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ABSTRACT

Toward Privacy in High-Dimensional Data Publishing

Rui Chen, Ph.D.

Concordia University, 2012

Nowadays data sharing among multiple parties has become inevitable in var-

ious application domains for diverse reasons, such as decision support, policy de-

velopment and data mining. Yet, data in its raw format often contains person-

specific sensitive information, and publishing such data without proper protection

may jeopardize individual privacy. This fact has spawned extensive research on

privacy-preserving data publishing (PPDP), which balances the fundamental trade-

off between individual privacy and the utility of published data. Early research

of PPDP focuses on protecting private and sensitive information in relational and

statistical data. However, the recent prevalence of several emerging types of high-

dimensional data has rendered unique challenges that prevent traditional PPDP

techniques from being directly used. In this thesis, we address the privacy concerns

in publishing four types of high-dimensional data, namely set-valued data, trajectory

data, sequential data and network data. We develop effective and efficient non-

interactive data publishing solutions for various utility requirements. Most of our

solutions satisfy a rigorous privacy guarantee known as differential privacy, which

has been the de facto standard for privacy protection. This thesis demonstrates that

our solutions have exhibited great promise for releasing useful high-dimensional data

without endangering individual privacy.
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Chapter 1

Introduction

With the current trend of digitalization, individual privacy is more subject to intru-

sions than ever before. Various personal information is being collected in different

application domains, for example, retailing business, healthcare departments, public

transit agencies, and online social networks. Such personal information in its raw

format often contains person-specific sensitive information. Therefore, improper in-

formation sharing among different parties may jeopardize individual privacy. This

is exemplified by several real-life privacy incidents given below.

Massachusetts voter list. Sweeney [107] successfully re-identified the former

governor of Massachusetts by linking a public voter list with a medical database pub-

lished by the Massachusetts Group Insurance Commission through the combination

of zip code, date of birth and gender (called the quasi-identifier [33]). Sweeney [107]

further indicated that for 87% of the U.S. population such characteristics had been

recorded and available, which would likely make them identifiable based on only

such quasi-identifiers.

AOL search queries. On August 4, 2006, AOL published approximately 20 mil-

lion search queries collected from 650,000 users over a 3-month period. User identity

information (e.g., such as name or SSN) had been replaced by some pseudonymous

user IDs before release, but three days later, it had to remove the release due to the

1



re-identification of a user [56].

Netflix prize data. Netflix, the largest on-demand Internet streaming media

service provider, released the anonymized movie ratings of 500,000 subscribers for a

contest with the purpose of improving the accuracy of its recommendation system.

However, Netflix had to cancel the contest because Narayanan and Shmatikov [94]

revealed that when combining with the information in the public Internet Movie

Database (IMDb), users in the released Netflix dataset could be re-identified with

high probability.

These real-world privacy concerns have stimulated strong demands for privacy

protection in data sharing. The current practice of information sharing primar-

ily relies on policies and guidelines on the types of data that can be released and

agreements on the proper use of published data. For example, the Health Insurance

Portability and Accountability Act (HIPAA) [96] has become the standard privacy

rule for medical data sharing. However, this approach alone may lead to either

excessive data distortion or insufficient privacy protection. Comprehensive tech-

nological solutions are indispensable for providing formal, provable privacy guar-

antees. Consequently, extensive research has been conducted on privacy-preserving

data publishing (PPDP) [46] with the goal of publishing useful data while protecting

individual privacy even in a hostile environment. The essential trade-off between

data utility and individual privacy forms the foundation of PPDP.

Early works on PPDP focus on protecting private and sensitive information

in relational data, which is of a fixed schema with a small number of dimensions.

In the context of relational data, various traditional privacy models (referred to as

partition-based privacy models [49] in the sequel), such as k-anonymity [104], [108],

�-diversity [85] and confidence bounding [114], and many anonymization approaches

have been proposed. These efforts have successfully shown their strength of privacy

protection in publishing relational data, and have also raised expectations of effective

privacy-preserving techniques for more complex data types.

2



In recent years, several emerging types of high-dimensional data, including

set-valued data, trajectory data, sequential data and network data, have become

prevalent. While they have become important sources of data analysis, they have

simultaneously posed novel technical challenges that prevent traditional PPDP ap-

proaches from being directly used. The solutions developed in the context of rela-

tional data are useful for thwarting identity linkage and attribute linkage privacy

attacks [46] in the case of small numbers of dimensions, however, they cannot be

used effectively in the high dimensional case. Aggarwal [3] pointed out that with the

increase of dimensionality one has to face with a choice of either undesirable data

utility or insufficient privacy protection, known as the curse of high dimensionality.

From the perspective of data utility, increasing dimensionality requires more infor-

mation to be suppressed, rendering the released data useless; from the perspective of

privacy, increasing dimensionality makes each record more distinctive from others,

leaving the target victim easier to identify and therefore harder to protect. Further-

more, high dimensionality naturally poses challenges on computational complexity.

Therefore, more effective and efficient solutions must be developed so that real-life

high-dimensional data could be successfully handled.

In this thesis, we concentrate on developing practical technical solutions for

these types of high-dimensional data under rigorous privacy models while provid-

ing meaningful data utility for various data analysis tasks. In addressing privacy

concerns in high-dimensional data publishing, the first effort is to identify an appro-

priate privacy model. Recently, new types of privacy attacks, such as composition

attack [49], deFinetti attack [67] and foreground knowledge attack [118], have been

identified on the approaches derived using partition-based privacy models, demon-

strating their vulnerability to an adversary’s background knowledge. Due to the

deterministic nature of partition-based privacy models, it is foreseeable that more

types of privacy attacks could be discovered on these privacy models in the future.

Consequently, over the last few years differential privacy [37] has become the

3



de facto successor to partition-based privacy models. Differential privacy, stemming

from the field of statistical disclosure control, provides strong privacy guarantees

independent of an adversary’s background knowledge, computational power or sub-

sequent behavior. It, in general, requires that the outcome of any analysis should

not overly depend on a single data record. It follows that even if a user had opted to

be included in the database, there would not be a significant change in any compu-

tation based on the database. Therefore, this assures every record owner that any

privacy breach will not be a result of participating in a database.

However, the strong privacy guarantee provided by differential privacy does

not come without cost. There are two natural settings of data sanitization under

differential privacy: interactive and non-interactive. In the interactive setting, a

sanitization mechanism sits between the users and the database. Queries posed by

the users and/or their responses must be evaluated and may be modified by the

mechanism in order to protect privacy; in the non-interactive setting, a data pub-

lisher computes and releases a sanitized version of a database, possibly a synthetic

database, to the public and hence it could be used for any analysis. There have

been some lower bound results [34], [37], [38] of differential privacy, indicating that

only a limited number of queries could be answered; otherwise, an adversary would

be able to precisely reconstruct almost the entire original database, resulting in a

serious compromise of privacy. Therefore, most recent works have concentrated on

designing various interactive mechanisms that answer only a sublinear number, in

the size of the underlying database, of queries in total, regardless of the number of

users. Once this limit is reached, either the database has to be shut down, or any

further query would be rejected. This limitation has greatly hindered their applica-

bility, especially in the scenario where a database is made available to many users

who legitimately need to pose a large number of queries. Naturally, one would favor

a non-interactive release that could be used to answer an arbitrary large number of

queries or for various data analysis tasks.
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Blum et al. [12] pointed out that the aforementioned lower bounds could be

circumvented in the non-interactive setting at the cost of preserving usefulness for

only restricted classes of queries. However, they did not provide an efficient algo-

rithm. A series of subsequent works [39], [125], [126] aimed to propose more efficient

non-interactive sanitization mechanisms. However, all these works are of runtime

complexity at least linear in the output domain size. These progresses, however, are

still not sufficient to handle high-dimensional data, because the output domain sizes

of high-dimensional data are typically exponentially large. To tackle this technical

challenge, in this thesis, we initiate a line of data-dependent solutions, which adap-

tively narrows down the output domain by using noisy information obtained from

the underlying database. These data-dependent solutions not only achieve reason-

able runtime complexity (e.g., linear in the input data size) but also have a positive

impact on the resulting utility as there is no need to add noise to every possible

entry in the output domain, which accumulates noise quickly.

Protecting individual privacy is one aspect of the problem of PPDP. Another

equally important aspect is preserving utility in sanitized data for data analysis. In

this thesis, we preserve data utility of different data types for various data analy-

sis tasks, ranging from more general tasks, such as counting query and cut query,

to more concrete tasks, such as frequent sequential pattern mining and frequent

itemset mining. We theoretically and experimentally demonstrate that useful high-

dimensional data could be released even under rigorous privacy models.

1.1 Contributions

In this thesis, we study the problem of privacy-preserving data publishing over

four emerging types of high-dimensional data, namely set-valued data, trajectory

data, sequential data and network data. The key contributions of this thesis are

summarized below.
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1.1.1 Set-Valued Data Sanitization

Set-valued data, such as transaction data, web search queries, and click streams,

has become a major source for various data mining tasks. All existing sanitiza-

tion techniques [17], [50], [62], [110], [111], [128], [129] developed for publishing set-

valued data are dedicated to partition-based privacy models, which are vulnerable

to privacy attacks based on background knowledge. In contrast, differential pri-

vacy provides strong privacy guarantees independent of an adversary’s background

knowledge, computational power or subsequent behavior. Existing data publishing

approaches for differential privacy, however, are not adequate in terms of both utility

and scalability in the context of set-valued data due to its high dimensionality.

This thesis is the first study of publishing set-valued data via differential pri-

vacy. Our work initiates the line of data-dependent solutions for achieving differential

privacy, which allows differential privacy to be efficiently and effectively applied to

different types of data. In particular, we propose a probabilistic top-down partition-

ing algorithm to generate a differentially private release for set-valued data, which

scales linearly with the input data size. We prove that our result is (δ, β)-useful for

the class of counting queries, the foundation of many data mining tasks. We show

that our approach maintains high utility for counting queries and frequent item-

set mining and scales to large datasets through extensive experiments on different

real-life set-valued datasets.

1.1.2 Trajectory Data Sanitization

With the increasing prevalence of location-aware devices, trajectory data has been

generated and collected in various application domains. Trajectory data carries rich

information that is useful for many data analysis tasks. Yet, improper publishing

and use of trajectory data could jeopardize individual privacy. In this thesis, we ac-

knowledge the emerging data publishing scenario, in which trajectory data needs to
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be published with sensitive attributes, and consequently propose the (K,C)L-privacy

model, which takes into consideration not only identity linkage attacks on trajectory

data, but also attribute linkage attacks via trajectory data. This is the first work to

introduce local suppression to trajectory data sanitization. Our framework allows

the adoption of various data utility metrics for different data mining tasks. As an

illustration, we aim at preserving both instances of location-time pairs and frequent

sequences in a trajectory database, both being the foundation of many trajectory

data mining tasks. Our experiments on both synthetic and real-life datasets sug-

gest that the framework is both effective and efficient to overcome the challenges

in trajectory data sanitization. In particular, compared with the previous works in

the literature, our proposed local suppression method can significantly improve the

data utility in sanitized trajectory data.

1.1.3 Sequential Data Sanitization

As a simplified form of trajectory data, sequential data is being increasingly used in

a variety of applications, spanning from genome and web usage analysis to location-

based recommendation systems. Publishing sequential data is important, since it

enables researchers to analyze and understand interesting patterns. In particular, we

are motivated by the data sharing scenario at the Société de transport de Montréal

(STM), the public transit agency in Montreal area. In this thesis, we propose two

alternative solutions for publishing sequential data under the rigorous differential

privacy model.

Publishing sequential data via prefix tree. We propose an efficient data-

dependent yet differentially private sequential data sanitization approach based on

a hybrid-granularity prefix tree structure. Moreover, as a post-processing step, we

make use of the inherent consistency constraints of a prefix tree to conduct con-

strained inferences, which lead to better utility. To our best knowledge, this is the
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first work to introduce a practical solution for publishing large volume of sequential

data under differential privacy. We examine data utility in terms of two popular

data analysis tasks conducted at the STM, namely counting queries and frequent

sequential pattern mining. Extensive experiments on real-life STM datasets confirm

that our approach maintains high utility and is scalable to large datasets.

Publishing sequential data via n-grams. Due to its inherent sequentiality and

high-dimensionality, it is challenging to apply differential privacy to sequential data.

As an alternative, we address this challenge by employing a variable-length n-gram

model, which extracts the essential information of a sequential database in terms of

a set of variable-length n-grams. Our approach makes use of a carefully designed

exploration tree structure and a set of novel techniques based on the Markov as-

sumption in order to lower the magnitude of added noise. The published n-grams

are useful for many purposes. Furthermore, we develop a solution for generating a

synthetic database, which enables a wider spectrum of data analysis tasks. Exten-

sive experiments on real-life datasets demonstrate that our approach substantially

outperforms the state-of-the-art techniques.

1.1.4 Network Data Sanitization

With the increasing popularity of information networks, research on privacy-preserving

network data publication has received substantial attention recently. Most existing

works focus on preventing node re-identification from adversaries with structural

background knowledge. In contrast, research on thwarting edge disclosure (e.g., in-

ferring if there is a direct link between two individuals) is less fruitful, largely due

to lack of a formal privacy model. The recent emergence of ε-differential privacy

has shown great promise for rigorous edge disclosure protection. Yet ε-differential

privacy is vulnerable to data correlation, which hinders its application to network

data that may be inherently correlated.
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In this thesis, we propose a stronger variant of ε-differential privacy, known

as (ε, k)-differential privacy, which provides privacy guarantee even when a record

is correlated to at most k − 1 other records. We present the concept of correlated

sensitivity, which allows Laplace mechanism and exponential mechanism to be used

for achieving (ε, k)-differential privacy. We subsequently provide a holistic solution

for non-interactive network data publication. The basic idea is to adaptively identify

dense regions of the adjacency matrix of a network dataset by a data-dependent

partitioning process, and then reconstruct a noisy adjacency matrix by a novel use

of exponential mechanism, which is of independent interest. To our best knowledge,

this is the first work providing an efficient and effective solution for publishing

real-life network data in the spirit of differential privacy. Extensive experiments

demonstrate that our approach performs well on different types of real-life network

datasets.

1.2 Organization of the Thesis

The rest of this thesis is organized as follows:

• Chapter 2 introduces four important privacy models, the common anonymiza-

tion mechanisms and popular utility metrics.

• Chapter 3 provides an in-depth literature review of the state-of-the-art tech-

niques in PPDP for different data types. In particular, we summarize the

recent applications of differential privacy. Our survey of recent developments

of privacy-preserving data publishing has been published in [46].

• Chapter 4 studies the problem of publishing set-valued data for data mining

tasks under the differential privacy model. We propose a probabilistic top-

down partitioning algorithm that is scalable to high-dimensional set-valued

data while providing guaranteed utility. The results of this chapter have been
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published in [25].

• Chapter 5 studies the problem of privacy-preserving trajectory data publish-

ing under a realistic heterogeneous data publishing scenario. We develop a

generic sanitization framework for trajectory data, which accommodates var-

ious utility metrics. The results of this chapter have been published in [23].

• Chapter 6 proposes two alternative solutions to publishing sequential data

under differential privacy. The results of this chapter have been published

in [22], [20].

• Chapter 7 presents a stronger variant of ε-differential privacy, known as (ε, k)-

differential privacy, for correlated data, and provides a holistic solution for

non-interactive network data publication under (ε, k)-differential privacy. The

results of this chapter are currently under review in [24].

• Chapter 8 concludes the thesis.
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Chapter 2

Background

In privacy-preserving data publishing, there is a fundamental trade-off between pri-

vacy and utility [66]. At one extreme, the data holder may publish nothing so that

privacy can be perfectly protected, but the resulting data utility is zero. At the other

extreme, the data holder may directly publish the raw data without any anonymiza-

tion attempt so that the data utility can be maximized, but no privacy protection

can be guaranteed. Thus, it is of importance for the data holder to find a reason-

able trade-off between privacy and utility. This requires the following concepts to

be defined: privacy model, anonymization mechanism, and utility metric.

2.1 Privacy Models

In 1977, Dalenius [32] provided a very stringent definition of privacy protection:

“access to the published data should not enable the attacker to learn anything

extra about any target victim compared to no access to the database, even with

the presence of any attacker’s background knowledge obtained from other sources”.

In real-life applications, such an absolute privacy protection is impossible due to

the presence of an attacker’s background knowledge [36]. For this reason, most

literature on privacy-preserving data publishing considers more relaxed, but more
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practical notions of privacy protection by assuming that an attacker has limited

background knowledge. With his background knowledge, the attacker can perform

different kinds of privacy attacks. Accordingly, different kinds of privacy models

have been proposed. In this section, we will focus on four most fundamental privacy

models, namely, k-anonymity [104], [108], �-diversity [85], confidence bounding [114]

and differential privacy [37].

In general, a privacy threat occurs when an attacker is able to link a record

owner to a record in a published data table, to a sensitive attribute in a published

data table, or to the published data table itself. We call these identity linkage,

attribute linkage, and membership linkage, respectively. In the most basic form of

PPDP, the data holder has a table of the form

D(Explicit Identifier,Quasi Identifier, Sensitive Attributes,Non−Sensitive Attributes),

where Explicit Identifier is a set of attributes containing information that ex-

plicitly identifies record owners such as name and social security number (SSN);

Quasi Identifier (QID) is a set of attributes that could potentially identify record

owners; Sensitive Attributes consist of sensitive person-specific information such as

disease, salary, and disability status; and Non − Sensitive Attributes contain all

attributes that do not fall into the previous three categories [16]. The four sets of

attributes are disjoint. Furthermore, most works assume that each record in the

table belongs to a distinct record owner, known as microdata. Previous works have

indicated that simply removing explicit identifiers is insufficient to protect individ-

ual privacy. Based on quasi-identifiers, an attacker is still able to perform several

types of privacy attacks, as explained below.

Identity linkage attack. In an identity linkage attack, some value qid on QID

identifies a small number of records in the released table T , called a group. If the

target victim’s QID matches the value qid, the victim is vulnerable to being linked
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Table 2.1: Raw patient data
Job Sex Age Disease

Engineer Male 35 Hepatitis
Engineer Male 38 Hepatitis
Lawyer Male 38 HIV
Writer Female 30 Flu
Writer Female 30 HIV
Dancer Female 30 HIV
Dancer Female 30 HIV

to the small number of records in the group. In this case, the adversary faces only a

small number of possibilities for the victim’s record, and with the help of background

knowledge, there is a chance that the adversary could uniquely identify the victim’s

record from the group.

Example 2.1.1. Suppose that a hospital wants to publish patients’ records in Ta-

ble 2.1 to a research center. The explicit identifiers have been removed. If an

adversary knows that the record of Bob, a male lawyer who is 38 years old, is in the

table, he can infer that Bob is infected with HIV because there is only one record

with qid = 〈Lawyer,Male, 38〉.

Attribute linkage attack. In an attribute linkage attack, the adversary may not

need to precisely identify the record of the target victim, but could still infer his

sensitive values from the published dataset T based on the set of sensitive values

associated with the group to which the victim belongs. In case some sensitive values

predominate in the group, a successful inference becomes relatively easy.

Example 2.1.2. From Table 2.1, an adversary can observe that the sensitive at-

tribute of all records with qid = 〈Dancer, Female, 30〉 is of the same value, HIV .

Therefore, the adversary can easily infer that the target victim Emily, a 30-year-old

female dancer, has HIV with 100% confidence provided that he knows that Emily’s

record is in Table 2.1, even though he cannot uniquely identify her record.
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Table 2.2: 3-anonymous patient data by generalization
Job Sex Age Disease

Professional Male [35-40) Hepatitis
Professional Male [35-40) Hepatitis
Professional Male [35-40) HIV
Artist Female [30-35) Flu
Artist Female [30-35) HIV
Artist Female [30-35) HIV
Artist Female [30-35) HIV

Membership linkage attack. Both identity linkage and attribute linkage assume

that an adversary already assures that the victim’s record is in the released table

T . However, in some cases, the presence (or the absence) of the victim’s record in T

already reveals the victim’s sensitive information. Suppose a hospital releases a data

table with a particular type of disease. Identifying the presence of the victim’s record

in the table is already damaging. A membership linkage occurs if an adversary can

confidently infer the presence or the absence of the victim’s record in the released

table.

2.1.1 k-Anonymity

To prevent identity linkage attacks through QID, Samarati and Sweeney [104], [108]

proposed the notion of k-anonymity: if a record in the table has some value qid,

then at least k − 1 other records should also have the value qid. In other words,

the minimum group size on QID is at least k. A table satisfying this requirement is

called k-anonymous. In a k-anonymous table, each record is indistinguishable from

at least k − 1 other records with respect to QID. Consequently, the probability of

linking a victim to a specific record through QID is at most 1/k.

Example 2.1.3. Table 2.2 shows a 3-anonymous table by generalizing QID =

{Job, Sex,Age} from Table 2.1 using the taxonomy trees in Figure 2.1. It has two

distinct QID groups: 〈Professional,Male, [35 − 40)〉 and 〈Artist, Female, [30 −
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Figure 2.1: Taxonomy trees for Job, Sex, Age.

35)〉. Since each group contains at least 3 records, the table is 3-anonymous.

The k-anonymity model assumes that QID is known to the data publisher.

Most works consider a single QID containing all attributes that can be potentially

used to launch a privacy attack. The more attributes included in QID, the more

protection k-anonymity would provide. On the other hand, this also implies that

more information distortion is needed to achieve k-anonymity because the records

in a group have to agree on more attributes.

2.1.2 �-Diversity

k-anonymity protects identity linkage attacks, but fails to prevent attribute linkage

attacks. Consequently, Machanavajjhala et al. [85] proposed the diversity principle,

called �-diversity, to thwart attribute linkage attacks. The �-diversity model requires

every qid group to contain at least � “well-represented” sensitive values. Based on

different interpretations of well-representedness, there are several instantiations of

this principle. The simplest understanding of “well-represented” is to ensure that

there are at least � distinct values for the sensitive attribute in each qid group.

This distinct �-diversity privacy model automatically satisfies k-anonymity, where

k = �, because each qid group contains at least � records. Distinct �-diversity cannot

prevent probabilistic inference attacks because some sensitive values are naturally

more frequent than others in a group, enabling an adversary to conclude that a

record in the group is very likely to have those values. For example, Flu is more
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common than HIV . This motivates the following two stronger notions of �-diversity.

A table is entropy �-diverse if for every qid group

−
∑
s∈S

P (qid, s) log(P (qid, s)) ≥ log(�) (2.1)

where S is a sensitive attribute, P (qid, s) is the fraction of records in a qid group

having the sensitive value s. The left-hand side, called the entropy of the sensitive

attribute, has the property that more evenly distributed sensitive values in a qid

group produce a larger value. Therefore, a larger threshold value � implies less

certainty of inferring a particular sensitive value in a group. Note that the inequality

does not depend on the choice of the log base.

Example 2.1.4. Consider Table 2.2. For the first group 〈Professional,Male, [35−

40)〉, −1
3
log 1

3
− 1

3
log 1

3
= log(1.9), and for the second group 〈Artist, Female, [30−

35)〉, −3
4
log 3

4
− 1

4
log 1

4
= log(1.8). So the table satisfies entropy �-diversity if � ≤

1.8.

One limitation of entropy �-diversity is that it does not provide a probability

based risk measure, which tends to be more intuitive to a human data publisher.

For example, being entropy 1.8-diverse in Example 2.1.4 does not convey the risk

level that the attacker has 75% probability of succeeding in inferring the sensitive

value HIV where 3 out of the 4 record owners in the qid group have HIV . Also,

it is difficult to specify different protection levels based on varying sensitivity and

frequency of sensitive values.

The recursive (c, �)-diversity makes sure that the most frequent value does not

appear too frequently, and the less frequent values do not appear too rarely. Let m

be the number of sensitive values in a qid group. Let fi denote the frequency of the

ith most frequent sensitive value in a qid group. A qid group is (c, �)−diverse if the

frequency of the most frequent sensitive value is less than the sum of the frequencies

of them−�+1 least frequent sensitive values multiplying by some publisher-specified
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constant c, i.e., f1 < c
∑m

i=� fi. A table is said to have recursive (c, �)-diversity if

all of its groups have (c, �)-diversity. Similarly, the recursive (c, �)-diversity is not

intuitive for a data publisher to specify the desired level of privacy protection.

2.1.3 Confidence Bounding

Wang et al. [114] proposed an alternative privacy model to protect attribute linkage

attacks. They considered bounding the confidence of inferring a sensitive value

from a qid group by specifying one or more privacy templates of the form, 〈QID →

s, h〉, where s is a sensitive value, QID is a quasi-identifier, and h is a threshold.

Let Conf(QID → s) be maxconf(qid → s) over all qid groups on QID, where

conf(qid → s) denotes the percentage of records containing s in the qid group. A

table satisfies 〈QID → s, h〉 if Conf(QID → s) ≤ h. In other words, 〈QID → s, h〉

bounds the attacker’s confidence of inferring the sensitive value s in any group on

QID to at most h.

For example, with QID = {Job, Sex,Age}, 〈QID → HIV, 10%〉 states that

the confidence of inferring HIV from any group on QID is no more than 10%. For

the data in Table 2.2, this privacy template is violated because the confidence of

inferring HIV is 75% in the group 〈Artist, Female, [30− 35)〉.

The confidence measure has two advantages over recursive (c, �)-diversity and

entropy �-diversity. First, the confidence measure is more intuitive because the risk is

measured by the probability of inferring a sensitive value. The data publisher relies

on this intuition to specify the acceptable maximum confidence threshold. Second,

it allows the flexibility for the data publisher to specify a different threshold h for

each combination of QID and s according to the perceived sensitivity of inferring

s from a group on QID. The recursive (c, �)-diversity cannot be used to bound the

frequency of sensitive values that are not the most frequent. Confidence bounding

provides greater flexibility than �-diversity in this aspect.
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2.1.4 ε-Differential Privacy

All aforementioned privacy models are called partition-based models. They provide

privacy protection by enforcing certain syntactic requirements on the released data.

Recent research indicates that partition-based privacy models are vulnerable to an

adversary’s background knowledge. In contrast, differential privacy [37] is a more

semantic definition, which provides strong privacy guarantees independent of an

adversary’s background knowledge. Differential privacy requires that the removal

or addition of a single database record does not significantly affect the outcome of

any analysis. It ensures a data record owner that any privacy breach will not be

a result of participating in the database since anything that is learnable from the

database with his record is also learnable from the one without his record. Formally,

differential privacy [37] is defined as follow. Here the parameter, ε, specifies the

degree of privacy offered.

Definition 2.1 (ε-differential privacy). A privacy mechanism A gives ε-differential

privacy if for any dataset D1 and D2 differing on at most one record, and for any

possible sanitized dataset D̃ ∈ Range(A),

Pr[A(D1) = D̃] ≤ eε × Pr[A(D2) = D̃] (2.2)

where the probability is taken over the randomness of A.

One salient merit of differential privacy is its composition properties, which

provide privacy guarantees in case of sequential release. Any sequence of compu-

tations that each provides differential privacy in isolation also provides differential

privacy in sequence, which is known as sequential composition [87]. The implication

is that differential privacy is robust to collusions among adversaries.

Theorem 2.1. Let Ai each provide εi-differential privacy. A sequence of Ai(D)

over the dataset D provides (
∑

i εi)-differential privacy.
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In some special cases, in which a sequence of computations is conducted on

disjoint datasets, the privacy cost does not accumulate, but depends only on the

worst guarantee of all computations. This is known as parallel composition [87].

This property could and should be used to obtain good performance.

Theorem 2.2. Let Ai each provide εi-differential privacy. A sequence of Ai(Di)

over a set of disjoint datasets Di provides (max(εi))-differential privacy.

2.2 Anonymization Mechanisms

Normally, a given raw dataset is very unlikely to satisfy a specified privacy model.

Certain anonymization mechanisms need to be applied to the raw dataset, making it

less precise, in order to achieve the privacy model. This is usually done by applying a

sequence of anonymization operations, which naturally leads to the trade-off between

privacy and utility. It is worth mentioning that there may exist more than one

anonymization mechanism to achieve a specific privacy model. However, in many

cases, it is important to choose a right anonymization mechanism in order to obtain

a better trade-off. So far, four kinds of anonymization mechanisms have been widely

used, namely generalization, suppression, bucketization and perturbation.

2.2.1 Generalization

The generalization mechanism generates anonymous releases by replacing some at-

tribute values by more general values. For a categorical attribute, a specific value

can be replaced with a general one according to a given taxonomy; for a numerical

attribute, exact values can be replaced with an interval that covers the exact values.

Usually, no-predetermined taxonomy is given for a numerical attribute. We have

seen taxonomy trees for both categorical and numerical attributes in Figure 2.1.

In Example 2.1.3, we achieved 3-anonymity by generalizing QID according to the

taxonomy trees in Figure 2.1.
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Generalization can be performed using either global recoding scheme or local

recoding scheme. The global recoding scheme further includes full-domain general-

ization scheme, subtree generalization scheme and sibling generalization scheme as

explained below.

Full-domain generalization scheme [74], [104], [108]. In this scheme, all values

of an attribute are generalized to the same level of the taxonomy tree. For example,

in Figure 2.1, if Lawyer and Engineer are generalized to Professional, then it also

requires generalizing Dancer and Writer to Artist. The search space for this scheme

is much smaller than the search spaces for the other schemes below, but the data

distortion is the largest because of the same granularity level requirement on all

paths of a taxonomy tree.

Subtree generalization scheme [9], [47], [48], [64], [115]. In this scheme, at a non-

leaf node, either all child values or none are generalized. For example, in Figure 2.1,

if Engineer is generalized to Professional, this scheme also requires the other child

node, Lawyer, to be generalized to Professional, but Dancer and Writer, which

are child nodes of Artist, can remain ungeneralized.

Sibling generalization scheme [74]. This scheme is similar to the subtree gen-

eralization, except that some siblings may remain ungeneralized. A parent value is

then interpreted as representing all missing child values. For example, in Figure 2.1,

if Engineer is generalized to Professional, and Lawyer remains ungeneralized,

Professional is interpreted as all jobs covered by Professional except for Lawyer.

This scheme produces less distortion than subtree generalization scheme because it

only needs to generalize the child nodes that violate the specified threshold.

Cell generalization scheme [74], [120], [127]. In all of the above schemes, if a

value is generalized, all its instances in the raw dataset are generalized. Therefore,

such schemes are called global recoding. In cell generalization, also known as local

recoding, some instances of a value may remain ungeneralized while other instances
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Table 2.3: 2-anonymous patient data by suppression
Job Sex Age Disease

* Male * Hepatitis
* Male * Hepatitis
* Male * HIV
Writer Female 30 Flu
Writer Female 30 HIV
Dancer Female 30 HIV
Dancer Female 30 HIV

are generalized. For example, in Table 2.1 Engineer in the first record is generalized

to Professional, while Engineer in the second record can remain ungeneralized.

Compared with global recoding schemes, this scheme is more flexible; therefore,

it produces a smaller data distortion. Nonetheless, it is important to note that

the utility of data could be adversely affected by this flexibility, which causes a

data exploration problem: most standard data mining methods treat Engineer and

Professional as two independent values, but, in fact, they are not. For example,

building a decision tree from such a generalized table may result in two branches,

Professional → class1 and Engineer → class2. It is unclear which branch should

be used to classify a new engineer. Though very important, this aspect of data

utility has been ignored by all works that employed the local recoding scheme. Data

produced by global recoding does not suffer from this data exploration problem.

2.2.2 Suppression

Suppression is a straightforward anonymization mechanism. Unlike generalization,

the suppression mechanism does not require any given taxonomy. It produces a

release candidate by replacing some attribute values by a special symbol (e.g., “*”

or “Any”), which indicates that the value has been suppressed. Table 2.3 presents

a 2-anonymous table from Table 2.1 using suppression, in which certain values are
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Table 2.4: Bucketized patient data
Job Sex Age BID

Engineer Male 35 1
Engineer Male 38 1
Lawyer Male 38 1
Writer Female 30 2
Writer Female 30 2
Dancer Female 30 2
Dancer Female 30 2

BID Disease

1 HIV
1 Hepatitis
1 Hepatitis
2 HIV
2 Flu
2 HIV
2 HIV

replaced by wildcard values, “*”. Analogous to generalization, there are also dif-

ferent schemes for suppression. Record suppression [9], [64], [74], [104] refers to the

operation that suppresses an entire record. Value suppression [113], [114] refers to

the operation that suppresses every instance of a given value in a table. Cell sup-

pression (or local suppression) [31], [92] refers to the operation that suppresses some

instances of a given value in a table. Cell suppression results in less data distortion,

but usually requires greater computational complexity.

2.2.3 Bucketization

The basic idea of the bucketization mechanism is to break the correlation between

quasi-identifiers and sensitive values. It first partitions the records in the original

data table into non-overlapping buckets, each of which is assigned a unique BID.

For each bucket, it randomly permutes the sensitive attribute values, and then

publishes its projection on the quasi-identifier attributes and also its projection

on the permuted sensitive attribute. Table 2.4 presents a release candidate of the

bucketization mechanism from Table 2.1. After bucketization, the sensitive value of

a victim becomes indistinguishable from the rest in the same bucket.

The main limitation of this mechanism is that its application requires clearly

defined sensitive attributes and non-overlapping buckets. This requirement prevents

it from being applied to certain types of data, for example, set-valued data and
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trajectory data. Moreover, since the quasi-identifiers are published without any

modification, an adversary is likely to be able to perform an identity linkage by

joining some external tables.

2.2.4 Perturbation

Perturbation mechanisms have been used for a long period of time in the field of

statistical disclosure control. Adam and Wortmann [2] have provided a complete

summary of perturbation mechanisms that have been widely employed. In this sec-

tion, we focus on two standard perturbation mechanisms that are used for achieving

differential privacy, namely Laplace mechanism and exponential mechanism. A fun-

damental concept of both mechanisms is the global sensitivity of a function [37] that

maps underlying datasets to (vectors of) reals.

Definition 2.2 (Global Sensitivity). For any function f : D → Rd, the sensitivity

of f is

GS(f) = max
D1,D2

||f(D1)− f(D2)||1 (2.3)

for all D1,D2 differing in at most one record.

Roughly speaking, functions with lower sensitivity are more tolerant towards

changes of a dataset and, therefore, allow more accurate differentially private mech-

anisms.

Laplace Mechanism

For the analysis whose outputs are real, a standard mechanism to achieve differential

privacy is to add Laplace noise to the true output of a function. Dwork et al. [37]

propose the Laplace mechanism which takes as inputs a database D, a function

f , and the privacy parameter ε. The noise is generated according to a Laplace
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distribution with the probability density function (pdf) p(x|λ) = 1
2λ
e−|x|/λ, where λ

is determined by both GS(f) and the desired privacy parameter ε.

Theorem 2.3. For any function f : D → Rd, the mechanism A

A(D) = f(D) + Laplace(GS(f)/ε) (2.4)

gives ε-differential privacy.

For example, for a single counting query Q over a dataset D, returning Q(D)+

Laplace(1/ε) maintains ε-differential privacy because a counting query has a sensi-

tivity 1.

Exponential Mechanism

For the analysis whose outputs are not real or make no sense after adding noise,

McSherry and Talwar [89] propose the exponential mechanism that selects an output

from the output domain, r ∈ R, by taking into consideration its score of a given

utility function q in a differentially private manner. The exponential mechanism

assigns exponentially greater probabilities of being selected to outputs of higher

scores so that the final output would be close to the optimum with respect to q.

The chosen utility function q should be insensitive to changes of any particular

record, that is, has a low sensitivity. Let the sensitivity of q be GS(q) = max∀r,D1,D2

|q(D1, r)− q(D2, r)|.

Theorem 2.4. Given a utility function q : (D × R) → R for a database D, the

mechanism A,

A(D, q) =

{
return r with probability ∝ exp

(
εq(D, r)

2GS(q)

)}
(2.5)

gives ε-differential privacy.
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2.3 Utility Metrics

Privacy is one aspect of privacy-preserving data publishing; utility is the other. In

general, each anonymization operation increases privacy, but decreases utility. To

obtain a better trade-off between privacy and utility, we prefer the anonymization

operations that increase more privacy at the cost of less utility loss. This requires

the quantification of data utility. Consequently, some utility metrics have been pro-

posed for measuring either the usefulness of the anonymized data or the information

loss due to the anonymization process. Such utility metrics roughly fall into three

categories: general purpose metrics, special purpose metrics and trade-off purpose

metrics.

2.3.1 General Purpose Metrics

In many cases, the data publisher does not know how the published data will be

analyzed by the recipient. In this case, general purpose metrics are needed. The

basic idea of general purpose metrics is to measure the “similarity” between the

original data and the anonymized data, which underpins the principle of minimal

distortion [104], [108]. One of the most intuitive general purpose information met-

rics is the number of anonymization operations (e.g., generalization or suppression)

performed on a dataset [104]. For example, generalizing 10 instances of Engineer to

Professional causes 10 units of distortion, and further generalizing these instances

to ANY Job causes another 10 units of distortion. In addition, ILoss [124] and

discernibility metric (DM) [106] are two examples of general purpose metrics that

are widely used. ILoss charges a penalty for generalizing a value in a record in-

dependently of other records, while the discernibility metric addresses the notion

of loss by charging a penalty to each record for being indistinguishable from other

records with respect to QID.
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2.3.2 Special Purpose Metrics

If the purpose of the data is known at the time of publication, it can be taken

into account during the anonymization process to better preserve data utility. For

example, if the data is published for modeling the classification of a target attribute

in the table, then it is important not to generalize the values whose distinctions are

essential for discriminating the class labels in the target attribute. This intuition is

reflected in the classification metric. Iyengar [64] proposed the classification metric

or CM to measure the classification error on the training data. The idea is to charge

a penalty for each record suppressed or generalized to a group in which the records

class is not the majority class. The intuition is that a record having a non-majority

class in a group will be classified as the majority class, which is an error because

it disagrees with the record’s original class. Special purpose metrics are especially

important for differential privacy, under which we can guarantee utility for only

restricted classes of data analysis tasks.

2.3.3 Trade-off Purpose Metrics

All above information metrics aim at preserving maximum data usefulness, but the

problem is that the anonymization operation that gains maximum information may

also lose so much privacy that no other anonymization operation can be performed.

The idea of trade-off metrics is to consider both the privacy and information re-

quirements at every anonymization operation and to determine an optimal trade-off

between the two requirements [47], [48].

26



Chapter 3

Literature Review

The privacy concern in data publishing was first arisen in the field of official statis-

tics in the 1960s. In the context of statistical databases, the objective of privacy

protection is to protect confidentiality of any individual entity in the database while

allowing its users to retrieve aggregate statistics [2]. Recently, with the fast develop-

ment of data mining techniques, there are increasing demands on publishing entire

database records, instead of just aggregate statistics [46]. Such demands obviously

present greater challenges to privacy protection, and have spawned a new wave of

research on PPDP towards data mining purpose. In this section, we present an

in-depth literature review on the recent developments of PPDP.

3.1 Sanitizing Statistical Data

Statistical databases are maintained by various organizations to support their short-

term and long-term planning activities. The users of statistical databases are entitled

to submit interactive queries for aggregate statistics. The aggregate statistics may

disclose an individual’s sensitive information that is stored in the database, such as

income, disease, and credit rating. Therefore, the problem of sanitizing statistical

data, also known as statistical disclosure control [2], [13], is to protect confidentiality
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based on the interactive query model.

Perturbation is the most important sanitization approach used in statistical

disclosure control due to its simplicity, efficiency, and ability to preserve statistical

information. The general idea of perturbation is to replace the original data val-

ues with some synthetic data values so that the statistical information computed

from the perturbed data does not differ significantly from the statistical information

computed from the original data. The perturbed data records do not correspond to

real-world record owners, so the attacker cannot perform the sensitive linkages or

recover sensitive information from the published data. Following the general idea,

three concrete sanitization methods have been widely used, namely additive noise,

data swapping, and synthetic data generation. Additive noise [2], [13] is often used

for hiding sensitive numerical data (e.g., salary). The basic idea is to replace the

original sensitive value s with s + r where r is a random value drawn from some

distribution. Privacy is measured by how closely the original values of a modified

attribute can be estimated [5]. Two papers [44], [70] showed that some simple statis-

tical information, like means and correlations, can be preserved by adding random

noise. Data swapping can be used to protect both numerical attributes [102] and

categorical attributes [101]. It sanitizes a data table by exchanging values of sensi-

tive attributes among individual records while maintaining the low-order frequency

counts or marginals. Synthetic data generation builds a statistical model from the

raw data and then samples points from the model. These sampled points form the

synthetic data for data publication instead of the original data.

Recently, Dwork et al. [37] proposed an insightful privacy notion based on the

principle that the risk to a record owner’s privacy should not substantially increase

as a result of participating in a statistical database. Instead of comparing the prior

and posterior probabilities before and after accessing the published data, Dwork et

al. proposed to compare the probability change of an adversary on databases with

and without the record owner’s data. Consequently, Dwork et al. [37] proposed
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a privacy model called ε-differential privacy to ensure that the outcome of any

analysis is insensitive to the removal or addition of a single database record. It

follows that even if a user had opted to be included in the database, there would

not be a significant change in any computation based on the database. Therefore,

this assures every record owner that any privacy breach will not be a result of

participating in a database.

Differential privacy lies on a rigorous mathematical foundation, and has been

shown to guarantee formal, provable privacy protection independent of an adver-

sary’s background knowledge and computational power. These days, differential

privacy has gained substantial attention and become the de facto standard for pri-

vacy protection. We review the recent applications of differential privacy in Sec-

tion 3.6.

3.2 Sanitizing Relational Data

The traditional k-anonymity model [104], [108] and its extensions [75], [120], [85],

[95], [77], [114] were originally proposed to protect private and sensitive informa-

tion in the context of relational data. All these privacy models are based on

the common assumption that an adversary may use any or even all attributes

in the quasi-identifier (QID) to launch identity and attribute linkage attacks. k-

anonymity [104], [108] prevents identity linkage attacks by requiring every qid group

in a table to contain at least k records. Most works on k-anonymity focus on

anonymizing a single data table; however, a real-life database usually contains mul-

tiple relational tables. Nergiz et al. [95] proposed a privacy model called MultiR

k-anonymity to ensure k-anonymity on multiple relational tables. Their model as-

sumes that a relational database contains a person-specific table PT and a set of

tables T1, · · · , Tn, where PT contains a person identifier Pid and some sensitive

attributes, and Ti, for 1 ≤ i ≤ n, contains some foreign keys, some attributes in
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QID, and sensitive attributes. The general privacy notion is to ensure that for each

record owner o contained in the join of all tables PT �� T1 �� · · · �� Tn, there exist

at least k − 1 other record owners who share the same QID with o.

�-diversity [85] and confidence bounding [114] aim to prevent attribute linkage

attacks. �-diversity requires every qid group to contain at least � “well-represented”

sensitive values, while confidence bounding limits an adversary’s confidence of infer-

ring a sensitive value in any qid group to a certain threshold. (α, k)-anonymity [120]

incorporates both k-anonymity and confidence bounding into a single privacy model,

requiring every qid in a table T to be shared by at least k records and conf(qid →

s) ≤ α for any sensitive value s, where k and s are data publisher specified thresh-

olds. Li et al. [77] observed that when the overall distribution of a sensitive attribute

is skewed, �-diversity does not prevent attribute linkage attacks. Consider a patient

table where 95% of records have Flu and 5% of records have HIV. Suppose that a qid

group has 50% of Flu and 50% of HIV and, therefore, satisfies 2-diversity. However,

this group presents a serious privacy threat because any record owner in the group

could be inferred as having HIV with 50% confidence, compared to 5% in the overall

table. To prevent skewness attacks, Li et al. [77] proposed a privacy model, called

t-closeness, that requires the distribution of a sensitive attribute in any qid group to

be close to the distribution of the attribute in the overall table. t-closeness uses the

earth mover’s distance (EMD) to measure the closeness between two distributions of

sensitive values, and requires the closeness to be within t. (ε, δ)k-dissimilarity [116]

thwarts both identity and attribute linkage attacks for a much wider range of data

models, where the proximity of sensitive values is defined by an arbitrary function.

In the above privacy models, only very limited background knowledge is con-

sidered. Yet, recent works have shown the importance of integrating an adversary’s

background knowledge in privacy quantification. A common challenge faced by all

research on integrating background knowledge is to determine what and how much

knowledge should be considered. Li and Li [78] modeled an adversary’s background
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knowledge by mining negative association rules from the data and then using them

in the anonymization process. Chen et al. [19] argued that since it is infeasible

for a data publisher to anticipate the background knowledge possessed by an adver-

sary, the interesting research direction is to consider only the background knowledge

that arises naturally in practice and can be efficiently handled. In particular, three

types of background knowledge are considered in [19]: knowledge about the target

individual, knowledge about other individuals, and knowledge about the group of

individuals having the same sensitive value as that of the target individual. The

three-dimensional knowledge is quantified as a (�, k,m) triplet, which indicates that

an adversary knows: (1) � sensitive values that the target individual t does not

have, (2) the sensitive values of other k individuals, and (3) m individuals having

the same sensitive value as that of t. Then, the authors proposed the skyline privacy

criterion, which allows the data publisher to specify a set of incomparable (�, k,m)

triplets, called a skyline, along with a set of confidence thresholds for a sensitive

value δ in order to provide more precise and flexible privacy quantification. The

major shortcoming of privacy skyline is its limited expressive power of background

knowledge. For example, it fails to express probabilistic background knowledge.

Du et al. [35] specifically modeled an adversary’s background knowledge in

the form of probabilities, for example, P (OvarianCancer|Male) = 0. The primary

privacy risks in PPDP come from the linkings between the sensitive attributes (SA)

and the quasi-identifiers (QI). Quantifying privacy is, therefore, to derive P (SA|QI)

for any instance of SA and QI with the probabilistic background knowledge. Du et

al. [35] formulated the derivation of P (SA|QI) as a non-linear programming prob-

lem. Currently, the paper is limited in handling only equality background knowl-

edge constraints. Since both papers [19], [35] are unaware of the exact background

knowledge possessed by an adversary, Li et al. [79] proposed a generic framework

to systematically model different types of background knowledge an adversary may

possess. Yet, in this paper the authors limit their scope to background knowledge
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that is consistent with the original dataset T . Then, modeling background knowl-

edge is to estimate the adversary’s prior belief of the sensitive attribute values over

all possible QI values. This can be achieved by identifying the underlying prior

belief function that best fits T using a kernel regression estimation method.

3.3 Sanitizing Set-Valued Data

Due to the nature of high dimensionality in set-valued data, the extensive research

on privacy-preserving data publishing (PPDP) for relational data does not fit well

with set-valued data [46]. Some recent papers have started to address the problem

of anonymizing set-valued data for the purpose of data mining [17], [50], [62], [110],

[111], [128], [129]. These existing works can be broadly divided into two categories

according to whether they distinguish the items between sensitive and non-sensitive.

Ghinita et al. [50] and Xu et al. [128], [129] deliberately divided all items in

the universe into either sensitive or non-sensitive, and further assumed that an ad-

versary’s background knowledge is strictly confined to non-sensitive items, which

are considered quasi-identifiers for launching privacy attacks. In [50], an adversary

is modeled with background knowledge of arbitrary number of non-sensitive items.

They proposed a bucketization-based approach that limits the probability of infer-

ring a sensitive item to a specified threshold, while preserving correlations among

items for frequent pattern mining. In addressing the high dimensionality of set-

valued data, Xu et al. [129] bounded the background knowledge of an adversary to

at most p non-sensitive items, and intended to prevent both identity attacks and

attribute attacks. Specifically, global suppression was employed with the goal of

preserving as many item instances as possible. Xu et al. [128] improved the ap-

proach proposed in [129] in two ways: instead of preserving item instances, they

aimed to preserve frequent itemsets; they presented a border representation, which

avoids enumerating an exponential number of moles and nuggets.
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All these works suffer from two main drawbacks. First, when an adversary

is aware of some, even few, sensitive items, other sensitive items could be learned.

Second, in many cases there does not exist a consensus of “sensitive”. Items sensitive

to someone may not be sensitive to others. Cao et al. [17] addressed the first concern

by assuming that an adversary may possess background knowledge on sensitive

items and proposed a privacy notion ρ-uncertainty, which bounds the confidence of

inferring a sensitive item from any subset of items (sensitive or non-sensitive) to ρ.

They employed both global suppression (for both sensitive and non-sensitive items)

and global generalization (for only non-sensitive items).

In addressing the second concern, He and Naughton [62] and Terrovitis et

al. [110], [111] eliminated the distinction between sensitive and non-sensitive. Any

item could be both sensitive and non-sensitive at the same time. Incorporating

both k-anonymity and confidence bounding in such a setting is a challenging, if

not impossible, task due to the inherent conflicting requirements of the two privacy

models. As a result, these authors considered only identity attacks. Similar to the

idea of [128] and [129], Terrovitis et al. [110] proposed to bound the background

knowledge of an adversary by the maximum number m of items and proposed a

new privacy model, km-anonymity, a relaxation of k-anonymity. They achieved km-

anonymity by a bottom-up global generalization solution. To improve the utility,

recently Terrovitis et al. [111] provided a local recoding method for achieving km-

anonymity. He and Naughton [62] pointed out that km-anonymity provides a weaker

privacy protection than k-anonymity and proposed a top-down local generalization

solution under k-anonymity. We argue that even k-anonymity provides insufficient

privacy protection for set-valued data. Consider an extreme case in which all records

are identical. If an adversary assures the presence of the victim in the table, he learns

every item of the victim without any background knowledge.
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3.4 Sanitizing Trajectory and Sequential Data

More broadly, sequential data can be considered as a special kind of trajectory

data. Due to the ubiquitousness of trajectory data and sequential data, some re-

cent works [1], [109], [100], [130], [63], [93] have started to study privacy-preserving

trajectory data publishing from different perspectives. Abul et al. [1] proposed the

(k, δ)-anonymity model based on the inherent imprecision of sampling and position-

ing systems, where δ represents the possible location imprecision. The core step of

their anonymization method is based on space translation. The general idea is to

modify trajectories so that k different trajectories co-exist in a cylinder of the ra-

dius δ. One limitation of this approach lies in the fundamental assumption that the

trajectories are of some extent of imprecision, which may not be true for trajectory

data from many sources, for example, purchase data, RFID data and transit data.

Terrovitis and Mamoulis [109] modeled an adversary’s background knowledge

as a set of projections of sequences in a sequential database, and assumed that the

data holder has to be aware of all such adversarial knowledge. They consequently

proposed a data suppression technique that limits the confidence of inferring the

presence of a location in a sequence to a pre-defined probability threshold while

minimizing the average difference between the original dataset and the published

one. The assumption of knowing all adversarial knowledge before publishing the data

is possible in the specific scenario described in their paper, but it is not applicable

in general in the context of sequential data.

Pensa et al. [100] proposed a variant of k-anonymity model for sequential data

with the goal of preserving frequent sequential patterns and developed the brute

force pattern-preserving k-anonymization (BF-P2kA) algorithm, which consists of

three steps. In the first step, the sequences in the raw dataset are used to build a

prefix tree. Then the prefix tree is pruned to make sure that all branches are with a

support greater than k. After this, the pruned infrequent sequences are re-appended

to the prefix tree based on longest common subsequence (LCS). In the last step, an
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anonymous dataset is re-generated based the processed prefix tree.

Yarovoy et al. [130] argued that in moving object databases, there does not

exist a fixed set of QID attributes for all moving objects (MOB). They considered

timestamps as the QIDs and assumed that an attacker conducts privacy attacks

based on an attack graph. A moving object database satisfies MOB k-anonymity if

every node in the attack graph G has at least degree k and G is symmetric. The

MOB anonymization algorithm is composed of two steps: identifying anonymiza-

tion groups and generalizing the groups to common regions according to the QIDs

while achieving minimal information loss, which is measured as the reduction in the

probability of accurately determining the position of an object over all timestamps

between the raw MOD D and its anonymous version D∗. An underlying assumption

of MOB k-anonymity is that the data publisher must be aware of the QIDs of all

moving objects in the MOD to publish. However, the paper left the acquisition of

QIDs for a data publisher unsolved.

Monreale et al. [93] presented an approach based on spatial generalization in

order to achieve k-anonymity. The novelty of their approach lies in a generalization

scheme that depends on the underlying trajectory dataset rather than a fixed grid

hierarchy. Fung et al. [45] proposed a trajectory anonymization algorithm based

on global suppression, and their utility metric is the number of location-time pair

instances suppressed due to anonymization. Hu et al. [63] presented the problem

of k-anonymizing a trajectory database with respect to a sensitive event database.

The goal is to make sure that every event is shared by at least k users. Specifically,

they developed a new generalization mechanism known as local enlargement, which

achieves better utility than conventional hierarchy- or partition-based generalization.

All these works [1], [109], [100], [130], [63], [93] are limited to privacy protection

for only identity linkage attacks based on k-anonymity, however, recently researchers

have realized that k-anonymity bears some inherent limitations on trajectory data

anonymization. For example, in the emerging data publishing scenario, trajectory
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data is published with some other sensitive attributes. Even though an individual

can be hidden in a group with size greater than k, an adversary can still infer his

sensitive information if the group does not have enough diversity on the sensitive

attributes. Therefore, it is valuable to employ more rigorous privacy models to the

problem of trajectory data anonymization. In addition, all these approaches are

effective in some specific scenarios. A generic anonymization framework that is able

to accommodate different data utility requirements is still indispensable.

3.5 Sanitizing Network Data

Since Backstrom et al.’s study [7] of privacy attacks on social networks, the problem

of privacy-preserving network data publishing has received increasing attention.

A large line of research studies how to prevent a node from re-identification

against an adversary with background knowledge on the network structure (and

node attributes). Liu and Terzi [82] proposed the notion of k-degree anonymity,

which requires that for every node v there exist at least k − 1 other nodes with

the same degree as v. Zhou and Pei [133] demanded that any vertex cannot be re-

identified in an anonymized graph with probability greater than 1
k
by an adversary

equipped with 1-neighborhood background knowledge. Hay et al. [60] generalize a

graph by grouping nodes into partitions with size at least k, and only release the size

of each partition and the density of edges. Cormode et al. [30] anonymize graphs

using label lists based on a critical safety condition and then release only the number

of edges among different node classes.

Recently, Zou et al. [134] proposed k-automorphism, which resists any struc-

tural attack by enforcing k− 1 automorphic functions in the published data. Cheng

et al. [26] presented the notion of k-security based on k-isomorphism. It requires an

input graph to be transformed to k disjoint isomorphic subgraphs. The strong point

of k-isomorphism is that it prevents not only node re-identification but also edge
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disclosure (i.e., an adversary should not be able to determine if two nodes are con-

nected with probability > 1
k
). However, k-isomorphism’s ability in preventing edge

disclosure is still limited. Yuan et al. [132] introduced a framework that provides

personalized privacy protection. Specifically, they defined three levels of protec-

tion requirements and combined label generalization and other structure protection

techniques in order to achieve improved utility.

Another line of research aims at obfuscating an adversary’s certainty of the

presence of a link between two targets. Ying and Wu [131] developed randomized

edge addition, deletion and switch methods with the goal of preserving spectrum of

networks. Liu et al. [83] considered a special situation where edges are weighted.

They proposed two privacy preserving strategies, one based on a Gaussian random-

ization multiplication and the other based on a greedy perturbation algorithm, in

order to preserve shortest paths between pairs of nodes. Wu et al. [122] presented

a low rank approximation based reconstruction algorithm, which recovers spectral

properties of a randomized graph. In general, all these works lack a formal privacy

definition and are only resistant to certain types of privacy attacks.

3.6 Applications of Differential Privacy

In the last few years, differential privacy has been gaining considerable attention in

various data sharing scenarios. Most of the research on differential privacy concen-

trates on the interactive model with the goal of either reducing the magnitude of

added noise [61], [76], [103] or releasing certain data mining results [8], [11], [43],

[71], [84]. Lately, several works [12], [39], [125], [126] have started to address the

use of differential privacy in PPDP as a substitute for k-anonymity and its exten-

sions. Blum et al. [12] demonstrated that it is possible to release synthetic private

databases that are useful for all queries over a discretized domain from a concept
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class with polynomial VC-dimension1. However, their solution is not efficient, taking

runtime complexity of superpolynomial(|C|, |I|), where |C| is the size of a concept

class and |I| the size of the item universe. This fact makes their mechanism imprac-

tical for real applications. To improve the efficiency, Dwork et al. [39] proposed

a recursive algorithm of generating a synthetic database with runtime complexity

of polynomial(|C|, |I|). This improvement, however, is still insufficient to handle

real-life high-dimensional datasets because |C| is an exponential function of |I|.

Xiao et al. [126] proposed a two-step algorithm for relational data. It first issues

queries for every possible combination of attribute values to the PINQ interface [87],

and then produces a generalized output using the perturbed dataset returned by

PINQ. Apparently, this approach is computationally expensive in the context of

high-dimensional data. For example, for set-valued data it requires issuing a total

of 2|I| − 1 queries, where |I| is the total number of possible items. The works

reported in [12], [39], [126] are based on the query model. In contrast, Xiao et

al. [125] assumed that their algorithm has direct and unconditional access to the

underlying relational data. They proposed a wavelet-transformation based approach

that lowers the magnitude of noise than adding independent Laplace noise. Similarly,

the algorithm needs to process all possible entries in the entire output domain, which

causes a scalability problem for high-dimensional data.

With the wide acknowledgment of differential privacy, some papers [58], [66],

[54] have started to apply differential privacy to network data from different perspec-

tives. All these works consider a special instantiation of differential privacy, known

as edge-differential privacy [58], where a neighbor of a network dataset is obtained

by either adding/removing an edge or by adding/removing an isolated node. Edge-

differential privacy protects individual edges from being disclosed. Hay et al. [58]

studied the publication of a private estimate of the degree distribution of a network

1Vapnik-Chervonenkis (VC) dimension is a measure of the complexity of a concept in the class.

38



via constrained inferences. Karwa et al. [66] provided efficient algorithms for an-

swering triangles, k-triangles and k-stars with instance-dependent noise. Gupta et

al. [54] gave new algorithms for generating a non-interactive release that is useful

for cut queries. The key idea is to pair an iterative database construction algorithm

with a distinguisher, which returns a cut query with a significantly different value

on an intermediate database, in order to give increasingly accurate approximations

with respect to cut queries. However, as explained later in Chapter 7, there are

several major limitations that obstruct its application to real-life network datasets.
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Chapter 4

Set-Valued Data Sanitization

4.1 Introduction

Set-valued data, such as transaction data, web search queries, and click streams,

refers to the data in which each record owner is associated with a set of items drawn

from a universe of items [62], [110], [111]. Sharing set-valued data provides enormous

opportunities for various data mining tasks in different application domains such as

marketing, advertising, and infrastructure management. However, such data often

contains sensitive information that could violate individual privacy. Such privacy

concerns are even exacerbated in the emerging computing paradigms, for example

cloud computing. Therefore, set-valued data needs to be sanitized before it can be

released to the public. In this chapter, we consider the problem of publishing set-

valued data that simultaneously protects individual privacy under the framework of

differential privacy [37] and provides guaranteed utility to data analysts.

There has been some existing research [17], [50], [62], [110], [111], [128], [129] on

publishing set-valued data based on partition-based privacy models [49], for example

k-anonymity [108] (or its relaxation, km-anonymity [110], [111]) and/or confidence

bounding [17], [114]. However, the recent discovery of several privacy attacks [67],

[94], [119] has questioned the capability of partition-based privacy models on privacy
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protection. The vulnerability of partition-based privacy models is largely due to their

deterministic nature, which makes them fail to resist an adversary with substantial

background knowledge. This fact motivated our use of differential privacy to provide

formal, provable privacy guarantees for set-valued data publication. However, the

application of differential privacy to set-valued data publishing is very challenging,

especially in terms of efficiency due to its high dimensionality. By definition, any

differentially private mechanism has to be insensitive to the addition/removal of a

single record, which, in the context of set-valued data, could be an arbitrary itemset

derived from the item universe I. To mask this record, existing techniques [12], [39],

[125], [126] explicitly consider a total of 2|I|−1 itemsets that can be derived from I.

Since |I| in a real-life application could be over a thousand, these approaches can

hardly be applied to a real-life data sharing scenario.

In addressing this problem, we initiate the line of data-dependent solutions,

which adaptively narrow down the output domain by using noisy answers obtained

from the underlying database. A data-dependent solution also has a positive impact

on the resulting utility as there is no need to add noise to every possible entry in

the output domain. The main technical challenge is how to make use of a specific

dataset while satisfying differential privacy. In particular, for set-valued data, we

demonstrate that in the presence of a context-free taxonomy tree we can efficiently

generate a sanitized release of set-valued data in a differentially private manner

with guaranteed utility for counting queries and many other data mining tasks.

Unlike the use of taxonomy trees in the generalization mechanism for partition-

based privacy models, where the taxonomy trees are highly specific to a particular

application, the taxonomy tree required in our solution does not necessarily need to

reflect the underlying semantics and, therefore, is context-free. This feature makes

our approach flexible for applying to various kinds of set-valued datasets. In this

chapter, we also discuss how to apply the data-dependent idea to other data types.

Contributions. We summarize the contributions of this chapter as follows.
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• This is the first study of publishing set-valued data via differential privacy. The

previous anonymization techniques [17], [50], [62], [110], [111], [128], [129] de-

veloped for publishing set-valued data are dedicated to partition-based privacy

models. Due to their deterministic nature, they cannot be used for achieving

differential privacy. In this chapter, we propose a probabilistic top-down parti-

tioning algorithm that provides provable utility under differential privacy, one

of the strongest privacy models.

• This is the first work that proposes an efficient non-interactive approach scal-

able to high-dimensional set-valued data with guaranteed utility under differ-

ential privacy. We stress that our goal is to publish the data, not data mining

results. Publishing data provides much greater flexibilities for data miners

than publishing data mining results. We show that a more efficient and ef-

fective solution could be achieved by making use of the underlying dataset,

instead of explicitly considering all possible outputs as used in the existing

works [12], [39], [125], [126]. For a set-valued dataset, it could be done by a

top-down partitioning process based on a context-free taxonomy tree. The use

of a context-free taxonomy tree makes our approach applicable to all kinds of

set-valued datasets. We prove that the result of our approach is (δ, β)-useful

for counting queries, which guarantees the usefulness for data mining tasks

based on counts, e.g., mining frequent patterns and association rules [55]. We

argue that the general idea of data-dependent solutions has a wider applica-

tion, for example, to relational data in which each attribute is associated with

a taxonomy tree. This implies that some traditional data publishing methods,

such as TDS [48] and Mondrian [75], could be adapted to satisfy differential

privacy.

The results of this chapter have been published in [25].
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Table 4.1: A sample set-valued dataset
Rec. # Items

1 {I1, I2, I3, I4}
2 {I2, I4}
3 {I2}
4 {I1, I2}
5 {I2}
6 {I1}
7 {I1, I2, I3, I4}
8 {I2, I3, I4}

4.2 Preliminaries

4.2.1 Set-Valued Data

Let I = {I1, I2, ..., I|I|} be the universe of items, where |I| is the size of the item

universe. The multiset D = {D1, D2, ..., D|D|} denotes a set-valued dataset, where

each record Di ∈ D is a non-empty subset of I. Table 4.1 presents an example of

set-valued datasets with the item universe I = {I1, I2, I3, I4}.

Given the item universe I, the output domain O of a set-valued database is

composed of all possible itemsets that can be derived from I. Therefore, the size of

the output domain |O| =
∑|I|

k=1

(|I|
k

)
= 2|I| − 1.

Example 4.2.1. Given I = {I1, I2, I3}, the associated output domainO = {{I1}, {I2},

{I3}, {I1, I2}, {I1, I3}, {I2, I3}, {I1, I2, I3}}. The size of O is 23 − 1 = 7.

4.2.2 Context-Free Taxonomy Tree

A set-valued dataset could be associated with a single taxonomy tree. In the classic

generalization mechanism, the taxonomy tree required is highly specific to a partic-

ular application. This constraint has been considered a major limitation of applying

generalization [4]. The reason of requiring an application-specific taxonomy tree is

that the release contains generalized items that need to be semantically consistent
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Figure 4.1: A context-free taxonomy tree of the sample data.

with the original items. In our approach, we publish only original items; therefore,

the taxonomy tree could be context free.

Definition 4.1 (Context-Free Taxonomy Tree). A context-free taxonomy tree is a

taxonomy tree, whose internal nodes are a set of their leaves, not necessarily the

semantic generalization of the leaves.

For example, Figure 4.1 presents a context-free taxonomy tree for Table 4.1,

and one of its internal nodes I{1,2,3,4} = {I1, I2, I3, I4}. We say that an item can be

generalized to a taxonomy tree node if it is in the node’s set. For example, I1 can

be generalized to I{1,2} because I1 ∈ {I1, I2}.

4.2.3 Utility Metrics

Due to the lower bound results [34], [37], [38], we can only guarantee the utility of

restricted classes of queries [12] in the non-interactive setting. In this chapter, we

aim to develop a solution for publishing set-valued data that is useful for counting

queries (also known as count queries).

Definition 4.2 (Counting Query). For a given itemset U ∈ O, a counting query Q

over a dataset D is defined to be Q(D) = |{D ∈ D : U ⊆ D}|.

We choose counting queries because they are crucial to several key data mining

tasks over set-valued data, for example, mining frequent patterns and association
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rules [55]. We employ (δ, β)-usefulness [12] to theoretically measure the utility of

sanitized data for counting queries.

Definition 4.3 ((δ, β)-usefulness). A privacy mechanismA is (δ, β)-useful for queries

in class C if with probability 1 − β, for every Q ∈ C and every dataset D, for

D̃ = A(D), |Q(D̃)−Q(D)| ≤ δ.

(δ, β)-usefulness is effective to give an overall theoretical estimation of utility,

but fails to provide intuitive experimental results. Therefore, we experimentally

measure the utility of sanitized data for a counting query Q by its relative error [125],

[123] with respect to the true result over the original database D, which is computed

as:

error(Q(D̃)) =
|Q(D̃)−Q(D)|
max{Q(D), s} ,

where s is a sanity bound used to mitigate the influences of queries with extremely

small selectivities [125], [123]. Selectivity is defined as the fraction of records in the

dataset satisfying all items in Q [125].

4.3 Sanitization Algorithm

In this section, we present a Diff erentially-private sanitization algorithm (given in

Algorithm 4.1) that recursively Part itions a given set-valued dataset based on a

context-free taxonomy tree (DiffPart).

4.3.1 Partitioning Algorithm

Intuitively, a differentially private release of a set-valued dataset could be generated

by adding Laplace noise to a set of counting queries. A simple yet infeasible approach

can be achieved by employing Dwork et al.’s method [37]: first generate all distinct

itemsets from the item universe; then for each itemset issue a counting query and add

Laplace noise to the answer. This approach suffers from two main drawbacks in the
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Algorithm 4.1: DiffPart

Input: Raw set-valued dataset D
Input: Fan-out f
Input: Privacy budget ε
Output: Sanitized dataset D̃
1: D̃ ← ∅;
2: Construct a taxonomy tree T with fan-out f ;
3: Partition p ← all records in D;
4: p.cut ← the root of T ;
5: p.ε̃ = ε/2;
6: p.α = p.ε̃/|InternalNodes(p.cut)|;
7: Add p to an initially empty queue Q;
8: while Q 
= ∅ do

9: Dequeue p′ from Q;
10: Sub-partitions P ← SubPart Gen(p′, T );
11: for each sub-partition pi ∈ P do

12: if pi is a leaf partition then

13: Npi = NoisyCount(|pi|, ε/2 + pi.ε̃);
14: if Npi ≥

√
2C1/(ε/2 + pi.ε̃) then

15: Add Npi copies of pi.cut to D̃;
16: end if

17: else

18: Add pi to Q;
19: end if

20: end for

21: end while

22: return D̃;

context of set-valued data. First, it requires a total of 2|I| − 1 queries, giving rise to

a scalability problem. Second, the noise added to the itemsets that never appear in

the original dataset accumulates exponentially, rendering the release useless for data

analysis tasks. In fact, these are also the main limitations of other non-interactive

approaches [12], [39], [125], [126] when applied to set-valued data. We argue that

an efficient solution could be achieved by taking into consideration the underlying

dataset. However, attention must be paid because identifying the set of counting

queries based on the input dataset may leak its sensitive information and, therefore,

violate differential privacy.
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We first provide an overview of DiffPart. It starts by creating the context-free

taxonomy tree. It then generalizes all records to a single partition with a common

representation. We call the common representation the hierarchy cut, consisting

of a set of taxonomy tree nodes. It recursively distributes the records into disjoint

sub-partitions with more specific representations in a top-down manner based on the

taxonomy tree. For each sub-partition, we determine if it is empty in a noisy way

and further split the sub-partitions considered “non-empty”. Our approach stops

when no further partitioning is possible in any sub-partition. We call a partition a

leaf partition if every node in its hierarchy cut is a leaf of the taxonomy tree. Finally,

for each leaf partition, the algorithm asks for its noisy size (the noisy number of

records in the partition) to construct the release. Our use of a top-down partitioning

process is inspired by its use in [62], but with substantial differences. Their approach

is used to generate a generalized release satisfying k-anonymity while ours is to

identify the set of counting queries used to publish differentially private data.

Algorithm 4.1 presents our approach in more detail. It takes as inputs the raw

set-valued dataset D, the fan-out f used to construct the taxonomy tree, and also

the total privacy budget ε specified by the data publisher, and returns a sanitized

dataset D̃ satisfying ε-differential privacy.

Top-down partitioning. The algorithm first constructs the context-free taxonomy

tree T by iteratively grouping f nodes from one level to an upper level until a single

root is created. If the size of the item universe is not divided by f , smaller groups

can be created.

The initial partition p is created by generalizing all records in D under a

hierarchy cut of a single taxonomy tree node, namely the root of T . A record can

be generalized to a hierarchy cut if every item in the record can be generalized to

a node in the cut and every node in the cut generalizes some items in the record.

For example, the record {I3, I4} can be generalized to the hierarchy cuts {I{3,4}}

and {I{1,2,3,4}}, but not {I{1,2}, I{3,4}}. The initial partition p is added to an empty
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Figure 4.2: The partitioning process.

queue Q.

For each partition in the queue, we need to generate its sub-partitions and

identify the non-empty ones for further partitioning. Due to noise required by

differential privacy, a sub-partition cannot be deterministically identified as non-

empty. Probabilistic operations are needed for this purpose. For each operation,

a certain portion of privacy budget is required to obtain the noisy size of a sub-

partition based on which we decide whether it is “empty”. Algorithm 4.1 keeps

partitioning “non-empty” sub-partitions until leaf partitions are reached.

Example 4.3.1. Given the dataset in Table 4.1 and a fan-out value 2, a possible

taxonomy tree is presented in Figure 4.1, and a possible partitioning process is

illustrated in Figure 4.2. Partitions {I{3,4}}, {I{1,2}, I3} and {I{1,2}, I4} are considered

“empty” and, therefore, not further partitioned.

Privacy budget allocation. The use of the total privacy budget ε needs to be

carefully allocated to each probabilistic operation to avoid unexpected termination

of the algorithm. Since the operations are used to determine the noisy sizes of the

sub-partitions resulted from partition operations, a naive allocation scheme is to

bound the maximum number of partition operations needed in the entire algorithm

and assign an equal portion to each of them. This approach, however, does not

perform well. Instead, we propose a more sophisticated adaptive scheme. We reserve

ε/2 to obtain the noisy sizes of leaf partitions, which are used to construct the

release, and use the rest ε/2 to guide the partitioning process. For each partition,

we independently calculate the maximum number of partition operations further
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needed and assign privacy budget to partition operations based on the number.

The portion of privacy budget assigned to a partition operation is further

allocated to the resulting sub-partitions to check their noisy sizes (to see if they

are “empty”). Since all sub-partitions from the same partition operation contain

disjoint records, due to the parallel composition property [87], the portion of privacy

budget could be used in full on each sub-partition. This scheme guarantees that

more specific partitions always obtain more privacy budget, complying with the

rationale that more general partitions contain more records and, therefore, are more

resistant to a smaller privacy budget. We prove this statement after introducing

how to calculate the maximum number of partition operations in Theorem 4.1.

Theorem 4.1. Given a non-leaf partition p with a hierarchy cut and an associ-

ated taxonomy tree T , the maximum number of partition operations needed to reach

leaf partitions is |InternalNodes(cut)| =
∑

ui∈cut |InternalNodes(ui, T )|, where

|InternalNodes(ui, T )| is the number of internal nodes of the subtree of T rooted at

ui.

Proof. Given a partition p, our algorithm selects one non-leaf taxonomy tree node

from its hierarchy cut to expand at a time. Our algorithm stops when every non-leaf

taxonomy tree node in p’s hierarchy cut is specialized to a leaf node. For a non-leaf

node u in the hierarchy cut, in the worst case, it will be replaced by the combination

containing all its children. If the children are not leaf node, they need to be split,

and in the worst case again, it will be replaced by the combination containing all

its children. That is, we need to go through all internal nodes of the subtree of T

rooted at u. Therefore, in order to make all non-leaf nodes in p’s hierarchy cut to

leaf nodes, we need, in the worst case,
∑

ui∈cut |InternalNodes(ui, T )| partitionings

(partition operations).

Take the dataset in Table 4.1 as an example. Consider a partition with the

hierarchy cut {I{1,2,3,4}}. After the first partitioning, the sub-partition with the

hierarchy cut {I{1,2}, I{3,4}} represents the worst case. Suppose I{1,2} is selected to
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split, the sub-partition with the hierarchy cut {I1, I2, I{3,4}} presents the worst case.

After that, we need one more split on I{3,4}. Therefore, in the worst case, the total

number of partition operations required is 3, which is the number of internal nodes

of the taxonomy tree in Figure 4.1.

Now we prove that our adaptive allocation scheme always assigns more pri-

vacy budget to more specific partitions. Let ni be the maximum number of partition

operations calculated according to Theorem 4.1 and m be the total number of par-

tition operations needed to reach leaf partitions. Let ε
2

∏m−2
i=1 (1− 1

ni
) · 1

nm−1
be the

privacy budget assigned to a partition and ε
2

∏m−1
i=1 (1− 1

ni
) · 1

nm
the privacy budget

assigned to its sub-partitions, which are more specific. We have ni ≥ ni+1 + 1 be-

cause the maximum number of partition operations further needed for a partition is

always one more than that of its sub-partitions (we need at least one more partition

operation to split it to its sub-partitions). We can observe the following.

ε

2

m−1∏
i=1

(1− 1

ni

) · 1

nm

=
ε

2

m−2∏
i=1

(1− 1

ni

) · nm−1 − 1

nm−1

· 1

nm

≥ ε

2

m−2∏
i=1

(1− 1

ni

) · nm

nm−1

· 1

nm

=
ε

2

m−2∏
i=1

(1− 1

ni

) · 1

nm−1

Using transitivity, we conclude that more specific partitions always receive

more privacy budget. Each partition tracks its unused privacy budget ε̃ and calcu-

lates the portion of privacy budget α for the next partition operation. Any privacy

budget left from the partitioning process is added to leaf partitions.

Example 4.3.2. For the partitioning process illustrated in Figure 4.2, partitions

{I1, I2}, {I{1,2}, I{3,4}}, {I{1,2}, I3, I4}, and {I1, I2, I3, I4} receive privacy budget 5ε/6,

ε/6, ε/6 and 2ε/3, respectively.
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Algorithm 4.2: SubPart Gen (Sub-partition generation)

Input: Partition p
Input: Taxonomy tree T
Output: Noisy non-empty sub-partitions V of p

1: Initialize a vector V ;
2: Select a node u from p.cut to partition;
3: Generate all non-empty sub-partitions S;
4: Allocate records in p to S;
5: for each sub-partition si ∈ S do

6: Nsi = NoisyCount(|si|, p.α);
7: if Nsi ≥

√
2C2 × height(p.cut)/p.α then

8: si.ε̃ = p.ε̃− p.α;
9: si.α = si.ε̃/|InternalNodes(si.cut)|;
10: Add si to V ;
11: end if

12: end for

13: j = 1;
14: l = number of u’s children;
15: while j ≤ 2l − |S| do
16: Nj = NoisyCount(0, p.α);
17: if Nj ≥

√
2C2 × height(p.cut)/p.α then

18: Randomly generate an empty sub-partition s′j ;
19: s′j .ε̃ = p.ε̃− p.α;
20: s′j .α = s′j .ε̃/|InternalNodes(s′j .cut)|;
21: Add s′j to V ;
22: end if

23: j++;
24: end while

25: return V ;

Sub-partition generation. “Non-empty” sub-partitions can be identified by ei-

ther exponential mechanism or Laplace mechanism. For exponential mechanism, we

can get the noisy number N of non-empty sub-partitions, and then use exponential

mechanism to extract N sub-partitions by using the number of records in a sub-

partition as the score function. This approach, however, does not take advantage

of the fact that all sub-partitions contain disjoint datasets, resulting in a relatively

small privacy budget for each operation and thus less accurate results. For this

reason, we employ Laplace mechanism for generating sub-partitions, whose details
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are presented in Algorithm 4.2.

For a non-leaf partition, we generate a candidate set of taxonomy tree nodes

from its hierarchy cut, containing all non-leaf nodes that are of the largest height in

T , and then randomly select a node u from the set to expand, generating a total of

2l sub-partitions, where l ≤ f is the number of u’s children in T . The sub-partitions

can be exhaustively generated by replacing u by the combinations of its children.

For example, the partition {I{1,2}} generates three sub-partitions: {I1}, {I2} and

{I1, I2}. This technique, however, is inefficient.

We propose an efficient implementation by separately handling non-empty and

empty sub-partitions of a partition p. Non-empty sub-partitions, usually of a small

number, need to be explicitly generated. We issue a counting query for the noisy

size of each sub-partition by Laplace mechanism. We use the noisy size to make

our decision. We consider a sub-partition “non-empty” if its noisy size ≥
√
2C2 ×

height(p.cut)/p.α. We design the threshold as a function of the standard deviation

of the noise and the height of p’s hierarchy cut, the largest height of all nodes

in p’s hierarchy cut. The rationale of taking into consideration the height is that

more general partitions should have more records to be worth being partitioned.

A constant C2 is added to the function for the reason of efficiency: we want to

prune empty sub-partitions as early as possible. While this heuristic is arbitrary, it

provides good experimental results on different real-life datasets.

For empty sub-partitions, we do not explicitly generate all possible ones,

but employ a test-and-generate method: generate a uniformly random empty sub-

partition without replacement only if the noisy count of an empty sub-partition’s

true count 0 is greater than the threshold. To satisfy differential privacy, empty and

non-empty sub-partitions must use the same threshold. A C2 value that is slightly

greater than 1 can effectively prune most empty sub-partitions without jeopardizing

non-empty ones.

For a leaf partition, we use the reserved ε/2 plus the privacy budget left from
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the partitioning process to obtain its noisy size. To minimize the effect of noise,

we add a leaf partition p only if its noisy size ≥
√
2C1/(ε/2 + p.ε̃). Typically, C1 is

a constant in the range of [1, C2]. We argue that since the data publisher has full

access to the raw dataset, she could try different C1 and C2 values and publish a

reasonably good release. We consider how to automatically determine C1 and C2

values in future work.

We illustrate how DiffPart works in Example 4.3.3.

Example 4.3.3. Given the sample dataset in Table 4.1, a fan-out value 2, and the

total privacy budget ε, DiffPart works as follows (see Figure 4.2 for an illustration).

It first creates the context-free taxonomy tree T illustrated in Figure 4.1 and gen-

eralizes all records to a single partition with the hierarchy cut {I{1,2,3,4}}. A portion

of privacy budget ε/6 is allocated to the first partition operation because there are

3 internal nodes in T (and ε/2 is reserved for leaf partitions).

The algorithm then creates three sub-partitions with the hierarchy cuts {I{1,2}},

{I{3,4}}, and {I{1,2}, I{3,4}}, respectively, by replacing the node I{1,2,3,4} by different

combinations of its children, leading records #3, 4, 5, and 6 to the sub-partition

{I{1,2}} and records #1, 2, 7 and 8 to the sub-partition {I{1,2}, I{3,4}}. Suppose that

the noisy sizes indicate that these two sub-partitions are “non-empty”. Further

splits are needed on them. There is no need to explore the sub-partition {I{3,4}}

any more as it is considered “empty”.

The portions of privacy budget for the next partition operations are inde-

pendently calculated for the two partitions. For the partition {I{1,2}}, there is at

most one more partition operation and, therefore, it gets the privacy budget ε/3;

for the partition {I{1,2}, I{3,4}}, ε/6 is allocated as there are still two internal nodes

in its hierarchy cut. A further split of {I{1,2}} creates three leaf partitions, {I1},

{I2}, and {I1, I2}. For the partition {I{1,2}, I{3,4}}, assume that I{3,4} is randomly

selected to expand. This generates three sub-partitions: {I{1,2}, I3}, {I{1,2}, I4}, and

{I{1,2}, I3, I4} with record #2 in {I{1,2}, I4}, and records #1, 7, 8 in {I{1,2}, I3, I4}.
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Assume that the partition {I{1,2}, I3, I4} is considered “non-empty”. One more par-

tition operation is needed and ε/6 privacy budget is allocated.

After the last partitioning, we get three more leaf partitions with the hier-

archy cuts {I1, I3, I4}, {I2, I3, I4} and {I1, I2, I3, I4}. For all leaf partitions, we use

the reserved ε/2 plus the privacy budget left from the partitioning process to cal-

culate their noisy sizes. This implies 5ε/6 for {I1}, {I2}, and {I1, I2}, and 2ε/3 for

{I1, I3, I4}, {I2, I3, I4} and {I1, I2, I3, I4}.

One interesting observation is that with the partitioning process, the hierarchy

cuts of the sub-partitions resulted from the same partition operation become more

similar. For this reason, to some extent the effect of noise for counting queries is

mitigated (recall that the mean of noise is 0).

4.3.2 Analysis

Privacy analysis. The privacy guarantee of our solution is given in Theorem 4.2.

Theorem 4.2. Algorithm 4.1 together with Algorithm 4.2 satisfies ε-differential

privacy.

Proof. In essence, the only information obtained from the underlying dataset is the

noisy sizes of the partitions (or equivalently, the noisy answers of a set of counting

queries). Due to noise, any itemset from the universe may appear in the sanitized

release. In the previous work [87], it has been proven that partitioning a dataset

by explicit user inputs does not violate differential privacy. However, the actual

partitioning result should not be revealed as it violates differential privacy. This

explains why we need to consider every possible sub-partition and use its noisy size

to make decision.

Let a sequence of partitionings that consecutively distributes the records in

the initial partition to leaf partitions be a partitioning chain. Due to Theorem 2.2,

the privacy budget used in each partitioning chain is independent of those of other
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chains. Therefore, if we can prove that the total privacy budget used in each par-

titioning chain is less than or equal to ε, we get the conclusion that Algorithm 4.1

together with Algorithm 4.2 satisfies ε-differential privacy.

Let m be the total number of partitionings in a partitioning chain and ni the

maximum number of partitionings calculated according to Theorem 4.1. We can

formalize the proposition to be the following equivalent problem.

ε ≥ ε

2
· 1

n1︸ ︷︷ ︸
first partitioning

+
ε

2
· (1− 1

n1

) · 1

n2︸ ︷︷ ︸
second partitioning

+ · · ·+ ε

2

m−1∏
i=1

(1− 1

ni

) · 1

nm

+
ε

2︸ ︷︷ ︸
last partitioning

Subject to ni ≥ ni+1 + 1 and nm = 1.

Each item of the right hand side (RHS) of the above equation represents the

portion of privacy budget allocated to a partition operation. The entire RHS gives

the total privacy budget used in the partitioning chain. We prove the correctness of

the equation below.

The above equation can be rewritten as the following equivalent form:

1

n1

+
m−1∑
i=1

(
i∏

j=1

(1− 1

nj

) · 1

ni+1

) ≤ 1

Subject to ni ≥ ni+1 + 1 and nm = 1.

We add one more non-negative item
∏m−1

i=1 (1− 1
ni
) · (1 − 1

nm
) to the left hand side

of the above equation. We obtain the following.

1

n1

+
m−1∑
i=1

(
i∏

j=1

(1− 1

nj

) · 1

ni+1

) +
m−1∏
i=1

(1− 1

ni

) · (1− 1

nm

)
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=
1

n1

+
m−2∑
i=1

(
i∏

j=1

(1− 1

nj

) · 1

ni+1

) +
m−1∏
i=1

(1− 1

ni

) · 1

nm

+
m−1∏
i=1

(1− 1

ni

) · (1− 1

nm

)

=
1

n1

+
m−2∑
i=1

(
i∏

j=1

(1− 1

nj

) · 1

ni+1

) +
m−1∏
i=1

(1− 1

ni

)

=
1

n1

+
m−2∑
i=1

(
i∏

j=1

(1− 1

nj

) · 1

ni+1

) +
m−2∏
i=1

(1− 1

ni

) · (1− 1

nm−1

)

= · · ·

=
1

n1

+ (1− 1

n1

)

= 1

This completes the proof. Therefore, our approach satisfies ε-differential privacy.

Since nm = 1, we can get that the item added above
∏m−1

i=1 (1− 1
ni
) ·(1− 1

nm
) =

0. This indicates that our allocation scheme makes full use of the total privacy

budget.

Utility analysis. We theoretically prove that Algorithm 4.1 guarantees that the

sanitized dataset D̃ is (δ, β)-useful for counting queries.

Theorem 4.3. The result of Algorithm 4.1 is (δ, β)-useful for counting queries.

Proof. Given any counting query Q that covers up to m distinct itemsets in the

entire output domain, the accurate answer of Q over the input dataset D is Q(D) =∑m
i=1Q(Ii), where Ii is the itemset covered by Q; the answer of Q over D̃ is Q(D̃) =∑m
i=1(Q(Ii) + Ni), where Ni is the noise added to Ii. By the definition of (δ, β)-

usefulness, to prove Theorem 4.3 is to prove that with a probability 1− β,

56



|Q(D̃)−Q(D)| = |
m∑
i=1

(Q(Ii) +Ni)−
m∑
i=1

Q(Ii)|

= |
m∑
i=1

Ni|

≤
m∑
i=1

|Ni|

≤ δ

We have the following observations.

• For Ii such that Ii /∈ D ∩ Ii /∈ D̃, Ni = 0. Let the size of such Ii be m′ ≤ m.

• For Ii such that Ii ∈ D ∩ Ii ∈ D̃, Ni ∼ Lap(1/ε̄), where ε̄ = ε/2 + ε̃.

• For Ii such that Ii /∈ D ∩ Ii ∈ D̃, Ni ∼ Lap(1/ε̄), where ε̄ = ε/2 + ε̃.

• For Ii such that Ii ∈ D ∩ Ii /∈ D̃, Ni ∼ Lap(1/φ) + γ, where φ = ε/(2 ·

|InternalNodes(T )|) ≤ ε̄ (the smallest privacy budget used in the entire par-

titioning process) and γ =
√
2C2 logf |I|/φ is introduced by the threshold in

Algorithm 4.1 and Algorithm 4.2.

Therefore, we need to prove that with probability 1− β,

m∑
i=1

|Ni| =
m−m′∑
i=1

|Ni| ≤
m−m′∑
i=1

(|Yi|+ γ)

≤
m−m′∑
i=1

|Yi|+ (m−m′) · γ

≤ δ

where Yi is a random variable i.i.d from Lap(1/φ). If every |Yi| ≤ δ1 where δ1 =

δ
m−m′

− γ, we have
∑m

i=1 |Ni| ≤ δ. Let us call the event that any single |Y i| > δ1 a

57



FAILURE. We can calculate

Pr[FAILURE] = 2

∫ ∞

δ1

φ

2
exp(−φx)dx = exp(−φδ1)

Since every Yi is independent and identically distributed, we have

Pr[
m∑
i=1

|Ni| ≤ δ] = Pr[
m−m′∑
i=1

|Yi| ≤ δ − (m−m′) · γ]

≥ (1− Pr[FAILURE])m−m′

≥ (1− exp(−φδ1))
m−m′

In [126], it has been proven that

(1− exp(−φδ1))
m−m′ ≥ 1− (m−m′)exp(−φδ1)

Therefore, we get

Pr[
m∑
i=1

|Ni| ≤ δ] ≥ 1− (m−m′)exp(−φδ1)

≥ 1− (m−m′)exp(φγ − φδ

m−m′ )

This completes the proof.

Complexity analysis. The runtime complexity of Algorithm 4.1 and Algorithm 4.2

is O(|D| · |I|), where |D| is the number of records in the input dataset D and |I| the

size of the item universe. The main computational cost comes from the distribution

of records from a partition to its sub-partitions. The complexity of distributing the

records for a single partition operation is O(|D|) because a partitioning can affect at

most |D| records. According to Theorem 4.1, the maximum number of partitionings

needed for the entire process is the number of internal nodes in the taxonomy tree
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T . For a taxonomy tree with a fan-out f ≥ 2, the number of internal nodes is |I|−1
f−1

.

Therefore, the overall complexity of our approach is O(|D| · |I|).

Applicability. It is worthwhile discussing the applicability of our approach in the

context of relational data. The core of our idea is to limit the output domain by

taking into consideration the underlying dataset. In this chapter, we propose a

probabilistic top-down partitioning process based on a context-free taxonomy tree

in order to adaptively narrow down the output domain. For relational data, (cate-

gorical) attributes are usually associated with taxonomy trees. Therefore, a similar

probabilistic partitioning process could be used. The difference is that the partition-

ing process needs to be conducted by considering the correlations among multiple

taxonomy trees. In this case, exponential mechanism could be used in each parti-

tion operation to choose an attribute to split. Different heuristics (e.g. information

gain, gini index or max) could be used as the score function. Following the idea, we

maintain that our idea could adapt existing deterministic sanitization techniques,

such as TDS [48] and Mondrian [75], to satisfy differential privacy. This approach

would outperform existing works [12], [39], [125], [126] on publishing relational data

in the framework of differential privacy in terms of both utility and efficiency for

the same reasons explained in this chapter.

4.4 Experimental Evaluation

In the experiments, we examine the performance of our algorithm in terms of utility

for different data mining tasks, namely counting queries and frequent itemset mining,

and scalability of handling large set-valued datasets. We compare our approach

(DiffPart) with Dwork et al.’s method (introduced in Section 4.3.1 and referred to

as Basic in the following) to show the significant improvement of DiffPart on both

utility and scalability. The implementation was done in C++, and all experiments

were conducted on an Intel Core 2 Duo 2.26GHz PC with 2GB RAM.
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Table 4.2: Experimental dataset statistics.
Datasets |D| |I| max|D| avg|D|
MSNBC 989,818 17 17 1.72
STM 1,210,096 1,012 64 4.82

Two real-life set-valued datasets, MSNBC 1 and STM 2, are used in the ex-

periments. MSNBC originally describes the URL categories visited by users in time

order. We converted it into set-valued data by ignoring the sequentiality, where

each record contains a set of URL categories visited by a user. MSNBC is of a

small universe size. We deliberately choose it so that we can compare DiffPart to

Basic. STM records the sets of subway and/or bus stations visited by passengers in

Montréal area within a week. It is of a relatively high universe size, for which Basic

(and the methods in [12], [39], [125], [126]) fails to sanitize. The characteristics of

the datasets are summarized in Table 4.2, where max|D| is the maximum record

size and avg|D| the average record size.

4.4.1 Data Utility

Following the evaluation scheme from previous works [125], [123], we measure the

utility of a counting query Q over the sanitized dataset D̃ by its relative error with

respect to the actual result over the raw dataset D. Specifically, the relative error of

Q is computed as |Q(D̃)−Q(D)|
max{Q(D),s} , where s is a sanity bound that weakens the influence

of the queries with extremely small selectivities. In our experiments, s is set to 0.1%

of the dataset size, the same as [125].

Counting Query. In our first set of experiments, we examine the relative error

of counting queries with respect to different privacy budgets. For each dataset, we

randomly generate 50, 000 counting queries with varying numbers of items. We call

1MSNBC is publicly available at UCI machine learning repository
(http://archive.ics.uci.edu/ml/index.html).

2STM is provided by the Société de transport de Montréal (STM) (http://www.stm.info).
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(c) ε = 1.0 (d) ε = 1.25

Figure 4.3: Average relative error vs. privacy budget.

the number of items in a query the length of the query. We divide the query set

into 5 subsets such that the query length of the i-th subset is uniformly distributed

in [1, i·max|D|
5

] and each item is randomly drawn from I. In the following figures, all

relative error reported is the average of 10 runs.

Figure 4.3 shows the average relative error under varying privacy budget ε from

0.5 to 1.25 with fan-out f = 10 for each query subset. The X-axes represent the

maximum query length of each subset in terms of the percentage of max|D|. The

relative error decreases when the privacy budget increases because less noise is added.

The error of Basic is significantly larger than that of DiffPart in all cases. When the

query length decreases, the performance of Basic deteriorates substantially because

the queries cover exponentially more itemsets that never appear in the original

dataset and, therefore, contain much more noise. In contrast, our approach is more
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(c) ε = 1.0 (d) ε = 1.25

Figure 4.4: Average relative error vs. fan-out.

stable with different query lengths. It is foreseeable that queries with a length

greater than max|D| result in less error. In addition to better utility, DiffPart is

more efficient than Basic, which fails to sanitize the STM dataset due to its large

universe size.

Figure 4.4 illustrates the average relative error under different values of fan-out

f with privacy budget ε ranging from 0.5 to 1.25 while fixing the query length to be

60% · max|D|. In general, DiffPart generates relatively stable results for different

fan-out values. For smaller fan-out values, each partitioning receives less privacy

budget; however, there are more levels of partitionings, which increases the chance

of pruning more empty partitions. The fact makes the relative error of smaller

fan-out values comparable to that of larger fan-out values. The insensitivity of our

approach to different fan-out values is a desirable property, which makes a data
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(c) ε = 1.0 (d) epsilon = 1.25

Figure 4.5: Average relative error vs. universe size.

publisher easier to obtain a good release.

Figure 4.5 presents the average relative error under different universe sizes

with privacy budget ε varying from 0.5 to 1.25. We set the fan-out f = 10 and fix

the query length to 10 (we deliberately choose a small length to make the difference

more observable). Since MSNBC is of a small universe size, we only examine

the performance of DiffPart on STM . We generate the test sets by limiting STM ’s

universe size. After reducing the universe size, the sizes of the test sets also decrease.

To make a fair comparison, we fix the dataset size under different universe sizes to

800,000. We can observe that the average relative error decreases when the universe

size becomes smaller, because there is a greater chance to have more records falling

into a partition, making the partition more resistant to larger noise. We can also

observe that the datasets with smaller universe sizes obtain more stable relative
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(c) ε = 1.0 (d) ε = 1.25

Figure 4.6: Average relative error vs. dataset size.

error under varying privacy budgets. This is due to the same reason that smaller

universe sizes result in partitions with larger sizes, which are less sensitive to varying

privacy budgets.

In theory, a dataset has to be large enough to obtain good utility under dif-

ferential privacy. We experimentally study how the utility varies under different

dataset sizes on the two real-life set-valued datasets. We generate the test datasets

by randomly extracting records from the two datasets. The results are presented

in Figure 4.6, where ε varies from 0.5 to 1.25, f = 10, and the query length is

60% ·max|D|. It can be observed that the two datasets behave differently to vary-

ing dataset sizes. The relative error of MSNBC improves significantly when the

privacy budget increases, while the change of STM ’s error is small. This indicates
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Figure 4.7: Utility for frequent itemset mining.

the fact that when the dataset size is not large enough, the distribution of the under-

lying records is key to the performance. In addition, we can observe that when the

privacy budget is small, the error is more sensitive to the dataset size. It is because

the number of records in a partition needs to be greater than the magnitude of noise

(which is inversely proportion to the privacy budget) in order to obtain good utility.

Frequent itemset mining. We further validate the utility of sanitized data by

frequent itemset mining, which is a more concrete data mining task. Given a positive

number K, we calculate the top K most frequent itemsets on the raw dataset D

and the sanitized dataset D̃, respectively, and examine their similarity. Let FK(D)

denote the set of top K itemsets calculated from D and FK(D̃) the set from D̃. For

a frequent itemset Fi ∈ FK(D), let sup(Fi, FK(D)) denote its support in FK(D) and
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sup(Fi, FK(D̃)) denote its support in FK(D̃). If Fi /∈ FK(D̃), sup(Fi, FK(D̃)) = 0.

We define the utility metric to be

1−

∑
Fi∈FK(D)

|sup(Fi, FK(D))− sup(Fi, FK(D̃))|
sup(Fi, FK(D))

K
,

where 1 means that FK(D) is identical to FK(D̃) (even the support of every frequent

itemset); 0 means that FK(D) and FK(D̃) are totally different. Specifically, we

employ MAFIA 3 to mine frequent itemsets.

In Figure 4.7, we study the utility of sanitized data for frequent itemset mining

under different privacy budgets and different K values with f = 10. We observe two

general trends from the experimental results. First, the privacy budget has a direct

impact on frequent itemset mining. A higher budget results in better utility since the

partitioning process is more accurate and less noise is added to leaf partitions. The

differences of the supports of top K frequent itemsets between FK(D) and FK(D̃)

actually reflect the performance of DiffPart for counting queries of extremely small

length (because the top-K frequent itemsets are usually of a small length). We can

observe that the utility loss (the difference between FK(D) and FK(D̃)) is less than

30% except the case ε = 0.5 for STM . Second, utility decreases when K value

increases. When K value is small, in most cases the sanitized datasets are able to

give the identical top-K frequent itemsets as the raw datasets, and the utility loss

is mainly caused by the differences of the supports. When K value becomes larger,

there are more false positives (itemsets wrongly included in the output) and false

drops (itemsets mistakenly excluded), resulting in worse utility. Nevertheless, the

utility loss is still less than 22% when K = 100 and ε ≥ 1.0 on both datasets.

3A maximal frequent itemset mining tool, available at http://himalaya-
tools.sourceforge.net/Mafia/
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(a) Runtime vs. |D| (b) Runtime vs. |I|

Figure 4.8: Runtime vs. different parameters.

4.4.2 Scalability

We study the scalability of DiffPart over large datasets. According to the complexity

analysis in Section 4.3.2, dataset size and universe size are the two factors that

dominate the complexity. Therefore, we present the runtime of DiffPart under

different dataset sizes and universe sizes in Figure 4.8. Figure 4.8.a presents the

runtime of DiffPart under different dataset sizes. We generate the test sets in a

similar setting to that of Figure 4.6 and set ε = 1.0, f = 10. As expected, the

runtime is linear to the dataset size. Figure 4.8.b studies how the runtime varies

under different universe sizes, where ε = 1.0 and f = 10. Since MSNBC is of a

small universe size, we only examine the runtime of DiffPart on STM . We generate

the test sets in a similar setting to that of Figure 4.5. It can be observed again that

the runtime scales linearly with the universe size. In summary, our approach scales

well to large set-valued datasets. It takes less than 35 seconds to sanitize the STM

dataset, whose |D| = 1, 210, 096 and |I| = 1, 012.
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4.5 Summary

In this chapter, we propose a probabilistic top-down partitioning algorithm for pub-

lishing set-valued data in the framework of differential privacy. Compared to the

existing works on set-valued data publishing, our approach provides stronger privacy

protection with guaranteed utility. Our work also contributes to the research of dif-

ferential privacy by demonstrating that an efficient data-dependent non-interactive

solution could be achieved by carefully making use of the underlying dataset. Our

experimental results on real-life datasets demonstrate the effectiveness and efficiency

of our approach.
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Chapter 5

Trajectory Data Sanitization

5.1 Introduction

Recently, the prevalence of various location-aware devices, such as RFID tags, cell

phones, GPS navigation systems, and point of sale terminals, has made trajectory

data ubiquitous in various domains. The fact has stimulated extensive trajectory

data mining research [52], [72], [73], resulting in many important real-life applica-

tions, such as city traffic management [81], homeland security [80], and location-

based advertising [117].

Having access to high-quality trajectory data is the prerequisite for effective

data mining. However, trajectory data often contain detailed information about

individuals, and disclosing such information may reveal their lifestyles, preferences,

and sensitive personal information. Moreover, for many applications, trajectory data

need to be published with other attributes, including sensitive ones, thus incurring

the privacy concern of inferring individuals’ sensitive information via trajectory

data. This emerging data publishing scenario, however, has not been well studied in

existing works. Such privacy concerns often limit trajectory data holders’ enthusiasm

in providing data for further research and applications. Example 5.1.1 illustrates

the potential privacy threats due to trajectory data publishing.

69



Table 5.1: Raw trajectory database T
Rec. # Path Diagnosis ...

1 a1 → d2 → b3 → e4 → f6 → e8 HIV ...
2 d2 → c5 → f6 → c7 → e9 Fever ...
3 b3 → c7 → e8 Hepatitis ...
4 b3 → e4 → f6 → e8 Flu ...
5 a1 → d2 → c5 → f6 → c7 HIV ...
6 c5 → f6 → e9 Hepatitis ...
7 f6 → c7 → e8 Fever ...
8 a1 → d2 → f6 → c7 → e9 Flu ...

Example 5.1.1. A hospital has employed a RFID patient tagging system in which

patients’ trajectory data, personal data, and medical data are stored in a central

database [97]. The hospital intends to release such data (Table 5.1) to data miners

for research purposes. A trajectory is a sequence of spatio-temporal pairs in the

form of (lociti). For example, Record#3 indicates that the tagged patient visited

locations b, c, and e at timestamps 3, 7, and 8, respectively, and has hepatitis (other

information is omitted for the purpose of illustration). With adequate background

knowledge, an adversary can perform two kinds of privacy attacks on the trajectory

database.

Identity linkage attack : If a trajectory in the database is so specific that not

many patients can match it, there is a chance that with the help of background

knowledge an adversary could uniquely identify the victim’s record and, therefore,

his sensitive information. Suppose an adversary knows that the record of the target

victim, Claude, is in Table 5.1, and that Claude visited locations d and e at times-

tamps 2 and 4, respectively. The adversary can associate Record#1 with Claude

and in turn identify Claude as an HIV patient because Record#1 is the only record

containing both d2 and e4.

Attribute linkage attack : If a sensitive value occurs frequently with some se-

quences of pairs, it is possible to infer the sensitive value from these sequences even
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though the record of the victim cannot be uniquely identified. Suppose the adver-

sary knows that another victim, Bill, visited a1 and f6. The adversary can infer

that Bill has HIV with 2/3 = 67% confidence because two of the three records

(Records#1, 5, 8) containing a1 and f6 have the sensitive value HIV.

A trajectory database (e.g., Table 5.1) may contain other attributes, such as

gender, age, and nationality. Although they are not explicit identifiers, an adversary

may utilize combinations of these attributes as quasi-identifiers (QID) to identify

the records and sensitive information of target victims. To thwart privacy threats

due to QIDs, many privacy models, such as k-anonymity [105], �-diversity [85], and

confidence bounding [114], have been proposed in the context of relational data.

These privacy models are effective for relational data anonymization; however, they

fail to address the new challenges of trajectory data anonymization, as described

below.

High dimensionality : Trajectory data are usually high-dimensional and cannot

be effectively handled by traditional k-anonymity and its extensions due to the curse

of high dimensionality [3]. Consider a transit system with 300 stations operating 24

hours a day. The corresponding trajectory database would have 300 × 24 = 7200

dimensions, because a trajectory could be represented in a tabular format with 7200

attributes filled with 0/1 values. Since k-anonymity and its extensions require every

trajectory to be shared by at least k records and/or impose the diversity of sensitive

values in every trajectory group, most data have to be suppressed in order to meet

these kinds of restrictive privacy requirements.

Sparseness : Trajectory data are usually sparse. Consider passengers in transit

systems. Among all available locations and all possible timestamps, they may visit

only a few locations at a few timestamps, making the trajectory of each individual

relatively short. Anonymizing such short trajectories in a high-dimensional space

poses great challenges for traditional anonymization techniques because the trajec-

tories may have little overlap. Enforcing k-anonymity could lower the data utility
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Table 5.2: (2, 50%)2-privacy preserved database T ′

Rec. # Path Diagnosis ...

1 b3 → e4 → f6 → e8 HIV ...
2 d2 → c5 → f6 → c7 → e9 Fever ...
3 c7 → e8 Hepatitis ...
4 b3 → e4 → f6 → e8 Flu ...
5 d2 → c5 → f6 → c7 HIV ...
6 c5 → f6 → e9 Hepatitis ...
7 f6 → c7 → e8 Fever ...
8 d2 → f6 → c7 → e9 Flu ...

significantly.

Sequentiality : Time contains important information for trajectory data min-

ing, but it also brings new privacy threats. Consider two trajectories b3 → e6 and

e3 → b6. They have the same locations and timestamps but in a different order

and, thus, are different from each other. An adversary could exploit such difference

in order to increase the chance of a successful linkage attack. Therefore, traditional

k-anonymity is not applicable to trajectory data, and anonymizing trajectory data

requires additional efforts.

Trade-off between privacy and utility. One common assumption of k-anonymity

and its extensions is that an adversary may use any or even all attributes in QIDs

to perform linkage attacks. Yet this common assumption may be overly restrictive

in the context of trajectory data. In a real-life attack, it is very unlikely that an

adversary can identify all the visited locations along with the timestamps of a victim

because it requires significant efforts to collect every piece of such background infor-

mation. If the adversary is able to learn all such information, it is also possible that

he can learn the victim’s sensitive information. Thus, in the context of trajectory

data, it is reasonable to derive a practical privacy model based on the assumption

that an adversary’s background knowledge on a target victim is bounded by at most

L location-time pairs. We call such bounded background knowledge L-knowledge.
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Based on this observation, we propose a new privacy model called (K,C)L-

privacy that requires any subsequence q of any adversary’s L-knowledge to be shared

by either 0 or at least K records in a trajectory database T and the confidence of

inferring any sensitive value in S from q to be at most C, where L and K are positive

integer thresholds, C is a real number threshold in the range of [0, 1], and S is a set

of sensitive values specified by the data holder. (K,C)L-privacy guarantees that the

probability of succeeding in an identity linkage attack is ≤ 1/K and the probability

of succeeding in an attribute linkage attack is ≤ C. Table 5.2 presents an example of

an anonymous database satisfying (2, 50%)2-privacy from Table 5.1, in which every

sequence q with maximum length 2 is shared by at least 2 records and the confidence

of inferring any sensitive value in S = {HIV,Hepatitis} from q is ≤ 50%.

Protecting privacy is one aspect of anonymizing trajectory data. Another

aspect is preserving data utility in the anonymous data for data mining. The

anonymized data may be used for different data mining tasks; therefore, we pro-

pose a generic framework to accommodate different utility requirements. As an

illustration, in this chapter we aim to preserve both instances of location-time pairs

and frequent sequences in a trajectory database. The ratio of suppressed instances

is a general measure of anonymized data quality for a wide range of trajectory

data mining tasks [72], [73]; the ratio of suppressed frequent sequences is a direct

indication of anonymized data quality for trajectory pattern mining [52].

Generalization, bucketization, and suppression are the most widely used anonymiza-

tion mechanisms. Generalization requires the use of taxonomy trees, which are

highly specific to a particular application [4]. In many trajectory data applica-

tions, such domain specific taxonomy trees are not available. This fact largely

hinders generalization’s applicability on trajectory data anonymization. Bucketiza-

tion merely breaks the correlation between trajectory data and sensitive attributes,

and publishes trajectory data without any modification, which fails to protect iden-

tity linkage attacks on trajectory data. In addition, a condensation approach [4] is
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proposed for multi-dimensional data publishing. However, it does not prevent from

attribute linkage attacks in general. Specifically, for trajectory data, its complex-

ity grows exponentially due to the high dimensionality. Furthermore, there lacks a

way of measuring the similarity of trajectories, which is essential to the condensa-

tion approach. Therefore, in our solution, we employ suppression, both local and

global suppressions, to eliminate privacy threats from a trajectory database. The

introduction of local suppression results in significant data utility improvements for

trajectory data anonymization. In global suppression, if a location-time pair p is

selected to be suppressed from a trajectory database T , then all instances of p are

removed from T , whereas in local suppression, some instances of p may remain in-

tact in T while other instances are removed. Global suppression punishes all records

containing p even if the privacy leakage is caused by only one instance of p in one

record. In contrast, local suppression eliminates the exact instances that cause pri-

vacy breaches without penalizing others. Thus, local suppression preserves much

better data utility compared to global suppression.

Contributions. In this chapter, we acknowledge the emerging data publishing sce-

nario, in which trajectory data need to be published with sensitive attributes. This

naturally requires the prevention from both identity linkage attacks and attribute

linkage attacks, which has not been studied in existing works. Based on the practical

assumption that an adversary has only limited background knowledge on a target

victim, we propose the (K,C)L-privacy model for trajectory data anonymization,

which takes into consideration not only identity linkage attacks on trajectory data,

but also attribute linkage attacks via trajectory data. We present an anonymization

framework that supports both local suppression and global suppression with the goal

of preserving data utility for data mining. This is, to the best of our knowledge,

the first study introducing local suppression to trajectory data anonymization. In

this section, we tailor our anonymization framework to preserve both instances of

location-time pairs and frequent sequences in trajectory data. The framework itself
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is open to different data mining workloads by incorporating different data utility

metrics. We provide comprehensive experimental evaluations on both synthetic and

real-life trajectory datasets. The experimental results demonstrate that our pro-

posed algorithm is both effective and efficient to address the special challenges in

trajectory data anonymization. In particular, local suppression is shown to be es-

sential to enhance the resulting data utility when combined with (K,C)L-privacy.

The results of this chapter have been published in [23].

5.2 Problem Definition

5.2.1 Trajectory Database

A typical trajectory system generates a sequence of sensory data records of the

general form 〈ID, loc, t〉, where each record indicates that the record owner (or

the object) having the unique identifier ID was detected in location loc at time

t. For example, in transportation systems, a record represents that a passenger

was present in station loc at time t, where ID could be the passenger’s transporta-

tion card number. Different types of trajectory data can be easily converted into

the general form by pre-processing steps. For example, GPS data, a typical type

of trajectory data, is of the form 〈ID, (X coordinate, Y coordinate), timestamp〉,

which can be converted by substituting the grid ID/name containing a point for

(X coordinate, Y coordinate). By selecting a proper granularity of a location, this

general form is suitable to represent various kinds of trajectory data for different

data mining tasks.

The trajectory of a specific record owner, representing the owner’s move-

ment history, is composed of a sequence of (loc, t) pairs. A trajectory, denoted

by (loc1t1) → · · · → (locntn), can be constructed by grouping the sensory data

records 〈ID, loc, t〉 by ID and sorting them by the timestamps. The timestamps in

a trajectory are always increasing.
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In addition to trajectory data, a trajectory database may also contain other at-

tributes that are associated with the record owners. Formally, a trajectory database

contains a collection of data records in the form of

(loc1t1) → · · · → (locntn) : s1, . . . , sp : d1, . . . , dm

where (loc1t1) → · · · → (locntn) is a trajectory, si ∈ Si are the sensitive attributes

with values from the domain Si, and di ∈ Di are the quasi-identifiers (QIDs) of the

record owner with the values from the domain Di. Given a trajectory database,

an adversary can perform privacy attacks via either trajectories or QID attributes.

Anonymization on relational QID attributes has been extensively studied in previous

works [48], [75], [85], [105], [124]. This chapter focuses on addressing the privacy

threats posed by trajectories.

5.2.2 Privacy Threats

Suppose a data holder wants to publish a trajectory database T to some recipients for

data mining. Explicit identifiers, e.g., name, SSN, and ID, have been removed. One

recipient, the adversary, seeks to identify the record or sensitive values of some target

victim V in T . As explained before, we assume that the adversary knows at most

L spatio-temporal pairs that the victim V has previously visited. Such background

knowledge about the victim V is denoted by κV = (loc1t1) → · · · → (locztz), where

z ≤ L. Using the background knowledge κV , the adversary could identify a group

of records in T , denoted by T (κV ), that “matches” κV . A record matches κV if

κV is a subsequence of the trajectory in the record. For example, in Table 5.1, if

κV = d2 → e4, then Record#1 matches κV , but Record#2 does not. Given the

background knowledge κV , an adversary could identify and utilize T (κV ) to perform

two types of privacy attacks:

1. Identity linkage attack : T (κV ) is a set of candidate records that contains the

victim V ’s record. If the group size of T (κV ), denoted by |T (κV )|, is small,
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then the adversary may identify V ’s record from T (κV ) and, therefore, V ’s

sensitive value.

2. Attribute linkage attack : Given T (κV ), the adversary may infer that V has

sensitive value s with confidence Conf(s|T (κV )) =
|T (κV

⋃
s)|

|T (κV )| , where T (κV

⋃
s)

denotes the set of records containing both κV and s. Conf(s|T (κV )) is the

percentage of the records in T (κV ) containing s. The privacy of V is at risk if

Conf(s|T (κV )) is high.

Example 5.1.1 illustrates these two types of attacks.

5.2.3 Privacy Requirement

An adversary’s background knowledge κ could be any non-empty subsequence q with

|q| ≤ L of any trajectory in the trajectory database T . Intuitively, (K,C)L-privacy

requires that every subsequence q with |q| ≤ L in T is shared by at least a certain

number of records, and that the confidence of inferring any sensitive value via q

cannot be too high.

Definition 5.1 ((K,C)L-privacy). Let L be the maximum length of the background

knowledge. Let S be a set of sensitive values of the sensitive attributes of a trajectory

database T selected by the data holder. T satisfies (K,C)L-privacy if and only if

for any subsequence q in T with 0 < |q| ≤ L,

1. |T (q)| ≥ K, where K is a positive integer specifying the anonymity threshold,

and

2. Conf(s|T (q)) ≤ C for any s ∈ S, where 0 ≤ C ≤ 1 is a real number specifying

the confidence threshold.

The (K,C)L-privacy model has several desirable properties. First, it is a gener-

alized version of several existing privacy models: k-anonymity [105] is a special case
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of the (K,C)L-privacy model with L = |d| and C = 100%, where |d| is the number of

dimensions in a given database. �-diversity [85] is a special case of (K,C)L-privacy

model with L = |d|, and � = 1/C. Confidence bounding [114] is a special case of

the (K,C)L-privacy model with L = |d| and K = 1. (α, k)-anonymity [121] is also

a special case of (K,C)L-privacy with L = |d|, K = k, and C = α. Second, it is

intuitive for a data holder to impose different types and levels of privacy protection

by specifying different L, K, and C thresholds.

It is worth noting that (K,C)L-privacy is a stronger privacy notion than other

existing privacy models for trajectory data [1], [100], [109], [130] in the sense that

(K,C)L-privacy thwarts both identity linkages on trajectory data and attribute link-

ages via trajectory data. It is vital to thwart attribute linkage attacks in trajectory

data publishing because more and more trajectory data mining tasks will resort to

both trajectory data and other personal information. For example, Utsunomiya et

al. [112] conducted an interesting passenger classification analysis using both passen-

gers’ trajectory data and personal information. A recent investigation [99] further

indicates that there is a need to enrich trajectory data by incorporating sociodemo-

graphic data for data mining tasks.

5.2.4 Utility Requirement

Since we aim at presenting a framework that allows the adoption of various data

utility metrics for different data mining tasks, we illustrate the preservation of two

different kinds of utility metrics, both instances of location-time pairs and frequent

sequences in a trajectory database. The ratio of suppressed instances is a general

measure of the usefulness of anonymized data for a wide range of trajectory data

mining tasks [72], [73]. In addition, previous works [48], [79] suggest that anonymiza-

tion algorithms can be tailored to better preserve utility if the utility requirement

is known in advance. We also preserve frequent sequences specifically for trajectory
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pattern mining [52]. However, extracting all possible frequent sequences in a tra-

jectory database is computationally expensive. It is even exacerbated when dealing

with large datasets with long frequent sequences because all subsequences of a fre-

quent sequence are also frequent. A more feasible solution is to preserve maximal

frequent sequences (MFS ).

Definition 5.2 (Maximal frequent sequence). For a given minimum support thresh-

old K ′ > 0, a sequence q is maximal frequent in a trajectory database T if q is

frequent and no super sequence of q is frequent in T .

The set of MFS in T , denoted by U(T ), is much smaller than the set of frequent

sequences (FS) in T given the same K ′, but still contains the essential information

of FS. Any subsequence of an MFS is also an FS. Once all the MFS have been

determined, the support count of any particular FS can be computed by scanning

U(T ) once.

We emphasize that although in this section we aim at preserving instances

and MFS, the (K,C)L-privacy model and the anonymization framework presented

in Section 5.3 are independent of the underlying utility metric and are flexible enough

to serve other utility requirements. The only change is to replace the greedy function

guiding the anonymization process, which will be further explained in Section 5.3.

5.2.5 Problem Statement

To achieve (K,C)L-privacy for a given trajectory database T , our proposed frame-

work conducts a sequence of local and global suppressions to remove all privacy

threats from T while preserving as much data utility as possible. Global suppres-

sion eliminates all instances of a pair p from T if some instances of p cause privacy

breaches, while local suppression eliminates only the instances of p that cause privacy

breaches and leaves others intact. Finding an optimal solution based on suppres-

sion for (K,C)L-privacy, however, is NP-hard (see Section 5.3 for proof). Thus, we
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propose a greedy algorithm to efficiently identify a reasonably “good” sub-optimal

solution.

Definition 5.3 (Trajectory data anonymization). Given a trajectory database T ,

a (K,C)L-privacy requirement, a utility metric, and a set of sensitive values S, the

task of trajectory data anonymization is to generate a transformed version of T that

satisfies (K,C)L-privacy while maintaining the maximum utility with respect to the

utility metric by a sequence of local and global suppressions.

5.3 Anonymization Algorithm

Our proposed anonymization algorithm consists of two phases. First, identify all

violating sequences that breach a given (K,C)L-privacy requirement in a trajectory

database. Second, perform a sequence of local and global suppressions to anonymize

the trajectory database while maintaining as much data utility as possible.

5.3.1 Identifying Violating Sequences

An adversary may use any non-empty sequence with length not greater than L as

background knowledge to launch a linkage attack. Thus, given a (K,C)L-privacy

requirement, any subsequence q with 0 < |q| ≤ L in a trajectory database T is a

violating sequence if its group T (q) does not satisfy Condition 1, Condition 2, or

both in (K,C)L-privacy in Definition 5.1.

Definition 5.4 (Violating sequence). Let q be a subsequence of a trajectory in

T with 0 < |q| ≤ L. q is a violating sequence with respect to a (K,C)L-privacy

requirement if |T (q)| < K or Conf(s|T (q)) > C for any sensitive value s ∈ S.

Example 5.3.1. Given L = 2, K = 2, C = 50%, and the sensitive value set

S = {HIV,Hepatitis}. In Table 5.1, the sequence q1 = a1 → b3 is a violating

sequence because |T (q1)| = 1 < K; the sequence q2 = a1 → d2 is also a violating
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sequence because Conf(HIV |T (q2)) = 2/3 = 67% > C. However, the sequence

q3 = b3 → c7 → e8 is not a violating sequence even though |T (q3)| = 1 < K and

Conf(Hepatitis|T (q3)) = 100% > C because |q3| = 3 > L.

To satisfy a given (K,C)L-privacy requirement on a trajectory database T , it

is sufficient if all violating sequences in T with respect to the privacy requirement

are removed, because all possible channels for identity and attribute linkages are

eliminated. A naive approach is to first enumerate all possible violating sequences

and then remove them. This approach is infeasible because of the huge number of

violating sequences. Consider a violating sequence q with |T (q)| < K. Any super

sequence of q, denoted by q′′, with |T (q′′)| > 0 in T is also a violating sequence

because |T (q′′)| ≤ |T (q)| < K. To overcome the bottleneck of violating sequence

enumeration, our insight is that a few “minimal” violating sequences exist among

the violating sequences, and it is sufficient to achieve (K,C)L-privacy by removing

only the minimal violating sequences.

Definition 5.5 (Minimal violating sequence). A violating sequence q is a mini-

mal violating sequence (MVS ) if every proper subsequence of q is not a violating

sequence.

Example 5.3.2. Given L = 2, K = 2, C = 50%, and S = {HIV,Hepatitis}. In

Table 5.1, the sequence q1 = d2 → e4 is an MVS because |T (q1)| = 1 < K, and

none of its proper subsequences, d2 and e4, is a violating sequence. In contrast, the

sequence q2 = a1 → d2 is a violating sequence, but not an MVS, because one of its

proper subsequences, a1, is a violating sequence.

The set of MVS is much smaller than the set of violating sequences; therefore,

we can efficiently identify all privacy threats by generating all MVS. A trajectory

database T satisfies (K,C)L-privacy if and only if T contains no MVS.

Theorem 5.1. A trajectory database T satisfies (K,C)L-privacy if and only if T

contains no minimal violating sequence.
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Algorithm 5.1: Identify Minimal Violating Sequences (MVS)

Input: Raw trajectory database T
Input: Thresholds L, K and C
Input: Sensitive values S
Output: Minimal violating sequences V (T )

1: C1 ← all distinct pairs in T ;
2: i = 1;
3: while i ≤ L and Ci 
= ∅ do

4: Scan T once to compute |T (q)| and Conf(s|T (q)), for ∀q ∈ Ci, ∀s ∈ S;
5: for each sequence q ∈ Ci with |T (q)| > 0 do

6: if |T (q)| ≥ K and Conf(s|T (q)) ≤ C for all s ∈ S then

7: Add q to Ui;
8: else

9: Add q to Vi;
10: end if

11: end for

12: i++;
13: Generate candidate set Ci by Ui−1 �� Ui−1;
14: for each sequence q ∈ Ci do

15: if q is a super sequence of any v ∈ Vi−1 then

16: Remove q from Ci;
17: end if

18: end for

19: end while

20: return V (T ) = V1 ∪ · · · ∪ Vi−1;

Proof. Suppose a database T does not satisfy (K,C)L-privacy even if T contains no

MVS. By Definition 5.1, T must contain some violating sequences. According to

Definition 5.5, a violating sequence must be an MVS itself or contain an MVS, which

contradicts the initial assumption. Therefore, T must satisfy (K,C)L-privacy.

Hence, our first step is to efficiently identify all the MVS, V (T ), in the given

trajectory database T . Algorithm 5.1 presents the details of generating V (T ). Based

on Definition 5.5, we generate all MVS of size i+1, denoted by Vi+1, by incrementally

extending non-violating sequences of size i, denoted by Ui, with an additional pair.

This needs to take into consideration the sequentiality of trajectory data. Line 1 loads

all distinct pairs in T as the initial candidate set C1. Line 4 scans T once to compute
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|T (q)| and Conf(s|T (q)) for every sequence q ∈ Ci, and for every sensitive value

s ∈ S. If a sequence q is not violating, it is added to the non-violating sequence set Ui

for generating the next candidate set Ci+1 (Line 7); otherwise, q is added to the MVS

set (Line 9). The next candidate set Ci+1 is generated in two steps. First, conduct

a self-join of Ui (Line 13). Second, remove all super sequences of the identified

MVS from Ci+1 (Lines 14-18). The second step significantly reduces the minimal

violating sequence search space. Two sequences qx = (locx1t
x
1) → · · · → (locxi t

x
i ) and

qy = (locy1t
y
1) → · · · → (locyi t

y
i ) can be joined if the first i− 1 pairs are identical and

txi < tyi . The joined result is (locx1t
x
1) → · · · → (locxi t

x
i ) → (locyi t

y
i ). The definition

of join-compatibility makes sure that every potential candidate sequence would be

generated exactly once.

Example 5.3.3. Given L = 2, K = 2, C = 50%, and the sensitive value set

S = {HIV,Hepatitis}, the MVS set generated from Table 5.1 is V (T ) = {a1, d2 →

b3, d2 → e4, d2 → e8, b3 → c7}.

5.3.2 Removing Violating Sequences

The second step is to remove all identified minimal violating sequences using sup-

pression with the goal of preserving as much data utility as possible. However,

finding an optimal solution is NP-hard.

Theorem 5.2. Given a trajectory database T and a (K,C)L-privacy requirement,

it is NP-hard to find the optimal anonymization solution.

Proof. The problem of finding the optimal anonymization solution can be converted

into the vertex cover problem [27]. The vertex cover problem is a well-known problem

in which, given an undirected graph G = (V,E), it is NP-hard to find the smallest

set of vertices S such that each edge has at least one endpoint in S. To reduce our

problem into the vertex cover problem, we only consider the set of MVS of length

2. Then, the set of candidate pairs represents the set of vertices V and the set of
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MVS is analogous to the set of edges E. Hence, the optimal vertex cover, S, means

finding the smallest set of candidate pairs that must be suppressed to obtain the

optimal anonymous dataset T ′. Given that it is NP-hard to determine S, it is also

NP-hard to find the optimal set of candidate pairs for suppression.

Therefore, we propose a greedy algorithm that employs both local and global

suppressions to eliminate all identified MVS, V (T ), with respect to the given (K,C)L-

privacy requirement in order to efficiently identify a reasonably “good” solution.

Generally, suppressing a pair p from V (T ) increases privacy and decreases data util-

ity. So our goal is to design a greedy function, Score(p), that guides us to find the

sub-optimal trade-off between privacy and data utility. In this section, we define

our greedy function as follow:

Score(p) =
PrivGain(p)

UtilityLoss(p) + 1

where PrivGain(p) is the number of MVS that can be eliminated by suppressing p,

and UtilityLoss(p) is the number of either instances or MFS that are lost due to

suppressing p, depending on the given utility metric. Since suppressing p may not

cause utility loss in terms of MFS, we add 1 to the denominator to avoid the divi-

sion by zero error. The function considers both privacy and utility simultaneously

by selecting the anonymization operation with the maximum privacy gain per unit

of utility loss. Considering only privacy gain or utility loss would lead to inferior

performances according to our tests. Again, our anonymization algorithm is inde-

pendent of the underlying data utility metric. To optimize the data utility for other

data mining workloads, we can simply re-design the meaning of UtilityLoss(p).

A key to an efficient solution is to ensure that no new MVS will be generated

in the anonymizing process. Upon satisfying the requirement, the identified MVS

V (T ) always decreases monotonically. A suppression-based algorithm is guaranteed

to achieve (K,C)L-privacy within less than |V (T )| iterations. One nice property of
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global suppression is that it does not generate any new MVS during the anonymizing

process.

Theorem 5.3. A global suppression does not generate any new minimal violating

sequence with respect to a (K,C)L-privacy requirement.

Proof. Suppose a pair p is globally suppressed from a given trajectory database T .

The database after the global suppression is denoted by T ′.

• For any sequence q in T not containing an instance of p, we have |T ′(q)| =

|T (q)| and Conf(s|T ′(q)) = Conf(s|T (q)). Identically, for any subsequence

q′ of q, which does not contain p either, we have |T ′(q′)| = |T (q′)| and

Conf(s|T ′(q′)) = Conf(s|T (q′)). So q cannot be a new minimal violating

sequence in T ′.

• For any sequence q in T that contains an instance of p, q no longer exists in

T ′, so q cannot be a new minimal violating sequence.

Therefore, no sequence in T will become a new MVS in T ′.

However, local suppression does not share the same property. For example,

locally suppressing c7 from Record#3 in Table 5.1 will generate a new MVS c7 → e8

because in the resulting database T ′, |T ′(c7 → e8)| = 1 < K. Identifying the values

of all newly generated MVS requires expensive computational cost. Moreover, there

is no guarantee that the anonymization algorithm can converge within a bounded

number of iterations, |V (T )|. Therefore, it is beneficial to perform local suppressions

only when no new MVS will be generated. Such a local suppression is called a valid

local suppression.

Definition 5.6 (Valid local suppression). A local suppression over a trajectory

database is valid if it does not generate any new MVS.
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Algorithm 5.2: Check if a local suppression is valid

Input: Trajectory database T
Input: Thresholds L, K, C, and sensitive values S
Input: A pair p in an MVS m
Output: A boolean value indicating if locally suppressing p from m is valid

1: P ← distinct pair p′ such that p′ ∈ T (m) ∧ p′ ∈ (T (p)− T (m));
2: V ′ ← all size-one MVS and the MVS containing p, V (p);
3: Remove all pairs, except p, in V ′ from P ;
4: Q ← all possible sequences with size ≤ L generated from P after removing super

sequences of the sequences in V (T )− V (p);
5: Scan T (p)− T (m) once to compute |q| and Conf(s|T (q)) for each q ∈ Q and for

every sensitive value s ∈ S′, where S′ is the subset of S in T (p)− T (m);
6: for each sequence q with |q| > 0 do

7: if |q| < K or Conf(s|T (q)) > C for any s ∈ S′ then
8: return false;
9: end if

10: end for

11: return true;

An intuitive way to check if a local suppression is valid is to re-invoke Algo-

rithm 5.1 and compare V (T ) and V (T ′). However, it is extremely costly. Instead,

Algorithm 5.2 presents an efficient approach to avoid the computational cost of cal-

culating the values of all newly generated MVS. It significantly narrows down the

checking space to a very small set of sequences that may be affected by a local

suppression by carefully using the properties of MVS.

Theorem 5.4. Algorithm 5.2 is sufficient to check if a local suppression is valid.

Proof. Suppose a pair p in an MVS m is locally suppressed from a given trajectory

database T . The resulting database is denoted by T ′. For any sequence q in T

not containing an instance of p, we have |T ′(q)| = |T (q)| and Conf(s|T ′(q)) =

Conf(s|T (q)). Identically, for any subsequence q′ of q, we have |T ′(q′)| = |T (q′)|

and Conf(s|T ′(q′)) = Conf(s|T (q′)). So q cannot be a new MVS in T ′. If there is

a new MVS, it must contain p. Since p is eliminated from the records containing m,

T (m), we only need to consider the sequences in T (p)−T (m), where T (p) denotes the

records containing p. For a sequence q in T containing an instance of p, if q /∈ T (m),
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we have |T ′(q)| = |T (q)| and Conf(s|T ′(q)) = Conf(s|T (q)) and, therefore, such

q cannot be a new MVS. q is possible to be a new MVS only if q ∈ T (m) and

q ∈ (T (p)− T (m)) (Line 1). Since we only care about new MVS, we could further

filter out all identified MVS and their super sequences. For the remaining sequences,

if none of them is a violating sequence, it is sufficient to ensure that there is no new

MVS by Definition 5.5 (Line 4-11).

Example 5.3.4. Consider Table 5.1 with L = 2, K = 2, C = 50%, and the sensitive

value set S = {HIV,Hepatitis}. For the local suppression of d2 in MVS d2 → e4,

we get P = {d2, f6} and V ′ = {a1, d2 → b3, d2 → e4, d2 → e8}. Since all sequences

in Q = {d2, f6, d2 → f6} are not violating sequences, this local suppression is

valid.

Algorithm 5.3 presents the entire anonymization algorithm. Line 1 calls Al-

gorithm 5.1 to generate the MVS set V (T ). For preserving MFS, Line 2 is needed,

which calls the MFS mining algorithm to build a MFS-tree with a UL table that

keeps track of the occurrences of all candidate pairs in the MFS-tree. We adapt

MAFIA [15], originally designed for mining maximal frequent itemsets, to mine

MFS. For all instances of all pairs in V (T ), their scores for local and global sup-

pressions are calculated and stored in Score table based on Algorithm 5.2 (Line 3).

Different instances of a pair in V (T ) have different entries in Score table. Only valid

local suppressions are assigned scores. The global suppression scores of all instances

of a pair are the same. Lines 4-17 iteratively select a pair p with the highest score

in Score table to suppress. According to whether the highest score is obtained from

local suppression or global suppression, our algorithm performs different strategies.

For local suppression, the algorithm identifies the set of MVS, denoted by V ′, that

will be eliminated due to locally suppressing p, and removes the instances of p from

the records T (m). One extra step is performed for MFS to update the supports

of MFS in the MFS-tree (Line 9). For global suppression, the algorithm removes

all the MVS containing p, and suppresses all instances of p from T . For preserving
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Algorithm 5.3: Trajectory Database Anonymizer

Input: Raw trajectory database T
Input: Thresholds L, K, C, (K ′)
Input: Sensitive values S
Output: Anonymous T ′ satisfying the given (K,C)L-privacy requirement

1: Generate V (T ) by Algorithm 5.1;
2: Generate MFS by MFS algorithm and build MFS-tree;
3: Build Score table by Algorithm 5.2;
4: while Score table 
= ∅ do

5: Select a pair p with the highest score from its MVS m;
6: if p is obtained from local suppression then

7: V ′ ← each MVS m′ such that p ∈ m′ ∧ T (m′) = T (m);
8: Suppress the instances of p from T (m);
9: Delete the MFS containing p if their supports are < K ′ after suppression,

otherwise update their supports;
10: else

11: V ′ ← V (p);
12: Suppress all instances of p in T ;
13: Delete all MFS containing p from MFS-tree;
14: end if

15: Update the Score(p′) if both p and p′ are in V ′ (or in the same MFS);
16: V (T ) = V (T )− V ′;
17: end while

18: return the suppressed T as T ′;

MFS, the MFS containing p are removed from the MFS tree (Line 13). Line 15

updates the Score table, which requires two tasks: 1) checking if the pairs affected

by the current suppression are valid for future local suppressions; and 2) calculating

the scores for such pairs. Specifically, for preserving MFS, a special data structure,

MFS-tree, is created to facilitate the anonymization.

Definition 5.7 (MFS-tree). MFS-tree is a tree structure that represents each MFS

as a tree path from root to leaf. The support of each MFS is stored at its leaf node.

Each node keeps track of a count of MFS sharing the same prefix. The count at

the root is the total number of MFS. MFS-tree has a UL table that keeps the total

occurrences of every candidate pair p. Each candidate pair p in the UL table has a

link, denoted by Linkp, that links up all the nodes in MFS-tree containing p.
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Figure 5.1: MFS-tree for efficient Score updates

Example 5.3.5. Figure 5.1 presents the MFS-tree generated from Table 5.1 with

K ′ = 2. To find all the MFS containing f6, simply follow Linkf6, starting from the

f6 entry in the UL table.

5.3.3 Complexity Analysis

Our anonymization algorithm consists of two steps. In the first step, we identify all

MVS. The most expensive operation is scanning the raw trajectory database T once

for all sequences in each candidate set Ci. The cost is
∑L

i=1 |Ci|i, where |Ci| is the

size of candidate set Ci. The size of C1 is the number of distinct pairs in T whose

upper limit is |d|, the number of dimensions. Since C2 is generated by self-joining all

pairs in U1, whose size is less than or equal to |C1|, its upper bound is |d|(|d|− 1)/2.

However, when i ≥ 3, the sizes of the candidate sets do not increase significantly for

two reasons: 1) All candidates are generated by self-joining, which requires that only

if two sequences share the same prefix, their resulting sequence can be considered a

future candidate. When i is relatively large, the chance of finding two such sequences

decreases significantly. 2) The pruning process in Algorithm 5.1 also greatly reduces

the candidate search space. Therefore, a good approximation is C ≈ |d|2. However,
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in the worst case, the computational cost of the first step is bounded by O(|d|L|T |),

where |T | is the number of records in T . In the second step, we construct the Score

table, and then remove all MVS iteratively. The most costly operation is to check

if the instances of the pairs in V (T ) are valid to be locally suppressed. The number

of instances of pairs in V (T ) is less than
∑L

i=1 |Ci|i, and thus also bounded by |d|L.

For every instance in V (T ), we need to invoke Algorithm 5.2 at most twice. For

each invocation, in the worst case, it has to go through all records in T . So the cost

of the second step is still bounded by O(|d|L|T |). By incorporating both steps, the

complexity of the entire algorithm is O(|d|L|T |). The scalability of our algorithm is

further demonstrated in Section 5.4.2.

5.4 Experimental Evaluation

In this section, we examine the performance of our anonymization framework in

terms of utility loss due to the anonymization and scalability for handling large

datasets. For preserving instances, the utility loss is defined as N(T )−N(T ′)
N(T )

, where

N(T ) and N(T ′) are the numbers of instances of pairs in the original dataset T

and the anonymous dataset T ′, respectively; for preserving MFS, the utility loss is

defined as |U(T )|−|U(T ′)|
|U(T )| , where |U(T )| and |U(T ′)| are the numbers of MFS in T and

T ′, respectively. The formulas respectively measure the percentage of instances and

MFS that are lost due to suppressions. Lower utility loss implies better resulting

data quality. We cannot directly compare our algorithm with previous works [1],

[100], [109], [130] on trajectory data anonymization because none of them can prevent

from both identity and attribute linkage attacks. Instead, we compare our local

suppression method with the global suppression method described in our technical

report [91]. In the following experiments, we show that applying local suppression

along with (K,C)L-privacy would significantly lower utility loss in the context of

trajectory data.
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Table 5.3: Experimental dataset statistics
Datasets Records Dimensions Data size Sensitive set Data type

|T | |d| (K bytes) cardinality
City80K 80,000 624 2,297 1/5 Synthetic
STM460K 462,483 3,264 9,810 6/24 Real-life

Two datasets, City80K and STM460K, are used in the experiments. City80K

is a synthetic dataset simulating the routes of 80,000 pedestrians roaming in a

metropolitan area of 26 blocks in 24 hours. The sensitive attribute of City80K

contains a total of five possible values, one of which is considered as sensitive.

STM460K is a real-life dataset provided by Société de transport de Montréal

(STM), the public transit agency in Montréal. It contains the transit data of 462,483

passengers among 68 subway stations within 48 hours, where the time granularity is

set to hour level. The passengers’ fare types are currently considered as the sensitive

attribute. It contains 24 distinct values and 6 of them are considered as sensitive.

The properties of the two experimental datasets are summarized in Table 5.3.

5.4.1 Utility Loss

To fully study the effectiveness of our anonymization algorithm, we evaluate the

utility loss in terms of varying K, C, L values. Specifically, for preserving MFS, we

also study the effect of varying K ′ values. Instead of examining the effect of L sepa-

rately, we show the benefit of a reasonable L value over the traditional k-anonymity

(confidence bounding) in combination with other parameters. In Figures 5.2-5.4, the

following legends are used: KCL-Local uses local suppression for (K,C)L-privacy;

KCL-Global uses global suppression for (K,C)L-privacy [91]; Trad-Local uses local

suppression for traditional k-anonymity (confidence bounding); Trad-Global uses

global suppression for traditional k-anonymity (confidence bounding).

Effect of K. We vary the parameter K from 10 to 50 while fixing L = 3, C =

60%, and K ′ = 800, on both City80K and STM460K to study the effect of K on
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(a) City80K (Instance) (b) City80K (MFS)
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(c) STM460K (Instance) (d) STM460K (MFS)

Figure 5.2: Utility loss vs. K (L = 3, C = 60%, K ′ = 800)

(K,C)L-privacy model under the two different utility metrics, the results of which are

demonstrated in Figure 5.2. Recall that k-anonymity is achieved in our framework

by setting L = |d| and C = 100%, where |d| is the number of dimensions in the given

dataset. Comparing the utility loss of the schemes based on (K,C)L-privacy to the

ones based on k-anonymity unveils the utility improvement due to the assumption

of L-knowledge; comparing the schemes using local suppression to those using only

global suppression unveils the utility enhancement due to the employment of local

suppression. Overall, KCL-Local performs significantly better than KCL-Global. In

particular, it achieves 75% improvement for instance and 68% improvement for MFS

on the real dataset STM460K. However, local suppression itself is not sufficient

to guarantee good data utility. When local suppression is applied to k-anonymity,

the resulting utility loss is still relatively high on City80K. It is interesting to

see that on STM460K the utility loss under (K,C)L-privacy and k-anonymity is

very close. This is due to the fact that most MVS of STM460K are of size-3 or
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(c) STM460K (Instances) (d) STM460K (MFS)

Figure 5.3: Utility loss vs. C (L = 3, K = 30, K ′ = 800)

less. Nevertheless, Figure 5.2 suggests that when combined with local suppression,

(K,C)L-privacy can significantly lower the utility loss than can k-anonymity, in the

context of trajectory data.

Effect of C. Figure 5.3 shows the impact of C on the utility loss while fixing

L = 3, K = 30, andK ′ = 800, which allows us to examine the effect of attribute link-

ages. Since k-anonymity is unable to prevent attribute linkages, confidence bound-

ing [114] is used to compare with (K,C)L-privacy. Recall that confidence bounding

is achieved under (K,C)L-privacy by setting L = |d|. When C is small, the utility

loss is high for all anonymization schemes because approximately 20% of the records

of City80K and 25% of the records of STM460K contain a sensitive value. However,

as C increases, the utility loss becomes less sensitive to C. The result also suggests

that applying local suppression under (K,C)L-privacy results in substantially lower

utility loss.

Effect of K ′. For preserving MFS, we study the relationship between K ′ and
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(a) City80K (b) STM460K

Figure 5.4: Utility loss vs. K ′ (L = 3, K = 30, C = 60%)

the utility loss by fixing L = 3, K = 30, and C = 60% in Figure 5.4. Generally, asK ′

increases, the utility loss decreases. When K ′ gets larger, the size of MFS becomes

smaller, which, in turn, makes the MFS set and MVS set have less overlap. Hence,

suppressions have less influence on MFS. We also observe that local suppression

is less sensitive to varying K ′ values due to the fact that local suppression allows

decreasing the support of an MFS rather than always totally eliminating an MFS.

5.4.2 Scalability

Since the computational complexity of our algorithm is dominated by |d|, the num-

ber of dimensions, and |T |, the number of records, we study the scalability of

our anonymization framework in terms of |d| and |T | on relatively large trajectory

datasets generated with similar settings as City80K. Since using local suppression

results in better data utility, we only evaluate the scalability of applying local sup-

pression for preserving MFS (using only global suppression requires less computing

resources), where the following parameters are used: L = 3, K = 30, C = 60%, and

K ′ = 800.

Effect of |T |. Figure 5.5 (a) presents the run time of processing datasets with

4000 dimensions and size ranging from 400,000 to 1,200,000. We can observe that

the time spent on reading raw datasets and writing the anonymized datasets is
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(a) Runtime vs. # of records (b) Runtime vs. # of dimensions

Figure 5.5: Scalability

proportional to the dataset sizes. The time of identifying MVS sets also increases

linearly, which confirms our complexity analysis. With the increase of the data size,

the time spent on suppressions, however, drops substantially. When the number

of records increases, there is a much greater chance for a sequence q to satisfy

|T (q)| ≥ K; therefore, the size of MVS decreases significantly, so it takes much less

time to perform all suppressions.

Effect of |d|. In Figure 5.5 (b), we increase the dimensions on datasets of 1

million records. The time spent reading raw data and writing anonymized data is

insensitive to the number of dimensions of the given dataset. However, as the number

of dimensions increases, it takes more time to generate the MVS set because the size

of each candidate set increases. The size of the resulting MVS set also increases due

to the increased sparseness. Thus, the time spent on suppressing all identified MVS

also increases.

Overall, our anonymization framework is able to efficiently process large tra-

jectory datasets. The total run time of anonymizing 1 million records with 8000

dimensions is still less than 300 seconds.
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5.5 Summary

In this chapter, we summarize the special challenges of trajectory data anonymiza-

tion and show that traditional k-anonymity and its extensions are not effective in

the context of trajectory data. Based on the practical assumption of L-knowledge,

we achieve a (K,C)L-privacy model on trajectory data without paying extra utility

and computation costs due to over-sanitization. This is the first work that intro-

duces local suppression to trajectory data anonymization to enhance the resulting

data utility. Consequently, we propose an anonymization framework that is able

to remove all privacy threats from a trajectory database by both local and global

suppressions. This framework is independent of the underlying data utility met-

rics and, therefore, is suitable for different trajectory data mining workloads. Our

experimental results on both synthetic and real-life datasets demonstrate that com-

bining (K,C)L-privacy and local suppression is able to significantly improve the

anonymized data quality.

Though we adopt a stronger privacy notion than other existing works, in the

context of trajectory data, by taking into consideration the possibility of inferring

record owners’ sensitive information via trajectory data, the specificity of trajectory

data enables adversaries to perform other kinds of privacy attacks, especially when

they are equipped with different types of background knowledge.
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Chapter 6

Sequential Data Sanitization

6.1 Introduction

Sequential data, which can be considered a simplified form of trajectory data, has

been used in a variety of applications, spanning from genome and web usage analysis

to location-based recommendation systems. Publishing such datasets is important

since they can help us analyze and understand interesting sequential patterns. For

example, mobility traces have become widely collected in recent years and have

opened the possibility to improve our understanding of large-scale transportation

networks. Similar to trajectory data, raw sequential data may enable an adversary

to learn sensitive information about a victim. The privacy concern of publishing

sequential data is best exemplified by the case of the Société de transport de Montréal

(STM, http://www.stm.info), the public transit agency in Montreal area.

Over the last few years, smart card automated fare collection (SCAFC) sys-

tems have been increasingly deployed in transportation systems as a secure method

of user validation and fare collection. These systems generate and collect passen-

gers’ transit data every day, which, after being anonymized, needs to be shared for

various reasons, such as administrative regulations, profit sharing and data anal-

ysis. Transit data usually contains individual-specific sensitive information, and
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publishing raw data would directly violate passengers’ privacy. In 2008, the STM

deployed SCAFC systems in its transportation network. Transit information, such

as smart card number and station ID, is collected when a passenger swipes his smart

card at a SCAFC terminal, and is then stored in a central database management

system, where the transit information of a passenger is organized as a sequence

of stations in time order, a kind of sequential data (see a formal definition in Sec-

tion 6.2.1). The deployment of SCAFC systems allows the seamless integration with

other transit networks of neighboring cities, for example, the Agence métropolitaine

de transport (AMT), which consequently requires data sharing among several col-

laborating parties. In addition, periodically, the IT department of the STM shares

transit data with other departments, e.g., the marketing department, for basic data

analysis, and publishes its transit data to external research institutions for more

complex data analysis tasks, such as marketing analysis [112], customer behavior

analysis [14], and demand forecasting [112].

According to its preliminary research [14], [86], [18], the STM can substantially

benefit from transit data analysis at strategic, tactical, and operational levels. Yet,

it has also realized that the nature of transit data is raising major privacy concerns

on the part of card users in information sharing [86]. This fact has been an obstacle

to conducting further data analysis much less performing regular commercial opera-

tions. In this chapter, we aim to provide practical solutions to such a real-life transit

data sharing scenario. We point out that our solutions also benefit many other sec-

tors, for example cell phone communication and credit card payment, which have

been facing a similar dilemma in sequential data publishing and individual privacy

protection.

Previous efforts have been made in addressing the problem of transit data

publication at the STM. In Chapter 5, we proposed the local suppression technique

based on the (K,C)L-privacy model. However, its privacy property is still dubious
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when facing a strong adversary (e.g., one knows more than L-knowledge). It is there-

fore urgent to respond to the failure of existing sanitization techniques by developing

new schemes with proven privacy guarantees. For this reason, we employ differen-

tial privacy [37], one of the strongest privacy models. Differential privacy provides

provable privacy guarantees independent of an adversary’s background knowledge

and computational power.

Traditional differentially private non-interactive approaches [12], [39], [125]

are data-independent in the sense that all possible entries in the output domain

need to be explicitly considered no matter what the underlying database is. For

high-dimensional data, such as sequential data, this is computationally infeasible.

Consider a transit database D with all stations drawn from a universe of size m.

Suppose the maximum length of a record (the number of stations in a record) in

D is l. These approaches need to generate
∑l

i=1 m
i = ml+1−m

m−1
output entries. For

a STM transit database with m = 1, 000 and l = 20, it requires to generate 1060

entries. Hence, these approaches are not computationally applicable with today’s

systems to real-life transit databases.

To tackle the challenge, we develop data-dependent solutions by extending the

ideas proposed in two very recent papers [90], [25]. The general idea of a data-

dependent solution is to adaptively narrow down the output domain by using noisy

answers obtained from the underlying database. However, the methods in [90], [25]

cannot be directly applied to sequential data for two reasons. First, the inherent

sequentiality of sequential data is not considered in [90], [25]. Second, the methods

only work for sets, yet a record in a sequential database may contain a bag of

locations. Therefore, non-trivial efforts are needed to develop a differentially private

data publishing approach for sequential data.

Protecting individual privacy is one aspect of sanitizing data. Another equally

important aspect is preserving utility in sanitized data for data analysis. In this

chapter, we consider two important data mining tasks conducted at the STM,
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namely count queries (see a formal definition in Section 6.2.4) and frequent sequential

pattern mining [6]. Count queries, as a general data analysis task, are the building

block of many advanced data mining tasks. In the STM case, with accurate answers

to count queries, data recipients can answer questions, such as “how many passen-

gers have visited both stations Guy-Concordia and McGill 1”. Frequent sequential

pattern mining, as a concrete data mining task, helps, for example, the STM better

understand passengers’ transit patterns and consequently allows the STM to adjust

its network geometry and schedules in order to better utilize its existing resources.

Contributions. In this chapter, we propose two alternative solutions that pioneer

the use of differential privacy for publishing sequential data. The first solution

makes use of a hybrid-granularity prefix tree while the second solution makes use

of a variable-length n-gram model. We summarize the major contributions of this

chapter as follows.

Publishing sequential data via prefix tree. This is the first work that intro-

duces a practical solution for publishing large volume of real-life sequential data via

differential privacy in the non-interactive setting.

• We study the real-life transit data sharing scenario at the STM and propose

an efficient sanitization algorithm to generate a differentially private sequen-

tial data release by making use of a hybrid-granularity prefix tree. We design

a statistical process for efficiently constructing such a noisy prefix tree under

Laplace mechanism, which is vital to the scalability of our solution. We em-

phasize that our approach can be seamlessly extended to trajectory data (see

Section 6.3.1).

• We make use of two sets of inherent constraints of a prefix tree to conduct

constrained inferences, which helps generate a more accurate release.

1Guy-Concordia andMcGill are two metro stations on the green line of the STM metro network.
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• We conduct an extensive experimental study over different real-life STM datasets.

We examine utility of sanitized data for two different data mining tasks per-

formed by the STM, namely count queries (a generic data analysis task) and

frequent sequential pattern mining (a concrete data mining task). Experi-

mental results demonstrate that our approach maintains high utility and is

scalable to large volume of real-life sequential data.

Publishing sequential data via n-grams. To further improve data utility of san-

itized data, we propose the use of a variable-length n-gram model, which outperforms

the state-of-the-art techniques.

• For the first time, we introduce the n-gram model as an effective means of

achieving differential privacy in the context of sequential data. To better

suit differential privacy, we propose the use of a novel variable-length n-gram

model, which balances the trade-off between information extracted from the

underlying database and the magnitude of Laplace noise added. The variable-

length n-gram model intrinsically fits differential privacy in the sense that it

retains the essential information of a sequential database by identifying a set

of high-quality n-grams whose counts are large enough to resist Laplace noise.

• We develop a series of techniques to guarantee good utility under the variable-

length n-gram model, including an adaptive privacy budget allocation scheme,

a formal choice of a threshold value, and the enforcement of consistency con-

straints. These techniques make use of the inherent Markov assumption in

an n-gram model. In addition, we develop an efficient method to generate a

synthetic dataset from released n-grams, enabling a wider spectrum of data

analysis tasks.

• We conduct an extensive experimental study on the variable-length n-gram

model over real-life sequential datasets, which provides important insights for
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Table 6.1: Sample sequential database
Rec. # Sequence

1 L1 → L2 → L3

2 L1 → L2

3 L3 → L2 → L1

4 L1 → L2 → L4

5 L1 → L2 → L3

6 L3 → L2

7 L1 → L2 → L4 → L1

8 L3 → L1

future work. In particular, we demonstrate that our solution substantially

outperforms the state-of-the-art solutions [88], [21] in terms of count query

and frequent sequential pattern mining.

The results of this chapter have been published in [22], [20].

6.2 Preliminaries

6.2.1 Sequential Data

Let L = {L1, L2, · · · , L|L|} be the universe of locations, where |L| is the size of the

universe. Without loss of generality, we consider locations as discrete spatial areas

in a map. For example, in a transportation system, L represents all stations in the

transit network. This assumption also applies to many other types of sequential

data, e.g., purchase records, where a location is a store’s address, or web browsing

histories, where a location is a URL. We model a sequence as a time ordered list of

locations drawn from the universe.

Definition 6.1 (Sequence). A sequence D of length |D| is a time ordered list of

locations D = l1 → l2 → · · · → l|D|, where ∀1 ≤ i ≤ |D|, li ∈ L.

A location may occur multiple times in D, and may occur consecutively in D.

Therefore, given L = {L1, L2, L3, L4}, D = L1 → L2 → L2 is a valid sequence. A

102



sequential database is composed of a multiset of sequences; each sequence represents

the movement history of a record owner. A formal definition is given below.

Definition 6.2 (Sequential Database). A sequential database D of size |D| is a

multiset of sequences D = {D1, D2, · · · , D|D|}.

Table 6.1 presents a sample sequential database with L = {L1, L2, L3, L4}.

6.2.2 Prefix Tree

A sequential (or trajectory) database can be represented in a more compact way in

terms of a prefix tree. A prefix tree groups sequences with the same prefix into the

same branch. We first define a prefix of a sequence below.

Definition 6.3 (Sequence Prefix). A sequence S = s1 → s2 → · · · → s|S| is a prefix

of a sequence T = t1 → t2 → · · · → t|T |, denoted by S � T , if and only if |S| ≤ |T |

and ∀1 ≤ i ≤ |S|, si = ti.

For example, L1 → L2 is a prefix of L1 → L2 → L4 → L3, but L1 → L4 is not.

Note that a sequence prefix is a sequence per se. Next, we formally define a prefix

tree below.

Definition 6.4 (Prefix Tree). A prefix tree PT of a sequential databaseD is a triplet

PT = (V,E,Root(PT )), where V is the set of nodes labeled with locations, each

corresponding to a unique sequence prefix in D; E is the set of edges, representing

transitions between nodes; Root(PT ) ∈ V is the virtual root of PT . The unique

sequence prefix represented by a node v ∈ V , denoted by prefix(v,PT ), is an

ordered list of locations starting from Root(PT ) to v.

Each node v ∈ V of PT keeps a doublet in the form of 〈tr(v), c(v)〉, where

tr(v) is the set of sequences in D having the prefix prefix(v,PT ), that is, {D ∈ D :

prefix(v,PT ) � D}, and c(v) is a noisy version of |tr(v)| (e.g., |tr(v)| plus Laplace
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Figure 6.1: The prefix tree of the sample data in Table 6.1

noise). tr(Root(PT )) contains all sequences in D. We call the set of all nodes of PT

at a given depth i a level of PT , denoted by level(i,PT ). Root(PT ) is at depth

zero. Figure 6.1 illustrates the prefix tree of the sample database in Table 6.1, where

each node v is labeled with its location and |tr(v)|.

6.2.3 N-Gram Model

An n-gram model is a type of probabilistic prediction model based on an (n − 1)-

orderMarkov model. It can compactly model large-scale sequential data and provide

scalable trade-off between storage and accuracy. N -gram models have been proven to

be very robust in modeling sequential data and have been widely used in probability,

communication theory, computational linguistics (e.g., statistical natural language

processing), computational biology (e.g., biological sequence analysis), and data

compression.

N -gram models estimate the probability of the next location for a given se-

quence by making use of the Markov independence assumption (of order n− 1) that

the occurrence of each location in a sequence depends only on the previous n−1 loca-

tions (instead of all previous locations), where n is typically a small value (e.g., 3-5).

Let the probability that a sequence L1 → L2 → . . . → Li, where Lj ∈ L (∀1 ≤ j ≤ i)
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Table 6.2: Another sample se-
quential dataset

Rec. # Sequence

1 L2 → L3 → L1

2 L2 → L3

3 L3 → L2

4 L2 → L3 → L1

5 L3 → L2 → L1

6 L2 → L3 → L1 → L2 → L3

7 L3 → L2

8 L3 → L1 → L2 → L3

Table 6.3: 1-grams
Gram # Pr

L1 5 0.21
L2 9 0.38
L3 10 0.41

Table 6.4: 2-grams
Gram # Pr Gram # Pr Gram # Pr

L1 → L1 0 0 L2 → L1 1 0.11 L3 → L1 4 0.4
L1 → L2 2 0.4 L2 → L2 0 0 L3 → L2 3 0.3
L1 → L3 0 0 L2 → L3 6 0.67 L3 → L3 0 0
L1 → & 3 0.6 L2 → & 2 0.22 L3 → & 3 0.3

and i ≥ n, is followed by Li+1 ∈ L be denoted by P (Li+1|L1 → L2 → . . . → Li).

Then, under the n-gram model, we have:

P (Li+1|L1 → L2 → . . . → Li) :≈ P (Li+1|Li−n+2 → Li−n+3 → . . . → Li).

In the sequel, the probability P (Li+1|Lj → Lj+1 → · · · → Li) is shortly denoted by

P (Li+1|Lj
i ).

N -gram models provide a trade-off between storage and accuracy: a larger n

value retains more information of the dataset, but it requires more storage and time

to process. For example, Tables 6.3 and 6.4 show the set of all unigrams and 2-

grams, respectively, along with their counts and probabilities for the sample dataset

in Table 6.2, where & is a special symbol representing the termination of a sequence.

Consider the calculation of the (approximated) number of occurrences of L3 → L1 →

L2 → L3, whose true number is 2. Using 2-grams, one possible approximation is

#(L3 → L1) ·P (L2|L1) ·P (L3|L2) = 4 · 0.4 · 0.67 = 1.07. In contrast, using 3-grams,
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a better approximation can be #(L3 → L1 → L2) · P (L3|L1 → L2) = 2 · 1.0 = 2.0.

However, this better scheme requires to process all 3-grams at the cost of storage

and time.

6.2.4 Utility Requirements

In the STM case, sanitized data is mainly used to perform two data mining tasks,

namely count query and frequent sequential pattern mining [6]. Count queries, as a

general data analysis task, are the building block of many data mining tasks. We

formally define count queries over a sequential database below.

Definition 6.5 (Count Query). For a given set of locations L drawn from the

universe L, a count query Q over a database D is defined to be Q(D) = |{S ∈ D :

L ⊆ ls(S)}|, where ls(S) returns the set of locations in S.

Note that sequentiality among locations is not considered in count queries,

because the major users of count queries are, for example, the personnel of the

marketing department of the STM, who are merely interested in users’ presence in

certain stations for marketing analysis, known as passenger counting, but not the

sequentiality of visiting 2. Instead, the preservation of sequentiality in sanitized data

is examined by frequent sequential pattern mining. The utility of a count query Q

over the sanitized database D̃ is similarly measured by its relative error [125], [123],

[25], which is computed as:

error(Q(D̃)) =
|Q(D̃)−Q(D)|
max{Q(D), s} ,

where s is a sanity bound used to mitigate the influences of queries with extremely

small selectivities [125], [123], [25].

2A variant of count query that considers sequentiality is employed in Section 6.4.3 to demon-
strate the utility of sanitized data for a broad spectrum of mobility trace analysis tasks.
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For frequent sequential pattern mining, we measure the utility of sanitized

data in terms of true positive (TP), false positive (FP) and false drop (FD) [40].

Given a positive number k, we denote the set of top k most frequent sequential

patterns with size greater than 1 3 on the original database D by Fk(D) and the set

of frequent sequential patterns on the sanitized database D̃ by Fk(D̃). True positive

is the number of frequent sequential patterns in Fk(D) that are correctly identified

in Fk(D̃), that is, |Fk(D) ∩ Fk(D̃)|. False positive is the number of infrequent

sequential patterns in D that are mistakenly included in Fk(D̃), that is, |Fk(D̃) −

Fk(D)∩Fk(D̃)|. False drop is the number of frequent sequential patterns in Fk(D)

that are wrongly omitted in Fk(D̃), that is, |Fk(D)∪Fk(D̃)−Fk(D̃)|. Since in our

setting |Fk(D)| = |Fk(D̃)| = k, false positives always equal false drops.

6.3 Publishing Sequential Data via Prefix Tree

6.3.1 Sanitization Algorithm

We first provide an overview of our two-step sanitization algorithm in Algorithm 6.1.

Given a raw sequential dataset D, a privacy budget ε, a user specified height of the

prefix tree h and a location taxonomy tree T , it returns a sanitized dataset D̃ satisfy-

ing ε-differential privacy. BuildNoisyPrefixTree constructs a noisy hybrid-granularity

prefix tree PT of D using a set of count queries based on the given taxonomy tree

T , which defines multiple levels of granularities over the location universe. It can

be either public knowledge or generated from the location universe on-the-fly by

specifying a fan-out value. In the STM case, we use a two-level taxonomy tree

where each station can be generalized to the metro/bus line on which it locates. For

the simplicity of illustration, we give our algorithm based on a two-level taxonomy

tree. The extension to a multiple-level taxonomy tree is straightforward. Gener-

atePrivateRelease employs utility boosting techniques on PT based on two sets of

3Nearly all single locations form a size-1 frequent sequential pattern.
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Algorithm 6.1: Prefix Tree Sequential Data Sanitization

Input: Raw sequential dataset D
Input: Privacy budget ε
Input: Height of the prefix tree h
Input: Location taxonomy tree T
Output: Sanitized dataset D̃
1: Noisy prefix tree PT ← BuildNoisyPrefixTree(D, ε, h, T );
2: Sanitized dataset D̃ ← GeneratePrivateRelease(PT );
3: return D̃;

consistency constraints, and then generates a differentially private release.

Noisy Prefix Tree Construction

Our strategy for BuildNoisyPrefixTree is to recursively group sequences in D into

disjoint sub-datasets based on their prefixes. Algorithm 6.2 presents the details of

BuildNoisyPrefixTree. We first create a prefix tree PT with a virtual root Root

(Lines 2-3). To build PT , we employ a uniform privacy budget allocation scheme,

that is, divide the total privacy budget ε into equal portions ε̄ = ε
h
, each is used

for constructing a level of PT (Line 4). In Lines 6-26, we iteratively construct each

level of PT in a noisy way.

To satisfy differential privacy, we need to guarantee that every sequence that

can be derived from the location universe (either in or not in D) has a non-zero

probability to appear in the noisy prefix tree. Therefore, at each level, for each

node, we need to consider every possible location as its potential child. Our goal

is to identify the children that are associated with non-zero number of sequences

(referred to as non-empty node) so that we can continue to expand them. Here

decisions have to be made based on noisy counts.

In order to achieve good utility, it is critical to prune out nodes associated with

zero number of sequences (empty node) reliably as early as possible. For this reason,

instead of using a simple prefix tree, we divide a level of PT into two sub-levels with

different location granularities. The first sub-level consists of nodes associated with
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Algorithm 6.2: BuildNoisyPrefixTree

Input: Raw sequential dataset D
Input: Privacy budget ε
Input: Height of the prefix tree h
Input: Location taxonomy tree T
Output: Noisy prefix tree PT
1: i = 0;
2: Create a prefix tree PT with a virtual root Root;
3: Add all sequences in D to tr(Root);
4: ε̄ = ε

h ;
5: Calculate ε̄1 and ε̄2 s.t. ε̄1 + ε̄2 = ε̄;
6: while i < h do

7: for each non-generalized node v ∈ level(i) do
8: Ug ← the set of generalized nodes from T ;
9: for each node u ∈ Ug do

10: Add sequences S with prefix(u) � S to tr(u);
11: c(u) = NoisyCount(|tr(u)|, ε̄1);
12: if c(u) ≥ θg then

13: Add u to PT ;
14: Ung ← u’s non-generalized children in T ;
15: for each node w ∈ Ung do

16: Add sequences S with prefix(w) � S to tr(w);
17: c(w) = NoisyCount(|tr(w)|, ε̄2);
18: if c(w) ≥ θng then

19: Add w to PT ;
20: end if

21: end for

22: end if

23: end for

24: end for

25: i++;
26: end while

27: return PT ;
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generalized location information (generalized node), and then, depending on noisy

counts of these nodes, we decide whether to further expand them to create the second

sub-level in which nodes are associated with non-generalized locations (e.g., ask the

noisy counts of passengers in a metro line and then decide whether to ask counts of

each station on this line). ε̄ is then allocated to the two sub-levels as a function of

the fan-out f of the location taxonomy tree T : the first sub-level receives ε̄1 = 2ε̄
f

and the second receives ε̄2 =
(f−2)ε̄

f
. One important observation is that all nodes on

the same sub-level are associated with disjoint sequence subsets, and therefore the

privacy budget allocated to a sub-level can be used in full for each node in it. We

provide formal analysis on utility improvement of a hybrid-granularity prefix tree

after presenting Theorem 6.1.

For a dataset with a very large location universe L, processing all locations ex-

plicitly may be slow. We provide an efficient implementation by separately handling

potential non-empty and empty nodes. For a non-empty node u, we add Laplace

noise to |tr(u)| and use the noisy answer c(u) to decide if it is non-empty. If c(u) is

greater than or equal to the pre-defined threshold θ, we deem that u is non-empty

and insert u to PT . In the STM case, the threshold of a non-generalized node

θng = 2
√
2

ε̄2
(two times of the standard deviation of noise) while the threshold of a

generalized node θg = 4
√
2

ε̄1
. Intuitively, this setting more reliably eliminates empty

nodes while having very limited effect on non-empty nodes. Since non-empty nodes

are typically of a small number, this process can be done efficiently.

For empty nodes, we need to conduct a series of independent boolean tests,

each calculates NoisyCount(0, ε̄′) to check if it passes θ, where ε̄′ is the privacy

budget assigned to a node (either ε̄1 or ε̄2). The number of empty nodes that pass θ,

k, follows the binomial distribution B(m, pθ), where m is the total number of empty

nodes we need to check and pθ is the probability for a single experiment to succeed.

We design a statistical process for Laplace mechanism to directly extract k empty

nodes without explicitly processing every empty node. This is inspired by [29], in
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which a statistical process is designed for geometric mechanism [51].

Theorem 6.1. Independently conducting m pass/not pass experiments based on

Laplace mechanism with privacy budget ε̄ and threshold θ is equivalent to the fol-

lowing steps: (1) generate a value k from the binomial distribution B(m, pθ), where

pθ =
exp(−ε̄θ)

2
; (2) select k uniformly random empty nodes without replacement with

noisy counts sampled from the distribution

P (x) =

⎧⎪⎨⎪⎩
0 ∀x < θ

1− exp(ε̄θ − ε̄x) ∀x ≥ θ

Proof. The probability of a single experiment passing the threshold θ is

Pr[PASS] =

∫ ∞

θ

ε̄′

2
exp(−ε̄′x)dx =

exp(−ε̄′θ)

2
.

Since the experiments are independent, the number of successful experiments, k,

follows the binomial distribution B(m, exp(−ε̄′θ)
2

). Once k is determined, we can

uniformly at random select k empty nodes. The probability density function of the

noisy counts x for the k empty nodes, conditional on x ≥ θ, is:

p(x|x ≥ θ) =

⎧⎪⎨⎪⎩
0 ∀x < θ

ε̄′

2
exp(−ε̄′x)

pθ
= ε̄′exp(ε̄′θ − ε̄′x) ∀x ≥ θ

The corresponding cumulative distribution function is:

P (x) =

⎧⎪⎨⎪⎩
0 ∀x < θ∫ x

θ
ε̄′exp(ε̄′θ − ε̄′x)dx = 1− exp(ε̄′θ − ε̄′x) ∀x ≥ θ
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Figure 6.2: The noisy hybrid-granularity prefix tree of the sample data

Now we give a theoretical analysis on the utility improvement due to a hybrid-

granularity prefix tree in terms of reduction of number of empty non-generalized

nodes that are mistakenly generated. This number directly reflects the level of noise

in sanitized data.

Theorem 6.2. For an empty node v at level i, a noisy hybrid-granularity prefix tree

of height h reduces the number of empty non-generalized nodes mistakenly generated

due to identifying v as non-empty by a factor of O(2h−iexp(4
√
2(h− i))).

Proof. From Theorem 6.1, we learn that pθng = exp(−2
√
2)

2
and pθg = exp(−4

√
2)

2
. Con-

sider an empty node v at level i. In a simple noisy prefix tree, if v is mistakenly

considered as non-empty, the expected value of number of descendants of v, which

are all empty nodes, is E1 = (|L|pθng)
h−i. In a hybrid-granularity prefix tree, the

expected value of number of descendants of v is

E2 = (fpθng)(
|L|
f

pθg · fpθng)
h−i = (fpθng)(|L|pθgpθng)

h−i.

where f is the fan-out of the location taxonomy tree. This implies a reduction of

E1

E2

=
1

fpθngp
h−i
θg

= O(2h−iexp(4
√
2(h− i))).

Example 6.3.1. Consider the sequential database D in Table 6.1, the height h = 2,

and the calculated threshold θ = 3. Suppose that L1 and L2 can be generalized to
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L{1,2} and L3 and L4 can be generalized to L{3,4}. The construction of a possible

noisy hybrid-granularity prefix tree PT is illustrated in Figure 6.2. A path of PT

may be of a length shorter than h if it has been considered “empty” before h is

reached.

Private Release Generation

We can generate the sanitized database by traversing PT once in postorder (ig-

nore generalized nodes), calculating the number n of sequences terminated at each

non-generalized node v and appending n copies of prefix(v,PT ) to the output.

However, due to the noise added to ensure differential privacy, we may not be able

to obtain a meaningful and consistent release. For example, in Figure 6.2, consider

the root-to-leaf path Root(PT ) → L1 → L2. We have c(L2) > c(L1), which is

counterintuitive because it is not possible, in general, to have more sequences with

the prefix prefix(u,PT ) than with the prefix prefix(v,PT ), where u is a child of

v in PT . If we leave such inconsistencies unsolved, the resulting release may not be

meaningful and therefore provides poor utility.

Definition 6.6 (Consistency Constraint). In a prefix tree, there exist two sets of

consistency constraints:

1. For any root-to-leaf path p, ∀vi ∈ p, |tr(vi)| ≤ |tr(vi+1)|, where vi is a child of

vi+1;

2. For each node v, |tr(v)| ≥
∑

u∈children(v) |tr(u)|.

Our goal is to enforce such consistency constraints on the noisy prefix tree

(with all generalized nodes removed 4) in order to produce a consistent and more

accurate private release. We adapt the constrained inference technique proposed

in [61] to adjust the noisy counts of nodes in the noisy prefix tree so that the

constraints defined in Definition 6.6 are respected. Note that the technique proposed

4The utility improvements of constrained inferences on a prefix tree with and without general-
ized nodes are almost identical.
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in [61] cannot be directly applied to our case because: 1) the noisy prefix tree has

an irregular structure (rather than a complete tree with a fixed degree); 2) the

noisy prefix tree has different constraints |tr(v)| ≥
∑

u∈children(v) |tr(u)| (rather than

|tr(v)| =
∑

u∈children(v) |tr(u)|). Consequently, we propose a two-phase procedure to

obtain a consistent estimate with respect to Definition 6.6 for each node (except the

virtual root) in the noisy prefix tree PT .

We first generate an intermediate estimate for the noisy count of each node v

(except the virtual root) in PT . Consider a root-to-leaf path p of PT . Let us orga-

nize the noisy counts of nodes vi ∈ p into a sequence S = 〈c(v1), c(v2), · · · , c(v|p|)〉,

where vi is a child of vi+1. Let mean[i, j] denote the mean of a subsequence of S,

〈c(vi), c(vi+1), ..., c(vj)〉, that is, mean[i, j] =
∑j

m=i c(vm)

j−i+1
. We compute the intermedi-

ate estimates S̃ by Theorem 6.3 [61].

Theorem 6.3. Let Lm = minj∈[m,|p|]maxi∈[1,j]mean[i, j] and

Um = maxi∈[1,m]minj∈[i,|p|]mean[i, j]. The minimum L2 solution S̃ = 〈L1, L2, ..., L|p|〉 =

〈U1, U2, ..., U|p|〉.

The result of Theorem 6.3 satisfies the first type of constraints in Definition 6.6.

However, a node v in PT appears in |leaves(v)| root-to-leaf paths, where leaves(v)

denotes the leaves of the subtree of PT rooted at v, and therefore, has |leaves(v)|

intermediate estimates, each being an independent observation of the true count

|tr(v)|. We compute the consolidated intermediate estimate of v as the mean of

the estimates, normally the best estimate for |tr(v)|. We denote the consolidated

intermediate estimate of v by c̃(v).

After obtaining c̃(v) for each node v, we compute its consistent estimate c̄(v)

in a top-down fashion as follows:

c̄(v) =

⎧⎪⎨⎪⎩
c̃(v) ifv ∈ level(1,PT )

c̃(v) +min(0,
c̄(w)−

∑
u∈children(w) c̃(u)

|children(w)| ) otherwise
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where node w is the parent of node v. It follows the intuition that the observation∑
u∈children(w) c̃(u) > c̄(w) is strong evidence that excessive noise is added to the

children. Since the variance of noise in c̄(w) is approximately |children(w)| times

smaller than
∑

u∈children(w) c̃(u), it is reasonable to decrease the children’s counts

according to c̄(w). However, we never increase the children’s counts based on c̄(w)

because a large c̄(w) simply indicates that many sequences actually terminate at

w. It is easy to see that the consistency constraints in Definition 6.6 are respected

among consistent estimates, and therefore the proof is omitted here.

Analysis

Privacy Analysis. Kifer and Machanavajjhala [69] point out that differential pri-

vacy must be applied with caution. The privacy protection provided by differential

privacy relates to the data generating mechanism and deterministic aggregate-level

background knowledge. In the STM case, transit data is independent of each other

and no deterministic statistics of the raw database will ever be released. Hence dif-

ferential privacy is appropriate for our problem. We now show that Algorithm 6.1

satisfies ε-differential privacy.

Theorem 6.4. Given the total privacy budget ε, Algorithm 6.1 ensures ε-differential

privacy.

Proof. Algorithm 6.1 consists of two steps, namely BuildNoisyPrefixTree and Gen-

eratePrivateRelease. In the procedure BuildNoisyPrefixTree, our approach appeals

to the well-understood query model to construct the noisy prefix tree PT . Consider

a level of PT , which is composed of two sub-levels. Since all nodes on the same

sub-level contain disjoint sets of sequences. According to the parallel composition

(Theorem 2.2 [87]), the entire privacy budget needed for a sub-level is bounded by

the worst case, that is, 2ε̄
f
for the first sub-level and (f−2)ε̄

f
for the second sub-level.

The use of privacy budget on different sub-levels follows sequential composition (The-

orem 2.1 [87]). Since there are at most h levels, the total privacy budget needed to
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build the noisy prefix tree ≤ h× (2ε̄
f
+ (f−2)ε̄

f
) = ε.

For GeneratePrivateRelease, we make use of the inherent constraints of a prefix

tree to boost utility. The procedure only accesses a differentially private noisy prefix

tree, not the underlying database. As proven by Hay et al. [61], a post-processing of

differentially private results remains differentially private. Therefore, Algorithm 6.1

as a whole maintains ε-differential privacy.

Complexity Analysis. Algorithm 6.1 is of runtime complexity O(|D| · |L|), where

|D| is the size of the input database D and |L| is the size of the location universe. For

BuildNoisyPrefixTree, the major computational cost is node generation and sequence

distribution. For each level of the noisy prefix tree, the number of nodes to generate

approximates k(1 + 1
f
)|D|, where k � |L| is a number depending on |L|. For each

level, we need to distribute at most 2|D| sequences to the newly generated nodes.

Hence, the complexity of constructing a single level is O(|D| · |L|). Therefore, the

total runtime complexity of BuildNoisyPrefixTree for constructing a noisy prefix tree

of height h is O(h|D|· |L|). In GeneratePrivateRelease, the complexity of calculating

the intermediate estimates for a single root-to-leaf path is O(h). Since there can be

at most |D| distinct root-to-leaf paths, the complexity of computing all intermediate

estimates is O(h|D|). To compute consistent estimates, we need to visit every node

exactly twice, which is of complexity O(|D| · |L|). Similarly, the computational cost

of generating the private release by traversing the noisy prefix tree once in postorder

is O(|D| · |L|). Since h is a very small constant compared to |D| and |L|, the total

complexity of Algorithm 6.1 is O(|D| · |L|).

Extensions

Our solution can be seamlessly applied to trajectory data. A trajectory is composed

of a sequence of location-timestamp pairs in the form of loc1t1 → loc2t2 → · · · →

locntn, where t1 ≤ t2 ≤ · · · ≤ tn. The time factor is often discretized into intervals at
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Table 6.5: Experimental dataset statistics.
Datasets |D| |L| max|S| avg|S|
Metro 847,668 68 90 4.21
Bus 778,724 944 121 5.67

different levels of granularity, e.g., hour, which is typically determined by the data

publisher. All timestamps of a trajectory database form a timestamp universe.

In this case, we can label each node in the prefix tree by both a location and

a timestamp. Therefore, two trajectories with the same sequence of locations but

different timestamps are considered different. For example, L1T1 → L2T2 is different

from L1T2 → L2T3, and the corresponding prefix tree will have two non-overlapping

root-to-leaf paths. Consequently, when constructing the noisy prefix tree, in order

to expand a node lociti, we have to consider the combinations of all locations and the

timestamps in the time universe that are greater than ti (because the timestamps

in a trajectory are non-decreasing), resulting in a larger candidate set. Due to the

efficient implementation we propose, the computational cost will remain moderate.

6.3.2 Experimental Evaluation

In this section, we examine the utility of sanitized data in terms of count queries and

frequent sequential pattern mining, and evaluate the scalability of our approach for

processing large-scale real-life data. In particular, we compare the utility improve-

ments of the method using a hybrid-granularity prefix tree (referred to as Hybrid)

over the method using a simple prefix tree (referred to as Simple). Our implemen-

tation was done in C++, and all experiments were performed on an Intel Core 2

Duo 2.26GHz PC with 2GB RAM. Extensive experiments were conducted on two

real-life STM transit datasets, Metro and Bus, which record the transit history of

passengers in the STM metro and bus networks, respectively. The characteristics of

the datasets are summarized in Table 6.5, where max|S| is the maximum sequence

length and avg|S| the average length.
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Utility

Count Query. In our first set of experiments, we examine relative errors of count

queries with respect to two different parameters, namely the privacy budget ε and

the noisy prefix tree height h. We follow the evaluation scheme from previous

works [125], [25]. For each privacy budget, we generate 40,000 random count queries

with varying numbers of locations. We call the number of locations in a query the

length of the query. We divide the query set into 4 subsets such that the query length

of the i-th subset is uniformly distributed in [1, ih
4
] and each location is randomly

drawn from the location universe L. The sanity bound s is set to 0.1% of the dataset

size, the same as [125], [25].

Figure 6.3 examines average relative errors under varying privacy budgets from

0.5 to 1.5 with h = 12. The X-axes represent the different query subsets by their

maximum length max|Q|. As expected, the average relative errors decrease when ε

increases because less noise is added and the construction process is more precise.

In general, our approach maintains high utility for count queries. Even in the worst

case (ε = 0.5 and max|Q| = 3), the average relative error of Hybrid is still less

than 8.2% on both datasets. Such level of relative errors is acceptable for data

analysis at the STM. We can also observe that a hybrid-granularity structure can

substantially reduce average relative errors (with 33%-48% improvement), especially

on Bus, which is more sparse.

Figure 6.4 studies how average relative errors vary under different h values with

query length fixed to 6. We can observe that with the increase of h, the relative

errors do not decrease monotonically. Initially, the relative errors decrease when

h increases because the increment of h allows to retain more information from the

underlying database. However, after a certain threshold, the relative errors become

larger with the increase of h, because when h gets larger, the noise added to each

level grows quickly. It is interesting to see that the hybrid-granularity structure

indeed better eliminates noise, and makes relative errors less sensitive to varying h
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Figure 6.3: Average relative error vs. privacy budget.

values. This allows a wider range of h values (e.g., 10-16) to be used in order to

obtain desirable relative errors.

Frequent sequential pattern mining. In the second set of experiments, we

demonstrate the utility of sanitized data by frequent sequential pattern mining.

Specifically, we employ PrefixSpan to mine frequent sequential patterns 5.

Table 6.6 shows how the utility changes with different top k values while

fixing ε = 1.0 and h = 12. When k = 100, the sanitized data generated by Hybrid

is able to give the exact top 100 most frequent patterns that are of size greater

than 1. With the increase of k values, the accuracy (the ratio of true positive to k)

decreases. However, even when k = 300, the accuracy of Hybrid is still as high as

5An implementation of the PrefixSpan algorithm proposed in [98], available at
http://code.google.com/p/prefixspan/.

119



&'&


&'�


&'�


&'�


� ! �& �� �� �� �! �&

)*
��
�+
�

�
�,
�

�*
�

��
��
�

���+�


#�;�,�1/�
��
#�;�,�10��
�	?���1/�
��
�	?���10��

&'&


&'�


&'�


&'�


� ! �& �� �� �� �! �&

)*
��
�+
�

�
�,
�

�*
�

��
��
�

���+�


#�;�,�1/�
��
#�;�,�10��
�	?���1/�
��
�	?���10��

(a) ε = 0.5 (b) ε = 0.75

&'&


&'�


&'�


&'�


� ! �& �� �� �� �! �&

)*
��
�+
�

�
�,
�

�*
�

��
��
�

���+�


#�;�,�1/�
��
#�;�,�10��
�	?���1/�
��
�	?���10��

&'&


&'�


&'�


&'�


� ! �& �� �� �� �! �&

)*
��
�+
�

�
�,
�

�*
�

��
��
�

���+�


#�;�,�1/�
��
#�;�,�10��
�	?���1/�
��
�	?���10��

(c) ε = 1.0 (d) ε = 1.25

Figure 6.4: Average relative error vs. prefix tree height.

257/300 = 85.7% on Metro and 233/300 = 77.7% on Bus. Again we can observe

that Hybrid always outperforms Simple on both datasets under all k values. When

k = 300, the improvement due to the hybrid-granularity structure is 6.6% on Metro

and 9.9% on Bus.

Table 6.7 presents the utility for frequent sequential pattern mining under

different ε values while fixing h = 12 and k = 300. Generally, larger privacy budgets

lead to more true positives and fewer false positives (false drops). This conforms

to the theoretical analysis that a larger privacy budget results in less noise and

therefore a more accurate result. Since the most frequent sequential patterns are of

small length, they have large supports from the underlying database. As a result,

the utility is relatively insensitive to varying privacy budgets, and the accuracy is

high even when the privacy budget is small.

120



Table 6.6: Utility for frequent sequential pattern mining vs. k
k TP (M/B) FP(FD) (M/B) TP (M/B) FP(FD) (M/B)

Simple Simple Hybrid Hybrid
100 99/97 1/3 100/100 0/0
150 143/139 7/11 149/144 1/6
200 178/168 22/32 185/177 15/23
250 209/195 41/55 220/209 30/41
300 241/212 59/88 257/233 43/67

Table 6.7: Utility for frequent sequential pattern mining vs. ε
ε TP (M/B) FP(FD) (M/B) TP (M/B) FP(FD) (M/B)

Simple Simple Hybrid Hybrid
0.5 227/194 73/106 244/215 56/85
0.75 239/206 61/94 253/224 47/76
1.0 241/212 59/88 257/233 43/67
1.25 243/216 57/84 259/238 41/62
1.5 248/224 52/76 261/242 39/58

Table 6.8: Utility for frequent sequential pattern mining vs. h
h TP (M/B) FP(FD) (M/B) TP (M/B) FP(FD) (M/B)

Simple Simple Hybrid Hybrid
6 234/212 66/88 241/221 59/79
8 240/217 60/83 254/232 46/68
10 241/215 58/85 255/236 45/64
12 241/212 59/88 257/233 43/67
14 241/212 59/88 258/233 42/67
16 240/210 60/90 258/231 42/69
18 240/209 60/91 255/230 45/70
20 238/206 62/94 254/228 46/72

Table 6.8 studies how the utility varies under different h values with ε = 1.0

and k = 300. It is interesting to see that in general frequent sequential pattern

mining is also insensitive to varying h values. This can be similarly explained by

the large supports of frequent sequential patterns, which make them more resistant

to noise. In addition, we can observe that good performance for frequent sequential

pattern mining can be obtained by a h value between 10 and 16, the same range as
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Figure 6.5: Runtime vs. different parameters.

that for count queries.

Scalability

In the last set of experiments, we examine the scalability of our approach. Recall

that the runtime complexity of our approach is dominated by the database size |D|

and the location universe size |L|. Therefore, we study the runtime under different

database sizes and different location universe sizes. Figure 6.5.a presents the runtime

under different database sizes with ε = 1.0 and h = 20 for both Simple and Hybrid.

The test sets are generated by randomly extracting records from Metro and Bus.

We can observe that the runtime is linear to the database size. Moreover, it can

be seen that the computational cost of a hybrid-granularity prefix tree structure is

negligible. This further confirms the benefit of employing a hybrid-granularity prefix

tree.

Figure 6.5.b shows how runtime varies under different location universe sizes.

Since Metro is of a small universe size, we only study the effect of universe sizes

on Bus. For each universe size, we remove all locations falling out of the universe

from Bus. This results in a smaller database size. Consequently, we fix the database

size for all test sets to 600,000. Again, it can be observed that the runtime scales

linearly with the location universe size and that the computational cost of Hybrid is
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comparable to that of Simple under different location universe sizes. As a summary,

our approach is scalable to large sequential datasets. It takes less than 22 seconds

to sanitize both datasets in all previous experiments.

6.3.3 Summary

All existing techniques for privacy-preserving sequential data publishing are derived

using partition-based privacy models, which have been shown failing to provide suf-

ficient privacy protection. In this section, motivated by the STM case, we study the

problem of publishing sequential data in the framework of differential privacy. For

the first time, we present a practical data-dependent solution for sanitizing large-

scale real-life sequential data, which can also be seamlessly applied to trajectory

data. In addition, we develop a constrained inference technique in order to better

the resulting utility. Our solution has been tested on real-life STM transit data for

two fundamental data analysis tasks performed at the STM and exhibits satisfac-

tory effectiveness and efficiency. We believe that our solution could benefit many

other sectors that are facing the dilemma between the demands of sequential data

publishing and privacy protection.

6.4 Publishing Sequential Data via N-Grams

6.4.1 Sanitization Algorithm

The main idea of our scheme is simple: we add properly calibrated Laplace noise

to the counts of high-quality grams and release them. Our goal is two-fold: (1) to

release grams whose real counts are large enough to increase utility 6; (2) to maximize

the sizes of released grams (i.e., the n value) to preserve as much sequentiality

6The added noise is calibrated to the global sensitivity and is independent of the count values.
As a result, larger counts provide better utility.
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information from the underlying dataset as possible. There is a fundamental trade-

off between the utility of noisy n-grams and their sizes: shorter grams enjoy smaller

relative error due to Laplace noise but carry less sequentiality information; longer

grams contain more sequentiality information but have smaller counts (and thus

larger relative error). In this section, we address this trade-off by releasing variable-

length n-grams of counts larger than a threshold 7 and of sizes less than a maximal

size nmax
8. For most practical datasets, setting nmax to a small value (e.g., 3-5) has

been sufficient to capture most of the sequentiality information. Since short grams

are typically of large counts, this property, which is also experimentally justified in

Section 6.4.3, explains why the n-gram model is so powerful and why it provides an

excellent basis for differentially private sequential data publishing.

To identify the set of high-quality (i.e., having low relative errors) n-grams

with possibly varying n values (1 ≤ n ≤ nmax) from an input sequential dataset,

we propose a well-designed tree structure, called exploration tree. It groups grams

with the same prefix into the same branch so that all possible n-grams with size

1 ≤ n ≤ nmax can be explored efficiently. The exploration starts with unigrams and

then proceeds to longer grams until nmax is reached. Intuitively, if the noisy count

of a gram g is small (i.e., close to the standard deviation of the added noise), its

true count also tends to be small and thus the relative error is large. Since all grams

having the prefix g (i.e., all nodes in the subtree rooted at g) have smaller true

counts than g’s true count, they can be omitted from further computation. This

observation makes our approach significantly faster than naively processing every

single gram regardless of its size. It also explains why we do not adopt the approach

that generates all possible n-grams and then prunes the tree.

7This threshold is set to limit the magnitude of noise in released data.
8Beyond nmax, the utility gain of longer grams is usually smaller than the utility loss due to

noise.
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Terminology

Before discussing the details, we first give some notations used in our algorithm.

The exploration tree is denoted by T . Each node v ∈ T is labeled by a location

L ∈ L∪{&}, where & is a special symbol representing the termination of a sequence.

The function lb(v) returns v’s location label. Each node v is associated with an n-

gram defined by the sequence of locations from the root of T to v, denoted by g(v).

We slightly abuse the term count to mean the number of occurrences of g(v) in the

input dataset, which is denoted by |g(v)|. Note that an n-gram may occur multiple

times in a sequence. For example, the count of L2 → L3 in the sample database in

Table 6.2 is 6, not 5. Each node v also keeps a noisy version of |g(v)|, denoted by

c(v). In addition, each node v conveys a conditional probability, denoted by p(v),

which predicts the probability of the transition from v’s parent to v. p(v) can be

obtained by normalizing the noisy counts of v’s siblings and v. For example, in

Figure 6.6, p(v4) = P (L1|L2 → L3) = 4/(4 + 0 + 1 + 2) = 4/7. The set of all nodes

in level i of T is denoted by level(i, T ) and these nodes represent all i-grams in the

dataset. The level number of node v in T is denoted by levelNum(v, T ). The root

of T is in level zero.

Detailed Descriptions

Private sequential database construction. Algorithm 6.3 provides an overview

of our approach. It takes as inputs a sequential database D, the total privacy

budget ε, the maximal sequence length �max and the maximal n-gram size nmax, and

returns a sanitized sequential database D̃ satisfying ε-differential privacy. �max is a

parameter specified by the data holder to limit the influence of a single sequence

in computation. The algorithm considers only the first �max locations in each input

sequence. A larger �max allows more information to be retained from D, but requires

more noise to be injected in later computation; a smaller �max does the opposite. We

discuss and report the effect of different �max values in Section 6.4.3, and provide
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Algorithm 6.3: N -gram Sequential Data Sanitization

Input: Raw sequential database D
Input: Privacy budget ε
Input: Maximal sequence length �max

Input: Maximal n-gram size nmax

Output: Private sequential database D̃
1: Truncate each S ∈ D by keeping the first �max items;
2: i = 0;
3: Create an exploration tree T with a virtual root;
4: while i < nmax do

5: for each non-leaf node vij ∈ level(i, T ) and lb(vij) 
= & do

6: Calculate εij ;
7: Uc ← all possible children of vij with labels L ∪ {&}
8: Q = {|g(u1)|, |g(u2)|, · · · , |g(u|I|+1)|}, where uk ∈ Uc;

9: Q̃ = Laplace(Q, �max/εij);
10: for each node uk ∈ Uc do

11: Add uk to T ;
12: if c(uk) < θ then

13: Mark uk as leaf;
14: end if

15: end for

16: end for

17: i++;
18: end while

19: Enforce consistency constraints on T ;
20: Construct D̃ from T ;
21: return D̃;

insights for a data holder to select a good �max value in practice. nmax bounds

the height of the exploration tree T and thus the maximal size of released grams.

The choice of nmax affects the privacy parameter assigned to each level of T , and,

therefore, is also related to the magnitude of noise. In practice, nmax could be set

to 5, which is the maximal n value that is widely used for n-gram applications in

the literature. Similarly, we present more details on the selection of a reasonable

nmax value in Section 6.4.3. We emphasize that this does not mean that all released

grams have a size of nmax but rather their sizes can vary between 1 and nmax.

In Algorithm 6.3, we first preprocess D by keeping only the first �max locations
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Figure 6.6: The exploration tree of the sample data in Table 6.2

of each sequence in order to bound the influence of a single sequence by �max (Line

1). The construction of T starts by creating an empty tree with a virtual root (Line

3). In Lines 4-18, the algorithm iteratively constructs each level of T . For level i

of T , we decide whether to expand a node vij ∈ level(i, T ) by comparing its noisy

count c(vij) with a threshold θ. If c(vij) ≥ θ, we expand vij by explicitly considering

every possible location in L ∪ {&} as a child of vij in order to satisfy differential

privacy. By definition, nodes labeled by & cannot be expanded because it means

the termination of a sequence. The entire exploration process ends when either the

depth of the tree reaches nmax (i.e., all subsequently released grams would be longer

than nmax) or no node can be further expanded (since their noisy counts do not pass

θ). Example 6.4.1 illustrates the construction of an exploration tree.

Example 6.4.1. Given nmax = 5, �max = 5 and θ = 3, the construction of a possible

exploration tree over the sample dataset in Table 6.2 is illustrated in Figure 6.6

(ignore the privacy budget information and the node (v8) connected by a dash line

for now).

In the following, we detail the key components of Algorithm 6.3: how to

compute the privacy budget εij for each node in T , how to compute the threshold θ

for each node, how to approximate the counts of nodes in T , and how to reconstruct

a synthetic version of the input database D from T .

Adaptive privacy budget allocation. Given the maximal n-gram size nmax, a
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simple privacy budget allocation scheme is to expect the height of T to be nmax and

uniformly assign ε
nmax

to each level of T in order to calculate the noisy counts of all

nodes in this level. However, in reality, many (or even all) root-to-leaf paths have

a length much shorter than nmax for the reason of their counts not being able to

pass θ. Hence assigning privacy budget solely based on nmax is clearly not optimal.

For example, in Example 6.4.1, since the height of the exploration tree is 3 and

nmax = 5, at least 2ε
5
privacy budget would be wasted in all paths.

To address this drawback, we propose an adaptive privacy budget allocation

scheme that allows private operations to make better use of the total privacy budget

ε. Intuitively, a desirable privacy budget allocation scheme should take into consid-

eration the length of a root-to-leaf path: for a shorter path, each node in the path

should receive more privacy budget; for a longer path, each node should use less

privacy budget. Therefore, we adaptively estimate the length of a path based on

known noisy counts and then distribute the remaining privacy budget as per the

estimated length.

At the beginning of the construction of T , in the absence of information from

the underlying dataset, we can only assume that each root-to-leaf path is of the same

length nmax so that our algorithm would not exceptionally halt due to running out

of privacy budget. Therefore, ε
nmax

is used to calculate the noisy counts of nodes in

level 1. Once we obtain some information from the underlying dataset (e.g., nodes’

noisy counts), we can make more accurate predictions on the length of a path.

For a node v in level i ≥ 2 with noisy count c(v), we predict the height hv of

the subtree rooted at v, denoted by Tv, as follows. Let pmax be the estimation of

the probability of transiting from v to the mode of its children (i.e., v’s child with

the largest noisy count). Assume that the probability of the mode at each level of

Tv is also pmax
9. Under this assumption, we can calculate the largest noisy count

of the nodes in level hv of Tv by c(v) · (pmax)
hv . Recall the fact that Tv will not be

9A more precise estimation could be obtained by applying the Markov assumption to each level
of Tv at the cost of efficiency.
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further expanded if none of the nodes in level hv can pass the threshold θ. We get

c(v) · (pmax)
hv = θ, that is, hv = logpmax

θ
c(v)

. Since the height of Tv is bounded by

nmax − i, we have

hv = min(logpmax

θ

c(v)
, nmax − i).

Next we discuss how to calculate pmax for v. Let the i-gram associated with

v be L1 → L2 → · · · → Li (Lj ∈ L for 1 ≤ j ≤ i). Then we need to estimate

the probability distribution of v’s children from noisy counts known by far. We

resort to the Markov assumption for this task. Recall that the order i − 1 Markov

assumption states P (Li+1|L1
i ) :≈ P (Li+1|L2

i ). Since P (Li+1|L2
i ) may not be known

in T (because we expand a node only when it passes the threshold θ), we consider

a chain of Markov assumptions (of different orders)

P (Li+1|L1
i ) :≈ P (Li+1|L2

i ) :≈ P (Li+1|L3
i ) :≈ · · · :≈ P (Li+1)

to find the best estimation of P (Li+1|L1
i ), which is the conditional probability with

the longest condition (i.e., the leftmost conditional probability in the chain) that

is known in T . Since T contains all unigrams, there is always an estimation of

P (Li+1|L1
i ), denoted by P̃ (Li+1|L1

i ). pmax is then defined to be

max
Li+1∈L∪{&}

P̃ (Li+1|L1
i ).

If P (Li+1|L1
i ) and P̃ (Li+1|L1

i ) are represented by nodes v and v′ in T , respectively,

then v′ is the Markov parent of v in T , and any pair of corresponding nodes in the

above chain are Markov neighbors.

Once pmax is calculated, we can calculate the privacy parameter εv that is used

for calculating the noisy counts of v’s children as follows:

εv =
ε̄

min(logpmax

θ
c(v)

, nmax − i)
,
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where ε̄ is the remaining privacy budget (i.e., the total privacy budget ε minus the

sum of privacy parameters consumed by v and v’s ancestors). It can be observed

that this scheme ensures that the privacy budget used in a root-to-leaf path is always

≤ ε.

Example 6.4.2. Continue from Example 6.4.1. For all nodes in level 1, ε
5
is used

to calculate their noisy counts. For the expansion of the node labeled by v1 in

Figure 6.6, we have pmax = 10
4+10+9

= 0.43 and hv1 = 1. Therefore, the noisy counts

of v1’s children are calculated with privacy parameter ε− ε
5
= 4ε

5
. For the expansion

of the node v2, we get pmax =
10

4+10+9
= 0.43 and hv2 = 2. Hence its children’s noisy

counts will be calculated with privacy parameter
ε− ε

5

2
= 2ε

5
. For the expansion of the

node labeled by v3, we have pmax = 4
9
and hv3 = 1. Hence, 2ε

5
is used to compute

the noisy counts of v3’s children.

The sensitivities of Q (Lines 8-9) in different levels are different. For Q in level

i, a single record of length ≤ �max can change Q by at most �max − i+ 1. However,

under the adaptive privacy budget allocation scheme, we have to use the largest

sensitivity among all levels, that is �max, in all Laplace mechanisms; otherwise, ε-

differential privacy may be violated.

Computing threshold θ. A node in T is not further expanded if its noisy count

is less than the threshold θ. The main source of error in T comes from the nodes

that are of a true count of zero but of a noisy count greater than θ (referred to as

false nodes). For this reason, we design a threshold to limit the total number of

false nodes in T with the goal of lowering the magnitude of noise in T .

For each expansion, a false node v will generate |L| · pθ (expected value) false

nodes, where pθ is the probability of Laplace noise passing θ. This is because a

descendant of v must have a true count of zero. With the expansion of T , the

number of false nodes accumulates exponentially with the factor of |L| · pθ, resulting

in excessive noise. To limit the exponential growth of false nodes, we should demand
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|L| · pθ ≤ 1, that is, pθ ≤ 1
|L| . Since, under Laplace mechanism, given the threshold

θ and the privacy parameter ε′,

pθ =

∫ ∞

θ

ε′

2�max

exp

(
− xε′

�max

)
dx =

1

2
exp

(
− ε′θ

�max

)
,

we get the threshold θ =
�max·ln |L|2

ε′
. We show in Section 6.4.3 that this threshold

is effective in eliminating false nodes while having very limited influence on nodes

with large counts (i.e., the high-quality grams we want to identify).

Enforcing consistency constraints. The generated exploration tree T may con-

tain some inconsistencies for the reason that: (1) the sum of children’s noisy counts

is very unlikely to equal their parent’s noisy count, and (2) there are some leaf

nodes whose noisy counts are missing (since their counts cannot pass the threshold

θ). Consequently, we propose a method to resolve such inconsistencies with the goal

of improving data utility. In Section 6.4.3, we experimentally show that this method

helps achieve better performance.

The general idea is to approximate the missing counts by making use of the

Markov assumption and then normalize children’s counts based on their parent’s

count. More specifically, our method works as follows. If none of the children of

a node v in T exceed the threshold θ, it is strong evidence that v should not be

further expanded, and therefore all children of v (leaf nodes in T ) are assigned noisy

counts 0. If all children pass θ, we first calculate the conditional probability of each

child based on the sum of all children’s noisy counts, and then obtain a consistent

approximation by multiplying this probability with their parent’s noisy count. If

some children (but not all) of v pass θ, we approximate the noisy counts of the

other children by the Markov assumption. Let vc and C(vc) denote a child of v

whose noisy count cannot pass θ (called a missing node) and its Markov parent in

T , respectively. Let V denote the set of v’s children. We partition V into V + and

V −, where V + contains all nodes passing the threshold, whereas V − contains the
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rest.

1. Define the following ratio for each vi ∈ V −:

rvi =
p(C(vi))∑

vj∈V + p(C(vj))

For each vj ∈ V +, let A(vj) denote the noisy count resulted by the Laplace

mechanism in Line 9 of Algorithm 6.3.

2. If levelNum(C(vc), T ) ≥ 2, ∀vi ∈ V −, A(vi) = rvi ·
∑

vj∈V + A(vj)

3. Otherwise,

(a) If
∑

vj∈V + A(vj) ≤ c(v), ∀vi ∈ V −, A(vi) =
c(v)−

∑
vj∈V

+ A(vj)

|V −|

(b) Otherwise, ∀vi ∈ V −, A(vi) = 0

4. Renormalization: ∀vi ∈ V , c(vi) = c(v) · A(vi)∑
vj∈V

A(vj)

If vc can find a high-quality Markov parent in T (i.e., one representing an

n-gram with n ≥ 2 10), we estimate its counts from its high-quality siblings based

on the ratio defined in Step 1. The idea behind this definition is that the ratio of

any node insignificantly changes between Markov neighbors, and hence, it can be

well approximated from the Markov parents. Otherwise, we approximate the noisy

counts by assuming a uniform distribution, that is, equally distribute the count left

among the missing nodes (Step 3). In Step 4, these estimated counts are normalized

by the parent’s count in order to obtain consistent approximations.

Example 6.4.3. Continue from Example 6.4.1. Suppose that A(v9) = 2.1, A(v10) =

4, A(v11) do not pass θ, and A(v12) = 1.9. Since rv11 = 0/(4 + 0 + 0) = 0, A(v11) :≈

(1.9 + 4 + 2.1) · 0 = 0. Finally, renormalizing the result, we obtain c(v9) = 4 ·
10A unigram conveys an unconditional probability and therefore cannot provide a very accurate

estimation.
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2.1/(2.1 + 4+ 1.9 + 0) ≈ 1, c(v10) = 4 · 4/(2.1 + 4+ 1.9 + 0) = 2, c(v11) = 0, c(v12) =

4 · 1.9/(2.1 + 4 + 1.9 + 0) ≈ 1.

Synthetic sequential database construction. The released n-grams are useful

for many data analysis tasks. However, it is often necessary to generate a synthetic

database for different types of queries (and some other tasks). Hence, we propose

an efficient solution to construct a synthetic version of the input sequential database

from the exploration tree T (Line 20). The general idea is to iteratively generate

longer grams (up to size �max) based on the Markov assumption and then make use

of the theorem below for synthetic sequential database construction.

Theorem 6.5. Given the set of n-grams with size 1 ≤ n ≤ �max, the (truncated)

input database (with maximal sequence length �max) can be uniquely reconstructed.

Proof. Since �max-grams can only be supported by sequences of length �max, all

sequences of length �max can be uniquely reconstructed by �max-grams. Once all

sequences of length �max have been identified, we can eliminate their influences on

the given set of n-grams by updating the counts of all grams supported by them.

The resulting set of n-grams (1 ≤ n ≤ �max − 1) can be considered as if they

were generated from an input database of sequences with maximal length �max −

1. Therefore, sequences of length �max − 1 can be uniquely reconstructed as well.

Following this iterative process, all sequences can be uniquely identified. This proof

explains the way we generate the synthetic database based on noisy n-gram.

Intuitively, longer grams can be generated by “joining” shorter grams. For-

mally, we define a join operation over two n-grams. Let g1 = L11 → L12 → · · · →

L1n and g2 = L21 → L22 → · · · → L2n. Then g1 can join with g2 if ∀2 ≤ i ≤ n,

L1i = L2(i−1), denoted by g1 �� g2, and g1 �� g2 = L11 → L12 → · · · → L1n → L2n.

Note that the join operation is not symmetric: it is possible that g1 can join with

g2, but not vice versa.
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Let the height of T be h. We iteratively extend T by generating n-grams

with h < n ≤ �max, starting from level h of T . We extend T level by level, where

level n + 1, representing all (n + 1)-grams, can be generated by joining all possible

n-grams in level n. Let g1 and g2 be two n-grams that can be joined. We estimate

the count of the joined (n+ 1)-gram as follows:

|g1 �� g2| = c(g1)× P (L2n|g1)

= c(g1)× P (L2n|L11 → L12 → · · · → L1n)

≈ c(g1)× P (L2n|L12 → L13 → · · · → L1n)

= c(g1)× P (L2n|L21 → L22 · · · → L2(n−1))

≈ c(g1)×
c(L21

2n)

c(L21
2(n−1))

Note that all counts in the above equation are noisy ones for the reason of

privacy (see more details in Section 6.4.2). Since c(L21
2n) and c(L21

2(n−1)) must have

been known in the extended T , |g1 �� g2| can be computed. We keep extending T

until: 1) �max has been reached, or; 2) no grams in a level can be joined.

Example 6.4.4. Continue from Example 6.4.1. L2 → L3 → L1 and L3 → L1 → L2

can be joined to generate L2 → L3 → L1 → L2. Its count can be calculated by

c(L2 → L3 → L1)× c(L3→L1→L2)
c(L3→L1)

= 4× 2
4
= 2. This 4-gram can be represented as a

new node in T , as illustrated by v8 in Figure 6.6. Similarly, L2 → L3 → L1 can join

with L3 → L1 → L1, resulting in L2 → L3 → L1 → L1. Since these two 4-grams

cannot be joined, the extension of T ends at level 4.

After extending T , we can generate the synthetic database in the following

way. Let the height of the extended T be he. We start from level he. For each

v ∈ level(he, T ), we publish c(v) copies of g(v), and update the count of each node

v′ supported by g(v) by subtracting c(v) · ci (i.e., all nodes representing a gram that

can be generated from g(v)), where ci is the number of occurrence of g(v′) in g(v).
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An n-gram supports at most
∑n

i=1 i =
n(n+1)

2
nodes and therefore requires at most

n(n+1)
2

updates. With a hash map structure, each update can be done in constant

time.

Example 6.4.5. Continue from Example 6.4.4. For node v8 in level 4 of T , we

publish 2 copies of L2 → L3 → L1 → L2 and update the counts of all nodes

supported by g(v8), that is, the nodes representing L1, L2, L3, L2 → L3, L3 → L1,

L1 → L2, L2 → L3 → L1 and L3 → L1 → L2.

6.4.2 Privacy Analysis

We give the formal privacy guarantee of our approach below.

Theorem 6.6. Algorithm 6.3 satisfies ε-differential privacy.

Proof. (Sketch) Due to the subtle correlation of the counts in the same level of T

(i.e., a single sequence can affect multiple counts in a level), the sequential composi-

tion and parallel composition properties [87] must be applied with caution. Hence,

we prove the theorem by the definition of ε-differential privacy. Consider two neigh-

boring databases D and D′. We first consider Lines 1 − 18 of Algorithm 6.3, that

is, the construction of T . Let this part be denoted by A. Then we need to prove

Pr[A(D)=T ]
Pr[A(D′)=T ]

≤ eε. In essence, T is built on the noisy answers to a set of count queries

(via Laplace mechanism). Let each root-to-leaf path be indexed by j. We denote a

node in level i and path j by vij, its privacy parameter by εij, and its true count in

D and D′ by Q(D)ij and Q(D′)ij, respectively. Then we have

Pr[A(D) = T ]

Pr[A(D′) = T ]
=

nmax∏
i=1

|L|nmax∏
j=1

exp(−εij
|c(vij)−Q(D)ij)|

�max
)

exp(−εij
|c(vij)−Q(D′)ij)|

�max
)

(6.1)

We first claim that a single record can only affect at most �max root-to-leaf

paths. This is due to two facts: 1) all ancestors of a node that is influenced by the
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additional record must also be influenced; second,
∑

j |Q(D)ij −Q(D′)ij| ≤ �max.

Therefore, Equation 5 could be rewritten as

Pr[A(D) = T ]

Pr[A(D′) = T ]
=

nmax∏
i=1

�max∏
j=1

exp(−εij
|c(vij)−Q(D)ij)|

�max
)

exp(−εij
|c(vij)−Q(D′)ij)|

�max
)

Since
∑

i εij = ε, we have

Pr[A(D) = T ]

Pr[A(D′) = T ]
≤ exp

(∑nmax

i=1

∑�max

j=1 εij|Q(D)ij −Q(D′)ij|
�max

)

≤ exp

(
1

�max

�max∑
j=1

nmax∑
i=1

εij

)

= exp

(
1

�max

�max∑
j=1

ε

)
= eε

Note that εij is calculated based on noisy counts. Hence, the construction of T

satisfies ε-differential privacy. In addition to the construction of T , we approximate

the nodes’ counts and generate the synthetic sequential database in Lines 19 and

20. Since these two steps are conducted on noisy data and do not require access to

the original database, they satisfy 0-differential privacy. Therefore, our solution as

a whole gives ε-differential privacy.

6.4.3 Performance Analysis

Error Analysis

The error of the sanitized data comes from three major sources: first, using the

n-grams with 1 < n ≤ h to estimate longer n-grams with h < n ≤ �max (recall the h

is the height of the unextended exploration tree); second, the truncation conducted

to limit the effect of a single record; third, the noise added to the n-grams with

136



Table 6.9: Experimental dataset characteristics.
Datasets |D| |L| max|D| avg|D|
MSNBC 989,818 17 14,795 5.7
STM 1,210,096 342 121 6.7

1 < n ≤ h to satisfy differential privacy. We call the first two types of error

approximation error and the last type of error Laplace error. Given a specific ε

value, the total error of our approach is determined by �max and nmax. Intuitively,

a smaller �max value incurs larger approximation error, but meanwhile it introduces

less Laplace error because of a smaller sensitivity. Analogously, a smaller nmax value

causes larger approximation error, but results in more accurate counts. Therefore

our goal is to identify good values for �max and nmax that minimize the sum of

approximation error and Laplace error. In next section, we experimentally study

the effect of varying �max and nmax values on the performance of our solution and

provide our insights on selecting good �max and nmax values. In general, our solution

is designed to perform stably well under a relatively wide range of �max and nmax

values.

Experimental Evaluation

We experimentally evaluate the performance of our solution (referred to as N-gram)

in terms of two data analysis tasks, namely count query and frequent sequential

pattern mining. As a reference point, for count query, we compare the utility of our

solution with the approach proposed in [21], which relies on a prefix tree structure

(referred to as Prefix ); for frequent sequential pattern mining, we compare our

approach with both Prefix and the method designed in [88] for finding frequent

(sub)strings (referred to as FFS ). Two real-life sequential datasets are used in our

experiments. The MSNBC dataset describes sequences of URL categories browsed

by users in time order on msnbc.com. It is publicly available at the UCI machine
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learning repository 11. The STM dataset records sequences of stations visited by

passengers in time order in the Montreal transportation system. It is provided by

the Société de transport de Montréal 12. The detailed characteristics of the datasets

are summarized in Table 6.9, where |D| is the number of records (sequences) in

D, |L| is the universe size, max |D| is the maximum length of sequences in D, and

avg |D| the average length of sequences.

Count query. To evaluate the performance of our approach for count queries, we

follow the evaluation scheme that has been widely used in previous works [125],

[123], [25] (also used in Section 4.4 and Section 6.3.2). The utility of a count query

Q is measured by the relative error of its answer on the sanitized sequential database

Q(D̃) with respect to the true answer on the original database Q(D). Unlike the

definition given in Section 6.3.2. We consider a more stringent instantiation of

count query: the answer to Q is defined to be the number of occurrences of Q in

the database (a single record may contain more than one occurrence of Q). For

example, given Q = L2 → L3, its answer over the database in Table 6.2 is 6.

In the first set of experiments, we examine the average relative errors of count

queries under different query sizes (i.e., the number of locations in a query) and

different privacy budgets. We divide all queries into five subsets with different

maximal query sizes (4, 8, 12, 16 and 20). For each subset, we generate 10,000

random queries of sizes that are uniformly distributed at random between 1 and its

maximal size. Each location in a query is uniformly selected at random from the

location universe.

Figures 6.7 and 6.8 report the average relative errors of N-gram and Pre-

fix under different query sizes over two typical ε values 13 while fixing �max = 20

and nmax = 5. It can be observed that the average relative errors of N-gram are

11http://archive.ics.uci.edu/ml/
12http://www.stm.info
13According to [88], ε = 0.1 and ε = 1.0 correspond to high and medium privacy guarantees,

respectively.
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(b) ε = 1.0

Figure 6.7: Average relative error vs. ε on MSNBC
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(b) ε = 1.0

Figure 6.8: Average relative error vs. ε on STM

consistently lower than those of Prefix under all settings. The improvements are

substantial, ranging from 32% to 63%. The relative errors of N-gram are relatively

small even under a strong privacy requirement (i.e., ε = 0.1).

To demonstrate the effectiveness of the n-gram model, we apply the synthetic

sequential database construction technique on non-noisy 5-grams of both MSNBC

and STM, and issue count queries on the two synthetic databases (referred to as

Baseline). The average relative errors of Baseline give the approximation error due

to the employment of the n-gram model, while the differences between Baseline and

N-gram ascribe to Laplace error. As one can observe, the approximation errors are

relatively small on both datasets, demonstrating that the n-gram model is effective in

capturing the essential sequentiality information of a database. For Laplace error,

we stress that the n-gram model provides a general and flexible framework that

accommodates other more advanced noise injection mechanisms, such as the matrix
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mechanism [76] and the MWEM mechanism [57]. Hence it may require less noise

added than Laplace mechanism, resulting in smaller Laplace error. It may even

allow a larger nmax value to be used and therefore further reduce approximation

error. Thus, we deem that the variable-length n-gram model bears great promise

for differentially private sequential data release.

To prove the benefit of our adaptive privacy budget allocation scheme, we

report the average relative errors of a variant of N-gram (referred to as N-gram-

Uniform), in which the adaptive allocation scheme is replaced by the uniform al-

location scheme described before. The improvement is less obvious on MSNBC

because many paths are actually of length nmax, whereas the improvement on STM

is noticeable, especially when ε = 0.1.

Due to the truncation operation conducted in Algorithm 6.3, any count query

with a size greater than �max receives an answer 0 on the sanitized dataset. How-

ever, we point out that in reality it is not a problem because the true answer of

such a query is typically very small (if not 0). For many real-life analyses (e.g.,

ridership analysis), the difference between such a small value and 0 is negligible.

In addition, this limitation also exists in Prefix and is inherent in any differentially

private mechanism because Laplace mechanism cannot generate reliable answers on

extremely small values.

Next we examine the impact of �max and nmax on average relative error of count

queries. In Figure 6.9, we study how relative error changes under different �max values

with ε = 1.0, nmax = 5 and query size equal to 8. In theory, a larger �max value allows

more information of the underlying database to be retained at the cost of higher

sensitivity (and hence larger Laplace noise). Therefore, the selection of �max needs

to take into consideration the trade-off between approximation error and Laplace

error. However, in reality, a reasonable �max value could be chosen more easily

because the average sequence length of many real-life datasets is relatively small.

Consequently, Laplace error is the major concern in this case. This is confirmed
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Figure 6.9: Average relative error vs. �max (ε = 1.0)
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Figure 6.10: Average relative error vs. nmax (ε = 1.0)

by Figure 6.9. Since most sequences in MSNBC and STM are of a small length,

when �max is sufficiently large (i.e., 16), increasing �max does not significantly lower

approximation error, but simply increases Laplace noise. Moreover, we can observe

that our approach performs relatively stable under varying �max values. This can be

explained by the large counts of short grams, which are more resistant to Laplace

noise.

Figure 6.10 examines the performance of N-gram with respect to varying nmax

values, where ε = 1.0, �max = 20 and query size is 8. Similar to the selection of �max,

the selection of nmax also involves the trade-off between approximation error and

Laplace error. A larger nmax reduces approximation error while increasing Laplace

error. To obtain a reasonable trade-off, we develop the adaptive privacy budget

allocation scheme and the formal choice of the threshold value, which automatically

select the best gram sizes on the fly. Even a data holder specifies a unreasonably

large nmax, our approach may end up with shorter grams. Therefore, it can be
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(b) ε = 1.0

Figure 6.11: Effect of node count approximation.

observed that the performance of our solution is insensitive to varying nmax values.

From our experimental results, we believe that, in most cases, nmax = 5 is a good

choice. In addition, we point out that a good nmax value is related to |D| and |L|,

a larger |D| or a smaller |L| suggests a larger nmax value.

One key technique that we develop to improve accuracy of count queries is

to enforce consistency constraints by approximating the counts of the nodes that

cannot pass the threshold. In the next set of experiments, we demonstrate that this

technique indeed improves the accuracy of count queries compared to the case when

we naively set the noisy counts of all nodes that do not pass the threshold to 0.

In Figure 6.11, �max = 20 and nmax = 5. MSNBC No-Approx and STM No-Approx

give the relative errors of N-gram without the approximation technique. As we can

observe, this technique improves the relative error for all query sizes under different

ε values, up to 47%.

Frequent sequential pattern mining. The second data analysis task we consider

is frequent sequential pattern mining, a more specific data mining task. Given a

positive number K, we are interested in the top K most frequent sequential patterns

(i.e., most frequent sub-sequences) in the dataset. This data analysis task helps, for

example, a transportation agency better understand passengers’ transit patterns

and consequently optimize its network geometry.
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Table 6.10: True positive ratio vs. K value on MSNBC

(a) ε = 0.1

K value 20 40 60 80 100
N-gram 100% 90% 93% 96% 94%
Prefix 85% 78% 80% 84% 86%
FFS 70% 63% 57% 58% 55%

(b) ε = 1.0

K value 20 40 60 80 100
N-gram 100% 93% 97% 99% 97%
Prefix 90% 82.5% 85% 90% 89%
FFS 70% 63% 57% 58% 55%

We compare the performance of N-gram with Prefix and FFS. All size-1 fre-

quent patterns are excluded from the results since they are of less interest and trivial

in frequent sequential pattern mining. We would like to clarify that FFS actually

has two assumptions: 1) all frequent patterns are of the same length; 2) the lengths

of frequent patterns are identical to the lengths of input sequences. Since generally

these two assumptions cannot be satisfied in a frequent sequential pattern mining

task, it is not fair to directly compare FFS with N-gram and Prefix. However, there

are very few approaches that support frequent sequential pattern mining under dif-

ferential privacy. Hence we still report the performance of FFS and provide insights

on the key factor that guarantees high utility on frequent sequential pattern mining.

For both FFS and Prefix, we have tested various parameter settings and report the

best results we have obtained.

To give an intuitive impression on the performance of these three approaches,

we first report their true positive ratios under different K and ε values in Table 6.10

and Table 6.11. Given K, we generate the top K most frequent sequential patterns

on both the original dataset D and the sanitized dataset D̃, which are denoted by

FK(D) and FK(D̃), respectively. The true positive ratio is then defined to be the

percentage of frequent patterns that are correctly identified, that is, |FK(D)∩FK(D̃)|
K

.

The results indicate that N-gram can reliably identify the most frequent patterns in
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Table 6.11: True positive ratio vs. K value on STM

(a) ε = 0.1

K value 20 40 60 80 100
N-gram 95% 93% 93% 94% 91%
Prefix 65% 68% 75% 83% 82%
FFS 35% 33% 35% 36% 43%

(b) ε = 1.0

K value 20 40 60 80 100
N-gram 100% 100% 98% 100% 98%
Prefix 70% 68% 80% 86% 85%
FFS 35% 33% 35% 36% 43%

a given database with strong privacy guarantee.

To measure the utility of sanitized data more precisely, we adopt the metric

proposed in [25], which further takes into consideration the accuracy of the supports

of patterns in FK(D̃) 14. The utility loss on the sanitized dataset is defined to be

the difference between FK(D) and FK(D̃), that is,

∑
Fi∈FK(D)

|sup(Fi, FK(D))− sup(Fi, FK(D̃))|
sup(Fi, FK(D))

K
,

where sup(Fi, FK(D)) and sup(Fi, FK(D̃)) denote the supports of Fi in FK(D) and

FK(D̃), respectively. If Fi /∈ FK(D̃), sup(Fi, FK(D̃)) = 0. Therefore, if the metric

equals 0, it means that FK(D) is identical to FK(D̃) (even the support of every

frequent pattern); if the metric equals 1, it implies that FK(D) and FK(D̃) are

totally different.

In Figure 6.12 and Figure 6.13, where �max = 20 and nmax = 5, we can observe

that our proposal significantly outperforms the other two approaches. In addition,

for the frequent patterns that are correctly identified, the relative error of their

supports is typically very small even when ε = 0.1. The main reason is that N-gram

14The support of a pattern is the number of its occurrences in a database.
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(b) ε = 1.0

Figure 6.12: Utility loss vs. K on MSNBC
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(b) ε = 1.0

Figure 6.13: Utility loss vs. K on STM

extracts the essential information of a database in terms of a set of n-grams, which

are actually the most frequent patterns in the database. This fact allows N-gram to

perform well even under a small ε value. In contrast, in Prefix, the noise of a frequent

pattern’s count accumulates quickly in proportion to the number of longer sequences

which contain the frequent pattern. The major limitation of FFS is its prefix data

structure, which generates frequent patterns based on very short prefixes.

In the last set of experiments, we study the impact of �max and nmax on frequent

sequential pattern mining. Figure 6.14 reports the utility loss of N-gram under

different �max with ε = 1.0 and nmax = 5. The aforementioned trade-off in the

selection of �max still applies to frequent sequential pattern mining. This time,

we can clearly observe such a trade-off in Figure 6.14: when �max is small, the

approximate error is the main source of error; when �max becomes larger, the total

error is dominated by Laplace error. Nevertheless, N-gram can provide good utility
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Figure 6.14: Utility loss vs. �max (ε = 1.0)

&'&


&'�


&'�


&'�


&'!


�'&


� � � �  

8

�,
�
	

.
��
�

�;��

/#"0�

#5/

Figure 6.15: Utility loss vs. nmax (ε = 1.0)

for a wide range of �max values. This property makes it easier for a data holder to

select a good �max value.

Similar trade-off due to nmax can be observed in Figure 6.15, where �max is

fixed to 20. There exists a nmax value that minimizes the sum of approximation

error and Laplace error. Due to the series of techniques we propose, the utility lost

under different nmax values is comparable.

6.4.4 Summary

In this section, we proposed a novel approach of differentially private sequential

data publication based on a variable-length n-gram model. This model extracts

the essential information of a sequential database in terms of a set of variable-

length n-grams whose counts are relatively large and therefore subject to lower

Laplace error. We developed a set of key techniques that are vital to the success
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of the n-gram model. Furthermore, we designed a synthetic sequential database

construction method, which allows published n-grams to be used for a wider range

of data analysis tasks. Extensive experiments on real-life datasets proved that our

solution substantially outperforms state-of-the-art techniques [88], [21] in terms of

count query and frequent sequential pattern mining.
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Chapter 7

Network Data Sanitization

7.1 Introduction

In the last few years, information networks in various application domains, such as

social networks, communication networks and transportation networks, have expe-

rienced vigorous developments. In particular, social networks, such as Facebook,

LinkedIn and Myspace, have become very prevalent. With the growth of informa-

tion networks, a large volume of network data has been generated, which enables

a wide spectrum of data analysis tasks. Network data is typically represented as

graphs, where nodes represent a set of individuals with their attributes, and edges

represent connections between them. Therefore, in this chapter we use the term

network data and graph interchangeably.

It has been shown that with naively sanitized network data (e.g., merely re-

placing explicit identifiers by pseudo-identifiers), an adversary is able to launch

different types of privacy attacks that re-identify nodes, reveal edges between nodes,

or expose node attributes [59]. Therefore, network data needs to be sanitized with

formal, provable privacy guarantees before it can be released to the public.

In addressing privacy issues in network data publication, there has been a series

of research [133], [60], [82], [131], [30], [134], [83], [58], [122], [26], [132], [54] based on
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Figure 7.1: k-isomorphism is insufficient for preventing edge disclosure.

different privacy models. Most of these works [133], [60], [82], [30], [134], [26], [132]

focus on preventing node re-identification and/or associated attribute disclosure

against adversaries with structural background knowledge. In contrast, only a few

papers [131], [83], [122], [26], [54] consider privacy threats due to edge disclosure,

which lets an adversary learn the sensitive relationships between individuals. More-

over, the papers [131], [83], [122] lack a formal privacy definition for edge anonymity.

Among all privacy models for network data, k-isomorphism [26] provides relatively

strong privacy protection for edge disclosure (i.e., an adversary cannot determine

if two individuals are connected via a path with a probability ≥ 1
k
). However, we

show that, with moderate background knowledge, an adversary is able to ascertain

a direct link between two individuals on a k-isomorphic graph, as illustrated in

Example 7.1.1.

Example 7.1.1. Consider the 3-isomorphic graph in Figure 7.1. Suppose that the

adversary has successfully identified Bob as one of {v1, v2, v3} and Ann as one of

{v4, v5, v6} and seeks to learn if there is a direct link between Bob and Ann, which

is considered sensitive. With the background knowledge that Bob and Ann are

connected via a common friend, the adversary can ascertain that both Bob and Ann

are in the same subgraph, and therefore learn that there is a direct link between

Bob and Ann.

The vulnerability of k-isomorphism is largely due to its deterministic nature.
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This fact motivates our use of differential privacy [37], which requires inherent ran-

domness of a sanitization algorithm. The traditional ε-differential privacy provides

rigorous privacy guarantees on a database whose records are generated indepen-

dently ; however, its application to network data is hindered by the fact that network

data may be inherently correlated. In the context of network data, the evidence of

participation [69] of a record (e.g., an edge) may be reflected by several other records.

For example, the presence of an edge in a network database can be inferred by the

existence of several other edges. The deletion of a single edge will not be able to

fully mask its presence in the database. Consequently, ε-differential privacy fails to

provide the claimed privacy guarantee in the correlated setting (e.g., an adversary

can obtain a probability change greater than eε).

In addressing this issue, we propose a stronger variant of differential privacy,

called (ε, k)-differential privacy, which provides provable privacy protection even

when a record is correlated to at most k − 1 other records. We then quantify the

relationship between sensitivity and data correlation, and derive the concept of cor-

related sensitivity, which enables the standard mechanisms, Laplace mechanism [37]

and exponential mechanism [89], to be used for achieving (ε, k)-differential privacy.

In addition to correlation, another major challenge of applying (ε, k)-differential

privacy (or ε-differential privacy) to network data is scalability and utility. This is

confirmed by the recent paper [54], to the best of our knowledge, the only existing

work that studies network data publication in the non-interactive setting under dif-

ferential privacy. It requires the input graph to be dense, which is very unlikely to be

satisfiable on real-life datasets, and leaves finding an efficient algorithm as an open

problem. In this chapter, we follow the line of data-dependent solutions [25], [90],

which adaptively make use of noisy information from the underlying database to

improve efficiency and effectiveness. We first explore dense regions of the adjacency

matrix of an input graph using an adapted quadtree, which avoids the high complex-

ity of graph operations, and then propose an efficient use of exponential mechanism
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to reconstruct the leaf nodes of the quadtree while satisfying (ε, k)-differential pri-

vacy.

Contributions. Our contributions in network data sanitization are summarized as

follows.

• First, we propose (ε, k)-differential privacy, a stronger variant of ε-differential

privacy [37], which guarantees provable privacy protection when the under-

lying data is correlated (Section 7.3). (ε, k)-differential privacy is a general,

practical version of ε-differential privacy and free-lunch privacy [69]. It applies

to not only network data but also any type of data that is correlated. We

introduce the notion of correlated sensitivity, which allows Laplace mechanism

and exponential mechanism to be used for achieving (ε, k)-differential privacy,

and show that (ε, k)-differential privacy inherits the composition properties of

ε-differential privacy.

• Second, based on (ε, k)-differential privacy, we propose an efficient non-interactive

solution for network data publication, which prevents an adversary from learn-

ing the existence of a direct link between any two individuals (Section 7.4).

This is the first efficient non-interactive solution in the framework of differen-

tial privacy. Compared with the only previous work [54] on non-interactively

releasing a private graph under differential privacy, our improvements are sig-

nificant: (1) we achieve the stronger (ε, k)-differential privacy, whereas Gupta

et al. [54] achieve (ε, δ)-differential privacy, a weaker privacy notion of ε-

differential privacy; (2) we lift the impractical assumption that the input graph

has to be dense. We show that theoretically our approach obtains high utility

as long as sufficient edge information is contained in some dense subgraphs and

that experimentally our approach performs very well on many different types

of real-life network datasets; (3) most importantly, our approach is efficient to

handle large real-life datasets.
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(a) A sample graph G (b) The adjacency matrix A(G)

Figure 7.2: A sample graph and its adjacency matrix.

• Third, we conduct an extensive experimental study over various types of real-

life network datasets, including social network, collaboration network and

transportation network (Section 7.5). We examine the utility of sanitized data

for different data analysis tasks, namely degree distribution and cut queries.

We demonstrate that our approach maintains high utility and scales to large

real-life network data.

The results of this chapter are currently under review in [24].

7.2 Preliminaries

7.2.1 Network Data and Adjacency Matrix

In this thesis, we follow the convention of modeling an input network dataset as a

simple graph (i.e., an undirected graph with no loops or multiple edges), G = (V,E),

where V is the set of vertices, E ⊆ V ×V is the set of edges. For a graph G, we use

V (G) and E(G) to respectively denote the vertex set and the edge set of G. When

the graph is clear from the context, we omit G from the notation. We assume that

a vertex labeling has been given in a way that is independent of the underlying edge

set.
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The adjacency matrix of a vertex-labeled simple graph G = (V,E), denoted

by A(G), is a square |V | × |V | matrix satisfying:

A(G)ij =

⎧⎪⎨⎪⎩
1 if(vi, vj) ∈ E(G)

0 otherwise

It is evident that, for any simple graph G, A(G) is a symmetric matrix with

a zero diagonal. Figure 7.2 presents the adjacency matrix of a given simple graph

(ignore the bold lines for now). A (0, 1)-matrix is called a graphic matrix if it is

an adjacency matrix of some simple graph. Apparently, a (0, 1)-matrix is graphic if

and only if it is a symmetric matrix with a zero diagonal.

We define the density of a region R ⊆ A with size |R| = m× l to be den(R) =∑m
i=1

∑l
j=1 Rij/ml. It gives the fraction of elements in R which are equal to 1. The

region in A formed by rows i, · · · , j and columnsm, · · · , n is denoted by A[i, j;m,n].

For example, the densities of A and A[1, 3; 6, 8] are 20/64 = 31.25% and 8/9 =

88.89%, respectively.

7.2.2 Utility Requirement

Our general goal is to generate a sanitized graph G̃, whose adjacency matrix Ã

minimizes
∑|V |

i=1

∑|V |
j=1 |Aij − Ãij| (i.e., Ã is as close to A as possible). When Ã

is identical to A,
∑|V |

i=1

∑|V |
j=1 |Aij − Ãij| = 0; when Ã is totally different from A,∑|V |

i=1

∑|V |
j=1 |Aij − Ãij| = |V |2 − |V |. Minimizing

∑|V |
i=1

∑|V |
j=1 |Aij − Ãij| naturally

makes the published network data useful for many analysis tasks, including degree

distribution and cut queries.

Degree distribution. Given a graph G, we use a vector F (G) of size |V (G)| to

denote the degree frequency sequence of G. The i-th value in F (G) is |{v∈V :deg(v)=i}|
|V | ,

where deg(v) is the degree of v. For example, the degree frequency sequence of

the graph in Figure 7.2 is {0, 0.125, 0.25, 0.625, 0, 0, 0, 0}. Given the degree
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frequency sequences F (G) and F (G̃), we measure their difference by Kullback-Leibler

divergence (KL-divergence) [68]:

DKL(F (G)||F (G̃)) =

|V |−1∑
i=0

F (G)[i] log
F (G)[i]

F (G̃)[i]
. (7.1)

If F (G) = F (G̃), DKL(F (G)||F (G̃)) = 0. We follow the standard convention

that 0 log 0 = 0.

Cut query. In this chapter, a cut of a graph G is defined by any two subsets of

vertices S, T ⊆ V (G) [54]. A cut query returns the number of edges in the cut-set

of a cut, that is, QS,T (G) = |{(u, v) ∈ E(G) : u ∈ S, v ∈ T}|. For example, given

the graph in Figure 7.2, S = {v1, v2} and T = {v6, v7, v8}, we have QS,T = 6.

Similarly, we measure the utility loss of a cut query over a sanitized graph G̃

by its relative error, with respect to the true count over the original graph G, which

is computed as:

error(QS,T (G̃)) =
|QS,T (G̃)−QS,T (G)|
max{QS,T (G), s} ,

where s is a sanity bound that mitigates the effect of the queries with extremely

small selectivities [125], [123], [25].

7.3 (ε, k)-Differential Privacy

ε-differential privacy is built on the assumption that all underlying records are in-

dependent of each other. In the context of network data, this assumption does not

always hold. Kifer and Machanavajjhala [69] indicates that in the correlated set-

ting, ε-differential privacy cannot provide the claimed privacy protection because

the removal of a single record cannot hide its evidence of participation (e.g., its par-

ticipation could still be inferred by the existence of some other records to which it

is correlated). In this section, we propose a stronger variant of ε-differential privacy,
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known as (ε, k)-differential privacy, which provides guaranteed privacy even when

the underlying records are correlated.

Definition 7.1 ((ε, k)-differential privacy). A privacy mechanism A satisfies (ε, k)-

differential privacy if for any two databases D1 and D2 that differ on at most one

record, and for any possible output O ∈ Range(A),

Pr[A(D1) = O] ≤ e
ε
k × Pr[A(D2) = O] (7.2)

where the probability is taken over the randomness of A, and k is a measure of the

extent of correlation.

Before we formalize the privacy guarantee provided by (ε, k)-differential pri-

vacy with respect to correlation, we first define a k-correlated database.

Definition 7.2 (k-correlated database). A database D is k-correlated if the exis-

tence of any record in D can be inferred by at most k − 1 other records.

A k′-correlated database is called k-correlation bounded if 1 ≤ k′ ≤ k. The

fundamental observation under (ε, k)-differential privacy is that in the correlated

setting an adversary’s probability change is not bounded by the probability change

of a privacy mechanism, but may be magnified by the extent of correlation due to

inference.

Theorem 7.1. If neighboring databases are k-correlation bounded, then (ε, k)-differential

privacy bounds an adversary’s probability change by eε.

Proof. For k-correlation bounded databases, it is sufficient to cancel out the effect

of data correlation on any computation by considering all correlated records (at

most k records) as if they were removed from the underlying database. Therefore,

bounding an adversary’s probability change by eε on two databases differing on one

record in the correlated setting is equivalent to bound the probability change of
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a privacy mechanism by eε over two databases differing on k records in the non-

correlated setting. A privacy mechanism A that achieves ε-differential privacy on

two databases differing on k records gives ε
k
-differential privacy on two databases

differing on one record [37].

We will see how (ε, k)-differential privacy helps thwart the privacy attack de-

scribed in [69] after giving the definition of correlated sensitivity. (ε, k)-differential

privacy satisfies the monotonic property below.

Theorem 7.2. A (ε, k)-differentially private mechanism A gives (ε, k′)-differential

privacy for all 1 ≤ k′ ≤ k.

This is true because Pr[A(D1)=O]
Pr[A(D2)=O]

≤ e
ε
k ≤ e

ε
k′ . Theorem 7.2 indicates that

if k is specified as the upper bound of correlation, (ε, k)-differential privacy can

always bound an adversary’s probability change by eε. (ε, k)-differential privacy is

a generalized, practical version of ε-differential privacy [37] with k = 1 and free-

lunch privacy [69] with k = n, where n is the database size. The definition of

(ε, k)-differential privacy is realistic and practical in many applications. In any

case, data with extremely strong correlation (e.g., k = O(n)) cannot be published

with useful information under any privacy model. The k value may vary from

application to application. We leave how to determine a reasonable k value in a

specific application as an open problem (meanwhile, we experimentally show that

our solution can preserve useful information even when k is relatively large).

The traditional ε-differential privacy can be achieved by Laplace mechanism

and exponential mechanism by properly defining global sensitivity. Similarly, (ε, k)-

differential privacy can be achieved by Laplace mechanism and exponential mecha-

nism based on the concept of correlated sensitivity.
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Definition 7.3 (Correlated Sensitivity). For any function f : D → Rd, the corre-

lated sensitivity of f is

CS(f) = k max
D1,D2

||f(D1)− f(D2)||1 (7.3)

for all k-correlated databases D1, D2 s. t. D1 and D2 differ on at most one record.

Correlated sensitivity is defined to be k times of global sensitivity, which im-

plies that extra noise is needed in order to hide the effect of the k correlated records.

We now show that applying correlated sensitivity to Laplace mechanism and expo-

nential mechanism gives (ε, k)-differential privacy.

Theorem 7.3. The substitution of correlated sensitivity for global sensitivity in

Laplace mechanism and exponential mechanism achieves (ε, k)-differential privacy.

Proof. By definition, (ε, k)-differential privacy requires to reduce the probability

change of a private mechanism to e
ε
k in order to cancel out the effect of data cor-

relation. For either Laplace mechanism and exponential mechanism, this can be

achieved by increasing global sensitivity k times, which is correlated sensitivity.

We revisit the example provided in [69] under correlated sensitivity to see

how it thwarts the privacy attack described below.

Example 7.3.1. 1 Bob or one of his 9 immediate family members may have con-

tracted a highly infectious disease, in which case the entire family would have been

infected. An attacker asks the query “how many in Bob’s family have this disease?”

to infer if Bob has been infected. The true answer is of high probability to be either 0

or 10. Suppose the noisy answer returned is 12. If this answer is obtained by adding

Laplace noise based on global sensitivity, the attacker learns that the probability of

1The strong attacker mentioned in [69] cannot be prevented as his prior knowledge (without
accessing any database) has allowed him to succeed in a privacy attack.
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10 being the true answer is e10ε times larger than the probability of 0 being the true

answer. In contrast, if the answer is obtained by adding Laplace noise based on corre-

lated sensitivity (in this case, k ≥ 10), we have Pr[c=10|c̃=12]
Pr[c=0|c̃=12]

≤ exp(− ε|10−12|
10

)

exp(− ε|0−12|
10

)
≤ exp(ε).

It ensures that an attacker’s probability estimate can change by a factor of at most

eε.

In the rest of the chapter, we consider a specific instantiation of (ε, k)-differential

privacy in the context of network data. Two neighboring databases are defined as

two databases that differ on at most one edge. This instantiation prevents an ad-

versary from learning the presence of any single edge (i.e., if two individuals are

directly connected) even when its existence can be inferred by k − 1 other edges.

7.4 Sanitization Algorithm

We provide an overview of our solution, called density-based exploration and re-

construction (DER), in Algorithm 7.1, which takes as inputs a graph G, a privacy

“budget” ε, and a correlation parameter k, and returns a sanitized graph G̃ satisfy-

ing (ε, k)-differential privacy. Our solution consists of two steps, and therefore ε is

divided into two portions, ε′ and ε′′, each being used in a step.

First, we design a differentially private and data-dependent partitioning pro-

cess by adapting a standard quadtree to explore dense regions of the adjacency

matrix A of G, which can be reconstructed later with high accuracy. This process

results in a noisy quadtree QT whose nodes represent a region of A and are asso-

ciated with a noisy count. The major technical challenges in this step include the

design of stop conditions based on an estimation of the height of QT , the selection

of splitting points based on exponential mechanism, an adaptive privacy budget al-

location scheme and an efficient implementation, which are key to the success of the

entire algorithm.

Second, we propose an efficient edge arrangement algorithm to reconstruct a
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Algorithm 7.1: DER Algorithm

Input: Raw graph G
Input: Privacy budget ε
Input: Correlation parameter k
Output: Sanitized graph G̃

1: ε = ε′ + ε′′;
2: Generate the adjacency matrix A from G;
3: Noisy quadtree QT ← ExploreDenseRegion(A, ε′, k);
4: Sanitized graphic matrix Ã ← ArrangeEdge(QT , A, ε′′, k);
5: Generate G̃ from Ã;
6: return G̃;

noisy, graphic matrix Ã that minimizes
∑|V (G)|

i=1

∑|V (G)|
j=1 |Aij − Ãij|. Our method is

based on a novel use of exponential mechanism, which is of independent interest. It

successfully reduces the run-time complexity to O(|V |2), in contrast to the factorial

complexity of a naive implementation.

7.4.1 Dense Region Exploration

Based on the adjacency matrix A, we perform a recursively partitioning process

guided by density in order to identify dense regions (and, implicitly, sparse regions)

of A, which can be reconstructed accurately. This process could be done based on

many popular space-partitioning data structures, such as kd-tree [10], quadtree [42],

and Hilbert R-tree [65]. In this section, we employ quadtree as the basic data struc-

ture for the exploration because it achieves the best trade-off between utility and

efficiency.

A standard quadtree decomposes a given two dimensional region into four

equal quadrants, subquadrants, and so on with each leaf node meeting certain stop

condition. The splitting point of a standard quadtree is independent of the input

data (e.g., it always selects the midpoint of each dimension). Each node in a quadtree

represents a region of A. For our task, we adapt a quadtree in a data-dependent,

differentially private manner. Each node (except the root) in a quadtree records not
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Algorithm 7.2: ExploreDenseRegion

Input: Raw adjacency matrix A
Input: Privacy budget ε′

Input: Correlation parameter k
Output: Noisy quadtree QT
1: i = 0;
2: QT ← ∅;
3: Calculate the height h of QT ;
4: while i < h do

5: if i = 0 then

6: Insert a node representing A to QT ;
7: end if

8: for each non-leaf node u ∈ level(i,QT ) do
9: Calculate privacy budget portion εcu and εpu;
10: Subregions R ← partition(u, εpu, k);
11: for each R ∈ R do

12: c̃ = NoisyCount(R, εcu);
13: Insert a node v representing R to QT ;
14: if v meets stop condition then

15: Mark v as leaf;
16: end if

17: end for

18: end for

19: i++;
20: end while

21: return QT ;

only the region it represents, but also a noisy count of the number of 1’s in its region.

We abuse the term count to mean the number of 1’s in a region. Algorithm 7.2

presents the details of ExploreDenseRegion.

Stop condition. One key problem in the partitioning process is to determine

the height of the quadtree. Previous works [90], [28] normally require a user to

specify the height. In our work, we calculate a good estimate of the height based on

other inputs (Line 3). It is very difficult to calculate a very precise height of a data-

dependent quadtree with our adaptive privacy budget allocation scheme. Instead, we

use a standard quadtree with the geometric budget scheme [28] to derive a reasonably

good estimate. A geometric budget scheme assigns all nodes on the same level i the
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same privacy budget εi, and increases the budget by a factor of 21/3 with the increase

of nodes’ depth.

Theorem 7.4. [28] Given the privacy budget εcount, the geometric budget scheme,

assigning 2i/3( 3√2−1)εcount

2(h+1)/3−1
to nodes with depth i in a quadtree of height h, achieves

maximum accuracy for range queries.

According to Theorem 7.4, the privacy budget allocated to leaf regions is

εh = 2h/3( 3√2−1)εcount

2(h+1)/3−1
. Observing that the size of a leaf region in a standard quadtree

is |V |2
4h

, we calculate h by requiring the size of a leaf region to be greater than twice of

the noise’s standard deviation because we cannot get useful noisy counts on overly

small regions, that is:

|V |2
4h

≥ 2
√
2CS(f)

εh

=
2
√
2(2(h+1)/3 − 1)CS(f)

2h/3( 3
√
2− 1)εcount

where f is a count query. Apparently, in the k-correlated setting, for a count

query over a region R of A, in the worst case, the correlated sensitivity CS(f) =

min{2k, |R|} 2. From the above equation, we get:

3
√
2(2h)2 − (2h)5/3 ≤ ( 3

√
2− 1)|V |2εcount
2
√
2CS(f)

(7.4)

Theorem 7.5. f(h) = 3
√
2(2h)2 − (2h)5/3 monotonically increases on [0,+∞).

Proof. Let t = 2h. ∀h ≥ 0, t ≥ 1. Plugging t to the equation, we get:

f ′(t) = 2
3
√
2t− 5

3
t
2
3 ≥ 5

3
t
2
3 (t

1
3 − 1) > 0

on (1,+∞). This completes the proof.

2For a region R not containing elements on the diagonal, CS(f) = min{k, |R|} because a single
edge difference cannot change two elements in this region.
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Because the left hand side (LHS) of Equation 8 increases monotonically, we

can always find a maximal h value satisfying Equation 8. This maximal h value is

then used to be the height of the quadtree. In Section 7.5, we demonstrate that this

estimate performs very well for different types of real-life datasets.

In addition, we propose another two heuristics to improve the efficiency and

utility of our approach. First, if a region is dense enough (the density is calculated

based on noisy counts), then there is no need to further partition it because we can

reconstruct its noisy version with high accuracy. In practice, we consider a region

R with den(R) ≥ 80% to be dense (experiments show that there is no significant

utility difference among the density thresholds in the range [75%, 90%]). Second,

we can stop partitioning a region R if the number of elements with value 1 in R

is small enough. Note that the determination of a sparse region is based on its

noisy count, not its density. Specifically, we set the threshold to be 80%× |V |2
4h

, the

number of 1’s needed to form at least one dense region. Any region with number of

1’s < 80% × |V |2
4h

is not worth further partitioning as it will only lead to excessive

noise.

Partitioning. For a non-leaf region R, we employ exponential mechanism to find

the splitting point that partitions R into subregions with the maximal density dif-

ference among all possible splitting points (Line 10). Intuitively, such a split best

distinguishes the dense and sparse subregions. For a non-leaf region R of size m× l,

there could be at most (m− 1)(l− 1) possible splitting points. We denote the set of

all possible splitting points by P . The utility function of selecting a splitting point

p ∈ P over a region R is designed to be

q(R, p) = max
∀R′∈R

(den(R′))− min
∀R′∈R

(den(R′)),

where R is the set of subregions of R resulted by p.

In order to obtain a reasonably low sensitivity, we constrain the minimum size
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of a region in level i (except the root and leaves) of QT to be |V |2
4i+1 . This guarantees,

depending on the location of the region R, CS(q) = 2k4i+1

|V |2 (if R contains elements

on the diagonal) or CS(q) = k4i+1

|V |2 (otherwise). Due to this constraint, we can apply

exponential mechanism on a smaller set of possible splitting points P (no need to

consider the splitting points on level i resulting in a subregion with size less than

|V |2
4i+1 ), which selects a splitting point pi on R with the following probability,

exp(
εpartition
2hCS(q)

q(R, pi))∑
pj∈P exp(

εpartition
2hCS(q)

q(R, pj))
, (7.5)

where
εpartition

h
is the privacy budget assigned to the exponential mechanism, as

explained below.

Example 7.4.1. Consider the adjacency matrix in Figure 7.2. Suppose the height

of QT is 2. The first possible partition operation is illustrated by the boldest lines,

resulting in four subregions: R1 = A[1, 3; 1, 5], R2 = A[1, 3; 6, 8], R3 = A[4, 8; 1, 5]

and R4 = A[4, 8; 6, 8]. Assume that the noisy counts of R1 and R4 indicate that

they are sparse and the noisy count of R2 indicates that it is dense. DER only needs

to further partition R3. After that, the height has been reached and QT ends with

seven leaf nodes.

Privacy budget allocation. Generally, the total privacy budget ε is divided into

two portions: ε′ and ε′′, each being used in a step. More specifically, ε is divided for

three tasks: εcount for calculating noisy counts of all (sub)regions, εpartition for select-

ing splitting points on all internal nodes of QT , and εreconstruct for reconstructing all

leaf regions, where ε′ = εcount + εpartition and ε′′ = εreconstruct.

The first problem is to determine the values of εcount, εpartition and εreconstruct.

In general, we assign larger budgets to εcount and εreconstruct because, as shown later

in Theorem 7.11, as long as we can obtain relatively accurate noisy counts, we can

always find denser (or sparser) subregions, which can be reconstructed with higher
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accuracy. Between εcount and εreconstruct, more budget is given to εcount because a

sufficiently dense (or sparse) leaf region can be recovered with reasonable accuracy

regardless of the privacy budget (see Theorem 7.10). Since it is difficult to theo-

retically quantify the values, we experimentally choose proper portions for each of

them, complying with the analysis above.

Once εcount, εpartition and εreconstruct are fixed, we employ the following allocation

scheme to distribute them to each node of QT (Line 9). For noisy counts, we

employ an adaptive privacy budget allocation scheme based on the geometric budget

scheme [28]. Initially, we assume that each root-to-leaf path in QT will be of the

same length h (e.g., QT is perfect) and assign 2i/3( 3√2−1)εcount

2(h+1)/3−1
to each node with

depth 1 ≤ i < h. Since an input dataset is always non-empty, there is no need to

assign any budget to the root level. Hence we add the portion of the root level,

( 3√2−1)εcount

2(h+1)/3−1
, to the leaves, that is, a node with depth h receives (2h/3+1)( 3√2−1)εcount

2(h+1)/3−1
.

Then, we adaptively adjust privacy budgets during the partitioning process.

Due to the stop conditions, QT may not be perfect (i.e., a path may stop

before it reaches level h), and, therefore, we want to reallocate the privacy budget

left to fully make use of the total budget. For a leaf node v whose depth i < h,

let c̃1 be the noisy count obtained by privacy parameter ε1 = 2i/3( 3√2−1)εcount

2(h+1)/3−1
. We

can calculate another noisy count c̃2 of v with ε2 = (2h/3+1)( 3√2−1)εcount

2(h+1)/3−1
. Obviously,

c̃2 has a better accuracy than c̃1 because V ar(c̃2) < V ar(c̃1). We can replace c̃1 by

c̃2 as a more precise estimate of the true count, but this simple strategy essentially

wastes the privacy parameter used for generating c̃1. Here we propose a strategy

that combines both c̃1 and c̃2 to calculate a more accurate estimate than both c̃1 and

c̃2.

Theorem 7.6. Let c̃ =
ε21

ε21+(γε2)2
c̃1 +

(γε2)2

ε21+(γε2)2
c̃2, where γ = ε2

ε1
= 2

h−i
3 > 1. Then

V ar(c̃) < V ar(c̃2) < V ar(c̃1).
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Proof. Since V ar(c̃1) =
2
ε12

and V ar(c̃2) =
2
ε22

, we have:

V ar(c̃) = (
ε21

ε21 + (γε2)2
)2V ar(c̃1) + (

(γε2)
2

ε21 + (γε2)2
)2V ar(c̃2)

=
2

(ε21+(γε2)2)2

ε12+γ4ε22

Hence, we need to prove that
(ε21 + (γε2)

2)2

ε12 + γ4ε22
> ε2

2 > ε1
2. This is equivalent to

prove that
γ4ε2

2 + 2γ2ε1
2 + ε14

ε22

γ4ε22 + ε12
> 1. Since γ > 1, 2γ2ε2

2 + ε14

ε22
> ε1

2. Therefore,

V ar(c̃) < 2
ε22

= V ar(c̃2). Since ε1 < ε2, we get V ar(c̃) < V ar(c̃2) < V ar(c̃1).

For a leaf node v whose depth i < h − 1, the portion of privacy budget left

from partitioning, (2h/3−2(i+1)/3)εcount

2(h+1)/3−1
, is added to εreconstruct so that we can make full

use of the privacy budget.

For selecting splitting points by exponential mechanism, we use a uniform

budget scheme that equally distributes
εpartition

h
to each internal node in QT . For

reconstructing leaf regions, each leaf node in QT receives εreconstruct plus the privacy

parameter left from partitioning.

Efficient implementation. In order to apply exponential mechanism, for every

internal node of QT , we need to compute the densities of the four subregions re-

sulted from every possible splitting position. A naive implementation takes run-time

O(|V |4) to calculate the densities for all possible splitting points for all nodes on the

same level of QT . We propose a data structure, called count summary matrix C of

size |V |×|V |, which improves the run-time complexity of calculating all densities for

a level of QT from O(|V |4) to O(|V |2). ∀1 ≤ i, j ≤ |V |, C[i, j] gives the number of

1’s in the region A[1, i; 1, j], that is, C[i, j] =
∑i

m=1

∑j
l=1Aij . C can be constructed

with run-time complexity O(|V |2) using the following observation:

C[i, j] = C[i− 1, j] + C[i, j − 1]− C[i− 1, j − 1] + Aij,
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where C[i, j] = 0 when i < 1 or j < 1. Note that C just needs to be computed once

for the entire sanitization process. Once C is constructed, the density of any region

A[k, l;m,n] can be computed in O(1) by

C[l, n]− C[l,m− 1]− C[k − 1, n] + C[k − 1,m− 1]

(n−m+ 1)(l − k + 1)
.

In addition, when the input dataset is extremely large, sampling (i.e., checking the

splitting points with a step larger than 1) could be used at the cost of slightly worse

utility.

Run-time complexity. The run-time complexity of Algorithm 7.2 is given in

Theorem 7.7.

Theorem 7.7. The run-time complexity of Algorithm 7.2 is O(|V |2).

Proof. The complexity of Algorithm 7.2 is dominated by the application of exponen-

tial mechanism to select the splitting points. Suppose the size of a node vi in level j

of QT is mi× li. A single application of exponential mechanism needs to consider at

most (mi−1)(li−1) possible splitting positions. Due to the count summary matrix,

each position can be checked in constant time. Since mili > (mi − 1)(li − 1) is the

area of the region represented by vi, we have
∑

vi∈level(j,QT ) mili ≤ |V |2 because the

sum of the areas represented by all nodes on level j cannot be greater than the

total area |V |2. So the complexity of building level j is O(|V |2). Therefore, the

total complexity of building QT of height h must be bounded by O(h|V |2). Since

h � |V |2, the run-time complexity of Algorithm 7.2 can be further considered as

O(|V |2).

Finally, in the exploration process, we can conduct a simple post-processing

step by rounding the noisy count c̃ of a region R with size m × l into the range of

[0,ml].
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7.4.2 Edge Arrangement

In this section, we denote an original region in A by R and its reconstructed coun-

terpart in Ã by R̃. Since our utility requirement is to build a differentially private

Ã such that
∑|V |

i=1

∑|V |
j=1 |Aij − Ãij| is minimized, it naturally requires to reconstruct

each leaf region R̃ of size m× l with
∑m

i=1

∑l
j=1 |Rij − R̃ij| minimized.

Given a leaf region R̃ of size m × l with a noisy count c̃ ≤ ml, we design

an exponential mechanism to select an edge arrangement r by the following utility

function:

q(R̃, r) = ml −
m∑
i=1

l∑
j=1

|Rij − R̃ij| (7.6)

Intuitively, the utility function measures how many elements of R̃ are correctly as-

signed with respect toR. The correlated sensitivity of q(R, r) is CS(q) = min{2k,ml}

or CS(q) = min{k,ml}, depending on the location of R in A.

A naive implementation of exponential mechanism needs to explicitly consider

a total of
(
ml
c̃

)
possible arrangements, which is of factorial complexity. Instead, we

propose an efficient implementation, which takes run-time complexity of only O(ml)

for assigning edges in a single leaf region. We first implicitly group all arrangements

with the same score into a group. At first glance, for any region with sizem×l, there

can be at most ml+1 groups because there are at most ml+1 possible score values

(from 0 to ml as defined in Equation 10). Now we show that the actual number of

groups to consider is ≤
⌈
ml+1

2

⌉
by giving the sufficient and necessary condition of a

possible score.

Theorem 7.8. For a leaf region R̃ of size m× l with a noisy count c̃ and the true

count c, a score s is possible if and only if s ∈ [max{c̃+c−ml,ml−c− c̃},min{ml+

c− c̃, ml+ c̃− c}] and s+c+c̃−ml
2

is an integer. The total number of possible scores is

≤
⌈
min{ml + c− c̃, ml + c̃− c} −max{c̃+ c−ml,ml − c− c̃}

2

⌉
≤ ml + 1

2
.
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Proof. We first calculate the lower and upper bounds of a possible score by consid-

ering all possible cases. 1) c̃ ≥ c and c̃ ≤ ml − c: the maximum score is achieved

when c 1’s are assigned to the elements where Rij = 1 and the rest c̃ − c 1’s are

assigned to the elements with Rij = 0, which gives the score ml+ c− c̃; the minimal

score is achieved when c̃ 1’s are assigned to the elements with Rij = 0, which gives

the score ml − c − c̃. 2) c̃ ≥ c and c̃ > ml − c: similarly, the maximum score is

ml+ c− c̃ while the minimum is c̃+ c−ml. 3) c̃ < c and c̃ ≤ ml− c: the maximum

is ml+ c̃−c while the minimum is ml−c− c̃. 4) c̃ < c and c̃ > ml−c: the maximum

is ml + c̃− c and the minimum is c̃− (ml − c). Combining these four cases, we get

the bounds of s.

Next, we prove that s+c+c̃−ml
2

must be an integer in order to make s possible.

Consider the allocation of c̃ 1’s in R̃. Suppose the numbers of elements where

Rij = 0 ∧ R̃ij = 0, Rij = 0 ∧ R̃ij = 1, Rij = 1 ∧ R̃ij = 0, Rij = 1 ∧ R̃ij = 1, are

respectively x, y, z and w. For an arrangement with a score s, we have:

x+ y + z + w = ml

x+ w = s

y + w = c̃

z + w = c

Solving these equations, we get w = s+c+c̃−ml
2

. Apparently, only if x, y, z and

w are non-negative integers, s is possible. Since s ∈ [max{c̃ + c − ml,ml − c −

c̃},min{ml + c − c̃, ml + c̃ − c}], x, y, z and w must be non-negative. So we just

need to require s+c+c̃−ml
2

to be an integer, which consequently guarantees that x, y,

z are also integers. Finally, since s+c+c̃−ml
2

has to be an integer, all possible scores

have to be either all even or all odd. We complete the proof.

We call a group of arrangements with a possible score a valid group. We can

calculate the size of each valid group by Theorem 7.9.
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Theorem 7.9. Given a leaf region R̃ of size m× l with a noisy count c̃ and the true

count c, the size of a valid group Gs with score s is

|Gs| =
(

c
s+c+c̃−ml

2

)(
ml − c
ml+c̃−s−c

2

)
, (7.7)

where
(
0
0

)
is defined to be 1.

Proof. Following the proof of Theorem 7.8, we have w = s+c+c̃−ml
2

, which means that

we need to assign s+c+c̃−ml
2

1’s to the elements where Rij = 1 and c̃ − s+c+c̃−ml
2

1’s

to the elements where Rij = 0. For the former case, there are a total of
(

c
s+c+c̃−ml

2

)
possible combinations; for the latter case, there are a total of

(
ml−c

ml+c̃−s−c
2

)
possible

combinations. Therefore, |Gs| =
(

c
s+c+c̃−ml

2

)(
ml−c

ml+c̃−s−c
2

)
.

Then exponential mechanism can be used to select a group Gi with the fol-

lowing probability,
exp( iε̄

2CS(q)
)× |Gi|∑ml

j=0(exp(
jε̄

2CS(q)
)× |Gj|)

, (7.8)

where ε̄ equals εreconstruct plus the privacy budget left from the exploration process,

CS(q) = min{2k,ml} or CS(q) = min{k,ml}, and the size of an invalid group is 0.

Finally, conditional on that the group Gi is selected, we can uniformly generate

a random arrangement within Gi by randomly assigning i+c+c̃−ml
2

1’s to the elements

Rij with Rij = 1 and ml+c̃−i−c
2

1’s to the elements Rij with Rij = 0. Obviously,

generating such an arrangement could be done with run-time complexity O(1). In

particular, if a generated arrangement makes Ãii = 1 for any 1 ≤ i ≤ |V |, an

alternative arrangement could be generated because a graphic matrix contains a

zero diagonal.

We give the utility guarantee of our edge arrangement method below.

Theorem 7.10. Given a leaf region R̃ of size m × l with a noisy count c̃ and the
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true count c, with probability 1− β,

∀c̃ < c, q(R̃, r∗) ≥ max{c̃+ c−ml,ml − c− c̃,

ml − c+ c̃− 2CS(q)

ε̄
(log

(
ml

c̃

)
− log

(
c

c̃

)
− lnβ)}

and

∀c̃ ≥ c, q(R̃, r∗) ≥ max{c̃+ c−ml,ml − c− c̃,

ml + c− c̃− 2CS(q)

ε̄
(log

(
ml

c

)
− log

(
c̃

c

)
− lnβ)}

where r∗ is the arrangement selected by our approach.

Proof. Let us define OPTq(R̃) = maxr∈R q(R̃, r), ROPT = {r ∈ R : q(R̃, r) =

OPTq(R̃)} and r∗ = Exponential(R̃,R, q, ε̄). In [89], [53], it has been proven that

Pr[q(R̃, r∗) ≤ OPTq(R̃)− 2GS(q)

ε̄
(log

|R|
|ROPT |

+ t)] ≤ e−t (7.9)

When c̃ < c, OPTq(R̃) is achieved when all c̃ 1’s are assigned to the elements with

Rij = 1, and OPTq(R̃) = ml − c+ c̃. The total number of possible arrangements is(
ml
c̃

)
and the number of arrangements achieving OPTq(R̃) is

(
c
c̃

)
. Therefore, setting

t = ln(1/β), we obtain

q(R̃, r∗) ≥ ml − c+ c̃− 2CS(q)

ε̄
(log

(
ml

c̃

)
− log

(
c

c̃

)
− lnβ).

Combining the lower bound of a score given in Theorem 7.8, we get the lower bound

of q(R̃, r∗).

When c̃ ≥ c, OPTq(R̃) is achieved when all the elements with Rij = 1 are

assigned 1’s and the rest c̃ − c 1’s are assigned to the elements with Rij = 0. We

get OPTq(R̃) = c + (ml − c) − (c̃ − c) = ml + c − c̃. The number of arrangements
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achieving OPTq(R̃) is
(
ml−c
c̃−c

)
. Hence we have, with probability 1− β,

q(R̃, r∗) ≥ ml + c− c̃− 2CS(q)

ε̄
(log

(
ml
c̃

)(
ml−c
c̃−c

) − lnβ)

= ml + c− c̃− 2CS(q)

ε̄
(log

(
ml
c̃

)
(ml

c̃ )(
c̃
c)

(ml
c )

− lnβ)

= ml + c− c̃− 2CS(q)

ε̄
(log

(
ml

c

)
− log

(
c̃

c

)
− lnβ)

Similarly, the lower bound in Theorem 7.8 also applies. This completes the proof.

Specifically, when c̃ = c, we have

q(R̃, r∗) ≥ max{2c−ml,ml − 2c,ml − 2CS(q)

ε̄
(log

(
ml

c

)
− lnβ)}.

We can observe that when c is either relatively large or relatively small with respect

to ml (that is, either den(R) is large enough or small enough), the reconstructed R̃

could be very close to R. The worst utility occurs when c = ml
2
. However, this case

can always be avoided by further partitioning.

Theorem 7.11. Given a region R, any partitioning of R results in sub-regions R′

satisfying either den(R′) ≤ den(R) or den(R′) ≥ den(R), with equality attained if

and only if 1’s are uniformly distributed in R.

The proof is obvious and is therefore omitted here. According to the power

law distribution [41], R is very unlikely to have a uniform distribution. Therefore,

Theorem 7.11 suggests that keeping partitioning a region leads to a more precise

reconstruction. This observation is based on the assumption that c̃ is accurate.

However, when subregions become smaller, the accuracy of c̃ decreases, which causes

extra utility lost in edge assignment. Therefore, it justifies our design of the stop
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condition that takes into consideration both the accuracy of noisy counts and the

size of a leaf region.

After reconstructing each leaf region, we perform an extra step to make Ã

graphic: ∀1 ≤ i, j ≤ |V |, if Ãij 
= Ãji, set both Ãij and Ãji to either 0 or 1 with

probability 50%.

We can see that the complexity of reconstructing all leaf regions is O(|V |2)

because
∑

i
mili+1

2
< |V |2. Therefore, the total complexity of DER is O(|V |2).

7.4.3 Privacy Analysis

In this section, we prove that Algorithm 7.1 satisfies (ε, k)-differential privacy.

Theorem 7.12. DER is (ε, k)-differentially private.

Proof. Recall that the given total privacy budget ε is divided into three portions:

εcount for calculating noisy counts of all regions, εpartition for selecting the splitting

points and εreconstruct for reconstructing leaf regions.

We first show that the sequential composition property [87] and the parallel

composition property [87] also apply to (ε, k)-differential privacy.

Theorem 7.13. Let Ai each provide (εi, ki)-differential privacy. A sequence of

Ai(D) over the database D provides (
∑

i εi,min(ki))-differential privacy.

Theorem 7.14. Let Ai each provide (εi, ki)-differential privacy. A sequence of

Ai(Di) over a set of disjoint databases Di provides (max(εi),min(ki))-differential

privacy.

The proof of Theorem 7.13 and Theorem 7.14 is analogous to the proof under

ε-differential privacy in [87]. Specifically, by definition, any sub-database of a k-

correlated database can be at most k-correlated. According to Theorem 7.2, an

(ε, k)-differentially private mechanism is able to bound an adversary’s probability
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Table 7.1: Experimental dataset statistics
Datasets |V | |E| Edge density
ca-GrQc 5,242 14,496 0.00106
ca-HepTh 5,000 17,138 0.00137
wiki-Vote 7,115 100,762 0.00398
STM 1,012 7,860 0.01536

change over all sub-databases by eε. Actually, if the correlation parameter of a

sub-database can be precisely calculated, then less noise could be added.

Because of the parallel composition property, the privacy budget used in each

root-to-leaf path of QT is independent of each other, while the privacy budget

within a path follows the sequential composition property. Under our adaptive

privacy budget allocation scheme, the privacy budget used in a single path is at

most
h∑

i=0

2i/3( 3
√
2− 1)εcount

2(h+1)/3 − 1
+

h−1∑
i=0

εpartition
h

+ εreconstruct = ε.

Since the correlated sensitivity is used, our approach satisfies (ε, k)-differential pri-

vacy and bounds an adversary’s probability change by eε on any k-correlation

bounded input dataset.

7.5 Experimental Evaluation

In this section, we experimentally evaluate the performance of our sanitization algo-

rithm (DER). As a reference point, we compare the utility of DER with a random

graph of the same numbers of nodes and edges [60], [26] (referred to as Random)

and a sanitized graph generated by a simple Laplace mechanism based approach

proposed in [54] (referred to as Laplace). In all figures, the results reported are the

average of 10 runs. Our implementation was done in C++, and all experiments were

performed on an Intel Core 2 Duo 2.80GHz PC with 8GB RAM.

Four real-life datasets from three different types of networks are used in our
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Table 7.2: Average relative error of large query size
Datasets 0.2 · |V | 0.4 · |V | 0.6 · |V | 0.8 · |V | |V |
ca-GrQc 0.040 0.033 0.036 0.050 0.047
ca-HepTh 0.035 0.037 0.036 0.045 0.042
wiki-Vote 0.041 0.046 0.045 0.042 0.047
STM 0.076 0.043 0.024 0.014 0.009

experiments. 3 ca-GrQc is a subset of the collaboration network of Arxiv general

relativity category. Two authors are connected if they coauthored at least one paper.

ca-HepTh is extracted from the collaboration network of Arxiv high energy physics

theory category. Similarly, there is an edge if two authors coauthored at least one

paper. The wiki-Vote dataset contains social network information about Wikipedia

voting on promotion to administratorship. An edge is created between two persons if

one voted on or was voted by the other. STM provides the transportation network

information of the Montreal transportation system. Two stations are considered

connected if there are more than 500 passengers commuting between them within

one week. The detailed characteristics of the datasets are summarized in Table 7.1.

7.5.1 Data Utility

Cut query. In the first set of experiments, we examine the utility for cut queries in

terms of average relative error. We examine all possible query sizes (i.e., the number

of vertices in a cut query), and report the results of 11 representative query sets with

sizes spanning over the full spectrum in Figure 7.3 and Table 7.2. Each query set

consists of queries with sizes that are uniformly randomly distributed between 1

and the specified maximal size. For each query set, we randomly generate 20,000

queries. The sanity bound s is set to 0.1% of |E|, the same as [125], [25].

Figure 7.3 presents the average relative errors of cut queries of relatively small

3ca-GrQc, ca-HepTh and wiki-Vote are publicly available in the Stanford large network dataset
collection (http://snap.stanford.edu/data/index.html). STM is provided by the Société de trans-
port de Montréal (http://www.stm.info).
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Figure 7.3: Average relative error vs. query size.

query sizes while fixing ε = 1.0 and k = 1. Six query sets (with maximal query sizes

3, 5, 20, 100, 200 and 500, respectively) are used to represent the general trends of

the three approaches. As one can observe, the average relative errors of DER are

consistently small under all query sizes. It is worth mentioning that the relative

errors of DER do not monotonically increase with the increase of query sizes. It is

surprising to see that Laplace performs much worse than Random. This is because

Laplace noise generated under a small privacy budget can easily make the original

value of an element (either 0 or 1) indistinguishable. With the increase of query

sizes, both Laplace and Random provide very poor utility. Another interesting

observation is that the utility of Random is subtly related to the edge density: its

performance deteriorates quickly with the increase of edge density.

Table 7.2 inspects the performance ofDER under large query sizes with ε = 1.0

and k = 1, where the query sets have the maximal sizes 0.2 · |V |, 0.4 · |V |, 0.6 · |V |,
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Figure 7.4: Average relative error vs. ε.

0.8 · |V | and |V |, respectively. We can observe that DER also performs stably well

under all large query sizes.

In Figure 7.4, we present relative errors of DER and Random under varying

privacy budgets from 0.2 to 1.0 while fixing the maximal query size to be 0.4·|V | and

k = 1 (Laplace’s relative errors are too large to fit into the figures). As expected,

the relative error increases when the privacy budget decreases. Nevertheless, DER

achieves relative errors less than 14% on all datasets even when ε = 0.2.

We finally study how average relative errors vary under different correlation

parameters while fixing ε = 1.0 and the maximal query size to 0.4 · |V | in Figure 7.5.

In general, the relative error increases with the increment of k because larger noise

has to be injected to hide stronger correlation. Roughly, increasing k is equivalent to

decreasing ε (as the magnitude of noise is determined by e
k
). However, on a dataset

with a small size, k has a weaker influence than ε because for a specific region the
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Figure 7.5: Average relative error vs. k.

actual noise to add is also bounded by the region’s size. This is confirmed by relative

errors of STM . When k = 5 and ε = 1.0, the error is 10% while when k = 1 and

ε = 0.2, the error is 13%. Moreover, we can observe that DER can still provide

some useful information even when k is relatively large. In practice, many types of

networks (e.g., transportation networks) have relatively small correlation, and, thus,

our approach can provide meaningful data utility without sacrificing privacy.

Degree distribution. In the second set of experiments, we demonstrate the utility

of sanitized data in terms of degree distribution, measured by KL-divergence. Fig-

ure 7.6 presents the KL-divergences for all datasets under different privacy budgets

with k = 1. We can observe that our approach is extremely suitable for preserving

degree distributions. Similarly, Laplace can barely provide any useful information

in terms of degree distribution because its KL-divergence is almost the same as an
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Figure 7.6: Degree distribution vs. ε.

empty graph (i.e., |E| = 0). Figure 7.7 examines the KL-divergence for varying cor-

relation parameters with ε = 1.0. It demonstrates that DER performs very stable

with increasing correlation. Even when k = 25, it is still able to preserve the general

degree distributions of all datasets.

7.5.2 Efficiency

According to the complexity analysis of DER, its run-time is dominated by |V |.

Therefore, we present the run-time of DER under different |V | values in Figure 7.8.

The test sets are generated by randomly extracting a subset from the original

datasets. The X-axis represents the percentage of the test sets’ |V | values with

respect to the original datasets. It can be observed that roughly the run-time grows

quadratically with |V |, which confirms our theoretical analysis. Since our approach
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Figure 7.7: Degree distribution vs. k.

is used in the non-interactive setting, it meets the scalability requirement of most

real-life applications. In the few extreme cases, we note that DER can substantially

speed up by sampling (see Section 7.4.1) at the cost of slight utility degradation

(using the step of 10 on ca-GrQc, ca-HepTh and wiki-Vote makes DER roughly 8

times faster with 10% utility deterioration).

7.6 Summary

In this chapter, we propose the (ε, k)-differential privacy model, a stronger variant

of ε-differential privacy, which provides provable privacy guarantees over correlated

databases. Based on this privacy model, we present an efficient non-interactive

approach for publishing network data. This is the first work that gives a practical

solution for network data publication in the spirit of differential privacy. Extensive
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experiments demonstrate that our solution performs very well on different types of

real-life network datasets.
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Chapter 8

Conclusions

With the general trend of digitalization, information sharing has become part of

the routine activity of many individuals, companies, organizations, and government

agencies. Privacy-preserving data publishing techniques have been playing an in-

creasingly important role in privacy protection in information sharing. Early re-

search of PPDP focuses on protecting private and sensitive information in relational

and statistical data. However, with the deployment of privacy-threatening technol-

ogy, such as smart card automated fare collection systems and social networks, the

privacy concerns in sharing high-dimensional data, including set-valued data, trajec-

tory data, sequential data and network data, have been substantially raised. In this

thesis, we response to these privacy concerns by developing efficient and effective

non-interactive data publishing solutions for various utility requirements. We recap

the major contributions of this thesis as follows:

• In Chapter 4, we presented the first study of set-valued data publication in

the framework of differential privacy. We proposed a probabilistic partitioning-

based algorithm that provides guaranteed utility. Our work also contributes

to the research of differential privacy by initiating the line of data-dependent

non-interactive solutions, which are more effective and efficient than existing

data-independent solutions.
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• In Chapter 5, we proposed the (K,C)L-privacy model to acknowledge the

emergence of heterogeneous trajectory data publishing scenarios. We devel-

oped a generic anonymization framework, which for the first time introduces

local suppression to trajectory data anonymization. This framework also dis-

tinguishes itself by accommodating diverse data utility metrics and therefore

supporting various data analysis tasks.

• In Chapter 6, motivated by the real-life demand of the STM, we developed

two alternative solutions for sequential data publication. These solutions are

the pioneers in the use of differential privacy for publishing sequential data.

The first solution makes use of a hybrid-granularity prefix tree structure and

performs constrained inferences to boost utility, while the second solution in-

troduces the use of a variable-length n-gram model for achieving differential

privacy, along with a set of novel noise reduction techniques. Both of them

have exhibited desirable performances on different real-life datasets.

• In Chapter 7, we proposed a variant of differential privacy, known as (ε, k)-

differential privacy, to address its deficiency over correlated data. Based on

this stronger privacy notion, we provided a holistic solution for publishing

large-volume real-life network data that is useful for cut queries and degree

distribution. To the best of our knowledge, this is the first practical solution

for publishing network data in the spirit of differential privacy.

In conclusion, as a preliminary effort toward privacy in high-dimensional data

publishing, this thesis has reported encouraging results, which demonstrate great

promise for releasing useful high-dimensional data while preserving individual pri-

vacy.
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