
KEY RECOVERY FROM DECAYED MEMORY IMAGES

AND OBFUSCATION OF CRYPTOGRAPHIC

ALGORITHMS

ROGER ZAHNO

A THESIS

IN

CONCORDIA INSTITUTE FOR INFORMATION SYSTEMS ENGINEERING

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF MASTER OF APPLIED SCIENCE IN INFORMATION SYSTEMS

SECURITY

CONCORDIA UNIVERSITY

MONTRÉAL, QUÉBEC, CANADA

JULY 2012

c© ROGER ZAHNO, 2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Concordia University Research Repository

https://core.ac.uk/display/211514258?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Roger Zahno

Entitled: Key Recovery From Decayed Memory Images and Obfuscation of

Cryptographic Algorithms

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science in Information Systems Security

complies with the regulations of this University and meets the accepted standards with re-

spect to originality and quality.

Signed by the final examining committee:

Dr. Simon Li (CIISE) Chair

Dr. Walaa Hamuda (ECE) Examiner

Dr. Benjamin Fung (CIISE) Examiner

Examiner

Dr. Amr Youssef (CIISE) Supervisor

Approved

Chair of Department or Graduate Program Director

20

Dr. Robin Drew, Dean

Faculty of Engineering and Computer Science

ABSTRACT

Key Recovery From Decayed Memory Images and Obfuscation of

Cryptographic Algorithms

Roger Zahno

A cold boot attack is a type of side channel attacks which exploit the data remanence

property of Random Access Memory (RAM) to retrieve contents that remain readable for

a short time after power is disconnected. Specialized algorithms have been proposed to

recover cryptographic keys from decayed memory images. However, these techniques were

cipher-dependent and certainly uneasy to develop and to fine tune. On the other hand, for

symmetric ciphers, the relations that have to be satisfied between sub-round key bits in the

key schedule always correspond to a set of nonlinear Boolean equations.

In the first part of this thesis, we investigate the use of an off-the-shelf SAT solver

(CryptoMiniSat), and an open source Gröbner basis tool (PolyBoRi) to solve the system of

Boolean equations in the algebraic step of the cold boot attack. We also compare the pros

and cons of both approaches and present simulation results for the extraction of AES and

Serpent keys from decayed memory images using these tools.

Because of its simplicity, ease of implementation, and speed, RC4 has become one

of the most widely used software oriented stream ciphers. It is used in several popular

iii

protocols such as SSL and it is integrated into many applications and software such as

Microsoft Windows, Lotus Notes, Oracle Secure SQL and Skype.

In the second part of this thesis, we present an obfuscated implementation of RC4.

In addition to investigating different practical obfuscation techniques that are suitable for

the cipher structure, we also compare the performance of these different techniques. Our

implementation provides a high degree of robustness against attacks from execution envi-

ronments, where the adversary has access to the software implementation, such as in the

case of digital right management applications.

iv

Acknowledgments

First of all, I would like to express my deepest gratitude to my supervisor Dr. Amr Youssef.

Without his support and encouragement, this thesis would not be possible.

I would also like to express special thanks to my parents and my sister, back in Switzer-

land, who showed deep support and understanding regarding my decision to pursue grad-

uate studies in Canada. To all members of my family: I am very grateful and I highly

appreciate the support that I had the privilege to receive.

Finally, I would like to express my thanks to my colleagues in the Cryptography and

Data Security Laboratory at CIISE: You made my journey through the master program an

interesting, enjoyable and unforgettable one.

v

Contents

List of Figures ix

List of Tables x

List of Acronyms xi

1 Introduction 1

1.1 Motivation . 2

1.2 Contributions . 4

1.3 Thesis Organization . 5

2 Preliminaries 6

2.1 Cryptanalytic Attacks . 6

2.1.1 Black-Box Models . 6

2.1.2 Grey-Box Models . 7

2.1.3 White-Box Models . 8

2.2 Cold Boot Attacks . 11

2.2.1 Countermeasures . 13

vi

2.3 Obfuscation Techniques . 15

2.3.1 Complicating the Control Flow 15

2.3.2 Opaque Predicates . 17

2.3.3 Data Encodings . 18

2.3.4 Breaking Abstractions . 20

3 Application of Two Off-the-shelf Algebraic Tools for Extraction of Crypto-

graphic Keys from Corrupted Memory Images 22

3.1 Modern Algebraic Tools and Their Applications to Cryptography 25

3.1.1 Gröbner Basis and PolyBoRi . 26

3.1.2 The SAT problem and CryptoMiniSat 29

3.2 Structure of the AES-128 and Serpent Key Schedules 34

3.2.1 Key Schedule of AES-128 . 34

3.2.2 Key Schedule of Serpent . 34

3.3 Simulation Results . 36

4 An Obfuscated Implementation of RC4 42

4.1 The RC4 Cipher . 43

4.1.1 Standard RC4 Implementation . 43

4.1.2 Skype’s RC4 Implementation . 45

4.2 Proposed Implementation . 47

4.2.1 Eliminating the S Array Data Structure 48

4.2.2 The Use of Function Pointers . 49

vii

4.2.3 Multithreading . 51

4.2.4 Handling the Key Scheduling Process 53

4.2.5 Generic Obfuscation Techniques 54

4.3 Performance Evaluation . 56

4.3.1 Multithreading . 57

4.3.2 Excessive Use of Context Switches 58

4.3.3 Additional Calculations Overhead 58

5 Conclusion and Future Work 63

5.1 Summary and Conclusions . 63

5.2 Future Work . 64

Bibliography 65

viii

List of Figures

1 Types of tables for an AES white-box implementation [20] 11

2 Working with PolyBoRi to solve the systems of equations in (1) 29

3 CryptoMiniSat input file corresponding to the system of equations in (1) . . 33

4 Key Schedule of AES . 40

5 Key Schedule of Serpent . 41

6 The implementation of the PRGA when replacing the array data structure

by independent variables . 59

7 Array of Function Pointers . 60

8 Implementation of the PRGA using switch/case for i and array of function

pointer for j . 61

9 Implementing the PRGA using multithreading 62

ix

List of Tables

1 Test Systems used in [33] . 13

2 Effect of cooling the memory module on the error rates [33] 13

3 Run-time statistics using Gröbner basis for AES. 38

4 Run-time statistics using Gröbner basis for Serpent. 38

5 Run-time statistics using SAT-solver for AES [37]. 38

6 Run-time statistics using SAT-solver for Serpent. 39

7 Program size and throughout for different obfuscation options 57

x

List of Acronyms

AES Advanced Encryption Standard

CRT Chinese Remainder Theorem

DDR SDRAM Double Data Rate Synchronous Dynamic Random Access Memory

DES Data Encryption Standard

DRM Digital Rights Management

RAM Random Access Memory

SDRAM Synchronous Dynamic Random Access Memory

xi

Chapter 1

Introduction

In today’s computer systems, memory resident data and swap areas contain important in-

formation about current running processes as well as terminated ones. Existing reverse

engineering tools and techniques can be used to search through the Random Access Mem-

ories (RAMs) and swap areas for recoverable secret information such as cryptographic keys

which are left unprotected and directly accessible. In this thesis we investigate the recovery

of the AES [29] and Serpent [13] keys from decayed memory images and present a possible

approach to protect such sensitive data for the case of the RC4 cipher.

Cold boot attacks [33] [34] exploit the data remanence property of RAM to retrieve its

contents which remain readable for a short time after power has been disconnected. At run

time, cryptographic systems such as disk encryption utilities (e.g., Truecrypt [9]) keep the

key information for encryption and decryption in the memory. Retrieving this information

breaks the cryptographic system without directly attacking the underlying cryptographic

primitives in an intensive way. In the first part of this thesis, we present a systematic

approach to perform the algebraic step of the cold boot attack against AES and Serpent.

Different approaches that address the cold boot attack were presented in the literatures.

For example, Tresor [8] is a kernel patch for Linux based operating systems which loads

and manipulates key related data directly in the microprocessor and its registers. However,

1

in this work, we are interested in a more general approach that can be adapted for other

applications and ciphers. In the second part of the thesis, we present an obfuscated imple-

mentation of RC4. In addition to investigating different practical obfuscation techniques

that are suitable for the cipher structure, we also perform a comparison between the per-

formances of these different techniques. Our implementation provides a high degree of

robustness against attacks from execution environments where the adversary has access to

the software implementation such as in Digital Right Management (DRM) applications.

1.1 Motivation

Techniques to attack cryptographic primitives can be classified into two main categories:

pure mathematical attacks and side channel attacks. Pure mathematical attacks exploit the

inner structure of the cipher and rely only on known or chosen input-output pairs of the

cryptographic function in order to reveal its secret information. On the other hand, in side

channel attacks, the attacker is assumed to have physical access to the cryptographic device.

Timing information [39] and power consumption [40] are two well known side channels

which can be utilized by attackers to leak critical information related to the secret keys

involved in the cryptographic operations.

The remanence effect of Random Access Memory (RAM) is another highly critical side

channel which exploits the fact that traces of sensitive data remain in the computer memory,

even after its power is removed. Experiments confirming this data remanence property were

reported in 2002 by Skorobogatov [49]. However, Halderman et al. [33] were the first to

practically exploit the remanence of memory modules to recover cryptographic keys where

they presented a proof of concept experiment applying a cold boot attack to recover secret

keys of DES, AES and RSA. In contrast to the general belief, Dynamic RAM (DRAM)

retain some of its content for seconds up to several minutes after its power is disconnected

even if the memory module is removed from the motherboard. Cooling the memory module

2

can significantly extend this time frame.

Several authors (e.g., [51] [12] [34]) further improved Halderman et al.’s proof of con-

cept and presented algorithms for recovering the private keys with higher decay factors.

However, techniques presented by these authors were cipher-dependent and certainly un-

easy to develop and to fine tune. On the other hand, for symmetric ciphers, the relations

that have to be satisfied between sub-round key bits in the key schedule always correspond

to a set of nonlinear Boolean equations which lend itself naturally to well studied algebraic

problems such as the SAT problem and the Gröbner basis reduction problem. In this work

we investigate the use of an off-the-shelf SAT solver (CryptoMiniSat [4]), and an open

source Gröbner basis tool (PolyBoRi [16] [5]) to solve the resulting system of Boolean

equations. We also compare the pros and cons of both approaches and present some si-

mulation results for the extraction of AES and Serpent keys from decayed memory images

using these tools.

Software obfuscation addresses the requirements of several recently developed applica-

tions which demand a higher degree of robustness against attacks from the execution envi-

ronment where adversaries have access to the system with its hardware and software imple-

mentation of key instantiated cryptographic functions. DRM is an example for such appli-

cations where one of the main objectives is to control the access to digital contents stored

on different medias. White-box implementations for AES and DES [20] [19], achieve this

by hiding the encryption keys within the implementation of the cipher through the use of

different obfuscation techniques.

Because of its simplicity, ease of implementation and robustness, RC4 [43] has become

one of the most commonly used stream ciphers. In its software form, implementations of

RC4 appear in many protocols such as SSL, TLS, WEP and WPA. Furthermore, it has been

integrated into many applications and software including Windows, Lotus Notes, Oracle

Secure SQL, Apple AOCE, and Skype. Although the core of this two-decade old cipher is

3

just a few lines of code, the study of its strengths and weaknesses as well as its different

software and hardware implementation options is still of a great interest to the security and

research communities.

Directly applying the techniques developed for white-box implementation of block ci-

phers to stream ciphers does not seem to work, mainly, because normal operation of stream

ciphers requires us to always maintain the inner state of the cipher. Recovering the inner

state of the stream cipher usually compromises the security of the cipher even if the attacker

is not able to recover the key. In the second part of the thesis, we present an obfuscated

implementation of RC4.

1.2 Contributions

Our contributions can be summarized as follows:

• Application of two off-the-shelf algebraic tools for extraction of cryptographic keys

from corrupted memory images: We investigate the use of an off-the shelf SAT solver

(CryptoMiniSat), and an open source Gröbner basis tool (PolyBoRi) to solve the

system of equations produced by the cold boot attack in order to recover the secret

key. We also provide the pros and cons of both tools and present some experimental

results for the extraction of AES and Serpent keys from decayed memory images.

• An obfuscated implementation of RC4: We investigate several obfuscation tech-

niques that are applicable to array-based stream ciphers such as RC4. We also per-

form a comparison between the performances of these different techniques when

applied to RC4. Although our proposed implementation does not provide the same

level of theoretical security provided by white-box implementations for block ci-

phers, it still provides a high degree of robustness against attacks from execution

environments where the adversary has access to the software implementation such as

4

in DRM applications.

1.3 Thesis Organization

The remainder of this thesis is organized as follows. Relevant background and literature are

briefly reviewed in Chapter 2. Chapter 3 presents our results of applying the CryptoMiniSat

and PolyBoRi for the extraction of AES and Serpent keys from decayed memory images. In

Chapter 4, we present our obfuscated implementation of RC4. Finally, Chapter 5 presents

our conclusions and suggestions for future work.

5

Chapter 2

Preliminaries

In this chapter we briefly review some of the background information required for the

understanding of the following two chapters.

2.1 Cryptanalytic Attacks

Cryptanalysis [43] can be defined as the study of methods and techniques that allow unau-

thorized access to secrets protected by cryptographic methods (such as encryption algo-

rithms and signature schemes) and devices. Depending on the assumptions regarding what

is accessible to the cryptanalyst, cryptanalysis models can be classified into three cate-

gories: Black-box, Grey-box and White-box models.

2.1.1 Black-Box Models

Black-box models offer the least amount of information to adversaries. In particular, in the

black-box model, only input, corresponding output, and the algorithm in use are assumed to

be known by the attacker. No further information about the system implementation details

or inner structure is made available to the adversary. In other words, the black-box model

refers to the traditional cryptanalysis scenario where adversaries can only manipulate the

6

input, observe the resulting output, and apply their observations to the cryptographic algo-

rithm in use. Mathematical attacks such as differential cryptanalysis and linear cryptanal-

ysis [35] are well known attacks in this model which are applied against block and stream

ciphers. In particular, differential cryptanalysis is a known plaintext attack where the adver-

sary knows a set of plaintext (P) and ciphertext (C) pairs. A fixed ΔP with ΔP = P1⊕P2

is defined (e.g., ΔP = 0000000011010000 for a 16 bit block cipher) so that a specific out-

put ΔC = C1 ⊕ C2 occurs with a high probability for the given ΔP . The distribution of

ΔC ′s for the given ΔP results into a differential characteristic that reveals bit information

about the key in use. Exhaustive search over the remaining bits of the key accomplishes the

attack [35]. On the other hand, linear cryptanalysis is a known plaintext attack where the

adversary knows a set of plaintext (P) and ciphertext (C) pairs. The idea is to find linear

approximations (modulo 2) between some of the P and C bits which hold with probability

0.5± ε. In a fully randomized system, the bias value ε would be almost 0. The expression

to be chosen has to have a high bias value in order to result into a linear characteristic that

reveals bit information about the key in use. Exhaustive search over the remaining bits of

the key completes the attack [35].

2.1.2 Grey-Box Models

In grey-box models, an adversary has some additional information related to the targeted

cryptographic system. In particular, the input, resulting output, the algorithm in use, and

parts of the system to be analyzed are known and accessible by the attacker. Timing anal-

ysis, Power analysis, and Fault analysis are well known side channel representatives for

the grey-box model. Timing analysis and power analysis were first introduced by Paul

Kocher [39] [40]. Fault analysis attacks introduced by Boneh et al. [15] provide another

example of this class of attacks.

In timing attacks, the attacker attempts to compromise a cryptosystem by analyzing the

7

time needed to execute cryptographic algorithms. Every logical operation in a computer

takes time to execute, and the time can differ based on the input. With precise measure-

ments of the time for each operation, an attacker can work backwards to the secret informa-

tion [39]. Power analysis exploits the correlation between the cryptographic circuit power

consumption and the value of the processed secret information during the execution of dif-

ferent cryptographic operations. Power analysis attacks can be divided into Simple Power

Analysis (SPA) and Differential Power Analysis (DPA). While SPA directly interprets the

measured power consumption, DPA is a more advanced form of power analysis which al-

lows attackers to compute the intermediate values within cryptographic computations by

statistically analyzing data collected from multiple cryptographic operations [40].

Fault analysis exploits the misbehavior of cryptosystems in response to carefully crafted

fault injections. Probably, the best known demonstration of this attack is fault analysis of

RSA cryptosystems which use the Chinese Remainder Theorem (CRT). By manipulating

intermediate results, an adversary can easily find the factors of the modulus with the help

of the greatest common divisor Euclidian algorithm [15] [36].

Cold boot attacks are examples of powerful side channel attack which exploit the rema-

nence effect of memory modules. More details about this class of attacks will be described

later on in this chapter.

2.1.3 White-Box Models

In contrast to both the black-box and the grey-box models, in white-box models, an adver-

sary has full access to the system in use. In other words, in a white box model, the input,

resulting output, the algorithm in use, and the whole system are known and accessible. In

particular, the attacker can access and manipulate the memory and other storage devices of

the system, and observe intermediate calculation results.

Because of the ability to access the whole system, in the white-box model, adversaries

8

have further techniques at their disposal which extend those already available in the black-

box and grey-box attack models. Additionally, gaining access to the memory and CPU

registers allows the adversary to observe, manipulate intermediate results of the crypto-

graphic evaluations, and access the binary file for disassembling and debugging the target

programs. This small but incomplete list of examples reveals how powerful an adversary is

in a white-box model. Such powerful attacks demand new approaches to secure secrets on

targeted system.

White-box implementations for AES and DES [20] [19] are designed to resist attacks

launched in a white-box environment. The white-box implementation is a powerful tech-

nique based on software obfuscation. In what follows, we provide a description for the

general idea of white-box implementations. White-box implementations of AES and DES

ciphers are based on lookup tables following a specific scheme to creates their content.

The rest of this section explains the idea behind these lookup tables and show how they

are related to each other. We start with two definitions that build the foundation for this

approach.

Definition 1 (Encoding) Let X be a transformation from m bits to n bits. Choose an m-bit

bijection F and an n-bit bijection G. We call X
′
= G ◦X ◦ F−1 an encoded version of X.

F is an input encoding and G is an output encoding [20].

Definition 2 (Networked Encoding) A networked encoding for computing Y ◦ X (i.e.

transformation X followed by transformation Y) is an encoding of the form Y
′ ◦ X

′
=

(H ◦ Y ◦G−1) ◦ (G ◦X ◦ F−1) = H ◦ (Y ◦X) ◦ F−1 [20].

Now consider the case where Y
′
, X

′ are lookup tables representing the different execu-

tion steps. The concatenation Y ◦ X represents the internal computation of Y ′ ◦ X
′ , and

F,G,H are hidden bijections. The lookup tables contain an encoded version of the values

required for each step, i.e., iteration, of the cipher. They are built by concatenating the two

9

bijections for input and output encoding and storing the resulting value into the table. In

networked encoding, input and output encoding are designed such that the input encoding

of the following iteration eliminates the effect given by the output encoding.

Following this scheme would result in an encoded cipher with remaining input and out-

put encoding H and F . To eliminate the effect of the resulting input and output encoding,

the first and the last lookup table in the chain have to be handled differently. A straightfor-

ward solution applies only one of the two bijections to the two tables, so that in the resulting

computation no input and output encoding occurs. Based on the intended purpose of the

application and the infrastructure in use, different variations might be possible to eliminate

the effects of the input and output encoding. For example, on the transmitter side, one

might have an input that is concatenated with an output encoding related to the input en-

coding of the first table, and therefore compensates the effect given by the output encoding.

Applying definitions 1 and 2, together with the described considerations to eliminate the

effects of the input and output encoding to the 10 rounds of AES-128, we get

X
′
1 ◦X

′
2 ◦ · · · ◦X

′
10 = (X1 ◦F−1

1)◦ (G2 ◦X2 ◦F−1
2)◦ · · · ◦ (G10 ◦X10) = X1 ◦X2 ◦ · · · ◦X10

where X
′
r, r = 1, · · · , 10, denotes the lookup table for the rth round with the associated

sub-round keys. Only the bijection F−1
1 is applied to table X

′
1 to eliminate the effect of

G1. Alternatively, G−1
1 can be applied to the input so that input ◦ G−1

1 presents the new

input. In X
′
2, ..., X

′
9, both bijections Grd and F−1

rd are applied. For X ′
10, only bijections G10

is applied to avoid an obfuscated output.

Concatenating the lookup tables X ′
1 ◦X ′

2 ◦ · · · ◦X ′
10 results in the internal computation

X1 ◦X2 ◦ · · · ◦X10 which represent the uncoded AES-128 cipher. In case of the AES-128

cipher, the lookup tables map 128 input bits to 128 output bits. Following a naive approach,

where one table for each iteration of the cipher contains the 128 × 128 bijections from

plaintext to ciphertext for a given key, requires huge tables that cannot be handled by any

10

computer system (table size of 5.4 × 1039 bytes [20]).

The structure of AES and DES allows dividing the large sub-round tables into a subset

of tables. In case of AES, four different table types (see Figure 1) are needed to break

down this huge table into roughly 3,100 smaller lookup tables with a total cumulated size

of 770,048 bytes. Further details on how these tables are constructed can be found in [20].

Figure 1: Types of tables for an AES white-box implementation [20]

2.2 Cold Boot Attacks

A cold boot attack [33] is a side channel attack that exploits the fact that data loss of a non-

powered random access memory can be delayed by cooling it down. In 2002, Skoroboga-

tov [49] performed some experiments to study the temperature dependency of data retention

time in static RAM devices. The reported experimental results indicated that many chips

11

may preserve data for relatively long periods of time at temperatures above −20◦C which

contradicted the common thought that was widely believed at that time. The temperature

at which 80% of the data remained for one minute varied widely between different devices.

While some devices required cooling to at least −50◦C, others, surprisingly, retained data

for this period at room temperature. Memory retention time also varied between devices of

the same type from the same manufacturer, most likely, because controlling data retention

time is not a part of the chip manufacturing quality process. Table 1 presents the evalu-

ated systems and RAM technologies used for the cold boot attack in [33]. Three different

RAM technologies in six different systems were used to form the test probe. System A

works with Synchronous Dynamic Random-Access Memory (SDRAM), the oldest of the

compared RAM technologies. Systems B and C work with Double Data Rate Synchronous

Dynamic Random-Access Memory (DDR SDRAM) and the systems D, E and F work with

Double Data Rate Synchronous Dynamic Random-Access Memory (DDR2 SDRAM) of

the second generation.

Table 2 shows the effect of cooling the memory modules to −50◦C on the percentage

of bit errors compared with uncooled memory modules for systems A to D. As shown in the

table, cooling the memory modules can dramatically reduce the decay effect for a relatively

long time and therefore reduce the expected decay factor. A smaller decay factor increases

the amount of known bits that can be used to launch the algebraic step of a cold boot attack

against the target cryptographic primitive. Thus, one way to launch a cold boot attack is to

remove the memory module, after cooling it, from the target system and immediately plug

it in another system under the adversary’s control. This system is then booted to access

the memory. Another possible approach to execute the attack is to cold boot the target

machine by cycling its power off and then on without letting it shut down properly. Then a

lightweight operating system is, instantly, booted where the content of memory is dumped

to a file. Further analysis can then be performed on the information that is retrieved from

12

Memory Type Chip Maker Memory Density Make/Model Year
A SDRAM Infineon 128Mb Dell Dimension 4100 1999
B DDR Samsung 512Mb Toshiba Portégé 2001
C DDR Micron 256Mb Dell Inspiron 5100 2003
D DDR2 Infineon 512Mb IBM T43p 2006
E DDR2 Elpida 512Mb IBM x60 2007
F DDR2 Samsung 512Mb Lenovo 3000 N100 2007

Table 1: Test Systems used in [33]

Seconds Error % at Error %
w/o power operating temp. at −50◦C

A 60 41 (no errors)
300 50 0.000095

B 360 50 (no errors)
600 50 0.000036

C 120 41 0.00105
360 42 0.00144

D 40 50 0.025
80 50 0.18

Table 2: Effect of cooling the memory module on the error rates [33]

memory in order to find sensitive information such as cryptographic keys or passwords.

2.2.1 Countermeasures

The following list of recommendations, extracted and supplemented from [33], gives an

overview of countermeasures that can be used to defend against cold boot attacks.

• Scrubbing the memory: Do not store cryptographic keys longer than needed in the

memory. Overwrite the keys after their usage and clean the memory during the boot

process (shutdown and boot) by overwriting the memory content.

• Limiting booting from network or removable media: Limit the boot options to boot

only from installed hard disk, which limits the options of an adversary to replace the

13

memory modules or the boot medium (hard disk). Protect the BIOS configuration

for unintended changes of the boot options.

• Suspending the system safely: When a computer system is in Sleep mode or Hiber-

nation mode, the memory content must be maintained in a way that allows a quick

reproduction of the running state of the system. When using these modes, encrypt

the memory data during suspension and decrypt the data during the revoke process

after successfully entering the password by the user.

• Avoid auto-mount of encrypted file systems: Auto-mount of encrypted file systems

requires the password accessible in the memory even if the file system is not in use

which contradicts the previously mentioned memory scrubbing recommendation.

• Avoid pre-computation: While pre-computations speed up cryptographic operations,

they require maintaining the key relevant values in the memory. Repeated com-

putation of the key primitives and clearing its values from the memory may hurt

performance. However, it would respect the first recommendation in this list.

• Key Expansion: Apply transformations to the keys in the memory to complicate the

reproduction of the keys during a cold boot attack.

• Physical defenses: Limit the physical access to the memory modules. Monitor the

system case and erase the memory content when the case is opened.

• Architectural changes: Change the behavior of the used hardware by designing mem-

ory modules with a smaller remanence and design systems that reset the state of their

modules during shutdown and boot processes.

• Encrypting in the disk controller: The approach used in tresor [8] is to relocate the

computation of key initiated cryptographic functions into the CPU and its debug

14

registers or other controllers that are capable of computing and storing cryptographic

keys.

Based on our work developed in chapter 4, software obfuscation can be added to the list

above. Software obfuscation can be seen as a superordinate concept of the key expansion

described above.

2.3 Obfuscation Techniques

Software obfuscation represents a set of techniques to transform a program code or bi-

nary file into a new secured representation of the program that is hard to read, analyze and

reverse engineer. In this section we briefly review different categories of obfuscation tech-

niques [21]. Obfuscation techniques relay on the transformation of readable information

into a form that is hard to interpret and to reverse engineer. The available techniques highly

depend on the used programming language, the used compiler, the operating system, and

the programming technique (e.g., object-oriented programming vs. structured program-

ming). Desirable properties for such transformations are minimal cost (w.r.t execution time

and program size) and the stealthiness of the obfuscation. Stealthiness is relevant where

only a part of the target program is obfuscated; it prevents adversaries from finding the

obfuscated code and concentrating their effort on it.

2.3.1 Complicating the Control Flow

The remaining of this section describes several techniques that can be used to complicate

the analysis of control flows by transforming the control flow into a more complex structure

while retaining the intended functionality.

• Opaque expressions: Opaque predicates are opaque expressions evaluated at execu-

tion time. The expected result (always true, always false, or one of them) is known

15

in advance during the implementation, but hard to figure out by an attacker. Simple

examples for this techniques are:

x2 + x mod 2 = 0 always returns true.

x mod 2 = 0 sometimes returns true and sometimes false.

• Flattening the control-flow: Flattening removes the structure of the control flow,

while maintaining the original control flow, with multiple jumps. An example of this

approach is the replacement of a for loop (position 1) with a switch/case structure

(position 2).

1. for(int i = 0; i < 10, i++){...}

2. int i = 0;

while(1){
switch(i) {

case 0 : · · · ; break;
case 1 : · · · ; break;
· · ·
case 9 : · · · ; break;
default : · · · ; goto end; }

i++; }
end : · · · ;

Further techniques for control-flow flattening may include goto, throw/catch, and

other language depended instructions.

• Aliasing: An Alias represents an alternative path to manipulate the value, respec-

tively the memory location, of a variable. It forces adversaries to analyze how vari-

ables might be modified in several different ways. Missing one of these paths might

16

result into an unexpected behavior for the adversary.

• Inserting bogus control flows: A bogus control flow interrupts the sequence of a code

segment by introducing additional branches to the code. Combined with opaque

predicates, these branches can simply split the sequence and after evaluating the

result resume the sequence or they can introduce additional execution paths.

• Jump through branch functions: Replacing unconditional jumps such as goto state-

ments, which jump to an address in the code given by a label, with branch functions.

The return address of the branch function stored in the ebp register is replaced with

the start address to the desired functionality. The function branch below shows an

example where the return address of the function in the ebp register is replaced by

the value in the parameter addr.

void branch(unsigned int addr){
__asm{mov ebp, addr; }
}

2.3.2 Opaque Predicates

We already introduced the basic idea of opaque predicates as a tool to complicate the con-

trol flow. For the sake of completeness, in what follows we provide a description of some

specialized opaque predicates.

• Opaque predicates from pointer aliasing: Define a set of pointer structures G =

{G1, G2, · · · } where the elements in G are called graphs that contain a set of nodes

and further define a set of of pointers PTR = {ptr1, ptr2, · · · } pointing to some

nodes in the graphs. Modify in multiple iterations the graph structures by randomly

splitting the graphs, inserting, deleting, or moving nodes and reassigning the assigned

pointers to new nodes in the same graph. Based on the new structures define opaque

17

predicates related the the resulting graphs (e.g., (ptr1 �= ptr2) == true) and at

runtime, randomly reassign the pointers in the graphs to different nodes.

• Opaque values from array aliasing: Define an array (A[]) and fill the array with values

following a specific scheme. Evaluate opaque predicates based on different entries in

the array. At runtime randomly modify the values in the array without violating the

defined scheme. An example for this technique is:

if((A[6] mod A[2]) == A[1]) { · · · }

As seen in the example above, the scheme to assign and change values in the array

depends on the chosen relations for the opaque predicates.

• Opaque predicates from concurrency: Opaque predicates from concurrency work

with concurrent threads utilizing race conditions and maintaining the same data struc-

ture. Define the opaque predicates according to the expected values in the modified

data structure as a function of the thread winning the race.

2.3.3 Data Encodings

We can compare data encodings with encryption and decryption techniques from crypto-

graphy. An encoding function Enc() transforms the variable into an obfuscated representa-

tion and a decoding function Dec() undo this transformation. The transformed value must

be able to represent all the possible values that the entity can take which requires additional

functionality to guarantee this required behavior.

• Encoding integers: We can define a set of obfuscated operations in form of functions

(ENC(), DEC(), ADD(), SUB(), MULT(), LT(), · · ·) that neutralize each others ef-

fect. Several approaches for transforming an integer exist. These approaches range

from number-theoretic tricks to applying cryptographic algorithms such as the AES

18

or DES to the target integer value. The following example, extracted from [21],

illustrate the above idea.

typedef int T;

T ENC (int e) {return e+ 1;}

int DEC(T d) {return d− 1;}

T ADD(T a, T b) {return a+ b− 1;}

T MULT(T a, T b) {return a ∗ b− a− b+ 2;}

BOOL LT(T a, T b) {return a < b;}

Another approach to encode integers is splitting the value in question. At this point

we only mention two of the many possible approaches. First, split the bit stream

representing the integer value into two pieces and assign the two values to different

variables. For the second approach, generate a random value, assign it to one variable

and assign the original value Xored with the random value to a second variable.

• Encoding Booleans: Similar to encoding integers, a set of functions representing

the required and transformed boolean operations can be defined. These approaches

include splitting of the Boolean value, defining our own true table, e.g., an even

integer value represents False and an odd value represents True.

• Encoding literal data: Literal data can be regarded as a specialized set of integer val-

ues and all transformations related to encoding integers can also be applied to literal

data. Due to the enhanced nature of literals, further approaches such as specialized

state machines further extend the applicable techniques.

• Encoding arrays: In contrast to the encoding approaches above, the obfuscation tech-

niques for arrays are somewhat limited and fall into two categories. First, the arrays

19

can be reordered by applying a permutation or a homomorphic function to the in-

dices of the array. The second category modifies the structure of arrays. An array

can be split into several sub-arrays, different arrays can be merged together, a multi-

dimensional array can be flattened into a lower dimension, and an array can be folded

into a new array of higher dimension.

It is not hard to imagine how different techniques can be combined together. For ex-

ample, after encoding an integer array, the values stored in the array can be subjected to

additional obfuscation techniques.

2.3.4 Breaking Abstractions

To provide a readable and maintainable code, programming tasks are broken down into sev-

eral parts that are implemented separately. Based on the resulting abstraction and program-

ming environment these parts can be represented by packages, modules, classes, functions,

structures, loops, frameworks/libraries, which may reveal information to the adversaries.

Breaking abstractions eliminates such structures. Additional abstractions to be considered

are given by the hardware and the operating system of the targeted computer system.

• Merging function signatures: This technique unifies the function signatures in order

to prevent analysis based on function semantics. For example,

void foo(int x, float y){· · · ; }

int bar(char x){· · · ; }

void flu(float x, float y){· · · ; }

can be transformed into the following three functions with a uniform signature

int foo(int x, float y, f loat z, char a){· · · ; }

int bar(int x, float y, f loat z, char a){· · · ; }

20

int flu(int x, float y, f loat z, char a){· · · ; }

• Modifying instruction encodings: This technique introduces its own interpreter as an

additional layer between the executing machine and the programm to be executed. It

also defines how the machine instructions are selected and interpreted. This approach

is based on a decoding binary tree to select the required instructions. At run time,

the structure of the tree is modified such that the same instruction uses different bit

patterns as a selection criterion. Due to the dynamic structure of the decoding tree,

this approach can only be applied on hard coded functionality which is called as a bit

structure representing a machine code from the program itself.

21

Chapter 3

Application of Two Off-the-shelf

Algebraic Tools for Extraction of

Cryptographic Keys from Corrupted

Memory Images

Cryptographic key recovery from memory or memory dumps, for malicious or forensic pur-

poses, has attracted great attention of security professionals and cryptographic researchers.

In [48], Shamir and van Someren considered the problem of locating cryptographic keys

hidden in large amount of data, such as the complete file system of a computer system. In

addition to efficient algebraic attacks locating secret RSA keys in long bit strings, they also

presented more general statistical attacks which can be used to find arbitrary cryptographic

keys embedded in large files. This statistical approach relies on the simple fact that good

cryptographic keys possess high entropy. Areas with unusually high entropy can be located

by searching for unique byte patterns in sliding windows and then selecting those windows

with the highest numbers of unique bytes as a potential places for the key. Moe et al. [42]

22

developed a proof of concept tool, Interrogate, which implements several search methods

for a set of key schedules. To verify the effectiveness of the developed tool, they investi-

gated key recovery for systems running in different states (live, screen-saver, dismounted,

hibernation, terminated, logged out, reboot, and boot states). Another proof of concept tool,

Disk Decryptor, which can extract Pretty Good Privacy (PGP) and Whole Disk Encryption

(WDE) keys from dumps of volatile memories was presented in [38].

All the above techniques and tools took another dimension after the publication of the

cold boot attack by Halderman et al. [33]. While the remanence effect of RAM has already

been known since decades [49], it attracted greater attention in cryptography only after

Halderman et al. work in 2008, which explicitly exploited those observations to recover

cryptographic keys from the memory . They developed tools which capture everything

present in RAM before power was cut off and developed proof of concept tools which can

analyze these memory copies to extract secret DES, AES and RSA keys. In particular,

Heninger et al. [34] showed that an RSA private key with small public exponent can be

efficiently recovered given a 27% fraction of its bits at random. They have also developed a

recovery algorithm for the 128-bit version of AES (AES-128) that recovers keys from 30%

decayed AES-128 Key Schedule images in less than 20 minutes for half of the simulated

cases. Tsow [51] further improved upon the proof of concept in Halderman et al. and

presented a heuristic algorithm that solved all cases at 50% decay in under half a second.

At 60% decay, Tsow recovered the worst case in 35.5 seconds while solving the average

case in 0.174 seconds. At the extended decay rate of 70%, recovery time averages grew

to over 6 minutes with the median time at about five seconds. In [12], Albrecht et al.

proposed methods for key recovery of ciphers (AES, Serpent and Twofish) used in Full

Disk Encryption (FDE) products where they applied a method for solving a set of non-

linear algebraic equations with noise based on mixed integer programming. To improve

the running time of their algorithms, they only considered a reduced number of rounds.

23

Applying their algorithms, they obtained satisfactory success rates for key recovery using

the Serpent key schedule up to 30% decay and for the AES up to 40% decay.

Cryptanalytic attacks can be classified into pure mathematical attacks and side chan-

nel attacks. Pure mathematical attacks, are traditional cryptanalytic techniques that rely

only on known or chosen input-output pairs of the cryptographic function, and exploit the

inner structure of the cipher to reveal secret key information. On the other hand, in side

channel attacks, it is assumed that the attacker has some physical access to the crypto-

graphic device through one or more side channel. Well-known side channels, which can

leak critical information about the encryption state, include timing information [39] and

power consumption [40].

In addition to these commonly exploited side channels, the remanence effect of random

access memory (RAM) is a highly critical side channel that has been recently exploited by

cold boot attacks [33] [34] to retrieve secret keys from RAM. Although dynamic RAMs

(DRAMs) become less reliable when its contents are not refreshed, they are not imme-

diately erased. In fact, contrary to popular belief, DRAMs may retain their contents for

seconds to minutes after power is lost and even if they are removed from the computer

motherboard. A cold boot attack is launched by removing the memory module, after cool-

ing it, from the target system and immediately plugging it in another system under the

adversary’s control. This system is then booted to access the memory. Another possible

approach to execute the attack is to cold boot the target machine by cycling its power off

and then on without letting it shut down properly. Upon reboot, a lightweight operating

system is instantly booted where the targeted memory contents are dumped to a file.

Experimental results in [49] show how data are retained for a relatively long time in

computer memories after a system power off. However, the first work explicitly exploiting

those observations to recover cryptographic keys from the memory was reported by Hal-

derman et al. [33] where they presented proof of concept experiments which showed that

24

it is practically feasible to perform cold boot attacks exploiting the remanence effect of

RAMs to recover secret keys of DES, AES and RSA. After the publication of Halderman

et al. [33], several other authors (e.g., [51] [12] [34]) further improved upon this proof of

concept and presented algorithms that solved cases with higher decay factors. However, al-

most all these previously proposed techniques were cipher-dependent and certainly uneasy

to develop and fine tune. On the other hand, for symmetric ciphers, the relations that have

to be satisfied between the subround key bits in the key schedule always correspond to a set

of nonlinear Boolean equations. In this chapter, we investigate the use of an off-the-shelf

SAT solver (CryptoMiniSat [4]), and an open source Gröbner basis tool (PolyBoRi [16])

to solve the resulting system of equations. We also discuss the pros and cons of both tools

and present some experimental results for the extraction of AES and Serpent keys from

decayed memory images.

3.1 Modern Algebraic Tools and Their Applications to Crypto-

graphy

The use of SAT solvers and Gröbner basis in cryptanalysis has recently attracted the at-

tention of cryptanalysts. Courtois et al. [26] demonstrated a weakness in KeeLog by pre-

senting an attack which requires about 232 known plaintexts. For 30% of all keys, the full

key can be recovered against a complexity of 228 KeeLoq encryptions. In [25], 6 rounds

of DES are attacked with only a single known plaintext/ciphertext pair using a SAT solver.

Erickson et al. [32] used the SAT solver and Gröbner basis [17] attacks against SMS4 on

equation system over GF(2) and GF(28). In [18], a practical Gröbner basis [17] attack using

Magma was applied against the ciphers Flurry and Curry, recovering the full cipher key by

requiring only a minimal number of plaintext/ciphertext pairs.

SAT solvers and Gröbner basis have also been applied to the cryptanalysis of stream

25

ciphers. Eibach et al. [31] presented experimental results on attacking a reduced version of

Trivium (Bivium) using exhaustive search, a SAT solver, a binary decision diagram (BDD)

based attack, a graph theoretic approach, and Gröbner basis. Their result implies that the

usage of the SAT solver is faster than the other attacks. The full key of Hitag2 stream

cipher is recovered in a few hours using MiniSat 2.0 [27]. In [28], the full 48-bit key of the

MiFareCrypto 1 algorithm was recovered in 200 seconds on a PC, given 1 known initial

vector (IV) from one single encryption. In [52], Velichkov et al. applied the Gröbner basis

on a reduced 16 bit version of the stream cipher Lex.

Mironov and Zhang [44] described some initial results on using SAT solvers to auto-

mate certain components in cryptanalysis of hash functions of the MD and SHA families.

De et al. [30] presented heuristics for solving inversion problems for functions that satisfy

certain statistical properties similar to that of random functions. They demonstrate that this

technique can be used to solve the hard case of inverting a popular secure hash function

and were able to invert MD4 up to 2 rounds and 7 steps in less than 8 hours. In [50], Sugita

et al. used the Gröbner basis to improve the attack on the 58-round SHA-1 hash function

to 231 computations instead of 234 in Wang’s method [54].

3.1.1 Gröbner Basis and PolyBoRi

A Gröbner basis is a set of multivariate polynomials that have desirable algorithmic proper-

ties. In what follows, we briefly review some basic definitions and algebraic preliminaries

related to Gröbner basis as presented in [47].

Let K be any field (in here we are interested in the case where K = F2.) We write

K[x1, ..., xn] for the ring of polynomials in n for the variables xi having its coefficients in

the field K.

Definition 3 A subset I ⊂ K[x1, ..., xn] is an ideal if it satisfies:

1. 0 ∈ I .

26

2. if f ,g ∈ I , then f + g ∈ I .

3. if f ∈ I and h ∈ K[x1, ..., xn], then hf ∈ I .

Definition 4 Let f1, ..., fm be polynomials in K[x1, ..., xn]. Define the ideal 〈f1, ..., fm〉 =
{∑m

i=1 hifi : h1, ..., hm ∈ K[x1, ..., xn] }. If there exists a finite set of polynomials in

K[x1, ..., xn] that generate the given ideal, we call this set a basis.

Definition 5 A monomial ordering on K[x1, ..., xn] is any relation > on Z
n
≥0, or equiva-

lently, any relation on the set of monomials xα, α ∈ Z
n
≥0, satisfying:

1. > is a total ordering on Z
n
≥0.

2. if α > β and α, β, γ ∈ Z
n
≥0, then α + γ > β + γ.

3. > is a well ordering on Z
n
≥0. That is every nonempty subset of Zn

≥0 has a smallest

element with respect to >.

An example of monomial ordering for our application is lexicographic order which is

defined as follows:

Definition 6 (Lexicographic Order (lex)). Let α = (α1, ..., αn), and β = (β1, ..., βn) ∈
Z
n
≥0. We say α >lex β if, in the vector difference α− β ∈ Z

n, the left-most nonzero entry is

positive. We will write xα >lex xβ if α >lex β.

Definition 7 Let f = Σαaαx
α be a non-zero polynomial in P and let > be a monomial

order. The multidegree of f is multideg(f) = max>(α ∈ Z
n
�0 : aα �= 0).

Definition 8 (leading term of a polynomial). Let f(x) =
∑m

i=1 cαx
α : cα ∈ K is non-zero

and > is the order relation defined for the monomials of the polynomial f(x). The greatest

monomial in f(x), regarding to the order relation >, is called the leading monomial for the

polynomial f(x) and is represented by LM(f) = xmultideg(f). Also the set M(f) consists

27

of all monomials of f(x) and T (f) denote the set of all terms of f(x). The coefficient of

the leading monomial is represented by LC(f) = amultideg(f) ∈ K and called the leading

coefficient. The term containing both the leading coefficient and leading monomial is called

the leading term, represented by LT (f) = LC(f) · LM(f).

The idea of Gröbner basis was first proposed by Buchberger [17] to study the member-

ship of a polynomial in the ideal of the polynomial ring.

Definition 9 (Gröbner basis) Let an ideal I be generated by G = g1, ..., gm, where gi,

1 ≤ i ≤ m is a polynomial. G is called the Gröbner basis for the ideal I , if:

〈LT (I)〉 = 〈LT (g1), ..., LT (gm)〉,

where 〈LT (I)〉 denotes the ideal generated by the leading terms of the members in I .

One can view Gröbner basis as a multivariate, non-linear generalization of the Eu-

clidean algorithm for computation of univariate greatest common divisors, Gaussian elimi-

nation for linear systems, and integer programming problems. In this work, we use Gröbner

basis as an algebraic tool that allows us to solve non-linear Boolean equations by using the

PolyBoRi framework.

The following example explains the main involved steps and commands for the Poly-

BoRi framework in Sage [2] to solve a given system of nonlinear Boolean equations.

Example 3.1.1 Consider the following system of non-linear Boolean equations

x1x2 ⊕ x3x4 = 1,

x1x3x5 ⊕ x4x5 = 0,

x1x2x5 ⊕ x3x5 = 0,

x2x3 ⊕ x3x4x5 = 1,

(1)

28

Figure 2 shows the steps to be executed in PolyBoRi to obtain the Gröbner basis of

the systems of equations in (1). As shown in the figure, the function ideal() in step 2 takes

the corresponding homogeneous system of equations as a calling parameter. The resulting

Gröbner basis is given by [x1 + x4 + 1, x2 + 1, x3 + 1, x2
4 + x4, x5]. In this notation, xi

appearing in a separate term by itself implies that the system of equations under considera-

tion can be solved by setting xi = 0. Similarly, xi+1 implies that xi = 1. Also, the notation

xi + x2
i implies that xi can be assigned a 0 or a 1. Thus the above basis corresponds to

the following two independent solutions: {x1 = 1, x2 = 1, x3 = 1, x4 = 0, x5 = 0} and

{x1 = 0, x2 = 1, x3 = 1, x4 = 1, x5 = 0}.

Figure 2: Working with PolyBoRi to solve the systems of equations in (1)

3.1.2 The SAT problem and CryptoMiniSat

The Boolean satisfiability (SAT) problem [24] is defined as follows: Given a Boolean for-

mula, check whether an assignment of Boolean values to the propositional variables in the

formula exists such that the formula evaluates to true. If such an assignment exists, the for-

mula is said to be satisfiable; otherwise, it is unsatisfiable. For a formula with m variables,

there are 2m possible truth assignments. The conjunctive normal form (CNF) is frequently

used for representing Boolean formulas. In CNF, the variables of the formula appear in lit-

erals (e.g., x) or their negation (e.g., x). Literals are grouped into clauses, which represent

29

a disjunction (logical OR) of the literals they contain. A single literal can appear in any

number of clauses. The conjunction (logical AND) of all clauses represents a formula. For

example, the CNF formula (x1)∧ (x2 ∨ x3)∧ (x1 ∨ x3) contains three clauses: x1, x2 ∨ x3

and x1∨x3. Two literals in these clauses are positive (x1, x3) and two are negative (x2, x3).

For a variable assignment to satisfy a CNF formula, it must satisfy each of its clauses. For

example, if x1 is true and x2 is false, then all three clauses are satisfied, regardless of the

value of x3.

While the SAT problem has been shown to be NP-complete [24], efficient heuristics

exist that can solve many real-life SAT formulations. Furthermore, the wide range of target

applications of SAT have motivated advances in SAT solving techniques that have been

incorporated into freely-available SAT solvers such as the CryptoMiniSat.

When preparing the input to the SAT solver, the terms of quadratic and higher degree

are handled by noting that the logical expression

(x1 ∨ T)(x2 ∨ T)(x3 ∨ T)(x4 ∨ T)(T ∨ x1 ∨ x2 ∨ x3 ∨ x4) (2)

is tautologically equivalent to T ⇔ (x1 ∧ x2 ∧ x3 ∧ x4), or the GF (2) equation T =

x1x2x3x4. Similar expressions exist for higher order terms. Thus, the system of equations

obtained in this step can be linearized by introducing new variables as illustrated by the

following example.

Example 3.1.2 Suppose we would like to find the Boolean variable assignment that satis-

fies the following formula

x0 ⊕ x1x2 ⊕ x0x1x2 = 0.

Then, using the approach illustrated in (2), we introduce two linearization variables,

T0 = x1x2 and T1 = x0x1x2. Thus we have

30

x0 ⊕ T0 ⊕ T1 = 0,

(T 0 ∨ x1) ∧ (T 0 ∨ x2) ∧ (T0 ∨ x1 ∨ x2) = 1,

(T 1 ∨ x0) ∧ (T 1 ∨ x1) ∧ (T 1 ∨ x2)∧
(T1 ∨ x0 ∨ x1 ∨ x2) = 1.

(3)

Since the CryptoMiniSat expects only positive clauses and the CNF form does not have

any constants, we need to overcome the problem that the first line in (3) corresponds to

a negative, i.e., false, clause. Adding the clause consisting of a dummy variable, d, or

equivalently (d∧d · · ·∧d) would require the variable d to be true in any satisfying solution,

since all clauses must be true in any satisfying solution. In other words, the variable d will

serve the place of the constant 1.

Therefore, the above formula can be expressed as

d = 1,

x0 ⊕ T0 ⊕ T1 ⊕ d = 1,

(T 0 ∨ x1) ∧ (T 0 ∨ x2) ∧ (T0 ∨ x1 ∨ x2) = 1,

(T 1 ∨ x0) ∧ (T 1 ∨ x1) ∧ (T 1 ∨ x2)∧
(T1 ∨ x0 ∨ x1 ∨ x2) = 1.

31

Applying the same logic to the system of equations in (1), we obtain

d = 1,

T1 ⊕ T2 = 1,

(T1 ∨ x1) ∧ (T1 ∨ x2) ∧ (T1 ∨ x1 ∨ x2) = 1,

(T2 ∨ x3) ∧ (T2 ∨ x4) ∧ (T2 ∨ x3 ∨ x4) = 1,

T3 ⊕ T4 ⊕ d = 1,

(T3 ∨ x1) ∧ (T3 ∨ x3) ∧ (T3 ∨ x5)∧
(T3 ∨ x1 ∨ x3 ∨ x5) = 1,

(T4 ∨ x4) ∧ (T4 ∨ x5) ∧ (T4 ∨ x4 ∨ x5) = 1,

T5 ⊕ T6 ⊕ d = 1,

(T5 ∨ x1) ∧ (T5 ∨ x2) ∧ (T5 ∨ x5)∧
(T3 ∨ x1 ∨ x2 ∨ x5) = 1,

(T6 ∨ x3) ∧ (T6 ∨ x5) ∧ (T6 ∨ x3 ∨ x5) = 1,

T7 ⊕ T8 = 1,

(T7 ∨ x2) ∧ (T7 ∨ x3) ∧ (T7 ∨ x2 ∨ x3) = 1,

(T8 ∨ x3) ∧ (T8 ∨ x4) ∧ (T8 ∨ x5)∧
(T8 ∨ x3 ∨ x4 ∨ x5) = 1,

Figure 3 shows the CryptoMiniSat input file corresponding to the above system of equa-

tions. As shown in the figure, a negative number implies that the variables assumes a value

= 0 and a positive number implies a value = 1. Lines starting with ‘x’ denote an XOR

equation and each lines is terminated with ‘0’.

From the above examples, its is clear that, compared to PolyBoRi, preparing the input

for the CryptoMiniSat requires relatively longer pre-processing steps. Also, unlike the

Gröbner basis approach which returns the general form of the solution, CryptoMiniSat

returns one valid solution. To find the other solutions, the already found solutions have to

32

Figure 3: CryptoMiniSat input file corresponding to the system of equations in (1)

be negated and added to the SAT solver input file. In the example above, the first solution

returned by the CryptoMiniSat ({1, −2, 3, 4, 5, −6, −7, 8, −9, −10, −11, −12, 13, −14})

is negated ({−1, 2, −3, −4, −5, 6, 7, −8, 9, 10, 11, 12, −13, 14}) and added to the SAT

solver input file as a new entry. When running the SAT solver again, this added entry forces

the SAT solver to eliminate this as a possible solution and search for a new one that solves

the SAT problem. When doing so, the SAT solver returns the second possible solution ({1,

2, 3, 4, −5, −6, 7, −8, −9, −10, −11, −12, 13, −14}).

33

3.2 Structure of the AES-128 and Serpent Key Schedules

In this section, we briefly review the relevant details of the AES-128 and Serpent key

schedules.

3.2.1 Key Schedule of AES-128

In the following we describe the AES-128 key scheduler [29] [1]. AES-128 works with a

user key (Master Key) of 128 bits (16 bytes) represented by a 4x4 array K0
i,j , the AES state

matrix; with 0 ≤ i, j ≤ 3 where i and j denote the row and column indices, respectively.

Kr+1
i,j denotes the bijective mapping of the user key to the 10 sub-round keys, where 0 ≤

r ≤ 9 denotes the number of the rounds. The rth key schedule round is defined by the

following transformations:

Kr+1
0,0 ← S(Kr

1,3)⊕Kr
0,0 ⊕Rcon(r + 1)

Kr+1
i,0 ← S(Kr

(i+1)mod4,3)⊕Kr
i,0, 1 ≤ i ≤ 3

Kr+1
i,j ← Kr+1

i,j−1 ⊕Kr
i,j, 0 ≤ i ≤ 3, 1 ≤ j ≤ 3

(4)

where Rcon(·) denotes a round-dependent constant and S(·) represents the s-box opera-

tions based on the 8× 8 Rijndael S-box [29]. Figure 4 shows the transformations given by

equation 4.

3.2.2 Key Schedule of Serpent

Serpent [13] is a 32 round block cipher based on a substitution permutation network (SPN)

structure with an Initial Permutation (IP) and a Final Permutation (FP). It has 32 rounds,

each consists of a key mixing operation, a pass through S-boxes, and (in all but the last

round) a linear transformation. In the last round, this linear transformation is replaced by

an additional key mixing operation. The cipher accepts a variable user key length that is

34

always padded up to 256 bits by appending one bit-value ‘1’ to the end of the most signif-

icant bit followed by bit-values ‘0’. To obtain the 33 128-bit subkeys K0, ..., K32, the user

key is divided into eight 32-bit words w−8, w−7, ..., w−1, from which the 132 intermediate

keys or pre-keys (w0...w131) are derived as follows:

wi := (wi−8 ⊕ wi−5 ⊕ wi−3 ⊕ wi−1 ⊕ φ⊕ i) <<< 11 (5)

where φ is a constant formed by the fractional part of the golden ratio (
√
5 + 1)/2 or

0x9e3779b9 in hexadecimal.

The round keys ki are evaluated from the pre-keys by first calling one of the eight 4× 4

S-boxes in bit slice mode. In bit slice mode, each input of the S-box comes from a different

32-bit word and each output goes to a different 32-bit word. The 4x32 bits per round are

all handled by the same S-box. A group of four input or four output words defines a unit

that is handled together. The transformation from pre-keys wi into words kj of round keys

is performed as follows:

{k0; k1; k2; k3} = S3(w0;w1;w2;w3)

{k4; k5; k6; k7} = S2(w4;w5;w6;w7)

{k8; k9; k10; k11} = S1(w8;w9;w10;w11)

{k12; k13; k14; k15} = S0(w12;w13;w14;w15)

{k16; k17; k18; k19} = S7(w16;w17;w18;w19)

...
...

...

{k124; k125; k126; k127} = S4(w124;w125;w126;w127)

{k128; k129; k130; k131} = S3(w128;w129;w130;w131)

(6)

where Si denotes the ith S-box of Serpent. The round keys Ki are then formed by

regrouping the 32-bit values kj as 128-bit sub-keys Ki (for i ∈ 0,.., r) as follows:

35

Ki := {k4i; k4i+1; k4i+2; k4i+3} (7)

Finally, we apply IP to the round keys Ki in order to place the key bits in the correct

column, i.e., K̂i = IP(Ki). Figure 5 depicts the described key scheduler of Serpent.

By exploiting the asymmetric decay of the memory images and the redundancy of key

material inherent in the key schedule of both algorithms above, rectifying the faults in the

corrupted memory images of the the key schedule is formulated as a Boolean satisfiability

problem which can be solved efficiently for relatively large decay factors.

3.3 Simulation Results

Because of the nature of the cold boot attack, it is realistic to assume that only a corrupted

image of the contents of memory is available to the attacker, i.e., a fraction of the memory

bits will be flipped from its charged state. Halderman et al. [33] observed that, within

a specific memory region, the decay is overwhelmingly asymmetric, i.e., either 0 → 1 or

1 → 0. When trying to retrieve cryptographic keys, the decay direction for a region can

be determined by comparing the number of 0’s and 1’s since in an uncorrupted key, the

expected number of 0’s and 1’s should approximately be equal.

Similar to the previous work in [33] [51], throughout our experimental results, we as-

sume an asymmetric decay model where bits overwhelmingly decay to their ground state

rather than their charged state. Using this model, only the bits that remain in their charged

state are useful to the cryptanalyst since one cannot be sure about the original values of

the 0 bits, i.e., whether they were originally 0’s or decayed 1’s. Let β denote the fraction

of decayed bits. If the percentage of 0’s and 1’s in the original key schedule bits is pz and

1 − pz, respectively, then the fraction, f , of key bits that can be assumed to be known by

36

examining the decayed memory of the key schedule is given by

f = 1− (pz + β × (1− pz)) = (1− pz)× (1− β).

Since in an uncorrupted key schedule key, we expect the number of 0’s and 1’s to be ap-

proximately equal, i.e., pz ≈ 1/2, then we have f ≈ (1− β)/2.

In our experiments, the input files for the CryptoMiniSat contained 5,144 and 18,500

clauses for AES and Serpent, respectively. For PolyBoRi, 1,280 equations with 1,728

variables were defined for AES and 8,448 equations with 8,704 variables were defined for

Serpent.

Tables 3, 4, 5 and 6 show statistics for the run time required to recover the key of AES

and Serpent from the corresponding corrupted memory images for different decay factors.

These runtime statistics were obtained using PolyBoRi and CryptoMiniSat running on a

Dell Precision 370 workstation with a 3.0 GHz Intel Pentium 4 CPU and 1 GB of RAM.

Examining the results in the tables reveal the following observations:

• While the resource requirements of both tools (time for CryptoMiniSat, and time and

memory for PolyBori) seem to grow exponentially with the decay factor, for practical

values of the decay factor, both tools require reasonably short time to recover the

secret keys from corrupted memory images.

• The simple and high redundancy in the AES key schedule allows for faster recovery

of the key from corrupted memory images. This makes AES more prone to these

attacks as compared to other AES finalist such as Serpent. In fact, our initial experi-

ments with Twofish [10] indicate that its relatively more complex key schedule limits

the practical applications of these tools to very small values of the decay factor.

• CryptoMiniSat seems to be more suitable for applications in this type of attacks. In

particular, every time we tried to push the decay factor higher than the values reported

37

in Table 4, the PolyBoRi tool always crashed after few minutes due to the excessive

memory consumption. This behavior also persisted on a 64 bit Linux operating sys-

tems with a freshly compiled PolyBoRi/sage system and 8 GB RAM. The question

remains if solutions for a higher decay factor can be achieved in a reasonable time if

this memory limitations is fixed in the tool.

Table 3: Run-time statistics using Gröbner basis for AES.

Decay 10% 20% 30% 40% 50% 60% 70%
Min 0.4 0.6 0.8 1.3 2.2 3.5 7
Max 0.7 0.9 1.1 2.1 3.6 7.6 45
Avg. 0.6 0.7 0.9 1.7 2.9 5.6 21
St.Dev 0.1 0.1 0.1 0.3 0.5 1.2 13
Med. 0.5 0.7 0.9 1.7 2.9 5.3 15

Table 4: Run-time statistics using Gröbner basis for Serpent.

Decay 10% 20% 30% 40% 50% 60% 70%
Min 8 9 17 56 114 417 -
Max 9 34 50 2075 2812 578 -
Avg. 8 15 36 328 399 507 -
St.Dev 0.3 7 11 656 764 47 -
Med. 8 12 40 107 131 504 -

Table 5: Run-time statistics using SAT-solver for AES [37].

Decay 30% 40% 50% 60% 70%
Min 0.046 0.046 0.062 0.062 0.078
Max 0.593 0.140 0.187 0.593 207.171
Avg. 0.064 0.066 0.074 0.102 1.233
St.Dev 0.009 0.007 0.008 0.028 4.899
Med. 0.062 0.062 0.078 0.093 0.359

38

Table 6: Run-time statistics using SAT-solver for Serpent.

Decay 10% 20% 30% 40% 50% 60% 70%
Min 0.4 0.4 0.5 0.5 0.7 0.9 4
Max 0.7 0.8 1.2 1.6 8.0 69 35282
Avg. 0.6 0.6 0.7 0.9 1.9 8 1278
St.Dev 0.05 0.07 0.10 0.22 1.30 11 4402
Med. 0.15 0.17 0.20 0.35 1.18 9 27706

39

Figure 4: Key Schedule of AES

40

Figure 5: Key Schedule of Serpent

41

Chapter 4

An Obfuscated Implementation of RC4

Cryptographic techniques are traditionally implemented to protect data and keys against at-

tacks where the adversary may observe various inputs to and outputs from the system, but

has no access to the internal details of the execution. On the other hand, several recently

developed applications require a higher degree of robustness against attacks from the exe-

cution environment where the adversary has closer access to the software implementation

of key instantiated primitives. Digital Rights Management (DRM) is an example of such

applications where one of the main design objective is to control access to digital media

content. This higher degree of robustness can be achieved through white-box implemen-

tations where encryption keys are hidden, using obfuscation techniques, within the imple-

mentation of the cipher. White-box implementations for block ciphers, such as AES and

DES, are widely available [20] [19].

On the other hand, obfuscation can be used to transform a program from an easily

readable format to one that is harder to read, trace, understand and modify. This offers an

additional layer of security as it protects the program by increasing the required human and

computational power that is needed to reverse engineer, alter, or compromise the obfuscated

program. Obfuscation techniques can be categorized into automated and manual methods.

The former systematically, using specific tools, modify the source code (e.g. [3]) or the

42

binary executable file (e.g. [11] [6]). The latter techniques rely on the programmer to follow

obfuscation techniques during coding. These techniques are governed by the programming

language in use. For example, languages like C and C++, which are commonly used in

the implementation of cryptographic primitives due their high performance, are flexible in

syntax and allow the use of pointers.

Obfuscated programs can be reverse engineered using techniques such as static and dy-

namic analysis. Static analysis techniques analyze the program file by performing control

flow and data flow analysis ([21] [53]) without running the program. Dynamic analysis,

on the other hand, takes place at runtime and addresses the followed execution path.

In this chapter, we investigate several obfuscation techniques that are suitable for appli-

cations to array-based stream ciphers such as RC4. We also perform a comparison between

the performance of these different techniques when applied to RC4. Although our pro-

posed implementation does not provide the same level of theoretical security provided by

white-box implementations for block ciphers, it still provides a high degree of robustness

against attacks from execution environments where the adversary has access to the software

implementation such as in digital right management applications.

4.1 The RC4 Cipher

In this section, we briefly review the Key Scheduling Algorithm (KSA), and the Pseudo-

random Generation Algorithm (PRGA) of RC4. We also describe the Skype attempt to

provide an obfuscated software implementation for RC4.

4.1.1 Standard RC4 Implementation

While traditional feedback shift register based stream ciphers are efficient in hardware,

they are less so in software since they require several operations at the bit level. The design

43

of RC4 avoids the use of bitwise operations as it requires only byte manipulations which

makes it very efficient in software. In particular, RC4 uses 256 bytes of memory for the

state array, S[0] through S[255], k bytes of memory for the key, key[0] through key[k− 1],

and two index pointers: a sequential index i, and quasi random index j.

Algorithm 1 shows the KSA of RC4, where the permutation S is initialized with a key

of variable length, typically between 40 to 256 bits. Once this is completed, the key stream

is generated using the PRGA shown in Algorithm 2. The generated key stream is combined

with the plaintext, usually, through an XOR operation.

1: for i = 0 → 255 do

2: S[i] := i
3: end for

4:
5: j := 0
6: for i = 0 → 255 do

7: j := (j + S[i] + key[i mod keylength]) mod 256
8: swap values of S[i] and S[j]
9: end for

Algorithm 1: RC4 Key Scheduling Algorithm (KSA) [43]

1: i := 0
2: j := 0
3: while GeneratingOutput do

4: i := (i + 1) mod 256
5: j := (j + S[i]) mod 256
6: swap values of S[i] and S[j]
7: K := S[(S[i] + S[j]) mod 256]
8: output K
9: end while

Algorithm 2: RC4 Pseudo-Random Generation Algorithm (PRGA) [43]

Analyzing the KSA and PRGA algorithms of RC4 yields the following observations:

1. As with most stream ciphers, an adversary does not have to find the key in order to

break the cipher. In other words, recovering the initialized inner-state S allows the

44

adversary to efficiently generate the keystream output of the cipher and decrypt the

target ciphertext even without knowing the key array.

2. An adversary who is able to observe the values of the index pointer j in the PRGA

can efficiently recover the whole inner state S.

4.1.2 Skype’s RC4 Implementation

The only reference to obfuscated RC4 implementation in the open literature appeared in a

Blackhat publication that describes the leaked implementation used in Skype [7] [14]. By

analyzing this leaked implementation, we observe the following:

• Regarding the cipher itself, the cryptographic key used is 80 bytes in length whereas

standard implementations use a key of 40 to 256 bits in length (i.e. 5 to 32 bytes).

• Regarding key management, the Skype’s implementation selects a key from a pool

of 232 keys.

• Regarding the use of the cipher, RC4 itself is used as an obfuscation technique to

hide the network layer.

The implementation utilizes a macro called RC4_round that is used in both the KSA

and the PRGA. Therefore, we first describe this macro. This macro is shown in Algorithm

3. When called, the macro is passed the following parameters:

i: the sequential index

j: the quasi random index

RC4: an array corresponding to S in the standard implementation

t: a variable for swapping the ith and jth element in S

45

k: the cryptographic key used in this iteration

Lines 1, 3 and 4 describe the swapping operation, line 2 evaluates the new quasi random

index j, and line 5 evaluates the key for this iteration. The main difference in the use of

this macro between KSA and PRGA is in the key value passed and the action based on the

return value. In the PRGA, the value for k is always zero, whereas in the KSA, the key

used in this iteration is passed. Furthermore, in the KSA, the returned value of this macro

is discarded, whereas in the PRGA the returned value is used as part of the key stream.

1: t :=RC4[i],
2: j := (j + t + k) mod 256,
3: RC4[i] := RC4[j],
4: RC4[j] := t,
5: RC4[(RC4[i] + t) mod 256] {Output to be returned}

Algorithm 3: Round Macro: RC4_round(i,j,t,k,RC4) [7]

The KSA is shown in Algorithm 4. In this implementation, the inner-state of the cipher

is stored in a data structure called rc4. This structure contains an array (representing the

array S from Algorithms 1 and 2) which holds the random ordered values, a sequential

index i, and quasi random index j. The ”for” loop in lines 1 through 6 initializes the

array rc4.s sequentially from 0 to 255. The array rc4.s is allocated exactly 256 sequential

bytes in memory. The implementation takes advantage of the array structure in memory by

initializing 4 bytes in each iteration rather than a single byte. Therefore, the index j in the

loop is incremented in each iteration by 4 bytes (0x04040404), and is assigned to the array

at the ith position. Consequently, the index i has to be incremented by 4 in each iteration.

The reordering step (lines 9 through 11) is done by the macro RC4_round.

The PRGA is shown in Algorithm 5 where the ”for” loop iterates over the data stream

(buffer, of size bytes) performing the encryption/decryption operation. This is done by

XORing the data (in buffer) and the key stream generated by the macro RC4_round. Fur-

thermore, the indices i and j in the data structure rc4 are updated.

46

1: j := 0x03020100
2: for i = 0 → 255 do

3: i := i + 4
4: j := j + 0x04040404
5: rc4.s[i] := j
6: end for

7:
8: j := 0
9: for i = 0 → 255 do

10: RC4_round(i, j, t, byte(key,i%80), rc4.s)
11: end for

Algorithm 4: Skype Implementation for the RC4 KSA [7]

1: for (; bytes; bytes−−) do

2: i := (i + 1) mod 256
3: buffer++ {positioning the pointer to the new value to be en-/decrypted}
4: *buffer = *buffer XOR RC4_round(i, j, t, 0, s)
5: rc4.i := i
6: rc4.j := j
7: end for

Algorithm 5: Skype Implementation for the RC4 PRGA [7]

Clearly, the Skype implementation described above does not provide enough level of

protection for the inner state of the cipher. It should be noted, however, that Skype uses the

RC4 cipher itself as an obfuscation technique for the network layer but the effective data

stream (voice, chat, video) is encrypted with AES [14].

4.2 Proposed Implementation

In this section we present our obfuscated implementation of RC4. Throughout our work,

we assume that the cipher is implemented as a standalone module, i.e., the implemented

code contains only the functionality of the cipher. Another approach would be to mix

the implementation of the cipher with parts of a larger application. Such a needle in the

haystack approach can add more security as the containing application offers more obfus-

cation space. However, since an implementation of this approach is highly dependent on

47

the containing application, it is therefore not considered in this work.

In our proposed obfuscated implementation, we first eliminate the use of the array S

by using independent set of variables. To improve the efficiency of this approach, we use

function pointers. Following that, we utilize multithreading to provide security against

dynamic analysis attacks. Finally, we present other generic techniques used to further

obfuscate the proposed implementation. Throughout the remaining of this chapter, for

illustrative purposes, we use a toy implementation of RC4 (with an array of size N = 4).

However, performance measures have been made based on a RC4 with standard parameters

(i.e. with an array of size N = 256).

4.2.1 Eliminating the S Array Data Structure

As the KSA and PRGA algorithms show, standard RC4 implementation requires only a

few data objects, namely two index pointers i and j, and an array S.

As a first step towards obfuscation, we substitute the array data structure S by N inde-

pendent variables, where N is the number of elements in the array S. Unlike the elements of

an array which are stored in consecutive memory locations, these independent variables can

be scattered throughout the program memory. On the other hand, working with such inde-

pendent variables eliminates our ability to dynamically address them using a loop structure

since we no longer have an array index that can be related to loop counters. To address

these variables, we use the loop unrolling technique, also known as loop unwinding. This

is illustrated for the toy implementation in Figure 6. As depicted in the figure, the imple-

mentation is based on two nested switch/case structures, where the outer structure operates

over the index i and the inner structure operates over the index j. It is worth noting that the

inner switch/case structures are almost identical for various outer switch/case structures.

However, since the ith element in array S has been substituted with an independent vari-

able, this variable has to be correctly referenced in each inner switch/case structure. This

48

nested structure cannot dynamically evaluate expressions such as S[S[i] + S[j]]. For such

expressions, a dedicated switch/case structure, Switch(Output − Index), is used. This

structure is passed an intermediate value, Output− Index = S[i]+S[j], and evaluates the

expression above. In an 8 bit implementation with an array of size N = 256, the number

of possible combinations is given by N × N = 28 × 28 = 216. This implies that a total

of 216 case statements are needed to represent all the possible combinations. Thus, despite

its conceptual simplicity, the use of nested switch/case structures results in a prohibitively

large program (e.g. for N = 256, the program size exceeds 12 MB). In the next subsection

we show how this obfuscation approach can be enhanced to yield a more practical program

size.

4.2.2 The Use of Function Pointers

Function pointers are pointers that hold addresses of functions, and can be used to execute

them. Depending on the address assigned to the pointer, a single function pointer can be

used to call multiple functions. Normally, a designated array is used to hold the addresses

of the functions and when a function is to be called, its address is assigned to the pointer

and the function is executed. A visualization of function pointers is shown in Figure 7

where the array fctArrJ [] is the designated array that holds the addresses of functions

jX(), jY (), jZ(). As the code fragment shows, the address of the desired function in

loaded into the function pointer fctP tr, and then executed. T. Ogiso et al. [45] analyze the

use of function pointers in software obfuscation. Specifically, they prove that when using

arrays of function pointers, determining the address a pointer points to is NP-hard.

Arrays of function pointers can be used to replace the inner switch/case structures in

our obfuscation technique presented in the previous subsection. In addition to the security

advantage resulting from the difficulty of determining the address a function pointer points

to, implementing function pointers requires much less space than switch/case structures

49

described in the previous section. This enables us to maintain the complexity introduced

by the nested switch/case structure while reducing the program size.

The use of function pointers as a replacement of the inner switch/case statement re-

quires the following:

1. For each index j, there exists a function in which the variable that substitutes S[j] is

hard coded. Furthermore, the variable that substitutes S[i] is passed as a parameter to

this function. With these variables, the functionality of RC4 can be easily realized.

2. There exists a designated array that holds the addresses of the functions described

above.

The array of function pointers can be directly used to replace the inner switch/case

structures operating on index j. The inner switch/case statements are replaced by functions

in which the variable representing S[j] is hard coded. To evaluate the inner structure, we

first compute the new j value. This is used to retrieve the corresponding function address

from the designated array. Finally, the retrieved function is called using a function pointer

and the variable that substitutes S[i] is passed as a parameter.

Figure 8 shows the use of function pointers as a replacement of the inner switch/case

structures of our obfuscated toy implementation of RC4. As shown in the figure, the loop

over index i remains unrolled using the switch/case structure proposed initially. The setup

for the array of function pointers requires:

1. The declaration of two function pointers (∗output and ∗jN)

2. The definition of output functions oS0(), oS1(), os2() and oS3() that return the value

S[x]

3. The definition of functions j0(sX), j1(sX), j2(sX) and j3(sX) that replace the

inner switch/case structure

50

4. The definition of arrays used to hold the addresses of the functions stated in steps 2

and 3 above

Next, we illustrate the combination of switch/case structures with array function pointers.

The outer structure used to unroll the loop over the index i remains unchanged. However,

the inner switch/case structure is replaced by using the function pointers concept. To do

this, we first compute the new j value. This is used to retrieve the corresponding function

address from the designated array. Finally, the retrieved function is called using a function

pointer where the variable that represents S[i] is passed as a parameter. With these vari-

ables, the functionality of RC4 can be realized. When implemented, this approach while

improving the obfuscation level, significantly reduces the obfuscated program size. In com-

parison to the initial attempt (in section 4.2.1), the program size is reduced from 12 MB to

about 450 KB.

The techniques used so far have mainly increased the resilience of the implementa-

tion against static analysis. We, next, introduce further obfuscation with the objective of

increasing its resilience against dynamic analysis.

4.2.3 Multithreading

Traditionally, multithreading allows various parts of a program to run simultaneously.

Each such part is called a thread and although these are functionally independent, they

share some resources such as processing power and memory, with other threads. Shared

resources, such as data, code, and heap segments allow communication and functional

synchronization between threads. Furthermore, constructs such as critical sections, and

semaphores enable the realization of atomic units which, in turn, prevent corruption of

shared resources. Because of this parallelism and the randomness in order of execution, an-

alyzing multithreaded programs is much harder than their single threaded counterparts [22].

In this section, we capitalize on this and utilize the randomness in the order of execution

51

introduced by multithreading to further obfuscate our implementation. To do so, we require

the following:

1. There exists a multithreaded environment where each thread implements the RC4

functionality (key stream value) for a specific subset of index values i. That is, each

thread contains an implementation of a subset of switch/case statement for the corre-

sponding values of i. Furthermore, for each implemented switch/case statement, let

the thread implement the function pointer concept for all values of j, as described in

4.2.2.

2. The sets of index values i are assigned to the threads such that each value of i is

assigned randomly to at least two threads. This introduces randomness in the threads

that have the capability of implementing the RC4 functionality for a given value

of i. Since at least two threads have this capability, the execution path cannot be

determined with certainty which introduces an additional layer of obfuscation.

If one uses only 2 threads, requirement 2 above would result in identical functionality

for both threads, which simplifies conducting static analysis on the cipher. Thus, in our

implementation, the minimum number of threads used is set to 3. This ensures that the

implementations of various threads differ. The specific number of threads to be used is left

as a design parameter.

To compute the key stream value for the current value of i, the running thread enters a

critical section and retrieves i. If this thread does not implement the switch/case statement

for this value of i, the critical section exits without affecting the cipher inner state and

without producing any new keystream words. On the other hand, if the thread implements

the switch/case statement for this value of i, the key stream value is evaluated and returned.

Figure 9 illustrates a toy implementation, with N = 4, of the multithreading imple-

mentation described above. In this example, the sequential index i can have the values

52

{0, 1, 2, 3}, and 3 threads are used. The first thread implements the switch/case statements

for i ∈ {1, 2, 3}; the second thread implements the statements for i ∈ {0, 2, 3}, and the

third thread implements the statements for i ∈ {0, 1, 3}. For standard RC4 parameters, this

implementation increases the program size to 650 KB but offers an additional obfuscation

layer and enhances the implementation’s resilience to dynamic analysis attacks.

4.2.4 Handling the Key Scheduling Process

As shown in section 4.1.1, RC4 runs two main algorithms, the PRGA, and the KSA. While

the implementation of the KSA can be obfuscated using the same techniques discussed

above, one weakness of this approach is that the cryptographic key has to be passed in the

clear to the KSA algorithm. In this section, we discuss a possible extension of the above

implementation in order to mitigate this vulnerability.

In the white-box implementations of AES [20] and DES [19], the cryptographic key is

integrated into the lookup tables of the implemented algorithms. Furthermore, the lookup

tables are pre-created outside the users’ environment. Applying this off-line generation

technique to the inner states of RC4 can be used to eliminate the need for a KSA algorithm

and consequently mitigate the vulnerability described above. This shifts our objective from

protecting the key and key scheduling algorithm to protecting the process of securely as-

signing the off-line generated values to the inner-state.

Assume a setup where the user receives some encrypted data stream, and pre-created

inner-state for the cipher from some service provider. In this case, the inner-state can be

transferred from the provider to the customer in the form of an array. Instead of generating

the inner-state by the KSA, the inner-state is initialized by directly assigning the values

from the array to the corresponding variables. In other words, the array from the provider

contains 256 values corresponding to S and the two index pointers i and j in a random

order. Those 258 values are directly assigned to the variables representing the inner-state

53

on the customer side. It should be noted that as long as the order of the values in the array

is not known, an adversary cannot gain any useful information about the inner state of the

cipher. Furthermore, assuming that the service provider knows the memory structure of

the user’s cipher, the service provider can produce a formatted memory dump that can be

loaded directly into the user’s cipher.

To this point, our obfuscation approaches structurally altered the implementation of the

cipher. Additional obfuscation techniques, that are deployable on a smaller scale can also

be utilized. These techniques do not significantly change the implemented structure and are

easily applied. In the next subsection, we briefly explore the application of such techniques

to our RC4 implementation.

4.2.5 Generic Obfuscation Techniques

In this section, we introduce a set of standard techniques that can be used to further ob-

fuscate our implementation of RC4. These techniques are independent of the structure

of the implemented program and do not significantly change the structure of the resulting

obfuscated program.

Order and Dimension Change of Arrays

When using arrays of function pointers, assigning the pointers to the array in a sequential

order introduces a 1 : 1 mapping between the j value and the index of the array. This

mapping can be further obfuscated using a random allocation table or by modifying the

array structure. In [55], Zhu, et al. address this problem by changing the index order and

the arrays’ dimension. Transforming an array A[N] into an array B[M], whereM > N

and M is relatively prime to N , can be done by applying the mapping B[i] = A[i ×
N mod M]. We have used this methodology to obfuscate the array of function pointers in

our implementation.

54

Variable Aliases

When two or more variables address the same memory location, they are called aliases.

Introducing aliases to a program reduces the effectiveness of static analysis techniques as

they increase the data flow complexity [21] since the attacker has to identify and track all

aliases that manipulate a specific memory location. The larger the program, the harder it

is for the attacker to identify and keep track of all the aliases. The pointers used in our

implementation are an extensive form of aliasing, and therefore, introduce an additional

level of obfuscation.

Scattering the Code for the Swap Operations

The RC4 cipher makes extensive use of swapping in both the KSA and the PRGA algo-

rithms. In a standard implementation, monitoring the swapping function easily reveals the

position of j and consequently, its value, which compromises the security of the imple-

mentation. To address this problem, in our implementation, we scatter the steps of the

swap functionality throughout the program. In addition, we use a pool of temporarily swap

variables rather than a single variable.

Opaque Constructs

Opaque predicates are expressions that evaluate either to true or false upon a given condi-

tion, but their outcome is known/controlled in advance. These constructs introduce con-

fusion and are widely used in obfuscation [21] [23]. Opaque predicates can be classified

based on their possible outcome into two types. In the first type, the outcome is always

either ’true’ or always ’false’. An example of such predicate would be j > 255, which

is always evaluated ’false’ in an 8 bit environment. In the second type, the output could

be either ’true’ or ’false’, but is controlled by adjusting the statement that it evaluates. To

increase the complexity of control flow analysis, we implemented a similar approach where

55

either the real function or some other dummy one is executed.

Evaluation of the Index Pointer j

Normally, the index pointer j, at step i, is calculated as

ji = ji−1 + S[i] (8)

where ji denotes the value of the index pointer j at iteration i and S[i] denotes the value

of the inner state array during the ith iteration of the cipher. Monitoring the value of ji,

while knowing the value of i, allows reproducing the inner state. In our implementation,

we obfuscate the computation of ji by introducing three intermediate variables (a, b, c) that

are initialized as follows:
b = random,

a = b− ji−1,

c = 2a− b− S[i+ 1].

Then we calculate the value of ji as ji = a− c.

4.3 Performance Evaluation

In this section we compare the execution costs (i.e., program size and execution time) for

various combinations of obfuscation techniques proposed in the previous sections.

The reported timing, as summarized in Table 7, are measured on an HP PC with a

quad core Intel 2.67 GHz processor, and 8 GB of RAM. The prototype was implemented

in C using Microsoft Visual C++ that was running on Windows 7 Enterprise platform. As

expected, obfuscated implementations impose a penalty on the resulting program size and

execution speed.

56

RC4 Implementation options Program Size (KB) Throughput (KB/sec) a b c d
No obfuscation 8 288,700 - - - -
Configuration 1 514 17,850 x - - -
Configuration 2 518 15,450 x x - -
Configuration 3 537 11,500 x x x -
Fully obfuscated 969 600 x x x x

Table 7: Program size and throughout for different obfuscation options

a: Loop unrolling over index pointer i, Array of function pointers, Variable aliases,
Opaque constructs

b: Order and dimension change of arrays

c: Evaluation of index pointer j

d: Multithreading

From Table 7, the slowdown factor varies highly between the obfuscation configura-

tions. For configuration 1, the slowdown factor is about 16, whereas the slowdown factor

when implementing all the described obfuscation techniques is about 481. The slowdown

factors for the white-box implementations of AES and DES found in the published litera-

ture are 55 for AES and 10 for DES [46] [41].

In the following subsections, we highlight the main causes of this performance impair-

ment.

4.3.1 Multithreading

Although multithreading is typically used to enhance the performance of a program, in

our implementation it is used only as an obfuscation technique. Multithreading, as imple-

mented, significantly enhances the programs resilience against dynamic analysis attacks

but it also slows down the resulting program because of the following reasons:

1. The threads are essentially executed in sequence as the key stream value is evaluated

only within a critical section. Therefore, when this section is in use by a given thread,

57

other threads remain idle.

2. The use of a critical section introduces an additional overhead. Furthermore, as the

design of RC4 dictates, only a single index can be evaluated at a time, which offers

no room for parallelism.

3. Threads that do not implement the switch/case statement for the given value of the

index i introduce an additional delay. These threads lock the critical section and

consequently prevent other threads from operation and, yet, produce no keystream

words.

4.3.2 Excessive Use of Context Switches

The proposed implementation extensively uses branch statements to switch between real

and dummy functionality. This context switching introduces a delay since each switch/case

structure is evaluated before the real functionality is executed. In addition, each function,

whether dummy or real, introduces further delay as its parameters have to be pushed or

pulled from the stack. Furthermore, due to the use of arrays of function pointers, in each

iteration, two additional functions have to be handled.

4.3.3 Additional Calculations Overhead

Many mathematical calculations are required to obfuscate the value of j and the array

indices. This includes the additional calculations used to obfuscate the index pointer j.

Furthermore, when obfuscating the order of arrays by changing their dimensions, additional

computations are used to select the correct index for the address of each function.

58

Figure 6: The implementation of the PRGA when replacing the array data structure by
independent variables

59

Figure 7: Array of Function Pointers

60

Figure 8: Implementation of the PRGA using switch/case for i and array of function pointer
for j

61

Figure 9: Implementing the PRGA using multithreading

62

Chapter 5

Conclusion and Future Work

5.1 Summary and Conclusions

Many computer systems and applications store working copies of sensitive data in the mem-

ory where they remain in cleartext even after their usage. Storing sensitive data unprotected

in the memory makes them prone to attacks in scenarios where attackers have access to the

memory content or even a corrupted version of this content.

In the first part of our work, we investigated the suitability of two off-the-shelf algebraic

tools (CryptoMiniSat and PolyBoRi) for extraction of cryptographic keys from corrupted

memory images. Based on our experimental results, it is clear that while the CryptoMiniSat

requires a slightly longer preprocessing step to prepare its input file, this step is done only

once and the tool runs much faster than the Gröbner basis tool, PolyBoRi. Furthermore,

CryptoMiniSat does not require a large amount of memory during run time. However, if

several solutions were possible for the SAT problem in question, only one result is returned

by the solver and the additional solutions have to be explicitly searched again by re-running

the tool after appending some extra constraints to exclude already found solutions. On the

other hand, Gröbner basis returns a general form representing all possible solutions. How-

ever, PolyBoRi requires large memory and usually crashes when the memory requirements

63

is exceeded which limits its applications for solving large problems. It should also be noted

that, given the high redundancy of the key schedules of the considered ciphers, the advan-

tage of being able to return all possible solutions does not seem to be very significant since

in all the instances we considered, only one possible solution exists.

In the second part of our work, we investigated and compared different practical ob-

fuscation techniques for the protection of the RC4 implementations in the white-box attack

model. Our obfuscated implementation of RC4 provides a high degree of resiliency against

attacks from the execution environment where the adversary has access to the software im-

plementation such as digital right management applications. Furthermore, while the focus

of this work was RC4, these techniques can be applied to other array-based stream ciphers

such as HC-128, HC-256 and GGHN.

5.2 Future Work

While the use of algebraic tools automate the process of solving the system of equations re-

quired by the cold boot attack process, producing and pre-processing of these equations are

still very tedious tasks that are prone to errors if performed by a non-specialist. Automating

this part of the process using a tool with a suitable GUI (e.g., one that allows the user to

draw the key schedule using drag-and-drop of different components such as s-boxes, bit

rotation, bit shift, bit permutation, XOR module, linear transformation, modular addition,

modular subtraction, modular multiplication, finite field operations as well other possible

user defined modules) would be of a great help to the forensics community.

Providing a white box implementation with more theoretical foundations for different

cryptographic primitives, including RC4, is an interesting research problem. Exploring

how to use multithreading to speed up the obfuscated RC4 implementation is another chal-

lenging research problem.

64

Bibliography

[1] Federal Information Processing Standards Publication (FIPS 197). Advanced En-

cryption Standard (AES). http://csrc.nist.gov/publications/fips/

fips197/fips-197.pdf, 2001.

[2] Boolean Polynomials. Sage Reference Manual V4.7.2. http://www.sagemath.

org/doc/reference/sage/rings/polynomial/pbori.html, Ac-

cessed April 2012.

[3] C++ Obfuscator - Obfuscate C and C++ Code. http://www.stunnix.com/

prod/cxxo/overview.shtml, Accessed April 2012.

[4] CryptoMiniSat. http://www.msoos.org/cryptominisat2/, Accessed

April 2012.

[5] PolyBoRi. http://polybori.sourceforge.net/, Accessed April 2012.

[6] SecuriTeam - Shiva, ELF Encryption Tool. http://www.securiteam.com/

tools/5XP041FA0U.html, Accessed April 2012.

[7] Skype’s Obfuscated RC4 Algorithm Was Leaked. http://www.reddit.

com/r/technology/comments/cn4gn/skypes_obfuscated_rc4_

algorithm_was_leaked_so_its/, Accessed April 2012.

65

[8] TRESOR Runs Encryption Securely Outside RAM. http://www1.

informatik.uni-erlangen.de/tresor, Accessed April 2012.

[9] TRUECRYPT, Free Open-Source On-The-Fly Encryption. http://www.

truecrypt.org/, Accessed April 2012.

[10] Twofish. http://www.schneier.com/twofish.html, Accessed April

2012.

[11] UPX: the Ultimate Packer for EXecutables. http://upx.sourceforge.net/,

Accessed April 2012.

[12] M. R. Albrecht and C. Cid. Cold Boot Key Recovery by Solving Polynomial Systems

with Noise. In J. Lopez and G. Tsudik, editors, ACNS 2011, volume 6715 of Lecture

Notes in Computer Science, pages 57–72. Springer, 2011.

[13] R. Anderson, E. Biham, and L. Knudsen. Serpent: A Proposal for the Advanced En-

cryption Standard. http://www.cl.cam.ac.uk/~rja14/serpent.html,

Accessed April 2012.

[14] P. Biondi and F. Desclau. Silver Needle in the Skype. http://www.secdev.

org/conf/skype_BHEU06.pdf, Accessed April 2012.

[15] D. Boneh, R. A. DeMillo, and R. J. Lipton. On the Importance of Checking Crypto-

graphic Protocols for Faults (Extended Abstract). In EUROCRYPT’97, pages 37–51,

1997.

[16] M. Brickenstein and A. Dreyer. PolyBoRi: A framework for Gröbner-basis compu-

tations with Boolean polynomials. Journal of Symbolic Computation, pages 1326–

1345, Sep. 2009.

66

[17] B. Buchberger. Gröbner-Bases: An Algorithmic Method in Polynomial Ideal The-

ory., chapter 6, pages 184–232. Reidel Publishing Company, Dodrecht - Boston -

Lancaster, 1985.

[18] J. Buchmann, A. Pyshkin, and R.-P. Weinmann. Block Ciphers Sensitive to Gröbner

Basis Attacks. In D. Pointcheval, editor, Topics in Cryptology - CT-RSA 2006, volume

3860 of Lecture Notes in Computer Science, pages 313–331. Springer, 2006.

[19] S. Chow, P. A. Eisen, H. Johnson, and P. C. van Oorschot. A White-Box DES Im-

plementation for DRM Applications. In J. Feigenbaum, editor, Digital Rights Man-

agement Workshop, volume 2696 of Lecture Notes in Computer Science, pages 1–15.

Springer, 2002.

[20] S. Chow, P. A. Eisen, H. Johnson, and P. C. van Oorschot. White-Box Cryptography

and an AES Implementation. In K. Nyberg and H. M. Heys, editors, Selected Areas in

Cryptography, volume 2595 of Lecture Notes in Computer Science, pages 250–270.

Springer, 2002.

[21] C. S. Collberg and J. Nagra. Surreptitious Software: Obfuscation, Watermarking, and

Tamperproofing for Software Protection. Addison Wesley, 2010.

[22] C. S. Collberg, C. Thomborson, and D. Low. A taxonomy of obfuscating transforma-

tions. Technical Report 148, Department of Computer Science, University of Auck-

land, 1997.

[23] C. S. Collberg, C. D. Thomborson, and D. Low. Manufacturing Cheap, Resilient, and

Stealthy Opaque Constructs. In POPL, pages 184–196, 1998.

[24] S. A. Cook. The complexity of theorem-proving procedures. In Proceedings of the

third annual ACM symposium on Theory of computing, STOC ’71, pages 151–158.

ACM, 1971.

67

[25] N. Courtois and G. Bard. Algebraic Cryptanalysis of the Data Encryption Standard.

In S. Galbraith, editor, Cryptography and Coding, volume 4887 of Lecture Notes in

Computer Science, pages 152–169. Springer, 2007.

[26] N. Courtois, G. V. Bard, and D. Wagner. Algebraic and Slide Attacks on KeeLoq.

In K. Nyberg, editor, FSE 2008, volume 5086 of Lecture Notes in Computer Science,

pages 97–115. Springer, 2008.

[27] N. Courtois, S. O’Neil, and J.-J. Quisquater. Practical Algebraic Attacks on the Hitag2

Stream Cipher. In P. Samarati, M. Yung, F. Martinelli, and C. Ardagna, editors,

Information Security, volume 5735 of Lecture Notes in Computer Science, pages 167–

176. Springer, 2009.

[28] N. T. Courtois, K. Nohl, and S. O’Neil. Algebraic Attacks on the Crypto-1 Stream

Cipher in MiFare Classic and Oyster Cards. Cryptology ePrint Archive, Report

2008/166, 2008.

[29] J. Daemen and V. Rijmen. The Design of Rijndael: AES - The Advanced Encryption

Standard. Springer, 2002.

[30] D. De, A. Kumarasubramanian, and R. Venkatesan. Inversion Attacks on Secure

Hash Functions Using satSolvers. In J. Marques-Silva and K. A. Sakallah, editors,

SAT, volume 4501 of Lecture Notes in Computer Science, pages 377–382. Springer,

2007.

[31] T. Eibach, E. Pilz, and G. Völkel. Attacking Bivium using SAT solvers. In Proceed-

ings of the 11th international conference on Theory and applications of satisfiability

testing, SAT’08, pages 63–76. Springer, 2008.

[32] J. Erickson, J. Ding, and C. Christensen. Algebraic Cryptanalysis of SMS4: Gröbner

Basis Attack and SAT Attack Compared. In D. Lee and S. Hong, editors, Information,

68

Security and Cryptology - ICISC 2009, volume 5984 of Lecture Notes in Computer

Science, pages 73–86. Springer, 2010.

[33] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul, J. A. Calan-

drino, A. J. Feldman, J. Appelbaum, and E. W. Felten. Lest We Remember: Cold

Boot Attacks on Encryption Keys. In P. C. van Oorschot, editor, USENIX Security

Symposium, pages 45–60. USENIX Association, 2008.

[34] N. Heninger and H. Shacham. Reconstructing RSA Private Keys from Random Key

Bits. In S. Halevi, editor, CRYPTO’09, volume 5677 of LNCS, pages 1–17. Springer,

Aug. 2009.

[35] H. M. Heys. A Tutorial on Linear and Differential Cryptanalysis. Technical report,

Centre for Applied Cryptographic Research, Department of Combinatorics and Opti-

mization, University of Waterloo, 2001.

[36] M. Joye, A. K. Lenstra, and J.-J. Quisquater. Chinese Remaindering Based Cryp-

tosystems in the Presence of Faults. J. Cryptology, pages 241–245, 1999.

[37] A. Kamal and A. Youssef. Applications of SAT Solvers to AES Key Recovery from

Decayed Key Schedule Images. In Emerging Security Information Systems and Tech-

nologies (SECURWARE), 2010 Fourth International Conference on, pages 216 –220,

July 2010.

[38] B. Kaplan. RAM is Key, Extracting Disk Encryption Keys From Volatile Memory.

Master’s thesis, Carnegie Mellon University, May 2007.

[39] P. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and

Other Systems. In N. Koblitz, editor, Advances in Cryptology - CRYPTO’96, volume

1109 of Lecture Notes in Computer Science, pages 104–113. Springer, 1996.

69

[40] P. C. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. In M. J. Wiener,

editor, CRYPTO’99, volume 1666 of Lecture Notes in Computer Science, pages 388–

397. Springer, 1999.

[41] H. E. Link and W. D. Neumann. Clarifying Obfuscation: Improving the Security

of White-Box Encoding. In International Conference on Information Technology:

Coding and Computing (ITCC’05) - Volume I, 2005.

[42] C. Maartmann-Moe, S. E. Thorkildsen, and A. Årnes. The persistence of memory:

Forensic identification and extraction of cryptographic keys. Digital Investigation,

pages 132–140, 2009.

[43] A. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied Crypto-

graphy. CRC Press, 1996.

[44] I. Mironov and L. Zhang. Applications of SAT Solvers to Cryptanalysis of Hash

Functions. In A. Biere and C. P. Gomes, editors, SAT, volume 4121 of Lecture Notes

in Computer Science, pages 102–115. Springer, 2006.

[45] T. Ogiso, Y. Sakabe, M. Soshi, and A. Miyaji. Software obfuscation on a theoretical

basis and its implementation. IEICE TRANSACTIONS on Fundamentals of Electron-

ics, Communications and Computer Sciences, pages 176–186, 2003.

[46] J.-Y. Park, O. Yi, and J.-S. Choi. Methods for practical whitebox cryptography. In In-

formation and Communication Technology Convergence (ICTC), 2010 International

Conference on, pages 474–479, Nov. 2010.

[47] A. Segers. Algebraic Attacks from a Groebner Basis Perspective. Master’s thesis,

Technische Universiteit Eindhoven, Oct. 2004.

70

[48] A. Shamir and N. van Someren. Playing Hide and Seek With Stored Keys. In

M. Franklin, editor, Financial Cryptography, volume 1648 of Lecture Notes in Com-

puter Science, pages 118–124. Springer, 1999.

[49] S. Skorobogatov. Low temperature data remanence in static RAM. Technical Report

UCAM-CL-TR-536, University of Cambridge, Computer Laboratory, 2002.

[50] M. Sugita, M. Kawazoe, L. Perret, and H. Imai. Algebraic Cryptanalysis of 58-Round

SHA-1. In A. Biryukov, editor, FSE 2007, volume 4593 of Lecture Notes in Computer

Science, pages 349–365. Springer, 2007.

[51] A. Tsow. An Improved Recovery Algorithm for Decayed AES Key Schedule Im-

ages. In M. Jacobson, V. Rijmen, and R. Safavi-Naini, editors, Selected Areas in

Cryptography, volume 5867 of Lecture Notes in Computer Science, pages 215–230.

Springer, 2009.

[52] V. Velichkov, V. Rijmen, and B. Preneel. Algebraic cryptanalysis of a small-scale

version of stream cipher Lex. Information Security, IET, pages 49–61, June 2010.

[53] C. Wang, J. Hill, J. Knight, and J. Davidson. Software Tamper Resistance: Obstruct-

ing Static Analysis of Programs. Technical Report CS-2000-12, Univ. of Virginia,

2000.

[54] X. Wang, Y. L. Yin, and H. Yu. Finding Collisions in the Full SHA-1. In V. Shoup,

editor, CRYPTO’05, volume 3621 of Lecture Notes in Computer Science, pages 17–

36. Springer, 2005.

[55] W. Zhu, C. D. Thomborson, and F.-Y. Wang. Obfuscating arrays by homomorphic

functions. In IEEE International Conference on Granular Computing, pages 770–

773, 2006.

71

