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Abstract— The exact solution is obtained for the Green’s 

function of an infinitesimal horizontal electric dipole on a 

dielectric slab backed by a ground plane of carbon fiber 

composite (CFC) material. We consider both reinforced 

continuous carbon fiber (RCCF) CFC and carbon nanotube 

(CNT) CFC. RCCF is modeled by an electrically anisotropic 

surface impedance tensor whereas CNT is modeled as isotropic. 

The spectral domain method is used and the numerical 

integration details particularly dealing with low-converged tail of 

the integrand for fields at the air-dielectric interface are 

addressed. Numerical results based on this method compare well 

with results based on a time-domain finite integration technique. 

The effect of conductivity and anisotropy of the composite ground 

plane on electric field is investigated.  

 
Index Terms—Anisotropic ground plane, carbon fiber 

composites (CFC), dielectric slab, Green’s function, lossy ground 

plane.  

I. INTRODUCTION 

DVANCED carbon-fiber composite (CFC) materials are 

being used widely in the avionic and automobile industry 

to replace metals, because of their higher strength, lower 

weight, and lower cost [1], [2]. The high oxidation stability 

and high heat-transfer ability allow CFCs to be used for 

applications where metals would suffer corrosion. However, 

CFCs have lower electrical conductivity than metals, and so 

the shielding effectiveness is of concern when electromagnetic 

compatibility (EMC) must be maintained [3], [4]. There are 

two types of highly-conductive CFCs, namely the reinforced 

continuous carbon fiber (RCCF) [3] and the carbon nanotube 

(CNT) composites [4]-[8]. In one-layer unidirectional RCCF 

composites, the carbon fibers run in one direction only so that 

the conductivity is anisotropic, being high along the direction 

of the fibers, but low in the perpendicular direction. Very 

recently, we explored the use of RCCF to build radio 
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frequency identification (RFID) antennas [9] and wideband 

antennas [10]. Unlike RCCF composites, the CNT composite 

material is an isotropic medium because the CNTs are 

randomly oriented throughout the material.  Being compatible 

with inkjet printing, CNT is of high interest for antenna 

fabrication [11], [12]. CNT composites can be made using 

single-wall nanotubes (SWCNT) [5] or multiwall nanotubes 

(MWCNT) [6] to obtain conductivity. CNTs are also used in 

high speed integrated circuits [13] when their high thermal 

conductivity supports high heat transfer.  

There are many types of antennas mounted on or integrated 

to the surface of vehicles for communication systems, radar, 

navigation, surveillance and so on. Showing low drag and 

being suitable for conformal applications, planar microstrip 

antennas are a very good candidate to be installed on such 

vehicles [14]. In many cases, the body of vehicle is used as the 

ground plane for the antenna. There is a very limited work on a 

grounded slab with lossy or composite material. For example, 

in [15] the resonance frequency of a rectangular patch antenna 

on a multilayer composite ground plane is studied using the 

Galerkin’s method. However, the solution is limited to a 

specific choice of basis functions for better converging 

integrals which does not apply to general cases when the 

structure is excited by point sources. Moreover, the complete 

model of composites is used which lead to a complicated 

solution and a larger matrix size. 

From the EMC point of view, the crosstalk between 

transmission lines and the coupling between printed wire 

antennas on the substrate would be another issue which needs 

to be addressed. Hence, evaluating the Green’s function of a 

dielectric slab with a composite ground plane when both 

source and observation points located at the air-dielectric 

interface becomes imperative. Many papers investigate the 

Green’s function of a dielectric slab backed by a perfect 

electric conductor (PEC) as a ground plane [16]-[20]. In [20], 

an imperfectly-conducting ground plane is considered, but the 

small ohmic loss approximation (conductivity > 10
6 

S/m) is 

used for EM field calculation, showing that the fields at the 

air-dielectric interface do not depend on the conductivity of 

ground plane. However, the ohmic loss of CFCs, with a 

conductivity of about 10
4
 S/m, is much higher than copper or 

other kinds of metals. Furthermore, in addition to the high loss, 

RCCF is also an anisotropic material, making the solution 

completely different than that for an isotropic ground plane.  
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Fig. 1. (a) RCCF composite, (b) cross-view optical micrograph of RCCF 

composite (scale bar 50 μm), (c) SEM micrographs of MWCNT composites 

with 8 wt% loading [7], (d) measured magnitude of S21 parameter for RCCF 

composite sample, (e) measured magnitude of  S21 parameter for 8% MWCNT 

composite. 

   

In this work, using the spectral domain method, we calculate 

the exact solution for the Green’s function of a dielectric slab 

backed by a CFC ground plane and excited by a horizontal 

electric dipole (HED). The assumed CFCs are efficiently 

modeled by the corresponding surface impedance sheets; a 

lossy anisotropic sheet for RCCF and a lossy isotropic sheet 

for CNT. Due to the high conductivity of CFCs, the skin depth 

would be usually much smaller than the composite thickness. 

Therefore, the proposed surface impedance model can be used, 

leading to much simpler and faster solution compared to the 

case that the complete model of composites is considered. The 

new expression for the electric field is obtained and the 

numerical integration is addressed in detail. By using the 

surface impedance model for the CFC ground plane, the 

asymptotic part of the integrand becomes similar to that for the 

PEC ground plane, and the convergence problem is overcome. 

Finally, some numerical results are presented and compared to 

that of the slab with a PEC ground plane.   

II. RCCF AND CNT COMPOSITE MATERIALS     

A. RCCF Composite  

Figure 1(a) shows a typical RCCF composite material. The 

carbon fibers embedded in the epoxy resin are oriented in a 

specific direction. The effective complex permittivity of one-

layer composite depends on the thickness of layer (t), fibers  

TABLE  I 

THICKNESS TO SKIN DEPTH RATIO OF FABRICATED RCCF SAMPLES 

      Composite Material 5 GHz 10 GHz 

RCCF 
x-axis 25 36.35 

y-axis 2.22 3 

RCCF + 2% MWCNT 
x-axis 33.33 50.63 

y-axis 6.89 9.75 

 
TABLE  II 

THICKNESS TO SKIN DEPTH RATIO OF FABRICATED CNT SAMPLES 

Composite Material σ (S/m) 5 GHz 10 GHz 

4% MWCNT  110 5.22 7.38 

8% MWCNT 215 7.29 10.3 

SWCNT Buckypaper 40000 98.6 139.44 

 

diameter (D), the period of the fibers (s) and complex 

permittivity of fibers and host medium (εf, εm). The effective 

complex permittivity of homogenized model of RCCF is given 

by [3]  

(1 )x z m fg g        (1) 

1 1 1(1 )y m fg g        (2) 

where g = πD
2
/4st is a coefficient which depends on the 

volume fraction of fibers inside host medium. The conductivity 

of material is included in the imaginary part of the complex 

permittivity. The cross-sectional view of a fabricated RCCF is 

shown in Fig. 1(b). The average diameter of the fibers is 5 μm 

and separation distance between the fibers is typically 1 μm. 

The conductivity of RCCF is high along the direction of fibers 

(ζx), but low in the perpendicular direction (ζy) so that ζx /ζy 

>>1. We use standard rectangular waveguides to measure the 

scattering parameters of the RCCF sample with the fibers 

parallel and perpendicular to the TE10 electric field vector. The 

magnitude of S21 parameter of a fabricated sample over X-

band frequency range is shown in Fig 1(d). It is observed that 

RCCF composite blocks the component of the electric field 

parallel to the fibers much more than the perpendicular 

component. We have measured the conductivity tensor of 

some RCCF samples produced by Concordia Center for 

Composites (CONCOM) [21] over G- and X-band frequency 

ranges. The values for ζx and ζy were found to be in the range 

of 1000-2000 S/m and 10-100 S/m, respectively. Recently, in 

order to enhance the conductivity of RCCF composite, we 

added a small volume fraction of MWCNTs to the RCCF 

material which significantly improves the conductivity in both 

x and y directions [10]. Table I shows the ratio of sample 

thickness to skin depth for both fabricated RCCF and 

RCCF/MWCNT composites. The thickness of samples is 

about 4 mm.  

B. CNT Composites 

High electrical conductivity and high aspect ratio (AR) 

make the CNTs one of the most promising filler materials for 

conductive polymer composites. The electrical conductivity of 

CNT composites depends on the properties and loading of the 

CNTs, the aspect ratio of the CNTs, and the characteristics of 

the conductive network throughout the matrix [7]. In order to  
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Fig. 2. HED located on the slab grounded by RCCF composite material.  

 

obtain a conductive network, CNTs have to be dispersed 

efficiently into the resin by shear mixing or by ultrasonic 

processing. The CNT composites are assumed to have 

homogeneous isotropic effective complex permittivity [4], 

[12]. The CNT composite materials are usually non-magnetic. 

Figure 1(c) shows that CNTs are homogeneously dispersed 

and oriented in random directions in the host medium, making 

the composite material electrically isotropic. Figure 1(e) shows 

the magnitude of S21 parameter of a fabricated 8% MWCNT 

sample over X-band frequency range for two orientation 

angles. It is observed that the electric field is blocked almost 

the same at both x and y directions, showing the isotropy of 

sample (ζx ≈ ζy).   

The measured conductivity of the sample is 240 S/m, which 

is quite high for a loading of just 8% [7]. The conductivity can 

be tailored by changing the loading percentage of CNTs so 

that it can be changed by as much as 40000 S/m. The ratio of 

sample thickness to skin depth for some fabricated CNT 

samples are given in Table II. The thickness of samples is 

about 3.5 mm. The SWCNTs buckypaper has high electrical 

conductivity around 70000 S/m. The buckypaper is a flexible 

and soft material that needs to be hardened by resin infiltration 

to be printed on substrate or slabs [12]. During the infiltration 

the buckypaper expands, which causes a drop in conductivity 

to a typical 40000 S/m.   

III. HED ON DIELECTRIC SLAB GROUNDED BY RCCF 

COMPOSITE 

Figure 2 shows an x-directed HED on a dielectric slab of 

infinite extent in the transverse direction, backed by an RCCF 

sheet. Because of its high conductivity, the RCCF sheet can be 

modeled by an anisotropic impedance surface  ,x yZ Z as 

follows 

  01 ,
2

i
i

Z j i x y




 
   

 
 (3) 

where 2 f  and 7

0 4 10    H/m. It should be noted 

that (3) is valid if the thickness of composite is much greater 

than skin depth and with x and y are the anisotropic axes of the 

composite material. In multilayer CFC ground planes, if the 

skin depth is much lower than the thickness of the first layer, 

the proposed solution can also be used by considering only the 

surface impedance model of the first layer. We derive the 

solution for an anisotropic ground plane, and for the isotropic 

case:
x yZ Z Z  . Without loss of generality, the electric 

source current distribution can be as assumed to be polarized 

along x.  Fig. 2 shows that we divide the solution into region I 

for the dielectric layer and region II for the air above it. Then 

the source-free Maxwell equations are solved to calculate the 

z-components of EM fields in each region.  

By defining two dimensional Fourier transform as  

   , , , , ,yx
jk yjk x

x yk k z x y z e e dxdy
  

 
  E E  (4) 

the solution in the spectral domain for the z-component of the 

EM field in each region can be obtained as  

 2

2 2Im( ) 0
jk z h

zE Ae k
 

   (5) 

 2

2 2Im( ) 0
jk z h

zH Be k
 

   (6) 

   1 1 1cos sinzE C k z h D k z h     (7) 

   1 1 1cos sinzH M k z h N k z h     (8) 

where  
2 2 2
2 0k k    (9) 

2 2 2
1 ek k    (10) 

2 2 2.x yk k    (11) 

where 0 0 0k    and 0 0e rk     , and A, B, C, D, M, 

and N are unknown coefficients. The other components of 

fields are obtained from the Maxwell equations using 

0

2 2

yx z
x z

kjk E
E H

z



 

   
          


   (12) 

0

2 2

y xz
y z

jk kE
E H

z



 

   
          


   (13) 

2 2

yx z
x z

kjk H
H E

z



 

   
          


   (14) 

2 2
.

y xz
y z

jk kH
H E

z



 

   
          


   (15) 

Then, the unknown coefficients are calculated by imposing the 

following boundary conditions  

      1 2 atx xE E z h   (16) 

     1 2 aty yE E z h   (17) 

      1 2 atx xH H z h   (18) 

                  1 2 aty y xH H J z h    (19) 

    1 1 at 0x x yE Z H z    (20) 

    1 1 at 0.y y xE Z H z   (21) 

After a considerable algebraic manipulation, the coefficients 

inside the slab are obtained (see Appendix I). Since we are 

interested in electric fields at the air-dielectric 

interface, xE and yE at z = h are obtained from (12) and (13) as 

≈ 

Jx 

RCCF Ground (Zx, Zy) 

x 

y 

z 

≈ 

εr = εrs (1-jtanδ) 

z=0 

z=h 

ρ 
φ 

≈ Region I 

Region II 

Substrate 
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Fig. 3.  The complex integrand 

xF  for (a) isotropic and (b) anisotropic ground 

plane. 

 

01

2 2
|

yx
x z h

kjk k
E D N



 


   
       
   

  (22) 

1 0

2 2
| .

y x
y z h

jk k k
E D N



 


   
       
   

  (23) 

Note that by setting Zx = Zy = 0 in (22) and 

(23), xE and yE become the coefficients for a PEC ground 

plane, as reported in the literature [16], [23]  

2 22
01 2

1 12 2
0 2 3

| sin sin
yx

x z h x

k kjk k kj
E k h k h J

T T  


   
   
    

   (24) 

2 2 2
1 2 0

1 12 2
0 2 3

| sin sin .
y x

y z h x

jk k k k kj
E k h k h J

T T  


  
   
    

   (25) 

By taking inverse Fourier transform from (22) and (23), the 

spatial domain electric field can be obtained as 

   2

1
, ,

4

, .

yx
jk yjk x

i i x y x yE x y E k k e e dk dk

i x y



 

 

 
  
 



  
    (26) 

IV. ELECTRIC FIELD CALCULATION  

Without loss of generality, only Ex is considered for study. 

By applying the transformation of variables cosxk   and 

sinyk   , (26) is converted to  

   
2

cos sin

2 0 0

1
, ,

4

jx jy
x xE x y E e e d d


       



 
  
                      

(27) 

so that by numerical integration with respect to α, the electric 

field can be obtained from a single infinite integration as 

follows  

   
2 0

1
, , ,

4
x xE x y F x y d 



 
  
 

  (28) 

 
Fig. 4. The integration contour path in the complex β-plane. 

 

where  

   
2

cos sin

0
, , , .jx jy

x xF x y E e e d


           (29) 

The zeros of Δ (see (39), Appendix I) determine the poles 

of xF , or the surface wave poles (SWP) of the structure. For 

the slab grounded by PEC, when the slab is electrically 

thin,
0 / 4 1rf c h   , there is only one SWP between 

0k and 

ek  located at 

2

0 0

11
1

2

r

r

k k h





   
     

    

 
(30) 

which corresponds to the zero of 
2T  [23]. For a substrate with 

small loss, the SWP has a small negative imaginary part. For a 

CFC ground plane that is highly conductive along the y 

direction ( 0yZ  ), it can be easily shown that the zeros of 
2T  

are also the zeros of Δ. Hence, the same TM surface waves of 

the slab grounded by PEC are excited also in the slab with 

composite ground. Similarly, we may conclude that when HED 

is along y direction and 0xZ  , the same SWPs exist when 

slab is grounded by CFC or PEC. 

  In order to calculate (28) for the slab with a CFC ground 

plane, first we study the behavior of integrand xF  versus   

and compare it with the case that slab is grounded by PEC. 

The slab is chosen to be electrically thin and also with small 

loss, which is valid for many practical cases.   

By choosing f = 5 GHz, h = 2.5mm, εrs = 5, and tanδ = 

0.002, xF  is evaluated at (x,y)=(λ/2,0) for different 

conductivity  values for the ground plane as shown in Fig. 3. It 

is observed that by increasing the conductivity, the integrand 

gets closer to that of the slab grounded by PEC, showing an 

SWP at about 01.02k  , which could be also calculated from 

(30). At the SWP location, xF  shows a sharp change with 

noticeable magnitude. A small sharp change is also seen 

around 
ek  for anisotropic composites. It is due to this fact that 

when 
ek  , then 

1 0k  , setting the first term in Δ 

expression to zero which makes Δ to be a small non-zero 

value, specially when  x yZ Z is small. However,
1 0k  is 

also a zero of the numerator of D and N coefficients. As a  

Im (β) 

0k  
0 rk   

jP1 

P2 P3 

Re (β) 

Branch cut 

SWPs 

P 

P1       

(a) 

(b) 
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Fig. 5.  The magnitude of Ex along x-axis, (a) isotropic ground and f = 5 GHz, 

(b) isotropic ground and f = 10 GHz, (c) anisotropic ground with                     

(ζx, ζy)=(1000, 100) S/m at f = 5 GHz, (d) anisotropic ground with (ζx, 

ζy)=(1000, 100) at f = 10 GHz. 

 

result, a slightly sharp change of xF occurs around ek  .   

In order to take the integration in (28) over the real axis of 

complex plane, some techniques like singularity extraction are  

needed to deal with SWPs [19], [20]. By increasing the 

frequency or the dielectric thickness, the number of SWPs may 

increase, leading to a complicated problem which includes 

locating the poles and performing the integration near them. 

Some works uses a deformed integration path to avoid dealing 

with SWPs [22]. Following [22], we consider the contour P 

shown in Fig. 4 and defined by parameters P1, P2, and P3. 

Without crossing the branch cut, the path fulfills the condition 

 2Im 0k  . There is no concern about  1Im 0k  since (22) 

and (23) are even functions with respect to 1k . The path is 

deformed over  0 , ek k  so that no knowledge about SWP 

locations is required.  Then it returns to the real axis at P2 and 

is truncated at P3 when convergence of the integral has been 

obtained.   

Since the observation point and source are at the same level 

(z = h), the integration in (28) converges slowly, which needs  

 
Fig. 6. The effect of ground anisotropy on Ex at f = 5 GHz. 

  

special treatment [16]-[20], [23]. The imaginary part of the 

integrand xF is oscillatory and diverges as   increases, as 

shown in Fig. 3(b), making (28) converge slowly as beta 

increases. However, it should be noted that when   the 

behavior of both real and imaginary parts of xF for the slab 

with CFC ground plane converges to that of the slab grounded 

by PEC, independent of the CFC conductivity and anisotropy. 

The physical interpretation is that    implies 0f  , 

hence from (3) we have , 0x yZ Z  , making the ground plane 

to be like PEC. In the Appendix II, it is proven that the 

asymptotic form of 
xE  for large β is    

2 2
0

0

| |
2

eff x

x CFC x PEC
eff

k kj
E E



  

 
  
    
    

   (31) 

where  1 / 2eff r   and superscript ∞ refers to   . 

Therefore, 

| |x CFC x PECF F    (32) 

where
xF  is the asymptotic, or also called as the static part 

of xF . We get advantage from the asymptotic equality in (32) 

to overcome the convergence problem of (28) as follows. The 

static part of the integrand in (28) is subtracted and added as   

0 0 0
| |x x x CFC x CFCF d F F d F d  

  
    

        (33) 

so that in the right hand side of (33), the first term is a more 

rapidly converging integral, easily evaluated numerically. 

Substituting (32) in (33), the second term can be replaced 

by
0

|x x PECI F d


    . Pozar showed that xI  has a closed-

form expression as [24] 

0 1 0 22
2
0 2

0 1 24

eff effjk R jk R

x eff
eff

j e e
I k

R Rx

 


 


                  

                                                                                                              

(34) 

where 2 2
1R x y  , and 2 2 2

2 4R x y h   . In fact, (34) 

is the Green’s function of an HED located at (0, 0, h) in the 

homogeneous medium with permittivity of eff  , and grounded 

by PEC at z = 0.  By replacing (34) in (33), the electric field 

can be calculated from (28).  

(c) (d) 

(b) 

(a) 
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In order to calculate
yE , by replacing (23) in (26), the above 

procedure can be applied so that yI can be obtained from (34) 

by replacing 
2 2 2
0 /eff k x    with 2 / x y   .     

V. NUMERICAL RESULTS 

In this section, we evaluate the electric field Ex at the air-

dielectric interface for the ground plane with different 

conductivity characteristics, and at different frequencies. The 

strength of HED moment is one (Idx = 1). By using the slab 

parameters given in previous section, the magnitude of Ex is 

calculated along x-axis at y = 0 as shown in Fig. 5. The results 

are obtained at two operating frequencies, f = 5 and 10 GHz. 

The results are compared with computations using CST MWS 

[25], which uses the finite integration technique (FIT) to solve 

the discretized Maxwell equations. Good agreement is seen. In 

the CST model, the 8λ×8λ slab and ground plane are 

terminated by PML layers to approximate the assumption of a 

slab of infinite extent. We used about 1,800,000 mesh cells in 

CST simulations to get accurate results.  

Figure 6 shows the effect of conductivity tensor of the 

ground plane on Ex at z = h.  Some fluctuations is observed for 

low values of ζx and ζy, but by increasing the conductivity in 

both directions, the electric field behavior moves toward that 

of the slab grounded by PEC. When 
xZ and 

yZ  gets small, 

x yZ Z  gets small, hence, the anisotropic characteristic of the 

ground plane vanishes, making the behavior of the structure 

like isotropic case. 

VI. CONCLUSION 

The Green’s function is calculated for an infinitesimal HED 

on a dielectric slab over a CFC ground plane having 

anisotropic conductivity. The Green’s function is evaluated for 

carbon-composite materials: RCCF CFC which is highly 

anisotropic, and CNT CFC which has isotropic conductivity. 

Because these materials have high conductivity and small skin 

depth, they are efficiently modeled using the surface 

impedance. It is shown that the electromagnetic fields at the 

air-dielectric interface depend on both the conductivity and 

anisotropic characteristics of the composite ground plane. The 

Green’s function presented here is versatile and can be used in 

the numerical modeling of microstrip structures with a CFC 

ground plane.  

APPENDIX I 

The coefficients C, D, M, and N are obtained as  

 

  

  

 

  

2
2 2 4

0 1 2 1 3

2 2 3 2 2
0 0 2 1 3

2 2 2 2
0 1 2 1 4

2 4
0 0 1 2 1 4

3 2 2 2 2
0 0 1

. cos

sin

cos

sin

x
x

x x y y r x

x y y x x

x y r x

x y x y

J
C k k k k h T

Z k Z k j k k k h T

Z k Z k j k k k k h T

Z Z k k k k h T

Z Z k k k


  

    

 

    

   

    
   

  

  



 




 

 

 

 

 

 

 

 

 

(35) 

 

  

  

 

  

2
2 2 4

0 1 2 1 3

2 2 3 2 2
0 0 2 1 3

2 2 2 2
0 1 2 1 4

2 4
0 0 1 2 1 4

3 2 2 2
0 0 1 2

. sin

cos

sin

cos

x
x

x x y y r x

x y y x x

x y r x

x y r x y

J
D k k k k h T

Z k Z k j k k k h T

Z k Z k j k k k k h T

Z Z k k k k h T

Z Z j k k k k


  

    

 

    

    

 
  

   

 

 



 




 

 

 

 

 

 

 

 

 

(36) 

 

  

  

 

  

2
3 2 4

0 0 1 1 2

2 2 4 2 2 2
0 0 1 1

2 2 2 2 2
0 0 1 1 2

3 2 4
0 0 1 1 1

2 2 2 2
0 0 1 2

. cos

cos

sin

sin

x
y

x x y y r y

x y y x y

x y r y

x y r x y

J
M k k k h T

Z k Z k j k k h T

Z k Z k j k k k h T

Z Z k k k h T

Z Z j k k k k


   

    

   

    

    

    
   

 

 



 




 

 

 

 

 

 

 

 

 

(37) 

 

  

  

 

  

2
3 2 4

0 0 1 1 2

2 2 4 2 2 2
0 0 1 1

2 2 2 2 2
0 0 1 1 2

3 2 4
0 0 1 1 1

2 2 2 2
0 0 1 2

. sin

sin

cos

cos

x
y

x x y y r y

x y y x y

x y r y

x y r x y

J
N k k k h T

Z k Z k j k k h T

Z k Z k j k k k h T

Z Z k k k h T

Z Z k k k k


   

    

   

    

    

 
  

   

 

 



 




 

 

 

 

 

 

 

 

(38) 

where 

    

 

6 2
0 0 0 3 1 4 1 2 0 1

2
2 4

. x y r

x x y

j T Z k T k T Z j T

k T T Z Z

         


 


  

(39) 

1 1 1 2 1cos sinrT k k h j k k h   (40) 

2 1 1 2 1sin cosrT k k h j k k h   (41) 

3 1 1 2 1cos sinT k k h jk k h   (42) 

4 1 1 2 1sin cos .T k k h jk k h    (43) 

Not shown here, the coefficients A and B can be easily 

calculated from (16) and (17). The effect of ground plane 

anisotropy is represented by terms including x yZ Z in (35)-

(39).  

APPENDIX II 

 When   , we have 
1k j , 

2k j , 
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1sin / 2hk h je , and 
1cos / 2hk h e . By calculating the 

asymptotic values of D and N from (36) and (38) as 

   

  

  

2 2
2 2 7 2 7

0 0 0

2 2 3 2 4
0 0

2 2 6
0

.
2 |

h
x

x x y r x

x x y y r x

x y y x x

J e
D k Z Z k

Z k Z k j k

Z k Z k j k






       

    

 





 
  

   

 

 




 (44) 

 

 

  

  

 

2 2

3 2 6
0 0

2 2 4 2 2 3
0 0

2 2 2 5
0 0

3 2 6
0 0

.
2 |

h
x eff

y

x x y y r y

x y y x y

x y r y

J e
N k

Z k Z k j k

Z k Z k j k

Z Z k





 
   

    

   

    





 
 
 

 

 

 






 

 

 

 

 

 

 

 

(45) 

and after some mathematical manipulation, xE is obtained from 

(22) as 

  

 

   

2 2 2 2 3 2
0 0

4 2 2
0 0

3 3
0 0

2 2 2
0 0

2 |x

h
eff y x

x

x y r

x y r

x y x r

k k k e
E J

j Z Z j

Z Z

Z Z k j j





   

     

    

    






 



 


 

 


 

 
(46) 

where | is the asymptotic value of (39) given by 

    

6 2 2
0 0

2 2 2
0 0

|
2

.

eff h

x r y x x y

e

Z j j Z k Z Z





   

      



 
    

 

       
 

 

 

(47) 

By considering the highest degree terms in the numerator and 

denominator of (46) and after more simplifying, xE  is 

converted to 

    2 2 2 2 2
0 0

3
00

.
22x

eff x x eff x

x x
effeff x

k k jZ k kj
E J J

Z

  

    


   

   
 

  

 

(48) 

When the slab is grounded by PEC, xE is obtained directly 

from (24), which can be easily shown that it is equal to (48). 
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