
Group Decis Negot (2011) 20:411–435
DOI 10.1007/s10726-009-9163-0

An Argumentation-Driven Model for Flexible
and Efficient Persuasive Negotiation

Jamal Bentahar · Jihad Labban

Published online: 21 April 2009
© Springer Science+Business Media B.V. 2009

Abstract The purpose of this paper is to propose a formal description and
implementation of a negotiation protocol between autonomous agents using persua-
sive argumentation. This protocol is designed to be simple and computationally effi-
cient. The computational efficiency is achieved by specifying the protocol as a set of
simple logical rules that software agents can easily combine. These latter are spec-
ified as a set of computational dialogue games about which agents can reason. The
protocol converges by checking the termination conditions. The paper discusses the
formal properties of the protocol and addresses, as proof of concept, the implemen-
tation issues using an agent-oriented platform equipped with logical programming
mechanisms.

Keywords Agent communication · Dialogue games · Negotiation ·
Argumentation

1 Introduction

Software autonomous agents are promising as technology for developing flexible and
intelligent applications such as electronic trading, Web services and distributed busi-
ness process (Bentahar et al. 2007; Shakshuki et al. 2007; Sycara et al. 1996). In
the agent community, negotiation is one important type of interaction that is gain-
ing increasing prominence, whereby agents with conflicting interests, try to achieve

J. Bentahar (B) · J. Labban
Concordia Institute for Information Systems Engineering,
Concordia University, Montreal, Canada
e-mail: bentahar@ciise.concordia.ca

J. Labban
e-mail: j_labban@encs.concordia.ca

123

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Concordia University Research Repository

https://core.ac.uk/display/211514313?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

412 J. Bentahar, J. Labban

a mutually acceptable agreement on the division of scarce resources (Dastani 2000;
Karunatillake 2005; Li 2006; Rahwan et al. 2007). In this paper, we propose a new
formal protocol for agent negotiation based on the agents’ persuasive capabilities.
To take part in this type of negotiation, called persuasive negotiation, agents should
persuade each other about their offers. Persuasive negotiation is a type of negotiation
where one agent is trying to influence the behaviour of another agent using arguments
supporting the proposed offers. Persuasive negotiation is a particular case of persuasive
dialogues where the purpose is to achieve an agreement supported by an acceptable
argument for all the participants (Walton and Krabbe 1995).

The proposed protocol is designed to be simple and computationally efficient. The
computational efficiency is achieved by specifying the protocol as a set of simple
logical rules that software agents can easily combine. These latter are specified as
a set of computational dialogue games about which agents can reason. The pro-
tocol converges by checking the termination conditions. The paper discusses the
formal properties of the protocol and addresses, as proof of concept, the implemen-
tation issues using an agent-oriented platform equipped with logical programming
mechanisms.

In fact, in the area of agent-based computing, it is extensively recognized that com-
munication between software agents is one of the major topics of research (Bentahar
et al. 2004; Dignum 2003; Endriss et al. 2003). All the applications of multi-agent
systems ranging from digital libraries through cooperative engineering to electronic
commerce, have one thing in common: the agents operating in these systems have
to communicate (Moulin and Chaib-draa 1996; Shakshuki et al. 2007; Sycara et al.
1996; Wooldridge 2003). These systems consist of multiple interacting agents aiming
to solve some problems. If the problem is particularly complex, large, or unpredict-
able, an interesting way to address it is to develop a number of functionally specific
agents, which are able to solve particular problem aspects (Sycara 1998). This decom-
position allows each agent to use the most appropriate paradigm to solve its particular
problem.

The issue of resource negotiation via communication in distributed settings is core
to a number of applications, particularly the emerging semantic grid computing-based
applications such as e-science and e-business. Resources can be commodities, ser-
vices, time, money, etc. These resources are scarce in the sense that competing claims
over them cannot be fully satisfied simultaneously. To allow agents to autonomously
negotiate with each other, we propose to equip them with argumentation and logical
reasoning capabilities.

Argumentation can be defined as a process for the interaction of different argu-
ments for and against some conclusion (Brewka 2001; Elvang-Goransson et al. 1993;
Kraus et al. 1998). Argumentation has been researched extensively in the last decade,
especially for inference, decision support, dialogue, and negotiation (Amgoud et al.
2000; Bench-Capon et al. 2009; Bentahar et al. 2005; McBurney et al. 2002; Rahwan
et al. 2007). A single agent may use such an argumentation to perform its internal
reasoning because it needs to make decisions in highly dynamic environments, con-
sidering interacting preferences and utilities. Also, agents can use argumentation in
their communication in order to justify their negotiation stances and influence other
agents’ negotiation stances. An important branch of argumentation is formal dialectics

123

An Argumentation-Driven Model 413

(Bentahar et al. 2005; Brewka 2001; Elvang-Goransson et al. 1993). In its most abstract
form, a dialectical model is a set of arguments and a binary relation representing the
attack-relation (and indirectly the defence relation) between the arguments in a dialog-
ical process. Consequently, dialectical models are relevant for automated negotiation,
in which agents should persuade each other.

We propose to use dialectical argumentation to assist agents to reach a decision and
convince each other. We implement dialectical argumentation through a set of con-
nected dialogue games. Dialogue games are interaction games in which each agent
plays a move in turn by performing utterances according to a pre-defined set of rules
(Karunatillake et al. 2009; McBurney and Parsons 2002). Argumentation-based dia-
logue games can help multiple agents to interact rationally, by giving and receiving
reasons for conclusions and decisions, within an enriching dialectical process that aims
at reaching mutually agreeable joint decisions. During negotiation, agents combine
and connect different dialogue games in order to establish a common knowledge of
each other’s commitments and find compromises, and persuade one another to make
commitments.

Several formal frameworks for argumentative inferences have been developed in
the literature (Amgoud et al. 2006; Dastani 2000; Kraus et al. 1998; Prakken 2001).
However, only few proposals have considered the implementation and application
issues of argumentation-based negotiation. Another challenging problem for auto-
mated negotiation that has not been deeply addressed is the computational complex-
ity. For concrete applications like e-business and Web services, this issue is of great
utility, and the underlying algorithms should be tractable and computationally effi-
cient. The objective of this paper is to address these two issues by specifying an
efficient computational model for agent negotiation using an argumentation-driven
framework.

1.1 Paper Overview

The rest of the paper is organized as follows. In Sect. 2, we introduce our conceptual
framework of the agent communication mechanism. We discuss the theoretical con-
siderations, agent architecture, and argumentation framework. In Sect. 3, we address
the formal specification of our dialogue game-based negotiation protocol using per-
suasive argumentation. We present the protocol form, the specification of each dia-
logue game, and the protocol termination and dynamics. The presented concepts are
explained by illustrative examples. In Sect. 4, we analyse the protocol from a formal
and computational point of view by discussing and proving the protocol properties
and its computational complexity. In Sect. 5, we illustrate how the specification of
our dialogue games is implemented by describing the development of a prototype
serving as proof of concept. In Sect. 6, we present an overview of some significant
proposals about dialogue games and argumentation-based negotiation and we com-
pare our protocol with them. We also discuss how our protocol meets the requirements
of formal dialogue games discussed in this overview. Finally, in Sect. 7, we draw some
conclusions and identify some directions for future work.

123

414 J. Bentahar, J. Labban

2 Conceptual Framework

2.1 Theoretical Consideration

Although there is little consensus about the definition of software agents, it is gen-
erally held that agents are autonomous pieces of software, able to take initiatives in
order to satisfy some goals, and are able to communicate (Wooldridge 2003). Agent
communication is related to several disciplines: philosophy of language, social psy-
chology, artificial intelligence, logic, mathematics, etc. In this domain, in order to be
able to negotiate, solve conflicts of interest, cooperate, find proofs, agents need not
only exchange single messages, but also take part in conversations with other agents.
A conversation is defined as a coherent sequence of utterances. The term “coherent”
means that the information conveyed by an utterance is related to the information
conveyed by the other utterances in a conversation. For example, if p is the infor-
mation conveyed by an utterance, the information conveyed by the next one can be
the acceptance, refusal, challenge, attack, etc. of p. Indeed, if agents communicate
by exchanging isolated messages, the resulting communication is extremely poor and
agents cannot participate in complex interactions such as negotiations, which are
formed by a sequence of utterances.

To consider the conversational aspect of agent communication, we use action logic
to specify the communicative acts. In addition, to capture the formal semantics of
such communicative acts, our approach is based on the notion of “social commit-
ments” (Bentahar et al. 2004; Castelfranchi 1995; Fornara and Colombetti 2003). A
social commitment SC is an engagement made by an agent (the debtor), that some fact
is true or that something will be done. This commitment is directed to a set of agents
(creditors). A commitment is an obligation in the sense that the debtor must respect
and behave in accordance with this commitment. Social commitments are a powerful
representation to model multi-agent interactions. Commitments provide a basis for a
normative framework that makes it possible to model agents’ communicative behav-
iours. This framework has the advantage of being expressive because all speech act
types can be represented by commitments (Bentahar et al. 2004). Commitment-based
protocols enable the content of agent interactions to be represented and reasoned about
(Fornara and Colombetti 2003).

In order to model the dynamics of conversations, we interpret a speech act SA as
an action performed on a commitment or on its content (Walton and Krabbe 1995).
A speech act is an abstract act that an agent, the speaker, performs when produc-
ing an utterance U and addressing it to another agent, the addressee. In the nego-
tiation dialogue game protocol that we specify in Sect. 3, the actions that an agent
can perform on a commitment are: Act ∈ {Create, Withdraw}. Create means that
making an offer, and Withdraw means that withdrawing it. In this negotiation set-
ting, the actions that an agent can perform on commitment content are: Act-content
∈ {Accept, Ref use, Challenge, Def end, Attack, Justi f y}. This set is built based
on the philosophical analysis of negotiation dialogues as discussed in Walton and
Krabbe (1995). We will show in Sect. 3 that this set is sufficient to model negotia-
tion dialogue games. This set is also compatible with other proposals in the literature
such as Amgoud et al. (2000), Karunatillake et al. (2009), McBurney et al. (2002).

123

An Argumentation-Driven Model 415

The only difference is that these proposals use Assert to gather Defend, Attack, Jus-
tify in one action. However, using three different actions, namelyDefend, Attack, and
Justify instead of one allows us to clarify the speaker’s position without considering
the commitment content. In our framework, a speech act is interpreted as an action
applied to a commitment when the speaker is the debtor, and/or as an action applied
to its content when the speaker is the debtor or the creditor Bentahar et al. (2004).
Formally, a speech act can be defined as follows:

Definition 1 (Speech Act)

S A (Ag1, Ag2, U)
�= Act (Ag1, SC (Ag1, Ag2, p))

&|Act − content
(

Agk, SC
(

Agi , Ag j , p
))

where i, j ∈ {1, 2} and (k = i or k = j), p is the commitment content.
The definiendum S A(Ag1, Ag2, U) is defined by the definiens Act (Ag1, SC

(Ag1, Ag2, p)) as an action performed by the debtor Ag1 on its commitment. The
definiendum is defined by the definiens Act-content(Agk, SC(Agi , Ag j , p)) as an
action performed by an agent Agk (the debtor or the creditor) on the commitment
content.

Example 1 Let us consider the following utterances:

U1: Quebec is the capital of Canada.
U2: No, the capital of Canada is Ottawa.

The utterance U1 leads the debtor to create a commitment whose content is “Quebec
is the capital of Canada”. On the other hand, the utterance U2 highlights a creditor’s
action on this content that is in this case a refusal. Using first order logic syntax, this
example can be formalized as follows:

S A(Ag1, Ag2, U1)
�= Create(Ag1, SC(Ag1, Ag2, (Capital(Quebec, Canada))))

S A(Ag2, Ag1, U2)
�=

Ref use-content (Ag2, SC(Ag1, Ag2, (Capital(Quebec, Canada))))

& Create(Ag2, SC(Ag2, Ag1, (Capital(Ottawa, Canada))))

2.2 Architecture

The conceptual framework architecture we propose is characterized by capturing
simultaneously: (1) the mental aspect of agents taking part in the conversation (beliefs,
desires, goals, …); (2) the social aspect reflecting the context in which these agents
communicate and the social commitments and norms; and (3) the reasoning aspect,
which is essential to be able to take part in coherent conversations. The reasoning part
is based upon an argumentation system enabling agents to justify the facts on which
they are committed and to justify their actions on commitments. The combination of
these three aspects is necessary because producing social commitments (i.e. public

123

416 J. Bentahar, J. Labban

Conversation layer
Speech acts

Cognitive layer
Private mental states, social relations,

Argumentative layer

The communication model

Mental model
(Beliefs, desires, intentions, etc.)

Social model
(Powers, relations, conventions,

commitments, etc.)

Reasoning model
(argumentation system)

The negotiating agent architecture

Fig. 1 The conceptual framework

utterances) reflects the agents’ mental states on which agents should reason before
committing in a conversation and during its unfolding.

The communication model consists of three layers: the conversation layer, the
argumentative layer, and the cognitive layer. This stratification in layers is supported
by the abstraction levels. The conversation layer is directly observable and highlights
speech acts the agents perform. These acts are not performed in an isolated way, but
within a particular conversation. The argumentative layer is used to correctly manage
the social commitments and arguments that are related to the conversation. Finally,
the cognitive layer is used to take into account the agents’ private mental states, the
social relations, and other elements that agents use to be able to communicate. In this
paper we focus on the second layer.

In order to allow negotiating agents to use suitably the communication model, this
model must be compatible with the agent architecture. Thus, we propose a negotiating
agent model consisting of a mental model, a social model, and a reasoning model
(Fig. 1). The mental model includes beliefs, desires, goals, etc. The social model cap-
tures the social concepts such as conventions, roles, commitments, etc. Commitments
that agents make public by communication are related to the mental states via the
reasoning model.

2.3 Argumentation Framework

The agent’s reasoning model is specified using an argumentation system. Such a sys-
tem essentially includes a logical language L , a definition of the argument concept,
and a definition of the attack relation between arguments. The use of a logical language
enables negotiating agents to use a logic-based reasoning in order to effectively reason
about arguments in terms of inferring and justifying conclusions, and attacking and
defending arguments. In our framework, the language is a set of propositional Horn
clauses. A propositional Horn clause is a disjunction of literals with at most one positive

123

An Argumentation-Driven Model 417

literal ¬p1 ∨¬p2∨…∨¬pn ∨ c (also written as implication p1 ∧ p2∧…∧pn → c. A
propositional Horn formula is a conjunction of propositional Horn clauses. Hereafter
we define the concepts that will be used in the persuasive negotiation where � stands
for classical inference, and �, �1, and �2 indicate agents’ knowledge bases. Each base
is supposed to be consistent.

Definition 2 (Argument) An argument is a pair (H, h) where h is a formula of L and
H a sub-set of � such that: (i) H is consistent, (ii) H � h and (iii) H is minimal, so no
subset of H satisfying both i and ii exists. H is called the support of the argument and
h its conclusion. We use the notation: H = Support (Ag, h) to indicate that agent Ag
has a support H for the conclusion h.

Example 2 Let � = {a, a → b, c → ¬b, c}. Then, ({a, a → b}, b) and ({a →
b},¬a ∨ b)are two arguments.

Definition 3 (Attack Relation) Attack is a binary relation between two arguments. Let
(H1, h1) and (H2, h2) be two arguments over �1 and �2 respectively. (H1, h1) attacks
(H2, h2) is denoted by: (H1, h1) � (H2, h2). (H1, h1) � (H2, h2) iff H2 � ¬h1.

Example 3 Let �1 = {a, a → b,¬c} and �2 = {c → ¬b, c,¬b → ¬d}. Then,
the argument ({a, a → b}, b) over �1 attacks the argument ({c, c → ¬b,¬b →
¬d},¬d) over �2. Also, the argument ({¬c},¬c) over �1 attacks the argument
({c, c → ¬b,¬b → ¬d},¬d) over �2.

In fact, before committing to some fact h being true (i.e. before making an offer
by creating a commitment whose content is h), the speaker agent should use its argu-
mentation system to build an argument (H , h). On the other side, the addressee agent
must use its own argumentation system to select the answer it will give (i.e. to decide
about the appropriate manipulation of the content of an existing commitment). For
example, an agent Ag1 accepts the commitment content h proposed by another agent
if Ag1 has an argument for h. If Ag1 has an argument neither for h, nor for ¬h, then
it challenges h.

In our framework, we distinguish between arguments that an agent has (private argu-
ments) and arguments that this agent used in its conversation (public arguments). Thus,
we use the notation: S = Create_Support (Ag, SC(Ag1, Ag2, p)) to indicate the set
of commitments S created by agent Ag to support the content of SC(Ag1, Ag2, p).
This support relation is transitive i.e.:

(SC(Ag1, Ag2, p2) ∈ Create_Support (Ag, SC(Ag1, Ag2, p1))

∧SC(Ag1, Ag2, p1) ∈ Create_Support (Ag, SC(Ag1, Ag2, p0)))

⇒ SC(Ag1, Ag2, p2) ∈ Create_Support (Ag, SC(Ag1, Ag2, p0))

Surely, an argumentation system is essential to help agents to justify their nego-
tiation stances and influence other agents’ negotiation stances. However, reasoning
on other social attitudes should be taken into account in order to explain the agents’
decisions. In our approach, agents can reason about trust and use trustworthiness to
decide, in some cases, about the acceptance of arguments. This trust-based reasoning
is essential for securing negotiation settings.

123

418 J. Bentahar, J. Labban

3 Logical Rules for Persuasive Negotiation Protocol

3.1 Computational Dialogue Games

Agent communication protocols specify the rules of interaction governing a dialogue
between autonomous agents in a multi-agent system. These protocols are patterns of
behaviour that restrict the range of allowed follow-up utterances at any stage dur-
ing a dialogue. Unlike protocols used in distributed systems, agent communication
protocols must take into account the fact that artificial agents are autonomous and
proactive. These protocols must be flexible enough and must also be specified using a
more expressive formalism than traditional formalisms such as finite state machines.
Indeed, logic-based protocols seem an interesting way (Bentahar et al. 2005; Endriss
et al. 2003).

Computational dialogue games (Bentahar et al. 2005; Dastani 2000; McBurney
and Parsons 2002) aim to offer more flexible protocols. This is achieved by combining
different games to construct complete and more complex protocols. Dialogue games
are declarative specifications that govern communication between agents. They are
interactions between players, in which each player moves by performing utterances
according to a pre-defined set of roles. In this paper, we propose to formalize these
games as a set of logical rules about which agents can reason in order to decide which
game to play and how to combine games. Indeed, protocols specified using finite state
machines or Petri nets are not flexible in the sense that agents must respect the whole
protocol from the beginning to the end. For this reason, we propose to specify these
protocols by small computational dialogue games that can be considered as conver-
sation policies that can be logically put together. Formally, we define a computational
dialogue game as follows:

Definition 4 (Computational Dialogue Game) Let Action Ag1 and Action Ag2 be
two communicative actions performed by Ag1 and Ag2 respectively, and let Cond be
a formula from the logical language L . A computational dialogue game is a logical
rule indicating that if Ag1 performs Action Ag1, and that Cond is satisfied, then Ag2
will perform Action Ag2 afterwards. This rule is expressed as follows:

Action_Ag1 Action_Ag2

Cond

Cond is expressed in terms of the possibility of generating an argument from an
agent’s argumentation system.

3.2 Dialogue Games for Persuasive Negotiation

Our persuasive negotiation protocol is specified as a set of computational dialogue
games. In accordance with our commitment-based approach, the game moves are
considered as actions that agents apply to commitments and to their contents (see
Definition 1). Because we suppose that we have always two agents Ag1 and Ag2, a
SC whose content is p will be denoted in the rest of this paper SC(p). We use the
notation: to denote the fact that a propositional formula p can be

123

An Argumentation-Driven Model 419

Chaining games Entry game Exit conditions (Termination)

Fig. 2 The general form of the protocol

generated from the argumentation system of Ag1 denoted Arg_Sys(Ag1). The for-
mula indicates the fact that p cannot be generated from Ag1’s
argumentation system. A propositional formula p can be generated from an agent’s
argumentation system, if this agent can find an argument supporting p. To simplify the
formalism, we use the notation Act’(Ag, SC(p)) to indicate the action that agent Ag
performs on the commitment SC(p) or on its content (Act’∈ {Create, Withdraw,

Accept, Challenge, Re f use}). For the actions related to the argumentation rela-
tions, we write Act-Arg(Ag, [SC(q)], SC(p)). This notation indicates that Ag defends
(resp. attacks or justifies) the content of SC(p) by the content of SC(q) (Act-Arg ∈
{Def end, Attack, Justi f y}). In a general way, we use the notation Act ′(Ag, S) to
indicate the action that Ag performs on the set of commitments S or on the contents of
these commitments, and the notation Act-Arg(Ag, [S], SC(p)) to indicate the argu-
mentation-related action that Ag performs on the content of SC(p) using the contents
of S as support. We also introduce the notation Act-Arg(Ag, [S], S′) to indicate that
Ag performs an argumentation-related action on the contents of a set of commitments
S′ using the contents of S as supports.

We distinguish five types of dialogue games: entry, defence, challenge, justifica-
tion and attack. The last four games (i.e. defence, challenge, justification and attack)
constitute what we call chaining games. The entry game allows the two agents to open
the negotiation. The chaining games make it possible to combine dialogue games dur-
ing the negotiation. In fact, these four dialogue games can be combined in different
ways. The negotiation terminates when the exit conditions are satisfied (Fig. 2). We
assume that the negotiation process we consider in this paper is not function of time
(i.e. unbounded times). Consequently, the exit conditions are not expressed in terms
of time.

3.2.1 A Entry Game

The entry dialogue game describing the entry conditions in our negotiation proto-
col about an offer represented by a propositional formula p is described as follows
(Specification 1):

Refuse(Ag2, SC(p)) Negotiation

Create(Ag1, SC(p))

a1

b1

Accept(Ag2, SC(p)) Termination

where a1 and b1 are two conditions specified as follows:

123

420 J. Bentahar, J. Labban

If Ag2 has an argument for p, then it accepts the offer p (the content of SC(p)) and
the conversation terminates as soon as it begins (Condition a1). The negotiation starts
when Ag2 refuses the Ag1’s offer p because it has an argument against p (condition
b1).

3.2.2 Defence Game

Once the two agents opened the negotiation, the initiator must defend its point of view
in order to persuade the addressee. Consequently, a defence game should be played.
Our protocol is specified in such a way that the negotiation dynamics starts by playing
a defence game. We call this type of negotiation persuasive negotiation. This game is
specified as follows (Specification 2):

Defend(Ag1, [S], SC(p))

Attack(Ag2, [S’], S3)

a2

b2

c2

Accept(Ag2, S1)

Challenge(Ag2, S2)

where:

S = {SC(pi)|i = 0, . . . , n}, pi are propositional formulas.⋃3
i=1 Si = S ∪ SC(p), Si ∩ S j = ∅, i, j = 1,…, 3 & i �= j

By definition, Def end(Ag1, [S], SC(p)) means that Ag1 creates S in order to
defend the content of SC(p). Formally:

Def end(Ag1, [S], SC(p))
�= (Create(Ag1, S) ∧ S = Create_Support (Ag1,

SC(p)))

We consider this definition as an assertional description of the Defend action. We
propose similar definitions for Attack and Justify actions which are not presented in
this paper.

This specification indicates that according to the three conditions (a2, b2 and c2),
Ag2 can accept a subset S1 of S, challenge a subset S2 and attack a third subset S3.
Sets Si and S j are mutually disjoint because Ag2 cannot, for example, both accept
and challenge the same commitment content. Accept, Challenge and Attack a set of
commitment contents are defined as follows:

Accept (Ag2, S1)
�= (∀i, SC(pi) ∈ S1 ⇒ Accept (Ag2, SC(pi)))

Challenge(Ag2, S2)
�= (∀i, SC(pi) ∈ S2 ⇒ Challenge(Ag2, SC(pi)))

Attack(Ag2, [S′], S3)
�= ∀i, SC(pi) ∈ S3 ⇒∃S′

j ⊆ S′, Attack(Ag2, [S′
j], SC(pi))

where:
⋃

j S′
j = S′. This indication means that any element of S′ is used to attack

one or more elements of S3.
The conditions a2, b2 and c2 are specified as follows:

123

An Argumentation-Driven Model 421

where: Content (S′
j) = {pk |SC(pk) ∈ S′

j }.Content (S′
j) indicates then the set of

contents pk of the commitments SC(pk) included in S′
j .

3.2.3 Challenge Game

The challenge game is specified as follows (Specification 3):

Challenge (Ag1, SC (p))
a3→ Justi f y (Ag2, [S] , SC (p))

where the condition a3 is specified as follows:
a3 = (Content (S) = Support (Ag2, p))

In this game, the condition a3 is always true. The reason is that in accordance with
the commitment semantics, an agent must always be able to defend the commitment
it created (Bentahar et al. 2004).

3.2.4 Justification Game

For this game we distinguish two cases:

Case 1 (SC(p) /∈ S) In this case, Ag1 justifies the content of its commitment SC(p)

by creating a set of commitments S. As for the Defend action, Ag2 can accept, challenge
and/or attack a subset of S. The specification of this game is as follows (Specification 4):

Justify(Ag1, [S], SC(p))

Attack(Ag2, [S’], S3)

a4

b4

c4

Accept(Ag2, S1)

Challenge(Ag2, S2)

where:

S = {SC(pi)|i = 0, . . . , n} , pi are propositional formulas.⋃3
i=1 Si = S ∪ SC(p), Si ∩ S j = ∅, i, j = 1,…, 3 & i �= j

a4 = a2, b4 = b2, c4 = c2

Case 2 ({SC(p)} = S) In this case, the justification game has the following specifi-
cation (Specification 5):

Justify(Ag1, [S], SC(p))

Refuse(Ag2, SC(p))

a’4

b’4

Accept(Ag2, SC(p))

Ag1 justifies the content of its commitment SC(p) by itself (i.e. by p). This means
that p is part of Ag1’s knowledge. Only two moves are possible for Ag2: 1) accept
the content of SC(p) if Ag1 is a trustworthy agent for Ag2 (a′

4), 2) if not, refuse this
content (b′

4). Ag2 cannot attack this content because it does not have an argument
against p. The reason is that Ag1 plays a justification game because Ag2 played a
challenge game.

123

422 J. Bentahar, J. Labban

3.2.5 Attack Game

The attack game is specified as follows (Specification 6):

Attack(Ag2, [S’], S4)

Attack(Ag1, [S], SC(p))

a5

b5

c5

d5

Refuse(Ag2, S1) ∧ (p’ Arg_Sys(Ag2) ⇒ Create(Ag2, SC(p’)))

Accept(Ag2, S2)

Challenge(Ag2, S3)

where:

S = {SC(pi)|i = 0, . . . , n} , pi are propositional formulas.⋃4
i=1 Si = S ∪ SC(p), Card(S1) = 1, Si ∩ S j = ∅, i, j = 1, . . . , 4 & i �= j

The conditions a5, b5, c5 and d5 are specified as follows:

a5 = ∃i, SC(pi) ∈ Create_Support (Ag2, SC(¬q))

where S1 = {SC(q)}

d5 = ∀i , SC(pi) ∈ S4 ⇒ ∃S’ j ⊆ S’,
Content (S′ j) = Support (Ag2,¬pi) ∧ =�k, SC(pk) ∈ Create_Support(Ag2,

SC(¬pi))

Ag2 refuses Ag1’s argument if Ag2 already attacked this argument. In other words, Ag2
refuses Ag1’s argument if Ag2 cannot attack this argument since it already attacked it,
and it cannot accept it or challenge it since it has an argument against this argument.
We have only one element in S1 because a refusal move could be an exit condition. If
Ag2 has an argument supporting a new offer p′, it makes this counter-offer. The accep-
tance and the challenge actions of this game are the same as the acceptance and the
challenge actions of the defence game. In the case of refusal and acceptance, Ag2 can
make a counter-offer p′ by creating a new commitment. In this situation, Ag1 will play
an entry game by accepting or refusing the counter-offer. Finally, Ag2 attacks Ag1’s
argument if Ag2 has an argument against Ag1’s argument, and if Ag2 did not attack
Ag1’s argument before. In d5, the universal quantifier means that Ag2 attacks all Ag1’s
arguments for which it has an against-argument. The reason is that Ag2 must act on all
commitments created by Ag1. The temporal aspect (the past) of a5 and d5 is implicitly
integrated in Create_Support (Ag2, SC(¬q)) and Create_Support(Ag2, SC(¬pi)).

3.2.6 Termination

The protocol terminates either by a final acceptance or by a refusal. A final acceptance
means that the two agents agree on a consensus. Because it is prohibited for the two
agents to play the same move during the negotiation, the termination of the protocol
is ensured.

123

An Argumentation-Driven Model 423

Defence

Attack game

Justification game

t2 t3 t4 t5

Acceptance

Challenge game
Acceptance
Challenge game

Attack game
Refusal Termination

Entry
Refusal

Acceptance Termination
t1

Fig. 3 The persuasive negotiation dynamics

3.3 Protocol Dynamics

The persuasive negotiation dynamics is described by the chaining of a finite set of dia-
logue games: entry game, acceptance move, refusal move, defence, challenge, attack
and justification games. These games can be combined in a sequential and parallel
way (Fig. 3). In this figure, sold arrows have the same meaning as in the specification
of dialogue games presented above, and the conditions are omitted for simplification
reasons. The dotted arrows are used to indicate unspecified possible continuations.

After Ag1’s defence game at moment t2, Ag2 can, at moment t3, accept a part of the
arguments presented by Ag1, challenge another part, and/or attack a third part. These
games are played in parallel. At moment t4, Ag1 answers the challenge game by play-
ing a justification game and answers the attack game by playing an acceptance move,
a challenge game, another attack game, and/or a refusal move. After the refusal, the
player can propose a counter-offer, after which a renegotiation will start. The persua-
sive negotiation dynamics continues until the exit conditions become satisfied (final
acceptance or a refusal). We note that during a same conversation, an agent cannot play
the same move (with the same content) more than once. After using an argument, an
agent cannot use it again during this conversation (reiterations are prohibited). From
our specifications, it follows that our protocol plays the role of the dialectical proof
theory of the argumentation system.

Example 4 Let us consider the following dialogue to illustrate the dialogue games and
protocol dynamics presented in this section:

Ag1: Newspapers can publish information I(p).
Ag2: I don’t agree with you.
Ag1: They can publish information I because it is not private(q), and any public
information can be published (r).
Ag2: Why is information I public?
Ag1: Because it concerns a Minister(s), and information concerning a Minister is
public(t).

The letters on the left of the utterances are the propositional formulae that represent
the propositional contents. Agent Ag1’s KB contains: ({q, r}, p) and ({s, t}, q). Agent
Ag2’s KB contains: ({¬p}, ¬p). The combination of the dialogue games that allows
us to describe the persuasion dialogue dynamics is as follows:

123

424 J. Bentahar, J. Labban

4 Formal Analysis

4.1 Termination, Soundness, and Completeness

In this section we discuss the formal properties of our persuasive negotiation proto-
col from a computational point of view. These properties are: termination (there is
no deadlock in the protocol), soundness (the protocol specification is correct), and
completeness (the protocol is complete with respect to the agents’ knowledge bases).

Theorem 1 (Termination) For any set of dialogue games, the persuasive negotiation
protocol always terminates.

Proof The persuasive negotiation protocol is defined by the chaining of a finite set of
dialogue games that can be played recurrently. Because the same move is prohibited
during a conversation, and the content of communicative acts is finite in term of size,
challenge and attack games are finite. In addition, because the agents’ knowledge bases
are finite and when an argument is justified by itself, the addressee could only accept
or refuse (case 2 of justification game), then justification games are finite as well.
Consequently, the protocol always converges toward executing either a final refusal
or final acceptance. ��
Theorem 2 (Soundness) If the protocol terminates by a final acceptance (resp. final
refusal), then an agreement is (rep. is not) achieved.

Proof According to the dialogue game specifications, if one of the participating
agents plays the final acceptance move, this means that it has an argument support-
ing the addressee’s argument advanced by playing a defence, attack, or justification
game. Consequently, this agent has an argument supporting the last offer made by the
addressee. Having this argument in the knowledge base means that an agreement is
achieved. In the opposite case, if an agent plays a final refusal, then all the exchanged
offers can not be supported by one of the two agents. This means that there is no
argument from the two agents’ knowledge bases supporting one of the offers. Conse-
quently an agreement is not achieved. ��

The soundness property shows that the protocol is correct. However, what is impor-
tant is to show that if an agreement is possible given the two agents’ knowledge bases,
then the protocol execution will achieve this agreement.

123

An Argumentation-Driven Model 425

Theorem 3 (Completeness) If an agreement can be achieved from the agents’ knowl-
edge bases, then the protocol execution will results in achieving this agreement.

Proof Let us suppose that from the union of the two agents’ knowledge bases, it is
possible to build an argument supporting a given offer p which is not attacked by
another argument from the union. Consequently, this argument is accepted by the two
agents. Let us show how this argument can be achieved when executing the protocol.
We will use a proof by construction.

If p is the initial offer made, for example, by Ag1, then Ag2 will accept it in the entry
game. So the agreement is achieved. If the initial offer is p′ (p and p′ are different
but related because it’s about the same topic) which is refused by Ag1, then Ag2 will
defend it by proposing an argument. Ag1 will probably accept a part of this argument,
challenge a second part, and attack a third part by possibly making a counter-offer. At
this level, Ag1 can not completely accept the Ag2’s argument because its knowledge
base is consistent. If this counter-offer is p (which is possible since Ag1’s argumen-
tation system supports p), we are done, because it will be accepted by Ag2. If not,
Ag2 will justify the challenge part and plays an attack game by possibly making a new
counter-offer or refuse the attack and make a new counter-offer. If the counter-offer is
p, then we are done. If not, Ag1 will play the same games. The process will continue
until a counter-argument p is made by one of the two agents. There is a guarantee that
p will be made, because if not, one of the two agents will play a final refusal since
according to Theorem 1 the protocol always terminates. This means that the final offer
can not be supported by one of the two agents’ knowledge bases and this agent can
not make a counter-offer, which is contradictory with the initial hypothesis. ��

4.2 Complexity Analysis

It is proved that using first order logic and fully propositional logic for argumenta-
tive reasoning is not appropriate for automated negotiation since first order logic is
semi-decidable and propositional logic is intractable (exponential time complexity)
(Bentahar et al. 2007; Parsons 1998). Here we prove that our protocol is efficient
because the reasoning procedures are polynomial with respect to the size of agent’s
knowledge base ((O(|�|)). This is due to the fact that our logical language (Proposi-
tional Horn logic) is simpler and the dialogue games are simple logical rules. Because
all these dialogue games are based on argumentation, and the decision parameters (the
conditions associated to the rules) that agents use to combine these dialogue games
are expressed in terms of the possibility of building arguments, the complexity of the
protocol is determined by the complexity of building arguments. In the following we
present the different complexity results.

Proposition 1 Given a Horn knowledge base �, a subset H ⊆ �, and a formula h.

Checking whether (H, h) is a non-necessarily minimal argument is polynomial with
respect to the sizes of H and h, i.e. O(|H | × |h|).
Proof From the linear time algorithms for Horn satisfiability in Dowling and Gallier
(1984), it follows that the Horn implication problem H � h is decidable in O(|H |×|h|)

123

426 J. Bentahar, J. Labban

time. From the same result, it also follows that deciding whether H is consistent is
polynomial with respect to the size of H. ��
Proposition 2 Given a Horn knowledge base �, and an argument (H, h) over �.

Checking whether (H, h) is minimal is polynomial (O(|H | × |h|)).
Proof Let l be a literal. The following algorithm resolves the problem: ∀l ∈ H check
if H − {l} � h. Because the implication problem is polynomial, we are done. ��
Proposition 3 Let � be a consistent Horn knowledge base, h a formula, and A the
set of arguments over �

∃H ⊆ � : (H, h) ∈ A ⇒ ∀H ′ : H ⊆ H ′ ⊆ �, (H ′, h) ∈ A

Proof If (H, h) is an argument where H is a set of Horn formulas under the form c
or p1 ∨ p2 ∨ · · · ∨ pn → c where p1, p2,…, pn are positive literals, then adding any
Horn formula to H will result in a consistent set of formulas H ′ : � ⊇ H ′ ⊇ H. Since
H � h, it follows that H � h,whence the proposition. ��
Theorem 4 Given a consistent Horn knowledge base � and a formula h.Building an
argument (H, h) from � is polynomial (O(|�|)).
Proof From Proposition 3, it follows that there is an argument supporting h iff
(�, H) ∈ A. By Propositions 1 and 2, the theorem follows. ��

5 Implementation

In this section we describe a prototype implementation as proof of concept of the
different dialogue games. The prototype is implemented using the JackT M platform
(The Agent Oriented Software Group 2005). We chose this language for three main
reasons:

1. It is an agent-oriented language offering a framework for multi-agent system devel-
opment. This framework can support different agent models.

2. It is built on top of and fully integrated with the Java programming language. It
includes all components of Java and it offers specific extensions to implement
agents’ behaviours.

3. It supports logical variables and cursors. These features are particularly helpful
when querying the state of an agent’s beliefs. Their semantics is mid-way between
logic programming languages with the addition of type checking Java style and
embedded SQL.

Negotiating agents in the developed system are implemented as JackT M agents,
i.e. they inherit from the basic class JackT M Agent. Their knowledge bases are imple-
mented as JackT M belie f sets. Beliefsets are used to maintain an agent’s beliefs about
the world. These beliefs are represented in propositional Horn logic and tuple-based
relational model. The logical consistency of the beliefs contained in a beliefset is

123

An Argumentation-Driven Model 427

automatically maintained. The advantage of using beliefsets over normal Java data
structures is that beliefsets have been specifically designed to work within the agent-
oriented paradigm.

The agents’ knowledge bases (KBs) contain two types of information: arguments
and beliefs. Arguments have the form ([Support], Conclusion), where Support is a
set of propositional Horn formulas and Conclusion is a propositional formula. Beliefs
have the form ([Belief], Belief) i.e. Support and Conclusion are identical. The meaning
of the propositional formulas (i.e. the ontology) is recorded in a beliefset whose access
is shared between the two agents.

To open a dialogue game, an agent uses its argumentation system. The argumenta-
tion system allows this agent to seek in its knowledge base an argument for a given
conclusion or for its negation (“counter-argument”). For example, before creating a
commitment SC(p), an agent must find an argument for p. This enables us to respect
the commitment semantics by making sure that agents can always defend the content
of their commitments.

Agent communication is done by sending and receiving messages. These messages
are events that extend the basic JackT M event: MessageEvent class. MessageEvents
represent events that are used to communicate with other agents. Whenever an agent
needs to send a message to another agent, this information is packaged and sent as
a MessageEvent. A MessageEvent can be sent using the primitive: Send(Destination,
Message). In our protocol, Message represents the action that an agent applies to a
commitment or to its content, for example: Create(Ag1, SC(p)), etc.

Our dialogue games are implemented as a set of events (Message Events) and plans.
A plan describes a sequence of actions that an agent can perform when an event occurs.
Whenever an event is posted and an agent chooses a task to handle it, the first thing
the agent does is to try to find a plan to handle the event. Plans are methods describing
what an agent should do when a given event occurs. Each dialogue game corresponds
to an event and a plan. These games are not implemented within the agents’ program,
but as event classes and plan classes that are external to agents. Thus, each negotiating
agent can instantiate these classes. An agent Ag1 starts a dialogue game by generating
an event and by sending it to the addressee Ag2. Ag2 executes the plan corresponding
to the received event and answers by generating another event and by sending it to
Ag1. Consequently, the two agents can communicate by using the same protocol since
they can instantiate the same classes representing the events and the plans. Figs. 4 and
5 illustrate snapshots of the system.

To start the entry game, an agent (initiator) chooses a goal that it tries to achieve.
This goal is to persuade its interlocutor that a given propositional formula is true.
For this reason, we use a particular event: BDI Event (Belief-Desire-Intention). BDI
events model goal-directed behaviour in agents, rather than plan-directed behaviour.
What is important is the desired outcome, not the method chosen to achieve it. This
type of events allows an agent to pursue long term goals.

Figure 5 describes a detailed example generated by the implemented prototype. In
this example, symbolic propositions are used. The persuasive negotiation starts when
Ag1 makes an offer p to Ag2 that it refuses because it has an argument against p,
which makes the entry conditions satisfied (entry game). Ag1 plays then the defence
game by defending p using a, b, and c. As a reply to this defence, Ag2 plays the attack

123

428 J. Bentahar, J. Labban

Fig. 4 The system data structures

game by attacking a using M1 and M0 and attacking b using ¬b. Ag2 plays also an
acceptance move by accepting the third part c. Afterward, Ag1 replies by playing the
same game (attack game). This agent attacks then M0, M1, and ¬b using respectively
z, ¬N1 and b2. Subsequently, Ag2 plays in parallel the challenge game by challenging
z and ¬N1 and the attack game by attacking b2 using f 1. As a reply to the challenge
game, Ag1 plays the justification game by justifying z and ¬N1 using respectively
the arguments ({z2, z1}, z) and ({¬N2}, ¬N1). In parallel, Ag1 replies to the attack
game by playing another attack game in which f 1 is attacked using k1. The persua-
sive negotiation continues in many turns as depicted in Fig. 5 and terminates by a final
acceptance move where Ag2 accepts Ag1’s proposal.

6 Related Work and Discussion

A key component for designing an agent communication system is the dialogue game
protocol. Such a protocol is specified as a set of rules that govern the well-behaviour
of interacting agents in order to generate dialogues. It specifies the set of speech acts
allowed in a dialogue and their allowed types of replies (Amgoud et al. 2006). Agents
in the protocol are considered as playing games with personal goals and a set of moves
(i.e. instantiated speech acts) that can be used to try to reach those goals. According to
McBurney and Parsons (2002), a dialogue game specification consists of the following
elements:

123

An Argumentation-Driven Model 429

Fig. 5 A snapshot from the prototype: a persuasive negotiation example

1. Commencement rules: Rules which define the circumstances under which a dia-
logue starts.

2. Locutions: rules which indicate what moves are permitted.
3. Combination rules: Rules which define the dialogical contexts under which par-

ticular locutions are permitted or not.
4. Commitments: Rules which define the circumstances under which agents express

commitment to a proposition.
5. Termination rules: Rules that define the circumstances under which a dialogue

ends.

McBurney et al. (2002) discuss a set of desiderata for argumentation-based dialogue
game protocols. They propose thirteen criteria that permit assessing these
protocols:

1. Stated dialogue purpose: A dialogue game protocol should have one or more pub-
licly-stated purposes, and its locutions and rules should facilitate their achieve-
ments.

2. Diversity of individual purposes: A dialogue game protocol should permit partici-
pating agents to achieve their own individual purposes consistent with the overall
purpose of the dialogue.

123

430 J. Bentahar, J. Labban

3. Inclusiveness: A dialogue game protocol should not exclude participation for any
potential agent which is qualified and willing to participate.

4. Transparency: Participants to a dialogue game should know the rules and structure
of the dialectical system prior to commencement of the dialogue.

5. Fairness: A dialogue game protocol should either treat all participants equally, or,
if not, make explicit any asymmetries in their treatment.

6. Clarity of argumentation theory: A dialogue game protocol should conform, at
least at the outset, to a stated theory of argument.

7. Separation of syntax and semantics: The syntax of a dialogue game protocol should
be defined separately from its semantics. There are two reasons for such a separa-
tion: (1) this approach enables the same protocol syntax to be used with multiple
semantics; (2) the problem of checking the compliance of agents with this seman-
tics will be possible since the semantics is publicly and clearly declared.

8. Rule consistency: The locutions and rules of a dialogue game should together be
internally consistent.

9. Encouragement of resolution: Resolution of each dialogue (normal termination)
should be facilitated and not precluded by the locutions and rules of a dialectical
system.

10. Discouragement of disruption: Normally, the rules of a dialogue game protocol
should discourage or preclude disruptive behaviour, such as uttering the same
locution repeatedly.

11. Enablement of self-transformation: A dialogue game protocol should permit par-
ticipants to undergo self-transformation in the course of a dialogue; e.g., partici-
pants to a negotiation should be able to change their preferences or their valuations
of utility as a result of information they receive from others in the dialogue.

12. System simplicity: The locutions and rules of a dialogue game protocol should be
as simple as possible.

13. Computational simplicity: A dialogue game protocol should be designed to mini-
mize any computational demands on its participants, and on the system itself.

Amgoud et al. (2006) identify seven parameters considered as essential for defining
negotiation dialogue game protocols. These parameters are: (1) the underlying logical
language used to express negotiation rules and allowed locutions; (2) the set of speech
acts or locutions uttered in a negotiation; (3) the set of involved agents; (4) a function
(Reply) associating to each speech act its expected replies; (5) a variable Back ∈{0,
1} such that Back = 1 (resp. 0) means that the protocol allows (resp. does not allow)
for backtracking; (6) a function (Turn) governing the turn-taking of the agents; (7) a
function (N_Move) determining at each turn and for each agent the number of moves
that is allowed to perform at that turn.

Parsons (1998) propose a formal negotiation framework based upon an argumenta-
tion system. The proposed negotiation protocol includes five main locutions: proposal,
critique, counter-proposal, accept, and withdraw. The protocol includes also a special
locution called meta-information to express explanations or preferences. For example,
proposals, counter-proposals, and critiques can be supplied with explanations which
are a form of justifications that agents supply to support their locutions. The process
starts when an agent generates a proposal. Other agents then either accept it, critique it

123

An Argumentation-Driven Model 431

by providing a comment on which parts of the proposal they like and which parts they
dislike, make counter-proposals, or provide meta-information. The first agent may
make a second proposal, accept the counter-proposal, critique it, or withdraw from the
process. If a critique is made, either agent can keep the process moving forward by
making another proposal or withdraw from the process. The process iterates until one
of the agents accept or withdraw. The authors use beliefs–desires–intentions archi-
tecture for agents (BDI) and a BDI propositional logic as the underlying language.
Because BDI architecture and logic are based on agents’ private states, checking the
compliance of agents with the negotiation protocol is not possible. Also using a BDI
propositional logic makes the underlying reasoning mechanisms intractable.

Sadri et al. (2001) introduce a logic-based approach for one-to-one agent negoti-
ation based on dialogue games. In this approach, agents agree upon a language for
negotiation, while possibly adopting different negotiation policies, each correspond-
ing to an agent program type (deterministic or exhaustive). A single dialogue game is
used to obtain a resource (resource reallocation problem). After the termination of one
game, new games can be triggered in a sequence in order to allow the agent to collect
all the resources needed to achieve its goal. The negotiation protocol allows the fol-
lowing moves: Request, Accept, Refuse, Challenge, Justify, and Promise. The authors
prove some interesting properties of the protocol: soundness (the successful execu-
tion of the protocol results in a successful resource reallocation) and completeness (if
there exists a solution to the resource reallocation problem, then the protocol could
be successfully executed to achieve this solution). However, the protocol is specified
for one specific case which is the negotiation of resources and its complexity is not
specified.

Atkinson et al. (2005) define a formal and computational dialogue game protocol
for multi-agent argument over proposals for action. Called Persuasive Argument for
Multiple Agents (PARMA), the protocol uses an argumentation theory that agents use
in order to have a rational behaviour. The idea is that one agent endorses a particular
action, and seeks to persuade another agent do the same. The protocol permits actions
to be proposed, attacked, and defended by agents engaged in a persuasion interaction.
In this protocol a commitment store is associated with each participant, which stores
publicly the commitments made by the participants. The protocol introduces the post-
conditions and pre-conditions utterances that indicate post and prior commitments.
Commitments in this protocol are statements which an agent must defend if attacked,
and may not be a true expression of the agent’s beliefs or intension. Although the
protocol is equipped with an interesting denotational semantics and an implementa-
tion, its complexity is not specified. In addition, the protocol is defined for persuasion
settings and ca not be used for automated negotiation.

Let us now discuss how our persuasive negotiation protocol meets the require-
ments discussed above. On one hand, it is easy to verify that this protocol specifies
the five factors discussed by Amgoud et al. (2006) since the underlying logical lan-
guage is explicitly propositional Horn clauses, and the dialogue game specifications
clearly implements Reply, Backtracking, Turn and N_Move functions. On the other
hand, McBurney and Parsons’s factors (McBurney and Parsons 2002) are considered
as follows:

123

432 J. Bentahar, J. Labban

1. Commencement rules: The entry game implements these rules.
2. Locutions: The chaining dialogue games specify these locutions and the associated

rules.
3. Combination rules: The protocol dynamics specifies these rules.
4. Commitments: The conditions associated to the dialogue games reflect the agents

strategies and the commitment rules.
5. Termination rules: The termination condition and the termination proof illustrate

these rules.

Our persuasive negotiation protocol is fully specified according to McBurney et
al.s’ desiderata (McBurney et al. 2002). This is not the case in a good number of
other dialogue game protocols particularly from the computational complexity point
of view. The following illustrates how this protocol meets these desiderata:

1. Stated dialogue purpose: Our protocol is explicitly used for persuasive negotiation.
2. Diversity of individual purposes: The protocol permits agents to achieve their own

purposes in terms of negotiating with peers.
3. Inclusiveness: There is no elimination of agents in the protocol.
4. Transparency: The protocol’s rules and structure are shared by all agents.
5. Fairness: Agents in the protocol are treated equally and they are governed by the

same rules.
6. Clarity of argumentation theory: The argumentation theory is explicit and clear in

the protocol’s specification.
7. Separation of syntax and semantics: The protocol’s specification language sep-

arates syntax from semantics. The syntax is expressed in terms of actions and
conditions, and the semantics is defined in term of argumentation theory.

8. Rule consistency: All the rules are specified and the consistency is guaranteed by
the conditions, which are expressed in terms of arguments. Furthermore, there are
no infinite cycles and repeated locutions. The protocol termination, soundness and
completeness are also formally proved.

9. Encouragement of resolution: The normal termination is not eliminated by the
rules.

10. Discouragement of disruption: The persuasive negotiation protocol precludes dis-
ruptive behaviour by prohibiting the performance of the same communicative acts
repeatedly and the use of the same arguments.

11. Enablement of self-transformation: Self-transformation is enabled in the proto-
col since acceptance moves are allowed, so that agents can accept addressees’
arguments and thus, update their knowledge bases that contain their beliefs.

12. System simplicity: a small number of locutions and dialogue games are suggested.
The combination rules describing the protocol dynamics are also simple.

13. Computational simplicity: It is proved that the reasoning is tractable and compu-
tationally efficient (polynomial complexity).

7 Conclusion and Future Work

The contribution of this paper is the specification and implementation of autonomous
and efficient negotiation protocol between software agents. The proposed approach is

123

An Argumentation-Driven Model 433

based upon persuasive argumentation. In this approach, the agent’s reasoning capa-
bilities are linked to their ability to argue. The logical language used to specify the
protocol has the advantage of being computationally efficient and expressing the pub-
lic elements and the reasoning process that allows agents to choose an action among
several possible actions. Because our protocol is defined as a set of computational
conversation policies, this protocol has the characteristic to be more flexible than the
traditional protocols such as those used in FIPA-ACL. This flexibility results from the
fact that these policies can be easily combined to produce complete and more complex
protocols. We described the persuasive negotiation protocol and its dynamics by the
combination of five dialogue games and we presented the implementation of such a
protocol using a logical programming paradigm. We proved the formal and computa-
tional properties of this protocol (termination, soundness, and completeness) and we
discussed its computational complexity.

For future work, we plan to investigate relevance-based reasoning and consider
equipping agents with negotiation strategies using preferences and game theoretical
analysis (Rahwan and Larson 2008). Another interesting direction for future work is
verifying the proposed protocol using model checking techniques. The method we are
investigating is an automata theoretic approach based on a tableau method (Bentahar
et al. 2006). This method can be used to verify the temporal and dynamic aspects of our
protocol. Furthermore, to improve the agents’ negotiation abilities, agents can reason
on the relevance of their offers and on the chance that their arguments can be accepted
by the others. The idea is to go beyond the existing argumentation systems aiming
simply to build an argument supporting a conclusion. The challenge is how to build
a strong argument, ideally the stronger one. The idea we are investigating is to use a
relevance-based reasoning in order to allow agents to optimize both their negotiation
stances and the achievement of an agreement not only by justifying their choices, but
by selecting the best choice that could be justified. Using rhetoric techniques com-
bined with game theoretic and mechanism design strategies and some heuristics based
on relevance theory seems promising. Agents can be equipped with “good” strategies
enabling them to achieve their goals using an advanced reasoning on the utilities and
the preferences of the other agents.

Acknowledgements The authors would like to thank the reviewers for their very helpful comments and
suggestions. The first author acknowledges the financial support provided by NSERC (Canada), FQRNT,
and FQRSC (Quebec).

References

Amgoud L, Maudet N, Parsons S (2000) Modelling dialogues using argumentation. In: Proceedings of 4th
international conference on multi agent systems, pp 31–38

Amgoud L, Belabbes S, Prade H (2006) A formal general setting for dialogue protocols. In: Proceedings
of artificial intelligence: methodology, systems, and applications, pp 13–23

Atkinson K, Bench-Capon T, McBurney P (2005) A dialogue game protocol for multi-agent argument over
proposals for action. J AAMAS (Special issue on Argumentation in Multi-Agent Systems) 11(2):
153–171

123

434 J. Bentahar, J. Labban

Bench-Capon T, Atkinson K, McBurney P (2009) Altruism and agents: an argumentation based approach
to designing agent decision mechanisms. In: Proceedings of the international joint conference on
autonomous agents and multiagent systems (in press)

Bentahar J, Moulin B, Meyer J-J Ch, Chaib-draa B (2004) A logical model for commitment and argu-
ment network for agent communication (extended abstract) In: 3rd international joint conference on
autonomous agents and multi-agent systems, pp 792–799

Bentahar J, Moulin B, Chaib-draa B (2005) Specifying and implementing a persuasion dialogue game using
commitment and argument network. In: Argumentation in multi-agent systems, vol 3366(1). Springer,
pp 130–148

Bentahar J, Moulin B, Meyer J-J Ch (2006) A tableau method for verifying dialogue game protocols for agent
communication. In: Declarative agent languages and technologies, vol 3904. Springer, pp 223–244

Bentahar J, Maamar Z, Benslimane D, Thiran P (2007) An argumentation framework for communities of
Web services. IEEE Intell Syst 22(6):75–83

Brewka G (2001) Dynamic argument systems: a formal model of argumentation processes based on situa-
tion calculus. J Logic Comput 11(2):257–282

Castelfranchi C (1995) Commitments: from individual intentions to groups and organizations. In: Proceed-
ings of international conference on multi agent systems, pp 41–48

Dastani M, Hulstijn J, der Torre LV (2000) Negotiation protocols and dialogue games. In: Proceedings of
Belgium/Dutch AI conference, pp 13–20

Dignum F (ed) (2003) Advances in agent communication. In: International workshop on agent communi-
cation languages. LNAI 2922, Springer

Dowling W, Gallier JH (1984) Linear-time algorithms for testing the satisfiability of propositional horn
theories. J Logic Program 1(3):267–284

Elvang-Goransson M, Fox J, Krause P (1993) Dialectic reasoning with inconsistent information. In: Pro-
ceedings of 9th conference on uncertainty in artificial intelligence, pp 114–121

Endriss U, Maudet N, Sadri F, Toni F (2003) Logic-based agent communication protocols. In: Dignum F (ed)
Advances in agent communication. In: International workshop on agent communication languages.
LNAI 2922, Springer, pp 91–107

Fornara N, Colombetti M (2003) Protocol specification using a commitment based ACL. In: Dastani M,
Hulstijn J, der Torre LV (2000) Negotiation protocols and dialogue games. In: Proceedings of Bel-
gium/Dutch AI conference, pp 108–127

Karunatillake NC, Jennings NR, Rahwan I, Norman TJ (2005) Argument-based negotiation in a social
context. In: Proceedings of the international joint conference on autonomous agents and multi-agent
systems, pp 1331–1332

Karunatillake NC, Jennings NR, Rahwan I, McBurney P (2009) Dialogue games that agents play within a
society. Artif Intell (in press)

Kraus S, Sycara KP, Evenchik A (1998) Reaching agreements through argumentation: a logical model and
implementation. Artif Intell 104(1–2):1–69

Li C, Giampapa JA, Sycara KP (2006) Bilateral negotiation decisions with uncertain dynamic outside
options. IEEE Trans Syst Man Cybern Part C 36(1):31–44

McBurney P, Parsons S (2002) Games the agents play: A formal framework for dialogues between auton-
omous agents. J Logic, Lang Inf 11(3):1–22

McBurney P, Parsons S, Wooldridge M (2002) Desiderata for agent argumentation protocols. In: Interna-
tional conference on autonomous agents and multi-agent systems, ACM Press, pp 402–409

Moulin B, Chaib-draa B (1996) Distributed artificial intelligence: an overview. In: Jennings N, O’Hare G
(eds) Foundations of distributed artificial intelligence. Wiley, pp 3–55

Parsons S, Sierra C, Jennings N (1998) Agents tat reason and negotiate by arguing. J Logic Comput
8(3):261–292

Prakken H (2001) Relating protocols for dynamic dispute with logics for defeasible argumentation. Syn-
these 127:187–219

Rahwan I, Larson K (2008) Mechanism design for abstract argumentation. In: Proceedings of the interna-
tional joint conference on autonomous agents and multiagent systems, pp 1031–1038

Rahwan I, Sonenberg L, Jennings NR, McBurney P (2007) STRATUM: a methodology for designing
heuristic agent negotiation strategies. Appl Artif Intell 21(10)

Sadri F, Toni F, Torroni P (2001) Dialogues for negotiation: agent varieties and dialogue sequences. Intel-
ligent agent series VIII, vol 2333 of LNAI. Springer, pp 405–421

123

An Argumentation-Driven Model 435

Shakshuki E, Trudel A, Xu Y (2007) A multi-agent temporal constraint satisfaction system based on Allen’s
interval algebra and probabilities. Int J Inf Technol Web Eng 2(2):45–64

Sycara K (1998) Multiagent systems. AI Mag Am Assoc Artif Intell 19(2):79–92
Sycara K, Pannu A, Williamson M, Zeng D, Decker K (1996) Distributed intelligent agents. IEEE Expert

11(6):36–46
The Agent Oriented Software Group. Jack 4.1. 2005. http://www.agent-software.com/
Walton DN, Krabbe ECW (1995) Commitment in dialogue: basic concepts of interpersonal reasoning. State

University of New York Press, NY
Wooldridge M (2003) Reasoning about rational agents. The MIT Press, Cambridge, MA

123

http://www.agent-software.com/

	An Argumentation-Driven Model for Flexible and Efficient Persuasive Negotiation
	Abstract
	1 Introduction
	1.1 Paper Overview

	2 Conceptual Framework
	2.1 Theoretical Consideration
	2.2 Architecture
	2.3 Argumentation Framework

	3 Logical Rules for Persuasive Negotiation Protocol
	3.1 Computational Dialogue Games
	3.2 Dialogue Games for Persuasive Negotiation
	3.2.1 A Entry Game
	3.2.2 Defence Game
	3.2.3 Challenge Game
	3.2.4 Justification Game
	3.2.5 Attack Game
	3.2.6 Termination

	3.3 Protocol Dynamics

	4 Formal Analysis
	4.1 Termination, Soundness, and Completeness
	4.2 Complexity Analysis

	5 Implementation
	6 Related Work and Discussion
	7 Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

