
SPECIFICATION, COMPOSITION AND PROVISION OF

TRUSTWORTHY CONTEXT-DEPENDENT SERVICES

NASEEM ISMAIL IBRAHIM

A THESIS

IN

THE DEPARTMENT

OF

COMPUTER SCIENCE AND SOFTWARE ENGINEERING

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

CONCORDIA UNIVERSITY

MONTRÉAL, QUÉBEC, CANADA

JUNE 2012

c© NASEEM ISMAIL IBRAHIM, 2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Concordia University Research Repository

https://core.ac.uk/display/211514199?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Mr. Naseem Ismail Ibrahim

Entitled: Specification, Composition and Provision of Trustworthy

Context-dependent Services

and submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy (Computer Science)

complies with the regulations of this University and meets the accepted standards with re-
spect to originality and quality.

Signed by the final examining committee:

Chair
Dr. Deborah Dysart-Gale

External Examiner
Dr. Abdellatif Obaid

Examiner
Dr. Anjali Agarwal

Examiner
Dr. Joey Paquet

Examiner
Dr. Olga Ormandjieva

Supervisor
Dr. Vangalur Alagar

Co-supervisor
Dr. Mubarak Mohammad

Approved
Chair of Department or Graduate Program Director

20
Dr. Robin A.L. Drew, Dean
Faculty of Engineering and Computer Science

Abstract

Specification, Composition and Provision of Trustworthy

Context-dependent Services

Naseem Ismail Ibrahim, Ph.D.

Concordia University, 2012

Ubiquitous computing opened big markets for service provision and consumption bringing

benefits for both service providers and consumers. At the same time, it introduced many

challenges for developers, such as providing flexible contracts and measurable proofs that

assure consumers about the trustworthiness of services. Current approaches for the speci-

fication, discovery, and provision of services have not met these challenges. They do not

realize the essential relationship between the service contract and the conditions in which

the service can guarantee its contract. Moreover, they do not use any formal methods for

specifying services, contracts, and compositions. Without a formal basis it is not possible to

justify through a rigorous verification the correctness conditions for service compositions

and the satisfaction of contractual obligations in service provisions. This thesis makes three

major contributions to remedy these drawbacks.

The first contribution is a formal service model, which is called ConfiguredService. In

this model, service and contract are packaged together. The service part includes functional

and nonfunctional aspects of service, and the data parameters and attributes that are essen-

tial to define the functional and nonfunctional aspects. The contract part includes business

rules, legal aspects, and context information.

The second contribution is ConfiguredService composition and verification approach.

Several rules for composing ConfiguredServices are defined. The verification approach

automatically verifies whether or not a stated property is true in service compositions. Since

most of the time compositions are required prior to service delivery the verification process

enhances trustworthiness at service selection and service provision contexts.

iii

The third contribution is a service provision architecture in which ConfiguredServices

and their compositions are formally embedded. Service publication, service discovery, ser-

vice selection and ranking, and service delivery are rigorously defined. The significance

here is the way context information is defined for each stage, and is used in the interac-

tions between the different components of the architecture elements in order to sustain the

trustworthiness properties at all stages.

iv

To the greatest teachers in my life, my parents.

v

ACKNOWLEDGMENTS

I gratefully acknowledge the guidance, invaluable advice, and earnest support of my su-

pervisor and mentor Dr. Vangalur Alagar. I learned from him not only much of what I

know about research, but also the importance of being committed, caring and supportive to

students. I was truly privileged to be one of his students. I would also like to express my

appreciation to my co-supervisor Dr. Mubarak Mohammad for all his advice and guidance.

My appreciation is also extended to the members of my supervisory committee.

Last and foremost, I am grateful and will always be indebted to my parents for their uncon-

ditional love, affection, patience and encouragements. I would also like to convey my most

sincere gratitude to my sisters, who have given me their love and support.

vi

Contents

List of Figures xiv

List of Tables xvii

List of Acronyms xvii

1 Introduction 1

1.1 Research Motivation . 3

1.1.1 Status of the Current SOA . 3

1.1.2 A Critique of the Current SOA Models 5

1.1.3 Recent Developments in Formal Modeling of Context and Trust-

worthiness . 6

1.1.4 Research Directions - Summary 8

1.2 Research Contributions and Thesis Outline 9

2 A Brief Survey of Related Work 11

2.1 Service Modeling . 11

2.1.1 Languages for Service Modeling 12

2.1.2 Architecture Description Languages for Service Modeling 15

2.1.3 Analysis . 17

2.2 Service Composition Approaches . 17

2.2.1 Web Services Approaches . 18

2.2.2 Approaches Based on Formal Methods 19

vii

2.2.3 Analysis . 23

2.3 Service Provision Frameworks . 24

2.3.1 SeGSeC . 24

2.3.2 eFlow . 26

2.3.3 SELF-SERV . 26

2.3.4 SHOP2 . 27

2.3.5 SWORD . 27

2.3.6 Argos . 28

2.3.7 Composer . 28

2.3.8 FUSION . 29

2.3.9 Proteus . 29

2.3.10 SPACE . 29

2.3.11 StarWSCop . 30

2.3.12 METEOR-S . 31

2.3.13 SeCSE . 31

2.3.14 DynamiCoS . 32

2.3.15 TSCN . 33

2.3.16 Analysis . 33

2.4 Summary . 36

3 Research Methodology 37

3.1 Research Objectives . 37

3.2 Research Methodology . 38

3.2.1 Phase 1: Defining a Formal Service Model 38

3.2.2 Phase 2: Defining a Service Composition Theory 41

3.2.3 Phase 3: Defining a Service Provision Framework 43

3.2.4 Phase 4: Defining the Languages to Support the Service Provision

Framework . 44

3.3 Summary . 46

viii

4 ConfiguredService Formalism 47

4.1 ConfiguredService Type . 47

4.1.1 Rationale for ConfiguredService Definition 48

4.1.2 Informal Semantics of ConfiguredService 51

4.1.3 Examples . 55

4.2 Formal Representation of ConfiguredService 57

4.2.1 Context Formalism . 59

4.2.2 A Model-based Formalization of other ConfiguredService Elements 60

4.3 Analysis . 65

4.3.1 Analysis before Service Publication 66

4.3.2 Analysis before Service Execution 70

4.3.3 Analysis after Service Delivery 71

4.4 Flexible Contracts . 75

4.4.1 Types and Causes of Contract Modifications 75

4.4.2 Syntactic Issues - Extension through Inclusion and Modification . . 78

4.4.3 Semantic Issues . 79

4.5 Case Study - Auto Roadside Emergency Service 80

4.5.1 Formal Representation . 83

4.5.2 Analysis . 86

4.6 Summary . 86

5 Static Service Composition 88

5.1 Composition Constructs . 89

5.1.1 Sequential Composition Construct � 90

5.1.2 Parallel Composition Construct || 91

5.1.3 Priority Composition Construct ≺ 92

5.1.4 Composition with No Order Construct � 93

5.1.5 Nondeterministic Choice Composition Construct � 94

5.1.6 Conditional Choice Composition Construct (if-else) � 95

ix

5.1.7 Iteration Composition Construct (while) ◦ 95

5.2 Semantics of ConfiguredService Compositions 97

5.2.1 Semantics of Sequential Composition 98

5.2.2 Parallel Composition Semantics 101

5.2.3 Priority Composition Semantics 103

5.2.4 Composition with No Order Semantics 103

5.2.5 Nondeterministic Choice Composition Semantics 105

5.2.6 Conditional Choice Composition Semantics (if-else) 105

5.2.7 Iteration Composition Semantics (while) 105

5.3 Case Study - Auto Roadside Emergency Service 106

5.3.1 Composing rs � tt . 106

5.3.2 Composing rs � tt � cr . 107

5.4 Summary . 109

6 Composition Verification 110

6.1 A Brief Review of UPPAAL . 111

6.2 Transforming the Service Composition into UPPAAL TA 113

6.2.1 Transformation Rules . 114

6.3 Verification Steps . 117

6.4 Case Study - Auto Roadside Emergency Services 118

6.5 Summary . 121

7 FrSeC 122

7.1 Motivation and Features . 122

7.2 FrSeC Components . 125

7.3 Details of FrSeC Components . 127

7.3.1 Service Registry (SRe) . 127

7.3.2 Service Requester (SR) . 132

7.3.3 Planning Unit (PU) . 137

7.3.4 Plan Negotiation Unit (PNU) . 144

x

7.3.5 Service Provider (SP) . 144

7.3.6 Execution Unit (EU) . 147

7.3.7 Trusted Authority (TA) . 148

7.3.8 Context Gathering Unit (CGU) . 150

7.4 Interfaces of FrSeC Components . 151

7.5 Interaction Scenarios . 155

7.5.1 Publication Scenario . 155

7.5.2 Execution Scenario . 156

7.5.3 Analysis Scenario . 157

7.6 FrSeC Adaptability . 158

7.7 Case Study - Auto Roadside Emergency Service 160

7.8 Summary . 163

8 Dynamic Composition 165

8.1 Template-based Composition . 165

8.1.1 Template-based Composition Query 167

8.1.2 Ranking of Candidate Compositions 170

8.2 Semi-automatic Composition . 172

8.2.1 Semi-automatic Composition Query 175

8.2.2 Planning Unit Algorithms . 178

8.3 Automatic Composition . 180

8.3.1 AI Planning . 180

8.3.2 Automatic Composition using AI Planning 182

8.3.3 Mapping Planning Result to Service Composition 188

8.3.4 Composition Matching and Ranking 188

8.4 Summary . 189

9 Development Stages and Supporting Languages 190

9.1 Service-oriented Application Development Stages 191

9.1.1 Service Definition . 191

xi

9.1.2 Service Implementation . 192

9.1.3 Service Provision and Processing 192

9.1.4 Service Composition . 195

9.2 FrSeC Supporting Languages . 195

9.2.1 Service Processing Languages (SPL) 195

9.2.2 Service Implementation Languages (TADL) 199

9.2.3 Component Communication Languages (CCL) 201

9.3 A Partial Specification of the Auto Roadside Emergency Case Study 202

9.3.1 Service Registry Specification . 202

9.3.2 CSDL Specification . 207

9.3.3 Service Query Specification . 209

9.3.4 Service Plan Specification . 212

9.4 Summary . 213

10 Conclusion and Future Work 214

10.1 Meeting the Goals . 214

10.1.1 Service Modeling . 214

10.1.2 Service Composition . 215

10.1.3 Service Provision . 216

10.2 Assessment . 217

10.3 Future Work . 218

10.3.1 Implementation . 218

10.3.2 Extending FrSeC to the Cloud . 222

10.3.3 Policy Language . 223

10.3.4 CSDL-to-WSDL Transformation 224

Bibliography 225

Appendices 238

xii

A Service Processing Languages 239

A.1 Service Registry Language (SRL) . 239

A.1.1 Registry, Domain and Functionality 239

A.1.2 ConfiguredService . 240

A.2 Service Query Language (SQL) . 257

A.2.1 Service Query . 257

A.2.2 Composition Query . 260

A.3 Trusted Authority Language (TAL) . 262

A.4 Service Planning Unit Language (SUL) 263

A.5 Service Negotiation Unit Language (NUL) 265

B ConfiguredService Description Language (CSDL) 267

B.1 Service . 268

B.1.1 Function . 269

B.1.2 Nonfunctional properties . 270

B.1.3 Attributes . 271

B.2 Contract . 272

B.2.1 Trustworthiness . 272

B.2.2 Legal Issues . 275

B.2.3 Context . 277

C ConfiguredService Query Language 281

C.1 RequiredFunction . 282

C.2 RequiredNonFunctional . 283

C.3 RequiredLegalIssues . 286

C.4 Contextual Information . 287

xiii

List of Figures

1 SOA Logical View . 4

2 Service Models Comparison . 17

3 Comparison of Service Composition Approaches 24

4 Comparison of Service Provision Frameworks 35

5 ConfiguredService Structure . 51

6 ConfiguredService Extension Syntax . 78

7 Sequential Composition . 91

8 Parallel Composition . 92

9 Priority Composition . 93

10 No Order Composition . 94

11 Nondeterministic Composition . 95

12 Conditional Composition . 96

13 Iteration Composition . 96

14 Execution logic of (A �c1 B) � (C||D) � F◦c2 97

15 a) RepairShop TA, b) TowTruck TA, and c) CarRental TA 119

16 Resulted Main TA . 120

17 FrSeC Components . 125

18 FrSeC Architecture . 127

19 Service Registry . 129

20 A Service Registry Example . 131

21 Exact-match Query . 133

22 Buffet style Query . 137

xiv

23 Service Publication Process . 145

24 Authentication Certificate . 150

25 Publication Interaction Scenario . 156

26 Execution Interaction Scenario . 157

27 Analysis Interaction Scenario . 158

28 Service Registry Structure for the Case Study 161

29 Available ConfiguredServices . 162

30 Vehicle Authentication Certificate . 163

31 Repair Shop Requests . 163

32 Planning Unit Results . 164

33 FrSeC Interaction for the Case Study . 164

34 Template-based Composition Protocol . 166

35 Semi-automatic Composition Protocol . 174

36 Semi-automatic Query Initialization . 177

37 Find Restaurant ConfiguredService . 184

38 Find Direction ConfiguredService . 185

39 Find DirectionTime ConfiguredService 185

40 PDDL for Example 18 ConfiguredServices 186

41 Example 19 Query . 187

42 Example 19 PDDL problem file . 187

43 Language Support . 196

44 SPL General Elements Syntax . 197

45 ConfiguredService and ComponentType mapping 200

46 Tool Support . 219

47 ConfiguredService meta-model . 241

48 Traditional Query meta-model . 258

49 CSDL Root . 268

50 CSDL Service . 268

51 Service Function . 269

xv

52 Service NonFunctional . 271

53 Service Attribute . 271

54 CSDL Contract . 272

55 Contract Trustworthiness . 273

56 Contract Legal Issues . 275

57 ConfiguredService Context . 278

58 Traditional Query Structure . 281

59 Query RequiredFunction . 283

60 Query RequiredNonFunctional . 284

xvi

List of Tables

1 Buy Book Example . 56

2 Ship Book Example . 57

3 Car Rental Example . 58

4 Analysis Stages . 67

5 A Modified and Extended ConfiguredService 79

6 RepairShop ConfiguredService . 81

7 TowTruck ConfiguredService . 82

8 CarRental ConfiguredService . 82

9 Buy Book ConfiguredServices . 143

10 Consumer Requirements and Priority . 143

11 Buy Book ExecutableService . 148

12 Percentage Match of Candidate ConfiguredServices 171

13 Ranking Candidate Compositions . 172

xvii

List of Acronyms

FrSeC Formal Framework for Providing Context-dependent Services

SRe Service Registry

SR Service Requester

SP Service Provider

PU Planning Unit

PNU Plan Negotiation Unit

EU Execution Unit

TA Trusted Authority

CGU Context Gathering Unit

SPL Service Processing Languages

SRL Service Registry Language

SQL Service Query Language

TAL Trusted Authority Language

SUL Service Planning Unit Language

NUL Service Negotiation Unit Language

TADL Trustworthy Architectural Description Language

CSDL ConfiguredService Description Language

CSQL ConfiguredService Query Language

SUDL Planning Unit Description Language

TADDL Trusted Authority Description Language

NUDL Negotiation Unit Description Language

CSST ConfiguredService Specification Tool

xvii

CSPT ConfiguredService Publication Tool

SQST Service Query Specification

ET Execution Tool

PNT Plan Negotiation Tool

PVT Provider Verification Tool

RVT Requester Verification Tool

SCT Service Composition Tool

CTT Composition Transformation Tool

xviii

Chapter 1

Introduction

Service-Oriented Computing (SOC) [GP08] is a recent computing paradigm that uses ser-

vice as the fundamental element for application development processes. The primary goal

of SOC is a rapid, low-cost development of distributed service applications in heteroge-

neous environments. An architectural model of SOC in which service is a first class element

is called Service-Oriented Architecture (SOA) [Erl07].

In a SOA it should be possible to define, update, compose, communicate, and deliver a

multitude of services. Many SOAs for an application are possible, however they may differ

in the way they define services, define service operations, and realize them in a practical

setting. Yet, all SOAs must agree on the following three distinctive characteristics:

• services are the basic constructional elements,

• service interactions are standard-based, and

• SOA is both dynamic and evolving.

These three characteristics distinguish SOA from traditional software architecture [JYZ+07].

Consequently, SOA demands a new approach to conceptualize services in order to weave

them together to meet an application.

Almost in parallel with SOC concept, rapid advancements in computer and electronic

engineering have resulted in mass production of hand-held computing devices. In partic-

ular, the ubiquitous spectrum of high connectivity has made these devices accessible to a

1

wide range of consumers. In turn, consumers meet their service providers directly in the

cyber space with nobody in-between. This has opened a huge heterogeneous customer

base for service providers, who provide services through such devices. For example, it is

reported in the media that in the span of just 3 years, 500,000 applications offering a wide

variety of services to consumers were provided at the Apple store. It is also reported that

during this period, 18 Billion downloads happened driving a business of US$ 1.782 Billion

in the year 2010. Many other business enterprises, such as Amazon App Store, Google, and

Microsoft Market place, also offer pre-packaged services. These technological advance-

ments have brought benefits for both customers and providers of pre-packaged services.

As a consequence of cheap technology, it has become possible for small and medium busi-

nesses to compete with big corporations, by offering customized services tailored towards

a large set of specific groups of customers. This has proved to be advantageous for cus-

tomers because they can choose better quality services at competitive prices and affordable

service guarantees from several service providers. However, customers can only choose

from a limited set of simple pre-packaged services.

If the service providers want to expand their customer base and earn economic value,

they must offer rich services that can be browsed, queried, compared, and composed into

complex services. At the same time they must also offer a flexible service contract. Unfor-

tunately, the current service models are awfully inadequate to meet these goals. Towards

improving the service model, the service providers should address the following two cate-

gories of major challenges:

• Offering rich service: How to move away from a simple, pre-packaged service con-

cept to a service that is rich in its content? How to create precise service description

that is easy to understand by the customer, and yet is verifiable formally? How to

support service descriptions with a formal basis in order that the contract terms are

formally analyzable? How to enable the customer to create complex services and

safely configure at prescribed contexts?

2

• Offering trustworthy service: How to bundle a service with a set of guarantees (ser-

vice claims) under a flexible contract? How to provide customer interfaces to validate

these claims? How to create services with trustworthiness criteria and embed it faith-

fully in service publications? How the embedded trustworthiness guarantees can be

subjected to a measurable proof of correctness by the customers?

This thesis answers these questions. The answers consist of methods and methodologies,

structures and semantics, all illustrated through a case study.

1.1 Research Motivation

SOA has become a de facto software engineering paradigm for developing service-oriented

applications. So, it is essential that the research efforts for answering the questions rose

earlier to be within the confines of the SOA paradigm. So, we ask the question “can the

current SOA paradigm be used, as is, to develop systems which are trustworthy and context-

dependent? To answer this question, we need to investigate whether or not current SOA

approaches can fulfill these requirements.

1.1.1 Status of the Current SOA

A logical view of the current SOA is presented in Figure 1. It represents an abstract view

of the interaction process between services. There are three major roles:

• Service provider: It is the entity that defines and implements a service. It publishes

the descriptions of services (not their implementations) in service registries.

• Service requester: It is the entity that browses service descriptions in a service reg-

istry and invokes a service. It represents the client side of the interaction. It can be

an application or another service.

• Service registry: It is a shared medium for enabling the automated publication and

discovery of services.

3

Service Registry

Service Requester Service Provider

Find

Interact

Publish

Figure 1: SOA Logical View

The interactions among the roles usually follow three main steps. First, service providers

publish their service descriptions through service registry server. Second, the service re-

quester can search the service registry server looking for a suitable service. Third, the

service requester can directly interact with the service provider by sending messages to it.

This interaction is regulated by a contract [TP05], which is a formal agreement between

collaborating entities and supporting parties.

According to [Erl07], a service contract establishes the terms of engagement with the

service, provides technical constraints and requirements, and any semantic information the

service provider wishes to make public. The essential structural aspects of a service con-

tract [OR08] are interface, functionality, protocol, and quality of service (nonfunctional)

requirements.

• Interface: It defines the syntactic communication abstraction for service request and

service response.

• Functionality: It precisely states what a service can do for a user. It is the set of

operations provided by a service. Each operation can be specified using precondi-

tions and postconditions. All preconditions must be true when a service operation is

called. All postconditions must be guaranteed to be true after the service is success-

fully invoked.

• Protocol: It is the behavior of the service in terms of the input messages (requests)

and the output messages (responses).

4

• Nonfunctional properties: Quality of service features are the nonfunctional proper-

ties of the service. In principle, these include performance, reliability, availability,

security, and accessibility.

Service composition models are central to SOA. Currently, a composite service is re-

garded as coordinated aggregate of services [Erl07]. Both static and dynamic compositions

are allowed. While static composition is done at design-time, dynamic composition is per-

formed at service execution time. Its goals are to (1) satisfy user contexts (e.g., location,

time, and profile) and user preferences [FS09], (2) change the functionality by adding or

removing services at run time [EAS08], and (3) find other compatible services or change

the process definition and redesign the system to deal with user issues [DS05].

1.1.2 A Critique of the Current SOA Models

In SOA context plays an important role, right from the publication of service to its final

delivery. Context was not considered as part of SOA by many researches. All those who

included context in SOA did so only informally, mainly using context information as a filter

during service discovery. It was not used ever to constrain the contract and service delivery.

Some attempt has been made in the past to include trustworthiness properties, and es-

pecially in the semantic web domain, for services. But no systematic method exists to

represent trustworthiness properties as part of service description. Some of the current

SOA models are augmented with informal descriptions of a partial set of trustworthiness

properties. As such, no formal analysis can be done to validate the service quality of a

published service.

The current structure of service contract is inadequate in dealing with changing con-

textual service execution and service delivery situations. If context information changes

in between service discovery and service delivery, then such changes have the potential to

invalidate many business rules governing a business service. In such situations the contract,

unless renegotiated dynamically, becomes null and void. Moreover, trust itself should be

split into two parts, one part governing the service provider and the other part governing

5

the service claims of the provider. The former is static, whereas the later is dynamic.

Current service modeling approaches focus mainly on the functional part of the service.

As a consequence, the current composition methods are just functional compositions. No

theory for composition exists. As a result, in the current SOA it is not possible to define

the contract that binds a composed service, let alone verify that it satisfies the composite

service.

1.1.3 Recent Developments in Formal Modeling of Context and Trust-

worthiness

From the critique section follows the key decision to include context and trust in modeling

SOA. Also one of the goals is to be able to formally verify service properties in different

contexts. Thus, both context and trustworthiness should be formally representable in a

SOA model. In this section we motivate our choice of notation for modeling context and

trustworthiness.

Context

In SOA, the provision of services is strongly related to the contextual information. The

contextual information includes the context of the service requester and the context of the

service provider. The service provider can guarantee its contract in specific situations.

These situations will act as conditions that should be true for the service provider to guar-

antee its contract. In order to enable formal analysis of such contextual constraints, we need

to formalize the relationship between service contracts and the service provision context.

Context has been defined [Dey01] as the information used to characterize the situation

of an entity. This entity can be a person, a place, or an object. This entity is relevant to

the interaction between a user and an application. A system is context-aware if the context

information is used by it to better provide information or services to its users [Dey01].

The context representation proposed by Wan [Wan06], and the logic of context proposed

in [WA08a] for reasoning about context-awareness are suitable formalisms for enriching

6

SOA modeling.

Trustworthiness

In published service contracts, we believe that trust should be stated and should be di-

vided into two parts. The first part is concerned with the claims made on the service itself.

The second part is related to the service provider providing the service. Trustworthiness

properties related to the service should include safety, security, reliability and availability.

Trustworthiness properties related to the service provider should include recommendations

from independent organizations, or consumers’ ratings and reviews.

In the literature, trustworthiness is defined as the system property that denotes the de-

gree of user confidence that the system will behave as expected [SBI99] [ALRL04]. The

terms trustworthiness and dependability are used interchangeably [Som07]. Dependabil-

ity is defined as “the ability to deliver services that can justifiably be trusted” [ALRL04].

A comparison between the two terms presented in [ALRL04] has concluded that the two

properties are equivalent in their goals and address similar concerns. The goals of de-

pendability are providing justifiably trusted services and avoiding outage of service that is

unacceptable to the consumer.

There is a common consensus [SBI99] [ALRL04] [MdVHC02] that trustworthiness is

best expressed as a composite concept of safety, security, reliability, and availability. These

properties have been formalized [Moh09] for developing trustworthy systems. We can

adapt them to services, as explained below.

• Safety is the quality of the operational behavior of the system in which no system

action (service) that may lead to catastrophic consequences will be triggered. Safety

includes timeliness properties that describe time constrained service execution be-

havior.

• Security is a composite property that includes confidentiality and integrity. Confi-

dentiality ensures that system services and information (data) are not disclosed to

7

unauthorized users. Integrity ensures that there is no improper alteration to the sys-

tem state or the published service information.

• Reliability is the quality of continuing to provide correct services despite any failure.

It is possible to have an accepted frequency of failures. Reliability is defined as the

guaranteed maximum number of failures in a unit of time.

• Availability means readiness to provide correct service in a user specified context. It

is the quality of operation in which there is no unforeseen or unannounced disruption

of service. A temporary outage of service may not cause big problems for a non-

critical system. The required services can be requested at a later point of time when

the system becomes available. However, any service outage for a safety-critical sys-

tem may lead to catastrophic consequences. When a system fails, availability spec-

ifies the maximum accepted time of repair until the service returns back to operate

correctly.

1.1.4 Research Directions - Summary

In Section 1.1.2 we made it clear that currently there is no approach for the specification,

verification, publication, discovery, selection, and composition of services that takes into

consideration the relationship between the service contract and the related contextual infor-

mation. However, the relationship between the service contract and the related contextual

information on which the service can guarantee its contract plays a crucial role in service

provision. Thus, a new service modeling and a new composition theory are required. For-

mal methods for the specification of the services, their contracts, the related contextual

information, and their composition are essential in order to conduct formal verification of

service claims. This has led us to borrow formal notations of context and trustworthiness in

meeting this objective. These two decisions lead us to the following three major research

directions.

• Enrich Service Modeling: Service functionality is to be bundled with its trustwor-

thiness features, contract that is flexible, and context information of service provider

8

and service requester. This enriched service will have to be formalized, and analyzed

at different stages of service processing.

• Develop a Composition Theory: Composition theories are essential, in order to vali-

date composite service functionalities against their new contracts. A formal semantic

basis for composition is necessary. Methods for both static and dynamic composi-

tions should be provided.

• Service Processing Framework: Rich services are intended to be analyzed, certified,

published, composed, discovered and delivered. These operations should enable the

end-to-end processing of services in a trustworthy manner.

1.2 Research Contributions and Thesis Outline

In following the three research directions defined above, we arrived at the formal frame-

work FrSeC, the formal framework for the provision of context dependent services. This

framework comprehensively supports all the intended SOA activities that we desired. It

supports specification, verification, publication, discovery, selection and composition of

rich services with context-dependent contracts. The research methodology discussed in

Chapter 3, identifies specific research steps along each research direction, raises questions

with regard to the research issues in each step, and answers them in some depth with the

specific methodology to be followed in producing a solution to each question. The major

contributions of the thesis arise from their investigation, and are organized as follows.

• Related Work: Chapter 2 presents a comparative study between our work and related

published work in SOA, and brings out the relative merit of our work.

• New Service Model: A formal model for the specification of services with context-

dependent contracts is given in Chapter 4. This chapter includes a discussion on the

semantic analysis of services, and flexible contracts.

9

• Static Service Composition: Chapter 5 introduces a static composition theory for

our service model. It is intended to be used by service providers. Compositions will

take into account the entire service description, namely functional and nonfunctional

properties, trustworthiness properties, legal rules and context information.

• Formal Verification: This subject is spread through two chapters. In Chapter 4

we discuss the types of verification necessary to analyze service models. Chapter 6

presents a novel approach for the formal verification of essential contract properties

in service compositions. This approach is automated, and currently is enabled by the

UPPAAL model checker.

• Formal Framework: Chapter 7 introduces the FrSeC and its components, formally

describes the components, and their roles. Query types and service discovery with

respect to query types are discussed at length.

• Dynamic Service Composition: Chapter 8 discusses dynamic service compositions

in response to composite service queries supported by FrSeC. Corresponding to each

query composition type there exist exactly one service (static) composition method.

• Development Methodology: Chapter 9 discusses a development methodology for

trustworthy context-dependent service-oriented applications using FrSeC. It intro-

duces the languages required in the development process.

• Conclusion and Future Work: The thesis concludes in Chapter 10 with a summary,

an assessment of the presented approach, and a list of ongoing research projects

related to this thesis.

10

Chapter 2

A Brief Survey of Related Work

Research in SOC has produced a large volume of work ranging from pure business perspec-

tives to pure software engineering perspectives. We narrow down this spectrum of work for

a comparison with our work, by filtering it in the four dimensions service modeling, formal-

ism, composition methods, and service provision framework design. Along each dimension

the discussed approaches are compared with respect to the specific manner they (1) handle

the modeling of service functionality, nonfunctional properties and trustworthiness, legal

rules, context, (2) use formalism and formal Verification, and (3) provide tool support.

2.1 Service Modeling

This section briefly sketches the state of the art in service modeling. The modeling ap-

proaches can be classified based either on the language, the architecture or a combination

of both used to describe service. The two main languages that have been used for mod-

eling services are UML [MSK08, soa08], and WSDL with the related Web description

languages [WSD, MPM+04, ZkMM06, RKL+05]. Architecture based service modeling

approach uses an Architectural Definition Language (ADL) [JYZ+07, DST+06] to describe

services. There are a few methods [FLB06, CMX08] which use both language and some

abstract architectural details for describing service features.

11

2.1.1 Languages for Service Modeling

The two major languages that have been used for service modeling are UML and Web

services family.

UML Extensions

UML4SOA UML is a general purpose software modeling language and is not meant for

modeling services. By introducing several extensions to UML, the language UML4SOA

was created in 2008 as part of the SENSORIA [WBF+08] project. It utilizes the exten-

sion mechanisms provided by UML2. It follows a minimal extension principle. That is,

existing UML constructs are used wherever possible and new model elements are defined

to model service-oriented features only when necessary. UML4SOA provides model el-

ements for structural and behavioral aspects, business goals, policies and nonfunctional

properties of SOAs. The Model-Driven Development for Service-Oriented Architectures

(MDD4SOA) [MSK08] includes UML4SOA for modeling services and a few model trans-

formation tools for the generation of code in various output languages. The transformation

process is performed in two steps:

• The UML4SOA model is transformed to an intermediate model called, IOM (In-

termediate Orchestration Model). The control flow of the UML4SOA is analyzed

during this step.

• The IOM model is transformed to a PSM (Platform Specific Model). The PSM mod-

els can be one of the following: (1) Web services standards such as BPEL and WSDL,

(2) the object-oriented language Java, (3) the formal language JOLIE [MGLZ07].

There exists no precise guideline for creating extensions for UML2. Consequently, there is

no standard semantics for extended notations. These approaches lack formalism and focus

mainly on using diagrams.

12

SoaML The Service oriented architecture Modeling Language (SoaML) [soa08] is an-

other extension of UML2, developed by the Object Management Group (OMG). It de-

scribes a UML profile and meta-model for the design of services within SOA. The main

goal of SoaML is to support the activities of service modeling and design, and to fit into an

overall model-driven development approach (MDA). It separates the logical implementa-

tion of a service from it possible physical realization on various platforms. This separation

helps simplifies the service model and make it more flexible. The service modeling fea-

tures include (1) specification of systems of services, (2) specification of individual service

interfaces, and (3) specification of service implementation.

Web Services Family of Languages

WSDL The de facto language for describing Web services is Web Services Description

Language (WSDL) [WSD]. It is an XML-based language for specifying the data and oper-

ations that represent a Web service contract. WSDL is supported by a wide range of tools.

However, the meaning (semantics) of data cannot be specified in WSDL. This lack of se-

mantics, makes it necessary for humans to be involved for automated service discovery

and composition within open systems [KBM08]. Semantic Web services (SWS) [KBM08]

remedies this situation by enabling the semantic embedding for data in WSDL.

Thus, with SWS the functionality of a Web service is bound to its semantic annota-

tions [NMFR09] which enables Web services to be automated. SWS includes the languages

OWL-S [MPM+04, KBM08] and WSMO [ZkMM06].

OWL-S OWL-S [MPM+04] [KBM08] is the Web Ontology Language. It is structured

into three sub-ontologies, for defining different semantic aspects of Web services. The

first aspect is the Web service functionality, including the constraints and nonfunctional

properties that influence it. This is defined using the ServiceProfile. The second aspect is

ServiceModel which tells a service requester how to use the service, by detailing the seman-

tic content of requests, the conditions under which particular outcomes will occur, and the

step by step processes leading to those outcomes. The third aspect is the ServiceGrounding

13

which maps elements in the ServiceModel to their corresponding WSDL description.

WSMO Web Services Modeling Ontology (WSMO) is a full-fledged framework for

Semantic Web services (SWS). It aims to enhance the syntactic description of Web ser-

vices with semantic metadata [ZkMM06]. The three components of WSMO are (1) a for-

mal specification component of concepts for SWS, (2) Web Services Modeling Language

(WSML) in which WSMO concepts are defined, and (3) Web Services Execution Envi-

ronment (WSMX) which executes SWS. WSMO requires Ontologies, Goals, Web Services

and Mediators [RKL+05] to be defined in order to define Semantic Web services. Ontolo-

gies [ZkMM06] provide a way to help in querying for knowledge of the Web by associating

information with descriptions of its meaning. Ontologies define descriptions of the things

that exist in a domain of interest with the relationships that exists between those things. The

Web Service element of WSMO provides a conceptual model of all the aspects of a Web

service, including its functionality, nonfunctional properties, and interfaces. A well defined

model of Web services with well defined semantics can be processed by computers without

human intervention. Capability defines the functional aspects of the actual service. Inter-

face defines the behavioral aspects of the service. It contains, Choreography, which defines

the interface for consumption and the Orchestration which defines how functionally can be

achieved. Goals in WSMO are used to describe the desires of users. A service requester

uses Goals section to represent the service they want by specifying its capability. The dif-

ference between Web Service descriptions and Goals is that Web Service descriptions are

intended to provide descriptions of the mechanics of how a service provides its capability

and behavior, while Goal descriptions describe what capability and behavior the requester

would like to get. Goals are described in terms of ontologies used by the requesters. Me-

diators are responsible of handling heterogeneity between Goals and Web Services, by

resolving possible mismatches that occur between resources that should be interoperable.

14

2.1.2 Architecture Description Languages for Service Modeling

We review three languages in this section. SOADL [JYZ+07] [DST+06] is an architec-

ture description languages (ADL) which uses Pi-calculus formalism for service model-

ing, composition, and verification. The other two languages are SRLM [FLB06] and

SOFM [CMX08]. These two languages are hybrid in the sense that they use information

outside an architecture to model services.

SOADL The service oriented description language (SOADL) is an example of ADL

based approach. It specifics the interfaces, behavior, semantics, and quality properties of

services. It models and analyzes the dynamic and evolving architecture. It can be used to

design service oriented system and to define service composition in a simple way. It uses

XML as a meta-language. OADL defines the architecture in a hierarchical way. Services

are of two kinds: atomic and composite. An atomic service performs a basic business func-

tion. A composite service is composed from a set of atomic or composite services. SOADL

uses Pi-calculus to model the behavior of the services formally. It uses Pi-calculus tools to

verify the correctness of the composition results. It also defines transformation rules that

can manually transform the system to BPEL representation.

SRML Service Component Architecture (SCA) [MR09] [Cha07] describes a model for

constructing applications and systems using SOA. It extends on prior approaches to im-

plement services, and builds on open standards, such as Web services. Many modeling

approaches have been inspired by SCA. The SENSORIA Reference Modeling Language

(SRML) [FLB06] is one of them. It provides semantic modeling primitives for service-

oriented systems that are independent of the languages and platforms in which services are

programmed and executed. It uses some formalism to model the computation and coordi-

nation of services. The main novelty of SRML is that it adopts a set of complex primitives

tailored specifically for modeling the business conversations that occur in service-oriented

computing. SRLM services are characterized by (1) the conversations, and (2) the proper-

ties of those conversations [dA09]. In SRML, the unit of design is a module. The two types

15

of modules are activity module and service module. Activity modules define applications

that are developed to satisfy a specific requirement of a business organization, and not to be

published as a service. On the other hand, a service module is developed for publication. A

module is defined in terms of a number of entities and how they are interconnected. Wires

interconnects those entities. Each wire defines an interaction protocol between two entities.

SRML defines internal and external configuration polices. The internal policies define the

initialization and termination conditions of each component and the conditions that trigger

the discovery process of each external service. The external polices express constraints for

Service Level Agreements (SLA).

SOFM The Service-Oriented Feature Model (SOFM) [CMX08] captures the service fea-

tures provided by an application in an abstract form. A service feature represents the re-

quirements of an application as a collection of services. The two main concepts of SOFM

are service features and their relationships. The feature model for an application is created

hierarchically, by classifying and structuring service features. Service features can be clas-

sified in two categories: constraints and refinements. Constraint category is the set of static

relationships between service features. It is further classified according to three types of

relationships. If selecting a service feature requires the selection of another service feature

then they have Require relationship. If selecting a service feature means excluding another

feature then they have the Exclude relationship. The relationship Other constraint indi-

cates rationales, composition rules and trade-off that developers made when developing the

application. Refinements is a binary relationship between two service features indicating

that the first service feature implies the second one. The three kinds of refinements are (1)

Decomposition, which arises while refining a service feature to its constituent service fea-

tures, (2) Specialization which is a refinement of a service feature with further details, and

(3) Operationalization which refines a service feature into its solution in the target system.

16

2.1.3 Analysis

The discussed approaches are compared and the result of comparison is presented in Fig-

ure 2. It is clear that all approaches support the modeling of the functional behavior. Non-

functional and trustworthiness properties are only supported in a simple manner by few

approaches. Contextual information is not represented by any approach, hence the relation-

ship between contract and context is totally ignored. A couple of approaches, which have

ignored the modeling of nonfunctional and trustworthiness properties, have used formal

methods and conducted formal verification. Except for UML and Web services languages

most of the approaches provide a minimum amount of tools to support the modeling using

their service models.

Functional Verification
 Support

Nonfunctional
 and Trust

Legal Rules Context Formal Tool
Support

UML-based

SRML

SOADL

SOFM

WSDL

OWL-S
WSMO

YES

YES

YES

YES

YES

YES

SOME

NO

SOME

NO

SOME

SOME

SOME

NO

NO

NO

NO

NO

NO

NO

NO

NO

NO

NO

YES

YES

NO

NO NO

NO

NO

YES

YES

YES

YES

YES

YES

YES

SOME YES NOYES

Figure 2: Service Models Comparison

2.2 Service Composition Approaches

Service composition is understood in SOC to be a process that aggregates services to cre-

ate new services that provide complex functionality. In this section, we have chosen to

discuss two types of service composition approaches. These are (1) Web services based

approaches, and (2) formal methods-based approaches.

17

2.2.1 Web Services Approaches

The two main approaches for syntactic service composition are orchestration and chore-

ography [tBBG07b]. In Orchestration approach an orchestrator is responsible for invoking

and combining the activities for a composition. The choreography approach composes

services by defining conversations that should be undertaken by each participant service.

The overall activity is achieved by the composition of interaction among the collaborat-

ing services. BPEL is the most important orchestration approach while WS-CDL is an

example of choreography approach. The main difference between BPEL and WS-CDL is

that WS-CDL describes a global view of the observable behavior of message exchanges

of the participating service, while BPEL describes the behavior from the view point of the

orchestrator [tBBG07b].

BPEL

Business Process Execution Language (BPEL) [CKM+03] is an XML based language that

was designed to enable the coordination and composition of services. It has emerged as the

standard to define and manage composition for Web services.

It is based on Web services Description Language WSDL. BPEL uses a workflow-

based approach to provide behavioral extension to WSDL. BPEL defines relationships by

invocations using control and data flow links. Process is the main construct to model the

flow of services. It is a concurrent description that connects activities that send and receive

messages. External Web services providers are defined as port of a particular port type.

A port type has a WSDL description. Partner links are used to specify which activity is

linked to which port provider [tBBG07b].

The basic element in the BPEL process is called an activity, it can either be a primitive

or a structured activity. Primitive activities contains 1) invoke, which invokes an operation

of some Web service, 2) receive, which waits for a message from an external source, 3)

reply, which reply to an external source, 4) wait, which wait for some time, 5) assign, which

copy data from one place to another, 6) throw, which indicate errors in the execution, 7)

terminate, which terminate the entire service instance, and 8) empty, which does nothing.

18

Structured activities contains 1) sequence, which defines an execution order, 2) switch,

which is used for conditional routing, 3) while, which is used for looping, 4) pick, which

is used for race conditions based on timing or external triggers, 5) flow, which is used for

parallel routing, and 6) scope, which is used for grouping activities.

WS-CDL

The Web services Choreography Description Language (WS-CDL) [WC] is an XML based

language that describes peer-to-peer collaborations of participants. It defines the partici-

pant’s common and complementary observable behavior where ordered message exchanges

result in accomplishing a business goal. Interaction activity is the most important construct

of WS-CDL. It describes an information exchange between parties, with a focus on the

receiver. Interaction consist of participants, information and channel. Participants corre-

spond to members involved in the choreography. Information corresponds to the data being

exchanged between participants. Channels corresponds to the pipe through which informa-

tion is exchanged. WS-CDL also supports exception handling and compensations through

exception and finalizer.

2.2.2 Approaches Based on Formal Methods

One of the challenges of SOA is in guaranteeing the correct interaction of services. Be-

cause of the message-passing nature of service interaction many errors might occur when

services are composed, such as messages not being received, deadlocks and incompatible

behaviors. These problems are not new in distributed applications. However, they gain an

extra importance in SOA because services can be used by other services rather than just by

humans, and SOA encourages the automatic interaction between services [tBBG07b].

Formal methods have the advantage of the support of tools to verify the correctness of

service compositions. Formal methods and their tools can be used to check if services are

equivalent. It can also be used to check if services and their composition satisfy certain

properties [tBBG07b].

19

Many approaches have used formal methods to model service oriented systems. Those

approaches can be categorized depending on the formal approach they follow. Below we

review the most important approaches that are respectively based on the formalisms Au-

tomata, Petri nets, and Process Algebras. We discuss only how compositions are done,

assuming the formal notations of the respective formalisms.

Automata

Many authors [MKB07], [FUMK03], [KPP06], [FBS04], [DCP+06], and [DLSZ06] have

used automata to model services and/or their compositions. We briefly explain the two

kinds of approaches, selecting three works from this list.

In [FBS04], the authors present an approach to analyze and verify the functional be-

havior of composite Web services defined using BPEL. The verification is done in two

steps. First, the BPEL specification is transformed to an automaton. In the second step

the automaton is translated to Promela, the language supported by the model checker

SPIN [BA08], which will then be used for verifying the properties. A similar approach

is also used by [FFK05] and [YPCG05].

In [DCP+06], the authors show how service composition written in WS-CDL can be

automatically translated to a timed automat that can be verified by the model checker tool

UPPAAL [BDL04b]. The compositions in WS-CDL can only specify the functional be-

havior of the participating services. Hence, UPPAAL is only used to verify the correctness

of the functional behavior of the composition. UPPAAL is also used in [DLSZ06], to au-

tomatically verify systems modeled in the orchestration language Orc [Orc]. The authors

define formal timed-automata semantics for Orc expressions.

Petri nets

From the many published studies we have chosen two categories of work to review. One

approach is to transform language models to Petri nets, and the second approach is to

enhance Petri nets directly for service compositions.

20

From Language Models to Petri Nets: In [OVvdA+07], the authors show how to map

BPEL specification into Petri nets. They automate this transformation by a tool called

BPEL2PNML. The output of this tool can be verified and analyzed using the tool Wof-

BPEL. In [NM02], the authors define the semantics for a relevant subset of DAML-S (now

OWL-S) in terms of a first order logic language. Using this semantics they encode ser-

vice models into Petri Net formalism. They provide a tool to describe this transformation

and verify service composition. In [HSS05], the authors present a Petri net semantics for

BPEL. The semantics cover the standard and exceptional behavior of BPEL. A tool that

translates the BPEL specification into the input language of the Petri net model checking

tool LoLa [Sch00] has been developed. In [RBHJ06], the authors presents a Petri net frame-

work for Web services orchestrations, including both functional and QoS aspects. This is

done by translating Orc specification into colored Petri nets. A tool has also been developed

to support this approach. This tool takes as inputs the Orc description and the QoS distri-

butions of the sites involved in the orchestration. Monte-Carlo simulation is performed to

study the orchestration’s QoS dimensioning.

Direct use of Petri Nets: In [HB03], the authors define a Petri net-based algebra for

Web services composition. The formal semantics of the composition operators is described

in terms of Petri nets. They present how to use their approach to perform performance

analysis. In [YK04], the authors present a Petri-net-based unified specification model for

conversation protocol and composition. They propose a method for the composition of Web

services. They assure the correctness of composition by formal verification. In [ZCCK04],

the authors present WS-Net which is an executable architectural description language in-

corporating the semantics of Colored Petri-net (a generalization of Petri nets that can deal

with recursion and data handling) with the style and understandability of object-oriented

concepts. It aims to facilitate the verification and monitoring of Web services integration.

21

Process Algebras

In Process algebras, process behavior of concurrent systems can be specified and verified.

This formalism has a rich theory on bisimulation analysis which helps to check (1) the

ability of one service to substitute another in a composition, and (2) for the redundancy of

services. The π-calculus [MPW92] is a process algebra that has been found attractive to

modeling Web services. The main reasons for that are [tBBG07a]:

• It is formal which provides the ability for the automatic verification of the behavior

properties.

• It provides constructs to compose activities in terms of sequential, parallel, and con-

ditional execution.

Below are some examples of process-algebraic approaches to specify and verify service

composition.

COWS Calculus for Orchestration of Web Services (COWS) [Tie09] is a formal language

for specifying and combining services while modeling their dynamic behavior. COWS de-

sign is influenced by process calculi and BPEL. COWS contains features that are borrowed

from process calculi, such as not binding receive activities, asynchronous communication,

polyadic synchronization, pattern matching, protection and delimited killing activities.

COWS aims to be technology agnostic and not tightly coupled to any Web services

technology. It has been defined as a formal language to work at a higher level than BPEL

for specifying the business process. This explains the high dependency between BPEL and

COWS. It focuses on defining the behavioral aspects of services.

A number of tools have been developed to analyze COWS specifications. An example is

a logic and model checking tool that has been developed to check the functional properties

of services.

SCC The Service Centered Calculus (SCC) [BBN+06] is a general purpose calculus for

services which focuses on sessions. It is a name-passing process calculus in which services

22

can be created and invoked. A new session is produced when a service is invoked. This

session models the interaction between the clients and the services. It presents a basic

mechanism for service orchestration, which has been inspired by Orc’s pipeline construct.

SCC combines the service oriented flavor of Orc with the name passing communication

mechanism of π-calculus.

SOCK The Service Oriented Computing Kernel (SOCK) [GLG+06] is a three-layered

calculus which addresses all the basic mechanisms for service interaction and composition.

It divides design issues into three fundamental parts:

• Behavior, which represents the workflow of a service instance,

• Declaration, which introduces the aspects related to the execution modalities, and

• Composition, which allows to reason about the behavior of the system composed.

SOCK uses correlation information to compose services. This correlation information al-

lows a flexible mechanism to manage relationships among interacting partners.

cc-pi The concurrent constraint pi-calculus (cc-pi) [BM08] is a constraint-based model

of QoS negotiations for concluding Service Level Agreements. It combines basic opera-

tions of concurrent constraints programming with a symmetric, synchronous mechanism

of interaction between senders and receivers.

2.2.3 Analysis

The discussed approaches are compared and the result of this comparison is presented in

Figure 3. It is clear that all approaches support the composition of the functional behav-

ior. Figure 3 states “SOME” under “Nonfunctional and Trust” because the composition

of nonfunctional and trustworthiness properties is only supported in a simple manner by

some examples of each formalism. Examples of such approaches are [RBHJ06] for Petri-

nets and [BM08] for Process algebra. Contextual information is not considered by any

23

approach. With the exception of Web services approaches, all investigated approaches are

formally based and hence supports the formal verification of the composition result.

Functional Verification
 Support

Nonfunctional
 and Trust

Legal Rules Context Formal

BPEL and
WS-CDL

Automata

Petri-net

Process
Algebra

YES

YES

YES

YES

SOME

SOME

NO

NO

NO

NO

NO

NO

NO

NO

YES

NO

YES

SOME YES YES

NO NO

YES YES

Figure 3: Comparison of Service Composition Approaches

2.3 Service Provision Frameworks

This section presents a review of some of the service provision frameworks selected from

the literature. We don’t claim that this list is comprehensive but we believe it is representa-

tive of the approaches available in the literature.

2.3.1 SeGSeC

In [FS09], the authors presents a semantics-based context-aware dynamic service compo-

sition framework. The framework aims to allow users to request applications in a natural

language. The framework models the semantics of services and composes applications

based on the semantics of the services. The framework consists of Component Service

Model with Semantics (CoSMoS), Component Runtime Environment (CoRE), and Seman-

tic Graph based Service Composition (SeGSeC).

24

CoSMoS

The Component Service Model with Semantics (CoSMoS) is an abstract component model.

It is designed to model the functions, semantics and contexts of components. It also models

contexts of users and user-specified rules. CoSMoS models the information as a semantic

graph, that is, a directed graph that consists of labeled nodes and links. Since CoSMoS is

an abstract model, it can be described in different formats, such as, WSDL and RDF.

CoRE

Component Runtime Environment (CoRE) is a middleware to facilitate the semantics-

based context-aware dynamic service composition on various distributed computing tech-

nologies. It aims to implement functionalities to (1) discover and execute distributed com-

ponents, (2) create and manage user components which represent actual users, and (3)

acquire contexts of components and users and model them in CoSMoS.

SeGSeC

Semantic Graph-based Service Composition (SeGSeC) is a service composition mecha-

nism. It composes an application requested by a user by synthesizing its workflow. It

allows users to request applications using a natural language sentence using the semantic

information of components.

SeGSeC adapts to different users and to dynamic environments by using contextual

information of components and users. To adapt to different users, SeGSeC supports two

kinds of context-aware service compositions:

• Rule based: SeGSeC allows a user to specify rules on which to use or not to use a

component in a specific context using a natural language. For example, “If I am in a

meeting, do not use a computer” is a context rule. It applies the user-specified rules

when synthesizing workflows.

• Learning based: SeGSeC proactively learns user preferences from history informa-

tion and applies the result of the learning when synthesizing workflows.

25

SeGSeC implements seamless service migration. It dynamically creates a new work-

flow upon detecting context changes or upon detecting a failure in the execution of some

components in the workflow, and changes the execution status from the old workflow to

the new one.

2.3.2 eFlow

eFlow [CIJ+00] is a platform developed by HP Laboratories, for the specification, en-

actment and management of composite services. It is template based process model that

defines the composite service as a process schema that describes the notion of a generic

service node which includes a runtime configurable parameter [EAS08]. The composition

is defined by a graph that defines the order of execution of the nodes in the process. This

graph includes:

• Service nodes: They represent the invocation of an atomic or composite service.

• Event nodes: They enable service processes to send and receive several types of

events.

• Decision nodes: They specify the alternatives and rules controlling the execution

flow.

• Arcs: They denote the execution dependency among the nodes.

The graphs should be specified manually. eFlow automatically binds the nodes with con-

crete services. A service node contains a search recipe that can be used to search for actual

services at instantiation time or at run time. When the service node is started, the search

recipe is executed, and then a reference to a specific service is returned.

2.3.3 SELF-SERV

SELF-SERV [SBDM02] is a platform for rapid composition of Web services. Web services

are declaratively composed and the resulting composing services are executed in a peer-

to-peer and dynamic environment. Composite services are defined using state-charts, data

26

conversion rules, and provider selection policies that are translated into XML document

for interoperability. The significance of SELF-SERV is the peer-to-peer service execution

model. The coordination responsibility is distributed across several peer software compo-

nents called coordinators.

2.3.4 SHOP2

SHOP2 [WPS+03] [VR04] is a domain independent artificial intelligent (AI) planner. SHOP2

uses a hierarchical task network (HTN) to decompose an abstract task into a group of oper-

ators that form a plan to implement the task. Planning progresses as a recursive operation,

decomposing tasks into subtasks until the primitive tasks that can be performed directly are

reached. In the case where the plan later turns out to be infeasible, SHOP2 will backtrack

and try other applicable methods.

The composition process of Web services is encoded as a SHOP2 planning problem.

SHOP2 is applied for automatic composition of Web services which are provided with

DAML-S [BHL+02] (currently OWL-S) descriptions. Web services are described in DAML-

S as a process in terms of inputs, outputs, preconditions and effect. A translation is then

made from DAML-S to SHOP2 where the composition problem will be dealt with as an AI

planning problem.

2.3.5 SWORD

SWORD [PF02] is a developer toolkit for building composite Web services using rule-

based plan generation, developed at Stanford University. SWORD does not use service

description standards such as WSDL and OWL-S. It uses Entity-Relation (ER) models to

specify Web services.

A service is modeled by its preconditions and postconditions. In order to create a

service composition, the requester specifies the initial and final states. The rule based

expert system then generates the plan following AI planning techniques. The expert system

is designed for automatic static composition, and it can be used for dynamic scenarios.

27

2.3.6 Argos

Argos [AW05] [AGG+05] is an approach to automatically generate computational work-

flows for service composition problems. Argos relies on an ontology of the application

domain to provide formal semantics to the sources and operations available. This ontology

is expressed in RDF/RDFS and is used to express the inputs and outputs of the services.

Argos describes the ontology, the sources, and operations as a Triple logic program.

The Triple logic engine is used to formally represent the ontology and the services, and

to automatically generate the workflows. The workflow is then translated to BPEL for

execution.

2.3.7 Composer

In [SSP04], the authors present a semi-automatic method for Web service composition.

The system they propose has two basic components a composer and an inference engine.

The inference engine stores the services information in its Knowledge Base (KB) and it is

used to find matching services. The inference engine is an OWL reasoner built on Prolog.

Ontological information is written in OWL and is converted to RDF triples and loaded

to the KB. The engine has built-in axioms for OWL inferencing rules. These axioms are

applied to the facts in the KB to find all relevant entailments. The composer is the user

interface that is responsible for the communication with the user.

When a user requests a Web service, the system presents to the user all possible services

that match the required service. Services are selected based on the functional and nonfunc-

tional properties. Those properties are presented by OWL classes and the inference engine

is applied to match the services requested. In a composition, the match between services

is defined between two services that an output parameter of one service is the same OWL

class or subclass of an input parameter of another service. If the system found more than

one service as a match, it filters the services based on the nonfunctional properties that are

specified by the user as constraints. The services that meet the nonfunctional requirements

are presented to the service requester.

28

2.3.8 FUSION

FUSION [VDD+03] is a framework for dynamic Web service composition and automatic

execution. FUSION takes a user specification and it automatically generates a correct and

optimized plan. It then executes this plan to verify the results and make sure that it meets

the user’s requirements. The main features of FUSION are:

• it generates an optimal execution plan automatically from the abstract requirements

that a user may specify,

• it verifies that the result of execution meets the user’s requirements, and

• it recovers from an execution plan if it does not meet the requirements of the user.

2.3.9 Proteus

Proteus [GKP+03] is a system designed for dynamically composing and executing plans

that integrate Web services in the presence of failure and Web services migrations. It mon-

itors and shows the status of the composed components at run time. Proteus is a typical

example of a wrapper-based composition system. It converts online sources into Web ser-

vices and automatically composes XML Web services by building wrappers around the

services. The main features of Proteus are [AES06]:

• it designs efficient execution plans by minimizing the number of Web services in-

voked and focusing on the efficient transmission of XML files, and

• it uses visualization tools for monitoring the execution of the plans.

2.3.10 SPACE

The Structure Process Analyze based Composition Environment (SPACE) [JWY09] is an

architecture for defining, describing and evaluating service compositions formally. It de-

fines the service composition based on situation calculus language. SPACE estimates the

similarity of services by the basic structures and constraints rather than the features of

29

single service. SPACE provides a formula to evaluate similarity of original and changed

environment. It helps to find non-optimal but acceptable substitutes for services and guar-

antee the verifications of service composition. SPACE can provide a solution to choose a

substitute for unavailable service.

2.3.11 StarWSCop

Star Web Services Composition Platform (StarWSCoP) [SWZZ03] is a dynamic Web ser-

vice composition platform. StarWSCoP is developed on the Web services platform StarWS.

StarWSCop includes several parts:

• Intelligent System: It decomposes the user’s requirements into simple tasks and se-

quences them into abstract services.

• Service Registry: It is used to register Web services that can be discovered by the

Service Discovery Engine.

• Service Discovery Engine: It looks up services in the registry and selects the service

that satisfies the requested requirements.

• Composition Engine: It schedules the Web services composition in order. It keeps

the composition trace information in the Service Execution Information Library. It

also deals with events sent by the Event Monitors.

• Wrapper: It is used to hide the details of Web services and to achieve interoperability.

• Service Execution Information Library: It is used to store the composition trace in-

formation.

• QoS Estimation: It estimates the real-time QoS metrics of current composite Web

services.

• Event Monitors: They are used to monitor various events and notify the Composition

Engine.

30

StarWSCop extends WSDL with QoS attributed such as time, cost or reliability. This

extension is used to support QoS based dynamic Web services composition. To achieve

semantic match for Web services, an ontology-based layer is added.

2.3.12 METEOR-S

The Managing End-To-End OpeRations for Semantic Web services (METEOR-S) [VGS+05]

[AVMM04] is a platform for the execution and enactment of semantic Web services and

processes developed by the University of Georgia. It uses semantics for the complete life-

cycle of semantic Web services. It adds semantics to current industry standards such as

WSDL.

The services are described in SAWSDL (Semantic Annotation for WSDL). SAWSDL is

a simple extension of WSDL. It provides a mechanism to connect the capabilities and re-

quirements of Web services defined in WSDL with semantic concepts defined in an external

ontology.

METEOR-S uses QoS ontologies to represent the semantic of the services nonfunc-

tional properties. The supported nonfunctional properties are: time, cost, reliability and

fidelity.

METEOR-S supports static and dynamic compositions. Its engine is limited to auto-

matic binding of services according to user-defined constraints. The user manually provides

an abstract process containing restrictions on services for each activity of the process. Then,

these abstract processes are transformed to real processes by binding each activity to a real

service at runtime. However, this capability is limited. The general structure of the process

cannot be changed. For example, it is not possible to replace two activities by a service

which matches the sum of two constraints instead of each of the constraints alone [KM05].

2.3.13 SeCSE

The Service-Centric Systems Engineering (SeCSE) [PBS+09] project is concerned with

creating new methods, tools and techniques for requirements analysts, system integrators

31

and service provision. It supports the cost effective development and use of dependable

services and service-centric applications.

The discovery of services in SeCSE is based on the user service request defined using

UML Use Case specifications. The functional requirements of the user request in defined

using VOLERE. The Use cases and the functional requirements are expressed in natural

language using the tool UCaRE. The service request is passed to the SeCSE service dis-

covery engine (EDDiE). The matching services are then presentenced to the user.

The service composition in SeCSE is semi-automatic. The service composition is spec-

ified depending on a workflow defined by the user of the system. The actual service compo-

sition is performed based on the list of services automatically discovered from the service

requests. The user can also specify binding rules that allow a dynamic adaptation of the

service composition according to the defined constraints.

The service composition and the dynamic binding rules are specified during design-

time. The dynamic adaptations of the service composition are performed at runtime in

cases where some events occur such as a failure or unavailability of a service.

2.3.14 DynamiCoS

The Dynamic Composition of Services (DynamiCoS) [SPvS09] is a framework that aims

to support automated service composition at runtime. DynamiCoS defines ontologies as a

domain conceptualization. Service developers publish their semantic based services in the

framework. The services semantic descriptions have to refer to the framework’s ontologies.

DynamiCoS consists of the following components:

• Service creation module: It is responsible for creating the services semantically, in

terms of inputs, outputs, preconditions, effects, goals and nonfunctional properties,

using the framework domain ontologies’ semantic concepts.

• Service publication module: It is responsible for the publication of services de-

scribed in different languages.

32

• Service request module: It is responsible for handling users’ requests from different

interfaces.

• Service discovery module: It is responsible for discovering the services that matches

the users request semantically.

• Service composition module: It is responsible for handling the service composition

following the graph composition algorithm.

2.3.15 TSCN

In [FYCL09], the authors propose a Trust Service Composition Net (TSCN) model based

on Petri nets. They use TSCN to simulate the process of service composition. TSCN is

also used to model services, components, the relationships between components and the

operation mechanism of service composition. TSCN adopts the concepts of Trust matrix

which represent the relationships between state, and dynamic trustworthy service compo-

sition strategy. The authors also propose a method to enforce trustworthiness.

The TSCN trustworthiness is evaluated using attached credibility to each service. Using

those values the TSCN model can choose dynamically the service that best achieves the

required credibility. TSCN does not support dynamic service composition planning.

2.3.16 Analysis

The service provision frameworks discussed above have been compared with respect to the

following criteria. Except for context, formalism, and trustworthiness all other criteria are

different from the criteria used earlier to compare service modeling and service composi-

tions. Moreover, this list of criteria should be understood in order to appreciate the merits

of the FrSeC framework discussed in this thesis.

• Dynamic Selection: The service provision framework should be designed to allow

service requesters specify the requirements with the full knowledge that some service

bindings may occur only at run time.

33

• Dynamic Composition: With the increased number of services and the increased

composition complexity, it is difficult to have all service compositions predefined in

a static manner.

• Context Support: Contextual information is essential at service publication, service

query, service selection and planting, and service execution.

• Semantic Support: Semantic information is essential at service specification, service

query, and service composition.

• Formal: Formalism is necessary to 1) verify the interaction between services by mak-

ing sure there are no incompatible behaviors between services in a composition, 2)

achieve correct automatic composition by verifying that the composition satisfies the

requirements of the requester, and 3) check the conformance of requester require-

ments and the contracts of the services being provided.

• Negotiation Support: Each service requester has his own set of requirements. In

many cases, none of the available services may fully match these requirements. The

service provision framework should provide a mechanism to support the negotiation

between service requesters and providers.

• Nonfunctional and Trust: The consideration of nonfunctional and trustworthiness

properties in service publication, discovery and ranking is essential.

• Replanning Support: At run time, the contextual information of the service consumer

and requester might change. The service provision framework should support a re-

planning process to generate a new plan that best satisfies the requirements in the

new context.

• Fault-tolerance: If a service fails or becomes unavailable at run time, the service pro-

vision framework should recover from this failure by selecting alternative services.

The result of this comparison is presented in Figure 4 and it shows the following:

34

Dynamic
Selection

Negotiation
Support

Semantic
Support

Context
Support Formal

SeGSeC YES YESNO NO

Dynamic
Composition

Nonfunctional
& Trust

Replanning
Support

Fault-
tolerance

YES YES YES NO YES

eflow YES YESNO NONo NO SOME NO NO

Self-serv YES NONO NONO NO NO NO NO

SHOP2 YES NONO NOYES SOME YES NO NO

SWORD NO NONO NOYES NO SOME NO NO

Argos NO -NO NOYES YES YES NO NO

Composer YES -NO NONO YES YES SOME NO

FUSION YES -NO NOYES NO NO NO YES

Protus YES YESNO NOYES NO NO SOME YES

SPACE YES YESYES NONO NO NO NO YES

StarWSCop YES YESNO NOYES NO YES YES NO

Meteor-s YES -NO NONO NO YES YES YES

SeCSE YES YESNO NONO NO NO YES YES

DynamiCos YES NOYES NOYES NO YES NO NO

TSCN YES NOYES NONO NO NO NO NO

Figure 4: Comparison of Service Provision Frameworks

1. With the exception of SWORD and Argos, all approaches support dynamic selection.

2. Dynamic composition is considered by almost half of the approaches. In most of

these approaches AI planning techniques are used.

3. Contextual information is used by very few approaches. In these approaches, con-

text is used to filter the services not to constrain the service contract. Hence, the

relationship between the contract and context is not considered.

4. Semantic information using ontology is supported by almost half of the approaches.

The use of ontology restrains the semantic support due to the complexity and diffi-

culty of composing ontologies.

5. With the exception of three approaches, all remaining approaches are not formally

based. This will limit their verification support.

6. None of the investigated approaches supports negotiation.

35

7. The support of nonfunctional and trustworthiness properties is very simple and lim-

ited.

8. Replanning is supported by almost half of the approaches. With the exception of

protus, approaches that support replanning do not support dynamic composition and

hence the replanning is manually performed.

9. Fault-tolerance is supported by only few approaches. A number of approaches such

as Argos, Composer, FUSION and Meteor-s do not mention fault-tolerance. Hence,

by default we consider that they do not support fault tolerance.

2.4 Summary

This chapter has presented a review and a comparison of the work most relevant to the goals

of this thesis. The findings of the comparison reveal that there is a great need to innovate

and add features to the current state of the art of SOC. The rest of this thesis deals with

specific contributions made towards this goal.

36

Chapter 3

Research Methodology

This chapter presents the objectives of this thesis research and shows the different research

steps, which together formulate the research methodology used to reach the objectives.

3.1 Research Objectives

The goal of this thesis is to present a formal approach for the development of trustworthy

context-dependent service-oriented systems. The objective is achieved by putting together

the following contributions:

• A formal service model for the specification of trustworthy context-dependent ser-

vices.

• A formal composition and verification approach for trustworthy context-dependent

services.

• A formal framework for the provision of trustworthy context-dependent services.

• A set of languages to support the provision of trustworthy context-dependent ser-

vices.

37

3.2 Research Methodology

The research methodology is divided into four phases. The first phase is concerned with

defining a formal model for trustworthy context-dependent services. The second phase is

concerned with defining the composition and verification approach for trustworthy context-

dependent services. The third phase is concerned with defining the service provision frame-

work and all its elements. Finally, the fourth phase is concerned with introducing the set of

languages to supports the provision of trustworthy context-dependent services. The follow-

ing four subsections describe the research problems, research questions and the solutions

provided by this thesis for the stated problems.

3.2.1 Phase 1: Defining a Formal Service Model

This section presents the research problems in defining a formal service model for trustwor-

thy context-dependent services. There are four research problems outlined in this section.

For each problem, we discuss the corresponding challenging research questions and pro-

vide our proposed solution.

Research Problem 1-A: Providing support for trustworthiness information

Problem Statement: Current service models focus only on specifying the functional

behavior of services. They provide only limited or no support for specifying trustworthiness

properties. Therefore, these models do not fit the need to define a trustworthy service. In

order to provide services that meet the trustworthiness requirements of service requesters,

there is a need to extend service definitions with specification of trustworthiness properties.

Research Questions: Below we discuss the questions related to the research problem

1-A and provide solutions.

Q1: What are the essential trustworthiness properties? We define trustworthiness prop-

erties to be expressed in two parts. One part is ServiceTrust in which service providers

lists the quality claims in service provision. The features safety, security, availability, and

reliability are included here. Safety means that no damage will happen during transit or

communication and timeliness is guaranteed. Security is a composite of data integrity and

38

confidentiality. Availability is specified as the maximum time of repair until the service

returns back to operate correctly. Reliability is defined as the guaranteed maximum num-

ber of failures in a unit of time. In services that involve the delivery of tangible products,

such as the vehicle delivered in car rental service, this section will include trustworthiness

properties of the product being delivered. The second part is ProviderTrust which is the

trust that consumers have on the service provider. It includes recommendations from other

clients, and peer groups.

Q2: How to specify trustworthiness properties? We specified trustworthiness properties

pertaining to quality claims in first order predicate logic. This will enable the properties

to be verified formally. Although there is no agreed upon definition for ProviderTrust, our

formalism allows the inclusion of any verifiable information.

Research Problem 1-B: Binding context to the service contract.

Problem Statement: Current service models provide limited or no support for speci-

fying contextual information. Therefore, they ignore the relationship between service con-

tracts and context. In order to provide services that meet the contextual requirements of

service requesters, there is a need to extend service definitions with specification of con-

textual information.

Research Questions: Below we discuss the questions related to the research problem

1-B and provide solutions.

Q3: What type of context is essential in service definition? We believe that three types

of contextual information are necessary in service provision. The first is the contextual

information of the service provider. The second is the contextual information of the service

requester. The third is the service execution context. Service requester context should meet

the context constraints defined as part of the service. Service provider context will affect

the trust level of the service consumer toward the service provider. The execution context

will ensure that the contextual constraints are not violated during service execution.

Q4: How context can be specified? We used the context definition of Wan [Wan06] where

context is defined as a pair of tags and values. Mostly the dimensions related to WHO,

WHERE, WHEN, WHY and WHAT seem sufficient.

39

Research Problem 1-C: Including the legal rules in service definition

Problem Statement: Current service models provide limited or no support for speci-

fying legal rules. There are a few approaches that specify legal rules informally, but do not

distinguish them from nonfunctional properties. It is necessary to distinguish between legal

rules and nonfunctional properties because the former is part of a contract and changeable,

whereas the later is relevant only to service functionality which does not change. Another

important reason is that a violation of a nonfunctional property might be acceptable by the

client, while violating a legal rule might result in contract termination. Therefore, there is

a need to extend service definitions with specification of legal rules separately from non-

functional properties.

Research Questions: Below we discuss the questions related to the research problem

1-C and provide solutions.

Q5: What type of legal rules are essential in service definition? We believe that business

rules and trade laws that are enforced at service provision and service delivery are nec-

essary in service definitions. Business policies governing refund, administrative charges,

penalties, and service requester’s rights are essential in a contract.

Q6: How legal rules can be specified? We used predicate logic to specify legal rules in

the contract part of the service model. The use of logic will enable formal verification.

Research Problem 1-D: The need for a service model for trustworthy context-dependent

services

Problem Statement: Current service models provide only limited or no support for

specifying legal rules, trustworthiness properties, and contextual information. Hence, cur-

rent approaches cannot be used to specify trustworthy context-dependent services. More-

over, current service models are only informal, and consequently no analysis on the stated

claims can be done rigorously. Therefore, there is a need for a new service model that is

formal, and rich in structure to specify trustworthy context-dependent services.

Research Questions: Below we discuss the questions related to the research problem

1-D and provide solutions.

Q7: What is the structure of service model and how it is formalized? We packaged

40

the service functionality and the attributes necessary to execute it in the ‘service part’ of

the model. We packaged the trustworthiness claims, legal rules, and context information

in the ‘contract part’ of the model. Thus, the new service model has the ‘service part’

and the ‘contract part’. The service model is formalized using set theory and logic. The

formalized service model is hidden from users, and is made available for analyses purposes.

An informal, yet precise, description of the service model is published.

Q8: What type of analysis is required on the new service model? We defined three types

of analysis on our services. The first is performed before publication and is usually the

responsibility of service providers. The second is performed before execution and is usually

the responsibility of the unit responsible of execution, or service providers. The third is

performed after service delivery and is done by service providers and requesters. The goal

of the third type is to ensure that both parties satisfy their contractual obligations.

3.2.2 Phase 2: Defining a Service Composition Theory

There are two research problems outlined in this section. For each problem, we discuss the

corresponding challenging research questions and provide our proposed solution.

Research Problem 2-A: The lack of a composition theory for trustworthy context-

dependent services.

Problem Statement: Current service composition approaches are ad-hoc, and do not

have a semantic basis. Moreover, these composition methods are like functional com-

positions because legal rules, trustworthiness properties, and nonfunctional properties are

omitted in the composition. Hence, there is a need for developing a composition theory for

trustworthy context-dependent services.

Research Questions: Below we discuss the questions related to the research problem

2-A and provide solutions.

Q9: How to compose trustworthy context-dependent services? The service model is for-

mal, based on model-based specification theory. As such, service models are composable.

We have introduced composition operators and provided their formal semantics. Therefore,

41

a service composition becomes an expression involving service models and composition

operators. The meaning of an expression is uniquely obtained by applying the semantics of

composition operators, left to right, to the service expression. If ∇ is a composition oper-

ator and S1, and S2 are two services, then the composition S1∇S2 is obtained by compos-

ing service part(S1) ∇ service part(S2) and contract part(S1) ∇ contract part(S2)

where the business logic is appropriately chosen for these two separate compositions. Con-

sequently, we do the following:

• To compute service part(S1)∇service part(S2): The functionalities of S1 and S2

are composed, the attributes of S1 and S2 are composed, and the nonfunctional prop-

erties of S1 and S2 are composed. The semantics of each of the individual compo-

sitions is driven by the business logic of the service provider, yet governed by the

underlying data type semantics.

• To compute contract part(S1)∇contract part(S2): The trustworthiness properties

in S1 and the trustworthiness properties in S2 are composed, the legal rules in S1

are composed with the legal rules in S2, and finally the context information in S1

is composed with the context information in S2. These individual compositions are

driven by the business logic of the service provider, yet governed by the underlying

predicate logic and context semantics.

Research Problem 2-E: Formal verification approach for the verification of composite

trustworthy context-dependent services.

Problem Statement: Current verification approaches can only verify the functional

behavior. Often, it is done only informally. Verifying a composite service for a specific

property, as defined in our model, is a complex task. Hence, there is a need for a formal

verification approach.

Research Questions: Below we discuss the questions related to the research problem

2-E and provide solutions.

Q14: How to verify a property in a composite service? We use a model transformation ap-

proach. This approach transforms a service composition into a UPPAAL timed automaton,

42

and then uses the UPPAAL model checking tool to verify the property in the automaton.

3.2.3 Phase 3: Defining a Service Provision Framework

This section presents the research problems in defining a formal service provision frame-

work for trustworthy context-dependent services. There is one research problem outlined in

this section. For this problem, we discuss the corresponding challenging research questions

and provide our proposed solution.

Research Problem 3-A: Designing a formal service provision framework for trustwor-

thy context-dependent services.

Problem Statement: Current service provision approaches don’t consider legal rules,

trustworthiness properties and context information is service publication, discovery and

provision. Hence, there is a need for a service provision framework for providing trustwor-

thy context-dependent services.

Research Questions: Below we discuss the questions related to the research problem

3-A and provide solutions.

Q15: What are the essential features of the service provision framework? We believe that

the essential features are (1) context gathering, and analysis, (2) support for trusted transac-

tions, (3) support for nonfunctional and trustworthiness properties, (4) support for dynamic

selection and planning, (5) semantic support, (6) fault-tolerance support, (7) formalism,

and (8) replanning and negotiation support.

Q16: What are the essential elements of the service provision framework? We believe

that the essential elements for the service provision framework are (1) service registry, (2)

planning unit, (3) context gathering unit, (4) execution unit, (5) plan negotiation unit, (6)

service provider unit, (7) trusted authority unit, and (8) service requester unit.

Q17: How to ensure trustworthy transactions in the service provision framework? We

controlled user access to the framework components by requiring authentication certificates

for every session of activity. The trusted authority is responsible for providing service

providers and requesters with such certificates.

43

Q18: How services can be stored with semantic information? We defined the registry

to support semantic information. It is structured in a specific manner. It is divided into

domains and sub-domains. It is built with the input from service providers.

Q19: What type of queries does the framework need to support? Service requesters have

different needs and they may have differing technical expertise. So, we defined two query

types. One is the traditional query type which requires users to specify their requirements,

and the other is the buffet type where users buy what they see in the service registry. The

traditional query itself may be formulated with weights, which specify the extent of desir-

ability of a required feature of service.

Q20: How to rank services in case of multiple matches to the requester query? Often, the

requirements of the service requester can be met fully or partially by multiple services. In

such cases, a ranking of the candidate services is necessary. The ranking will be performed

according to a ranking algorithm that considers all the requirements and the priorities of

the services requester. Current ranking algorithms consider functional properties and few

nonfunctional properties in the ranking algorithm. There is no approach that considers

trustworthiness properties, legal rules and context information. Hence, we introduced a

new ranking algorithm that considers all properties.

Q21: How to enable flexible contracts? We introduced a new element that is responsible

for managing negotiations between service providers and requesters. We also introduced a

methodology to extend service contracts.

3.2.4 Phase 4: Defining the Languages to Support the Service Provi-

sion Framework

This section presents the research problems in defining the languages to support the formal

service provision framework for trustworthy context-dependent services. There is one re-

search problem discussed in this section. For this problem, we discuss the corresponding

challenging research questions and provide our proposed solution.

Research Problem 4-A: The need for language support.

44

Problem Statement: Formal specification of service definitions are required for formal

analysis. A service provider may not have the background to create a formal specification.

Formulating service queries should also be made simple in order to enable all clients to

feel at ease in querying for services. Therefore, there is a need for easy to use languages to

support the publication and discovery of trustworthy context-dependent services.

Research Questions: Below we discuss the questions related to the research problem

4-B and provide solutions.

Q22: What are the necessary languages for the publication of services? Current service

definition languages supports only functional and some nonfunctional properties. Hence,

there is a need for new languages to support our service model. We defined a set of lan-

guages that follow our service model. Service providers use these languages to publish their

services. The main language is CSL which is a textual language. The second language is

CSDL which is XML-based. Service providers do not need to worry about complicated

formal methods.

Q23: What are the necessary languages for querying services by service requesters?

Current query languages use only functional properties. Hence, there is a need for a new

set of languages that support our rich service model. We introduced two languages. The

first language is SQL which can be used by service requesters to formulate the two types of

queries. The second language is CSQL which is XML-based, which is used for exchanging

queries between framework elements.

Q24: What are the necessary languages to support the provision framework interac-

tions? We created the family Service Processing languages (SPL). That is, SPL is a pack-

age of languages that can be used for (1) the specification of the elements of the framework,

and (2) the specification of the messages and data transferred between the elements. SPSL

family includes the languages Service Registry Language (SRL), Service Query Language

(SQL), Trusted Authority Language (TAL), Service Negotiation Unit Language (NUL),

and Service Planning Unit Language (SUL). SRL is used to specify the elements of the ser-

vice registry. SQL is used to specify queries by service requesters. TAL is used to request

authentications and analysis from the trusted authority. NUL is used to specify negotiation

45

requests. SUL is used to specify the requests sent to the registry and specify the planning

results. With basic exposure to abstract data types and logi, SPL specifications can be easily

written and understood.

Q25: What are the necessary languages to support the exchange of information be-

tween the provision framework elements? The elements in the architecture will exchange

rich information, such as entire query structure or the certificate. The languages for this

purpose must have ‘interoperability’ property. So, we created five XML-based languages

to be used by the framework elements for exchanging information. These languages are

mapped to SPL languages. The XML version of CSL is called ConfiguredService De-

scription Language (CSDL), the XML version of SQL is called ConfiguredService Query

Language (CSQL), the XML version of NUL is called Negotiation Unit Description Lan-

guage (NUDL), the XML version of TAL is called Trusted Authority Description Language

(TADDL), and the XML version of SUL is called Planning Unit Description Language

(SUDL). These languages are faithful XML translations of their respective languages.

3.3 Summary

This chapter has presented the research methodology followed in this thesis. Research

problems pertaining to our research goals have been raised and their solutions outlined.

Currently, to the best of our knowledge there exists no work in the area of SOC which has

raised a wide range of issues such as the ones we are solving in this thesis.

46

Chapter 4

ConfiguredService Formalism

This chapter introduces two important concepts, namely ConfiguredService as a higher-

order data type, and flexible service contract as a formal template. After developing a

concrete syntax for ConfiguredService its expressive power is brought out with several

examples, in particular with the formal representation of the case study ‘Auto Roadside

Emergency Service’. Set theory and logic, the basic mathematical toolkit for model-based

specification approach, have been used to formalize ConfiguredService. The properties

completeness of functionality, context compatibility for service provision and service deliv-

ery, and contract consistency are identified as essential in ConfiguredService representation

and an explanation of formally analyzing a ConfiguredService for these properties are dis-

cussed. The main purpose behind flexible service contract template is to provide a formal

negotiated meeting ground between a service provider and its service requester.

4.1 ConfiguredService Type

In Chapter 2, a number of approaches for modeling services have been compared. This

comparative study has revealed the following deficiencies in the current approaches.

• lack of a service model that collectively considers the relationship between contract

and service,

47

• absence of contextual information in service description,

• blurred boundary between nonfunctional and trustworthiness properties,

• disregard of legal rules, and

• lack of formalism.

The service structure, called ConfiguredService, puts forth in this Section tightly couples

service and contract. Functionality of service, data related to service, service attributes, and

nonfunctional properties are grouped under ‘service’. Legal rules, trustworthiness claims,

and context information are grouped under ‘contract’. As will be explained below, this

definition is both rich in structure and precise in its semantics. Consequently, this service

definition will enable a better publication and discovery of services, and will increase the

user trust in services.

4.1.1 Rationale for ConfiguredService Definition

In traditional transaction based systems, the term ‘service’ refers to the functionality and the

behavior projected out of certain system operations. Examples include ‘update services in

database systems’, and ‘credit checking services’ in financial auditing systems. In Service-

oriented Computing, service is a first class object and consequently there is need to come

up with a richer meaning for services. We should capture in its definition ‘what a service

is’ and ‘what requirements are to be met for providing it’. Motivated by this need we define

a ConfiguredService to consist of the two parts Service and Contract.

We can think of the ‘service part’ to define the functional behavior of the service, as

intended by its specification. This functionality is tightly related to a set of nonfunctional

properties, such as the cost of invoking this functionality. This tight coupling motivated

us to define a service to include (1) functionality, (2) nonfunctional properties, and (3) at-

tributes. We can think of the ‘contract part’ as defining ‘the terms and conditions’ pertaining

to service delivery. Typically these include context information on service availability and

service delivery, legal (business) rules, and trustworthiness properties of the service. The

48

information contained in the ‘service part’ is static. That is, the service functionality, the

attributes related to the service (and its provider), and the nonfunctional properties associ-

ated with the service do not depend upon the changeable contractual entities, which include

context, legal rules, and trustworthiness properties.

An important consequence of this definition is that the service description is loosely

coupled with a contract description. By changing the contract part alone we can create

many ConfiguredServices, all providing the same service. For example, providing a wire-

less Internet connection that costs 5$ per hour is a single service. This service might be

associated with one contract stating that the quality of reception is excellent, provided the

service requester is located within 50 meters from the base station. The same service may

be associated with another contract stating that the quality of reception is good, provided

the service requester is located beyond 50 meters but within 100 meters from the station

base. Thus, we have two ConfiguredServices containing the same service but with different

contracts.

The contract part in a ConfiguredService is given a rich structure to state the qual-

ity claims, legal bindings, and contextual constraints. The quality claims of the service

provider are listed under trustworthiness section. Trustworthiness properties include safety,

security, reliability, and availability guarantees of the service provider, and peer and client

recommendations related to the service, awarded to the service provider. Trustworthiness

properties influence significantly the consumer’s intent to buy the service. Hence they must

be represented with some formality and precision in order to be able to devise efficient se-

lection procedures for service discovery. We emphasize the reason for separating nonfunc-

tional properties, defined as part of the service, from trustworthiness properties, defined as

part of the contract. The nonfunctional properties represent the information that are static

for a service and can be quantified. An example is the cost of the service. Trustworthiness

properties are claims made by the service provider on the quality of the service. They can-

not always be quantified, however they should be verifiable. Trustworthiness properties are

defined as logical expressions in order to enable formal verification.

It may be argued that the cost of service might change according to the service requester,

49

and cost, being ‘dynamic’, it should be part of the contract section. Our response to this

argument is that the price itself is fixed, however under some exceptions discounts might be

offered. These arise from business policies and hence it is appropriate to list them in Legal

Issues section of the Contract. For example, a discount offered to senior citizens is a busi-

ness rule which constrain the price with respect to age. In general, a legal rule is a business

rule constraining the execution of service. Legal rules may also include rules governing

exceptions, exclusions, contract violation, renewal, and termination. The Legal Issues sec-

tion is the most important dynamic aspect of the contract, especially for services offered

globally. The trust guarantees enshrined in the contract and the legal rules themselves are

not absolute. They depend upon certain contextual constraints, such as the domicile of the

consumer. For example, a shipping service might guarantee a next day delivery. But this

guarantee may be conditioned by the shipping location. The location where service is to

be delivered might bring in local laws to be included in the legal rules of the contract. For

example, sales tax might be exempt in certain regions, whereas in some other regions a

value-added tax may have to be added on top of the sales tax imposed on the service by the

service provider. The information that constrain the service contract is defined as context.

Context is any type of information used to characterize an object or situation [Dey01]. We

use the notation from [Wan06] to define context and a logical expression to state a context

rule. A context rule is a situation which might be true in some contexts and false in some

others. For example, the situation WARM = Temp > 30 ∧ Humid > 70, is true only

in contexts where the temperature is greater than 30 degrees, and the humidity is greater

than 70. Such a situation may have to be validated in order to provide context-dependent

‘heating service’.

A ConfiguredService description can be formalized. The functionality of service can be

specified by a precondition and a postcondition, which are first order logical expressions.

Trustworthiness properties, legal rules, and situations can all be specified as logical expres-

sions. The data and attribute in the ConfiguredService should be sufficiently complete in

order to enable a formal validation of the entire ConfiguredService description. We discuss

in Section 4.3 three verification scenarios. The service specified in a ConfiguredService can

50

ConfiguredService Service Contract

ContextRule

ContextInfo

Dimension

Legalissues NonFunctioal Function

Signature

Precondition

Postcondition

MethodID

Parameter

Complex

Simple

Safety

Security

Reliability

Availability

OtherNF

hasA
is-A

1 1

n 1
n

n

1

1

n Zero or manyConcept

1 Exactly one

Result

Address

Price
ProviderTrust

1

1

n

1

1

n

n
n

Value

ContextTrustworthiness

ServiceTrust

Client Recom.

Org. Recom.

Price Guarantee

Attributes

n 1
n

1

Figure 5: ConfiguredService Structure

be provided only if the three step evaluation is successful.

4.1.2 Informal Semantics of ConfiguredService

A ConfiguredService is divided into the two main parts Service and Contract as shown in

Figure 5. Below, an informal description of the elements in these two parts of a Config-

uredService is given.

Service Description

The Service section has the three parts Functionality, Nonfunctional properties and At-

tributes.

1. Functionality: Its definition includes the function signature, result, precondition and

postcondition. The signature part defines the function identifier, the invocation ad-

dress, and the parameters of the function. The function invocation has the same

effect as in a programming environment, since service function is an autonomous

program. Each parameter has an identifier and a type. The result part defines the

returned data of the service function. The precondition should be made true, either

51

by the service provider or the consumer, in order to make the function available. The

postcondition is guaranteed by the service provider to be true after service execution.

2. Nonfunctional properties: The nonfunctional properties associated with the service

are listed in this section. Pricing information, which can itself be a complex property

expressing different prices for different amount of buying, is an example of nonfunc-

tional property. For some types of services, such as video downloading, the amount

of storage required and speed of downloading may be included as nonfunctional

properties.

3. Attributes: Every attribute is a type-value pair. Attributes provide sufficient informa-

tion that is unique to a service. As an example, for selling a book the appropriate

attributes are title of book, author name, year of publication, and publisher informa-

tion.

Contract

The Contract is divided into the three main parts Trustworthiness, Legal Issues and Context.

1. Trustworthiness: Trustworthiness properties are expressed in the two sections Ser-

viceTrust and ProviderTrust.

ServiceTrust section lists the trustworthiness claims that the service provider makes

on the product and service. Following the definition of trustworthiness [MA11], we

have chosen to include in this section safety, security, availability, and reliability

claims of the service provider on the service. Safety means timeliness guarantee and

an assurance that no damage will happen during service transit and delivery. Security

is a composite of data integrity and confidentiality. Data integrity is concerned with

the techniques to ensure the correctness of data after communication. Data confiden-

tiality is concerned with the privacy of data during communication. Availability and

reliability are defined in [MA11] in terms of failures and repairs. A failure is defined

as a deviation from the correct service behavior. A repair is defined as a change from

52

incorrect service to correct service. Hence, availability is specified as the maximum

time of repair until the service returns back to operate correctly, and reliability is

defined as the guaranteed maximum number of failures in a unit of time. In services

that involve the delivery of tangible products this section will include trustworthi-

ness properties of the product being delivered. As an example, for car rental service

safety features of the vehicle and the history of its maintenance will be included in

this section.

ProviderTrust is the trust that consumers have on the service provider. It includes

recommendations from other clients, and peer groups. Although there is no agreed

upon definition for ProviderTrust, we allow the inclusion of any verifiable trust rec-

ommendations of users and peers.

2. Legal issues: Business rules and trade laws that are enforced at the locations of

service provision and service delivery are included in this section. Example policies

govern refund, administrative charges, penalties, and service requesters rights. Such

rules are expressible as logical expressions in predicate logic. Below is a sample set

of legal rules.

• Price conditions: These are rules that specify the categories of consumers who

get to pay a discount on the regular price. An example rule is “a student with a

valid ID gets a 15% discount on the regular announced price of service”.

• Refund conditions: Refund policy allows a consumer to get either a full or

partial amount of fee paid to get the service, in case of a contract violation. An

unconditional refund policy allows a consumer to return the product or service

within a stipulated period of time after the delivery of the product/service. A

conditional refund policy may require a proof by the consumer that the service

contract was violated.

• Joining fee: These are rules that specify the categories of consumers who get to

pay a joining fee and the fee amount. An example rule is “an activation fee of

35$ is required before getting a phone subscription”.

53

• Interest charges: These are rules that specify the penalties of late payments. An

example rule is “if the full payment is not received on time, a 10% interest will

be applied on the outstanding balance”.

• Administrative charges: These are rules specifying fees and penalties for vio-

lating payment conditions. An example rule “if a check is returned by the bank

for lack of funds, a 25$ charge will be added to the payment”.

• Deposit rules: These are rules that specify the categories of consumers who are

required to pay a deposit and the deposit amount. An example rule is “if the age

of the driver is less than 25, a 300$ deposit is required before renting a car”.

• Payment Rules: Some typical rules related to the payment for a service are

listed below:

– Payment methods: These rules specify the accepted payment methods. An

example rules is “only cash payments are accepted”.

– Payment schedule: These are rules that specify the required payment sched-

ule. An example rule is “the payment should be received on the first day of

every month”.

– Payment discounts: These are rules that specify the discounts to be awarded

if a specific payment schedule or method is followed. An example rule is

“a 12 months advance payment is eligible for a 25% discount”.

– Payment fees: These are rules that specify extra fees associated with a

specific payment method. An example rule is “for credit card payments a

fee of 5% is added to the total amount”.

• Service requester’s penalties: These are rules that specify the penalties applied

on the service requester for not complying with the service contract. An exam-

ple rule is “if the contract is canceled before 12 months of subscription, an early

termination fee of 200$ is applied”.

• Service provider’s penalties: These are rules that specify the penalties applied

on the service provider for not complying with the service contract. An example

54

rule is “failure to deliver the service on time will result in the service being

free”.

• Rights: These are rules that specify the service requesters’ rights. An example

rule is “the service requester has a warranty on the product for one year”.

• Obligation Rules: These rules specify the obligations that should be respected

by service requester to fulfill the contract. An example rules is “the rented car

should not be driven cross the border”.

3. Context: The context part of the contract is divided into context info and context

rules. The contextual information of the service provider is specified in the context

info section. The situation or context rule that should be true for service delivery is

specified in context rules section. It is the responsibility of the service requester to

validate the context info for obtaining the service, and it is the responsibility of the

service provider to validate the context rules at service delivery time.

4.1.3 Examples

Before presenting ConfiguredService examples it is essential to highlight the difference

between the terms product and service. When buying books online we are buying (phys-

ical/tangible) products. But, when buying life insurance or health insurance, or ordering

cable service we are buying services. A product may provide many services. As an ex-

ample, a cell phone may provide a ’calling’ service and a ’messaging’ service. Thus, a

ConfiguredService might be of three types. The first type only involves a product. The sec-

ond type only involves a service. The third type involves a product with services. Hence,

in this section we present three examples corresponding to the three types of Configured-

Service. Table 1 describes the ConfiguredService for selling a book which is an example of

a product. Table 2 shows the ConfiguredService for shipping books which is an example of

a service. Table 3 describes the ConfiguredService for renting a car which is a product with

services. In all examples, the Functionality section lists the function name, a precondition

55

Name: Buy_Book
Precondition: available(book)
Postcondition: Confirmation

Service

Contract

Title: Service Oriented Architecture
Author: Joe Black
Service Attributes: ISBN: 123456789
Year: 2011
Edition: 1
Publisher: Oxford Press
Price: = 150$
ServiceTrust
Safety: Order is processed in 4 days.
Security: Secure and encrypted transaction

ProviderTrust
Client Recommendation: The service provider rating is 4.1/5
Price Guarantee: A lowest price guarantee is provided
Refund Condition: 100% refund if returned within 30 days in new
condition
Payment methods: Credit cards only
Payment schedule: Payment should be received before processing.
Discounts: Students and seniors gets 20% discount
Context Info: [LOC : CANADA]
Context Rule: buyer-city in CANADA ^ age > 18

Functionality

Attributes

Nonfunctional

Trust-
worthiness

Legal Issues

Context

Table 1: Buy Book Example

that must be true for service availability and a postcondition that must become true after ser-

vice execution. The Attribute sections of the examples are strikingly different, because in

the Buy Book example a specific product type is to be described whereas in the Ship Book

and Rent Car examples a generic service type is to be described. The Contract parts of

the examples are similar, differing only in details. Trustworthiness rules are separated into

claims made by the service provider, and the organizational and consumer recommenda-

tions. The former qualify the quality of ‘sell action’, ‘shipping action’ or ‘rent action’. It is

important to highlight that in the Rent Car example the trustworthiness properties included

properties regarding the product itself, in this case the car. These rules are verifiable by

inspection. The legal rules govern policies regarding refund conditions, payment issues,

discount rules, and requester rights. The context rule must evaluate to true at service exe-

cution time. Thus, ConfiguredServices for the examples are abstract data type templates.

56

Name: Ship_Book
Precondition: available(book)
Postcondition: Tracking Number

Service

Contract

Company Name: Fedexxx shipping

Price: = 20$

ServiceTrust
Safety: Order is deliverd in 7 days.
Security: Secure and encrypted transaction

ProviderTrust
Client Recommendation: The service provider rating is 4.9/5

Refund Condition: No refund available
Payment methods: Credit cards only
Payment schedule: Payment should be received before shipment.
Students and seniors gets 20% discount
Requester Rights: If not delivered in 7 days, delivery chargers are
refunded

Context Info: [LOC : CANADA]
Context Rule: buyer-city in CANADA ^ age > 18

Functionality

Attributes

Nonfunctional

Trust-
worthiness

Legal Issues

Context

Table 2: Ship Book Example

4.2 Formal Representation of ConfiguredService

A ConfiguredService has both an informal and a formal description. The former is for publi-

cation by the service provider. All authorized system users, in particular service requesters,

will have access to published services. The later is prepared by the service provider, hidden

from the ‘general clients’, and is made available to the trusted authority that in turn will use

it to analyze the claims made in the informal description of the ConfiguredService.

A ConfiguredService can be formally written using a model-based specification no-

tation. For example, the service functionality can be written in predicate logic, the data

section can be formalized as an aggregated abstract data type, the nonfunctional properties,

trust attributes, and legal rules can be written as logical expressions. Thus, the contract part

is a collection of logical formulas. The context information is written in the notation intro-

duced by Wan [Wan06]. Because of this underlying formalism it is possible to rigorously

verify the claims made in a ConfiguredService. Below we briefly outline the formal context

notation and we give the formal representation of the rest of ConfiguredService elements.

57

Name: Rent_Car
Precondition: valid(credit card) ^ valid(driving license)
Postcondition: Confirm ^ Deliver

Service

Contract

Price: = 35$ per day

Functionality

Attributes

Nonfunctional

Trust-
worthiness

Legal Issues

Context

Car Size: Full Size
Number of Doors: 4
Transmission: Automatic
Passenger Capacity: 5
Luggage Capacity: 4 bags
Examples: Toyota Camry and Chevrolet Impala
Company Name: ABC-Rent-A-Car

ProductTrust
 Safety: automatic seat belt, alarms, cruise control, and anti-lock braking
 system
 Security: finger-print locking, auto shut
 Reliability: new car, no breakdown record
 Availability: available if reserved 48 hours in advance, emergency road
 service within an hour, replacement of vehicle if breakdown or failure of
 any feature
 Accountability: h 24-hour phone number i
ServiceTrust:
 Security: Secure and encrypted transaction <security standard link>
 Availability: 24 hours everyday
ProviderTrust
 Client Recommendation: The service provider rating is 4.1/5
 Organizational Recommendation: The provider is highly recommended
 by AAA

Collision and Liability insurance: not covered, in case of accident full
replacement cost will be charged to the credit card
Parking Violations: must be paid by the renter before returning the car,
otherwise fine and penalty, and administration charge of $100 will be charged
to the credit card
Renewal of Contract: contract is not automatically renewable; after the
contract period ends, the contract is closed; full payment charged to credit
card, and a new contract must be signed (may be done over the phone)
Car Return: must be returned to the location where it was rented
Fuel: gas tank must be full at return time, otherwise $5 per gallon is charged
for filling up the tank
Driving Regulation: cancellation of driving license due to violation of local
rules of driving region automatically cancels the contract
Discount: 15% for AAA members
Payment Method: credit cards only
Deposit Rule: 200$ at time of check-out
Driving Range: Inside the state only

Context Info:
 Context Provider: [LOC : NewY ork]
 Execution: [Date :<data of contract>, Time :<time of check-out>]
Context Rule:
 Consumer Related: age . 18
 Delivery Related: (time of check-out + 30 minutes) . Delivery-time .
 (time of check-out + 1 hour)

Table 3: Car Rental Example

58

4.2.1 Context Formalism

Many of the rules must be validated in the context, as stated in the Context part of the

ConfiguredService. As an example, the car return rule, shown in Table 3, is intensional,

in the sense that it has a hidden context information which is the location where the car is

rented. However, this information is available in Context Info part of the ConfiguredSer-

vice. Hence, this rule must be evaluated in this context. Another example where context

indirectly arises is in the rule driving regulation shown in Table 3. From the constraint

driving range, it follows that all cities within the driving region are precisely the cities in

the province in which the car is rented. Hence, the rule driving regulation is a set of rules,

corresponding to the driving rules in the cities of the province in which the car is rented. It

is clear that context must have a formal representation in order that evaluation of rules can

be automated.

Context information is formally specified, as defined in [Wan06], using dimensions

and tags along the dimensions. In our research, we have been using the five dimensions

WHERE, WHEN. WHAT, WHO, and WHY. The dimension names are generic. For example,

the dimension WHERE is associated with locality, the dimension WHEN is associated with

temporal information such as time and date, the dimension WHO is associated with subjects

(or roles), the dimension WHAT is associated with an activity, and the dimension WHY

is associated with a purpose for the stated activity. In general, it is the responsibility of

service providers to choose as many dimensions and their names in order to present the

contexts associated with services. Assume that the service provider has invented a finite

set DIM = {X1, X2, . . . , Xn} of dimensions, and associated with each dimension Xi a

type τi. Following the formal aspects of context developed by Wan [Wan06], we define

a context c as an aggregation of ordered pairs (Xj, vj), where Xj ∈ DIM , and vj ∈ τj .

As an example, the context in the Context Info part of Table 3 uses the three dimensions

LOC (location information), DATE (the day the car is rented) and TIME (the time of

checkout). With these dimensions a specific instance of the rental context can be written

c = [LOC : NewY ork,DATE : 09/09/2011, T IME : 9]. Thus, taken as a whole we get

a multidimensional perspective of the car rental context.

59

A context rule is a situation which might be true in some contexts and false in some

others. For example, the situation V ERY WARM = Temp > 40 ∧ Humid > 70, is

true only in contexts where the temperature is greater than 40 degrees, and the humidity is

greater than 70.

4.2.2 A Model-based Formalization of other ConfiguredService Ele-

ments

After explaining the basic notation we build the model incrementally, according to the tem-

plate in Figure 5. A constraint is a predicate logic expression, defined over data parameters

and attributes. The UPPAAL verifier that is used in verifying the composition rules (Chap-

ter 5) allows well-formed formula built by using standard logical operators, quantifiers, and

temporal operators allowed in Timed Computation Tree Logic (TCTL) [BDL04a]. There-

fore, in principle we could use the full power of TCTL to write the constraints in Config-

uredService description. However, all examples chosen involve only simple constraints.

Let C denote the set of all such logical expressions. X ∈ C is a constraint. The

following notation is used in our definition:

• T denotes the set of all data types, including abstract data types.

• Dt ∈ T means Dt is a datatype.

• v : Dt denotes that v is either constant or variable of type Dt.

• Xv is a constraint on v. If v is a constant then Xv is true.

• Vq denotes the set of values of data type q.

• x :: Δ denotes a logical expression x ∈ C defined over the set of parameters Λ. A

parameter is a 3-tuple, defining a data type, a variable of that type, and a constraint

on the values assumed by the variable. We denote the set of data parameters as

Λ = {λ = (Dt, v,Xv)|Dt ∈ T, v : Dt, Xv ∈ C}.

60

Service Definition

1. Functionality: A ConfiguredService provides a single function. This functionality is

defined to include the function signature, result value, preconditions and postconditions.

Definition 1 A service function is a 4-tuple f = 〈g, i, pr, po〉, where g is the function

signature, i is the function result, pr is the precondition, and po is the postcondition. A

signature is a 3-tuple g = 〈n, d, u〉, where n : string is the function identification name,

d = {x|x ∈ Λ} is the set of function parameters and u : string is the function address,

the physical address on a network that can be used to call a function. For example, it

can be an IP address. The result is defined as i = 〈m, q〉, where m : string is the result

identification name and q = {x|x ∈ Λ} is the set of parameters resulting from executing

the ConfiguredService. The precondition pr and postcondition po are data constraints.

That is, pr :: z, z ⊆ Λ and po :: z, z ⊆ Λ

2. Nonfunctional properties: Typical nonfunctional properties associated with the ser-

vice are pricing, shipping, and maintenance information. Pricing can be formalized as

follows.

Definition 2 Nonfunctional property list is κ = 〈p, . . .〉, where p is the service cost and

. . . denote other nonfunctional properties. The service cost p is defined as a 3-tuple

p = 〈a, cu, un〉, where a : N is the price amount defined as a natural number, cu : cType

is currency tied to a currency type cType, and un : uType is the unit for which pricing

is valid. As an example, p = (100, $, hour) denotes the pricing of 100$/hour. Other non-

functional properties can be similarly defined using appropriate data types and included in

κ.

3. Attributes: These include some semantic information that is unique to a service.

Definition 3 An attribute has a name and type, and is used to define some semantic infor-

mation associated with the service. As an example, each ConfiguredService can be given

a unique identifier, a version number, and type of release. They are defined as service

attributes. The set of attributes is α = {(Dt, vα)|Dt ∈ T, vα : Dt}.

61

Putting these three definitions together we arrive at the formal definition of a service given

below.

Definition 4 A service is a 3-tuple σ = 〈f, κ, α〉, where f is the service function, κ is the

set of nonfunctional properties, and α is the set of service attributes.

The contract will include the following elements:

1. Trustworthiness: Trustworthiness properties are divided into two parts ServiceTrust

which is related to service provision, and ProviderTrust which is related to the service

provider.

Definition 5 ServiceTrust is defined as the 4-tuple trcs = 〈ρ, ε, ψ, η〉, where ρ is the safety

guarantee, ε is the security guarantee, η is the availability guarantee, and ψ is the reliability

guarantee. The safety guarantee includes time guarantee ρt and data guarantee ρd. We

assume that time is a generic type. The time guarantee is defined as ρt : time, the time

the service takes to provide its function. The time guarantee will be turned into a predicate

of the form te ≤ tb + ρt where tb and te refer to the beginning and ending times of service

delivery. The data guarantee refers to the guarantee of satisfying data constraints of data,

and is defined as ρd :: z, z ⊆ Λ. Let H denote the set of security protocols that the service

provider has followed to guarantee confidentiality and integrity constraints. Then the set

ε = {x|x ∈ H} defines the extent of security binding the service. Following the nature

of security investigated in [MA11] we focus on service security and data security. Service

security states that (1) for every service a request can be accepted only from a user who

has permission to request that service, and (2) every service delivery will happen only if the

service requester has permission to receive it. Data security states that (1) for every data

parameter in a service request the service requester should have permission to access that

data parameter, and (2) for every data parameter associated with the service delivery, the

user receiving the service should have permission to read and use that data parameter. If a

client does not have permission to send a request then the request will be ignored. Also, if a

user does not have permission to receive a service, the service will not be sent. In [MA11]

these security policies are implemented for components that provide services. By including

62

the set ε = {x|x ∈ H} in a ConfiguredService description we are stating the mechanisms

used to implement these security features. In addition, we may also add references to

the security technology used in implementing the security policies and third party security

firms using such technology. Such statements are a mean to convince the service requester

on the strength of security attached to the service. The reliability guarantee refers to the

guaranteed maximum number of failures in a unit of time, and is defined as ψ : double.

It can be turned into a predicate fre/t < ψ, where fre is the total number of failures

that occur during the total service execution time t, as defined in [MA11]. The availability

guarantee refers to the guaranteed maximum time for repairs, and is defined as η : time.

This can be turned into a predicate tfi − tsi < η, where tsi is the time of failure i and tfi is

the time in which failure i was repaired, as defined in [MA11].

Definition 6 ProviderTrust is defined as a 3-tuple trp = 〈ce, pg, re〉, where ce is recom-

mendations from other clients, pg is lowest prices guarantees and re is recommenda-

tions from independent organizations. Lowest price guarantee is represented by a flag

pg = (a|a : Boolean). It is a Boolean that is true when a ConfiguredService can guar-

antee its price to be lower than the price of any other ConfiguredService providing the

same functionality. Client recommendations and recommendations from independent or-

ganizations can be defined as sets of ordered pairs. In ce = {(x, y)|x : CLIENT, y ∈
{Low, BelowAverage, Average, AboveAverage,High}}, the pair (x, y) represents a

client x whose recommendation of the service is y. Likewise, in re = {(x, y)|x : ORGAN−
IZATION, y ∈ {Low, BelowAverage, Average, AboveAverage,High}}, the pair (x, y)

represents the recommendation y of an organization x.

Formally, trustworthiness is defined using the above two definitions as:

Definition 7 A trustworthiness property of a ConfiguredService is a composite property,

written as a 2-tuple δ = 〈trcs, trp〉, where trcs, ServiceTrust and trp, the ProviderTrust are

defined as explained above.

We remark that not all components of δ may be relevant for a service, as shown in

many later examples. In general, the trust domain, in which ce and pg are defined, must be

63

a complete lattice [WA08b]. This property is essential in order to compare trust values of

groups and compute minimum (maximum) among trust values. For the sake of simplicity,

we assume in further discussion that trust values assumed by ce and re are whole numbers

in the range 1 . . . 5, where 1 denotes Low and 5 denotes High. This assumption will enable

us to calculate simple averages, maximum, and minimum of a set of trust values.

2. Legal issues: As part of the contract in a ConfiguredService, a set of legal rules that

constrain the contract may be included.

Definition 8 A legal issue is a rule, expressed as a logical expression in C. A rule may

imply another, however no two rules can conflict. We write l = {y|y ∈ C} to represent the

set of legal rules.

As an example, the legal rule ’If delivery takes more than 7 days from order, the ship-

ping is free’ can be formalized as (delivery day > order day+7) ⇒ (shipping charge =

0). Similar approach can be used for all legal rules.

3. Context: Both context information and context rules are formally specified in a

contract. These two parts provide context-awareness ability to ConfiguredServices.

Definition 9 A context is formalized as a 2-tuple β = 〈r, c〉, where r ∈ C, built over the

contextual information c. Context information is formalized using the notation in [Wan06]:

Let τ : DIM → I , where DIM = {X1, X2,...,Xn} is a finite set of dimensions and

I = {a1, a2, ..., an} is a set of types. The function τ associates a dimension to a type. Let

τ (Xi) = ai, ai ∈ I . We write c as an aggregation of ordered pairs (Xj , vj), where Xj ∈
DIM , and vj ∈ τ (Xj).

Formally a contract is defined below.

Definition 10 A contract is a 3-tuple μ = 〈δ, l, β〉, where the service trustworthiness prop-

erties δ, the set of legal rules l and the context β are defined as presented above.

Putting these definitions together we arrive at a formal definition for ConfiguredService.

Definition 11 A ConfiguredService is a 2-tuple s = 〈μ, σ〉, where μ is a contract, and σ is

a service.

64

4.3 Analysis

The contract part of a ConfiguredService has a legal binding between the service provider

selling that service and the service requester buying that service. Consequently all the

claims made by the service provider and all rules that will apply during and after service

execution must provably remain true. In the computing literature the term verification is

used to refer to proving correctness of program with respect to its specification (or a stated

property), and the term validation is used to refer to proving the satisfaction of a program

with respect to its requirements. We extend these concepts to analyze ConfiguredServices.

ConfiguredServices will be published by service providers, discovered by service re-

questers and executed on behalf of both. These are sequential actions, although the same

sequence may be repeated cyclically. At each stage a ConfiguredService should retain the

full spirit of legality, although the information content of the ConfiguredService might un-

dergo changes. This implies that a proof of the claims made at a certain stage should not

invalidate the proof of claims made earlier in the sequence. The analysis will be performed

by different parties at each stage. The three main parties responsible for the analysis are

the service provider, the service requester and an external trusted authority.

The analysis can be either ‘formal’ or ‘informal’. Certain information content can be

validated only by inspection or seeking recommendations, although contract fulfillment

with respect to legal and business rule applications should be formally checked. We use the

term validation to refer to ‘informal’ and ‘semi-formal’ analysis steps, and usually reserve

the term verification to refer to formal analysis, such as verification using predicate logic

resolution and model checking. The formal representation of ConfiguredService is mainly

intended to enable a rigorous verification of it whenever possible.

The analysis is performed at three main stages, namely at those stages where informa-

tion is incrementally added to a ConfiguredService description. The first analysis stage is

before service publication. Both the trusted authority and the service provider cooperate in

performing the analysis at this stage. The goal of analysis at this stage is to ensure that the

65

ConfiguredService description is as complete and correct as possible. In particular, the anal-

ysis will ensure that the service provider is not betraying or cheating the customers through

false claims. Only those ConfiguredServices that pass this evaluation should be published.

The second analysis stage is before service execution. At this stage the published Con-

figuredService, and the input and the contextual information from a service requester are

available. The analysis at this stage is performed by the service provider. The goal of this

analysis is to ensure input completeness from the service requester and to ensure that legal

rules pertaining to the sale are satisfied. The third analysis stage is after service execution.

Most of this analysis will be done after service delivery, by both the service provider and

the service receiver. Since the service receiver does not get access to the formal Config-

uredService description, the verification done by the service receiver can only be informal.

However, the service receiver (requester) might delegate its responsibility to a third party

trusted authority, in which case this trusted authority might be able to access the formal

ConfiguredService description and the service source (from the service provider) and con-

duct a formal analysis. At this stage, the execution data and results are available in addition

to all information from the previous two stages. The goal of analysis at this stage is to

ensure that the service delivered to the service requester is indeed the service bought by the

service requester, and all contractual obligations are met by both parties. Table 4 shows a

summary of the analysis performed at each stage, persons responsible for performing the

analysis and the type of analysis performed. In the rest of this section, each analysis stage

is discussed in detail.

4.3.1 Analysis before Service Publication

A service provider defines a ConfiguredService and publishes it. Before publication the

content of the ConfiguredService should be analyzed. The analysis might be performed

by the service provider for quality control. A more critical analysis is performed by the

trusted authority. The trusted authority should agree with the claims included in the Con-

figuredService definition before allowing to publish the ConfiguredService. At this stage

the informal and formal descriptions of a ConfiguredService are available.

66

Before Publication

Completness:
 Who: Provider and
 Trusted Authority
 How: informal inspection
Correctness of Contract:
 Who: Trusted Authority
 How: informal inspection
Correctness of Trust Claims:
 Who: Trusted Authoriy
 How: (ServiceTrust: execution)
 (ProviderTrust: inspection)
 (ProductTrust: inspection)

After ExecutionBefore Execution

Information Available

Analysis Types Input Completness:
 Who: Provider
 How: formal
Verifying Legal Rules:
 Who: Provider
 How: formal and informal
Verifying Context Rules:
 Who: Provider
 How: formal

Output Completness:
 Who: Requester
 How: formal
Verifying Trust Claims:
 Who: Requester
 How: formal and informal
Verifying Legal Rules:
 Who: Provider and Requester
 How: formal and informal

ConfiguredService defintion ConfiguredService +
requester input +
requester context

ConfiguredService +
requester input +
requester context +
execution data + output

Table 4: Analysis Stages

We propose that the analysis before publication focuses on the three essential properties

completeness, correctness, and verifiability. Completeness refers to functional complete-

ness in service definition, correctness refers to contract consistency and verifiability refers

to the ability to verify the trust claims.

• Completeness In general, assuring completeness of information is hard. We are in-

sisting only on functional completeness, in the sense that the preconditions and post-

conditions are sufficient to uniquely define the service functionality, and the nonfunc-

tional properties are sufficient to describe the quantifiable attributes of significance

to the service. In case of incompleteness, the service provider should add more non-

functional properties to convince the consumer about the service functionality. In-

completeness is not an error, and can be remedied. It is also essential to ensure that

the information defined in the attributes section is sufficient to identify the service

types, the service providers, and the product type (if applicable). As an example,

displaying a Car (image from the inventory) that satisfies the Product Type specifi-

cation is an acceptable sufficient proof to convince the buyer that a car that meets its

specification exists. Analyzing completeness is a manual process (or user-assisted

semi-automated process) in which the service provider or the trusted authority to

whom the task is delegated, leads the validation steps. In the Car Rental (Table 3)

and the Buy/Ship (Table 1/ Table 2) Book examples, functional completeness is to

67

be achieved by such inspection.

• Correctness of Contract Rules The contract rules will include the legal rules and

context rules. The analysis is static in the sense that no rule can be fired before

contract execution. The static analysis may be performed both by inspection and by

formal resolution principles of propositional logic. The legal rules will be checked to

make sure they are neither ambiguous nor contradictory. Contradictions can be for-

mally checked, however semantic ambiguity is hard to check formally. For example,

the two rules “r1: no discount on weekdays”, and “r2: ‘15% discount for students”

cannot be applied simultaneously in a ‘week day’ context. So, rule r2 must be re-

stated as “15% discount for students on weekends”. Such validations are performed

by the trusted authority.

The context information will be validated by the trusted authority to ensure its cor-

rectness and its expressivity in conveying the service provider’s contextual informa-

tion. As an example, if the provider claims that the business is located in Canada the

trusted authority should be able to manually verify this claim. The context rules can-

not be evaluated at this stage. However they should be validated to make sure they

contain no contradictions. This is also done by the trusted authority. As an example,

assume that the service provider location is given as Montreal city. Suppose one

context rule states that “the service requester should be located within 100 Kms from

service provider location”. This rule can be validated only at service execution time.

If there exists a second context rule stating “the service may be provided anywhere

in Canada”, then obviously these two rules are not consistent. The trusted authority

can catch such contradictory context rules at this stage.

• Validating Trust Claims The trusted authority has sufficient knowledge and skills

to verify and validate the correctness of service trust claims. The main goal of such

verification and validation is to ensure that the service provider is not stating mis-

leading information or trying to cheat consumers on the quality of service. In the

ProviderTrust part, recommendations from independent organizations and clients are

68

included. Such properties can only be manually verified. The trusted authority will

contact the independent organizations to validate the correctness of such recommen-

dations. It will review the history of use and contact clients to ensure the correctness

of the claimed client recommendations. To validate the correctness of the claims in

ServiceTrust part the trusted authority might use a variety of techniques:

– If a claim is related to a product, the trusted authority might request the service

provider to ‘show’ the product. The existence of the product that meets its

specification is a sufficient proof of the claim.

– If a claim is related to a service associated with a product the trusted authority

will get the product, and the formal description of its services. The service

claim, regarded as behavior, is then resolved against the service specification.

Executing the service specification, the trusted authority can validate the claim.

– If a claim is related to a service the trusted authority will get access to the service

implementation, use the interfaces and tools that are given to it by the service

provider, and execute the service. The claims, regarded as properties stated in

the formal ConfiguredService description, are then formally verified in service

execution. This process might include formal verification using formal verifica-

tion tools, or visualization or animation to view and inspect the service behavior.

In fulfilling its task, we are expecting the trusted authority to be as powerful as

the Trusted Computer System Evaluation Standard (Orange Book) [Boo] in its

authority to demand information from service providers, its ability to formally

assess the submitted implementations against the formalized claims of Config-

uredServices, and approving the publication of only those ConfiguredServices

which pass its assessment.

69

4.3.2 Analysis before Service Execution

To execute a ConfiguredService, the service provider receives a service request associated

with required inputs. The inputs will contain input parameters and the contextual infor-

mation of the service requester. But before executing the ConfiguredService, the service

provider needs to verify and validate the inputs with respect to the ConfiguredService.

We propose that the analysis before execution focuses on the three essential properties

input completeness, legal rules analysis, and context rules verification.

• Verifying Input Completeness The input parameters received from the service re-

quester should be verified to be complete. Input is complete if the following two

conditions are satisfied (1) all required input parameters are provided by the ser-

vice requester, and (2) the input is sufficient to satisfy the precondition of service

functionality. To verify the first condition, the service provider will verify that the

statement ((input1 �= null) ∧ (input2 �= null) ∧ . . . ∧ (inputn �= null)) is equal to

true. To verify the second condition, the service provider will verify that the precon-

dition evaluates to true. This is done by substituting the variables in the precondi-

tions with the actual values. As an example the precondition valid(CreditCard) ∧
valid(DrivingLicense) from Table 3 is evaluated by substituting the parameters

’CreditCard’ and ’DrivingLicense’ with their actual values, and invoking predefined

functions.

• Verifying Legal Claims After receiving the input from the service requester, the

service provider needs to ensure (1) input data received will not contradict a legal

rule, and (2) the input received is sufficient to evaluate all the rules that should be

satisfied in order to sell the service. Verifying legal rules can either be formal and

or informal. As an example, assume that a service requester wants to buy 10 books.

But in the legal section of the contract, there is a rule that states “maximum of 5

books may be bought by a customer”. In this case, the input contradicts the legal

rule. This analysis can be performed formally by the service provider. As a second

example, let there be a rule stating “only credit card payments are allowed”. But, the

70

service requester does not provide his credit card information. This legal rule cannot

be evaluated. The analysis should ensure that the service is executed only after all

input that can validate the legal rules are received from the service requester.

• Evaluating Context Rules: The service provider should formally validate that the

contextual information supplied by the service provider satisfies the context rules.

The contexts defined in the Context Info part of Table 3 use the three dimensions

LOC (location information), DATE (the day the car is rented) and TIME (the time

of checkout). Each dimension is associated with a value. Thus, taken as a whole

we get a multidimensional perspective of the car rental context. As an example,

c = [LOC : NewY ork,DATE : 09/09/2011, T IME : 9] is a specific instance of

the car rental context. A legal rule might require a contextual evaluation. An example

of such a rule is “only those who have an American driver license can rent a car”.

So, the usual validity check done as part of ‘input completeness’ must be extended to

include the context dependent legal rules. We explain in Section 4.3.3 how context

dependent evaluation is formalized.

4.3.3 Analysis after Service Delivery

The information available at this stage includes the ConfiguredService definition, the

inputs from the requester including context, and the execution data and result. The

execution data includes the statistics of the execution process itself. An example of

execution data is, “during the execution the service failed and the recovery took 5

minutes”. The execution result includes any partial output from service execution or

service termination.

The contract of the ConfiguredService contains the rights and responsibilities of ser-

vice requesters and the service provider. Hence, it is essential to verify and validate

that each party has satisfied his obligations during service execution. Not satisfying

an obligation might result in penalties and legal consequences as stated in the con-

tract. The verification and validation is both performed by the service requester and

71

provider.

We propose that the three essential properties for analysis are output completeness,

fulfillment of trustworthiness properties and satisfaction of context-dependent legal

rules. Below is a detailed discussion of the analysis for each of these properties.

– Output completeness The output parameters received from the service provider

should be verified to be complete by the service requester. Output is complete

if the all required output parameters are provided by the service provider, and

the output is sufficient to satisfy the postconditions of service functionality. If

n output parameters are expected by the service requester then the statement

((output1 �= null)∧ (output2 �= null)∧ . . .∧ (outputn �= null)) must evaluate

to true. To verify the satisfaction of the postcondition, the service requester will

have to evaluate the postcondition and verify that it is true. In case the verifi-

cation is unsuccessful the service requester should invoke the legal rules in the

contract to remedy the situation. If the verification is successful, the service

provider might invoke the rules related to consumer obligation. Therefore, the

trusted authority must be part of this loop to verify output completion.

– Trustworthiness properties The service requester will have to check that the

stated claims are fulfilled. Because the service requester received a certificate

of trust from the trusted authority when buying the service and the published

ConfiguredService is only informal, it is only appropriate that the verification

at this stage is only informally done, may be by inspection by the service re-

quester. Below are examples of trustworthiness claims and how they can be

verified.

∗ Safety (time): The service requester monitors the service execution period

and checks that it satisfies the safety claim stated in the ConfiguredService.

∗ Safety (data): The service requester monitors the service execution to en-

sure the data constraints stated in the ConfiguredService are not violated.

∗ Security: The service provider might guarantee the use of some security

72

policies, such as encryption, in service delivery. After service execution,

the service requester can evaluate manually the satisfaction of such claims,

because a decryption method would be sent to him by the service provider.

If the service provision violated privacy guarantees then the service re-

ceiver should invoke the contract rules for seeking recourse.

∗ Reliability: Reliability can be verified by the service receiver, say by count-

ing the number of failures during service delivery and validating the relia-

bility claim.

∗ Availability: If service is not available after service delivery, then the ser-

vice receiver observes the restart time and ensure that the time between

failure and restart is less than the stated availability claim the Configured-

Service.

– Legal rules The legal rules that govern the rights and responsibilities of the ser-

vice provider and service requesters after service delivery are to be evaluated

at this stage. Such evaluations will reveal the consequences of not satisfying

the contract rules. As an example, consider the collision and liability insurance

rule in Table 3. Formally the rule is

NotCovered(COLLISION ∧ LIABILITY) ∧ accident

⇒ Charge(CreditCard(cardnumber), $30, 000),

where NotCovered, Charge, and CreditCard are predicate names, COLLIS

SION , LIABILITY , are literals (meaning the same as in the insurance se-

mantic domain), accident is a proposition, and cardnumber is a variable. This

rule is fired only during service execution, namely when an accident happens

during the use of the rented car. This rule will automatically modify the con-

tract rule on liability. Verifying that this rule was indeed enforced is the respon-

sibility of the service provider. Service delivery contexts and other contexts

that arise during or after service execution will require context-dependent legal

rules to be verified. We consider the example in Table 3. When the car is rented

we do not know the exact context in which the car will be returned. However

73

we can model the acceptable car return situation as a logical expression involv-

ing the dimension names in the rental context, and including that as a rule in

the ConfiguredService, as shown in Table 3. The acceptable car return situation

corresponding to context c is (LOC = retloc) ∧ (DATE+7 ≥ returndate).

Assume the car is returned in Boston on September 14, 2011. The situa-

tion is evaluated by replacing the dimension LOC by NewY ork, the dimen-

sion DATE by 09/09/2011, the variable retloc by Boston, and the variable

returndate by 09/14/2011. It is easy to see that the situation predicate is false.

So, the conclusion is that contract is violated. In summary, the legal rules that

are context-dependent can be automatically verified at the stated contexts by

following these steps:

1. Formulate the legal rules as predicates involving the DIM ENSION

names and variables.

2. To evaluate a predicate p in a context c,

∗ replace each DIMENSION name in p by the tag value if it is a

DIMENSION in c,

∗ substitute the variables in p by their respective values, as provided ei-

ther in the ConfiguredService or in the environment of evaluation,

∗ if p still has DIMENSION names or variables then p cannot be

evaluated in the context c; otherwise p is now a proposition which

evaluates to either true or false.

The evaluation process being simple, it can be made part of a service provider

system software or part of a trusted authority system software.

After the execution of the service and the analysis of the service requester, the service re-

quester can create a trust level for the service according to its experience. This information,

if sent to the service provider, will help the service provider in the future announcements

of service claims. Also the service requester can add a recommendation to the service

provider. This recommendation will either increase or decrease the service provider rating.

74

4.4 Flexible Contracts

If the contract part in a ConfiguredService is strict, in the sense that it is not allowed to

change, then it forces the service requester to either take it or leave it. In order to increase

economic value and improve trusted transactions it is necessary that the contract part in a

ConfiguredService remains ‘flexible’. The flexibility goal is to allow consistent contract

modifications, some by negotiation and some by automatic triggering of contract rules,

whenever necessary. A flexible contract is still ‘strict’ in the sense that it will remain precise

after changes for a formal interpretation and enforcement. In this section we study the

different types of contract modifications and their causes, and offer syntactic simplification

for drafting flexible contracts.

The service part in a ConfiguredService is not allowed to change. If a change is de-

manded on the service functionality in a ConfiguredService, the service provider might

have to create a new ConfiguredService in which an entirely new contract part will bind the

new service. A ConfiguredService which has a flexible contract is ‘self-evolving’, because

it generates a set of ConfiguredServices such that all of them have identical service part

while contracts are different. We achieve syntactic simplification of a self-evolving Config-

uredService, because we need to create only one template. We achieve semantic generality

by generating many ConfiguredServices when the contract parts are modified through a

simple syntactic extension, as discussed in Section 4.4.2.

4.4.1 Types and Causes of Contract Modifications

The following reasons are compelling to allow different types of flexible contracts in a

service-oriented system.

• Changes triggered by service provider: Business rules might change. Consequently

changes to nonfunctional and trustworthiness properties might become necessary.

Such changes should be only towards improving service quality. For example, price

increases should not affect consumers who had already signed contracts. In this

case, the legal statement “Price changes before service execution will not affect

75

the signed contract” might be added to the contract part of the ConfiguredService.

Context information might change. Such a change should not affect those who have

already signed contracts for receiving services. The context change might invali-

date some of the rules in the contract, because some conformance conditions might

fail. So, the service provider must modify the contract to suit the new context and

assure the customers that such a change will not affect the trust attributes, and ser-

vice delivery constraints. This will enhance the consumer trust. The statement “In

case the service provider context changes the consumers will be informed and ex-

isting contract will be respected by the service provider” can be added to the legal

rules. New version of older services might be introduced by a service provider. The

contract part in a new version must be an incremental extension of the old contract,

otherwise old contracts might be violated. At the time of service delivery, the service

provider may have a new ConfiguredService in which the functionality is the same

as the old one, however nonfunctional properties and trust properties have been im-

proved. For example, the price may be less and it is more secure. To earn consumer

trust, it is advisable for the service provider to inform the consumer on this alterna-

tive service, and with consumer’s consent modify the old contract. To deal with such

situation, the statement “If the quality attributes of the functionality are improved the

consumers may freely select the new improved ConfiguredService” can be added to

the legal rules. Exceptions that arise during service delivery should be addressed by

automatic changes to the legal rules of the current contract. It is wiser to automate

this process through the introduction of rules that trigger changes to other rules.

• Changes triggered by service requester: The service requester might demand some

changes in the contract part, for instance privacy in service delivery. This in turn

might initiate a negotiation process between the service requester and service provider.

In general, negotiation is an integral part of service-centric activity. Typically negoti-

ation starts only after a ConfiguredService is selected by a service requester, and the

negotiation process usually centers only on the contract part of the selected service.

76

A negotiable contract might mention a latency period between the signing of the con-

tract and its execution, thus allowing the retailer and consumer to enrich or modify

or cancel the contract during this period. This kind of flexibility is most common

in business contracts. After service selection but before service delivery it is likely

that the service delivery context changes. This in turn might invalidate many legal

rules in the contract part of the selected ConfiguredService, unless they are amended.

To prevent this and sustain consumer trust, the service provider and the service re-

quester might renegotiate or the service provider is given the option to access and get

a new ConfiguredService that satisfies the new context situation. To deal with context

change, the statement “In case the delivery context changes, the consumer may select

a new ConfiguredService without penalty.” can be added to the legal rules. It is wiser

to automatically modify existing rules through the introduction of rules that trigger

changes to other rules that exist in an already agreed upon contract.

• Service failures: A service might fail during service delivery, may be because of

communication failure or the service itself has become unavailable. If service stop-

page violates the contract, the consumer must be compensated. If the service is no

more available, then the consumer must be allowed to search the service registry for

another ConfiguredService in which the functionality is equivalent to the functional-

ity of the previously chosen service. In the later case, some price concession must be

given. To deal with service failures, the statements “The consumer will be compen-

sated for service interruption. The consumer may choose new ConfiguredService,

with a 10% discount in price, in case the chosen service becomes unavailable, or the

consumer may elect to cancel the contract with no penalty” can be added to the legal

rules. Regardless of the incentive, restarting the entire process from discovering new

service and following the service processing flow until its delivery is costly and time

consuming activity. To minimize the damage established to trust we have considered

in Section 7.6 a method that discovers alternating services. Essentially, when a ser-

vice fails another service from the ‘ranked set of equivalent services’ is automatically

chosen and its contract is negotiated before continuing with service delivery.

77

ConfiguredService S
includes ConfiguredService S1

extended-by {
...

}
modified-as{

...
}

Figure 6: ConfiguredService Extension Syntax

4.4.2 Syntactic Issues - Extension through Inclusion and Modification

In this section two constructs are discussed for syntactically modifying the contract part in a

ConfiguredService. One construct is the extended-by clause and the other is the modified-

as clause.

To enrich a ConfiguredService the extended-by clause is to be used. An enrichment

adds more attributes (information) to the sections in it, with no changes to existing content.

This allows incremental addition to consumer data, constraints, nonfunctional properties,

trustworthiness properties, legal and exception rules, and context part. The addition of in-

formation may include new context information which does not invalidate existing contract

and context sections.

To modify the information and rules in a ConfiguredService the modified-as clause is to

be used. No new information may be included within modified-as clause. Trustworthiness

properties, legal and exception rules, and context may be changed by necessity. The syntax

that handles both types of extensions is given in Figure 6.

The syntax in Figure 6 is a shorthand for creating self-evolving ConfiguredServices. In

the includes clause one ConfiguredService name S1 is listed. This ConfiguredService will

be extended as stipulated by the extended-by and modified-as clauses. If the extended-

by clause is absent, the effect is only to modify the included ConfiguredService. If the

modified-as clause is absent, the effect is only to enrich the included ConfiguredService.

Table 5 shows a modification of the Car Rental ConfiguredService in its first column, and

78

Modified Car Rental Extended Car Rental
ConfiguredService MCar-Rental ConfiguredService ECar-Rental

includes ConfiguredService Car Rental includes ConfiguredService Car Rental
modified-as { extended-by {

Contract: Service:

Legal Rules: Attributes:
car return: Consumer Data:
no fee when returned to the location Second Driver:
where rented driver license:ALP10091878
50$ additional fee if returned to
another location age: 52
collision and liability insurance: Contract:

fully covered } Trust Attributes:
trust recommendation: AAA (5 star) ,
Consumer (9/10) }

Table 5: A Modified and Extended ConfiguredService

an enrichment of the Car Rental ConfiguredService in its second column.

4.4.3 Semantic Issues

The information listed within the extended-by clause is added to the information in the

included ConfiguredService in such a way that the result is a ConfiguredService template.

This is achieved by ‘pairwise’ conjoining of the information contents in the included Con-

figuredService and the extended-by clause. Rules from the extended-by clause that con-

flict with the included ConfiguredService will be removed. The resulting ConfiguredService

is subject to further analysis, as explained in Section 4.3.

The information listed within the modified-as clause will ‘overwrite’ the information

in the included ConfiguredService in such a way that the result is a ConfiguredService tem-

plate. To achieve this it is necessary that every rule type in the modified-as clause is a rule

type in the original ConfiguredService. No new rule type is allowed in the modified-as

clause. Assuming that the included ConfiguredService had information consistency and a

set of conflict-free rules we expect the resulting ConfiguredService to have these proper-

ties. That is, if an inconsistency arises due to overwriting, that rule type is removed from

79

the modified-as clause. The resulting ConfiguredService is subject to further analysis, as

explained in Section 4.3.

Modifications to contract do not change the functionality of the included Configured-

Service. A flexible contract can modify itself if a rule triggers changes to other rules either

during or after contract execution. As an example, assume that the ConfiguredService

MCar-Rental in Table 5 is modified again by the introduction of the new rule “Any person

with a valid driver license and who is not included in the service contract may drive the

rented car, however the collision and liability insurance contract is null and void”. This

rule takes effect only when the rented car is driven by a person satisfying the constraints

stated in the rule. Such a situation may never arise. Yet, the net effect is the automatic

production of a new contract in which “the collision and liability insurance” rule of the

original contract is deleted and the new rule is included.

4.5 Case Study - Auto Roadside Emergency Service

In this section, we introduce a case study chosen from the automotive industry. This case

study has been used in the literature of SOA by several researchers [tBGKM08], [Koc07]

and [BK07]. This example will be used throughout this thesis. We first give the background

to ‘product functionality’, which in this example is a car, and the ‘behavior of the product’

which in this case is the interaction between engine, sensors, and actuators. Services are

related to a specific behavior of the car.

Vehicles today are equipped with multiple sensors and actuators that provide the driver

with services that assist in driving the vehicle more safely, such as vehicle stabilization

systems. Here we will focus on the road assistance scenario. This scenario deals with the

case of a car failure. For example, the oil lamp in the car might turn red to indicate a low oil

level. This will trigger the diagnostic system to analyze the values obtained by the oil level

sensor. The diagnostic system then reports, for example, the failure in one cylinder head

and the car is no longer drivable. This information and the location information obtained

from the GPS system is sent to the road assistance center. The road assistance center will

80

Service

Contract

Price: = 60$/h

Deposit = 300$
CarType=toyota

Location(Montreal,DownTown)
Rule: Membership==CAA

Functionality

Attributes

Nonfunctional

Trust-
worthiness

Legal Issues

Context

Name: ReserveRS
Pre: CarBroken==T
Post: HadAppointment==T
Address: XXX
Input: (CarBroken:bool)
Input: (Deposit:double)
Input:(CarType:string)
Input: (FailureType:string)
Output: (HadAppointment:bool)
Output: (NumberOfHours:int)
Output: (ShopLoc:location)

Provider Name: Garage1

ServiceTrust
Safety (time): car will be fixed in 3 days
ProviderTrust
Recommended by CAA as excellent

Table 6: RepairShop ConfiguredService

use this information to identify the appropriate repair shop, tow truck and car rental service

providers and inform the driver. The driver will select a repair shop. The diagnostic results

are then sent automatically to the selected repair shop. This will allow the repair shop to

identify the spare parts needed to repair the car. After that, the driver orders a tow truck

and a rental car. The GPS coordinates of the vehicle and repair shop are sent to the tow

truck. The driver is required to deposit a security payment before being able to reserve a

repair shop or a car rental. Each service can be denied or canceled, causing an appropriate

compensation activity.

In this example, we identify three ConfiguredServices, whose detailed definitions are

shown in Tables 6, 7 and 8.

81

Service

Contract

Price: = 100$/h

CarType=toyota

Location(Montreal,DownTown)
Rule: Membership==CAA

Functionality

Attributes
Nonfunctional

Trust-
worthiness

Legal Issues

Context

Name: ReserveTT
Pre: RequestTruck==T
Post: RequestConfi==T
Address: XXX
Input: (RequestTruck:bool)
Input:(CarType:string)
Input:(ShopLoc:location)
Input:(CarLoc:location)
Output: (RequestConfi:bool)

Provider Name: Truck1

ServiceTrust
Safety (time): the tow truck will be in location in 45 minutes
ProviderTrust
Recommended by CAA as excellent

Table 7: TowTruck ConfiguredService

Service

Contract

Price: = 30$/day

Location(Montreal,DownTown)
Rule: Membership==CAA

Functionality

Attributes

Nonfunctional

Trust-
worthiness

Legal Issues

Context

Name: ReserveCR
Pre: NeedCar==T
Post: HasCar==T
Address: ZZZ
Input: (NeedCar:bool)
Input:(CarType:string)
Input: (StarDate:date)
Input: (EndDate:date)
Output: (RequestConfi:bool)
Output: (ConfiNum:string)

Provider Name: Rental1

ServiceTrust
Security: transaction has a 128 bit encryption
ProviderTrust
Recommended by CAA as excellent
Deposite = 200$
Payment by credit card only

Table 8: CarRental ConfiguredService

82

4.5.1 Formal Representation

RepairShop: Let rs denote the ConfiguredService for providing a Repair Shop who pro-

vides the services described in Table 6. The formal notation of ConfiguredService rs is srs

= 〈μrs, σrs〉, where the tuple components are explained below.

• Service: σrs = 〈frs, κrs, αrs〉 where,

1. Function: frs = 〈grs, irs, prrs, pors〉 where,

– Function signature: grs = 〈nrs, drs, urs〉, where nrs = (ReserveRS) is the

name, drs = {(CarBroken, bool), (deposit, double), (CarType, string),

(failureType, string)} are input data parameters, and urs = (XXX) is

the address.

– Function result: irs = 〈mrs, qrs〉 , where mrs = (ResultRS) is the name

and the set of output data parameters is qrs = {(HasAppointment, bool),

(numberOfHours, int), (ShopLoc, location)}.

– Function precondition: prrs = (CarBroken == true).

– Function postcondition pors = (HasAppointm ent == true).

2. Nonfunctional: κrs = 〈prs〉, prs = 〈ars, curs, unrs〉, where ars = (60) is the

cost, curs = (dollar) is the currency, and unrs = (hour) is the pricing unit.

3. Attributes: αrs = {(name = Garage1)}.

• Contract: μrs = 〈δrs, lrs, βrs〉 where,

1. Trustworthiness: δrs = 〈trcs, trp〉 where,

– ServiceTrust: trcs = 〈ρt〉 where ρt = 3days. This can be written in predi-

cate logic as timeend ≤ timestart + 3.

– ProviderTrust: trp = 〈re〉 where re = {(CAA, Excellent)}.

2. Legal: lrs = {(deposit = 300), (CarType == toyota)} where the deposit

amount is 300 and the car type is toyota.

83

3. Context: βrs = 〈rrs, crs〉, where rrs = {(membership == caa)} is the context

rule and crs = {(Location, (Montreal, Canada))} is the contextual informa-

tion of the repair shop service provider.

TowTruck: Let tt denote the ConfiguredService for providing a Tow Truck who pro-

vides the services described in Table 7. The formal notation of ConfiguredService tt is stt

= 〈μtt, σtt〉, where the tuple components are explained below.

• Service: σtt = 〈ftt, κtt, αtt〉 where,

1. Function: ftt = 〈gtt, itt, prtt, pott〉 where,

– Function signature: gtt = 〈ntt, dtt, utt〉, where ntt = (ReserveTT) is the

name, dtt = {(RequestTruck, bool), (CarType, string), (ShopLoc, location),

(CarLoc, location)} are input data parameters, and utt = (Y Y Y) is the

address.

– Function result: itt = 〈mtt, qtt〉 , where mtt = (ResultTT) is the name

and the set of output data parameters is qtt = {(RequestConfi, bool)}.

– Function precondition: prtt = (RequestTruck == true).

– Function postcondition pott = (RequestConfi == true).

2. Nonfunctional: κtt = 〈ptt〉, ptt = 〈att, cutt, untt〉, where att = (100) is the cost,

cutt = (dollar) is the currency, and untt = (hour) is the pricing unit.

3. Attributes: αtt = {(name = Truck1)}.

• Contract: μtt = 〈δtt, ltt, βtt〉 where,

1. Trustworthiness: deltatt = 〈trcs, trp where,

– ServiceTrust: trcs = 〈ρt〉 where ρt = 45minutes. This can be written in

predicate logic as timearrive ≤ timeorder + 45.

– ProviderTrust: trp = 〈re〉 where re = {(CAA, Excellent)}.

2. Legal: ltt = {(method ==′′ Cash′′)} where the payment method is cash only.

84

3. Context: βtt = 〈rtt, ctt〉, where rtt = {(membership == caa)} is the context

rule and ctt = {(Location, (Montreal, Canada))} is the contextual informa-

tion of the tow truck service provider.

CarRental: Let cr denote the ConfiguredService for providing a Car Rental who pro-

vides the services described in Table 8. The formal notation of ConfiguredService cr is scr

= 〈μcr, σcr〉, where the tuple components are explained below.

• Service: σcr = 〈fcr, κcr, αcr〉 where,

1. Function: fcr = 〈gcr, icr, prcr, pocr〉 where,

– Function signature: gcr = 〈ncr, dcr, ucr〉, where ncr = (ReserveCR) is the

name, dcr = {(NeedCar, bool), (CarSize, string), (StarDate, date),

(EndDate, date)} are input data parameters, and ucr = (ZZZ) is the

address.

– Function result: icr = 〈mcr, qcr〉 , where mcr = (ResultCR) is the name

and the set of output data parameters is qcr = {(HasCar, bool), (ConfNum,

string)}.

– Function precondition: prcr = (NeedCar == true).

– Function postcondition pocr = (HasCar == true).

2. Nonfunctional: κcr = 〈pcr〉, pcr = 〈acr, cucr, uncr〉, where acr = (30) is the

cost, cucr = (dollar) is the currency, and uncr = (day) is the pricing unit.

3. Attributes: αcr = {(name = Rental1)}.

• Contract: μcr = 〈δcr, lcr, βcr〉 where,

1. Trustworthiness: deltacr = 〈trcs, trp where,

– ServiceTrust: trcs = 〈εcr〉 where εcr = {(encryption = 128)}.

– ProviderTrust: trp = 〈re〉 where re = {(CAA, Excellent)}.

2. Legal: ltt = {(deposit = 200), (method ==′′ creditCard′′)} where the de-

posit is 200$ and the payment method is credit card only.

85

3. Context: βcr = 〈rcr, ccr〉, where rcr = {(membership == caa)} is the context

rule and ccr = {(Location, (Montreal, Canada))} is the contextual informa-

tion of the car rental service provider.

4.5.2 Analysis

We assume that each ConfiguredService has been analyzed before publication. In this sec-

tion, we focus on the two types of analysis before execution and after execution. Below is

a discussion of the analysis performed on the RepairShop ConfiguredService. Similar anal-

ysis is performed on other ConfiguredServices. The analysis performed on the RepairShop

ConfiguredService can be summarized as follows:

• Before execution of service the following properties will be verified:

– Input completeness: ((Deposit == depositammount)∧(credit card �= null)∧
(CarType ∈ Models) ∧ Acceptable(FailureType)).

– Context Information: LOCATION = ((Montreal, downtown)).

– Legal claims: (Deposit ≥ 300), and (CarType == toyota).

– Context rules: (membership(CarDriver) == CAA)) will be formally veri-

fied.

• After execution the following properties will be verified.

– Output completeness: ((HadAppoitment == true) ∧ (NumOfHours �=
null) ∧ (ShopLoc �= null)).

– Trustworthiness properties: (timeend ≤ timestart + 72), assuming that time is

measured in hours.

4.6 Summary

In this chapter, the novel ConfiguredService concept has been introduced, its constituent el-

ements have been formally described. The essential properties of ConfiguredService have

86

been enumerated and their incremental analysis discussed in three stages. The notion of

flexible contracts has been introduced, and a formal syntax and semantics have been pro-

posed for formally representing evolving ConfiguredServices. The chapter is concluded

with an emergency roadside service example.

87

Chapter 5

Static Service Composition

Service-oriented applications are created by composing services together to create new

services that provide more complex functionalities. Service composition may be attempted

either at service publication time or at service execution time. The former is called static

service composition and the later is called dynamic service composition. Static composition

is done by the service provider driven by his business goals, usually driven by value added

economic goals. Dynamic service composition, discussed in Chapter 8, is driven by user’s

demands at service provision contexts and is usually performed by the service provision

framework. In this chapter, we focus on static service composition.

From the composition approaches discussed in Chapter 2 it is clear that most of the

proposed approaches are not formal. There are a few exceptions, however these formal ap-

proaches focus only on composing service functionalities. The static composition method

presented in this chapter is both formal and complete. Formal composition constructs and

their semantics are defined. It is complete in the sense that the composition is defined on

all parts of ConfiguredService, not just on service functionality. The primary advantage of

formalism and completeness is that complex expressions of composed ConfiguredServices

can be constructed and subjected to formal analysis of quality properties. Formal analysis

is necessary because service expressions are often complex, involving many composition

operators, and hard to do by manual inspection at execution time. At the same time not all

properties should require formal verification. Moreover, the service-oriented architecture

88

should support formal verification by delegating it to an architectural unit. In Chapter 7,

we discuss these issues in some depth, and provide a formal verification approach based on

UPPAAL model checker.

5.1 Composition Constructs

The term compositionality refers to the ability to compose system specifications, and the

term composition refers to a specific method for composing sub-systems. The formal man-

ner in which we have defined a ConfiguredService makes our service-oriented system com-

posable. Because, we attempt composition at the ConfiguredService level. Since Config-

uredService formalism is model-based and compositionality of model-based specifications

have been studied we are justified to claim that ConfiguredService specifications are com-

posable. With this basis we discuss composition methods in this section. Inspired by the

work [WMA09], we define the composition constructs and informally motivate their mean-

ings by stating their intended execution behavior. Services require resources at execution

time. Lack of adequate resources will have an adverse impact on the quality of service. So,

in giving semantics for composite services we assume that resources are available at exe-

cution time for executing all services in the composition. Only under such ideal situation a

fair semantics can be given.

We also define a graphical notation for each composition construct. They are intended

to be used by non-experts. The graphical notations can be transformed into formal service

expressions.

A service provider creates a service expression involving the names of ConfiguredSer-

vices and composition constructs. All composition constructs in a service expression have

the same precedence, and hence a service expression is evaluated from left to right. To

enforce a particular order of evaluation, parenthesis may be used. The result of evaluating

a service expression is a ConfiguredService and the service provider publishes this result.

So, a published service is either atomic in the sense that it is not a composed service or it is

composite in the sense that it is a composition of at least two atomic services. Note that the

89

atomic ConfiguredServices used in producing a composite ConfiguredService might not be

published by a service provider.

5.1.1 Sequential Composition Construct �
Given two ConfiguredServices A and B, the service expression A � B defines a Config-

uredService C which is the sequential composition of A and B. The intended execution

behavior of the ConfiguredService C is the execution behavior of B immediately after the

execution of A. That is, service A is to be executed first and its output is to be used in

the execution of ConfiguredService B, in addition to any input that B may require, in or-

der to fully realize the behavior of C. The service provider who composes A � B will

publish the service parts of A and B in the service part of C, explicitly making clear the

output of A that will be used as the input for B. The contract part of C will meet his

business objectives. If we subject the informal and formal descriptions of C to the analy-

ses discussed in Section 4.3 we should guarantee this behavior. In general, the expression

A1 � A2 . . . � Ak denotes the execution of ConfiguredService Ai+1 with the result of

execution of Ai as its input, for i = 1, . . . , k − 1, in addition to other input that Ai+1 might

need. Figure 7 illustrates the graphical notation for representing sequential composition.

Example 1 Let A be the service ’airline booking’, B be the service ’hotel booking’ and

C be the service resulting from the sequential composition of A and B. The business

motivation for this composition might be that the hotel is a trading partner with the airline,

offering special discounts to a specific set of airline customers. This necessitates airline

booking confirmation before feeding its output in attempting hotel booking. The service

provider, by hosting the composite service, might benefit economically. The consumer will

see the service parts for A and B in the published ConfiguredService C.

90

A B

Figure 7: Sequential Composition

5.1.2 Parallel Composition Construct ||
Given two ConfiguredServices A and B, the service expression A||B defines the parallel

composition of A and B. The parallel composition A||B service models the simultane-

ous executions of ConfiguredServices A and B. Therefore the resulting behavior of this

composite service should be the merging of their individual behaviors in time order. That

is, an execution of the composite service should trigger both services A and B to begin

at the same instant, and terminate only when both services have finished their executions.

The publication of the composite service A||B will include the service parts of A and B.

Figure 8 illustrates the graphical notation for representing parallel composition. In general,

the evaluation of the expression A1 ‖ A2 ‖ . . . ‖ Ak will create k service execution threads,

one for each ConfiguredService.

Example 2 Let A be the service ’airline booking’, B be the service ‘hotel booking’ and C

be the parallel composition of A and B. The business motivation for this composition might

be that the service provider is a travel agent who can only provide a package of air tickets

and hotel reservations. Although the two services are independent from each other they

both should be confirmed before the service provider executes C. The consumer should see

the service parts of both ConfiguredServices A and B in the published ConfiguredService

C.

91

A

B

Figure 8: Parallel Composition

5.1.3 Priority Composition Construct ≺
Priority construct is very effective in stating the choice of service from a sequence of ser-

vices such that the chosen service is the earliest service in the sequence that either does

not fail or satisfies all user constraints. Given two ConfiguredServices A and B, the ex-

pression C = A ≺ B states (1) 〈A, B〉 is a sequence of services (ordered), and (2) the

service execution of A should be attempted first, and if it succeeds, the service B is to

be discarded, and (3) otherwise, the execution of service B should be attempted. So, the

behavior of this expression is the behavior of the earliest service in the list of services that

can successfully execute. Hence, the publication of C should include the publications of A

and B. The meaning of the expression A1 ≺ . . . ≺ Ak is either none of the listed service

execute successfully or

• services A1, . . . , Aj−1, for some j, 1 ≤ j < k fails to execute, and

• Aj can be executed successfully.

In the former case the service expression is null, meaning no service is executed. In the

later case the behavior of A1 ≺ . . . ≺ Ak is the behavior of Aj . Figure 9 illustrates our

graphical notation for representing priority composition.

92

Example 3 A service provider who priority composes C = A ≺ B, where the Configured-

Service A is ‘booking in airline A’, and the ConfiguredService B is ’booking in airline

B’, will publish both A and B and indicate in the service part of C the priority sequence

〈A, B〉. The business motivation for this composition might be that the service provider

gets a higher commission from the first service.

A B

Figure 9: Priority Composition

5.1.4 Composition with No Order Construct �

Given two ConfiguredServices A and B, the executed behavior of the expression C =

A�B is either the behavior of A � B or the behavior of B � A, except that the result

output from executing the first service is not passed as input to the execution of the second

service. That is, their inputs are independent. This does not necessarily mean that the

services can be executed in parallel, although the executions may be started simultaneously

this is not imposed. Therefore, the result of the composition is the set of results produced

by the executions of (1) B followed by A, (2) A followed by B, and (3) A and B in

parallel. Figure 10 illustrates our graphical notation for representing no order composition.

In general, the expression A1�A2� . . . �Ak defines the composition of services Ai, i =

1, k when all of them may be executed in no specific order. This composition type is useful

when a large random sampling of service orderings is required.

Example 4 A service provider publishes the composite service obtained by the no order

composition of ’A: airline booking service’ and ’B: car renting service’. The business

motivation for this composition might be that the service provider is a travel agent and he

93

can only provide a package of air tickets and car renting. The two services are independent

from each other and either service can be executed before the other. The consumer might

see the listing of ConfiguredServices A and B as part of the published service.

A

B

Figure 10: No Order Composition

5.1.5 Nondeterministic Choice Composition Construct �
Given two ConfiguredServices A and B, the service expression A � B defines the execu-

tion behavior of one of the services to be executed nondeterministically. This meaning is

extended for the general case C = A1 � . . . � Ak with k operands. So, the service provider

should include the ConfiguredServices A1, . . . , Ak in the publication of C. Figure 11 illus-

trates our graphical notation for representing nondeterministic choice composition.

Example 5 A service provider publishes the composite service obtained by the nondeter-

ministic choice composition of ’airline booking service A’ and ’airline booking service B’.

The business motivation for this composition might be that the service provider gets the

same commission from both services. Hence, both services have the same priority.

94

A

B

Figure 11: Nondeterministic Composition

5.1.6 Conditional Choice Composition Construct (if-else) �

Given two ConfiguredServices A and B, the behavior of the service expression C = A�c B

is the behavior of A if �c evaluates to true, otherwise the behavior of C is the behavior of

B. Figure 12 illustrates our graphical notation for representing conditional choice com-

position. The publication of service C will include the publications of A and B and the

condition for selecting one of them.

Example 6 A service provider publishes the composite service obtained by the condi-

tional choice composition C = A �c B, where A denotes the ‘booking service in air-

line A’, B denotes the service ‘booking service in airline B’, and �c is the condition

DEPARTURE == Montreal. The business motivation for this composition might be

that the service provider gets a higher commission from the first service if the departure is

from Montreal and a higher commission from the second service if the departure is from

any other city.

5.1.7 Iteration Composition Construct (while) ◦
The behavior of the composition A◦c is the iterative accumulative behavior of executing

service A as long as the condition ◦c remains true. Figure 13 illustrates the graphical

95

 B

 A

c

True

False

Figure 12: Conditional Composition

notation for representing iteration composition.

Example 7 A service provider publishes the composite service obtained by the iterative

composition of ’hotel booking service’ as long as rooms are available. As part of this pub-

lication the full ConfiguredService description for hotel booking service, and the condition

for booking will be included. The contractual details will be comprehensive for available

rooms. The business motivation for this composition might be that the service provider gets

a higher discount from this hotel than any other hotel. So he prefers to reserve all rooms in

this hotel.

Ac

True

Fa
ls

e

Figure 13: Iteration Composition

96

A

B

c1

Tr
ue

Fa
ls

e

D

C

Fc2
True

Fa
ls

e

Figure 14: Execution logic of (A �c1 B) � (C||D) � F◦c2

Example 8 The execution logic of the composite service (A �c1 B) � (C||D) � F◦c2 ,

shown in Figure 14, is obtained by putting together the execution logics defined above.

5.2 Semantics of ConfiguredService Compositions

Every service provider has a business model. Motivated by the business rules and logic

in the model, a service provider will determine the nature of composition for services. We

want to emphasize that the meaning of a composition primarily rests on the chosen business

goals and rules. Consequently, service compositions are very much unlike action composi-

tions based purely on preconditions and postconditions. As an example, a service provider

may form A � B because it is either technically necessary or advantageous in business

terms to provide service B following the completion of service A. That is, service B cannot

be realized without first executing service A. This is analogous to ‘bootstrapping’ before

invoking any other system function in the domain of computing services. This implies

that the precondition for invoking a system function includes the precondition for invoking

‘bootstrapping’, however it might require more conditions to be met. Moreover, the post-

condition of ‘bootstrapping’ and the postcondition of the system function invoked after that

are both observed. In some domains, it might happen that the precondition for invoking ser-

vice B is exactly the same as the postcondition of the first service A, and is not observable.

Only the postcondition of B, after B is completed, may be observable. Given such subtle

scenarios, it is hard to give one ‘fixed’ semantics for service compositions. The semantics

97

given below formalizes the informal explanations given in Section 5.1. By providing a

formal semantics for composition constructs we are motivating a theory of composition in

which complex service expressions can be meaningfully expressed and interpreted. From

the formal representation of a composite ConfiguredService, it is possible to generate more

than one consistent informal ConfiguredService representation. The service provider stands

to benefit by this flexibility.

Below we let A = 〈σA, μA〉, and B = 〈σB, μB〉 denote two ConfiguredServices,

where σA = 〈fA, κA, αA〉, σB = 〈fB, κB, αB〉, μA = 〈δA, lA, βA〉, μB = 〈δB, lB, βB〉,
fA = 〈gA, iA, prA, poA〉, fB = 〈gB, iB, prB, poB〉, gA = 〈nA, dA, uA〉, gB = 〈nB, dB, uB〉,
iA = 〈mA, qA〉, iB = 〈mB, qB〉, κA = 〈pA〉, κB = 〈pB〉, δA = 〈trcsA

, trpA
〉, δB =

〈trcsB
, trpB

〉, trcsA
= 〈ρA, εA, ψA, ηA〉, trcsB

= 〈ρB, εB, ψB, ηB〉, trpA
= 〈ceA, pgA, reA〉,

trpB
= 〈ceB, pgB, reB〉, βA = 〈rA, cA〉, and βB = 〈rB, cB〉. For the sake of simplicity we

assume that the currency type cType and the unit type uType are the same for all services.

The result of a composition is a ConfiguredService.

5.2.1 Semantics of Sequential Composition

The sequential composition A � B of ConfiguredServices A and B is a ConfiguredService,

expressed as the tuple 〈σA�B, μA�B〉 whose components are defined below.

• Service: σA�B = 〈fA�B, κA�B, αA�B〉

1. Function: fA�B = 〈gA�B, iA�B, prA�B, poA�B〉, gA�B = 〈nA�B, dA�B, uA�B〉,
iA�B = 〈mA�B, qA�B〉, where

98

gA�B :

nA�B = nA � nB naming convention

dA�B = dA ∪ dB combine input data parameters

uA�B = {uA, uB} both function addresses are necessary

iA�B :

mA�B = mA � mB naming convention

qA�B = qA ∪ qB combine output parameters

prA�B = prA ∪ (prB \ poA) if B requires more constraints

prA�B = prA if B does not require more constraints

poA�B = poA ∪ poB if poA is not used as an input of B

poA�B = poB if poA is absorbed as an input for B

2. Nonfunctional Properties: κA�B = 〈pA�B〉 where, pA�B = 〈aA�B, cuA�B,

unA�B〉 where cuA�B = cuA = cuB, unA�B = unA = unB, and

aA�B =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

aA + aB normal pricing

max{aA, aB} promotional

min{aA, aB} special sale

3. Attributes: αA�B = αA ∪ αB

• Contract: μA�B = 〈δA�B, lA�B, βA�B〉, where

1. Trustworthiness: δA�B = 〈trcsA�B
, trpA�B

〉, where trcsA�B
= 〈ρA�B, εA�B,

ψA�B, ηA�B〉, trpA�B
= 〈ceA�B, pgA�B, reA�B〉 and

– Safety (timeliness): ρA�B = ρA + ρB.

– Safety (data): ρA�B = ρA ∧ ρB.

– Security: εA�B = εA ∪ εB.

– Availability: ηA�B = ηA + ηB.

99

– Reliability: ψA�B = ψA + ψB.

– ProviderTrust: Given a set st of trust values, it should be possible to de-

fine avg(st), choose(st), glb(st), and lub(st) which respectively computes

the average, selects randomly one value, and computes the least and great-

est values from the set st. Any one of these functions may be used by

the service provider in providing ce and re. Each choice has some sig-

nificance. Choosing avg reflects ‘unbiased views of customers’, choosing

choose reflects a randomly selected customer opinion, choosing glb reflects

a conservative estimate, and choosing lub reflects the optimistic opinion of

customers. For illustration, we use the function glb. We compute the trust

sets as:
ceA\B = {(a, b) | (a, b) ∈ ceA, (a, b) /∈ ceB}

Recommendation given for A only

ceB\A = {(a, b) | (a, b) /∈ ceA, (a, b) ∈ ceB}
Recommendation given for B only

ceA∩B = {(a, b) | (a, b1) ∈ ceA, (a, b2) ∈ ceB, b = glb(b1, b2)}
Recommendation given for A and B

Similar sets for re are defined. The trust for the composition A � B can

be defined for different semantics.

∗ Business Logic: Service A is required for service B. In this situation

the expectation is that those who bought service B should have ob-

tained service A, and hence they bought the service A � B. That is,

the recommendation for B dominates. With this semantics we define
ceA�B = ceA∩B ∪ ceB\A

reA�B = reA∩B ∪ reB\A
∗ Business Logic: Those who bought service A are most likely to buy

service B. In this situation buying A is a certainty. Not everyone

who bought A may buy B. That is, service recommendation for A

dominates. With this semantics we define

100

ceA�B = ceA∩B ∪ ceA\B

reA�B = reA∩B ∪ reA\B
∗ Business Logic: Both services are packaged together: With this se-

mantics the service provider has to collect the sets ce and re from

clients and organizations for the new service.

In all above situations

pgA�B = pgA ∧ pgB

2. Legal Issues: lA�B = lA ∪ lB, defined as the union of the issues of A and B.

3. Context: We use the semantics of context union (�) and sub-context (�), as

defined by Wan [Wan06]. These are defined essentially using relational seman-

tics. For ConfiguredServices A the context is βA = 〈rA, cA〉. This means that

rA is true in context cA in order that A may be provided. Once the service A

has been provided, the context and rules that are true in that context should be

computed. Letting these rules r′A and the context c′A, we need to merge them

with rB and cB, βB = 〈rB, cB〉 to arrive at βA�B. With this rationale, we define

βA�B = 〈rA�B, cA�B〉, rA�B = r′A ∪ rB, and cA�B = c′A � cB, the smallest

closure of contexts c′A and cB. It is expected that c′A � cB holds for most of the

applications, because anything outside of cB can be ignored.

5.2.2 Parallel Composition Semantics

The parallel composition A||B of the ConfiguredServices A and B is a ConfiguredService,

expressed as the tuple 〈σA||B, μA||B〉 whose components are defined below.

• Service: σA||B = 〈fA||B, κA||B, αA||B〉

1. Function: fA||B = 〈gA||B, iA||B, prA||B, poA||B〉, gA||B = 〈nA||B, dA||B, uA||B〉,
iA||B = 〈mA||B, qA||B〉, where

101

gA||B:

nA||B = nA � nB naming convention

dA||B = dA ∪ dB both input data parameter sets are required

uA||B = {uA, uB} both function addresses are required

iA||B:

mA||B = mAn � mB naming convention

qA||B = qA ∪ qB both output data parameter sets will be available

prA||B = prA ∪ prB preconditions are mutually disjoint

poA||B = poA ∪ poB both postcondition sets are available

2. Nonfunctional Properties: κA||B = 〈pA||B〉, where pA||B = 〈aA||B, cuA||B,

unA||B〉 and:

aA||B = aA + aB

cuA||B = cuA = cuB

unA||B = unA = unB

3. Attributes: αA||B = αA ∪ αB

• Contract: μA||B = 〈δA||B, lA||B, βA||B〉, where

1. Trustworthiness: δA||B = 〈trcsA||B , trpA||B〉, where trcsA||B = 〈ρA||B, εA||B, ψA||B,

ηA||B〉, trpA||B = 〈ceA||B, pgA||B, reA||B〉 and

– Safety (timeliness): ρA||B = Max(ρA, ρB).

– Safety (data): ρA||B = ρA ∧ ρB.

– Security: εA||B = εA ∪ εB.

– Availability: ηA||B = Max(ηA, ηB).

– Reliability: ψA||B = Max(ψA, ψB).

– ProviderTrust: As in the case of A � B, we calculate the three sets for ce

and three trust sets for re. Using them we define trA||B = 〈ceA||B, pgA||B, reA||B〉
where,

102

ceA||B = ceA\B ∪ ceB\A ∪ ceA∩C

pgA||B = pgA ∧ pgB

reA||B = reA\B ∪ reB\A ∪ reA∩C

2. Legal Issues: lA||B = lA ∪ lB, defined as the union of the issues of A and B.

3. Context: βA||B = 〈rA||B, cA||B〉, where rA||B = rA ∪ rB, and cA||B = cA � cB.

5.2.3 Priority Composition Semantics

For the priority composition A ≺ B of the ConfiguredServices A and B the execution of

the ConfiguredService A first. If the execution is not successful, an execution to B will be

attempted. Example semantics is the one based on the satisfaction of context rules at stated

contexts. The composition semantics is

• if the service delivery context satisfies the context condition stated in A then the

execution of A is attempted and B is ignored;

• if the service delivery context satisfies the context condition stated in B then the

execution of B is attempted, and A is ignored;

• otherwise no service execution is attempted

Consequently, the resulting ConfiguredService is at most one of {A, B}.

5.2.4 Composition with No Order Semantics

The composition with no order A�B of ConfiguredServices A and B is ConfiguredService,

expressed as the tuple 〈σA�B, μA�B〉 whose components are defined below.

• Service: σA�B = 〈fA�B, κA�B, αA�B〉

1. Function: fA�B = 〈gA�B, iA�B, prA�B, poA�B〉, gA�B = 〈nA�B, dA�B, uA�B〉,
iA�B = 〈mA�B, qA�B〉, where

103

gA�B:

nA�B = nA � nB naming convention

dA�B = dA ∪ dB both input sets are required

uA�B = {uA, uB} both addresses are required

iA�B:

mA�B = mA � mB naming convention

qA�B = qA ∪ qB both output sets are generated

prA�B = prA ∪ prB

poA�B = poA ∪ poB

2. Nonfunctional Properties: κA�B = 〈pA�B〉, where pA�B = 〈aA�B, cuA�B,

unA�B〉 and:

aA�B = aA + aB

cuA�B = cuA = cuB

unA�B = unA = nuB

3. Attributes: αA�B = αA ∪ αB

• Contract: μA�B = 〈δA�B, lA�B, βA�B〉, where

1. Trustworthiness: δA�B = 〈trcsA�B
, trpA�B

〉, where trcsA�B
= 〈ρA�B, εA�B, ψA�B,

ηA�B〉, trpA�B
= 〈ceA�B, pgA�B, reA�B〉 and

– Safety (timeliness): ρA�B = t, where Max{ρA, ρB} ≤ t ≤ ρA + ρB.

– Safety (data): ρA�B = ρA ∧ ρB.

– Security: εA�B = εA ∪ εB.

– Availability: ηA�B = t, where Max{ηA, ηB} ≤ t ≤ ηA + ηB.

– Reliability: ψA�B = t, where Max{ψA, ψB} ≤ t ≤ ψA + ψB.

– ProviderTrust: As in the case of A � B, we calculate the three sets for ce

and three trust sets for re. Using them we define trA�B = 〈ceA�B, pgA�B, reA�B〉.

104

ceA�B = ceA\B ∪ ceB\A ∪ ceA∩C

pgA�B = pgA ∧ pgB

reA�B = reA\B ∪ reB\A ∪ reA∩C

The trust values in sets ceA∩B and reA∩B can be calculated as illustrated

for the composition A � B.

2. Legal Issues: lA�B = lA ∪ lB, defined as the union of the issues of A and B.

3. Context: βA�B = 〈rA�B, cA�B〉, where rA�B = rA ∪ rB, and cA�B = cA � cB.

5.2.5 Nondeterministic Choice Composition Semantics

The nondeterministic choice construct will result in choosing one service for execution.

Therefore, the semantics of the composition is the semantics of the service selected. For

example, βA�B = βA if A is chosen, otherwise βA�B = βB. In a similar manner we define

the other components of A � B.

5.2.6 Conditional Choice Composition Semantics (if-else)

The conditional composition A �c B will result in defining two ConfiguredServices. The

first ConfiguredService is equal to A and an attempt for its execution occurs if the condition

c is true. The second ConfiguredService is equal B and an attempt for its execution occurs

if c is false. The published ConfiguredService A�c B will include the publications of A and

B and the condition c for selecting one of them.

5.2.7 Iteration Composition Semantics (while)

The iterative composition A◦c can be defined using a finite number k of sequential com-

position, as A � A � . . . � A, when the condition ◦c explicitly contains the iteration

constant k (as in for loops). In this case the sequential composition semantics defined

above can be used in defining the composition of the ConfiguredServices. However when

◦c is like a ‘while loop specifying an invariant’ then we need the fixed point semantics

A◦c = A � A◦c. In general, the service expression A in A◦c can itself involve an iteration.

105

The semantics of evaluating such expressions is derived in a top down manner. The service

part of the published ConfiguredService contains the functionality of A and the condition

c. It defines the nonfunctional properties and trustworthiness guarantees as functions with

respect to the number of iterations. For example, if the cost of A is equal to 50$, the pub-

lished ConfiguredService will state that the price is equal to (50 ∗n)$, where is the number

of iterations.

5.3 Case Study - Auto Roadside Emergency Service

The Auto Road Emergency Example introduced in Section 4.5 requires a sequential com-

position of the three ConfiguredSerivces RepairShop rs, TowTruck tt, and CarRental cr.

In this section, we introduce the composition result using the formal definition presented in

Section 4.5 and the composition rules presented in this chapter. The composition is divided

into two steps. In the first step, the composition rs � tt is calculated. In the second step,

the composition rs � tt � cr is calculated.

5.3.1 Composing rs � tt

The composite ConfiguredService is the tuple srs�tt = 〈μrs�tt, σrs�tt〉, where the tuple

components are explained below.

Service: σrs�tt = 〈frs�tt, κrs�tt, αrs�tt〉 where,

1. Function: frs�tt = 〈grs�tt, irs�tt, prrs�tt, pors�tt〉 where,

• Signature: grs�tt = 〈nrs�tt, drs�tt, urs�tt〉, where nrs�tt = (ReserveRS&TT)

is the name, drs�tt = {(CarBroken, bool), (Deposit, double), (CarType, string),

(FailureType, string), (RequestTruck, bool), (ShopLoc, location), (CarLoc,

location)} are input data parameters, and urs�tt = (XXXY Y Y) is the ad-

dress.

• Result: irs�tt = 〈mrs�tt, qrs�tt〉 , where mrs�tt = (ResultRS&TT) is the

name and the set of output data parameters is qrs�tt = {(HasAppointment, bool),

106

(numberOfHours, int), (ShopLoc, location), (RequestConfi, bool)}.

• Precondition: prrs�tt = ((CarBroken == true)∧ (RequestTruck ==

true)).

• Postcondition: pors�tt = ((HasAppointment == true)∧ (RequestConfi ==

true)).

2. Nonfunctional: κrs�tt = 〈prs�tt〉, prs�tt = 〈ars�tt, curs�tt, unrs�tt〉, where ars�tt =

((60 ∗ numOfHours) + ((Distance/80) ∗ 100)) is the cost, curs�tt = (dollar) is

the currency, and unrs�tt = (oneT ime) is the pricing unit. The distance between the

repair shop and the broken car Distance is calculated using the following equation:

Distance = 3

√
(xShopLoc − xCarLoc)2 + (yShopLoc − yCarLoc)2 + (zShopLoc − zCarLoc)2

3. Attributes: αrs�tt = {(name = Garage1), (name = Truck1)}.

Contract: μrs�tt = 〈δrs�tt, lrs�tt, βrs�tt〉 where,

1. Trustworthiness: δrs�tt = 〈trcs, trp〉 where,

• ServiceTrust: trcs = 〈ρt〉 where ρt = 3days + 45minutes = 4365minutes.

• ProviderTrust: trp = 〈re〉 where re = {(CAA, Excellent)}.

2. Legal: lrs�tt = {(deposit = 300), (CarType == toyota), (method ==′′ Cash′′)}.

3. Context: βrs�tt = 〈rrs�tt, crs�tt〉, where rrs�tt = {(membership == caa)} is

the context rule and crs�tt = {(Location, (Montreal, Canada))} is the contextual

information of the repair shop service provider.

5.3.2 Composing rs � tt � cr

Using the composition result of rs � tt and using the sequential composition rules, we

can compose rs � tt � cr. The resulting ConfiguredService is the tuple srs�tt�cr =

〈μrs�tt�cr, σrs�tt�cr〉, where the tuple components are explained below.

107

Service: σrs�tt�cr = 〈frs�tt�cr, κrs�tt�cr, αrs�tt�cr〉 where,

1. Function: frs�tt�cr = 〈grs�tt�cr, irs�tt�cr, prrs�tt�cr, pors�tt�cr〉 where,

• Signature: grs�tt�cr = 〈nrs�tt�cr, drs�tt�cr, urs�tt�cr〉, where nrs�tt�cr =

(ReserveRS&TT&CR) is the name, drs�tt�cr = {(CarBroken, bool), (Deposit,

double), (CarType, string), (FailureType, string), (RequestTruck, bool),

(CarLoc, location), (ShopLoc, location), (NeedCar, bool), (CarSize, string),

(StartDate, date), (EndDate, date)} are input data parameters, and urs�tt�cr =

(XXXY Y Y ZZZ) is the address.

• Result: irs�tt�cr = 〈mrs�tt�cr, qrs�tt�cr〉 , where mrs�tt�cr = (ResultRS

&TT&CR) is the name and the set of output data parameters is qrs�tt�cr =

{(HasAppointment, bool), (numberOfHours, int), (ShopLoc, location), (Re

questConfi, bool), (HasCar, bool), (ConfNum, string)}.

• Precondition: prrs�tt�cr = ((CarBroken == true)∧ (RequestTruck ==

true)∧ (NeedCar == true)).

• Postcondition: pors�tt�cr = ((HasAppointment == true)∧ (RequestConfi

== true)∧ (HasCar == true)).

2. Nonfunctional: κrs�tt�cr = 〈prs�tt�cr〉, prs�tt�cr = 〈ars�tt�cr, curs�tt�cr, unrs�tt�cr〉,
where ars�tt�cr = ((60∗numOfHours)+((Distance/80)∗100)+((EndDate−
StarDate)∗30)) is the cost, curs�tt�cr = (dollar) is the currency, and unrs�tt�cr =

(oneT ime) is the pricing unit.

3. Attributes: αrs�tt�cr = {(name = Garage1), (name = Truck1), (name ==

Renatal)}.

Contract: μrs�tt�cr = 〈δrs�tt�cr, lrs�tt�cr, βrs�tt�cr〉 where,

1. Trustworthiness: δrs�tt�cr = 〈trcs, trp〉 where,

• ServiceTrust: trcs = 〈ρt, εcr〉 where ρt = 3days+45minutes = 4365minutes

and εcr = {(encryption = 128)}.

108

• ProviderTrust: trp = 〈re〉 where re = {(CAA, Excellent)}.

2. Legal: lrs�tt�cr = {(deposit == (300 + 200)), (CarType == toyota), (TowPay

Method ==′′ Cash′′), (RentalPayMethod == ”CreditCard”)}.

3. Context: βrs�tt�cr = 〈rrs�tt�cr, crs�tt�cr〉, where rrs�tt = {(membership ==

caa)} is the context rule and crs�tt = {(Location, (Montreal, Canada))} is the

contextual information of the repair shop service provider.

5.4 Summary

In this Chapter, we discussed composability and static compositions for ConfiguredSer-

vices. We defined several composition constructs, explained informally the meaning of

service expressions, and gave a formal semantics for compositions. We illustrated these

concepts for composing the services in the auto roadside emergency service.

109

Chapter 6

Composition Verification

A service composition consists of multiple interacting ConfiguredServices that provide a

functionality to meet a specific set of requirements. It is essential to verify that the func-

tional behavior of the service composition meets the published functionality of the service

composition while taking into consideration the nonfunctional, legal and contextual condi-

tions. The verification is necessary regardless of the composition method. In other words,

the composition resulting from static service composition or dynamic service composition

should be verified. Since both compositions have the same set of operators the verification

approach presented in this section is valid for both static and dynamic compositions.

Instead of defining a new verification tool to verify the service composition we follow

a transformation approach. In this approach, a formally defined service composition can

be automatically transformed into a model understood by an available verification tool that

can then be used to perform the formal verification. The goal in our research is to use

different verification tools in order to verify a wide range of properties and target different

kinds of systems. This is because different verification tools differ in their requirements

and abilities. In this section, we define the transformation rules to generate a model that

can be verified using UPPAAL [BDL04a] model checking tool. The rest of this section

is structured as follows. First, we present a brief account of the model checking tool UP-

PAAL. Second, the rules to transform a service composition into a UPPAAL model are

presented. Third, the verification process is discussed. Finally, an example is presented to

110

illustrate the verification process.

6.1 A Brief Review of UPPAAL

UPPAAL [BDL04b] is a mature tool for the modeling, simulation and verification of real-

time systems. It is designed to verify systems which can be modeled as networks of timed

automata (TA) extended with integer variables, structured data types, and channel synchro-

nization. A TA is a finite-state machine extended with clock variables. It can be formally

defined as a tuple 〈L, L0, K, A, E, I〉, where L is a set of locations denoting the states, L0

is the initial state, K is a set of clocks, A is a set of actions that cause transitions between

locations, E is a set of edges, E ⊆ L × A × B(K) × 2k × L, where B(K) is the set of

data and time constraints that restrict the transitions and 2k is the set of clock initializa-

tions to set clocks whenever required, I is a set of invariants, where I : L → B(K) is a

function that assigns time constraints to clocks. UPPAAL extends the definition of TA with

additional features. Below are some of these features that are relevant to our goal.

• Templates: TAs are defined as templates with optional parameters. Parameters are

local variables that are initialized during template instantiation in system declaration.

• Global variables: Global variables and user defined functions can be introduced in

a global declaration section. Those variables and functions are shared and can be

accessed by all templates.

• Binary synchronization: Two TA can have a synchronized transition, caused by an

event, when both move to new state at the same time when the event occurs. An event

that causes synchronous transition is defined as a channel, a UPPAAL data type. A

channel can have two directions: input (labeled with ?) and output (labeled with!).

• Committed Location: Time is not allowed to pass when the system is in a committed

location. If the system state includes a committed location, the next transition must

involve an outgoing edge from the committed location.

111

• Expressions: There are three main types of expressions (1) Guard expressions,

which are evaluated to Boolean and used to restrict transitions, they may include

clocks and state variables, (2) Assignment expressions, which are used to set values

of clocks and variables, and (3) Invariant expressions, which are defined for locations

and used to specify conditions that should be always true in a location.

• Edges: Edges denote transitions between locations. An edge specification consists

of four expressions (1) Select, which assigns a value from a given range to a defined

variable, (2) Guard, an edge is enabled for a location if and only if the guard is

evaluated to true, (3) Synchronization, which specifies the synchronization channel

and its direction for an edge, and (4) Update, an assignment statements that reset

variables and clocks to required values.

UPPAAL can be used by users to specify a checking formula that contains a set of prop-

erties. The checking formula can be a combination of the following [BY04]: (1) A[]ϕ,

which means ϕ will invariantly happen, (2) E<>ϕ, which means ϕ will possibly happen,

(3) A<>ϕ, which means ϕ will always happen eventually, (4) E[]ϕ, which means ϕ will

potentially always happen, and (5) ϕ--> ψ, which means ϕ will always lead to ψ. Where

ϕ and ψ are Boolean expressions defined on locations, integer variables, and clocks con-

straints. The properties that can be checked using UPPAAL are [BDL04b]:

• Reachability: UPPAAL can check whether or not it is possible to reach a certain

location. It also checks whether or not there is a deadlock in the system.

• Safety: UPPAAL can check whether or not anything bad will ever happen, declared

in UPPAAL as something good is always true.

• Liveness: UPPAAL can check whether or not something will happen eventually.

112

6.2 Transforming the Service Composition into UPPAAL

TA

This section presents the rules for transforming a service composition into a UPPAAL

TA. Let S = {s1, ..., sn} be the set of ConfiguredServices to be composed. Let Υ be the

composition expression defining the composition, and SC = 〈S, Υ, μ, σ〉 be the resulting

composition. Let TA = 〈L, L0, K, A, E, I〉 be the definition of a UPPAAL TA, where L

is a set of locations denoting the states, L0 is the initial state, K is a set of clocks, A is a

set of actions that cause transitions between locations, E is a set of edges, and I is a set of

invariants. The transformation rules will construct T = {ta1, ..., tan}, a set of UPPAAL

templates. The first step is to define the following in the global declaration section in

UPPAAL.

1. Two channel variables are defined for each si. The first represents the request and

the second represents the response.

2. A Boolean variable is defined for every precondition and input parameter in SC

and assigned to true. These variables are used to verify if preconditions and input

parameters exist before execution.

3. A Boolean variable is defined for every postcondition and output parameter in SC

and assigned to false. These variables are used to verify if postconditions and output

parameters exist after execution.

4. A typed variable is defined for every parameter in SC. The type can be any simple

type, such as int, or a structured data type.

5. The following variables of type double are defined and assigned to 0 for each

composition flow:

• PathPrice, which represents the total price of the composition flow.

• PathAvailability, which represents the availability of the composition flow.

113

• PathReliability, which represents the reliability of the composition flow.

• PathTime, which represents the safety time guarantee of the composition flow.

6. Boolean variables representing the elements of the legal issues are defined. These

variables are used in defining the Legal issues as Boolean statements.

7. A UPPAAL structure that represents the contextual information of the service re-

quester is defined. The structure contains dimensions and associated tag values.

6.2.1 Transformation Rules

The transformation rules are divided into two sets. The first set defines the rules to trans-

form an individual ConfiguredService into a TA. The second set defines the rules to trans-

form the composition flow into a TA.

Rules to Transform a ConfiguredService Each ConfiguredService can be mapped to a

UPPAAL template in a one to one manner. A ConfiguredService si = 〈μi, σi〉 is mapped to a

template tai = 〈Li, L0i, Ki, Ai, Ei, Ii〉. Following are the transformation rules to generate

tai for each si.

1. For each tai create two locations Li = {l1, l2}, and set the first location as the initial

state L0i = {l1}.

2. Create two edges Ei = {e1, e2} in tai, with edge e1 directed from l1 to l2 and edge

e2 directed from l2 to l1.

3. Define an action for each si and add it to Ai.

4. Add to edge e1 the following expressions:

(a) Add to guard the condition that all si preconditions are equal to true.

(b) Add to guard the condition that all si input parameters are available.

(c) Add to guard the condition that the si contextual rules are satisfied.

114

(d) Add to guard the condition that the si legal rules are satisfied.

(e) Add to Sync the channel variable corresponding to si request and follow it with

?.

5. Add to edge e2 the following expressions:

(a) Add to update the statement that assign all si postconditions variables to true.

(b) Add to update the statement that assign all si output parameters variable to true.

(c) Add to Sync the channel variable corresponding to si responses and follow it

with !.

Rules to Transform a Composite Service The next step is to generate the main TA that

maps to the composition execution flow. Before generating this TA, the composition flow

should be flattened to contain only sequential composition constructs �. In essence, every

composition flow can be flattened into multiple composition flows of ConfiguredServices

that are executed sequentially. This makes sense, as services are executed by a centralized

execution engine and this engine can only execute ConfiguredServices sequentially. For

some services the execution engine might wait for a response before executing another ser-

vice, for others it might send multiple requests without waiting for the response. Flattening

a parallel composition construct A||B will result in two composition flows. The first con-

tains A�̀B and the second contains B�̀A, where �̀ indicates that the sequential construct

resulted from flattening a parallel construct. This indication will be essential when trans-

forming to TA as it indicates no wait. Flattening each conditional choice construct A �c B,

priority construct A ≺ B, or nondeterministic choice construct A � B will result into two

composition flows, where the first contains A and the second contains B. Flattening each

no order composition construct A�B will result in two composition flows. The first con-

tains A � B and the second contains B � A. Flattening the iteration construct A◦c will

also result into two composition flow, where the first does not contain A and the second

contains one or many A.

115

Example 9 The composition (A �c1 B) � (C||D) � F◦c2 can be flattened into 8 com-

position flows, where Xc indicates that X is associated with condition c. These are: (1)

Ac1 � C�̀D, (2) Ac1 � C�̀D � Fc2... � Fc2, (3) Ac1 � D�̀C, (4) Ac1 � D�̀C �
Fc2... � Fc2, (5) B¬c1 � C�̀D, (6) B¬c1 � C�̀D � Fc2... � Fc2, (7) B¬c1 � D�̀C,

and (8) B¬c1 � D�̀C � Fc2... � Fc2.

The main TA will contain an idle state. For each flattened composition flow, a path of states

is created in the main TA starting from this idle state according to the following rules.

1. For each ConfiguredService create two states. The first represents the request for the

ConfiguredService and the second represents the completion of the execution.

2. For each ConfiguredService, if it contains a safety time constraint, create a new clock

and add the timing constraint as an invariant on the location. Exception: if the se-

quential construct resulted from parallel flattening X�̀Y , only add the invariant to

the state with the highest time constraint of X and Y , and make the other state a

committed state.

3. For each ConfiguredService create two edges. The first connects the state represent-

ing the previous ConfiguredService in the flow, except for the first ConfiguredService

where it connect idle state, to the first state defined in rule 1. The second connects

the first state to the second state of rule 1.

4. If the ConfiguredService is associated with a condition (conditional choice or iter-

ation condition), add this condition as a guard statement on the first edge of rule

3.

5. If the ConfiguredService has a safety data conditions, add this condition as a guard

statement on the first edge of rule 3.

6. If the ConfiguredService has a price, add to the second edge of rule 3 an update

statement that adds the price to the path price variable.

116

7. If the ConfiguredService has an availability property, add to the second edge of rule

3 an update statement that adds the availability to the path availability variable.

8. If the ConfiguredService has a reliability property, add to the second edge of rule 3 an

update statement that adds the reliability to the path reliability variable. Exception:

if the sequential construct resulted from parallel flattening, the update statement is

only added to the edge with the highest reliability value.

6.3 Verification Steps

Using UPPAAL editor, the ConfiguredServices and their composition are specified as UP-

PAAL templates following the automatic transformation rules defined in Section 6.2. With

UPPAAL verifier we can verify the following properties on the templates.

• Context: The context rules are not contradictory, and are met for each Configured-

Service.

• Functionality: The behavior of the composition is correct with respect to function-

ality, which includes verifying.

– The preconditions of each participating ConfiguredService are met before invo-

cation.

– The input parameters of each participating ConfiguredService are available be-

fore invocation.

– The composition generates the required postconditions and output parameters.

• Nonfunctional properties: The behavior of the composition is correct with respect

to nonfunctional properties, which includes verifying.

– The composition price is greater than or equal the price of any possible execu-

tion flow.

117

• Trustworthiness properties: The behavior of the composition is correct with re-

spect to the trustworthiness claims, which includes verifying.

– The composition safety time constraint is greater than or equal the time con-

straint of any possible execution flow.

– The composition availability time is greater than or equal to the availability time

of any possible execution flow.

– The composition reliability value is greater than or equal to the reliability value

of any possible execution flow.

• Legal issues: The legal rules are not contradictory, and are met for each Configured-

Service.

6.4 Case Study - Auto Roadside Emergency Services

Applying the transformation rules defined above to the service composition RepairShop �
TowTruck � CarRental introduced in Section 5.3, the composition is transformed into

4 TA’s mapped to 4 UPPAAL templates, a template for each ConfiguredService and a tem-

plate for the composition flow. The TA mapped to the ConfiguredService RepairShop is

tars = 〈Lrs, L0rs, Krs, Ars, Ers, Irs〉, as seen in Figure 6.15(a), where the tuple compo-

nents are explained below

• The set of locations is Lrs = {idle, RepairShopProcessing} and the initial location

is L0rs = idle.

• The set of clocks is krs = {k1} and the set of invariants is Irs = {(k1 ≤ 3)}.

• The set of actions is Ars = {ScheduleApt, AptConfirmed}.

• The set of edges is Ers = {(idle−RepairShopProcessing), (RepairShopProcessing−
idle)}.

118

(a) (b) (c)

Figure 15: a) RepairShop TA, b) TowTruck TA, and c) CarRental TA

• The edge connecting ’idle’ to ’RepairShopProcessing’ has the following statements,

where ’parameterB’ refers to the variable indicating the availability of the parameter

’parameter’:

– Guard: (RequesterContext.membership==1)&&(CarBroken==true)

&&(carType==toyota)&&carTypeB&&failureTypeB&&DepositB.

– Synchronous: ScheduleApt?.

The edge connecting RepairShopProcessing to idle has the following state-

ments:

– Update: HasAppointment =true,NumOfHoursB=true,Deposit=Deposit

+300,ShopLocB=true.

– Synchronous: AptConfirmed!.

The TAs mapped to the ConfiguredServices TowTruck and CarRental are created in the

same manner. Figure 16 shows the generated main TA. In this example, we assume that

the pricing unit is uniform and that the price for the ConfiguredServices Repair Shop, Tow

Truck and Car Rental, are 300$, 100$ and 180$ respectively. UPPAAL is used to verify

119

Figure 16: Resulted Main TA

several properties listed below. The notations M.i and M.Final_1 are used to denote the

initial and final states of the TA M.

• The composition does not contain any contradiction and can be executed. If the

UPPAAL statement E<> M.Final_1 is verified it implies that it is possible to

reach the final state of the composition flow. Reaching the final state indicates that

all conditions are met and no contradictions exist.

• The context rules are met. For each context rule an UPPAAL verification condition is

generated and verified. For example, A[] M.i imply RequesterContext.

age>=21 is the condition to be verified to assert that the requester is older than

21. Here, RequesterContext is the UPPAAL structure holding the contextual

information of the service requester.

• The composition input parameters are defined before executing the composition flow.

For example, A[] M.i imply failureTypeB is the condition to be verified in

order to assert that the car failureType parameter is available before execution.

Here, failureTypeB is a Boolean variable representing the availability of the

parameter failureType.

• The composition output parameters are defined after executing the composition flow.

For example, A[] M.i imply !NumOfDaysB is the condition to be verified in

order to assert that the number of days needed to fix the car are not known before

executing the composition. The statement A[] M.i imply !NumOfDaysB, if

verified, asserts that the number of days is known after executing the composition.

120

The parameter NumOfDaysB is a Boolean variable representing the availability of

the parameter NumOfDays.

• The preconditions are met before executing the composition and the postconditions

are met after. For example, A[] M.i imply NeedCar==true will have to be

verified to assert that the precondition “NeedCar” is true at the initial state.

• The composition of nonfunctional properties are correct. For example, A[] M.Fin

al_1 imply firstPathPrice <= 600 will have to be verified to assert that

the price of the composite service is less than 600, where 600 is specified as the price

of the service composition.

• The composition result of the legal rules are correct. For example, A[] M.Final_1

imply 400>=Deposit will have to be verified to assert that the deposit is less

than 400, if the legal rule states that “The service requester should deposit 400 before

requesting the service composition”.

6.5 Summary

The significant contribution of this chapter is the set of rules for transforming Config-

uredServices and their compositions to UPPAAL templates and using its model checking

checker to verify certain properties in the composite services. The entire process can be

automated. A tool has been implemented towards this purpose. The transformation pro-

cess and the tool design has been inspired by the work of Mohammad [Moh09], however

there are some significant differences between the two approaches. In [Moh09] safety and

security properties are verified, with no regard to context. In our tool, context-dependent

verification of safety and security properties are done. In addition, nonfunctional proper-

ties, legal rules, availability, and reliability are verified in the specified context. The proof

of correctness given in [Moh09] is easily extendable to prove the correctness of transfor-

mation discussed in this chapter.

121

Chapter 7

FrSeC

This chapter first gives a motivation for the formal framework for providing context-

dependent services (FrSeC) design and its essential features. Second, it introduces the main

components of FrSeC. Third, a detailed account of each FrSeC component is presented.

Fourth, the interface of each component is presented. Fifth, a comprehensive service inter-

action scenario supported by FrSeC is presented. Sixth, the adaptability features supported

by FrSeC are explained. Finally, the FrSeC description of the auto roadside emergency

service case study is described.

7.1 Motivation and Features

The provision of trustworthy context-dependent services requires a specific set of features,

such as support for context information, support for trustworthiness specification, and sup-

port for trustworthy interactions. From the extensive literature review presented in Chap-

ter 2, it is clear that currently no framework exists to support all these features. This is what

motivated us to introduce the formal framework for the provision of context-dependent ser-

vices (FrSeC) which supports these features. The following set of FrSeC features are neces-

sary for processing context-dependent service requests and providing trustworthy services.

1. Inclusion of contextual information: The contextual information is essential at four

122

stages. These are (1) service publication stage, where context information is a nec-

essary ingredient in constraining service contracts, (2) service request stage, where

a service request should state precisely the context in which the service is desired

to be delivered, (3) selection and planning stage, where contextual information in a

service query will be equated against the contexts in published services, and (4) ser-

vice execution stage, where the context condition will be verified at service execution

context.

2. Trusted transactions: Service requesters and service providers may remain anony-

mous during service provision; however it is the responsibility of the provision frame-

work to ensure trustworthy transactions. That is, a service may be provided only by

a certified service provider, and a service may be obtained only by an authorized

service requester. In addition, transactions should respect contracts and other legal

requirements that are imposed on service providers and service requesters.

3. Inclusion of nonfunctional and trustworthiness properties: A nonfunctional prop-

erty governs the quality of service, viewed both as a product and process. At ser-

vice specification level, service providers specify nonfunctional and trustworthiness

properties. In formulating a service query, service requesters specify their required

nonfunctional and trustworthiness properties. During selection and composition, the

nonfunctional and trustworthiness properties specified by providers and requesters

will be equated with each other to find the best match.

4. Dynamic selection: The increased number of services available and the frequent

dynamic updates to services make it hard for service requesters to select services

at design time. The service provision framework should be designed to allow ser-

vice requesters specify the requirements with the full knowledge that some service

bindings may occur only at run time.

5. Dynamic planning: Planning at service selection phase is static, while planning at

service provision phase is dynamic. During static planning, service selection requires

123

match-making between services announced by service providers and service requests

from service requesters. Service compositions at this phase are static. At service

execution time the contextual information and other user-centric requirements might

have changed. With the increased number of services and the increased composition

complexity, it is difficult to foresee such changes and have all service composition

preplanned in a static manner.

6. Semantic support: Semantic information is essential at three stages. At service

specification stage, services decorated with semantics will enable a best-match ser-

vice discovery. At service request stage, requesters can formulate their requirements

more precisely. At planning stage, both domain knowledge and the semantic infor-

mation are essential for match making, planning, and composition.

7. Fault-tolerance support: If a service fails or becomes unavailable at run time, the

service provision framework should recover from this failure by selecting alternative

services.

8. Use of formal methods: Formalism is necessary to (1) verify the interaction between

services by making sure there are no incompatible behaviors between services in a

composition, (2) achieve correct automatic composition by verifying that the com-

position satisfies the requirements of the requester, and (3) check the conformance of

requester requirements and the contracts of the services being provided.

9. Replanning: At run time, the contextual information of the service consumer and re-

quester might change. The provision framework should support a replanning process

to generate a new plan that best satisfies the requirements in the new context.

10. Negotiation Support: Service requesters might not find an exact match to their re-

quirements in published services. They might request some modification to existing

service contracts. Hence, a negotiation mechanism is essential.

124

 Service
Requester

 Service
 Provider

Execution
 Unit

 Service
 Registry

Planning
 Unit

 Plan
Negotiation
 Unit

 Trused
Authority

 Context
Gathering
 Unit

Figure 17: FrSeC Components

7.2 FrSeC Components

This section presents the components of FrSeC, which collectively have all the features

enumerated earlier. Figure 17 shows the components and the features they support.

• Service Requester (SR): It is the entity that is requiring a service. It represents the

client side of the interaction. It can be an application or another service. SR is to

fulfill the features 1, 2, 3, 6, 8, 9 and 10.

• Service Provider (SP): It is the entity that provides an implementation of a service

specification. SP publishes service descriptions as ConfiguredServices on registries

to enable automated discovery and invocation. It is also responsible for defining

static service compositions and publishing the resulted composite services. SP is to

fulfill the features 1, 3, 4, 6, 8 and 10.

• Context Gathering Unit (CGU): Contextual information from related sensors are

received and processed at a CGU. FrSeC contains at least three such units. One unit

gathers the contextual information related to SR and passes it to SR. The second unit

gathers contextual information related to SP and passes it to SP. The third unit gathers

contextual related to service execution and passes it to EU which might share it with

PU. CGU can also detect any change in contextual information. CGU is to fulfill the

125

features 1 and 9.

• Planning Unit (PU): It is responsible for (1) matching the SP query with available

ConfiguredSerivces, (2) ranking candidate ConfiguredServices according to the SP

requirements, and (3) composing services dynamically. PU is to fulfill the features 1,

2, 3, 4, 5, 6, 7, 8 and 9.

• Service Registry (SRe): It is responsible for enabling the publication and discovery

of services. It also provides semantic definitions for domain specific concepts. SRe

is to fulfill the features 1, 2, 3, 4, 5, 6, 7, 8 and 9.

• Plan Negotiation Unit (PNU): It acts as a mediator between SR and SP. Its two

main functions are (1) finalizing the contracts between SR and SP if no negotiation

necessary, and (2) mediating the negotiation between SR and SP, if necessary. After

the service contract is agreed upon, it will make sure the SP is still available and is

able to provide the required service. PNU is to fulfill the feature 10.

• Execution Unit (EU): It is responsible for executing a selected plan. The execution

process will include communicating with the SPs involved in the plan by sending

service requests and obtaining service responses. It is also responsible for respecting

the privacy rules between the SRs and SPs. EU is to fulfill the features 2, 4, 5, 7 and

9.

• The Trusted Authority (TA): The TA is responsible for (1) providing SRs and SPs

with certificates (tokens) that allow them to access SRe where the certificate type

depends on the legal and contextual information of the SR or SP, (2) enabling the

analysis of services before publication and after execution, and (3) the verification of

service compositions. TA is to fulfill the feature 2 and 8.

126

7.3 Details of FrSeC Components

Formal notations are necessary for precise communication among software architects and

developers. The semantic domain behind the formal notation will help to disambiguate

the behavior of architectural elements and help the developer formally assert that certain

properties are true in the system under development. The rest of this section presents

a detailed formal discussion of the main elements and interactions of FrSeC shown in

Figure 18.

 Service
Requester

 Service
 ProviderExecution

 Engine

 Service
 Registry*1

1 *

Query
Service
 lookup

LookupResultPlan(s)

Plan
Response

Response

Request

Planning
 Unit

Plan
 +

M
odifed Plan

 Plan
Negotiation
 Unit

 Context
Information

B
row

se

B
row

se\A
dd

D
om

ain Info

 Trusted
Authority

TokenToken
Token

Request Certificate

 Context
Information

 Context
Gathering
 Unit Context

Information

Ex
ec

ut
io

n
 C

on
te

xt

 Context
Gathering
 Unit

 Context
Gathering
 Unit

Plan

O
ptional

C
hanges

ConfiguredService
 +

Optional
Changes

ExecutableService
 +

Optional
Changes

Verify

R
esult

Publish

D
om

ain Info

Submit

Reject /Accept

A
nalyze

R
esult

A
nalyze Result Verify

R
esult

Figure 18: FrSeC Architecture

7.3.1 Service Registry (SRe)

The SRe is one of the main elements of the FrSeC framework. In this section, we are

dealing with the SRe as a black box which provides interfaces to accept services definitions,

to request the creation of domains, functions and parameters, and to query about services.

The internal process and implementations of the SRe are outside the scope of this thesis.

127

Before discussing the details of the SRe it is essential to emphasis that the SRe is not

intended to host services, they rather contain the service descriptions from SPs who wish

to make them public. Hence, the SRe is different from web stores, such the Apple Store.

The roles of the SRe are listed below.

• It publishes ConfiguredServices defined by SPs.

• It provides a methodology for providing domain knowledge and semantic informa-

tion that can be used by SPs, SRs and the PU.

• It uses Role Based Access Control (RBAC) [FK92] to regulate access to the domain

knowledge. Thus, the domain information is protected. Only authorized SRs and

SPs can access the parts to which they have received clearance.

The SRe is built and structured in a specific manner to perform its three main roles. It

is controlled by a centralized SRe administrator that will ensure the correctness, consis-

tency and security of information in SRe. By correctness we mean that the structure and

constraints of the SRe are preserved. For example, a functionality cannot be associated

with multiple domains and the administrator should ensure that such thing never happen.

Consistency means that the SRe does not contain any contradiction or redundancy. As an

example, redundancy arises when the same domain is defined with multiple types. Security

means that the SRe elements are accessed only by authorized SRs. The structure of the SRe

itself will add semantic meaning to the functionalities provided by the ConfiguredServices.

For example, the structure defines the relationship between domains and functionalities.

This relationship will add semantic meaning to the functionalities by associating it with

specific domain.

The SRe is built with the input received from SPs, who can ask the SRe administrator

to add domain knowledge to the SRe. This activity includes defining a new domain or a

new functionality under an existing domain. The SRe does not aim to define the concepts

themselves, but aims to structure the domain knowledge in a useful way for SPs, SRs

and the PU. The SRe assumes that the concepts are already well defined by SPs when

128

they perform the analysis of their respective domains. Below is a discussion of the SRe

structure.

 Contract Context

 Registry

Domain 2

...
...

...
..

Functionality 2

 ConfiguredService n

 ConfiguredService 1

 InputParameters

Service Provieder1

Service Provieder n

Service Provieder2 ...

...

Domain n

Domain 1

Domain 2.2

...
...

...
..

Domain 2.k

Domain 2.1

Functionality 1

Functionality n

...
..

...
..

...
..

 OutputParameters

Preconditions

Postconditons

Role(s)

Role(s)

Role(s)

Role(s)

Role(s)

Role(s)

Role(s)

Role(s)

Role(s)

Role(s)

NonFunctional

...
..

Figure 19: Service Registry

Registry Structure

This section introduces the proposed structure for the SRe. The proposed structure will

ensure (1) a simplified browsing by SRs and SPs, (2) a structure that highlights the semantic

relation between the different domains and functionalities, and (3) a secure access by SRs

and SPs with proper permissions. The SRe is structured as a tree and can be visualized as

in Figure 19. The root of this tree is the registry node, which consists of multiple domains

defined as its children. That is, the registry node J is a set {D1, D2, ..., Dn} where Di

represents a domain. A domain node represents a specific domain of knowledge, such as

transportation, health care or tourism. A functionality node represents a function that is

129

provided in this domain, such as “reserve a car in a tourism domain”. Domain nodes can

have children of type domain or functionality but not both.

A domain node that does not have any child domain node is called a leaf domain node.

Only a leaf domain node can have functionality nodes as children, because such a node

is the most specific domain for which the functionality is valid. A leaf domain can also

have nonfunctional nodes as children. These nonfunctional nodes represent the nonfunc-

tional properties that are associated with this domain. In general, a leaf domain D̂i may

have one or more functionalities and one or more nonfunctional properties. It is repre-

sented as the tuple 〈SF, NF, Φ〉 where SF is the set of service functionalities defined as

part of this domain, NF is the set of nonfunctional properties related to this domain and

Φ : {SF1, SF2, . . . , SFN} → P{NF1, NF2, ..., NFn} is a function that associates each

functionality with a subset of the functional properties associated with this domain. If

Φ(SFi) �= ∅ then every NF ∈ Φ(SFi) is a nonfunctional property of SFi.

One of the goals of the SRe is to control the access of the knowledge to the entities that

have the required permission. To achieve this goal, we will use Role based access control

(RBAC) [FK92] mechanism. RBAC is an approach to restrict the access to system parts

to a set of specific authorized users. The main concepts in RBAC are user, group, role,

and privilege. A group defines a set of related users. A user can be individual or belong

to one or more groups. A role defines a security responsibility that a user or a group of

users can take in the system. A privilege defines a permission to access a domain node or

a functionality node. A role comprises many privileges. A privilege can be assigned to

many roles. Domain nodes and functionalities nodes of the SRe have restricted access. The

SRe will assign roles to its domain and functionalities nodes. Also, the TA provides SRs

with certificates indicating their role. If the role in a certificate matches the role associated

with a domain node or functionality node then the SR bearing this certificate is allowed to

access such node.

Example 10 Figure 20 shows a simple SRe structure. This SRe consists of three domains

Domain1, Domain2 and Domain3. Domain1 does not have any child domain so a function-

ality can be added to this domain. On the other hand, Domain2 has Domain3 as a child. A

130

functionality cannot be added to Domain2 as a child, but a functionality can be added as a

child to Domain3.

 Domain 1

 Registry

 Domain 2 Domain 3

Figure 20: A Service Registry Example

A service functionality can have children nodes representing SPs, parameters, precon-

ditions and postconditions. The children nodes of each SP node are ConfiguredService

nodes that provide this functionality. A SP can be associated with multiple functionalities.

A functionality can be associated with multiple SPs. Each SP node has one or more Config-

uredService as its children. The parameters represent the set of data parameters used by the

ConfiguredServices to provide this functionality. This set is divided into input parameters

and output parameters. The precondition represents the minimum set of conditions that

should be true before invoking any of the ConfiguredServices that provide this functional-

ity. The postcondition represents the maximum set of conditions that are guaranteed to be

true after any ConfiguredService is invoked.

Formally, a service functionality is defined as the tuple SFi = 〈SP, Λ, prsfi
, posfi

〉,
where SP = {sp1, sp2, ..., spn} is the finite set of SPs who provide this service function-

ality, Λsf = {λi, λ2, ..., λn} is the finite set of parameters, prsfi
is the minimum set of

preconditions, and posfi
is the maximum set of postconditions. The set Λsf represents the

union of all the sets of parameters used by the different ConfiguredServices, and is the dis-

joint union of a set of input parameters Λsf input and a set of output parameters Λsf output,

such that Λsf = Λsf input ∪ Λsf output. A SP node is defined as the tuple SP = 〈S, id〉
where S = {s1, s2, ..., sn} is the list of ConfiguredServices associated with this SP, and id

is the SP identification represented as a string.

131

7.3.2 Service Requester (SR)

The SR is an idealization of a ‘real service requester’ in the system. All real service re-

questers will behave exactly according to the SR behavior discussed in this section.

To be able to select and invoke a service that meets its requirements, a SR should ini-

tiate a discovery process. The discovery process includes service query, service matching,

and service ranking. First, SR defines his requirements in the service query. Second, the

query is matched with available ConfiguredServices by PU. Third, PU ranks available can-

didate ConfiguredServices. Fourth, SR selects a ConfiguredService from the set of ranked

ConfiguredServices. The novelty of the discovery process supported by FrSeC is two-fold.

First, the discovery process takes into consideration legal requirements and context condi-

tions together with functional and nonfunctional requirements. Second, depending on the

requirements of the SR, FrSeC supports the two types of queries traditional style and buffet

style. The rest of this section discusses service query and matching. Service ranking is

discussed separately as part of the PU.

Traditional Style Query

In traditional style discovery, the SR has a clear idea about the requirements. But, the

semantic information necessary to define the query is missing. Hence, SR accesses SRe to

get the domain knowledge which will help in defining the query. The query process can be

defined in the following steps:

1. SR sends a request to the TA for a certificate to access SRe.

2. TA provides the certificate depending on the legal and contextual information of SR.

3. SR, with the help of the certificate, browses SRe to gain domain knowledge.

4. SRe provides SR with domain knowledge, such as available domains and their asso-

ciated functionalities.

5. SR uses this domain knowledge to construct the query and sends it to PU.

132

ServiceQuery

ContextInfo

Dimension

RequiredLegalissues RequiredNonFunctioalRequiredFunction

Functionality

Precondition

Postcondition

Parameter

Complex

Simple

ConfiguredService
 Trust

OtherNF

hasA
is-A

n1 n

n

1

n Zero or many

Concept

1 Exactly one

Domain

Price

ProviderTrust

n

1

1

n

n

Authentication
 Certificate

Value

Figure 21: Exact-match Query

6. PU defines and sends service lookups to SRe.

7. The service lookup result is then used by PU to match the query with available ser-

vices.

8. PU defines the query result (plan) and sends it to SR with its feedback if necessary.

Traditional style discovery can be either exact-match discovery or weighted-match dis-

covery as discussed below.

Exact-match Discovery: The requester is demanding an exact match to the require-

ments stated in the query. The candidate ConfiguredServices should be able to guarantee all

the requirements. The exact-match query, as shown in Figure 21, consists of the five main

parts required function, required nonfunctional properties, required legal issues, consumer

contextual information, and authentication certificate. The query also contains the set of

parameters that it needs. This set is a subset of the parameters associated with the func-

tionality it chose when accessing SRe. The required nonfunctional properties are a subset

of the nonfunctional properties associated with the functionality defined in SRe. The three

following definitions formalize an exact-match query.

Definition 12 An exact-match query qe is defined as qe = 〈f̂ , κ̂, ĉ, l̂, E, Λ̂〉, where f̂ is a

query required function, κ̂ is the nonfunctional requirement, l̂ is the legal rules require-

ments, ĉ is the contextual information of the service consumer, E is the authentication

133

certificate and Λ̂ is the set of parameters SR can provide or understand. The formal defi-

nitions of context information, legal rules and parameters are identical to the definitions in

Section 4.2.

Definition 13 The function is defined as f̂ = 〈p̂r, p̂o, D̂, ŜF 〉, where p̂r is the set of pre-

conditions of the required function, p̂o is the set of postconditions of the required function,

D̂ : string is the associated domain as defined in SRe and ŜF : string is the functionality

as defined in SRe. The formal definitions of precondition and postcondition are identical to

the one given in Section 4.2.

Definition 14 The nonfunctional property is defined as κ̂ = 〈ρ̂, ε̂, ψ̂, η̂, p̂, t̂r〉, where ρ̂ is the

required safety guarantee, ε̂ is the required security guarantee, ψ̂ is the required availability

guarantee, η̂ is required the reliability guarantee, p̂ is the maximum price required and t̂r is

the required provider trust guarantee. The formal definition of each nonfunctional property

is identical to the definition given in Section 4.2.

Example 11 If a SR is attempting an exact-match query for the repair shop functionality

defined in Chapter 4, the query could be defined as qe = 〈f̂ , κ̂, ĉ, l̂, E, Λ̂〉 where:

• f̂ = 〈p̂r, p̂o, D̂, ŜF 〉, where p̂r = (CarBroken == true), p̂o = (HasAppointm

ent == true), D̂ = (CarDomain), and ŜF = (RepairShopFunctionality).

• κ̂ = 〈p̂〉, where p̂ = 〈â, ĉu, ûn〉, â = (50), ĉu = (dollar) and ûn = (hour).

• l̂ = {(deposit = 500)}.

• ĉ = {(membership == caa)}.

• Λ̂ = {(CarBroken, bool), (deposit, double), (CarType, string), (failureType, string)}

Weighted-match Discovery: A weighted-match discovery is initiated when the SR

states the requirements and gives weights that should be assigned to them. The expectation

of SR is that the best matched services, that might not be exact matches, will be given.

That is, the ConfiguredServices received by the SR do not have to match all the stated

134

requirements. This situation arises because the SR is unsure that all his requirements have

equal importance.

When stating the query the requester assigns a weight, representing the priority, with

every property requirement. A higher weight indicates a higher priority. SR can also state

exact property to indicate that an exact match is necessary for this particular property. Stat-

ing the weight is valid for the elements of the required function, nonfunctional requirements

and the required legal rules. With respect to contextual information, SR can state more than

one possible set of contextual information. As an example, the context information for ser-

vice delivery can be either the service be delivered at home or at office. Each contextual

information will be assigned a weight to indicate the preference of the requester. In our fur-

ther discussion we assume that the assigned weights belong to the set {Low, BelowAverage,

Average, AboveAverage, High, Exact}, in which the values are listed in strictly increasing

order of priority.

Definition 15 A weighted-match query is defined as qw = 〈f̂ , κ̂, ĉ, l̂, E, Λ̂, Ξ〉, where f̂ , κ̂,

l̂, ĉ, E and Λ̂ are defined as in the traditional query, and Ξ : (x ∈ {Low, BelowAverage,

Average, AboveAverage, High, Exact}) → (y ∈ {p̂r, p̂o, ρ̂, ε̂, ψ̂, η̂, p̂, t̂r, l̂, ĉ)} is a func-

tion that assign weights to the elements of the weighted-match query.

Example 12 Adding weights to the query defined in Example 11 the weighted-match style

query will be defined as qw = 〈f̂ , κ̂, ĉ, l̂, E, Λ̂, Ξ〉 where f̂ , κ̂, ĉ, l̂, E and Λ̂ are defined

as in Example 11, and Ξ = {((CarBroken == true), Exact), ((HasAppointment =

= true), Exact), (p̂, High), ((deposit = 500), Average)}.

The matching process in weighted-match discovery considers all possible Configured-

Services even if some properties are not satisfied. All candidate ConfiguredServices will be

included in the matching result ServiceType, with the exception of the ConfiguredServices

that do not provide a match for a requirement with Exact weight.

135

Buffet Style Query

A buffet style query is one which should exactly match a ConfiguredService. The SR

browses the SRe before formulating such a query. We may assume that the SR feels that

a ConfiguredService matches his requirements. So, a buffet style query is processed as

follows:

1. SR sends a request to the TA for a certificate to access SRe.

2. TA provides the certificate depending on the legal and contextual information of SR.

3. SR, with the help of the certificate, browses SRe for available ConfiguredServices.

4. SRe provides SR with high level information about the set of available Configured-

Services.

5. SR defines the query in terms of a specific ConfiguredService and sends it to PU.

6. PU will access the SRe to get the complete information about the required Config-

uredService.

7. SRe will verify that SR has the required authentication to use the required Config-

uredService.

8. PU defines the query result (plan) to include the complete ConfiguredServices infor-

mation and sends it to SR with any feedback if necessary.

No matching process is necessary in buffet style, because the SR is querying only Config-

uredServices. As a consequence, the definition of buffet style query, shown in Figure 22,

consists of the three main parts required ConfiguredService, consumer contextual informa-

tion, and authentication certificate. The following two definitions formalize a buffet style

query.

Definition 16 A buffet style query is defined as qb = 〈ĉs, ĉ, E, Λ̂〉, where ĉs, ĉ, E, and Λ̂ are

respectively the required ConfiguredService, the contextual information, the authentication

certificate and the set of parameters SR can provide. These are defined as in Section 4.2.

136

ServiceQuery

ContextInfo

Dimension

RequiredConfiguredService Parameter

ComplexSimple

1 n

n

1

Authentication
 Certificate

Value

Figure 22: Buffet style Query

Example 13 If SR is attempting a buffet style query for the ConfiguredService Repair-

Shop defined in Figure 2, the query will be defined as qb = 〈ĉs, ĉ, E, Λ̂〉, where ĉs =

srs. ĉ = {(membership == caa)}, and Λ̂ = {(CarBroken, bool), (deposit, double),

(CarType, string), (failureType, string)}

7.3.3 Planning Unit (PU)

The PU defines the service plan that can satisfy a query. A plan consists of either a single

ServiceType or multiple ServiceTypes. A ServiceType is a set of ConfiguredServices that

satisfy the set of requirements. A ServiceType includes alternative services that can be used

in case of a service failure. In addition to fault tolerance, ServiceTypes provide services

that are useful for adaptation in different contexts.

In order to make a plan the PU should match the requester query with available Con-

figuredSerivces, ranking candidate ConfiguredServices according to the requester require-

ments, and form service compositions dynamically whenever demanded by the SR. We

discuss dynamic compositions separately in Chapter 8. Below we discuss service matching

and service ranking.

Service Matching

The PU will receive ConfiguredServices from the SRe, as part of the Service lookup for

the Service Query. For exact-match query, the PU will produce a ServiceType in which all

ConfiguredServices exactly match the requirements defined in the service query. This is

137

achieved through the four matching stages:

1. the functionality in the query must equal the functionality in the ConfiguredService,

2. the set of nonfunctional requirements stated in the query must be a subset of the set

of nonfunctional properties in the ConfiguredService,

3. no legal rule specified in the query must contradict a legal rule specified in the Con-

figuredService, and

4. the contextual information given in the query must make the ConfiguredService con-

text rules true.

For a weighted-match discovery, ConfiguredServices that partially match some prop-

erties may be considered. Only those ConfiguredServices that do not provide a match for

a requirement with Exact weight will not be included in the ServiceType. A property

assigned an Exact weight by a SR is a mandatory requirement for the SR.

For a traditional query, whether exact matching or weighted matching, Algorithm MATCH,

presented below, computes the ServiceType. It filters out ConfiguredServices that do not

meet any of the requirements. If ConfiguredService is not filtered out then it is a candidate

ConfiguredService. In this algorithm we use A ⇒ B to indicate that property A satisfies

property B, or property A implies property B.

Algorithm MATCH

INPUT: Traditional Style Query “SQ” and the set of ConfiguredServices “CS”.

OUTPUT: A ServiceType “ST”.

Create a new empty ServiceType “ST”.

for cs ∈ CS do

if cs.precondition.priority == EXACT then

if !(cs.precondition ⇒ SQ.precondition) then

ignore cs;

end if

end if

138

if cs.postcondition.priority == EXACT then

if !(cs.postcondition ⇒ SQ.postcondition) then

ignore cs;

end if

end if

if cs.parameters � SQ.parameters then

ignore cs;

end if

for sqnf ∈ SQ.nonfunctional do

if sqnf .priority == EXACT then

if !(cs.nonfunctional ⇒ sqnf) then

ignore cs;

end if

end if

end for

for sqtr ∈ SQ.trustworthiness do

if sqtr.priority == EXACT then

if !(cs, trustworthiness ⇒ sqtr) then

ignore cs;

end if

end if

end for

for sqle ∈ SQ.legal do

if sqle.priority == EXACT then

if !(cs.legal ⇒ sqle) then

ignore cs;

end if

end if

end for

139

if !(SQ.contextInfo ⇒ cs.contextRule) then

ignore cs;

end if

Add cs to ST

end for

return ST;

In case of buffet style query, no matching is necessary as the SR has already selected

his required ConfiguredService.

Service Ranking

For each buffet style query the result of the service lookups is exactly one ConfiguredSer-

vice. Hence, no ranking is necessary. For traditional style query the result of the service

lookups and the matching process is multiple candidate ConfiguredServices. In exact match

queries, ConfiguredServices included in the ServiceType are in the order they were discov-

ered. That is, a ConfiguredService A that was discovered earlier than ConfiguredService B

was discovered will precede it in the ServiceType list. For weighted-match discovery, Con-

figuredServices are included in decreasing order of importance in the ServiceType. That is,

the service that appears first in the ServiceType provides the best match to the query, the

service following it provides the next best, and, the last listed service has the least match

with the query. Consequently, ranking of services is essential for weighted-match queries.

The ranking process can be defined in the following 3 steps.

Step 1: Form Priority Vector The consumer uses the ordered set of priorities Pc =

{Low = 1, BelowAverage = 2, Average = 3, AboveAverage = 4, High = 5, Exact = 6},

selects a priority to a property that is desired in the ConfiguredService, and assigns it to

that property. Assume that every ConfiguredService has n properties. The PU constructs

the vector Qp, as in Equation 1, where pj ∈ Pc is the weight of property j as defined by

the consumer. The property j can be a nonfunctional property, a trustworthiness property

or a legal rule. If property j is a quantitative property, such as price or shipping time, the

140

consumer also specifies a value vj that it considers fit.

Qp = [p1, p2, . . . , pn] (1)

Step 2: Construct Weight Matrix Assume that m ConfiguredServices are given to

the PU by the consumer. By using the priority vector constructed in Step 1, the values vj

specified by the consumer for quantitative properties, and the service properties included in

the ith ConfiguredService, the weights wij are computed, as described in the following two

steps. The weight wij denotes the PU assigned weight for property j in the ConfiguredSer-

vice i.

• Qualitative properties A qualitative property j has no ‘numerical value’ associated

with it in the ConfiguredService. Trustworthiness properties with no associated nu-

merical values or a legal rule with no numerical values are examples of this kind.

For a property j of this type, the consumer cannot specify a numerical value but

only state whether or not it is desired. So, the weight wij is set to 1 if the consumer

desires are met in ConfiguredService i, and is set to 0 if the property is not met in

ConfiguredService i.

• Quantitative properties Nonfunctional properties such as price, and trustworthiness

properties such as legal rules involving numerical values (discounts, penalties), avail-

ability or time-safety properties are of this kind. For each quantitative property j of

this type, the weight wij is calculated according to Equation 2, where vj is the re-

quired property value as defined by the consumer and x is the actual property value

stated in ConfiguredService i.

wi,j =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 if x ≤ vj

1 − (
x−vj

2vj−vj
) = 2 − x

vj
if vj < x < 2vj

0 if x ≥ 2vj

(2)

In Equation 2, if the value stated in the ConfiguredService i is more than double the

141

required value of that property specified by the consumer, the weight wij is set to 0.

If the value stated in the ConfiguredService i is less than the required value of the

consumer the weight is set to 1. If the value stated in the ConfiguredService i lies

between the required value and double the required value of the consumer the weight

is chosen proportional to how close the actual value is to the required value.

From the computed weights the weight matrix for the m ConfiguredServices is constructed,

as shown in Equation 3. In this matrix coloum i represents the weights of the properties in

the ith ConfiguredService, and row j represents the weights of jth property in the different

ConfiguredServices.

CSw =

⎡
⎢⎢⎢⎢⎢⎢⎣

w11 w21 .. wm1

w12 w22 .. wm2

..

w1n w2n .. wmn

⎤
⎥⎥⎥⎥⎥⎥⎦

(3)

Step 3- Calculate Weights for Ranking Services A single numerical value for each

ConfiguredService is computed using Equation 4. The vector W contains the weights of

the candidate ConfiguredServices. These weights are used to rank the ConfiguredServices

in decreasing order of their weights.

W = Qp × CSw (4)

Example 14 The two ConfiguredServices Buy Book A and Buy Book B, shown in Ta-

ble 9 sell the same book, however they differ in their nonfunctional and trustworthiness

properties. Both have the same set of legal rules. The consumer sets a priority and indi-

cates her preferences for the properties through numerical values, as shown in Table 10.

The priority vector is Qp =
[

AboveAverage, BelowAverage, High
]
. In num-

bers, Qp =
[

4, 2, 5
]
. The weight matrix for the two ConfiguredServices is computed

142

Buy_Book_A (bbA)
100$Price (a)

Shipping Cost (b)

Shipping Time (c)

Buy_Book_B (bbB)

25$

21 Days 14 Days

150$
25$

Table 9: Buy Book ConfiguredServices

Above Average

Price (a) Shipping Cost (b) Shipping Time (c)

125$
High

14 Days
Below Average

20$
Priority
Required Value

Table 10: Consumer Requirements and Priority

using Equations 3 and 2.

CSw =

⎡
⎢⎢⎢⎣

wbbA,a wbbB,a

wbbA,b wbbB,b

wbbA,c wbbB,c

⎤
⎥⎥⎥⎦

where, wbbA,a = 1, wbbB,b = 1, wbbB,c = 1 and,

wbbB,a = 2 − 150

125
= 0.8

wbbA,b = 2 − 25

20
= 0.75

wbbA,c = 2 − 21

14
= 0.5

The ranking vector is computed using Equation 4:

W =
[

4 2 5
]
⎡
⎢⎢⎢⎣

1 0.8

0.75 1

0.5 1

⎤
⎥⎥⎥⎦ =

[
8 10.3

]

Hence, the ConfiguredService Buy Book A is ranked second, while the ConfiguredService

Buy Book B is ranked first.

143

7.3.4 Plan Negotiation Unit (PNU)

After receiving the plan(s) from the PU, the SR selects the most appropriate plan for him.

The selection process takes into consideration the ranking of the plans and other properties

that might be of interest for the SR. The selected plan is then passed to PNU which is

responsible for two main functions.

1. The SR is satisfied with the selected plan. In this case, the PNU will communicate

with all participating SPs in the plan, in order to ensure that participating Configured-

Services are still available.

2. The selected plan, although the best match, is not an exact match to the requirements

of the SR. Since the SR might not know the identity of SPs, the PNU acts as a

mediator and negotiates with the SP on behalf of the SR.

In case of a need for negotiation, the SR selects the ConfiguredService that needs nego-

tiation. The requester also specifies the changes required in the selected ConfiguredService.

In the negotiation, a change to the Service section of the ConfiguredService is not allowed.

Changes are allowed only in the Contract section of the ConfiguredService. Hence, the

specified changes by the SR can only be in the Contract. The contract modification syntax

is discussed in Section 4.4. The PNU will communicate with the SP of the ConfiguredSer-

vice. It will pass the required changes. The service provider will decide to accept, reject or

modify the changes. This will be send back to the PNU which will pass it to the SR. The

SR will review the negotiation result and either accepts or rejects the new modifications.

This process continues until an agreement has been reached. And then the SR passes the

ConfiguredService to the EU for execution.

7.3.5 Service Provider (SP)

A service provider creates ConfiguredServices, and have them certified by the TA before

they are published in the SRe. SPs usually provide a number of ConfiguredServices that

have the same functionality, but with differing contracts. The functionality in a Configured-

Service may be either simple or composite. Motivated by business goals, a service provider

144

creates composite services using the methods discussed in Chapter 5. A ConfiguredService

is atomic, in the sense that the service(s) in it cannot be decomposed into simpler services.

Service Publication

A SP will follow the following sequence of steps to publish the ConfiguredService. Fig-

ure 23 shows this sequence as a flowchart. Before attempting these steps the SP is required

to obtain the necessary authentication certificate from the TA.

 Domain
Available?

Browse Domains
 in Registry

Select Domain

Request New
 Domain

Parameter
Available?

 Define
ConfiguredService

Request New
 Parameter

 More
Paramters?

 Submit
ConfiguredService

Yes

No

Yes

No

Yes

No

 Analyisis
Succesful?

Yes

 Publish
ConfiguredService

No

Figure 23: Service Publication Process

1. The SP selects the proper leaf domain in the SRe. This leaf domain is where the

145

ConfiguredService should be published. If the SP could not find an appropriate do-

main, a request to create a new domain is initiated by the SP. The SRe administrator

will then verify that the requested new domain does not already exist and if so, a new

domain is created.

2. The SP selects a proper service functionality to include in the ConfiguredService. If

no proper service functionality is found a request to create a new service functionality

is initiated by the SP. The SRe administrator will verify that the requested new service

functionality does not exist and if so, a new service functionality node is created and

added to the SRe.

3. The SP verifies that the ConfiguredService parameters are defined in the domain un-

der the selected service functionality. The parameters include input parameters and

output parameters. If any parameter does not exist, the SP can request creating a new

parameter. The SRe administrator will verify that this parameter does not exist and

if so, a new parameter is added to the list of parameters defined under this service.

4. The SP uses the SRL language, to be discussed in Section A.1, to specify a Con-

figuredService and send the ConfiguredService SRL description and the Configured-

Service simplified table format to the TA. To publish a ConfiguredService, the SP

should send the ConfiguredService alongside, (1) the SP information, (2) the associ-

ated domain and functionality, and (3) the SRe where the ConfiguredService is to be

published. The domain and functionality should already be defined in the SRe.

5. The TA will perform the pre-publication analysis, as discussed in Section 4.3.1. If

the analysis is successful the ConfiguredService is sent to the SRe for publication.

Otherwise a message is sent to the SP indicating the ConfiguredService was rejected

and the reasons for the rejection. The SP can make the necessary modifications to

the ConfiguredService and initiate a new publication process going through the steps

presented above.

6. The SP may update the information in a published ConfiguredService, in case that

146

service is no longer available or a new version becomes available. If a service be-

comes unavailable the SP sends a message to the SRe who will remove that Config-

uredService. The message should include the domain, functionality, SP information

and ConfiguredService version. In case a new version of a published service be-

comes available, the SP should send the new ConfiguredService together with the

SP information, the associated domain and functionality to the TA. The domain and

functionality should already be defined in the SRe.

7.3.6 Execution Unit (EU)

EU is responsible for executing plans received from the SR. A plan might contain either a

single ConfiguredService or many ConfiguredServices. EU will request and receive from

the SR any personal data and context information relevant to the plan. 1 For each Config-

uredService in the plan, the EU creates an ExecutableService, which is the ConfiguredSer-

vice in which the consumer data, and consumer contextual information are added. The EU

will apply the legal rules that affect the SR on the ExecutableService. For example, if there

is a legal rule indicating a discount for a student and the requester is actually a student, the

EU will update the price information accordingly. We remark that if the data and context

received by the EU are not sufficient to apply all rules in the contract, the EU will demand

more information from SR. Hence, the contract will be tailored to the consumer data and

contextual information, and more importantly both the SP and the SR remain anonymous.

Consequently, the privacy concerns of the SP are adequately dealt with in FrSeC.

The EU will then pass the ExecutableService to both SR and SP. Both parties should

sign the final version. If both parties accept the current ExecutableService contract, the

service is executed. Table 11 shows an ExecutableService that was generated from the

Buy Book ConfiguredService presented in Chapter 4.

1EU has the context tool-kit [Wan06] to perform the aggregation of the context information received from
service requesters, providers and associated CGUs.

147

Name: Buy_Book_Smith
Precondition: available(book)
Postcondition: Confirmation

Service

Contract

Title: Service Oriented Architecture
Author: Joe Black
Service Attributes: ISBN: 123456789
Year: 2011
Edition: 1
Publisher: Oxford Press
Price: = 150 - (0.2*150) = 120$
ServiceTrust
Safety: Order is processed in 4 days.
Security: Secure and encrypted transaction

ProviderTrust
Client Recommendation: The service provider is rated 4.1/5
Price Guarantee: A lowest price guarantee is provided
Refund Condition: 100% refund if returned within 30 days in new
condition
Payment methods: Credit cards only
Payment schedule: Payment should be received before processing.
Discounts: Students and seniors gets 20% discount
Context Info: [LOC : CANADA]
Context Rule: buyer-city in CANADA ^ age > 18
Consumer Context: [ADDRESS: 11 King St. Montreal, AGE:21,
 JOB:Student]

Functionality

Attributes

Nonfunctional

Trust-
worthiness

Legal Issues

Context

Consumer Data:
 Name: Mike Smith
 Payment method: Visa Card

Table 11: Buy Book ExecutableService

7.3.7 Trusted Authority (TA)

The TA has the following roles.

• It provides SRs and SPs with authentication certificates (tokens) that allow them to

access the SRe.

• It analyzes ConfiguredServices before publication and after execution.

• It formally verifies service compositions.

The TA will conduct the analyses as described in Chapter 4. It will use the UPPAAL model

checking facility, discussed in Chapter 4, as a black-box for formally verifying service

composition properties. Below we discuss the authentication role of TA.

Authentication Role

The TA will provide authentication certificates (tokens) to SRs and SPs. This process aims

to protect the SRe.

148

SRs are classified, based upon the information submitted by them, in order to regulate

their access to specific parts of the SRe. A SR submits legal and context information per-

taining to it and requests the TA for permission to access the SRe. The legal information

is defined using a policy language [And04]. It includes the identity and legal status about

the SR. The context information includes information related to the service delivery loca-

tion, and purpose of service request. The contextual information of the SR will decide the

type of authentication certificate he will receive from the TA. As an example, a manager

in a trusted financial institution might receive a different a certificate than a student whose

credentials are not well established.

The TA will use the information contained in the certificate request to generate a certifi-

cate (token) that is sent to the SR, PU and the SRe. The token will specify the role assigned

to the SR, which in turn will determine the extent of his access to the SRe. The token that

is sent to the SR is encrypted. The SR knows that it is a token for a specific period, but

will have no knowledge of the internal details of the token. This will ensure that tokens are

only generated from the TA.

The SRe has the decryption key for each token and can see the internal details of every

token. Figure 24 shows a simplified view of an authentication certificate. The SRe and

the TA can use Role based access control (RBAC) methodology to control the access to

the elements of the SRe. The SRe and the TA agree on a predefined set of roles. The SRe

assigns access rights for each role to its elements. Upon receiving a token, the SRe decrypts

it, gets the internal details including the role assigned in it. From the role specification the

SRe recognizes the access rights by a simple look up in its Access Control List (ACL).

The SR carrying the token is given access to the specific parts of the SRe, as defined in

the ACL. After receiving a Service Query from a SP, the PU will send the certificate of the

SR while sending service lookups to the SRe. Thus, only those ConfiguredServices that

can be accessed by the access rights awarded in the certificate will become available in the

ServiceType.

A SP may request an authentication certificate. The SP will use this certificate to browse

the SRe before publishing its ConfiguredServices. It will follow the same steps above. It

149

Certificate

ServiceRequester Date and Time

Validity Role Assigned

Other Info

Figure 24: Authentication Certificate

can be considered a SR by itself as it is requesting a service.

7.3.8 Context Gathering Unit (CGU)

FrSeC can support multiple units to collect and transmit contextual information. In the

current version of FrSeC three CGUs are provided. Each CGU is responsible for defining

the context space, namely the set of dimensions and their associated types that are necessary

to define the set of relevant context. The CGU attached to the SR will gather the contextual

information that might be of interest to the SR. The SR will use that contextual information

as part of its queries. The CGU will also inform the SR of any change in the contextual

information, such as a change of the SR location. The SR can then choose to initialize a new

service request with the updated contextual information. The CGU attached to the SP will

gather the contextual information that might be of interest to the SP. The SP will use that

contextual information in defining the context part of the ConfiguredServices. The CGU

attached to the EU will gather the contextual information that might be of interest to the

EU. This contextual information is related to the context in which the ConfiguredServices

are being executed. A change in such context might violate the ConfiguredService context

rules.

150

7.4 Interfaces of FrSeC Components

Each FrSeC component is seen as a black box by other components. The components

interact with each other without knowing the internal details and how each component

achieves its goals. In this section, we give a high-level description of the interface methods.

These methods and their parameters will be refined and be made more precise at design and

implementation stages. We use a lightweight formalism here to define types and interface

methods. For example, sets are regarded as types, and say ‘x is of type query to mean

that x : Set(query)’. The formal notation discussed in Chapter 4 can be used for typing

the parameters of interface methods. The main goal of interface design is to achieve a

completeness of behavior, in the sense that interfaces described below collectively achieve

the goals of FrSeC discussed in Section 7.1.

• Context Gathering Unit Interface: It has one method, called SendContext (coInfo).

The parameter coInfo is of type “Context”. The output of this method is a Boolean

indicating the success of the sending process.

• Service Provider Interface: It has the following methods:

1. Request (sign, parms): This method is to be used by the EU to request service

functionalities. The parameter sign is of type “signature” and it is the signature

of the requested service. The parameter parms is of type “Parameter” list and it

is the list of parameters sent to SP as part of the service request. The result of

this method is the output of executing the service with signature sign.

2. Verify (sign): This method is to be used by the PNU to make sure the provider

is still available and ready to provide the service. The parameter sign is of

type “signature” and is the signature of the requested service. The result of this

method is a Boolean value indicating the verification result.

3. Negotiation (sign, changes): This method is to be used by the PNU to nego-

tiate changes to a ConfiguredService contract. The parameter sign is of type

“signature” and is the signature of the service being negotiated. The parameter

151

changes is of type “string” and contains and required changes to the service

contract. The result of this method is a new contract for the service with signa-

ture sign.

• Planning Unit Interface: It has one method, called Query (req, qu). This method is

to be used by the SR to query for service functionalities. The parameter req is of type

“ServiceRequester”. The parameter qu is of type “serviceQuery” or of type “compo-

sitionQuery” and is the query created by the SR. This method has as a precondition

“the requester has an authentication certificate”. The result of this method is a set of

plans.

• Service Registry Interface: It provides the following methods:

1. Browse (browser, node, token): This method is to be used by SR or SP to browse

the content of the SRe. The parameter browser is of type “ServiceRequester”

or “ServiceProvider”. The parameter node is of type “RegistryNode” and it

is the registry node being browsed. The parameter token is of type “Authen-

ticationCertificate”. The results of this method are the domain and semantic

information obtained from the SRe.

2. Publish (pro, cs, dom, fu): This method is to be used by TA to publish services.

The parameter pro is of type “ServiceProvider”. The parameter “cs” is of type

“ConfiguredService”. The parameter dom is of type “domain” and is the do-

main where the published functionality belongs. The parameter fu is of type

“functionality” and is the published functionality. The result of this method is

a Boolean value indicating the success of the publication process.

3. Lookup (dom, fu): This method is to be used by the PU to search for Config-

uredServices in the SRe. The parameter dom is of type “domain” and is the

requested domain. The parameter fu is of type “functionality” and is the re-

quired functionality. The result of this method is a set of ConfiguredServices

that provide the functionality fu.

152

4. add dom (dom,node): This method is to be used by SPs to request to add do-

mains to a specific node. The parameter dom is of type “domain” and is the

domain node to be added. The parameter node is the node under which the

domain is to be added. The precondition to this method is that node does not

contain the added element.

5. add fu (fu,node): This method is to be used by SPs to request to add function-

alities to a specific node. The parameter fu is of type “functionality” and is the

functionality node to be added. The parameter node is the node under which

the functionality is to be added. The precondition to this method is that node

does not contain the added element.

6. add par (par,node): This method is to be used by SPs to request to add a pa-

rameter to a specific node. The parameter par is of type “parameter” and is

the parameter to be added. The parameter node is the node under which the

parameter is to be added. The precondition to this method is that node does not

contain the added element.

• Plan Negotiation Unit Interface: It has the following methods:

1. VerifyPlan (pl): This method is to be used by SR to verify that all participating

SP’s in a plan are still available and ready to provide the required Configured-

Services. The identity of the service providers might not be known, but the

address information of the ConfiguredServiecs are available in the plan. The

parameter pl is of type “plan” and is the plan selected by SR. The result of this

method is a Boolean value indicating the result of the verification process.

2. Negotiate (pl, cs, pro, changes): This method is to be used by SR to negotiate

the contract of the participating ConfiguredService cs. The parameter pl is of

type “plan” and specifies the plan to be negotiated. The parameter cs is of

type “ConfiguredService” and is the service where the changes are required.

The parameter pro is of type “Property” list. The are the properties on which

there is a request for change. The parameter changes is of type “string” list and

153

specifies the required changes mapped to the property list. The result of this

method is a new plan with ConfiguredServices that has modified contracts.

• Execution Unit Interface: It has one method called Execute (req, pl, info, par). This

method is to be used by SR to execute plans. The parameter req is of type “Ser-

viceRequester”. The parameter pl is of type “plan”. The parameter info is of type

“context” and it contains the contextual information of SR. The parameter “par” is

of type “Parameter” list and it contains the input parameters provided by the SR. The

result of this method is the output of executing the plan pl.

• Trusted Authority Interface: The interface has the following methods:

1. CertificateRequest (legalInfo, info): This method is to be used by SRs and SPs

to request authentication certificates. The parameter legalInfo is of type “le-

galInformation”. The parameter info is of type “context” and is the contextual

information of the certificate requester. The result of this method is an authen-

tication certificate.

2. Submit (cs, registry. pro, dom, fu): This method is to be used by SP to publish

ConfiguredServices. The parameter cs is of type “ConfiguredService” and is the

service to be published. The parameter registry is of type “Registry” and is the

Registry where the ConfiguredService is to be published. The parameter pro is

of type “ServiceProvider”. The parameter dom is of type “domain” and is the

domain where the published functionality belongs. The parameter fu is of type

“functionality” and is the published functionality. The result of this method is

either accept or reject. If the ConfiguredService is accepted, it will be sent to

the Registry for publication and an “accept” message will be sent to the SP. If

the ConfiguredService is rejected, a message “reject” will be sent to the SP.

3. Analyze (cs, pro): This method is to be used by SP and EU to analyze the

satisfaction of a specific property in a ConfiguredService. The parameter cs is

of type “ConfiguredService” and is the service to be analyzed. The parameter

154

pro is of type “Property” and is the property to be analyzed. The result of this

method is a Boolean value indicating the satisfaction of the analyzed property.

4. Verify (comp, pro): This method is to be used by the PU to verify service com-

positions. The parameter comp is of type “Composition” and is the service

composition expression. The parameter “pro” is of type “Property” and is the

property to be verified. The result of this method is a Boolean value indicating

the result of verification.

5. AnalayzeAFTER (cs, pro, exData): This method is to be used by the SRs to

perform the after delivery analysis discussed in Section 4.3.3. The parameter cs

is of type “ConfiguredService” and is the service to be analyzed. The parameter

pro is of type “Property” and is the property to be analyzed. The parameter

exData is of type “ExeuctionData” list and is the statistics collected while exe-

cuting the ConfiguredService cs. The result of this method is a Boolean value

indicating the satisfaction of the analyzed property.

7.5 Interaction Scenarios

From the interactions shown in Figure 18 we identify three types of scenarios. The first

is the publication scenario. The second is the execution scenario. The third is the anal-

ysis scenario. These three scenarios collectively achieve the goals of FrSeC. Below is a

discussion of each of these scenarios.

7.5.1 Publication Scenario

This scenario is performed in the following steps: (1) SP sends a request to the TA for

a certificate to access SRe. (2) TA provides the certificate. (3) SP browses SRe. (4)

SRe sends domain information to SP. (4a) (Optional) SP requests to add a new domain,

functionality or parameter to a node in the SRe. (5) SP construct the ConfiguredService

and sends to TA. (6) TA performs the before publication analysis discussed in Section 4.3.1

155

SP TA SRe

CertificateRequest (legalInfo, info)

Token

Browse (browser,node,token)

DomainInfo(domain,functionality,...)

Submit (cs, registry, pro, dom, fu)

Publish (pro, cs, dom, fu)

Accept || Reject

add_dom (dom, node)

add_fu (fu, node)

add_par (par, node)

Figure 25: Publication Interaction Scenario

on the ConfiguredService. (7) If the analysis is a success the ConfiguredService is sent to

the SRe for publication. (8) TA sends an accept message to SP, if publication is successful,

and sends a reject message otherwise. The Message Sequence Diagram shown in Figure 25

formalizes this scenario.

7.5.2 Execution Scenario

This scenario can be divided into a negotiation scenario and a no negotiation scenario. The

no negotiation scenario is performed in the following steps: (1) SR sends a request to the

TA for a certificate to access SRe. (2) TA provides the certificate. (3) SR browses SRe. (4)

SRe sends domain information to SR. (5) SR constructs the query and sends it to PU. (6)

PU defines and sends service lookups to SRe. (7) The service lookup result is sent from

SRe to PU. (8) PU defines the query result (plan) and sends it to SR. (9) SR selects a plan

and sends it to PNU. (10) PNU sends verification requests to all SP. (11) SP sends response

back. (12) PNU sends verification result to SR. (13) SR sends plan to EU. (14) EU executes

the plan by sending requests to SPs. (15) SP sends responses back. (16) EU sends response

back to SR.

156

For the negotiation scenario the message sequencing differs only in steps 9, 10, 11 and

12. These are re-defined as follows: (9) SE selects a plan and sends it with the required

changes to PNU. (10) PNU negotiates with SPs. (11) SP sends new ConfiguredService.

(12) PNU sends negotiation result to SR. The Message Sequence Diagram in Figure 26

shows the execution scenario.

SP EUSRe PNUPUTASRCGU

SendContext (conInfo)

CertificateRequest (legalInfo, info)

Token

Token

Token

Browse(browser, node, token)

DomainInfo(domain, functionality,..)

Query (req, qu)

Lookup (do, fu)

LookupResult(provider, ConfiguredService)*

Plan(s) || Feedback

VerifyPlan (pl) || Negotiate (pl, cs, changes)

Verify(sign)* || Negotiate (pl, cs, changes)

VerificationResult* || NegotiationResult*

PlanVerificationResult || PlanNegotiationResult

Execute (req, pl, info, par)

Request (sign , parms)*

ServiceOutput

PlanOutput

Figure 26: Execution Interaction Scenario

7.5.3 Analysis Scenario

This scenario represents the analysis performed by the TA. The TA performs the analysis

on behalf of the SR, SP, PU and EU. The interactions can be formalized using the Message

Sequence Diagram shown in Figure 27.

It is easy to verify that collectively the interface methods discussed in the previous section

are sufficient to describe the FrSeC interactions shown in Figure 18. The three scenarios

scenarios discussed in this section completely cover the set of interactions in Figure 18.

157

SP TAPU EU SR

Analyze(cs,pro)

Result

Verify(comp,pro)

Result

Analyze(cs,pro)

Result

Publish (pro, cs, dom, fu)

Confirmation

Figure 27: Analysis Interaction Scenario

This observation justifies our claim that the interface methods achieve ‘communication

completeness’ of FrSeC.

7.6 FrSeC Adaptability

One of the main features of FrSeC is its ability to adapt to situations that trigger a need for

a rediscovery or re-ranking process. Below is a discussion of the most important triggers

and how they are handled in FrSeC.

Context change: The discovery process uses the contextual information of the SR

at service discovery time. But during service execution, the contextual information of

the SR might have changed. As a consequence, the contextual rules of the discovered

service(s) might be violated, other services may be more suitable. In order to deal with the

dynamic change in context we introduce an adaptable discovery mechanism. In FrSeC, this

mechanism includes the following steps:

1. CGU senses the new context information and informs SR.

2. SR generates a new query with the new context information.

3. The context change may result in a change to the security level. So SR contacts TA

with the new context information.

158

4. TA sends a new authentication certificate to SR.

5. SR sends the new query to the PU which will initiate a new discovery process.

6. PU will send a new plan with the set of the new ranked ConfiguredServices.

7. EU will migrate from the old ConfiguredService to the new ConfiguredService.

Failure in service availability: During service execution, the executing service might

fail or become unavailable. For example, the wireless router might fail. FrSeC is designed

to adapt to service failures. In our design, PU uses ServiceType, and not specific Config-

uredServices when defining query result. A ServiceType contains ordered ConfiguredSer-

vices that can meet the requirements of a specific query. During run time, if a Configured-

Service fails or becomes unavailable, the EU will select the next ConfiguredService in the

ServiceType. The worst case is that an equivalence class has only one ConfiguredService

and it fails. The feedback loop in FrSeC will restart the service discovery process in this

case.

New alternative services: Service executions may be performed over days, or even

months. But service selection and binding are usually performed only the first time the

requester uses the service. This might not be practical because new services might be avail-

able during this long execution time. The new alternative services might be new services

or old services with new modified contracts. A new contract might include a lower price

or a better quality. For example, a wireless provider with cheaper price and same quality

guarantees might become available. In order to adapt to new alternative services during run

time, SR registers with PU. This registration will guarantee that PU will inform SR in case

a new ConfiguredService that provides the same functionality becomes available. Thus, SR

can initiate a new discovery process.

New contract rules: Contracts bound to ConfiguredServices may be either strict or

flexible. In a strict contract, the life-time of contract is made explicit. Providers and re-

questers are bound by this timeline. In a flexible contract, there is no life-time specification,

which allows providers to change the contract terms at any point of time. For example, the

SP might increase the price of his wireless Internet connection. Providers might not be

159

aware of the identity of their clients. This design decision was made to enshrine privacy

issues. In FrSeC, providers inform EU of changes to service contract. At the time of ser-

vice delivery, EU informs SR of changes to the contract and delivers the service only upon

receiving the acceptance of new contract terms from SR. In order not to deny service, re-

questers are allowed to initiate a rediscovery process in accordance with the new contract

terms.

New requester requirements: Some service executions might be too long and during

this service time the requirements of the requester might change. To deal with new require-

ments, the requester has the choice of a rediscovery process or a re-ranking process. In

the rediscovery process the requester will define a new query and go through all steps of

service discovery. In a re-ranking process, the requester will ask PU to re-rank the Config-

uredServices in the ServiceType taking into consideration the new assigned weights to the

elements in the modified query.

7.7 Case Study - Auto Roadside Emergency Service

This section will use the auto road assistance example presented in Section 4.5 to illustrate

the operation of FrSeC. Here, we are focusing on single service request and response, and

do not consider compositions. We will assume that the requests are done sequentially and

not simultaneously. First a request for repair shop is performed, and then the driver makes

an appointment with this repair shop. Second, a request for a tow truck is performed, and

then the driver calls the tow truck company. Finally, a request for a car rental is performed,

and the driver calls the car rental company. We will focus here on illustrating FrSeC op-

erations in fulfilling requests to a repair shop. A similar approach can be followed for tow

truck and car rental services.

Service Publication: Repair shops SPs communicate with the TA to obtain the authentica-

tion certificates that enables them to access the SRe. The SPs search the SRe for the appro-

priate domain until they find the Repair shop domain. Under this domain they search for

the appropriate functionality which is in this case Reserve. Then, they will verify that their

160

parameters are defined under the Reserve functionality. Next, SPs will publish the Con-

figuredServices by submitting them to the TA. Figure 28 shows the part of SRe for repair

shop. We have 3 SPs, and they provide the 5 ConfiguredServices presented in Figure 29.

All ConfiguredServices have the same input parameters which are (CarBroken:bool), (De-

posite:double) and (CarType:string). They also have the same output parameters which are

(HadAppointment:bool) and (NumOfHours:int).

Registry

InputParameters
CarBroken:bool
Deposit:double
CarType:string Service Provieder:

Garage3

Service Provieder:
Garage 1

Service Provieder:
Garage 2

Domain:
RepairShop

...
...

...
..

Functionality:
Reserve

...
..

OutputParameters
HadAppointment:bool
NumOfHours:int

Preconditions
CarBroken==T

Postconditons
HadAppitntment==T

 User

User

Role(s)

NonFunctional:
Safety

ConfiguredService
Garage 3-1

ConfiguredService
Garage 1-3

ConfiguredService
Garage 1-1

ConfiguredService
Garage 2-1

.....

.....

.....

.....

ConfiguredService
Garage 1-2

.....

Figure 28: Service Registry Structure for the Case Study

Querying: The SR, in this case the Vehicle, accesses the SRe searching for the appropriate

domain and functionality. But before doing that, an authentication certificate from the TA

is needed. Figure 30 shows the certificate sent to the SR. The SR will use this certificate to

access the SRe to find the domain and functionality, in this case Repair shop and Reserve.

The SR will then access the functionality parameters and will use them in defining the Ser-

vice Query. Figure 31 shows three traditional exact-type Service Queries. Each Service

161

Garage1.1

Garage1.2

Garage1.3

Garage2.1

Garage3.1

Function Non
Functional Legal ContextRule ContextInfo

Reserve
Pre:CarBroken
Post:HasAppointment

Price = 60$/h

Price = 80$/h

Price = 70$/h

Price = 80$/h

Price = 60$/h

deposit>=300$
PriceCondition:
VehicleType=
toyota

deposit>=400$
PriceCondition:
VehicleType=
toyota

deposit>=350$
PriceCondition:
VehicleType=
BMW

deposit>=0$
PriceCondition:
Vehicle-
Type= toyota
or BMW

deposit>=300$
PriceCondition:
VehicleType=
toyota

membership
==CAA

membership
==CAA

membership
==CAA

membership
==CAA

membership
==CAA

location (montreal,
downtown)

location (montreal,
downtown)

location (montreal,
downtown)

location (montreal,
downtown)

location (montreal,
north)

Reserve
Pre:CarBroken
Post:HasAppointment

Reserve
Pre:CarBroken
Post:HasAppointment

Reserve
Pre:CarBroken
Post:HasAppointment

Reserve
Pre:CarBroken
Post:HasAppointment

Safety:MaxTime
= 7 days

Safety:MaxTime
= 3 days

Safety:MaxTime
= 7 days

Safety:MaxTime
= 7 days

Safety:MaxTime
= 7 days

Trust-
worthiness

Service Contract

Figure 29: Available ConfiguredServices

Query is sent to the PU. The PU will then send service lookups to the SRe. The lookups re-

sult will be matched with the Service Query requirements by the PU. Finally, the matching

result is send to the SR. Figure 32 shows the results returned by the PU.

The vehicle will then send a request for a reservation to the selected repair shop. In this

example, we are not concerned about the internal details of the vehicle. We assume it is

a composite service and we deal with it as a black box. The internal services, such as the

GPS location service and the engine sensor service are not of concern for us at this stage.

We deal with the Vehicle as a single service.

Figure 33 shows the interaction activity performed in the FrSeC framework to find the

most appropriate repair shop and request an appointment.

162

Certificate

ServiceRequester:
Vehicle

Date: 1-23-2012
Time: 19:04:00

Validity:
30 Days

Role Assigned:
user

Figure 30: Vehicle Authentication Certificate

Query1

Query2

Query3

AttributesFunction LegalNonFunctional ContextInfo

Reserve
Pre:CarBroken
Post:HasAppointment

location (montreal,
downtown),
membership
==CAA

vehicleType
= toyota

vehicleType
= toyota

vehicleType
= toyota

Safety:MaxTime
<=10 days

Safety:MaxTime
<=10 days

Safety:MaxTime
<=5 days

deposit
= 0

deposit
<=500

location (montreal,
downtown),
membership
==CAA

location (montreal,
north),
membership
==CAA

Reserve
Pre:CarBroken
Post:HasAppointment

Reserve
Pre:CarBroken
Post:HasAppointment

Figure 31: Repair Shop Requests

7.8 Summary

This chapter has presented FrSeC, the formal framework for the provision of context-

dependent services. The components of FrSeC, their roles, interfaces, and interaction sce-

narios have been described in a variety of notations, ranging from formal to informal. The

FrSeC description is sufficiently comprehensive that it should be possible to derive a de-

tailed component-based design, which will ultimately lead to a faithful implementation of

it.

163

Query1

Query2

Query3

ConfiguredServiceQuery

Garage2.1

Garage1.1
Garage1.2
Garage2.1

Null

Figure 32: Planning Unit Results

 Service
Requester:
 Vehicle

 Service
 Provider:
 Garage

Planning Unit

 Service
 Registry

*1
 Service Query

Service
 lookup

ServiceType

Publish

ConfiguredService(s)

ResponseRequest

 GPS
 Sensor

 Context
Information

B
row

se

B
row

se

 Oil level
 Sensor

Domain Info

 Trusted
Authority Request Certificate

 R
equest C

ertificate

Submit

D
om

ain Info

 Reject\Accept

 Token

 Token Token

 Token

Figure 33: FrSeC Interaction for the Case Study

164

Chapter 8

Dynamic Composition

Static service composition is driven by provider’s needs and hence can be defined indepen-

dently from the service provision framework. On the other hand, dynamic service compo-

sition is driven by requester’s needs and hence is closely related to the service provision

framework. This chapter discuses the three types of dynamic service composition template-

based, semi-automatic and automatic introduced by FrSeC.

8.1 Template-based Composition

Service requesters browse the Service Registry looking for functionalities that meet their

requirements. In many cases, the required service functionality is so complex that it may

not be directly available in the Service Registry. In such cases, the service requester is

forced to find multiple functionalities from the Registry that collectively might be suffi-

cient to meet his requirements. To facilitate the service requester in formulating such com-

plex queries we are introducing the template-based composition queries. A composition

template suggests how the services that match the query might be composed. The service

requester formulates a template query and passes it to the Planning Unit, who executes it

according to the composition semantics of services that match the template query. The

protocol, shown in Figure 34, is as follows:

1. The service requester browses the Service Registry and does not find a match to its

165

Service Requester Service Registry Planning Unit Execution Unit

1. Browse

Domain Functionalities

2. Create Composition Template

3. Send Compostion Template

4. Service Lookups

5. Generate and Rank Plans

6. Select Plan

7. Execute Selected Plan

Execution Result

Lookups Result

Send Plans

Figure 34: Template-based Composition Protocol

required functionality but it rather finds several partial matches to its requirements.

2. The service requester uses the partial matches to create a composition template that

meets its requirements.

3. The service requester sends the composition template to the Planning Unit.

4. The Planning Unit consults the Registry to find matches for the requirements defined

in the composition plan.

5. The Planning Unit may generate multiple composition plans, and ranks them accord-

ing to the preferences assigned by the service requester. The Planning Unit will then

send the ranked plans to the service requester.

166

6. The service requester will select the best plan suited for him.

7. The service requester sends the composition plan to the Execution Unit for execution.

8.1.1 Template-based Composition Query

A template-based composition query (TCQ) is formed very similar to the way a service

expression is formed. We have chosen the query composition constructs that correspond in

a one-to-one manner with static service composition operators (discussed in Section 5.1),

for two reasons. One reason is that these operators seem sufficient to express a large number

of complex queries. The second reason is that we want the query processing activity to be

simplified without too much overhead to the planner.

The composition query operators are � (for sequential composition), � (for parallel

composition), � (for priority composition), ⊕ (for no order composition), † (for nondeter-

ministic choice composition), � (for conditional choice composition), and � (for iterative

composition). Below we explain their semantics.

• Sequential Query Composition Let X and Y denote two traditional-style queries.

The sequential composition of X and Y is a query Z, written X �Y . Let RX and RY

denote the set of ConfiguredServices that respectively match the queries X and Y .

The intended response to query Z is the set RZ = {sX � sY | sX ∈ RX , sY ∈ RY }.

That is, the intention of the service requester is that a service that matches query

X is to be executed first, and immediately following that a service that matches

the query Y should be executed. This wish of the service requester is respected

by the service provider by applying sequential composition construct to compose

services that match the input queries. Clearly, sequential query composition can be

generalized to involve k, k > 2 queries. Corresponding to a generalized sequential

query composition, the set of sequential compositions of their matching services can

be produced.

• Parallel Query Composition Let X and Y denote two traditional-style queries. The

parallel composition of X and Y is a query Z, written X � Y . Let RX and RY

167

denote the set of ConfiguredServices that respectively match the queries X and Y .

The intended response to query Z is the set RZ = {sX ||sY | sX ∈ RX , sY ∈ RY }.

That is, the intention of the service requester is that a service that matches query

X and a service that matches the query Y are to be executed simultaneously. The

service provider fulfills this demand. Clearly, parallel query composition can be

generalized to involve k, k > 2 queries. Corresponding to a generalized parallel

query composition, the set of parallel compositions of their matching services can be

produced.

• Priority Query Composition Let X and Y denote two traditional-style queries. The

priority composition of X and Y is a query Z, written X�Y . Let RX and RY denote

the set of ConfiguredServices that respectively match the queries X and Y . The

intended response to query Z is the set RZ = {sX ≺ sY | sX ∈ RX , sY ∈ RY }. That

is, the intention of the service requester is to request the execution of a service that

matches query X , if it succeeds. Otherwise, the service requester is willing to accept

a service matches query Y . The service provider fulfills this request. Clearly, priority

query composition can be generalized to involve k, k > 2 queries. Corresponding

to a generalized priority query composition, the set of priority compositions of their

matching services can be produced.

• No Order Query Composition Let X and Y denote two traditional-style queries.

The no order composition of X and Y is a query Z, written X ⊕ Y . Let RX and

RY denote the set of ConfiguredServices that respectively match the queries X and

Y . The intended response to query Z is the set RZ = {sX�sY | sX ∈ RX , sY ∈
RY }. That is, the intention of the service requester is to receive the services that

match query X and query Y in any order. Either one of them can be started first.

This is fulfilled by the service provider. Clearly, no order query composition can be

generalized to involve k, k > 2 queries. Corresponding to a generalized no order

query composition, the set of no order compositions of their matching services can

be produced.

168

• Nondeterministic Choice Query Composition Let X and Y denote two traditional-

style queries. The nondeterministic choice composition of X and Y is a query Z,

written X †Y . Let RX and RY denote the set of ConfiguredServices that respectively

match the queries X and Y . The intended response to query Z is the set RZ =

{sX � sY | sX ∈ RX , sY ∈ RY }. That is, the intention of the service requester is to

randomly accept a service that matches query X or a service that matches the query

Y . This is fulfilled by the service provider. Clearly, nondeterministic choice query

composition can be generalized to involve k, k > 2 queries. Corresponding to a

generalized nondeterministic choice query composition, the set of nondeterministic

choice compositions of their matching services can be produced.

• Conditional Choice Query Composition Let X and Y denote two traditional-style

queries. The conditional choice composition of X and Y is a query Z, written X �c

Y . Let RX and RY denote the set of ConfiguredServices that respectively match the

queries X and Y . As a response to query Z the service provider computes the set

RZ = {sX �c sY | sX ∈ RX , sY ∈ RY }, and provides one or more from the set to the

service requester. That is, the intention of the service requester is that if condition c

is true then a service that matches query X is to be executed, otherwise a service that

matches the query Y is executed.

• Iteration Query Composition Let X denotes a traditional-style query. The iteration

composition of X is a query Z, written X�c . Let RX denotes the set of Config-

uredServices that match the query X . The intended response to query Z is the set

RZ = {sX◦c | sX ∈ RX}. That is, the intention of the service requester is to receive

a service that matches query X as long as it can be executed to meet the condition c.

All query operators have equal priority. From the query composition semantics it is clear

that (1) every query composition, as suggested above, has a unique service interpretation,

and (2) a query expression can be uniquely transformed into a service expression. As

an example, corresponding to the query expression X † Y �c there exists a set of service

expressions given by {sX � sY ◦c | sX ∈ RX , sY ∈ RY }.

169

Definition 17 A template-based query composition is an expression

q1 � q2 � q3 � .. � qi,

where � ∈ {�, �, �,⊕, †,�,�} and qi is a simple traditional style query. All query

composition operators have the same precedence. A query expression is evaluated from

left to right.

8.1.2 Ranking of Candidate Compositions

Each template-based composition query involves many traditional style queries. For each

traditional style query many ConfiguredServices might be selected by the Planning Unit

according to the matching algorithms discussed in Section 7.3.3. Therefore, there are many

possible composition plans that match a template-based composition query. It is necessary

for the Planning Unit to rank the candidate composition plans in order to enable the service

requester to make an intelligent selection.

As discussed is Section 7.3.3, each ConfiguredService that is matched to a traditional

style query will have a ranking value. This ranking value is calculated by the Planning

Unit using the weights assigned by the service requester to each property in the traditional

style query. In template-based composition query, the service request can assign a weight

to each individual traditional style query and to each property inside the traditional style

query. These values will all be used in ranking the composition plans.

Let SQ1, . . . , SQn denote the traditional style service queries in a composition query,

and w1, . . . , wn denote the weights assigned by the service requester to the traditional

queries. Let CS1, .., CSn denote the ConfiguredServices in the composition plan, and PMij

be the percentage match of SQi with candidate ConfiguredService CSj . The percentage

match PMij is calculated using Equation 5, where CSRij is the ranking value of Config-

uredService j with respects to traditional query i as calculated in Section 7.3.3. If MRi is

the maximum ranking value for any ConfiguredService with respect to query i then

170

Case 1 Case 2
SQ1 CS1 = 0.90 CS1 = 0.80
SQ2 CS3 = 0.85 CS4 = 0.80
SQ3 CS5 = 0.95 CS6 = 0.90

Table 12: Percentage Match of Candidate ConfiguredServices

PMij =
CSRij

MRi

(5)

The values wi are provided by the service requester. Hence the ranking value RV for a

candidate composition plan can be calculated according to Equation 6.

RV = (w1 ∗ PM11) + (w2 ∗ PM22) + · · · + (wn ∗ PMnn) (6)

Example 15 In this example, we illustrate the ranking of service compositions as per-

formed by the Planning Unit. Let SQ1 � SQ2 � SQ3 be the composition query template

created by a service requester. Assume that for query SQ1 the two candidate matching

ConfiguredServices are CS1 and CS2, for query SQ2 the two candidate matching Config-

uredServices are CS3 and CS4, and for SQ3 the two candidate matching ConfiguredSer-

vices are CS5 and CS6. Hence, we have 8 possible composition plans. We also assume

that the percentage match of each ConfiguredService is shown in Table 12 for all service

queries.

The service requester assigns a priority to each service query. Table 13 illustrates the

ranking that resulted from assigning two different set of priorities to the service query. In

the first case, the service requester assigns weight 4 to SQ1, SQ2 and SQ3. In the second

case, the service requester assigns weight 1 to SQ1, weight 3 to SQ2 and weight 1 to SQ3.

Table 13 shows the ranking value for each candidate composition plan and the ranking

of each plan. To illustrate the method of calculating each ranking value, let’s take for

example the composition CS1 � CS3 � CS5. Using the first set of weights, the ranking

171

Case 1 (Rank) Case 2 (Rank)
CS1 � CS3 � CS5 10.8 (1) 4.40 (1)
CS1 � CS3 � CS6 10.6 (2) 4.35 (2)
CS1 � CS4 � CS5 10.6 (2) 4.25 (4)
CS1 � CS4 � CS6 10.4 (3) 4.20 (5)
CS2 � CS3 � CS5 10.4 (3) 4.30 (3)
CS2 � CS3 � CS6 10.2 (4) 4.25 (4)
CS2 � CS4 � CS5 10.2 (4) 4.15 (6)
CS2 � CS4 � CS6 10.0 (5) 4.10 (7)

Table 13: Ranking Candidate Compositions

value is calculated as follows:

RankingV alue = (0.9 ∗ 4) + (0.85 ∗ 4) + (0.95 ∗ 4) = 10.8

For the second set of weights, the ranking value is calculated as follows:

RankingV alue = (0.9 ∗ 1) + (0.85 ∗ 3) + (0.95 ∗ 1) = 4.4

This example illustrates the ranking algorithm used by the Planning Unit to rank the dif-

ferent composition plans. It illustrates that for each set of weights assigned by the service

requester a different ranking will result.

8.2 Semi-automatic Composition

In template-based composition, the assumption is that a service requester is fully aware of

all his requirements. Hence, it is easy for him to define his service query template. In many

cases, the service requester is not clear about all requirements. The requirements might

be building gradually. A simple travel planning example can illustrate this issue. In this

example a service requester is planning to buy an airplane ticket to New York and reserve a

hotel close to the arrival airport. But New York has three international airports JFK, Newark

and LaGuardia. Therefore, the service requester is not able to define the query for the hotel

172

without first buying the air ticket. Hence, the service requester should be able to first query

for the air tickets, receive all candidate ConfiguredServices, select a ConfiguredService and

then query for the hotel taking into consideration the selected air ticket and the arriving

airport.

In such cases, the service requester should be able to query for functionalities and

matching ConfiguredServices in a gradual manner. Hence, we introduce semi-automatic

service composition. In semi-automatic composition, the service requester incrementally

queries for functionalities that match his most recent requirements. At each step, the ser-

vice requester will query for one functionality using a traditional query (discussed in Sec-

tion 7.3.2). The query is sent to the Planning Unit which responds with a set of candidate

ConfiguredServices. The service requester then selects a ConfiguredService from the can-

didates.

The main difference between semi-automatic composition and multiple regular tradi-

tional queries for single ConfiguredServices is that in multiple traditional queries the pro-

cess is stateless. In the sense that the Planning Unit deals with each traditional query

separately. The Planning Unit does not keep information about previous selections and is

actually not aware of what ConfiguredService was selected. On the other hand, in semi-

automatic composition the process is stateful. The Planning Unit creates a session for each

semi-automatic composition process. In this session, the requests and selections are saved.

This will enable the Planning Unit to compose all selected ConfiguredServices and create

a composite service that meets the requirements of the service requester.

The semi-automatic service composition process can be summarized in the following

steps, shown in Figure 35:

1. The service requester browses the Service Registry for all required functionality.

2. The service requester will create a semi-automatic initialization composition query.

3. The service requester will send the initialization query containing a traditional query

for the first functionality to the Planning Unit.

173

Service Requester Service Registry Planning Unit Execution Unit

1. Browse

Domain Functionalities

2. Create Initialization Query

3. Send Initialization Query

4. Service Lookup

5. Rank Candidate ConfiguredServices

6. Select ConfiguredService

Lookup Result

7. Create Semi-auto Query

8. Send Query and Selection

9. Service Lookup

Send Ranked ConfiguredServices

Lookup Result

10. Rank Candidate ConfiguredServices

Send Ranked ConfiguredServices

Repeat Steps 7 to 11
untill all functionalities
are met

12. Execute Compostion Plan

Execution Result

11. Select ConfiguredService

Figure 35: Semi-automatic Composition Protocol

174

4. The Planning Unit consults the Registry to find matches for the requirements defined

in the initialization query.

5. The Planning Unit will match the lookup result with the service requester require-

ments and will send the matched and ranked ConfiguredServices to the service re-

quester.

6. The service requester will then select a specific ConfiguredService from the list of

candidate ConfiguredServices.

7. The service requester will then create a new semi-automatic query containing a tra-

ditional query for the second required functionality.

8. The service requester will then send the semi-automatic query to the Planning Unit.

9. The Planning Unit consults the Registry to find matches for the requirements defined

in the semi-automatic query.

10. The Planning Unit will match the lookup result with the service requester require-

ments taking into consideration previous selections and will send the matched and

ranked ConfiguredServices to the service requester.

11. The service requester will then select a specific ConfiguredService from the list of

candidate ConfiguredServices.

Steps 7 to 11 are repeated until all required functionalities are met.

12. The service requester will send the final composition plan received from the Planning

Unit to the Execution Unit for execution.

8.2.1 Semi-automatic Composition Query

The semi-automatic composition process is performed in many steps. At each step a query

is sent by the service requester to the Planning Unit. From the semi-automatic composition

175

process we can acknowledge three stages of querying. The first stage is to form an initial-

ization query. The second stage is to form a semi-automatic query. The final stage is to

form the ending query.

The initialization query has two main goals. The first is to inform the Planning Unit

that a semi-automatic composition process is starting, which will tell the Planning Unit

to create a new session. The second goal is to define the first required functionality. The

initialization contains two main parts. The first part defines a unique name for the semi-

automatic composition process. The second part is a traditional style query defining the

first required functionality and associated nonfunctional, trustworthiness, legal and context

information.

Definition 18 The semi-automatic initialization query q(sa)i
is defined as q(sa)i

= 〈n, q〉,
where n : string is the query name, q is a traditional service query and q ∈ {qe, qw},

where qe is an exact traditional query, and qw is a weighted traditional query.

The semi-automatic query is formed to meet two main goals. The first goal is to in-

dicate the ConfiguredService selected by the service requester from the set of candidate

ConfiguredService for the previous query. The second goal is is to define the new required

functionality. The semi-automatic query structure consists of three parts. The first part

contains the unique name defined in the initialization query. The second part is a tradi-

tional style query defining the new required functionality and associated nonfunctional,

trustworthiness, legal and context information. The third part contains the selected Config-

uredService for the previous query.

Definition 19 The semi-automatic query qsa is defined as qsa = 〈n, q, cs〉, where n : string

is the query name, q is a traditional service query , q ∈ {qe, qw} where qe is an exact tradi-

tional query and qw is a weighted traditional query, and cs is the selected ConfiguredSer-

vice for the previous query response.

The ending query has to meet two main goals. The first goal is to indicate the Config-

uredService selected by the service requester from the set of candidate ConfiguredService

176

for the previous query. The second is to inform the Planning Unit that this is the last semi-

automatic query which will tell the Planning Unit to compose all previous selections, send

the composition result to service requester and end session. The end query is just a regular

semi-automatic query with the field q empty.

Example 16 This example illustrates a semi-automatic composition for a travel planning

example. In this example, the service requester is requiring to book a flight and rent a car.

To achieve this, the service requester decides to make a semi-automatic composition. He

will first select a flight and according to this selection he will rent the car. The composition

queries are defines as:

Precondition: HasPassport == true
Postcondition: HasReservation == true
Domain: AirlineDomain
Functionality: BookingFunctionality
Outputs: time

Price: < 500$ per hour

Deposit <= 50

Context Info: [Membership : CAA]

Functionality

Nonfunctional

Name

Legal Issues

Context

Input
Parameters

TravelData:date
DepartureCity:string
DestinationCity:string

Output
Parameters

DepartureAirport:string
DistinationAirport:string
Price:double

TravelPlanning

Figure 36: Semi-automatic Query Initialization

• The semi-automatic initialization query, shown informally in Figure 36, and is for-

mally defined as: qsai = 〈n, q〉 where n = “TravelP lanning′′ and q = qe where

qe = 〈f̂ , κ̂, ĉ, l̂, E, Λ̂〉 and:

177

– f̂ = 〈p̂r, p̂o, D̂, ŜF 〉, where p̂r = (HasPassport == true), p̂o = (HasRe

servation == true), D̂ = (AirlineDomain), and ŜF = (BookingFuncti

onality).

– κ̂ = 〈p̂〉, where p̂ = 〈â, ĉu, ûn〉, â = (500), ĉu = (dollar) and ûn = (hour).

– l̂ = {(deposit = 50)}.

– ĉ = {(membership == caa)}.

– ˆΛinput = {(TravelDate, date), (DepartureCity, string), (DestinationCity,

string)}.

– ˆΛoutput = {(DepartureAirport, string), (DestinationAirport, string), (Tr

avelT ime, time), (Price, double)}.

• The semi-automatic query is formally defined as qsa = 〈n, q, cs〉, where n = “Travel

P lanning′′, cs = Book F light, and q = qe1 where qe1 = 〈f̂ , κ̂, ĉ, l̂, E, Λ̂〉 and:

– f̂ = 〈p̂r, p̂o, D̂, ŜF 〉, where p̂r = (CarBroken == true), p̂o = (HasAp

pointment == true), D̂ = (CarDomain), and ŜF = (RentingFunctionality).

– κ̂ = 〈p̂〉, where p̂ = 〈â, ĉu, ûn〉, â = (50), ĉu = (dollar) and ûn = (hour).

– l̂ = {(deposit = 500)}.

– ĉ = {(membership == caa)}.

– ˆΛinput = {(Duration, time)}.

– ˆΛoutput = {(CarType, string), (Price, double)}.

• The ending query is formally defined as qsa = 〈n, q, cs〉, where n = ”TravelP lanning”,

q = φ, and cs = Rent Car.

8.2.2 Planning Unit Algorithms

In semi-automatic composition, the Planning Unit runs two main processes. The first is

concerned with matching and ranking the service requester requirements with candidate

178

ConfiguredServices. The second is concerned with composing the selected ConfiguredSer-

vices.

The matching process is performed according to Algorithm 1 where Q is the service

query, C is the composition so far, CS is the set of candidate ConfiguredServices that

provide the functionality required by the query and MATCH algorithm is defined in Sec-

tion 7.3.3.

Algorithm 1 Semi-automatic Matching
INPUT: ServiceQuery ”Q”, CompositionSoFar ”C”, Set of ConfiguredServices ”CS”.
OUTPUT: ServiceType ”ST”.
if C is empty then

ST=MATCH Algorithm (Q, CS);
Return ST;

end if

if C is not empty then

ServiceQuery temp = Q;
temp preconditions = Q preconditions + C preconditions + C postconditions;
temp inputParamters = Q inputParamters + C inputsParamters + C outputsParamters;
ST = MATCH Algorithm (temp, CS);
Return ST;

end if

The result of the semi-automatic matching algorithm is then passed to the ranking al-

gorithm defined in Section 7.3.3. The set of ranked ConfiguredServices is then passed to

the service requester.

The Planning Unit composes the selected ConfiguredServices according to the Semi-

automatic composition Algorithm 2, where A � B is defined using the semantic discussed

in Section 5.2.

Example 17 The semi-automatic composition algorithm is applied in the previous ex-

ample. Initially, the composition so far is empty. Next, the composition so far will in-

clude Book F light. Finally, composition is done, and the composition so far will include

Book F light � Rent Car.

179

Algorithm 2 Semi-automatic Composition
INPUT: CompositionSoFar ”C”, ConfiguredService ”S”.
Output: CompositionSoFar ”C’”
if C is empty then

C’=S;
Return C’;

end if

if C is not empty then

C’ = C � S;
Return C’;

end if

8.3 Automatic Composition

In automatic service composition, the composition logic is created by the Planning Unit

without any input from the service requester. The composition query is just a traditional-

style query. In this query, the requester specifies his requirements. These requirements

cannot be satisfied by one ConfiguredService and hence a composition is necessary. In

FrSeC, automatic service composition problems are solved as Artificial Intelligence (AI)

planning problems. The rest of this section introduces AI planning, transforming service

composition into a planning problem and ranking the results of the composition process.

8.3.1 AI Planning

Planning [Lug08] is a branch of AI that has a long history. The main task of planner is to

find a sequence of actions that allows the problem solver to achieve some specific task.

Definition 20 A planning problem can be defined as a tuple 〈I, A, G〉, where I is the initial

state, A is a set of available actions (operations) and G is the set of goals.

The two main approaches in solving planning problems are situation-space search and

planning-space search. Each type depends on the kind of search space that is explored.

• In situation-space [Lug08], the search space is the space of all possible states or

situations of the world. The initial state is defined as one node and the goal node

180

is a state where all goals in the goal state are satisfied. The solution of the planning

problem will be the sequence of actions in the path from the start node to a goal node.

The two main approaches to situation-space planning are progression planning and

regression planning.

– In progression planning, forward-chaining is performed from initial state to

goal state. The result will look like a state-space search and any kind of search

algorithm such breadth first search or depth first search can be used. The main

disadvantage of such approach is the huge number of spaces to explore. Hence,

this approach is inefficient. Progression planning can be summarized in the

following steps:

1. Start from initial state.

2. Find all operations whose preconditions are true in the initial state.

3. Compute the effects of operators to generate successor states.

4. Repeat steps 2 and 3 until a new state satisfies the goal conditions.

– In regression planning, backward chaining is performed from the goal state

to initial state. This approach is goal directed and usually more efficient than

progression planning. The main reason for this is that many operations are

available at each state, but only a small number are applicable for achieving a

given goal. The main disadvantage of such approach is that it cannot always

find a plan even if one exists. Regression planning can be summarized in the

following steps:

1. Start with goal node corresponding to the goal to be achieved.

2. Choose an operation that will achieve one of the goals.

3. Replace that goal with the operation preconditions.

4. Repeat steps 2 and 3 until the initial state is reached.

• In plan-space [Lug08], the search space is the space of all possible plans. A node

corresponds to a partial plan. Initially one node in the space will be specified as

181

an “initial plan”. A goal node is a node that contains a plan that satisfies all of the

goals in the goal state. This node contains the sequence of actions that determines

the solution plan.

8.3.2 Automatic Composition using AI Planning

Service composition involves ordering a set of services in the correct order to satisfy a

given goal. This can be viewed as a planning problem P described by the tuple 〈I, A, G〉
where I is the initial state, A is the set of actions and G is the goal. The planning problem

can be mapped to service composition as following:

• Initial state is replaced by the preconditions and input parameters provided by the

service requester.

• The set of actions are replaced by the available ConfiguredServices in the related

domains.

• The goal is replaced by the required preconditions and output parameters required by

the service requester.

To do the planning we suggest the use of regression planning discussed earlier. We will

use the STRIPS [Lug08] planner as an example.

STRIPS represents states as sets of atomic facts. The set A contains all the actions

that can be used to modify states. Each actions Ai has three lists of facts containing the

preconditions of Ai defined as prec(Ai), the facts that are added (postconditions) by Ai

defined as add(Ai), and the facts that are deleted from the world state after the application

of Ai defined as del(Ai). The following rules fold for the states in STRIPS:

• An action Ai is applicable to state S if prec(Ai) ⊆ S.

• If Ai is applied to S, the resulted state S̀ is defined as S̀ = S = del(Ai) ∪ add(Ai).

• The solution to the planning problem is a sequence of actions P = A1, A2, ..., An,

which if applied to I results to a state S̀ such that G ⊆ S̀.

182

The Planning Domain Definition Language (PDDL) [Kov] is an attempt to standard-

ize planning domain and problem description languages. It was first developed by Drew

McDermott in 1998 and later has been enhanced, extended and became a standard for

modeling planning domains and problems. The latest version of this language is PDDL3.1.

PDDL can be used to represent all the elements of STRIPS. A planning problem specified

in PDDL is divided into two files. The first file specifies the domain file for predicates

and actions. The second file specifies the problem including objects, initial state and goal

specification.

We will use PDDL to formalize our planning problem. Translating our service compo-

sition problem into a planning problem defined in PDDL includes two steps.

STEP 1: Defining the planning domain file

This step translates available ConfiguredServices defined using SQL (Chapter 9) into a

planning action. Each ConfiguredService CSi is mapped into an action Ai according to the

following rules:

• The name of action name(Ai) is mapped to the ConfiguredService name name(CSi).

• The preconditions of the actions are the union of the ConfiguredService input param-

eters, preconditions and context rules.

prec(Ai) = CSi.inputParameters ∪ CSi.preconditions ∪ CSi.contextRules.

It is essential to note that input parameters consist of variables (Invar) and value

(value). These parameters can be written as logical statements in the form Invar ==

value. This will ensure that prec is a logical statement.

• The add effects of the action are the union of the ConfiguredService output parame-

ters and postconditions.

add(Ai) = CSi.outputParameters ∪ CSi.postconditions.

It is essential to note that output parameters consist of variable (Outvar) and val-

ues (value). These parameters can be written as logical statements in the form

183

Name: Find_Restaurant
Inputs: postalCode, foodType
Outputs: restaurantName, restaurantAddress

Service

Contract

Company Name: CanadianRestaurantFinder

Price: = 0.20$

ServiceTrust
Safety: Response in 1 second.
Security: Secure and encrypted transaction

ProviderTrust
Client Recommendation: The service provider is rated 4.9/5

Refund Condition: No refund available
Payment methods: Credit cards only
Payment schedule: Payment should be received before shipment.
Students and seniors gets 20% discount
Requester Rights: If not delivered in 7 days, delivery chargers are
refunded

Context Info: [LOC : CANADA]
Context Rule: buyer-city in CANADA ^ age > 18

Functionality

Attributes

Nonfunctional

Trust-
worthiness

Legal Issues

Context

Figure 37: Find Restaurant ConfiguredService

Outvar == value. This will ensure the add is a logical statement.

• The delete list will remain empty.

Example 18 Figures 37, 38 and 39 illustrate three ConfiguredServices. The first Con-

figuredService finds the nearest restaurant to a specific postal code using food type. An

example would be finding an Italian restaurant nearest to a location, given its postal code

N1N1N1. The second ConfiguredService will find the direction between two locations,

given their postal addresses. The third ConfiguredService will estimate the time required

to travel a predefined direction. These ConfiguredServices can be translated into the PDDL

domain file presented in Figure 40.

STEP 2: Defining the problem file

This step translates a query Q defined in SQL into the problem file according to the follow-

ing rules:

184

Name: Find_Direction
Inputs: startPostalCode, fendPostalCode
Outputs: direction

Service

Contract

Company Name: CanadianDirectionFinder

Price: =0.5 $

ServiceTrust
Safety: Response in 1 second.
Security: Secure and encrypted transaction

ProviderTrust
Client Recommendation: The service provider is rated 4.9/5

Refund Condition: No refund available
Payment methods: Credit cards only
Payment schedule: Payment should be received before shipment.
Students and seniors gets 20% discount
Requester Rights: If not delivered in 7 days, delivery chargers are
refunded

Context Info: [LOC : CANADA]
Context Rule: buyer-city in CANADA ^ age > 18

Functionality

Attributes

Nonfunctional

Trust-
worthiness

Legal Issues

Context

Figure 38: Find Direction ConfiguredService

Name: Find_Direction_Time
Inputs: direction
Outputs: time

Service

Contract

Company Name: CanadianTimeFinder

Price: = 0.10$

ServiceTrust
Safety: Response in 1 second.
Security: Secure and encrypted transaction

ProviderTrust
Client Recommendation: The service provider is rated 4.9/5

Refund Condition: No refund available
Payment methods: Credit cards only
Payment schedule: Payment should be received before shipment.
Students and seniors gets 20% discount
Requester Rights: If not delivered in 7 days, delivery chargers are
refunded

Context Info: [LOC : CANADA]
Context Rule: buyer-city in CANADA ^ age > 18

Functionality

Attributes

Nonfunctional

Trust-
worthiness

Legal Issues

Context

Figure 39: Find DirectionTime ConfiguredService

185

(define (domain example1)

 (: action FindRestaurant
 : parameters (?postalCode ?foodType ?city ?age
 ?restaurantName ?restaurantPostalCode)
 : precondition (and (not (= null ?postalCode))
 (not (= null ?foodType))
 (in CANADA ?city)
 (< 18 age))
 :effect (and (not (= null ?restaurantName))
 (not (= null ?restaurantPostalCode))))

 (: action FindDirectionRestaurant
 : parameters (?startPostalCode ?endPostalCode ?city
 ?age ?direction)
 : precondition (and (not (= null ?startpostalCode))
 (in CANADA ?city)
 (< 18 age))
 :effect (and (not (= null ?direction))))

 (: action FindDirectionTime
 : parameters (?direction ?city ?age ?time)
 : precondition (and (not (= null ?direction))
 (in CANADA ?city)
 (< 18 age))
 :effect (and (not (= null ?time))))
)

Figure 40: PDDL for Example 18 ConfiguredServices

• The initial state is defined as the union of input parameters, the preconditions and

context information defined in the query.

I = Q.inputParamters ∪ Q.preconditions ∪ Q.contextInfo.

• The goal state will be the union of the required postconditions and output parameters

as defined in the query.

G = Q.postconditions ∪ Q.outputParameters.

Example 19 Figure 41 shows a service query. This query is translated to the PDDL prob-

lem file presented in Figure 42 according to the rules presented above.

186

Name: Find_Restaurant
Inputs: postalCode, foodType
Outputs: time

Price: < 0.30$

ServiceTrust
Safety: Response in 5 second.
Security: Secure and encrypted transaction

ProviderTrust
Client Recommendation: The service provider is rated 4.5/5

Refund Condition: No refund available
Payment methods: Credit cards only
Payment schedule: Payment should be received before shipment.
Students and seniors gets 20% discount
Requester Rights: If not delivered in 7 days, delivery chargers are
refunded

Context Info: [LOC : CANADA, AGE: 21]

Functionality

Nonfunctional

Trust-
worthiness

Legal Issues

Context

Figure 41: Example 19 Query

(define (problem example1-problem)

 (: domain example1)

 (: init (postalCode N1N1N1)
 (foodType italian)
 (age 21)
 (location canada))

 (: goal (= null ?time))
)

Figure 42: Example 19 PDDL problem file

187

8.3.3 Mapping Planning Result to Service Composition

The result of the planning problem is a set of ordered actions. These set of actions are

translated into a service composition. The service composition will be a sequential com-

position of the ordered actions. Where each action is replaced with the corresponding

ConfiguredService.

Example 20 The plan resulting from the previous example will consist of the three actions

FindResturant, FindDirection, FindDirectionTime. This can be mapped to the composition

Find Restaurant � Find Direction � Find Direction T ime.

8.3.4 Composition Matching and Ranking

In general, the Planning Unit will generate multiple candidate service composition plans.

Using the static service composition constructs and their semantics, discussed in Sec-

tion 5.2, the composition is mapped in a one-to-one manner into a single ConfiguredSer-

vice. Hence, the candidate plans are now represented by a set of candidate ConfiguerdSer-

vices where each ConfiguredService is resulted from a single plan.

The resulting ConfiguredServices (resulted from the plans) provide the required func-

tionalities but they might not satisfy the required nonfunctional, trustworthiness and le-

gal requirements. Hence, a matching should be performed between the service requesters

requirements and the resulted ConfiguredServices. The matching algorithm discussed in

Chapter 7 will be used.

The service requester query might have been an exact or partial matching query. In

case of a partial matching query, the ranking algorithm in Section 7.3.3 will be called. This

step will filter out all compositions that do not satisfy the service requester nonfunctional,

trustworthiness and legal requirements.

The result of the matching and ranking process will be a set of ordered ConfiguredSer-

vice where each ConfiguredService represent a single composition plan. The ranked plans

are then passed to the service requester.

188

8.4 Summary

This chapter has introduced three novel dynamic service composition approaches that are

supported by FrSeC. The first approach is template-based, where the service requester de-

fines a composition by defining the requirements and the execution logic of the matched

ConfiguredServices. The second approach is semi-automatic, where the service requester

has continues interaction with the Planning Unit to select services that will be part of the

composition created by the Planning Unit. The third approach is automatic, where the ser-

vice requester specifies a requirement that cannot be matched by a single functionality and

the Planning Unit is responsible for creating a composition plan to meet the service re-

quester requirements. The service requester has the choice to select any dynamic composi-

tion approach. If the template-based composition used sequential composition constructors

only, all three dynamic composition approaches will result in the same service composi-

tion. In term of complexity, the automatic composition approach is the most complex. This

is due to the fact that a huge number of services and options have to be analyzed by the

Planning Unit. Hence, the main limitations of the automatic composition approach is its

scalability and performance.

189

Chapter 9

Development Stages and Supporting

Languages

This thesis has introduced a new service model, a new composition theory, and a new pro-

vision framework (FrSeC) that enables the provision and composition of services defined

using the new service model. This chapter shows how service-oriented applications can be

developed according to FrSeC principles.

The development of service-oriented applications includes multiple stages. Section 9.1

identifies these stages and their relation to FrSeC.

The approach proposed for the development of service-oriented applications is formally

based. The use of formal methods is complex and error prone. Therefore, there is a need for

a set of languages that enable the participants at the different development stages to fulfill

their responsibility without worrying about complex formal languages. Hence, this chap-

ter introduces a set of languages necessary to support the development of service-oriented

applications. The languages are defining to support each step of the development. These

languages were designed to ensure semantic simplicity, modularity, composability and ex-

tendibility. Semantic simplicity will increase the languages usability and comprehension.

Modularity will lower the coupling and increase the re-usability of languages definitions.

Composability will enable complex units to be built easily by composing simpler units.

Extendibility will ensure that the languages are able to develop and adapt in the future.

190

This chapter also introduces five XML-based languages which are used for the trans-

mission of data between the different components of FrSeC. These XML-based languages

are not to be used by users of FrSeC and hence the users don’t have to worry about the com-

plexity of XML. The details of the introduced languages are presented in Section 9.2. In

Section 9.3 we illustrate the use of the proposed languages on the auto roadside emergency

service case study.

9.1 Service-oriented Application Development Stages

A service-oriented application is an application that uses services as the means for provid-

ing functionality. It is usually a composition of interacting services to provide a new com-

plex functionality that cannot be provided by a single atomic service. The development of

service-oriented applications using FrSeS involves four main stages, namely service def-

inition, service implementation, service processing, and service provision. The provision

stage also includes service composition. Below we give a brief review of what we have

done in these stages and follow it up with a discussion of the languages necessary to carry

out the activities of these stages.

9.1.1 Service Definition

Services are defined by service providers in a contract first approach. That is, the contract is

defined before the implementation of service [Erl07]. At this stage, the service provider de-

termines all the possible contracts that this service should satisfy. The contract will include

the guarantees the service provider can make when providing the service functionality.

Guarantees are associated with legal and trustworthiness issues.

In Chapter 4, we have presented ConfiguredService which is a structure that associates a

service with a contract. The ConfiguredService service part will include information about

service function, nonfunctional properties and attributes. The contract part will contain

information regarding the service provision legal rules, the trustworthiness guarantees and

the contextual rules constraining the service provision. The ConfiguredService structure

191

can be used by service providers to define their services at the service definition stage.

9.1.2 Service Implementation

A single functionality may be associated with multiple contracts. Hence, multiple Config-

uredServices can provide the same functionality but with different contracts. Such Config-

uredServices might have one implementation which we call ImplementedService.

After defining the ConfiguredServices, the service provider develop the Implement-

edService that implements these ConfiguredServices. Implementing services can be per-

formed following different software engineering methodologies. We propose the use of the

formal software engineering methodology for the development of trustworthy component

based systems (TADL) [MA11].

9.1.3 Service Provision and Processing

In FrSeC, service provision includes four steps: (1) service publication, (2) service discov-

ery, (3) service execution and (4) service delivery. The two main interacting elements in

service provision are service providers and service requesters. Below is a brief discussion

of the service provision stages.

Service Publication

During service publication a service provider prepares a service for publication. The pub-

lished information should enable the discovery and selection of the service. The published

information will include the functionality the service can provider, the nonfunctional and

trustworthiness properties guaranteed by the service, the legal rules and exceptions guar-

anteed and required by the service provider, and the contextual information of the service

provider. In addition to the previous information, the service description should also in-

clude a set of context rules. The context rules define the context in which the service

provider can guarantee the information define in its service description. This context will

192

be the context of the service requester, consumer and service provision. Hence, the Config-

uredService definition is sufficient for service publication.

In FrSeC, the publication of ConfiguredServices is done through the Service Registry.

It provides a medium for the publication of ConfiguredServices and any related semantic

information. The Service Registry will only accept the publication of ConfiguredServices

that has been analyzed and approved by the Trusted Authority. We call this analysis the

before publication analysis and it has been discussed in Chapter 4.

During service publication the service consumer plays no role. But the service provider

might use consumers’ contextual information to constrain the service. This is done by

defining context rules.

Service Discovery

In the discovery process, service requesters are looking for services that can provide their

requirements. But these requirements are not always clear and precise. Hence, in FrSeC

we have the two types of discovery process, called traditional and buffet (Section 7.3.2.

In the traditional style, the service requester browses the Service Registry for available

functionalities, and semantic information. The information found in the Registry will then

be used by the service requester in defining their queries. Because different requesters has

different rules, FrSeC introduced two types of queries exact and weighted. The queries

are sent to the Planning Unit which will communicate with the Service Registry to de-

termine the ConfiguredServices that matches their requirements. But in many cases there

are multiple matches and the service requester might not be able to decide which one is

more appropriate. Hence, a ranking algorithm is used by the Planning Unit of the FrSeC

(Section 7.3.3).

In the buffet style, the service requester browses the Service Registry for available

ConfiguredServices. And when defining the query a specific ConfiguredService is requested

rather than general functionality.

Even after a ConfiguredService has been selected by the service requester some nego-

tiation with the service requester might be necessary. Hence, in FrSeC we have introduced

193

the Plan Negotiation Unit. This is responsible for mediating the negotiation between the

service requesters and service providers.

Service Execution

In FrSeC, service execution is managed by the Execution Unit. At the beginning of ser-

vice execution, the Execution Unit receives from the service requester (1) selected Con-

figuredService and (2) consumer data and context. The Execution Unit then generates a

new service agreement that includes (1) the original ConfiguredService, and (2) the service

requester data and context. The new agreement we call an ExecutableService. In the Exe-

cutableService only the legal rules that apply to the service requester are left in the contract.

In other words, the ExecutableService contract is tailored to the service requester.

The new ExecutableService is then sent to both the service requester and the service

provider. Both parties have to accept it. After acceptance the Execution Unit will exe-

cute the ExecutableService. The execution is performed by sending service requests and

receiving service responses to and from service providers.

Service Delivery

After the service has been delivered service providers and requesters should verify the

execution of the service. This verification will ensure that neither party has violated his

obligations.

The service requester will verify that the service provider (1) has provided the require-

ment that satisfies the postconditions, (2) has fulfilled the obligations stated in the contract,

and (3) did not violate the agreed upon legal rules. In FrSeC, the requester verification can

be performed by service requester himself or it can be delegated to the Trusted Authority.

If the verification shows a violation from the service provider, the service requester will

consult the legal rules to find the penalties for the violation. It is the responsibility of the

service requester to prove that the service provider did violate the agreed upon contract.

The need for such proof highlights the need for the Trusted Authority.

The service provider also verifies that the service requester fulfilled his obligations.

194

This verification can also be delegated to the Trusted Authority. If the service requester

fulfilled his obligations, the service provider will close the contract and end the process.

Otherwise, it may define additional requirements.

9.1.4 Service Composition

A service-oriented application can be thought of as a composite service. Service composi-

tion may be attempted either at design-time or at execution-time. The former, called static

composition and the later called dynamic service composition. FrSeC supports static and

dynamic service composition in the development of applications.

Static service composition is provider-driven. The result of the composition is a Con-

figuredService that is published using the Service Registry. Dynamic service composition

is requester-driven. Dynamic service composition can be of the three types template-based,

semi-automatic and automatic (Chapter 8). All three types can be used to create service-

oriented application using FrSeC.

9.2 FrSeC Supporting Languages

In developing a service-oriented application, services are to be made first class citizens.

This implies that services, regarded as first class objects, are created, announced, discov-

ered, executed, and delivered. To meet these activities, languages that are easy to use must

exist. Figure 43 shows the languages in a certain hierarchy, and below we discuss their

design merits.

9.2.1 Service Processing Languages (SPL)

After some investigation we found that a unified syntax can be used for languages that are

required for the different stages of a service application development. So, we designed the

language Service Processing Languages (SPL). Because of its generic structure it is indeed

a family of languages. The full syntax of SPL family is presented in Appendix A.

195

Service Processing
 Langauges

Service Implementation
 Languages

Trustworthy Architectural
 Description Language
 (TADL)

 Component
Communication
 Languages

 Service Registry
 Langauge (SRL)

 Service Query
 Langauge (SQL)

 Trusted Authority
 Langauge (TAL)

Service Planning Unit
 Langauge (SUL)

 ConfiguredService
Description Language
 (CSDL)

ConfiguredService
 Query Langauge
 (CSQL)

 Planning Unit
Description Language
 (SUDL)

 Trust Authority
Description Language
 (TADDL)

 Negotiation Unit
Description Language
 (NUDL)

 Service Negotiation
 Unit Langauge (NUL)

Figure 43: Language Support

In SPL the syntax is such that every element is described separately. The rationale

behind this is two-fold. First, it increases reuse of existing elements for different specifi-

cations. For example, a context information element may be reused in different Config-

uredServices. Therefore, having the context information specification described separately

from ConfiguredService specification will enable reuse. Second, reconfiguration of the el-

ements affect only locally. For example, more information can be added to an existing

context specification by changing only the context information. The main features of SPL

are summarized below.

• SPL syntax is close to our conceptual view of the architectural elements and hence

easy to understand.

• Formal semantics can be given to the information specified in it. The semantic basis

196

is provided by set theory and logic, as described in Chapter 7. Abstract data types

are modeled by sets and constraints are expressed in first order logic.

• The language is extendable, in the sense that when more architectural elements are

introduced, more syntactic units can be added to SPL syntax.

• The language allows heterogeneous collection of elements to be either grouped or de-

scribed as independent modular units. Basic and abstract data types can be included

to enrich the elements.

• A syntactic unit (modular unit) can be included in another unit. Consequently larger

specification units are built up incrementally.

The syntax for describing an element contains element type, element name, and a spec-

ification of the contents of the element. Figure 44 shows the general elements that are

used by SPL. Those general elements are attributes and parameters. We use attributes with

every elements of SPL. Attributes can be used to specify any semantic information to be

associated with any SPL element. Parameters are used to define data parameters. A data

parameter is defined in terms of it name and data type. Note that (Attribute < name >)�

means that 0 or more attributes can be defined as part of the element.

Attribute < name > {
< DataType >< name >;
Default < value >;

}

ParameterType < name > {
(Attribute < name >)*;
< DataType >< name >;

}

Figure 44: SPL General Elements Syntax

SPL family includes the following languages that we need for different stages in developing

a service-oriented application:

197

• Service Registry Language (SRL): It is used to describe the service registry hierar-

chically. The syntax of the language SRL, presented in Appendix A.1, is a concrete

version of the abstract formal notation discussed in Chapter 7. Consequently, the se-

mantic basis of SRL is formal. Service providers describe ConfiguredServices in the

language CSL in order to publish them in the Service Registry of the FrSeC. There

is a close affinity between the structure of the Service Registry and the structure of

a ConfiguredService. This affinity implies that the SRL syntax must be a superset of

the CSL syntax. The concrete syntax of the language CSL is based on a meta-model

derived from the formal definition of ConfiguredService. The meta-model and the

syntax are illustrated in Appendix A.1.

• Service Query Language (SQL): A family of query languages is needed to prepare

traditional queries, buffet queries, and composition queries. The query language that

is necessary for a transaction is prepared by the PU and given to service requesters

to describe service requests. The syntax for each query language has an underly-

ing meta-model. The meta-models and the complete syntax of SQL are given in

Appendix A.2.

• Trusted Authority Language (TAL): This language is defined by the TA. It is used to

describe authentication certificate requests and analysis requests sent to the Trusted

Authority. It is used by both service providers and service requesters. The full syntax

of TAL appears in Appendix A.3.

• Service Negotiation Unit Language (NUL): This language is defined by the Negoti-

ation Unit. It is used by service requesters to request service negotiations and used

by the Negotiation Unit to convey the negotiation result back to requesters. The full

syntax of NUL appears in Appendix A.5.

• Service Planning Unit Language (SUL): This language, defined by the PU, will be

used to describe service lookups, lookup results and service plans. It is used by the

Planning Unit. The complete syntax of SUL is given in Appendix A.4.

198

9.2.2 Service Implementation Languages (TADL)

In principle a service provider can use any implementation strategy to implement the CSL

descriptions. We propose the use of the formal component-based software engineering

methodology for the development of trustworthy systems [MA11]. In this work a trust-

worthy architecture description language, called TADL, has been formally defined. We use

TADL as the service implementation language because of the following merits.

• it is quite generic and expressive,

• it is formal and its descriptions can be formally verified,

• trustworthiness properties can be described in it, and

• it comes with tools, such as the visual modeling tool (VMT) [Moh09] for design time

development and the transformer [Ibr08] for linking to UPPAAL.

So, it is sufficient to explain now the mapping of a ConfiguredService to a TADL template.

The result of mapping will be called an ImplementedService.

An ImplementedService is one TADL component (primitive or composite). It can en-

capsulate one or more ConfiguredServiecs. A ConfiguredService is mapped to a TADL

component service according to the following rules. In Figure 45 the left side is Con-

figuredService and the right side is the ‘ComponentType’ of TADL which represents the

ImplementedService.

• Mapping Service Part: The service part of a ConfiguredService is mapped to the

service part Service of the TADL template.

– Function: Each function is mapped to TADL component service as follows:

∗ The preconditions are mapped to data constraints.

∗ The postconditions are mapped to TADL component service update state-

ments.

∗ The signature id is mapped to TADL component service stimulus.

199

ConfiguredService

Attributes

Parameters

ComponentType

-Stimulus
-Response
-Data Constraint
-TimeConstraint
-Update
-attributes

Service Service

...
...

.

...
...

.

-NonFunctional

-Attributes

-Function
 -precondition
 -postcondition
 -signature
 -id
 -address
 -parameters
 -return

Service

Attributes

-Legal issues

Context
-ContextRule
-ContextInfo

-Trustworthiness

Contract

Figure 45: ConfiguredService and ComponentType mapping

∗ The signature address is mapped to TADL component service attributes.

∗ The signature parameter is mapped to TADL component service attributes.

– Nonfunctional: The nonfunctional properties are mapped to attributes in the

TADL component service.

– Attributes: The attributes are mapped to TADL component attributes.

• Contract: The elements of the contract are mapped to data constraints, time con-

straints, and attributes of the ‘ComponentTemplate’.

– Trustworthiness: The trustworthiness properties are mapped as data and time

constrains in the TADL component service.

200

– Legal Issues: The legal rules are mapped as data and time constrains in the

TADL component service.

– Context: The ContextRules are mapped to data constraints in the TADL com-

ponent service. The ContextInfo are mapped to the TADL component service

attributes.

Thus, every ConfiguredService published in the Service Registry has a description in CSL,

and the CSL description is mapped faithfully to a TADL component which implements

it, we claim that traceability between implementation and its corresponding specification

becomes easier. We can develop a tool that will check whether or not (1) every published

service is implemented as a TADL component, and (2) every TADL component implemen-

tation corresponds to some published service.

9.2.3 Component Communication Languages (CCL)

Service descriptions and service requests are required for both human consumption and

for machine computation. The languages CSL, SQL, NUL, TAL and SUL are meant for

humans. We need their equivalent machine understandable versions for inter-module com-

munication. When a ConfiguredService or query is to be passed as data between two Fr-

SeC units (equivalently between two TADL components), we want to have interoperability.

This is best achieved by the respective XML versions of CSL, SQL, NUL, TAL and SUL.

The XML version of CSL is called ConfiguredService Description Language (CSDL),

the XML version of SQL is called ConfiguredService Query Language (CSQL), the XML

version of NUL is called Negotiation Unit Description Language (NUDL), the XML ver-

sion of TAL is called Trusted Authority Description Language (TADDL), and the XML

version of SUL is called Planning Unit Description Language (SUDL). These languages

are faithful XML translations of their respective languages. These translations are auto-

matically driven by a grammar-driven transformation tool. The users do not have to worry

about writing complex XML definitions. The users describe their requirements at differ-

ent stages only in CSL, SQL, NUL, TAL and SUL. The syntax of CSDL is presented in

201

Appendix B and the syntax of CSQL is presented in Appendix C. The syntax of NUDL,

TADDL and PUDL are defined in the same manner.

9.3 A Partial Specification of the Auto Roadside Emer-

gency Case Study

The full case study described in Chapter 7 requires many specifications. We choose three

of them for presentation in this section.

This section, illustrates the languages presented in the previous section by presenting

a partial specification of the case study described in Chapter 7. The rest of the section is

organized as follows. First, the Service Registry part related to service provider Garage1 is

specified using SRL. This also includes the specification of ConfiguredService garage1.1.

Second, the specification of ConfiguredService garage1.1 is presented using CSDL. Third,

to illustrate the specification of queries, a complete specification of Query1 is presented in

SQL and CSQL. Finally, for Query1 the specification of the service lookups, lookups result

and generated plan are presented in SUL.

9.3.1 Service Registry Specification

This specification contains only the service registry part used by the service provider Garage1

providing ConfiguredService garage1.1, garage1.2 and garage1.3. The specification in-

cludes the specification of ConfiguredServices garage 1.1. ConfiguredServies 1.2 and 1.3 is

can be specified in the same manner. The specification is presented in the language SRL.

Registry ServiceRegistry{
RepairShopDomain repairshopdomain;

}
Domain RepairShopDomain{

ReserveFunctionality reservefunctionality;

RepairShopSafety repairshopsafety;

202

}
DomainNonFunctional RepairShopSafety{

propertyName safety;

}
Functionality ReserveFunctionality{

Garage1Node garage1node;

Garage2Node garage2node;

Garage3Node garage3node;

CarBroken carBroken;

Deposit deposit;

CarType carType;

HasAppointment hasAppointment;

NumOfHours numOfHours;

}
ServiceProviderNode Garage1Node{

ServiceProviderID garage1;

Garage1.1 garage1-1;

Garage1.2 garage1-2;

Garage1.3 garage1-2;

}
ServiceProviderNode Garage2Node{

ServiceProviderID garage2;

Garage2.1 garage2-1;

}
ServiceProviderNode Garage3Node{

ServiceProviderID garage3;

Garage3.1 garage3-1;

}
Attribue GarageName{

203

DataType String;

Default Garage1;

}
ParameterType CarBroken{

DataType Boolean;

}
ParameterType Deposit{

DataType double;

}
ParameterType CarType{

DataType string;

}
ParameterType HadAppointment{

DataType Boolean;

}
ParameterType NumOfHours{

DataType int;

}
Signature ReserveSignature{

id RESERVE;

CarBroken carBroken;

Deposit depsoit;

CarType carType;

address 5141111112; }
Return ReserveReturn{

id ReserveConfirmation;

HasAppointment hasAppointment;

NumOfHours numOfHours;

}

204

Precondition ReservePrecondition{
CarBroken == TRUE;

HasAppointment == FALSE;

}
Postcondition ReservePostcondition{

HasAppointment == TRUE;

}
Function Garage1-1Reserve{

ReserveSignature reservesignature;

ReserveReturn reservereturn;

ReservePrecondition reserveprecondition;

ReservePostcondition reservepostcondition;

}
NonFunctional Garage1-1Reserve-NF{

Garage1-1Price garage1-1price;

}
Price Garage1-1Price{

value 60;

currency CanadianDollar;

unit hour;

Reserve reserve;

}
Service Garage1-1Service{

Garage1-1Reserve garage1-1reserve;

Garage1-1Reserve-NF garage1-1reserve-nf;

}
Trustworthiness Garage1-1Trust{

ReserveSafety reserveSafety;

}

205

Safety ReserveSafety{
Reserve reserve;

maxTime < 7days;

}
LegalIssue Garage1-1Legal{

Garage1-1PriceCondition g1-1pc;

Garage1-1Deposit g1-1d;

Garage1-1PaymentMethod g1-1pm;

}
PriceCondition Garage1-1PriceCondition{

Garage1-1Price garage1-1price;

CarType == toyota;

}
DepositRule Garage1-1Deposit{

amount 300;

currency CanadianDollar;

}
PaymentMethod Garage1-1PaymentMethods{

paymentMethod cash;

}
ContextRule Garage1-1ContextRule{

WhoRequester.membership == CAA;

Garage1-1Reserve reserve;

}
ContextInfo Garage1-1ContextInfo{

Garage1Location garage1location;

}
Location Garage1Location{

Garage1City garage1city;

206

Garage1suburb garage1suburb;

}
Region Garage1-1City{

type city;

name montreal;

}
Region Garage1-1Suburb{

type suburb;

name downtown;

}
Context Garage1-1Context{

Garage1-1ContextRule garage1-1contextrule;

Garage1-1ContextInfo garage1-1contextinfo;

}
Contract Garage1-1Contract{

Garage1-1Trust trust;

Garage1-1Legal legalrule;

Garage1-1Context context;

}
ConfiguredService Garage1-1{

GarageName garagename;

Garage1-1Service garage1-1service;

Garage1-1Contract garage1-1contract;

}

9.3.2 CSDL Specification

Below is the CSDL specification of ConfiguredService garage1.1 whose SRL specification

is presented above.

207

<?xml v e r s i o n = ” 1 . 0 ” e n c o d i n g =”UTF−8”?>

<CSDL>

<S e r v i c e >

<Func t i on>

<S i g n a t u r e >

<ID>RESERVE</ID>

<Address >5141111112</ Address>

<Parame te r>

<Name>CarBroken </Name>

<DataType>bool </DataType>

<D e f a u l t V a l u e ></D e f a u l t V a l u e >

</ Pa rame te r>

<Parame te r>

<Name>Depos i t </Name>

<DataType>double </DataType>

<D e f a u l t V a l u e ></D e f a u l t V a l u e >

</ Pa rame te r>

<Parame te r>

<Name>CarType </Name>

<DataType>s t r i n g </DataType>

<D e f a u l t V a l u e ></D e f a u l t V a l u e >

</ Pa rame te r>

</ S i g n a t u r e >

<Return>

<ID>R e s e r v e C o n f i r m a t i o n </ID>

<Parame te r>

<Name>HasAppointment </Name>

<DataType>bool </DataType>

<D e f a u l t V a l u e ></D e f a u l t V a l u e>

</ Pa rame te r>

<Parame te r>

<Name>NumOfHours</Name>

<DataType>i n t </DataType>

<D e f a u l t V a l u e ></D e f a u l t V a l u e>

</ Pa rame te r>

</ Return>

<P r e c o n d i t i o n >

<C o n d i t i o n>CarBroken==T &&

HasAppointment ==F</ C o n d i t i o n>

</ P r e c o n d i t i o n >

<P o s t c o n d i t i o n >

<C o n d i t i o n>HasAppointment ==T</ C o n d i t i o n>

</ P o s t c o n d i t i o n >

</ Func t i on>

<NonFunc t iona l>

<P r i c e >

<va lue >60</ va lue>

<c u r r e c n y >d o l l a r </ c u r r e c n y >

<u n i t >hour </ u n i t >

</ P r i c e >

</ NonFunc t iona l>

</ S e r v i c e >

<C o n t r a c t >

<T r u s t w o r t h i n e s s >

<C o n f i g u r e d S e r v i c e T r u s t >

<S a f e t y >

<maxTime>7days </maxTime>

</ S a f e t y >

</ C o n f i g u r e d S e r v i c e T r u s t >

</ T r u s t w o r t h i n e s s >

<Legal>

<P r i c e C o n d i t i o n >

<P r i c e >

<va lue >60</ va lue>

<c u r r e c n y >d o l l a r </ c u r r e c n y >

<u n i t >hour </ u n i t >

</ P r i c e >

<C o n d i t i o n>CarType== t o y o t a </ C o n d i t i o n>

</ P r i c e C o n d i t i o n >

<Depos i tRu le>

<Amount>300</Amount>

<Currency>d o l l a r </ Currency>

<Rule>S t r i n g </Rule>

<Date >2011−07−30</Date>

<Time >00:00:00 < / Time>

</ Depos i tRu le>

<PaymentRules>

<PaymentMethod>

<Method>cash </Method>

</PaymentMethod>

</PaymentRules>

</ Legal>

<Contex t>

<C o n t e x t I n f o >

<Loca t i on>

<Region>

<Type>Ci ty </Type>

<Name>Montrea l </Name>

208

</Region>

<Region>

<Type>Suburb </Type>

<Name>Downtown</Name>

</Region>

</ Loca t i on>

</ C o n t e x t I n f o >

<R e q u e s t e r C o n t e x t R u l e s >

<WhoRequester>

<Membership>CAA</Membership>

</WhoRequester>

</ R e q u e s t e r C o n t e x t R u l e s >

</ Contex t>

</ C o n t r a c t >

<Parame te r>

<Name>CarBroken </Name>

<DataType>bool </DataType>

<D e f a u l t V a l u e ></D e f a u l t V a l u e>

</ Pa rame te r>

<Parame te r>

<Name>Depos i t </Name>

<DataType>double </DataType>

<D e f a u l t V a l u e ></D e f a u l t V a l u e >

</ Pa rame te r>

<Parame te r>

<Name>CarType </Name>

<DataType>s t r i n g </DataType>

<D e f a u l t V a l u e ></D e f a u l t V a l u e >

</ Pa rame te r>

<Parame te r>

<Name>HasAppointment </Name>

<DataType>bool </DataType>

<D e f a u l t V a l u e ></D e f a u l t V a l u e >

</ Pa rame te r>

<Parame te r>

<Name>NumOfHours</Name>

<DataType>i n t </DataType>

<D e f a u l t V a l u e ></D e f a u l t V a l u e >

</ Pa rame te r>

</CSDL>

9.3.3 Service Query Specification

Below, we present the specification of Query1 presented in Chapter 7. Query1 is a tradi-

tional exact match style query. The languages SQL and CSQL are used.

SQL Specification

Below is the SQL specification of Query1.

TraditionalServiceQuery Query1{
ToyotaVehicle toyotavehicle;

CarBroken carBroken;

Deposit deposit;

CarType carType;

HasAppointment hasAppointment;

NumOfHours numOfHours;

Query1Function query1function;

209

RequiredLegalRule1 requiredlegalrule;

Query1-NF query1-nf;

Query1ContextInfo query1contexinfo;

}
Attribute ToyotaVehicle{

vehicletype.value = toyota;

}
RequiredFunction Query1Function{

RepairShopDomain reparishopdomain;

ReserveFunctionality servicefunctionality;

(Query1Precondition query1precondition, EXACT);

(Query1Postcondition query1postcondition, EXACT);

}
Precondition Query1Precondition{

CarBroken == TRUE;

HasAppointment == FALSE;

}
Postcondition Query1Postcondition{

HasAppointment == TRUE;

}
RequiredNonFunctional Query1-NF{

(Query1Safety query1safety, EXACT);

}
Safety Query1Safety{

Query1Function query1function;

maxTime < 10days;

}
LegalIssue RequiredLegalRule{

(RequiredDepositRule requireddepositrule, EXACT);

210

}
DepositRule RequiredDepositRule{

amount 0;

cuurency CanadianDollar;

}
ContextInfo Query1ContextInfo1{

Query1Location query1location;

Query1who query1who;

}
Location Query1Location{

Query1City query1city;

Query1Suburb query1suburb;

}
Region Query1City{

type city;

name montreal;

}
Region Query1Suburb{

type suburb;

name downtown;

}
WhoRequester Query1who{

membership CAA;

}

CSQL Specification

Below is the CSQL specification of Query1.

211

<?xml v e r s i o n = ” 1 . 0 ” e n c o d i n g =”UTF−8”?>

<Query−w>

<R e q u i r e d F u n c t i o n >

<P r e c o n d i t i o n >

<C o n d i t i o n>CarBroken==T &&

HasAppointment ==F</ C o n d i t i o n>

<weight >6</weight>

</ P r e c o n d i t i o n >

<P o s t c o n d i t i o n >

<C o n d i t i o n>HasAppointment ==T</ C o n d i t i o n>

<weight >6</weight>

</ P o s t c o n d i t i o n >

<F u n c t i o n a l i t y >R e s e r v e F u n c t i o n a l i t y

</ F u n c t i o n a l i t y >

<Domain>RepairShopDomain </Domain>

</ R e q u i r e d F u n c t i o n >

<R e q u i r e d N o n F u n c t i o n a l>

<S a f e t y >

<maxTime>7days </maxTime>

</ S a f e t y > <P r o v i d e r T r u s t >

</ R e q u i r e d N o n F u n c t i o n a l>

<R e q u i r e d L e g a l I s s u e >

<Depos i tRu le>

<Amount>0</Amount>

<Currency>d o l l a r </ Currency>

<Rule>NoRule </Rule>

<Date >2011−07−30</Date>

<Time >00:00:00 < / Time>

</ Depos i tRu le>

</ R e q u i r e d L e g a l I s s u e >

<R e q u e s t e r C o n t e x t >

<WhoRequester>

<Membership>CAA</Membership>

<Region>

<Type>Ci ty </Type>

<Name>Montrea l </Name>

</Region>

<Region>

<Type>Suburb </Type>

<Name>Downtown</Name>

</Region>

</WhoRequester>

</ R e q u e s t e r C o n t e x t >

<A u t h e n t i c a t i o n C e r t i f i c a t e >C e r t i f i c a t e

Type1</ A u t h e n t i c a t i o n C e r t i f i c a t e >

</Query−w>

9.3.4 Service Plan Specification

In response to the SQL specification the Planning Unit prepares the service lookups. The

SUL specifications of the service lookup and the lookup result for Query1 are presented

below:

ServiceLookup Query1Lookup{
RepairShopDomain reparishopdomain;

ReserveFunctionality servicefunctionality;

Query1Certificate;

}
LookupResult Query1LookupResult{

Garage1Node garage1node;

Garage2Node garage2node;

212

Garage3Node garage3node;

}

The plan result is presented below:

Plan Query1Result{
Query1Match1 query1match1;

}
ServiceType Query1Match1{

ServiceProviderID garage2;

Garage2-1 garage2-1;

}

9.4 Summary

In this chapter a set of languages necessary to support the development process of a service-

oriented application have been discussed. A partial specification for the auto roadside

emergency service case study is given. The languages are easy to use, yet they have a

formal semantic basis.

213

Chapter 10

Conclusion and Future Work

This thesis introduced an approach for the development of trustworthy context-dependent

service-oriented systems. The results of this thesis will have a positive impact in the way

service-oriented applications can be developed. The three main contributions are in the

areas service modeling, service composition and service provision. Below we first discuss

how the research goals set earlier in Chapter 3 have been met by the results of this thesis,

next we give an assessment of the solutions, and finally a brief discussion of future work

directions are discussed.

10.1 Meeting the Goals

In providing solutions to the research problems we positioned ourselves with respect to (1)

current concerns on lack of right methodologies in SOC, (2) the need for formalism, and

(3) the need to be practical.

10.1.1 Service Modeling

The major contribution for this area is the formal ConfiguredService model. This contri-

bution has remedied the lack of support for specifying nonfunctional, legal and contextual

information formally in a service contract. The solutions to the four research problems

raised in Chapter 3 are stated below.

214

• Providing support for trustworthiness information: The solution for this problem is

provided in Chapter 4. We introduced a formal service model that considers service

trust and provider trust. In service trust we specified safety, security, availability and

reliability. In provider trust we specified peer recommendations and recommenda-

tions from independent organizations.

• Binding context to the service contract: The solution for this problem is provided in

Chapter 4. We defined the service contract to include the specification of the context.

The context includes the context conditions constraining the service contract.

• Including the legal rules in service definition: The solution for this problem is pro-

vided in Chapter 4. We included the specification of the legal rules within the contract

definition.

• The need for a service model for trustworthy context-dependent services: The so-

lution for this problem is provided in Chapter 4. We introduced the structure Con-

figuredService which bundles a service and contract together. The specification of

the service includes functional and nonfunctional properties. The specification of the

contract includes trustworthiness, legal and context information.

To strengthen claims on completeness, consistency, and correctness we discussed three

types of analysis on ConfiguredService model in Chapter 4. The ConfiguredService and its

three stage analysis have been formalized, and can be realized in an implementation.

10.1.2 Service Composition

A major contribution is the new formal composition theory for ConfiguredService models.

This contribution has remedied the lack of support for including nonfunctional, legal and

contextual information in a composition and further in formally checking that certain desir-

able properties are not violated during composition process. There are 2 research problems

stated for this goal. The research problems and the solution provided by this thesis are

stated bellow.

215

• Lack of a composition theory: The solution for this problem is provided in Chap-

ter 5. We defined composition operators and their semantics. Based on the semantics

a formal composition theory to compose ConfiguredServices was given. The compo-

sition theory composes all elements of the ConfiguredService including trustworthi-

ness properties, legal rules and context information.

• Formal verification approach: The solution for this problem is provided in Chap-

ter 6. We defined a formal verification approach that uses model transformation to

transform service compositions to timed automata. The timed automata can then be

formally verified using the model checking tool UPPAAL.

10.1.3 Service Provision

The main contribution for this area is the service provision framework FrSeC. The frame-

work elements and their roles have been formally specified. We also introduced a set of

languages to support the processing of FrSeC. A blueprint for the required tools to sup-

port FrSeC has also been proposed. This remedies many inadequacies in current service-

oriented computing frameworks. In particular, ranking, dynamic composition of complex

queries, and context-dependent trustworthy delivery are our significant contributions. The

research problems and the solutions provided by this thesis are stated bellow.

• Designing a formal service provision framework: The solutions provided for this

problem are in Chapter 7, and in Chapter 8. In the former we introduced FrSeC,

a formal description of its essential elements, and the communication structure be-

tween the elements. In the latter we introduced the dynamic service composition

as required by the complex queries. We defined the three types of dynamic service

compositions template-based, semi-automatic, and automatic.

• Defining Languages: The research problem stated for this goal is the need for lan-

guage support. The solution for this problem is provided in Chapter 9. In it we de-

fined the languages necessary to specify the components of FrSeC. We also defined

the languages necessary to define the communication between FrSeC components.

216

Two sets of languages were introduced. The first set is for communication either

enabled by or received by humans. The second set is XML-based, and is to be used

by computers to define communications.

10.2 Assessment

In this section, we evaluate the ConfiguredService model with respect to the following crite-

ria: completeness, comprehensibility, modifiability, testability, reusability, and scalability.

Completeness: Are the elements of the service model sufficient to model trustworthy

context-dependent service-oriented systems? The following factors support our argument

that the elements of the formal model are sufficient to express various trustworthy context-

dependent service-oriented systems:

• Service Functionality: If the attribute part in the Service part of ConfiguredService is

sufficient to evaluate the pre and postconditions stated for the functionality of service,

then we can say that the service part is complete.

• Context: To use context in constraining a contract, a set of context rules should be

included in the service definition. It is a shared responsibility of service provider and

service requester in making context information sufficient so that (1) service can be

selected, and (2) the service can be delivered.

• Trustworthiness: It is the responsibility of the service provider to make trustworthi-

ness claims precise and complete. Incompleteness may result in service requester not

knowing enough about the service, and lack of precision might cause the TA in not

being able to analyze its truthfulness. Such incompleteness can be spotted during the

analysis stage.

• Expressive Power: The proposed ConfiguredService model has been applied to the

Auto Roadside Emergency Service [tBGKM08], [Koc07] and [BK07] problem. The

217

result shows that it is sufficiently expressive to model the service requirements of this

example.

Comprehensibility: Is the description easy to understand? The ConfiguredService is a

structured and precise informal description for naive users. Two other representations of

it have been provided. One is the ConfiguredService Specification Language (CSL) for the

use of non-experts in FrSeS. The other is the ConfiguredService Description Language that

is mainly intended to be used by the TA for formal analysis.

Modifiability: How easy it is to modify the specification? Every element in our formal

model is described separately. For example, a contract is specified separately from a service

definition. This enables modifying the contract without affecting the definition of a service.

Testability: Is it possible to validate whether or not a specification is correct? In Sec-

tion 4.3, we have provided the set of properties that can be tested at the different stages of

a ConfiguredService life. We have introduced how each property can be analyzed.

Reusability: Does the formal model support reuse? Since every element in our service

model is described separately, it is possible to reuse these definitions across different Con-

figuredServices in a specific application, as well as across different applications.

Scalability: Does the formalism scale up to handle large problems? The composition

theory enables the creation of composite services incrementally. This will enable the con-

struction of large service-oriented applications and hence our approach is scalable.

10.3 Future Work

10.3.1 Implementation

Developing trustworthy context-dependent service-oriented applications is a complex pro-

cess. In addition to the contributions of this thesis, we have identified the set of tools that

218

will facilitate the development activities in FrSeC to become as automatic as possible. Fig-

ure 46 shows the set of proposed tools. So far we have implemented CTT. We have also

implemented a tool to simulate the behavior of the Planning Unit. This tool is meant to

match and rank ConfiguredServices according to the matching and ranking algorithms pre-

sented in Chapter 7. This tool has been tested on the auto roadside emergency service case

study. As part of our intended future work, we intend to define the requirements, challenges

and implement the tools introduced below.

 Service Query Specification
 Tool (SQST)

ConfiguredService Specification
 Tool (CSST) Service Defintion Tool

Service Processing
 Tools

ConfiguredService Publication
 Tool (CSPT)

Execution
Tool (ET)

 Plan Negotiation
 Tool (PNT)

Provider Verification
 Tool (PVT)

Requester Verification
 Tool (RVT)

Service Publication

Service Discovery

Service Execution

Service Delivery

Service Composition
 Tools

Service Composition
 Tool (SCT)

Composition Transformation
 Tool (CTT)

Figure 46: Tool Support

219

Service Definition Tool

Service providers use the ConfiguredService Specification Tool (CSST) to generate Con-

figuredServices. Since ConfiguredService description is formal and the service provider

may lack a formal background this tool is essential to ensure that only correctly formatted

formal descriptions of ConfiguredServices are produced. With its graphical user interface,

CSST collects the relevant information from a service provider, and assembles the formal

structure of the service part and contract part in the ConfiguredService service. CSST pro-

vides a user friendly interface to model the ConfiguredServices. CSST will be designed

in such a way that different views of the assembled ConfiguredService are projected and

the service provider can interactively refine the input until the desired formal document is

produced.

Service Processing Tools

These tools are necessary to process service publication, service discovery, service execu-

tion, and service delivery.

Service Publication Tool During service publication, services provider use the Config-

uredService publication tool (CSPT), which is a graphic-based tool. The CSPT receives its

input in the form of CSL from CSST, produces a certificate request in TAL and interacts

with the TA for getting the certificate. CSPT is used by service providers to browse the

Service Registry using the certificate received from the TA. The browsing result is sent

from the Service Registry in SRL. CSPT is then used by the service provider to submit his

ConfiguredService to the TA for publication. The transmitted ConfiguredService will be in

CSDL.

Service Discovery Tools During service discovery, service requesters can use the Service

Query Specification Tool (SQST) to perform the following tasks:

• send and receive certificate requests to the Trusted Authority in TAL (which is auto-

matically translated to TADL for communication by SQST),

220

• browse the Service Registry content and receive the result in SRL,

• formulate service queries in SQL (which is automatically translated to CSQL for

communication by SQST),

• formulate composition queries in SQL (which is automatically translated to CSQL

for communication by SQST),

• refine a service query depending on the Planning Unit feedback which is performed

by changing the SQL specification depending on the result of the query received in

SUL, and

• formulate negotiation request in NUL (which is automatically translated to NUDL

for communication by SQST).

Service Execution Tools During service execution, two tools are necessary to manage

execution scenarios and planning. The proposed tools for these purposes are Execution

Tool (ET) and the Plan Negotiation Tool (PNT). ET is the run-time environment assistant

and it is responsible for automating the execution of plans received from service requesters

in SUDL. PNT automates the behavior of the Plan Negotiation Unit. It receives negotiation

requests from the service requester in NUDL and communicates with service providers to

perform the negotiation. The result of the negotiation is sent back to the service requester

in NUDL.

Service Delivery Tools Two tools are suggested for assisting post delivery service ac-

tions. The first tool is the Provider Verification Tool (PVT), which is to be used by service

providers to verify the satisfaction of the contract during service provision. It enables ser-

vice providers to submit and communicate with the Trusted Authority to perform after

delivery analysis discussed in Section 4.3.3.

The second tool is the Requester Verification Tool (RVT). This tool is to be used by

Service Requesters to verify the satisfaction of the contract after service provision. It also

verifies the provision of the postconditions and output parameters. This tool is connected

221

to the Trusted Authority to enable Service Requesters perform the after delivery analysis

discussed in Section 4.3.3.

The main difference between PVT and RVT is that they are intended for different user

communities, and their respective analyses are as discussed in Section 4.3.3.

Service Composition Tools

Two tools are required for automating service compositions. The first tool is the Service

Composition Tool (SCT). It can be used by service providers to perform static service com-

positions, either graphically or using SUL. It enables the access to the Registry to get infor-

mation about available domains, functionalities and ConfiguredServices. SCT also verifies

the syntactic correctness of service compositions. It will enable service providers to submit

service compositions to the TA for analysis.

The second tool is the Composition Transformation Tool (CTT). It is responsible for

transforming service compositions defined in SUL into models understood by model check-

ing tools such as UPPAAL. It automatically performs the transformation and verifies the

correctness and completeness of it. This tool is mainly used by the TA. Service composi-

tions submitted by service providers to the TA are verified with the help of this tool.

10.3.2 Extending FrSeC to the Cloud

Cloud computing is any IT resource that exists outside of an enterprise firewall that may

be leveraged by an enterprise over the Internet. These resources may include storage, data-

base, application development, and application services. The main motivation behind cloud

computing is that it is cheaper to leverage these resources as services, paying as you go as

you need them, than it is to buy more hardware and software for the data center.

As part of our future work, we intend to use the capabilities of the cloud to support

FrSeC. Below is a brief discussion of how cloud computing can impact the implementation

and use of FrSeC.

222

Service Provider (SP) SP is the main element of FrSeC that can make use of the cloud.

As discussed earlier service providers define services and publish their associated Config-

uredServices. In typical SOA based systems, the services are deployed and executed at the

service provider premise. This will definitely restrict service providers. The restriction is

mainly associated with available infrastructure. Another set of restrictions are related to

location issues. All these restrictions can be tackled using the cloud. The cloud provides

unlimited infrastructure. The service provider can deploy an instance of the service in the

cloud in India and another instance in Canada.

Execution Unit (EU) EU in FrSeC is responsible for monitoring service executions and

executing service compositions. It can make big use of the cloud. Multiple instances of EU

can be deployed in the cloud. An instance or more can be assigned to cover each area or

zone. Some instances can be assigned to special service requesters. The cloud will increase

the response time, reliability and availability of EU.

Service Registry (SRe) In FrSeC, there is a centralized service registry. The use of the

cloud will enable us to have multiple instances of the same registry all over the cloud. The

main issue will be ensuring the synchronization between the different instances.

Planning Unit (PU) and Plan Negotiation Unit (PNU) PU and PNU can also be de-

ployed using the cloud. Multiple instances can be deployed in different regions. Specific

PU’s with special algorithms and special requirements can be assigned to special service

requesters. In essence, almost all parts of FrSeC provide services. So why not make use of

the cloud to provide these services.

10.3.3 Policy Language

In Chapter 4, we have introduced the formal service model ConfiguredService. As part

of a ConfiguredService contract the security policies guaranteed by the service are stated.

Currently, these policies are specified as strings. As part of our future work, we intend to

223

define a new policy language for the specification of context-dependent security policies.

10.3.4 CSDL-to-WSDL Transformation

The Web Services Description Language (WSDL) [Pap08] is an XML-based language for

describing services as collections of communicating endpoints capable of exchanging mes-

sages. WSDL is the de facto standard for the specification of Web services. It is supported

by many tools and frameworks. As discussed earlier, WSDL focuses only on the specifi-

cation of the service functionality. On the other hand, ConfiguredService is a much richer

model. We have defined a set of transformation rules that transform a ConfiguredService

defined in CSDL into a Web service defined in WSDL. This set of transformation rules

is necessary at this stage to ensure the backward compatibility with current standards. As

part of our future work, we intend to implement a tool that automates the transformation

process. This will ensure that rich services defined as ConfiguredServices can still be used

using Web services standards and frameworks.

224

Bibliography

[AES06] Atif Alamri, Mohamad Eid, and Abdulmotaleb El Saddik. Classification of

the stat-of-the-art dynamic web services composition techniques. Interna-

tional Journal of Web and Grid Services, 2(2):148–166, 2006.

[AGG+05] José Luis Ambite, Genevieve Giuliano, Peter Gordon, Qisheng Pan, Naqeeb

Abbasi, LanLan Wang, and Matthew Weathers. Argos: dynamic composi-

tion of web services for goods movement analysis and planning. In Pro-

ceedings of the 2005 national conference on Digital government research

(dg.o 2005), pages 275–276. Digital Government Society of North America,

2005.

[ALRL04] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl Landwehr.

Basic concepts and taxonomy of dependable and secure computing. IEEE

Transactions on Dependable and Secure Computing, 1(1):11–33, 2004.

[And04] A.H. Anderson. An introduction to the web services policy language (wspl).

In Proceedings of the Fifth IEEE International Workshop on Policies for Dis-

tributed Systems and Networks, pages 189–, Washington, DC, USA, 2004.

IEEE Computer Society.

[AVMM04] Rohit Aggarwal, Kunal Verma, John Miller, and William Milnor. Constraint

driven web service composition in meteor-s. In SCC ’04: Proceedings of the

2004 IEEE International Conference on Services Computing, pages 23–30,

Washington, DC, USA, 2004. IEEE Computer Society.

225

[AW05] José Luis Ambite and Matthew Weathers. Automatic composition of aggre-

gation workflows for transportation modeling. In Proceedings of the 2005

national conference on Digital government research, pages 41–49. Digital

Government Society of North America, 2005.

[BA08] Mordechai Ben-Ari. Principles of the Spin Model Checker. Springer, 2008.

[BBN+06] M. Boreale, R. Bruni, R. De Nicola, I. Lanese, M. Loreti, U. Montanari,

D. Sangiorgi, and G. Zavattaro. Scc: a service centered calculus. In Proceed-

ings of WS-FM 2006, 3rd International Workshop on Web Services and For-

mal Methods, Lecture Notes in Computer Science, pages 38–57. Springer,

2006.

[BDL04a] Gerd Behrmann, Alexandre David, and Kim Larsen. A tutorial on uppaal.

In Marco Bernardo and Flavio Corradini, editors, Formal Methods for the

Design of Real-Time Systems, volume 3185 of Lecture Notes in Computer

Science, pages 33–35. Springer Berlin / Heidelberg, 2004.

[BDL04b] Gerd Behrmann, Alexandre David, and Kim G. Larsen. A tutorial on UP-

PAAL. In Formal Methods for the Design of Real-Time Systems: 4th Inter-

national School on Formal Methods for the Design of Computer, Commu-

nication, and Software Systems, SFM-RT 2004, volume LNCS 3185, pages

200–236. Springer–Verlag, September 2004.

[BHL+02] Mark H. Burstein, Jerry R. Hobbs, Ora Lassila, David Martin, Drew V. Mc-

Dermott, Sheila A. McIlraith, Srini Narayanan, Massimo Paolucci, Terry R.

Payne, and Katia P. Sycara. Daml-s: Web service description for the se-

mantic web. In Proceedings of the First International Semantic Web Confer-

ence on The Semantic Web (ISWC ’02), pages 348–363, London, UK, 2002.

Springer-Verlag.

[BK07] Dominik Berndl and Nora Koch. Sensoria automotive scenario: Illustrating

service specification. Technical report, - FAST, No. 2, August 2007.

226

[BM08] Maria Grazia Buscemi and Ugo Montanari. Open bisimulation for the con-

current constraint pi-calculus. In Sophia Drossopoulou, editor, ESOP, vol-

ume 4960 of Lecture Notes in Computer Science, pages 254–268. Springer,

2008.

[Boo] Orange Book. 1985, http://csrc.nist.gov/publications/history/dod85.pdf,

revised department of defense directive, 2002,

http://www.dtic.mil/whs/directives/corres/pdf/850001p.pdf.

[BY04] Johan Bengtsson and Wang Yi. Timed automata: Semantics, algorithims

and tools. Report 316, The United Nation University, P.O.Box 305, Macau,

September 2004.

[Cha07] David Chappell. Introducing SCA. Open SOA, SCA Resources. Available

at http://www.osoa.org/display/Main/SCA+Resources, July 2007.

[CIJ+00] Fabio Casati, Ski Ilnicki, Li-jie Jin, Vasudev Krishnamoorthy, and Ming-

Chien Shan. Adaptive and dynamic service composition in eflow. In Pro-

ceedings of the 12th International Conference on Advanced Information Sys-

tems Engineering, pages 13–31, London, UK, 2000. Springer-Verlag.

[CKM+03] Francisco Curbera, Rania Khalaf, Nirmal Mukhi, Stefan Tai, and Sanjiva

Weerawarana. The next step in web services. Commun. ACM, 46(10):29–

34, 2003.

[CMX08] Xiao-Xia Cao, Huai-Kou Miao, and Qing-Guo Xu. Modeling and refining

the service-oriented requirement. In TASE ’08: Proceedings of the 2008

2nd IFIP/IEEE International Symposium on Theoretical Aspects of Software

Engineering, pages 159–165, Washington, DC, USA, 2008. IEEE Computer

Society.

[dA09] Joao Pedro Abril de Abreu. Modelling Business Conversations in Service

Component Architectures. Phd thesis, University of Leiceste, July 2009.

227

[DCP+06] Gregorio Dyaz, M. Emilia Cambronero, Juan J. Pardo, Valentynn Valero,

and Fernando Cuartero. Automatic generation of correct web services chore-

ographies and orchestrations with model checking techniques. In Interna-

tional Conference on Internet and Web Applications and Services/Advanced

International Conference on Telecommunications, 2006. AICT-ICIW ’06.,

pages 186 – 186, feb. 2006.

[Dey01] Anind K. Dey. Understanding and using context. Personal Ubiquitous Com-

put., 5(1):4–7, 2001.

[DLSZ06] Jin Song Dong, Yang Liu, Jun Sun, and Xian Zhang. Verification of compu-

tation orchestration via timed automata. In ICFEM06, volume LNCS 4260,

pages 226–245. Springer–Verlag, 2006.

[DS05] Schahram Dustdar and Wolfgang Schreiner. A survey on web services com-

position. International Journal of Web and Grid Services, 1(1):1–30, 2005.

[DST+06] Xie Dan, Ying Shi, Zhang Tao, Jia Xiang-Yang, Liang Zao-Qing, and Yao

Jun-Feng. An approach for describing soa. In International Conference

on Wireless Communications, Networking and Mobile Computing, WiCOM

2006, pages 1–4, Sept. 2006.

[EAS08] Mohamad Eid, Atif Alamri, and Abdulmotaleb El Saddik. A reference

model for dynamic web service composition systems. International Jour-

nal of Web and Grid Services, 4(2):149–168, 2008.

[Erl07] Thomas Erl. SOA Principles of Service Design. Prentice Hall PTR, Upper

Saddle River, NJ, USA, 2007.

[FBS04] Xiang Fu, Tevfik Bultan, and Jianwen Su. Analysis of interacting bpel web

services. In Proceedings of the 13th international conference on World Wide

Web, pages 621–630, New York, NY, USA, 2004. ACM.

228

[FFK05] Jesús Arias Fisteus, Luis Sánchez Fernández, and Carlos Delgado Kloos.

Applying model checking to bpel4ws business collaborations. In Proceed-

ings of the 2005 ACM symposium on Applied computing (SAC ’05), pages

826–830, New York, NY, USA, 2005. ACM.

[FK92] David Ferraiolo and Richard Kuhn. Role-based access control. In 15th

NIST-NCSC National Computer Security Conference, pages 554–563, 1992.

[FLB06] José Luiz Fiadeiro1, Antónia Lopes, and Laura Bocchi. A formal approach

to service component architecture. In Mario Bravetti, Manuel Núñez, and

Gianluigi Zavattaro, editors, Web Services and Formal Methods. LNCS, vol

4184, pages 193–213. Springer, Berlin Heidelberg, 2006.

[FS09] Keita Fujii and Tatsuya Suda. Semantics-based context-aware dynamic

service composition. ACM Trans. on Autonomous and Adaptive Systems,

4(2):1–31, 2009.

[FUMK03] Howard Foster, Sebastian Uchitel, Jeff Magee, and Jeff Kramer. Model-

based verification of web service compositions. In Proc. of the eighteen

IEEE international conference on automated software engineerting ASE03,

pages 152–163, 2003.

[FYCL09] Guisheng Fan, Huiqun Yu, Liqiong Chen, and Dongmei Liu. An approach to

analyzing dynamic trustworthy service composition. In Asunción Gómez-

Pérez, Yong Yu, and Ying Ding, editors, The Semantic Web, Fourth Asian

Conference, ASWC 2009, Shanghai, China, December 6-9, 2009. Proceed-

ings, volume 5926 of Lecture Notes in Computer Science, pages 261–275.

Springer, 2009.

[GKP+03] Shahram Ghandeharizadeh, Craig Knoblock, Christos Papadopoulos, Cyrus

Shahabi, Esam Alwagait, Jose-Luis Ambite, Min Cai, Ching-Chien Chen,

Parikshit Pol, Rolfe Schmidt, Saihong Song, Snehal Thakkar, and Runfang

229

Zhou. Proteus: A system for dynamically composing and intelligently exe-

cuting web services. In Proceedings of the 1st International Conference on

Web Services, Las Vegas, NV, USA, June 2003.

[GLG+06] Claudio Guidi, Roberto Lucchi, Roberto Gorrieri, Nadia Busi, and Gianluigi

Zavattaro. Sock: a calculus for service oriented computing. In Proceedings

of the 4th International Conference on Service-Oriented Computing, vol-

ume 4294 of LNCS, pages 327–338, Chicago, IL, USA, December 2006.

Springer.

[GP08] Dimitrios Georgakopoulos and Michael P. Papazoglou. Service-Oriented

Computing. The MIT Press, 2008.

[HB03] Rachid Hamadi and Boualem Benatallah. A petri net-based model for web

service composition. In Proceedings of the 14th Australasian database con-

ference, pages 191–200, Darlinghurst, Australia, 2003. Australian Computer

Society, Inc.

[HSS05] Sebastian Hinz, Karsten Schmidt, and Christian Stahl. Transforming bpel to

petri nets. In Proceedings of the International Conference on Business Pro-

cess Management (BPM2005), volume 3649 of Lecture Notes in Computer

Science, pages 220–235. Springer-Verlag, 2005.

[Ibr08] Naseem Ibrahim. Transforming architecture description of component-

based systems for formal analysis. Master thesis, Concordia University,

December 2008.

[JWY09] Canghong Jin, Minghui Wu, and Jing Ying. A structure-based approach for

dynamic services composition. Journal of Software, 4(8):891–898, October

2009.

[JYZ+07] Xiangyang Jia, Shi Ying, Tao Zhang, Honghua Cao, and Dan Xie. A new

architecture description language for service-oriented architecture. In Sixth

230

International Conference on Grid and Cooperative Computing (GCC 2007),

pages 96 –103, Aug. 2007.

[KBM08] Vipul Kashyap, Christoph Bussler, and Matthew Moran. The Semantic Web,

Semantics for Data and Services on the Web. Springer, 2008.

[KM05] Dominik Kuropka and Harald Meyer. Survey on service composition. Tech-

nical report, The Hasso-Plattner-Institute, 2005.

[Koc07] Nora Koch. Sensoria automotive case study: Uml specification of on road

assistance scenario. Technical report, - FAST, No. 1, August 2007.

[Kov] Daniel L. Kovacs. Bnf definition of pddl3.1: completely corrected, without

comments, unpublished manuscript from the ipc-2011 website, 2011.

[KPP06] Raman Kazhamiakin, Paritosh Pandya, and Marco Pistore. Timed modelling

and analysis in web service compositions. In The First International Con-

ference on Availability, Reliability and Security (ARES 2006), page 7, april

2006.

[Lug08] George F. Luger. Artificial Intelligence: Structures and Strategies for Com-

plex Problem Solving. Addison-Wesley Publishing Company, USA, 6th edi-

tion, 2008.

[MA11] Mubarak Mohammad and Vangalur Alagar. A formal approach for the spec-

ification and verification of trustworthy component-based systems. Journal

of Systems and Software, 84:77–104, January 2011.

[MdVHC02] Craig Mundie, Pierre de Vries, Peter Haynes, and Matt Corwine. Trustwor-

thy computing. Microsoft White Paper, October 2002.

[MGLZ07] Fabrizio Montesi, Claudio Guidi, Roberto Lucchi, and Gianluigi Zavattaro.

JOLIE: a java orchestration language interpreter engine. Electronic Notes

in Theoretical Computer Science, 181:19–33, 2007.

231

[MKB07] Saayan Mitra, Ratnesh Kumar, and Samik Basu. Automated choreographer

synthesis for web services composition using i/o automata. In IEEE Inter-

national Conference on Web Services (ICWS 2007), pages 364 –371, july

2007.

[Moh09] Mubarak Sami Mohammad. A Formal Component-based Software Engi-

neering Approach for Developing Trustworthy Systems. Phd thesis, Concor-

dia University, Montreal, Canada, April 2009.

[MPM+04] David Martin, Massimo Paolucci, Sheila McIlraith, Mark, Drew McDer-

mott, Deborah McGuinness, Bijan Parsia, Terry Payne, Marta Sabou,

Monika Solanki, Naveen Srinivasan, and Katia Sycara. Bringing seman-

tics to web services: The owl-s approach. In First International Workshop

on Semantic Web Services and Web Process Composition (SWSWPC 2004),

San Diego, California, USA, July 2004.

[MPW92] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile

processes, I & II. Information and Computation, 100(1):1–77, 1992.

[MR09] Jim Marino and Michael Rowley. Understanding SCA (Service Component

Architecture). Addison-Wesley Professional, 2009.

[MSK08] Philip Mayer, Andreas Schroeder, and Nora Koch. Mdd4soa: Model-driven

service orchestration. In EDOC ’08: Proceedings of the 2008 12th Inter-

national IEEE Enterprise Distributed Object Computing Conference, pages

203–212, Washington, DC, USA, 2008. IEEE Computer Society.

[NM02] Srini Narayanan and Sheila A. McIlraith. Simulation, verification and auto-

mated composition of web services. In Proceedings of the 11th international

conference on World Wide Web, pages 77–88, New York, NY, USA, 2002.

ACM.

232

[NMFR09] Azadeh Ghari Neiat, Mehran Mohsenzadeh, Rana Forsati, and Amir Masoud

Rahmani. An agent-based semantic web service discovery framework. In

Computer Modeling and Simulation, 2009. ICCMS ’09. International Con-

ference on, pages 194–198, Feb. 2009.

[OEtH05] Justin O‘Sullivan, David Edmond, and Arthur H. M. ter Hofstede. Formal

description of non-functional service properties. Technical report, FIT-TR-

2005-01, Queensland University of Technology, Brisbane, Australia, Febru-

ary 2005.

[OR08] Joseph C. Okika and Anders P. Ravn. Classification of soa contract specifi-

cation languages. In IEEE International Conference on Web Services, pages

433–440, Los Alamitos, CA, USA, 2008. IEEE Computer Society.

[Orc] Orc. v 1.1. http://orc.csres.utexas.edu/.

[OVvdA+07] Chun Ouyang, Eric Verbeek, Wil M. P. van der Aalst, Stephan Breutel, Mar-

lon Dumas, and Arthur H. M. ter Hofstede. Formal semantics and analysis of

control flow in ws-bpel. Science of Computer Programming, 67(2-3):162–

198, 2007.

[Pap08] Michael P. Papazoglou. Web Services: Principles and Technology. Prentice

Hall, first edition, 2008.

[PBS+09] Massimiliano Di Penta, Leire Bastida, Alberto Sillitti, Luciano Baresi, Neil

Maiden, Matteo Melideo, Marcel Tilly, George Spanoudakis, Jesus Gor-

roogoitia Cruz, John Hutchinson, and Gianluca Ripa. Secse–service cen-

tric system engineering: An overview. In Elisabetta Di Nitto, Anne-

Marie Sassen, Paolo Traverso, and Arian Zwegers, editors, At Your Service:

Service-Oriented Computing from an EU Perspective, pages 241–272. The

MIT Press, 2009.

233

[PF02] Shankar R. Ponnekanti and Armando Fox. Sword: A developer toolkit for

web service composition. In Proceedings of the 11th International WWW

Conference, 2002.

[RBHJ06] Sidney Rosario, Albert Benveniste, Stefan Haar, and Claude Jard. Founda-

tions for web services orchestrations: Functional and qos aspects, jointly.

In Second International Symposium on Leveraging Applications of Formal

Methods, Verification and Validation (ISoLA 2006), pages 309 –316, nov.

2006.

[RKL+05] Dumitru Roman, Uwe Keller, Holger Lausen, Jos de Bruijn, Rubn Lara,

Michael Stollberg, Axel Polleres, Cristina Feier, Christoph Bussler, and Di-

eter Fensel. Web service modeling ontology. Applied Ontology, 1(1):77–

106, 2005.

[SBDM02] Quan Z. Sheng, Boualem Benatallah, Marlon Dumas, and Eileen Oi-Yan

Mak. Self-serv: a platform for rapid composition of web services in a peer-

to-peer environment. In Proceedings of the 28th international conference on

Very Large Data Bases, pages 1051–1054. VLDB Endowment, 2002.

[SBI99] Fred B. Schneider, Steven M. Bellovin, and Alan S. Inouye. Building trust-

worthy systems: Lessons from the ptn and internet. IEEE Internet Comput-

ing, 3(6):64–72, 1999.

[Sch00] Karsten Schmidt. LoLA: A Low Level Analyser. In Mogens Nielsen and

Dan Simpson, editors, Application and Theory of Petri Nets, 21st Interna-

tional Conference (ICATPN 2000), volume 1825 of Lecture Notes in Com-

puter Science, pages 465–474. Springer-Verlag, June 2000.

[soa08] Service oriented architecture modeling language (SOAML) -

specification for the UML profile and metamodel for services

(UPMS). OMG Submission document: ad/2008-11-01. Available at

234

http://www.omgwiki.org/SoaML/doku.php?id=specification, November

2008.

[Som07] Ian Sommerville. Software Engineering. Addison-Wesley, 8th edition, 2007.

[SPvS09] Eduardo Silva, Lus Ferreira Pires, and Marten van Sinderen. Supporting

dynamic service composition at runtime based on end-user requirements. In

Proceedings of the 1st Workshop on User-generated Services (UGS2009)

at the 7th International Joint Conference on Service Oriented Computing,

(ICSOC 2009), Stockholm, Sweden, November 2009.

[SSP04] Evren Sirin, , Evren Sirin, and Bijan Parsia. Planning for semantic web ser-

vices. In In Semantic Web Services Workshop at 3rd International Semantic

Web Conference, 2004.

[SWZZ03] Haiyan Sun, Xiaodong Wang, Bin Zhou, and Peng Zou1. Research and im-

plementation of dynamic web services composition. In Xingming Zhou,

Stefan Jhnichen, Ming Xu, and Jiannong Cao, editors, Advanced Paral-

lel Processing Technologies, 5th InternationalWorkshop, APPT 2003, vol-

ume 2834 of Lecture Notes in Computer Science, pages 457–466. Springer-

Verlag, September 2003.

[tBBG07a] Maurice ter Beek, Antonio Bucchiarone, and Stefania Gnesi. Web service

composition approaches: From industrial standards to formal methods. In

Second International Conference on Internet and Web Applications and Ser-

vices, 2007. ICIW ’07, pages 15 –15, may 2007.

[tBBG07b] Maurice H. ter Beek, Antonio Bucchiarone, and Stefania Gnesi. Formal

methods for service composition. Annals of Mathematics, Computing and

Teleinformatics, 1(5):1–5, 2007.

[tBGKM08] Maurice H. ter Beek, Stefania Gnesi, Nora Koch, and Franco Mazzanti. For-

mal verification of an automotive scenario in service-oriented computing. In

235

Proceedings of the 30th international conference on Software engineering,

ICSE ’08, pages 613–622, New York, NY, USA, 2008. ACM.

[Tie09] Francesco Tiezzi. Specification and Analysis of Service-Oriented Applica-

tions. Phd thesis, Universit degli Studi di Firenze, Florence, Italy, April

2009.

[TP05] Vladimir Tosic and Bernard Pagurek. On comprehensive contractual de-

scriptions of web services. In IEEE International Conference on e-

Technology, e-Commerce, and e-Services, pages 444–449, Los Alamitos,

CA, USA, 2005. IEEE Computer Society.

[VDD+03] Debra VanderMeer, Anindya Datta, Kaushik Dutta, Helen Thomas, Krithi

Ramamritham, and Shamkant B. Navathe. Fusion: A system allowing dy-

namic web service composition and automatic execution. In Proceedings

of the IEEE Int. Conference on E-Commerce Technology, page 399. IEEE

Computer Society, 2003.

[VGS+05] Kunal Verma, Karthik Gomadam, Amit P. Sheth, John A. Miller, and Zixin

Wu. The METEOR-S approach for configuring and executing dynamic web

processes. Technical report, LSDIS Lab, University of Georgia, Athens,

Georgia, 2005.

[VR04] Maja Vukovic and Peter Robinson. Adaptive, planning based, web service

composition for context awareness. In Proceedings of the second interna-

tional conference on pervasive computing, 2004.

[WA08a] Kaiyu Wan and Vasu Alagar. A context-aware trust model for service-

oriented multi-agent systems. In Proceedings of 1st International Workshop

on Quality-of-Service Concerns in Service Oriented Architectures (QoSC-

SOA 2008), pages 221–236, Sydney, Australia, 2008. Springer-Verlag.

236

[WA08b] Kaiyu Wan and Vasu Alagar. An intensional functional model of trust. In

Yucel Karabulut, John Mitchell, Peter Herrmann, and Christian Jensen, ed-

itors, Trust Management II, volume 263 of IFIP Advances in Information

and Communication Technology, pages 69–85. Springer Boston, 2008.

[Wan06] Kaiyu Wan. Lucx: Lucid Enriched with Context. Phd thesis, Concordia

University, Montreal, Canada, January 2006.

[WBF+08] Martin Wirsing, Laura Bocchi, Jose Luiz Fiadeiro, Stephen Gilmore,

Matthias Hoelzl, Nora Koch, Philip Mayer, Rosario Pugliese, and Andreas

Schroeder. Sensoria: Engineering for Service-Oriented Overlay Comput-

ers. In Elisabetta di Nitto, Anne-Marie Sassen, Paolo Traverso, and Arian

Zwegers, editors, At Your Service: Service Engineering in the Information

Society Technologies Program. MIT Press, 2008.

[WC] WS-CDL. Web services choreography description language ver-

sion 1.0. W3C Candidate Recommendation. November, 2005.

(http://www.w3.org/TR/ws-cdl-10/).

[WMA09] Kaiyu Wan, Mubarak Muhammad, and Vasu Alagar. A formal model of

business application integration from web services. In Proceedings of the

35th Conference on Current Trends in Theory and Practice of Computer

Science, SOFSEM ’09, pages 656–667, Berlin, Heidelberg, 2009. Springer-

Verlag.

[WPS+03] Dan Wu, Bijan Parsia, Evren Sirin, James Hendler, Dana Nau, and Dana

Nau. Automating daml-s web services composition using shop2. In Pro-

ceedings of 2nd International Semantic Web Conference, 2003.

[WSD] WSDL. Web services description language 1.1. W3C Note. March, 2001.

http://www.w3.org/TR/wsdl.

237

[YK04] Xiaochuan Yi and K.J. Kochut. A cp-nets-based design and verification

framework for web services composition. In IEEE International Conference

on Web Services, 2004. Proceedings, pages 756 – 760, july 2004.

[YPCG05] Yuhong Yan, Yannick Pencole, Marie-Odile Cordier, and Alban Grastien.

Monitoring web service networks in a model-based approach. In Third IEEE

European Conference on Web Services (ECOWS 2005), page 12, nov. 2005.

[ZCCK04] Jia Zhang, C.K. Chang, Jen-Yao Chung, and S.W. Kim. Ws-net: a petri-

net based specification model for web services. In Proceedings of the IEEE

International Conference on Web Services, pages 420 – 427, july 2004.

[ZkMM06] Michal Zaremba, Mick kerrigan, Adrian Mocan, and Matt Moran. Web

services modeling ontology. In Jorge Cardoso and Amit P. Sheth, editors,

Semantic Web Services, Processes and Applications, pages 63–87. Springer,

2006.

238

Appendix A

Service Processing Languages

This appendix presents the Service Processing Languages (SPL). Below is a detailed dis-

cussion about all constitutes languages and their syntax.

A.1 Service Registry Language (SRL)

In this section we introduce the Service Registry Language (SRL) for specifying the ele-

ments of the Service Registry and the ConfiguredServices. This language is also used by

Service Providers to specify the ConfiguredService that they wish to publish.

A.1.1 Registry, Domain and Functionality

Below is the SRL syntax to specify the Registry, domain and functionality elements of the

Service Registry. The preconditions and postconditions that are defined inside a functional-

ity represents the preconditions and postconditions that are true for all ConfiguredServices

defined under this functionality. A domain element has an associated set of nonfunctional

properties that are related to this specific domain. The associated nonfunctional properties

are defined in terms of their names.

Registry < name > {
(Attribute < name >)*;

239

(Domain < Domain − name >)*;

}
Domain < name > {

(Attribute < name >)*;

DomainNonFunctional < name >;

(Domain < Domain − name >)* ||
(Functionality < name >,

(ServiceProviderNode < name >)*)*;

}
DomainNonFunctional < name > {

(Attribute < name >)*;

string propertyName;

}
Functionality < name > {

(Attribute < name >)*;

(Precondition < name >)*;

(Postconditon < name >)*;

(Parameter < name >)*;

}
ServiceProviderNode < name > {

(Attribute < name >)*;

String ServiceProviderID;

(ConfiguredService < name >)*;

}

A.1.2 ConfiguredService

The SRL syntax for specifying the ConfiguredService is based on the formal model pre-

sented in Chapter 4. Figure 47 shows the ConfiguredService meta-model used in defining

the SRL syntax for specifying ConfiguredServices.

240

PreconditionPostcondition

SignatureReturn

Address

Parameter

Function

Safety

Security

Availability

Reliability

Price

 Price
Guarantee

 Client
 Recomm.

Organization
 Recomm.

ProviderTrust

ServiceTrust

NonFunctional Properties

Price Condition Payment
 Rules

Warranty Right

Deposit
 Rules Penalty Refund

Condition

Legal Issues

Service

Location Time

Date Who

Context
 Rules

Context Info

Context

General Elements

Attributes

Trustworthiness Properties

Contract

ConfiguredService

Figure 47: ConfiguredService meta-model

The SRL syntax for specifying ConfiguredService is presented below. The Configured-

Service specification includes the specifications of DataTypeInfo, Attributes, Parameters,

Service and Contract. The specification of DataTypeInfo includes a formal representa-

tion of any additional information on data types that can be used for the exchange of ser-

vices. These data types may be complex abstract data types and DataTypeInfo specification

presents a common understating of the structure of these data types.

ConfiguredService < name > {
(DataTypeInfo < name >)*;

241

(Attribute < name >)*;

(Parameter < name >)*;

Service < name >;

Contract < name >;

}

Service The first main part of a ConfiguredService is the service. In a service specifi-

cation, the functional and nonfunctional properties that ConfiguredService guarantee must

be formally included. The SRL syntax for specifying a service is derived from the formal

model in Chapter 4 and service specification is presented below.

Service < name > {
(Attribute < name >)*;

Function < name >;

NonFunctional < name >;

}

Function The ConfiguredService service contains the definition of the functional prop-

erties guaranteed by this ConfiguredService. The SRL syntax for specifying the functional

properties part is shown below.

Function < name > {
(Attribute < name >)*;

Signature < name >;

Return < name >;

(Precondition < FOPL >)*;

(Postconditon < FOPL >)*;

}

The function consists of a signature, return information, preconditions and postcondi-

tions. The signature consists of the address to invoke this function, the list of parameters

242

associated with this function and the identification information distinguishing this func-

tion. The return information defines the return identification and the associated parame-

ters. The preconditions and postconditons are constraints defined in first order predicate

logic (FOPL). These definitions conform to the formal definition of a ConfiguredService

presented in Chapter 4. The SRL specification for specifying the functionality details is

presented below.

Signature < name > {
(Attribute < name >)*;

Address < name >;

String id;

(Parameter < name >)*;

}
Result < name > {

(Attribute < name >)*;

String id;

(Parameter < name >)*;

}
Precondition < name > {

(Attribute < name >)*;

(Constraint < FOPL >)*;

}
Postcondition < name > {

(Attribute < name >)*;

(Constraint < FOPL >)*;

}
Address < name > {

String url;

}

243

Nonfunctional A ConfiguredService definition includes the nonfunctional properties that

it can guarantee. Each nonfunctional property is associated with a specific function. SRL

syntax is sufficiently expressive to specify any nonfunctional property. Below, the SRL

syntax to specify price is shown.

Price is an important nonfunctional property as it plays a major role is service selection.

Price defines the cost of invoking a service functionality. It is associated with a currency,

a validity duration, conditions if any on the price, discounts if any, and unit of pricing.

Examples of unit of pricing are price per use, price per day or price per byte.

NonFunctional < name > {
(Attribute < name >)*;

(Price < name >)*;

}
Price < name > {

(Attribute < name >)*;

double value;

string currency;

Duration < priceV alidity >;

PricingUnit < unit >;

PriceCondition < FOPL >;

Discount < name >;

Function < name >;

}
Discount < name > {

(Attribute < name >)*;

double value;

DiscountCondition < FOPL >;

}

244

Contract The second part of a ConfiguredSerivce specification is a contract. The in-

formation in the contract constrains the provision of the ConfiguredSerivce service. The

information defined in the service are usually static. While the information defined in the

contract are dynamic. A contract includes the main parts trustworthiness, legal rules and

context. Below is the SRL for specifying a ConfiguredService contract.

Contract < name > {
(Attribute < name >)*;

Trustworthiness < name >*;

(LegalIssue < name >)*;

Context < name >;

}

Trustworthiness Trustworthiness is the system property that denotes the degree of user

confidence that the system will behave as expected. In SRL, trustworthiness is defined into

ServiceTrust and ProviderTrust. Below is the SRL for specifying trustworthiness.

Trustworthiness < name > {
(Attribute < name >)*;

ServiceTrust < name >;

ProviderTrust < name >;

}

ServiceTrust defines the trustworthiness properties that are related to service provision.

It includes the features safety, security, availability and reliability. Below is the SRL speci-

fication for specifying ServiceTrust.

ServiceTrust < name > {
(Attribute < name >)*;

Safety < name >;

Security < name >;

Availability < name >;

245

Reliability < name >;

}
Safety < name > {

(Attribute < name >)*;

(Constraint < FOPL >)*;

float maxT ime;

}
Availability < name > {

(Attribute < name >)*;

(Constraint < FOPL >)*;

float availabilityRate;

}
Reliability < name > {

(Attribute < name >)*;

(Constraint< FOPL >)*;

float reliabilityValue;

}
Security < name > {

(Attribute < name >)*;

DateIntegrity < name >;

Confidentiality < name >;

}
DataIntegrity < name > {

(Attribute < name >)*;

(Protocol < name >)*;

}
Confidentiality < name > {

(Attribute < name >)*;

(Protocol < name >)*;}

246

ProviderTrust defines the trustworthiness properties that are related to the service provider.

A service provider should include, as part of service publication, information on ‘depend-

ability issues’ that are taken into account during the design and development of the services.

This information is a ‘seal of trust’ of the service provider that may be verified by the Ser-

vice Requesters when they obtain their services. Any failure in satisfying the ‘seal of trust’

will lower the ‘trust’ level of the service provider. Thus, ‘seal of trust’ is a ‘peer-to-peer’

trust information. Provider trust may also include ‘third party’ information that might in-

crease the level of trust that Service Requesters have in a service provider. This information

normally includes recommendations from other clients, lowest prices guarantees, payment

security guarantees and recommendations from other independent organizations. A buyer

may trust a seller because that the seller has been dealt with before, or the seller is recom-

mended by a trusted friend, or the seller is associated with a certain organization or board.

There is no agreed upon definition for ProviderTrust. The main issue here is the inclu-

sion of verifiable information that makes a seller trusted. Below is the SRL for specifying

provider trust.

ProviderTrust < name > {
(Attribute < name >)*;

(Recommendation < name >)*;

PaymentSecurity < name >;

(ClientEndorsement < name >)*;

PriceGuarantee < name >;

}
Recommendation < name > {

(Attribute < name >)*;

string recommendationAgency;

string recommendationData;

}
PaymentSecurity < name > {

(Attribute < name >)*;

247

string securityInfo;

}
ClientEndorsement < name > {

(Attribute < name >)*;

string clientName;

string endorsementDate;

}
PriceGuarantee < name > {

(Attribute < name >)*;

Price < name >;

Condition < FOPL >;

string guarantee;

}

Legal Issues One of the essential elements of the ConfiguredService contract is the set

of legal rules that constrain the contract. Below is SRL syntax for specifying these legal

issues. Currently, SRL supports a predefined set of legal rules, although it can be extended

to include other legal rules. The rules currently supported by SRL are inspired by the work

presented in [OEtH05].

LegalIssue < name > {
(Attribute < name >)*;

(PriceCondition < name >)*;

(RefundCondition < name >)*;

(JoiningFee < name >)*;

(InterestCharge < name >)*;

(AdminstrativeCharge < name >)*;

(DepositRule < name >)*;

(PaymentRules < name >)*;

(RequesterPenalty < name >)*;

248

(ProviderPenalty < name >)*;

(RequesterRights < name >)*;}
PriceCondition < name > {

(Attribute < name >)*;

Price < name >;

(Condition < FOPL >)*;

}
RefundCondition < name > {

(Attribute < name >)*;

Refund < name >;

(Condition < name >)*;

}
Refund < name > {

(Attribute < name >)*;

double amount;

string currency;

}
JoiningFee < name > {

(Attribute < name >)*;

double amount;

string currency;

}
IntrestCharges < name > {

(Attribute < name >)*;

double amount;

Time < deadlineT ime >;

Date < deadlineDate >;

}
AdminstrativeCharge < name > {

249

(Attribute < name >)*;

double amount;

Condition < FOPL >;

}
DepositRule < name > {

(Attribute < name >)*;

double amount;

string currency;

Time < depositT ime >;

Date < depositDate >;

}
PaymentMethod < name > {

(Attribute < name >)*;

string paymentMethod*;

}
PaymentTime < name > {

(Attribute < name >)*;

Time < paymentT ime >;

Date < paymentDate >;

}
PaymentDiscount < name > {

(Attribute < name >)*;

double amount;

Condition < FOPL >;

}
PaymentMethodFee < name > {

(Attribute < name >)*;

double amount;

string paymentMethod;

250

}
PreferredPayment < name > {

(Attribute < name >)*;

string paymentMethod;

}
PaymentRules < name > {

(Attribute < name >)*;

(PaymentMethod < name >)*;

(PaymentTime < name >)*;

(PaymentDiscount < name >)*;

(PaymentMethodFee < name >)*;

(PreferredPayment < name >)*;

}
RequesterPenalty < name > {

(Attribute < name >)*;

(Condition < FOPL >)*;

double amount;

string currency;

}
ProviderPenalty < name > {

(Attribute < name >)*;

(Condition < FOPL >)*;

double amount;

string currency;

}
RequesterRights < name > {

(Attribute < name >)*;

Warranty < name >)*;

}

251

Warranty < name > {
(Attribute < name >)*;

(Condition < FOPL >)*;

Duration < name >;

}

Context A context specification in SRL includes the specification of ContextInfo and

the specification of ContextRules. The ContextInfo part specifies the dimensions and tags,

which are the contextual properties of the service. The ContextRules part specifies the

contextual conditions that should be true for a service to guarantee a function with its as-

sociated nonfunctional guarantees. Each rule in ContextRule is associated with a function.

Rules are defined as constraints in first order predicate logic. Below is the SRL syntax for

specifying context.

Context < name > {
(Attribute < name >)*;

(ContextRule < name >)*;

ContextInfo < name >;

}
ContextRule < name > {

(Attribute < name >)*;

Constraint < FOPL >;

Function < name >;

}
ContextInfo < name > {

(Attribute < name >)*;

(Location < name >)*;

(Time < name >)*;

(Date < name >)*;

WhoRequester < name >;

252

WhoProvider < name >;

}

We illustrate ContextInfo specification in SRL using the three dimensions WHERE,

WHEN and WHO. SRL syntax to specify a context is shown below. The dimension WHERE

is associated with a location, and the SRL syntax for WHERE specification is shown below.

The following are some ways of defining location information.

• Point: A location is modeled by a point (as in GPS) that has a longitude and latitude.

• Region: A location can be modeled as a region, which can be either a suburb, or a

city, or a country or a continent.

• Address: A location can be an address, which includes information on street name,

door number, a postal code, a city, a country and a phone number.

• Route: A location may be a path, which is a sequence of points.

• URI: A location may be a Uniform Resource Identifier (URI), which is a string of

characters used to identify a name or a resource on the Internet.

• IP: A location can be an Internet Protocol address (IP address), which is a numerical

label assigned to each device in a computer network.

Location < name > {
(Attribute < name >)*;

Point < name >;

Route < name >;

Region < name >;

Address < name >;

URI < name >;

IP < name >;

}

253

Point < name > {
(Attribute < name >)*;

Longitude < name >;

Latitude < name >;

}
Longitude < name > {

(Attribute < name >)*;

int degrees;

int minutes;

int seconds;

}
Latitude < name > {

(Attribute < name >)*;

int degrees;

int minutes;

int seconds;

}
Route < name > {

(Attribute < name >)*;

(Point < name >)*;

}
Region < name > {

(Attribute < name >)*;

string type;

string name;

}
Address < name > {

(Attribute < name >)*;

string streetName;

254

string streetAddress;

string unitNumber;

string postalCode;

Region < city >;

Region < country >;

PhoneNumber < name >;

}
PhoneNumber < name > {

(Attribute < name >)*;

int countryAreaCode;

int localAreaCode;

int phoneNumber;

int extension;

}
URI < name > {

(Attribute < name >)*;

string data;

}
IP < name > {

(Attribute < name >)*;

string data;

}

The dimension WHEN is associated with time and date information. The time information

is specified in terms of seconds, minutes and hours. The date information is defined in

terms of year, month and day. Week number and day number in a week can also be used in

defining the date. Below is the SRL for specifying Date and Time information.

Date < name > {
(Attribute < name >)*;

255

int year;

int month;

int day;

int weekNumber;

int dayOfweek;

}
Time < name > {

(Attribute < name >)*;

int hour;

int minute;

int second;

}
Duration < name > {

(Attribute < name >)*;

Time < startT ime >;

Time < endT ime >;

Date < startDate >;

Date < endDate >;

}

The dimension WHO, as seen below, is associated with Service Providers and Service

Requesters. We can also use WHO dimension to associate information from job titles

(roles) and business organizations.

WhoRequester < name > {
(Attribute < name >)*;

string requesterName;

string consumerName;

string requesterJob;

string requesterOrganization;

256

string consumerJob;

string consumerOrganization;

string membership;

}
WhoProvider < name > {

(Attribute < name >)*;

string providerName;

string providerJob;

string providerOrganization;

}

A.2 Service Query Language (SQL)

In this section, we present the Service Query Language (SQL) in which service queries

generated by Service Requesters are specified. SQL is defined by the Planning Unit and it

should be used by Service Requesters to define their queries. SQL can be used to specify

the two types of query service query and composition query.

A.2.1 Service Query

As discussed in Chapter 7, FrSeC supports traditional and buffet styles of queries.

Traditional Style

Figure 48 shows the meta-model for traditional style query. This meta-model is the bases

for defining the SQL syntax for specifying traditional style query. In traditional style, the

query can either be exact match or weighted match. The main difference between the

exact match and the weighted match query is the addition of the weights to the query re-

quirements. The SQL syntax for specifying traditional style query is presented below. The

traditional match query consists of a set of parameters, a required function, a set of required

257

PreconditionPostcondition

FunctionalityDomain

Weight

RequiredFunction

Safety

Security

Availability

Reliability

Price

 Price
Guarantee

 Client
 Recomm.

Organization
 Recomm.

Price Condition Payment
 Rules

Warranty Right

Deposit
 Rules Penalty Refund

Condition

Required Legal Issues

Location Time

Date Who

Requester and Consumer Context
 Required
Nonfunctional
 Properties

Parameter

Traditional Service Query

Figure 48: Traditional Query meta-model

nonfunctional properties, a set of required legal rules, requester context information and the

service consumer context information. The specification details of those elements are iden-

tical to the SRL syntax presented earlier. Each property is associated with a weight. If the

query is used to initiated an exact match query all weights will be assigned to “Exact”. In

weighted match, the requester is able to assign different weights to different properties.

TraditionalServiceQuery < name > {
(Attribute < name >)*;

(Parameter < name >)*;

RequiredFunction < name >;

(RequiredLegalIssue < name >)*;

RequiredNonFunctional < name >;

258

RequesterContextInfo < name >;

ConsumerContextInfo < name >;

Authentication Certificate;

}
RequiredFunction < name > {

(Attribute< name >)*;

Domain < name >;

Functionality < name >;

(Precondition < FOPL >, weight)*;

(Postconditon < FOPL >, weight)*;

}
ConsumerContextInfo < name > {

(Attribute< name >)*;

ContextInfo < name >;

}
RequesterContextInfo < name > {

(Attribute< name >)*;

ContextInfo < name >;

}
RequiredLegalIssue < name > {

(Attribute < name >)*;

(PriceCondition < name >, weight)*;

(RefundCondition < name >, weight)*;

(JoiningFee < name >, weight)*;

(IntrestCharge < name >, weight)*;

(AdminstrativeCharge < name >, weight)*;

(DepositRule < name >, weight)*;

(PaymentRules < name >, weight)*;

(RequesterPenalty < name >, weight)*;

259

(ProviderPenalty < name >, weight)*;

(RequesterRights < name >, weight)*;

}
RequiredNonFunctional < name > {

(Attribute < name >)*;

(Price < name >, weight);

(Safety < name >;

(Security < name >, weight);

(Availability < name >, weight);

(Reliability < name >, weight);

(ProviderTrust < name >, weight);

}

Buffet Query In the buffet query, the query is defined in terms of specific Configured-

Services. The SQL syntax for specifying buffet style queries is presented below.

BuffetServiceQuery < name > {
(Attribute< name >)*;

(Parameter < name >)*;

ConfiguredService < name >;

RequesterContextInfo < name >;

ConsumerContextInfo < name >;

Authentication Certificate;

}

A.2.2 Composition Query

Service composition is of two types static and dynamic. Static service composition is

performed by service providers. The result are regular ConfiguredService that is seen be

service requesters as atomic service. Hence, no special service queries are required. On

260

the other hand, dynamic service composition is driven by user requirements and special

types of queries are required. Below we discuss the SQL syntax for specifying dynamic

composition queries according to the dynamic composition type.

Template-based The template-based composition query can be define in SQL as follow-

ing, where construct is one of composition constructs defined in Chapter 5 and Traditi

onalServiceQuery is defined above.

CompositionQuery < name > {
(TaditionalServiceQuery< name > construct TraditionalServiceQuery< name >)*;

}

Semi-automatic The semi-automatic query is initiated by the service requester. In this

query, the service requester specifies that he is requesting a semi-automatic service com-

position and the first required functionality. The functionality is associated with the non-

functional requirements, legal requirements and contextual information. In other words,

the semi-automatic query will consist of a traditional style associated with information in-

dicating this is not a single traditional query but rather a semi-automatic query. The query

is defined in SQL as following:

Semi-AutomaticQueryInitialization < name > {
Name String;

TraditionalServiceQuery< name > ;

}

The planning unit will respond with a set of ranked candidate ConfiguredServices. The

service requester will respond with the selected ConfiguredService and a new service query.

The requester second response syntax is defined in SQL below.

Semi-AutomaticQuery < name > {

261

Name String;

ConfiguredService < name >;

TraditionalServiceQuery< name > ;

}

The “Name” parameter is used is all interactions corresponding to the same semi-

automatic query to differentiate the query from other queries. This is done because the

service requester might initiate multiple semi-automatic queries at the same time.

Automatic In automatic query the service requester does not know if the response is

a composition or a single service. Hence, no special syntax is necessary. The service

requester will just define a traditional style query using the syntax defined above while

specifying multiple domains and functionalities.

A.3 Trusted Authority Language (TAL)

TAL is defined by the Trusted Authority. All Service Requesters and Providers should use

TAL syntax when defining their certificate requests. Below is the TAL certificate request

syntax. To define the legal information we propose to use policies similar to the work

in [And04]. The details of this policy language are outside the scope of this thesis. Context

information syntax is identical to the definition presented as part of the SRL.

CertificateRequest < name > {
(Attribute < name >)*;

(LegalInformation < name >)*;

ContextInfo < name >;

}
LegalInformation < name > {

(Attribute < name >)*;

262

(Policy < name >)*;

}

TAL can also be used by Service Requesters and Providers for the definition of Con-

figuredService analysis request sent to the TA. The TAL syntax for analysis requests is

presented below.

AnalyzeCS < name > {
(Attribute < name >)*;

ConfiguredService < name >;

Property < name >;

}
Property < name > {

(Attribute < name >)*;

RequiredValue value;

}

TAL is also used by Service Providers and the Planning Unit for defining composi-

tion analysis requests. The TAL syntax for specifying composition analysis requests is

presented below. Where plan is defined as in Section A.4

AnalyzeCompostion < name > {
(Attribute < name >)*;

Plan < name >;

Property < name >;

}

A.4 Service Planning Unit Language (SUL)

SUL is used by the Planning Unit to define service lookups, formulate lookup results and

service plans. Below is the syntax for the service lookup. A service lookup contains a

domain and a functionality.

263

ServiceLookup < name > {
(Attribute < name >)*;

Domain < name >;

Functionality < name >;

Authentication Certificate;

}

The syntax of the lookup result is presented below. The lookup result contains a set

of nodes. Each node contains a ConfiguredService and a service provider ID. Each node

satisfies the required domain and functionality defined as part of the lookup.

LookupResult < name > {
(Attribute < name >)*;

(ServiceProviderNode < name >)*;

}
ServiceProviderNode < name > {

(Attribute < name >)*;

String ServiceProviderID;

(ConfiguredService < name >)*;

}

Below is the SUL syntax for specifying a plan. It consists of the specifications of the

two parts ServiceType and feedback. The part ServiceType specifies the ConfiguredServices

and their associated Service Providers. A plan can contain multiple ServiceTypes in case of

a composition. The relationship between the service types are defined using the constructs

defined in Chapter 5. The feedback part specifies a feedback, in case of a lack of a match.

We use String type to specify a feedback. An example of a feedback is no matches because

safety requirement could not be matched.

Plan < name > {
(Attribute < name >)*;

264

(ServiceType < name > construct ServiceType < name >)*;

Feedback < name >;

}
ServiceType < name > {

(Attribute < name >)*;

(ConfiguredService < name >)*;

}
Feedback < name > {

(Attribute < name >)*;

String feedback;

}

A.5 Service Negotiation Unit Language (NUL)

NUL is to be used by service requesters to send a verification to plan request and a ne-

gotiation request. It is also used by the Negotiation Unit to send back verification and

negotiation results. The NUL syntax for these operations is presented below.

VerifyPlan < name > {
(Attribute < name >)*;

(ConfiguredService < name >)*;

}
VerifyPlanResult < name > {

(Attribute < name >)*;

(ConfiguredService < name >)*;

(Status)*; }
Negotiate < name > {

(Attribute < name >)*;

Plan < name >;

265

(ConfiguredService < name >)*;

(PropertyName)*;

(Changes)*;

}
NegotiateResult < name > {

(Attribute < name >)*;

Plan < name >;

(ConfiguredService < name >)*;

(PropertyName)*;

(Changes)*;

}

266

Appendix B

ConfiguredService Description

Language (CSDL)

In previous chapters, we have defined ConfiguredService informally and formally. We

have also presented the set of languages SPL. The formal definition can be used by formal

experts to specify CofngiuredServices. SPL can be used by almost any user. On the other

hand, these languages cannot be used for passing ConfiguredServices between different ele-

ments of FrSeC. Hence, we introduce CSDL. CSDL is an XML-based language. It is loyal

to the formal definition of ConfiguredService presented in Chapter 4. CSDL is intended

to be used in the background. The user is not required to worry about writing complex

XML definitions. The user specify ConfiguredServices using SPL which is automatically

translated into CSDL. XML has been used as the De facto language in the Web Services

industry. Its main advantages include its simplicity, extendability and wide tools support.

The rest of this section introduces CSDL.

Figure 49 shows the structure of CSDL file. The root is the CSDL element which

represents a ConfiguredService. The two main elements of a ConfiguredService are service

and contract. Below is XML schema for defining a ConfiguredService.

<xs : e l e m e n t name=”CSDL”>

<xs : complexType>

<xs : sequence>

<xs : e l e m e n t name=” S e v i c e ” t y p e =” S e r v i c e ”/>

267

Figure 49: CSDL Root

Figure 50: CSDL Service

<xs : e l e m e n t name=” C o n t r a c t ” t y p e =” C o n t r a c t ”/>

<xs : e l e m e n t name=” P a r a m e t e r ” t y p e =” P a r a m e t e r ” minOccurs =”0” maxOccurs =” unbounded ”/>

</ xs : sequence>

</ xs : complexType>

</ xs : e lement>

B.1 Service

Figure 50 shows the structure of the service. The root is the service element. The service

includes function, nonfunctional properties and attributes. Below is the XML schema for

defining a ConfiguredService service.

<xs : complexType name=” S e r v i c e ”>

<xs : sequence>

<xs : e l e m e n t name=” F u n c t i o n ” t y p e =” F u n c t i o n ”/>

<xs : e l e m e n t name=” N o n F u n c t i o n a l ” t y p e =” N o n F u n c t i o n a l ” minOccurs =”0”/>

<xs : e l e m e n t name=” A t t r i b u t e ” t y p e =” A t t r i b u t e ” minOccurs =”0” maxOccurs =” unbounded ”/>

</ xs : sequence>

</ xs : complexType>

268

Figure 51: Service Function

B.1.1 Function

The function structure is shown in Figure 51. The function is defined as an XML complex-

Type. The function schema includes the complexTypes signature, result, preconditions and

postconditions. Below is the XML schema for defining a service function.

<xs : complexType name=” P r e c o n d i t i o n ”>

<xs : sequence>

<xs : e l e m e n t name=” C o n d i t i o n ” t y p e =” xs : s t r i n g ”/>

</ xs : sequence>

</ xs : complexType>

<xs : complexType name=” P o s t c o n d i t i o n ”>

<xs : sequence>

<xs : e l e m e n t name=” C o n d i t i o n ” t y p e =” xs : s t r i n g ”/>

</ xs : sequence>

</ xs : complexType>

269

<xs : complexType name=” S i g n a t u r e ”>

<xs : sequence>

<xs : e l e m e n t name=”ID ” t y p e =” xs : s t r i n g ”/>

<xs : e l e m e n t name=” Address ” t y p e =” xs : s t r i n g ”/>

<xs : e l e m e n t name=” P a r a m e t e r ” t y p e =” P a r a m e t e r ” minOccurs =”0” maxOccurs =” unbounded ”/>

</ xs : sequence>

</ xs : complexType>

<xs : complexType name=” P a r a m e t e r”>

<xs : sequence>

<xs : e l e m e n t name=”Name” t y p e =” xs : s t r i n g ”/>

<xs : e l e m e n t name=” DataType ” t y p e =” xs : s t r i n g ”/>

<xs : e l e m e n t name=” D e f a u l t V a l u e ” minOccurs =”0”/>

</ xs : sequence>

</ xs : complexType>

<xs : complexType name=” R e t u r n”>

<xs : sequence>

<xs : e l e m e n t name=”ID ” t y p e =” xs : s t r i n g ”/>

<xs : e l e m e n t name=” P a r a m e t e r ” t y p e =” P a r a m e t e r ” minOccurs =”0” maxOccurs =” unbounded ”/>

</ xs : sequence>

</ xs : complexType>

<xs : complexType name=” F u n c t i o n”>

<xs : sequence>

<xs : e l e m e n t name=” S i g n a t u r e ” t y p e =” S i g n a t u r e ”/>

<xs : e l e m e n t name=” R e t u r n ” t y p e =” Re tu rn ”/>

<xs : e l e m e n t name=” P r e c o n d i t i o n ” t y p e =” P r e c o n d i t i o n ” minOccurs =”0” maxOccurs =” unbounded ”/>

<xs : e l e m e n t name=” P o s t c o n d i t i o n ” t y p e =” P o s t c o n d i t i o n ” minOccurs =”0” maxOccurs =” unbounded ”/>

</ xs : sequence>

</ xs : complexType>

B.1.2 Nonfunctional properties

Figure 52 shows the structure of the nonfunctional part of a service. Currently, it only

includes the complexType price. Price is define as complexType containing value, currency

and unit. Below is the XML schema for defining a service nonfunctional property.

<xs : complexType name=” P r i c e ”>

<xs : sequence>

<xs : e l e m e n t name=” v a l u e ” t y p e =” xs : do ub l e ”/>

<xs : e l e m e n t name=” c u r r e c n y ” t y p e =” xs : s t r i n g ”/>

<xs : e l e m e n t name=” u n i t ” t y p e =” xs : s t r i n g ”/>

</ xs : sequence>

</ xs : complexType>

270

Figure 52: Service NonFunctional

Figure 53: Service Attribute

<xs : complexType name=” N o n F u n c t i o n a l”>

<xs : sequence>

<xs : e l e m e n t name=” P r i c e ” t y p e =” P r i c e ” maxOccurs =” unbounded ”/>

</ xs : sequence>

</ xs : complexType>

B.1.3 Attributes

Figure 53 shows the structure of an attribute. It is defined from the simple types value, type

and default value. The XML schema for defining an attribute is presented below.

<xs : complexType name=” A t t r i b u t e ”>

<xs : sequence>

<xs : e l e m e n t name=” Value ”/>

<xs : e l e m e n t name=” Type”/>

<xs : e l e m e n t name=” D e f a u l t ”/>

</ xs : sequence>

</ xs : complexType>

271

Figure 54: CSDL Contract

B.2 Contract

Figure 54 shows the structure of the contract. The root is the contract element. The contract

includes trustworthiness, legal properties and context. The XML schema for defining a

contract is presented below.

<xs : complexType name=” C o n t r a c t ”>

<xs : sequence>

<xs : e l e m e n t name=” T r u s t w o r t h i n e s s ” t y p e =” T r u s t w o r t h i n e s s ” minOccurs =”0” maxOccurs =” unbounded ”/>

<xs : e l e m e n t name=” Lega l ” t y p e =” L e g a l I s s u e ” minOccurs =”0” maxOccurs =” unbounded ”/>

<xs : e l e m e n t name=” C o n t e x t ” t y p e =” C o n t e x t ”/>

</ xs : sequence>

</ xs : complexType>

B.2.1 Trustworthiness

Figure 55 shows the structure of the contract trustworthiness part. It includes the two com-

plexTypes ConfiguredService Trust and Provider Trust. ConfiguredService Trust includes

the complexTypes safety, security, availability and reliability. ProviderTrust include the

complexTypes ClientRecommendations, OrganizationalRecommendations and price guar-

antees. Below is the XML schema for specifying trustworthiness properties.

<xs : complexType name=” T r u s t w o r t h i n e s s ”>

<xs : sequence>

<xs : e l e m e n t name=” C o n f i g u r e d S e r v i c e T r u s t ” t y p e =” C o n f i g u r e d S e r v i c e T r u s t ” minOccurs =”0”/>

<xs : e l e m e n t name=” P r o v i d e r T r u s t ” t y p e =” P r o v i d e r T r u s t ” minOccurs =”0”/>

</ xs : sequence>

</ xs : complexType>

272

Figure 55: Contract Trustworthiness

<xs : complexType name=” C o n f i g u r e d S e r v i c e T r u s t ”>

<xs : sequence>

<xs : e l e m e n t name=” S a f e t y ” t y p e =” S a f e t y ” minOccurs =”0”/>

<xs : e l e m e n t name=” S e c u r i t y ” t y p e =” S e c u r i t y ” minOccurs =”0”/>

<xs : e l e m e n t name=” A v a i l a b i l i t y ” t y p e =” A v a i l a b i l i t y ” minOccurs =”0”/>

<xs : e l e m e n t name=” R e l i a b i l i t y ” t y p e =” R e l i a b i l i t y ” minOccurs =”0”/>

</ xs : sequence>

</ xs : complexType>

<xs : complexType name=” S a f e t y ”>

<xs : sequence>

<xs : e l e m e n t name=” c o n s t r a i n t ” minOccurs =”0”/>

<xs : e l e m e n t name=”maxTime” t y p e =” xs : do ub l e ” minOccurs =”0”/>

</ xs : sequence>

</ xs : complexType>

<xs : complexType name=” S e c u r i t y ”>

<xs : sequence>

<xs : e l e m e n t name=” D a t a I n t e g r i t y R u l e ” minOccurs =”0” maxOccurs =” unbounded”>

<xs : complexType>

<xs : sequence>

<xs : e l e m e n t name=” Rule ” t y p e =” xs : s t r i n g ”/>

<xs : e l e m e n t name=” we ig h t ” t y p e =” xs : i n t ”/>

</ xs : sequence>

273

</ xs : complexType>

</ xs : e lement>

<xs : e l e m e n t name=” C o n f i d e n t i a l i t y R u l e ” minOccurs =”0” maxOccurs =” unbounded”>

<xs : complexType>

<xs : sequence>

<xs : e l e m e n t name=” Rule ” t y p e =” xs : s t r i n g ”/>

<xs : e l e m e n t name=” we ig h t ” t y p e =” xs : i n t ”/>

</ xs : sequence>

</ xs : complexType>

</ xs : e lement>

</ xs : sequence>

</ xs : complexType>

<xs : complexType name=” R e l i a b i l i t y ”>

<xs : sequence>

<xs : e l e m e n t name=” c o n s t r a i n t ” minOccurs =”0”/>

<xs : e l e m e n t name=” r e l i a b i l i t y R a t e ” t y p e =” xs : do ub l e ” minOccurs =”0”/>

</ xs : sequence>

</ xs : complexType>

<xs : complexType name=” A v a i l a b i l i t y ”>

<xs : sequence>

<xs : e l e m e n t name=” c o n s t r a i n t ” minOccurs =”0”/>

<xs : e l e m e n t name=” a v a i l a b i l i t y R a t e ” t y p e =” xs : do ub l e ” minOccurs =”0”/>

</ xs : sequence>

</ xs : complexType>

<xs : complexType name=” Cl ien tRecommenda t ion”>

<xs : sequence>

<xs : e l e m e n t name=” C l i e n t ” t y p e =” xs : s t r i n g ”/>

<xs : e l e m e n t name=” Recommendation ” t y p e =” xs : do ub l e ”/>

</ xs : sequence>

</ xs : complexType>

<xs : complexType name=” O r g a n i z a t i o n a l R e c o m m e n d a t i o n”>

<xs : sequence>

<xs : e l e m e n t name=” O r g a n i z a t i o n ” t y p e =” xs : s t r i n g ”/>

<xs : e l e m e n t name=” Recommendation ” t y p e =” xs : do ub l e ”/>

</ xs : sequence>

</ xs : complexType>

<xs : complexType name=” P r i c e G u a r a n t e e ”>

<xs : sequence>

<xs : e l e m e n t name=” P r i c e ” t y p e =” P r i c e ”/>

<xs : e l e m e n t name=” G u a r a n t e e ” t y p e =” xs : b o o l e a n ”/>

</ xs : sequence>

</ xs : complexType>

<xs : complexType name=” P r o v i d e r T r u s t ”>

<xs : sequence>

274

Figure 56: Contract Legal Issues

<xs : e l e m e n t name=” Cl ien tRecommenda t ion ” t y p e =” Cl ien tRecommenda t ion ” minOccurs =”0”

maxOccurs =” unbounded ”/>

<xs : e l e m e n t name=” O r g a n i z a t i o n a l R e c o m m e n d a t i o n ” t y p e =” O r g a n i z a t i o n a l R e c o m m e n d a t i o n ”

minOccurs =”0” maxOccurs =” unbounded ”/>

<xs : e l e m e n t name=” P r i c e G u a r a n t e e ” t y p e =” P r i c e G u a r a n t e e ” minOccurs =”0”/>

</ xs : sequence>

</ xs : complexType>

B.2.2 Legal Issues

Figure 56 shows the structure of the legal issues part of a contract. It includes the complex-

Types price conditions, refund conditions, penalty, deposit rules, payment rules, warranty

and rights. Below is the XML schema for defining legal issues in CSDL.

<xs : complexType name=” L e g a l I s s u e ”>

<xs : sequence>

<xs : e l e m e n t name=” P r i c e C o n d i t i o n ” t y p e =” P r i c e C o n d i t i o n ” minOccurs =”0”/>

<xs : e l e m e n t name=” R e f u n d C o n d i t i o n ” t y p e =” R e f u n d C o n d i t i o n ” minOccurs =”0”/>

<xs : e l e m e n t name=” P e n a l t y ” t y p e =” P e n a l t y ” minOccurs =”0”/>

<xs : e l e m e n t name=” D e p o s i t R u l e ” t y p e =” D e p o s i t R u l e ” minOccurs =”0”/>

<xs : e l e m e n t name=” PaymentRules ” t y p e =” PaymentRules ” minOccurs =”0”/>

<xs : e l e m e n t name=” Warran ty ” t y p e =” Warran ty ” minOccurs =”0”/>

<xs : e l e m e n t name=” R i g h t s ” t y p e =” xs : s t r i n g ” minOccurs =”0” maxOccurs =” unbounded ”/>

</ xs : sequence>

</ xs : complexType>

275

<xs : complexType name=” P r i c e C o n d i t i o n ”>

<xs : sequence>

<xs : e l e m e n t name=” P r i c e ” t y p e =” P r i c e ”/>

<xs : e l e m e n t name=” C o n d i t i o n ” t y p e =” xs : s t r i n g ”/>

</ xs : sequence>

</ xs : complexType>

<xs : complexType name=” R e f u n d C o n d i t i o n”>

<xs : sequence>

<xs : e l e m e n t name=” RefundAmount ” t y p e =” xs : do ub l e ”/>

<xs : e l e m e n t name=” Cur rency ” t y p e =” xs : s t r i n g ”/>

<xs : e l e m e n t name=” C o n d i t i o n ” t y p e =” xs : s t r i n g ”/>

</ xs : sequence>

</ xs : complexType>

<xs : complexType name=” P e n a l t y ”>

<xs : sequence>

<xs : e l e m e n t name=”Amount” t y p e =” xs : do ub l e ”/>

<xs : e l e m e n t name=” Cur rency ” t y p e =” xs : s t r i n g ”/>

<xs : e l e m e n t name=” C o n d i t i o n ” t y p e =” xs : s t r i n g ”/>

</ xs : sequence>

</ xs : complexType>

<xs : complexType name=” D e p o s i t R u l e”>

<xs : sequence>

<xs : e l e m e n t name=”Amount” t y p e =” xs : do ub l e ”/>

<xs : e l e m e n t name=” Cur rency ” t y p e =” xs : s t r i n g ”/>

<xs : e l e m e n t name=” Rule ” t y p e =” xs : s t r i n g ”/>

<xs : e l e m e n t name=” Date ” t y p e =” xs : d a t e ”/>

<xs : e l e m e n t name=”Time ” t y p e =” xs : t ime ”/>

</ xs : sequence>

</ xs : complexType>

<xs : complexType name=” PaymentRules”>

<xs : sequence>

<xs : e l e m e n t name=” PaymentTime ” t y p e =” PaymentTime ”/>

<xs : e l e m e n t name=” PaymentMethod ” t y p e =” PaymentMethod ” maxOccurs =” unbounded ”/>

<xs : e l e m e n t name=” PaymentDiscoun t ” t y p e =” PaymentDiscoun t ” minOccurs =”0”/>

<xs : e l e m e n t name=” PaymentMethodFee ” t y p e =” PaymentMethodFee ” minOccurs =”0” maxOccurs =” unbounded ”/>

</ xs : sequence>

</ xs : complexType>

<xs : complexType name=” PaymentMethod”>

<xs : sequence>

<xs : e l e m e n t name=” Method ” t y p e =” xs : s t r i n g ”/>

</ xs : sequence>

</ xs : complexType>

<xs : complexType name=” PaymentTime”>

<xs : sequence>

276

<xs : e l e m e n t name=”Time ” t y p e =” xs : t ime ”/>

<xs : e l e m e n t name=” Date ” t y p e =” xs : d a t e ”/>

</ xs : sequence>

</ xs : complexType>

<xs : complexType name=” PaymentDiscoun t”>

<xs : sequence>

<xs : e l e m e n t name=”Amount” t y p e =” xs : do ub l e ”/>

<xs : e l e m e n t name=” C o n d i t i o n ” t y p e =” xs : s t r i n g ”/>

</ xs : sequence>

</ xs : complexType>

<xs : complexType name=” PaymentMethodFee”>

<xs : sequence>

<xs : e l e m e n t name=” PaymentMethod ” t y p e =” PaymentMethod ”/>

<xs : e l e m e n t name=” Fee ” t y p e =” xs : do ub l e ”/>

</ xs : sequence>

</ xs : complexType>

<xs : complexType name=” Warran ty”>

<xs : sequence>

<xs : e l e m e n t name=” D u r a t i o n ” t y p e =” xs : i n t ”/>

<xs : e l e m e n t name=” C o n d i t i o n ” t y p e =” xs : s t r i n g ” minOccurs =”0”

maxOccurs =” unbounded ”/>

</ xs : sequence>

</ xs : complexType>

B.2.3 Context

Figure 57 shows the structure of a contract context. It contains the complexType con-

textInfo and the simpleType context rules. The XML for specifying a contract context is

presented below.

<xs : complexType name=” C o n t e x t”>

<xs : sequence>

<xs : e l e m e n t name=” C o n t e x t I n f o ” t y p e =” C o n t e x t I n f o ”/>

<xs : e l e m e n t name=” C o n t e x t R u l e s ” minOccurs =”0” maxOccurs =” unbounded ”/>

</ xs : sequence>

</ xs : complexType>

<xs : complexType name=” C o n t e x t I n f o ”>

<xs : sequence>

<xs : e l e m e n t name=” L o c a t i o n ” t y p e =” L o c a t i o n ” minOccurs =”0” maxOccurs =” unbounded ”/>

<xs : e l e m e n t name=”Time ” t y p e =” xs : t ime ” minOccurs =”0”/>

<xs : e l e m e n t name=” Date ” t y p e =” xs : d a t e ” minOccurs =”0”/>

<xs : e l e m e n t name=” WhoProvider ” t y p e =” WhoProvider ” minOccurs =”0”/>

277

Figure 57: ConfiguredService Context

<xs : e l e m e n t name=” WhoRequester ” t y p e =” WhoRequester ” minOccurs =”0”/>

</ xs : sequence>

</ xs : complexType>

<xs : complexType name=” L o c a t i o n”>

<xs : sequence>

<xs : e l e m e n t name=” P o i n t ” t y p e =” P o i n t ” minOccurs =”0”/>

<xs : e l e m e n t name=” Route ” t y p e =” Route ” minOccurs =”0”/>

<xs : e l e m e n t name=” Region ” t y p e =” Region ” minOccurs =”0”/>

<xs : e l e m e n t name=” Address ” t y p e =” Address ” minOccurs =”0”/>

<xs : e l e m e n t name=”URI” t y p e =” xs : s t r i n g ” minOccurs =”0”/>

<xs : e l e m e n t name=” IP ” t y p e =” xs : s t r i n g ” minOccurs =”0”/>

</ xs : sequence>

</ xs : complexType>

<xs : complexType name=” P o i n t ”>

<xs : sequence>

<xs : e l e m e n t name=” L o n g i t u d e”>

<xs : complexType>

<xs : sequence>

<xs : e l e m e n t name=” Degrees ” t y p e =” xs : i n t ”/>

<xs : e l e m e n t name=” Minutes ” t y p e =” xs : i n t ”/>

<xs : e l e m e n t name=” Seconds ” t y p e =” xs : i n t ”/>

</ xs : sequence>

</ xs : complexType>

</ xs : e lement>

<xs : e l e m e n t name=” L a t i t u d e ”>

<xs : complexType>

<xs : sequence>

278

<xs : e l e m e n t name=” Degrees ” t y p e =” xs : i n t ”/>

<xs : e l e m e n t name=” Minutes ” t y p e =” xs : i n t ”/>

<xs : e l e m e n t name=” Seconds ” t y p e =” xs : i n t ”/>

</ xs : sequence>

</ xs : complexType>

</ xs : e lement>

</ xs : sequence>

</ xs : complexType>

<xs : complexType name=” Route”>

<xs : sequence>

<xs : e l e m e n t name=” P o i n t ” t y p e =” P o i n t ” maxOccurs =” unbounded ”/>

</ xs : sequence>

</ xs : complexType>

<xs : complexType name=” Region”>

<xs : sequence>

<xs : e l e m e n t name=” Type ” t y p e =” xs : s t r i n g ”/>

<xs : e l e m e n t name=”Name” t y p e =” xs : s t r i n g ”/>

</ xs : sequence>

</ xs : complexType>

<xs : complexType name=” Address”>

<xs : sequence>

<xs : e l e m e n t name=” S t r e e t A d d r e s s ” t y p e =” xs : s t r i n g ” minOccurs =”0”/>

<xs : e l e m e n t name=” Un i t ” t y p e =” xs : s t r i n g ” minOccurs =”0”/>

<xs : e l e m e n t name=” P o s t a l C o d e ” t y p e =” xs : s t r i n g ” minOccurs =”0”/>

<xs : e l e m e n t name=” Region ” t y p e =” Region ” minOccurs =”0” maxOccurs =” unbounded ”/>

<xs : e l e m e n t name=” PhoneNumber ” minOccurs =”0” maxOccurs =” unbounded”>

<xs : complexType>

<xs : sequence>

<xs : e l e m e n t name=”Number” t y p e =” xs : s t r i n g ”/>

<xs : e l e m e n t name=” Ext ” minOccurs =”0”/>

</ xs : sequence>

</ xs : complexType>

</ xs : e lement>

</ xs : sequence>

</ xs : complexType>

<xs : complexType name=” WhoRequester”>

<xs : sequence>

<xs : e l e m e n t name=” RequesterName ” t y p e =” xs : s t r i n g ” minOccurs =”0”/>

<xs : e l e m e n t name=”ConsumerName ” t y p e =” xs : s t r i n g ” minOccurs =”0”/>

<xs : e l e m e n t name=” R e q u e s t e r J o b ” t y p e =” xs : s t r i n g ” minOccurs =”0”/>

<xs : e l e m e n t name=” R e q u e s t e r O r g a n i z a t i o n ” t y p e =” xs : s t r i n g ” minOccurs =”0”/>

<xs : e l e m e n t name=” ConsumerJob ” t y p e =” xs : s t r i n g ” minOccurs =”0”/>

<xs : e l e m e n t name=” C o n s u m e r O r g a n i z a t i o n ” t y p e =” xs : s t r i n g ” minOccurs =”0”/>

<xs : e l e m e n t name=” Membership ” t y p e =” xs : s t r i n g ” minOccurs =”0” maxOccurs =” unbounded ”/>

279

</ xs : sequence>

</ xs : complexType>

<xs : complexType name=” WhoProvider”>

<xs : sequence>

<xs : e l e m e n t name=” ProviderName ” t y p e =” xs : s t r i n g ” minOccurs =”0”/>

<xs : e l e m e n t name=” P r o v i d e r O r g a n i z a t i o n ” t y p e =” xs : s t r i n g ” minOccurs =”0”/>

<xs : e l e m e n t name=” P r o v i d e r J o b ” t y p e =” xs : s t r i n g ” minOccurs =”0”/>

</ xs : sequence>

</ xs : complexType>

280

Appendix C

ConfiguredService Query Language

The ConfiguredService Query Language is an XML based language used for the specifica-

tion of service requester requirements. CSQL is to be used for passing service requester

queries to the Planning Unit. In this appendix we discuss the CSQL syntax for specify-

ing traditional style queries. Figure 58 shows the structure of the query. It consists of the

complexTypes Required Function, Required Nonfunctional, Required Legal Issues, Re-

quester Context, Consumer Context, and the simple type authentication certificate. The

XML schema for specifying a traditional query is presented below

<xs : e l e m e n t name=” Query−w”>

<xs : complexType>

<xs : sequence>

<xs : e l e m e n t name=” R e q u i r e d F u n c t i o n ” t y p e =” R e q u i r e d F u n c t i o n ”/>

Figure 58: Traditional Query Structure

281

<xs : e l e m e n t name=” R e q u i r e d N o n F u n c t i o n a l ” t y p e =” R e q u i r e d N o n F u n c t i o n a l ” minOccurs =”0”/>

<xs : e l e m e n t name=” R e q u i r e d L e g a l I s s u e ” minOccurs =”0” maxOccurs =” unbounded”>

<xs : complexType>

<xs : complexConten t>

<xs : e x t e n s i o n base =” L e g a l I s s u e ”>

<xs : sequence>

<xs : e l e m e n t name=” w e i g h t ” minOccurs =”0” maxOccurs =” unbounded ”/>

</ xs : sequence>

</ xs : e x t e n s i o n >

</ xs : complexConten t>

</ xs : complexType>

</ xs : e lement>

<xs : e l e m e n t name=” R e q u e s t e r C o n t e x t ” t y p e =” C o n t e x t I n f o ” minOccurs =”0”/>

<xs : e l e m e n t name=” ConsumerContext ” t y p e =” C o n t e x t I n f o ” minOccurs =”0”/>

<xs : e l e m e n t name=” A u t h e n t i c a t i o n C e r t i f i c a t e ”/>

</ xs : sequence>

</ xs : complexType>

</ xs : e lement>

C.1 RequiredFunction

Figure 59 shows the structure of a required function. It includes the complexTypes pre-

conditions and postconditions, and the simpleTypes functionality and domain. The XML

schema for specifying RequiredFunction is shown below.

<xs : complexType name=” R e q u i r e d F u n c t i o n”>

<xs : sequence>

<xs : e l e m e n t name=” P r e c o n d i t i o n ” minOccurs =”0” maxOccurs =” unbounded”>

<xs : complexType>

<xs : complexConten t>

<xs : e x t e n s i o n base =” P r e c o n d i t i o n ”>

<xs : sequence>

<xs : e l e m e n t name=” we ig h t ” t y p e =” xs : i n t ”/>

</ xs : sequence>

</ xs : e x t e n s i o n >

</ xs : complexConten t>

</ xs : complexType>

</ xs : e lement>

<xs : e l e m e n t name=” P o s t c o n d i t i o n ” minOccurs =”0” maxOccurs =” unbounded”>

<xs : complexType>

<xs : complexConten t>

282

Figure 59: Query RequiredFunction

<xs : e x t e n s i o n base =” P o s t c o n d i t i o n ”>

<xs : sequence>

<xs : e l e m e n t name=” we ig h t ” t y p e =” xs : i n t ”/>

</ xs : sequence>

</ xs : e x t e n s i o n >

</ xs : complexConten t>

</ xs : complexType>

</ xs : e lement>

<xs : e l e m e n t name=” F u n c t i o n a l i t y ” t y p e =” xs : s t r i n g ”/>

<xs : e l e m e n t name=”Domain ” t y p e =” xs : s t r i n g ”/>

</ xs : sequence>

</ xs : complexType>

C.2 RequiredNonFunctional

Figure 60 shows the structure of the required nonfunctional properties. The definition of

the nonfunctional properties in CSQL is identical to the definition of the nonfunctional

properties in CSDL. The only exception is the addition of the weights. Below is the XML

schema for defining the required nonfunctional properties in CSQL.

<xs : complexType name=” R e q u i r e d N o n F u n c t i o n a l”>

<xs : sequence>

283

Figure 60: Query RequiredNonFunctional

<xs : e l e m e n t name=” P r i c e ” minOccurs =”0”>

<xs : complexType>

<xs : complexConten t>

<xs : e x t e n s i o n base =” P r i c e ”>

<xs : sequence>

<xs : e l e m e n t name=” we ig h t ” t y p e =” xs : i n t ”/>

</ xs : sequence>

</ xs : e x t e n s i o n >

</ xs : complexConten t>

</ xs : complexType>

</ xs : e lement>

<xs : e l e m e n t name=” S a f e t y ” minOccurs =”0” maxOccurs =” unbounded”>

<xs : complexType>

<xs : complexConten t>

<xs : e x t e n s i o n base =” S a f e t y ”>

<xs : sequence>

<xs : e l e m e n t name=” we ig h t ” t y p e =” xs : i n t ”/>

</ xs : sequence>

</ xs : e x t e n s i o n >

</ xs : complexConten t>

</ xs : complexType>

284

</ xs : e lement>

<xs : e l e m e n t name=” S e c u i r t y ” t y p e =” S e c u r i t y ” minOccurs =”0”/>

<xs : e l e m e n t name=” A v a i l a b i l i t y ” minOccurs =”0”>

<xs : complexType>

<xs : complexConten t>

<xs : e x t e n s i o n base =” A v a i l a b i l i t y ”>

<xs : sequence>

<xs : e l e m e n t name=” we ig h t ” t y p e =” xs : i n t ”/>

</ xs : sequence>

</ xs : e x t e n s i o n >

</ xs : complexConten t>

</ xs : complexType>

</ xs : e lement>

<xs : e l e m e n t name=” R e l i a b i l i t y ” minOccurs =”0”>

<xs : complexType>

<xs : complexConten t>

<xs : e x t e n s i o n base =” R e l i a b i l i t y ”>

<xs : sequence>

<xs : e l e m e n t name=” we ig h t ” t y p e =” xs : i n t ”/>

</ xs : sequence>

</ xs : e x t e n s i o n >

</ xs : complexConten t>

</ xs : complexType>

</ xs : e lement>

<xs : e l e m e n t name=” P r o v i d e r T r u s t ” minOccurs =”0”>

<xs : complexType>

<xs : sequence>

<xs : e l e m e n t name=” Cl ien tRecommenda t ion”>

<xs : complexType>

<xs : sequence>

<xs : e l e m e n t name=” we ig h t ” t y p e =” xs : i n t ”/>

<xs : e l e m e n t name=” v a l u e ” t y p e =” xs : do ub l e ”/>

</ xs : sequence>

</ xs : complexType>

</ xs : e lement>

<xs : e l e m e n t name=” O r g a n i z a t i o n a l R e c o m m e n d a t i o n”>

<xs : complexType>

<xs : complexConten t>

<xs : e x t e n s i o n base =” O r g a n i z a t i o n a l R e c o m m e n d a t i o n”>

<xs : sequence>

<xs : e l e m e n t name=” we ig h t ” t y p e =” xs : i n t ”/>

</ xs : sequence>

</ xs : e x t e n s i o n >

</ xs : complexConten t>

285

</ xs : complexType>

</ xs : e lement>

<xs : e l e m e n t name=” P r i c e G u r a n t e e ”>

<xs : complexType>

<xs : complexConten t>

<xs : e x t e n s i o n base =” P r i c e G u a r a n t e e ”>

<xs : sequence>

<xs : e l e m e n t name=” we ig h t ” t y p e =” xs : i n t ”/>

</ xs : sequence>

</ xs : e x t e n s i o n >

</ xs : complexConten t>

</ xs : complexType>

</ xs : e lement>

</ xs : sequence>

</ xs : complexType>

</ xs : e lement>

</ xs : sequence>

</ xs : complexType>

C.3 RequiredLegalIssues

The definition of the required legal rules is also identical to the definition of legal rules

in CSDL with the addition of the weights. Below is the XML schema for specifying the

required legal rules.

<xs : e l e m e n t name=” R e q u i r e d L e g a l I s s u e ” minOccurs =”0” maxOccurs =” unbounded”>

<xs : complexType>

<xs : complexConten t>

<xs : e x t e n s i o n base =” L e g a l I s s u e ”>

<xs : sequence>

<xs : e l e m e n t name=” w e i g h t ” minOccurs =”0” maxOccurs =” unbounded ”/>

</ xs : sequence>

</ xs : e x t e n s i o n >

</ xs : complexConten t>

</ xs : complexType>

</ xs : e lement>

286

C.4 Contextual Information

The contract contains the contextual information of the service requester and service con-

sumer. The definition is identical to the CSDL definition of contextInfo presented in Chap-

ter B.

287

