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ABSTRACT

Relating modulus and Poincaré inequalities on modified Sierpiński
carpets

Andrew Fenwick

This thesis investigates the question of whether a doubling metric measure space

supports a Poincaré inequality and explains the relationship between the existence of

such an inequality and the non-triviality of the respective modulus. It discusses in

detail a general class of modified Sierpiński carpets presented by Mackay, Tyson, and

Wildrick [15], which are the first examples of spaces that support Poincaré inequalities

for a renormalized Lebesgue measure that are also compact subsets of Euclidean space

with empty interior. It describes the intricate relationship between the sequence

used in the construction of a modified Sierpiński carpet and the validity of Poincaré

inequalities on that space.
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3.1 The Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Basic Properties of the Carpets Sa . . . . . . . . . . . . . . . . . . . . . 34



3.2.1 The Natural Probability Measure on Sa . . . . . . . . . . . . . 35

3.3 How `q Spaces Impact the Validity of p-Poincaré Inequalities . . . . . . . 47
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Introduction

The Poincaré inequality is a fundamental tool in the study of partial differential

equations (PDEs) and numerical analysis. It is part of the general theory of Sobolev

inequalities which are fundamental to working with PDE’s, and is used to prove, for

example, energy estimates and results concerning the reaction-diffusion equation. For

more information concerning this topic refer to [6], [9], and [14]. The Poincaré in-

equality provides us with a bound for the variance of a function on a ball based on the

integral of its derivative. There are many examples of metric spaces that support a

Poincaré inequality and we include a proof for Rn. Some others are Riemannian man-

ifolds that have non-negative Ricci curvature, the Heisenberg group, Carnot groups,

Laakso’s spaces, and linearly locally contractible manifolds with good volume growth.

For additional examples please see [10], [12], [13], [15], and [16].

It is important to discuss why we are concerned with Poincaré inequalities, what

they determine about the geometry of the underlying space. Metric spaces with

doubling measures that support a p-Poincaré inequality have a first order calculus

that is very similar to that of Euclidean spaces. Furthermore, in [2] it is shown that

any space which supports a p-Poincaré inequality must be connected. The strongest

of the inequalities is the 1-Poincaré and it is a known result that if a metric space

supports a 1-Poincaré inequality then the space is quasiconvex [4]. What this means

essentially is that any pair of points in the space can be connected by curves that are

not “too” long.

It should be acknowledged here that there are many different variations of the
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Poincaré inequality. We state three versions in Chapter 2, one for domains in Rn, one

for balls in Rn, and a weak Poincaré inequality for metric measure spaces. The weak

Poincaré inequality for metric measure spaces (2.4) is the primary definition used in

this thesis and is the definition used in [15].

Some interesting spaces on which to study Poincaré inequalities are presented by

Mackay, Tyson, and Wildrick in [15]. They are a class of non-self similar modified

Sierpiński carpets, some of which support a Poincaré inequality and some do not. The

unique aspect of their research is that they present the first examples of compact sub-

sets of Euclidean space that have empty interior, yet support Poincaré inequalities for

the renormalized Lebesgue measure. Before discussing the carpets described in [15],

we will first review the standard Sierpiński carpet obtained from the unit square in R2

by iterating the following: divide all current squares into nine sub-squares of equal

size, and then remove the central square. Each resulting square should have side

length equal to 1
3

the side length of the original square. The Sierpiński carpet can

also be presented as the attractor of an iterated function system as defined in section

1.3; at each stage 8 copies of itself are scaled by a factor of 1/3 and so it can be shown

that the Sierpiński carpet has Hausdorff dimension log 8
log 3

.

The standard Sierpiński carpet is a generalization of the middle-thirds Cantor set

to 2 dimensions. The Sierpiński carpet in fact contains the product of the middle-

thirds Cantor set and the value 1/2. Information on the construction of the middle-

thirds Cantor set is widely available so it will not be included here. It is a subset

of the unit interval [0, 1] possessing interesting properties; it is self-similar, compact,

contains no intervals, has Lebesgue measure 0, but is uncountable. By inclusion, the

complexity demonstrated by these properties is carried forward into the Sierpiński

carpet, and this is what makes this field of study so attractive. There has also been

a lot research carried out into the properties of fat Cantor sets which retain many of

the properties of the original middle-third Cantor. It is easy to create a fat Cantor
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set that is still uncountable, contains no intervals, but now has positive Lebesgue

measure. They are all topologically the same despite their quantitative differences.

These results are very similar in style to the results presented by Mackay, Tyson,

and Wildrick in [15]. Instead of using the ratio of 1/3 as in the construction of

the standard Sierpiński carpet, they consider carpets formed by at each stage in the

construction taking a scaling ratio that is the reciprocal of any odd integer. These

ratios then form an infinite sequence and they present results showing that it is the

behaviour of the sequence with respect to its `q norm that determines whether the

resulting carpet supports a p-Poincaré inequality. If the given sequence converges

fast enough to zero then the resulting carpet is “fat” enough to support a Poincaré

inequality, despite still having empty interior. On the other hand, the standard

Sierpiński carpet, defined by a constant sequence, does not support such an inequality.

As with the fat Cantor sets, the modified Sierpiński carpets are all topologically

equivalent to each other, and to the standard Sierpiński carpet, despite their obvious

geometric differences.

It is often possible and advantageous to reduce problems concerning Poincaré in-

equalities to a geometric problem involving the support of a “thick” family of curves.

It is the modulus of a curve family that embodies this notion and so to prove the

validity of a Poincaré inequality one need only prove the existence of a curve family

having non-trivial modulus. This technique is used throughout this thesis and pro-

vides some very elegant and concise results, and is also a fundamental tool in the study

of quasiconformal mappings. Relating Poincaré inequalities to non-trivial modulus

also provides an intuitive understand of when and why Poincaré inequalities might

fail. Often the existence of a “tunnel” or “collar” where curves are forced through

too narrow a space can destroy the validity of a Poincaré inequality. An example of

this sort of problem is given as part of the discussion on modulus in section 2.2.

This is an expository thesis whose goal is to explain the relationship mentioned
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above between the Poincaré inequality and modulus. Much of the content is based

on the results of Mackay, Tyson and Wildrick in [15], and their modified Sierpiński

carpets. This thesis also includes results from many other sources on the subject, and

where possible, provides any details missing from the original work.

Much of the terminology and background knowledge necessary to understand the

results discussed in this thesis are presented in Chapter 1. Most of Chapter 2 is

devoted to Poincaré inequalities and their relation to modulus. There is also a section

on the similarly defined concept of capacity. The most significant result in Chapter

2 is Proposition 2.4.1, which states that under certain hypothesis, a metric measure

space admits a p-Poincaré inequality if and only if its corresponding p-modulus is

non-trivial. The proof of this proposition is included, and follows from, results in [12]

and [14]. Chapter 3 begins by detailing the construction of the modified Sierpiński

carpets presented in [15], followed by a discussion outlining some basic properties of

these carpets. The chapter concludes by stating and proving some very interesting

results put forth by Mackay, Tyson, and Wildrick concerning how the `q norm of the

generating sequence impacts the validity of the Poincaré inequality on the resulting

carpet.
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Chapter 1

Preliminaries

1.1 Metric Measure Space Properties

Here we will cover briefly many metric measure space definitions and introduce some

potentially new notation. For this paper we let (X, d, µ) be a metric space equipped

with a Borel measure µ that is finite and positive on balls. We let B(x, r) denote a

ball with radius r > 0 and center x ∈ X. More formally this means

B(x, r) = {y ∈ X : d(x, y) < r}.

If we write λB then we are referring to the dilated ball B(x, λr), where λ > 0.

A measure µ is said to be a doubling measure if there is a constant C > 0 such

that for all balls B(x, r) ∈ X we have that

µ(B(x, 2r)) ≤ Cµ(B(x, r)).

The doubling property of a measure is one that will play a significant role in this

paper. Most of the measures we consider will support this property and many of the

results will rely in some way on the doubling constant C.

We say that a Borel measure µ on (X, d) is Q-regular if there exists a constant

C > 0 and a radius r0 > 0 such that

C−1rQ ≤ µ(B(x, r)) ≤ CrQ (1.1)
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for any metric ballB(x, r) ⊂ X with 0 < r < r0. We say that µ is Ahlfors Q-regular

if there is a constant C > 0 such that (1.1) holds for all B(x, r) with 0 < r <

2diam(X). We say that µ is Ahlfors regular if it is Ahlfors Q-regular for some

Q > 0.

The following definitions on paths are collected from [19], and despite their formal

appearance are quite intuitive and extremely important in the later sections of this

paper. A path or curve in X is a continuous mapping γ : I → X for some interval

I ⊂ R. The curve γ is considered rectifiable if its length, defined by

`(γ) := sup

{
N∑
i=1

d(γ(ti), γ(ti+1)) : t1 < t2 < · · · < tN with t1, t2, . . . , tN ∈ I

}
,

is finite, and we say γ is locally rectifiable if all its closed sub-curves are rectifiable.

If there is a curve representing the shortest path possible between two points we call

this curve a geodesic. We then say a metric space (X, d) is a geodesic space if for

ever pair of points x, y ∈ X, there exists a geodesic γ joining x to y. We call the

metric space X a length space if for every x and y with γ a geodesic joining them

we have

d(x, y) = `(γ).

This is a metric space where for any two points, the length of a geodesic joining them

is actually equal to the distance between the two points. A result from Chapter 2

of [18], which will be of use in Chapter 2, states that a geodesic space is actually a

length space.

We say that a metric space is quasiconvex if there exists a uniform constant

C ≥ 1 such that any distinct pair of points x, y ∈ X can be connected by a rectifiable

curve γxy with length satisfying

`(γxy) ≤ Cd(x, y).

To each curve there is an associated mapping s : I = [a, b] → [0, `(γ)] given by

s(t) = `(γ|[a,t]). This is a monotone increasing map and so is differentiable almost
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everywhere, therefore we can set |γ′(t)| := s′(t). Using this map we construct the

arc-length parametrization of γ, denoted γ0, such that γ0 : [0, `(γ)] → X, and

|γ′0| = 1 almost everywhere on [0, `(γ)]

Now if γ is a rectifiable path, and ρ : X → [0,∞] is a Borel function, we get that

ρ ◦ γ is a Lebesgue measurable function on I. We can then define∫
γ

ρ ds :=

∫ `(γ)

0

ρ ◦ γ0(s) ds.

A Borel function ρ : X → [0,∞] is an upper gradient of a function u : X → R

if

|u(x)− u(y)| ≤
∫
γ

ρ ds

for all rectifiable curves γ joining x and y.

1.1.1 Topological Definitions

The following are some topological definitions that are largely taken from Munkres [17].

We say that a metric space (X, d) is compact if every open cover of X has a finite sub-

cover, and a metric space is called proper if every closed ball {y ∈ X : d(x, y) ≤ r}

is compact. There are different notions of compactness, but for this paper the topo-

logical definition will suffice. This is a property that will often allow us to take

information known locally in a neighbourhood and extend it globally.

For a point x ∈ X we say X is locally connected at x if for every open set V

containing x there exists a connected, open set U with x ∈ U ⊂ V . The space X is

locally connected if it is locally connected at x for every x ∈ X. A cut point is a

point of a connected space such that if we were to remove it would cause the resulting

space to be disconnected.

1.1.2 Lipschitz Functions

Here we define a class of functions that will be used when we discuss fractals later in

this chapter, but also more importantly in Chapter 2 when we prove Theorem 2.4.1.
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More on these definitions and Lipschitz functions in general can be found in [8] or [9].

Definition 1.1.1. A function u : X → Y such that there exists a constant C < ∞

for which

|u(x)− u(y)| ≤ C|x− y|

for all x, y ∈ X is called a Lipschitz function. We define the upper and the

lower Lipschitz constant at a point x ∈ X by

Lip u(x) = lim sup
r→0

L(x, u, r)

r
, lip u(x) = lim inf

r→0

L(x, u, r)

r
,

where

L(x, u, r) = sup{|u(x)− u(y)| : d(x, y) ≤ r} for r > 0.

We then say Lip(X) is the class of all Lipschitz functions on a domain X, and

Lip0(X) is the collection of all Lipschitz functions with compact support in X.

Before ending this section we will state and prove a claim found also in [8]. This

will serve as a valuable tool when proving Theorem 2.4.1, as it will allow us to jump

from the standard p-Poincaré inequality to one in which Lip u plays the role of the

gradient.

Claim 1.1.2 (Lemma 6.7, [8]). If u ∈ Lip(X), then Lip u is an upper gradient for u.

Proof. We let γ : [a, b] → X be a rectifiable curve parametrized by arc-length that

connects x and y. The function u ◦ γ is Lipschitz continuous and so absolutely

continuous, therefore it is differentiable almost everywhere. Then because

|(u ◦ γ)′(t)| ≤ lip u(γ(t)) ≤ Lip u(γ(t))

at every point t of differentiability of u ◦ γ, we get the following inequality,

|u(x)− u(y)| =
∣∣∣∣∫ b

a

d

dt
u(γ(t)) dt

∣∣∣∣ ≤ ∫ b

a

Lip u(γ(t)) dt,

which completes the proof. It is of some interest here to note that this argument also

holds for lip u, not just Lip u.
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1.2 Sobolev Spaces

For some parts of this paper we will only be concerned with functions defined on Rn,

and their weak derivatives. It can then be convenient to understand and work with

Sobolev spaces which we will soon define. First, a weak derivative is a generalization of

the concept of the derivative of a function for functions assumed only to be integrable

and not necessarily differentiable. For a function u ∈ L1
loc(Rn) if there exists a function

v ∈ L1
loc(Rn) such that∫

Rn

u∂iφ dx = −
∫
Rn

vφ dx, φ ∈ C∞0 (R)n, (1.2)

then we say v is the weak ith partial derivative of u and set ∂iu := v. If for all i =

1, . . . , n the weak ith partial derivative exists then we say ∇u := (∂1u, ∂2u, . . . , ∂nu).

Definition 1.2.1. The vector space of all locally integrable functions u for which

locally integrable weak partial derivatives ∂iu exist for all i = 1, . . . , n is denoted by

W 1,1
loc = W 1,1

loc (Rn)

and called the local Sobolev space. When we consider u that are globally integrable,

with weak derivatives that are also globally integrable, we have the space

W 1,1 = W 1,1(Rn).

If the functions and their weak first derivatives are all locally or globally Lp-integrable

for 1 ≤ p ≤ ∞ we have the spaces

W 1,p
loc = W 1,p

loc (Rn), W 1,p = W 1,p(Rn).

The Sobolev space W 1,p with the norm

||u||1,p = ||u||p + ||∇u||p

is a Banach space for all 1 ≤ p ≤ ∞.
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1.2.1 Sobolev Embedding Theorems

Here we will outline some important embedding inequalities for Sobolev spaces. A

consequence of these theorems is used in Chapter 2 to prove the validity of the

Poincaré inequality on Rn.

Theorem 1.2.2. For a function u ∈ W 1,p(Rn), we have

||u|| np
n−p
≤ C(n, p)||∇u||p if 1 ≤ p < n;

if p > n, then u has a continuous representative satisfying

|u(x)− u(y)| ≤ C(n, p)|x− y|1−n/p||∇u||p

for x, y ∈ Rn.

These inequalities are known as the Sobolev Embedding Theorems and play a

central role in Sobolev space theory. They state essentially that W 1,p is continuously

embedded into Lp∗, where

p∗ =
np

n− p
,

the Sobolev conjugate of p for 1 ≤ p < n. What is also very useful is that this

theorem can be extended to Sobolev spaces W 1,p(Ω), where Ω is an open, bounded,

Lipschitz domain in Rn. With this in mind we state what is known as the Rellich-

Kondrachov theorem which states that the embedding is in fact compact.

Theorem 1.2.3. Let Ω ⊆ Rn be an open, bounded, Lipschitz domain, and let 1 ≤

p < n. Set

p∗ :=
np

n− p
.

Then the Sobolev space W 1,p(Ω) is continuously embedded in the space Lp
∗
(Ω), and is

compactly embedded in Lq(Ω) for every 1 ≤ q < p∗.
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A Lipschitz domain is a domain in Euclidean space with a “sufficiently regular”

boundary. It is sometimes referred to as a domain with Lipschitz boundary and the

most intuitive way to understand the concept is to envision the boundary as locally

being the graph of a Lipschitz continuous function. A more rigorous definition can

be found in [4].

There is a very useful consequence of this theorem which is a result we will make

use of in Chapter 2 when proving Theorem 2.4.1. If the Rellich-Kondrachov theorem

holds, we have that any uniformly bounded sequence in W 1,p(Ω) has a convergent

subsequence in Lq(Ω). The definitions and theorems included in this section are

sufficient for the purposes of this paper, but the reader is encouraged to see Chapter

3 of [9] for a more detailed discussion of Sobolev spaces.

1.3 Geometric Properties of Fractals

When discussing fractals and in particular their dimension it can be useful to note

that fractals are often self similar. This means that they are either exactly or ap-

proximately similar to a smaller part of themselves. The self similarity property can

actually be used to very concisely define a fractal as an iterated function system (IFS).

We will define this concept in a moment, but before we do it is important to note

that although we will have some discussion on the standard Sierpiński carpet which

is self similar, we will primarily focus on modified Sierpiński carpets which, due to

their construction, are not necessarily self similar. These carpets therefore require

some additional consideration and are slightly more complicated to deal with. The

definitions contained in this section are primarily chosen from Chapters 2 and 9 of

[7].

We will first introduce the notion of Hausdorff measure and then Hausdorff dimen-

sion, both of which are conveniently defined for any set. It is unfortunate though, that

the calculations involved can sometimes make it quite difficult to actually determine
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or estimate Hausdorff dimension.

We begin with some preliminary definitions and introduce some notation that

perhaps the reader may not be familiar with. If U is a subset of Rn then we say the

diameter of U is defined as

diam(U) = sup{|x− y| : x, y ∈ U}.

Furthermore, if {Ui} is a countable collection of sets that cover F with diameters less

than some value δ > 0, we say that {Ui} is a δ-cover of F .

Definition 1.3.1. For a given subset F of Rn, s ≥ 0, and for any δ > 0, we define

Hs
δ(F ) = inf

{
∞∑
i=1

(diam(Ui))
s : {Ui} is a δ-cover of F

}
.

Here, as δ decreases the number of permissible covers of F also decreases. We

therefore get that the infimum increases and so approaches a limit as δ → 0. This

limit exists for any subset F of Rn and the limiting value is usually either 0 or ∞.

For more information on this jump refer to Chapter 2 in [7].

Definition 1.3.2. The s-dimensional Hausdorff measure of F is defined as

Hs(F ) = lim
δ→0
Hs
δ(F ), (1.3)

and the Hausdorff dimension of F is

dimH F = inf{s ≥ 0 : Hs(F ) = 0} = sup{s : Hs(F ) =∞}. (1.4)

If s = dimH F , then Hs(F ) can take on any value; zero, infinity, or any value in

between. With respect to scaling, Hausdorff dimension behaves as we would expect it

to. If we magnify an object by a factor of λ we get that the s-dimensional Hausdorff

measure will scale by a factor of λs.

Definition 1.3.3. Let D be closed subset of Rn, with possibly D = Rn. Then a

mapping S : D → D is a contraction on D if there exists a number 0 < c < 1 such
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that

|S(x)− S(y)| ≤ c|x− y| (1.5)

for all x, y ∈ D. Note that here all we have is a Lipschitz function where the Lipschitz

constant is strictly less than one. A family of contractions {S1, S2, . . . , Sm} with

m ≥ 2 is called an iterated function system or IFS. Furthermore, if a non-empty

compact subset F of D satisfies

F =
m⋃
i=1

Si(F )

then we call F the attractor of the IFS. It is important to note that an IFS uniquely

determines its attractor.

We note here that if equality holds in (1.5) then the function S actually trans-

forms sets into geometrically similar sets and so we have the following closely related

definition.

Definition 1.3.4. The transformations S1, . . . , Sm : Rn → Rn are considered simi-

larities, or contracting similarities if

|Si(x)− Si(y)| = ci|x− y|

for x, y ∈ Rn and 0 < ci < 1. Here ci is called the ratio of Si, and the attractor of

a collection of similarities is referred to as a self-similar set. We often refer to a

similarity with ratio ci as a ci-similarity for convenience.

Similarities play an important role in the relationship between p-moduli and p-

Poincaré inequalities. Some standard examples of self-similar sets are the middle-

thirds Cantor set, both the standard Sierpiński carpet and the Sierpiński triangle,

as well as the von Koch curve. References for these examples are easily found but

Falconer describes them all and more in the Introduction to [7].
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We will soon introduce a theorem that allows us to easily calculate Hausdorff

dimension using very limited information about the scaling ratios used in the con-

struction of the IFS. In order to make a connection between the dimension of a set

and the scaling ratios used in the construction of the set we must first ensure that the

following condition holds. If we consider the attractor F and its components Si(F ),

this condition ensures that the components do not have ‘too much’ overlap.

Definition 1.3.5. Assuming the transformations Si, . . . , Sm are similarities, we say

they satisfy the open set condition if there exists a non-empty open, bounded set

V such that

V ⊃
m⋃
i=1

Si(V ),

and this union is disjoint.

So we are now in a position to state the primary theorem of this section. Although

we do not prove it here, the theorem and its detailed proof can be found in [7]

under Theorem 9.3. As stated before, this is the theorem that allows us to find the

dimension of many self similar fractals, and in particular what we will use to calculate

the dimension of the self similar Sierpiński carpets defined in the next section.

Theorem 1.3.6. Suppose that the open set condition holds for the similarities Si on

Rn with ratios 0 < ci < 1 for 1 ≤ i ≤ m. If F is the attractor of the IFS S1, . . . , Sm,

i.e.

F =
m⋃
i=1

Si(F ),

then dimH F = s, where s satisfies

m∑
i=1

csi = 1.

In fact, we also get that for this value of s, 0 < Hs(F ) <∞.
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Chapter 2

Poincaré Inequalities, Modulus,
and Capacity

2.1 Poincaré Inequalities

We begin this chapter by stating the classical Poincaré inequality for Ω, a subset of

Rn satisfying some specific conditions, followed by a proof outlining the validity of

such an inequality on the Sobolev space W 1,p(U). We then extend the definition to

a Poincaré inequality defined on balls and outline a proof having similar results but

this time on the Sobolev space W 1,p(B(x, r)).

We then move on to define two important notions, modulus and capacity, both of

which are shown to be instrumental when proving the validity of Poincaré inequali-

ties. We will also show that on metric measure spaces that are geodesic and proper,

modulus and capacity both provide the same numerical value. Using modulus to

prove results about Poincaré inequalities is a common technique and some examples

follow in this chapter.

The final section of Chapter 2 presents the most important theorem of this thesis,

Theorem 2.4.1 which relates the non-triviality of the p-modulus to the validity of the

p-Poincaré inequality on doubling metric measure spaces. Following this theorem we

present an example with the goal of developing in the reader some form of intuition

concerning this relationship. Before proving Theorem 2.4.1 in the last section of
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the chapter, we state and prove a proposition that relates Poincaré inequalities and

modulus on complete, doubling, metric measure spaces.

We must first introduce some notation so that the Poincaré inequality can be

stated in a less complicated format. For a metric measure space (X, d, µ) and a subset

E ⊂ X of positive measure, we denote the mean value of a function u : E → R

by,

uE = −
∫
E

u dµ =
1

µ(E)

∫
E

u dµ.

This definition will be used in a variety of ways throughout this thesis; however the

definition should be clear from the context of use.

2.1.1 Poincaré Inequalities on Rn

We begin our analysis of Poincaré inequalities with the more intuitive case of Rn, and

discuss the existence of Poincaré inequalities in this setting. We will be proving the

validity of the Poincaré inequality on the Sobolev space W 1,p(Ω) defined in Chapter

1, where Ω is a subset of Rn satisfying specific conditions.

Theorem 2.1.1 (Classical Poincaré Inequality). Take 1 ≤ p ≤ ∞, and consider

Ω ⊂ Rn a bounded, connected, open subset with a C1 boundary ∂Ω. Then there exists

a constant C that depends only on Ω, n, and p, such that

||u− uΩ||Lp(Ω) ≤ C||∇u||Lp(Ω)

for every function u ∈ W 1,p(Ω).

Proof. The proof of this theorem from [6] is a proof by contradiction, rather than a

proof using modulus as seen in the rest of this paper. For the sake of contradiction

we begin by assuming that for each integer value k = 1, 2, . . . we have a function

uk ∈ W 1,p(Ω) such that

||uk − (uk)Ω||Lp(Ω) > k||∇uk||Lp(Ω). (2.1)
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We renormalise this function by defining

vk =
uk − (uk)Ω

||uk − (uk)Ω||Lp(Ω)

for k ≥ 1, so that (vk)|Ω = 0 and ||vk||Lp(Ω) = 1. Therefore by (2.1) we get that

||∇vk||Lp(Ω) <
1

k
(2.2)

and so the functions {vk}k≥1 are bounded in W 1,p(Ω). Therefore knowing that the

Rellich-Kondrachov Theorem 1.2.3 holds, we get as a consequence that there must

exist a subsequence {vkj}j≥1 ⊂ {vk}k≥1 and a function v ∈ Lp(Ω) such that

vkj → v ∈ Lp(Ω)

Taking limits we get that vΩ = 0 and ||v||Lp(Ω) = 1. However, we know that for every

i = 1, 2, . . . , n and ϕ ∈ C∞0 (Ω), we have∫
Ω

vϕxi dx = lim
kj→∞

∫
Ω

vkjϕxi dx

= − lim
kj→∞

∫
Ω

vkj ,xiϕ dx

= 0 by (2.2).

Therefore, v ∈ W 1,p(Ω) and ∇v = 0 a.e. Furthermore, because Ω is connected we can

conclude v is constant, and since vΩ = 0 we must have that v ≡ 0. This contradicts

||v||Lp(Ω) = 1 and we are done.

We will now consider the case where we restrict the set U to a ball B = B(x, r).

Corollary 2.1.2 (Poincaré inequality for a ball). Assume 1 ≤ p ≤ ∞. Then there

exists a constant C, depending only on n and p, such that

||u− uB||Lp(B(x,r)) ≤ Cr||∇u||Lp(B(x,r)) (2.3)

for each ball B = B(x, r) ⊂ Rn and each function u ∈ W 1,p(B(x, r)).
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Proof. First, we know that for Ω = B0 = B(0, 1) equation (2.3) follows from Theo-

rem 2.1.1. If u ∈ W 1,p(B(x, r)), define

v(y) := u(x+ ry), y ∈ B(0, 1),

so that v ∈ W 1,p(B(0, 1)). We also have that

||v − vB0||Lp(B(0,1)) ≤ C||∇v||Lp(B(0,1)).

We write this in terms of u;(∫
B(0,1)

∣∣∣∣u(x+ ry)−−
∫
B(0,1)

u(x+ ry) dy

∣∣∣∣p dy)1/p

≤ C

(∫
B(0,1)

|r∇u(x+ ry)|p dy
)1/p

,

and then by a change of variable we get(∫
B(x,r)

∣∣∣∣u(t)−−
∫
B(x,r)

u(t) dt

∣∣∣∣p dt)1/p

≤ Cr

(∫
B(x,r)

|∇u(t)|pdt
)1/p

,

which completes the proof.

2.1.2 Poincaré Inequalities on Metric Measure Spaces

We will now state the Poincaré inequality for metric measure spaces. This is the vari-

ation used by Mackay, Tyson and Wildrick in [15], and which we will use throughout

Chapter 3. It is what we call a weak p-Poincaré inequality as the integral on the

right is now taken over the dilated ball λB = B(x, λr) where λ ≥ 1.

Definition 2.1.3. For p ≥ 1, a metric measure space (X, d, µ) is said to support a

weak p-Poincaré inequality if there exist constants C, λ ≥ 1 such that for any

continuous function u : X → R with upper gradient ρ : X → [0,∞], the following

inequality

−
∫
B

|u− uB| dµ ≤ Cr

(
−
∫
λB

ρp dµ

)1/p

(2.4)

holds for every ball B = B(x, r) ⊂ X.
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This weak Poincaré inequality can be derived from an inequality similar to (2.3)

(for metric measure spaces) by an application of Holder’s inequality:∫
B

|u− uB| dµ ≤
(∫

B

|u− uB|p dµ
)1/p

µ(B(x, r))1−1/p ≤ Cr

(∫
B

ρp dµ

)1/p

µ(B(x, r))1−1/p.

If we take integral averages then

−
∫
B

|u− uB| dµ ≤ Cr

(
−
∫
B

ρp dµ

)1/p

.

2.2 Moduli of Curve Families

We will now describe one of the fundamental tools used in this paper, that of p-moduli

of curve families. Readers should note that all of these definitions can be extended

to locally rectifiable curves as well.

Definition 2.2.1. Given a collection Γ of paths in X, the set of admissible functions

of Γ, denoted A(Γ), is the set of all Borel functions ρ : X → [0,∞] such that for any

γ ∈ Γ we get ∫
γ

ρ ds ≥ 1. (2.5)

For 1 ≤ p ≤ ∞, the p-modulus of Γ is the value

modpΓ = inf
ρ∈A(Γ)

∫
X

ρp dµ. (2.6)

Here we must note that if A(Γ) is empty (for example if Γ contains a constant

path), then modp(Γ) = ∞. Also, we will sometimes be interested in considering

admissible functions where ρ is perhaps a Lipschitz function satisfying inequality (2.5)

rather than just a Borel function. If F(X) is a collection of Borel functions then

modp(Γ;F(X))

refers to the same definition of modulus except we only consider ρ ∈ F(X) satisfy-

ing (2.5) as admissible functions. For the sake of simplicity, if E and F are disjoint
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subsets of X, then we define

modp(E,F ) = modpΓ,

where Γ is the collection of all curves in X connecting the two sets E and F. Fur-

thermore, we write modp(x, y) when it is clear from the context that we mean

modp({x}, {y}) for x, y ∈ X.

The notion of p-moduli of curve families allows us to think of curve families with

non-trivial moduli as ‘thick’ curve families and so we can prove Poincaré inequalities

in a geometric way. Not only can this be a more intuitive a tool for some, but it

is also an extremely powerful one as we will see later in this chapter. We will now

summarize some basic properties of p-moduli which appear in Proposition 4.1.6 of

[14].

Proposition 2.2.2. Let (X, d, µ) be a metric measure space and let p ≥ 1. Then

(i) modp∅ = 0;

(ii) if Γ1 ⊂ Γ2 then modpΓ1 ≤ modpΓ2;

(iii) modp ∪i Γi ≤
∑

i modpΓi for any countable set of collections Γi;

(iv) if p > 1 and Γ1 ⊂ Γ2 ⊂ Γ3 ⊂ · · · , then modp∪iΓi = limi→∞modpΓi;

(v) a curve family Γ has p-modulus zero if and only if there is ρ ∈ Lp(X) such that∫
γ
ρ ds =∞ for all locally rectifiable curves γ ∈ Γ;

(vi) if Γ1,Γ2 are curve families with the property that each curve in Γ1 contains a

sub-curve in Γ2, then modpΓ1 ≤ modpΓ2;

Note that properties (i), (ii), and (iii) show that modp is an outer measure on the

collection of all rectifiable curves. The remaining three properties serve to further

develop the reader’s intuition and understanding of p-moduli, but will not be proved

in this paper.
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The following lemma from [14] states that the p-moduli of a family of curves is com-

parable to the p-moduli of the image of that family under a similarity transformation.

Mackay and Tyson use this lemme to prove a proposition similar to Proposition 3.2.6

however because the modified Sierpiński carpets are not self-similar we are not able

to make use of it. The utility of such a proposition when computing modulus on

self-similar fractals should certainly be noted though.

Lemma 2.2.3. If S is a c-similarity of a Q-regular metric measure space (X, d, µ)

then there is a constant C > 0 such that

1

C
cQ−pmodpΓ ≤ modpS(Γ) ≤ CcQ−pmodpΓ

for every curve family Γ and every p ≥ 1.

2.3 Capacity

Here we will define the notion of p-capacity. It is very similar to the definition of

p-moduli; however, the infimum is taken over a different set of functions. We recall

that in the definition of p-moduli, equation (2.6), the infimum was taken over all

admissible functions defined as those satisfying inequality (2.5). Contrast that to the

following definition of capacity:

Definition 2.3.1. For distinct subsets E and F of a metric measure space (X, d, µ),

and for p ≥ 1, the p-capacity of the pair (E,F) is

capp(E,F ) = inf

∫
X

ρp dµ, (2.7)

where the infimum is taken over all upper gradients of each real valued Borel function

u that satisfies u|E ≤ 0 and u|F ≥ 1.

It should be noted that the same number is obtained in (2.7) if we say u|E =

0, u|F = 1 and 0 ≤ u ≤ 1. For more information on this please see [11]. As be-

fore, we will often write capp(x, y) when it is clear from the context that we mean
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capp({x}, {y}) for x, y ∈ X. We also use the notation

capp(E,F ;F(X))

to refer to capacity where we only consider functions u ∈ F(X) when calculating the

infimum in (2.7), where F(X) is any collection of Borel functions. If necessary we

include the measure in the notation for modulus and capacity as follows;

modp(E,F ;µ) and capp(E,F ;µ).

The following proposition will relate p-capacity to p-moduli if we restrict ourselves

to spaces that are geodesic and proper. For the sake of this paper this is extremely

useful, allowing us to extend results proved using capacity to results about moduli,

which is very helpful in verifying the validity of Poincaré inequalities.

Proposition 2.3.2. For distinct subsets E and F of a geodesic and proper metric

measure space (X, d, µ) with µ(X) <∞, we have that

modp(E,F ) = capp(E,F ) = capp(E,F ;Lip0(X)).

Proof. First we note that the equality

modp(E,F ) = capp(E,F )

is valid for any sets E and F in a metric space and as seen in Theorem 7.31 of [9], can

be verified in the following way. We take u a function on X such that u|E ≤ 0 and

u|F ≥ 1, and note that if ρ is an upper gradient of u we have

1 ≤ |u(x)− u(y)| ≤
∫
γ

ρ ds

for all rectifiable curves γ joining x ∈ E to y ∈ F . This means that any ρ considered

when calculating capacity is also an admissible function for Γ, the family of curves

joining E and F. Therefore because both definitions are infimums we get that

modp(E,F ) ≤ capp(E,F ).
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Now we must show the opposite inequality. To do so we consider ρ an admissible

function for Γ joining E and F, then define

u(x) = inf

∫
γx

ρ ds,

where now the infimum is taken over all curves joining the set E and the point x ∈ X.

Then we know u|E = 0, u|F ≥ 1, and also that ρ is an upper gradient of u. So now

we have that any admissible function ρ for Γ is actually the upper gradient of some

function u considered in the calculation of capacity. By the same reasoning as before

we get that

capp(E,F ) ≤ modp(E,F ),

and so equality holds.

Recalling that the definition of capacity involves computing the infimum, we note

that Lip0(X) is a subset of all Borel functions, and so the inequality

capp(E,F ) ≤ capp(E,F ; Lip0(X))

holds. Therefore, to finish the proof we need only to show

capp(E,F ; Lip0(X)) ≤ modp(E,F ),

and we will be done. It is possible actually to show that equality holds here, and this

follows directly from the following two Lemmas whose proofs will not be included in

this paper, but can be found in [12].

Lemma 2.3.3. Let E and F be disjoint subset of a proper metric measure space

(X, d, µ) with µ(X) <∞. Then

capp(E,F ; Lip0(X)) = capp(E,F ; Lip(X)).

Lemma 2.3.4. Let E and F be disjoint compact subsets of a geodesic and proper

metric measure space (X, d, µ) with µ(X) <∞. Then

capp(E,F ; Lip(X)) = modp(E,F ).
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So we have shown that on geodesic and proper metric measure spaces of finite

measure the notions of modulus and capacity coincide. Because of this equality when

we want to estimate modulus it is often more convenient to consider capacity instead.

We have also shown that even if we only consider Lipschitz function or even only the

Lipschitz functions with compact support, the capacity still retains the same value.

2.4 Relating p-Moduli and p-Poincaré Inequalities

As stated in the introduction, it is known that there is a very fundamental relationship

between the validity of a p-Poincaré inequality on a metric space and the non-triviality

of the p-modulus. Before discussing this dependancy, we will first state a theorem

outlining this:

Theorem 2.4.1. Fix p ≥ 1. Let (X, d, µ) be a complete, doubling metric measure

space. Then (X, d, µ) admits a p-Poincaré inequality if and only if there exist con-

stants C1 > 0 and C2 ≥ 1 so that

d(x, y)1−p ≤ C1modp(Γxy;µ
C2
xy ) (2.8)

for every pair of distinct points x, y ∈ X.

To understand this relationship between Poincaré inequalities and modulus one

can think of trying to find for any two distinct points x and y, a “large” family of

curves joining the two, such that the length of the curves is comparable to the distance

between the points. If this is possible then the modulus is said to be non-trivial and as

a result the spaces supports a Poincaré inequality. In general too narrow of a passage

can cause problems for the Poincaré inequality. Narrow passages force the constant

to become larger and larger and in extreme cases will cause it to fail. When trying

to construct a counterexample, any tunnel that becomes more and more narrow will

cause the Poincaré inequality to fail
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To further illustrate this concept and also to emphasize why these Sierpiński carpet

examples are so interesting, we consider a classic but interesting example in Rn where

the Poincaré inequalities will fail for any 1 ≤ p ≤ n.

Example 2.4.2. (Bow-tie) Let n ≥ 2 and denote x ∈ Rn as x = (x1, x2, . . . , xn). Let

X+ = {x ∈ Rn;xj ≥ 0, j = 1, . . . , n}, (2.9)

X− = {x ∈ Rn;xj ≤ 0, j = 1, . . . , n},

equipped with the Euclidean metric and the Lebesgue measure.

Then if 1 ≤ p ≤ n we get thatX = X+∪X− does not support a p-Poincaré inequal-

ity even though on their own both X+ and X− each support 1-Poincaré inequalities.

The problem with the union is that any curves between the two subspaces must pass

through the origin. The proof of these statements as well as more information on this

topic in general can be found in Chapter 5 of [2].

To understand Theorem 2.4.1 we need to first examine the notation involved. In

this equation, modp(Γxy;µ
C
xy) represents the p-modulus of the family of curves Γxy

joining x and y, and the measure µCxy is defined as follows:

µCxy(E) =

∫
E∩BC

xy

d(x, z)

µ(B(x, d(x, z)))
+

d(y, z)

µ(B(y, d(y, z)))
dµ(z), (2.10)

with BC
xy = B(x,Cd(x, y)) ∪ B(y, Cd(x, y)). We say that µCxy is the symmetric Riesz

kernel of µ at x and y, and note that µCxy is absolute continuous with respect to µ.

Furthermore, if µ is doubling, we get that µCxy(X) < ∞. For more information on

this see [9] and [12]. Returning to our interpretation of Theorem 2.4.1, we recall that

by definition

modp(Γ; ν) := inf

∫
ρpdν

for a Borel measure ν on (X, d), and the infimum is taken over all admissible Borel

functions ρ, those where ∫
γ

ρds ≥ 1
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for any rectifiable curve γ ∈ Γ. The proof of this theorem is presented at the end of

this chapter and more information on this topic can be found in [12]. The primary

use of this theorem will be in proving the following:

Proposition 2.4.3. Let (X, d, µ) be a complete, doubling metric measure space. If

(X, d, µ) supports a p-Poincaré inequality, then modpΓ > 0 for some curve family Γ.

Proof of Proposition 2.4.3. By Theorem 2.4.1 we know that because (X, d, µ) sup-

ports a p-Poincaré inequality we must have that

modp(Γxy;µ
C
xy) > 0

for any distinct points x, y ∈ X, and C = C2 from Theorem 2.4.1. So we fix two

such points x, y, let r = d(x, y), and then fix ε > 0 such that modp(Γxy;µ
C
xy) ≥ ε.

Now define

A := B(x,
2

3
r) \B(x,

1

3
r).

Let ΓA be the family of curves joining B(x, 2
3
r) to B(x, 1

3
r). Then we know that if

σ ∈ Γxy is a curve joining x and y, there must be a curve γ ∈ ΓA such that γ is a

subcurve of σ. Therefore, ∫
γ

ρ ds =

∫
σ

ρ · XA ds

This means that if ρ is admissible for ΓA we know ρ0 = ρ · XA is admissible for Γxy.

So for ρ ∈ ΓA we get that

inf
ρ∈ΓA

∫
A

ρp dµCxy = inf
ρ∈ΓA

∫
X

(ρ · XA)p dµCxy

≥ inf
ρ∈Γxy

∫
X

ρp0 dµ
C
xy

≥ ε. (2.11)

Now we consider the relationship between µCxy|A and µ|A. First note that because

C ≥ 1 we have that A ⊂ BC
xy and so BC

xy ∩ A = A. In addition, we have that for

z ∈ A,

d(x, z) ≤ 2

3
r, d(y, z) ≤ 5

3
r,
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and

µ(B(x,
1

3
r)) ≤ µ(x, d(x, z)).

Then, we take λ large enough to ensure

B(x,
1

3
r) ⊂ B(y, λd(y, z)).

Now we know (X, d, µ) is doubling so there is a value CD depending on the doubling

constant, such that

CDµ(B(y, z)) ≥ µ(B(y, λd(y, z)))

≥ µ(B(x,
1

3
r)).

Putting this all together we get the following:

µCxy(E)|A = µCxy(E ∩ A) ≤
∫
E∩A

2
3
r

µ(B(x, 1
3
r))

+
5
3
r

CDµ(B(x, 1
3
r))

dµ(z)

≤
CD

2
3
r + 5

3
r

CDµ(B(x, 1
3
r))

µ(E ∩ A)

≤ C̃µ(E)|A (2.12)

where here C̃ is a constant depending on CD, r, and x all of which are fixed. From

this and (2.11) we conclude that there is a δ > 0 such that for any ρ ∈ ΓA

δ ≤
∫
A

ρp dµ.

Therefore we get that modpΓA ≥ δ > 0.

2.5 Proof of Theorem 2.4.1

We would now like to prove Theorem 2.4.1. The statement follows directly from a

result proved by Keith in [12] which is stated next. It is not a direct proof; however

the steps taken by Keith in proving Theorem 2.5.1 serve to illustrate the complexity of

the relationship between Poincaré inequalities and modulus, by breaking it down into
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a series of smaller proofs. These proofs rely on the results stated in Propositions 2.5.2,

and 2.5.3 which we include without proofs, but readers can find more information on

the subject in [12].

Theorem 2.5.1. Let p ≥ 1 and let (X, d, µ) be a complete, geodesic, and proper

metric measure space with µ doubling, and such that every ball in X has measure in

(0,∞). Then the following are equivalent:

1. (X, d, µ) admits a weak p-Poincaré inequality (2.4) for all measurable functions,

2. (X, d, µ) admits a weak p-Poincaré inequality (2.4) for all compactly supported

Lipschitz functions and their compactly supported Lipschitz upper gradients,

3. there exists constants C, λ ≥ 1, such that

−
∫
B

|u− uB| dµ ≤ CdiamB

(
−
∫
λB

(Lip u)p dµ

)1/p

, (2.13)

for every u ∈ Lip0(X) and for every ball B in X;

4. there exists a constant C ≥ 1 such that

d(x, y)1−p ≤ Cmodp(Γxy;µC
xy) (2.14)

for every pair of distinct points x, y ∈ X.

In order to prove Theorem 2.4.1 we need only to prove that (1) ⇐⇒ (4), but to

do this we will need to prove that (1) ⇒ (3) ⇒ (2) ⇒ (4) ⇒ (1). As stated in the

introduction to this chapter, the chain of implications here shows us in more detail

why this relationship holds. First we will need the following propositions.

Proposition 2.5.2. Let p ≥ 1, and let (X, d, µ) be a geodesic metric measure space

with µ doubling. Suppose u is a real-valued continuous function, ρ is a real-valued
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Borel function, both on X, satisfying a weak p-Poincaré inequality (2.4) for some

C, λ ≥ 1, and for all balls B ∈ X. Then there exists a value L ≥ 1 such that

|u(x)− u(y)|p ≤ Ld(x, y)p−1

∫
X

ρp dµC2
xy (2.15)

for all distinct points x, y ∈ X.

Although stated by Keith, Proposition 2.5.2 is largely credited to Heinonen and

Koskela’s work in [10], and more information is also available in [9].

Proposition 2.5.3. Let p ≥ 1, and let (X, d, µ) be a metric measure space with

µ doubling. Then if there is a value L ≥ 1 such that for every pair of functions

u : X → [0,∞] and ρ : X → [0,∞], where u is measurable and ρ is an upper gradient

for u, equation (2.15) holds for µ almost every x, y ∈ X, then (X, d, µ) admits a

p-Poincaré inequality for all measurable functions, with constants depending on L, p,

and the doubling constant of µ.

For more information on the preceding proposition see Theorem 9.5 of [9] and

Proposition 11 of [12]. We are now in a position to prove proposition 2.5.1.

Proof of Theorem 2.5.1. Proof that (1) ⇒ (3). Here we need only refer to Claim 1.1.2,

where we showed that if u ∈ Lip(X), then Lip u is an upper gradient for u.

Proof that (3) ⇒ (2). Assume (3) holds, and let u, ρ ∈ Lip(X) such that ρ is an upper

gradient of u. Then to prove (2) we need only to show that

Lip u ≤ ρ.

Let γ be a geodesic in X that connects two distinct points x, y ∈ X. Then since ρ is

an upper gradient of u by definition we get

|u(x)− u(y)| ≤
∫
γ

ρ ds,
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Then because X is a geodesic space and therefore a length space, we have that

d(x, y) = `(γ) which gives us:

|u(x)− u(y)|
d(x, y)

≤ 1

`(γ)

∫
γ

ρ ds.

Taking x→ y and knowing that ρ is continuous, we can see that Lip u ≤ ρ.

Proof that (2) ⇒ (4). Here we assume (2) holds for distinct x, y ∈ X, and restrict

ourselves to functions u, ρ ∈ Lip0(X) such that ρ is an upper gradient for u, u(x) = 0,

and u(y) = 1. We apply Proposition 2.5.2 which says that if u and ρ satisfy a

p-Poincaré inequality (2.4), we must have that equation (2.15) holds so we know

d(x, y)1−p ≤ C

∫
X

ρp dµCxy.

Therefore we get that

d(x, y)1−p ≤ Ccapp(x, y; Lip0(X), µC
xy).

Recalling from Proposition 2.3.2 the relationship between p-capacity and p-modulus,

and noting that µCxy(X) <∞, we conclude that (4) holds.

Proof that (4) ⇒ (1). Here we let u be a real-valued measurable function on X, and

let ρ be an upper gradient for u. Then for distinct x, y ∈ X, such that u(x) 6= u(y),

we define ū by

ū(z) =

∣∣∣∣u(z)− u(x)

u(x)− u(y)

∣∣∣∣ , z ∈ X,

and then we define ρ̄ by

ρ̄(z) =
ρ(z)

|u(x)− u(y)|
, z ∈ X.

We would like to show that ρ̄ is actually an upper gradient of our newly defined ū.
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To do this we take z1, z2 two distinct points in X to get

|u(z1)− u(z2)| =
∣∣∣∣u(z1)− u(x)

u(x)− u(y)
− u(z2)− u(x)

u(x)− u(y)

∣∣∣∣
=

1

|u(x)− u(y)|
|u(z1)− u(z2)|

≤ 1

|u(x)− u(y)|

∫
γ

ρ(z) ds (2.16)

for all rectifiable curves joining z1 and z2, and so ρ̄ is an upper gradient of ū. It

can be easily seen that ū(x) = 0 and ū(y) = 1. We can apply Proposition 2.3.2 and

condition (4) to get

d(x, y)1−p ≤ Ccapp(x, y;µC
xy). (2.17)

Therefore by the definition of capacity we get

d(x, y)1−p ≤ C

∫
X

ρ̄p dµCxy. (2.18)

If we re-write this in terms of u and ρ we get

d(x, y)1−p ≤ C

|u(x)− u(y)|p

∫
X

ρp dµCxy. (2.19)

and after rearranging we get exactly (2.15). Now applying Proposition (2.5.3) we get

that X admits a p-Poincaré inequality for all measurable functions, which completes

the proof.
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Chapter 3

Analysis on Modified Sierpiński
Carpets

Here we discuss a general class of Sierpiński-type carpets as developed by Mackay,

Tyson, and Wildrick in [15]. They are all doubling metric measure spaces that are

homeomorphic to the standard Sierpiński carpet. Each example is derived from a

subset of the plane with the Euclidean metric and Lebesgue measure. As noted

previously, they are the first examples of spaces that support Poincaré inequalities

for a renormalization of the Lebesgue measure that are also compact subsets of the

Euclidean space with empty interior.

We begin in the first part of this chapter with the construction of the carpets

and then proceed to introduce some definitions and notation specific to this topic. In

the second section we introduce and explain the probability measure defined in [15],

which is a re-normalization the Lebesgue measure that is shown to posses some very

interesting properties.

In Chapter 2 we stated Proposition 2.4.3 which concluded that if a complete

doubling metric measure space supports a p-Poincaré inequality then there must be

some curve family that has non-trivial p-modulus. We present a new proposition in

this chapter which states that on the modified Sierpiński carpets presented here, it

suffices to only consider curve families joining either the left and the right, or top and

bottom edges of a subcarpet.
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As discussed in the introduction, each carpet depends entirely on the chosen se-

quence a and so we would like to know what impact these sequences have on the

geometry of the resulting space. In their paper discussing these carpets Mackay,

Tyson, and Wildrick [15] explore this topic and achieve some very interesting results

relating a sequences existence in specific `q spaces and the validity of the p-Poincaré

inequality on the resulting carpet Sa. We present these results and their proofs in the

last section of this chapter as they are very good examples of how to use modulus to

prove results about Poincaré inequalities.

3.1 The Construction

We fix a sequence

a = (a1, a2, a3, . . .),

where each am ∈ {1/3, 1/5, 1/7, . . .} (here am must be the reciprocal of an odd integer

strictly greater than one). Each sequence then defines a corresponding Sierpiński

carpet Sa which we will now describe. We begin with the unit square T0 = [0, 1]2 and

starting with m = 1 iteratively apply the following steps:

1. Divide each current square into a−2
m essentially disjoint closed sub-squares of

equal size, where m represents the current step of the construction.

2. Remove the middle sub-square from each square.

3. Increase the parameter m by 1.

Let Tm represent the collection of all the stage m squares, and then define the

level m precarpet as

Sa,m :=
⋃
T∈Tm

T, m ≥ 0.
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The corresponding Sierpiński carpet Sa is then the intersection of the pre-carpets:

Sa :=
⋂
m≥0

Sa,m.

A level m subcarpet is the intersection Sa∩T for some T ∈ Tm, i.e. it is the modified

Sierpinski carpet constructed in the square T using the tail end of the sequence

(am, am+1, am+2, . . . ). The standard Sierpiński carpet can be constructed using this

method with a = (1/3, 1/3, 1/3, . . .), and for any a the corresponding set Sa is a

compact, connected, locally connected subset of the plane with empty interior and

containing no local cut points. This set Sa is in fact homeomorphic to the standard

Sierpiński carpet and so they are referred to as carpets [15].

Of special interest are the sets with a fixed scaling ratio which will be denoted

S1/(2k+1) for k ∈ N. These represent the self-similar carpets Sa where a is the constant

sequence
(

1
2k+1

, 1
2k+1

, 1
2k+1

, . . .
)
. Each carpet is then the attractor formed by, at each

stage, dividing the squares into (2k + 1)2 sub-squares with ratio ci = 1
(2k+1)

and then

removing the middle square. Taking V as the interior of the unit square we get that

the open set condition, Definition (1.3.5), is satisfied, and so by Theorem 1.3.6 we

get that the Hausdorff dimension of the set is given by Qk satisfying

((2k + 1)2 − 1)

(
1

2k + 1

)Qk

= 1,

hence

Qk =
log((2k + 1)2 − 1)

log(2k + 1)
=

log(4k2 + 4k)

log(2k + 1)
< 2. (3.1)

It is also quite interesting to note that S1/(2k+1) is in fact Ahlfors regular in this

dimension. To demonstrate this we must first introduce a probability measure on our

carpets and so the proof will follow.

3.2 Basic Properties of the Carpets Sa

We will now quickly cover some of the basic properties of the general carpets Sa, and

describe the natural measure that we will be using on these sets. To begin, recall

34



that Tm represents the collection of all the stage m squares, and so for each m, Tm

contains
m∏
j=1

(a−2
j − 1)

essentially disjoint closed squares, each with side length

sm :=
m∏
j=1

aj.

3.2.1 The Natural Probability Measure on Sa

We first define a measure µm on [0, 1]2 which is the Lebesgue measure restricted

to our pre-carpets Sa,m and renormalized to have total measure one. The sequence

of measures (µm) then converges weakly to a probability measure µ having as its

support the carpet Sa [15]. We can also see that for each square T ∈ Tm of size sm,

we have µn(T ) = µm(T ) for all n ≥ m because later steps in the construction will

only redistribute the mass into sub-squares contained in T . We therefore have the

following relationship:

µ(T ) = µm(T ) =
m∏
j=1

(a−2
j − 1)

−1
=: vm. (3.2)

Now we examine the basic properties of µ, and the next proposition will really

begin to demonstrate the relationship between the behaviour of the sequence a and

the properties it imposes on the corresponding space (Sa, d, µ). The notation here is

taken from [15]; writing a . b means that there exists C > 0 such that a ≤ Cb, where

C depends only on the relevant data.

Proposition 3.2.1. (Proposition 2, [15]) The space (Sa, d, µ) has the following prop-

erties:

(i) For any a, µ is a doubling measure.
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(ii) For any a, we have µ(B(x, r)) & r2 for all x and r ≤ 1.

(iii) If a ∈ c0, then for any Q < 2 we have µ(B(x, r)) . rQ for all x and r > 0,

hence dimSa = 2.

(iv) If a ∈ `2, then µ is comparable to Lebesgue measure with a constant depending

only on ||a||2. Moreover, in this case, µ is an Ahlfors 2-regular measure on Sa.

(v) If a = (am) is eventually constant (and equal to 1
2k+1

), then µ is comparable to

Hausdorff measure HQk and is an Ahlfors Qk-regular measure on Sa.

To prove this proposition we require the following definitions which will allow us

to further understand the relationship between the steps in the construction of Sa

and the side length of our squares. So for x ∈ Sa and r > 0 we define m(x, r) and

m(r) in the following way:

1. m(x, r) is the smallest integer m such that there is a T ∈ Tm with x ∈ T ⊂

B(x, r);

2. m(r) is the smallest integer m such that sm ≤ r.

We will also require the following:

Lemma 3.2.2. For any x and r, m(
√

2r) ≤ m(x, r) ≤ m( r√
2
) + 1.

Proof of Lemma. Take T ∈ Tm(x,r) so that T ⊂ B(x, r). Then

√
2sm(x,r) = diamT ≤ diamB(x, r) ≤ 2r.

So we get that sm(x,r) ≤
√

2r, but we know that by definition, m(
√

2r) is the smallest

integer such that sm ≤
√

2r, therefore

m(
√

2r) ≤ m(x, r).
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Now, we can always find a T ∈ Tm( r√
2

)+1 such that x ∈ T . Knowing that m( r√
2
) is

the smallest integer with

sm( r√
2

) ≤
r√
2
,

we get that m( r√
2
) + 1 is the smallest integer such that

sm( r√
2

)+1 ≤ (
r√
2

)(
1

3
).

This means

diamT ≤ r

3
,

and so T ⊂ B(x, r). But m(x, r) is the smallest integer m such that T ∈ Tm with

x ∈ T ⊂ B(x, r) so we get that m(x, r) ≤ m( r√
2
) + 1.

Claim 3.2.3. For all r > 0, m(r) ≤ m(2r) + 1.

Proof of Claim. We assume not, so that m(r) > m(2r)+1 which by definition implies

m(r) ≥ m(2r) + 2, and so m(r) − 1 ≥ m(2r) + 1. Therefore we get the following

string of inequalities:

r < sm(r)−1 (3.3)

≤ sm(2r)+1

≤ 1

3
sm(2r)

≤
(

1

3

)
(2r)

which is obviously a contradiction. The first step follows from the definition of m(r),

the second because if n ≥ m we know that sn ≤ sm, and then by definition we know

that Sm(2r) ≤ 2r.

Claim 3.2.4. For all r > 0, m(r) ≤ − log2(r) + 1
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Proof of Claim. Take n to be the largest integer such that 2nr ≤ 1. Then since

m(1) = 0 we get that:

m(r) ≤ m(2r) + 1 ≤ . . . ≤ m(2n+1r) + n+ 1 ≤ m(1) + n+ 1 = n+ 1,

and we then have the following string of equivalences:

2nr ≤ 1⇐⇒ log2(2nr) ≤ 0

⇐⇒ n+ log2(r) ≤ 0

⇐⇒ n ≤ − log2(r)

⇐⇒ n+ 1 ≤ − log2(r) + 1.

Therefore we have that m(r) ≤ n+ 1 ≤ − log2(r) + 1 as desired.

The last tool we will require to prove Proposition 3.2.1 is as follows:

Proposition 3.2.5 (Proposition 3, [15]). For each x ∈ Sa and 0 < r ≤ 1,

µ(B(x, r)) � h(r) := r2

m(r)∏
j=1

(
1

1− aj2

)
. (3.4)

Proof. We wish to bound µ(B(x, r)) from above and so we cover B(x, r) by squares

from Tm(r). Knowing that each square has side length sm(r), B(x, r) can then be

covered by a larger square of sidelength 2r + 2sm(r) formed as a collection of squares

in Tm(r). The number of squares needed to cover B(x, r) is then

(2r + 2sm(r))
2

s2
m(r)

.

Recalling that vm(r) is the renormalized measure of a single square T ∈ Tm(r), we get
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that:

µ(B(x, r)) ≤
(2r + 2sm(r))

2

sm(r)
2

· vm(r) (3.5)

≤ (4r)2

s2
m(r)

m(r)∏
j=1

(
1

a−2
j − 1

)

=
16r2

s2
m(r)

m(r)∏
j=1

(
a2
j

1− a2
j

)

≤ 16r2

s2
m(r)

m(r)∏
j=1

aj
2

m(r)∏
j=1

(
1

1− a2
j

)

≤ 16r2

s2
m(r)

· s2
m(r)

m(r)∏
j=1

(
1

1− a2
j

)
. h(r)

The proof required to bound µ(B(x, r)) from below depends on the size of r and

so must be split into two cases. The value 100 used to differentiate the cases in this

proof is a loose bound. The first case deals with values of r which relative to the side

length sm(x,r) are small, and the second case where r is large enough so that we can

easily bound µ(B(x, r)) from below by finding a square inside the ball with positive

measure. It can also be seen that although sufficient for this proof, some of the other

bounds used here are also loose.

Case 1. r ≤ 100sm(x,r)

We know B(x, r) must contain at least one square of side sm(x,r) and so we know

µ(B(x, r)) ≥ vm(x,r). From Claim 3.2.3 preceding this proof, we know that m(r) <

m(2r) + 1 and so m( r√
2
) ≤ m(

√
2r). Combining this with the fact that m(r) is

increasing and the results of Lemma 1 we get that

m(r)− 1 ≤ m(
r√
2

)− 1 ≤ m(
√

2r) ≤ m(x, r).

Therefore,

vm(x,r) =

m(x,r)∏
j=1

1

a−2
j − 1

(3.6)
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= s2
m(x,r)

m(x,r)∏
j=1

(
1

1− a2
j

)

≥
(

1

100

)2

r2(1− a2
m(r))

m(r)∏
j=1

(
1

1− a2
j

)
& h(r)

Case 2. r > 100sm(x,r)

Although the proof of this case may appear more difficult, the idea is that if the

ball is large enough we may bound µ(B(x, r)) quite loosely from below by simply

finding a small enough square which is entirely contained inside B(x, r). We choose

T ∈ Tm(x,r)−1 such that x ∈ T . Then we know from the definition of m(x, r) that if

x ∈ T we must have that T * B(x, r), so we get that diamT ≥ r. This means the

side length of T is at least r√
2
. As a result we can find a smaller square V ′ inside

T ∩B(x, r) that has side length r
4
. Now, because sm(x,r) ≤ r

100
and because we know

that at most one square of generation m(x, r) is going to be deleted from T , V ′ must

contain an even smaller square V with side length sv ∈ [ r
32
, r

16
] which will consist of

sv
sm(x,r)

squares from Tm(x,r). So, putting it all together we get

µ(B(x, r)) ≥ µ(v)

≥
(

sv
sm(x,r)

)2

vm(x,r)

= s2
v ·

m(x,r)∏
j=1

(
1

1− a2
j

)

≥ s2
v ·

m(r)−1∏
j=1

(
1

1− a2
j

)

=
r2

322
(1− a2

m(r))

m(r)∏
j=1

(
1

1− a2
j

)
& h(r)

The third inequality holds because we know m(r)− 1 ≤ m(x, r) and the terms being

multiplied are greater than 1.
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The following is the proof of Proposition 3.2.1 as found in [15] with some minor

elaborations.

Proof of Proposition 3.2.1. We first note that m(r) is a decreasing function and that(
1

1−aj2

)
≥ 1 because aj

2 < 1. As a result, the following inequalities hold to prove (i):

µ(B(x, 2r)) . (2r)2

m(2r)∏
j=1

(
1

1− aj2

)

≤ (4r2)

m(r)∏
j=1

(
1

1− aj2

)
. µ(B(x, r)).

Part (ii) follows from the definition of h(r) because as noted,

m(r)∏
j=1

(
1

1− aj2

)
≥ 1.

So now we prove part (iii). Assume that a ∈ c0, so that am → 0. It suffices to

show that for Q < 2,

lim sup
r→0

µ(B(x, r))

rQ
<∞

uniformly in x. This equates to showing that

lim sup
r→0

h(r)

rQ
<∞

Recalling that m(r) ≤ − log2(r) + 1, and since aj → 0, we know that for any ε > 0

we can find Cε depending only on ε (i.e. Cε depends on how fast aj goes to zero),

such that the following holds:

h(r)

r2
=

m(r)∏
j=1

(
1

1− a2
j

)
≤ Cε(1 + ε)m(r)

≤ Cε(1 + ε)− log2(r)+1

≤ Cε(1 + ε)− log2(r)

≤ Cε
(
2log2(1+ε)

)− log2(r)

= Cεr
− log2(1+ε)
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Since this holds for any ε > 0, we can find ε such that 2 − Q > log2(1 + ε). This

means

Q < 2− log2(1 + ε),

and so for r ≤ 1 we have

rQ ≥ r2r− log2(1+ε).

Putting it all together we get that:

h(r) ≤ Cεr
2r− log2(1+ε) ≤ Cεr

Q.

The proof of (iv) follows from Proposition 3.2.5. Here we need only to show that

h(r) � r2. For any aj > 0 a reciprocal of an odd integer we have that 1/(1− a2
j) > 1

and so by definition we know

h(r) = r2

m(r)∏
j=1

1

1− aj2

≤ r2

∞∏
j=1

1

1− aj2
.

We know a ∈ `2 and so the product on the right must converge, therefore we imme-

diately get that

h(r) ≤ Cr2,

where C is a constant depending only on the `2 norm of a. Inequality in the other

direction is trivial. As before we know

m(r)∏
j=q

1

1− a2
j

> 1

and so we immediately get that

h(r) & r2.

This shows that µ is an Alhfors 2-regular measure on Sa, and µ is comparable to the

Lebesgue measure with constant depending only on ||a||2.
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To prove (v) it suffices to show that h(r) � rQk We know that a = (am) is

eventually constant and equal to 1
2k+1

, so we define N ∈ N to be the point at which

the sequence becomes constant. In other words, for n ≥ N we have that an = 1
2k+1

.

To facilitate the notation we will as well define the following two values.

M := max{ai}Ni=1 m := min{ai}Ni=1

We would also like some way to control the size of m(r) and so we will first prove the

following bounds

N +N log2k+1m− log2k+1 r ≤ m(r) < N + 1 +N log2k+1M − log2k+1 r.

We know by definition that given r the inequality sm(r) ≤ r holds and so we get that

m(r)∏
j=1

aj ≤ r

(
1

2k + 1

)m(r)−N

mN ≤ r

−(m(r)−N) +N log2k+1m ≤ log2k+1 r

m(r) ≥ N +N log2k+1m− log2k+1 r. (3.7)

Similarly, we know that sm(r)−1 > r and so

m(r)−1∏
j=1

aj > r

(
1

2k + 1

)(m(r)−1)−N

MN > r

(N + 1−m(r)) +N log2k+1M > log2k+1 r

m(r) < N + 1 +N log2k+1M − log2k+1 r. (3.8)

We first want to bound from above, and to do so we consider two cases depending on

the size of N.
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Case 1. m(r) ≤ N

This case is trivial; considering that Qk < 2 we have that

h(r) = r2

m(r)∏
j=1

1

1− a2
j

≤ rQk

N∏
j=1

1

1−M2

. rQk .

Case 2. m(r) > N

Here the proof relies on inequality (3.8). Applying this, we get

h(r) = r2

m(r)∏
j=1

1

1− a2
j

≤ r2

m(r)−N∏
j=1

1

1− 1
(2k+1)2

N∏
j=1

1

1− a2
j

. r2

− log2k+1 r∏
j=1

(2k + 1)2

4k2 + 4k

= r2

(
(2k + 1)2

(2k + 1)2 − 1

)− log2k+1 r

= r2

(
elog (2k+1)2−1

elog ((2k+1)2)

) log r
log 2k+1

= r2 · r
log ((2k+1)2−1)

log(2k+1) · r
−2 log(2k+1)
log(2k+1)

= r2 · rQk · r−2

= rQk

We must now bound h(r) from below which will again require two cases, both of

which are very similar to the arguments already discussed here.

Case 1. m(r) ≤ N

Similar to Case 1 when bounding from above; this case is now trivial as we know that

rQk > r2 > 0 and so r2−Qk < 1. Recalling also that the product in the definition of
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h(r) is greater than 1 we can do the following

h(r) = r2

m(r)∏
j=1

1

1− a2
j

& r2 · r2−Qk

= rQk

Case 2. m(r) > N

This case is the same as Case 2; however, this time we will use the inequality m(r) ≥

N +N log2k+1m− log2k+1 r to get

h(r) & r2

(
(2k + 1)2

(2k + 1)2 − 1

)− log2k+1 r

from which we will in the same way conclude that h(r) & rQk .

In Chapter 2, Proposition 2.4.3, we showed that if a complete, doubling, metric

measure space supports a p-Poincaré inequality, then modp(Γ) is non-trivial for some

family of curves Γ. Restricting ourselves to modified Sierpiński carpets Sa and only

considering curve families joining either the left and right or top and bottom edges

of a carpet we get the following result.

Proposition 3.2.6. If (Sa, d, µ) supports a p-Poincaré inequality, then for some m ≥

1 there exists a subcarpet T such that modpΓ > 0, where Γ is the family of curves

joining one of the following:

• the left and right hand edges of T ,

• the top and bottom edges of T ,

• the left and right hand edges of T and an adjacent subcarpet of the same level,

• the top and bottom edges of a T and an adjacent subcarpet of the same level.
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Proof of Proposition 3.2.6. We would like to show that Proposition 2.4.3 implies Propo-

sition 3.2.6. We will do so using a proof by contradiction. We assume first that Sa

supports a p-Poincaré inequality, but that for any subcaarpet of any level, the four

types of curve families considered above are all trivial. We know that if (Sa, d, µ)

supports a p-Poincaré inequality then by Proposition 2.4.3 there exists a curve family

Γ with positive p-moduli. We will therefore achieve a contradiction by showing that

any curve family must actually have zero modulus.

By Proposition 2.2.2 part (iii), it suffices to prove this statement for families Γ

that satisfy infγ∈Γ diamγ ≥ ε for a fixed ε > 0. So we choose m large enough to ensure

that
√

2 ·
m−1∏
i

ai < ε,

which means that the diameter of a square at step m− 1 is smaller than epsilon. Let

Γ0 = ∪iΓim,

the union of all the four types of level m curve families described above. There are

a countable number of level m subsquares all of which have zero modulus, and so by

Proposition 2.2.2 part (iii) we get that

modpΓ
0 ≤

∑
i

modpΓ
i
m = 0.

We now interpret Γ as the following union,

Γ = ∪wΓw,

where

Γw = {γ ∈ Γ : γ ∩ Tw 6= ∅},

and Tw ranges over all the level m subsquares of Sa. We apply Proposition 2.2.2 part

(iii) again which says it suffices to prove that modpΓw = 0 for all such Tw. Now let Kw

be the union of Tw and all the other level m squares that border Tw. Then, because of
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our choice of m, we know that for ever γ ∈ Γw we must have that γ is not contained

entirely in any of the Kw. Therefore, each γ must have a sub-curve γ0 inside either

some square, or a pair of adjacent squares in Tw, such that γ0 joins either the left and

right edges, or the top and bottom edges to each other. So by definition, γ0 ∈ Γim

for some i and we get that γ0 ∈ Γ0. What this means is that ever curve in Γ has a

subcurve in Γ0, so applying Proposition 2.2.2 part (vi) we get that

modpΓ ≤ modpΓ
0 = 0

which completes the proof.

This proof has been adapted from a proof used by Mackay and Tyson in [14]

where they prove a more powerful statement but for the standard Sierpiński carpet.

They make use of Lemma 2.2.3 which allows them to relate the moduli of the level

m subsquare to that of the entire carpet S1/3. This lemma however relies on the

self-similarity of the standard Sierpíski carpet, which as we have already discussed

does not hold for the modified carpets. The proposition as we have stated it here

is sufficient for our purposes and is used in the following section to prove some very

interesting results.

3.3 How `q Spaces Impact the Validity of

p-Poincaré Inequalities

We are now in a position to begin analysing when and why a carpet Sa will support

a p-Poincaré inequality, and also for which values of p. We know the construction of

the carpets depend entirely on the sequence selected; therefore a strong relationship

between the behaviour of this sequence and the geometric properties of the resulting

carpet is expected. The results included here are all general results presented in [15].

We will include a brief discussion on the standard Sierpiński and why it fails to

support a Poincaré inequality for any p ≥ 1. This statement is true not only for the
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standard Sierpiński carpet, but for any carpet S1/(2k+1) constructed from a constant

sequence.

Proposition 3.3.1 (Proposition 1, [15]). For each k, the carpet S1/(2k+1), equipped

with Euclidean metric and Hausdorff measure in its dimension Qk, does not support

any Poincaré inequality.

A proof of Proposition 3.3.1 can be found in [1], [3], or [14]. Specifically a proof

using modulus computations can be found in [14]. We now include a lemma from [14]

that applies only to the standard Sierpiński carpet, for which we will include the

proof.

Lemma 3.3.2 (Lemma 4.3.4, [14]). Let Γ denote the family of curves joining the left

and right hand edges of the Sierpiński carpet. Then modpΓ0 = 0 for every p ≥ 1.

The immediate consequence of this lemma is that the Sierpiński carpet does not

support a p-Poincaré inequality for any p ≥ 1. For this proof we will refer to the

standard Sierpiński carpet as S1/3.

Proof. Define a function ρ : S1/3 → (0,∞) in the following way. Let ρ0 = α on the

six first level squares adjacent to the left and right hand edges of S1/3, and let ρ0 = β

on the two remaining level one squares. We let α and β be constants and we will

determine their values shortly. We get that∫
S1/3

ρ0 dµ =
2α + β

3
,

and so ρ0 is admissible for Γ when

2α + β

3
≥ 1. (3.9)

We can also bound the p-modulus of Γ above by∫
S1/3

ρp0 dµ =
6

8
αp +

2

8
βp =

3αp + βp

4
.
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We can now define a family of admissible functions ρm on S1/3 by an iterative proce-

dure, and we would like to have that
∫
ρpm dµ→ 0. Inequlality (3.9) guarantees that

every ρm is an admissible function for Γ, and we also get that the p-modulus of Γ is

bounded above by ∫
S1/3

ρpm dµ =

(
3αp + βp

4

)m
.

It remains to show that there are positive constants α and β satisfying both

2α + β

3
≥ 1 (3.10)

and

3αp + βp

4
< 1.

If p = 1 then we can take any α < 1 and β > 1 however for p > 1 it becomes slightly

more difficult. Using Lagrange multipliers Mackay and Tyson in [14] determine that

the optimal values are

α =

(
8λ

3p

)1/(p−1)

and β =

(
4λ

p

)1/(p−1)

,

where

λ =
p3p

4(2p/(p−1) + 31/(p−1))p−1
.

This gives

3αp + βp

4
=

3p+1

4(2p/(p−1) + 31/(p−1))p−1
,

which has value strictly less than one for any p > 1.

We will now consider some results from [14], the first of which is as follows.

Proposition 3.3.3. If a /∈ `1, then Sa does not support a 1-Poincaré inequality.

Proof. We know from Proposition 3.2.6 that to disprove the validity of the 1-Poincaré

inequality it suffices to show that for m ≥ 1, mod1Γm = 0 where Γm is any one of the

four types of curve families detailed in Proposition 3.2.6. We first consider that even
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though Sa may not be self-similar, we have that every subsquare defines a carpet Sâ

such that â is a tail of the sequence a. Therfore, we know that

a /∈ `1 ⇔ â /∈ `1.

Furthermore, the following proof considers the case where Γm is the family of curves

joining the left and right hand edges of a level m subsquares, however we note that by

symmetry we can easily adapt this proof to work for the curve family joining the top

and bottom edges. The same proof can also be adapted just as easily to work for two

adjacent subsquares. We would need only to extend the definition of the functions ρm

to both squares which would not change at all the admissible functions and because

the resulting modulus has value zero would not change that either.

It therefore suffices to prove the result for a carpet Sa such that a /∈ `1, and for

the faimly of curves joining only the left and the right hand edges. We now define

the functions ρm : Sa → [0,∞] for m ≥ 1 in the following way. Let ρm = 1
sm

on the

middle strip of the carpet with width sm and then let ρm ≡ 0 elsewhere. So we know

that ∫
γ

ρm dµ = 1

for any γ ∈ Γ and so ρm is admissible for Γ. Now we see what will happen if we

integrate one such function ρm over the entire carpet.∫
ρm dµ =

m∏
i=1

a−1
i

m∏
i=1

(
ai(1− ai)

1− a2
i

)
=

m∏
i=1

(
a−1
i ·

ai(1− ai)
(1 + ai)(1− ai)

)
=

m∏
1

1

1 + ai

To understand why the first equality holds we will examine its various components.

First, we note that
∏m

i=1 ai
−1 = s−1

m so this is the value of ρm on the middle strip. Then

the pre-renormalized measure of the middle strip is ai(1 − ai) were ai is the width,
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and 1−ai is the height with the appropriate squares removed. Finally we renormalise

this measure of the strip by dividing by 1 − a2
i as we did in Proposition 3.2.5. The

rest follows.

Now to finish the proof, we would like to have that as m→∞ the product on the

right goes to zero. We know that a /∈ `1 and so
∑∞

i=1 ai diverges. This is equivalent

to the divergence of the series
∑∞

i=1 log(1 + ai) This means for any M ∈ N we can

find an m ∈ N such that
m∑
i=1

log(1 + ai) > M

and so the following string of inequalities will show that consequently
∏m

1
1

1+ai
→ 0

as m→∞.

m∑
i=1

log(1 + ai) > M ⇒ −
m∑
i=1

log(1 + ai) < −M

⇒
m∏
i=1

1

1 + ai
< e−M .

Therefore, we have shown that for any m ∈ N there is a δ = e−M > 0 such that∏m
i=1

1
1+ai

< δ and hence mod1Γ = 0 as desired.

The proof of the next result uses a very similar technique as the proof of Lemma 3.3.2.

Proposition 3.3.4. If a /∈ `3, then Sa does not support a p-Poincaré inequality for

any p ≥ 1.

Proof. Recalling the discussion preceding the proof of Proposition 3.3.3 we note that

we must again prove for m ≥ 1, and p ≥ 1, modpΓm = 0 where Γm is any one

of the four types of curve families detailed in Proposition 3.2.6. We know from

Proposition 3.3.3 that Sa does not support a 1-Poincaré inequality and so it suffices

to only consider the case p > 1. Similarly, it also suffices to prove that modpΓ = 0

where Γ is the family of rectifiable curves joining the left and the right sides of Sa,

and a /∈ `3. To do this we construct a family of upper gradients, ρm by iterating the
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following case: let ρ0 ≡ 1 on the unit square [0, 1]2. Then for a ∈ {1
3
, 1

5
, . . . } we will

remove the centre square of side length a, and then the remaining closed set we name

S. Similarly again to the proof of Proposition 3.2.5, we will renormalise the measure

on S by multiplying by (1− a2)−1.

Now we take parameters α ≥ 0, β ≥ 0, and define ρ on S in the following way.

Let ρ ≡ β on the middle strip of width a, and let ρ = α everywhere else on S. We

must ensure that
∫
γ
ρ ds = 1 and so we assume that

α(1− a) + βa = 1, (3.11)

which means

β =
1

a
(1− (1− a)α).

So we now need to see what happens if we integrate our new function ρ over our new

set S. By construction we know that∫
S

ρ0
p dµ = 1

and now we have∫
S

ρp dµ =
(1− a)αp + a(1− a)βp

1− a2
=
αp + a1−p(1− (1− a)α)p

1 + a
(3.12)

We take the derivative of the right hand side with respect to α and for fixed a and p.

We then find the value of α for which the function is minimized:

α =
(1− a)1/(p−1)

a+ (1− a)p/(p−1)
. (3.13)

For this value of α we get the following expansion∫
S

ρp dµ = 1− pa3

2(p− 1)
+

(p− 2)pa4

6(p− 1)2
+O[a]5, (3.14)

and it is important to note here that the a3 coefficient is strictly negative.

We are now ready to construct our function ρm on Sa which we do by iterating
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the above steps. The first iteration for a = a1 will produce ρ1 with α = α1.

For the second iteration we know that on each square of side length s1, ρ1 is

constant. We let a = a2 and then we find α = α2 using 3.13. We then construct ρ2

by redistributing the value of ρ1 across each square using the new proportions α, β.

If we iterate this procedure m times we will get a function ρm that is admissible for

Γ, and by construction we know∫
Sa

ρpm dµ =
m∏
i=1

[
αpi + a1−p

i (1− (1− ai)αi)p
] 1

1 + ai
(3.15)

Therefore, using 3.12 and 3.14, and knowing that a /∈ `3 we can see that value on the

right here goes to zero as m goes to infinity, forcing modpΓ = 0

We note here that the `3 requirement in Proposition 3.3.4 is a loose bound and

that Proposition 8 of [15] states the following result which is a sharp requirement.

Proposition 3.3.5. If a /∈ `2, then Sa does not support a p-Poincaré inequality for

any p ≥ 1.

The proof employs a similar strategy to those we have seen already in this paper

and makes use of some very specific geometric properties of the Sierpiński carpets. It

does so in a very lengthy and technical manner and so the complete proof is omitted.

The essential idea is to begin by building an admissible function ρ for Γ, the curve

family joining the left and the right hand edges of Sa. The function ρ has essential

supremum zero, which means that modpΓ = 0 for all p, and so by Proposition 3.2.6

does not support a p-Poincaré inequality for any p ≥ 1.

We note here some additional results appearing in [15] that are very applicable,

but have proofs that are beyond the scope of this thesis. The first states that the

converse to Proposition 3.3.3 holds:

Theorem 3.3.6. The carpet (Sa, d, µ) supports a 1-Poincaré inequality if and only if

a ∈ `1.

53



Theorem 3.3.7. The following are equivalent:

• (Sa, d, µ) supports a p-Poincaré inequality for each p > 1,

• (Sa, d, µ) supports a p-Poincaré inequality for some p > 1

• a ∈ `2.

The proofs of these theorems require the application of Theorem 2.4.1 and a

concatenation argument on curve families of positive modulus. They are included in

detail in Mackay, Tyson, and Wildrick’s paper on the subject [15]. We note that this

means that for a ∈ `2\`1, the space (Sa, d, µ) will support a p-Poincaré inequality for

p > 1 but will not support a 1-Poincaré inequality.
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