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ABSTRACT

Pricing Ratchet EIA under Heston’s Stochastic Volatility

with Deterministic Interest

Dezhao Han

Since its introduction in 1995, equity-indexed annuities (EIAs) received increasing

attention from investors. Most of the pricing and hedging for different types of EIAs

have been obtained in the Black-Scholes (BS) framework. In this framework the un-

derlying asset is assumed to follow a geometric Brownian motion. However, the BS

model is plagued by its assumption of constant volatility, while stochastic volatility

models have become increasingly popular. In this paper we assume that the asset

price follows Heston’s stochastic volatility model with deterministic interest, and

introduce two methods to price the ratchet EIA.

The first method is called the joint transition probability density function (JT-

PDF) method. Given the JTPDF of the asset price and variance, pricing ratchet

EIAs boils down to a question of solving multiple integrals. Here, the multiple

integral is solved using Quasi Monte Carlo methods and the importance sampling

technique. The other method used to evaluate EIAs prices is called the conditional

expectation (CE) approach. Conditioning on the volatility path, we first price the

rachet EIA analytically in a BS framework. Then the price in Heston framework

can be obtained by simulating the volatility path. Greeks for the ratchet EIA can

also be calculated by the JTPDF and CE methods. At the end, we carry out some

sensitivity analyses for ratchet EIAs’ prices and Greeks.
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Introduction

An equity-indexed annuity (EIA) is an innovative hybrid insurance product which pro-

vides participation in the financial market. The EIA’s return is linked to the performance

of an equity index, typically the S&P 500 index, while a minimal return is guaranteed on

its initial investment. Investors sacrifice some potential upside return for the downside

protection, which means that the policy earns a non-negative return even when the mar-

ket performs poorly. EIAs are increasingly popular since their introduction in 1995 by

Keyport Life Insurance, and according to Marrion et al. (2010), EIAs’ sales have grown

dramatically from $3.00 billion in 1997 to $30.2 billion in 2009. In 2008 the sales of

fixed-indexed annuities, the generalization of EIAs, represented 42% of the annuities sold

by agents, but in 2010 their market share shrank to 25% (see soa.org). This could be

explained by the fact that the companies failed to hedge EIAs during the financial crisis

and they became reluctant to issue such contracts. Thus pricing and hedging EIAs are

interesting topics.

Designs of EIAs vary according to the companies that sell them. The simplest EIA is

the point-to-point design where the policy earns the realized return on the index over a

certain period of time at a prescribed participation rate, but with a minimal guarantee.

The most popular EIA is the ratchet EIA, which represents 85% of the current market

(see annuityadvantage.com). The return of ratchet EIAs is reset annually, and in each

year it is the maximum of the prescribed portion of the index return and the minimal

guarantee.

Because of their popularity, EIAs have received considerable attention in the actuarial

literature. In a Black-Scholes framework, Tiong (2000) derived explicit prices for some

popular EIAs using the Esscher transform. Lee (2003) extended Tiong’s method to some

other path-dependent EIAs. Lin and Tan (2003) and Kijima and Wong (2007) argued

that the effects of stochastic interest rates are crucial in pricing EIAs due to their long-

term maturity. Assuming stochastic interest and mortality rates, Qian et al. (2010) priced

1



the ratchet EIA analytically. For most designs it is possible to price EIAs analytically

in the Black-Scholes framework because of the Markovian property of the return. Little

variations on the financial model have been considered except for Cheung and Yang (2005)

and Lin et al. (2009) in which a Markov regime-switching model was applied to evaluate

an optimal surrender strategy and price.

In our paper, we use Heston’s stochastic volatility model which is a popular method to

generalize the Black-Scholes model. Since there is a closed-form for the price of European

call option in Heston’s model, MacKay (2011) priced the point-to-point EIA analytically

by transforming its payoff to a European call’s payoff. However, there is no closed-formula

for the price of a ratchet EIA due to its complexity. Lin and Tan (2003) and Lin et al.

(2009) valued ratchet EIAs by simulation, which makes it difficult to evaluate the Greeks.

In this paper, we introduce two approaches to evaluate the price and Greeks of the ratchet

EIA.

The structure of this thesis is as follows: In Chapter 1, we describe the Heston Model.

First, we give a review of financial frameworks. Since Heston’s assumption of a constant

interest rate does not hold for long-term investments, we generalize Heston’s model to

a case of deterministic interest and give a semi-closed expression for the price of Euro-

pean call options. In the end, using a global optimization algorithm, named differential

evolution, we calibrate Heston’s model using observed European call option prices.

Chapters 2 and 3 introduce two methods to evaluate the prices of ratchet EIAs. The

first method is called the joint transition probability density function (JTPDF) approach.

Lipton (2001) and Lamoureux and Paseka (2009) derived different explicit formulas for

the JTPDF of the Heston process. We generalize this formula to the case of deterministic

interest. Though the formula is analytic, it is hard to calculate the oscillatory integral

in it. Following Ballestra et al. (2007), we solve the oscillatory integral by the Filon-type

quadrature. Given the JTPDF, pricing ratchet EIAs boils down to a question of solving

multiple integrals. Again, following Ballestra et al. (2007) the multiple integrals are solved

by the so-called importance sampling technique. However, our samples are generated by

2



Quasi-Monte Carlo methods.

We call the other method the conditional expectation (CE) approach. Conditioning

on the volatility path, we first price the ratchet EIA in a Black-Scholes framework. Since

there are explicit formulas for the prices of ratchet EIAs in the Black-Schloles model, we

can evaluate its price in Heston framework by simulating the stochastic volatility. The idea

of taking conditional expectation can be dated back to Hull and White (1987) in which

stochastic volatility was first introduced in Finance. Broadie and Kaya (2004) adopted

the same idea to evaluate the Greeks for European call and Asian options. In terms of the

CE method, the key point is how to simulate the integrated variance. Broadie and Kaya

(2006) and Glasserman and Kim (2008) introduced exact simulation schemes, but ac-

cording to Tse and Wan (2010) and Bégin et al. (2012) both exact schemes are time-

consuming. In our paper, we approximate the integrated variance by a summation of

gamma distributions, which is faster and with acceptable errors.

Chapter 4 discusses the equity-indexed annuities, especially the ratchet EIA. We ap-

plied the JTPDF and CE methods to evaluate ratchet guarantees. The Greeks are also

derived using the JTPDF or CE methods. Numerical results are presented in the last

chapter. Some sensitivity tests are also conducted in Chapter 5.
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1 Economic Model

1.1 From Black-Scholes to Stochastic Volatility

Since the introduction of Black-Scholes model in 1973, there have been a lot of empirical

examples showing that the assumption of constant volatility does not correctly describe

stock returns. Firstly, Blattberg and Gonedes (1974) show that the log-return of the s-

tock does not follow the normal distribution but a leptokurtic density, which has heavier

tails and a higher peak. However, this phenomenon can be explained by time dependent

stochastic volatilities and people realized that the volatility also has a mean-reverting

property. Furthermore, Beckers (1980) presents statistical evidence of a negative relation-

ship between the level of stock price and its volatility. Nandi (1998) evaluate the corre-

lation between the stochastic return and the volatility and its importance. The volatility

smile obtained from the implied volatility casts more doubts on the Black-Scholes model.

In order to describe these behaviors such as a leptokurtic density, mean-reverting

property, negative correlation and volatility smile, a proper model is needed to describe

the variability of the volatility. Cox (1975) develops a constant elasticity of variance

(CEV) diffusion model. It assumes that the volatility is a decreasing function of the stock

price. Derman and Kani (1994), Dupire (1994) and Rubinstein (1994) suggest to use the

so-called local volatility model, i.e. the volatility should be a deterministic function of

the stock price and time. They also develop appropriate binomial or trinomial option

pricing procedures. However, Dumas et al. (1998) prove that although the deterministic

volatility (DV) model beats constant volatility models, the DV model’s predictions get

worse with the complexity of the assumptions on the volatility and the hedge ratios are

not as reliable as those in Black-Scholes model.

Stochastic volatility models describe the volatility using a diffusion process. Denote

by Vt the stochastic volatility, then the general process is given by

dVt = p (St, Vt, t) dt+ q (St, Vt, t) dW (t) ,
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where p(St, Vt, t) and q(St, Vt, t) are functions of St, Vt and t, and W (t) is a standard

Brownian motion. Different p(St, Vt, t) and q(St, Vt, t) lead to different models (here, we

do not consider cases with jumps). Research works on stochastic volatility can be found

in Johnson and Shanno (1987), Wiggins (1987), Scott (1987), Hull and White (1987),

Stein and Stein (1991), Heston (1993), Schöbel and Zhu (1999), Lewis (2000), and Zhu

(2010). Table 1, which is from Zhu (2010), gives an overview of some representative

stochastic volatility models. In Table 1 Vt means the stochastic volatility and vt stands

Table 1: Stochastic volatility models

Johnsom and Shanno (1987) (1): dVt = κVtdt+ σVtdW (t)

Wiggins (1987) (2): dlnVt = κ (θ − lnVt) dt+ σdW (t)

Hull and White (1987) (3): dV 2
t = κV 2

t dt+ σV 2
t dW (t)

Hull and White (1987) (4): dV 2
t = κV 2

t (θ − Vt) dt+ σV 2
t dW (t)

Stein and Stein (1991) (5): dVt = κ (θ − Vt) dt+ σdW (t)

Heston (1993) (6): dvt = κ (θ − vt) dt+ σ
√
vtdW (t)

Lewis (2000) (7): dvt = κ (θ − v2t ) dt+ σv
3/2
t dW (t)

Zhu (2010) (8): dv(t) = κ
(
θ −√vt − λvt

)
dt+ σ

√
vtdW (t)

for the stochastic variance so that Vt =
√
vt. Among the models given in Table 1, only (5)

(6), (8) have analytic option prices in the case of non-zero correlation between the stock

returns and volatility. Models (1) and (3) can not produce the mean-reverting property.

Zhu (2010) shows that models (1), (2), (3), (4), (7) are not stationary processes, so they

violate the feature of stationarity of volatility or variance. Hence models (5), (6), (8) are

worth studying in details.

In fact, each stochastic volatility model in Table 1 has a corresponding discrete mod-

el. Discretizing them leads to autoregressive random variance models. The generalized

autoregressive conditional heteroscedasticity (GARCH) models also play important roles

in studying volatility, but since we only focus on continuous models this kind of approach

5



will not be considered here.

1.2 Heston’s Stochastic Volatility

In this paper, we assume that the asset price St follows the Heston model which, under

the real probability measure P, is described as follows:

dSt = μStdt+
√
vtStdWs(t),

dvt = κ(θ − vt)dt+ σ
√
vtdWv(t),

d〈Ws(·),Wv(·)〉t = ρdt,

(1.1)

where Ws(t) and Wv(t) are two standard Brownian motions with negative correlation ρ,

μ is the drift and v0 and S0 are known. In general, the initial asset price S0 is observable

from the market and v0 can be calibrated.

In this model, the asset price St still follows a geometric Brownian motion, but with

volatility
√
vt. Instead of modeling the stochastic volatility directly, Heston described

the variance vt by the mean-reverting square root process with long-run mean θ, rate

of reversion κ, volatility of volatility σ. The mean-reversion is a desired property for

stochastic volatility or variance and is well documented by many empirical studies. The

process for vt is the square root process, which is called the Cox-Ingersoll-Ross (CIR)

process. Cox et al. (1985) apply this process to model interest rates. It is also called the

Feller process because of William Feller’s early work on this process. The CIR process

has the following properties.

Proposition 1.1 For the CIR process

dvt = κ(θ − vt)dt+ σ
√
vtdWv(t).

1. The conditional probability density function of vt+τ given its current value vt can be

expressed as

p (vt+τ |vt) = ce−ξ−ν
(
ν

ξ

)q/2

Iq

[
2
√
ξν
]
, (vt, vt+τ ≥ 0) . (1.2)
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where

c =
2κ

σ2 (1− e−κτ )
,

ξ = c · vt · e−κτ ,

ν = c · vt+τ ,

q =
2κθ

σ2
− 1.

and Iq [·] is the modified Bessel function1 of the first kind of order q.

2. The conditional expectation of vt+τ given vt is

E [vt+τ |vt] = θ + (vt − θ) e−κτ . (1.3)

Proof.

See Cox et al. (1985).�

For a given t, the random variable 2cvt follows a noncentral chi-square with 2q + 2

degrees of freedom and parameter of noncentrality 2ξ. When the Feller condition (2κθ >

σ2) is satisfied, the process vt is strictly positive.

Heston’s stochastic volatility model is one of the most popular stochastic models for

equities because of the following reasons. Firstly, a suitable set of the Heston parameters

{κ, θ, ρ, σ} can produce a leptokurtic distribution (high peak and heavy tails) of asset

returns and the negative correlation between the asset price and volatility. Examples are

available in Moodley (2005). Secondly, the volatility has the mean-reverting property.

Thirdly, it captures the volatility smile. Finally, a closed-formula for the European call

option is available so that it is possible to calibrate the Heston model.

1.3 Deterministic Interest Rate

Heston (1993) assumes that the interest rate is a constant. It is acceptable for short-

1The definition of the modified Bessel function of first kind can be found in Bowman (1958) and it is

evaluated numerically with the method given by Amos (1985) in this paper.
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term investment products since their maturities usually are less than 2 years. In such

a relatively low interest rate market, a constant interest rate could give an acceptable

approximation. However, for long-term investment products whose maturities range from

5 to 15 years, the risk-free interest rate is more volatile. Table 2 in Section 1.5 illustrates

the observed yield rates of T-bills on August 9th, 2011, which are regarded as risk-free

investment products. The maturities of the T-bills in Table 2 range from 1 month to

30 years, and the table shows that after 2 years the yield rate varies a lot. Hence, it

is unreasonable to assume a constant risk-free interest rate when we are dealing with

long-term investment products.

The constant assumption could be overcome by assuming deterministic or stochastic

interest rate models. A deterministic risk-free rate is described by a function of time t,

while a stochastic process is used to represent a stochastic risk-free rate. Though a deter-

ministic interest rate model is not as accurate as a stochastic model, some deterministic

models still fit the data correctly in the long run. Lin and Tan (2003) apply stochastic

interest rates to equity-indexed annuities (EIAs), and show how the interest rate affects

participation rates. However, their results show that randomness just introduce little

impact on the participation rates. Moreover, the problem gets more complex when s-

tochastic interest rate models are introduced in stochastic volatility models. Hence, we

use deterministic interest in this paper.

Instead of modeling the risk-free interest rate rt directly, we turn to the yield rates of

T-bills yt. Present value factor can be obtained from yield rates using

e−
∫ t

0
rs ds = e−tyt .

1.4 Non-Arbitrage Assumption and Heston Framework

Generally speaking, the non-arbitrage assumption says that it is impossible to make money

out of nothing. This concept is important in mathematical finance.

8



Black and Scholes (1973) derive a PDE for option pricing under the non-arbitrage

assumption and solve the PDE, leading to a closed-form equation for the price of European

call options. Harrison and Pliska (1981) prove that under the non-arbitrage assumption,

there is a risk neutral measure Q under which the asset price earns a risk-free interest

rate and introduced the popular risk-neutral pricing formula. Under the non-arbitrage

assumption, Heston (1993) also derives a PDE for prices of European call options, and

also gives the asset prices dynamic under Q.

Adopting the non-arbitrage assumption, the Heston model with deterministic interest

under Q is given by:

Proposition 1.2 Heston’s process under the risk-neutral measure Q is given by

dSt = rtStdt+
√
vtStdW

Q
s (t) ,

dvt = κ∗(θ∗ − vt)dt+ σ
√
vtdW

Q
v (t) ,

d〈WQ
s (·) ,WQ

v (·)〉t = ρdt,

(1.4)

where WQ
s (t) and WQ

v (t) are standard Brownian motions under Q; rt is the risk-free rate.

κ∗ = κ + λ0 and θ∗ = κθ
κ+λ0

. Here, {κ, θ, σ, ρ} are the same as the parameters in (1.1).

Finally, λ0, a constant, is related to the market price of the volatility risk.

Proof. For the value of an option Π, a PDE can be derived according to (A.11) in

Appendix A. That is

1

2
vtS

2
t

∂2Π

∂S2
t

+
1

2
σ2vt

∂2Π

∂v2t
+ ρσStvt

∂2Π

∂vt∂St
+

∂Π

∂t
− rtΠ+ rtSt

∂Π

∂St

+ (κ (θ − vt)− λ (s, v, t)σ
√
vt)

∂Π

∂vt
= 0. (1.5)

In Heston’s model, λ (St, vt, t) is assumed to be
λ0

√
vt

σ
, that is the market price of volatility

risk.

Similar to (A.11) in Appendix A, the drift terms of dSt and dvt under Q should be

9



rtSt and κ (θ − vt)− λ0vt respectively. Hence, (1.1) can be rewritten as follows,

dSt

St
= rtdt+

√
vt

(
μ− rt√

vt
dt+ dWs (t)

)
,

dvt = (κ(θ − vt)− λ0vt) dt+ σ
√
vt

(
λ0
√
vt

σ
dt+ dWv (t)

)
,

d〈Ws (·) ,Wv (·)〉t = ρdt,

Q is just the measure under which

μ− rt√
vt

dt+ dWs (t) = dWQ
s (t) ,

λ
√
vt

σ
dt+ dWv (t) = dWQ

v (t) .

�

One term which calls for attention is the market price of volatility risk. Though it

does not appear in (1.1), the PDE in (1.5) shows that it has an impact on the option

prices. However, the market price of volatility risk is hard to estimate since the volatility

is not traded in the financial market. In Heston (1993) it is assumed to be
λ0

√
vt

σ
. This

assumption at least fits common sense, as the market price of volatility should be higher

when the volatility is large and lower when vt is small. Moreover, under this assumption

the asset prices keep the same dynamic under both measures P and Q.

1.5 European Call Price

In order to price and hedge derivatives in the Heston framework, we need to identify

the parameters in (1.4), these are {κ∗, θ∗, σ, ρ, v0}. The parameters are calibrated by

comparing the observed European call prices and the prices obtained using the Heston

model. The closed-form expression for European call prices is derived in Heston’s original

paper, but as we pointed out in the previous section, the assumption of constant interest

does not hold for pricing EIAs. In this section, following Heston (1993) and by studying

the characteristic function of the log-return, we give an analytical formula for the price

of European calls under Heston model with deterministic interest.
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1.5.1 Characteristic Functions

The payoff of European calls is max{ST −K, 0}, where ST is the asset price at maturity

T and K is the strike price. It means that if the asset price at maturity ST is larger than

the strike K then the payoff of one unit of European call is ST −K. Otherwise, the payoff

is zero. In order to price European call options, we use the risk-neutral valuation formula

which was introduced in Harrison and Pliska (1981) as follows:

Proposition 1.3 Denote by Y (T ) the valuation of an attainable2 claim exercised at time

T , then its price at time t is given by

Y (t) = B(t)EQ

[
Y (T )

B(T )

∣∣∣∣Ft

]
, (1.6)

where

B(t) = e
∫ t

0
rw dw

and Ft is the filtration (or the information) up to time t.

Proof. See Harrison and Pliska (1981).�

Remark 1.4 B (t) is also called the numeraire3 under Q such that Y (t)
B(t)

is a Q-martingale.

According to Proposition 1.3, the price of a European call option, ΠC , is given by

ΠC(t, T, St, vt, K) = EQ

[
e−

∫ T

t
rw dw max{ST −K, 0}

∣∣∣∣Ft

]

= e−
∫ T

t
rw dwEQ [ST I{ST > K}|Ft]

−Ke−
∫ T

t
rw dwQ {ST > K|Ft} , (1.7)

where Q{ST > K|Ft} is the probability of the event {ST > K|Ft} under Q and I {·}
stands for the indicator function.

In order to evaluate EQ [ST I{ST > K}|Ft] we change Q to another measure Qs by

the technique of change of numeraire. Before doing that, it is necessary to introduce two

lemmas.
2 A contingent claim attainable if it can be replicated by a self-financing portfolio.
3A numeraire is a price process X(t), almost surely strictly possitive for each t ∈ [0, T ]. For details of

numeraire please see Geman et al. (1995).
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Lemma 1.5 Assume that B(t), Q, Ft are as in Proposition 1.3 and let X (t) be a non-

dividend paying numeraire such that X(t)/B(t) is a Q-martingale. Then there exists a

probability measure QX defined by its Radon-Nikodym derivative with respect to Q, that

is

dQX

dQ
|FT =

B(0)/B(T )

X(0)/X(T )
,

such that the basic security prices discounted with respect to X are QX martingales.

Proof. See Geman et al. (1995). �

Lemma 1.6 (Bayes Formula) Assume that P̃ is absolutely continuous4 with respect to P

and Z is its Radon-Nikodym derivative with respect to P. If Y is bounded (or P̃-integrable)

and FT measurable, then

EP̃ [Y |Ft] =
1

Z (t)
EP [Y Z (T ) |Ft] , a.s. for t ≤ T.

Proof. See Exercises 5.1 in Bingham and Kiesel (2004). �

Proposition 1.7 Given the Heston model (1.4), let B(t) be the numeraire under Q. In

other words, B(t) stands for the money market account e
∫ t

0
rw dw. Then

1. St/B(t) is a Q-martingale.

2. There exist a measure QS such that the basic security prices discounted with respect

to St are QS martingales.

3. Heston’s model under the measure QS is given by

dSt = (rt + vt)Stdt+
√
vtStdW

QS
s (t) ,

dvt = [κ∗ (θ∗ − vt) + ρσvt] dt+ σ
√
vtdW

QS
v (t) ,

d〈WQS
s (·) ,WQS

v (·)〉 = ρdt,

(1.8)

where WQS
s (t) and WQS

v (t) are two standard Brownian motions under QS .

4Measure μ is absolutely continuous with respect to ν is there exists a function g such that μ (A) =∫
A
g dν.
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Proof.

1. Apply Itô’s formula, we have

d

[
St

B (t)

]
=

dSt

B (t)
+ StdB (t) + d〈S·, 1

B (·)〉t

=
1

B (t)

[
rtStdt+

√
vtStdW

Q
s (t)
]
+ St

[
− 1

B (t)2

]
B (t) rtdt

=
1

B (t)

[
rtStdt+

√
vtStdW

Q
s (t)− rtSt

]
=

1

B (t)

√
vtStdW

Q
s (t) .

2. This is true because of Lemma 1.5 and the previous result.

3. Let Yt = lnSt, applying Itô’s formula to Yt leads to

dYt =
∂Yt

∂St

+
1

2

∂2Yt

∂S2
t

d〈S·, S·〉t + ∂Yt

∂t
dt

=
1

St
dSt +

1

2

(
− 1

S2
t

)
S2
t vtdt

=

(
rt − 1

2
vt

)
dt+

√
vtdW

Q
s (t) .

Hence,

ln
St

S0
= Yt − Y0 =

∫ t

0

rs − 1

2
vs ds+

∫ t

0

√
vsdW

Q
s (s) ds.
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Then, according to Lemma 1.5,

dQS

dQ
=

B(0)/B(t)

S0/St

=
1

e
∫ t

0
rs ds

exp

{∫ t

0

rs − 1

2
vs ds+

∫ t

0

√
vsdW

Q
s (s) ds

}

= exp

{∫ t

0

√
vsdW

Q
s (s)ds−

∫ t

0

1

2
vs ds

}
. (1.9)

By Girsanov’s theorem

dWQS
s (t) = dWQ

s (t)−√vtdt. (1.10)

Since dWQS
v (t) can be written as ρdWQS

s (t) +
√

1− ρ2dZQS (t), where ZQS(t) is a

standard Brownian Motion under QS which is independent of WQS
s (t), then

dWQS
v (t) = ρdWQS

s (t) +
√

1− ρ2dZQS (t)

= ρdWQ
s (t) +

√
1− ρ2dZQS (t)−√vtdt

= ρdWQ
s (t) +

√
1− ρ2dZQ (t)−√vtdt (1.11)

= ρdWQ
v (t)−√vtdt. (1.12)

Equation (1.11) holds since while we change the measure by (1.9), ZQ(t) is still a

standard Brownian motion under the new measure, that is ZQS(t) = ZQ(t).

Hence, (1.8) is true because of (1.10) and (1.12). �

Remark 1.8 Wong and Heyde (2006) prove that St

B(t)
is a true martingale only if κ∗ ≥

σρ. In Part 1 of Proposition 1.7, the condition κ∗ ≥ σρ is not necessary since by definition

κ∗ and σ must be larger or equal to 0, and in (1.1) we assume that ρ < 0.

By the definition of QS, both QS and Q are absolutely continuous to each other. Denote

the Radon-Nikodym derivative of Q with respect to QS by Zt, s.t.

Zt =
dQ

dQS

∣∣∣∣Ft =
S0/St

B(0)/B(t)
,
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by Lemma 1.6 we have

EQ [ST I{ST > K}|Ft] =
1

Zt
EQS [ZTST I{ST > K}|Ft] .

Hence,

e−
∫ T

t
r(w) dwEQ [ST I{ST > K}|Ft] =

B (t)

B (T )
EQ [ST I{ST > K}|Ft]

=
B (t)

B (T )

1

Zt
EQS [ZTST I{ST > K}|Ft]

= EQS

[
B (t)

B (T )

ZT

Zt
ST I{ST > K}|Ft

]
= EQS [StI {ST > K}| Ft]

= StQS {ST > K|Ft} .

where QS {ST > K|Ft} stands for the probability of the event {ST > K|Ft} under mea-

sure QS . Then the call price (1.7) can be written as

ΠC(t, T, St, vt, K) = StQS {ST > K|Ft} −Ke−
∫ T

t
rw dwQ {ST > K|Ft}

= StP1 −Ke−
∫ T

t
rw dwP2

� extP1 −Ke−
∫ T

t
rw dwP2. (1.13)

where P1 � QS{ST > K|Ft}, P2 � Q{ST > K|Ft} and xt = lnSt.

We turn to the log-price xt in order to simplify the calculations. Applying Itô’s formula

to xt, we obtain the SDE for the log-price as follows,

dxt =

(
rt − 1

2
vt

)
dt+

√
vtdW

Q
s (t) ,

dvt = κ∗ (θ∗ − vt) dt+ σ
√
vtdW

Q
v (t) ,

d〈WQ
s (·) ,WQ

v (·)〉t = ρdt.

(1.14)

Hence, to obtain a formula for Π(t, T, St, vt, K) we just need to seek for P1 and P2. Where-

as, Rollin et al. (2010) reported that the the probability density function of the log-return

or log-price is still not well known, and maybe do not have a closed-form. However, the

characteristic function of the log-price has nice properties. Hence the valuation of options
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via characteristic function (CF) is popular: in fact in Heston (1993), the original closed-

form for call price is derived using the CF; Bakshi and Madan (2000) shows that CF plays

a significant role in pricing options and simplify the problem; Drăgulescu and Yakovenko

(2002) derived the PDF of the “log-return” in Heston’s framework via CF, assuming the

initial stochastic variance follows a stationary distribution. Zhu (2010) gave a thorough

description of applying the CF to Heston’s model. The following results explain how to

derive the call price via the characteristic function of the log-price.

Proposition 1.9 Given the characteristic function φ (s) of a random variable X, the

CDF of X, FX (x), is given by

FX (x) =
1

2
− 1

2π

∫ ∞

−∞

e−isxφ (s)

is
ds. (1.15)

Proof. See Gil-Pelaez (1951). �

Corollary 1.10 Assume that φj (s) is the characteristic function corresponding to Pj,

for j = 1, 2 in (1.13), then we have the following relationship:

Pj =
1

2
+

1

π

∫ ∞

0

Re

[
e−islnKφj (s)

is

]
ds, (1.16)

where Re [z] is the real part of z.

Proof. According to Proposition 1.9, for j = 1, 2,

Pj = 1− F (lnK)

=
1

2
+

1

2π

∫ ∞

−∞

e−is lnKφj (s)

is
ds

=
1

2
+

1

2π

[
−
∫ 0

+∞

e−i(−s̃) lnKφj (−s̃)
−is̃ ds̃+

∫ ∞

0

e−is lnKφj (s)

is
ds

]

=
1

2
+

1

2π

[∫ +∞

0

eis̃ lnKφj (s̃)

−is̃ ds̃+

∫ ∞

0

e−is lnKφj (s)

is
ds

]
(1.17)

=
1

2
+

1

π

∫ ∞

0

Re

[
φj (s)

e−is lnK

is

]
ds, (1.18)

where a + ib = a − ib, a, b ∈ R, Im [z] and Re [z] denote the imaginary and real part of

z.
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Equation (1.17) is true since for a characteristic function φ (−s) = φ (s) and (1.18)

holds since the probability density Pj must be real, so that the integrals w.r.t the imagi-

nary part can be eliminated. �

Note that Corollary 1.10 is model free, so that the problem of pricing a European call

option can be converted to a problem of identifying the characteristic functions of the

asset price (or log-price) under Q and QS. In Heston’s model, φj, j = 1, 2, are obtained

through the Heston PDE.

1.5.2 Heston PDE

In order to derive the Heston PDE, we need to introduce the following theorem.

Theorem 1.11 (Feynman-Kac Theorem)

Suppose that

1. xt follows the stochastic process in n dimensions

dxt = μμμ (xt, t) + σσσ (xt, t) dWWW
Q (t) , (1.19)

where xt and μμμ (xt, t) are n-dimensional column vectors, σσσ (xt, t) is a n×m matrix

and WWWQ
t is a m-dimensional Q−Brownian motion. That is

d

⎛
⎜⎜⎜⎝
x1 (t)

...

xn (t)

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

μ1 (xt, t)

...

μn (xt, t))

⎞
⎟⎟⎟⎠ dt+

⎛
⎜⎜⎜⎝

σ11 (xt, t) · · · σ1m (xt, t)

...
. . .

...

σn1 (xt, t) · · · σnm (xt, t)

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝
dWQ

1 (t)

...

dWQ
m (t)

⎞
⎟⎟⎟⎠ ,

where μi (xt, t) and σij (xt, t) are functions from Rn+1 to R.

2. By definition, the generator of the process xt is

A =
n∑

i=1

μi
∂

∂xi

+
1

2

n∑
i=1

n∑
j=1

(
σσσσσσT
)
i,j

∂2

∂xi∂xj

, (1.20)

where for convenience μi = μi(xt, t),σσσ = σσσ (xt, t) and
(
σσσσσσT
)
ij
is the element (i, j)

of the matrix σσσσσσT .
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Now let f ∈ C2
0 (R

n), q ∈ C (Rn) and is lower bounded, we have

1. Put

Y (t,x) = E

[
exp

(
−
∫ t

0

q (xs) ds

)
f (xt)

∣∣∣∣x
]
, (1.21)

then

∂Y

∂t
= AY − qY ; t > 0, x ∈ Rn, (1.22)

Y (0,x) = f (x) ; x ∈ Rn. (1.23)

2. Moreover, if w (t,x) ∈ C1,2 (R×Rn) is bounded on K×Rn for each compactK ⊂ R

and w solves (1.22), and (1.23), then w (t,x) = Y (t,x), given by (1.21).

Proof. See Oksendal (2002).�

The Heston PDE can be derived directly from Theorem 1.11. Recall that in the

Heston framework the asset price dynamics under the risk-neutral measure are described

by (1.14). The process for xt = (xt, vt) can be written in terms of two independent

Brownian motions Z1 and Z2 as

d

⎛
⎝xt

vt

⎞
⎠ =

⎛
⎝ rt − 1

2
vt

κ∗(θ∗ − vt)

⎞
⎠ dt+

⎛
⎝ √

vt 0

σρ
√
vt σ

√
vt(1− ρ2)

⎞
⎠
⎛
⎝dZ1 (t)

dZ2 (t)

⎞
⎠ . (1.24)

To apply the Feymann-Kac Theorem, we need the generator given in (1.20). Since

σσσσσσT =

⎛
⎝ √

vt 0

σρ
√
vt σ

√
vt(1− ρ2)

⎞
⎠
⎛
⎝ √

vt 0

σρ
√
vt σ

√
vt(1− ρ2)

⎞
⎠

T

=

⎛
⎝ vt ρσvt

ρσvt σ2vt

⎞
⎠ ,

the generator in (1.20) becomes

A =

(
rt − 1

2
vt

)
∂

∂xt
+ κ∗ (θ∗ − vt)

∂

∂vt
+

1

2

[
vt

∂2

∂x2
t

+ 2σρvt
∂2

∂xt∂vt
+ σ2vt

∂2

∂v2t

]
. (1.25)
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Then (1.22) can be written as

∂Y

∂t
+

(
rt − 1

2
vt

)
∂Y

∂xt

+ κ∗ (θ∗ − vt)
∂Y

∂vt
+

1

2
vt
∂2Y

∂x2
t

+ σρvt
∂2Y

∂xt∂vt
+

1

2
σ2vt

∂2Y

∂v2t
− rtY = 0.

(1.26)

Equation (1.26) is called the Heston PDE which is used to solve for φj and j = 1, 2.

1.5.3 Solving the Characteristic Functions

Note that the definition of Y in (1.26) is given by (1.21), we can replace Y by ΠC in (1.26)

and get the following PDE by setting τ = T − t,

− ∂ΠC

∂τ
+

1

2
vt
∂2ΠC

∂x2
t

+
(
rT−τ − 1

2
vt

)∂ΠC

∂xt

+ ρσvt
∂2ΠC

∂vt∂xt

+
1

2
σ2vt

∂2ΠC

∂v2t
− rT−τΠC + [κ∗(θ∗ − vt)]

∂ΠC

∂vt
= 0. (1.27)

Inserting (1.13) into (1.27) leads to

ext

[
−∂P1

∂τ
+

(
rT−τ +

1

2
vt

)
∂P1

∂xt

+
1

2
vt
∂2P1

∂x2
t

+ ρσvt
∂2P1

∂vt∂xt

+ [ρσvt + κ∗ (θ∗ − vt)]
∂P1

∂vt
+

1

2
σ2vt

∂2P1

∂v2

]
−Ke−

∫ T

T−τ
r(w)dw

[
−∂P2

∂τ
+

1

2
vt
∂2P2

∂x2
t

+

(
rT−τ − 1

2

)
∂P2

∂xt
+ ρσvt

∂2P1

∂xt∂vt
+

κ∗ (θ∗ − vt)
∂P2

∂vt
+

1

2
σ2vt

∂2P2

∂v2t

]
= 0. (1.28)

Since (1.28) must be true for all strike values, the term multiplying K and the term

independent of K should each be zero. Hence, (1.28) can be rewritten into two PDEs,

that are

− ∂P1

∂τ
+

(
1

2
vt + rT−τ

)
∂P1

∂xt

+
1

2
vt
∂2P1

∂x2
t

+ ρσvt
∂2P1

∂vt∂xt

+ [ρσvt + κ∗(θ∗ − vt)]
∂P1

∂vt
+

1

2
σ2vt

∂2P1

∂v2t
= 0, (1.29)

and

− ∂P2

∂τ
+ ρσvt

∂2P2

∂vt∂xt
+

1

2

∂2P2

∂x2
t

+
1

2
vtσ

2∂
2P2

∂v2t

+

(
rT−τ − 1

2
vt

)
∂P2

∂xt
+ [κ∗(θ∗ − vt)]

∂P2

∂vt
= 0. (1.30)
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We can rewrite (1.29) and (1.30) by

− ∂Pj

∂τ
+ ρσvt

∂2Pj

∂xt∂vt
+

1

2
vt
∂2Pj

∂x2
t

+
1

2
vtσ

2∂
2Pj

∂v2t

+ (rT−τ + ujvt)
∂Pj

∂xt

+ (a− bjvt)
∂Pj

∂vt
= 0, (1.31)

where

u1 =
1

2
, u2 = −1

2
, a = κ∗θ∗, b1 = κ∗ − ρσ, b2 = κ∗.

In order to obtain PDEs of φj , for j = 1, 2, we need to introduce Kolmogorov’s backward

equation given in the following theorem.

Theorem 1.12 (Kolmogorov’s backward equation)

Let f ∈ C2
0 (R

n) and xt be and Itô diffusion in Rn with generator A.

1. Define

u (t,x) = E
[
f (xt)

∣∣x] . (1.32)

Then u (t, ·) ∈ DA for each t and

∂u

∂t
= Au, t > 0, x ∈ Rn, (1.33)

u (0,x) = f (x) ; x ∈ Rn, (1.34)

where the right hand side is to be interpreted as A applied to the function x →
u (t,x).

2. Moreover, if w (t,x) ∈ C1,2 (R×Rn) is a bounded function satisfying (1.33), (1.34)

then w (t,x) = u (t,x), given by (1.32).

Proof. See Oksendal (2002). �

According to Theorem 1.12, the characteristic functions φj must satisfy the PDEs of

Pj but with different boundary conditions, which are

φj

(
x0, v0, τ = 0

)
= eisx0, j = 1, 2.
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In fact, by definition when τ = 0

φ1 (s) = EQS
[
eisx0
]
= eisx0 ,

φ2 (s) = EQ
[
eisx0
]
= eisx0 .

Following Heston (1993) we assume the characteristic function is the form of:

φj (s) = exp{Cj(τ, s) +Dj(τ, s)vt + isxt}. (1.35)

Hence, Dj(0, s) = 0 and Cj(0, s) = 0. Inserting (1.35) into (1.31) leads to

−
(
∂Cj

∂τ
+

∂Dj

∂τ
vt

)
+ ρσvtisDj − 1

2
vts

2 +
1

2
vtσ

2D2
j + (rT−τ + ujvt) is+ (a− bjvt)Dj = 0.

Grouping the terms including vt, we have

vt

(
−∂Dj

∂τ
+ ρσisDj − 1

2
s2 +

1

2
σ2D2

j + ujis− bjDj

)
− ∂Cj

∂τ
+ rT−τ is + aDj = 0. (1.36)

Note that (1.36) must be true for all values of vt, so that in (1.36) the term with vt and

the term free from vt are both supposed to be zero. Hence, (1.36) can be rewritten using

the following two equations:

∂Dj

∂τ
= ρσisDj − 1

2
s2 +

1

2
σ2D2

j + ujis− bjDj (1.37)

∂Cj

∂τ
= rT−τ is + aDj . (1.38)

Since D (0, s) = 0, (1.37) is solvable according to Appendix C. Setting

Lj = ujis− 1

2
s2, Qj = ρσis− bj and R =

1

2
σ2,

(1.37) can be written as

∂Dj

∂τ
= Lj +QjDj +RD2

j .

According to Appendix C, denote by

B0 =
−Qj +

√
Q2

j − 4RLj

2R
,

A = 2RB0 +Qj ,

the unique solution to (1.37) with D (0, s) = 0 is given by
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Dj =
B0 (A− RB0) e

−At − (A− RB0)B0

(A−RB0)e−At +RB0

=
A− RB0

R

e−Aτ − 1
A−RB0

RB0
e−Aτ + 1

=
ρσis− bj − dj

σ2

edjτ − 1
ρσis−bj−dj
−ρσis+bj−dj e

djτ + 1

=
bj − ρσis + dj

σ2

1− edjτ

1− gjedjτ
, (1.39)

where

dj = −
√

(ρσis− bj)
2 − σ2 (2ujis− s2),

gj =
bj − ρσis + dj
bj − ρσis− dj

.

Given Dj, the solution for Cj with boundary conditions Cj (0, s) = 0 is given by

integrating (1.38),

Cj =

∫ τ

0

r(T − τ)is dτ + a

(
bj − ρσis + dj

σ2

)∫ τ

0

1− edjτ

1− gjedjτ
dτ

=

∫ τ

0

r (T − τ) is dτ +
a

σ2

[
(bj − ρσis + dj) τ − 2ln

(
1− gje

djτ

1− gj

)]

= is

∫ T

t

r(w) dw+
a

σ2

[
(bj − ρσis+ dj) τ − 2ln

(
1− gje

djτ

1− gj

)]
. (1.40)

Obtaining Cj and Dj , (1.35),(1.39) and (1.40) give us the formula for φj, j = 1, 2. Hence,

the formula of call price could be obtained by combining (1.35), (1.17) and (1.13).

Though a closed (or semi-closed) formula for the European call price is derived, there

are still some numerical problems which make it unpractical. Albrecher et al. (2007)

pointed out that due to the discontinuity in the branch cut of the complex logarithm in

C1, φ1 (s) is unstable for the long term maturity or for certain parameters, while φ2 (s)

does not suffer this problem. This numerical problem was solved by Bakshi and Madan

(2000) in which the relationship between φ1 (s) and φ2 (s) was found as follows:

φ1 (s) =
φ2 (s− i)

φ2 (−i) . (1.41)
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Since φ1 in our paper suffers the same problem as Heston’s original formula, we use φ2 (s)

and the relationship between the two characteristic functions given in (1.41) to evaluate

P1 and P2.

Finally, we give the European call price under Heston model with deterministic interest

as follows: Under Heston’s model with deterministic interest, the price for a European

call option with strike K and maturity T at time t (≤ T ) given current asset price St and

current stochastic variance vt can be expressed as

ΠC(t, T, St, vt, K) = extP1 −Ke−
∫ T

t
rw dwP2, (1.42)

where

xt = lnSt,

P1 =
1

2
+

1

π

∫ ∞

0

Re

[
e−is lnKφ2 (s− i)

isφ2 (−i)
]

ds,

P2 =
1

2
+

1

π

∫ ∞

0

Re

[
e−is lnKφ2 (s)

is

]
ds,

φ2 (s) = exp{C (τ, s) +D (τ, s) vt + ixts},

C (τ, s) = is

∫ T

t

r(w) dw+
κ∗θ∗

σ2

[
(κ∗ − ρσis + d) τ − 2 ln

(
1− gedτ

1− g

)]
,

D (τ, s) =
κ∗ − ρσis+ d

σ2

(
1− edτ

1− gedτ

)
,

g =
κ∗ − ρσis+ d

κ∗ − ρσis− d
,

d = −
√

(ρσis− κ∗)2 + σ2 (is+ s2),

τ = T − t.

Please note that “d” in our paper is the opposite to the “d” in Heston’s original paper.

In fact, there could be two values for “d” because it is the square root of a complex number

and they lead to the same result. This is because of the uniqueness of the solution to the

Riccati function (1.37). (See details in Appendix C). However, compared with the call

prices obtained by simulation and the numerical methods that we introduced in Chapter

3, Heston’s choice generates a little error in practice while the other value of “d” leads
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to consistent results. This is due to the branch cut of the square root function of a

complex number. Another explanation is that when d is positive the computation error

in evaluating edτ is larger than e−dτ .

1.6 Calibrating the Heston Model

The parameters of the asset price dynamic are calibrated using observed European call

prices. Since most of our formulas are derived under the risk neutral measure, we pay

more attention to the calibration of the Heston parameters G2 = {κ∗, θ∗, σρ, v0}.
In order to calibrate the Heston model with deterministic interest, we first identify

and calibrate the model for yield rates. In this thesis, we assume that

yt = β1 + β2

[
1− e−t/λ1

t/λ1

]
+ β3

[
1− e−t/λ1

t/λ1
− e−t/λ1

]
+ β4

[
1− e−t/λ2

t/λ2
− e−t/λ2

]
, (1.43)

where t is the time to maturity. β1, β2, β3, β4, λ1 and λ2 are parameters to be estimated.

This model, which is called Nelson-Siegel-Svensson (NSS) model, is introduced in Svensson

(1994). Although we specify a certain formula for the deterministic yield rate, our financial

model does not limited to the particular one.

We calibrate G1 = {β1, β2, β3, β4, λ1, λ2} according to the observed rates from the

market. Table 2 illustrates the yield rates of the U.S. Treasury bills (T-bills)5 which were

observed on August 9th, 2011 and the maturities of corresponding T-bills range from 1

month to 30 years. Following Gilli et al. (2010), we use DE method to calibrated G1

according to the yield rates given in Table 2 (brief introduction to the DE algorithm is

given in Appendix B). The objective function is

G1 = argmin
Ω1

∑
i

(
yObs
i − yNSS

i

)2
,

where Ω1 is the space of parameters, yObs
i stands for the observed yield rates given by the

U.S. Department of Treasury and yNSS
i is for the yield rates obtained from (1.43). The

calibration results are given in Table 3.

5Data was obtained from http://www.treasury.gov/resource-center/data-chart-center/interest-

rates/Pages/TextView.aspx?data=yield
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Table 2: Yield curve in percentage

Time 1 Month 3 Month 6 Month 1 Year 2 Year 3 year

Yield Rate 0.02 0.03 0.06 0.11 0.19 0.33

Time 5 Year 7 Year 10 Year 20 Year 30 Year

Yield Rate 0.91 1.53 2.20 3.17 3.56

Table 3: NSS model calibration

Parameter Calibration Results

β1 4.233068

β2 −4.233048
β3 −25.918993
β4 19.522368

λ1 1.572826

λ2 1.367069

The error is estimated by the root of mean squared error which is,√
1

N

∑
i

(
yObs
i − yNSS

i

)2
= 0.004768%.

Furthermore, Figure 1 shows the calibration results as well as the NSS model fits the

observed data well.

After calibrating the NSS model, the Heston parameters can be calibrated according to

the observed data. In this paper we calibrate G2 = {κ∗, θ∗, σρ, v0} based on observed Eu-

ropean call options. In other words, calibrating the Heston parameters is an optimization

problem as follows,

G2 = arg min
Ω2

N∑
i=1

wi

[
ΠObs

C (0, Ti, S0, v0, Ki)− ΠHeston
C (0, Ti, S0, v0, Ki)

]2
, (1.44)

where Ω2 is the space for G2, Π
Obs
C (0, Ti, S0, v0, Ki) is the observed European call option

price, ΠHeston
C (0, Ti, S0, v0, Ki) is the European call option price obtained by (1.42), N is
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Figure 1: Calibration result for NSS model.

the number of observed prices and {wi} are the weights. Because the market prices are

given as a bid-ask spread6, it is impossible to determine the real price. Hence, the average

of the bid and asked prices is used to define the observed European call prices. Following

Moodley (2005), we define the weights as 1
|bidi−aski| , where bidi is the bid price and aski

is the asked price. This weight makes sense: the larger the difference between the asked

and bid price, the harder it is to determine the real price, hence we are supposed to assign

less weights to such prices.

In our paper, forty European call options on S&P 500 observed on 9th August, 20117

are used to calibrate Heston’s parameters. On that day the S&P 500 index closed at

1, 172.53 that is used as the initial asset price S0. The maturities of the observed call

options range from 2 month to 14 month and the strikes are between 800 and 1, 400.

6Bid prices are the prices at which the agents sell the calls and ask prices are the prices at which the

agents buy calls.
7Data from marketwatch.com
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As we said before, the Heston model under the risk-neutral measure has five parameters

that need to be estimated. Minimizing the objective function is a nonlinear programming

problem. The objective function is far from being convex and Mikhailov and Nögel (2003)

pointed out that there exist many local extrema so that global optimizers should be

applied here. In our paper we use the Differential Evolution (DE) method introduced

by Storn and Price (1997) to minimize the objective function. The DE method is widely

and successfully used when calibrating Heston model and other financial models, see

Gilli and Schumann (2010), Schoutens et al. (2004), and Vollrath and Wendland (2009).

The parameters estimation is given in Table 4: Note that this set of parameters

Table 4: Heston parameters under risk neutral measure

Parameter Calibration Results

κ∗ 4.1

θ∗ 0.046

σ 0.605

ρ −0.7736
v0 0.077931

satisfies the Feller condition, that is, 2κ∗θ∗ − σ2 > 0. This result is obtained using the

DE optimization algorithm with parameters np = 50, F = 0.5, CR = 0.9, NG = 200.

The error is evaluated by the root of the weighted mean squared error, which is√√√√ 1

N

N∑
i=1

wi

[
ΠObs

i − ΠHeston
i

]2
= 1.4700.

Compared with the weighted average call option, that is

1

N

N∑
i=1

wiΠ
model
i = 31.39

the calibration error seems acceptable. Furthermore, in Figure 2 the black stars stand

for observed European call option prices and the surface is generated by (1.42) with the
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parameters given in Table 4. From Figure 2 we can see the calibrated prices fit the

observed prices well.
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Figure 2: Calibration result for Heston parameters.
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2 Joint Transition PDF of Heston Model

In this section, we introduce the conditional probability density functions of the asset

dynamics and volatility.

As we presented in Section 1.2, the volatility follows a noncentral chi-square distri-

bution. In terms of the marginal PDF of the asset price, there is still no closed formula

though a number of research works have tried to address this problem. One interesting

result is given by Drăgulescu and Yakovenko (2002). They first obtain p (ln(St/S0), vt|v0)
by inverting its characteristic function, then a formula for the marginal PDF of the asset

price, p (ln (St/S0)), is derived by integrating vt and v0 out. They call their result the DY

formula and show that the DY formula fits the data of the Dow-Jones index from 1982 to

2002. Silva and Yakovenko (2003) continue to illustrate that the DY formula successfully

fits the data of S&P 500 and Nasdaq indices from 1980s to 2000s. However, in integrating

v0 out they assumed it follows the stationary distribution of p (vt+τ |vt). This makes the

DY formula an approximation. Though this assumption makes sense for long-time peri-

ods, it is not reasonable for short terms. Rollin et al. (2010) proved that the density of

the log-return has a C∞(or smooth) density and can be written as an infinite convolution

of Bessel type densities.

Though the marginal PDF of asset prices is unknown, Lipton (2001) as well as

Lamoureux and Paseka (2009) both derived closed formulas for the joint transition den-

sity probability function (JTPDF) of the asset and volatility. The Heston process is

described by the stochastic processes St (or xt) and vt, so that it is characterized by

the JTPDF p (xt+τ , vt+τ |xt, vt). The JTPDF is advantageous in dealing with the path-

dependent derivatives because of the Markovian property of (xt, vt). This enables us to

address the path-dependent derivatives period by period, rather than dealing with the

whole path.
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2.1 The Joint Transition Probability Density Function

In this section, we generalize formulas in Lamoureux and Paseka (2009) to the case of

deterministic interest.

Proposition 2.1 Given the Heston process with deterministic interest rate under Q, that

is (1.4), the JTPDF of the process is given by

p (xt+τ , vt+τ |xt, vt) =
1

π
e

ν+1

2
κ∗τ

(
vt+τ

vt

)ν/2 ∫ +∞

0

eimkh (k) dk, (2.1)

where

m = −
(
xt+τ − xt −

∫ T

t

rw dw +
ν + 1

2
ρστ

)
,

h (k) = ψIν [2
√
ϕvtvt+τ ] e

τd
2
+(A2−ψ)vt−(A1+ψ)vt+τ ,

ν =
2κ∗θ∗

σ2
− 1,

ψ =
d

R1 (edτ − 1)
,

ϕ = ψ2edτ ,

A1 =
1

2R1
[−R2 + d] ,

A2 =
1

2R1
[−R2 − d] ,

R1 =
σ2

2
,

R2 = ikρσ − κ∗,

d =
√

(κ∗ − ikρσ)2 + σ2 (k2 + ik),

and Iν [·] is the modified Bessel function of the first kind of order ν.

Proof. Lamoureux and Paseka (2009) give a proof when the interest rate is constant.

This idea can be applied to the case of deterministic interest rates. See Ballestra et al.

(2007) on how to change the bounds of the interval. �

Figure 3 consists of the graphs related to the JTPDF. The plot on the left is the figure

of the JTPDF, the plot on the top right is the projection on the surface of JTPDF and xt,
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and the third plot at the bottom right is the projection on the surface of JTPDF and vt.

The parameters used for plotting are obtained from the calibration. Figure 3 shows how

the log-price and the stochastic variance of S&P 500 would change after August 9th, 2011

based on the market of European call prices that we observed. Firstly, the support of the

JTPDF is rather small compared to its domain which is [−∞,+∞]× [0,+∞]. Secondly,

the log-price tends to increase with a large probability and has a heavier tail on the left

side. Thirdly, the volatility tends to decrease with large probabilities.
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Figure 3: Figure of the transition PDF
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2.2 The Quadrature of The TPDF Integral

The integral in (2.1) is an oscillatory integral due to the term eimk. When traditional

quadrature is applied to evaluate such integrals, the result is not reliable. In fact, to

evaluate an integral, for example I =
∫ b
a
f (x) dx, the traditional quadrature first generates

N points {xi}, i = 1, 2, . . . , N according to a certain rule from the interval [a, b], then the

following summation is applied to approximate the integral

I =

N∑
i=1

ωif (xi) ,

where ωi is the weight assigned to f (xi). Setting ωi = 1
N

leads to the Monte-Carlo

method. When f(x) is difficult to evaluate, f(x) is approximated by an interpolation

g(x) according to (xi, f(xi)), i = 1, 2, . . . N . The function g(x) is selected such that it is

always easy to evaluate. Hence, the basic idea of typical quadrature is

I =

∫ b

a

f(x)dx

≈
N∑
i=1

ωig(xi).

However, when f(x) is an oscillatory function the integral of f(x) is referred to an oscil-

latory integral and the points might not be representative of the behavior of the function.

Figure 4 shows how these interpolation points could miss their target. In Figure 4 the

blue line is the plot for function x2 cos(60x), which is a typical oscillatory function. To

approximate this function we randomly generate 20 points that are marked by red s-

tars. These interpolation points are fooled by the behavior of x2 cos(60x), and the typical

quadrature gives the integral of the function presented by the red line. Some Gaussian

quadratures such as the adaptive Gauss-Kronrod or Lobatto quadratures works at eval-

uating the oscillatory integral in (2.1). However, this is because the oscillatory factor m

in (2.1) is too small for our problem. When the oscillatory factor is large, like the func-

tion in Figure 4, the results obtained by a typical quadrature are not reliable. Hence, the

Gaussian-type quadrature is not recommended to evaluate oscillatory integrals. Firstly, it
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Figure 4: f (x) = x2 cos(60x), x ∈ [−3, 3]

is time-consuming since the method requires a lot of interpolation points when evaluating

the oscillatory integral. Moreover, the Gaussian-type quadrature gives modest accuracy.

However, to evaluate an oscillatory integral there are many other numerical methods.

Olver (2008) gives a good review of the literature on oscillatory integrals. In our paper we

use the Filon-type quadrature which was introduced in Filon (1928) to solve the integral

I =

∫ b

a

eimkh (k) dk. (2.2)

Though it was introduced almost one hundred years ago, it is fairly good in solving

oscillatory integrals when the oscillatory factor m is given. So far there have been just

limited improvements to Filon’s idea.

Filon’s method approximates the function h (k) by polynomials instead of interpolat-

ing the whole integrand in (2.2). When h (k) is continuous the accuracy of the approxi-

mation is guaranteed by the Weierstrass approximation theorem (see Jeffreys and Jeffreys

(1988)). Assume h (k) could be approximated by a polynomial P (k) such that maxk |h (k)−
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P (k) | < ε, then

I −Q =

∫ b

a

eimkh (k) dk −
∫ b

a

eimkP (k) dk

=

∫ b

a

eimk [h (k)− P (k)] dk

≤
∫ b

a

|eimk [h (k)− P (k)] | dk

≤
∫ b

a

|h (k)− P (k) | dk

≤ |b− a|max
k
|h (k)− P (k) |.

The last two lines hold since |eimk| is always less or equal to 1. Hence the error of the

Filon quadrature is bounded as follows:

error(I −Q) ≤ |b− a|max
k
|h (k)− P (k) |,

which goes to zero if P (k) is an excellent approximation to h (k). From the above error

estimation, the accuracy of Filon quadrature is free from the oscillatory factor.

Following Ballestra et al. (2007) we apply a Filon-type quadrature to our problem.

Before doing that we change the integral in (2.1) as follows:

∫ +∞

0

eimkh (k) dk =

∫ +∞

0

[cos (mk) + isin (mk)]× [Re {h (k)}+ iIm {h (k)}] dk

=

∫ +∞

0

cos (mk)Re {h (k)} − sin (mk) Im {h (k)} dk

+

∫ +∞

0

i [cos (mk) Im {h (k)}+ sin (mk)Re {h (k)}] dk

=

∫ +∞

0

cos (mk)Re {h (k)} − sin (mk) Im {h (k)} dk.

The last equation holds since the integral is a probability density function which must be

real. The upper bound of the integral +∞ can be replaced by a constant kmax since the

absolute value of the integrand goes to zero as k increases. Hence,

∫ +∞

0

eimkh (k) dk ≈
∫ kmax

0

eimkh (k) dk.
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It is easy to choose a kmax such that |eimkh (k) | < ε for all possible xt and vt, given the

Heston parameters, x0 and v0. In this paper, we choose kmax = 60 such that

|eimkh (k) | < ε = 10−5,

when k > kmax.

In what follows, we illustrate how we can interpolate h (k). Our idea is to use piece-

wise interpolation. We first divide the interval [0, kmax] into M subintervals at points

x0, x1, . . . , xM , then we interpolate h (k) on each interval. In order to have efficient com-

putation time, we use 6th-order Lagrange interpolation in each subinterval, and the inter-

polation points in each subinterval are a linear transformation of the roots of the Legendre

polynomial of degree 7. In the ith subinterval, the interpolation points are denoted by

xi
0, x

i
1, . . . , x

i
6. In Filon (1928) the interpolation was a quadratic spline, the spline could be

more accurate but it costs more time since the derivatives of h (k) and the interpolation

function at boundaries points of each subinterval are set to be the same for spline. We

denote the piece-wise Lagrange interpolation as L (k). Using this method the integral

(2.2) becomes ∫ kmax

0

eimkL (k) dk (2.3)

and it can be solved analytically since L (k) is a polynomial. The quadrature error depends

on the Lagrange interpolation, that is, for any k in [a, b]

error (h (k)− L (k)) ≤ max
i

max
x∗i

∣∣∣∣f (n+1) (ξi)

(n + 1)!
ωi (x

∗
i )

∣∣∣∣ ,
where ξi, x

∗
i ∈ [xi−1, xi] and

ωi (x) =
(
x− xi

0

) (
x− xi

1

)
. . .
(
x− xi

6

)
.

Hence, the quadrature error is bounded by

kmax max
i

max
x∗i

∣∣∣∣f (n+1) (ξi)

(n+ 1)!
ωi (x

∗
i )

∣∣∣∣ .
Here, we set n = 6 which is large enough. The Filon-type quadrature is faster since

all the computations are evaluated analytically except for the modified Bessel function in

(2.2).
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2.3 Pricing European Path-Dependent Derivatives using TPDF

It is challenging to price path-dependent derivatives in the Heston framework. Although

they can be priced by simulating the asset price, simulation methods have some drawback-

s. It is hard to evaluate and eliminate the discretization error. Another shortcoming is

that it is hard to simulate the Greeks directly, which represent the sensitivities of the price

with respect to financial market changes. In this subsection we show how to price Euro-

pean pathdependent derivatives by JTPDFs, a method which overcomes the simulation’s

shortcoming.

Since Heston’s process is a Markovian process of xt and vt, given the initial log-price x0

and stochastic variance v0, the joint PDF of x = (x1, x2, . . . , xn) and v = (v1, v2, . . . , vn)

can be written as:

p (x,v|x0, v0) =
n∏

t=1

p (xt, vt|xt−1, vt−1) . (2.4)

Using (2.4) it is possible to price European path-dependent derivatives analytically.

Let S = (S0, S1, . . . , Sn), we denote the payoff of a European path-dependent deriva-

tive by Cpath(S, n). Note that Si = Si (xi) = exi, the payoff is rewritten as Cpath(S (x) , n),

where S (x) = (S0 (x0) , S1 (x1) , . . . , Sn (xn)). Note that the time unit represents one peri-

od, so that we let the initial time t0 be 0 but it can represent any time before maturity n.

Then, according to Proposition 1.3, the price of the European path-dependent derivative,

Πpath (0, n, x0, v0), is the expectation of its discounted payoff, that is,

Πpath (0, n, x0, v0) = EQ

[
e−

∫ n

0
rw dwCpath(S (x) , n)

∣∣∣∣x0, v0

]

= e−
∫ n

0
rw dwEQ

[
Cpath(S (x) , n)

∣∣∣∣x0, v0

]

= e−
∫ n

0
rw dw

∫
· · ·
∫

(x,v)∈Ω

Cpath(S (x) , n)
n∏

j=1

p (xj , vj |xj−1, vj−1) dxdv,

(2.5)

where Ω = [−∞,+∞]n × [0,+∞]n.
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Note that (2.5) could be solved recursively by tacking∫∫
(xn,vn)∈[−∞,+∞]×[0,+∞]

Cpath(S (x) , n)p (xn, vn|xn−1, vn−1) dxndvn,

for given xn−1 and vn−1. Hence, it becomes possible to solve (2.5). Lipton (2001) first used

this idea to price the forward starting option. However, while n gets large it is rather

challenging to solve the multidimensional integral. Ballestra et al. (2007) introduced a

numerical method to price the path-dependent derivatives and they succeed to price an

one-year arithmetic Asian option. Because the main purpose of our paper is to price a

7-year EIA contract, which means that (2.5) is a 20-dimensional integral, we solve the

multiple integral by a numerical method.

2.4 Importance Sampling

2.4.1 Importance Sampling

Following Ballestra et al. (2007), we solve the multiple integral in (2.5) using the method

of importance sampling. In this case the standard Monte Carlo method is inefficien-

t to evaluate the expectation since it is difficult to generate samples from the density

p (xj , vj |xj−1, vj−1). Thus the importance sampling method is introduced to overcome

this problem.

The idea of importance sampling is as follows. Instead of generate samples from

p (xj , vj |xj−1, vj−1), we first approximate p (xj , vj |xj−1, vj−1) by another similar function

p̃ (xj , vj |xj−1, vj−1) which must be 0 where p (xj , vj|xj−1, vj−1) = 0. Then (2.5) becomes:

Πpath (0, n, x0, v0)

= e−
∫ n

0
rw dw

∫
· · ·
∫

(x,v)∈Ω

Cpath(S (x) , n)×

∏n
j=1 p (xj , vj |xj−1, vj−1)∏n
j=1 p̃ (xj , vj |xj−1, vj−1)

n∏
j=1

p̃ (xj , vj|xj−1, vj−1) dxdv

= e−
∫ n

0
rw dwEQ

p̃

[
Cpath(S (x) , n)

∏n
j=1 p (xj , vj|xj−1, vj−1)∏n
j=1 p̃ (xj , vj|xj−1, vj−1)

∣∣∣∣x0, v0

]
, (2.6)
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where EQ
p̃ [·] is the expectation under Q w.r.t

∏n
j=1 p̃ (xj , vj|xj−1, vj−1).

Hence, to evaluate the multiple integral in (2.5), we just need to generate samples

from p̃ (xj , vj|xj−1, vj−1). Hence, what is left is to find an appropriation p̃ whose samples

are easy to generate.

2.4.2 JTPDF Approximation

Again following Ballestra et al. (2007), p̃ (xj , vj|xj−1, vj−1) is given by bilinear interpola-

tion. This is because samples of a density described by a bilinear interpolation function

are easy to generate. An introduction to bilinear interpolation is given in Appendix D.

In terms of approximating the JTPDF p (xt+τ , vt+τ |xt, vt), note that in (2.1) both xt+τ

and xt always appear together in the term of xt+τ −xt, so that (2.1) is actually a function

of vt+τ , vt and Δxt = xt+τ − xt. Hence, the JTPDF is a function of three variables,

p (xt+τ , vt+τ |xt, vt) = p (Δxt, vt+τ |0, vt) . (2.7)

In fact, (2.7) shows that, given vt, the process for xt is time homogeneous. Since the

support is rather small compared to its domain, we focus on approximating p on its

support.

Assume that vt is given, we can find an upper bound vmax for vt+τ using the transition

PDF in (1.2), such that p (vt+τ |vt) < εv when vt+τ is outside the interval [0, vmax].

In terms of Δxt, note that the process is described as

dxt =

(
rt − 1

2
vt

)
dt+

√
vtdW

Q
s (t) .

We discretize the previous process as

Δxt ≈
∫ t+τ

t

r (w) dw − 1

2
(σ∗)2 τ + σ∗Z,

where Z ∼ N (0, τ). In terms of σ∗, for vt is a mean-reverting process it makes sense

to set σ∗ =
√

E [vt+τ |vt]. Then the PDF of Δxt is estimated by a normal distribution

N
(∫ t+τ

t
r (w) dw − 1

2
(σ∗)2 τ, (σ∗

√
τ )

2
)
.

Thus, the support of Δxt is estimated by
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[Δmin,Δmax]

�

[∫ t+τ

t

r (w) dw − 1

2
(σ∗)2 τ − αxσ

√
τ ,

∫ t+τ

t

r (w) dw − 1

2
(σ∗)2 τ − αxσ

√
τ

]

where αx is a number such that the probability for Δxt to be outside the above interval

is smaller than εx. Hence [0, vmax] × [Δmin,Δmax] is used as the support of the TPDF,

p {Δxt, vt+τ |0, vt}.
Divide the above support into Nv×Nx grids. Then the look-up table can be generated

using the Filon quadrature. Finally, p (Δxt, vt+τ |0, vt), given vt, can be approximated by

a bilinear interpolation p̃ (Δxt, vt+τ |0, vt).
In the above, vt is assumed to be known while in practice it is changing from time

to time. Hence, p (Δxt, vt+τ |0, vt) is also a function of vt. Suppose that vt+τ and Δxt

are given, we use piece-wise interpolation to approximate JTPDF as a function of vt.

Since the transition density function is given in (1.2) and the process vt has a mean-

reverting property, we can find an interval [0, μmax] for vt, given any possible vt−τ , such

that p (vt|vt−τ ) < εv when vt is outside [0, μmax]. Hence, vt must be in the interval

[0, μmax]. Divide the interval [0, μmax] into M subintervals and denote the break-points

by {μ1, μ2, . . . , μM , μM+1}, then vt must fall into one of the subintervals. Say vt falls into

the interval [μi−1, μi], given Δxt and vt+τ , then the approximation of p {Δxt, vt+τ |0, vt} is
given by

p̃ (Δxt, vt+τ |0, vt) ≈ μi − vt
μi − μi−1

p̃ (Δxt, vt+τ |0, μi−1) +
vt − μi−1
μi − μi−1

p̃ (Δxt, vt+τ |0, μi) , (2.8)

where ui, i = 1, . . . ,M + 1, are already known.

This leads to a good approximation because vmax cannot be too large since the initial

volatility is usually smaller than 0.1. Also, the JTPDF is a continuous function of vt and

if M is big enough the error remains acceptable.

In summary, the algorithm for approximating the JTPDF is given in Algorithm 1

below.
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Algorithm 1 Approximating p (Δxt, vt+τ |0, vt) by Bilinear Interpolation

Given vt, vt+τ , xt, xt+τ , initialize Nx, Nv,M,Δxt and [0, μmax].

Divide [0, μmax] into M subintervals. Determine vt ∈ [μi−1, μi].

Generate look-up tables according to μi−1 and μi respectively.

Compute p̃ (Δxt, vt+τ |0, μi−1) and p̃ (Δxt, vt+τ |0, μi−1) by bilinear interpolation.

Evaluate the approximation p̃ according to (2.8).

2.5 Generate p̃ Samples using Quasi-Monte Carlo Method

As we said before, we need samples from p̃ to compute (2.6). Here, samples from p̃ are

obtained by a Quasi-Monte Carlo method.

2.5.1 Quasi-Monte Carlo Method

The Quasi-Monte Carlo (QMC) method is a modification of the original Monte-Carlo

(MC) method. It is well documented in solving multiple integrals and details are given

in Schürer (2003), Paskov and Traub (1995) and Joy et al. (1996). Here we use QMC to

generate samples from p̃.

In practice, the randomnes in the MC method is always generated by pseudo-random

numbers, while QMC uses low-discrepancy sequences. A low-discrepancy sequence is a set

of well-chosen deterministic points that are defined from some results in number theory.

Although it is a deterministic set, Figure 5 shows that the low-discrepancy sequence

fills the space more efficiently than the pseudo-random numbers. There are different

kinds of low-discrepancy sequences, some popular ones are Halton’s, Faure’s, and Sobol’s

sequences. Krykova (2003) compares them and suggests that Sobol’s sequence works

best. Here, we use Sobol’s sequence in all our Quasi Monte Carlo methods. For details

of low-discrepancy sequences, please refer to Krykova (2003).
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(b) Sobol Sequence

Figure 5: Pseudo-random numbers vs. Sobol’s sequence, 5000-by-5000

2.5.2 Generating Samples From p̃

Note that

p̃ (Δt, vt+τ |0, vt) = p̃ (vt+τ |0, vt) p̃ (Δxt|0, vt, vt+τ ) ,

where we can generate Δxt and vt+τ individually. Since p̃ (Δxt, vt+τ |0, vt) is an approxi-

mation of a transition probability density function the integral of p̃ (Δxt, vt+τ |0, vt) over
its whole support (or space) is close to 1. Hence, before generating samples we need to

normalize p̃ by setting

p̃n (Δxt, vt+τ |0, vt) = p̃ (Δxt, vt+τ |0, vt)∫∫
Sxv

p̃ (Δxt, vt+τ |0, vt) dxt+τdvt+τ

,

where Sxv = [xmin, xmax] × [vmin, vmax] is the support for p̃ (Δxt, vt+τ |0, vt). In fact, we

are generating samples from the normalized density p̃n.

First, generate vt+τ from p̃n (vt+τ |0, vt), which is obtained by first integrating Δxt.

Using the inverse transform algorithm, given u1 is a sample from a uniform distribution

on [0, 1], the sample of vt+τ is obtained by solving∫ vt+τ

vmin

p̃n (vt+τ |0, vt) dvt+τ = u1, (2.9)

where vmin stands for the lower bound of the support of vt+τ .
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Note that the sample of vt+τ has been generated from (2.9) and the following equation

holds

p̃ (Δxt|0, vt, vt+τ ) =
p̃ (Δxt, vt+τ |0, vt)

p̃ (vt+τ |0, vt) ,

then the sample of Δxt can be generated by solving the equation

∫ Δxt

δmin

p̃n (Δxt|0, vt, vt+τ ) dΔxt =

∫ Δxt

δmin
p̃n (Δxt, vt+τ |0, vt) dΔxt

p̃n (vt+τ |0, vt) = u2, (2.10)

where u2 is another sample that follows a uniform distribution on [0, 1]. In summary, the

samples of (vt+τ ,Δxt) from p (Δxt, vt+τ |0, vt) are generated by (2.9) and (2.10). Then it

is trivial to generate samples of (xt+τ , vt+τ ) from p̃ (xt+τ , vt+τ |xt, vt).

In the end, the price of the European path-dependent derivative is evaluated using the

JTPDF approach by the following algorithm.

Algorithm 2 Evaluate EQ

[
e−

∫ T

0
rw dwCpath (S (x) , n)

∣∣∣∣x0, v0

]
Generate look-up tables.

for i = 1→ NQMC do

for t = 1→ n do

Generate u
(i)
1 and u

(i)
2 from Sobol’s sequence.

Generate sample of v
(i)
t based on x

(i)
t−1, v

(i)
t−1 according to (2.9).

Generate sample of x
(i)
t based on x

(i)
t−1, v

(i)
t−1 and v

(i)
t according to (2.10).

Compute p
(
x
(i)
t , v

(i)
t

∣∣x(i)
t−1, v

(i)
t−1
)
and p̃

(
x
(i)
t , v

(i)
t

∣∣x(i)
t−1, v

(i)
t−1
)
.

end for

p
(
xi,vi

∣∣x0, v0
)
=
∏n

t=1 p
(
x
(i)
t , v

(i)
t

∣∣x(i)
t−1, v

(i)
t−1
)

p̃
(
xi,vi

∣∣x0, v0
)
=
∏n

t=1 p̃
(
x
(i)
t , v

(i)
t

∣∣x(i)
t−1, v

(i)
t−1
)
.

Compute Cpath (S (xi) , n)
p(xi,vi|x0,v0)
p̃(xi,vi|x0,v0)

.

end for

Compute e−
∫ n

0
r(w)dw 1

NQMC

∑NQMC

i=1 Cpath (S (xi) , n)
p(xi,vi|x0,v0)
p̃(xi,vi|x0,v0)

.
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3 The Conditional Probability Density Function of

Asset Prices

This chapter introduces another method to price derivatives in Heston framework.

3.1 Pricing Derivatives via Conditional Expectation

According to Proposition 1.3, given the payoff C (S, T ) at maturity T the price of the

derivative at time t is the expectation of the discounted payoff under Q. Conditioning on

the path of the stochastic variance, that is v∗ = {vs|s ∈ [t, T ]}, the price can be rewritten

as

Π = EQ

[
e
∫ T

t
rs dsC (S, n)

∣∣∣∣Ft

]

= EQ

[
EQ

[
e
∫ T

t
rs dsC (S, n)

∣∣∣∣v∗
] ∣∣∣∣Ft

]
. (3.1)

In Hull and White (1987), the paper in which the stochastic volatility model was

introduced, they show that the inner conditional expectation in (3.1) is similar to the

case under Black-Scholes’ assumption. Thus, what matters is the outer expectation. In

Broadie and Kaya (2004) this idea was also used to derived the statistical estimators for

the Greeks.

In the Black-Scholes framework, the inner expectation in (3.1) varies a lot due to

different payoffs, but many of them can be evaluated analytically. In terms of the outer

expectation, it is estimated by simulating the path of the stochastic variance.

3.2 Conditional Density of the Asset Price

In order to evaluate (3.1), we need to know the conditional distribution of St. Note that

xt = lnSt, given (1.4). Then applying Itô’s formula to xt leads to
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dxt = d lnSt

=
∂xt

∂St
dSt +

1

2

∂2xt

∂S2
t

d〈S·, S·〉+ ∂xt

∂t
dt

=
1

St
dSt − 1

2

(
ρ2vt +

(
1− ρ2

)
vt
)
dt

=

(
rt − 1

2
vt

)
dt+ ρ

√
vtdW

Q
v (t) +

√
1− ρ2

√
vtdZ

Q (t) ,

where ZQ (t) is a standard Brownian motion under Q which is independent of WQ
v (t).

Hence,

ST = St exp

{∫ T

t

rs ds− 1

2

∫ T

t

vs ds+ ρ

∫ T

t

√
vs dW

Q
v (t) +

√
1− ρ2

∫ T

t

√
vtdZ

Q (t)

}

= St exp

{∫ T

t

rs ds− 1

2

∫ T

t

vs ds+

ρ

∫ T

t

√
vs
dvs − κ∗ (θ∗ − vs) ds

σ
√
vs

+
√
1− ρ2

∫ T

t

√
vtdZ

Q (t)

}

= St exp

{∫ T

t

rs ds+
ρ

σ
[vT − vt − κ∗θ∗ (T − t)]+(

ρκ∗

σ
− 1

2

)∫ T

t

vs ds+
√

1− ρ2
∫ T

t

√
vtdZ

Q (t)

}
.

Note that ZQ (t) and vt are independent because of the independence between ZQ (t) and

WQ
v (t). According to Andersen (2007),

∫ T
t

√
vtdZ

Q (t) follows a normal distribution with

mean 0 and variance
∫ T
t
vs, that is N

(
0,
∫ T
t
vs ds
)
.

Here v∗ contains the information about vt, vT and
∫ T
t
vs ds. Hence, conditional on the

path of the stochastic volatility, the density of the asset’s log-return under Q is given by

ln

(
ST

St

)∣∣∣∣
v∗

∼ N (μQ, σ
2
Q

)
, (3.2)

where

μQ =

∫ T

t

rs ds+
ρ

σ
[vT − vt − κ∗θ∗ (T − t)] +

(
ρκ∗

σ
− 1

2

)∫ T

t

vs ds,

σ2
Q =

(
1− ρ2

) ∫ T

t

vsds.

44



Similarly using (1.8), conditioning on the path of the stochastic variance, the density

of the asset’s log-return under QS is given by

ln

(
ST

St

)∣∣∣∣
v∗

∼ N (μQS
, σ2

QS

)
, (3.3)

where

μQS
=

∫ T

t

rs ds+
ρ

σ
[vT − vt − κ∗θ∗ (T − t)] +

(
ρκ∗

σ
+

1

2

)∫ T

t

vs ds

= μQ +

∫ T

t

vs ds,

σ2
QS

=
(
1− ρ2

) ∫ T

t

vsds = σ2
Q.

3.3 Simulate the Path for the Stochastic Variance and the In-

tegrated Variance

By Proposition 1.1, vT , given vt, follows a noncentral chi-squared distribution, thus the

path of the stochastic variance can be simulated according to (1.2). Hence, the method

of pricing via conditional expectation boils down to the question of simulating
∫ T
t
vs ds.

Since v∗ is a random process,
∫ T
t
vs ds is a random variable. Dufresne (2001) derived

the moment generating function (MGF) of the integrated variance and discussed the

properties of the MGF. Broadie and Kaya (2006) discussed how to simulate the integral

of vt exactly, they first obtained the characteristic function of the integrated variance and

applied (1.15) to find the CDF of
∫ T
t
vs ds. Then samples of the integrated variance can

be generated by the inverse transform method in simulation. This method provides the

exact simulation of the integrated variance but is plagued by its complex computations.

Glasserman and Kim (2008) point out that the integrated variance can be repre-

sented explicitly by a gamma expansion and their method is much faster than that of

Broadie and Kaya (2006). Though both, the exact simulation and the gamma expansion,

describe the exact probabilistic properties of the integrated variance, it is impossible to

use them because each of them includes infinite summations. However, each truncated
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error can be controlled. In order to avoid complex computations, Tse and Wan (2010)

show that when T −t goes to infinity
∫ T
t
vs ds converges to a inverse Gaussian distribution

and they suggest using an inverse Gaussian to approximate the integrated variance. Al-

though it is not as accurate as the exact simulation or the gamma expansion, according to

Tse and Wan (2010) it is much faster and the accuracy is acceptable. Instead of using an

inverse Gaussian, Bégin et al. (2012) showed that the gamma distribution is more efficient

in approximating the integrated variance. Since our project is much more complicated

than pricing European call options, it is necessary to sacrifice some accuracy in exchange

of a faster processing time. Hence, we use a gamma distribution to approximate the

integrated variance.

To approximate
∫ T
t
vs ds we let

∫ T

t

vs ds =
m∑
j=1

∫ tj

tj−1

vs ds, (3.4)

where t = t0 < t1 < · · · < tm−1 = tm = T . Since the first and second moments of each∫ tj
tj−1

vs ds can be obtained, given v∗, by matching the first and second moments each

integral on the right hand side to that of the approximating by a gamma distribution.

Then the samples of the integral can be simulated.

3.4 Comparison of the JTPDF and CE Methods

Results for the JTPDF and CE methods are obtained through numerical and statistical

methods. In the JTPDF method, importance sampling is used to evaluate a multiple

integral up to 2n (n is the maturity) dimensions. Applying the CE method, the path of

the stochastic variance and the integrated variance are simulated.

The JTPDF method requires an appropriate method to evaluate the multiple integrals

and it is difficult to find one. The primary errors stem from (i) quadrature to compute

the modified Bessel function, (ii) applying Filon’s quadrature to evaluate the oscillatory

integral, (iii) approximating the JTPDF by bilinear functions, (iv) applying Quasi-Monte

Carlo to evaluate the expectation. However, except for the last one, the other numerical
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errors can be controlled. The JTPDF method can be used to price any European option,

even when it takes a long time to compute the result.

In terms of processing time, the CE method is faster since most of the work is derived

analytically except for the outer expectation. But one prerequisite to use the CE is that

the inner expectation can be priced explicitly. Otherwise, CE is exactly the same scheme

as in Broadie and Kaya (2006). Errors of this method are (i) the discretization errors

in simulating the path of the volatility. (ii) the error in approximating the integrated

variance. (iii) the truncated error while applying the law of large numbers to evaluate the

expectation.

47



4 Application to Ratchet EIA

4.1 Investment Guarantees

The objective of life insurance policies is to provide financial protection to policyholders

and their beneficiaries in the case of death. Traditionally, a level premium is paid to

purchase a whole life insurance policy which provides a fixed death benefit. The level

premium means that policyholders pay the same amount at each contract anniversary.

The fixed death benefit is the amount of money that is paid to beneficiaries when the

insured dies.

As the financial markets changes, the policyholders demand extra investment opportu-

nities outside the insurance sector. In 1970s, the high interest rate environment resulted

in the introduction of the universal life insurance policy (UL). The difference between

UL and traditional life insurance is that the premiums are deposited in an account which

earns a return linked to the performance of the insurance company. Typically, a guaran-

teed return between 0% to 4% is provided and it could be higher if the company receives a

higher return from the market. Each month spreads such as management fees are directly

withdrew from the account. If the value of the account reaches zero, the account is closed.

In general, in the case that the insured dies a specified benefit is paid plus whatever is

left in the account. According to Klugman et al. (2012) UL represents around 40% of

the market, which is twice the market of traditional life insurance. The rest consists of

equity-linked products and term insurance.

Variable annuity(VA), which is more of an long-term investment product, is similar

to UL. The primary difference is that the policyholder determines how the account is

invested and how the return of the account is credited. VAs contracts are flexible, the

account linked to VAs can be invested in bonds, a stock index, or commodities. The

VA is one of the most important life insurance products because it enables policyholders

to participate in financial markets. Suppose that the account is invested into the stock

market, if the return on the stock is positive the account receives positive return while
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the account loses money in the case of a stock market collapse. Guarantees of the account

can be obtained by purchasing extra riders on the contract, such as guaranteed minimum

income benefit (GMIB) and guaranteed minimum death benefit (GMDB).

Another kind of equity-linked products is called Equity-indexed annuity (EIA), which

allows policyholders to invest in a financial index, typically the S&P 500, while the return

of the linked account is guaranteed.

4.2 Introduction to EIAs

Here we focus on equity-indexed annuities (EIA). The EIA is one of the most innovative

life insurance products and its market shares increase rapidly since it was introduced by

Keypord Life in 1995. Generally speaking, the policyholder pays an initial premium to

purchase a unit of EIA. The premium is deposited into an account whose return is credited

according to the performance of an external index, typically S&P 500. A minimal guaran-

tee, or a minimal interest rate, is provided in EIA contracts to protect the policyholders

against possible losses. The account earns a portion of the index’s return if it is larger

than the minimal guarantee. Otherwise, the minimal guarantee is credited. Thus, even

though the stock market collapses the account still earns a non-negative return. Hence,

the EIA is attractive to people who seek market appreciations with downside protections.

In practice, the upside return of EIAs is always “limited” by the participation rate, cap

or spread.

� The participation rate is the portion at which the external index return is credited

to the EIA’s return. For example, if the participation rate is 90% and the return of

the external index is 10%, the EIA’s return can be as much as 9%.

� The cap is the maximum of the return for a specified period which could be smaller

than the portion of the index’s return. For instance, if the cap is 8% in the previous

example the return is at most 8% rather than 9%, which is 90% of the index’ return.
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� The spread is a reduction from the fund’s interest rate such as the management fee,

etc.

Most EIAs have the characteristics we discussed before, but different designs lead to

different EIAs. Here, we focus on the ratchet EIA which is the most popular design. The

return from the ratchet EIA is reset annually, and according to annuityadvantage.com

EIAs with reset designs represent 85% of the current market.

In each year, the ratchet EIA’s return is linked to the performance of the external

index. It is as least equal to the minimal guarantee, and its upside return is limited by

the cap, spread, or participation rate. The value of the account of n-year ratchet EIA is

given by

CRat (S, n) =

n∏
t=1

max
{
min
[
eα(Yt−γ), eζ

]
, eg
}
, (4.1)

where α stands for the participation rate, γ is the annual yield spread, ζ is the cap, g

stands for the minimal guarantee, S = {St}0≤t≤n, Yt = ln
S∗t
St−1

and S∗t takes different forms

according to the EIA’s design. In practice S∗t could be defined as

S∗t =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

St, term-end point design

1
12

11∑
k=0

St− k
12

, Asian-end design

max
1≤k≤12t

S k
12

. high-water-mark design

(4.2)

Note that in the term-end point design, Yt only depends on St and S0. The other two

designs are path-dependent. The Asian-end design is less volatile so that it leads to a less

expensive price. The high-water-mark design credits the appreciation at the highest index

price during a whole period so that this kind of appreciation leads to an expensive product.

According to annuityadvantage.com the term-end point design is the most popular one.

Tiong (2000) priced it analytically in a Black-Scholes model, so that we focus on the first

design.

There is another representation for the value of the fund at the end of year n, that is

C̃Rat (S, n) = max

{
n∏

t=1

max [min (1 + αRt − γ̃, 1 + ζ) , 1] , β (1 + g̃)n
}
, (4.3)
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where Rt is defined as
S∗t
St−1

− 1, γ̃ is the spread, β is the portion at which the minimal

guarantee is credited, and g̃ is the minimal guarantee. The rates γ̃ and g̃ could be different

with the spread and minimal guarantee in (4.1).

The returns produced by (4.1) and (4.3) are similar. The primary difference between

them is that in the former the guarantee is compared annually while in the latter the

guarantee is compared at the end of the period. The payoff expressed by (4.3) is closer to

what most companies use, while (4.1) is a simplification of (4.3) and according to Tiong

(2000) and Qian et al. (2010) it can be priced analytically in a Black-Scholes model.

Hence, from now on we use (4.1), in which Yt = St

St−1
, as the ratchet EIA’s survival

benefit.

4.3 Pricing EIAs

Due to their complex payoffs, it is challenging to price EIAs. The risk involved in EIAs can

be decomposed into the financial and mortality risks. For the financial risk it is important

to find the present value of the account linked to EIAs. In terms of the mortality risk, we

need to determine when the benefit is claimed.

Actually, in this thesis we do not consider the mortality risk but focus on the sur-

vival benefit. This is because mortality risk can be reduced by using a well diversified

homogeneous portfolio. Under this diversification assumption, EIA prices become linear

combinations of prices with different maturities. Hence, we focus on the financial risk

that is the most important risk involved in EIAs.

4.3.1 Pricing Ratchet EIAs via the TPDF Method.

Denote the beginning of the contract as time 0 and the maturity as time n, let i represent

the integers between 0 and n, at time t where 0 ≤ i− 1 ≤ t < i ≤ n, the survival benefit

is given by (4.1). Using (2.5), the price at time t can be written as
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ΠRat (t, n, xt, vt)

= e−
∫ n

t
rw dw

∫
· · ·
∫

(x,v)∈Ωxv

CRat (S (x) , n) p (x,v|xt, vt) dxdv

= e−
∫ n

t
rw dw

∫
· · ·
∫

(x,v)∈Ωxv

CRat (S (x) , n) p (xi, vi|xt, vt)
n∏

j=i+1

p (xj , vj|xj−1, vj−1) dxdv,

(4.4)

where S (x) = (Si (xi) , . . . , Sn (xn)), x = (xi, xi+1, . . . , xn), v = (vi, vi+1, . . . , vn), Ωxv =

(−∞,+∞)n+1−i × (0,+∞)n+1−i. Here p (xt+τ , vt+τ |xt, vt) is the JTPDF given in (2.1).

Given (4.4), the price can be found according to Algorithm 2.

4.3.2 Pricing Ratchet EIAs via the CE Method

If a contingent claim can be priced analytically in the Black-Scholes framework, it is easy

to price the same derivative in the stochastic volatility model using the CE approach.

In terms of the ratchet EIA, Tiong (2000) derived its analytical price in a Black-Scholes

model using Esscher’s transform and proved the following result:

Proposition 4.1 1. In Black-Scholes model, there exists a unique risk-neutral Esscher

parameter h∗ such that under the Esscher transform with parameter h∗ the real

probability measure is changed to the risk-neutral measure Q.

2. Suppose that Y follows N (μ, σ2), under the Esscher transform with parameter h

Y ∼ N (μ+ hσ2, σ2);

Under the Esscher’s transform with parameter h+ α,

Y ∼ N (μ+ hσ2 + ασ2, σ2).

Proof. See Tiong (2000). �

Conditioning on the variance path and the integral of the volatility, the density of the log-

return in Q is given by (3.2). Since in a Black-Scholes framework Q is unique, (3.2) must
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represent the density of the log-return under Esscher’s transform with the risk-neutral

parameter h∗. By Proposition 4.1 under Esscher transform with parameter h∗ + α,

ln

(
ST

St

) ∣∣∣∣
h∗+α

∼ N (μQ + ασ2
Q, σ

2
Q

)
. (4.5)

Proposition 4.2 In Black-Scholes framework with deterministic risk-free interest rate,

the expectation of the discounted survival benefit (4.1) under Q is given by

n∏
t=1

[
e−

∫ t

t−1
rw dw+gP

{
Yt ≤ g

α
+ γ; h∗

}
+ eζ−

∫ t

t−1
rw dwP

{
Yt >

ζ

α
+ γ; h∗

}
+

e−(1−α)
∫ t

t−1
rw dw+ 1

2
α(α−1)σ2

QP

{
g

α
+ γ < Yt ≤ ζ

α
+ γ; h∗ + α

}]
, (4.6)

where under the Esscher’s transform with parameter h∗

Yt

∣∣
h∗
∼ N (μQ, σ

2
Q),

and under the Esscher’s transform with parameter h∗ + α

Yt

∣∣
h∗+α

∼ N (μQ + ασ2
Q, σ

2
Q).

Proof. See Tiong (2000). �

Before showing how to apply the CE method to price the ratchet design in Heston’s

framework, we rewrite the survival benefit (4.1) as follows:

CRat (S, n)

�

i−1∏
j=1

max
{
min
[
eα(Yj−γ), eζ

]
, eg
} n∏

j=i+1

max
{
min
[
eα(Yj−γ), eζ

]
, eg
}×

(
St

Si−1

)α

e−αγ max
{
min
[
eαY

∗

, eζ
∗
]
, eg

∗
}
, (4.7)

where

Y ∗ = ln

(
Si

St

)
,

ζ∗ = ζ + αγ − α ln

(
St

Si−1

)
,
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g∗ = g + αγ − α ln

(
St

Si−1

)
.

Insert (4.7) into (3.1), the price of the ratchet EIA at time t, where 0 ≤ i − 1 ≤ t <

i ≤ n, is given by

ΠRat (t, n, xt, vt)

= EQ

[
EQ

[
e−

∫ n

t
rw dwCRat (S, n)

∣∣∣∣ {vs}s∈[0,n]
] ∣∣∣∣Ft

]

=

(
St

Si−1

)α

e−αγ
i−1∏
j=1

max
{
min
[
eα(Yj−γ), eζ

]
, eg
}
EQ

[
Πinner

∣∣∣∣Ft

]
,

(4.8)

where

Πinner = EQ

[
max
{
min
[
eαY

∗

, eζ
∗
]
, eg

∗
} n∏

j=i+1

max
{
min
[
eα(Yj−γ), eζ

]
, eg
} ∣∣∣∣v∗
]

= EQ

[
max
{
min
[
eαY

∗

, eζ
∗
]
, eg

∗
} ∣∣∣∣ {vs}s∈[0,n]

]
×

EQ

[
n∏

j=i+1

max
{
min
[
eα(Yj−γ), eζ

]
, eg
} ∣∣∣∣v∗
]
. (4.9)

Applying Proposition 4.2 to (4.9) leads to

Πinner =

[
e−

∫ i

t
rw dw+gP

{
Y ∗ ≤ g∗

α
; h∗
}
+ eζ

∗−∫ i

t
rw dwP

{
Y ∗ >

ζ∗

α
; h∗
}
+

e−(1−α)
∫ i

t
rw dw+ 1

2
α(α−1)σ2

QP

{
g∗

α
< Y ∗ ≤ ζ∗

α
; h∗ + α

}]
×

n∏
j=i+1

[
e−

∫ j

j−1
rw dw+gP

{
Yj ≤ g

α
+ γ; h∗

}
+ eζ−

∫ j

j−1
rw dwP

{
Yj >

ζ

α
+ γ; h∗

}
+

e−(1−α)
∫ j

j−1
rw dw+ 1

2
α(α−1)σ2

QP

{
g

α
+ γ < Yj ≤ ζ

α
+ γ; h∗ + α

}]
.

In the end, the outer expectation in (4.8) is evaluated by simulating

{vs}s∈[t,...,n] and

{∫ tmax

tmin

vs

}
t≤tmin≤tmax≤n

, (4.10)

using the method introduced in Chapter 3.
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4.4 Greeks of the Ratchet EIA

After obtaining the price of ratchet EIAs, it is natural to think about deriving its Greeks.

Greeks are defined as the sensitivities of an option’s price to its parameters. They are

usually used to set up a replicating portfolio in order to reduce the financial risk. The

Greeks that are most used are the Delta, Gamma, Vega8, and Rho. Denote by Πt the

price of a derivative at time t, and St, vt and rt as in (1.4), then the Greeks mentioned

above are defined for Πt in the Table 5.

Table 5: Greeks

Greeks Formula

Delta Δt =
∂

∂St
Πt

Gamma Γt =
∂2

∂S2
t
Πt

Vega Λt =
∂

∂Vt
Πt

Rho ρt =
∂
∂rt

Πt

The delta measures the sensitivity of the price to changes in the underlying asset

price. In the replicating portfolio Delta represents the number of asset shares in order

to reduce the risk induced by price movements in the underlying. Gamma is the second

derivative of the price w.r.t. the underlying asset price, according to McDonald (2006) it

is introduced since Delta hedging (replicating portfolio only consists of asset shares) fails

when the change in asset price is large. Rho is used to measure the sensitivity to interest

rate changes.

Vega measures the sensitivity of the price to the volatility of the underlying. It is

undervalued in Black-Scholes models due to the assumption of constant volatility, but it

becomes important in stochastic volatility models.

In terms of the Greeks for ratchet EIAs, it is easy to derive the Delta and Gamma

8“Vega” is not a Greek letter. Sometimes it is represented by “Kappa” or “Lambda”. See McDonald

(2006).
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using (4.8), since the expression depends on St in the terms of
(

St

Si−1

)α
. Hence, at time t

(0 ≤ i− 1 ≤ t < i ≤ n), we have

Δt =
∂

∂St
ΠRat (t, n, xt, vt) (4.11)

=
α (St)

α−1

(Si−1)
α e−αγ

i−1∏
j=1

max
{
min
[
eα(Yj−γ), eζ

]
, eg
}
EQ

[
Πinner

∣∣∣∣Ft

]
,

Γt =
∂2

∂S2
t

ΠRat (t, n, xt, vt) , (4.12)

=
α (α− 1) (St)

α−2

(Si−1)
α e−αγ

i−1∏
j=1

max
{
min
[
eα(Yj−γ), eζ

]
, eg
}
EQ

[
Πinner

∣∣∣∣Ft

]
,

where Πinner is given by (4.9). It is difficult to derive Λt, using the CE method, since the

initial variance is required. However, Λt can be derived using the JTPDF method.

Recall that the JTPDF method evaluates the price by solving multiple integrals. If it

is possible to interchange the differential operator with the integrals, the JTPDF method

can be applied to evaluate the corresponding Greeks. Although it is hard to see whether

∂
∂St

is interchangeable with the integrals, however, it is true for ∂
∂vt

(see a proof in Appendix

E).

Note that we denote by Vt the stochastic volatility, in other words vt = V 2
t . According

to Appendix D, at time t (0 ≤ t < n)

Λt =
∂Π

∂Vt

=
∂Π

∂vt

dvt
dVt

= 2
√
vte

∫ n

t
r(w)dwEQ

[
C∗ (X, n)

∂
∂vt

p (xi, vi|xt, vt)

p (xi, vi|xt, vt)

∣∣∣∣Ft

]
. (4.13)

In terms of the term ∂
∂vt

p (xi, vi|xt, vt), recall that in (2.1) only
(

vt+τ

vt

)
and h (k) are

functions of vt, so that

∂

∂vt
p (xt+τ , vt+τ |xt, vt)

=
1

π
e

ν+1

2
κ∗τ

{[
∂

∂vt

(
vt+τ

vt

)ν/2
]∫ +∞

0

eimkh (k) dk +

(
vt+τ

vt

)ν/2 ∫ +∞

0

∂

∂vt
eimkh (k) dk

}

=
1

π
e

ν+1

2
κ∗τ

(
vt+τ

vt

)ν/2{
− ν

2vt

∫ +∞

0

eimkh (k) dk +

∫ +∞

0

eimk ∂

∂vt
h (k) dk

}
, (4.14)
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and

∂

∂vt
h (k) (4.15)

= ψe
τd
2
+(A2−ψ)vt−(A1+ψ)vt+τ ×{

1

2

(
Iν−1 [2

√
ϕvtvt+τ ] + Iν+1 [2

√
ϕvtvt+τ ]

)√
ϕvt+τ

vt
+ Iν [2

√
ϕvtvt+τ ] (A2 − ψ)

}
.

(4.16)

The previous equation holds since ∂
∂x
Iν [x] =

1
2
(Iν−1 [x] + Iν+1 [x]), see Bowman (1958).

Given (4.14) and (4.16), Vega in (4.13) can be evaluated using Algorithm 2.
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5 Numerical Results

This section shows numerical results from the implementation of the JTPDF and CE

methods to evaluate prices and Greeks for ratchet EIAs. All the results obtained with

the by JTPDF method use the following parameters

NQMC = 10, 000, Nx = 500, Nv = 300, M = 50, εv = 10−5, αx = 4.6031, εx = 10−6.

In terms of the CE method, the number of samples in simulating the stochastic variance

was 15, 000 and the time step 0.005. In (3.4), tj − tj−1 = 0.01 for all j.

5.1 European Call Option

The analytical price of a European call option is given by (1.42), its explicit Greeks can

be found in Reiss and Wystup (2001). These explicit formulas can be a benchmark to

compare the performance of the JTPDF and CE methods.

Broadie and Kaya (2004) discussed the Greeks of the European call option, we adopt

their parameters and use the JTPDF and CE methods to price an at-the-money European

call option with strike 100. The prices are illustrated in Table 6, where the exact value

is the number derived by the explicit formula. The results suggest that both the JTPDF

and CE methods work well.

Table 6: European call prices

Exact Value JTPDF CE

Price 6.8061 6.8097 6.7995

In carrying out the JTPDF method, we just simulate the price once since the variance

of the Quasi-Monte Carlo (QMC) method is small. We also calculate the integral of

∫∫
(x1,v1)∈[−∞,+∞]×[0,+∞]

p (x1, v1|x0, v0)
p̃ (x1, v1|x0, v0)

p (x1, v1|x0, v0)
dx1dv1.
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The result is supposed to be 1, and our result is 0.999930. This number measures the

error of the bilinear interpolation approximation and it suggests that the approximation

error is negligible.

In carrying out the CE approach, we simulated the call price 30 times. The 5-th

percentile is 6.7694, and the 95-th percentile is 6.8338. We also simulated the Greeks

30 times for the European call at time 0. The results are summarized in Table 7 where

“Exact Value” stands for the number evaluated by explicit formulas.

Table 7: Applying the CE approach to European call options

Exact Value Mean 5% estimator 95% estimator

ΔC
0 0.6958 0.6952 0.6918 0.7015

ΓC
0 0.0265 0.0264 0.0263 0.0266

5.2 Ratchet EIAs

There is no closed-form expression for the prices of ratchet EIAs, but we can evaluate these

using the JTPDF or CE methods. In order to check the accuracy of the two methods, we

use the QE scheme introduced in Andersen (2007) as a benchmark. The QE method is

recognized as a good scheme to simulate from the Heston model. In carrying out the QE

method, we set the number of simulations to 20, 000 and the time step to 0.005.

5.2.1 Prices

We first price a 7-year ratchet EIA at time 0. Here, we use the Heston parameters in Table

4, and assume that at time 0 the T-bill yield rate follows the NSS model with parameters

in Table 3. Given a minimal guarantee of 2%, a participation rate of 30%, a cap of 10%

and a spread of 3%, Table 8 summaries the prices ΠRat
0 , evaluated individually by the QE,

JTPDF, and CE methods. For the CE methods, we simulated the price 30 times, the

mean is used as the price while the 5th percentile is 1.0864 and 95th percentile is 1.0872.
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Table 8: Price of the 7-year ratchet EIA

QE JTPDF CE

ΠRat
0 1.1084 1.1094 1.0872

The JTPDF, CE, and QE methods are totally different approaches. However, in Table

8 the results are consistent with each other. Thus both the JTPDF and CE methods work

well in dealing with the ratchet EIA. Although there is a deviation of around 0.02 for the

CE method, it is still acceptable. The error of the CE approach is generated when

approximating the integrated variance in (3.4).

5.2.2 Fair Values

In Table 8 prices of the ratchet EIA is above 1, this contract is unfair for companies since

we assume that the investors just pays one dollar to obtain one unit of ratchet EIA. Fair

contract parameters should be set at values at which ΠRat
0 = 1.

In this section, we focus on the fair cap and fair participation rate. In solving for the

fair cap we first fix the participation rate at 100%, and then evaluated the fair cap using

different spreads and minimal guarantees. In terms of fair participation rates, they are

calculated without a cap, that is ζ = +∞, using different spreads and minimal guarantees.

A bisection (or the binary search) method is applied here to solve for the fair values, and

the tolerance is set to be 10−6.

Table 9 illustrates the fair cap and participation rates evaluated using the QE scheme,

and they are regarded as benchmarks to compare the fair values given by JTPDF and

CE approaches. The left part of Table 9 summaries the fair caps with 100% participation

rates and the right part illustrates the fair participation rates without a cap. Tables 10

and 11 present the errors of fair ζ and α values calculated by the JTPDF and CE methods

respectively9.

9The errors in Table 10 and 11 are defined as QE−Approximation

QE
.
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Table 9: Fair values (in percentage) given by the QE method

ζ (α = 100%) α (ζ = +∞)

γ \ g 0.00% 0.30% 0.50% 0.00% 0.30% 0.50%

0.00% 2.91 2.64 2.46 19.70 17.21 16.66

0.50% 2.97 2.69 2.50 20.49 18.58 17.21

1.00% 3.04 2.74 2.54 21.26 19.24 17.79

Table 10: Errors given by the JTPDF approach

Fair ζ (α = 100%) Fair α (ζ = +∞)

γ \ g 0.00% 0.30% 0.50% 0.00% 0.30% 0.50%

0.00% -0.24% -0.39% -0.15% 0.34% -3.92% 0.39%

0.50% -0.20% -0.07% -0.12% 0.35% 0.39% 0.44%

1.00% -0.39% -0.40% -0.43% 0.40% 0.44% 0.47%

Table 9 shows that when the participation rate is one, fair cap is an increasing function

of the spread, and it decreases when the minimal guarantee gets larger. This is because

a large spread reduces the EIA’s gain from the external index, and a small minimal

guarantee weakens the EIA’s downside protection.

In this case if the cap keeps constant, a smaller potential return leads to the lower

price. Thus a higher fair cap is expected to yield a price that is more stable.

In terms of the fair participation rate, it behaves the same as the fair cap when spreads

and minimal guarantees change. Table 9 also suggests that fair values are more sensitive

to changes in g. According to annuityadvantage.com, our fair caps are consistent with

what companies are adopting. This also confirms our assumption that the financial risk is

the primary risk involved in EIAs. Finally, even if our S0 is not based on observed data,

it does not influence the return.

Again, Table 10 shows that the results derived by the JTPDF method are close to
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Table 11: Errors given by the CE approach

Fair ζ (α = 100%) Fair α (ζ = +∞)

γ \ g 0.00% 0.30% 0.50% 0.00% 0.30% 0.50%

0.00% -3.58% -3.01% -2.26% -56.27% -62.74% -56.15%

0.50% -2.64% -2.77% -1.33% -49.63% -50.23% -50.31%

1.00% -2.88% -2.61% -2.11% -44.03% -44.91% -44.56%

those obtained by the QE scheme. The fair caps calculated in Table 11 are still acceptable,

but the fair participation rates appear to suggest that the CE approach fails. However,

although in the CE method we sacrifice accuracy for processing time, Table 8 shows that

the result is still acceptable. What the errors tell us is that the fair participation rates

are sensitive to the changes in prices.

5.2.3 Greeks

This section introduces the Greeks for the ratchet design. As we said before, the JTPDF

method is good for evaluating ΛRat
t , while it is easy to derive ΔRat

t and ΓRat
t using the CE

approach. All the Greeks are evaluated using fair contract parameters.

The Greeks of a 7-year ratchet design are evaluated at time 0. It is interesting that both

ΔRat
0 and ΓRat

0 are zero no matter what the contract parameters are. This is because at

time 0 the price in (4.8) is free from S0. Zero Δ
Rat
0 and ΓRat

0 means that when the company

sells the ratchet EIA policy, it is not necessary to hold any assets in the replicating portfolio

at the beginning. In terms of ΛRat
0 , they are evaluated by the JTPDF method using the

parameters shown in Table 9, and the results are illustrated in Table 12.

The left part in Table 12 presents ΛRat
0 with a 100% participation rate. Different

spreads and minimal guarantees are presented in this table. The caps are the fair values

obtained in Table 9. For instance, in Table 9 the fair cap corresponding to a 100%

participation rate, 0 spread, and 0 minimal guarantee is 2.91%. Thus the left top ΛRat
0 in
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Table 12 is evaluated using (α, γ, ζ, g) = (100%, 0, 2.91%, 0).

One interesting fact is that in Table 12 ΛRat
0 values can be negative. It appears to

violate common sense that larger volatilities lead to higher prices, but the negative ΛRat
0

values result from the cap. A small cap limits the gains from the index, so that a larger

volatility only contributes to a higher downside risk in which case the price should be

lower. Our argument is verified by the positive ΛRat
0 when ζ = +∞. Thus, the higher

the cap, the larger ΛRat
0 . Since ΛRat

0 has different signs, holding a portfolio of ratchet

EIAs can reduce the volatility risk. For instance, the ΛRat
0 of a portfolio consists of one

contract with (α, γ, ζ, g) = (100%, 0, 2.64%, 0.30%) and 41 contracts with (α, γ, ζ, g) =

(17.21%, 0.50%,+∞, 0.50%) is zero.

The results in Table 13 are used to investigate how the changes in α affect ΛRat
0 . Those

numbers are evaluated using (α, γ, ζ) = (100%, 0,+∞) and different minimal guarantees.

Comparing the numbers in Tables 13 and 12, we find that ΛRat
0 is an increasing function

of α. When ζ = +∞, larger participation rates leads to more volatile returns, in which

case a change in volatility contributes to big changes in price.

All the effects of γ and g on ΛRat
0 in the right part can be traced back to how they

impact the behaviors of fair participation rates. When α = 100% and for fix g, ΛRat
0 is an

increasing function of γ. This is because how γ affects the fair cap. When γ is fix, the

higher the minimal guarantee, the lower the fair cap is. Thus the space for the gain from

the index is narrow, which leads to the reduction in the absolute values in ΛRat
0 .

Table 12: ΛRat
0 of ratchet EIAs

Fair ζ (α = 100%) Fair α (ζ = +∞)

γ \ g 0.00% 0.30% 0.50% 0.00% 0.30% 0.50%

0.00% -0.0128 -0.0123 -0.0121 0.0008 -0.0004 -0.0006

0.50% -0.0124 -0.0121 -0.0119 0.0014 0.0005 -0.0003

1.00% -0.0121 -0.0118 -0.0116 0.0019 0.0009 0.0001
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Table 13: ΛRat
0 of ratchet EIA (II)

α = 100%, ζ = +∞, γ = 0

g 0.00% 0.30% 0.50%

ΛRat
0 0.0834 0.0844 0.0852

At time 0, ΔRat
0 and ΓRat

0 are derived by theory, here ΔRat
1.5 and ΓRat

1.5 are evaluated by

the CE method. In doing so we assume that S0 = 100, S1 = 90, S1.5 = 100, and the

applied contract parameters are given in Table 9.

Table 14 presents the results for ΔRat
1.5 . To investigate how ζ and α influence ΔRat

1.5 , we

evaluate it using (α, γ, ζ) = (100%, 0,+∞) and different minimal guarantees. The results

are given in Table 16. These, together with the results in Table 14, suggest that ΔRat
1.5 is

an increasing function of α and ζ . This is because when α or ζ are large, the gain from

the index is supposed to be more volatile. From the left part of Table 14, we can see that

given a fixed g a higher γ leads to a larger ΔRat
1.5 , and this is the reason for the increase

in fair caps. When ζ = +∞, ΔRat
1.5 is an increasing function of γ, and it decreases when

g gets larger. The effects of γ or g on ΔRat
1.5 are determined by how they affect the fair

participation rates.

Table 15 illustrates the results for ΓRat
1.5 . All of the numbers are equal to or near zero,

which means there are no big changes in asset prices. This is because we assume there

are no jumps in our model for St. When α = 100%, according to (4.12), ΓRat
1.5 = 0. When

ζ = +∞, the changes in ΓRat
1.5 behave similarly with those of ΛRat

0 . This is true since in

the replicating portfolio both Γt and Λt are used as the number of similar derivatives.
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Table 14: ΔRat
1.5 of ratchet EIA

Fair ζ (α = 100%) Fair α (ζ = +∞)

γ \ g 0.00% 0.30% 0.50% 0.00% 0.30% 0.50%

0.00% 0.0102 0.0104 0.0104 0.0020 0.0017 0.0017

0.50% 0.0103 0.0104 0.0104 0.0021 0.0019 0.0018

1.00% 0.0104 0.0104 0.0104 0.0022 0.0020 0.0018

Table 15: ΓRat
1.5 of ratchet EIA

Fair ζ (α = 100%) Fair α (ζ = +∞)

γ \ g 0.00% 0.30% 0.50% 0.00% 0.30% 0.50%

0.00% 0 0 0 -0.0016% -0.0014% -0.0014%

0.50% 0 0 0 -0.0016% -0.0015% -0.0015%

1.00% 0 0 0 -0.0017% -0.0016% -0.0015%

Table 16: ΔRat
1.5 of ratchet EIA (II)

α = 100%, ζ = +∞, γ = 0

g 0.00% 0.30% 0.50%

ΔRat
1.5 0.0134 0.0136 0.0137
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6 Conclusions

In this thesis, we applied the Heston stochastic volatility model to analyze equity-indexed

annuities (EIAs). Since the 1980s the volatility of stock market began to change markedly.

Thus the Black-Scholes model has been plagued by the assumption of constant volatility,

so stochastic volatility models became popular. The Heston model is one of the most used

models. However, it assumes that the interest rate is constant, which makes sense for most

short-term financial options. But for the EIA, whose maturity is between 10 and 15 years,

the constant interest rate assumption does not hold. For long terms, the interest is volatile

and a deterministic or stochastic model is expected. Here, we generalized Heston model

to the case of a deterministic interest rate and give a semi-closed formula for the price

of European call prices. We calibrate Heston model according to the observed European

call prices, using a global optimization algorithm called differential evolution (DE).

The equity-indexed annuity is an innovative life insurance product. However, it is

challenging to evaluate them properly. Hence, pricing and hedging of EIAs are interesting

topics. In this thesis, we focused on ratchet EIAs, and two different methods are presented

to evaluate them.

The first method is the joint transition probability density function (JTPDF) ap-

proach. We generalize the formula for the JTPDF of Heston’s process, which can be

found in Lipton (2001) and Lamoureux and Paseka (2009), to the case of deterministic

interest. Following Ballestra et al. (2007), we applied a Filon-type quadrature to solve

the oscillatory integral involved in the JTPDF. We find that the Filon-type quadrature is

much faster and more accurate in solving oscillatory integrals than the traditional Gaus-

sian quadratures. Given the JTPDF, the risk-neutral pricing formula reduced pricing

ratchet EIAs to a problem on solving multiple integrals. The dimension of the multiple

integrals is always above 10 and the integrand is too complex to be solved by basic cu-

bature or Monte Carlo methods. Again, following Ballestra et al. (2007) we adopted the

importance sampling technique to solve the multiple integral, but we generate samples by
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a Quasi-Monte Carlo method.

Another method is the conditional expectation (CE) method. By conditioning on the

volatility path, we can first price the ratchet EIA under Black-Scholes (BS) assumptions.

Since a closed-form is known for the price of ratchet EIAs under BS, the price in the

Heston framework is obtained by simulating the volatility path. The key point in the

CE method is how to approach the integrated variance. Broadie and Kaya (2006) and

Glasserman and Kim (2008) showed how to simulated exactly by different methods, but

their method is time-consuming. Inspired by Bégin et al. (2012), we approximate the

integrated variance by summations of gamma distributions. This approach is faster while

the results are still acceptable. The CE method is much faster than the JPTDF approach,

since CE does not require to calculate Bessel functions.

In the last chapter, we present numerical results for ratchet EIA prices as well as

Greeks. We obtained the fair caps and fair participation rates. Our results are consistent

with the parameters used by companies (see annuityadvantage.com). One interesting

result is that the sign of Vegas changes for different contracts, thus the volatility risk could

be reduced by holding a portfolio of ratchet EIAs with different contract parameters. At

the end, sensitivity tests were carried out for the price and Greeks of ratchet EIAs.

Future work could focus on applying stochastic mortality rates to EIAs, since it is

recognized that the mortality risk observed from life tables is a non-diversifiable risk. It

is also interesting to consider inflation rates in dealing with EIAs, since it is always better

to provide inflation protection for life insurance products.
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A Appendix A

In this section, we present how the general stochastic volatility model is defined under

the risk neutral measure Q. This work follows from Wilmott (2006).

In general, the stochastic volatility model is given by

dSt

St
= μdt+ VtdWs (t) (A.1)

dVt = p (St, Vt, t) dt+ q (St, Vt, t) dWv (t) , (A.2)

〈dWs (·) , dWv (·)〉 = ρdt, (A.3)

where μ is the drift, Vt is the return volatility, p (St, Vt, t) and q (St, Vt, t) determine the

model of stochastic volatility, Ws (t) and Wv (t) are two standard Brownian motion under

measure P with correlation ρ.

Compared with the Black-Scholes framework in which the hedging portfolio consists

of a risk-free bond and certain asset shares, there are two source of randomness in a

stochastic volatility model that are the asset (Ws (t)) and the volatility (Wv (t)). Hence,

we need another option to hedge the risk. Suppose that a portfolio consists of an option

Π (St, Vt, t), −Δ shares of the asset, and −Δ1 shares of another option Π1 (St, Vt, t), the

value of the portfolio at time t given by

O (St, Vt, t) = Π (St, Vt, t)−ΔSt −Δ1Π1 (St, Vt, t) . (A.4)

For convenience we write O (St, Vt, t) as O and similarly with Π,Π1, p, and q. Applying

Itô’s formula to (A.4) leads to
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)]
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Note that portfolio O is set up to hedge the option Π, so that O is free of asset and

volatility risks. Hence, the terms multiplying dSt and dVt in (A.5) must be 0, that is⎧⎪⎪⎨
⎪⎪⎩

∂Π
∂St
−Δ−Δ1

∂Π1

∂St
= 0,

∂Π
∂Vt
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(A.6)

This is equivalent to ⎧⎪⎪⎨
⎪⎪⎩
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∂St
− ∂Π/∂Vt

∂Π1/∂Vt

∂Π1

∂St
,

Δ1 = ∂Π/∂Vt

∂Π1/∂Vt
.

(A.7)

Note that when the terms multiplying dSt and dVt in (A.5) are 0, (A.5) becomes

dO =
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Given that O is free of asset and volatility risks, it earns risk-free interest rate. Thus

dO = rOdt = r (Π−ΔSt −Δ1Π1) dt. (A.9)

Combining and (A.8) and (A.9) leads to a PDE, that is

75



(
∂Π

∂t
+

1

2
S2
t V

2
t

∂Π2

∂2St
+ ρqStVt

∂Π2

∂Vt∂St
+

1

2
q2
∂2Π

∂V 2
t

)

−Δ1

(
∂Π1

∂t
+

1

2
S2
t V

2
t

∂Π2
1

∂2St
+ ρqStVt

∂Π2
1

∂Vt∂St
+

1

2
q2
∂2Π1

∂V 2
t

)
= r (Π−ΔSt −Δ1Π1) (A.10)

Inserting (A.7) into (A.10) leads to
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This is an intimidating PDE, but fortunately the left hand side is a function w.r.t. Π and

the other side is a function only w.r.t. Π1. Since there are no constraints posed on the

contract of Π and Π1, the previous equation must be true for any Π and Π1. This means

that both sides must be equal to a quantity which only depends on St, Vt and t. We

denote quantity − (p (St, Vt, t)− λ (St, Vt, t) q (St, Vt, t)) or − (p− λq) for short. (Though

we give the quantity a form, but it can still be any function of St, Vt and t since we do

not propose any constraint on λ (St, Vt, t). Later, the readers will find more information

about λ (St, Vt, t).) Then the following equation is true
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that is
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Here (A.11) is important since solving it leads to the price Π. Similarly to Black-

Scholes PDE, the drift of dSt/St, that is μ, does not appear in (A.10), but the risk-free

rate r does. Note the terms multiplying ∂Π
∂St

and ∂Π
∂Vt

. We claim that under the risk-neutral

measure Q the drift terms of dSt and dVt are supposed to be rStdt and (p− λq) dt. Hence
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the general stochastic volatility model under Q is given by

dSt

St

= rdt+ VtdW
Q
s (t) ,

dVt = [p (St, Vt, t)− λ (St, Vt, t) q (St, Vt, t)] dt+ q (St, Vt, t) dW
Q
v (t) ,

d〈Ws (·) ,Wv (·)〉 = ρdt.

(A.12)

Here the Randon-Nikodym derivative dQ
dP

can also be derived.

The term λ (St, Vt, t), λ for short, is of interest. Following Wilmott (2006) we discuss

its properties. Suppose that we delta-hedge an option Π satisfying (A.11), then we have

a portfolio Õ given by

Õ (St, Vt, t) = Π (St, Vt, t)−ΔSt.

Again, for short we denote Õ (St, Vt, t) and Π (St, Vt, t) by Õ and Π. Applying Itô’s formula

to Õ leads to
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The last equation holds since we are delta-hedging Π, that is Δ = ∂Π
∂St

. The difference

between dÕ and rÕdt is interesting. It is given by
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dt (A.13)

=
∂Π

∂Vt
(dVt − (p− λq) dt)

= q
∂Π

∂Vt
(λdt+ dWv (t)) . (A.14)
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Here, (A.13) holds because of (A.11), while (A.14) holds from (A.2).

Observe that the error in delta-hedging, which is an instantaneous rate, can be de-

scribed by the change rate in Π w.r.t. Vt and “for every unit of volatility risk, represented

by” dWv (t), “there are λ units of extra return, represented by dt”. Hence, λ or λ (St, Vt, t),

is called the market price of volatility risk.

78



B Appendix B

Here we give a brief introduction to DE’s update procedure: DE deals with a population of

np solutions stored in real-valued vectors xi,G = (x1,i,G, ..., xD,i,G) , i = 1, 2, ..., np, where G

is the generation number andD is the number of parameters (D = 5 in the Heston model).

Given the upper bounds and lower bounds for each parameter, s.t., xL
j ≤ xj,i,1 ≤ xU

j , the

entry xj,i,1, (j = 1, ..., D, i = 1, ..., np) of the initial vectors xi,1 is uniformly chosen from

the interval
[
xL
j , x

U
j

]
. Then the initial vector is updated as follows: For every vector xi,G,

randomly select three other vectors xr1,G, xr2,G, xr3,G where i, r1, r2, r3 are different. Define

the donor vector as

vi,G+1 = xr1,G + F (xr2,G − xr3,G) ,

where F is a constant from [0, 2]. The element of the trial vector ui,G+1 is determined

by the target vector xi,G and the donor vector vi,G+1. In detail, the entries of the donor

vector are the entries the trial vector with probability CR, that is

uj,i,G+1 =

⎧⎪⎪⎨
⎪⎪⎩
vj,i,G+1 if ui,j ≤ CR or j = Irand,

xj,i,G if ui,j ≥ CR and j = Irand,

(B.1)

where ui,j is chosen uniformly from [0, 1], and Irand is a random integer from {1, 2, ..., D}.
At last, vector xj,i,G is updated by the trial vector ui,G+1 and itself, is:

xi,G+1 =

⎧⎪⎪⎨
⎪⎪⎩
ui,G+1 if f(ui,G+1 < f(xi,G)),

xi,G otherwise.

(B.2)

In the following the update procedure is repeated until the iteration number reaches the

maximum limit NG. The update procedure is summarized in Algorithm 1.

A series of articles have proved that DE is more accurate and efficient than several

other optimization methods including four genetic algorithms, simulated annealing and

evolutionary programming. For more details on the DE method please refer to Storn et al.

(2005).
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Algorithm 3 DE’s update procedure

initialize parameters D, np, NG, F, CR, the upper and lower bounds.

initialize xi,1, i = 1, 2, · · · , np.

for G = 2→ NG − 1 do

generate xr1,G, xr2,G, xr3,G for each xi,G

vi,G+1 = xr1,G + F (xr2,G − xr3,G)

for j = 1→ D do

define uj,i,G+1 according to equation (B.1).

end for

update xi,G+1 according to equation (B.2).

end for
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C Appendix C

Proposition C.1 Suppose a kind of Riccati function is given as follows:

dY (t)

dt
= αY (t)2 + βY (t) + γ, (C.1)

and with boundary condition Y (0) = 0, where α, β, γ ∈ C.

This kind of Ricatti equation has a unique solution. And the solution is given by

Y (t) =
Y0 (A− αY0) e

−At − (A− αY0) Y0

(A− αY0)e−At + αY0
,

where

Y0 =
−β ±√β2 − 4αγ

2α
,

A = 2αY0 + β

Remark C.2 Thought there are two values for Y0, they lead to the same value of Y (t)

that satisfies (C.1) and Y (0) = 0.

Proof. First of all, it is possible to find a constant solution to Y (t) by solving

0 = αY (t)2 + βY (t) + γ (C.2)

and the solution is

Y0 =
−β ±√β2 − 4αγ

2α
.

Define U (t) = Y (t)− Y0, that is Y (t) = U (t) + Y0. It is easy to derive that

dY (t)

dt
=

dU (t)

dt
,

Y (t)2 = U (t)2 + Y 2
0 + 2U (t) Y0.

Hence (C.1) can be written as
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dU (t)

dt
= α

[
U (t)2 + Y 2

0 + 2U (t) Y0

]
+ β [U (t) + Y0] + γ

= αU (t)2 + (2αY0 + β)U (t) +
(
αY 2

0 + βY0 + γ
)

(C.3)

= αU (t)2 + (2αY0 + β)U (t) . (C.4)

(C.3) holds since Y0 is the solution to (C.2).

Let W (t) = 1
U(t)

, that is U (t) = 1
W (t)

. The substitution leads to

dU (t)

dt
= − 1

W (t)2
dW (t)

dt
,

U (t)2 =
1

W (t)2
.

Then (C.4) can be written as

− 1

W (t)2
dW (t)

dt
= α

1

W (t)2
+ (2αY0 + β)

1

W (t)
.

This is equivalent to

dW (t)

dt
+ (2αY0 + β)W (t) = −α.

Note that the previous ODE is a first order linear equation, so that the solution to W (t)

is given by

W (t) =
C (2αY0 + β) e−(2αY0+β)t − α

2αY0 + β
,

where C is a constant.

Define A = 2αY0 + β,

U (t) =
1

W (t)
=

A

CAe−At − α

and

Y (t) = U (t) + Y0

=
A

CAe−At − α
+ Y0

=
CY0Ae

−At + A− αY0

CAe−At − α
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In the previous equation Y (t) must satisfy the boundary condition Y (0) = 0, this leads

to

C =
αY0 −A

AY0

.

Finally, the solution to (C.1), given the boundary condition Y (t) = 0, is

Y (t) =
Y0 (A− αY0) e

−At − (A− αY0) Y0

(A− αY0) e−At + αY0
.

The uniqueness is because the solution to a first order linear equation is unique. �
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D Appendix D: Bilinear Interpolation

Assume that a smooth function f of x and v over [xmin, xmax] × [vmin, vmax] is given

and its values at four given points (shown in Figure 6) are known as fij = f (xi, vj) for

i, j = 1, 2, where [x1, x2] × [v1, v2] ⊂ [xmin, xmax] × [vmin, vmax]. The value of f (x, v) for

any (x, v) ∈ [x1, x2] × [v1, v2] can be approximated using linear interpolation. First, the

value of g at two points R1(x, v1) and R2(x, v2) (shown in Figure 6) is estimated using

linear interpolation with (x1, vi) and (x2, vi), for i = 1, 2:

g (R1) = g (x, v1) =
x2 − x

x2 − x1
f (x1, v1) +

x− x1

x2 − x1
f (x2, v1) ,

g (R2) = g (x, v2) =
x2 − x

x2 − x1
f (x1, v2) +

x− x1

x2 − x1
f (x2, v2) .

Note that (x, y), R1 (x, v1) and R2 (x, v2) share the same x coordinate, then f(x, y) can

be approximated by linear interpolation using points R1, R2 and

g (x, y) =
v2 − v

v2 − v1
g (R1) +

v − v1
v2 − v1

g (R2)

=
v2 − v

v2 − v1

{
x2 − x

x2 − x1

f (x1, v1) +
x− x1

x2 − x1

f (x2, v1)

}

+
v − v1
v2 − v1

{
x2 − x

x2 − x1
f (x1, v2) +

x− x1

x2 − x1
f (x2, v2)

}
.

(D.1)

Using the above method, if we divide [xmin, xmax] × [vmin, vmax] into Nx-by-Nv grids,

given the values of f at the intersection points we could estimate the value of f at any

point in [xmin, xmax] × [vmin, vmax] by bilinear interpolation. This is because any point

(x, v) ∈ [xmin, xmax] must be located in one grid. The set of the values of f at the

intersection points is usually called a look-up table. Note that

g → f when Nx →∞ and Nv →∞ (D.2)

holds because of (D.1) and the assumption that f is smooth over [xmin, xmax]×[vmin, vmax].

Moreover, some useful formulas are listed as follows.

1. The integral of g (x, v) with respect to x from x1 to x2 is∫ x2

x1

g (x, v) dx =

(
1− v − v1

v2 − v1

)
(x2 − x1) (f11 + f21)

2
+

v − v1
v2 − v1

(x2 − x1) (f12 + f22)

2
.
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(x1,v1)
(x2,v1)

(x1,v2)
(x2,v2)

R2(x,v2)

R1(x,v1)

(x,v)

Figure 6: Bilinear interpolation

2. The double integral of g (x, v) with respect to x and v is

∫ b

v1

∫ x2

x1

g (x, v) dxdv =
(b− v1) (2v2 − b− v1) (x2 − x1) (f11 + f21)

4 (v2 − v1)

+
(b− v1)

2 (x2 − x1) (f12 + f22)

4 (v2 − v1)
.

3. Setting b = v2 in the previous equation, the integral of g (x, v) over [x1, x2]× [v1, v2]

is ∫ v2

v1

∫ x2

x1

f (x, v) dxdv =
1

4
(f11 + f12 + f21 + f22) (x2 − x1) (v2 − v1) .
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E Appendix E: Vega

∂Π

∂vt
=

∂

∂vt
EQ
[
e
∫ n

t
r(w) dwC∗ (X, n)

∣∣Ft

]

= e
∫ n

t
r(w) dw ∂

∂vt

∫
· · ·
∫
Ωxv

C∗ (x, n) p (xi, vi|xt, vt)
n∏

j=i+1

p (xi, vi|xi−1, vi−1) dxdv

= e
∫ n

t
r(w) dw ∂

∂vt

∫
Ωv

(∫
Ωx

C∗ (x, n) p (xi, vi|xt, vt)
n∏

j=i+1

p (xj , vj |xj−1, vj−1) dx

)
dv

(E.1)

= e
∫ n

t
r(w) dw ∂

∂vt

∫
Ωv

(∑∫
Sj
x

f j (x) p (xi, vi|xt, vt)

n∏
j=i+1

p (xj , vj|xj−1, vj−1) dx

)
dv

(E.2)

= e
∫ n

t
r(w) dw

∫
Ωv

∂

∂vt

(∑∫
Sj
x

f j (x) p (xi, vi|xt, vt)
n∏

j=i+1

p (xj , vj |xj−1, vj−1) dx

)
dv

(E.3)

= e
∫ n

t
r(w) dw

∫
Ωv

(∑∫
Sj
x

f j (x)

n∏
j=i+1

p (xj , vj|xj−1, vj−1)
∂

∂vt
p (xi, vi|xt, vt) dx

)
dv

(E.4)

= e
∫ n

t
r(w) dw

∫
Ωv

(∫
Ωx

C∗ (x, n)
n∏

j=i+1

p (xj , vj|xj−1, vj−1)
∂

∂vt
p (xi, vi|xt, vt) dx

)
dxdv

(E.5)

= e
∫ n

t
r(w) dw

∫
· · ·
∫
Ωxv

C∗ (x, n)
n∏

j=i+1

p (xj , vj|xj−1, vj−1)
∂

∂vt
p (xi, vi|xt, vt) dxdv

(E.6)

= e
∫ n

t
r(w) dwEQ

[
C∗ (X, n)

∂
∂vt

p (xi, vi|xt, vt)

p (xi, vi|xt, vt)

∣∣∣∣Ft

]
. (E.7)

(E.1) holds because of Fubini’s theorem: Since we evaluated the integral or the ex-

pectation so that it can be proved that the absolute value of the integrand is integrable.

Then we can apply Fubini’s theorem to change the order of the integrals. In (E.2),⋃
Sj
x
= Ωx and this is a finite partition for n is finite. We make this change to ensure

that on each Sj
x
, the integrand can get rid of the indicator functions and can be written

as f j (x)
∏n

i=1 p (xi, vi|xi−1, vi−1), where f j (x) is a smooth function of x. Hence each inte-
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grand on Sj
x
should be a smooth function of x, v and v0. Further, the integral w.r.t. x is

also a smooth function of v and v0 then we can apply Lebesgue’s dominated convergence

theorem to change the derivative and the integrals which leads to (E.3) and (E.4). Then

(E.5) holds as bringing ∂
∂v0

inside the inner integral does not make any changes to f j (x)

(the partition of Ωx only depends on f j (x)). Applying Fubini’s theorem again leads to

(E.6).
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