km
u W jm∗

u δkm, M ij
d = U ik

d M̂km
d W jm∗

d δkm, (4.24)

where M̂u and M̂d are diagonal up and down type quark mass matrices. Since dL and

dR are weak eigenstates, unitary transformations convert them into mass eigenstates

diL → U ij
d djL, diR → W ij

d djR. (4.25)

We define U ji∗
d U ik

u = V jk
L and W lj∗

u W jm
d = V lm

R where VL and VR are the components

of the left-chiral and right-chiral CKM matrices. Then the Yukawa Lagrangian for

down type quark fields is given by

LN
Y (d) =

dn∗L V kn∗
L M̂km

u V ml
R dlRδ

km(κ2φ
0
2 − κ′

2χ
0
2)

κ1κ2 − κ′
1κ

′
2

+
dn∗L δnkM̂km

d δmldlRδ
km(κ1χ

0
2 − κ′

1φ
0
2)

κ1κ2 − κ′
1κ

′
2

+
dn∗R V mn∗

R M̂km∗
u V kl

L dlLδ
km(κ2φ

0∗
2 − κ′

2χ
0∗
2 )

κ1κ2 − κ′
1κ

′
2

+
dn∗R δnmM̂km∗

d δkldlLδ
km(κ1χ

0∗
2 − κ′

1φ
0∗
2 )

κ1κ2 − κ′
1κ

′
2

, (4.26)
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where the up and down mass matrices are Hermitian since the VEVs of bi-doublets

are taken to be real. For simplicity, we assume VL = VR = V. The fields φ0
2 and χ0

2

are complex. Thus we can isolate two terms in the Lagrangian, one flavor violating,

and one FCNC-conserving. Writing the neutral and imaginary parts separately, the

FCNC Lagrangian reads

LFCNC(d) =
dn∗L V kn∗M̂kk

u V kldlR(κ2φ
0r
2 − κ′

2χ
0r
2 )

κ1κ2 − κ′
1κ

′
2

+
idn∗L V kn∗M̂kk

u V kldlR(κ2φ
0i
2 − κ′

2χ
0i
2 )

κ1κ2 − κ′
1κ

′
2

+
dn∗R V kn∗M̂kk∗

u V kldlR(κ2φ
0r
2 − κ′

2χ
0r
2 )

κ1κ2 − κ′
1κ

′
2

− idn∗R V kn∗M̂kk∗
u V kldlR(κ2φ

0i
2 − κ′

2χ
0i
2 )

κ1κ2 − κ′
1κ

′
2

, (4.27)

where φ0r
2 and χ0r

2 are the two of the nine bare scalar fields and φ0i
2 and χ0i

2 are the

two of the nine bare pseudo-scalar fields appearing in LRSUSY Lagrangian. The d−s

coupling in Eq. (4.27) allows a ΔS = 2 transition at tree level. To evaluate explicitly,

we use the Wolfenstein parametrization [116] of the CKM matrix given in eq. (2.7)

V kd∗M̂kk
u V ks = (mu −mc)(λ− λ3

2
)−mtA

2λ5(1− ρ+ iη). (4.28)

We express the bare scalar and pseudoscalar neutral Higgs fields as

ψ0rT =
(
δc0r δ̄c0r φ0r

1 φ0r
2 χ0r

1 χ0r
2 S0r

)
,

ψ0iT =
(
δc0i δ̄c0i φ0i

1 φ0i
2 χ0i

1 χ0i
2 S0i

)
, (4.29)

for the CP even Higgs fields and the physical ones as

H0rT =
(
H0r

1 H0r
2 H0r

3 H0r
4 H0r

5 H0r
6 H0r

7

)
,

H0iT =
(
H0i

1 H0i
2 H0i

3 H0i
4 H0i

5 H0i
6 H0i

7

)
, (4.30)

for the CP odd Higgs fields. Call Aij the transformation matrix which transforms the

bare scalar fields into the physical CP even ones, and Bij matrix which transforms the

bare pseudo-scalar fields into the physical CP odd ones: H0r
i = Aijψ

0r
j , H0i

i = Bijψ
0i
j .

Substituting these into the Eq. (4.27), we obtain the explicit Lagrangian responsible
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for FCNC in the down-sector

LΔS=2
FCNC(d) =

mtλ

κ1κ2 − κ′
1κ

′
2

([
(
mu

mt

− mc

mt

)(1− λ2

2
)− A2λ4(1− ρ)

]
(κ2A

∗
i4 − κ′

2A
∗
i6)H

0r
i

× (d̄PRs+ d̄PLs) + A2λ4η(κ2B
∗
i4 − κ′

2B
∗
i6)H

0i
i (d̄PRs− d̄PLs)

)

+
imtλ

κ1κ2 − κ′
1κ

′
2

([mu

mt

− mc

mt

)(1− λ2

2
)− A2λ4(1− ρ)

]
(κ2B

∗
i4 − κ′

2B
∗
i6)H

0i
i

× (d̄PRs− d̄PLs)− A2λ4η(κ2A
∗
i4 − κ′

2A
∗
i6)H

0r
i (d̄PRs+ d̄PLs)

)
. (4.31)

We proceed in similar fashion to evaluate the flavor-conserving and flavor-violating

Higgs contributions to the up sector. The Yukawa Lagrangian for the up quark sector

is

LN
Y (u) = ui∗

LY
ij
u φ0

1u
j
R + ui∗

LY
ij
d χ0

1u
j
R + uj∗

R φ0∗
1 Y ji∗

u ui
L + uj∗

R χ0∗
1 Y ji∗

d ui
L. (4.32)

We use the same substitutions as before and express the Lagrangian in terms of the

complex fields φ0
2 and χ0

2. The first and third terms in the Lagrangian above are

flavor-conserving. Writing the neutral and imaginary parts separately, the FCNC

Lagrangian reads

LFCNC(u) =
un∗
L V nkM̂kk

d V lk∗ul
R(κ2φ

0r
1 − κ′

2χ
0r
1 )

κ1κ2 − κ′
1κ

′
2

+ +
iun∗

L V nkM̂kk
d V lk∗ul

R(κ2φ
0i
1 − κ′

2χ
0i
1 )

κ1κ2 − κ′
1κ

′
2

+
un∗
R V nkM̂kk∗

d V lk∗ul
R(κ2φ

0r
1 − κ′

2χ
0r
1 )

κ1κ2 − κ′
1κ

′
2

− iun∗
R V nkM̂kk∗

d V lk∗ul
R(κ2φ

0i
1 − κ′

2χ
0i
1 )

κ1κ2 − κ′
1κ

′
2

, (4.33)

where φ0r
1 and χ0r

1 are the two of the nine bare scalar fields and φ0i
1 and χ0i

1 are the

two of the nine bare pseudo-scalar fields appearing in LRSUSY Lagrangian. The u−c

coupling in eq. (4.33) allows a ΔC = 2 transition at tree level. Inserting V ukM̂kk
u V ck∗

in terms of Wolfenstein parameters,

V ukM̂kk
u V ck∗ = (ms −mc)(λ− λ3

2
)−mbA

2λ5(−ρ+ iη), (4.34)
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and using physical states instead of φ0r
1 and χ0r

1 we obtain the explicit form of the

Lagrangian responsible for FCNC in the up-sector

LΔC=2
FCNC(u) =

mbλ

κ1κ2 − κ′
1κ

′
2

([
(
ms

mb

− md

mb

)(1− λ2

2
) + A2λ4ρ

]
(κ2A

∗
i3 − κ′

2A
∗
i5)H

0r
i

× (ūPRc+ ūPLc) + A2λ4η(κ2B
∗
i3 − κ′

2B
∗
i5)H

0i
i (ūPRc− ūPLc)

)

+
imbλ

κ1κ2 − κ′
1κ

′
2

([
(
ms

mb

− md

mb

)(1− λ2

2
) + A2λ4ρ

]
(κ2B

∗
i3 − κ′

2B
∗
i5)H

0i
i

× (ūPRc− ūPLc)− A2λ4η(κ2A
∗
i3 − κ′

2A
∗
i5)H

0r
i (ūPRc+ ūPLc)

)
. (4.35)

These expressions will be used to calculate the real and imaginary parts of the K0 −
K̄0, D0 − D̄0 and B0 − B̄0 mixing.

εK and K0 − K̄0 Mixing

We evaluate the real and imaginary parts of the K0 − K̄0 transition. We assume a

common mass for scalar and pseudoscalar Higgs fields. In the following calculations we

will use the compact forms 〈Q̃1(μ)〉+〈Q1(μ)〉 = 〈Qtot
1 〉 and 〈Q̃2(μ)〉+〈Q2(μ)〉 = 〈Qtot

2 〉.

Re〈K̄0|Heff |K0〉 =
m2

tλ
2

4M2
i (κ1κ2 − κ′

1κ
′
2)

2

{[
(
mu

mt

− mc

mt

)(2− λ2)− 2A2λ4(1− ρ)
]

×
(
[(κ2A

∗
i4 − κ′

2A
∗
i6)

2 − (κ2B
∗
i4 − κ′

2B
∗
i6)

2]〈Qtot
1 〉

+ [(κ2A
∗
i4 − κ′

2A
∗
i6)

2 + (κ2B
∗
i4 − κ′

2B
∗
i6)

2]〈Qtot
2 〉
)

+ 4A4λ8η2
(
[(κ2A

∗
i4 − κ′

2A
∗
i6)

2 + (κ2B
∗
i4 − κ′

2B
∗
i6)

2]〈Qtot
1 〉

+ [(κ2A
∗
i4 − κ′

2A
∗
i6)

2 − (κ2B
∗
i4 − κ′

2B
∗
i6)

2]〈Qtot
2 〉
)}

, (4.36)

and

Im〈K0|Heff |K̄0〉 =
im2

tλ
2

4M2
i (κ1κ2 − κ′

1κ
′
2)

2

[
(
mu

mt

− mc

mt

)(2− λ2)A2λ4η − 2A4λ8(1− ρ)η
]

×
(
[(κ2B

∗
i4 − κ′

2B
∗
i6)

2 − (κ2A
∗
i4 − κ′

2A
∗
i6)

2]〈Qtot
1 〉

− [(κ2B
∗
i4 − κ′

2B
∗
i6)

2 + (κ2A
∗
i4 − κ′

2A
∗
i6)

2]〈Qtot
2 〉
)
, (4.37)
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The ΔF = 2 process are described by the Hamiltonian [189,190]

HΔF=2
eff =

5∑
a=1

CaQ
qiqj
a +

3∑
a=1

C̃aQ̃
qiqj
a , (4.38)

with

Q
qiqj
1 = q̄αjLγμq

α
iLq̄

β
jLγ

μqβiL, Q
qiqj
2 = q̄αjRq

α
iLq̄

β
jRq

β
iL, Q

qiqj
3 = q̄αjRq

β
iLq̄

β
jRq

α
iL,(4.39)

Q
qiqj
4 = q̄αjRq

α
iLq̄

β
jLq

β
iR, Q

qiqj
5 = q̄αjRq

β
iLq̄

β
jLq

α
iR,

where α, β are color indices. The operators Q̃a are obtained from Qa by exchange

L ↔ R. Here, we only use Q1, Q2, Q̃1, and Q̃2. The other quark operators will be

useful in the following chapters. The matrix elements are, [191]

〈Q1(μ)〉 = − 5

24

(
ma

mq1(μ) +mq2(μ)

)2

maF
2
aB1(μ),

〈Q2(μ)〉 =
1

4

(
ma

mq1(μ) +mq2(μ)

)2

maF
2
aB2(μ), (4.40)

where a = K,Bd, Bs, D mesons, and no summation is assumed. Fa is the decay

constant of the corresponding meson and B1(μ) and B2(μ) are the bag parameters

calculated in NDR scheme for an energy scale μ. The numerical values for all the

parameters involved in the calculation of K0 − K̄0, D0 − D̄0 and B0
d,s − B̄0

d,s mixings

are summarized in Table 16. Same expressions for the operators Q1 and Q2 are valid

for the operators Q̃1 and Q̃1.

K0 − K̄0 B0
d − B̄0

d B0
s − B̄0

s D0 − D̄0

μ 2 GeV mb mb 2 GeV

q1 s b b u

q2 d d s c

ma 498 MeV 5.28 GeV 5.37 GeV 1.86 GeV

Fa 160 MeV 0.21 GeV 0.25 GeV 232 MeV

B1(μ) 0.76 0.82 0.83 1

B2(μ) 1.30 1.16 1.17 1

ΔMa (GeV) 3.483× 10−15 3.337× 10−13 117× 10−13 1.57313× 10−20

εa 2.228× 10−3 - - -

Table 16: QCD parameters used for meson mixings.
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In the table above, ΔMa values are taken from PDG [114] and indirect CP violation

in K → ππ [138] and in K → πlν decays is given by [114]. Substituting μ = 2 GeV

in the expressions for ΔMK and CP violating parameter εK given below

ΔMK = 2Re〈K̄0|Heff |K0〉, ΔεK =
1√

2ΔMK

Im〈K̄0|Heff |K0〉, (4.41)

we get

ΔMK =
6.9269× 10−7A2∗

i4 + 2.0088× 10−7B2∗
i4

M2
i

sec β2, (4.42)

and

εK =
9.9975× 106A2∗

i4 − 9.8616× 10−9A∗
i4B

∗
i4 + 2.8993× 107B2∗

i4

M2
i

sec β2.(4.43)

By comparing the calculated expressions with their experimental values given in Table

16, we obtain on the sources of flavor and CP violation in the LRSUSY. We give below

the analytical expressions for the constraints on the parameters in the neutral scalar

and pseudoscalar mixing from K meson mixing. Taking the lightest neutral Higgs

mass to be MH0r
i

= MH0i
i
= Mi, ΔMK yields the constraint

M2
i ≥ (1.9888× 108A2∗

i4 + 5.7675× 108B2∗
i4 ) sec β

2 GeV2, (4.44)

while the value of εK yields the constraint

M2
i ≥ (4.4872×109A2∗

i4 −4.4262×10−6A∗
i4B

∗
i4+1.3013×1010B2∗

i4 ) sec β
2 GeV2. (4.45)

In the above expressions we assumed that the lightest Higgs mass provides the

dominant contribution, and neglected the rest, while in our numerical evaluations

we have summed over all mass contributions, as in (4.20) and (4.21). These become,

for example, when tan β = 10, for ΔMK

M2
i ≥ (2.0087× 1010A2∗

i4 + 5.8251× 1010B2∗
i4 ) GeV2, (4.46)

and for εK

M2
i ≥ (4.5320× 1011A2∗

i4 − 4.4704× 10−4A∗
i4B

∗
i4 + 1.3143× 1012B2∗

i4 ) GeV2. (4.47)

We tried varying the lightest relative masses in the scalar and pseudoscalar sector

and found that the results do not change.
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B0
d − B̄0

d Mixing

We proceed the same way as for K0 − K̄0 mixing to evaluate the constraints from

the B0
d , B0

s meson mixing. We use again four quark operators Q1, Q2, Q̃1, and Q̃2

defined previously. Setting as before the Higgs mass to be equal to the lightest scalar

mass MH0r
i

= MH0i
i
= Mi the expression for ΔMBd

becomes

ΔMBd
=

(9.4139× 10−6A2∗
i4 + 3.6405× 10−5B2∗

i4 ) sec β
2

M2
i

GeV3. (4.48)

Using the experimental of ΔMBd
from Table 16, we obtain, assuming as before

dominance by the lightest mass

M2
i ≥ (2.8211× 107A2∗

i4 + 1.6909× 108B2∗
i4 ) sec β

2 GeV2, (4.49)

which becomes, for tan β = 10

M2
i ≥ (2.8493× 109A2∗

i4 + 1.1019× 1010B2∗
i4 ) GeV2. (4.50)

B0
s − B̄0

s Mixing

We proceed exactly as in the previous subsection, substituting s instead of d quark.

The parameters for B0
s − B̄0

s mixing are given in Table 16.

ΔMBs =
(4.2314× 10−4A∗2

i4 + 1.6469× 10−3B∗2
i4 ) sec β

2

M2
i

GeV3. (4.51)

Using the experimental value of ΔMBs from Table 16,

M2
i ≥ (3.6166× 107A2∗

i4 + 1.4076× 108B2∗
i4 ) sec β

2 GeV2, (4.52)

or, for tan β = 10

M2
i ≥ (3.6528× 109A2∗

i4 + 1.4217× 1010B2∗
i4 ) GeV2. (4.53)

D0 − D̄0 Mixing

We have already evaluated the real and imaginary parts of the D0 − D̄0 transition

Subsection 4.4.1. We assume as before a common mass for scalar and pseudo-scalar
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Higgs fields.

Re〈D̄0|Heff |D0〉 =
m2

bλ
2

4M2
i (κ1κ2 − κ′

1κ
′
2)

2

{[
(
ms

mb

− md

mb

)(2− λ2) + 2A2λ4ρ
]2

×
(
[(κ2A

∗
i3 − κ′

2A
∗
i5)

2 − (κ2B
∗
i3 − κ′

2B
∗
i5)

2]〈Qtot
1 〉

+ [(κ2A
∗
i3 − κ′

2A
∗
i5)

2 + (κ2B
∗
i3 − κ′

2B
∗
i5)

2]〈Qtot
2 〉
)

+ 4A4λ8η2
(
[(κ2A

∗
i3 − κ′

2A
∗
i5)

2 + (κ2B
∗
i3 − κ′

2B
∗
i5)

2]〈Qtot
1 〉

+ [(κ2A
∗
i3 − κ′

2A
∗
i5)

2 − (κ2B
∗
i3 − κ′

2B
∗
i5)

2]〈Qtot
2 〉
}
, (4.54)

where Q1, Q2, Q̃1, and Q̃2 are the four quark operators defined as before, the mass

difference ΔMD = 2Re〈D̄0|Heff |D0〉 is obtained as

ΔMD =
5.2816× 10−10A2∗

i5 + 5.8097× 10−9B2∗
i5

M2
i

csc β2 GeV3. (4.55)

Comparing the calculated expression with the experimental value from Table 16 we

obtain

M2
i ≥ (3.3574× 1010A2∗

i5 + 3.6931× 1011B2∗
i5 ) csc β

2 GeV2, (4.56)

which becomes for tan β = 10,

M2
i ≥ (3.3909× 1010A2∗

i5 + 3.7300× 1011B2∗
i5 ) GeV2. (4.57)

4.5 Numerical Results and Discussion

The FCNCs tree-level diagrams are mediated by the physical scalar fields H0
2 and H0

6 ,

and the pseudoscalars A0
1 and A0

4. These fields are linear superpositions of the χ
0r
1 or

φ0r
2 (χ0i

1 or φ0i
2 , respectively, for the pseudoscalars) components from the bidoublet

Higgs.

As the fields H0
2 and H0

6 must be heavy, the light neutral scalars would likely be

linear combinations of the complimentary χ0r
2 or φ0r

1 components from the bidoublets,

or δ0r, δ̄0r, δc
0r
, and δ̄c

0r
from the triplet Higgs. We set vR in the interval obtained from

the requirement that the doubly charged Higgs are light (3 − 10 TeV). Varying vR
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outside this range adversely affects the masses of the lightest doubly charged Higgs,

and some of the light neutral and singly charged scalars.

The mass of the lightest scalar field H0
1 (the SM-like) changes at most a few GeV,

if we vary any of the parameters, whereas the second lightest scalar field H0
2 is highly

dependent on the changes in the parameter vR. Similarly, the lightest pseudoscalar

field A0
1 behaves like the second lightest neutral scalar field and is also affected by

the changes in vR. H0
1 is SM-like, and the parameter that seems to affect H0

1 mass

the most is the λ21 coupling. (This parameter is the coupling that generates the

μ21 = λ21〈S〉 Higgsino coupling). The dependence is not smooth, but varying |λ21| in
the interval 0.01− 1 produces a 30% change in MH0

1
.

The tree-level flavor-changing neutral currents in the down-quark sector are

governed by H0
6 and A0

4. The mass values of the fields H0
6 and A0

4 are the same,

and they are dependent on the parameters λ21 , vR, λ, tan β and MR. Numerical

investigation reveals that only tan β and MR can affect the H0
6 and A0

4 masses

significantly, while there is practically no variation on the mass with vR. These masses

are dependent on the parameters MR and tan β such that when they increase, mass

values of these physical fields also increase. The dependence of the H0
6 mass on the

parameter MR is more dominant than on tan β. Requiring MR ∼ 100 TeV insures

that Higgs-mediated FCNCs in K and B neutral mesons are suppressed to levels

consistent with experimental data. The variations of H0
6 mass with these parameters

are shown in Fig. 4.5.

The fields H0
2 and A0

1 are responsible for flavor-changing neutral currents in the

up-quark sector. Their masses are the same (as one can infer from the mass matrices

in Section 4.3), and although they depend in principle on vR, tan β and λ21, the only

significant dependence is on vR, such that if vR increases from 3 to 10 TeV, their

mass values increase approximately 3− 12 times. The mass also varies with the ratio

tan δ = v̄R/vR, while almost independent of the changes in the other parameters. The

parameter dependence is shown in Fig. 13, where we plot the explicit vR dependence

for three values of tan δ, as well as a more extensive illustration of the vR − v̄R

dependence in a contour plot. D0− D̄0 mixing constraints require vR ≥ 3 TeV. While

the dependence on both tan β and λ21 is very weak, the dependence on vR is almost

linear.
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Figure 12: The variation of the FCNC neutral Higgs H0
6 mass with the parameters of

the LRSUSY model. H0
6 induces tree-level FCNC in the down-quark sector. Shown

are: contour plots in the MR− tan β plane (the contour values are given in TeV when

multiplied by 103 ), the variation of MH0
6
with MR, and with vR, for three values of

tan δ = v̄R/vR.
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Figure 13: The variation of the FCNC neutral Higgs H0
2 mass with the parameters

of the LRSUSY model. H0
2 induces tree-level FCNC in the up-quark sector. To the

left, a contour plot in the vR − v̄R plane (the contour values are given in TeV) and,

at the right, as a function of vR for three values of tan δ = v̄R/vR.

From the approximate analytical expressions in Section 4.3, the mass of the lightest

doubly charged physical field H±±
1 depends on vR, λ, MR as well as on the soft slepton

masses m2
Lc . Analysis shows that only the dependence on vR and m2

Lc is significant.

However, the exact mass also depends on v̄R through the ratio tan δ = v̄R/vR.
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Figure 14: The masses of the lightest doubly-charged Higgs boson as a contour plot

(the contours values are given in GeV) in the vR −m2
Lc plane (left) and as a function

of vR plane for three values of tan δ = v̄R/vR (right).

As before we show, in Fig. 14, the dependence of these parameters as a function

of vR for different values of tan δ, as well as a contour plot in the vR−m2
Lc plane. The
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mass of H±±
1 increases with the increasing values of vR , as shown on the right hand

side of Fig. 14, for three values of tan δ, while it is basically independent on MR. One

can see that the mass is highly dependent on v̄R/vR.

For example, when we change vR from 3 to 10 TeV, the H±±
1 mass values increase

approximately 4 times. Of course, in all cases, different m2
Lc < 0 are needed to keep

the masses positive. Within the parameter space considered, mLc ∈ (4.5i− 10i) TeV.

The effect of varying the other parameters is negligible for the lightest doubly charged

Higgs, whereas the mass of the heavier doubly charged Higgs H±±
2 depends almost

exclusively on MR.

The lightest singly charged physical field H±
1 mass corresponds to the MSSM-like

charged Higgs boson. The singly charged state that is triplet-like is H+
2 and is heavy.

The other triplet-like charged Higgs boson is the Goldstone boson G±
2 responsible

for giving mass to W±
R bosons. The other charged Higgs which come from bidoublet

components are heavy, a consequence of requiring the mass parameters to satisfy

FCNC bounds.

Finally, we present in Tables 17 and 18 two explicit numerical scenarios for the

Higgs masses, which obey the constraints from meson mixings: one for vR = 3.5 TeV

and tan β = 10, the other for vR = 5 TeV and tan β = 50. The other parameters in

both scenarios are taken to be tan δ ≡ v̄R/vR = 1/1.05, MR = 100 TeV, λ = 1, λ21 =

−0.1, Cλ = 2.5 TeV, 〈S〉 = 1 TeV, MS = 1 TeV. We give masses and compositions

in terms of the bare states. One can see that, except for raising the lightest neutral

Higgs mass, increasing tan β has little effect on the spectrum. However raising vR

increases the mass of the lighter non-SM-like Higgs bosons in the neutral scalar and

pseudoscalar sector, as well as in the singly and doubly charged Higgs sectors. While

we did not prove in general that the model conserves R-parity, the numerical results

obtained from minimizing the masses confirm the results of [185]. Both of these

scenarios allow for a flavor-conserving neutral scalar Higgs boson; one light doubly

charged Higgs boson, and only two other Higgs bosons with masses below 1TeV, one

neutral and one singly-charged. The FCNC Higgs responsible for mixing in the up

(D0− D̄0) or down (K0− K̄0 and B0
d,s− B̄0

d,s) quark sectors are heavy and satisfy the

experimental constraints in each sector. This scenario is completely consistent with

the Tevatron [192] and LHC data [193] on Higgs boson searches.
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Particle Mass (GeV) Composition

H0
1 111.6 0.100φ0r

1 + 0.995χ0r
2

H0
2 680.9 −0.100φ0r

2 − 1.000χ0r
1

H0
3 4557.4 0.720δc

0r
+ 0.685δ̄c

0r
+ 0.001χ0r

2 − 0.129S0r

H0
4 11140.6 0.045δc

0r
+ 0.043δ̄c

0r
+ 0.998S0r

H0
5 141537.9 0.690δc

0r − 0.724δ̄c
0r

H0
6 141686.6 −1.000φ0r

2 + 0.100χ0r
1

H0
7 141688.2 0.001δc

0r − 0.001δ̄c
0r
+ 1.000φ0r

1 − 0.100χ0r
2

A0
1 680.9 0.100φ0i

2 − 1.000χ0i
1

A0
2 11106.8 1.000S0i

A0
3 141502.0 0.690δc

0i
+ 0.724δ̄c

0i − 0.003φ0i
2

A0
4 141686.6 −1.000φ0i

2 − 0.100χ0i
1

A0
5 141688.2 −0.002δc

0i − 0.002δ̄c
0i − 1.000φ0i

1 − 0.100χ0i
2

H+
1 690.2 −0.018δc

−∗ − 0.018δ̄c
+ − 0.099φ−∗

2 + 0.995χ+
1

H+
2 141454.6 0.690δc

−∗ − 0.724δ̄c
+

H+
3 141686.6 −0.995φ+

1 − 0.100χ−∗
2

H+
4 449688.2 −0.995φ−∗

2 − 0.100χ+
1

H++
1 217.9 −0.724δc

−−∗ − 0.690δ̄c
++

H++
2 141419.9 −0.690δc

−−∗
+ 0.724δ̄c

++

G0
1 0 0.568δc

0i
+−0.540δ̄c

0i
+ 0.062φ0i

1 − 0.617χ0i
2

G0
2 0 −0.449δc

0i
+ 0.428δ̄c

0i
+ 0.078φ0i

1 − 0.780χ0i
2

G+
1 0 0.100φ+

1 − 0.995χ−∗
2

G+
2 0 −0.724δc

−∗ − 0.690δ̄c
+
+ 0.003φ−∗

2 − 0.025χ+
1

Table 17: Masses and compositions of physical Higgs fields and unphysical Goldstone

bosons. Parameters are chosen as follows: tanβ = 10, tan δ = 1/1.05, vR = 3.5 TeV,

MR = 100 TeV, λ = 1, λ21 = −0.1, Cλ = 2.5 TeV, 〈S〉 = 1 TeV, MS = 1 TeV,

m2
Lc = −20 TeV2, f = 1.
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Particle Mass (GeV) Composition

H0
1 113.6 0.020φ0r

1 + 1.000χ0r
2

H0
2 998.6 −0.020φ0r

2 − 1.000χ0r
1

H0
3 6797.1 0.714δc

0r
+ 0.680δ̄c

0r − 0.168S0r

H0
4 12214.8 0.068δc

0r
+ 0.061δ̄c

0r
+ 0.996S0r

H0
5 141575.2 −0.690δc

0r
+ 0.724δ̄c

0r

H0
6 315121.9 −1.000φ0r

2 + 0.020χ0r
1

H0
7 315123.5 −1.000φ0r

1 + 0.020χ0r
2

A0
1 998.6 0.020φ0i

2 − 1.000χ0i
1

A0
2 12152.2 1.000S0i

A0
3 141502.0 0.690δc

0i
+ 0.724δ̄c

0i

A0
4 315121.9 −1.000φ0i

2 − 0.020χ0i
1

A0
5 315123.5 −1.000φ0i

1 − 0.020χ0i
2

H+
1 995.3 −0.013δc

−∗ − 0.012δ̄c
+ − 0.020φ−∗

2 + 1.000χ+
1

H+
2 141405.3 0.690δc

−∗ − 0.724δ̄c
+

H+
3 315121.9 −1.000φ+

1 − 0.020χ−∗
2

H+
4 315123.5 −1.000φ−∗

2 − 0.020χ+
1

H++
1 215.3 −0.724δc

−−∗ − 0.690δ̄c
++

H++
2 141334.2 −0.690δc

−−∗
+ 0.724δ̄c

++

G0
1 0 −0.138δc

0i
+ 0.131δ̄c

0i
+ 0.019φ0i

1 − 0.961χ0i
2

G0
2 0 0.710δc

0i − 0.677δ̄c
0i
+ 0.004φ0i

1 − 0.981χ0i
2

G+
1 0 0.020φ+

1 − 1.000χ−∗
2

G+
2 0 0.724δc

−∗
+ 0.690δ̄c

+
+ 0.018χ+

1

Table 18: Masses and compositions of physical Higgs fields and unphysical Goldstone

bosons. Parameters are chosen as follows: tanβ = 50, tan δ = 1/1.05, vR = 5 TeV,

MR = 100 TeV, λ = 1, λ21 = −0.1, Cλ = 2.5 TeV, 〈S〉 = 1 TeV, MS = 1 TeV,

m2
Lc = −30 TeV2, f = 1.

Finally we comment on the scalar leptons and gaugino masses. In [185], the

authors attempt a complete model building, incorporating general (approximate)

constraints on doubly charged Higgs boson fields and scalar lepton masses, as

functions of gaugino masses. Using two-loop MSSM renormalization group equations
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[194], the relations between these parameters are

M2
++(mZ) <

24

5b1
M2

1̃
(mZ)

[
α2
B−L(vR)

α2
B−L(mZ)

− 1

]

M2
τ̃R
(mZ) <

5

6b1
M2

1̃
(mZ)

[
α2
B−L(vR)

α2
B−L(mZ)

− 1

]

M2
τ̃L
(mZ) <

3

10b1
M2

1̃
(mZ)

[
α2
B−L(vR)

α2
B−L(mZ)

− 1

]
+

3

2b2
M2

L̃
(mZ)

[
α2
L(vR)

α2
L(mZ)

− 1

]
(4.58)

where M1̃,ML̃ are gaugino masses, b1, b2 are RGE coefficients, M++ is the soft doubly

charged Higgs mass, and the last two equations give bounds on the the right and left

tau slepton masses. We use the renormalization group equations for the LRSUSY

model with triplets and an arbitrary number of singlets [195] to evaluate the mass

bounds2. In our case, taking vR in the 3.5− 10 TeV region, the limits become:

M2
++(mZ) <

1

8
M2

1̃
(mZ)

[
α2
B−L(vR)

α2
B−L(mZ)

− 1

]
+M2

R̃
(mZ)

[
α2
R(vR)

α2
R(mZ)

− 1

]

M2
τ̃R
(mZ) <

1

32
M2

1̃
(mZ)

[
α2
B−L(vR)

α2
B−L(mZ)

− 1

]
+

3

16
M2

R̃
(mZ)

[
α2
R(vR)

α2
R(mZ)

− 1

]

M2
τ̃L
(mZ) <

1

32
M2

1̃
(mZ)

[
α2
B−L(vR)

α2
B−L(mZ)

− 1

]
+

3

16
M2

L̃
(mZ)

[
α2
L(vR)

α2
L(mZ)

− 1

]
(4.59)

The approximate bounds on the soft masses depend critically on the relationship

between the U(1)B−L, SU(2)L and SU(2)R gaugino masses. For instance, for

ML̃ = MR̃ = M1̃ : M++(mZ) < 0.24M1̃(mZ), Mτ̃R(mZ) < 0.11M1̃(mZ) and

Mτ̃L(mZ) < 0.11M1̃(mZ); for ML̃ = MR̃ = 2M1̃ the bounds become M++(mZ) <

0.4M1̃(mZ), Mτ̃R(mZ) < 0.2M1̃(mZ) and Mτ̃L(mZ) < 0.2M1̃(mZ); while for 2ML̃ =

MR̃ = 4M1̃, the limits are M++(mZ) < 0.7M1̃(mZ), Mτ̃R(mZ) < 0.32M1̃(mZ) and

Mτ̃L(mZ) < 0.2M1̃(mZ). While no precise conclusions can be reached, the bounds

push the gaugino mass parameter M1̃ to be very large, which is not inconsistent with

soft slepton masses in the TeV range. Note that these mass bounds are only a rough

estimate, as we include gaugino masses but neglect other terms. The purpose of our

calculations was to show that a self-consistent Higgs sector can be obtained within

the framework of the minimal model, leaving the door open for a more thorough

exploration of the model.

2These bounds are completely consistent with what we obtain using relations given in [185] for
M1̃ = ML̃ = MR̃.
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4.6 Summary and Conclusion

In this Chapter we analyzed the Higgs sector of a minimal LRSUSY model with

automatic R-parity violation. Symmetries of the model forbid explicit R-parity

violation. Inclusion of the effects of the Yukawa coupling of the heavy Majorana

neutrino insures a global minimum which is charge conserving, thus avoiding

spontaneous R-parity breaking or the need to introduce higher dimensional terms.

The Higgs sector contains four doubly charged, six singly charged Higgs fields,

nine neutral scalar fields, and seven pseudoscalar fields (in addition to two neutral

Goldstone bosons, and two charged ones). One would expect that, with so many

free parameters in the Lagrangian, and so many free masses, almost any scenario is

possible for the Higgs masses in this model. We show that the requirement that 1)

there is a light neutral scalar Higgs boson, flavor conserving, which is the counterpart

to the SM Higgs boson; 2) there exists at least one light doubly charged Higgs boson

(as it is interesting for phenomenology); and 3) the flavor-violating neutral Higgs

bosons satisfy the constraints imposed by the experimental data from K0 − K̄0,

D0 − D̄0, and B0
d,s − B̄0

d,s mixings, makes the Higgs sector fairly predictive and fixes

some of the parameters in a narrow range. The masses of the light neutral and

doubly charged Higgs bosons depend on very few parameters. For instance, we find

that requirement 1) and 2) are related, and satisfied by vR ∈ (3, 10) TeV range.

Assuming vR ∼ v̄R and gL = gR, this predicts masses for the WR around 4− 13 TeV

(assuming negligible mixing with WL), and for ZR bosons in the 3 − 10 TeV range.

Thus, while the model can allow for light neutral, singly and doubly charged Higgs

bosons, it predicts new gauge bosons just outside the range MWR
< 2(4) TeV which

can be observed at the LHC with a luminosity of 1(30) fb−1 [196].

The parameter MR, associated with the singlet Higgs field in the superpotential,

must be of O(100) TeV, which insures high masses for the FCNC Higgs. And our

rough estimates show that requiring some of the Higgs bosons to be light likely push

the scale of supersymmetry above 1 TeV.

Our analysis is important for two reasons: first, we have shown that a reasonable

Higgs mass spectrum is possible in LRSUSY. This analysis shows that, except for

these three bosons, the rest are heavy (with only three, one neutral scalar, one

pseudoscalar and one singly charged) just below the TeV scale. Second, as most

Higgs masses are sensitive to few parameters, the model is very predictive and free
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of additional parameters, such as the sneutrino VEVs or extra higher-dimensional

terms. The best signal for this model from the Higgs sector remains the observation

of a doubly charged Higgs boson, decaying copiously to charged leptons. Observation

of a light non-MMSM like Higgs (neutral or singly charged) will invalidate the model,

at least within the present minimal prescription for the Higgs sector. This analysis

can now form the basis of a consistent phenomenological study of signals from such

a Higgs sector, including production and decay rates, and has implications for the

masses of the additional gauge bosons, of the right-chiral neutrinos, as well as for the

supersymmetric partners.
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Chapter 5

HIGGS PHENOMENOLOGY in

WARPED EXTRA DIMENSIONS

with a 4th GENERATION

Previously, in Section 3.3 Four-Generation Standard Model and in Section 3.4 Warped

Extra Dimensions has been introduced. There have been many extensive studies of

the SM4. However, there are few analyzes of BSM scenarios with four generations

(see however [99]). The reason is that the fourth generation typically imposes severe

restrictions on the models. We have mentioned before the advantages of introducing

a fourth generation into models with warped extra dimensions.

As mentioned earlier, KK particles could be just barely beyond the reach of

the LHC. Nevertheless there are implications of the warped scenarios that could

leave an imprint on lower energy physics. For instance, recently it was pointed out

that warped extra-dimensional models introduce new flavor-violating operators in

the Higgs sector. In a composite Higgs sector with strong dynamics, flavor changing

neutral currents (FCNC) can arise at tree level, generated by a misalignment between

the Higgs Yukawa matrices and the fermion mass matrices [175,176,181]. The full set

of operators responsible for the misalignment has been thoroughly analyzed, showing

that the effect is generically large and phenomenologically important [181] and even

could alter considerably the couplings of Higgs to gluons [197,198], thus affecting the

main production mechanism of the Higgs at hadron colliders.

These flavor violating effects will be even more pronounced if the matter sector is
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extended by extra fermionic generations. And for the Higgs bosons, it is well known

that the effects of a fourth generation are quite spectacular in modifying the Higgs

boson cross-section at hadron colliders, which can be tested easily with Tevatron and

early LHC data within this or the next year. The Tevatron has published limits on

the Higgs boson cross-section in the fourth generation model, excluding a wide range

of Higgs boson masses [168], and recently the CMS collaboration carried out a similar

study [193].

As Higgs production can be modified within warped scenarios due to flavor

violating effects in the Higgs sector [198], it may be possible to distinguish signals

coming from SM4 from those coming from a fourth generation model associated with

a warped extra-dimension (or a composite scenario), given the searches for the Higgs

boson underway at the LHC. The inclusion of the fourth generation will also affect

low-energy precision observables, as well as limits on rare decays. In the lines of [181],

we explore here the effect of FCNC Higgs couplings with a fourth generation in a

warped extra dimensional model with fermions in the bulk.

5.1 Flavor Structure with four families

The model is introduced in detail in Section 3.4. We now proceed to add to

the scenario the remaining families of quarks and leptons, including a new fourth

generation. This will of course create a richer structure of flavor, not only in the

Higgs sector, but in the electroweak sector, where the flavor changing charged current

mediated by W bosons now contains new contributions with the addition of t′ and b′.

The fermion zero-mode wavefunctions evaluated at the TeV brane, f(c), are now

diagonal matrices as follows

FQ =

⎛
⎜⎜⎜⎜⎝

fQ1 0 0 0

0 fQ2 0 0

0 0 fQ3 0

0 0 0 fQ4

⎞
⎟⎟⎟⎟⎠ , Fu =

⎛
⎜⎜⎜⎜⎝

fu1 0 0 0

0 fu2 0 0

0 0 fu3 0

0 0 0 fu4

⎞
⎟⎟⎟⎟⎠ ,

Fd =

⎛
⎜⎜⎜⎜⎝

fd1 0 0 0

0 fd2 0 0

0 0 fd3 0

0 0 0 fd4

⎞
⎟⎟⎟⎟⎠ . (5.1)
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Here small differences in the c’s will produce large hierarchies in the values of f(c)

(i.e. geographical fermion localization in the extra dimension) giving rise to a highly

hierarchical structure in Fi where i = Q, u, d. This is shown in Figure 15.
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Figure 15: Typical geographic location of quarks in RS-4GEN (RS with a fourth

family) such that large quark mass hierarchies and small mixing angles are generic.

The Higgs boson and the heavier fermions (top and fourth generation quarks and

charged leptons) are localized near the TeV brane, whereas light fermions are localized

towards the Planck brane.

5.1.1 The quark mixing matrix VCKM4

The mass matrices are given by

Mu = υ4 FQ Yu Fu,

Md = υ4 FQ Yd Fd. (5.2)

Here, the matrices Yu and Yd are composed of 5D Yukawa couplings and are 4 × 4

with complex entries. Because most of the elements in the diagonal matrices Fi are

naturally hierarchical (for UV-localized fermions), the physical fermion mass matrices

Mu and Md will inherit their hierarchical structure independently of the nature of

the true 5D Yukawa couplings, the latter of which can therefore contain all of their

entries with similar size of O(1), and have no definite flavor structure. This is the

main idea behind scenarios of so-called flavor anarchy, which we consider here, applied

to a four-family scenario. The introduction of the fourth family is simply realized by

assuming that the new fermions are localized near the TeV brane, like the top quark,

and therefore will be naturally heavy. Mixing angles should typically be small except
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among the heavy fermions where large mixings could be possible. To diagonalize the

mass matrices we use

UQu Mu Wu
† = Mdiag

u , (5.3)

UQd
Md Wd

† = Mdiag
d . (5.4)

One can in fact obtain a relatively simple formulation of the rotation matrices UQu ,

UQd
, Wu and Wd by expanding their entries in powers of ratios fi/fj, where i < j

and with i = 1, 2 and j = 1, 2, 3, 4. In Appendix D-1 we have calculated the unitary

transformation matrices UQu and UQd
for four generations of fermions by keeping

only the leading terms. Here we will only give the final results of our calculation. For

the three family case see [199].

UQu =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
[Yu]21
[Yu]11

fQ1

fQ2

UQu

13 UQu

14

− [Yu]
∗
21

[Yu]
∗
11

fQ1

fQ2

1 UQu

23 UQu

24

[Yu]
∗
31

[Yu]
∗
11

fQ1

fQ3

− [Yu]
∗
11,32

[Yu]
∗
11,22

fQ2

fQ3

cQu sQu

− [Yu]
∗
41

[Yu]
∗
11

fQ1

fQ4

[Yu]
∗
11,42

[Yu]
∗
11,22

fQ2

fQ4

−s∗Qu
c∗Qu

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (5.5)

UQd
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
[Yd]21
[Yd]11

fQ1

fQ2

UQd
13 UQd

14

− [Yd]
∗
21

[Yd]
∗
11

fQ1

fQ2

1 UQd
23 UQd

24

[Yd]
∗
31

[Yd]
∗
11

fQ1

fQ3

− [Yd]
∗
11,32

[Yd]
∗
11,22

fQ2

fQ3

cQd
sQd

− [Yd]
∗
41

[Yd]
∗
11

fQ1

fQ4

[Yd]
∗
11,42

[Yd]
∗
11,22

fQ2

fQ4

−s∗Qd
c∗Qd

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (5.6)

where, in particular we have

UQd
23 = cQd

fQ2

fQ3

[Yd]11,32
[Yd]11,22

+ s∗Qd

fQ2

fQ4

[Yd]11,42
[Yd]11,22

, (5.7)

UQd
13 = cQd

fQ1

fQ3

[Yd]21,32
[Yd]11,22

+ s∗Qd

fQ1

fQ4

[Yd]21,42
[Yd]11,22

. (5.8)
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The UQu

13 and UQu

23 entries cannot be simplified as in the down sector since mt is heavy.

However, we do not need them to calculate the CKM entries. The 4D CKM matrix

for the left handed quarks are

VCKM = UQu

†UQd
, (5.9)

The UQd
13 and UQd

23 are needed for calculating the elements Vcb and Vub. Using the mass

hierarchy mb � mb′ , we can also write the simple expansions for cQd
and sQd

∗ as

cQd
= v4 fQ4fd4 |Y d

44|/mb′ , s∗Qd
= v4 fQ3fd4Y

d
34

∗
/mb′ e

i arg (Y d
44). (5.10)

Now, we give the analytical expressions for some of the CKM entries. The details

of the calculations are given in Appendix D-1 It is important to note that even

though the 5D Yukawa matrices are all O(1), we can still have the observed hierarchy

structure in CKM matrix by virtue of the fi parameters.

Vus =
fQ1

fQ2

(
[Yd]21
[Yd]11

− [Yu]21
[Yu]11

)
, (5.11)

, (5.12)

and

Vub = cQd

fQ1

fQ3

(
[Yu]31
[Yu]11

+
[Yd]21,32
[Yd]11,22

− [Yu]21
[Yu]11

[Yd]11,32
[Yd]11,22

)

+s∗Qd

fQ1

fQ4

(
[Yu]41
[Yu]11

+
[Yd]21,42
[Yd]11,22

− [Yu]21
[Yu]11

[Yd]11,42
[Yd]11,22

)
. (5.13)

If the 5D Yukawa matrix elements are all of order 1, then the observed hierarchies

among the CKM elements can still be explained by hierarchies among the fi

parameters. The explicit dependence on the 5D Yukawa couplings gives a more

precise prediction for the mixing angles, which is quite useful when looking for

phenomenologically viable points in parameter space. The results of such a scan

are presented in the next subsection. The Wu,d matrices are obtained in the same
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way as UQu,d
and are given by (see Appendix D-1)

Wu =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
[Yu]

∗
12

[Yu]∗11

fu1

fu2

Wu
13 Wu

14

− [Yu]12
[Yu]11

fu1

fu2

1 Wu
23 Wu

24

[Yu]13
[Yu]11

fu1

fu3

− [Yu]11,23
[Yu]11,22

fu2

fu3

c∗u s∗u

− [Yu]14
[Yu]11

fu1

fu4

[Yu]11,24
[Yu]11,22

fu2

fu4

−su cu

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (5.14)

and

Wd =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
[Yd]

∗
12

[Yd]∗11

fd1
fd2

Wd
13 Wd

14

− [Yd]12
[Yd]11

fd1
fd2

1 Wd
23 Wd

24

[Yd]13
[Yd]11

fd1
fd3

− [Yd]11,23
[Yd]11,22

fd2
fd3

c∗d s∗d

− [Yd]14
[Yd]11

fd1
fd4

[Yd]11,24
[Yd]11,22

fd2
fd4

−sd cd

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (5.15)

5.1.2 Tree level Higgs FCNC couplings

We now extend the one-family results presented in Subsection 3.4.5 to the case of

four generations. To leading order in Yukawa couplings, the SM fermion mass matrix

is

m̂d = F̂QŶ
5D
1 F̂d v4, (5.16)

where ˆ indicates a 4 × 4 matrix in flavor space. The misalignment in flavor space

between the fermion mass matrix and the Yukawa coupling matrix is defined as

Δ̂d = m̂d − v4 ŷd
4 , (5.17)

where ŷd
4 is the 4D effective coupling matrix between the physical scalar Higgs and

the quarks.

Similarly to the one family case, the misalignment can be separated into two

components, Δ̂d
1 + Δ̂d

2, with

Δ̂d
1 =

2

3
m̂d 1

F̂d

(Ŷ5D
2 )†

1

F̂Q

m̂d
(
v4R

′2) , (5.18)
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and

Δ̂d
2 = m̂d

(
m̂d†K̂(cq) + K̂(−cd)m̂

d†
)
m̂d R′2 (5.19)

The crucial observation is that m̂d and Δ̂d are generally not aligned in flavor space.

Thus when we diagonalize the quark mass matrix with a bi-unitary transformation

m̂d → U†
QL

m̂dWd, the Yukawa couplings will not be diagonal. To be more specific,

in models of flavor anarchy, we have

(UQd
,Wd)i,j ∼ fQi,di

fQj ,dj

for i < j. (5.20)

Then the off-diagonal Yukawa coupling will be dominated by

Ŷoff
ij = −(U†

dL
Δ̂dWdR

)ij
1

v4
∼ 2

3
fQi

Ȳ 3fdjv
2
4R

′2, (5.21)

where Ȳ is the typical value of the dimensionless 5D Yukawa coupling.

Since the Higgs couplings now contain off-diagonal entries, we must choose a

convenient parametrization for them. A common choice is to normalize the couplings

with the fermion masses and write the Higgs Yukawa couplings as1

LHFV = adij

√
md

im
d
j

v24
Hd̄iLd

j
R + h.c. + (d ↔ u). (5.22)

5.1.3 Analytical Estimates of Higgs FCNC Couplings in

Flavor Anarchy

In Section 3.4 the tree level Higgs FCNCs are presented. In this subsection we will

estimate analytically flavor changing couplings of Higgs to fermions with 4 generation

in warped extra dimensional model. We follow the same procedure as in [181]

where there are three families only. We then compare these analytical results to

our numerical scan.

We use eqs. (5.20) and (5.21) to estimate the sizes of au,dij . For example, we have

ad12 ∼ 2

3
fQ1Ȳ

3fd2v
2
4R

′2

√
v24

msmd

∼ 2

3
λȲ 2v24R

′2
√

ms

md

, (5.23)

1This is a particular realization of the Cheng-Sher Ansatz [200].
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where λ is the Wolfenstein parameter (see Section 2.3), and we used fq1/fq2 ∼
(UdL)12 ∼ (VCKM)12 ∼ λ. We can find the other au,dij in similar fashion. We obtain:

adij ∼ δij − 2

3
Ȳ 2v24R

′2

⎛
⎜⎜⎜⎜⎜⎜⎝

1 λ
√

ms

md
λ3
√

mb

md
λ3
√

mb′
md

1
λ

√
md

ms
4 λ2

√
mb

ms
λ2
√

mb′
ms

1
λ3

√
md

mb

1
λ2

√
ms

mb
12

√
mb′
mb

1
λ3

√
md

mb′
1
λ2

√
ms

mb′

√
mb

mb′
12

⎞
⎟⎟⎟⎟⎟⎟⎠

, (5.24)

auij ∼ δij − 2

3
Ȳ 2v24R

′2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 λ
√

mc

mu
λ3

√
v24

mtmu
λ3
√

v24
mt′mu

1
λ

√
mu

mc
4 λ2

√
v24

mtmc
λ2
√

v24
mt′mc

1
λ3

√
mu

mt

1
λ2

√
mc

mt
16

√
mt′mt

v24

1
λ3

√
mu

mt′
1
λ2

√
mc

mt′

√
v24

mt′mt
16

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (5.25)

The effect clearly decouples since it depends on R′2 ∼ 1
M2

KK
. Taking the typical

Yukawa size Ȳ = 2 and 1/R′ = 1500 GeV, and using the known SM masses evaluated

at the KK scale, along with mt′ = 400 GeV and mb′ = 350 GeV, one can obtain the

typical values of these couplings:

adij ∼

⎛
⎜⎜⎜⎜⎝

0.96 0.03 0.01 0.14

0.04 0.86 0.01 0.15

0.13 0.19 0.57 0.45

0.01 0.007 0.003 0.57

⎞
⎟⎟⎟⎟⎠ , (5.26)

auij ∼

⎛
⎜⎜⎜⎜⎝

0.96 0.16 0.15 0.09

0.008 0.86 0.04 0.02

0.01 0.04 0.42 0.05

0.007 0.03 0.003 0.42

⎞
⎟⎟⎟⎟⎠ . (5.27)

Note that the results presented here are just estimates for the size of au,dij , which

enter without sign or phases. However, we observe that for the third and fourth

generation quarks, the corrections to the diagonal Yukawa couplings are always

negative (suppressions) if Y1 = Y2 and are larger than the previous estimates. This

point was argued in [181] and we address it again the next subsection for completeness.
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An interesting feature of these matrices is the asymmetry of adij in the bLb
′
R and

b′LbR entries, asymmetry not shared by the up-quark matrix auij. This asymmetry in

the couplings produces an asymmetry in the decays, as well as in the shift in the

vertex functions gbL, g
b
R for Z → bb̄. This asymmetry will be typical for the (34− 43)

entries and thus non-universal. We expect the same feature in the charged lepton

mass matrix.

5.1.4 Numerical Results for Higgs FCNC Couplings

In order to obtain a better prediction of the typical size of the off-diagonal Yukawa

couplings, and to compare with the previous estimates we perform a scan in parameter

space. The results should be in general consistent with the rough estimates of

Eqs. (5.26) and (5.27). Some differences observed can nevertheless be explained,

(see also [181]) so that one can still be confident of the generic size of the flavor

violating couplings predicted in the flavor anarchy paradigm in RS type scenarios

with four generations.

We proceed as follows:

• We fix mt′ = 400 GeV and mb′ = 350 GeV as well as SM quark masses at

the KK scale, taken to be mt = 140 GeV, mb = 2.2 GeV, mc = 0.55 GeV,

ms = 5× 10−2 GeV, mu = 1.5× 10−3 GeV, md = 3.0× 10−3 GeV. We take the

KK scale as R′−1 = 1500 GeV.

• Then we generate random complex entries for Yu and Yd, such that |Yi| ∈
[0.3, 3.5]. We also generate random fQ4 such that fQ4 ∼ O(1).

• We then obtain fQ3 from |Vub|/|Vus|/|Vcb|, fQ2 from |Vub|/|Vus| and fQ1 from

|Vus| (see Eqs. (5.11), (5.12) and (5.13)).

• We then obtain the right-handed down quark entries fd4 from mb′ .

• Similarly for the up right-handed matrix entries, we obtain fu1 , fu2 , fd1 , fd2 and

fd3 from mu,mc,md,ms and mb. We also obtain fu3 and fu4 from mt and mt′ .

• Finally we check that the generated Yu and Yd along with the obtained F̂q, F̂u

and F̂d do indeed produce the observed masses and mixings of the SM. If so
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we keep the point in parameter space and continue until we obtain 1000 points

which satisfy all constraints.

• For each acceptable point, we use Eqs. (5.18) and (5.19) to compute the flavor

violating Higgs Yukawa couplings, parametrized by the aij’s as defined in

Eq. (5.22).

We present the results of the scan as follows: we give the 25% quantile and the

75% quantile of the obtained couplings. This means that 50% of our acceptable

points contain a coupling in between the quoted values. Also it means that 25% of

the generated points predict higher values than the range quoted, while 25% of the

points predict lower values than the range quoted.

We find the following ranges for adij, auij matrix couplings2

adij ∼

⎛
⎜⎜⎜⎜⎝

0.919− 0.987 0.025− 0.081 0.011− 0.044 0.130− 0.532

0.049− 0.148 0.827− 0.934 0.0.017− 0.059 0.249− 0.934

0.140− 0.470 0.142− 0.446 0.620− 0.819 0.873− 2.508

0.018− 0.061 0.017− 0.058 0.008− 0.120 0.375− 0.643

⎞
⎟⎟⎟⎟⎠ , (5.28)

auij ∼

⎛
⎜⎜⎜⎜⎝

0.927− 1.000 0.089− 0.364 0.091− 0.410 0.139− 0.612

0.015− 0.052 0.816− 0.949 0.065− 0.197 0.092− 0.300

0.019− 0.068 0.071− 0.236 0.545− 0.772 0.127− 0.343

0.0167− 0.062 0.060− 0.191 0.064− 0.168 0.403− 0.651

⎞
⎟⎟⎟⎟⎠ , (5.29)

to be compared with the rough estimates Eqs. (5.26) and (5.27).

5.1.5 Cumulative Effect on Diagonal Yukawa Couplings

when Y1 = Y2

We observe that the rough estimates are slightly smaller than the results of the scan,

specially for the third and fourth generation couplings. This was already pointed

out in [181] for the three generation case. The argument given is that due to the

presence of a fourth generation some of the coefficients will be different and typically

the cumulative effect will be larger.

2This scans were produced by Dr. Manuel Toharia.
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We assume that Y1 = Y2. This is an important choice, and without it no extra

enhancements would appear. Nevertheless this choice is natural if the Higgs boson is

to be considered as a highly localized 5D scalar field, and then 5D Lorentz invariance

imposes Y1 = Y2. Let us consider the element (33) of the Yukawa coupling in the up

quark sector as an example

att − 1 = −2R′2

3mt

[
UQu

†Mu
1

F̂ 2
u

Mu† 1

F̂ 2
Q

MuWu

]
33

= −2R′2

3mt

(
Mdiag

u

)
33

(
Wu

† 1

F̂ 2
u

Wu

)
3j

(
Mdiag

u

)
jj

×
(
UQu

† 1

F̂ 2
Q

UQu

)
j3

(
Mdiag

u

)
33

. (5.30)

First let’s look at the contribution to att when the j index is equal to 3 (i.e. for

mass matrix (Mdiag
u )33 = mt). In this case, there will be 16 terms in phase, each

proportional to −2R′2Ȳ 2v24
3

, and it is important to realize that every one of them will

be real and negative, because (Wu
† 1

F̂ 2
u
Wu)33 ≥ 0. When j = 2 ((Mdiag

u )22 = mc)

there will be 2 terms ∼ 2R′2Ȳ 2v24
3

but every one of them will have generically a

random complex phase (the 14 remaining terms are much smaller). For j = 1

((Mdiag
u )11 = mu) there is only one term ∼ 2R′2Ȳ 2v24

3
contributing, with the rest

15 terms being again suppressed. So, summing over all terms, the dominant

contribution to att will consist of 19 terms, 16 of which are negative and the rest

3 have random complex phases. Generically each of these terms are of the same

size ∼ 2R′2Ȳ 2v2

3
so from a statistical argument, att − 1 should receive a negative

contribution ∼ −16
(

2R′2Ȳ 2v2

3

)
. This cumulative effect is confirmed by the numerical

scan.

One can perform the same analysis for the rest of elements of the Yukawa matrix,

including the off diagonal ones, and realize that typically there are a number of

aligned terms in each case which enhance the naive estimate by an O(1) factor (and

which also can be estimated). This fact gives us confidence that both our scan and

our estimates are consistent and that our numerical results predict correctly in this

scenario the generic size of the flavor violating couplings in the Higgs sector.
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5.1.6 Higgs FCNC Couplings in the Lepton Sector

We proceed in a similar fashion to evaluate Higgs flavor violation in the lepton sector.

The difficulty with the lepton sector is that mixing matrices are not well-established

here. The neutrinos can be either Dirac or Majorana, the charged lepton mixing

matrix (PMNS) is not as well established as the CKM matrix, and there are several

mechanisms to explain the large mixing angles and light masses for the neutrinos (see

for example [201,202]). For all cases, the Lagrangian can then be parametrized as:

LHFV = alij

√
ml

im
l
j

v24
HL̄iej + h.c. (5.31)

Following [181, 202], we analyze two types of scenarios. Depending on the neutrino

model, the left-handed charged lepton profiles can be either hierarchical and UV

localized, or similar and UV localized. The profiles of the right-handed charged

leptons are always hierarchical and localized near the UV brane. We outline both

cases below.

• (A) In the case where the left-handed and right-handed profiles are hierarchical,

they satisfy the following relations:

f i
Lf

i
e ∼

ml
i

Ȳ v4
, (OL,e)

i,j ∼ f i
L,e

f j
L,e

, i < j. (5.32)

where fL,e are profiles of the left-handed and right-handed fields and (OL,e)
i,j is

the intergenerational mixing. Then the alij become:

alij ∼
2

3
Ȳ 2(v24R

′2)

√
f i
Lf

j
e

f j
Lf

i
e

. (5.33)

This alij are maximal when
f i
L

f j
L

∼ f i
e

f j
e

∼
√

ml
i

ml
j

, i.e., when the hierarchy of

charged lepton masses acquires equal contributions from the left-handed and

right-handed fields.

• (B) If right-handed profiles are hierarchical and left-handed profiles are similar,

f 1
L ∼ f 2

L ∼ f 3
L, the profiles satisfy the following relations:

f i
Lf

i
e ∼ ml

i

Ȳ v4
,

f i
L

f j
L

∼ O(1),
f i
e

f j
e

∼ ml
i

ml
j

, i < j, (5.34)
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and the the parameter alij becomes:

alij ∼
2

3
Ȳ 2(v24R

′2)

√
f j
e

f i
e

. (5.35)

These flavor violating Higgs Yukawa couplings to leptons can also lead to

interesting collider signals for the decays of the fourth generation leptons, as

discussed in the next section.

5.1.7 Tree Level Z0 Flavor Violating Couplings

FCNC couplings of the Z0 boson have been studied before in the context of warped

scenarios with 3 generations [199]. These couplings arise basically from two sources.

First, the bulk profiles of the lowest-lying massive gauge bosons (the SM Z0 and W 0)

are not flat, yielding non-trivial and non-universal overlap integrals with the fermion

profiles. Second, even if the Z0 and W 0 profiles were flat, there would still be a non-

universal correction to these couplings due to misalignments in the fermion kinetic

terms. In fact the correction has the exact same origin as the misalignment Δ̂d
2 in the

Higgs sector shown in Eq. (5.19).

For light quarks, the first source of misalignment dominates due to Yukawa

suppression of the fermion kinetic term misalignments. But for heavier quarks, and

specially fourth generation quarks, this last source of flavor should dominate and this

is the one we consider in the following.

We can write the couplings of fermions with Z0 as:

LZ =

[
gL δij +

(
δ̂gL

)
ij

]
d̄iLZ/ djL +

[
gR δij +

(
δ̂gR

)
ij

]
d̄iRZ/ djR + (d ↔ u), (5.36)

where gL =
g

cos θW
(T3 −Q sin θW

2) and gR =
g

cos θW
Q sin θW

2 are the usual diagonal

SM couplings with g the SU(2)L coupling constant, and Q and T3 the charge and

the isospin of the quark in question. The corrections coming from the kinetic term

misalignment are, for the down quarks,

δ̂kingL
= − gT d

3

cos θW
M†

dK̂cqMd R′2, (5.37)

δ̂kingR
=

gT d
3

cos θW
MdK̂cdM

†
d R′2. (5.38)
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where Md is the fermion mass matrix before diagonalization, R′−1 is the KK scale

and K̂ is a diagonal matrix whose entries K(c) were defined in Eq. (3.196). Upon

diagonalization of the fermion mass matrix in order to go to the physical basis, these

corrections will not be diagonal and will produce flavor violating coupling for the Z0

boson. The same mechanism applies in the up-sector.

Once in the physical basis, we can parametrize the off-diagonal quark couplings

in the Lagrangian by
(
au,dL

)
ij
and
(
au,dR

)
ij
, with

LZFV = − gT d
3

cos θW

[(
adL
)
ij
d̄iLZ/ djL − (adR)ij d̄iRZ/ djR

]
+ (d ↔ u). (5.39)

The Z0 FCNC couplings
(
au,dL

)
ij
,
(
au,dR

)
ij
can then be obtained from the same scan

used to obtain numerical values for the Higgs FCNC couplings. For example, for the

(43) entries in the up and down sector, we find typical ranges

(auL)43 = 0.00350− 0.0176, (auR)43 = 0.0274− 0.0952, (5.40)

(adL)43 = 0.00356− 0.0161, (adR)43 = 0.0209− 0.0830. (5.41)

To obtain these values we followed the same procedure explained previously in the

subsection “Numerical results for Higgs FCNC couplings”.

5.2 Phenomenology

5.2.1 Bounds on Higgs-mediated FCNC Couplings

The off-diagonal Higgs Yukawa couplings induce FCNC, which affect many low energy

observables and also give possible signatures at colliders. In this section, we discuss

first bounds on Higgs flavor violation coming from tree-level processes ΔF = 2, such

asK−K̄, B−B̄, D−D̄ mixing. We then study the effects on loop processes, such as b

and t flavor-changing decays, as well as on Z → bb̄, τ+τ−. The radiative processes are

enhanced due to heavy quarks in the loop, and strong off-diagonal Yukawa couplings.

Tree-level Processes

The ΔF = 2 process are introduced in Subsection 4.4.1. For K−K̄ , Bd−B̄d, Bs−B̄s,

D − D̄ mixing, qiqj in eq. (4.39) are replaced by sd, bd, bs and uc, respectively.
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The exchange of the flavor-violating Higgs bosons gives rise to new contribution to

C2, C̃2 and C4 operators [94]. These contributions have been analyzed in the context

of SM4 [203]. The 3-generation constraints have been included in [181], and the basic

bounds on the coefficients are not altered. We present them here, for completeness,

in a more general fashion, with no relation to the possible numerical values of the

entries in the Higgs Yukawa mass matrix. We use the model-independent bounds on

BSM contributions as in [189], and present coupled constraints on the Higgs flavor

violating Yukawa couplings parametrized by the aij couplings and the Higgs mass

mh.

• K0 − K̄0 mixing: the coefficients C2, C̃2 and C4 will set limits on the real and

imaginary of the Yukawa couplings ad12, a
d
21, and their product. Specifically, for

the values of parameters used in the previous sections, we obtain, from ΔMK ,

respectively:

|(ad12)|
(
500 GeV

mh

)
≤ 0.78, |(ad21)|

(
500 GeV

mh

)
≤ 0.78, (5.42)

|(ad12ad∗21)|
(
500 GeV

mh

)2

≤ (0.44)2.

The bounds obtained from εK are very stringent, and restrict the phases of the

off-diagonal Higgs Yukawa couplings:

Im(ad12)
2

(
500 GeV

mh

)2

≤ (5.75× 10−2
)2

,

Im(ad21)
2

(
500 GeV

mh

)2

≤ (5.75× 10−2
)2

,

Im(ad12a
d∗
21)

(
500 GeV

mh

)2

≤ (2.75× 10−2
)2

. (5.43)

• D0 − D̄0 mixing: the mixing constrains the (12, 21) off-diagonal entries in the

up-quark flavor changing mixings.

|(au12)|
(
500 GeV

mh

)
≤ 0.89, |(au21)|

(
500 GeV

mh

)
≤ 0.89,

|(au12au∗21)|
(
500 GeV

mh

)2

≤ (0.59)2 . (5.44)
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• B0
d − B̄0

d mixing: the mixing is fairly constrained, resulting in bounds on the

(13, 31) entries in the down-quark flavor changing mixings.

|(ad13)|
(
500 GeV

mh

)
≤ 0.675, |(ad31)|

(
500 GeV

mh

)
≤ 0.675,

|(ad13ad∗31)|
(
500 GeV

mh

)2

≤ (0.44)2 . (5.45)

• B0
s − B̄0

s mixing: The mass mixing in the B0
s − B̄0

s is less restricted than in the

B0
d sector, resulting in bounds on the (23, 32) entries in the down-quark flavor

changing mixings. At first, these bounds may not appear useful; however, one

must note that the matrix entries aij are not otherwise constrained (e.g., by

unitarity).

|(ad23)|
(
500 GeV

mh

)
≤ 1.38, |(ad32)|

(
500 GeV

mh

)
≤ 1.38,

|(ad23ad∗32)|
(
500 GeV

mh

)2

≤ (0.8)2 . (5.46)

With the exception of εK , these bounds are not too restrictive over the estimated

size of the flavor violating couplings of the Higgs as our numerical evaluation show,

except perhaps for very light mh � 120 GeV. In what follows, we compare the tree-

level bounds with precision bounds coming from loop-generated processes including

a heavy fermion in the loop.

One-loop processes

We evaluate flavor-violating radiative type processes of the form qi → qjγ, and li →
ljγ as well as Z → bb̄ and Z → τ+τ−. Though occurring at one-loop level, these

processes are tightly constrained experimentally. For a recent calculation of these

warped penguin diagrams due to radiative exchanges of heavy KK states see [204].

In our scenario each process receives additional non-universal contributions from the

fourth generation quarks or leptons and Higgs bosons running in the loop.

The contribution is enhanced for couplings with the third generation, as the FCNC

couplings are larger. The basic process is illustrated in Fig. 3, where F represent

fourth generation quarks or leptons, fi, fj, second or third generation quarks or

leptons, and h is the Higgs boson. For instance, for b → sγ, F = b′, fi = b and
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fj = s quarks, while for Z → τ+τ−, F = τ ′, and fi = τ+, fj = τ−. We analyze each

process in detail.

Z[γ]
F

F

h

fi

fi[j]

Z[γ]

h

F

fi

fi[j]

fi

Z[γ]

fi

F

fi

h fi[j]

Figure 16: Generic loop diagrams enhanced by FCNC couplings between Higgs boson

and 4th generation fermions. Here F stand for a 4th generation quark (or lepton),

while fi, fj are 2nd or 3rd generation quarks (or leptons). The left-hand side graph

is the vertex diagram, while the other two are self-energy diagrams.

• b → sγ induced by Higgs FCNC couplings

The decay rate of b → sγ is

Γ(b → sγ) =
〈M2〉
16πm3

b

√
m4

b +m4
s − 2m2

bm
2
s. (5.47)

where the most dominant term in the matrix element M2 is

〈M2〉 =
em4

b′mbms

(24π2v24)
2
|ad42ad34|2(m4

b +m4
s − 2m2

bm
2
s)

×C2
0

(
P 2
1 , P

2
2 , (P1 + P2)

2,m2
b′ ,m

2
h,m

2
b′

)
, (5.48)

and where C0 is a three point integral as defined in Looptools [205] Using the

experimental value of the branching ratio of B̄ → Xsγ

Br(B̄ → Xsγ) = (3.55± 0.24± 0.09)× 10−4, (5.49)

we can put a bound on aij’s such that |ad42ad34| ≤ 1.3. This is a very conservative

bound. If we require the branching ratio to be the sum of the SM and the

new physics contribution, and use the NLO result Br(B̄ → Xsγ)Eγ>1.6 GeV =

(3.60 ± 0.30) × 10−4 [206], we obtain |ad42ad34| ≤ 0.45. These values start to be

quite restrictive, as compared to the expected size predicted by our scenario

|ad42ad34| � 0.85 (obtained from our numerical scan).

• τ → μγ, τ → eγ, μ → eγ induced by Higgs FCNC couplings
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The same operators will contribute to lepton FCNC decays. The experimental

limits on these processes are [114]

Br(τ → μγ) ≤ 4.4× 10−8,

Br(τ → eγ) ≤ 3.3× 10−8,

Br(μ → eγ) ≤ 1.2× 10−11. (5.50)

The Higgs mediated diagrams with a heavy τ ′ in the loop yield limits on the

alij parameters. Specifically, we get

|al34al42| ≤ 0.11, |al34al41| ≤ 1.45, |al24al41| ≤ 0.002. (5.51)

We also calculated the alij values by using the two different scenarios. In scenario

(A) where both the left-handed and right-handed profiles are hierarchical, we

have

|al34al42| = |al34al41| = |al24al41| � 0.0065. (5.52)

However, in scenario (B) where right-handed profiles are hierarchical and left-

handed profiles are not, we get

|al34al42| � 0.0016, |al34al41| � 0.00011, |al24al41| � 0.00045. (5.53)

Using the alij values in scenario (A) and Ȳ = 3 we calculated the branching

ratios as Br(τ → μγ) = 1.4 × 10−10, Br(τ → eγ) = 6.7 × 10−13 and Br(μ →
eγ) = 6.2× 10−11.

For scenario (B) (keeping Ȳ = 3) we have Br(τ → μγ) = 7.8 × 10−12, Br(τ →
eγ) = 1.9 × 10−16 and Br(μ → eγ) = 2.9 × 10−13. The predicted size of flavor

violating τ decays lies just below experimental bounds, but the branching ratio

for μ → eγ is above the experimental bounds in scenario (A), and therefore sets

some bounds on our scenario. More stringent limits can be set when (expected)

new experimental results become available.

• t → cγ induced by Higgs FCNC couplings Using the formalism from b → sγ we

can estimate the branching ratio for t → cγ. We obtain

Br(t → cγ) = 1.55× 10−9
[
|au42au34|2 + |au43au24|2 + 0.25� (au24a

u
43a

u
42a

u
34)
]
. (5.54)
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which for the values of the scanned Higgs couplings becomes Br(t → cγ) =

1.33×10−12, too small to be detected anytime soon, and comparable to the SM

estimate Br(t → cγ) = 4.5× 10−13 [207].

• Z → bb̄ decay and Z → τ+τ− For completeness we also computed the loop

corrections to Z → bb̄ decay and Z → τ+τ−. The b′ and τ ′ running in these loops

make these diagrams larger than the corresponding case with three generations

but are still too small to place any useful bound on the Higgs FCNC couplings.

Higgs Production and Decay

The Higgs in RS with 4 generations is in fact quite similar to the SM4. The tree level

couplings are still proportional to the masses of the particles it couples to. One of

the main differences between four generations and three generations, from the Higgs

perspective, are the new radiative contributions to the coupling of Higgs to photons

and gluons. This last coupling is typically enhanced by a factor of ∼ O(3) (due to

three heavy quarks running in the loops instead of only the top quark), and since

the Higgs is mainly produced through gluon fusion at LHC, one expects roughly an

enhancement in production cross section of ∼ O(9). Of course this enhancement

must be carefully calculated as it is still sensitive to the relative mass between the

Higgs and the heavy quarks. In any case the production cross section for this Higgs

allows the appearance of many more Higgs bosons than predicted by the minimal SM.

Therefore the SM Higgs bounds from Tevatron now become quite stringent, and even

early LHC data allows exclusions of regions in the parameter space [163,164,208,209].

In particular a Higgs mass in the 120 − 600 GeV is already excluded by hadron

collider bounds (assuming that no new decay channels exist for the Higgs) [163,164].

We take 100 GeV as a lower bound for the Higgs scalar and study the possible

decay channels that such a Higgs could have. The grey shaded regions represent

regions of the parameter space excluded by LHC for the SM4 scenario. The dark-grey

regions represent higher-confidence parameter regions, while the light-grey regions

lower likelihood exclusion regions. As shown in [198] the production and decays of

Higgs in RS can alter the values of mass parameters with respect to the SM. The

branching ratio bands represent 50% likelihood for the branching ratio, as given in

our numerical scan. (That is, 25% of all the parameter points from the numerical

scan lie below and 25% lie above the shown interval.) The results are shown in Figure
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17, where the branching fraction for each channel is presented. Not surprisingly the

dominant decay modes for heavy Higgs (mh > 200 GeV) are h → W±W∓ and

h → Z0Z0 where both W pairs and Z0 pairs are on-shell. These are the same

dominant channels as in the SM; of course once above threshold the Higgs should

also decay into pairs of heavy fermions. The typical expectation for models with four

generations is that Higgs decays into tt̄, t′t̄′, b′b̄′, τ ′+τ ′− (fourth generation charged

lepton pair) or ν ′
τν

′
τ (fourth generation neutrino pair) all have branchings similar to

the branching of h → tt̄, given that the masses of these fermions should typically be

in the hundreds of GeV (except maybe the ν ′
τ ). That yields branching fractions at

the 10% level, and this is confirmed in Figure 17.

The new and very interesting result is the prediction of sizable branching fractions

for exotic decays of the Higgs into fermion pairs of different flavor. In particular we

observe that h → ττ ′, h → bb′ and h → tt′ are among the most important new

flavor violating channels, a fact not surprising since for heavier fermions one expects

larger couplings to the Higgs. An interesting remark for these new channels is that

the threshold mass at which they become kinematically allowed is basically set by

the mass of the heaviest fermion. This means that while some or most of the flavor

diagonal decays into fermions might be closed, there are good chances of an open

channel such as h → ττ ′ or h → bb′. For the chosen parameters (KK scale of

1/R′ = 1500 GeV and typical 5D Yukawa couplings of O(2)) we obtain generic flavor

violating Higgs couplings which place the branching ratios of these exotic decay modes

on the order of 10−2. Note that since the flavor violating couplings scale as (Ȳ R′)2,

the branching ratios should in turn scale as (Ȳ R′)4, showing great sensitivity to both

the 5D Yukawa couplings and the KK scale.
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Figure 17: Decay branching fractions of the Higgs scalar in a warped scenario with

four generations of fermions. The bands represent 50% likelihood for the branching

ratio, according to our numerical scan, as explained in the text. The light and dark

gray regions vertical regions are excluded by both Tevatron and LHC (with varying

degree of confidence, see discussion in the text). The flavor anarchy setup (masses and

mixings explained through fermion localization, with random 5D Yukawa couplings)

predicts generic FV couplings of the Higgs, leading to a few new interesting decay

channels such as h → bb′ and h → ττ ′. The masses chosen for this plot are mb′ = 350

GeV, mt′ = 400 GeV, mτ ′ = 160 GeV and mντ ′ = 250 GeV (N4 ≡ ντ ′), and the KK

scale is (R′)−1 = 1500 GeV. (Figure on the curtesy of Dr. Manuel Toharia).

The production cross section at the LHC of a heavy Higgs of 400 GeV3, in a scenario

with fourth generation quarks is expected to be about 50 − 70 pb [114]. Since the

new exotic decays have branching ratios at the percent level, one expects the cross

section of these modes to be somewhere near 500 fb. This means that with 1 or

2 fb−1 of integrated luminosity at the LHC (early stages) one could have at least

a few hundred of these events. Of course given the large production cross section,

there would be no problem in quickly discovering the Higgs via the four lepton mode

(h → Z0Z0 → 4l) or maybe through (h → W±W∓). With the Higgs mass properly

set, a complementary search for some of the new exotic channels should be much

easier.
3We assume that our branching ratios modify predictions for the mh from the colliders, thus

allowing lighter mh for RS with four generations.
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Of particular interest is the mode h → ττ ′ since it may actually compete as the

main production mechanism for the fourth generation charged lepton. If mh < 2mτ ′ ,

the decay into pairs of τ ′ is forbidden and so the other possible production for heavy

leptons is through s-channel processes involving electroweak bosons [210] and their

KK partners [105]. The typical cross section for τ ′−ν ′
τ production via s-channel W is

10−100 fb [210], which means that the flavor violating production through s-channel

on-shell Higgs of τ±τ ′∓ can be a few times larger than this. The subsequent decay of

the τ ′∓ → ν ′
τW

∓, and then of ν ′
τ → Wl should give a signal of pp → h → τ±τ ′∓ →

τ±W∓Wl, where all particles are produced and decayed on-shell. The signs of the

second W and the charged lepton l are not fixed and depend on the nature of ν ′
τ . One

would look for same sign dilepton events coming from leptonic decays of the first W

along with the last lepton of the chain. This type of signature is quite clean thanks

to the minimal background and would in principle allow for easy confirmation of the

signal, which could become the discovery signal for the τ ′ along with the confirmation

of Higgs flavor violating couplings.

Another interesting decay mode, if kinematically allowed, is h → bb′, where the

b′ would subsequently decay as b′ → qW or b′ → b Z0. In the first possibility, q

stands for t if kinematically allowed, and for c or u. The partial width of these

channels depend on the size of the CKM4 angles Vtb′ , Vcb′ and Vub′ which are typically

constrained to be small [144]. A channel which could compete is b′ → b Z0, since in

the RS scenario under study these flavor violating couplings appear at tree-level, in a

similar fashion to the Higgs sector [199,211]. Thus depending on the decay branching

ratios of the b′ heavy quark (see next section) the events could be pp → h → bb′ →
bW−t → bbW±W∓ or pp → h → bb′ → bW−j or pp → h → bb′ → bbZ0. A

careful study of these signals and their background is beyond the scope of this work,

but we should mention that a clear prediction of our scenario is that the h − b − b′

coupling is highly asymmetric (see Eq. (5.24)) with a definite preference for h → b′RbL
decay over the h → b′LbR. Thus one should also look for the angular correlations in the

signals in order to search for this asymmetric property of the couplings (see refs. [212]

for studies along these lines).

Heavy Fermion Decays

• Heavy quark decays
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If the Higgs masses are lighter than the masses of the fourth generation fermions,

channels in which the heavy fermions decay to the Higgs boson and a fermion from one

of the lighter families are open. Pair production of heavy quark flavors is expected to

have a cross section of ∼ 4−4.5 pb for a mass of 500 GeV4 at the LHC with
√
s = 14

TeV [213], thus should be within reach, and the properties of the fourth generation

fermions would then become apparent. As the FCNC couplings of the Higgs to the

fermions are proportional to fermion masses, the dominant decays would be to the

third generation fermions. The flavor violating couplings of Higgs will lead to tree-

level decays t′ → th and b′ → bh in the kinematically allowed regions mt′ > mh +mt

and mb′ > mh +mb. The decay rates for these processes are calculated as

Γ(Qj → qih) =
mimj

16πm3
jv

2
4

√
m4

i +m4
j +m4

h − 2m2
im

2
j − 2m2

im
2
h − 2m2

jm
2
h

×
[
(| au(d)ij |2 + | au(d)ji |2)(m2

j +m2
i −m2

h)

+ 4�(au(d)ij a
u(d)
ji )mimj

]
. (5.55)

These decays can have significant decay width, and branching ratios. By comparison,

the other dominant two body decay modes are t′ → bW and b′ → tW , given by [214]

Γ(Qj → qiW ) =
α |Vji|2

16M2
Wm3

j

√
m4

i +m4
j +M4

W − 2m2
im

2
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2
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2
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)
, (5.56)

by substituting the corresponding quarks in the two body decays. The flavor-changing

couplings of quarks to the Z0 boson allow FCNC quark decays via the process Q →
qZ0. The branching ratio is [199]

Γ(Qj → qiZ
0) =

αT 2
3

8M2
Z cos2 θWm3

j
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34
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, (5.57)

with T3 the third quark isospin component and with the flavor-changing couplings

au,dL and au,dR as defined in given as in Eq. (5.39). We define the total width to be the

4 The cross sections are estimated based on QCD effects only, and are based on approximate
knowledge of PDF, thus should be only seen as indicative.
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sum of the dominant two body-decays

Γ(Qj → 2X) = Γ(Qj → qiW ) + Γ(Qj → qih) + Γ(Qj → qiZ
0). (5.58)

Although the decays Qj → q′iW , Qj → qiZ and Qj → qih, i = 1, 2 should be

subdominant due to CKM and Yukawa suppression, for completeness we include

them in our numerical calculations and plots.

Although the Higgs bosons with masses from 120 to 600 GeV appear to be

excluded by the LHC [163, 164], we allow for possible suppression in production in

RS with four generations versus SM4 scenarios [198], we plot the branching ratios of

the heavy quarks for mh = 500 GeV. Should the Higgs mass be larger, the graphs

would shift to the right, but the same features hold.

In Figure 18 we illustrate the branching ratios for the t′ quark for two choices of

KK mass scales, R′−1 = 1.5 TeV and R′−1 = 3 TeV, and for two choices of the CKM4

mixing involved, i.e Vt′b = 0.1 and Vt′b = 0.3. The latter will affect the tree-level

decay t′ → bW , typically assumed to be the dominant decay for the usual choice

mt′ − mb′ ∼ 50 GeV. The characteristic bands appearing in these figures are due

to the fact that the flavor violating couplings for both Higgs and Z0 are obtained

from numerical scans, performed for different values of the heavy quark masses. To

visualize the generic region in parameter space that the branchings should cover,

we show the interval of couplings inside which 30% of all the generated points lie,

such that 35% lie below that interval and 35% lie above. This procedure will define

“bands” in the figures which should be understood as the generic region predicted by

flavor anarchy.

We compare the dominant branching ratios for tree level decays: t′ → bW , t′ → t h

and t′ → t Z0, and also the subdominant decays t′ → q′ W , t′ → q Z and t′ → q h with

q′ = d, s and q = c, u. Compared to these tree-level decays, the branching ratios of

loop-induced processes such as Br(t′ → t γ) � O(10−7) are much smaller. In all three

plots we observe the importance of the decay rate t′ → t h, which will generically

dominate for a KK scale of 1.5 TeV and a moderate CKM4 entry Vt′b = 0.1, when

kinematically alllowed. By increasing the KK scale or Vt′b, the branching ratio of

t′ → bW is enhanced, but we observe that the decay into Higgs and bottom remains

well above 20% in the worst case considered.
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Figure 18: Branching ratios for 2-body t′ decays with CKM4 mixing angle Vt′b = 0.1

and KK scale R′−1(≡ MKK) = 1.5 TeV (left panel), Vt′b = 0.3, R′−1 = 1.5 TeV

(middle panel) and Vt′b = 0.1, R′−1 = 3 TeV (right panel). We take Vt′s = Vt′d = 0.01

andmh = 500 GeV throughout. The bands represent 30% likelihood for the branching

ratio, according to our numerical scan, as explained in the text.

In general one can see that the flavor violating decays of the t′ are significant for

all parameter values chosen, and, as long as they are kinematically allowed, they

clearly dominate over the intuitive channel t′ → bW . Of course, the effect depends

on (R′2Ȳ 2)2 and will decouple for a large enough increase of the KK scale R′−1.

Therefore, which decay is dominant depends sensitively on the KK scale R′−1 and

also on the CKM mixing Vt′b. In particular, for R′−1 = 1.5 TeV and Vt′b = 0.1 (a

value favored in the fits of [144]), the branching ratio for t′ → t h seems to be predicted

to be dominant and about twice as large as the one for t′ → bW over the allowed

parameter space. While for R′−1 = 3 TeV and Vt′b = 0.1, the branching ratio for

t′ → t h is predicted to be about two to three times smaller than that of t′ → bW .

For the intermediate choice, R′−1 = 1.5 TeV and Vt′ b = 0.3 the branching ratio for

t′ → bW overlaps with that for t′ → t h over a significant range of parameter space.

In all three plots, the flavor violating decay t′ → tZ0 is subdominant above the

th threshold, but significant over a large region of parameter space, with possible

branchings ranging from about 1% to 10%. This channel becomes specially interesting

when the decay into Higgs is kinematically forbidden, namely for t′ masses below the

threshold mt +mh � 670 GeV, but the decay into top and Z is open.

We also include the suppressed decays t′ → qi h, t′ → qi Z
0 and t′ → qj W, i, j =

1, 2. The Z0 decay width is sometimes too small and the corresponding branching
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ratio falls below 10−3, which is why it does not appear in the plot. We take a generic

value for Vt′qj = 0.01 and include FCNC coefficients au4i(i4), (a
u
L)4i(i4) from our scan.

Thus the decay t′ → t h, if kinematically allowed, is a promising channel for

observing t′ pair production as well as a novel Higgs pair production channel, in the

subsequent decays of the heavy quarks.

It may even be possible to see simultaneously the two dominant

decays5 if the branching ratios happen to be of similar size,

giving rise to interesting pair production processes and decays:

• pp → t′t′ → tthh,

• pp → t′t′ → bbWW ,

• pp → t′t′ → tbhW ,

all potentially accessible and thus providing an indirect confirmation (or at least a

consistency check) of the warped extra dimensional model and its parameter space.

In particular, the relative importance of these signals would provide valuable hints

on the size of the KK scale as well as of the CKM4 angle Vt′b. Note also that if

the KK scale is such that R′−1 = 1.5 TeV, the lightest KK particle in the minimal

scenario would have a mass of O(3 TeV) and may escape detection at the LHC,

while the exotic flavor violating decays (caused by the presence of KK particles) of

the fourth generation quarks would still be observable.

We perform the same analysis for the decays of the b′ quark as shown in Fig. 19.

As before, we choose three parameter combinations for the KK scale and for the

main CKM4 mixing angle involved in these decays, i.e R′−1 = 1.5 TeV and Vtb′ = 0.1,

then R′−1 = 1.5 TeV and Vtb′ = 0.3, and finally R′−1 = 3 TeV and Vtb′ = 0.1. The

dependence of the branching ratios of FCNC decays of the b′ quark is more or less

similar to the corresponding ones for the t′ quark, with the decay b′ → b h dominating

over all others for R′−1 = 1.5 TeV and Vtb′ = 0.1 (and where kinematically allowed),

while for the two other parameter choices the decay b′ → tW has the largest width

for mb′ ≥ 250 GeV.

The flavor violating decay b′ → b Z0 has a lower kinematic threshold than b′ → b h

and therefore can occur for b′ masses just above the Z0 mass. But the W-mediated

5 One might also be able to observe the decays t′ → tZ0 even if subdominant over the parameter
space.

137



decays of the b′ start at a larger mass threshold than in the previous CKM decays

of the t′, since charged current decays of b′ will involve a top quark and a W , both

heavy. This means that in the low b′ mass region, the Z0 FCNC decay dominates.

Of course as the mixing angle Vtb′ is increased, the relative importance of the charged

current decay grows as expected. As before, we include the CKM4 and adij, (a
d
L)ij

suppressed decays b′ → qi h, b′ → qi Z
0 and b′ → qj W, i, j = 1, 2, with a generic

value for Vb′qj = 0.01 and including the FCNC couplings ad4i(i4), (a
d
L)4i(i4) from our

scan.
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Figure 19: Branching ratios for 2-body b′ decays with CKM4 mixing angle Vtb′ = 0.1

and KK scale R′−1(≡ MKK) = 1.5 TeV (left panel), Vtb′ = 0.3, R′−1 = 1.5 TeV

(middle panel) and Vtb′ = 0.1, R′−1 = 3 TeV (right panel). We take Vcb′ = Vub′ = 0.01

throughout as well as mh = 500 GeV. The bands represent 30% likelihood for the

branching ratio, according to our numerical scan, as explained in the text.

Again, the b′ → h b decay is important above h threshold for all the parameter points

considered, being dominant for low KK scale and small CKM4 mixing angles, and

then competing with the decay b′ → tW when KK scale or Vtb′ are increased. In this

region the decay b′ → b Z0 is suppressed relative to the other two, but still important,

with branching ratios reaching 1% -6%.

As before, we include the CKM and Yukawa suppressed decays b′ → q′ W , b′ → qh

and b′ → qZ, with q′ = u, d and q = s, d.

Again, FCNC decays of b′ through Higgs or Z0 bosons would provide an indirect

indication of the warped space scenario, even for large KK scales such as R′−1 = 3

TeV. From the plots one see that it may again be possible to observe at the same
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time the dominant decay modes of the b′ quark (since these are produced in pairs).

For completeness, we include two plots for t′ and b′ decays for a light Higgs, roughly

in the Higgs window still open. We take mh = 120 GeV, and show, in the plots bellow

the branching ratios for t′ → th for Vt′b = 0.1 and KK scale R′−1(≡ MKK) = 1.5 TeV

(left panel) and for b′ → bh for Vtb′ = 0.1 and KK scale R′−1(≡ MKK) = 1.5 TeV

(right panel). The branching ratios are shown in Fig. 20. For such a light Higgs

boson, the FCNC branching ratios t′ → th and b′ → bh are of O(1) and dominate

over the other 2-body branching ratios when kinematically accessible: over the whole

parameter space for b′ decays, and for mt′ ≤ 300 GeV for t′ decays.
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Figure 20: Branching ratios for 2-body t′ decays with CKM4 mixing angle Vt′b = 0.1

and KK scale R′−1(≡ MKK) = 1.5 TeV (left panel) and b′ decays with CKM4 mixing

angle Vtb′ = 0.1 and KK scale R′−1(≡ MKK) = 1.5 TeV (right panel), for mh = 120

GeV. The bands represent 30% likelihood for the branching ratio, according to our

numerical scan, as explained in the text.

For a lighter b′, below the threshold for b′ → tW , i.e. m′
b < 250 GeV the FCNC

decays into Higgs and into Z0 might dominate over decays into W and light quarks

(and hence might substantially alter the current experimental bounds on the b′ mass

where CKM decays are assumed). In that situation it may be possible to observe a

mixture of events:
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• pp → b′b′ → bbhh,

• pp → b′b′ → bbZZ,

• pp → b′b′ → qWqW,

• pp → b′b′ → qWbh,

• pp → b′b′ → bZbh,

• pp → b′b′ → bZqW.

For a heavier b′, it appears that two modes should dominate, namely the FCNC

decays onto Higgs and the decays into a W and a top quark (due to our assumption

of Vtb′ being the largest of the CKM4 mixing angles involved). The possible mixed

events could now be

• pp → b′b′ → bbhh,

• pp → b′b′ → tWtW,

• pp → b′b′ → tWbh.

All events would be easy to identify at the LHC and their relative importance

would provide again valuable information on the model parameters of this scenario.

• Heavy lepton decays

Once the τ ′ lepton is produced at a collider, its FCNC decay will proceed in the

same manner as that of the b′ quark. As the mass bounds on new τ ′ leptons and ν ′
τ

neutrinos are close, it may be that the decay τ ′ → Wν ′
τ is kinematically forbidden,

and the decay of τ ′ to lighter neutrinos (τ ′ → Wνi, i = 1, 2, 3) depends on the

specific model of neutrino masses and mixing and may be suppressed. Thus the

FCNC decays τ ′ → hτ (for the light Higgs boson scenario), and τ ′ → τZ0 could be

the dominant decays. Since we are assuming that mh + mτ < mτ ′ , the production

of τ ′ should happen via s-channel W bosons and KK partners, and therefore would

typically come with associated production of ν ′
τ (if the mixing to lighter neutrinos is

smaller).

The subsequent FCNC decays of τ ′ should be easily disentangled at the LHC as

they involve several possible processes with many leptons, such as pp → τ ′ντ → τhWl

for the case of τ ′ → τh decays. The Higgs, being heavier than 200 GeV, should mainly

decay into pairs of gauge bosons giving rise to final states of WWWlτ or ZZWlτ ,

i.e. three gauge bosons, one light lepton and a τ , a clean enough signal at hadron
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machine. These might give rise to same-sign dilepton events, trilepton events, and

pushing it, to 6 leptons plus τ events, when every boson decays leptonically.

In the case of τ ′ → τZ0 decays, one would similarly obtain processes like pp →
τ ′ντ → τZWl. Again one might observe same-sign dilepton events, trilepton events

and when the all bosons decay leptonically one could obtain events with four leptons

and a τ .

As in the previous section, a realistic analysis of these signals is beyond the scope

of this work, however, it seems clear that it would not be hard to disentangle them,

as the branching ratios are subdominant to τ ′ → hτ , but nonetheless significant.

5.3 Conclusions and Outlook

In this Chapter we analyzed the effects of Higgs flavor-violating couplings in the

framework of warped extra dimensions on a fourth generation of quarks and leptons.

The Higgs Yukawa couplings are misaligned with the fermion mass matrices, and this

effects is even more pronounced in a model with a sequential fourth fermion family,

due to cumulative effects in flavor space.

We presented both an analytical evaluation and a numerical estimate of the size

of the Higgs FCNC couplings in models with flavor anarchy. The only requirement is

that the three-generations quark masses and mixing angles should be reproduced in

the present scheme, while the fourth generations masses and mixings are allowed to

be free, limited only by VCKM4 unitarity. We briefly discussed the possibilities for the

lepton sector, which is unfortunately complicated by the lack of a well-defined model

of neutrino masses and mixings; as well as revisited the FCNC couplings of the Z0

boson with a fourth generation.

After setting up the model and evaluating the Yukawa couplings, we analyzed

the new effects on low energy FCNC observables. At tree level, the new off-diagonal

couplings affect the K0 − K̄0, D0 − D̄0 and B0
d,s − B̄0

d,s mixings. We use the data

to set constraints on the aij, the most stringent bound coming from εK constraining

the phases of the FCNC Yukawa couplings. The constraints are similar to those

obtained in the three-generations scenario [181] and the bounds imposed are not

stringent, even if we expect the 3 × 3 Yukawa couplings to be reduced in the four-

generation model. The Yukawa FCNC couplings contribute to loop-level processes
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such as b → sγ, t → cγ, τ → e, (μ)γ and μ → eγ. For the quark radiative decays, the

effect is negligible compared to SM values and Wq diagrams. For leptons, depending

on the size of the FCNC Higgs Yukawa couplings, the radiative decays might become

more important and restrict the alij beyond the expectation from the numerical scan,

especially from the μ → eγ decays, and even more as the bounds on lepton-flavor

violation are expected to improve in the near future.

As the present limits on the Higgs masses are pushed higher, especially for the

case of four generations, the Higgs boson decay patterns can be substantially modified

from the SM and even SM4 expectations. FCNC decay channels such as ττ ′, bb′ and

even tt′ open for mh ∼ 600 GeV, for present bounds on four-generation masses. Both

h → ττ ′ could prove to be fertile grounds for discovery of the fourth generation

leptons, if the decay h → τ ′τ ′ is kinematically forbidden. Similarly, the decay h → bb′

could be an important channel for b′ discovery if off-diagonal fourth generation mixing

angles Vub′ , Vcb′ and Vtb′ are small. The decays are important for the whole parameter

space mt′ ≥ 400 GeV, mb′ ≥ 200 GeV and would provide a clear indication of the

model.

If the fourth generation quarks and leptons are heavier than the Higgs boson,

their decay into lighter quarks and Higgs bosons would be a promising channel for

their discovery and identification. In particular, the branching ratios for t′ → th and

b′ → bh compete with t′ → tZ0 and b′ → bZ0 whenever kinematically accessible,

and approach 1 for a significant range of Vt′b, Vtb′ and mt′ , mb′ parameter space for

mh � 120 GeV. And the fourth generation lepton which can only decay through

electroweak processes, may not be able to decay into Wν ′
τ or Wντ (depending on

mass and mixing constraints in the leptonic sector), making τ ′ → τh a dominant

decay mode, and competing with τ ′ → τZ0.

Thus, even if the KK scale is heavy, and KK particles cannot be seen at the LHC,

residual effects due to Higgs FCNC could provide the most promising indirect signals

for the warped space scenario. Our analysis shows that in a four-generation model,

which is natural in this scenario, the results could be enhanced over the model with

three generations and yield measurable signals at the LHC.
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Chapter 6

RADION PHENOMENOLOGY

with 3 and 4 GENERATIONS

Allowing SM fermions and gauge fields to propagate in the bulk effectively solves the

large flavor violation and rapid proton decay problems of the original RS scenario

and can also be used to explain the fermion mass hierarchy by fermion localization

[86–90]. However, tight bounds from precision electroweak tests and from flavor

physics [93, 94, 173], constraint the excitations of the bulk fields to be heavier than

a few TeV, making it very hard to produce and observe heavy resonances of these

masses at the LHC. The scalar field radion associated with the fluctuations in the

size of the extra dimension and its associated phenomenology might be promising

for observing new states from these scenarios. Generically, the radion may be the

lightest new state in an RS-type setup, with its mass suppressed with respect to KK

fields by a volume factor of ∼ 40, at least in the small backreaction limit [70]. This

might put its mass between a few tens to hundreds of GeV, with couplings allowing it

to have escaped detection at LEP, and consistent with precision EW data [215] (see

Subsection 3.4.3 for more information about radion). Radion phenomenology has

been discussed in several papers [71,215–218]. More recently it has been shown that

a tree-level misalignment between the flavor structure of the Yukawa couplings of the

radion and the fermion mass matrix will appear when the fermion bulk parameters

are not all degenerate [174]. The mechanism responsible for these FCNC’s is different

than the one producing Higgs mediated FCNC’s in these same models [175,181].

In the previous chapter we have shown that, if the fourth generation is
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incorporated into warped space models, the flavor-changing couplings of the Higgs

boson can be enhanced, and both the production and decays of the Higgs bosons

and the decay pattern of the heavy quarks and leptons is altered significantly with

respect to the patterns expected in SM4, thus giving rise to distinguishing signals at

the colliders [107]. It is thus expected that in a warped scenario with extra generations

(seen as a natural extension of the warped space model), the flavor-changing couplings

of the radion will also yield characteristic signals at colliders.

Also, contrary to the Higgs case in these models [107], exotic flavor violating

decays of heavy quarks into radions Q → φq should be highly suppressed with the

new flavor violating couplings of the radion. These will become important in radion

decays into quarks φ → qq, qq′ as well as into leptons φ → τ ′τ and φ → ντ ′ντ . Data

from ATLAS [163] and CMS [164] experiments at the LHC indicating that a four

generations Higgs boson must be very heavy, does not affect the radion mass directly,

but sets limits on the combined radion mass interaction scale parameter space. While

we stated that the phenomenology with three and four generations is quite similar

for the radion, there are (new) FCNC effects of fourth generation quarks and leptons

interacting with the radion. The radion model is described in Subsection 3.4.3 and

flavor structure with four families presented in the previous chapter.

6.1 Flavor-Changing Neutral Couplings of the

Radion

The couplings between bulk SM fermions and the radion were calculated in [70] for

the case of one generation. Including the flavor structure and the possibility of a bulk

Higgs, these couplings are the same for four generations as in the three-generation

case, presented in [174] and take the form of Eq. (3.171). After diagonalization of the

fermion mass matrix, flavor violating couplings will be generated. One can see this

explicitly by performing the bi-unitary rotation leading to the fermion mass basis,

and writing the radion couplings to fermions in that basis (in matrix form):

−φ(x)

Λφ

d̄phys
L

[
U†

Qd
Î(cqi

)UQd
m̂diag

d + m̂diag
d W†

dÎ(cdi
)Wd

]
dphys
R . (6.1)

Here, dphys is the physical state and is now a 4-vector in flavor space, given that

we have introduced an extra (fourth) generation. Also we have defined Î(cqi
) =
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diag[I(cqi
)] and Î(cdi

) = diag[I(cdi
)]. One observes that unless the diagonal matrices

Î(cqi
) and Î(cdi

) are both proportional to the unit matrix,1 there must be some degree

of flavor misalignment in the radion couplings. The extension to the up quark sector

and charged leptons is immediate.

6.1.1 Radion FCNC’s in Flavor Anarchy–Analytical Results

We explicitly parametrize the radion couplings with fermions by highlighting the mass

dependence as

Lq,FV = − ãdij
Λφ

√
mdimdj φ d̄iLd

j
R − ãuij

Λφ

√
mui

muj
φ ūi

Lu
j
R + h.c., (6.2)

where di, ui are the quark mass eigenstates with massesmdi ,mui
. Due to the simplicity

of the flavor structure in the radion couplings, it is now possible to give analytical

expressions for these couplings, to leading order in ratios of fi/fj. The general

expressions are, for i < j:

ãdij =

√
mdj

mdi

3∑
k=1

[
(I(cqk)− I(cq4))UQd∗

ki UQd

kj

]
+O(

mdi

mdj

),

ãuij =

√
muj

mui

3∑
k=1

[
(I(cqk)− I(cq4))UQu∗

ki UQu

kj

]
+O(

mui

muj

), (6.3)

and for i > j:

ãdij =

√
mdi

mdj

3∑
k=1

[
(I(cdk)− I(cd4))W d

kiW
d∗
kj

]
+O(

mdj

mdi

),

ãuij =

√
mui

muj

3∑
k=1

[
(I(cuk

)− I(cu4))W
u
kiW

u∗
kj

]
+O(

muj

mui

). (6.4)

Note that when i < j the couplings are controlled by “left-handed” bulk masses

(cq) and mixings (UQ), and when i > j, the couplings are controlled by “right-

handed” bulk masses (cu,d) and mixings (Wu,d). The resulting 3 × 3 substructure

of these couplings, i.e. without the fourth generation, matches the results presented

in [174]. The expansion of the mixing angles in terms of ratios of f ’s gives U
Q(d,u)

ij ∼
1Note that this can be achieved if the bulk mass parameters, the ci’s, are all degenerate, but then

the scenario cannot be used to produce/explain fermion hierarchies.
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fQi
/fQj

, W d
ij ∼ fdi/fdj , and W u

ij ∼ fui
/fuj

. With these, we can obtain the parametric

dependence of the radion couplings up to corrections of order one.2

The diagonal terms are simply

ãdii ≈ I(cqi) + I(cdi), ãuii ≈ I(cqi) + I(cui
). (6.5)

As the function I(c), defined in Eq. (3.172), tends to c for c > 1/2, and approaches

quickly the value 1/2 for c < 1/2, the diagonal terms in the down sector can be

written as

ãd11 ≈ (cq1 + cd1), ãd22 ≈ (cq2 + cd2), ãd33 ≈ (
1

2
+ cd3), ãd44 ≈ 1,

while the off-diagonal terms also get very simple expressions

ãd12 ≈
√

ms

md

(cq1 − cq2)
fQ1

fQ2

, ãd21 ≈
√

ms

md

(cd1 − cd2)
fd1
fd2

,

ãd13 ≈
√

mb

md

(
cq1 −

1

2

)
fQ1

fQ3

, ãd31 ≈
√

mb

md

(cd1 − cd3)
fd1
fd3

,

ãd23 ≈
√

mb

ms

(
cq2 −

1

2

)
fQ2

fQ3

, ãd32 ≈
√

mb

ms

(cd2 − cd3)
fd2
fd3

,

ãd14 ≈
√

mb′

md

(
cq1 −

1

2

)
fQ1

fQ4

, ãd41 ≈
√

mb′

md

(
cd1 −

1

2

)
fd1
fd4

,

ãd24 ≈
√

mb′

ms

(
cq2 −

1

2

)
fQ2

fQ4

, ãd42 ≈
√

mb′

ms

(
cd2 −

1

2

)
fd2
fd4

,

ãd34 ≈
√

mb′

mb

[I(cq3)− I(cq4)]
fQ3

fQ4

, ãd43 ≈
√

mb′

ms

(
cd3 −

1

2

)
fd3
fd4

. (6.6)

Note that in the above we took cq3 ≈ cq4 ≈ cd4 = 1/2 except in ãd34 where the dominant

term comes from the (expected small) difference between cq4 and cq3 .

2See Appendix for details.
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Figure 21: Contours in the plane (ci, cj) of the function âij = [I(ci)− I(cj)] f(ci)
f(cj)

,

which sets the size of radion FCNC couplings with fermions. These are estimated

to be ãij �
√

mi

mj
âij and so from these contours one can quickly estimate the size of

these couplings by knowing the values of the bulk mass parameter ci of each fermion.

(Figure on the curtesy of Dr. Manuel Toharia).

Similarly, in the up sector, we obtain

ãu11 ≈ (cq1 + cu1), ãu22 ≈ (cq2 + cu2), ãu33 ≈ 1, ãu44 ≈ 1,

and for the off-diagonal terms:

ãu12 ≈
√

mc

mu

(cq1 − cq2)
fQ1

fQ2

, ãu21 ≈
√

mc

mu

(cu1 − cu2)
fu1

fu2

,

ãu13 ≈
√

mt

mu

(
cq1 −

1

2

)
fQ1

fQ3

, ãu31 ≈
√

mt

mu

(
cu1 −

1

2

)
fd1
fd3

,

ãu23 ≈
√

mt

mc

(
cq2 −

1

2

)
fQ2

fQ3

, ãu32 ≈
√

mt

mc

(
cu2 −

1

2

)
fu2

fu3

,

ãu14 ≈
√

mt′

mu

(
cq1 −

1

2

)
fQ1

fQ4

, ãu41 ≈
√

mt′

mu

(
cu1 −

1

2

)
fu1

fu4

,

ãu24 ≈
√

mt′

mc

(
cq2 −

1

2

)
fQ2

fQ4

, ãu42 ≈
√

mt′

mc

(
cu2 −

1

2

)
fu2

fu4

,

ãu34 ≈
√

mt′

mt

[I(cq3)− I(cq4)]
fQ3

fQ4

, ãu43 ≈
√

mt′

mt

(I(cu3)− I(cu4))
fu3

fu4

. (6.7)

Here we assumed cq3 ≈ cq4 ≈ cu3 ≈ cu4 = 1/2 except in ãu34, ãu43, for the same

reasons given for the down sector. This situation is very different from the case
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of FCNC couplings of the Higgs boson [107] where the couplings a34, a43 are large

due to significant misalignment in the 3-4 family. It is clear from the expressions

for ãdij, ã
u
ij that the flavor changing couplings of the radion are of the simple form√

mj

mi
[I(ci)− I(cj)] fi

fj
. We explore typical values of this function as contours in

a ci, cj plane, and determine the localization coefficients for which this function is

maximal. In Fig. 21, we show contours of the in the plane of the ãij as a function

of two bulk mass parameters, (ci, cj) for ci < cj. The light-light regions correspond

to mixing among the first two families, and bR. Corresponding to the localization of

light quarks, these are maximal and the FCNC couplings of the radion ãij can reach

a maximum of 0.013. The heavy-light mixing correspond to fourth family mixing,

or third family doublet, or tR mixing, with the two light two families and bR. These

mixings can reach 0.01, although they are more likely to be in the (0.002 − 0.005)

region. Finally the heavy-heavy mixing (among fourth families, (t b)L and uR) can

reach 0.02 as cq3 , cu3 deviate from 1/2. The results of the analytic calculations agree

with our numerical scan presented in the next subsection.

6.1.2 Radion FCNC’s in Flavor Anarchy–Numerical Results

We complement our analytical consideration by performing a numerical scan over the

parameter space. We proceed as follows. We generate random complex entries for

Yu and Yd, then obtain values for fui
, fdi and fQi

in the same way as for the Higgs

FCNC couplings [107], in matrix form. Using f(c) from Eq. (3.168), we solve for

the coefficients ci. We then use the expression for I(ci) to calculate mass matrices

m̂u, m̂d, then obtain the eigenvalues, and the matrices Wu,d and UQu,d
. We then

have all the ingredients to calculate the fermion-radion couplings. From the scan in

parameter space, we find the ãdij, ã
u
ij as follows

ãdij ∼

⎛
⎜⎜⎜⎜⎝

1.295− 1.315 0.017− 0.039 0.010− 0.025 0.089− 0.290

0.013− 0.034 1.215− 1.231 0.006− 0.016 0.065− 0.179

0.080− 0.201 0.016− 0.050 1.129− 1.151 0.0002− 0.001

0.024− 0.076 0.018− 0.049 0.004− 0.012 1.000− 1.001

⎞
⎟⎟⎟⎟⎠ ,

(6.8)
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ãuij ∼

⎛
⎜⎜⎜⎜⎝

1.294− 1.320 0.065− 0.164 0.081− 0.212 0.094− 0.268

0.022− 0.055 1.135− 1.158 0.019− 0.047 0.019− 0.053

0.030− 0.098 0.042− 0.103 1.002− 1.016 0.0003− 0.002

0.023− 0.078 0.030− 0.075 0.001− 0.005 1.000− 1.002

⎞
⎟⎟⎟⎟⎠ .

(6.9)

The above ranges show the 50% quantile of acceptable points, which means that

25% of points found predict lower ãuij, ã
d
ij values and 25% of points predict higher

values than those shown in the matrices. The results of the scan are consistent with

the values obtained through analytical considerations and from the values estimated

using Fig. 21, once typical sizes of the bulk masses are associated to the appropriate

fermions.

6.1.3 Radion FCNC’s in Flavor Anarchy–Leptons

We proceed in a similar fashion to calculate the FCNC couplings of the radion with

the leptons. Assuming the neutrinos to be Dirac-type, we parametrize the couplings

as

Ll,FV = − ãlij
Λφ

√
mlimlj φ l̄iLl

j
R − ãνij

Λφ

√
mνimνj φ ν̄i

Lν
j
R + h.c. (6.10)

The couplings of the charged leptons resemble those of the down-type quarks, the only

difference being that cL3 �= 1
2
. The coefficients cLi

, i = 1, 2, 3 are very close to each

other and can be large, while cL4 =
1
2
. The matrix Î(cLj

) = diag[I(cLj
)], j = 1, 2, 3, 4

in Eq. 3.171 can be written as a diagonal matrix plus a non-diagonal one, with entries

diag(0, 0, 0,Δc), where Δc = cL4 − cLi
can be large.

As the neutrinos are massless, the only FCNC non-zero couplings involve the

fourth family, that is ãνij �= 0 only if either i = 4 and/or j = 4. While couplings

with quark are restricted by the CKM matrix (the 3 × 3 substructure of CKM4),

the lepton mixing matrix UPMNS is not as well known, and thus restrictions on the

UPMNS
i4 , UPMNS

4j are even less established. We assume that the left-handed matrix

UL is hierarchical, thus almost diagonal and Uν non-hierarchical, and almost the

same as UPMNS.
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This would imply the same type of parametric dependence as in the quark sector:

ãν14 =

√
mν4

mν1

[cL1 − I(cL4)]
fL1

fL4

O(1),

ãν24 =

√
mν4

mν2

[cL2 − I(cL4)]
fL2

fL4

O(1),

ãν34 =

√
mν4

mν3

[cL3 − I(cL4)]
fL3

fL4

O(1), (6.11)

where the coefficients cLi
describe the localization of the lepton doublets and can be

large, and fLi
are the values of the zero-mode wavefunctions for the doublet lepton

i at the IR brane. For the right-handed neutrinos, W ν is almost diagonal to insure

small neutrino masses. Thus ã4j, j �= 4 are small and can be neglected. Here the

dominant term could be ãν34. For cLi
, cνi > 1/2, the zero modes wavefunctions are

localized towards the UV brane; if cLi
, cνi < 1/2, they are localized towards the IR

brane. However the size of ãν34 is also determined by the mixing terms UL
33U

L∗
34 , as

given in Eq. (6.3). Thus the mixing will be proportional to f(c). By choosing a value

for cL3 which maximizes the expression ãν34 ≈ [I(cL3 − I(cL4)] f(cL3), these values

correspond to the region of Fig. 21 for the light-heavy region.

6.2 Phenomenology

6.2.1 Bounds on Radion Mediated FCNC couplings

The off-diagonal Yukawa couplings induce FCNC in both quark and lepton

interactions, which affect low energy observables and also give possible signatures

at colliders. In this section, we discuss restrictions on radion flavor violation coming

from tree-level processes ΔF = 2, such as K − K̄, B − B̄, D − D̄ mixing. We

use an effective Lagrangian approach, introduced in Subsection 4.4.1, to isolate the

contributions. For K − K̄ , Bd − B̄d, Bs − B̄s, D − D̄ mixings qiqj in eq. (4.39) are

replaced by sd, bd, bs and uc, respectively.

Exchange of the flavor-violating radions gives rise to additional contributions to

C2, C̃2 and C4 operators. These are given below, using the model-independent bounds

on BSM contributions as in [189] to present coupled constraints on ãij couplings and

the radion mass mφ.
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At the scale mφ = 60 GeV, the limits on the C2, C̃2 and C4 operators are:

ReC2
K ≤ (

1

5.3× 106 GeV
)2, ReC4

K ≤ (
1

9.1× 106 GeV
)2,

ImC2
K ≤ (

1

9.5× 107 GeV
)2, ImC4

K ≤ (
1

1.2× 108 GeV
)2,

|C2
D| ≤ (

1

1.8× 106 GeV
)2, |C4

D| ≤ (
1

2.6× 106 GeV
)2,

|C2
Bd
| ≤ (

1

8.7× 105 GeV
)2, |C4

Bd
| ≤ (

1

1.3× 106 GeV
)2,

|C2
Bs
| ≤ (

1

1.0× 105 GeV
)2, |C4

Bs
| ≤ (

1

1.6× 105 GeV
)2. (6.12)

Using these bounds we obtain the constraints on radion flavor violating Yukawa

couplings (to be compared to the ãij in the scan)

Ω2Re(ãd∗12)
2 ≤ 2.6, Ω2Re(ãd21)

2 ≤ 2.6, Ω2Re(ã∗d12ã
d
21) ≤ 0.90,

Ω2Im(ãd∗12)
2 ≤ 0.0082, Ω2Im(ãd21)

2 ≤ 0.0082, Ω2Im(ãd∗12ã
d
21) ≤ 0.0050,

Ω2|ãu∗13 |2 ≤ 3.2, Ω2|ãu31|2 ≤ 3.2, Ω2|ãu∗31 ãu13| ≤ 1.4,

Ω2|ãd∗13|2 ≤ 1.9, Ω2|ãd31|2 ≤ 1.9, Ω2|ãd∗13ãd31| ≤ 0.87,

Ω2|ãd∗32|2 ≤ 6.5, Ω2|ãd23|2 ≤ 6.5, Ω2|ãd∗32ãd23| ≤ 2.8, (6.13)

where Ω =

(
60 GeV

mφ

)(
2 TeV
Λφ

)
. Using our analytic results, the bounds translate

parametrically on restrictions on the bulk mass parameters of the appropriate

fermions. From the εK bounds

Im(ãd∗12ã
d
21) = −ms

md

(cq1 − cq2)(cd1 − cd2)
fQ1fd1
fQ2fd2

Im

(
[Yd]

∗
21[Yd]

∗
12

([Yd]∗11)2

)
= O(1)(cq1 − cq2)(cd1 − cd2), (6.14)

where in the last expression we used the hierarchic nature of the Yukawa couplings.

This is a remarkable result, as it relates the magnitude of εK directly to the bulk mass

parameters (or the localization coefficients) of the d, s quarks in the U(1)R singlet and

SU(2)L doublet representations. Similarly we can obtain appropriate expressions for

restrictions on the bulk mass parameters coming from B0 − B̄0 and D0 − D̄0 mixing:

|ãd∗13ãd31| = O(1)(cq1 −
1

2
)(cd1 − cd3),

|ãd∗32ãd23| = O(1)(cq2 −
1

2
)(cd2 − cd3),

|ãu∗13 ãu31| = O(1)(cq1 −
1

2
)(cd1 −

1

2
). (6.15)
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One can see from the bounds, that unless the radion is very light (mφ ∼ 10 GeV),

the most significant constraints come from the εK bounds, especially those on the

coefficient C4. We use these bounds as the main flavor constraints on our model,

and present the restrictions in Fig. 22 in the mφ − Λφ plane (for the typical value

of ãd12 ∼ ãd21 ∼ 0.05). The region below the ads = 0.05 curve is named “flavor

disfavored”, since typical flavor anarchy parameter points would produce too large

contributions to εK in that region. Note that we considered the scenarios with both

3 and 4 generations of fermions, and the bounds are basically the same. The small

difference is due to the renormalization group running of operators, which is slightly

altered by the presence of extra fermion families.

4Gen Bounds

3Gen Bounds

LEP EXCLUSION

TEVATRON
EXCLUSION

8.2 fb�1

1.7 fb�1
EXCLUSION
ATLAS

Φ 	WW

FLAVOR DISFAVORED

ads� 0.05
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Figure 22: Restrictions in the mφ−Λφ plane from collider exclusion limits and flavor

constraints for εK (we have defined ads =
√
Im(ãd∗12ã

d
21)). One sees that for lighter

radion (mφ < 160 GeV) direct bounds are quite weak and flavor physics provide

stronger constraints (although less robust). Heavier radions are mostly constrained

by the “golden mode” pp → φ → ZZ and also pp → φ → WW at the LHC, while

pp̄ → φ → WW is used at Tevatron. (Figure on the curtesy of Dr. Manuel Toharia).

In the same figure we present the most recent direct bounds on radion phenomenology

coming from collider data. Indeed one can easily use the existing Higgs bounds to

restrict regions in the mφ − Λφ plane, since the search strategy for both the Higgs

and the radion are identical. This is due to the fact that the couplings of the radion

with particles are proportional to the mass of the particles (just like the couplings
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of the Higgs). The main difference is that the Higgs couplings are controlled by the

electroweak scale v, whereas the radion couplings are controlled (suppressed) by the

much heavier scale Λφ.

LEP bounds [126] do apply for very light radion, although the restrictions on Λφ

are not too strong, and one sees that in that region the generic flavor bounds are

much stronger (although less robust).

For heavier radion, the Tevatron and the LHC have put strong bounds on the

allowed parameter region of our scenario. In both experiments, the main production

mechanism for the radion is via gluon fusion but, unlike the Higgs, the other possible

production mechanisms such as vector boson fusion or associated W and Z production

are extremely suppressed. This is due to the enhancement of the coupling of radion to

gluons through the trace anomaly. The consequence of this fact is that Higgs searches

must be appropriately translated into radion bounds by subtracting events coming

from scalars produced via vector boson fusion. One can do this roughly by adjusting

the production cross section of the Higgs in order to only obtain the gluon fusion

cross section. A better way of translating Higgs searches into radion is to use fourth

generation Higgs searches. This is because a Higgs with 4 generations will mainly be

produced in gluon fusion (with almost no other production channel) and so there will

be no need of subtracting events coming from other production mechanisms.

Another important issue when translating Higgs bounds into the radion bounds is

that the width of a heavier Higgs (mh > 200 GeV) starts to be relevant (i.e. becomes

larger than the experimental resolution). This means that more background events

must be integrated in order to optimize signal events. But the radion width is always

going to remain much smaller than experimental resolution due to its couplings being

suppressed by Λφ (and not v as in the Higgs case). We must therefore adjust again

the Higgs limits in order to take this fact into account, since much less background

events should be kept in a pure radion search [68].

With all this in mind, we translate Tevatron and LHC bounds from Higgs searches

and show the excluded regions in Figure 22. From the Tevatron collider, we use the

CDF and D0 combined search for a fourth generation Higgs, which allows interesting

bounds up to masses of mφ = 300 GeV [209]. This search focuses on the Higgs decay

into pairs of W bosons and for an integrated luminosity of 8.2 fb−1. As for the LHC,

we use the recent results from the ATLAS experiment [163], in which they perform
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a combination of different channels, with integrated luminosities up to 1.7 fb−1. As

one can see, LHC data from a single experiment outperforms the Tevatron and quite

interesting bounds can be set up to a mass of mφ = 600 GeV. We note that because

the relative importance of different channels is not exactly the same for Higgs and

radion (specially the branching of the φ → γγ channel differs from h → γγ), in the

lower mass region mh < 160 GeV we avoid the combination and use exclusively the

ATLAS limits from h → γγ search. Above that point the branchings of Higgs and

radion into heavy vector bosons are essentially the same, specially if we assume for

the plot that the fourth generation of fermions (if it exists) is heavy enough, with

masses greater than 300 GeV.

Finally we note from this figure that radion phenomenology does not really change

due to the addition of a fourth family3. This might seem surprising because the Higgs

phenomenology is greatly affected by the presence of a fourth family of fermions

(specially fourth family quarks) due to an important enhancement in the Higgs

production cross section. This does not happen in the case of the radion, because

its couplings with massless gauge bosons are quite indifferent to the addition of new

heavy degrees of freedom. Even though the new added fields will produce new loop

contributions to φ → gg or to h → γγ, their presence will also alter the β functions of

the appropriate gauge groups, which will affect the couplings of the radion to massless

bosons through the trace anomaly. The new trace anomaly effects coming from a

fourth family will in fact cancel the previous loop contributions in the limit of very

heavy new states [70], and so basically the radion couplings to photons and gluons

remains the same, controlled only by the light degrees of freedom of the theory [219].

6.3 Flavor Changing Radion Decays in the 4

Generation Model

Radion couplings to fermions, massive and massless gauge bosons have all been

analyzed before [70, 174]. Here we investigate the changes in branching ratios due

to the effect of a fourth generation, and of flavor-changing interactions. We assume

no Higgs-radion mixing. We present our results in Fig. 23. Note that we keep the

3We assume here that the radion decays to fourth generation fermions (especially leptons and
neutrinos) is negligible. For an alternative scenario, see next section.
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radion mass to be above ∼ 5−10 GeV to avoid constraints from B-meson decays and

astrophysical data [220].
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Figure 23: Decay branching fractions of the radion in a warped scenario with four

generations of fermions. The flavor anarchy setup (masses and mixings explained

through fermion localization, with random 5D Yukawa couplings) predicts generic

FV couplings of the radion, leading to a few new interesting decay channels such as

φ → bb′ and φ → ττ ′. The masses chosen for this plot are mb′ = 350 GeV, mt′ = 400

GeV, mτ ′ = 120 GeV and mν4 = 90 GeV, and the KK scale is (R′)−1 = (
√
6)1500

GeV (∼ 3675 GeV).

Depending on the masses of the fourth generation leptons and neutrinos, FCNC decay

channels (φ → ττ ′, ντν4) could open for mφ ≥ 100GeV. At higher radion masses, the

WW,ZZ and tt̄ dominate. In this region, the radion could be observed through the

semi-leptonic channel φ → WlepWhad, and similarly φ → tt̄ → bb̄WhadWlep (avoiding

the fully hadronic channel which suffers from large QCD dijet background), but the

decays rate would be comparable to that of a direct Higgs boson production.

Finally, for light (Dirac) fourth-generation neutrinos or leptons, near the present

bounds, radion branching ratios to ν4ν4 and τ ′τ ′ can be significant and compete with

ZZ and WW decays, and thus significantly alter radion decay patterns for mφ > 200

GeV.
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6.4 Conclusions and Outlook

In this Chapter, we have investigated the phenomenology of the couplings, especially

the flavor-violating ones, of the radion to fermions in a warped model with three

and four generations where the fermions are allowed to propagate in the bulk. We

have shown how to obtain these couplings analytically, and presented leading order

expressions for them in a compact form. Although the radion FCNC couplings have

been analyzed before, some of the analytic expressions presented here are new. We

also explored the regions in which the couplings lie, and maximal values for these,

as contour plots in a plane defined by coefficients describing quark localization with

respect to the TeV brane. We are able to predict typical (and maximal) values for the

radion coupling to heavy-heavy, light-light, and heavy-light quarks, and these results

are confirmed by an extensive numerical scan.

Applying these to phenomenology of the radion, we calculated the tree-level

FCNC contributions to K0 − K̄0, εK , D0 − D̄0 and B0 − B̄0 mixing, and the

restrictions imposed on the couplings. We obtain simple expressions relating quark

localization to these experimental values. The most stringent constraints are from εK ,

yielding a region of space in mφ − Λφ parameter space disfavored by flavor violation

consideration. We add to these the most recent constraints on Higgs masses, from

ATLAS and CMS, translating them into combined radion mass-scale limits. Our

analysis shows that a large range around a light radion mass-low scale (Λφ ∼ 2 TeV,

mφ ∼ 60 GeV) survives. We also show that, unlike the case of the Higgs boson,

there are minute differences between radion mass-scale limits in 3 and 4 generations,

and thus these limits are quite independent of the number of generations. This

conclusion stands in the case where the radion decays are not significantly influenced

by decays into fourth generation fermions (in particular to fourth generation neutrinos

or leptons, which have the lowest mass bounds). In a complete analysis, we include

all branching ratios of the radion. Expected to be light, the radion decays primarily

to gg and bb̄ at low masses (mφ ≤ 100 GeV), while for heavier radions (mφ ≈ 100

GeV), FCNC decay channel such as ν4ντ (assuming Dirac neutrinos) and τ ′τ open,

with branching ratios of 10−3. These are the most promising FCNC decays of the

radion, barring the unlikely appearance of φ → t′c at the high mt′ = 400 GeV

threshold. However, flavor-conserving radion decays into fourth generation leptons

and neutrinos can be large (for mν4 , mτ ′ � 100 GeV) and alter the dominant decay
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modes for a heavier radion r → ZZ,WW . These are typical decay for a radion in a

model with four generations and would provide a distinguishing signal for the model.

If a heavy Higgs-like state is discovered at the LHC with the usual “golden mode”,

pp → h → ZZ, a width measurement could rule out a conventional Higgs boson. A

careful study for different and/or exotic decay channels of that resonance might be the

key to discover both a fourth generation of fermions and a warped extra dimension.
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Chapter 7

SAVING the FOURTH

GENERATION HIGGS with

RADION MIXING

The Higgs and radion fields carry the same quantum numbers. Therefore, there is

the possibility of having physical fields as the mixed states of radion and Higgs fields

(see Section 3.4.6 for the details). The mixing of the two fields is introduced with an

additional parameter (ξ), which is the coefficient of the curvature-scalar term [68].

Previously in Section 2.6, we have mentioned the ATLAS and CMS announcements

of the discovery of a spin-zero particle at a resonance 125− 126 GeV consistent with

a Higgs boson. We presented the exclusion regions at 95% CL for a SM Higgs boson

reported by ATLAS and CMS experiments as well. However, we need a thorough

analysis of more accumulated data to settle the issue of whether or not the observed

particle is a SM Higgs boson. Since the window for new physics is still open, one can

naturally ask if the new state is a Higgs, a radion, or a Higgs-radion mixed state.

This possibility could have even more dramatic consequences for the scenario with

an additional generation of fermions (see Section 3.3), which is a natural extension

of the warped space model as in [104,105]. The exclusion limits for SM4 Higgs boson

are introduced in Section 3.3. It appears that if the bump in the signal at the LHC is

the Higgs boson, this would rule out the SM4 at 95% CL for mh0 ≥ 123 GeV, and at

99.6% if mh0 = 125 GeV [165–167]. The limits from the Tevatron [168] also exclude

a wide range of Higgs boson masses.
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In Chapter 5 we have shown that if the fourth generation is incorporated into the

framework of warped space models, both the production and decay patterns of the

Higgs bosons can be altered significantly with respect to the patterns expected in the

standard model with four generations, thus giving rise to distinguishing signals at the

colliders [107]. In the next Chapter, radion phenomenology was dicussed and it was

pointed out that the radion is less sensitive to the presence of an extra generation

than the Higgs boson [108].

As the mechanism responsible for the radion FCNCs is different from the one for

the Higgs in these same models [175, 181], and the branching ratios for decays into

gluons and photons for three and four generations also differs, we can expect the

phenomenology of the Higgs-radion mixed state to present an interesting interplay

of the two mechanisms responsible, and to yield different effects. In particular, this

mixing may help evade the apparent constraints on low Higgs masses in the four

generation scenario. Motivated by these expectations, we study the phenomenology

of the Higgs-radion mixed state, paying particular attention to the signals for gg →
φ → γγ, gg → φ → ZZ∗ as well as gg → h → γγ, gg → h → ZZ∗, where φ

and h stand for the mixed Higgs-radion states. We use the ATLAS [221] and CMS

data [222] available as of 2011 for scalar searches, which are summarized in Section

2.6, to identify regions in the parameter space where the data is compatible with one

or the other of these states. The model is introduced in Chapter 3.4 and the radion

couplings are given in Appendix E-2.

7.1 Production and Decays of a Mixed Higgs-

Radion State with Four Generations

The main production mechanism of the Higgs particles at the hadron colliders is

through the gluon-gluon fusion channel, σ(gg → hSM), via triangular loops of heavy

quarks. However, for heavier Higgs bosons, the weak vector boson fusion channel,

σ(qq → qqhSM), becomes competitive with the gluon-gluon fusion mode. Therefore,

as a good approximation one can write the ratio of the production cross section of

the h physical mode to the production cross section of SM Higgs as

σ(gg → h) + σ(qq → qqh)

σ(gg → hSM) + σ(qq → qqhSM)
, (7.1)
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and this becomes(
σ(gg → h)

σ(gg → hSM)
+

σ(qq → qqh)

σ(gg → hSM)

)(
1

1 + σ(qq→qqhSM )
σ(gg→hSM )

)
. (7.2)

The ratio of the Higgs production cross section via the weak vector boson fusion

channel to the production cross section of the SM Higgs is closely correlated with the

partial widths such that

σ(qq → qqh)

σ(qq → qqhSM)
=

Γ(h → WW )

Γ(hSM → WW )
, (7.3)

which in warped extra dimensional scenarios with Higgs-radion mixing and fields in

the bulk simply becomes

Γ(h → WW )

Γ(hSM → WW )
=

{
d+ bγ

[
1− 3 ln

(√
6MP l

Λφ

)
M2

W

Λ2
φ

]}2

. (7.4)

Substituting this result in Eq. 7.2 we obtain[
σ(gg → h)

σ(gg → hSM)
+

{
d+ bγ

[
1− 3 ln

(√
6MP l

Λφ

)
M2

W

Λ2
φ

]}2
σ(qq → qqhSM)

σ(gg → hSM)

]

×
(

1

1 + σ(qq→qqhSM )
σ(gg→hSM )

)
, (7.5)

where the first term in the brackets is simply the ratio of couplings to gluons c2g/c
2
gSM

.

Similarly we can calculate the same ratio for the field φ,[
σ(gg → φ)

σ(gg → hSM)
+

{
c+ aγ

[
1− 3 ln

(√
6MP l

Λφ

)
M2

W

Λ2
φ

]}2
σ(qq → qqhSM)

σ(gg → hSM)

]

×
(

1

1 + σ(qq→qqhSM )
σ(gg→hSM )

)
. (7.6)

The production mechanism of an unmixed Higgs boson through the gluon-gluon fusion

channel increases about nine times with an additional fourth family of fermions,

because in addition to the top quark there are also heavy t′ and b′ quarks propagating

in the loop. Recently, the two-loop EW corrections, δ4EW , to the Higgs boson

production via gluon-gluon fusion has been computed with respect to the leading

order cross section in [169–172] which are summarized in Section 3.3. This enters as

a correction to the Higgs field prior to mixing. For δ4EW we have taken the (Higgs-mass

dependent) values from Table 11.
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Also, in order to take into account the effects of KK fields in the loop, we assume

an additional correction to the h0 couplings squared to massless gauge bosons of

±20% for gluons and ±10% for photons. The estimated values of the corrections are

based on the results presented in [198], where it was shown that either enhancements

or suppressions in the rates are possible, depending on the phases present at the level

of the 5D Yukawa couplings. In the figures, the effect will be illustrated with bands

in parameter space representing this “theoretical uncertainty”.

With these considerations the couplings of the physical Higgs and radion fields

are calculated and are given in Appendix E. Note that while the bare Higgs (h0)

couplings are corrected by (1 + δ4EW ), there is no such correction for the bare radion

(φ0) couplings. The reason is that the latter are dominated by the trace anomaly, and

so higher order loop effects are much smaller. We have also included the corrections

to the h0 → γγ coupling due to loop effects, as given in Table 12. A note of caution

is warranted with these corrections. The authors show that the NLO EW corrections

are of the same order as the LO estimate, and negative, due to the strong cancellation

between the W and fermion loops with four generations. This might be indicative of

a non-perturbative regime, and the authors rely on an estimation of the higher-order

corrections, without any certainty that the perturbation series converges. Moreover,

in our scenario, heavy Kaluza-Klein fermions are known to affect h0 → γγ at lowest

order [197,198], and therefore any higher order correction should also include the effect

of heavy fermions, not present in SM4. Given these uncertainties, we will present the

figures for both LO and EW-corrected branching ratios to γγ, expressed as in [172],

and comment on the differences. We mostly focus on the decays of Higgs-radion

mixed states to γγ and ZZ∗ for the low mass region, and to ZZ channel for larger

masses. The ratio of discovery significances for both the h and the φ with respect to

the SM Higgs can be defined as

Rh(XX) =
[ σ(gg → h) + σ(qq → qqh)

σ(gg → hSM) + σ(qq → qqhSM)

] BR(h → XX)

BR(hSM → XX)
wcorr(h), (7.7)

and

Rφ(XX) =
[ σ(gg → φ) + σ(qq → qqφ)

σ(gg → hSM) + σ(qq → qqhSM)

] BR(φ → XX)

BR(hSM → XX)
wcorr(φ), (7.8)
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where the terms in square brackets are defined in Eqs. (7.5) and (7.6) and where

wcorr(s) =

⎧⎪⎨
⎪⎩
√

max(Γtot(hSM),ΔM4l)

max(Γtot(s),ΔM4l)
for Γtot(s) > Γtot(hSM),

1 for Γtot(s) < Γtot(hSM).

(7.9)

The term wcorr represents a crude and fast approximation of the effects of a large

width of either s = h or s = φ. Indeed if the physical state h (or φ) has a much larger

width than the SM Higgs, and if this width is larger than the experimental resolution

of the detector, then an LHC search looking for the SM Higgs would somewhat

underestimate the integrated signal as this one would be distributed in a much wider

resonance. We have checked numerically using a Breit-Wigner distribution shape

that the correction induced indeed scales roughly as in wcorr, which was originally

introduced as a width-effect correction for the radion in [68].

Finally, the experimental resolution in the 4-lepton channel is estimated to be [68]

ΔM4l

M4l

=
0.1√

M4l(GeV)
+ 0.005, (7.10)

We use all this information to explore the parameter space for mφ and mh consistent

with the LHC data, which indicates an excess in the mass region 120− 128 GeV. Let

us review the data collected by 2011.

• ATLAS data indicates an enhanced signal in γγ and ZZ∗ → 4� near 125 GeV

[221] with observed excesses: R(γγ) = 2+0.8
−0.8, R(4�) = 0.5+1.5

−0.5.

• CMS data [222] indicates an excess

– At 124 GeV: R(γγ) = 1.7+0.8
−0.7, R(4�) = 0.5+1.1

−0.5, R(bb̄) = 1.2+2.0
−1.2.

– At 120 GeV in ZZ∗ only: R(4�) = 2+1.5
−1 , R(bb̄) = 0.2+1.9

−0.2, while R(γγ) <

0.5.

– At 137 GeV in γγ, R(γγ) = 1.5+0.8
−0.8 but not in ZZ∗, R(4�) < 0.2.

• Additionally, from the plots we inferred the additional constraints for heavier

Higgs bosons, which we used in generating our graphs: for mh = 320 GeV,

R(ZZ) < 0.5; for mh = 400 GeV, R(ZZ) < 0.2; for mh = 500 GeV, R(ZZ) <

0.5; and for mh = 600 GeV, R(ZZ) < 0.95.
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The error bars on the data are still large, but they can be used to restrict the

parameter for the four generation Higgs-radion mixed states. In order for these states

to fit the data, we should either have one of the states at 124−126 GeV, and another

one hidden (i.e. below the LHC signal), or one state at 124 GeV and the other either

at 120 or 137 GeV, both which should respect the CMS signal characteristics.

Based on the experimental constraints, we investigate the production and decay of

the two scalar particles in our scenario, mφ and mh, and divide the parameter space

as follows. In the first scenario, we attempt to fit h as the scalar particle observed

at LHC at an invariant mass of ∼ 125 GeV, while requiring φ to be consistent with

constraints of the rest of the spectrum from LEP, Tevatron and/or LHC; while in the

second scenario, we attempt the same thing for φ, while h must be consistent with

the previous collider data.

• Scenario 1a: mh = 124 GeV, mφ light (< 300 GeV); in particular, paying

specific attention to mφ = 120 GeV, mφ = 137 GeV, as these seem possible

parameter space points for the CMS data.

• Scenario 1b: mh = 125 GeV, mφ heavy (> 300 GeV).

• Scenario 2a: mφ = 125 GeV, mh light (< 300 GeV); in particular, paying

specific attention to the point mh = 120 GeV.

• Scenario 2b: mφ = 125 GeV, mh heavy (> 300 GeV).

We illustrate some regions of parameter space with different masses of h and φ in the

following figures. The results will depend on the mass of the fourth family charged

lepton (τ ′) and so we divide our considerations into two parts. We first assume

that mτ ′ ≥ 150 GeV, thus preventing flavor-changing decays into τ ′τ , which are

potentially large in this model [107, 108]. However, if the τ ′ is light, this might

modify substantially the branching ratios, potentially yielding significantly different

signals. We comment on this case in this section, and investigate it in more detail in

the next section.
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Figure 24: Ratio of discovery significances R(XX) ∼ σ/σSM , defined in the text, for

mh = 125 GeV, mφ = 60 GeV and for different values of Λφ and mτ ′ , for mτ ′ = 100

GeV. In the upper panels we show the LO, and in the lower panels the EW corrected

branching ratio to γγ. The light green bands indicate the theoretical uncertainties

in the gg → h → ZZ∗ rate, while those for γγ are depicted in orange. The dashed

purple lines marked by Rφ(ZZ) indicate the ratio of φZ∗Z∗ couplings with respect

to the hSMZ∗Z∗ one. The vertical gray bands indicate the allowed parameter space

for ξ.

• For Scenario 1a, if mφ ≤ 100 GeV, the LEP and Tevatron constraints apply.

We find that, constraining Rφ(Z
∗Z∗) to be in the required range (< 0.5) forces

ξ < 0.3 and Rh(ZZ
∗) < 1.6. If we do not take into account the higher order EW

corrections to the hγγ coupling, we find that for mφ = 60 GeV the experimental

constraints (including LEP) are satisfied for Λφ = 1.0 TeV if mτ ′ = 150 GeV,

and for Λφ = 1.0, 1.3 TeV if mτ ′ = 100 GeV, as shown in the upper panel of Fig.

24. The tight LEP constraints on the Λφ − ξ parameter space disallows greater

values of Λφ in the very lightmφ parameter region. However, when the large EW
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corrections to the γγ channel are included, we find no regions allowed anymore

in this scenario (lower panel of Fig. 24). However, if mφ = 120 GeV, there exist

points in the parameter space still consistent with all the experimental data for

light τ ′ leptons. As both of the h and φ states are light, we graph the decays

to γγ, bb̄ and ZZ∗. The m = 120 GeV is a point in the CMS data, and may or

may not survive the latest round of data analysis. As both Higgs-radion mixed

states are light, their branching ratios will depend on the τ ′ mass. If mτ ′ = 100

GeV, φ can decay into τ ′τ , and the branching ratios to bb̄, ZZ∗ and γγ are

modified. We present these in Fig. 25 for Λφ = 1.5 and 2 TeV. From the figure

(upper panels) one can note that, not including higher order EW corrections to

γγ, there exist allowed regions of the parameter space. Again in this Scenario,

if we include EW corrections to γγ (lower panels) all allowed region disappears

due to the reduced branching into γγ.
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Figure 25: Ratio of discovery significances R(XX) ∼ σ/σSM , defined in the text, for

mh = 124 GeV, mφ = 120, mτ ′ = 100 GeV and for different values of Λφ. In the

upper panels we show the LO, and in the lower panel the EW corrected branching

ratio to γγ. The light green bands indicate the theoretical uncertainties in the ZZ∗

signal, red for bb̄ and orange for γγ. For φ the uncertainties are depicted in pink for

ZZ∗, light blue for bb̄ and purple for γγ. The vertical gray bands indicate the allowed

parameter space for ξ.

If mh = 124 GeV, mφ = 137 GeV, we are unable to find points in the parameter

space which satisfy the experimental constraints, with or without higher order

EW corrections to γγ. If Rφ(ZZ
∗) < 0.2 as required, Rφ(γγ) > 2.3, and

Rh(ZZ
∗) < 1.6 for Λφ = 1, 1.3, 1.5 TeV, and the branching ratios worsen for

higher Λφ.

• For Scenario 1b, increasing mφ only makes the situation worse and we do not

find any region of parameters in which an h state at 125 GeV and a heavy φ

are allowed by the branching ratio constraints, and we thus choose not to show
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any figure for this case.

We have so far found that only scenario 1a, allows some regions of parameter

space, but with a very restrictive Λφ, and only if we do not consider the large

suppressions in the γγ channel due to higher order EW corrections.

• In Scenario 2a, where mφ = 124 GeV and h is light, and for mτ ′ = 150 GeV,

we do not find any allowed region in which all bounds and observed signals are

respected. For regions where Rh(γγ) < 0.5, Rφ(ZZ
∗) < 1.6. However, if the

fourth generation charged lepton τ ′ is light enough for the Higgs-radion mixed

state(s) to decay into it (through flavor-violating decays ττ ′), the branching

ratios are modified and the parameter space can shift. We show this in Fig.

26, for mh = 120 GeV, mφ = 124 GeV and Λφ = 1.3 TeV and Λφ = 1.5 TeV.

For mτ ′ = 100 GeV, the possibility of decays into ττ ′ reduces the branching

ratios to the other channels, thus widening the allowed ξ parameter range and

of Λφ for the Higgs-radion states. On the upper panels we do not include higher

order corrections to γγ while these are taken into account in the lower panels.

One can see that the reduction in h → γγ due to these corrections enhances

somewhat the allowed region since a the reduction in γγ happens mostly for

the h scalar, and this is preferred for mh = 120 GeV.
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Figure 26: Ratio of discovery significances R(XX) ∼ σ/σSM , defined in the text, for

mh = 120 GeV, mφ = 125 GeV and for different values of Λφ, for mτ ′ = 100 GeV. In

the upper panels we show the LO, and in the lower panel the EW corrected branching

ratio to γγ. The light green bands indicate the theoretical uncertainties in the ZZ∗

signal and the orange the ones are for γγ. For the φ the theoretical uncertainties in

ZZ∗ are given by pink bands and the ones for γγ are in purple. The vertical gray

bands indicate the allowed parameter space for ξ.

• In Scenario 2b, we find that as long as h is heavy enough, there are regions of

parameter space where all experimental constraints are satisfied. This is true

independent of whether mτ ′ = 100 or 150 GeV, and also of whether one includes

the higher order EW corrections to γγ. However, the results are quite sensitive

to the value of Λφ and to the large experimental and theoretical uncertainties in

the rates. We illustrate the situation for two values of Λφ, i.e Λφ = 1 TeV in Fig.

27 and for Λφ = 1.3 TeV in Fig. 28, for different h masses mh = 320, 400, 500

and 600 GeV. These figures are not affected by higher order EW corrections to
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γγ, as these mostly change the couplings of the heavy h field, whose couplings

to γγ are irrelevant. Note that while for Λφ = 1 TeV there are allowed bands

for 600, 500 and 320 GeV, the parameter space for Λφ = 1.3 TeV is much more

restrictive and we can only fit the data for mh = 600 GeV.
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Figure 27: Ratio of discovery significances R(XX) ∼ σ/σSM , defined in the text, for

mφ = 125 GeV, Λφ = 1.0 TeV and for different masses of h. The light green bands

indicate the theoretical uncertainties in the ZZ signal. There is no change in these

graphs if we include the EW corrected branching ratio to γγ. We took mτ ′ = 150

GeV, precluding FCNC decays to fourth generation leptons. The vertical gray bands

indicate the allowed parameter space for ξ.
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Figure 28: Same as Fig. 27, but for Λφ = 1.3 TeV.

7.2 Flavor Changing Decays of the Higgs-Radion

States in the Four Generation Model

Should the scalar discovered at the LHC be a Higgs-radion mixed state, its decay into

two fermions will be different than for a SM Higgs boson, and further analysis at the

LHC could differentiate the particles. In this section we present the branching ratios

of the mixed Higgs-radion state into two fermions. We start by giving analytical

formulas, as they have not appeared before, then show specific values for the flavor-

conserving and the flavor-violating branching ratios, for the allowed points in the

parameter space presented in the previous section. The branching ratios of the mixed
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states φ and h into two fermions are given by:

Γ(φ → f̄ifj) =
S cmimj

8πm3
φυ

2

√
m4

φ +m4
i +m4

j − 2m2
φm

2
i − 2m2

φm
2
j − 2m2

im
2
j

×
([

(c̃ij)
2 + (c̃ji)

2
]
(−m2

φ +m2
i +m2

j) + 4�[(c̃ij)(c̃ji)]mimj

)
,(7.11)

Γ(h → f̄ifj) =
S cmimj

8πm3
hυ

2

√
m4
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i +m4

j − 2m2
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2
i − 2m2

hm
2
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im
2
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×
([

(d̃ij)
2 + (d̃ji)

2
]
(−m2

h +m2
i +m2

j) + 4�[(d̃ij)(d̃ji)]mimj

)
.(7.12)

Here S is a product of statistical factors 1/j! for each group of j identical particles

in the final state. For flavor violating couplings, the particles in the final state are

different, therefore, S = 1. The factor c is the color factor, for quarks c = 3, and for

leptonic decays, c = 1.

The flavor violating couplings of the mixed states are defined as

c̃ij = c aij + aγ ãij,

d̃ij = d aij + bγ ãij, (7.13)

where the couplings aij and ãij, of the original unmixed Higgs and radion, have been

previously obtained in [174,181] in the case of three generations and in [107,108] with

four generations. In the branching ratio calculations given in the Tables, we use the

central values for aijs and ãijs obtained in the numerical scans performed in the last

references, and we choose a specific allowed value of ξ for each point studied in the

parameter space.

We first present the branching ratios to FCNC decays for allowed parameter points

from the previous section. We chose two different scenarios. In one mτ ′ = 100 GeV,

thus a scalar of mass 125 GeV can have flavor-violating decays into ττ ′. These results

are shown in Table 19. The FCNC decay branching ratios into ττ ′ can reach 5%.

Overall, the effect is not measurable, however, should the mass of the τ ′ be close

to its experimental limit 100 GeV, the situation could change drastically and the

BR(φ → τ ′τ) can reach 50 %, suppressing all other decays.
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Λ(TeV) ξ m(GeV) b′b tc bs τ ′τ μτ ντντ′

1.3 0.228
mφ = 60 - - 9.53 × 10−5 - 2.49 × 10−5 -

mh = 125 - - 5.51 × 10−4 5.53 × 10−1 1.52 × 10−4 1.46 × 10−3

1.3 -0.00866
mφ = 124 - - 7.30 × 10−5 4.67 × 10−2 2.01 × 10−5 7.76 × 10−4

mh = 120 - - 6.34 × 10−4 4.74 × 10−1 1.77 × 10−4 1.48 × 10−3

1.5 0.0221
mφ = 120 - - 3.31 × 10−4 2.20 × 10−1 9.06 × 10−5 1.46 × 10−3

mh = 124 - - 7.34 × 10−4 7.19 × 10−1 2.02 × 10−4 1.76 × 10−3

1.0 0.417
mφ = 125 - - 7.47 × 10−5 5.94 × 10−2 2.05 × 10−5 8.15 × 10−4

mh = 320 - 1.53 × 10−4 1.04 × 10−6 7.84 × 10−3 3.23 × 10−7 9.28 × 10−6

1.0 0.537
mφ = 125 - - 4.21 × 10−5 2.95 × 10−3 1.16 × 10−5 6.92 × 10−4

mh = 500 1.27 × 10−2 6.61 × 10−5 2.93 × 10−7 2.71 × 10−3 9.83 × 10−8 3.00 × 10−6

1.0 0.601
mφ = 125 - - 1.52 × 10−5 7.29 × 10−3 4.17 × 10−6 5.42 × 10−4

mh = 600 1.44 × 10−2 4.84 × 10−5 1.99 × 10−7 1.89 × 10−3 6.68 × 10−8 2.02 × 10−6

Table 19: The FCNC branching ratios of h and φ for allowed points in the parameter

space. The fourth generation fermion masses are chosen as mt′ = 400 GeV, mb′ = 350

GeV, mτ ′ = 100 GeV, mντ ′ = 90 GeV.

In Table 20 we chose mτ ′ = 150 GeV, precluding FCNC decays of the lightest scalar

into fourth generation leptons. As before, the Higgs-radion mixed state can decay into

third and fourth generation neutrinos, but the branching ratios are not significant. For

the other fourth generation fermions, we take throughout mt′ = 400 GeV, mb′ = 350

GeV, and mντ ′ = 90 GeV.

Λ(TeV) ξ m(GeV) b′b tc bs τ ′τ μτ ντντ′

1.0 0.0283
mφ = 60 - - 1.08 × 10−5 - 2.83 × 10−6 -

mh = 125 - - 1.05 × 10−3 - 2.88 × 10−4 3.00 × 10−3

1.0 0.412
mφ = 125 - - 7.60 × 10−5 - 2.09 × 10−5 8.52 × 10−4

mh = 320 - 1.61 × 10−4 1.10 × 10−6 9.24 × 10−3 3.40 × 10−7 9.76 × 10−6

1.0 0.565
mφ = 125 - - 5.84 × 10−5 - 1.61 × 10−5 7.85 × 10−4

mh = 500 1.26 × 10−2 6.51 × 10−5 2.90 × 10−7 3.62 × 10−3 9.72 × 10−8 2.91 × 10−6

1.0 0.644
mφ = 125 - - 4.50 × 10−5 - 1.24 × 10−5 7.28 × 10−4

mh = 600 1.42 × 10−2 4.76 × 10−5 1.96 × 10−7 2.59 × 10−3 6.57 × 10−8 1.99 × 10−6

Table 20: Same as Table 19, but for mτ ′ = 150 GeV.

We perform the same analysis, this time for the flavor-diagonal couplings, in Table 21

formτ ′ = 100 GeV and in Table 22 formτ ′ = 150 GeV. As no flavor-conserving decays

into fourth generation fermions are possible, we compare the ratio of significance and
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Yukawa couplings to the corresponding ones in the SM. The light scalar state (at 120

or 125 GeV) exhibits large enhancements for bb̄ and cc̄.

The enhancements in bb̄ for the φ state are consistent with the Tevatron results

R(bb̄) = 2.03+0.73
−0.71 [223], while the heavier scalars have correspondingly suppressed

ratios of significance with respect to the SM. The former fact is quite unlike the

case for SM4, where the branching ratio BR(H → bb̄) is 30% less than in the SM for

MH ≈ 125 GeV [165–167]. The enhancements in the warped space model are inherited

from the couplings of the bare Higgs boson to fermions, aij, given in [107]. The range

of the flavor-conserving coefficients aij is large, and their values can accommodate

the Tevatron findings (under most circumstances, they are in the same range, or

only slightly reduced compared to the SM with 3 generations [181]). The final

enhancements in the couplings of the physical states will give a clear indication for

the warped space model. Because of this relative uncertanty in the fermion Yukawa

couplings, we neglect higher order EW corrections to the couplings of the Higgs with

vector bosons, in the presence of a fourth generation. Moreover these corrections have

not been calculated out in the context of our scenario, in which the effects of heavy

KK fermions should be included.

Λ(TeV) ξ m(GeV) R(bb) R(cc) R(tt) Ytt

1.5 0.0221
mφ = 120 2.05 2.13 - 0.496

mh = 124 0.563 0.557 - 0.880

1.0 0.421
mφ = 125 2.20 2.31 - 0.380

mh = 320 0.523 0.513 - 1.02

1.0 0.537
mφ = 125 1.81 1.93 - 0.317

mh = 500 0.532 0.521 0.556 1.19

1.0 0.601
mφ = 125 1.78 1.89 - 0.316

mh = 600 0.553 0.520 0.559 1.36

Table 21: Ratio of significance Rh(φ)(XX) = S(gg → h(φ) → ff̄)/S(gg → hSM →
ff̄) for different parameter space. Last column are the Yukawa couplings for h(φ) to

tt̄. The fourth generation fermion masses are chosen as mt′ = 400 GeV, mb′ = 350

GeV, mτ ′ = 100 GeV, mντ ′ = 90 GeV.
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Λ(TeV) ξ m(GeV) R(bb) R(cc) R(tt) Ytt

1.0 0.412
mφ = 125 2.45 2.59 - 0.374

mh = 320 0.586 0.575 - 1.01

1.0 0.565
mφ = 125 2.02 2.14 - 0.334

mh = 500 0.481 0.470 0.503 1.24

1.0 0.480
mφ = 125 1.48 1.59 - 0.602

mh = 600 0.636 0.625 0.661 0.819

Table 22: Same as Table 21, but for mτ ′ = 150 GeV.

7.3 Conclusions and Outlook

In this Chapter, we have investigated the phenomenology of the Higgs-radion mixed

state with a fourth generation of quarks and leptons, in an attempt to explain the

latest LHC data. We asked the question: if the scalar particle seen at the LHC is not

the ordinary SM Higgs boson, but a mixed Higgs-radion state, could this state satisfy

all the experimental constraints, even including the effects of a fourth generation?

The four generations assumption in warped space models is of particular interest, as

SM4, fails to reproduce the observed data to at least 95% confidence level. A fourth

generation, which is severely restricted and perhaps even ruled out by the ATLAS

and CMS data in SM4 could be resuscitated in warped space models. The answer to

the question we posed is a cautious yes. That is, there exist regions of the parameter

space where one of the mixed Higgs-radion states has mass of 125 GeV, and satisfies

existing experimental constraints, while the other either has a mass of 120 GeV, thus

fitting a CMS parameter point, or evades present collider bounds.

Higher order EW corrections to the couplings of Higgs to photons in SM4 show a

substantial suppression. In our scenario, however the presence of heavy KK fermions

should affect such calculations and so we decided to study the predictions both with

and without these corrections whose effect is to close the parameter space for the case

in which the observed scalar at the LHC is the mostly Higgs state h (leaving the φ

possibility unaffected). With no corrections to γγ, if the h state is the scalar observed

at the LHC, the φ mass must be light. Parameter points with either mφ = 60 GeV,
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which evade LEP restrictions, or mφ = 120 GeV, which fit the CMS data, are allowed

for some range of the mixing parameter ξ. We analyzed these for both very light

fourth generation charged leptons, mτ ′ = 100 GeV, or for heavier ones, mτ ′ = 150

GeV. The difference between these two masses is that the first case allows flavor-

changing decays of the Higgs-radion state, which are large in this model and which

modify the branching ratios to γγ and ZZ∗. All of these parameter points require

the scale Λφ to be light, in the 1.0 − 1.3 TeV range, the exact values dependent on

the rest of the parameters. For larger mφ values, the branching ratio to ZZ increases

beyond the LHC limits, and thus this parameter region is forbidden. This region of

parameter space is very fragile. For mh = 124 GeV, the point at mφ = 120 GeV

shows signs of instability as the 4� excess might be cancelled by γγ, while its decay

into bb̄ appears to have increased. The signal for mφ = 60 GeV, while not ruled out

by LEP data depends very sensitively on the values of mτ ′ and Λφ.

If φ is the scalar observed at the LHC, the h state is most likely to be heavy.

The exception is when mτ ′ = 100 GeV; for mh = 120 GeV parameter points exist for

Λφ = 1.0, 1.3, and 1.5 TeV. Regions where mh = 320, 400, 500 and 600 GeV exist

for some values of Λφ, which is still required to be in the 1.0− 1.5 TeV range. These

parameter regions seem quite robust and not dependent on whether τ ′ is heavy or

light; however they could be ruled out within the next year at LHC as data for heavier

scalars becomes available. To increase predictability of our scenario, we calculated

the branching ratios of the allowed Higgs-radion states into fermions, both for flavor

changing and flavor conserving channels (some of which are significantly enhanced

with respect to the SM expectations). As more data on the scalar production and

decay becomes available, these predictions can be compared with the experiment,

specially noting the appearance of the interesting exotic FCNC decays.

In conclusion, we have achieved two goals in this part: first, we have shown

that a scalar in a warped model with a fourth generation of fermions can be light

and consistent with the LHC data, if the observed particle is a Higgs-radion mixed

state. Second, the allowed parameter space is tightly constrained and expected to be

confirmed or ruled out within a year by further analyses and/or higher luminosity at

the LHC.
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Chapter 8

CONCLUSION

The SM is a mathematically consistent renormalizable field theory of the elementary

particles and their interactions. On July the 4th 2012, ATLAS and CMS experiments

presented a preview of their preliminary results on the search for the Higgs Boson, the

only missing element of the SM, and they announced a spin-zero bosonic resonance

of mass 125− 126 GeV a breakthrough sparking renewed interest in particle physics.

The the discovery of the Higgs boson may even further substantiate the SM. However,

the issue of whether or not this new finding is the Higgs boson predicted by the

SM is still somewhat ambiguous, requiring the close examination of accumulating

data over a longer period. All its accomplishments aside, the SM suffers from some

drawbacks, which motivates supplementary searches at the LHC to look for new

physics buried within the available results. In this thesis, we have introduced some

of the extensions of the SM including LRSUSY and Warped Extra Dimensions with

a Fourth Generation which may resolve some of the questions in particle physics that

cannot be addressed in the SM, and investigate their scalar sectors.

We first analyzed the Higgs sector of a minimal left-right supersymmetric model

where inclusion of the heavy Majorana neutrino Yukawa coupling insures a global

minimum which is charge conserving, thus avoiding spontaneous R-parity breaking

or the need to introduce higher dimensional terms. The Higgs sector contains four

doubly-charged, six singly-charged, nine neutral scalar, and seven pseudoscalar fields.

We have shown that, despite the existence of so many free parameters, most of the

Higgs masses are sensitive to only few parameters, thus one can find a parameter space

allowing to a light neutral flavor-conserving scalar Higgs boson as a counterpart to
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the SM one, at least one light doubly-charged Higgs boson, which is interesting for

phenomenology, and flavor-violating neutral Higgs bosons satisfying the constraints

imposed by the experimental data from ΔF = 1, 2 mixings. The masses of new gauge

bosons, on the other hand, are predicted to be just outside of the accessible energies

by LHC for the chosen parameter space. This analysis is important as a basis for a

phenomenological study of signals from such a Higgs sector.

The warped extra dimensions including a fourth generation of fermions has been

the second focus of the thesis. We present a comprehensive study of Higgs flavor-

violating couplings introduced by the insertion of the higher dimensional operators in

the model. In fact, the Higgs FCNCs become more pronounced with the addition

of the fourth family of fermions due to their cumulative effects in flavor space.

Both analytical and numerical results for the flavor violating couplings are calculated

under the assumption that the three generation quark masses and mixing angles will

be reproduced and by taking into consideration the unitarity of VCKM4 matrix to

constrain the masses and mixings of the fourth generations, as well as and imposing

the additional bounds from ΔF = 2 mixings. The constraints are similar to those

obtained in the scenario with three generations [181]. We briefly discussed the

possibilities for the lepton sector as well, which is unfortunately complicated by the

lack of a well-defined model of neutrino masses and mixings. We found that the

effect of flavor-violating couplings contributing at the loop-level processes in the form

fi → fjγ are negligible for quarks whereas might become more important and restrict

the lepton flavor-violating couplings further that the numerical scan. FCNC decay

channels including fourth generation of fermions as a decay product would provide

a clear indication of the model. Moreover, in case that the fourth generation quarks

and leptons are heavier than the Higgs boson, their decay into lighter quarks and

Higgs bosons would be a promising channel for their discovery and identification.

In the same framework we have investigated the phenomenology of the couplings

of the radion to fermions by giving analytical expressions in leading order together

with our predictions on typical (and maximal) values for the radion couplings to

heavy-heavy, light-light, and heavy-light quarks from a contour plot in a plane

defined by the coefficients describing the quark localization with respect to TeV-

brane, also confirmed by an extensive numerical scan. As in the case for the Higgs

boson, restrictions are imposed on the couplings by tree-level FCNC contributions to
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ΔF = 1, 2 mixings. Further constraints are obtained by translating the most recent

constraints on Higgs boson masses from ATLAS and CMS into combined radion

mass-scale limits. Our analysis shows that, unlike the Higgs boson, there are minute

differences between radion mass-scale limits in 3 and 4 generations, rendering then

quite independent of the number of generations. In a complete decay plot, we include

all branching ratios of the radion and show that for heavy radion FCNC, the most

promising decay channels are the ones which include fourth generation leptons as one

of the decay products. In addition the flavor-conserving radion decays into fourth

generation leptons and neutrinos can be large and alter the dominant decay modes

for a heavier radion to WW or ZZ gauge bosons and provide a distinguishing signal

for the model. If a heavy Higgs-like state is discovered at the LHC with the usual

“golden mode”, pp → h → ZZ, a width measurement could rule out a conventional

Higgs boson. A careful study for different and/or exotic decay channels of that

resonance might be the key to discover both a fourth generation of fermions and a

warped extra dimension.

At last, we analyzed the phenomenology of the Higgs-radion mixed states in a

warped extra dimensional scenario with an additional family of fermions where the

gauge and matter fields are allowed to propagate in the bulk. Higher order EW

corrections to the couplings of Higgs to two gluons and photons were also taken into

account. However, since the presence of heavy KK fermions should affect Higgs to two

photons calculations, we present our results both with and without these corrections.

They affect the case in which the observed scalar at the LHC is the mostly Higgs

state h, leaving the φ possibility unaffected. We have found out that there exist

regions of the parameter space where one of the mixed Higgs-radion states satisfies

the properties of the signal at 125 GeV, while the other either fits CMS or ATLAS

parameter points, or evades the present collider bounds. To increase predictability of

our scenario, we calculated the branching ratios of the allowed Higgs-radion states into

fermions, both for flavor-changing and flavor-conserving channels. As more data on

the scalar production and decay becomes available, these predictions can be compared

with the experiment.

Now that a scalar spin-0 particle has been discovered, for the first time we might

have access to electroweak symmetry breaking sector of the SM and to the mysteries

it may reveal. As attention turns towards its couplings, it is important to test that the
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observed boson is the SM Higgs boson or not. The preliminary results indicating an

excess in γγ, ZZ and WW decay channels are in agreement with the SM even though

there may be a suggestion of BSM due to possible deviation in Higgs di-photon decay

rates. In the experimental side, more accumulated data will be needed to determine

if the excess is real or just due to a statistical fluctuation. Simultaneously, on the

theoretical side, simultaneously, it is worth investigating which BSM can explain these

deviations. In this thesis, we consider an extension of the Higgs sector in a minimal

LRSUSY model, and warped extra dimensions with four generations which might be

refuted or confirmed in the future experiments. Future work could be investigation

of signals in Higgs production and decay modes at LHC for the LRSUSY model

introduced.

The thesis is based on the following publications:

1. M. Frank and B. Korutlu, Higgs Bosons in a minimal R-parity conserving left-

right supersymmetric model, Phys. Rev. D 83, 073007 (2011).

2. M. Frank, B. Korutlu and M. Toharia, Higgs Phenomenology in Warped Extra-

Dimensions with a 4th Generation, Phys. Rev. D 84, 075009 (2011).

3. M. Frank, B. Korutlu and M. Toharia, Radion Phenomenology with 3 and 4

Generations, Phys. Rev. D 84, 115020 (2011).

4. M. Frank, B. Korutlu and M. Toharia, Saving the fourth generation Higgs with

radion mixing, Phys. Rev. D 85, 115025 (2012).

Except for specific credits indicated throughout my thesis, everything else is my own

work.
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Appendix A

Notations and Conventions

We will specify the notations and conventions that we use throughout the thesis.

• Indices: (i, j, k = 1, ..., 3) are three-vector indices, (μ, ν, ρ, σ = 1, ..., 4) are

Lorentz indices, and (M,N,R, S = 1, ..., 5) are 5D indices. For three-vectors we

do not distinguish between upper and lower indices.

• Units and Physical Constants: � = c = 1, implying that E, p,m, 1
x
, 1
t
have

energy units.

• Flat Space-Time Metric Tensor: We use the mostly minus convention such

that

ημν = ημν =

⎛
⎜⎜⎜⎜⎝

1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

⎞
⎟⎟⎟⎟⎠ . (A-1)

• Four-Vector Notation:

Position Vector: xμ = (t, �x), xμ = (t,−�x),

Momentum Vector: pμ = (E, �p), pμ = (E,−�p),

Derivatives: ∂μ = ∂
∂xμ =

(
∂
∂t
, �∇
)
, ∂μ = ∂

∂xμ
=
(

∂
∂t
,−�∇

)
,

� ≡ ∂μ∂
μ = ∂2

∂t2
− �∇2.

• Pauli Matrices: The 2 × 2 Pauli matrices �σ = (σ1, σ2, σ3) (for internal
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symmetries denoted by �τ) are defined by[
σi, σj

]
= 2iεijkσk. (A-2)

A convenient representation satisfying eq. (A-2) is

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0

0 −1

)
. (A-3)

A-1 Dirac Matrices and Spinors

The Dirac Matrices γμ are defined by{
γμ, γν

}
= 2gμνI, (A-4)

where I is an identity matrix. It is also useful to define

σμν =
i

2

[
γμ, γν

]
, γ5 = γ5 ≡ iγ0γ1γ2γ3. (A-5)

The γ5 matrix enters for spin and chirality projections of fermions. In the following

two subsections we will give two different representation of Dirac Matrices and spinors

satisfying eq. (A-4). The projection operator are given as

PL =
1− γ5

2
=

(
I 0

0 0

)
, PR =

1 + γ5

2
=

(
0 0

0 I

)
(A-6)

Note also that P 2
L,R = PL,R, PLPR = 0, P †

L,R = PL,R and P T
L,R = PL,R.

A-1.1 Pauli-Dirac Representation

Pauli-Dirac Representation is useful for studying non-relativistic limit of an

interaction.

• Dirac Matrices:

γ0 =

(
I 0

0 −I

)
, γi =

(
0 σi

−σi 0

)
, γ5 =

(
0 I

I 0

)
, (A-7)

where I is the 2× 2 identity matrix and σi are the Pauli matrices given in eq.

(A-3)

σ0i = i

(
0 σi

σi 0

)
, σij = εijk

(
σk 0

0 σk

)
. (A-8)
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• Fermion Fields: Fermion fields and the adjoint fields are represented by four-

component column vectors and four-component row vectors, respectively.

ψ =

(
ΨL

ΨR

)
,

ψ̄ = ψ†γ0 =
(

Ψ†
L Ψ†

R

)( I 0

0 −I

)
=
(

Ψ†
L −Ψ†

R

)
, (A-9)

where both ΨL,R are 2 × 1 column vectors. For a fermion field one can define

the left- (L) and right- (R) chiral projections as

ψL = PLψ =

(
I 0

0 0

)(
ΨL

ΨR

)
=

(
ΨL

0

)
,

ψR = PRψ =

(
0 0

0 I

)(
ΨL

ΨR

)
=

(
0

ΨR

)
,

(A-10)

where ψL and ψR can be considered as independent degrees of freedom of ψ.

Let us also define ψ̄L,R as projection of ψ̄

ψ̄L = ψ†
Lγ

0 = (PLψ)
†γ0 = ψ†PLγ

0 = ψ†γ0PR = ψ̄PR,

ψ̄R = ψ̄PL. (A-11)

• Charge Conjugation: Charge conjugation changes a particle into the

corresponding antiparticle without affecting its spin or momenta. We will

denote the antiparticles with a superscript c.

ψc = Cψ̄T = C(ψ†γ0)T = Cγ0Tψ†T ,

ψ̄c = ψc†γ0 = (Cγ0Tψ†T )†γ0 = ψTγ0C†γ0 = ψTC = −ψTC−1, (A-12)

where

C = −C−1 = −C† = −CT = iγ2γ0 =

(
0 −iσ2

−iσ2 0

)
. (A-13)

In explicit form we can write

ψc =

(
Ψc

L

Ψc
R

)
=

(
0 −iσ2

−iσ2 0

)(
I 0

0 −I

)(
Ψ∗

L

Ψ∗
R

)
=

(
iσ2Ψ∗

R

−iσ2Ψ∗
L

)
,

ψ̄c =
(

ΨT
L ΨT

R

)( 0 −iσ2

−iσ2 0

)
=
(

−iσ2ΨT
R −iσ2ΨT

L

)
. (A-14)
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The left- and right-chiral antiparticles are obtained as follows

ψc
L = PLψ

c = PLCψ̄T = (ψ̄CTPL)
T = (ψ̄PLC

T )T = (ψ̄RC
T )T = Cψ̄T

R,

ψc
R = Cψ̄T

L , (A-15)

where we have used eqs. (A-4) and (A-11). Note that even though ψL and ψR

can be considered as independent degrees of freedom for ψ, ψc
L and ψc

R, on the

other hand are not independent. One can also write ψ̄c
L,R

ψ̄c
L = ψc†

L γ0 = (PLCγ0Tψ†T )†γ0 = ψTPRC = (PRψ)
TC = ψT

RC = −ψT
RC

−1,

ψ̄c
R = −ψT

LC
−1. (A-16)

A-1.2 Chiral Representation

• Dirac Matrices:

γ0 =

(
0 I

I 0

)
, γi =

(
0 σi

−σi 0

)
, γ5 =

(
−I 0

0 I

)
, (A-17)

and

σ0i = i

(
−σi 0

0 σi

)
, σij = εijk

(
σk 0

0 σk

)
. (A-18)

It is sometimes more convenient to rewrite the Dirac Matrices in chiral

representation as

γμ =

(
0 σμ

σ̄μ 0

)
, (A-19)

where σμ ≡ (I, �σ) and σ̄μ ≡ (I,−�σ) = σμ.

• Fermion Fields: Fermion fields and the adjoint fields are represented by two-

component column vectors and two-component row vectors, respectively.

ΨL and ΨR

Ψ†
L and Ψ†

R (A-20)

• Charge Conjugation: Charge Conjugation change a particle into the

corresponding antiparticle, without affecting its spin or momenta. We will

denote the antiparticles with a superscript c.

C = −C−1 = −C† = −CT = −iγ2γ0 =

(
−iσ2 0

0 iσ2

)
, (A-21)
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which gives

ψc =

(
Ψc

L

Ψc
R

)
=

(
−iσ2 0

0 iσ2

)(
0 I

I 0

)(
Ψ∗

L

Ψ∗
R

)
=

(
−iσ2Ψ∗

R

iσ2Ψ∗
L

)
.

(A-22)

In many cases it is convenient to work with ΨL,R fields as it is conveniently done

in QED and QCD. However, sometimes it is easier to work with left-chiral fields

for both the particles and antiparticles that is ΨL and Ψc
L, or equivalently one

can get rid of the subscript L and write Ψ and Ψc by keeping in mind that they

are the left-chiral fermions. This is typically done when discussing the LRSM,

SUSY, LRSUSY.
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Appendix B

Gauge Group and Transformations

A group G is a set of elements g1, g2, ... with a map G × G into G (called as the

product operation for the group and denoted by g1 ∗g2 ) with the following properties

• Associativity: For each g1,2 ∈ G, g1 ∗ g2 = g3 with g3 ∈ G (closure) and

g1 ∗ (g2 ∗ g3) = (g1 ∗ g2) ∗ g3 (associative).

• Identity Element: There exist an identity element I ∈ G with I ∗g = g∗I = g

for all g ∈ G.

• Inverse: For each g ∈ G there is a unique inverse g−1 such that g ∗ g−1 =

g−1 ∗ g = I.

According to the commutation relations of the group elements, we can classify

the groups as:

– Abelian group: The group is commutative such that [g1, g2] = 0 for each

g1,2 ∈ G.

– Non-abelian group: The group is non-commutative: [g1, g2] �= 0 for any

g1,2 ∈ G.

In Field theory, to describe continuous global and gauge transformations Lie Groups

and algebras are used. A Lie group G is a continuous group for which the

multiplication law can be defined in terms of its associated Lie algebra consisting

N generators T i, i = 1, 2, ..., N , and their commutation rules

[T i, T j] =
∑
k

icijkT
k, (B-1)
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where cijk = −cjik are the structure constants of G. Without the loss of generality,

T i can be assigned to be Hermitian which give rise to real structure constants. Below

we will give some examples of the Lie Groups.

• U(1) Group: G = U(1) is the simplest example of a Lie group. It is an abelian

group with a single generator T . The elements of a U(1) are 1× 1 dimensional

unitary matrices which can be represented as

UG(β) = e−iβT . (B-2)

There is a special case with T = 1 and group elements UG(β) → e−iβ as well.

• SU(2) Group: G = SU(2) is a non-abelian group with 3 generators and the

structure constants are cijk = εijk. Its elements are 2 × 2 unitary matrices

with the extra constraint that their determinant is unity. The generators are

Li = τ i/2 where τi = σi are the Pauli matrices given in eq. (A-3). The group

elements are

UG(�β) = e−i�β·	τ
2 = cos

β

2
I− i sin

β

2
β̂ · �τ . (B-3)

• SU(3) Group: G = SU(3) is a non-abelian group with 8 generators and the

structure constants are cijk = fijk, i, j, k = 1, ..., 8. Its elements are 3 × 3

unitary matrices with determinant one. The generators are L3
i = λi/2 where

λi, i = 1, ..., 8 are Gell-Mann Matrices given as

λ1 =

⎛
⎜⎜⎝

0 1 0

1 0 0

0 0 0

⎞
⎟⎟⎠ , λ2 =

⎛
⎜⎜⎝

0 −i 0

i 0 0

0 0 0

⎞
⎟⎟⎠ , λ3 =

⎛
⎜⎜⎝

1 0 0

0 −1 0

0 0 0

⎞
⎟⎟⎠ ,

λ4 =

⎛
⎜⎜⎝

0 0 1

0 0 0

1 0 0

⎞
⎟⎟⎠ , λ5 =

⎛
⎜⎜⎝

0 0 −i

0 0 0

i 0 0

⎞
⎟⎟⎠ , λ6 =

⎛
⎜⎜⎝

0 0 0

0 0 1

0 1 0

⎞
⎟⎟⎠ ,

λ7 =

⎛
⎜⎜⎝

0 0 0

0 0 −i

0 i 0

⎞
⎟⎟⎠ , λ8 =

1√
3

⎛
⎜⎜⎝

1 0 0

0 1 0

0 0 −2

⎞
⎟⎟⎠ , (B-4)

and the nonzero totally antisymmetric structure constants fijk are

f123 = 1, f147 =
1

2
, f156 = −1

2
, f246 =

1

2
, f257 =

1

2
,

f345 =
1

2
, f367 = −1

2
, f678 =

√
3

2
. (B-5)
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The group elements are

UG(βi) = e−
i
2
βiλi = cos

β

2
I− i sin

β

2
β̂iλi. (B-6)

In modern particle theories the underlying group of the theory consists some gauge

transformations under which Lagrangian remains unchanged. This is called the gauge

invariance and is the origin of the forces. The gauge transformations can be divided

into two:

• Global Gauge Transformations: The global gauge transformation (GGT)

represents an identical operation at all points in space-time and causes a simple

shift in the phase of a fermion wave function as follows:

ψ → eiθψ, (B-7)

where θ is a real number. Thus, GGT is just a statement of the fact that the

laws of physics are independent of the choice of phase convention.

• Local Gauge Transformations: The LGT corresponds to choosing a

convention to define the phase of the fermion wavefunction, which is different

at different points in space-time. In other words, the matter fields will be

transformed differently at each space-time point. The expression for is

ψ → eiqθ(x)ψ, (B-8)

where θ is a function of x = (x, t). Therefore, one requires a redefinition of the

derivative, which compares fields at different points in space-time.

The SM, based on the gauge invariance principle with gauge group SU(3)c⊗SU(2)L⊗
U(1)Y , can excellently describe the three out of four fundamental forces of nature

introduced in Chapter 2 by making use of global and local gauge transformations.
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Appendix C

Ricci Tensor and Brane Tensions

C-1 The Components of the Ricci Tensor

Let us first write the metric given in eq. (3.83) in component form:

gμν = e−2σ(φ)ημν , g55 = −r2,

gμν = e2σ(φ)ημν , g55 = −r−2. (C-1)

Since the metric is diagonal we have gμ5 = g5μ = gμ5 = g5μ = 0. We will start our

calculation by 4D component of the Ricci tensor, Rμν , which can be written as

Rμν = ΓK
μν,K − ΓK

μK,ν − ΓK
μMΓM

νK − ΓK
μνΓ

M
KM , (C-2)

using the eq. (3.86). Let us analyze this term by term. The first term is derived as

follows

ΓK
μν,K = {gKLΓLμν},K

=
1

2
{gKL[gLμ,ν + gLν,μ − gμν,L]},K

=
1

2
{gKρ[gρμ,ν + gρν,μ − gμν,ρ] + gK5[−gμν,5]},K

=
1

2
{gξρ[gρμ,ν + gρν,μ − gμν,ρ]},ξ + 1

2
{g55[−gμν,5]},5

=
1

2
{(−r−2)(−e−2σ(φ)ημν),5},5

=
1

2r2
{(−2)σ′(φ)e−2σ(φ)ημν},5
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=
−1

r2
{σ′′(φ)e−2σ(φ) + σ′(φ)(−2)σ′(φ)e−2σ(φ)}ημν

=
e−2σ(φ)

r2
{−σ′′(φ) + 2[σ′(φ)]2}ημν . (C-3)

where we have used the fact that σ = σ(φ). Therefore, the derivative of it with

respect to 4D space-time (gμν,ρ) vanishes, whereas the derivative with respect to the

5th dimension (gμν,5) survives. In addition, the size of the fifth dimension, r, is a

constant, as a result, the derivatives g55,K = 0. Keeping these information in mind,

we will now calculate the second term in Rμν :

ΓK
μK,ν = {gKLΓLμK},ν

=
1

2
{gKL[gLμ,K + gLK,μ − gμK,L]},ν

=
1

2
{gKρ[gρμ,K + gρK,μ − gμK,ρ] + gK5[g5K,μ − gμK,5]},ν

=
1

2
{gξρ[gρμ,ξ + gρξ,μ − gμξ,ρ] + g55[g55,μ]},ν

= 0, (C-4)

The third term is calculated as

ΓK
μMΓM

νK = gKLΓLμMgMSΓSνK

=
1

2
gKL[gLμ,M + gLM,μ − gμM,L]

1

2
gMS[gSν,K + gSK,ν − gνK,S]

=
1

4
gKρ[gρμ,M + gρM,μ − gμM,ρ]g

MS[gSν,K + gSK,ν − gνK,S]

+
1

4
gK5[g5M,μ − gμM,5]g

MS[gSν,K + gSK,ν − gνK,S]

=
1

4
gξρ[gρμ,M + gρM,μ − gμM,ρ]g

MS[gSν,ξ + gSξ,ν − gνξ,S]

+
1

4
g55[g5M,μ − gμM,5]g

MS[gSν,5 + gS5,ν ]

=
1

4
gξρ[gρμ,α + gρα,μ − gμα,ρ]g

αS[gSν,ξ + gSξ,ν − gνξ,S]

+
1

4
g55[−gμα,5]g

αS[gSν,5 + gS5,ν ] +
1

4
gξρ[gρμ,5]g

5S[gSν,ξ + gSξ,ν − gνξ, s]

+
1

4
g55[g55,μ]g

5S[gSν,5 + gS5,ν ]

=
1

4
gξρ[gρμ,α + gρα,μ − gμα,ρ]g

αβ[gβν,ξ + gβξ,ν − gνξ,β]

+
1

4
g55[−gμα,5]g

αβ[gβν,5] +
1

4
gξρ[gρμ,5]g

55[−gνξ,5] +
1

4
g55[g55,μ]g

55[g55,ν ]
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=
1

4
g55[−gμα,5]g

αβ[gβν,5] +
1

4
gξρ[gρμ,5]g

55[−gνξ,5]

=
1

4
(−r−2)[−(e−2σ(φ)ημα),5]e

2σ(φ)ηαβ(e−2σ(φ)ηβν),5

+
1

4
e2σ(φ)ηξρ(e−2σ(φ)ηρμ),5(−r−2)[−(e−2σ(φ)ηνξ),5]

=
1

4r2
(−2)σ′(φ)e−2σ(φ)ημαe

2σ(φ)ηαβ(−2)σ′(φ)e−2σ(φ)ηβν

+
1

4r2
e2σ(φ)ηξρ(−2)σ′(φ)e−2σ(φ)ηρμ(−2)σ′(φ)e−2σ(φ)ηνξ

=
2e−2σ(φ)

r2
[σ′(φ)]2ημν . (C-5)

where we have used ημαη
αν = ηνμ and ηαβη

αβ = 4 to simplify the result. There remains

only the last term in Rμν which one can simply obtain as

ΓK
μνΓ

M
KM = gKLΓLμνg

MSΓSKM

=
1

2
gKL[gLμ,ν + gLν,μ − gμν,L]

1

2
gMS[gSK,M + gSM,K − gKM,S]

=
1

4
gKρ[gρμ,ν + gρν,μ − gμν,ρ]g

MS[gSK,M + gSM,K − gKM,S]

+
1

4
gK5[−gμν,5]g

MS[gSK,M + gSM,K − gKM,S]

=
1

4
gξρ[gρμ,ν + gρν,μ − gμν,ρ]g

MS[gSξ,M + gSM,ξ − gξM,S]

+
1

4
g55[−gμν,5]g

MS[gS5,M + gSM,5 − g5M,S]

=
1

4
gξρ[gρμ,ν + gρν,μ − gμν,ρ]g

αS[gSξ,α + gSα,ξ − gξα,S]

+
1

4
g55[−gμν,5]g

αS[gS5,α + gSα,5]

+
1

4
gξρ[gρμ,ν + gρν,μ − gμν,ρ]g

5S[gSξ,5 + gS5,ξ]

+
1

4
g55[−gμν,5]g

5S[gS5,5 + gS5,5 − g55,S]

=
1

4
gξρ[gρμ,ν + gρν,μ − gμν,ρ]g

αβ[gβξ,α + gβα,ξ − gξα,β]

+
1

4
g55[−gμν,5]g

αβ[gβα,5] +
1

4
gξρ[gρμ,ν + gρν,μ − gμν,ρ]g

55[g55,ξ]

+
1

4
g55[−gμν,5]g

55[g55,5]

=
1

4
g55[−gμν,5]g

αβ[gβα,5]

=
1

4
(−r−2)[−(e−2σ(φ)ημν),5]e

2σ(φ)ηαβ(e−2σ(φ)ηβα),5
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=
1

4r2
(−2)σ′(φ)e−2σ(φ)ημνe

2σ(φ)ηαβ(−2)σ′(φ)e−2σ(φ)ηβα

=
4e−2σ(φ)

r2
[σ′(φ)]2ημν , (C-6)

Then, Rμν reads

Rμν =
e−2σ(φ)

r2
(4[σ′(φ)− σ′′(φ)]2)ημν . (C-7)

In the same way we will calculate R55 which is given as

R55 = ΓK
55,K − ΓK

5K,5 − ΓK
5MΓM

5K + ΓK
55Γ

M
KM . (C-8)

The first term in the curvature R55 is

ΓK
55,K = {gKLΓL55},K

=
1

2
{gKL[gL5,5 + gL5,5 − g55,L},K}

=
1

2
{gKρ[−g55,ρ] + gK5[2g55,5 − g55,5]},K

=
1

2
{gξρ[−g55,ρ]},ξ + 1

2
{g55(g55,5)},5

= 0. (C-9)

The second term is

ΓK
5K,5 = {gKLΓL5K},5

=
1

2
{gKL[gL5,K + gLK,5 − g5K,L]},5

=
1

2
{gKρ[gρK,5 − g5K,ρ] + gK5[g55,K + g5K,5 − g5K,5]},5

=
1

2
{gξρ[gρξ,5] + g55[g55,5]},5

=
1

2
{e2σ(φ)ηξρ(e−2σ(φ)ηρξ),5},5

=
1

2
{e2σ(φ)ηξρ(−2)σ′(φ)e−2σ(φ)ηρξ},5

= −{ηξρηρξσ′(φ)},5
= −4σ′′(φ). (C-10)
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Finally, the third and fourth terms are calculates as

ΓK
5MΓM

5K = gKLΓL5MgMSΓS5K

=
1

2
gKL[gL5,M + gLM,5 − g5M,L]

1

2
gMS[gS5,K + gSK,5 − g5K,S]

=
1

4
gKρ[gρM,5 − g5M,ρ]g

MS[gS5,K + gSK,5 − g5K,S]

+
1

4
gK5[g55,M ]gMS[gS5,K + gSK,5 − g5K S]

=
1

4
gξρ[gρM,5 − g5M,ρ]g

MS[gS5,ξ + gSξ,5]

+
1

4
g55[g55,M ]gMS[gS5,5 + gS5,5 − g55,S]

=
1

4
gξρ[gρα,5]g

αS[gS5,ξ + gSξ,5 +
1

4
g55[g55,α]g

αS[2gS5,5 − g55,S]

+
1

4
gξρ[g55,ρ]g

5S[gS5,ξ + gSξ,5] +
1

4
g55[g55,M ]g5S[2gS5,5 − g55,S]

=
1

4
gξρ[gρα,5]g

αβ[gβξ,5] +
1

4
g55[g55,α]g

αβ[−g55,β]

+
1

4
gξρ[−g55,ρ]g

55[g55,ξ] +
1

4
g55[g55,5]g

55[g55,5]

=
1

4
gξρ[gρα,5]g

αβ[gβξ,5]

=
1

4
e2σ(φ)ηξρ(e−2σ(φ)ηρα),5e

2σ(φ)ηαβ(e−2σ(φ)ηβξ),5

=
1

4
e2σ(φ)ηξρ(−2)σ′(φ)e−2σ(φ)ηραe

2σ(φ)ηαβ(−2)σ′(φ)e−2σ(φ)ηβξ

= 4[σ′(φ)]2, (C-11)

and

ΓK
55Γ

M
KM = gKLΓL55g

MSΓSKM

=
1

2
gKL[gL5,5 + gL5,5 − g55,L]

1

2
gMS[gSK,M + gSM,K − gKM,S]

=
1

4
gKρ[−g55,ρ]g

MS[gSK,M + gSM,K − gKM,S]

+
1

4
gK5[2g55,5 − g55,5]g

MS[gSK,M + gSM,K − gKM,S]

=
1

4
gξρ[−g55,ρ]g

MS[gSξ,M + gSM,ξ − gξM,S]

+
1

4
g55[g55,5]g

MS[gS5,M + gSM,5 − g5M,S]
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=
1

4
gξρ[−g55,ρ]g

αS[gSξ,α + gSα,ξ − gξα,S] +
1

4
g55[g55,5]g

αS[gS5,α + gSα,5]

+
1

4
gξρ[−g55,ρ]g

5S[gSξ,5 + gS5,ξ] +
1

4
g55[g55,5]g

5S[gS5,5 + gS5,5 − g55,S]

=
1

4
gξρ[−g55,ρ]g

αβ[gβξ,α + gβα,ξ − gξα,β] +
1

4
g55[g55,5]g

αβ[gβα,5]

+
1

4
gξρ[−g55,ρ]g

55[g55,ξ] +
1

4
g55[g55,5]g

55[g55,5]

= 0, (C-12)

respectively. Substituting into eq. (C-8) we arrive at

R55 = 4(σ′′(φ)− [σ′(φ)]2). (C-13)

The last component of the Ricci tensor is Rμ5. Note that it is symmetric tensor,

thus Rμ5 = R5μ. Let us calculate the curvature Rμ5 which one can write in terms of

connection coefficients as

Rμ5 = ΓK
μ5,K − ΓK

μK,5 − ΓK
μMΓM

5K + ΓK
μ5Γ

M
KM . (C-14)

The first term is obtained as

ΓK
μ5,K = {gKLΓLμ5},K

=
1

2
{gKL[gLμ,5 + gL5,μ},K

=
1

2
{gKρ[gρμ,5] + gK5[g55,μ]},K

=
1

2
{gξρ[gρμ,5]},ξ + 1

2
{g55(g55,μ)},5

= 0. (C-15)

The second term can be calculated as follows

ΓK
μK,5 = {gKLΓLμK},5

=
1

2
{gKL[gLμ,K + gLK,μ − gμK,L]},5

=
1

2
{gKρ[gρμ,K + gρK,μ − gμK,ρ] + gK5[g5K,μ − gμK,5]},5

=
1

2
{gξρ[gρμ,ξ + gρξ,μ − gμξ,ρ] + g55[g55,μ]},5

= 0. (C-16)
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The third term is

ΓK
μMΓM

5K = gKLΓLμMgMSΓS5K

=
1

2
gKL[gLμ,M + gLM,μ − gμM,L]

1

2
gMS[gS5,K + gSK,5 − g5K,S]

=
1

4
gKρ[gρμ,M + gρM,μ − gμM,ρ]g

MS[gS5,K + gSK,5 − g5K,S]

+
1

4
gK5[g5M,μ − gμM,5]g

MS[gS5,K + gSK,5 − g5K S]

=
1

4
gξρ[gρμ,M + gρM,μ − gμM,ρ]g

MS[gS5,ξ + gSξ,5

+
1

4
g55[g5M,μ − gμM,5]g

MS[gS5,5 + gS5,5 − g55,s]

=
1

4
gξρ[gρμ,α + gρα,μ − gμα,ρ]g

αS[gS5,ξ + gSξ,5]

+
1

4
g55[−gμα,5]g

αS[2gS5,5 − g55,S]

+
1

4
gξρ[gρμ,5]g

5S[gS5,ξ + gSξ,5] +
1

4
g55[g55,μ]g

5S[2gS5,5 − g55,S]

=
1

4
gξρ[gρμ,α + gρα,μ − gμα,ρ]g

αβ[gβξ,5] +
1

4
g55[−gμα,5]g

αβ[−g55,β]

+
1

4
gξρ[gρμ,5]g

55[g55,ξ] +
1

4
g55[g55,μ]g

55[g55,5]

= 0. (C-17)

The last term is calculated as

ΓK
μ5Γ

M
KM = gKLΓLμ5g

MSΓSKM

=
1

2
gKL[gLμ,5 + gL5,μ]

1

2
gMS[gSK,M + gSM,K − gKM,S]

=
1

4
gKρ[gρμ,5]g

MS[gSK,M + gSM,K − gKM,S]

+
1

4
gK5[g55,μ]g

MS[gSK,M + gSM,K − gKM,S]

=
1

4
gξρ[gρμ,5]g

MS[gSξ,M + gSM,ξ − gξM,S]

+
1

4
g55[g55,μ]g

MS[gS5,M + gSM,5 − g5M,S]

=
1

4
gξρ[gρμ,5]g

αS[gSξ,α + gSα,ξ − gξα,S] +
1

4
g55[g55,μ]g

αS[gS5,α + gSα,5]

+
1

4
gξρ[gρμ,5]g

5S[gSξ,5 + gS5,ξ] +
1

4
g55[g55,μ]g

5S[gS5,5 + gS5,5 − g55,S]
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=
1

4
gξρ[gρμ,5]g

αβ[gβξ,α + gβα,ξ − gξα,β] +
1

4
g55[g55,μ]g

αβ[gβα,5]

+
1

4
gξρ[gρμ,5]g

55[g55,ξ] +
1

4
g55[g55,μ]g

55[g55,5]

= 0. (C-18)

Then, we can conclude

Rμ5 = 0. (C-19)

As one last step we will calculate Ricci Scalar as well

R = gMNRMN

= gMνRMν + gM5RM5

= gμνRμν + g55R55

= e2σ(φ)ημν
{
e−2σ(φ)

r2

(
4[σ′(φ)]2 − σ′′(φ)

)
ημν

}
− r−2

{
4
(
σ′′(φ)− [σ′(φ)]2

)}

=
4

r2

{
5[σ′(φ)]2 − 2σ′′(φ)

}
. (C-20)

C-2 Brane Tensions

Derivative of a function f(x) in absolute value can be easily found by considering

|f(x)| =√f(x)2 =
(
f(x)2

)1/2
. Utilizing the chain rule we get

d

dx
|f(x)| = d

dx

(
f(x)2

)1/2
=

1

2

(
f(x)2

)−1/2
2f(x)f ′(x) =

f(x)f ′(x)
|f(x)| . (C-21)

Recall from eq. (3.103) that σ(φ) = kr|φ|. The first derivative with respect to φ

reads

σ′(φ) = kr
φ

|φ| . (C-22)

By definition, U(φ) = φ/|φ| where U(φ) is the unit step function which can be written

in terms of step functions as U(φ) = (θ(φ)−θ(−φ)). The derivative of a step function

is a delta function. The second derivative of σ(φ) then becomes,

σ′′(φ) = 2kr
[
δ(φ)− δ(φ− π)

]
. (C-23)
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Appendix D

Rotation and CKM4 Matrices in

Warped Extra Dimensions with

Four Generation

D-1 Rotation Matrices

Let A be an n× n matrix, [A]ij be its {ij} first order minor1 and [A]ij,αβ represent

the {ij, αβ} second order minor2 of A. It is useful to record some basic properties of

determinants which will be needed later

det(aA) = andet(A), (D-1)

where a is a constant, and B being another n× n matrix

det(AB) = det(A)det(B). (D-2)

In addition, the minor of the multiplication of two matrices is

[AB]ij =
∑
k

[A]ik[B]kj. (D-3)

We will try to obtain quark masses in terms of fi’s and 5D Yukawa couplings with the

help of the basic properties of matrices summarized above. Let us start our calculation

1The {ij} first order minor of a matrix A is the determinant of (n−1)× (n−1) submatrix which
is obtained by removing ith row and jth column from A.

2The {ij, αβ} second order minor of a matrix A is the determinant of (n−2)× (n−2) submatrix
which is obtained by removing the rows i and α, and columns j and β from A.
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by the absolute value of the determinant of the up-type quarks mass matrix (Mu),

previously defined in Chapter 5.1 in eq. (5.2). By using eqns. (D-1) and (D-2) it

yields ∣∣∣det(Mu)
∣∣∣ =

∣∣∣υ4
4 det(FQ)det(Yu)det(Fu)

∣∣∣
= υ4

4fQ1fQ2fQ3fQ4fu1fu2fu3fu4

∣∣∣det(Yu)
∣∣∣, (D-4)

and also from eq. (5.3)

det(Mu) = det(UQu)det(M
diag
u )det(Wu

†), (D-5)

where UQu and Wu are unitary transformation matrices. Therefore, det(UQu) =

det(Wu) = 1. Then, one can simply write

det(Mu) = det(Mdiag
u ) = mt′mtmcmu. (D-6)

Combining the results of eqs. (D-4) and (D-6) we get

i=4∏
i=1

mi = mt′mtmcmu = υ4
4fQ1fQ2fQ3fQ4fu1fu2fu3fu4

∣∣∣det(Yu)
∣∣∣. (D-7)

Here the absolute values are necessary to get rid of the phases in the Yukawa matrices.

Now let us calculate the absolute value of the {11} first minor of Mu. Using eqs.

(D-1) and (D-3) it can be written as∣∣∣[Mu]11

∣∣∣ = ∣∣∣υ3
4[FQ]11[Yu]11[Fu]11

∣∣∣ = υ3
4fQ2fQ3fQ4fu2fu3fu4

∣∣∣[Yu]11

∣∣∣, (D-8)

where since Fi’s are diagonal matrices, they only admit principal minors [Fi]kk. We

can also write [Mu]11 utilizing the other definition of the up-type quarks mass matrix

given in eq. (5.3) as

[Mu]11 = [UQu ]1k[M
diag
u ]kk[Wu

†]k1. (D-9)

The largest contribution to [Mu]11 happens when k = 1 giving

[Mu]11 = mt′mtmc, (D-10)

since [UQu ]11 = [Wu
†]11 = 1. Therefore, to lowest order in the ratios of fi’s we can

write
i=4∏
i=2

mi = mt′mtmc = υ3
4fQ2fQ3fQ4fu2fu3fu4

∣∣∣[Yu]11

∣∣∣. (D-11)
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We will follow the same procedure for the {11, 22} second minor of Mu as∣∣∣[Mu]11,22

∣∣∣ = υ2
4

∣∣∣[Fu]11,22[Yu]11,22[FQ]11,22

∣∣∣ = υ2
4fQ3fQ4fu3fu4

∣∣∣[Yu]11,22

∣∣∣, (D-12)

and

[Mu]11,22 = [UQu ]11,2k[M
diag
u ]11,kk[Wu

†]11,k2, (D-13)

which will have the largest contribution when k = 2, and since [UQu ]11,22 =

[Wu
†]11,22 = 1 we obtain

[Mu]11,22 = mt′mt. (D-14)

Then, in leading order, we have

i=4∏
i=3

mi = mt′mt = υ2
4fQ3fQ4fu3fu4

∣∣∣[Yu]11,22

∣∣∣. (D-15)

We can therefore obtain the leading contributions to the up-type quark masses as

mu =
mt′mtmcmu

mt′mtmc

= υ4fQ1fu1

∣∣∣det(Yu)
∣∣∣∣∣∣[Yu]11

∣∣∣ , (D-16)

mc =
mt′mtmc

mt′mt

= υ4fQ2fu2

∣∣∣[Yu]11

∣∣∣∣∣∣[Yu]11,22

∣∣∣ , (D-17)

mt′mt = υ2
4 fQ3fQ4fu3fu4

∣∣∣[Yu]11,22

∣∣∣. (D-18)

Recalling the definition of the down-type quarks mass matrix (Md) given in eq. (5.2),

we can write

i=4∏
i=1

mi = mb′mbmsmd = υ4
4fQ1fQ2fQ3fQ4fd1fd2fd3fd4

∣∣∣det(Yd)
∣∣∣. (D-19)

To lowest order in ratios of fi’s we have

i=4∏
i=2

mi = mb′mbms = υ3
4fQ2fQ3fQ4fd2fd3fd4

∣∣∣[Yd]11

∣∣∣, (D-20)

and
i=4∏
i=3

mi = mb′mb = υ2
4fQ3fQ4fd3fd4

∣∣∣[Yd]11,22

∣∣∣. (D-21)
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Then, the leading contributions to the down quark masses are

md =
mb′mbmsmd

mb′mbms

= υ4fQ1fd1

∣∣∣det(Yd)
∣∣∣∣∣∣[Yd]11

∣∣∣ , (D-22)

ms =
mb′mbms

mb′mb

= υ4fQ2fd2

∣∣∣[Yd]11

∣∣∣∣∣∣[Yd]11,22

∣∣∣ , (D-23)

mb′mb = v fQ3fd3fQ4fd4

∣∣∣[Yd]11,22

∣∣∣. (D-24)

Since fQ3 ∼ fQ4 we must have that
fd3
fd4

∼ mb

mb′
∼ 10−2. Because of this, we can find

also

m2
b′ = v2 f 2

d4

(
f 2
Q4
|Y d

44|2 + f 2
Q3
|Y d

34|2
)
. (D-25)

One can form a diagonal matrix, Ĥ, with n eigenvalues, λi, via the unitary matrix,

V, from a hermitian n× n matrix H as follows

V†HV = Ĥ. (D-26)

A useful parametrization to find the entries of the unitary matrix, V , can be written

as [224]

Vij = (−1)i+j
[H− λjI]ji√

[H− λjI]jj
∏

j �=α(λα − λj)
. (D-27)

Note that this formula is exact and it is valid for any square hermitian matrix, H.

We will now follow the standard procedure to obtain a simple formulation for the

rotation matrices UQu , UQd
, Wu and Wd in an expansion of small ratios of fi’s.

Let Hu = MuMu
† = UQu M

diag
u Wu

† Wu M
diag
u UQu

†. Because Wu is a hermitian

matrix, we can write Hu = UQu (M
diag
u )2 UQu

†. Multiplying this from left by UQu

†

and from right by UQu , we get UQu

† Hu UQu = (Mdiag
u )2 which is the same form as

in eq. (D-26) such that V = UQu , and eigenvalues of Hu (or the diagonal entries of

Ĥu) are the squares of the physical masses of up-type quarks. Let us first concentrate

on λ1 = m2
u.

Vi1 = (−1)i+1 [Hu −m2
uI]1i√

[Hu −m2
uI]11(m

2
c −m2

u)(m
2
t −m2

u)(m
2
t′ −m2

u)
. (D-28)
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Because of the hierarchical nature of this scenario, we know that to the lowest order

in ratios of f ’s, the minors of (Hu −m2
uI) not involving the first row or column, can

be approximated by

[Hu −m2
uI]1i � [Hu]1i. (D-29)

Thus, we have

Vi1 = (−1)i+1 [Hu]1i√
[Hu]11 (m2

c −m2
u)(m

2
t −m2

u)(m
2
t′ −m2

u)
. (D-30)

Using eq. (5.2) we can write Hu as

Hu = υ2
4FQYuFu

2Yu
†FQ, (D-31)

where we have used FQ(u) = FQ(u)
† based on the fact that they are diagonal matrices

with real entries. From eqs. (D-1) and (D-3), the {1i} first minor of Hu is

[Hu]1i = [υ2
4FQ]11[Yu]1k[F

2
u]kk[Yu

†]ki[FQ]ii

= υ6
4[FQ]11[Yu]1k[Fu

2]kk[Yu
†]ki[FQ]ii. (D-32)

The largest contribution for [Hu]1i will be when k = 1, giving

[Hu]1i = υ6
4[FQ]11[Yu]11[Fu

2]11[Yu
†]1i[FQ]ii, (D-33)

which can also be written as

[Hu]1i = υ6
4[FQ]11[Yu]11[Fu

2]11[Yu
†]11[FQ]11

[Yu
†]1i[FQ]ii

[Yu
†]11[FQ]11

= [Hu]11
[Yu

†]1i[FQ]ii

[Yu
†]11[FQ]11

, (D-34)

where [Hu]11 is

[Hu]11 = υ6
4[FQ]11[Yu]11[Fu

2]11[Yu
†]11[FQ]11

= υ6
4f

2
Q2
f 2
Q3
f 2
Q4
f 2
u2
f 2
u3
f 2
u4

∣∣∣[Yu]11

∣∣∣2, (D-35)

which if one compares with eq. (D-11), can simply conclude as [Hu]11 = (mcmtmt′)
2.

Moreover, the product (m2
c − m2

u)(m
2
t − m2

u)(m
2
t′ − m2

u) can be approximated by

(mcmtmt′)
2. We can put all this together and rewrite Vi1 as

Vi1 = (−1)i+1 [Yu
†]1i

[Yu
†]11

[FQ]ii
[FQ]11

= (−1)i+1 [Yu]
∗
i1

[Yu]
∗
11

[FQ]ii
[FQ]11

. (D-36)
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Then we can simply write

V11 = (−1)2
[Yu]

∗
11

[Yu]
∗
11

[FQ]11
[FQ]11

= 1,

V21 = (−1)3
[Yu]

∗
21

[Yu]
∗
11

[FQ]22
[FQ]11

= − [Yu]
∗
21

[Yu]
∗
11

fQ1fQ3fQ4

fQ2fQ3fQ4

= − [Yu]
∗
21

[Yu]
∗
11

fQ1

fQ2

,

V31 = (−1)4
[Yu]

∗
31

[Yu]
∗
11

[FQ]33
[FQ]11

=
[Yu]

∗
31

[Yu]
∗
11

fQ1fQ2fQ4

fQ2fQ3fQ4

=
[Yu]

∗
31

[Yu]
∗
11

fQ1

fQ3

,

V41 = (−1)5
[Yu]

∗
41

[Yu]
∗
11

[FQ]44
[FQ]11

= − [Yu]
∗
41

[Yu]
∗
11

fQ1fQ2fQ3

fQ2fQ3fQ4

= − [Yu]
∗
41

[Yu]
∗
11

fQ1

fQ4

. (D-37)

Let us follow the same procedure for the second eigen value λ2 = mc. Using the eq.

(D-27) we can write

Vi2 = (−1)i+2
[Hu −mcI]11,2i√

[Hu −mcI]11,22(m2
t −m2

c)(m
2
t′ −m2

c)
. (D-38)

In leading order in fi’s it is a good approximation to take

[Hu −mcI]11,2i � [Hu]11,2i, (D-39)

which could be expanded as

[Hu]11,2i = [υ2
4FQ]11,22[Yu]11,2k[F

2
u]11,kk[Yu

†]11,ki[FQ]11,ii

= υ4
4[FQ]11,22[Yu]11,2k[Fu

2]11,kk[Yu
†]11,ki[FQ]11,ii. (D-40)

The largest contribution is when k = 2. Thus, we get

[Hu]11,2i = [υ2
4FQ]11,22[Yu]11,22[F

2
u]11,22[Yu

†]11,2i[FQ]11,ii

= [Hu]11,22
[Yu

†]11,2i[FQ]11,ii

[Yu
†]11,22[FQ]11,22

(D-41)

Let us calculate [Hu]11,22 for the leading order.

[Hu]11,22 = υ4
4[FQ]11,22[Yu]11,2k[Fu

2]11,kk[Yu
†]11,k2[FQ]11,22

= υ4
4f

2
Q3
f 2
Q4
f 2
u3
f 2
u4

∣∣∣[Yu]11,22

∣∣∣2
= m2

tm
2
t′

∣∣∣[Yu]11,22

∣∣∣2 (D-42)

In the same way we did for the calculation of Vi1, we can take the product (m2
t −

m2
c)(m

2
t′ −m2

c) approximately as (mtmt′)
2. If we put everything together we obtain

Vi2 = (−1)i+2 [Yu
†]11,2i

[Yu]
†
11,22

[FQ]11,ii
[FQ]11,22

= (−1)i+2
[Yu]

∗
11,i2

[Yu]
∗
11,22

[FQ]11,ii
[FQ]11,22

. (D-43)
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We can obtain the CKM entries V22, V32 and V42 from eq. (D-43) as follows

V22 = (−1)2+2
[Yu]

∗
11,22

[Yu]
∗
11,22

[FQ]11,22
[FQ]11,22

= 1,

V32 = (−1)3+2
[Yu]

∗
11,32

[Yu]
∗
11,22

[FQ]11,33
[FQ]11,22

= − [Yu]
∗
11,32

[Yu]
∗
11,22

fQ2fQ4

fQ3fQ4

= − [Yu]
∗
11,32

[Yu]
∗
11,22

fQ2

fQ3

,

V42 = (−1)4+2
[Yu]

∗
11,42

[Yu]
∗
11,22

[FQ]11,44
[FQ]11,22

=
[Yu]

∗
11,42

[Yu]
∗
11,22

fQ2fQ3

fQ3fQ4

=
[Yu]

∗
11,42

[Yu]
∗
11,22

fQ2

fQ4

.

(D-44)

Finally, for λ3 = mt

Vi3 = (−1)i+3
[Hu −mtI]11,22,3i√

[Hu −mtI]11,22,33(m2
t′ −m2

t )
. (D-45)

Since the mass of top quark is high we cannot make an approximation as we did for

the up and charm quarks when calculating Vi1 and Vi2 terms.

[Hu]11,22,3i = [υ2
4FQ]11,22,33[Yu]11,22,3k[F

2
u]11,22,kk[Yu

†]11,22,ki[FQ]11,ii

= υ2
4[FQ]11,22,33[Yu]11,22,3k[Fu

2]11,22,kk[Yu
†]11,22,ki[FQ]11,22,ii

= υ2
4fQ4 [Yu]11,22,33[Fu

2]11,22,33[Yu
†]11,22,3i[FQ]11,22,ii

+ υ2
4fQ4 [Yu]11,22,34[Fu

2]11,22,44[Yu
†]11,22,4i[FQ]11,22,ii

= υ2
4fQ4

(
Y u
44f

2
u4
[Yu

†]11,22,3i + Y u
34f

2
u3
[Yu

†]11,22,4i
)
[FQ]11,22,ii

= υ2
4fQ4

(
f 2
u4
Y u
44[Yu]

∗
11,22,i3 + f 2

u3
Y u
34[Yu]

∗
11,22,i4

)
[FQ]11,22,ii (D-46)

and [Hu]11,22,33 can be calculated as

[Hu]11,22,33 = υ2
4f

2
Q4

(
f 2
u4
Y u
44[Yu]

∗
11,22,33 + f 2

u3
Y u
34[Yu]

∗
11,22,34

)
= υ2

4f
2
Q4

(
f 2
u4
|Y u

44|2 + f 2
u3
|Y u

34|2
)

(D-47)

Vi3 = (−1)i+3
υ2
4fQ4

(
f 2
u4
Y u
44[Yu]

∗
11,22,i3 + f 2

u3
Y u
34[Yu]

∗
11,22,i4

)
[FQ]11,22,ii − [mtI]11,22,3i√

υ2
4f

2
Q4

(
f 2
u4

∣∣∣Y u
44

∣∣∣2 + f 2
u3

∣∣∣Y u
34

∣∣∣2)(m2
t′ −m2

t )

.(D-48)
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Then, the V33 and V43 entries are

V33 = (−1)3+3
υ2
4f

2
Q4

(
f 2
u4

∣∣∣Y u
44

∣∣∣2 + f 2
u3

∣∣∣Y u
34

∣∣∣2)− [mtI]11,22,33√
υ2
4f

2
Q4

(
f 2
u4

∣∣∣Y u
44

∣∣∣2 + f 2
u3

∣∣∣Y u
34

∣∣∣2)(m2
t′ −m2

t )

=
υ2
4f

2
Q4

(
f 2
u4

∣∣∣Y u
44

∣∣∣2 + f 2
u3

∣∣∣Y u
34

∣∣∣2)−mt√
υ2
4f

2
Q4

(
f 2
u4

∣∣∣Y u
44

∣∣∣2 + f 2
u3

∣∣∣Y u
34

∣∣∣2)(m2
t′ −m2

t )

,

V43 = (−1)4+3
υ2
4fQ4

(
f 2
u4
Y u
44[Yu]

∗
11,22,43 + f 2

u3
Y u
34[Yu]

∗
11,22,44

)
[FQ]11,22,44 − [mtI]11,22,34√

υ2
4f

2
Q4

(
f 2
u4

∣∣∣Y u
44

∣∣∣2 + f 2
u3

∣∣∣Y u
34

∣∣∣2)(m2
t′ −m2

t )

= −
υ2
4fQ3fQ4

(
f 2
u4
Y u
44Y

u∗
34 + f 2

u3
Y u
34Y

u∗
33

)
√
υ2
4f

2
Q4

(
f 2
u4

∣∣∣Y u
44

∣∣∣2 + f 2
u3

∣∣∣Y u
34

∣∣∣2)(m2
t′ −m2

t )

. (D-49)

The remaining elements are calculated by using the unitarity conditions V†V = I.

To find the V12 element for example we calculate (V†V)12 entry

0 = V ∗
11V12 + V ∗

21V22 + V ∗
31V32 + V ∗

41V42

= V12 +
[Yu]21
[Yu]11

fQ1

fQ2

− [Yu]31
[Yu]11

fQ1

fQ3

[Yu]
∗
11,32

[Yu]
∗
11,22

fQ2

fQ3

− [Yu]41
[Yu]11

fQ1

fQ4

[Yu]
∗
11,42

[Yu]
∗
11,22

fQ2

fQ4

. (D-50)

In leading order we can simply write V12 as

V12 = − [Yu]21
[Yu]11

fQ1

fQ2

. (D-51)

The V13 and V23 entries are obtained by simultaneously solving for the unitarity

conditions (V†V)31 = 0 and (V†V)32 = 0 in leading order. We solve for V43 and V44

by assuming a sub-unitarity condition such that(
V ∗
33 V ∗

43

V ∗
34 V ∗

44

)(
V33 V34

V43 V44

)
=

(
1 0

0 1

)
. (D-52)

Finally, one can get the V14 and V24 entries by simultaneously solving for the unitarity

conditions (V†V)41 = 0 and (V†V)42 = 0 in leading order. We summarize our results

in eq. (5.5).
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For the down sector, we follow the same procedure. Let Hd = MdMd
† =

UQd
Mdiag

d Wd
† Wd M

diag
d UQd

† = UQd
(Mdiag

d )2 UQd

†. Multiplying this from left

by UQd

† and from right by UQd
, we get UQd

† Hd UQd
= (Mdiag

d )2 which is the same

form as in eq. (D-26) such that V = UQd
, and eigenvalues of Hd (or the diagonal

entries of Ĥd) are the squares of the physical masses of up-type quarks. The Vi1, Vi2

entries of UQd
, will be exactly in the same form as in UQu except the Yu → Yd.

For the elements Vi3 we can make further approximation since as opposed to the top

sector where mt is not much smaller than m′
t in the bottom sector we have mb � m′

b.

Therefore, V33 and V43 can be approximated in leading order as

V33 = (−1)3+3
υ2
4f

2
Q4

(
f 2
d4

∣∣∣Y d
44

∣∣∣2 + f 2
d3

∣∣∣Y d
34

∣∣∣2)√
υ2
4f

2
Q4

(
f 2
d4

∣∣∣Y d
44

∣∣∣2 + f 2
d3

∣∣∣Y d
34

∣∣∣2)m2
b′

�
υ4fQ4fd4

∣∣∣Y d
44

∣∣∣
mb′

,

V43 = −
υ2
4fQ3fQ4

(
f 2
d4
Y d
44Y

d∗
34 + f 2

d3
Y d
34Y

d∗
33

)
√

υ2
4f

2
Q4

(
f 2
d4

∣∣∣Y d
44

∣∣∣2 + f 2
d3

∣∣∣Y d
34

∣∣∣2)m2
b′

� υ4fQ3fd4Y
d∗
34

mb′
ei arg(Y

d
44). (D-53)

The rotation matrices Wu,d can also be calculted in the same way except Hu,d =

Wu,d M
diag
u,d UQu,d

† UQu,d
M diag

u,d Wu,d
†.

D-2 Cabibbo-Kobayashi-Maskawa Matrix

for Four Generations in Warped

ExtraDimensions

We will use eq. (5.9) to obtain the Vus, Vcb, Vub entries of CKM4 in warped extra

dimensional scenario. Note that V in Appendix D-1 does not refer to entries of CKM

matrix.

Vus = (UQu

†UQd
)12

=
4∑

i=1

(UQu

†)1i(UQd
)i2

=
4∑

i=1

(UQu)
∗
i1(UQd

)i2

= UQu

11

∗
UQd
12 + UQu

21

∗
UQd
22 + UQu

31

∗
UQd
32 + UQu

41

∗
UQd
42
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=
[Yd]21
[Yd]11

fQ1

fQ2

− [Yu]21
[Yu]11

fQ1

fQ2

− [Yu]31
[Yu]11

fQ1

fQ3

[Yd]
∗
11,32

[Yd]∗11,22

fQ2

fQ3

− [Yu]41
[Yu]11

fQ1

fQ4

[Yd]
∗
11,42

[Yd]∗11,22

fQ2

fQ4

� fQ1

fQ2

(
[Yd]21
[Yd]11

− [Yu]21
[Yu]11

)
. (D-54)

Vcb = (UQu

†UQd
)23

=
4∑

i=1

(UQu

†)2i(UQd
)i3

=
4∑

i=1

(UQu)
∗
i2(UQd

)i3

= UQu

12

∗
UQd
13 + UQu

22

∗
UQd
23 + UQu

32

∗
UQd
33 + UQu

42

∗
UQd
43

=
[Yu]

∗
21

[Yu]∗11

fQ1

fQ2

(
cQd

fQ1

fQ3

[Yd]21,32
[Yd]11,22

+ s∗Qd

fQ1

fQ4

[Yd]21,42
[Yd]11,22

)

+ cQd

fQ2

fQ3

(
[Yd]11,32
[Yd]11,22

− [Yu]11,32
[Yu]11,22

)
+ s∗Qd

fQ2

fQ4

(
[Yd]11,42
[Yd]11,22

− [Yu]11,42
[Yu]11,22

)

� cQd

fQ2

fQ3

(
[Yd]11,32
[Yd]11,22

− [Yu]11,32
[Yu]11,22

)
+ s∗Qd

fQ2

fQ4

(
[Yd]11,42
[Yd]11,22

− [Yu]11,42
[Yu]11,22

)
(D-55)

Vub = (UQu

†UQd
)13

=
4∑

i=1

(UQu

†)1i(UQd
)i3

=
4∑

i=1

(UQu)
∗
i1(UQd

)i3

= UQu

11

∗
UQd
13 + UQu

21

∗
UQd
23 + UQu

31

∗
UQd
33 + UQu

41

∗
UQd
43

= cQd

fQ1

fQ3

[Yd]21,32
[Yd]11,22

+ s∗Qd

fQ1

fQ4

[Yd]21,42
[Yd]11,22

− [Yu]21
[Yu]11

fQ1

fQ2

(
cQd

fQ2

fQ3

[Yd]11,32
[Yd]11,22

+ s∗Qd

fQ2

fQ4

[Yd]11,42
[Yd]11,22

)

+ cQd

fQ1

fQ3

[Yu]31
[Yu]11

+ s∗Qd

fQ1

fQ4

[Yu]41
[Yu]11

= cQd

fQ1

fQ3

(
[Yu]31
[Yu]11

+
[Yd]21,32
[Yd]11,22

− [Yu]21
[Yu]11

[Yd]11,32
[Yd]11,22

)

+ s∗Qd

fQ1

fQ4

(
[Yu]41
[Yu]11

+
[Yd]21,42
[Yd]11,22

− [Yu]21
[Yu]11

[Yd]11,42
[Yd]11,22

)
. (D-56)
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Appendix E

Feynman Rules in Warped Extra

Dimensions with Four Generation

In this Appendix, we will summarize the Feynman rules for the scalar sector of warped

extra dimensional scenarios with fourth generation including Higgs (h0), radion (φ0),

and higgs-radion mixed states (h) and (φ). Φ being any of the scalars mentioned

above, the only two body decays that occur at tree level for those scalars are Φ → fif̄j

(f stands for fermion) or Φ → V V (V represents vector bosons). The decays Φ → γγ

or Φ → gg arise in loop level by allowing either gauge bosons and/or fermions in the

loops. Here we will give the effective couplings of scalars to two photons or gluons.

Let us first summarize the F functions appearing in these effective couplings which

are represented by F1/2 when the particle in the loop is a spin-1/2 and F1 for spin-1

particles.

F1/2(τi) = −2τi [1 + (1− τi)f(τi),

F1(τi) = 2 + 3τi + 3τi (2− τi)f(τi), (E-1)

where τi = 4m2
i /m

2
Φ

f(τi) =

⎧⎨
⎩
[
sin−1

(√
1/τi

)]2
, if τi ≥ 1,

−1
4
[ln(η+/η−)− iπ]2 , if τi < 1,

(E-2)

where

η± = (1±√
1− τi). (E-3)
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E-1 Feynman Rules for the Higgs Field

h0

Zμ

Zν

−i
M2

Z

υ4

h0

Wμ

Wν

−i
2M2

W

υ4

h0

Ga
μ

Gb
ν

k1

k2

i ch0
g δab

(
k1 · k2ημν − kμ

1k
ν
2

)

h0

Aμ

Aν

k1

k2

i ch0
γ

(
k1 · k2ημν − kμ

1k
ν
2

)

h0

fi

f̄j

−i

√
mimj

υ4

(
aijPR + a∗jiPL

)

where

ch0
g = − αs

4πυ4

[∑
i

F1/2(τi)
]
,

ch0
γ = − α

2πυ4

[∑
i

e2iN
i
eFi(τi)

]
, (E-4)

where Nci is the color multiplicity (3 for quarks as they have three different colors

and 1 for leptons) and ei is the electric charge in units of e of the particle i.

E-2 Feynman Rules for the Radion Field

In general, the radion couplings are similar to Higgs couplings in that

they are proportional to the mass of the particles it couples with.
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φ0

Zμ

Zν

−i
M2

Z

Λ

[
1−

3 ln
(√

6MPl

Λ

)
M2

Z

Λ2

]

φ0

Wμ

Wν

−i
2M2

W

Λ

[
1−

3 ln
(√

6MPl

Λ

)
M2

W

Λ2

]

φ0

Ga
μ

Gb
ν

k1

k2

i cφ0
g δab

(
k1 · k2ημν − kμ

1k
ν
2

)

φ0

Aμ

Aν

k1

k2

i cφ0
γ

(
k1 · k2ημν − kμ

1k
ν
2

)

φ0

fi

f̄j

−i

√
mimj

υ4

(
ãijPR + ã∗jiPL

)

where

cφ0
g = − αs

4πΛ

[∑
i

F1/2(τi)− 2
(
b′3 +

2π

αsln
(√

6MPl

Λ

))],
cφ0
γ = − α

2πΛ

[∑
i

e2iN
i
eFi(τi)−

(
b′2 + b′Y +

2π

α ln
(√

6MPl

Λ

))], (E-5)

where b′3, b
′
2 and b′Y are the coefficients of the beta functions of the SU(3)c, SU(2)L

and U(1)Y groups respectively, in the presence of 4 generations of quarks and leptons.

The coefficients are b′3 = 18/3 and b′2 + b′Y = −65/9.
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E-3 Feynman Rules for Higgs-Radion Mixed

States

h

Zμ

Zν

−i
M2

Z

υ4

[
d+ bγ

(
1−

3 ln
(√

6MPl

Λ

)
M2

Z

Λ2

)]

φ

Zμ

Zν

−i
M2

Z

υ4

[
c+ aγ

(
1−

3 ln
(√

6MPl

Λ

)
M2

Z

Λ2

)]

h

Wμ

Wν

−i
2M2

W

υ4

[
d+ bγ

(
1−

3 ln
(√

6MPl

Λ

)
M2

W

Λ2

)]

φ

Wμ

Wν

−i
2M2

W

υ4

[
c+ aγ

(
1−

3 ln
(√

6MPl

Λ

)
M2

W

Λ2

)]

h

Ga
μ

Gb
ν

k1

k2

i chg δ
ab
(
k1 · k2ημν − kμ

1k
ν
2

)

φ

Ga
μ

Gb
ν

k1

k2

i cφg δ
ab
(
k1 · k2ημν − kμ

1k
ν
2

)

h

Aμ

Aν

k1

k2

i chγ

(
k1 · k2ημν − kμ

1k
ν
2

)
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φ

Aμ

Aν

k1

k2

i cφγ

(
k1 · k2ημν − kμ

1k
ν
2

)

h

fi

f̄j

−i

√
mimj

υ4

[(
aijPR + a∗jiPL

)
d+
(
ãijPR + ã∗jiPL

)
bγ

]

φ

fi

f̄j

−i

√
mimj

υ4

[(
aijPR + a∗jiPL

)
a+
(
ãijPR + ã∗jiPL

)
cγ

]

ch,φg (max) = − αs

4πυ

[
gh,φg (max)

∑
i

F1/2(τi)− 2

(
b′3 +

2π

αs ln(
√
6MPl
Λφ

)

)
gh,φ
]
,

ch,φg (min) = − αs

4πυ

[
gh,φg (min)

∑
i

F1/2(τi)− 2

(
b′3 +

2π

αs ln(
√
6MPl
Λφ

)

)
gh,φ
]
,

ch,φγ (max) = − α

2πυ

[
gh,φγ (max)

∑
i

e2iN
i
cFi(τi)−

(
b′2 + b′Y +

2π

α ln(
√
6MPl
Λφ

)

)
gh,φ
]
,

ch,φγ (min) = − α

2πυ

[
gh,φγ (min)

∑
i

e2iN
i
cFi(τi)−

(
b′2 + b′Y +

2π

α ln(
√
6MPl
Λφ

)

)
gh,φ
]
.(E-6)

Here gh,φg values appearing in the effective vertex of Higgs or radion to gluon coupling

have some uncertainties due to the heavy Kaluza-Klein fermions in the loop. We assume

an additional correction to the h0 couplings squared to massless gauge bosons of ±20% for

gluons and these maximum and minimum values can be written in explicit form as follows

gφg (max) = aγ + c
√
(1 + δ4EW )(1.20),

ghg (max) = bγ + d
√

(1 + δ4EW )(1.20),

gφg (min) = aγ + c
√
(1 + δ4EW )(0.80),

ghg (min) = bγ + d
√
(1 + δ4EW )(0.80),

gφ = aγ, (E-7)
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and for photon we have ±10% uncertainty yielding

gφγ (max) = aγ + c
√

(1.10)(1 + δ̄4EW )(1 + δTHU ),

ghγ (max) = bγ + d
√

(1.10)(1 + δ̄4EW )(1 + δTHU ),

gφγ (min) = aγ + c
√
(0.90)(1 + δ̄4EW )(1− δTHU ),

ghγ (min) = bγ + d
√
(0.90)(1 + δ̄4EW )(1− δTHU ),

gh = bγ. (E-8)

Note that while the bare Higgs (h0) couplings are corrected by (1 + δ4EW ), there is no such

correction for the bare radion (φ0) couplings. The reason is that the latter are dominated

by the trace anomaly, and so higher order loop effects are much smaller. We have also

included the corrections to the h0 → γγ coupling due to loop effects [172]. A note of caution

is warranted with these corrections. The authors show that the NLO EW corrections are of

the same order as the LO estimate, and negative, due to the strong cancellation between the

W and fermion loops with four generations. This might be indicative of a non-perturbative

regime, and the authors rely on an estimation of the higher-order corrections, without any

certainty that the perturbation series converges. Moreover, in our scenario, heavy Kaluza-

Klein fermions are known to affect h0 → γγ at lowest order [197, 198]. See Tables 11 and

12 for the numerical values taken for δEW , δ̄EW and δTHU .
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