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A Decentralized Markovian Jump H∞ Control
Routing Strategy for Mobile Multi-Agent

Networked Systems
F. Abdollahi, Member, IEEE, and K. Khorasani, Member, IEEE

Abstract— This paper presents a Markovian jump linear
(MJL) system framework for developing routing algorithms in
mobile ad hoc networks (MANETs) that encounter changes in
the number of nodes and/or the number of destinations. A
unified H∞ control strategy is proposed by representing the
dynamically changing destination nodes as singular switching
control systems. A decentralized routing scheme is proposed
and designed for the networked multi-agent system in presence
of unknown time-varying delays. To solve the corresponding
optimization problem the physical constraints are expressed
as Linear Matrix Inequality (LMI) conditions. The resulting
decentralized H∞ routing control schemes for both regular and
singular MJL systems are shown to formally achieve the desired
performance specifications and requirements. Simulation results
are presented to illustrate and demonstrate the effectiveness of
our proposed novel routing control strategies.

Index Terms: Dynamic Routing, Ad hoc Mobile Networks, H∞
Control, Singular and Regular Markovian Jump Linear (MJL)
Systems, Decentralized Control, Switching Control Systems

I. INTRODUCTION

In recent years, the widespread availability and demand
for autonomous mobile wireless networks in applications as
diverse as space missions to intelligence, surveillance, and
reconnaissance (ISR) of unmanned vehicles missions have
stimulated active research on self-organizing networks such
as ad hoc wireless networks [1], [2] that do not require a
pre-established infrastructure. Contrary to cellular networks,
where the nodes are restricted to communicate with a few
strategically placed base stations, in mobile ad hoc networks
(MANETs) they can directly communicate with one another.
However, due to the nature of the wireless channels each node
can effectively communicate with only certain finite nodes,
typically those that lie in its vicinity or in its so-called neigh-
boring set. Consequently, it becomes necessary that nodes
cooperate with one another to forward data/messages to their
final destinations. However, due to the restrictive physical
requirements that are imposed on the network, performing
routing in MANETs is not a trivial problem.

Routing problem, in general, deals with minimization of
a certain objective function such as the shortest path, link
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congestion, end-to-end delay, or packet loss [1], [3], and [4].
For instance, an optimum route can be obtained such that the
total delay is minimized. Indeed, the total delay minimization
implies determining a route that messages have to take to
reach their final destination in the shortest time (also known
as the “fastest route”) as opposed to the shortest distance. The
problems of delays in routing and networked control systems
have been recently investigated in the literature [5], [6], [7],
[8], [9], [10], [11], [12], [13]. In [5] a routing-based admission
control mechanism that considers an end-to-end delay for the
IP traffic flows was introduced. In [11], a routing algorithm
was proposed to minimize an average of the queueing delay
by using capacity allocation. In [12], a set of paths between
the source and the destination nodes are indexed based on
their energy consumption in an increasing order of priority.
An estimate of the end-to-end delay along each of the ordered
paths is then obtained.

In [13], the dynamic routing problem was defined as a
team optimization problem and an approximate solution based
on neural networks was obtained. In [10], the authors have
introduced robust centralized as well as decentralized routing
control strategies for networks with a fixed topology based
on minimization of the worst-case queueing length, which
is related to the queueing delays. The routing problem is
formulated as an H∞ optimal control problem to achieve
a robust routing performance in presence of multiple and
unknown fast time-varying network delays. A Linear Matrix
Inequality (LMI) constraint is obtained to design a delay-
dependent H∞ controller. The network physical constraints
are expressed as LMI feasibility conditions.

In MANETs, the neighboring sets of nodes may change due
to the mobility and variations in the network topology, left
over energy resources, and increasing/decreasing the number
of nodes. Therefore, the dynamics of the network character-
izing the traffic flow will become time-varying. Towards this
end, the approach introduced in [10] is generalized in this
paper to ad hoc mobile multi-agent networks. To achieve this
goal, the mobile network routing model is represented by a
switching control system. Due to the fact that nodes mobilities,
and therefore network topological changes, are not generally
deterministic and involve random transitions, a Markovian
jump process is an ideal candidate and a viable framework
for modeling these network behaviors. Note that the network
topologies and the selection of the new neighboring sets at
each switching instant only depends on the existing neighbor-
ing sets.
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Recently, considerable attention has been devoted to Marko-
vian jump systems and time-delays [14]- [22] (and references
therein). In [15], a sufficient condition for exponential esti-
mates of a class of Markovian jump systems with fixed state
delay was introduced and by employing LMI techniques a state
feedback stabilizing controller was presented. The authors then
extended the controller to time-varying delays in [22]. In [23],
a stabilizing control for the Markovian jump linear (MJL)
systems with input delays was presented. However, a fixed
gain K was found corresponding to all the switching modes
of the system. In other words the controller gain was not
designed to switch corresponding to changes in the system
mode. This, in general, would yield conservative conditions
that can potentially reduce the possibility of obtaining a
feasible solution.

A delay dependent stabilization of singularly perturbed
Markovian jump systems with a fixed singular matrix was
studied in [24]. The H∞ control scheme for a singular system
with time-delays developed in [25] was extended to Markovian
jump systems in [26]. In [27], the MJL and singular systems
were integrated into a new class known as stochastic singular
systems with random abrupt changes where the control prob-
lem was investigated. However, the systems considered are not
affected by the delay.

Research on decentralized control of descriptor systems has
received considerable interest in the past few years. By using
LMI techniques, a decentralized H∞ control for a multi-
channel descriptor system was introduced in [28]. In [29],
LMI conditions were developed for decentralized H∞ control
of multi-channel descriptor systems with time-delays in states.

Our proposed state feedback control scheme for MJL sys-
tems with input delays has gains that are different correspond-
ing to each switching mode. Therefore, it provides a more
reliable performance according to the system specifications
at each mode. It also increases the chances of obtaining
a feasible solution under constraints. Moreover, the state
feedback controller gains can be designed by solving the
LMI conditions. For our considered traffic network dynamics,
changing neighboring sets will result in interconnected terms
(matrices) that also change at each switching mode. Therefore,
standard H∞ control schemes should be modified to handle
MJL systems with mode-dependent interconnections.

In switching systems, the number of system states is usually
assumed to be fixed. In other words, for linear systems
generally the state matrix A and the input matrix B can change
at each switching instant but not their dimensions. However,
in certain circumstances the dimension of the states may also
change. For instance, in wireless communication networks and
sensor networks, the number of states may increase or decrease
due to addition or deletion of nodes. Under these scenarios the
system behavior can be expressed by a singular MJL system.
Consequently, our proposed framework enables one to describe
the overall system dynamics in a unified manner subject to
variations in the number of states.

An important issue that is also addressed in the present work
is the routing problem subject to the changes in the number of
destination nodes. In other words, for some destination nodes
no external traffic has to be routed in certain periods of time.

However, due to the system dynamics and time-delays certain
messages may still be present in the queues that should be
routed to these destinations as quickly as possible. By simply
eliminating the inactive destination states can actually lead to
loss of integrity and consistency of the overall network. It also
ignores the leftover messages that are kept in the eliminated
queues. To cope with these problems, we propose to model
such network behavior as singular MJL systems.

Our methodology is geared towards development of a de-
centralized routing algorithm for ad hoc mobile multi-agent
networks. Hence, each node in the network requires only
its own local information to route the received messages
while ensuring that a global objective function is optimized.
Consequently, our proposed routing algorithm can guarantee
a minimum queueing delay for mobile multi-agent networks
having a variable topology. Due to the fact that the routing
strategy is obtained based on local information, the compu-
tational complexity of our proposed methodology should be
lower when compared to other existing centralized algorithms
in the literature.

To summarize, the main contributions of this paper are
stated as follows:

1) Development of a decentralized H∞ routing control
strategy for mobile multi-agent MJL systems with time-
varying delays. The proposed stabilizing state feed-
back control law designed for optimal traffic routing
is changing at each switching mode corresponding to
the Markovian transitions in order to cope with the
variations in the system behavior due to each node’s
mobility.

2) Development of a decentralized H∞ routing control
scheme for singular MJL systems with time-varying
delays due to changes in the number of destination
nodes. Moreover, the singular matrix corresponding to
each subsystem is assumed to be also changing at
each switching mode corresponding to changes in the
destination nodes.

3) The issue of mode-dependency of the MJL system
matrices is addressed and analyzed for the first time
in this paper. The introduced decentralized stabilizing
control strategy can be applied to systems where the
connections among the subsystems are changing due to
either the physical characteristics of the system, faults
and malfunctions in the communication, or increase or
decrease in the number of subsystems, among others.

The remainder of the paper is organized as follows. Section
II provides a description of the considered traffic model in
terms of the queueing dynamics and the physical constraints.
In Section III, a decentralized state feedback H∞ routing
control strategy for mobile multi-agent networks is designed
to stabilize the MJL system with mode-dependent intercon-
nections (matrices) and time-varying delays. Certain LMI
conditions are stated to represent the corresponding physical
constraints. In Section IV, the routing problem for a variable
number of destination nodes is addressed by describing the
network behavior as a singular MJL system. LMI conditions
are derived to obtain a decentralized H∞ control strategy
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for singular MJL systems with mode-dependent matrices and
time-varying delays. The LMI conditions associated with the
physical constraints are then modified for mobile multi-agent
networks with variable destinations. Finally, in Section V the
performance and capabilities of our proposed strategies are
evaluated and compared with two popular routing algorithms,
namely the AODV (Ad hoc On Demand Distance Vector) [30]
and the OLSR (Optimized Link State Routing) [31] protocols
and schemes.

II. PROBLEM FORMULATION

In certain applications, changing the system behavior can
be represented by a switching or a transition that is based
and triggered on a specific rule among certain dynamical
models. On the other hand, if the system dynamics change
randomly where the condition for switching is only dependent
on the present state of the system, Markovian process can
serve as a viable representation of the switching rule. Indeed,
a Markovian jump linear (MJL) system can be considered
as a hybrid system whose state vector has two components:
x(t) which is generally referred to as the state and rt which
represents the modes or the configurations. MJL systems jump
abruptly from one mode to another in a random manner and for
this reason their switching is classified as stochastic switching.
The switching among the modes (different system models) is
governed by a continuous-time Markov process with discrete
and finite state space, whereas at each mode the system evolves
as a deterministic linear system.

A Markovian jump process is a credible framework for
describing and modeling the multi-agent mobility behavior.
The dynamics of our considered mobile multi-agent network
is governed by the following Markovian jump linear (MJL)
system

ẋi(t) = Bi(r(t))ui(t) + Bwi(r(t))wi(t)

+
∑

j∈℘r(t)(i)

Bdij(r(t))uj(t− τji(t)) (1)

where each node is considered as representing a subsystem that
includes all the queues that are present in the node correspond-
ing to multiple destination nodes. In other words, xi denotes
the queue lengths in node i for different destination nodes
d, d = 1, ..., d̄, where d̄ denotes the number of destination
nodes, ui(t) denotes the flows sent from node i, τji(t) is an
unknown but bounded time-varying total delay in transmitting,
propagating, and processing messages at node i from node j,
wi(t) is the external input flow entering node i, and Bi ∈ <n×l

and Bdij ∈ <n×l represent network connectivity matrices.
In fact, each element of Bi(Bdij) is equal to −1(1) if its
corresponding flow is outgoing (incoming) flow to node i and
is zero otherwise, Bwi = In×n, and r(t) is a function that
represents the rule for changing the neighboring sets ℘r(t)(i).
Since the network topology changes are not known a priori,
and given that changing the neighboring sets are independent
of the current neighboring set, the network topology changes
are modeled by the Markov process.

Assumption 1: Given the neighboring set ℘r(t)(i) corre-
sponding to each node i the underlying graph of the network

is assumed to remain connected despite the arbitrary mobility
of the nodes (agents) during the time interval of interest.

Note that although our proposed routing strategy assumes
that all considered network topologies are finite and known
a priori, the process and the time at which the network
topology changes is not known a priori. In other words, we
consider that the network topology is allowed to change within
a given list of possible configurations arbitrarily and randomly.
The above assumption is actually quite consistent with real
networked multi-agent systems such as those found in a team
of unmanned vehicles.

When the topology or the underlying graph of a network
changes due to either (a) node mobility that results in creating
or cutting links, or (b) addition of new nodes, the neighboring
sets ℘r(t)(i) in model (1), and consequently the connectivity
matrices Bi and Bdij will also change. On the other hand,
the nature of node mobility is generally not deterministic and
involves random transitions and switches. Furthermore, only
the existing neighboring sets ℘r(t)(i) and connectivity matrices
Bi and Bdij do affect the selection of new neighboring sets
in the next transition step. In other words, changes in the
neighboring set are independent from previous neighboring
sets.

Let us consider r(t) as a continuous-time Markov process
taking values in a finite space S = {1, ..., M}, where M is
the number of all possible neighboring sets (that is modes or
network topologies and system models that are represented by
℘r(t)(i)). The rate of switching among the M topologies are
described by the following probability transitions:

P[r(t + h) = k|r(t) = l] =
{

πklh + o(h) k 6= l
1 + πkkh + o(h) k = l

}

where πkl > 0 is the transition rate from mode (neighboring
set) k to mode l, πkk = −∑M

l=1,l 6=k πkl, and o(h) is a function
satisfying limh→0

o(h)
h = 0. To simplify the notation, we let

Bir to represent Bi(r(t)) when r(t) = r. This notation is also
applied to all the other applicable matrices.

Remark 1: The transition rates πij can be specified as func-
tions of certain parameters that are responsible for changing
the network topology. Some examples of these parameters are
node mobility speed and rate of change of the activeness or
inactiveness of the destination nodes, among others. When
precise values of the transition rates are not available, one can
incorporate uncertainty terms to the nominal values and then
accordingly modify the analysis as shown in [32]. Moreover, it
may be argued that the time-delays τij can also be dependent
on the Markovian jump modes, and this explicit information
can be potentially used in our subsequent results. However, as
stated at the outset of this work it is assumed that the time-
delays are unknown but with a known upper bound. Therefore,
our developed results corresponding to this scenario will still
remain valid and applicable, despite the dependence of the
time-delays on the modes.

Let us now consider certain physical characteristics of the
network traffic that can impose specific constraints on the
routing problem. A typical set of constraints can be expressed
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as

ui(t) ≥ 0 (2)
xi(t) ≥ 0 (3)

Gkiui(t) ≤ cki(r(t)) ki = 1, ..., li, i = 1, ..., n (4)
Qdjixi(t) ≤ xmaxdji

d = 1, ..., d̄ (5)

where li is the number of links in the subsystem i and d̄ is
the number of destination nodes. Note that li does depend
and change subject to different selection of the neighboring
set ℘r(t)(i), and the changes in the links li result in the
connectivity matrices Bi and Bdij to also change.

The first two constraints (i.e., (2) and (3)) are the so-called
non-negativity constraints and are introduced for obvious
physical reasons. The capacity constraint (4) states that the
total flow in each link cannot exceed its capacity cki(r(t))
at each mode. The last condition, i.e., (5) indicates that to
avoid packet loss the length of the queue should always remain
smaller than a maximum value that is specified for the buffer
as xmaxdji

. Therefore, Gki
is defined such that by multiplying

Gki
with ui one gets the total flow that goes through the link

ki, and Qdji is defined such that Qdjixi leads to the queueing
length of the buffer dji, for d = 1, ..., d̄, i, j = 1, ..., n. We
now state our assumption regarding the characteristics of the
delay function.

Assumption 2: The delays τji(t) are unknown differen-
tiable functions that for all t ≥ 0 satisfy

0 ≤ max{τji(t)} ≤ hji, max{|τ̇ji(t)|} ≤ d̄ji < 1
In the above assumption, τji is considered as the sum of

the following delays, namely (i) transmitting delay: The time
between starting and ending the transmission of a message
from node j to node i, (ii) propagating delay: The time for
propagating a message on each link, and (iii) processing delay:
The time that each message (from upstream nodes or outside
of the network) should spend at each node to be received,
identified by its destination, and inserted to the appropriate
queue of node i. Even though the above delays are not known
a priori and are time-varying, utilization of efficient processors
will attempt to make them not to vary quickly when compared
to the main source of the delay which is the queueing delay.
Therefore, assuming that |τ̇ji(t)| is less than 1 s is quite a
realistic assumption in most real applications.

For simplicity, it is also assumed that the delay between any
two nodes in both directions are the same, i.e. τji = τij . For
more details refer to [33]. It should be stated that τji(t) can
also be defined in such a manner that it is dependent on the
Markovian jump mode. Unfortunately, this problem is beyond
the scope of this paper and not addressed any further.

The H∞ robust optimal control design strategy is a suitable
framework for dealing with system uncertainties and unknown
time-delays. Therefore, at each node (subsystem or agent), the
routing problem can be stated as that of finding an H∞ state
feedback control law governed by ui = Kixi such that it
simultaneously, (a) guarantees stability of the overall network
traffic in presence of time-varying delays, and (b) minimizes
a global objective function which is considered as the worst-
case queueing length due to external inputs. In other words,

by designating the regulated output corresponding to system
(1) as zi(t) = Cixi(t), where Ci is a weight matrix that is
full rank, the routing problem can be cast into the following
optimization problem:

min γ s.t. J(w) < 0,

J(w) =
∫ ∞

0

(zT z − γ2wT w)dt, γ > 0 (6)

where z(t) = vec{zi(t)} and w(t) = vec{wi(t)}.
In other words, by optimizing the objective function (6) the

resulting state feedback strategy ui specifies and determines
a portion of the associated queue length xi that corresponds
to selected gain Ki. Therefore, the messages will be routed
such that the network is simultaneously stabilized subject to
the unknown transmitting, propagating, and processing delays
τji(t), and the queueing length, xi, is minimized subject to
the presence of the external input w.

The time-delays considered in model (1) can indeed be
a major source of network instability. This instability arises
due to deteriorations that can occur in the overall network
quality of service requirements and difficulties that appear
in delivering massages as optimally and as completely as
desired. The notion of instability invoked here refers to the
adverse consequences that one encounters in fulfilling the
main network routing objectives. Specifically, one can end up
with congestion and over flowing the nodes buffer that can
eventually lead to significant packet losses. Classical control
theory is not adequately capable of addressing and equipped
to handle stability and performance issues of time-delayed
systems. Complications do arise when there is no or very
limited a priori knowledge about the time delays.

Let us now define the concept of stochastic stabilizability
and H∞ control of stochastic systems.

Definition 1: [23] The free nominal Markovian jump linear
system (1) is said to be stochastically stabilizable if there ex-
ists a linear state feedback ui = Kirxi such that for the closed-
loop system when w(t) ≡ 0 for all φ ∈ L2[−τ, 0), and for an
initial mode r0 ∈ S there exists a constant M(φ(.), r0) > 0
such that E[

∫∞
0

x(t)T x(t)|φ(.), r0] ≤ M(φ, r0), where φ is
an initial condition and x(t) = vec{xi(t)}, for i = 1, ..., n.

Definition 2: [23] Let γ > 0. System (1) is said to be
stochastically stable with γ-disturbance attenuation if there
exits a constant M(φ, r0) with M(0, r0) = 0 such that

‖z‖E2 = E
{∫ ∞

0

zT (s)z(s)ds

}1/2

≤ [γ2‖w(t)‖2 + M(φ, r0)]1/2 (7)
Therefore, similar to the performance index that is defined for
the fixed network topology in (6), the objective function (7)
guarantees the boundedness and also stochastic L2 stability
of the queueing length in presence of unknown delays and
external input flow, w(t) corresponding to a changing network
topology.

The following lemma is used in our subsequent results
whose proof can be found in [24].

Lemma 1: [24] For any matrices U, V ∈ Rn×n with V >
0, one has UV −1UT ≥ U + UT − V .
Note that the neighboring set ℘r(t)(i) corresponding to each
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node i may vary. Therefore, each subsystem matrices and
interconnection terms in model (1) is mode-dependent. This
implies that the interconnected terms vary at each switching
mode. In the next section, a decentralized H∞ control for
MJL systems with mode-dependent interconnected terms is
proposed to provide an optimal routing solution that simulta-
neously guarantees internal stability of the traffic network and
minimizes the worst case network queueing length. Appro-
priate LMIs are also provided to satisfy the associated traffic
network physical constraints.

III. A MARKOVIAN JUMP H∞ CONTROL STRATEGY FOR
ROUTING PROBLEMS IN MOBILE MULTI-AGENT

NETWORKS

Our first result in this section provides a stabilizing H∞
control design strategy for the MJL system (1).

Theorem 1: Consider a mobile multi-agent traffic
network whose dynamics is governed by (1) for which
wi ∈ L2[0,∞) and satisfies Assumptions 1 and 2. The
state feedback routing controller ui = Kirxi with the
gain Kir = MirY

−1
ir guarantees that the closed-loop

system is stochastically stable and J(w) < 0, provided that
there exist matrices Mir, and symmetric positive definite
matrices Yir, R̄ir, Q̄i for i = 1, ..., n, r = 1, ...,M
such that the LMI conditions (8) and (9) are satisfied
where θir1 = MT

ikBT
ik + BikMik + πkkYik, θir2 =

B̃dikR̃ik, θir3 = (π̄kYik)T , θir4 = −(1 − d̄ji)R̃ik, θir5 =
−diag{Yi1, ..., Yi(k−1), Yi(k+1), ..., YiM}, θir6 =
−mikR̄ik, θir7 = −hjiQ̄i, π̄k =
[
√

πk1 ...
√

πk(k−1)
√

πk(k+1) ...
√

πkM ]T , π̃k =
[
√

mi1πk1 ...
√

mi(k−1)πk(k−1)
√

mi(k+1)πi(k+1)

...
√

miMπkM ]T , and mik = the number of subsystems
where subsystem i belongs to their ℘k(.) in mode
k, R̃ik = diagj∈℘k(i){R̄jk}, M̃jk = diagj∈℘k(i){Mjk}, and
B̃dik = vec{Bdijk}, for j ∈ ℘k(i).

Wir1 =


θir1 θir2 Bwik Y T
ikCT

ik θir3 mikMT
ik hjiMT

ik
∗ θir4 0 0 0 0 0
∗ ∗ −γI 0 0 0 0
∗ ∗ ∗ −I 0 0 0
∗ ∗ ∗ ∗ θir5 0 0
∗ ∗ ∗ ∗ ∗ θir6 0
∗ ∗ ∗ ∗ ∗ ∗ θir7


 < 0 (8)

Wir2 =
[

2(1−mikπkk)I − Q̄i + mikπkkR̄ik π̃k

∗ R̃ir

]
≥ 0 (9)

Proof: The proof is provided in Appendix A.
Under the circumstances input flow w does not belong to

the L2 space, i.e., w /∈ L2, one needs to filter w through a
shaping filter before applying it to the network. The use of a
shaping filter, however, might remove some information from
the input signal. Therefore, one should employ decoding or
interpolation techniques to recover the missing information at
the destination nodes. It should be noted that if information
loss cannot be tolerated the filtering should be avoided, in
which case it is no longer possible to guarantee that the
queueing lengths remain in L2. However, our proposed routing
methodology can still be modified such that the boundedness
of the queueing lengths are guaranteed for a bounded input

flow w. Due to space limitations this issue is not investigated
in this paper (for details cf. [34]).

The routing strategy that is given in Theorem 1 guarantees
that the queueing lengths converge to zero in finite time in
presence of unknown time-varying delays and L2 bounded
external input flows. However, there is no guarantee that the
capacity and the buffer constraints are also simultaneously
satisfied and ensured. The LMI conditions presented in the
next section are developed to satisfy these constraints.

A. LMI Conditions for Incorporating the Physical Constraints
In this section, the physical constraints (2)-(5) are repre-

sented as LMI feasibility conditions. These constraints are
taken into account for determining a complete solution to our
robust dynamic traffic routing problem.

1) Capacity Constraint: The capacity constraint (4) for
each subsystem is defined as Gki

ui ≤ cki
(r(t)), ki =

1, ..., li, i = 1, ..., n. Consider the following ellipsoid for
a selected %i > 0, that is

Σi = {xi(t)|xT
i (t)Y −1

ir xi(t) ≤ %ir, Yir = Y T
ir > 0} (10)

If the stability condition (8) is satisfied, then from the defini-
tion of the Lyapunov-Krasovskii functional V (xt, rt) (refer
to Appendix A - Proof of Theorem 3.1), it follows that
xT

i (t)Y −1
ir xi(t) ≤ V (xt, rt). Therefore, E[xT

i (t)Y −1
ir xi(t)] ≤

E[V (xt, rt)].
On the other hand, by integrating J1 < 0 defined in (44)

from 0 to t one gets

E[V (xt, rt)] ≤ E[−
∫ t

0

zT (t)z(t)dt +
∫ t

0

γwT (t)w(t)dt]

+ V (x0, r0) ≤ γL1 + L2 (11)

where L1 =
∫∞
0

wT
i (t)wi(t)dt is an upper bound on the

energy of the external input wi(t), and L2 = V (x0, r0) .
Therefore, xi(t) belongs to an invariant set Σi if γL1 +L2 ≤
%ir.

Furthermore, from Theorem 1 the state feedback controller
ui is given by ui = MirY

−1
ir xi. Therefore, (4) can be re-

written as GkirMirY
−1
ir xi ≤ ckir. Now, squaring this inequal-

ity yields xT
i (t)(GkirMirY

−1
ir )T GkirMirY

−1
ir xi(t) ≤ c2

kir.
Furthermore, xT

i (t)Y −1
ir xi(t) ≤ %ir implies that to satisfy the

last inequality it suffices to show that

(GkirMirY
−1
ir )T (%ir/c2

kir)GkirMirY
−1
ir ≤ Y −1

ir (12)

Hence, by applying the Schur complement to (12), the ca-
pacity constraints for our mobile multi-agent network can be
expressed as the LMI conditions

Wc1ir , γ ≤ max
i,r
{(%ir − L2)/L1}

r = 1, ..., M (13)

Wc2irki ,
[

Yir MT
irG

T
kir

GkirMir c2
kir/%ir

]
≥ 0

ki = 1, ..., li, i = 1, ..., n (14)

2) Upper Bound on the Buffer Size: The constraint on the
queue buffer size (5) for each subsystem can be expressed as

Qdixi ≤ xmaxdi
, d = 1, ..., d̄, i = 1, ..., n (15)
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Following along the similar lines as those used for the capacity
constraint and considering the ellipsoid (10), equation (15) can
be satisfied through the following LMI conditions

Wc3ir ,
[

Yir Y T
ir QT

di

QdiYir x2
maxdi

/%ir

]
≥ 0,

d = 1, ..., d̄, i = 1, ..., n, r = 1, ..., M (16)

3) Non-negative Orthant Stability: The non-negativity con-
straint (3) can be expressed in terms of the non-negative
orthant stability condition that is given by the following
theorem.

Theorem 2: [35] The linear time-delayed system ẋ =
Ax(t)+Adx(t−τ(t)) is non-negative if and only if A ∈ Rn×n

is essentially nonnegative, i.e., its off-diagonal entries are non-
negative and Ad ∈ Rn×n is non-negative, i.e., all its elements
are non-negative. ¥

When the state feedback controller ui = Kirxi is substi-
tuted into the dynamical model (1) and Theorem 2 is invoked
it follows that condition (3) is obtained if the off-diagonal
entries of BirKir and all entries of BdijrKir are non-negative.
By selecting the matrix Yir to be a diagonal matrix and
by setting Kir = MirY

−1
ir for subsystem i the (essential)

non-negativity of (BdijrKir) BirKir, which ensures the non-
negativity constraint (3), can be expressed as

Wc4ir , (BirMir)sm ≥ 0
s 6= m, i = 1, ..., n (17)

Wc5ir , (BdijrMjr)sm ≥ 0
m, s = 1, ..., d̄, r = 1, ..., M, j ∈ ℘r(i) (18)

Once the non-negativity condition xi ≥ 0 is satisfied, the
second non-negativity condition ui ≥ 0 as given by (2), can be
easily satisfied if we specify Kijr > 0. Therefore, by noting
that Yir is a diagonal positive definite matrix, (2) is satisfied
if the following LMI condition holds

Wc6ir , Mir(sm) ≥ 0, s, m = 1, ..., d̄

i = 1, ..., n, r = 1, ..., M (19)

Note that since the elements of Bir are either −1 or 0,
satisfying condition (19) results in a square matrix BirMir

with negative or zero elements. On the other hand, satisfying
Wc4ir leads to a diagonal negative definite matrix BirMir.
This is also validated by the fact that the queues at each
node are decoupled from each other. Therefore, BirKir should
always be diagonal. Moreover, since the elements of Bdijr

are either 1 or 0, satisfying condition (19) results in a square
matrix BdijrMir with positive or zero elements. Therefore,
Wc5ir is trivially satisfied.

It is worth emphasizing that by merely satisfying the LMI
conditions provided above one cannot yield a proper routing
strategy without considering the LMI conditions that are given
in Theorem 1. We are now in a position to summarize the
above results in the following theorem.

Theorem 3: A decentralized H∞ routing control scheme
for a mobile multi-agent network governed by the MJL system

(1) is obtained by solving the following optimization problem:

min
Mir,Yir, R̄ir, Q̄i

γ (20)

subject to the selection of the positive definite matrices
Yir, R̄ir, Q̄i, and the LMI conditions for Wir1,Wir2,
Wc1ir, Wc2irki

, Wc3ir,Wc4ir, and Wc6ir for i = 1, ..., n, r =
1, ...,M , as expressed by equations (8), (9), (13), (14), (16),
(17), and (19), respectively.

Proof: The proof follows along the constructive lines that
are given in this section and is omitted due to space limitations.
¥

Remark 2: Note that the number of the LMI conditions
in our proposed decentralized routing algorithm depends on
the number of network modes. Therefore, by increasing the
number of modes one also increases the number of the
LMI conditions. However, since the dimension of the LMI
conditions depends on the number of nodes, these dimen-
sions do not increase at the same rate that the number of
modes increases. This property of our proposed scheme makes
the algorithm scalable in principle to large networks when
compared to its centralized counterpart algorithms where the
dimension of the LMI conditions depends also on the number
of modes. Although, by increasing the number of possible
network topologies (M ) one needs to solve a larger number
of LMI conditions, interestingly enough this does not however
affect the number of the neighboring sets M and the dimension
of the LMI conditions.

Remark 3: It should be noted that although each node
implements its routing control strategy in a decentralized
manner and based on local information from its neighboring
set, agents nevertheless require a centralized communication
mechanism for only broadcasting the changes that take place
in their configurations or their topologies to the other agents.
The amount of information that needs to be exchanged (which
basically is the knowledge of the operating mode that is
present at any given time) is minimal and impose no major
restrictions in terms of practical considerations.

By representing the multi-agent network mobility by a MJL
system will enable one to model the changes in the number
of nodes resulting from new node additions or deletions. For
instance, if in a given switching mode the number of nodes is
increased by one, the LMI conditions corresponding to the new
subsystem (node) is added and the corresponding connection
matrices Bir and Bdijr of all the nodes for which the new
node is in their neighboring set will change accordingly.
On the other hand, if the number of nodes (subsystem) is
decreased by one, the corresponding LMI conditions of that
node corresponding to the applicable mode is eliminated and
the connection matrices Bir and Bdijr of all the nodes for
which the deleted node was in their neighboring set will
change accordingly.

In the next section, our proposed mobile multi-agent net-
work routing scheme is generalized to situations when the
network is confronted with variable destinations.
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IV. H∞ ROUTING CONTROL STRATEGY FOR MOBILE
MULTI-AGENT NETWORKS WITH VARIABLE DESTINATION

NODES

In multi-agent mobile networks occasionally the number of
destination nodes may vary over time. In other words, certain
destination nodes may have no external traffic at given periods
of time. However, due to the network dynamics some messages
may still be present in queues that should be routed to their
destinations as quickly as possible. Moreover, in the dynamical
model (1) the states are defined as queueing length at each
node corresponding to a particular destination node. Therefore,
the number of states depends on the active destination nodes.
On the other hand, simply deleting the corresponding states
associated with the inactive destinations can lead to loss of
integrity and consistency of the overall network. This will
also lead to dropping out of the leftover messages that are
kept in the eliminated queues. To cope with these issues, we
propose to model and represent the behavior of the network
as a singular MJL system which is governed by the following
expressions:

E(r(t))ẋi(t) = Bi(r(t))ui(t) + Bwi
(r(t))wi(t)

+
∑

j∈℘r(t)(i)

Bdij(r(t))uj(t− τji(t)) (21)

xi(t) = φi(t), t ∈ [−hi, 0], hi = max{hij}
zi(t) = Ci(r(t))xi(t)

where E(r(t)) is a diagonal matrix that is specified according
to the following two scenarios:

(a) Regular mobile networks: In this case we have
E(r(t)) := EI(r(t)) = I; and

(b) Varying number of destination nodes: In this case
some destination nodes become inactive. Therefore,
E(r(t)) := ED(r(t)) = diag{ej(r(t))} , where

ej(r(t)) =





1 if the queue is associated with an active
destination node

0 if the queue is associated with an inactive
destination node

In other words, the activeness or inactiveness of a destina-
tion node can be characterized as a switching mode. Therefore,
when a destination node becomes inactive (active), the network
dynamics switches from regular to the singular (singular to the
regular). On the other hand, in order to ensure the existence
of a unique solution for the singular MJL system, regularity
and impulse-free conditions should be investigated at each
switching mode. Towards this end, the definitions of piecewise
regularity and piecewise impulse-free conditions are now given
below.

Definition 3: [27], [25] The system E(r(t))ẋi(t) =
Ai(r(t))xi(t) + Bi(r(t))ui(t) + Bwi(r(t))wi(t) is said to be
piecewise regular if the characteristic polynomial det(sEr −
Air) is not identically zero for r = 1, ..., M, i = 1, ..., n.

Definition 4: [27], [36] The system E(r(t))ẋi(t) =
Ai(r(t))xi(t) + Bi(r(t))ui(t) + Bwi(r(t))wi(t) is said to be
piecewise impulse-free if deg(det(sEr − Air)) = rank(Er)
for r = 1, ...,M, i = 1, ..., n.

The following lemma provides a necessary and sufficient
condition for satisfying the regularity and piecewise impulsive-
free conditions.

Lemma 2: [27] The MJL system (21) with the state feed-
back control law ui = Kirxi satisfies the piecewise regu-
larity and piecewise impulse-free conditions if and only if
Acli = BirKir and Acli +Adcli is nonsingular where Adcli =∑

j∈℘(i) Bdij(r(t))Kjr.
In the subsequent subsections in order to design a decen-

tralized routing controller for the system (21), first the LMI
constraints that simultaneously ensure robust stability and H∞
performance of the closed-loop singular MJL system in the
presence of time-varying delays are obtained. In addition, the
physical constraints (2)-(5) are expressed as LMI feasibility
conditions for the dynamical system (21).

A. A Decentralized H∞ Control of Singular Time-Varying
Delay System with Markovian Jump Dynamics

Our first result below provides sufficient conditions for con-
structing a decentralized H∞ state feedback routing controller
of the form ui = Kirxi for the system (21).

Theorem 4: The fluid flow model of a mobile multi-agent
network governed by equation (21) with w ∈ L2[0,∞) that
satisfies Assumptions 1 and 2 is stochastically stabilizable,
piecewise regular, and piecewise impulse-free if the decentral-
ized state feedback routing control is designed as ui = Kirxi

with an L2-gain that is less than γ, and provided that there
exist matrices Mir, nonsingular matrices Yir and symmetric
positive definite matrices R̄ir, Q̄i for i = 1, ..., n, r =
1, ...,M such that the following LMI conditions hold

ErY
T
ir = YirE

T
r > 0

Wir1 =


θir1 θir2 Bwir
Y T

ir CT
ir θir3 mirMT

ir hjiMT
ir

∗ θir4 0 0 0 0 0
∗ ∗ −γI 0 0 0 0
∗ ∗ ∗ −I 0 0 0
∗ ∗ ∗ ∗ θir5 0 0
∗ ∗ ∗ ∗ ∗ θir6 0
∗ ∗ ∗ ∗ ∗ ∗ θir7


 < 0 (22)

Wir2 =




MT
irB

T
ir + BirMir B̃dirM̃jr Yir

∗ −2Yjr + I 0
∗ ∗ −I


 < 0 (23)

Wir3 =
[

2(1−mirπrr)I − Q̄i + mirπrrR̄ir π̃r

∗ R̃ir

]
≥ 0 (24)

where θir1 = MT
irB

T
ir + BirMir + πrrErYir, θir2 =

B̃dirR̃ir, θir3 = (π̄rYir)T , θir4 = −(1 − d̄ji)R̃ir, θir5 =
−diag{Yi1, ..., Yi(r−1), Yi(r+1), ..., YiM}, θir6 =
−mikR̄ik, θir7 = −hjiQ̄i, π̄r = [

√
πr1E1 ...

√
πr(r−1)E(r−1)√

πr(r+1)E(r+1) ...
√

πrMEM ]T , π̃r =
[
√

mi1πr1 ...
√

mi(r−1)πr(r−1)
√

mi(r+1)πi(r+1) ...
√

miMπrM ]T ,
and mir = the number of subsystems that subsystem i
belongs to their ℘r(.) in mode r, R̃ir = diagj∈℘r(i){R̄jr},
M̃jr = diagj∈℘(i){Mjr}, and B̃dir = vec{Bdijr}, for
j ∈ ℘r(i). The robust decentralized state feedback controller
gain is given by Kir = MirY

−1
ir .

Proof: The proof is provided in Appendix B.
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Note that the input signal ui at each node can always be
defined such that the matrix Bi(r(t)) is block diagonal, i.e.,
Bi(r(t)) = diag{B1i(r(t)), B2i(r(t))}, where B1i(r(t)) and
B2i(r(t)) correspond to the active and inactive destinations,
respectively.

B. LMI Conditions for Incorporating the Physical Constraints

The LMI conditions for guaranteeing the network physical
constraints, as discussed in Section III-A, are now modified
corresponding to the MJL system (21).

1) Capacity Constraint: To guarantee the capacity con-
straint for each subsystem we require

Gki
ui ≤ cki

(r(t)) ki = 1, ..., li, i = 1, ..., n

Let us consider the following ellipsoid for a selected %i > 0,
namely

Σi = {xi(t)|
∫ t

t−τij

xT
i (s)KT

irR̄
−1
ir Kirxi(s)ds

≤ %ir, R̄ir = R̄T
ir > 0} (25)

Provided that the stability conditions (22)-(24) are sat-
isfied, from the definition of V (xt, rt) (refer to Ap-
pendix B), it follows that

∫ t

t−τij
xT

i (s)KT
irR̄

−1
ir Kirxi(s)ds ≤

V (xt, rt). Therefore, E[
∫ t

t−τij
xT

i (s)KT
irR̄

−1
ir Kirxi(s)ds] ≤

E[V (xt, rt)]. On the other hand, by integrating J1 < 0 as
defined in (44) (refer to Appendix A) from 0 to t one gets,
E[V (xt, rt)] ≤ E[− ∫ t

0
zT (t)z(t)dt +

∫ t

0
γwT (t)w(t)dt] +

V (x0, r0) ≤ γL1 + L2, where L1 =
∫∞
0

wT
i (t)wi(t)dt is

an upper bound on the energy of the external input wi(t) and
L2 = V (x0, r0). Therefore, xi(t) belongs to an invariant set
Σi if γL1 + L2 ≤ %ir. Furthermore, given the state feedback
controller ui = Kirxi the capacity constraint can be re-written
as GkirKirxi < ckir. By squaring the last expression, given
hi = max{hij}, and integrating both sides of the expression
from t− τij to t, one gets

∫ t

t−τij

xT
i (s)(GkirKir)T GkirKirxi(s)ds < hic

2
kir (26)

Note that
∫ t

t−τij
xT

i (s)KT
irR̄

−1
ir Kirxi(s)ds ≤ %ir, therefore

(26) will be satisfied if

GT
kir(%ir/(hic

2
kir))Gkir < R̄−1

ir (27)

By applying the Schur complement to inequality (27) and
Lemma 1 the capacity constraints for the subsystem i can be
expressed by the following LMI conditions

Wc1ir , γ ≤ max
i,r
{(%ir − L2)/L1}

r = 1, ..., M (28)

Wc2irki ,
[

2I − R̄ir GT
kir

Gkir hic
2
kir/%ir

]
≥ 0

ki = 1, ..., li, i = 1, ..., n (29)

2) Upper Bound on the Buffer Size: For each subsystem
the constraint on the queue buffer size is governed by

Qdixi ≤ xmaxdi
, d = 1, ..., d̄, i = 1, ..., n (30)

Now, in view of ui = MirY
−1
ir xi, for the selected matrices

M̄ir one can obtain (M̄irMirY
−1
ir )−1M̄irui = xi. Therefore,

(30) can be expressed as

Qdi(M̄irMirY
−1
ir )−1M̄irui ≤ xmaxdi

d = 1, ..., d̄, i = 1, ..., n, r = 1, ...,M (31)

By squaring (31) and integrating both sides of the expres-
sion from t− τij to t, we get

∫ t

t−τij

uT
i (s)(Qdi(M̄irMirY

−1
ir )−1M̄ir)T

Qdi(M̄irMirY
−1
ir )−1M̄irui(s)ds < hix

2
maxdi

(32)

Note that from the capacity constraint inequality we have∫ t

t−τij
uT

i (s)R̄−1
ir ui(s)ds ≤ %ir, therefore (32) will be satisfied

if

(Qdi(M̄irMirY
−1
ir )−1M̄ir)T (%ir/(hix

2
maxdi

))

(Qdi(M̄irMirY
−1
ir )−1M̄ir) < R̄−1

ir (33)

By applying the Schur complement to (33) and using
Lemma 1, the constraint on the queue buffer size for each
subsystem in (30) can be guaranteed through the following
LMI conditions

Wc3ir ,
[

4I − 2Yir − (QT
diQdi)%ir/(hix

2
maxdi

)
M̄T

ir(M̄irMir)−T

(M̄irMir)−1M̄ir

2I − R̄ir

]
≥ 0, (34)

d = 1, ..., d̄, i = 1, ..., n, r = 1, ..., M

3) Non-Negative Orthant Stability: Corresponding to the
switching modes when the matrix Eir is full rank (i.e.,
associated with the regular dynamics) the respective LMI
conditions for guaranteeing non-negativeness of the states are
defined similar to the conditions (17) and (18). However, when
Eir is a singular matrix, the state xi is partitioned into xi =
[xT

i1 xT
i2]

T , where xi1 is the queue associated with the active
destination nodes and xi2 is the queue associated with the
inactive destination nodes. We furthermore partition the gain
into Kir = [Kir1 Kir2] with appropriate dimensions for Kir1

and Kir2 corresponding to the states xi1 and xi2, respectively.
Note that the queueing dynamics of the inactive destinations do
not receive any external stimuli, i.e., wi2 = 0. Consequently,
the closed-loop dynamics of (21) can be expressed as

ẋi1 = Bir1Kir1xi1(t) +
n∑

i=1

Bdijr1Kjr1xj1(t− τ(t))

+Biw1wi1(t) (35)
0 = Bir2Kir2xi2(t)

+
n∑

i=1

Bdijr2Kjr2xj2(t− τ(t)) (36)

By applying Theorem 2 to equation (35), the off-diagonal
entries of Bir1Kir1 and all entries of Bdijr1Kjr1 should be
non-negative. By selecting a positive definite matrix Yir1 to
be a diagonal matrix and by setting Kir = MirY

−1
ir1 , the

(essential) non-negativity of Bdijr1Kjr1 and Bir1Kir1 can be
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expressed as

Wc4ir , (Bir1Mir1)sm ≥ 0
s 6= m, i = 1, ..., n (37)

Wc5ir , (Bdijr1Mjr1)sm ≥ 0
m, s = 1, ..., d̄, r = 1, ...,M, j ∈ ℘r(i) (38)

The above conditions ensure that the non-negativity constraint
(3) is satisfied for equation (35). The non-negative orthant
condition of equation (36) is achieved by determining Kir2

such that Bdijr2Kjr2 is non-negative and Bir2Kir2 is nega-
tive. Defining a diagonal positive definite matrix Yir1, these
conditions are expressed as

Wc6ir , (Bir2Mir2)sm ≤ 0
i = 1, ..., n, s, m = 1, ..., d̄, r ∈ S̄, (39)

Wc7ir , (Bdijr2Mjr2)sm ≥ 0
i, s, m = 1, ..., d̄, r = 1, ..., M, j ∈ ℘r(i) (40)

where S̄ is the set of modes in which Eir is singular.
Therefore, Wc4ir, Wc5ir and Wc7ir are the same for both the
regular and the singular modes. However, Wc6ir changes from
regular modes to the singular modes. Specifically, the Wc6ir

conditions for both the singular and the regular modes are
defined as

Wc6ir =





(Bir2Mir2)sm ≤ 0
i = 1, ..., n, s, m = 1, ..., d̄, r ∈ S̄

(Bir2Mir2)sm ≥ 0, i = 1, ..., n,
s,m = 1, ..., d̄, r ∈ S − S̄

(41)

Provided that the non-negativity condition xi ≥ 0 is
satisfied, ui ≥ 0 is guaranteed if the following LMI conditions
hold

Wc8ir , Mir(sm) ≥ 0
s,m = 1, ..., d̄, i = 1, ..., n, r = 1, . . . ,M (42)

Since the elements of Bir are either −1 or 0, satisfying
the condition (42) results in a square matrix for BirMir

having negative or zero elements. Therefore, Wc6ir is trivially
satisfied for the singular modes. On the other hand, satisfying
Wc6ir for the regular modes and Wc4ir lead to a diagonal
negative definite matrix BirMir. This is also validated by the
fact that the dynamics of the queueing system is expressed in
a decentralized framework and the queues at each node are
decoupled from each other. Moreover, since the elements of
Bdijr are either 1 or 0, Wc8ir, trivially guarantees that the
conditions Wc5ir and Wc7ir are satisfied.

To summarize, the following theorem states our robust
H∞ routing control strategy corresponding to the mobile
multi-agent network (21) that satisfies the associated physical
constraints (2)-(5).

Theorem 5: A decentralized H∞ routing control design for
a mobile multi-agent network that is governed by the MJL
system (21) is obtained by solving the following optimization
problem:

min
Mir,Yir, R̄ir, Q̄i

γ (43)

subject to the selection of the positive definite matrices
R̄ir, Q̄i, and the LMI conditions for Wir1 −Wir3, Wc1ir,
Wc2irk, Wc3ir, Wc4ir, Wc6ir and Wc8ir for i = 1, ..., n, r =
1, ...,M , as expressed by equations (22)-(24), (28), (29), (34),
(37), (41), and (42), respectively.

Proof: Proof follows along the constructive lines that are
derived earlier in this section. ¥

V. SIMULATION RESULTS

In this section, simulation results are presented to evaluate
the performance of our proposed H∞ routing control strategy
in mobile multi-agent networks. Agents in a mobile network
generally move in teams. Furthermore, nodes within a team
should exchange information among one another and also
communicate with other specific nodes that are designated as
commanders or supervisors of the entire network. In the first
example considered below a mobile multi-agent network that
consists of 50 nodes is investigated. By using the QualNet
software environment, which is a commercially advanced
scalable and high-fidelity emulator and simulator for network
performance [37], the routing algorithm developed in Section
III is now compared with two commonly used algorithms in
the literature known as the Ad hoc On Demand Distance
Vector (AODV) [30] and the Optimized Link State Routing
Protocol (OLSR) [31] schemes. In the second example con-
sidered below we employ our routing algorithm developed in
Section IV to present simulation results for a mobile multi-
agent network consisting of 20 nodes where the number of the
destination nodes are allowed to change.

Example 1: Let us consider a scenario of a network of
unmanned systems having 50 mobile nodes that are partitioned
into three teams covering an area of 8000m × 12000m. The
first team T1 which includes the nodes 1 − 10 is stationary
(fixed), the second team T2 which includes the nodes 11− 30
moves towards the north-east direction, and the third team T3

which contains the nodes 31 − 50 moves towards the north
direction. It is assumed according to Assumption 1 that the
network graph during the simulation period of interest here
remains connected. The nominal communication range for
each node is considered to be 484 m, its capacity is 1 Mbps,
and its maximum buffer size is 450 kbit. The transition mode
is selected as πrj = 0.002 for r = j ± 1. The total simulation
duration is selected as 700 s for each run. The destination
nodes are selected to be 7 and 10. Therefore, each node has
two states: the first state is the queueing length associated
with the destination node 10, and the second state is the
queueing length associated with the destination node 7. Node
10 does not route any messages and is considered as a sink.
Therefore, there are 49 subsystems and a total of 97 states (i.e.
49 queues corresponding to the destination node 10 and 48
queues corresponding to the destination node 7). Associated
with each input flow the delay function is taken as a time-
varying function specified by τ(t) = 3 + 0.8|sin(t)|s. Note
that as far as the controller is concerned the delay information
is considered to be unknown. A total of 9 switching modes
(M = 9) can be identified based on the changes that take
place in the neighboring sets due to the mobility of the nodes.
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The following three representative cases are considered for
evaluating the performance of our robust H∞ routing control
scheme.

Case A: Messages Received and Lost Under Different
Node Mobility

The traffic load for each node is based on the well-known
Poisson distribution with the rate of λ = 300 bytes per second
for 600 s. The total messages that are applied to the network
is 139, 680 kbit. We assume that the maximum nodes speeds
are 0, 10 m/s and 20 m/s for the agents in teams one,
two and three, respectively. Simulations are repeated when
the maximum nodes speeds are increased by factors of two
and three times of the above values. The maximum speed
of the second team is used as a benchmark for comparison
studies. Fig. 1 depicts the total messages that are received at
the destination nodes 10 and 7 as a function of the second team
maximum speed by using (a) our proposed routing algorithm,
(b) the AODV algorithm, and (c) the OLSR algorithm. The
percentage of total messages that are lost corresponding to
the 139, 680 kbit traffic load are shown in Table I. Theses
results confirm that by increasing the speed of the nodes
the proportion of the dropped messages is also increased in
general. It also illustrates that our proposed scheme can route
messages with fewer losses as compared to both the AODV
and the OLSR methods.

TABLE I: The percentage of the messages that are lost
corresponding to a 139, 680 kbit traffic load for different node
speeds.
table

Second team max speed (m/s) 20 40 60
% of lost data by using
our proposed method 13.49 22.75 25.32
% of lost data by using the
OLSR [31] method 15.92 23.17 28.98
% of lost data by using the
AODV [30] method 18.12 23.67 26.7

Case B: Messages Received and Lost Under Different
Traffic Loads

The performance of our proposed robustH∞ routing control
scheme is now evaluated subject to different traffic loads with
rates of λ = {10 30 100 300 600} bytes per second,
when the nodes maximum speeds are set to 0, 10, and 20 m/s
for teams one, two and three, respectively. Fig. 2 depicts the
total messages that are received at the destination nodes 10
and 7 as a function of different traffic loads by using (a) our
proposed routing control algorithm, (b) the AODV algorithm,
and (c) the OLSR algorithm. The percentage of lost messages
are shown in Table II. Fig. 2 and Table II do indeed confirm
the performance superiority of our proposed routing control
algorithm in dealing with different traffic loads.

Case C: Maximum Queueing Length
The maximum queueing length of a node in a mobile multi-

agent network can also be considered as an important issue
for evaluating the performance of a routing algorithm. Fig. 3
depicts the maximum queueing lengths that are obtained by

Fig. 1: The received messages at the destination nodes 10 and
7 (subplots (a) and (b), respectively) corresponding to different
speeds and different routing algorithms in Example 1 (namely,
our proposed robust H∞ control routing algorithm (solid lines
with star), the AODV algorithm (dashed-dot lines with circles)
and the OLSR algorithm (dashed lines with squares)).
figure

TABLE II: The percentage of the messages that are lost
corresponding to different traffic loads (l1 = 4656 (kbit), l2 =
13968 (kbit), l3 = 46560 (kbit), l4 = 139680 (kbit), l5 =
279360 (kbit)) at the maximum speed of 20 m/s for the
second team.
table

Traffic load l1 l2 l3 l4 l5

% of lost traffic by using
our proposed method 2.06 2.8 12.06 13.49 17.8
% of lost traffic by using
the AODV [30] method 2.1 4.26 35.49 18.12 38.25
% of lost traffic by using
the OLSR [31] method 4.64 4.55 38.9 15.92 23.93

using our proposed H∞ routing control scheme, the OLSR
algorithm, and the AODV algorithm for the input rate of λ =
300 bytes per second when the maximum speed of the second
team is set to 20 m/s.

As expected the AODV scheme, which is a reactive algo-
rithm, keeps the messages longer in the queues for determining
the optimal routes. However, the maximum queueing length
obtained by using our proposed routing is comparable with
the OLSR algorithm, in terms of both the distribution as well
as the individual values. Moreover, the mean of the maximum
queue obtained by using our proposed H∞ routing control
algorithm is 48.56 kbit whereas it is 51.71 kbit by using the
OLSR algorithm and it is 127.41 kbit by using the AODV
algorithm. This confirms that overall our proposed routing
control algorithm provides the shortest queues on average.

In closing, we would like to point out that indeed one
could have explicitly incorporated in the originally considered
performance index the packet losses as an attribute to be also
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Fig. 2: The received messages at the destination nodes 10 and 7
(subplots (a) and (b), respectively) corresponding to different
traffic loads and different routing algorithms for Example 1
(namely, our proposed robust H∞ control routing algorithm
(solid lines with star), the AODV algorithm (dashed-dot lines
with circles), and the OLSR algorithm (dashed lines with
squares)).
figure

simultaneously minimized. However, a formal development of
this solution is not considered here as it is beyond the scope
of this work. Notwithstanding this, it should be emphasized
that the framework introduced in this paper enables one to
generalize our results in various directions and aspects.

Remark 4: The AODV scheme is implemented for net-
works where the topology can change randomly and possible
topologies cannot be known in advance. Such an algorithm
requires the communication to be postponed until a route to
the destination is found. It is also assumed that during the
routing process the topology does not change. Therefore, the
messages may wait in the buffers longer as compared to pre-
established routing algorithms. Moreover, there is a possibility
that messages can be dropped if the topology is changed during
the routing process. On the other hand, our proposed algorithm
provides traffic routes that are based on knowledge of all
possible topologies (although one does not need to know a
priori when a given topology is going to change and which
topology will be selected/chosen next, i.e., the choice of the
network topology and the time of this change is assumed
to be unknown and random). Therefore, the overhead for
determining the routing solutions for messages is lower, and
consequently the delays in delivering the messages to their
destinations are less than that of the AODV algorithm. Further-
more, since our routing strategy guarantees that the messages
are routed to their destinations for all random switchings
among the topologies, the likelihood of dropping messages
will also be lower. Therefore, by formally incorporating and
taking advantage of this information, albeit that our approach
is not applicable to all general types of wireless networks, one

Fig. 3: The maximum queueing length corresponding to the
input rate of λ = 300 bytes per second and the maximum
speed of the second team selected as 20 m/s as in Example
1. Shown from left to right are our proposed routing control
scheme, the OLSR scheme, and the AODV scheme.
figure
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can guarantee improved performance from using our approach.
Example 2: In this example, the performance of our pro-

posed H∞ routing control scheme subject to a variable number
of destination nodes is investigated. Towards this end, let us
consider a network of unmanned vehicles consisting of 20
mobile nodes that are partitioned into two teams in an area of
8000m× 12000m. The first team includes the nodes 1 to 10
that moves towards the east direction with the speed of 5 m/s
and the second team includes the nodes 11 to 20 that moves
towards the north-east direction with the speed of 25 m/s.

As in the previous example, and according to Assumption
1 the network graph remains connected during the simulation
period of interest. The nominal communication range for each
node is considered to be 450 m and the channel capacity is
set to 1 Mbps. The node’s maximum buffer size is set to 450
kbit. The pause time is set to 200 s and the total time for each
simulation is considered to be 500 s.

The packet generation rate for each node is based on the
well-known Poisson distribution with the rate of λ = 200
bytes per second for 400 s. The transition mode is selected
as πrj = 0.002 for r = j ± 1. Nodes 7 and 10 are selected
as the destination nodes. Therefore, each mode should have
two states: the first state is the queue associated with the
destination node 10 and the second state is the queueing length
associated with the destination node 7. For each input flow the
delay function is taken as a time-varying function specified
by τ(t) = 1 + .1|sin(t)| s, which is clearly considered to be
unknown to the controllers.

It is assumed that in certain time periods the destination
node 7 is not active. Corresponding to the first three modes,
the switching occurs as a result of nodes mobility and changes
in the neighboring sets. In other words, according to the
network model given by (21) we have Ei1 = Ei2 = Ei3 =
I . Corresponding to the 4th mode, it is assumed that the
destination node 7 is inactive. Consequently, in the model

(21) we have Ei4 =
[

1 0
0 0

]
. Our objective is to demon-

strate that through modeling the inactive destination nodes by
the singular Markovian jump dynamics and by utilizing our
proposed H∞ routing control algorithm one will be able to
empty their associated queues more efficiently as compared
to a control algorithm that does not explicitly take into
account this characteristics. Specifically, the simulation results
for our H∞ routing controller that is designed according to
Theorem 5 for a singular MJL system is now compared with
the performance that is achieved by using our H∞ routing
controller that is designed based on Theorem 3 for a regular
MJL system where the fact that node 7 is actually inactive for
some periods of time is completely ignored. Fig. 4 depicts the
queueing lengths of node 3 for the destination nodes 10 and
7 using our proposed algorithms based on the singular MJL
dynamics (sub-figures (a)-(c)) and the regular MJL dynamics
(sub-figures (d)-(f)).

Figs. 4-(a) and 4-(d) depict the queueing lengths for the
destination node 10 and Figs. 4-(b) and 4-(e) depict the
queueing lengths for the destination node 7 for the entire
simulation period of 500 s. This confirms the stable behavior
of our proposed H∞ routing algorithms for both regular as

Fig. 4: The queueing lengths of node 3 for the destination
nodes 10 and 7 in Example 2. The subplots (a)-(b) are obtained
by using the singular MJL dynamics whereas the subplots (d)-
(e) are obtained by using the regular MJL dynamics. Subplots
(c) and (f) are the zoomed versions of subplots (b) and (e)
around 220 seconds, respectively.
figure

well as singular MJL systems. Figs. 4-(c) and 4-(f) depict
the behavior of our proposed routing algorithms when the
destination node 7 becomes inactive at t = 220 s. It shows
that the controller based on the singular MJL dynamics could
empty the queue in 4 seconds. However, by applying the
controller based on the regular MJL dynamics, it took 24
seconds to route the messages and empty the queues. On
the other hand, due to the physical capacity constraints by
decreasing the queueing length of one destination node the
queueing length of other destination nodes will be increased.
Therefore, application of the singular MJL dynamics will be
more suitable when the other destination nodes have lower
priorities in receiving the messages.

VI. CONCLUSION

In this paper, a Markovian jump linear (MJL) system subject
to unknown and time-varying delays and mode-dependent
interconnections (matrices) was introduced to represent the
data traffic in mobile multi-agent networks. Our proposed
decentralized H∞ routing control strategy can simultaneously
stabilize the mobile multi-agent network and provide a desired
routing performance by minimizing a measure of the queueing
length (namely, the worst-case queueing length) subject to a
number of physical constraints. By taking advantage of the
Markovian jump representation of the agents mobility one can
stochastically handle the changes that occur in the network
topologies and configurations due to both node mobility and
random changes in the destination nodes. The LMI method-
ology is utilized for developing a unified multi-objective opti-
mization framework where the multi-agent network routing
problem can be represented and solved in a decentralized
manner.
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Although the proposed H∞ routing strategy assumes that
all the possible network topologies are finite and known
a priori, the manner and the time at which the network
topology changes is not known a priori. In other words, we
assume in this work that the network topology changes are
made arbitrarily and randomly within a given list of possible
configurations. This assumption is actually quite consistent
with real networked multi-agent systems such as a team of
unmanned vehicles. Our proposed decentralized H∞ control
strategy could also be applied to systems where the number of
the states can change as in the problem of formation control or
cooperative control of unmanned systems where agents may
be added or removed from a given team.

It should be noted that by performing some further analysis
our proposed decentralized H∞ control routing scheme can
be extended to MJL systems which contain uncertain terms
in their transition dynamics. Finally, it should be noted that
other models have been proposed in the literature to model the
mobility of nodes in ad hoc mobile networks, such as random
way point and Gauss-Markov, among others. To further bring
out the versatility of our proposed routing strategy, compar-
isons of the reported results and their performances with these
mobility models will be investigated in our future work.
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APPENDIX I
PROOF OF THEOREM 1

Let us denote C[−hji, 0] as the space of continuous
functions on the interval [−hji, 0]. Since the evolution of
xi(t) in (1) depends on xi(s), t − τij ≤ s ≤ t, it is not
a Markov process. In order to cast this model into the
framework of a Markov process, let us define a process in
C[−hji, 0] by xis(t) = xi(s + t), t − τij ≤ s ≤ t.
The stability of the closed-loop system (1) with
ui = Kirxi, is investigated by considering the
Lyapunov-Krasovskii functional candidate V (xt, rt) =
V1 + V2 + V3, where V1 =

∑n
i=1 xT

i (t)Pirtxi(t), V2 =∑n
i=1

∑
j∈℘rt (i)

∫ t

t−τji
uT

j (s)Rjrtuj(s)ds, and V3 =∑n
i=1

∫ hij

0
(hij − σ)uT

i (t− σ)Qiui(t− σ)dσ. To achieve the
H∞ objective (7), one should show that

J1 = AV (xt, rt) + zT (t)z(t)− γwT (t)w(t) < 0 (44)

where A is the infinitesimal generator of {(xit, rt), t ≥ 0}
[27]. Therefore, one can get AV (xt, rt) = AV1(xt, rt) +
AV2(xt, rt) +AV3(xt, rt). Suppose rt = k ∈ S, then
AV1(xt, rt) =

∑n
i=1[x

T
i (t)((BirtKirt)

T Pirt +
Pirt(BirtKirt))xi(t)+

∑
j∈℘rt (i)[u

T
j (t−τji)BT

dijrt
Pirtxi(t)+

xT
i (t)PirtBdijrtuj(t − τji)] + xT

i (t)PirtBwirt
wi(t) +

wT
i (t)BT

wirt
Pirtxi(t) + xT

i (t)
∑M

k=1 πrtkPikxi(t)],
AV2(xt, rt) ≤ ∑n

i=1

∑
j∈℘rt (i)[u

T
j (t)Rjrtuj(t) − (1 −

d̄ji)uT
j (t− τji)Rjrtuj(t− τji)]

+
∑n

i=1

∑M
k=1

∑
j∈℘k(i) πrtk

∫ t

t−τji(t)
uT

j (s)RjkuT
j (s)ds,

and AV3(xt, rt) ≤ ∑n
i=1[hiju

T
i (t)Qiui(t) −∫ t

t−τij(t)
uT

i (s)Qiui(s)ds]. Now assuming

n∑

i=1

∫ t

t−τij(t)

uT
i (s)Qiui(s)ds ≥

n∑

i=1

M∑

k=1

πrtk

∑

j∈℘k(i)∫ T

t−τji(t)

uT
j (s)RikuT

j (s)ds (45)

and using the fact that
∑n

i=1

∑
j∈℘rt (i) uT

j (t)Rjrt
uj(t) =∑n

i=1 mirtu
T
i (t)Rirtui(t), and by applying the Schur com-

plement, and substituting the result into (44), one gets J1 ≤∑n
i=1 XT

i (t)L̄irt
Xi(t), where

L̄ik =




Ωi1 Ωi2 PikBwik
CT

ik Ωi3

∗ Ωi4 0 0 0
∗ ∗ −γI 0 0
∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ Ωi5




< 0(46)

and Xi = [xT
i (t) UT

j (t− τi(t)) wT
i (t)]T , UT

j (t− τi(t)) :=
vec{uT

j (t − τji(t))} for j ∈ ℘rt
(i), Ωi1 =

(BikKik)T Pik + Pik(BikKik) + KT
ik[hjiQi +

mikRik]Kik + πkkPik, Ωi2 = PikB̃dik, Ωi3 =
[
√

πk1Pi1 ...
√

πk(k−1)Pi(k−1)
√

πk(k+1)Pi(k+1) ...
√

πkMPiM ]T ,
Ωi4 = −diagj∈℘k(i){(1 − d̄ji)Rjk},Ωi5 =
−diag{Pi1, ..., Pi(k−1), Pi(k+1), ..., PiM}. Now, let
Kik = MikY −1

ik , Pik = Y −1
ik , Rik = R̄−1

ik , Qi =
Q̄−1

i , ¯̄Rik = vec{R̄jk} for j ∈ ℘k(i), Ȳi =
vec{Yil} for l = 1, ..., (p − 1), (p + 1), ..., M . By pre and
post multiplying (46) by ∆ik = diag{Yik, ¯̄Rik, I, I, Ȳi}
and ∆T

ik respectively, and applying the Schur complement
one gets Lik in (8). Therefore, (8) guarantees negative
definiteness of J1 in (44). From Dynkin’s formula
[27], we have JT = E[

∫ T

0
[J1 − AV (xt, rt)dt] ≤

E
∫ T

0

∑n
i=1 XT

i (t)LirtXi(t)dt − E[V (xT , rT ) + V (x0, r0)].
Using the fact that Lirt < 0 and E[V (xT , rT )] > 0,
yield JT ≤ V (x0, r0), and therefore J∞ ≤ V (x0, r0). In
other words, the H∞ objective (7) is satisfied according to
‖z‖E2 − γ2‖w(t)‖2 ≤ V (x0, r0).

To investigate the stability properties of the network states in
absence of the external inputs wi, let us eliminate the (n+2)th
row and column (corresponding to the terms involving wi) and
the (n+3)th row and column of (8). Therefore, the following
LMI condition is obtained

L̂ik =




θir1 θir2 θir3 mikMT
ik hjiM

T
ik

∗ θir4 0 0 0
∗ ∗ θir5 0 0
∗ ∗ ∗ θir6 0
∗ ∗ ∗ ∗ θir7




< 0

which implies that AV (x, r, t) <∑n
i=1 X̄T

i (t)L̂ir1(hji, d̄ji)X̄i(t) < 0. Hence, we have
AV (x, r, t) ≤ −α

∑n
i=1 ‖X̄i‖2 ≤ −α‖xt‖2, where

α = mini,r{λmin(−L̂ir1)} > 0. By applying the Dynkin’s
formula, one can get E[V (x(t), r(t))] − E[V (x0, r0)] =
E

∫ t

0
[AV (x, rt)]ds ≤ −αE

∫ t

0
xT (s)x(s)ds. Since

E[V (x(t), r(t))] ≥ 0, the above equation implies that
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E
∫ t

0
xT (s)x(s)ds ≤ α−1E[V (x0, r0)]. This proves the

stochastic stability of the unforced system (1).
In view of the above results condition (45) should now be

expressed according to the new LMI parameters Q̄i and R̄il.
Substituting Qi and Ril by Q̄i and R̄il in (45) yields

n∑

i=1

∫ t

t−τij(t)

uT
i (s)Q̄−1

i ui(s)ds ≥
n∑

i=1

M∑

k=1

πrtk

∑

j∈℘k(i)∫ T

t−τji(t)

uT
j (s)R̄−1

il uT
j (s)ds

Using the fact that πkk = −∑N
l=1,l 6=k πkl, where πkl > 0, and

noting that
∑n

i=1

∫ t

t−τij(t)
uT

i (s)
∑M

k=1 πrtkmikRikui(s)ds =∑n
i=1

∑M
k=1 πrtk

∑
j∈℘k(i)

∫ t

t−τji(t)
uT

j (s)Rjkuj(s)ds, and
applying the Schur complement we get

[
Q̄−1

i − πkkR̄−1
ik π̄k

∗ R̄i

]
> 0 (47)

Furthermore, using Lemma 1 and considering the fact that
πkkR̄ik < 0, lead to Q̄−1

i − πkkR̄−1
ik > 2(1 − πkk)I − Q̄i +

πkkR̄ik. Therefore, to guarantee (47), it suffices to satisfy the
LMI condition (9). This completes the proof of the theorem.
¥

APPENDIX II
PROOF OF THEOREM 4

To achieve the H∞ objective function (7), it suffices
to establish the inequality (44) where V (xt, rt)
is now selected as V (xt, rt) = V1 + V2 + V3,
where V1 =

∑n
i=1 xT

i (t)ErtPirtxi(t), V2 =∑n
i=1

∑
j∈℘rt (i)

∫ t

t−τji
uT

j (s)Rjrtuj(s)ds, and V3 =∑n
i=1

∫ hij

0
(hij −σ)uT

i (t−σ)Qiui(t−σ)dσ, where Rjrt and
Qi are positive definite matrices, and EkPT

ik = PikET
k > 0.

Therefore, AV (xt, rt) = AV1(xt, rt) + AV2(xt, rt) +
AV3(xt, rt), where AV2(xt, rt) and AV3(xt, rt) are
obtained as in Appendix A and AV1(xt, rt) is obtained
as AV1(xt, rt) =

∑n
i=1[x

T
i (t)((BirtKirt)

T Pirt +
Pirt(BirtKirt))xi(t)+

∑
j∈℘rt (i)[u

T
j (t− τ)BT

dijrt
Pirtxi(t)+

xT
i (t)PirtBdijrtuj(t − τ)] + xT

i (t)
∑M

k=1 πrtkEkPikxi(t)].
By substituting the above into (7), and by following along
the similar lines as those given in proof of Theorem 1,
one can show that the LMI condition (22) can guarantee
negative definiteness of J in (7). The convergence of the
network states in the absence of the external input wi can
also be shown by eliminating the (n + 2)th row and column
(corresponding to the terms involving wi) and the (n + 3)th
row and column of matrix (22) and by following along the
constructive lines that were invoked in the proof of Theorem
1.

Assume that the condition below is satisfied[
(BikKik)T Pik + Pik(BikKik) + I PikB̃dikK̃jk

∗ −I

]
< 0 (48)

where K̃jk = diagj∈℘k(i){Kjk}. Condition (48) implies
that (BikKik)T Pik + Pik(BikKik) < 0. Therefore, Acli is
nonsingular. Furthermore, by applying the Schur compliment it

follows that Acli +Adcli is nonsingular. Therefore, the closed-
loop system satisfies the piecewise regularity and the piecewise
impulsive mode free conditions. Now, by substituting Pik =
Y −1

ik and pre and post multiplying (48) by diag{Yik, ¯̄Yik} and
its transpose, respectively, where ¯̄Yik = vec{Ȳjk} for j ∈
℘k(i), one can obtain (23). This completes the proof of the
theorem. ¥
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