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Abstract

Tail distribution bounds play a major role in the estimation of failure probabilities
in performance and reliability analysis of systems. They are usually estimated using
the Markov and Chebyshev’s inequalities, which represent tail distribution bounds for
a random variable in terms of its mean or variance. This paper presents the formal
verification of Markov’s and Chebyshev’s inequalities for discrete random variables us-
ing a higher-order-logic theorem prover (HOL). The paper also provides the formal
verification of mean and variance relations for some of the widely used discrete random
variables, such as Uniform(m), Bernoulli(p), Geometric(p) and Binomial(m, p) random
variables. This infrastructure allows us to precisely reason about the tail distribu-
tion properties and thus turns out to be quite useful for the analysis of systems used
in safety-critical domains, such as space, medicine or transportation. For illustration
purposes, we present the performance analysis of the Coupon Collector’s problem, a
well known commercially used algorithm.

Keywords: Higher-Order-Logic, Mechanization of Proofs, Probabilistic Analysis of
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1 Introduction

Probability theory is a tool of fundamental importance in the areas of performance and

reliability analysis. The random and unpredictable elements, found in a system that needs to

be analyzed, are mathematically modeled by appropriate random variables and performance
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and reliability issues are then judged based on the corresponding probabilistic properties.

Statistical characteristics, such as mean and variance, are the major decision making factors

as they tend to summarize the distribution functions of random variables as single numbers

that can be compared easily. During performance and reliability analysis while looking at

the failure rates of a system, it is often the case that we are interested in the probability that

a random variable assumes values that are far from its expectation or mean value. Instead

of characterizing this probability by a distribution function, it is a common practice to rely

upon bounds on this distribution, termed as tail distribution bounds, which are usually

calculated using the Markov’s or the Chebyshev’s inequalities [1].

The Markov’s inequality gives an upper bound for the probability that a non-negative

random variable X is greater than or equal to some positive constant

Pr(X ≥ a) ≤ Ex[X]

a
(1)

where Pr and Ex denote the probability and expectation functions, respectively. Markov’s

inequality gives the best tail bound possible, for a nonnegative random variable, using the

expectation for the random variable only [2]. This bound can be improved upon if more

information about the distribution of random variable is taken into account. Chebyshev’s

inequality is based on this principle and it presents a significantly stronger tail bound in

terms of variance of the random variable

Pr(|X − Ex[X]| ≥ a) ≤ V ar[X]

a2
(2)

where V ar denotes the variance function. The Chebyshev’s inequality allows us to bound

the deviation of the random variable from its expectation and it can be calculated using

the random variable’s mean and variance only. Due to the widespread interest in failure

probabilities and the ease of calculation of tail distribution bounds using Equations 1 and 2,

Markov and Chebyshev’s inequalities have now become one of the core techniques in modern

probabilistic analysis.

Today, simulation is the most commonly used computer based probabilistic analy-

sis technique. Most simulation softwares provide a programming environment for defining

functions that approximate random variables for probability distributions. The random or

unpredictable elements in a given system are modeled by these functions and the system is

analyzed using computer simulation techniques, such as the Monte Carlo method [3], where

the main idea is to approximately answer a query on a probability distribution by analyzing

a large number of samples. Statistical quantities, such as mean and variance, and tail dis-

tribution bounds may then be calculated, based on the data collected during the sampling
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process, using their mathematical relations in a computer. Due to the inaccuracies intro-

duced by computer arithmetic operations and the inherent nature of simulation techniques,

the simulation based probabilistic analysis results can never be termed as 100% accurate.

McCullough [4, 5] proposed a collection of intermediate-level tests for assessing the numerical

reliability of simulation based probabilistic analysis tools and uncovered flaws in some of the

mainstream statistical packages. This inaccuracy poses a serious problem in highly sensitive

and safety critical applications, such as space travel, medicine or transportation, where a

mismatch between the predicted and the actual system performance may result in either

inefficient usage of the available resources or paying higher costs to meet some performance

or reliability criteria unnecessarily. Besides the inaccuracy of the results, another major

limitation of simulation based probabilistic analysis is the enormous amount of CPU time

requirement for attaining meaningful estimates. This approach generally requires hundreds

of thousands of simulations to calculate the probabilistic quantities and becomes impractical

when each simulation step involves extensive computations.

In order to overcome the limitations of the simulation based approaches, it has been

proposed in [6] to conduct probabilistic analysis in a higher-order logic interactive theorem

prover HOL [7]. Higher-order logic is a system of deduction with a precise semantics and

can be used for the development of almost all classical mathematics theories. Interactive

theorem proving is the field of computer science and mathematical logic concerned with

computer based formal proof tools that require some sort of human assistance. Both discrete

[8] and continuous [9] random variables can be formalized in higher-order-logic and their

probabilistic and statistical characteristics, such as mean and variance, can be verified using

an interactive theorem prover [6, 10]. Due to the inherent soundness of this approach, the

probabilistic analysis carried out in this way is capable of providing exact answers. In order

to be able to formally reason about tail distribution properties, we outlined an approach

in [11] that allows us to formalize and verify the Markov’s and Chebyshev’ inequalities for

discrete random variables in HOL. In the current paper, we mainly extend upon this approach

and present the HOL proof steps in detail for the verification of Markov’s and Chebyshev’

inequalities. We also verify the mean and variance relations for the widely used discrete

random variables: Uniform(m), Bernoulli(p), Geometric(p) and Binomial(m, p), in HOL.

Thus, the main contribution of this paper is to extend the HOL libraries for probabilistic

analysis with the ability to precisely reason about tail distribution bounds and thus enhance

the capabilities of HOL as a successful probabilistic analysis framework.

In order to illustrate the practical effectiveness of the formalization presented in this

paper, we utilize the above results to conduct the performance analysis of the Coupon

Collector’s problem [2], which is a well known commercially used algorithm in computer

science, in HOL. Coupon Collector’s problem is motivated by “collect all n coupons and
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win” contests. The problem is to find the number of trials that we need to find all the n

coupons, assuming that a coupon is drawn independently and uniformly at random from n

possibilities. We first present a formalization of the Coupon Collector’s problem using the

Geometric random variable. Using this model, we illustrate the process of formally reasoning

about the tail distribution properties of the Coupon Collector’s problem using the formally

verified mean and variance relations along with the Markov’s and Chebyshev’s inequalities,

in HOL.

The rest of the paper is organized as follows. Section 2 gives a review of the related

work. In Section 3, we provide some preliminaries including a brief introduction to the

HOL theorem prover and an overview of modeling random variables and verifying their

probabilistic and statistical properties in HOL. Next, we present the HOL formalization and

verification of the Markov’s and the Chebyshev’s inequalities for discrete random variables

in Section 4. The results are found to be in good agreement with existing theoretical paper-

and-pencil counterparts. Then, we present the verification of mean and variance relations

for some commonly used discrete random variables in Section 5. The analysis of the Coupon

Collector’s problem is presented in Section 6. Finally, Section 7 concludes the paper.

2 Related Work

Nȩdzusiak [12] and Bialas [13] were among the first ones to formalize some probability

theory in higher-order-logic. Hurd [8] extended their work and developed a framework for

the verification of probabilistic algorithms in the HOL theorem prover. He demonstrated

the practical effectiveness of his formal framework by successfully verifying the sampling

algorithms for four discrete probability distributions, some optimal procedures for generating

dice rolls from coin flips, the symmetric simple random walk and the Miller-Rabin primality

test based on the corresponding probability distribution properties. Hurd et. al [14] also

formalized the probabilistic guarded-command language (pGCL) in HOL. The pGCL contains

both demonic and probabilistic nondeterminism and thus makes it suitable for reasoning

about distributed random algorithms. Celiku [15] built upon the formalization of the pGCL

to mechanize the quantitative Temporal Logic (qtl) and demonstrated the ability to verify

temporal properties of probabilistic systems in HOL. An alternative method for probabilistic

verification in higher-order logic has been presented by Audebaud et. al [16]. Instead of

using the measure theoretic concepts of probability space, as is the case in Hurd’s approach,

Audebaud et. al based their methodology on the monadic interpretation of randomized

programs as probabilistic distribution. This approach only uses functional and algebraic

properties of the unit interval and has been successfully used to verify a sampling algorithm
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of the Bernoulli distribution and the termination of various probabilistic programs in the

Coq theorem prover.

Building upon Hurd’s formalization framework [8], we have been able to successfully

verify the sampling algorithms of a few continuous random variables [9] and the classical

Cumulative Distribution Function (CDF) properties [17], which play a vital role in verifying

arbitrary probabilistic properties of both discrete and continuous random variables. The

sampling algorithms for discrete random variables are either guaranteed to terminate or they

satisfy probabilistic termination, meaning that the probability that the algorithm terminates

is 1. Thus, they can be expressed in HOL by either well formed recursive functions or the

probabilistic while loop [8]. On the other hand, the implementation of continuous random

variables requires non-terminating programs and hence calls for a different approach. In [9],

we presented a methodology that can be used to formalize any continuous random variable

for which the inverse of the CDF can be expressed in a closed mathematical form. The core

components of our methodology are the Standard Uniform random variable and the Inverse

Transform method [18], which is a well known nonuniform random generation technique for

generating nonuniform random variates for continuous probability distributions for which the

inverse of the CDF can be represented in a closed mathematical form. Using the formalized

Standard Uniform random variable and the Inverse Transform method, we were able to

formalize continuous random variables, such as Exponential, Rayleigh, etc. and verify their

correctness by proving the corresponding CDF properties in HOL.

The formalization, mentioned so far, allows us to express random behaviors as random

variables in a higher-order-logic theorem prover and verify the corresponding quantitative

probability distribution properties, which is a significant aspect of a probabilistic analysis

framework. With the probability distribution properties of a random variable, such as the

Probability Mass Function (PMF) and the CDF, we are able to completely characterize the

behavior of their respective random variables. Though for comparison purposes, it is fre-

quently desirable to summarize the characteristic of the distribution of a random variable

by a single number, such as its expectation or variance, rather than an entire function. For

example, it is more interesting to find out the expected value of the runtime of an algorithm

for an NP-hard problem, rather than the probability of the event that the algorithm suc-

ceeds within a certain number of steps. In [6, 10], we tackled the verification of mean and

variance in HOL for the first time. We extended Hurd’s formalization framework with a

formal definition of expectation, which can be utilized to formalize and verify the mean and

variance characteristics associated with discrete random variables that attain values in pos-

itive integers only. In the current paper, we take the HOL probabilistic analysis framework

further ahead by presenting the verification of Markov and Chebyshev’s inequalities, which

allows us to verify tail distribution bounds in HOL and is thus a novelty that has not been
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available so far.

Besides theorem proving, another formal approach that is capable of providing ex-

act solutions to probabilistic properties is probabilistic model checking [19, 20]. The most

promising feature of probabilistic model checking is the ability to perform the analysis au-

tomatically. On the other hand, it is limited to systems that can only be expressed as

a probabilistic finite state machine. In contrast, the theorem proving based probabilistic

verification is an interactive approach but is capable of handling all kinds of probabilistic

systems including the unbounded ones. Similarly, to the best of our knowledge, it is not possi-

ble to precisely evaluate statistical quantities, such as mean or variance, and tail distribution

bounds, using probabilistic model checking so far. The most that has been reported in this

domain is the approximate evaluation of mean values. Some probabilistic model checkers,

such as PRISM [21] and VESTA [22], offer the capability of verifying expected values in a

semi-formal manner. For example, in the PRISM model checker, the basic idea is to aug-

ment probabilistic models with cost or rewards: real values associated with certain states or

transitions of the model. This way, the expected value properties, related to these rewards,

can be analyzed by PRISM. The expectation values computed are expressed in a computer

based notation, such as fixed or floating point numbers, which introduces some degree of

approximation in the results. Similarly, the meaning ascribed to expected properties is, of

course, dependent on the definitions of the rewards themselves and thus there is always some

risk of verifying false properties. On the other hand, the proposed theorem proving based

approach allows us to formally verify the statistical quantities, such as mean or variance, or

tail distribution bounds related to the random variables without suffering from the above

mentioned issues. Another major limitation of the probabilistic model checking approach

is the state space explosion [23], which is not an issue with the proposed theorem proving

based probabilistic analysis approach.

3 Preliminaries

In this section, we provide an overview of the HOL theorem prover and of modeling random

variables and verifying their probabilistic and statistical properties in HOL. The intent is

to provide a brief introduction to these topics along with some notation that is going to be

used in the next sections.
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3.1 HOL Theorem Prover

The HOL theorem prover, developed at the University of Cambridge, UK, is an interactive

theorem prover which is capable of conducting proofs in higher-order logic. It utilizes the

simple type theory of Church [24] along with Hindley-Milner polymorphism [25] to implement

higher-order logic. HOL has been successfully used as a verification framework for both

software and hardware as well as a platform for the formalization of pure mathematics. It

supports the formalization of various mathematical theories including sets, natural numbers,

real numbers, measure and probability. The HOL theorem prover includes many proof

assistants and automatic proof procedures. The user interacts with a proof editor and

provides it with the necessary tactics to prove goals while some of the proof steps are solved

automatically by the automatic proof procedures.

In order to ensure secure theorem proving, the logic in the HOL system is represented

in the strongly-typed functional programming language ML [26]. The ML abstract data

types are then used to represent higher-order-logic theorems and the only way to interact

with the theorem prover is by executing ML procedures that operate on values of these

data types. Users can prove theorems using a natural deduction style by applying inference

rules to axioms or previously generated theorems. The HOL core consists of only 5 basic

axioms and 8 primitive inference rules, which are implemented as ML functions. Soundness

is assured as every new theorem must be created from these basic axioms and primitive

inference rules or any other pre-existing theorems/inference rules.

We selected the HOL theorem prover for the proposed formalization mainly because of

its inherent soundness and ability to handle higher-order logic and in order to benefit from

the built-in mathematical theories for conducting probabilistic analysis. Table 1 summarizes

some of the HOL symbols used in this paper and their corresponding mathematical inter-

pretation [27].

3.2 Probabilistic Analysis in HOL

Random variables are the core component of conducting probabilistic performance analysis.

They can be formalized in higher-order logic as deterministic functions with access to an

infinite Boolean sequence B∞; a source of infinite random bits [8]. These deterministic

functions make random choices based on the result of popping the top most bit in the infinite

Boolean sequence and may pop as many random bits as they need for their computation.

When the functions terminate, they return the result along with the remaining portion of

the infinite Boolean sequence to be used by other programs. Thus, a random variable which
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takes a parameter of type α and ranges over values of type β can be represented in HOL by

the function.

F : α → B∞ → β ×B∞

As an example, consider the Bernoulli(1
2
) random variable that returns 1 or 0 with

equal probability 1
2
. It can be formalized in HOL as follows

` bit = λs. (if shd s then 1 else 0, stl s)

where s is the infinite Boolean sequence and shd and stl are the sequence equivalents of

the list operation ’head’ and ’tail’. The probabilistic programs can also be expressed in the

more general state-transforming monad where states are infinite Boolean sequences.

` ∀ a s. unit a s = (a,s)

` ∀ f g s. bind f g s = let (x,s’)← f(s) ∈ g x s’

The unit operator is used to lift values to the monad, and the bind is the monadic analogue

of function application. All monad laws hold for this definition, and the notation allows us

to write functions without explicitly mentioning the sequence that is passed around, e.g.,

function bit can be defined as

` bit monad = bind sdest (λb. if b then unit 1 else unit 0)

where sdest gives the head and tail of a sequence as a pair (shd s,stl s). [8] also presents

some formalization of the mathematical measure theory in HOL, which can be used to define

a probability function P from sets of infinite Boolean sequences to real numbers between 0

and 1. The domain of P is the set E of events of the probability. Both P and E are defined

using the Carathéodory’s Extension theorem, which ensures that E is a σ-algebra: closed

under complements and countable unions. The formalized P and E can be used to prove

probabilistic properties for random variables such as

` P {s | fst (bit s) = 1} = 1
2

where the function fst selects the first component of a pair and {x|C(x)} represents a set

of all x that satisfy the condition C in HOL.

The measurability and independence of a probabilistic function are important concepts

in probability theory. A property indep, called strong function independence, is introduced
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in [8] such that if f ∈ indep, then f will be both measurable and independent. It has been

shown in [8] that a function is guaranteed to preserve strong function independence, if it

accesses the infinite Boolean sequence using only the unit, bind and sdest primitives. All

reasonable probabilistic programs preserve strong function independence, and these extra

properties are a great aid to verification.

The above mentioned approach has been successfully used to formalize both discrete

[8, 6] and continuous random variables [9] and verify their correctness in terms of their

probability distribution properties, such as PMF or CDF relations. It is often the case that

we are more interested in verifying statistical quantities, such as mean or variance, rather

than the distribution function of a random variable. For this purpose, [10] presents a higher-

order-logic formalization of the following definition of expectation for a function of a random

variable

Ex[f(R)] =
∞∑

n=0

f(n)Pr(R = n) (3)

where Ex denotes the expectation function, R is the random variable and f represents a

function of the random variable R. Equation 3 has been formalized, for a discrete random

variable that attains values in positive integers only and a function that maps this random

variable to a real value, in [10] as follows

Definition 1. Expectation of Function of a Discrete Random Variable

expec fn: (num → real) → ((num → bool) → num× (num → bool)) → real

` ∀ f R. expec fn f R = suminf (λn. (f n) P{s | fst(R s) = n})

where the mathematical notions of the probability function P and random variable R have

been inherited from [8], as presented above, and suminf represents the HOL formalization

of the infinite summation of a real sequence [28]. The function expec fn accepts two param-

eters, the function f and the positive integer valued random variable R and returns a real

number. The expected value of a discrete random variable that attains values in positive

integers can now be defined as a special case of the above definition

Definition 2. Expectation of Discrete Random Variable

expec: ((num → bool) → num× (num → bool)) → real

` ∀ R. expec R = expec fn (λ n. n) R

The function, expec, accepts a positive integer valued random variable R and returns a real

number. Using the above two definitions, [10] also presents a formal definition of variance in
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HOL for the case of discrete random variables that can attain values in the positive integers

only.

Definition 3. Variance of a Discrete Random Variable

variance: ((num → bool) → num× (num → bool)) → real

` ∀ R. variance R = expec fn (λn. (n - expec R)2) R

The function variance accepts a discrete random variable R that attains values in the

positive integers only and returns a real number.

The verification of some useful properties related to expectation and variance of discrete

random variables is also presented in [10]. One such property (Equation 4) gives an alternate

relationship for variance that is quite useful for the verification of variance properties for

discrete random variables in HOL, as will be seen in Section 5 of this paper

∀ R. V ar[R] = E[R2]− (E[R])2 (4)

where V ar denotes variance and R is a discrete random variable that can attain values in

the positive integers only. This property can be stated in HOL using the formal definitions

of variance and expectation as follows.

Theorem 1. Variance in Terms of Moments

` ∀ R. (R ∈ indep fn) ∧ (summable(λn. n P{s | fst (R s) = n})) ∧
(summable(λn. n2 P{s | fst (R s) = n})) ⇒

(variance R = expec fn (λn. n2) R - (expec R)2)

The assumptions in Theorem 1 ensure that the random variable R is measurable and its

expectation and second moment are well defined, i.e., the summations corresponding to the

expectation and second moment of variable R are convergent.

The other two properties that are verified in [10], which will be used in this paper, are

linearity of expectation and variance properties [29]. By these properties, the expectation

or variance of a sum of independent random variables equals the sum of their individual

expectations or variances, respectively.

Ex[
n∑

i=1

Ri] =
n∑

i=1

Ex[Ri] (5)

V ar[
n∑

i=1

Ri] =
n∑

i=1

V ar[Ri] (6)
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The HOL versions of these properties are as follows

Theorem 2. Linearity of Expectation Property

` ∀ L. (∀ R. (mem R L) ⇒ ((R ∈ indep fn) ∧
(summable (λn. n P{s | fst(R s) = n})))) ⇒

(expec (sum rv lst L) =∑length L

n=0 (expec (el (length L - (n+1)) L)))

Theorem 3. Linearity of Variance Property

` ∀ L. (∀ R. (mem R L) ⇒ ((R ∈ indep fn) ∧
(summable (λn. n P{s | fst(R s) = n}))))∧
(summable (λn. n2 P{s | fst(R s) = n})))) ⇒

(variance (sum rv lst L) =∑length L

n=0 (variance (el (length L - (n+1)) L)))

where the function length, defined in the HOL list theory, returns the length of its list

argument. The function el, defined in the list theory, accepts a positive integer number,

say n, and a list and returns the nth element of the given list. The function mem, also

defined in the list theory, accepts a list and an element and returns True if the element is

a member of the given list. The function sum rv lst, given in [10], accepts a list of discrete

random variables and returns their sum such that the outcome of each random variable is

independent of all the others and is defined as follows

Definition 4. Summation of n Random Variables

sum rv lst: ((num → bool) → num× (num → bool)) list →
((num → bool) → num× (num → bool))

` (sum rv lst [] = unit 0) ∧
∀ h t. (sum rv lst (h::t) =

bind h (λa. bind (sum rv lst t) (λb. unit (a + b)))

where :: is the list cons operator in HOL that allows us to add a new element to a list.

The assumptions in Theorems 2 and 3 ensure that all random variables in the list of random

variables, L, are measurable and their expectation is well-defined, in the case of Theorem 2,

and their expectation and the second moment is well-defined in the case of Theorem 3.

4 Verification of Markov and Chebyshev’s Inequalities

In this section, we present the verification of Markov and Chebyshev’s inequalities in HOL

using the probabilistic analysis framework, outlined in the previous section.
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4.1 Verification of Markov’s Inequality in HOL

Markov’s inequality, given in Equation 1, utilizes the definition of expectation to obtain a

weak tail bound and can be expressed in HOL for a measurable discrete random variable,

which attains values in positive integers only, with a well-defined expectation as follows.

Theorem 4. Markov’s Inequality

` ∀ R a. (0 < a) ∧ (R ∈ indep fn) ∧
(summable(λn. n P{s | fst (R s) = n})) ⇒

P {s | fst (R s) ≥ a} ≤ (expec R)
a

where a represents a real number.

We proceed with the proof of Theorem 4 in HOL by rewriting its proof goal with the

definition of expectation, given in Definition 2,

P{s|fst(R s) ≥ a} ≤
lim
k→∞

(
∑k

n=0(n P{s|fst(R s) = n}))
a

(7)

Now, the set on the left hand side (LHS) of the above inequality can be expressed as follows

{s|fst(R s) ≥ a} = {s|fst(R s) ≥ dae} (8)

where dxe denotes the ceiling of x, which represents the closest integer for a real number x

that is greater than or equal to x. The above equation is True because the random variable

R acquires values in positive integers only. Thus, all possible values of the random variable

R that are greater than a are also greater than or equal to dae and vice versa. Equation 8

can now be used, along with some arithmetic reasoning in HOL, to rewrite our proof goal

(Equation 7) as follows

P{s|fst(R s) ≥ dae} ≤ lim
k→∞

(
k∑

n=0

(
n

dae P{s|fst(R s) = n})) (9)

Next, we use the complement law of the probability function P (A) = 1−P (A), which is for-

mally verified in [8], to rewrite the LHS of the above inequality as 1− P{s|fst(R s) < dae}.
The expression P{s|fst(R s) < dae} can be further simplified using the additive law of prob-

ability P (A ∪ B) = P (A) + P (B), also verified in [8], as
∑dae

n=0 P{s|fst(R s) = n}. This

simplification allows us to rewrite the subgoal, given in Equation 9, as follows
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1−
dae∑
n=0

P{s|fst(R s) = n} ≤ lim
k→∞

(
k∑

n=0

(
n

dae P{s|fst(R s) = n})) (10)

It can be proved in HOL that lim
k→∞

(
∑k

n=0 P{s|fst(R s) = n}) = 1, which allows us to rewrite

the LHS of the above inequality as the limit value of the real sequence
∑k

n=dae P{s|fst(R s) =

n} as k approaches infinity. Similarly, the expression lim
k→∞

(
∑k

n=dae(
n
dae P{s|fst(R s) = n}))

can be proved to be less than or equal to the right hand side (RHS) of the above inequality,

which allows us to rewrite the subgoal, given in Equation 10, as follows

lim
k→∞

(
k∑

n=dae
P{s|fst(R s) = n}) ≤ lim

k→∞
(

k∑

n=dae
(
n

dae P{s|fst(R s) = n})) (11)

Now, we verified in HOL that for all values of k, the expression (
∑k

n=dae P{s|fst(R s) = n}),
found on the LHS of the above inequality, is less than or equal to the expression (

∑k

n=dae(
n
dae P

{s|fst(R s) = n})), found on its RHS. This reasoning allows us to prove the limit relation-

ship, given in Equation 11, between these expressions using the properties of limit of a real

sequence, formalized in [28], and thus concludes the proof of Markov’s inequality, given in

Theorem 4.

4.2 Verification of Chebyshev’s Inequality in HOL

Chebyshev’s inequality (Equation 2) utilizes the variance and the mean characteristics to

derive a significantly stronger tail bound than the one obtained by Markov’s inequality. We

verified the Chebyshev’s inequality in HOL by first verifying one of its variants [1]

Pr(|X − Ex[X]| ≥ a.σ[X]) ≤ 1

a2
(12)

where σ denotes the standard deviation function, which returns the square root of variance

for the given random variable. This property can be expressed in HOL for a measurable

discrete random variable, which attains values in positive integers only, with well-defined

first and second moments as follows

Theorem 5. Chebyshev’s Inequality in terms of Standard Deviation

` ∀ R a. (0 < a) ∧ (0 < variance R) ∧ (R ∈ indep fn) ∧
(summable(λn. n P{s | fst (R s) = n})) ∧
(summable(λn. n2 P{s | fst (R s) = n})) ⇒
P {s | abs (fst (R s) - expec R) ≥ a std dev R} ≤ 1

a2
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where the HOL function abs, defined in [28], returns the absolute value of a real number.

The HOL function std dev, defined as follows, returns the square root of the variance for a

discrete random variable, which attains values in positive integers only

Definition 5. Standard Deviation of a Discrete Random Variable

std dev: ((num → bool) → num× (num → bool)) → real

` ∀ R. std dev R = sqrt (variance R)

where the HOL function sqrt, defined in [28], returns the square root of a real number. It is

important to note that we have used the assumption 0 < variance R in Theorem 5 because

variance is a positive quantity and there is no point in calculating the tail distribution bound

for random variables with variance equal to 0.

We proceed with the proof of Theorem 5 in HOL by splitting its proof goal, using the

transitivity property of ≤, i.e., (a ≤ b ∧ b ≤ c ⇒ a ≤ c), into two subgoals as follows

P{s|abs(fst(R s)− µR) ≥ aσR} ≤ P{s|(fst(R s)) ≥ µR + aσR}+ P{s|(fst(R s)) ≤ µR − aσR}
(13)

P{s|(fst(R s)) ≥ µR + aσR}+ P{s|(fst(R s)) ≤ µR − aσR} ≤ 1

a2
(14)

where the symbols µR and σR denote the HOL functions for expectation and standard

deviation for a random variable R.

The sets {s|(fst(R s)) ≥ µR + aσR} and {s|(fst(R s)) ≤ µR − aσR}, found on the RHS

of Equation 13, can be proved to be disjoint because the term aσR is greater than 0. This

fact along with the additive law of probability P (A∪B) = P (A)+P (B) allows us to rewrite

Equation 13 as follows

P{s|abs(fst(R s)− µR) ≥ aσR} ≤ P{s|(fst(R s)) ≥ µR + aσR} ∪ {s|(fst(R s)) ≤ µR − aσR}
(15)

Now, using arithmetic reasoning, it can be proved in HOL that the set on the LHS of the

inequality in Equation 15 is a subset of the set that appears on the RHS. We used this fact

along with the increasing probability law P (A ⊆ B) ⇒ P (A) ≤ P (B) to verify Equation 15

and this concludes the proof of Equation 13.

The next step in the verification of Theorem 5 is to prove the inequality given in

Equation 14. We proceed in this direction by replacing the terms on the LHS of the inequality
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in Equation 14 as follows

P{s|fst(R s) ≥ dµR + aσRe}+ P{s|fst(R s) < dµR − aσRe} ∪ {s|fst(R s) = µR − aσR} ≤ 1

a2
(16)

The above step is valid due to the transitivity property of ≤, as the sum of the terms

on the LHS of the inequality in Equation 16 is greater than the sum of the terms on

the LHS of the inequality in Equation 14. This is the case because of the increasing

probability law and the fact that the set {s|(fst(R s)) ≥ µR + aσR} is a subset of the set

{s|(fst(R s)) ≥ dµR + aσRe} and the set {s|(fst(R s)) ≤ µR − aσR} is a subset of the set

{s|(fst(R s)) < dµR − aσRe} ∪ {s|(fst(R s)) = µR− aσR}. Next, we can rewrite Equation

16, using arithmetic reasoning, as follows

σ2
Ra

2(P{s|fst(R s) ≥ dµR + aσRe}+
P{s|fst(R s) < dµR − aσRe} ∪ {s|fst(R s) = µR − aσR}) ≤ σ2

R

(17)

where the symbol σ2
R denotes the variance of random variable R. In order to prove the above

inequality we try to verify the following relationship regarding its second term on the LHS.

σ2
Ra

2(P{s|fst(R s) < dµR − aσRe} ∪ {s|fst(R s) = µR − aσR}) ≤
dµR+aσRe∑

n=0

(n− µR)
2P{s|fst(R s) = n}

(18)

The two sets, in the union, on the LHS of the above inequality are disjoint, which allows us

to rewrite the expression on the LHS as a sum of two probabilities, using the additive law

of probability. The first probability term, out of these two terms, can then be expressed as

a sum
∑dµR−aσRe

n=0 σ2
Ra

2P{s|fst(R s) = n} using the additive law of probability. Whereas, the

expression on the RHS of the above inequality can be split into the sum of two terms, using

the definition of the summation function in HOL, as follows
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dµR−aσRe∑
n=0

σ2
Ra

2P{s|fst(R s) = n}+ σ2
Ra

2P{s|fst(R s) = µR − aσR}) ≤

dµR−aσRe∑
n=0

(n− µR)
2P{s|fst(R s) = n}+

dµR+aσRe−dµR−aσRe∑

n=dµR−aσRe
(n− µR)

2P{s|fst(R s) = n}
(19)

Now the above inequality can be proved in HOL, as both the terms on the LHS of the above

equation are less than or equal to the corresponding two terms on the RHS. This result

allows us to rewrite the inequality, given in Equation 17, as follows

σ2
Ra

2P{s|fst(R s) ≥ dµR + aσRe}+

dµR+aσRe∑
n=0

(n− µR)
2P{s|fst(R s) = n} ≤ σ2

R (20)

using the transitivity property of ≤. Now, using the definition of variance and rearranging

the terms, based on arithmetic reasoning, the above equation can be rewritten as follows

P{s|fst(R s) ≥ dµR + aσRe} ≤

lim
k→∞

(
k∑

n=0

(n− µR)
2

σ2
Ra

2
P{s|fst(R s) = n})−

dµR+aσRe∑
n=0

(n− µR)
2

σ2
Ra

2
P{s|fst(R s) = n}

(21)

The probability term on the LHS of the above inequality can be expressed in terms of the

limit of the real sequence
∑k

n=dµR+aσRe P{s|fst(R s) = n} as k approaches infinity, using the

same reasoning as was used for the case of the proof of Markov’s inequality in Equations 9

to 11. Similarly, the expression on the RHS of the above inequality can also be expressed in

terms of a limit of a real sequence, which allows us to rewrite Equation 21 as follows

lim
k→∞

(
k∑

n=dµR+aσRe
P{s|fst(R s) = n}) ≤ lim

k→∞
(

k∑

n=dµR+aσRe

(n− µR)
2

σ2
Ra

2
P{s|fst(R s) = n}) (22)

It can be verified in HOL that for all values of k, the expression
∑k

n=dµR+aσRe P{s|fst(R s) = n}
found on the LHS of the above inequality, is less than or equal to the expression

∑k

n=dµR+aσRe
(n−µR)2

σ2
Ra

2 P{s|fst(R s) = n}, found on its RHS. This reasoning allows us to prove the limit

relationship, given in Equation 22, between these expressions using the properties of limit
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of a real sequence, formalized in [28], which completes the proof of the inequality given in

Equation 14 and thus concludes the proof of Theorem 5 as well.

Theorem 5 can now be used to verify the Chebyshev’s inequality, given in Equation 2, in

HOL as a special case when the constant a is assigned the value a
std dev R

. The corresponding

HOL theorem can be expressed for a measurable discrete random variable, which attains

values in positive integers only, with well-defined first and second moments as follows

Theorem 6. Chebyshev’s Inequality

` ∀ R a. (0 < a) ∧ (0 < variance R) ∧ (R ∈ indep fn) ∧
(summable(λn. n P{s | fst (R s) = n})) ∧
(summable(λn. n2 P{s | fst (R s) = n})) ⇒

P {s | abs (fst (R s) - expec R) ≥ a} ≤ variance R
a2

Theorems 5 and 6 represent the HOL theorems corresponding to Markov’s and Cheby-

shev’s inequalities and the results are found to be in good agreement with the existing

theoretical paper-and-pencil counterparts given in Equations 1 and 2, respectively. These

formally verified theorems allow us to reason about tail distribution bounds within the HOL

theorem prover as will be demonstrated in Section 6 of this paper.

5 Verification of Mean and Variance for Discrete Dis-

tributions

In this section, we utilize the formal definitions of expectation and variance, given in Def-

initions 2 and 3, respectively, to verify the mean and variance properties of Uniform(m),

Bernoulli(p), Geometric(p) and Binomial(m, p) random variables in HOL. The formally ver-

ified mean and variance relations of these discrete random variables can in turn be used,

along with the formally verified Markov and Chebyshev’s inequalities presented in the last

section, to formally reason about the tail distribution properties of their respective random

variables.

5.1 Uniform(m) Random Variable

The Uniform(m) random variable assigns equal probability to each element in the set {0, 1, · · ·
, (m − 1)} and thus ranges over a finite number of positive integers. A sampling algorithm

for the Uniform(m) can be found in [8], which has been proven correct by verifying the

corresponding PMF property in HOL
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` ∀ m x. x < m ⇒ P {s | fst (prob unif m s) = x} = 1
m

where prob unif represents the higher-order-logic function for the Uniform(m) random vari-

able.

Now, we want to formally verify the mean characteristic for the Uniform(m), which

can be expressed in HOL as follows.

Theorem 7. Expectation of Uniform(m) Random Variable

` ∀ m. expec (λs. prob unif (m+1) s) = m
2

We proceed with the proof of this theorem in HOL by rewriting it with the definition of

expectation

lim
k→∞

(
k∑

n=0

n P{s | fst(prob unif (m + 1) s) = n}) =
m

2
(23)

Next, we verified in HOL that the Uniform(m) random variable can never acquire a value

greater than or equal to m using its PMF property.

` ∀ m x. (m + 1) ≤ x ⇒ P{s | fst(prob unif (m + 1) s) = x} = 0

This property allows us to rewrite the infinite summation of Equation 23 in terms of a finite

summation over (m + 1) values using the properties verified in the HOL theory of limit of a

real sequence.

m+1∑
n=0

n P{s | fst(prob unif (m + 1) s) = n} =
m

2
(24)

The above equation can be verified using the PMF of the Uniform(m) random variable along

with some basic properties of the summation function in HOL.

Next, we formally verify the variance characteristic for the Uniform(m) random vari-

able, which can be expressed in HOL as follows.

Theorem 8. Variance of Uniform(m) Random Variable

` ∀ m. variance (λs. prob unif (m+1) s) =
(m+1)2−1

12

The proof goal of Theorem 8 can be simplified using the variance relation given in Theorem

1, and the definition of expectation of a function of a random variable (Definition 1) as

follows
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∞∑
n=0

n2P{s|fst(prob unif (m + 1) s) = n} − (expec(λs. prob unif (m + 1) s))2

=
(m + 1)2 − 1

12

(25)

Now, the second moment of the Uniform(m) random variable, i.e., the first term on the LHS

of the above equation, can be verified in HOL to be equal to m(2m+1)
2

, using the same approach

as was used for the verification of its expectation relation in Theorem 7. This result and

some arithmetic reasoning, allows us to verify Equation 25 and thus Theorem 8 in HOL.

5.2 Bernoulli(p) Random Variable

The Bernoulli(p) random variable models an experiment with two outcomes; success and

failure, whereas the parameter p represents the probability of success. A sampling algorithm

of the Bernoulli(p) random variable has been formalized in [8] as the function prob bern

such that it returns True with probability p and False otherwise. It has also been verified

to be correct by proving the corresponding PMF property in HOL.

` ∀ p. 0 ≤ p ∧ p ≤ 1 ⇒ P {s | fst (prob bern p s)} = p

The Bernoulli(p) random variable ranges over 2 values of Boolean data type. The

expectation property of these kind of discrete random variables, which range over a finite

number of values of a different data type than positive integers, can be verified in HOL by

mapping all their values to distinct positive integers. In the case of Bernoulli(p) random

variable, we redefined the function prob bern such that it returns positive integers 1 and 0

instead of the Boolean quantities True and False, respectively, i.e., the range of the random

variable was changed from Boolean data type to positive integers. It is important to note

that this redefinition does not change the distribution properties of the given random vari-

able. The expectation property for this alternate definition of Bernoulli(p) random variable,

prob bernN, can be expressed in HOL as follows

Theorem 9. Expectation of Bernoulli(p) Random Variable

` ∀ p. 0 ≤ p ∧ p ≤ 1 ⇒ expec (λs. prob bernN p s) = p

Theorem 9 can now be verified using the same procedure used for the case of random

variables that range over a finite number of positive integers, such as the Unform(m) random

variable. In the case of Bernoulli(p) random variable, we were able replace the infinite
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summation in the definition of expectation with the summation of the first two values of

the corresponding real sequence using the HOL theory of limit of a real sequence. This

substitution along with the PMF property of the Bernoulli(p) random variable and some

arithmetic reasoning allowed us to verify Theorem 9 in HOL.

We also verified the variance of the Bernoulli(p) random variable in HOL, using a

similar approach that we used for the verification of the variance relation for the Unform(m)

random variable and the HOL theorem is given below

Theorem 10. Variance of Bernoulli(p) Random Variable

` ∀ p. 0 ≤ p ∧ p ≤ 1 ⇒ variance (λs. prob bernN p s) = p (1-p)

5.3 Geometric(p) Random Variable

The Geometric(p) random variable can be defined as the index of the first success in an in-

finite sequence of Bernoulli(p) trials [30]. Therefore, the Geometric(p) distribution may be

sampled by extracting random bits from the function prob bern, explained in the previous

section, and stopping as soon as the first False is encountered and returning the number of

trials performed till this point. Thus, the Geometric(p) random variable ranges over a count-

ably infinite number of positive integers numbers. This fact makes it different from other

random variables that we have considered so far. Based on the above sampling algorithm,

the Geometric(p) random variable has been formalized in [6] as the function prob geom,

which has also been verified to be correct by proving the corresponding PMF property in

HOL.

` ∀ n p. 0 < p ∧ p ≤ 1 ⇒
P {s | fst (prob geom p s) = (n + 1)} = p (1 - p)n

It is important to note that p, which represents the probability of success for the

Geometric(p) or the probability of obtaining False from the Bernoulli(p) random variable,

cannot be assigned a value equal to 0 as this will lead to a non-satisfying success condition

for the Geometric random variable.

The expectation theorem for the Geometric(p) random variable can now be expressed

in HOL as follows

Theorem 11. Expectation of Geometric(p) Random Variable

` ∀ p. 0 < p ∧ p ≤ 1 ⇒ expec (λs. prob geom p s) = 1
p
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Rewriting the above proof goal with the definition of expectation and simplifying using the

PMF relation for the Geometric(p) random variable along with some arithmetic reasoning,

we reach the following subgoal.

lim
k→∞

(
k∑

n=0

((n + 1)p(1− p)n)) =
1

p
(26)

Substituting 1 − q for p and after some rearrangement of the terms, based on arithmetic

reasoning, the above subgoal can be rewritten as follows.

lim
k→∞

(
k∑

n=0

((n + 1)qn)) =
1

(1− q)2
(27)

Now, using the properties of summation of a real sequence in HOL, we proved the following

relationship

∀q k.

k∑
n=0

((n + 1)qn) =
k∑

n=0

(
k∑

i=0

qi −
n∑

i=0

qi) (28)

which allows us to rewrite the subgoal under consideration, given in Equation 27 as follows.

lim
k→∞

(
k∑

n=0

(
k∑

i=0

qi −
n∑

i=0

qi)) =
1

(1− q)2
(29)

The above subgoal can now be proved using the summation of a finite geometric series along

with some properties of summation and limit of real sequences available in the real number

theories in HOL. This also concludes the proof of Theorem 11 in HOL.

The variance property of Geometric(p) random variable can be stated in HOL as

follows.

Theorem 12. Variance of Geometric(p) Random Variable

` ∀ p. 0 < p ∧ p ≤ 1 ⇒ (variance (λs. prob geom p s) = 1−p
p2

)

We utilize the variance property, proved in Theorem 1, to verify Theorem 12. The

foremost step in this regard is to verify the second moment relationship for the Geometric(p)

random variable.

` ∀ p. 0 < p ∧ p ≤ 1 ⇒
(expec fn (λn. (n2) (λs. prob geom p s)) = 2

p2
− 1

p
)
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Rewriting the above proof goal with the definition of function expec fn and simplifying

using the PMF relation of the Geometric random variable along with some properties from

HOL real number theories, we reach the following subgoal.

lim
k→∞

(
k∑

n=0

((n + 1)2p(1− p)n)) =
2

p2
− 1

p
(30)

Now, substituting 1−q for p and after some rearrangement of the terms, based on arithmetic

reasoning, the above subgoal can be rewritten as follows.

lim
k→∞

(
k∑

n=0

((n + 1)2qn)) =
2

(1− q)3
− 1

(1− q)2
(31)

Using the properties of summation of a real sequence in HOL, we proved the following

∀q k.

k∑
n=0

((n + 1)2qn) =
k∑

n=0

((2n + 1)(
k∑

i=0

qi −
n∑

i=0

qi)) (32)

which allows us to rewrite the subgoal under consideration, given in Equation 31 as follows.

lim
k→∞

(
k∑

n=0

((2n + 1)(
k∑

i=0

qi −
n∑

i=0

qi))) =
2

(1− q)3
− 1

(1− q)2
(33)

The above subgoal can now be proved using the summation of a finite geometric series

along with some properties of summation and limit of real sequences available in the real

number theories in HOL. This concludes the proof of the second moment relation for the

Geometric(p) random variable, which can now be used along with Theorems 1 and 11 and

some arithmetic reasoning to prove Theorem 12 in HOL.

5.4 Binomial(m, p) Random Variable

The Binomial(m, p) random variable models an experiment which counts the number of

successes in a finite number, m, of independent Bernoulli trials, with a success probability

equal to p [30]. Therefore, the Binomial(m, p) distribution may be sampled by an algorithm

in HOL that sums m independent outcomes of the prob bernN random variable, which

models the Bernoulli(p) random variable with outcomes 0 and 1, as described in Section

5.2. We formalized it in HOL by first defining a function that recursively returns a list of m

Bernoulli(p) random variables.

Definition 6. List of m Bernoulli(p) Random Variables
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bern lst: num → real → ((num → bool) → num× (num → bool)) list

` ∀ p. bern lst 0 p = [] ∧
(` ∀ n p. bern lst (n + 1) p = prob bernN p :: (bern lst n p))

Now, the Binomial(m, p) random variable can be modeled as the sum of all elements in the

list modeled by the HOL function bern lst, such that the result of each one of these random

variables is independent of one another. This can be done using the function sum rv lst,

given in Definition 4, as follows

Definition 7. Binomial(m,p) Random Variable

prob bino: num → real → ((num → bool) → num× (num → bool))

` ∀ m p. prob bino m p = sum rv lst (bern lst m p)

We verified the correctness of the above definition by verifying its PMF characteristic

in HOL using the properties verified in the HOL libraries corresponding to the probability

and set theories.

Theorem 13. PMF of Binomial(m,p) Random Variable

` ∀ m p n. 0 ≤ p ∧ p ≤ 1 ⇒ P {s | fst (prob bino m p s) = n} =

(binomial m n) (pn) ((1 - p)m−n)

where the HOL function (binomial m n) represents the term m!
n!(m−n)!

.

The expectation theorem for the Binomial(m, p) random variable can now be expressed

in HOL

Theorem 14. Expectation of Binomial(m,p) Random Variable

` ∀ m p. 0 ≤ p ∧ p ≤ 1 ⇒ expec (λs. prob bino m p s) = m p

Instead of using the definition of expectation directly, we use the linearity of expectation

property, given in Theorem 2, to prove the above theorem. This way, we do not need to deal

with the summation involving the binomial function in HOL, which saves a considerable

amount of proof effort. Since, the Binomial(m, p) random variable represents the sum of m

Bernoulli(p) random variables, the linearity of expectation property allows us to rewrite the

LHS of the proof goal in Theorem 14 as the sum of m expectation values of the Bernoulli(p)

random variable. Now, using the fact that the expectation of the Bernoulli(p) random

variable is equal to p, as given in Theorem 9, Theorem 14 can be verified in HOL.

In a similar way, we can also verify the variance relation for the Binomial(m, p) in HOL

using the linearity of variance property, given in Theorem 3.
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Theorem 15. Variance of Binomial(m,p) Random Variable

` ∀ m p. 0 ≤ p ∧ p ≤ 1 ⇒
variance (λs. prob bino m p s) = m p (1 - p)

The formalization and verification of the Binomial(m, p), presented in this section,

illustrates one of the main strengths of mechanical theorem proving, i.e., the reusability of

existing definitions and theorems to develop and prove new and more complex definitions

and theorems. This approach greatly speeds up the formal verification process and allows

us to take the work further than would have been possible starting from scratch, without

compromising on the soundness of the results.

6 Performance Analysis of Coupon Collector’s Prob-

lem in HOL

In this section, we utilize the HOL formalization presented so far to formally analyze the

tail distribution properties of the Coupon Collector’s problem [2]. Firstly, we present a brief

overview of the algorithm and present its formalization in HOL.

The Coupon Collector’s problem refers to the problem of probabilistically evaluating

the number of trials required to acquire all unique, say n, coupons from a collection of multi-

ple copies of these coupons that are independently and uniformly distributed. The problem

is similar to the example when each box of cereal contains one of n different coupons and

once you obtain one of every type of coupon, you win a prize. This simple problem arises in

many different scenarios. For example, suppose that packets are sent in a stream from source

to destination host along a fixed path of routers. It is often the case that the destination

host would like to know all routers that the stream of data has passed through. This may

be done by appending the identification of each router to the packet header but this is not a

practical solution as usually we do not have this much room available. An alternate way of

meeting this requirement is to store the identification of only one router, uniformly selected

at random between all routers on the path, in each packet header. Then, from the point of

view of the destination host, determining all routers on the path is like a Coupon Collector’s

problem. An approach for the formalization of the Coupon Collector’s problem as a prob-

abilistic algorithm in higher-order-logic and the verification of its expectation relationship

has been presented in [6]. We mainly build upon this model to verify its variance and tail

distribution bounds in this Section.

The Coupon Collector’s problem can be formalized by modeling the total number of

trials required to obtain all n unique coupons, say X, as a sum of the number of trials required
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to obtain each distinct coupon, i.e., X =
∑n

i=1 Xi, where Xi represents the number of trials to

obtain the ith coupon, while i−1 distinct coupons have already been acquired. The advantage

of breaking the random variable X into the sum of n random variables X1, X2 · · · , Xn is that

each Xi can be modeled as a Geometric(p) random variable. Based on the above model, the

expectation relation for the Coupon Collector’s problem can be verified using the linearity of

expectation property, given in Theorems 2, and the expectation of the Geometric(p) random

variable, given in Theorem 3.

The Coupon Collector’s problem is modeled in HOL by identifying the coupons with

unique positive integers, such that the first coupon acquired by the coupon collector is

identified as number 0 and after that each different kind of a coupon acquired with subsequent

numbers in numerological order. The coupon collector saves these coupons in a list of positive

integers. The following function accepts the number of distinct coupons acquired by the

coupon collector and recursively generates the corresponding coupon collector’s list.

Definition 8. Coupon Collector’s List

coupon lst: (num → num list)

` (coupon lst 0 = []) ∧
∀ n. (coupon lst (n + 1) = n :: (coupon lst n))

The next step is to define a list of Geometric random variables, such that each one of

its elements represents an Xi, mentioned above. It is important to note that the probability

of success for each one of these Geometric random variables is different from one another

and depends on the number of different coupons acquired so far. Since, every coupon is

drawn independently and uniformly at random from the n possibilities and the coupons are

identified with positive integers, we can use the Uniform(n) random variable to model each

trial of acquiring a coupon. Now we can define the probability of success for a particular

Geometric random variable as the probability of the event when the Uniform(n) random

variable generates a new value, i.e., a value that is not already present in the coupon collec-

tor’s list. Using this probability of success, the following function generates the required list

of Geometric random variables

Definition 9. Geometric Variable List for Coupon Collector’s Problem

geom rv lst: (num list → num → ((num → bool) → num× (num → bool)) list)

` ∀ n. (geom rv lst [] n = [prob geom 1]) ∧
∀ h t n. (geom rv lst (h::t) n =

(prob geom P{s | ∼(mem (fst(prob unif n s)) (h::t))}) ::

(geom rv lst t n))
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The geom rv lst, accepts two arguments; a list of positive integers that represents the

coupon collector’s list and a positive integer number that represents the total number of

coupons in the Coupon Collector’s problem. It returns, a list of Geometric random variables,

whose sum would model the total number of trials required to acquire all coupons. The base

case in the above recursive definition corresponds to the condition when the coupon collector

does not have any coupon and thus the probability of success, i.e., the probability of acquiring

a new coupon is 1.

Using the above definitions along with the function sum rv lst, given in Definition 4,

the Coupon Collector’s problem has been formally represented in HOL as follows.

Definition 10. Probabilistic Algorithm for Coupon Collector’s Problem

coupon collector: (num → ((num → bool) → num× (num → bool)))

` ∀ n. (coupon collector (n + 1) =

(sum rv lst (geo rv lst (coupon lst n) (n + 1)))

The function, coupon collector, accepts a positive integer greater than 0, i.e., n+1, which

represents the total number of different coupons that are required to be collected. It returns

the number of trials for acquiring these n + 1 distinct coupons.

The first step towards the verification of statistical properties for the above algorithm

of the Coupon Collector’s problem is to verify the relation for the probability of acquiring a

new coupon.

Theorem 16. Probability of Acquiring a New Coupon

` ∀ L n. (dist lst L) ∧ (∀a. mem a L ⇒ (a < (n + 1)))

⇒ (P {s | ∼(mem (fst(prob unif (n + 1) s)) L)}
= 1− (length L)

(n+1)
)

where the predicate dist lst returns True if all elements in its argument list are distinct.

Thus, the assumption in the above theorem ensures that all elements in the given list of

positive integers are distinct and are less than (n+1). The coupon collector’s list, modeled by

the function coupon lst, satisfies both assumptions in Theorem 16 for any given argument.

Therefore, the probability of succuss for the Geometric random variable, which models the

acquiring process of a new coupon when the coupon collectors list is exactly equal to L, is

1− length L
(n+1)

. The expectation of such a Geometric random variable can be easily verified to be

equal to n+1
(n+1)−(length L)

, by Theorem 11. This result along with the linearity of expectation

property, given in Theorem 2, has been used in [6] to verify the expectation or mean of the

number of trials to collect all distinct coupons.
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Theorem 17. Expectation of Coupon Collector’s Problem

` ∀ n. expec (coupon collector (n + 1)) = (n + 1) (
∑n+1

i=0
1

i+1
)

In this paper, we build upon the above infrastructure to formally reason about the tail

distribution properties of the number of trials required to acquire all coupons in HOL. For

this purpose, we utilize the formally verified Markov’s and Chebyshev’s inequalities, which

have been verified in Theorems 4 and 5, respectively. The first step in this regard is to have

access to formal proofs for the mean and variance relations for the events of interest. The

mean has already been verified, given in Theorem 17, and thus we proceed by verifying a

relationship for the variance first.

Instead of verifying the exact value of the variance for the number of trials required to

acquire all coupons, we verify an upper bound for this variance

Theorem 18. Variance Upper Bound of Coupon Collector’s Problem

` ∀ n. variance (coupon collector (n + 1))

≤ ((n + 1)2) (
∑n+1

i=0 ( 1
(i+1)2

))

The formal proof for the above theorem is based on the definition of the function coupon coll-

ector, the linearity of variance property, given in Theorem 3, the result of Theorem 16, and

the variance of Geometric random variable, verified in Theorem 12, along with some arith-

metic reasoning.

Now, using the above mentioned results, we can formally verify the following two

tail distribution bounds for the Coupon Collector’s problem based on the formally verified

Markov’s and Chebyshev’s inequalities, respectively.

Theorem 19. Weak Tail Distribution Bound for the Coupon Collector’s Problem

` ∀ n a. 0 < a ⇒ P {s | (fst (coupon collector (n + 1) s)) ≥ a}
≤ (

(n+1)
a

(
∑n+1

i=0
1

(i+1)
))

Theorem 20. Stronger Tail Distribution Bound for the Coupon Collector’s Problem

` ∀ n a. 0 < a ⇒ P {s | abs ((fst (coupon collector (n + 1) s)) -

expec (coupon collector (n + 1))) ≥ a}
≤ (

(n+1)2

a2
(
∑n+1

i=0
1

(i+1)2
))

With these results, we have been able to formally verify the tail distribution bounds

for the number of trials required to acquire all distinct coupons in the Coupon Collector’s

problem. These bounds reveal the tail distribution characteristics for the Coupon Collector’s

problem, which is something that cannot be inferred by just the mean or variance quantities.
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We were able to obtain this information using of the formally verified Markov or Chebyshev’s

inequalities, which is the main contribution of this paper. It is also important to note here

that our results exactly match the results of the analysis based on paper-and-pencil proof

techniques [2] and are thus 100 % precise, which is a novelty that cannot be achieved, to the

best of our knowledge, by any existing computer based probabilistic analysis tool.

7 Conclusions

In this paper, we presented an approach that allows us to precisely reason about the tail

distribution properties of random systems within the higher-order-logic theorem prover HOL.

Bounding the tail distribution plays a vital role in determining the failure probabilities in the

domain of probabilistic analysis, e.g., [2] utilizes the tail distribution bounds, estimated using

the Chebyshev’s inequality, to find the probability of failure for a randomized algorithm for

computing the median of a given set of numbers. The formalization presented in this paper

allows us to handle such problems in HOL as has been shown for the case of the Coupon

Collector’s problem. Due to the inherent soundness of the theorem-proving based analysis,

our approach ensures accurate and precise results and thus can prove to be quite useful for

the performance and reliability optimization of safety critical and highly sensitive application

domains, such as medicine, military or transportation.

The main contributions of this paper are the verification of Markov’s and Chebyshev’s

inequalities and the mean and variance relations for some commonly used discrete random

variables. These formally verified results can be reused for the verification of tail distribution

properties in a number of different probabilistic analysis domains. In order to illustrate the

practical effectiveness of our work, we presented the analysis for the Coupon Collector’s

problem in this paper. To the best of our knowledge, this is the first time that it has been

possible to reason about the tail distribution properties in a mechanized formal methods

environment.

The infrastructure presented in this paper can be extended further by verifying the

expectation and variance properties of a number of other random variables, which attain

values in positive integers only, e.g., Binomial, Logarithmic and Poisson [29]. The verifica-

tion of Chernoff bounds [2], which are extremely powerful and give exponentially decreas-

ing bounds on the tail distribution, would also be of great benefit. The formally verified

Markov’s inequality and the formal definition of expectation of a function of a random vari-

able, presented in this paper, can be utilized for this purpose. Another very promising future

direction could be to link the formal definition of expectation, presented in this paper, with

the higher-order-logic formalization of Lebesgue integration theory [31], which would further
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strengthen the soundness of the definitions presented in this paper. This would also pave the

way for the verification of statistical quantities, such as mean and variance, for continuous

random variables, such as Normal, Exponential, etc.

Finally, it is important to note that higher-order-logic theorem proving cannot be

regarded as the golden solution in performing probabilistic analysis because of its own lim-

itations. Even though theorem provers have been successfully used for a variety of tasks,

including some that have eluded human mathematicians for a long time, but these suc-

cesses are sporadic, and work on hard problems usually requires a proficient user and a lot

of formalization. On the other hand, simulation based techniques are at least capable of

offering approximate solutions to these problems. Therefore, we consider simulation and

higher-order-logic theorem proving as complementary techniques, i.e., the methods have to

play together for a successful probabilistic analysis framework. For example, theorem prov-

ing can be used for the safety critical parts of the design, which can be expressed in closed

mathematical forms, and simulation based approaches can handle the rest.
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Table 1: HOL Symbols
HOL Symbol Standard Symbol Meaning

∧ and Logical and
∨ or Logical or
∼ t ¬t Not t
:: cons Adds a new element to a list
num {0, 1, 2, . . .} Positive Integers data type
real All Real numbers Real data type
λx.t λx.t Function that maps x to t(x)

{x|P(x)} {λx.P (x)} Set of all x that satisfy the property P
(a, b) a x b A pair of two elements
fst fst (a, b) = a First component of a pair
snd snd (a, b) = b Second component of a pair

suminf f(n) lim
k→∞

(
∑k

n=0 f(n)) Infinite summation of a real sequence f

summable f(n) ∃x. lim
k→∞

(
∑k

n=0 f(n)) = x Infinite summation of f exists
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