
Markovian Model for Data-Driven P2P Video Streaming

Applications

Maher Ali

A Thesis

in

The Department

of

Electrical and Computer Engineering

Presented in Partial Fulfilment of the Requirements for the degree of Master of

Applied Science (M.A.Sc) at

Concordia University

Montreal, Quebec, Canada

May, 2012

c⃝Maher Ali, 2012

Abstract

Markovian Model for Data-Driven P2P Video Streaming Applications

Maher Ali

T
he purpose of this study is to propose a Markovian model to evaluate general P2P

streaming applications with the assumption of chunk-delivery approach similar

to Bit-Torrent file sharing applications. The state of the system was defined as the number

of useful pieces in a peer’s buffer. The model was numerically solved to find out the proba-

bility distribution of the number of useful pieces. The central theme of this study revolved

around answering the question: what is the probability that a peer can play the stream

continuously? This is one of the most important metrics to evaluate the performance of a

streaming application. By finding the numerical solution of the Markov chain, we found that

increasing the number of neighbours enhances the continuity to a certain threshold, after

which the continuity improvement is marginal which complies with empirical results con-

ducted with DONet, a data-driven overlay network for media streaming. We also found that

increasing the buffer length increases the continuity but there is a trade-off because peers

exchange information about the buffer map, hence increasing the buffer length increases

the overhead. We discussed the continuity for both homogeneous and heterogeneous peers

regarding the uploading bandwidth. Then we discussed the case when the first chunk is

downloaded, but not played out because the playtime deadline was missed. We suggested

a general approach for freezing and skipping the playback pointer, that can be used to take

advantage of the available delay tolerance, finally given a specific configuration we measured

the probability of sliding action, that could be used to initiate peers’ adaptation process.

III

Acknowledgement

W
orking on the modelling problem of P2P streaming applications was challeng-

ing and joyful, the approaches used to study such dynamic systems allowed

me to sense the meaning of Richard Feynman’s sentence: ”I don’t know anything, but I do

know that everything is interesting if you go into it deeply enough”.

I owe respect and thanks to Dr. Dongyu Qiu, working with him on this problem was

a great opportunity. I thank him for his patience, generosity and encouraging me to work

hard to get consistent and justifiable approaches. His advices played the greatest role in

this work.

IV

Dedicated to my family. In spite of a year full of sufferings they were always able to give

me hope and encouraged me to pursue my dreams.

V

Contents

1 Background and literature review 2

1.1 Introduction . 2

1.2 Significance and Emergence of P2P . 5

1.3 P2P Classification . 9

1.3.1 Centralized index . 9

1.3.2 Local Index . 10

1.3.3 Distributed Index . 11

1.4 Unstructured and structured overlays . 14

1.4.1 Unstructured P2P networks . 14

1.4.2 Structured P2P networks . 16

1.5 P2P Live streaming . 20

1.5.1 Tree-based approach . 21

1.5.2 Data-driven approach . 22

1.5.3 Hybrid push-pull model . 24

1.6 Related work . 26

1.7 Thesis organization . 29

2 The probability of broken relation 31

2.1 Introduction . 31

2.2 Definitions . 32

2.2.1 Chunks . 32

2.2.2 Peer Playback Pointer - PPP . 33

VI

2.2.3 Stream Playback pointer - SPP . 33

2.2.4 Maximum Allowed Delay - T . 34

2.2.5 Buffer . 36

2.2.6 Useful Pieces . 37

2.2.7 Old pieces . 37

2.2.8 Missing pieces . 38

2.2.9 Virtual Buffer . 38

2.2.10 Relation between T and L . 39

2.3 Important events . 40

2.3.1 The probability of finding partial useful pieces - U(x, i,G) 42

2.3.2 The probability of Partial Broken Relation - P (i, j, G,K, x) 43

2.4 The cases of broken relation . 44

2.4.1 Case1 - tB ≤ tA − L . 45

2.4.2 Case2 - tA − L+ 1 ≤ tB ≤ tA − 1 . 45

2.4.3 Case3 - tA ≤ tB ≤ tA + L− 1 . 46

2.4.4 Case4 - tA + L ≤ tB . 48

2.4.5 Case5 - tA + L ≤ tB − L . 49

2.4.6 The probability of broken relation 51

2.5 Discussion . 51

2.6 Conclusion . 53

3 The Probabilistic model 54

3.1 Introduction . 54

3.2 User state . 56

3.3 Probability of busy slot µi . 58

3.4 Max number of requests D . 59

3.5 ri,n . 60

3.6 Death rate βi . 60

3.7 Birth rate Zi,k . 61

3.8 Markov chain . 61

VII

3.9 Interesting factor Ui . 65

3.10 F (H, i
′
,K) . 66

3.11 Average number of requests K̄ . 69

3.12 Distribution of received requests X . 70

3.13 Probability of fulfilling a request Q . 72

3.14 ri,n . 73

3.15 Paradox of Q . 73

3.16 Average download rate D̄ . 74

3.17 Efficiency η . 75

3.18 Continuity Pc . 75

3.19 Discussion of Numerical results . 76

3.19.1 Continuity Pc as a function of H . 76

3.19.2 Average request rate K̄ . 78

3.19.3 Comparison between DONet and our model results 80

3.19.4 The average number of received requests αH 80

3.19.5 Probability of fulfilling a request Q 82

3.19.6 Average download rate D̄ . 82

3.19.7 Why Pc increases in the range −H? 84

3.19.8 The effect of buffer length L . 85

3.19.9 The effect of maximum allowed delay T 85

3.19.10Efficiency η . 87

3.19.11Releasing upload bandwidth β . 89

3.19.12Releasing uploading bandwidth for Heterogeneous peers 89

3.20 Conclusion . 92

4 Problems in numerical solution 94

4.1 Introduction . 94

4.2 The initial conditions tree - F (H, i
′
,K) . 94

4.2.1 Linear recursion and iteration . 95

4.2.2 Tree Recursion . 97

VIII

4.2.3 Simulating the call stack . 99

4.2.4 Multilevel Cache structure . 102

4.3 Method used to get the steady-state solution for the markov chain 103

4.3.1 Iterative solution for Markov chain 103

4.3.2 Numerical Solution for Our Model 106

4.3.3 GUI Software to find the numerical solution 107

4.4 Conclusion . 108

5 The First Block Problem 109

5.1 Introduction . 109

5.2 Capturing the problem . 110

5.3 Modifying the broken relation . 112

5.3.1 Case1 - tB ≤ tA − L . 113

5.3.2 Case2 - tA − L+ 1 ≤ tB ≤ tA − 1 . 113

5.3.3 Case3 - tA ≤ tB ≤ tA + L− 1 . 114

5.3.4 Case4 - tA + L ≤ tB . 117

5.3.5 Case5 - tA + L ≤ tB − L . 119

5.3.6 Broken relation in the first chunk problem 120

5.4 Numerical results . 120

5.5 Proposing a freezing and skipping method 124

5.5.1 Probability of sliding action . 126

5.6 Conclusion . 128

6 Conclusion, Limitations and Future Work 129

6.1 Concluding our work . 129

6.2 Limitations and future work . 133

IX

List of Figures

1.1 Global CDN market . 5

1.2 Client Server Model . 7

1.3 Napster Model . 8

1.4 Freenet routing table . 13

1.5 Freenet searching process . 14

1.6 CAN 2-dimensional space example . 17

1.7 CAN 2-dimensional neighbours set example 17

1.8 Identifier ring consisting of ten nodes storing five keys 19

1.9 Pastry: routing table example for node Id=3123, D = 4, b = 2 20

1.10 Comparison between trees and multitrees approaches 22

1.11 Coolstreaming sub-streams . 25

1.12 GUI Program to find the numerical solution with first block option 30

2.1 Peer A with 2 useful pieces with buffer length L = 5 38

2.2 Peer A buffer after replacing old pieces with new pieces as a notation 38

2.3 Peer A Virtual buffer . 39

2.4 Peer A real buffer snapshot . 39

2.5 T and L relation . 40

2.6 The probability of finding partial useful pieces - U(x, i,G) 43

2.7 The probability of Partial Broken Relation - P (i, j, G,K, x) 44

2.8 Case1 . 45

2.9 Case2 . 46

2.10 Case3 . 47

X

2.11 Case4 . 49

2.12 Case4 - The General case . 49

2.13 Case5 . 51

3.1 State transitions diagram . 59

3.2 initial conditions tree . 68

3.3 The calculation of Q . 72

3.4 Continuity with different values of H and T, L = 40 77

3.5 K̄ as a function of H - and T = 35, L = 40 78

3.6 N̄ as a function of H - and T = 35, L = 40 79

3.7 M̄, K̄ as a function of H - and T = 35, L = 40 79

3.8 DONet results taken from [42] . 80

3.9 Comparison between our model and DONet results 81

3.10 α with different values of H . 81

3.11 αH The Average number of received requests as a function of H 82

3.12 Q, 1
K̄

with different values of H . 83

3.13 D̄ with different values of H . 83

3.14 L The Effect of Buffer length on Pc, η . 86

3.15 Effect of Delay T on Interesting factor U and Continuity Pc 87

3.16 η with different values of H and T . 88

3.17 Continuity as a function of upload bandwidth β 90

3.18 η as a function of upload bandwidth β . 90

3.19 K̄ as a function of upload bandwidth β . 91

3.20 The heterogeneous and homogeneous peer continuity 92

4.1 Execution path of the factorial recursive function 95

4.2 Execution path of the factorial iterative function 96

4.3 Execution path of the Fibonacci . 98

4.4 Execution tree of the F (5, 3, 2) . 99

4.5 GUI Program to find the numerical solution 108

XI

5.1 The buffer when tA = ts − T . 111

5.2 The buffer when tA = ts − T , after downloading the first chunk 111

5.3 First Chunk Problem: Case1 . 113

5.4 First Chunk Problem: Case2 . 114

5.5 First Chunk Problem: Case3 . 115

5.6 First Chunk Problem: Case4 . 118

5.7 First Chunk Problem: Case5 . 120

5.8 GUI Program to find the numerical solution with first block option 121

5.9 Continuity with different values of H and T = 5, L = 40, with first chunk . 122

5.10 Pc − PcFB as a function of H . 122

5.11 Efficiency η with different values of H and T = 5, L = 40, with first chunk . 123

5.12 ηFB − η as a function of H . 123

5.13 Interesting factor UFB as a function of H 124

5.14 sliding action scenario . 125

5.15 Probability of sliding action as a function of H 127

5.16 continuity for L = 25, T = 20 as a function of H 127

XII

1.

List of Tables

2.1 F (i, j) Table when L=8, T=2 . 52

2.2 F (i, j) Table when L=8, T=4 . 52

2.3 F (i, j) Table when L=8, T=8 . 52

3.1 Results for F (H, i
′
, k) . 69

3.2 Q Calculation . 73

4.1 Results for recursive execution of F (H, i‘,K) 99

4.2 Results for simulated call stack algorithm 101

4.3 Cache hit count . 103

2. CHAPTER 1. BACKGROUND AND LITERATURE REVIEW

Chapter 1

Background and literature review

It left the record industry with no

choice but to gain control or shut it

down.

Randy Komisar - About Napster

1.1 Introduction

P
2P Network Applications is a distributed technology used to meet the require-

ments of large scale applications, this technology gained wide interest due to

the success of file sharing applications, media streaming, and telephony applications. Dif-

ferent P2P architectures were proposed, but they share common features which include:

self-organization, decentralization, converting the system consumers to contributors just to

name a few. The research in this domain does not serve only the P2P Applications, because

other trends in network technology like the wireless networks, sensor networks and mobile

networking are benefiting from the capabilities of P2P paradigm.

Nowadays, the Internet has become the main platform to deliver the video/audio delay-

sensitive traffic, according to Cisco report [6] for the first time in 10 years, the P2P traffic

is no longer the largest internet traffic type. Internet video was 40% of consumer Internet

traffic in 2010, it will reach 50% by the year-end of 2012, and the 62% by 2015, and this

traffic doesn’t include the video content exchanged in P2P file sharing. In 2015 it is antici-

3. CHAPTER 1. BACKGROUND AND LITERATURE REVIEW

pated that in every minute, 1 million minutes of video content will cross the network, and

the sum of all forms of videos (P2P, Internet, TV) will continue to be approximately 90%

of global consumer traffic by 2015.

Considering the dominance of video traffic and the expansion of broadband technologies,

the marketing has been stimulated for the delivery of live streaming. Many frameworks

were proposed for live streaming service, we recognize two main approaches for streaming

services, the Content Delivery Networks (CDN) and Peer-to-Peer networks, and recently

the hybrid CDN-P2P architecture for live streaming [34].

Obviously distributing the media over the traditional, old-fashion client server model, is

very costly in terms of servers and bandwidth, this includes very expensive license for me-

dia streaming servers like Adobe Flash Media Server which is the most popular commercial

streaming solution, besides paying some cents per gigabytes on the top of normal costs.

CDNs were created to improve the performance by distributing the content to cache servers

close to users. Caching is also provided by Proxy servers, the proxy servers provide many

clients with shared cache location, then if requested object is found in the cache and has

not expired then the client request is fulfilled by the ISP cache. Web caching has three

benefits [37]:

• Reducing the network traffic by storing the responses in closer locations

• Reducing the latency for fulfilling the request

• Improving the reliability, when the server is down for short period of time, then cache

is used to serve clients

But Proxy cache has also drawbacks:

• the client may receive incorrect or stale data when the proxy is not updated at suitable

times

• Even with web proxies, the origin servers become bottlenecks, this happens when

large number of users access the web site simultaneously, a phenomena known as flash

crowds. Since web caches hit rate tends to be low 25-40 percent, consequently proxy

caches have limited success in improving the web sites scalability.

4. CHAPTER 1. BACKGROUND AND LITERATURE REVIEW

• Most of today websites generating dynamic content, then the HTML pages are created

on the fly and unique to specific users, because proxy can not cache the dynamic

content, the performance is improved to a certain limit.

Akamai was evolved out of MIT research effort for solving the flash crowds problem, the

approach is based on the observation that serving web content from single location can

present serious problems for site scalability. The system simply deploys surrogate servers

at different geographical locations around the globe at the network edge. Akamai name

servers map host names to IP addresses by mapping the requests to servers using criteria

like: Server load, server health (up or down), client location, content requested. In Akamai

there is DNS-based load balancing system continuously monitors the state of surrogates

servers, the content server periodically reports its load to the monitoring application, based

on these reports the DNS server determines which IP addresses to return when resolving

the DNS names, this process happens as part of DNS resolving process after the root name

servers return (NS) records for Akamai top-level name servers [10]. Interestingly, Akamai

CDN cache also overcomes the proxy caches problem of caching dynamic content by using

ESI (Edge Side Includes) technology, which breaks the dynamic page into fragments with

independent cachability properties, this allows the server to fetch only the noncachable frag-

ments from origin web site. It was found that ESI can reduce the bandwidth requirements

for dynamic content by 95-99%.

CDN are used not only for delivering web pages, but also for delivering the streaming me-

dia, the content provider sends the stream to entry-point server in the CDN network, the

stream is delivered from entry-point server to edge servers and then to end users. When

Google launched the Youtube Live service in 2011, they had many options, using their own

live service, acquire a streaming platform or simply stream the live event using CDN.

Examining the HTML code during the live event showed that, youtube did not launch any

live service and chose AKAMAI to stream the live event with custom Flash Player built by

web agency Digitaria [14].

From the previous discussion it is obvious that the CDNs started as an attempt to reduce

the server load during the flash crowds, then the provided services were expanded to include

5. CHAPTER 1. BACKGROUND AND LITERATURE REVIEW

live streaming which is recently adopted by Google. Clearly, the CDN pure solution is very

costly, currently CDNs have become a huge market generating large revenues. The Global

CDN market was a high as 1.5$ billion in 2009 because of video streaming applications as

illustrated in Fig.1.1, this is refelcted by the Akamai which handles 20% of total internet

traffic [44].

Figure 1.1: Global CDN market

Because of the cost of CDNs, this market is dedicated from medium to large scale com-

panies, that is why P2P Streaming gained more attention from researchers. Recently new

hybrid architecture was proposed to integrate both of the competing technologies to over-

come problems of both approaches. In [34] the proposed CDN-P2P architecture divides the

content delivery network into meshes, each mesh contains source node and other peers that

collaborate in the network with their upload bandwidth, in each mesh a P2P system like

Coolstreaming is used with tracker to achieve the P2P functionality. This hybrid architec-

ture befits from P2P scalability by leveraging the resources of the peers and the reliability

of CDNs, this approach reduces the server cost but does not eliminate it.

Whether live streaming is deployed using hybrid CDNs or P2P architecture, understanding

the performance of P2P system is still a challenging research topic as explained later in this

chapter.

1.2 Significance and Emergence of P2P

Definitions of P2P networks try to distinguish it from Client/Server architecture, one of

these definitions: ”A distributed network architecture may be called a Peer-to-Peer net-

6. CHAPTER 1. BACKGROUND AND LITERATURE REVIEW

work, if the participants share a part of their own hardware resources (processing power,

storage capacity, network link capacity, printers,...). These shared resources are neces-

sary to provide the Service and content offered by the network (e.g file sharing or shared

workspaces or collaboration): They are accessible by other peers directly, without passing

intermediary entities. The participants of such a network are thus resource (Service and

content) providers as well as resource (Service and content) requesters (Servent-concept)”

[33]. The emphasize of this definition is on the role of the node in P2P networks, while in

Client/Server applications the node acts as either a server or client, in P2P networks the

node is Servent, which means the node is able to play the role of both server and client at

the same time. Also P2P networks can be classified as Pure P2P networks where removing

any random node does not cause any loss in the network service, similarly there is the hybrid

P2P networks in which a central entity is necessary to provide parts of the network service

[33].

Some characteristics of P2P networks are:

• Resource sharing : The peer is not just a consumer or requester, but also it con-

tributes to the system resources by uploading information to other peers. There should

be some rules to specify how much the peer can download depending on his contribu-

tion, these rules try to solve the problem of peer downloading but not uploading to

other peers, a problem is widely known in the literature as free rider problem.

• Scalability : On the contrary of Client/Server architecture, increasing the number of

users in the overlay will increase the performance, this revolutionary concept means

the P2P networks designed to provide services for millions of concurrent users.

• Symmetry : nodes are assumed to have equal roles in the overlay, although some P2P

designs suggest the concept of superpeers.

• Decentralization : in P2P overlays the behaviour doesn’t depend on central point

of control but this concept has been changed to include servers to speed up some

operations in the overlay like the tracker server in the design of Bittorrent.

• Self-Organization : Nodes in P2P overlays appear and leave at random times, this

7. CHAPTER 1. BACKGROUND AND LITERATURE REVIEW

churn rate should be cosidered to maintain the structure of the overlay, additionally

the operations at each node should be organized based on a partial view or local

information only.

P2P applications emerged with Napster, before Napster the communication between clients

was only through server, this is the traditional Client/Server model explained in Fig.1.2,

where the user A uploads a resource (file, database record ...) to the server, and then

another user B sends the request to the server asking for that resource and if it is available

it downloads it from the server, this is the general concept of Client/Server applications.

This model changed with Napster [40], which was motivated by making it easier for music

Figure 1.2: Client Server Model

listeners to share their MP3 files. Napster is an example of hybrid P2P system, because

there is a centralized directory that describes how files are stored in the network, and also

joining peers should register in this directory. In other words the centralised directory

stores information about both nodes and files, information about nodes is table of active

connections, while information about files includes file names, creation date, size, copyright

information ...etc . The operation of Naspter [40] is illustrated in Fig.1.3:

• user A connects to server (centralized directory) and the server keeps information

about connected clients

• user B wants to download a file, it sends a request to the Napster server, and directory

service looks up for a match.

• the server sends a list of matches to B including the IP address, file name, file size ...

etc

8. CHAPTER 1. BACKGROUND AND LITERATURE REVIEW

• user B establishes the connection with A directly and downloads the file

Figure 1.3: Napster Model

The connection between clients is direct once the required information is obtained from the

Napster server, also we have to notice that the content downloaded by B is not stored on

Napster server, instead the content is found on the peers.

Once completed, Napster was a huge success and became one of the fasted growing sites in

history, reaching the 25 million users in less than a year [40]. After the wide spreading of

Napster since it was launched in 1999, many giants in the music industry like AOL, Sony

music, Warner Music ... realised that Napster posed potential threat, so they sued Napster

over violating copyright law, they sensed that Napster with simple file-sharing and with

no royalty charging mechanism will cost the music industry millions of dollars, and as a

defence Napster team said the content itself is not on our servers but it is distributed by

users themselves. The original service was shut down by court order, in [35] [40] Napster

legal issues are presented.

Obviously Napster was an attempt to solve the problems found in traditional Client/Server

applications, these issues are caused by the limitation of the server resources: CPU utiliza-

tion, network bandwidth, storage and I/O speed, solving these problems means companies

should bear high costs of additional resources. For instance, Google clusters more than

200,000 AMD servers to give successful web indexing services [29].

9. CHAPTER 1. BACKGROUND AND LITERATURE REVIEW

1.3 P2P Classification

There are many applications of P2P overlays like: file-sharing, instant messaging, media

streaming, VoIP ...but file-sharing is considered to be the most popular of these applications,

and the foundation of all later services, for instance some live streaming protocols build on

bit-torrent file sharing architecture. According to [30] File sharing P2P networks can be

categorized based on the index type, and defined the index to be the collection of terms with

pointers to places where the information about documents can be found, the structure of the

index affects the search operations. Concerning index types there are three classifications

of P2P networks:

• Centralized index

• Local index

• Decentralized index

1.3.1 Centralized index

This approach is used in the first generation of P2P networks like Napster, there is a central

server that keeps meta-information about peers and files, but it does not store the content

itself, thus searching process is very efficient, and Napster is considered the first to demon-

strate the scalability of P2P network by separating data from index.

These systems are also called the hybrid systems because elements of both client/server and

pure P2P system coexist [43]. The index is updated at different operations, for instance

when the user logs on, after a user completed the downloading process it sends an update

message to the server, or when the user drops the connection.

In hyper architecture there could be many servers, these servers can be chained, which

means if one server can’t fulfil the request then it forwards the request to another server,

hence some requests could be expensive. Or there could be full replication of index on

all servers, and obviously this imposes difficulties for maintaining the synchronization of

different copies, and servers could be independent like the one used in Napster. The real

barriers of the central index is not technical but legal and financial. Another popular P2P

10. CHAPTER 1. BACKGROUND AND LITERATURE REVIEW

file sharing system with centralized architecture is BitTorrent [9]. In BitTorrent imple-

mentation a static file with extension .torrent is uploaded to a web server. This torrent file

contains information about the file, its length, name, and hashing information (to check if

the file is corrupted during storage or transmission), and the URL of the trackers. Trackers

are responsible for helping downloaders finding each other. The protocol of tracker is very

simple layered on the top of HTTP, the downloader sends information about the required

file and port it is listening to and other information, then the tracker sends a a random list

of peers which are currently downloading the same file. then downloaders connect to each

other and upload information to each other. To make sure the file is available a peer with

complete file is called the seeder must be started in the overlay.

The file itself is divided into smaller pieces of fixed size, then each peer can report to its

partners what pieces it maintains, so that other peers can use this information to send

requests asking for pieces from different partners. In BitTorrent there is no central resource

allocation, each peer is responsible for maximizing its own downloading rate, and in BT

application the user can put limits on its upload bandwidth. Peers operate by download-

ing from whoever they can and then deciding which peers to upload to using tit-for-tat

mechanism, uploading to peers means to cooperate while not uploading means to choke.

there is well studied problem in Bittorrent system that is the fairness problem: Peers that

participate in BT file sharing are highly likely to be heterogeneous [12]. It is highly likely

they have different uploading/downloading bandwidth capabilities, then the well-designed

protocol should encourage peers to contribute using incentive mechanism: those who con-

tribute more should receive a better service, this problem is difficult and is still receiving a

lot of interest in research community.

1.3.2 Local Index

The local index designs are becoming rare, in this model the peer is responsible for indexing

only its content, hence the content and index are both distributed. Gnutella [18] uses the

local index architecture, where each node launches Gnutella program which seeks out other

Gnutella nodes in process called bootstrapping. Although Gnutella eliminates the need for

centralized index, the bootstrapping process requires well-known list of peers hosted on some

11. CHAPTER 1. BACKGROUND AND LITERATURE REVIEW

websites to be distributed by Gnutella software. There are two bootstrapping approaches

[19]:

• Peer-based: a peer tries to detect the overlay by contacting other peers directly. As

an example the peer cache, which contains a list of previously known peers. In spite

of simplicity this approach cannot guarantee a successful bootstrapping, when there

is no available peer in the cache.

• Mediator-based: also known as Well-Known Entry Point (WKEP), the mediator can

be a server provided by the operator of P2P system, it manages a list of peers that

are currently in the overlay. The challenge is to keep the list fresh, here the successful

bootstrapping depends on the availability of the mediator. Also managing the server

and financial issues should be considered.

Solving the bootstrapping issue is challenging, and full distributed solution is not yet found

to best of our knowledge, new bootstrapping processes are continuously proposed as the

approach in [19] which depends on the Dynamic DNS service. In centralized approach

finding the content is very efficient because the index information is located on centralized

servers, but in local index searching the overlay is more time consuming. In local index

approaches like Gnutella 0.4 a search request is sent to connected nodes, if these nodes do

not have the required file then they forward the request to their neighbours. To enhance

the scalability of local-index, Gnutella uses a Time-To-Live(TTL) values to minimize the

broadcast overhead by forcing a search boundary.

1.3.3 Distributed Index

FreeNet was the first proposal for distributed index, the motivation in this proposal [8]

was creating a decentralized storage and indexing system resistant to censorship, hence the

emphasis was on the anonymity of peers. In FreeNet the node inserts a file, this file is

split into smaller chunks, these parts are stored on multiple nodes in the system and this

means the file would be available even if the original node went offline which satisfies the

decentralized storage requirement. Here we have to mention that although this process looks

similar to BitTorrent, but there is huge difference, in FreeNet the node is part of the System

12. CHAPTER 1. BACKGROUND AND LITERATURE REVIEW

storage where the software will allocate few Gigabytes to be used for content in the system,

while in BT the peer is contributing in specific content, this means the node in Freenet

could receive data chunks for any content. FreeNet node also will remove the rarest used

data chunks when running out of storage space.

To insert a file the user sends a message containing the file and globally unique identifier

(GUID), which causes the file to be stored on some set of nodes [7]. Although there are

different types of keys (keys for file, keys for description information) but in general the

GUID are calculated using hashing with file content as input.

There is a difference between Gnutella and Freenet that can be explained with simple

example and using the original work published by Ian Clark in [8] and [38]. Gnutella

keeps only one copy of data in the whole overlay as we have seen but Freenet implements

”write approach” in this approach the file is stored in different nodes, also Gnutella uses the

broadcast to find the file while Freenet uses the concept of closest neighbour while searching

and inserting the file.

Assuming that we have 3 keys A,B,C the Freenet architecture requires answering this

question: is A closer to C than B?. assuming that the keys are integers then we can use

this test to define the ”closeness”:

|A− C| < |B − C|

Or if the key A is 64-bit integer, we can divide it into two 32-bit integers (Ax, Ay) and using

the distance in the Cartesian space:

(Ax − Cx)2 + (Ay − Cy)2 <

(Bx − Cx)2 + (By − Cy)2

Each node in Freenet maintains a routing table to forward the request, this routing table

includes the following minimum details:

• id : file identifier

• next hop: node that stores the file with identifier id

• file: file identified by id and is stored on the local node data store.

13. CHAPTER 1. BACKGROUND AND LITERATURE REVIEW

Example of this routing table in Fig.1.4 Searching for a file is by building a message that

Figure 1.4: Freenet routing table

contains the file id :

• if id is stored locally then stop.

• if not, search for the closest id in the table and forward the message to the corre-

sponding next hop

While in Gnutella there is broadcast, Freenet does not send the message to all neighbours,

and it uses also TTL value that is decremented each time the message is forwarded. The

node on the searching path will also search for the file in the same way, when the file is

returned to the original node it is cached along the reverse path. Example of search path

is illustrated in Fig.1.5, note that:

• node n1 chooses the closest id which is 12 to the required id=10 and hence forwarding

the request to n2

• n2 chooses the closest id which is 9 and next hop to be n3

• n3 chooses the closest id which is 14, and next hop to be n4

• n4 chooses the next hop to be n2, here n2 sends error message, because nodes keep

track of outgoing requests

• n4 then chooses the next closest node which is n5 that has the file

14. CHAPTER 1. BACKGROUND AND LITERATURE REVIEW

Figure 1.5: Freenet searching process

Inserting file with specific id in the overlay follows the same steps in retrieving a file:

• if the file is found, report a collision because ids should be unique

• if the max number of nodes is reached report failure

• if not found then insert the file

during this process the file is inserted at each node along the path.

1.4 Unstructured and structured overlays

In the previous section we categorized the P2P networks according to the location of data

and index, the previous classification is tightly bound to Unstructured networks, in which

the overlay does not impose any structure hence the topology is random. On the other

hand, Structured networks impose particular structure commonly known as the (DHT)

Distributed Hash Table.

1.4.1 Unstructured P2P networks

To understand the difference between these two classes, we consider the search process. In

the unstructured networks like Gnutella 0.4 the searching process depends on the flooding

[11], and the searching process is controlled through (TTL) value. The request is sent by a

15. CHAPTER 1. BACKGROUND AND LITERATURE REVIEW

node to all of its neighbours, the neighbours then check to see whether they can reply to this

request or not by matching it to keys in their internal database. If they find a match they

reply; otherwise, they forward the message to their neighbours. Of course this could easily

consume the network bandwidth, so TTL value is used to define a boundary for searching

process and to stop the propagation of messages. Problems with this approach are obviously

the scalability, what is the suitable TTL value, inefficiency in locating unpopular files, and

bottlenecks because of very limited capabilities of some peers. This problem is because

Gnutella-like approaches consider all peers are equal in capabilities which is practically not

true.

Unstructured network searching had been improved using the hybrid approach or the super-

peer approach [2]. KaZaa which was the predecessor of Skype is an example of this partially

centralized approach. In this approach peers with powerful resources are automatically

designated as super-peers, these super-peers can serve many clients like a centralized server,

clients send requests to their super-peers, and super-peers are connected to each other as

peers in pure P2P system are. This approach provides the missed load balancing in the

centralized approaches like (Napster) and benefits from the peers heterogeneity. At the same

time there are some issues not well understood like the good ratio of clients to super-peers,

how super-peers should connect to each other, and what operations should be conducted

between the peers and super-peers, these issues are addressed in [2]. Unstructured networks

are resilient to random behaviour in P2P networks but it has two main problems [11]:

• Content location and network topology are uncorrelated : network search is open end,

in other words it is not limited by certain number of hops, that’s why unstructured

networks use the (TTL) value to put a boundary on the search process. This (TTL)

value means unstructured networks could fail to retrieve information even if it is found

in the network.

• Network is random: the query usually traverses multiple sections of the topology in

parallel to reduce the response time, the implication is a scalability issue.

Freenet as a decentralized index approach is also unstructured network, but the search

process as we have seen is not flooding, that is why it is often called loosely structured

16. CHAPTER 1. BACKGROUND AND LITERATURE REVIEW

overlays [22] to distinguish it from strictly structured networks or simply the structured

networks as known in the literature. In loosely structured overlays the overlay structure is

not strictly defined, as an example Freenet forms a structure based on the concept of closest

nodes this is a hint used to push the overlay to evolve into some structure, but the structure

is still randomly formed. And Freenet also uses the TTL value to limit the propagation of

searching query.

1.4.2 Structured P2P networks

In structured overlays [26] there is a geometry constructed to enable the deterministic

searching process, then the lookup performance is related to how nodes are arranged and

how the geometry is maintained. Because of the geometry there is maintenance overhead

to overcome the dynamics of peers churn rate, which imposes a trade-off problem: should

we keep the routing tables small and hence the searching process would take more time, or

do we construct a relatively large routing table, which increases the maintenance overhead.

With structured overlays any existing item can be found by any node in the overlay.

Nodes in structured overlays can position themselves in the overlay using (DHT) the dis-

tributed hash table.

Content Addressable Network

A hashing table is a data structure that efficiently maps ”keys” onto ”values” and serves as

a core building block in the implementation of software systems [28], extending this concept

to distributed environment is called the DHT, and (CAN) Content Addressable Networks

[28] is one of the first proposals that provides hash table functionality.

CAN design centres around d-dimensional Cartesian coordinate space, this space is logical

not related to the physical location, the sapce is divided into zones and each node in the

system ”owns” its zone. example in Fig.1.6 a 2-dimensional [0, 1] × [0, 1] coordinate space

partitioned between 5 CAN nodes. The virtual coordinate space is used to store (key,value)

pairs as the following: to store a pair (K1,V1), key K1 is deterministically mapped onto a

point P in the coordinate space using hashing function. and the pair is then stored in the

node that owns that zone that includes the point P . Any node wants to retrieve the value

17. CHAPTER 1. BACKGROUND AND LITERATURE REVIEW

V 1 can use the same hashing function to find the corresponding point P . if the required

point P is not owned by the requesting node or its neighbours then the request should be

routed through CAN until it reaches the required node. In CAN the node should maintain a

Figure 1.6: CAN 2-dimensional space example

routing table that holds the address of neighbour and information about its zone, two nodes

in CAN are neighbours when their coordinate spans overlaps along d-1 dimensions and abut

along one dimension. in Fig.1.7 node 5 is a neighbour of node 1 because its coordinate zone

overlaps with 1 along the Y axis and abuts along the X-axis. while node 6 and 1 are not

neighbours because their coordinate zones abut along both X and Y axes. The routing

then is done simply by using this coordinate set in which the node sends the message to

the neighbour with closest coordinates to the destination coordinates. Joining the CAN

Figure 1.7: CAN 2-dimensional neighbours set example

is done by finding a CAN node through bootstrapping process, then the new node picks

a random point in the sapce, then using the CAN routing mechanism the JOIN message

reaches a node responsible for that zone, the owner would split the zone in half and assigns

one half to the new node. The new node obtains the addresses of the neighbours from the

18. CHAPTER 1. BACKGROUND AND LITERATURE REVIEW

owner which eliminates nodes that are no longer neighbours, the new and old nodes will

send update messages to neighbours to reflect the changes in the topology. in the same way

leaving the overlay results in merging the zone with other zones in the overlay.

Other DHT schemes

In general DHT maps data to keys which are m-bit identifiers using hashing function on

meta-data. Nodes in the overlay are also assigned unique IDs from the same identifier space

by hashing information specific to the node like the IP address or public key. m should be

large enough to make the probability of collision too small, with each node is responsible for

storing subset of keys in the identifier space. The value is associated with a key, this value

is stored in the node responsible for the indicated subset of addresses, this value can be the

data or the address of data depending on the implementation. The DHT scheme defines

how the overlay is structured, how node state is maintained and the routing process. All

DHT schemes support the following two operations:

• insert(k,v): inserting pair (k,v) in the DHT.

• lookup(k): get the value associated with the key (k).

By denoting Ni as the node with the id i, and Kj the key with id j we briefly present some

DHT schemes.

Chord [36] places nodes and keys in a ring as illustrated in Fig.1.8. suppose i < j < s and

Ni and Ns are existing nodes in the DHT. When Nj first joins the overlay it looks up j and

gets Ns addess, it then sets Ns as successor in the ring. Finally Ns transfers keys (i, j] to

Nj . With this ring approach the key Kj is placed on the node Ni immediately following

j in the ring. in Fig 1.8 key with K10 is stored on the successor of N10 which is the N14.

With this basic information the node can use the successor in linear approach to reach the

destination. But chord uses another table called the finger table in which the node keeps

the address of other nodes in the ring, for node n the finger table is defined by m entries:

finger[k] = first node on circle that succeeds (n+ 2k−1)mod(2m), 1 ≤ k ≤ m

19. CHAPTER 1. BACKGROUND AND LITERATURE REVIEW

In this definition the first finger is the successor.

Pastry [31] each node is assigned 128-bit node ID, which is used to indicate the position of

Figure 1.8: Identifier ring consisting of ten nodes storing five keys

the node in circular identifiers space with range [0 · · · 128], we consider the node Ids as series

of digits with base 2b. In each routing step a node forwards the message to the node whose

ID shares with key at least a prefix that is at least one digit (b− bits) longer than the prefix

that the key shares with the present node’s ID, if no node is available then it is forwarded to

a node whose nodeId shares with the key as long as the current node, but it is numerically

closer. dividing the Node ID into digits creates levels regarding the common prefix, level-0

represents a 0-digit common prefix, level-1 represents one digit common prefix. The routing

table contains rows, in the nth row there are 2b − 1 entry for each row, each entry refers to

a node whose ID shares the current node ID in the first n− digits, so nodes are placed in

the routing table according to the prefix as illustrated in Fig1.9. choosing b is a trade-off

between the table size and the max number of hops in routing process. the number of rows

in routing table is D one row for each level or digit, then the range of address space is: 2bD.

In the structured overlay, the geometry depends on the DHT scheme in use, as we have

seen Chord uses one dimensional routing table, Pastry used two dimensional routing table,

while CAN uses d-dimensional routing table. there are many approaches for DHT schemes

and structured overlays. DHT is not limited to P2P but it has many other applications in

20. CHAPTER 1. BACKGROUND AND LITERATURE REVIEW

Figure 1.9: Pastry: routing table example for node Id=3123, D = 4, b = 2

wireless networks and sensor networks.

1.5 P2P Live streaming

P2P file sharing networks has received a lot of research and improvements, the main interest

of this sort of applications is how to make the system more efficient concerning the searching

and routing processes, this framework can be used to deliver any content including the live

streaming. The traditional model for live streaming is a server that distributes streams

to viewers, obviously this approach of one stream per viewer is not scalable, when the

server bandwidth is saturated then no new viewer can be served. Overcoming the issue of

scalability is greatly achieved in the P2P networks, thus the video stream can be divided

into smaller chunks and then distributed in the overlay to the viewers, hence converting the

viewers also to streamers. With P2P streaming the streamer provides the stream to some

subscribers and then subscribers exchange stream information with each other.

As P2P live streaming builds on the top of file sharing architectures, it is expected that

live streaming would use the already developed technologies to deliver the stream with

some modifications to meet the QoS requirements, such as the start-up delay and stream

continuity. Some contrasts to P2P file sharing applications are:

• file size in file sharing P2P application is defined as a parameter while in streaming

application the stream length is not determined, thus peers should maintain a buffer

to store part of stream, and use it to serve other peers.

• in file sharing applications, segments of file are exchanged and received maybe out of

21. CHAPTER 1. BACKGROUND AND LITERATURE REVIEW

order, the order is not important, while in P2P streaming applications, this approach

is not feasible. the peer can not receive any segment in the overlay. Downloaded

segments should respect the restriction of playback deadline.

• Streaming applications demand bandwidth requirement, and delay can be tolerated

with certain threshold. While in other types of streaming like conference applica-

tions the delay and bandwidth would be stringent requirements. In on-demand video

streaming the peers could be asynchronous then only bandwidth considered a critical

requirement.

• In streaming applications the design should guarantee a smooth and continuous stream-

ing, while in P2P file sharing the system design is to minimize the downloading time.

In general P2P streaming proposals can be classified into two main categories: tree-based

and data-driven. In the following we discuss these two approaches in detail.

1.5.1 Tree-based approach

In this approach nodes are organized into tree structure, with nodes maintaining well-defined

relationships ”Parent-child” for delivering data. This approach is typically push-based, that

is, when a node receives a data block it also forwards a copy of it to all of its children.

The overhead in this model is related to maintaining the tree structure when nodes join and

leave the overlay. When node leaves the tree all of its offspring will stop receiving the video

stream, also there should be loop avoidance mechanism. Trees are natural implementation

for video streaming, though the implementation is very complicated. One concern also in

this structure is that most nodes would be leaves in the tree, hence not participating in the

overlay, In response to these problems, researchers suggested multi-tree based approaches.

One of the first proposals for tree-based overlays is ESM (End System Multicast) [15].

In ESM there is a protocol called Narada responsible for maintaining the tree structure and

group management operation in a fully distributed manner.

When the peer joins the overlay it obtains a random list of members, it then selects one

of these members as a parent. Since Narada is targeting the small groups in the tree (tens

to hundreds of members) then each member should maintain a list of all members in the

22. CHAPTER 1. BACKGROUND AND LITERATURE REVIEW

group, the peer builds this topological information with gossip-like protocol by sending a

message to randomly selected member announcing the peers known in its table.

Single tree approach suffers from many problems, such as the leaf nodes not utilized and

disruptive delivery due to failures of high-level nodes, for example for a tree with f offspring

for each node and the height is h, then the number of leaf nodes is fh and the number of

interior nodes is fh−1
f−1 , which means for binary tree more than half of nodes are leaves.

More resilient approaches have been introduced, one of them is the multitree approach as il-

lustrate in Fig1.10. in this approach the source divides the stream into multiple substreams,

and each substream is disseminated along a particular tree structure. Two advantages with

multitree solution: resilience of the system is improved, since the failure of the parent does

not result in full disruption, and all nodes bandwidth is utilized as long as a node is not

a leaf in at least one tree in the forest. Splitstream [4]is also a multitree approach which

Figure 1.10: Comparison between trees and multitrees approaches

is implemented using structured peer-to-peer networks such as Pastry, by exploiting the

properties of Pastry through choosing groupId to differ in the most significant digit, this

ensures the node with id = 1 is an interior node in tree with groupId = 1 and leaf node in

other trees.

1.5.2 Data-driven approach

Some proposals were conducted to eliminate the need for trees in live streaming such as

Chainsaw [25] and Coolstreaming [42][41]. The data driven approach is inspired by Bit-

Torrent file sharing protocol which creates unstructured overlay mesh to distribute a file, as

23. CHAPTER 1. BACKGROUND AND LITERATURE REVIEW

we have seen the file is divided into discrete pieces, peers should send a request for a piece

to be downloaded, this model is referred to as pull-based approach.

the system design uses both Bit-Torrent and gossip protocol, the system has one or more

seeders or called streamers, that generate series of chunks with increasing IDs or sequence

numbers. The system can be extended to support many streams by including the Stream

ID in every chunk. As an example Coolstreaming [41] [21] [42] adopts a sliding windows

(buffer) of 120 segments, each of 1 second. Then the buffer map exchanged among peers is

120 bits each indicates the availability of the corresponding chunk, the gossip message also

contains other two bytes for the first segment ID.

Every node builds a partial view of the overlay by maintaining the state of neighbours,

this state determines a list of available pieces the neighbour has. This list is updated by

the neighbour sending periodic message about the available chunks, or using notification

message upon receiving the chunk.

In Coolstreaming there is no tracker, the membership information is disseminated in the

overlay by randomly picking one neighbour and exchanging information about members,

this is the SCAM (scalable gossip membership protocol), while in Bittorrent there is a

centralized tracker to keep track of information about available pieces and peers’ upload-

ing/downloading statistics. Pure Bittorrent solution can not be used for video streaming.

BiTos (BitTorrent Streaming) [39] is built with BitTorrent tracker concept by modifying

the piece selection algorithm, but the service was video playback, in which the video files

are uploaded to server, it is not live streaming service, because supporting the streaming

service requires proposing a new protocol.

Peers in live streaming applications maintain a buffer for downloaded pieces that can be

played out later, to utilize the available bandwidth and enhance the continuity. using this

buffer the peer generates two vectors or lists:

• availability vector : set of chunks available for uploading to other peers

• missing vector : a list of chunks in which the peer is interested to acquire in the current

time.

24. CHAPTER 1. BACKGROUND AND LITERATURE REVIEW

using these vectors peers can communicate with each other, announcing the available chunks

(gossip) and sending requests for missing pieces, choosing the gossip target could be random

to achieve high resilience to random failures, also the gossip protocol is just used to announce

the availability of chunks not pushing the chunks, because obviously this would result in

high redundancy.

Choosing the chunks to be downloaded is referred to as scheduling algorithm, which can

be as simple as randomly picking one or more missing pieces in round robin fashion, or it

can be more intelligent such as the one used in Coolstreaming. The scheduling algorithm

should meet some constraints: the playback deadline for each chunk and the heterogeneous

bandwidth from the partners. In Coolstreaming a list of potential suppliers for each chunk

is created from the gossip messages, then the chunks with fewer suppliers are picked first,

then for each chunk the supplier with higher bandwidth is chosen.

The peer keeps track of sent requests and make sure not sending more than one request per

missing piece. The peer limits the number of requests sent to each neighbour, this makes

sure that requests are spread to all neighbours and also no bandwidth is wasted because of

duplicate requests. The streamer has a streaming rate, and peers slides their buffers at the

same rate, this will be discussed more in our model.

This approach does not impose any structure, thus it is simpler and more resilient to high

churn rates. in this model the availability of data is what guides the data flow not the

structure.

There are also some drawbacks in this approach compared to tree-based, such as the high

start-up latency and transmission delays.

1.5.3 Hybrid push-pull model

Coolstreaming was developed in python in 2004, its implementation is platform independent

and supports RealPlayer and Windows Media formats. Since the first release (Coolstream-

ing v0.9) in 2004, it has attracted millions of downloads. The peak concurrent users reached

over 80,000 with an average bit rate of 400 Kbps, with users from 24 countries.

Coolstreaming has been enhanced, the first version adopts the pure pull-based approach,

this causes overhead for sending a request per chunk, and as a result there would be delay

25. CHAPTER 1. BACKGROUND AND LITERATURE REVIEW

in retrieving the content.

In the latest version, the system has been modified to adopt the hybrid push-pull model, by

implementing a novel substreams model. In the new version, when node joins the overlay,

during the bootstrapping process it obtains a list of active nodes from a server, this list is

called the mCache, then it randomly contacts few nodes to establish the partnership main-

tained by partnership module, this partnership relation specifies that nodes can exchange

the availability information.

Another relation which is the parent-children relation can be established when a node (child)

is receiving video from another node (parent). Parents are subset of Partners.

The novel design proposed the concept of substreams. The stream is divided into multiple

sub-streams and node can subscribe to sub-streams from different partners. The original

design is the same, the stream is also divided into blocks of the same size and with unique

IDs. The node would place the received blocks into synchronization buffer for each sub-

stream, and then combine these substreams in one stream sent to another buffer called

cache buffer.

Assuming the number of sub-streams isK, then substreams are created with simple rule, the

ith substream contains blocks with the following IDs: nK + i, n : 0, 1, 2 · · · ; i : 1, · · · ,K,

then K specifies the maximum number of parent nodes. Fig 1.11 shows an example of 4

substreams.

also the periodically exchanged buffer map has been changed, the buffer map is now

Figure 1.11: Coolstreaming sub-streams

2K−tuples, the firstK−tuple represents the latest received block from each substream, and

26. CHAPTER 1. BACKGROUND AND LITERATURE REVIEW

is denoted as {Hs1 , Hs2 , · · · , Hsk} for substreams {s1, s2, · · · , sk}. the second K−tuple rep-

resents the subscriptions of substreams from the partner, if node A is subscribed to the first

and second substreams from node B then it sends the following K − tuple: {1, 1, 0, · · · , 0}.

In the hyper push-pull model, the node sends a pull message for substream and then the

parent pushes the chunks to child node, which decreases the overhead in the pure pull model

in which a request is sent for each chunk.

an important process in the system is the Peer adaptation process, in which the peer

selects new parents when existing TCP connections are inadequate in satisfying the stream-

ing quality requirement, the criteria is to use two parameters {Ts, Tp}. For node A, Ts

is the threshold of the maximum sequence number deviation allowed between the latest

received blocks in any two substreams in node A, while Tp is the threshold of the maximum

sequence number deviation between partners and parents of node A. by denoting HSi,A as

the sequence number of the latest block received for substream Si at node A, for monitoring

the service of substream Sj from parent P two inequalities are used:

max{|HSi,A −HSj ,P | : i ≤ K} < Ts

max{HSi,q : i ≤ K, q ∈ partners} −HSj ,p < Tp

The first inequality when not satisfied means that the substream is delayed beyond the

threshold, this happens because of insufficient uploading bandwidth for this substream or

congestion then it triggers peer adaptation process.

The second inequality compares the buffer of parents and partners, if it does not hold, it

means the partner is lagging or insufficient, which triggers the peer adaptation process.

1.6 Related work

Recently there has been a tremendous efforts to adopt P2P technologies for video streaming.

there are two main reasons for this tendency: First it does not require a special support

from the existing network infrastructure, consequently it is cost-effective and easy to deploy.

Secondly, in such applications a node that tunes into a broadcast is not only downloading

27. CHAPTER 1. BACKGROUND AND LITERATURE REVIEW

but also uploading to other peers which means peers also contribute to the system by up-

loading the stream chunks to other peers, thus this sort of applications scales well with large

number of peers. As we have seen there are two main approaches for P2P streaming: tree

based approach in which the data is disseminated using the same structure (parent-children).

This approach is natural but there are problems, like maintaining the tree structure and

the failure of the nodes at high levels affects large number of offspring nodes. The other

approach is the data delivery approach, in this approach the node exchanges messages with

randomly selected partners using Gossip Algorithm, where the node asks for missing infor-

mation and download it from neighbours. In data-driven approach the environment is very

dynamic and achieves high resilience to random failures and provides decentralized opera-

tions [24]. DONet is presented in [42] , A data driven overlay network for media streaming,

which adopted the data-driven design, in [42] an experiment was conducted using Planet-

Lab nodes and performance evaluations were obtained like the continuity. Most research in

P2P streaming is either empirical or on particular implementation like Coolstreaming [41]

[21]. With the very dynamic nature of data-driven approach, there is a need for proposing

mathematical models to give deeper insight on the system performance, that is the main-

stream of this work. We compared the calculated continuity obtained from the Markovian

model with the one measured in [42], and numerical results were obtained to understand

the effect of buffer length, the number of neighbours, uploading bandwidth and delay on the

continuity. We also explained the dynamics of playback pointer and how to benefit from the

delay tolerance by providing simple strategy for freezing and skipping, and calculated the

probability of sliding action, that can be used by system designer for evaluation purposes.

In [32] a stochastic model was proposed for Bit-Torrent file sharing applications, then

by numerically solving the proposed model they were able to get interesting insight on how

the performance of P2P file sharing network is affected by parameters such as the number

of neighbours, and the seed departure time. Although the model is very useful for un-

derstanding the operations of file sharing networks, it is not applicable in video streaming

networks, simply because streaming imposes different performance requirements, and the

most stringent requirement is the stream delay. Also in video streaming the length of the

content is not determined like the duration of live soccer game or festival, another major

28. CHAPTER 1. BACKGROUND AND LITERATURE REVIEW

difference is that the peer in video streaming networks does not store the content on the

disk, instead the downloaded chunks are stored in a buffer in the memory, basically this

buffer works like a sliding window which is used to fulfil the requests of other peers. These

differences require a new model which was the motivation of our work.

In [23] a probability model was proposed to evaluate the efficiency of P2P streaming appli-

cations, with the help of the proposed model they were able to get a formula for the upper

bound of the efficiency for P2P streaming application. In this paper the relation between

two buffers was studied, but we believe this study is very simple and ignored lot of cases

regarding the positions of the playback pointers. This gap is closed in our work, and we

proposed an equation for the efficiency of the system that is much more complicated.

In [20] a simple stochastic fluid model is described to expose the fundamental characteristics

and limitations of P2P streaming systems. This model accounts for many essential features

of a P2P streaming system, including the peers’ real-time demand for content, peer churn

rate, peers with heterogeneous upload bandwidth, and peer buffering and playback delay.

The model is tractable, providing closed-form expressions which can be used to shed insight

on the fundamental behaviour of P2P streaming systems. This fluid model shows that large

systems have better performance than small systems since they are more resilient to band-

width fluctuations and peers churn rate, and finally it shows that buffering can dramatically

improve performance.

In [45] a simple stochastic model was described, this model was used to compare differ-

ent data-driven downloading strategies based on two performance metrics: continuity (the

probability of continuous playback) and startup latency, they studied two strategies: greedy

and rarest first then they proposed a mixed strategy, and they got closed-form formulas for

the continuity. The approach used in [45] does not capture all aspects of Data-driven model,

for example when calculating the probability a peer will be selected by 0 ≤ k peers in over-

lay with M peers, a binomial distribution is used with probability of success to be 1
M−1 ,

surely this approach is not real, one simple reason is that peers obtain partial view of the

overlay, in other words peer receives requests from subset of peers in the overlay with dif-

ferent probabilities and it does not receive any request from other peers. The approach

used in this paper relates the probability p(i+1) with p(i), the buffer occupancy for the ith

29. CHAPTER 1. BACKGROUND AND LITERATURE REVIEW

buffer location, to get the differential equations, by solving these equations they derived the

closed-form formulas. In this work they proposed a mixed strategy to combine the benefits

of both rarest first and greedy approaches. In our work we assume a general data-driven ap-

proach without delving too much into the implementation details, hence providing a tool to

guide the system designer how to choose most of the key parameters for the P2P streaming

applications.

1.7 Thesis organization

The rest of the thesis is organized as following:

Chapter2 The probability of broken relation

the probability of broken relation between two buffers is calculated, this probability

is used to build the Markovian model. In this chapter we present the building blocks

of our study such as the: virtual buffer, playback pointer, maximum allowed delay,

types of chunks, and finally five cases are considered to calculate the probability of

broken relation.

Chapter3 The Probabilistic model

In this chapter we gradually built the Markovian model, starting with simple param-

eters like the probability of busy slot, maximum number of requests a peer can send,

defining our model assumptions, interesting factor ...etc then we calculated the terms

of Probability transition matrix for the Markovian model. Finally we obtained the

numerical results and discussed different evaluation parameters like the efficiency and

continuity.

Chapter4 Problems in numerical solution

In this chapter we present some difficulties we encountered in the numerical solution,

such as the method used to extract the numerical solution for our Markovian model,

and also we presented a method to simulate the stack to overcome the recursive

function limitations and poor performance.

Chapter5 The First Block Problem

30. CHAPTER 1. BACKGROUND AND LITERATURE REVIEW

In this chapter we study the dynamics of playback pointer, and we explain the first

block problem that builds on the original model, we explain how to calculate it, and

use it to suggest a very fundamental strategy for freezing and skipping the playback

pointer. The numerical solution is modified and also new results were discussed, these

results prove that ignoring the first chunk gives better continuity.

Chapter6 conclusion and Future Work

We conclude our work with future work that can be done.

Part of our work was designing a desktop application with Nokia Qt Framework with user-

friendly interface to define the simulation parameters and getting a report as CSV format

or by just copying the table and paste it in spreadsheet processing program like Libre Calc

used with Ubuntu systems. The program interface is illustrated in Fig 1.12.

Figure 1.12: GUI Program to find the numerical solution with first block option

31. CHAPTER 2. THE PROBABILITY OF BROKEN RELATION

Chapter 2

The probability of broken relation

It seems essential, in relationships and

all tasks, that we concentrate only on

what is most significant and important

Soren Kirkegaard

2.1 Introduction

I
n this analysis the first building block is to study the relation between two buffers,

with the overlay containing large number of peers in the steady-state, we randomly

choose two peers and then find out how these two peers are going to interact with each

other; the interaction is calculated as the probability of broken relation, this means: what

is the probability that two buffers are not interested in each other, this probability is calcu-

lated for any pair of peers, with the assumption that they are neighbours. The focus is on

the relation between two peers rather than the structure itself like the number of partners.

This parameter is an essential part in this study, based on this parameter other parameters

in the thesis are derived like the probability of interesting factor for any peer, which is used

extensively in the Markovian model.

Choosing this scheme of broken relation instead of calculating the interesting relation is

intuitive, because the problem is formed as two buffers, and then the question would be:

what are the common pieces of these two buffers. This probability can be calculated based

32. CHAPTER 2. THE PROBABILITY OF BROKEN RELATION

on many cases and simple distributions, basically the hyper-geometric distribution.

It turned out that the problem is not that simple, because there are lot of possibilities or

cases, this diversity should be captured with the minimum number of cases, one of these

difficulties for example is the fact the chunks are placed randomly in the buffer, there is no

assumption of consecutive chunks. The chunks to be played out can be anywhere in the

buffer.

Also one thing complicates the problem is the location of the playback pointers of the two

peers, because we assumed the two peers are neighbours then the playback pointers should

satisfy the delay inequality (discussed later).

We start this chapter by some definitions and notations, then we enumerate the possible

cases, and then derive the equation of broken relation. The equation is very long and com-

plicated, hence it will consume a lot of processing time in the numerical solution. The terms

in the equation include five summations operators. Also in this chapter we discussed the

effect of parameters on the broken relation which helps to understand the numerical results

for the Markovian model in the upcoming chapters.

we believe that this study of the broken relation can be the foundation of any model at-

tacking this kind of applications, that’s why it is explained in dedicated chapter.

2.2 Definitions

2.2.1 Chunks

In our study we are building a discrete model where the time is slotted, we assume that the

stream itself is divided into chunks or blocks, where the chunk length is equal to the time

slot in the model, therefore the chunk’s length is assumed to be constant.

Actually this assumption is adopted in the CoolStreaming, even in the most advanced

architecture, where the stream is divided into multiple substreams, and the whole stream is

divided into blocks with equal size. Each block is assigned a sequence number to represent

its playback order in the stream.

Since it is a live streaming and the framework is implemented using TCP protocol, then the

sequence number serves as timestamps, which can be used to combine and reorder blocks

33. CHAPTER 2. THE PROBABILITY OF BROKEN RELATION

after reception. [41]

The blocks concept in CoolStreaming is used to build the discrete model, as the time

progresses the Chunk IDs increase, then higher ID means the most recent chunk in the

stream. In the model we embedded points at the end of slots with the length equal to

chunk size, with this assumption we eliminated the chunk size as a parameter for the sake

of generality. Also in our model the assumption is of one stream, the concept of multiple

streams and substreams is out of scope of this work.

We have to mention that the number of chunks is unknown in this kind of applications, on

the contrary to file sharing applications.

2.2.2 Peer Playback Pointer - PPP

It represents the ID of the current chunk being played in the peer buffer, this would be

delayed from the real stream, because of the chunks distribution time, the playback pointer

for a peer A is denoted by tA in the equations.

2.2.3 Stream Playback pointer - SPP

As stated in DONet [42] the node can be either a receiver, supplier or both, the only

exception is the origin node that is always supplier, this node can be a dedicated video

server.

Unlike the traditional P2P file sharing applications, in the streaming application we take

into account the delay, The streamer will get chunks for distribution in the overlay from a

real time event, these chunks will be assigned unique IDs, the current ID distributed by the

streamer is referenced by the stream playback pointer ts which is an indication of the real

event’s progression .

One important thing to note is that ts and Peer Playback pointer will not match, that’s

because of the overlay operations like searching and downloading the chunks.

34. CHAPTER 2. THE PROBABILITY OF BROKEN RELATION

For example:

PPP = 40 While SPP = 60

For sure this equation holds:

PPP ≤ SPP − 1

2.2.4 Maximum Allowed Delay - T

Our model builds on the DONet (the first version of CoolStreaming)for data delivery ap-

proach with some assumptions, in the real implementation discussed in [42] the delay con-

straint is not preserved with the server playback pointer, in other words the nodes are not

all fully synchronized to the origin node playback pointer, meanwhile the nodes are said to

be semi-synchronized.

Each node has a unique ID and maintains a membership cache (mCache).

In the joining algorithm the newly joined node first contact the origin node which randomly

selects a node from the mCache called the deputy, and then redirects the new peer to the

deputy, then the new peer obtains a list of partners candidates from that deputy, after that

the peer contacts the candidates and exchange some information to establish connections

with the partners.

In this simple implementation (DONet) there is no constraint on the playback lags even

in the scheduling algorithm, while in the second version of the study basically in [21] and

[41] there are parameters accounting for delay and synchronization issue among peer and

its parents; but the second version of CoolStreaming adopted new approach based on the

concept of substreams which is out of the scope of this study.

Interestingly, in the CoolStreaming new version which adopts the Push-Pull hybrid mode,

the delay parameters are used for initiating parent reselection process, in [21] the parame-

ter Tp is defined as the threshold of the maximum sequence number deviation of the latest

received blocks between the partners and the parent nodes of the node A.

Understanding this parameter requires explaining the architecture of new version of Cool-

35. CHAPTER 2. THE PROBABILITY OF BROKEN RELATION

Streaming, which is discusses in the first chapter. We believe that the delay constraint

between the peer and its partners is very important to meet the delay sensitivity require-

ment in the video streaming applications; thus we decided to embed this parameter in our

study and defined it as the maximum allowed delay, this parameter is denoted as T in our

model equations.

In our model, the peer maintains a list of partners, these partners could be obtained from

a tracker or using gossip membership algorithm. All of these partners playback pointers

should be in a range of length T , thus for any peer A the following inequality should be

applied:

ts − T ≤ tA ≤ ts − 1 (2.1)

Achieving this inequality at the overlay scale is not easy, because it requires the communi-

cation with the server to obtain the current ts value, obviously this is not possible in this

kind of applications designed to mitigate the server overloading problems.

This inequality can be approximated in specific implementation by replacing ts with the

following value, for a peer A:

ts = tA

foreach(partner i in A partners)

if(ts ≤ ti)then ts = ti

(2.2)

In the previous algorithm we are assuming ts to be the maximum sequence number

found in all partners which is inspired by the approach used in [41]. The advantage of this

approach is the simplicity, which means a less overhead and making the decision of the

partner validity based on the partial view.

Recall that one benefit of the maximum allowed delay is to meet the service requirement of

video streaming applications, without this parameter in the model, there could be a peer

receiving the segment for the beginning of the soccer game while another peer is actually

is watching the end of the game, so defining this parameter is required in the P2P video

streaming applications. We avoid delving too much in the implementation details.

Bear in mind that our model is defining ts to be the origin streamer playback pointer not

36. CHAPTER 2. THE PROBABILITY OF BROKEN RELATION

the approximated value. Obviously small values of T is preferred not just for obtaining

synchronized view for all peers and for better continuity, but the small value of T means a

lot of peers reselection overhead.

When a partner fails to apply the 2.1 the peer is going to drop that partner and selecting

another one to catch up the original streamer, as explained in [21].

Based on the previous discussion, we define the location of tA for any peer in the proba-

bilistic model to be Uniform distribution in the range [1 · · ·T] which means:

Pr(tA) =
1

T
; where tA ∈ [ts − T, ts − 1] (2.3)

2.2.5 Buffer

In our model we form the problem in a way similar to the approach used in [23], where the

notation is almost similar regarding the type of pieces that could be found in the buffer,

where [23] proposed a simple model to derive the upper limit for efficiency in terms of the

number of partners. In our work we proposed another formula to calculate the efficiency

and we believe it is more accurate and heuristic.

Some of the most significant differences between P2P file sharing applications and P2P

Video streaming applications [23]:

• Unlike P2P file sharing the total size of the content to be downloaded is not deter-

mined. In file sharing applications the peer knows how many pieces to be downloaded

such as the size of PDF file embedded in the torrent file, but in video streaming the

peer has no idea about the size of the stream or how many chunks can be downloaded.

• Unlike the file sharing applications the video streaming is highly time sensitive, chunks

should be delivered before the playback deadline.

• Unlike the file sharing, the peer in video streaming doesn’t store the content on the

disk, instead the peer stores the downloaded chunks in a memory data structure called

the buffer, then media player will read chunks from this cache buffer. The length of

this buffer is fixed and denoted as L in our model.

37. CHAPTER 2. THE PROBABILITY OF BROKEN RELATION

Because the length of the buffer is limited, the peer can’t ask for any pieces, for instance it

can’t ask for too fresh pieces and also can’t ask for old pieces, hence the length of the buffer

imposes limitation on what chunks that can be downloaded.

The buffer is used to cache some chunks in order to achieve fluency in stream playing. While

the peer is playing the current chunk, she can download some future chunks to be played out

later, thus the length of the buffer will affect this fluency represented in our model as the

probability of continuity; the numerical results derived from our model helps to understand

this effect.

There is also some operations for buffer management, which needs further explanation. The

buffer is used as we have said to cache the chunks to be played out later, this is one side

of the coin, the other side is actually using the buffer itself to provide other peers with the

useful chunks. Also chunks with IDs smaller than the current ID referenced by playback

pointer tA for peer A are not useful for this peer any more, but they can be used to fulfil

other peers requests. Chunks with IDs larger than the playback pointer are considered to be

useful chunks, also downloaded chunks will replace other chunks. The buffer itself is a cyclic

data structure, so when the playback pointer reaches the end of the buffer it rolls back to

the beginning of the buffer. In [23] the suggested definitions are a little bit confusing, there

are two pointers and extended buffer, in the following sections we provide simpler buffer

representation with one pointer that is the playback pointer.

2.2.6 Useful Pieces

A useful piece is a chunk downloaded and stored in the peer buffer, and not played out yet;

which means the useful chunks are with IDs greater than the playback pointer. Also it’s

important to note that these chunks can’t be overwritten but can be used to fulfil other

peers requests; once the useful piece has been played out then it becomes old piece and it

is safe to overwrite it with missing pieces.

2.2.7 Old pieces

Old pieces are chunks which have been played out, this means the IDs of these chunks are

less than the playback pointer, and it’s safe to remove them from the buffer. But also old

38. CHAPTER 2. THE PROBABILITY OF BROKEN RELATION

chunks can be used to fulfil other peers requests.

2.2.8 Missing pieces

The peer is always looking for new chunks to be downloaded and to overwrite the old ones,

once the new piece has been downloaded it becomes a useful piece.

2.2.9 Virtual Buffer

Here we bring the concept of the virtual buffer, it is a key concept of our model, first we

examine the content of a buffer at a specific time slot, then we can draw a picture of the

buffer by noticing that all useful pieces will be always after the peer playback pointer, so

we assume the start of the buffer to be always the PPP , similar concept is used in [23]. We

study a peer A with buffer length assumed to be L = 5. The buffer contains the useful pieces

that are waiting to be played out, and also old pieces that are waiting to be overwritten by

missing pieces, as illustrated in the Fig.2.1 In this figure the peer A has the following useful

pieces 26, 28

Figure 2.1: Peer A with 2 useful pieces with buffer length L = 5

At the same time the buffer will contain old pieces that should be replaced by missing

pieces, in our example the old pieces are: 22, 24, 25 that should be replaced with the new

pieces: 27, 29, 30; we change the structure of the buffer with small modification that doesn’t

affect the analysis because the chunks of the buffer are rearranged according to their IDs,

in the place of old chunks we write down the new pieces that are not downloaded yet to get

the buffer illustrated in the Fig.2.2.

To include the old pieces in the conceptual buffer we append L pieces to the left of tA to

Figure 2.2: Peer A buffer after replacing old pieces with new pieces as a notation

39. CHAPTER 2. THE PROBABILITY OF BROKEN RELATION

get the virtual buffer illustrated in the Fig.2.3 with lower bound is tA − L and the upper

bound is tA + L− 1.

Fig 2.3 represents the virtual buffer in our analysis, here the middle of the virtual buffer

Figure 2.3: Peer A Virtual buffer

represents the PPP (Peer playback pointer), on the right side there are the useful pieces

and the missing pieces; while on the left side we can find the range of old pieces.

This Virtual buffer that we got in Fig 2.3 can represent the real buffer illustrated in the Fig

2.4. We have simplified the representation of the buffer, while most papers will include the

write pointer and playback pointer, here we used only the playback pointer, this playback

pointer moves forward at steady speed if there is chunk it would be delivered to the media

player component or there would be an interruption, and if the playback pointer reached

the end of the buffer it rolls back to the beginning.

NOTE: on the right side of PPP in the virtual buffer there are either useful pieces or empty

cells representing the missing pieces, and on the left side there are the old pieces.

Figure 2.4: Peer A real buffer snapshot

2.2.10 Relation between T and L

In our study we don’t assume any relation between buffer length (L) and the MAD param-

eter (T), but this relation guides our calculation.

T could be greater than L or less than L, this will influence some cases in our analysis,

because it will affect the ts and tA .

In the Fig 2.5 we can plot four graphs, to illustrate the possible pointers positions. These

four cases are obtained from the Eq (2.1), as we note in the case (A) that T > L while in

case (B) that T < L; understanding these positions is very important in the calculation

40. CHAPTER 2. THE PROBABILITY OF BROKEN RELATION

Figure 2.5: T and L relation

of Broken Relation probability. In all cases the playback pointer should respect the range

[ts − T · · · ts − 1].

2.3 Important events

In the calculation of Broken Relation we found that the relation between T and L will

cancel some cases or create additional cases, for the sake of simplicity we defined two events

that can be implemented easily in the numerical solution.

Event (e1)

Event e1 represents:

e1 = ts − T < tA − L

41. CHAPTER 2. THE PROBABILITY OF BROKEN RELATION

It can be visualized using Fig 2.5 - (A). This event will happen only when T > L as we will

see:

Pr(e1) = Pr(ts − T < tA − L)

= Pr(tA > ts + L− T)

= 1− Pr(tA ≤ ts + L− T)

= 1− Pr(ts − T ≤ tA ≤ ts + L− T)

We break this summation into two parts:

Pr(e1) = 1−
tA=ts+L−T
tA=ts−T

1

T

Pr(e1) =

1−
tA=ts+L−T
tA=ts−T

1
T when : T > L

1−
tA=ts−1
tA=ts−T

1
T when : T ≤ L

Using the distribution in Eq 2.3 we get the following probability:

Pr(e1) =

1− L+1

T when : T > L

0 when : T ≤ L

(2.4)

Event (e2)

Event e2 represents:

e2 = tA + L− 1 < ts − 1

42. CHAPTER 2. THE PROBABILITY OF BROKEN RELATION

It can be visualized using Fig 2.5 - (A - C), this event will happen only when T > L as we

will see:

Pr(e2) = Pr(tA + L− 1 < ts − 1)

= Pr(tA < ts − L)

= 1− Pr(tA ≥ ts − L)

= 1− Pr(ts − L ≤ tA ≤ ts − 1)

We break this summation into two parts:

Pr(e2) = 1−
tA=ts−1
tA=ts−L

1

T

Pr(e2) =

1−
tA=ts−1
tA=ts−L

1
T when : T > L

1−
tA=ts−1
tA=ts−T

1
T when : T ≤ L

Using the distribution in Eq 2.3 we get the following probability:

Pr(e2) =

1− L

T when : T > L

0 when : T ≤ L

(2.5)

2.3.1 The probability of finding partial useful pieces - U(x, i, G)

For a peer with i useful pieces, given the peer buffer length is L, and subset of this buffer

is x as illustrated in the Fig 2.6. Then U(x, i,G) represents the probability of finding G

43. CHAPTER 2. THE PROBABILITY OF BROKEN RELATION

useful pieces in x and it is given by the following hyper geometric distribution:

U(x, i,G) =

x
G

L−x
i−G

L
i

 (2.6)

Obviously the range of G ∈ [0, i].

Figure 2.6: The probability of finding partial useful pieces - U(x, i,G)

2.3.2 The probability of Partial Broken Relation - P (i, j, G,K, x)

This probability is very important in our calculation, and it appears in many cases. Taking

into consideration the definition of the virtual buffer, where on the right side of PPP there

are either the useful pieces or missing pieces, then this probability can be defined as the

following:

• A: peer with i useful pieces

• B: another peer with j useful pieces

• x: the number of common pieces between A, B (a common range of pieces like chunks

from 30 to 40, we mean continuous range)

• G: the number of A’s useful pieces in x

• K: the number of B’s useful pieces in x

What is P (i, j, G,K, x)? it is the probability of Broken relation between A and B, in other

words the probability that A is not interested in B.

This will happen when A has all the useful pieces of B in the common range, which means

the probability that G contains all K pieces. This can be easily found as hyper geometric

distribution.

Obviously we have the following:

• K : 0 → j

44. CHAPTER 2. THE PROBABILITY OF BROKEN RELATION

• G : 0 → i

• i and j can be of any size in the range 0 → L

The relation of buffers represented by this distribution is illustrated in the Fig 2.7

Figure 2.7: The probability of Partial Broken Relation - P (i, j, G,K, x)

Pr(K ⊆ G) =

(x−K
G−K)
(xG)

When K ≤ G

0 When K > G

P (i, j, G,K, x) = Pr(K ⊆ G) ∗ U(x, i,G) ∗ U(x, j,K)

By substitution the Eq 2.6:

P (i, j, G,K, x) =

x−K
G−K

x
G

x
G

L−x
i−G

L
i

x
K

L−x
j−K

L
j

P (i, j, G,K, x) =

x−K
G−K

L−x
i−G

x
K

L−x
j−K

L
i

L
j

 (2.7)

2.4 The cases of broken relation

F (i, j) denotes the probability a peer with i useful pieces is not interested in a peer with

j useful pieces, the calculation of this probability is not a simple problem, that’s why we

break down the problem into multiple cases and using the events defined previously we can

find the F (i, j)

45. CHAPTER 2. THE PROBABILITY OF BROKEN RELATION

In the calculations we are assuming two reference peers, peer A with i useful pieces and

peer B with j useful pieces.

2.4.1 Case1 - tB ≤ tA − L

In this case B pieces are considered old pieces for A as illustrated in Fig 2.8, then A is not

interested in B, this happens only when event (e1) is true, because: ts − T ≤ tB ≤ tA − L

Pr(c1) = Pr(tB ≤ tA − L)P (e1)

= Pr(ts − T ≤ tB ≤ tA − L)P (e1)

=

tB=tA−L
tB=ts−T

ts−1
tA=ts−T

1

T 2
P (e1)

Pr(C1) =

tB=tA−L
tB=ts−T

ts−1
tA=ts−T

1
T 2 ∗ Pr(e1) when : T > L

0 when : T ≤ L

(2.8)

Figure 2.8: Case1

2.4.2 Case2 - tA − L+ 1 ≤ tB ≤ tA − 1

In this case some useful pieces of B are considered old pieces for A. But there is a common

range of chunks L−(tA−tB), in that range A has G useful pieces and B has K useful pieces,

then A is not interested in B when G contains all the useful pieces of B in the common

range. Obviously this is true because on the right side of PPP there are only useful pieces

46. CHAPTER 2. THE PROBABILITY OF BROKEN RELATION

or missing pieces.

Assuming tAB = tA − tB then from Fig 2.9 we write the probability of C2 as two parts

regarding the event (e1), noting that K ≤ G and by using the Probability of partial broken

relation defined in Eq 2.7:

Figure 2.9: Case2

Pr(C2) =

K=j
K=0

G=i
G=min(K,i)

tB=tA−1
tB=tA−L+1

ts−1
tA=ts−T

P (i, j, G,K,L− tAB)Pr(e1)
1

T 2
+

K=j
K=0

G=i
G=min(K,i)

tB=tA−1
tB=ts−T

ts−1
tA=ts−T

P (i, j, G,K,L− tAB)(1− Pr(e1))
1

T 2
(2.9)

2.4.3 Case3 - tA ≤ tB ≤ tA + L− 1

In this case some useful pieces of B and also some old pieces could be interesting to A, we

take the first part for the useful pieces of B in the common range tBA = tB − tA, where A

is assumed to have G useful pieces and B is assumed to have K useful pieces then A is not

interested in B when G contains all K. From Fig.2.10 we write the probability of C3 as

two parts regarding the event (e2):

47. CHAPTER 2. THE PROBABILITY OF BROKEN RELATION

Figure 2.10: Case3

Pr(C3) =

K=j
K=0

G=i
G=min(K,i)

tB=tA+L−1
tB=tA

ts−1
tA=ts−T

P (i, j, G,K,L− tBA)Pr(e2)
1

T 2
+

K=j
K=0

G=i
G=min(K,i)

tB=ts−1
tB=tA

ts−1
tA=ts−T

P (i, j, G,K,L− tBA)(1− Pr(e2))
1

T 2
(2.10)

But this calculation is partially true, because in the Eq 2.10 we assumed that the peer B

is going to fulfil the requests using only useful pieces, and we note that some old pieces of

B could be also interesting to A, then we extend the previous equation by using the same

probability defined in Eq 2.6 with parameter R to represent the old pieces in B as the useful

pieces for A in the range tB − tA, and assuming that the useful old pieces L − j of B are

now useful pieces in the equation, and the useful pieces of A are now i−G, then R is also

a random number, as the following:

Pr(C3) =

K=j
K=0

G=i
G=min(K,i)

tB=tA+L−1
tB=tA

ts−1
tA=ts−T

R=L−j
R=0

P (i, L− j, i−G,R, tBA)P (i, j, G,K,L− tBA)Pr(e2)
1

T 2
+

K=j
K=0

G=i
G=min(K,i)

tB=ts−1
tB=tA

ts−1
tA=ts−T

R=L−j
R=0

P (i, L− j, i−G,R, tBA)P (i, j, G,K,L− tBA)(1− Pr(e2))
1

T 2

(2.11)

48. CHAPTER 2. THE PROBABILITY OF BROKEN RELATION

Eq 2.11 is consistent with the assumption that old pieces could be used in fulfilling peers

requests as long as these are in a valid range.

2.4.4 Case4 - tA + L ≤ tB

This case happens only when event (e2) is true, and that’s obvious from the Fig 2.11.

Assuming we are not going to account for old pieces of B, in other words assuming that the

peer is using the useful pieces to fulfil the requests of other peers then the the probability

of the fourth case is given as following:

Pr(C4) = Pr(tB ≥ tA + L)P (e2)

= Pr(tA + L ≤ tB ≤ ts − 1)P (e2)

=

tB=ts−1
tB=tA+L

ts−1
tA=ts−T

1

T 2
P (e2)

Pr(C4) =

tB=ts−1
tB=tA+L

ts−1
tA=ts−T

1
T 2P (e2) when : T > L

0 when : T ≤ L

(2.12)

The Eq 2.12 is not accurate, because the peer can also fulfil other requests using the old

pieces found in the buffer, this is illustrated in the Fig 2.12, some of the old pieces of peer

B are interesting to peer A, now the common range is:

tA + L− 1− (tB − L) + 1 = tA − tB + 2L = tAB + 2L

Then A is not interested in B when event e2 is satisfied and when G contains the R which

is the probability calculated in the Eq 2.6:

Pr(C4) =

L−j
R=0

i
G=min(R,i)

ts−1
tB=tA+L

ts−1
tA=ts−T

Pr(e2)P (i, L− j,G,R, tAB + 2L)
1

T 2
(2.13)

49. CHAPTER 2. THE PROBABILITY OF BROKEN RELATION

Figure 2.11: Case4

Figure 2.12: Case4 - The General case

2.4.5 Case5 - tA + L ≤ tB − L

In this case none of the pieces found in B Buffer is interesting for A because they are con-

sidered too new pieces or too fresh, and in this case we can say both peers are not interested

in each other as illustrated in the Fig 2.13

This case is equivalent to the event tA + L ≤ tB − L, the calculation is as following:

Pr(C5) = Pr(tA + L ≤ tB − L)

= Pr(tA + 2L ≤ tB)

= Pr(tA + 2L ≤ tB ≤ ts − 1)

50. CHAPTER 2. THE PROBABILITY OF BROKEN RELATION

For this probability to be possible the following condition should be true:

tA + 2L ≤ tB ≤ ts − 1

tA + 2L ≤ ts − 1

tA ≤ ts − 2L− 1

This condition as we can see is also an event, we denote it as e3 and as we will find this

event has a value when a certain condition is applied:

Pr(e3) = Pr(tA ≤ ts − 2L− 1)

= 1− Pr(tA > ts − 2L− 1)

= 1− Pr(ts − 2L ≤ tA)

= 1− Pr(ts − 2L ≤ tA ≤ ts − 1)

Now we can find the probability of this event depending on the relation between T and 2L

Pr(e3) =

1−

ts−1
tA=ts−2L

1
T When T > 2L

1−
ts−1

tA=ts−T

1
T otherwise

The final equation of event e3 is

Pr(e3) =

1− 2L

T When T > 2L

0 otherwise

(2.14)

then the fifth case can be calculated using the event e3 as the following:

Pr(C5) =

ts−1
tA=ts−T

ts−1
tB=tA+2L

1

T 2
Pr(e3) (2.15)

51. CHAPTER 2. THE PROBABILITY OF BROKEN RELATION

Figure 2.13: Case5

2.4.6 The probability of broken relation

We wrap up this chapter with the final value of F (i, j) which is the probability a peer with

i useful pieces is not interested in downloading pieces from another peer with j useful pieces

is given by this equation:

F (i, j) = Pr(C1) + Pr(C2) + Pr(C3) + Pr(C4) + Pr(C5) (2.16)

The equation Eq 2.16 involves the following relations: Eq 2.8, Eq 2.9, Eq 2.11, Eq 2.13, Eq

2.13, Eq 2.4, Eq 2.4, Eq 2.5, Eq 2.14, Eq 2.6.

2.5 Discussion

In our implementation (Qt program) we specify the parameters T and L to find the table

of F (i, j) values that would be used in our model, here are some of the results for small

values just for illustration purposes and also the results are rounded to 3 decimals.

From tables Table 2.1, Table 2.2, Table 2.3 we have the following results:

• The previous numerical results say the probability F (i, j) is not a probability distri-

bution, and that’s obvious for instance in each of three tables when looking at the

case when the first peer has i = L useful pieces then the F (i, j) in the last row in

every table is always (1), the interpretation is simple: a peer with buffer full of useful

pieces is not interested in any other peer, which means the Broken Relation is with

probability (1); from this case we know the summation of values of F (i, j) is not

52. CHAPTER 2. THE PROBABILITY OF BROKEN RELATION

Table 2.1: F (i, j) Table when L=8, T=2

F(i,j) 0 1 2 3 4 5 6 7 8

0 0.750 0.035 0.000 0.000 0.000 0.000 0.000 0.000 0.000

1 0.754 0.128 0.010 0.000 0.000 0.000 0.000 0.000 0.000

2 0.766 0.221 0.045 0.004 0.000 0.000 0.000 0.000 0.000

3 0.785 0.320 0.106 0.025 0.003 0.000 0.000 0.000 0.000

4 0.813 0.427 0.198 0.076 0.021 0.003 0.000 0.000 0.000

5 0.848 0.545 0.324 0.173 0.078 0.026 0.004 0.000 0.000

6 0.891 0.677 0.493 0.338 0.213 0.116 0.048 0.010 0.000

7 0.941 0.828 0.715 0.602 0.488 0.375 0.262 0.148 0.035

8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 2.2: F (i, j) Table when L=8, T=4

F(i,j) 0 1 2 3 4 5 6 7 8

0 0.625 0.081 0.011 0.001 0.000 0.000 0.000 0.000 0.000

1 0.628 0.152 0.030 0.005 0.001 0.000 0.000 0.000 0.000

2 0.637 0.224 0.066 0.016 0.003 0.000 0.000 0.000 0.000

3 0.653 0.301 0.122 0.042 0.012 0.003 0.000 0.000 0.000

4 0.678 0.386 0.201 0.094 0.038 0.013 0.003 0.001 0.000

5 0.716 0.484 0.310 0.184 0.099 0.046 0.018 0.005 0.001

6 0.774 0.606 0.459 0.332 0.226 0.141 0.077 0.034 0.012

7 0.863 0.768 0.672 0.576 0.480 0.385 0.289 0.193 0.098

8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 2.3: F (i, j) Table when L=8, T=8

F(i,j) 0 1 2 3 4 5 6 7 8

0 0.563 0.166 0.070 0.035 0.019 0.010 0.005 0.002 0.000

1 0.564 0.217 0.095 0.049 0.027 0.016 0.009 0.005 0.002

2 0.569 0.269 0.131 0.069 0.040 0.024 0.015 0.010 0.006

3 0.579 0.324 0.180 0.101 0.060 0.038 0.025 0.018 0.013

4 0.595 0.385 0.244 0.153 0.096 0.063 0.044 0.032 0.024

5 0.620 0.457 0.329 0.232 0.161 0.112 0.080 0.060 0.047

6 0.664 0.549 0.446 0.356 0.279 0.214 0.163 0.124 0.098

7 0.754 0.690 0.627 0.563 0.500 0.437 0.373 0.310 0.246

8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

53. CHAPTER 2. THE PROBABILITY OF BROKEN RELATION

normalized.

• When the other peer (B) has 0 useful pieces, the broken relation is not 1, the broken

relation is proportional to the number of useful pieces maintained by the first peer i.

Also it can be interpreted because although the peer has no useful pieces there are

old pieces that can be used to fulfil requests, which actually supports the integrity of

our calculations.

• Changing T will change the values of F (i, j), to visualize the change and hence the

effect on the application itself we need some other probabilities, that will be provided

in the next chapters, like the probability distribution of the useful pieces in the peer

buffer.

2.6 Conclusion

In this chapter we calculated the first building block in the Markovian model, which is

the probability of broken relation between two buffers. As we have seen there are lot of

cases and possibilities, we were able to limit the calculation to five cases with the help of

some definitions and probabilities. This parameter is used to find the interesting factor,

that is the probability a peer with i useful pieces is interested in downloading pieces from

a neighbour, which will be explained in the chapter that follows.

54. CHAPTER 3. THE PROBABILISTIC MODEL

Chapter 3

The Probabilistic model

The sciences do not try to explain,

they hardly even try to interpret, they

mainly make models. By a model is

meant a mathematical construct which,

with the addition of certain verbal

interpretations, describes observed

phenomena. The justification of such a

mathematical construct is solely and

precisely that it is expected to work.

John von Neumann

3.1 Introduction

P
robabilistic models that can be used to describe the dynamics of P2P streaming

applications can be applied on the network scale or on the user scale; designing a

probabilistic model to describe all peers in the network is very general but also very difficult

concerning performance metrics. Nevertheless it gives the best insight on the nature of the

dynamic system.

Assuming the number of peers in the overlay is M , and let the buffer length be L then we

can describe the network state as a vector of length M.L, the state vector is going to record

the state of every buffer in the network, in other words it records the buffer state of all

55. CHAPTER 3. THE PROBABILISTIC MODEL

peers in the network.

The state vector is then defined as:

X = [x1, x2,, xM];xi ∈ {0, 1}L

In the previous expression xi represents one buffer state which is the ith buffer in the

network; where the buffer state is also known in the literature as Buffer Map or simply as

BM is also a vector of length L where each component of the vector holds either 1 or 0

representing busy or empty buffer location.

At the end of the nth time slot we define the system state to be X(n), during the time slot

peers communicate with each other for downloading, uploading and also some peers would

play useful chunks, all of these operations would change the system state, then we define in

general the Pij to be the transition probability matrix:

P
(n)
ij = Pr(X(n+1) = j|X(n) = i)

j=∞
j=0

Pij = 1

and noting that the state of the system depends only on the previous state, then the model

can be constructed as Markov chain.

It turns out that the previous problem is very complex, finding the transition probability

for the system to move from one state to another is very complex. For example when

the overlay contains: M = 100 peer and the buffer length is L = 20 then the number of

states is 2L.M = 22000 = 1.148130695 × 10602, hence the transition probability matrix size

is: 22000 × 22000 = 24000 = 101024, that’s considered a heavy task even if the transition

probabilities can be found.

The previous model can be reduced to simpler form by recording only the number of useful

pieces in each buffer, which eliminates the need to record the state of all buffer cells, then the

system state would be the vector X = [x1, x2, · · · , xM] but even with this simplification the

P2P systems tends to contain very large peers. For instance the first version of CoolStream-

ing was released on May 30, 2004 contained 4000 concurrent users at some peak times [42],

56. CHAPTER 3. THE PROBABILISTIC MODEL

which will result in the modified model with 24000 states and transition matrix with 28000.

by recording the number of useful pieces in each buffer we reduce the number of states to

LM , in the previous example the number of states becomes 20100 = 1.2676506× 10130 and

the matrix size becomes 20200 = 1.606938044×10260. The network state model as we notice

is computationally very expensive even it can capture the whole system state.

3.2 User state

In P2P Streaming application we are interested in the performance metrics experienced by

each individual peer, in other words what is the peer view of the network, this leads us

to the user state model, where we choose one peer, define the state of the peer, set some

assumptions and then find the transition probabilities, this dramatically reduces the size of

our problem.

We assume the state of the peer to be the number of Useful Pieces in its buffer, the

probability Pi denotes the probability that the peer has i useful pieces in its buffer, finding

this probability would be the target of our model; clearly there are L + 1 states in the

system: P0, P1, P2, · · · , PL

To capture the state of the system, we embed points at the end of the time slot, this slot

would be either empty or busy, and the probability of slot occupancy is calculated later and

is used in the calculation of death rate in our model.

After defining the state of the system, we make some assumptions to simplify this sort of

complex and dynamic systems:

1. Each peer in the overlay would have the same number of neighbours or also known in

the literature as Partners, this number of neighbours is denoted asH. This assumption

is reasonable when we have in the steady-state very large number of peers, then for

sure every peer will get list of H neighbours that also satisfy the MAD inequality

defined in Eq 2.1. But in reality the fluctuation of the video stability would be always

affected by the number of the neighbours and also the insufficiency of the partner

where the peer would drop that partner and then choose another one, this reselection

57. CHAPTER 3. THE PROBABILISTIC MODEL

would cause instability in the overlay, this operation is known as PeerAdaptation, but

it is not captured by our model. Where we assume a perfect working peer and then

we are trying to find what is the best record for some parameters like video continuity

and efficiency.

2. The Peer exchanges information with neighbours, by asking them about the avail-

able chunks that can be downloaded, and also giving them the information about its

available chunks. These information is sent in CoolStreaming as messages containing

the Buffer Map, this approach is known as Gossip Protocol and is known to achieve

significantly higher efficiency than other traditional systems [27]

3. The timeline is slotted, and the time slot length is considered the time required to

play a single chunk

4. At the beginning of the time slot the peer with i useful pieces sends requests to

download the missing pieces which are L− i missing pieces, these requests and other

maintenance messages are assumed to take no time in our model.

5. The download bandwidth is assumed to be unlimited, which means that the time to

download those useful pieces would be negligible, and it will depend only on the upload

bandwidth of the other peer that holds the useful piece in its buffer, so downloading

the piece would depend on the upload bandwidth. This is also reasonable assumption

given that in nowadays internet connections the download bandwidth is much higher

than the upload bandwidth, like the asymmetric ADSL connections.

6. we assume the upload bandwidth is limited to one chunk per slot, and later the

upload bandwidth is released and denoted as a parameter β. We assume all peers

in the overlay have the same upload bandwidth (homogeneous peers) and later the

heterogeneous uploading bandwidth is discussed.

7. The peer can send only one request to each neighbour, and also there would be only

one request for each missing piece, this would put a limit on the number of requests

that the peer can send and is discussed later in details.

58. CHAPTER 3. THE PROBABILISTIC MODEL

8. When the peer receives more than one request it will pick one of them randomly to

be fulfilled

9. Also it is important to note that the peer can upload one piece in each time slot (or in

maximum β chunks) but it can download many useful pieces in a time slot and that

is related to the number of neighbours.

10. Very important component in data-driven approaches is the scheduling algorithm, in

our model we do not study a particular scheduling algorithm, rather than we assume a

random approach, the peer simply picks a missing piece from the list, then randomly

chooses a neighbour for sending the request. In our model we capture some basic

aspects of scheduling algorithm such as sending the request to neighbour should be

with certain probability depending on the interesting factor, the number of requests

should be limited by the number of partners and the number of missing pieces, and

finally neighbours are not independent from the peer’s point of view.

With these assumptions the system state would be updated at the end of the time slot,

because the exchanged messages would take no time then the uploading process starts at

the beginning of the time slot. It will take one time slot to be completed, thereby no

download will take effect in the middle of the time slot, as illustrated in the Fig 3.1.

From Fig 3.1 for a peer at the state i, there would be a death with probability βi and there

would be also k births with probability Zi,k.

As we can see from the Fig 3.1 the states are finite, and also the time epochs at which the

state is changed are discrete, this enables us to fully describe the system as Markov chain.

In the rest of this chapter we will derive the transitions probabilities.

3.3 Probability of busy slot µi

For a randomly selected peer with i useful pieces and the buffer length is L, we can find the

probability that a peer will have a chunk in the current time slot to be played out.

It depends on the distribution of the useful pieces in the buffer, and this will be also related

to the chunks selection policy, for example: if the useful pieces are distributed uniformly

59. CHAPTER 3. THE PROBABILISTIC MODEL

Figure 3.1: State transitions diagram

among buffer cells, then the probability is given by:

µi = Pr(Choosing one useful piece from L pieces) =
i

L
(3.1)

Where i ∈ [0, · · · , L].

when the buffer is empty then the current slot would be busy with probability µ0 = 0 and

when the buffer is full of useful pieces then the current slot is busy with probability µL = 1.

for sure the approach used to download the pieces should affect this probability, when the

Greedy approach is used then the probability the current slot would have a chunk to be

played out is greater, but in our model we assume no implementation details, then the

assumption of uniform distribution is fair. The useful piece can be anywhere in the buffer

with equal probability.

3.4 Max number of requests D

For a randomly selected peer in the overlay, the maximum number of requests that can be

sent by the peer to its neighbours is D in a time slot.

Assuming the peer has i useful pieces, and the number of neighbours for any peer is assumed

to be constant H and by the assumptions in Sec 3.2, where we assumed the peer is going

60. CHAPTER 3. THE PROBABILISTIC MODEL

to send a request for each neighbour and only one request for each missing piece then the

maximum number of requests sent by a peer is:

D = min(H,L− i) (3.2)

3.5 ri,n

this parameter is the probability a peer with i useful pieces will download n pieces in the

current time slot. It is used to determine the birth and death rates in our model, and also

in calculating the average downloading rate.

These probability satisfies the following normalization condition:

n=D
n=0

ri,n = 1

Which means it is a probability distribution, and D is given in the Eq 3.2.

3.6 Death rate βi

The death rate in our model is the probability a peer in the state i will move at the end of

the time slot to the previous state i− 1, it happens only under these two conditions:

• The current time slot is busy with one of the useful pieces

• And no pieces have been downloaded in the current time slot

This probability is given by the following equation:

βi = µi × ri,0 (3.3)

For sure when the peer is at the state 0 then the death rate is going to be β0 = 0 because

µ0 = 0.

61. CHAPTER 3. THE PROBABILISTIC MODEL

3.7 Birth rate Zi,k

As illustrated in the Fig 3.1 the birth rate is the parameter Zi,k which means a peer with i

useful pieces will generate k births to move to another state j = i+ k.

This probability depends on the number of downloaded pieces and also whether the slot is

empty or busy:

Zi,k = µi × ri,k+1 + (1− µi)× ri,k (3.4)

In the previous equation, there would be k final downloads or births, in either case:

• The current slot is empty, and during the slot there are k downloads of useful pieces.

• The current slot is busy, and during the slot there are k+1 downloads of useful pieces.

Thereby Zi,0 means the peer has downloaded one piece during the busy slot, or the peer

has downloaded no pieces during an empty slot:

Zi,0 = µi × ri,1 + (1− µi)× ri,0

In either case the peer will stay at state i at the end of the slot, this concept of birth and

death rates gives a lot of flexibility in defining the Markov chain illustrated in Fig 3.1.

3.8 Markov chain

An integer-valued Markov random process is calledMarkov Chain [13], ifX(t) is a Markov

chain then the joint PMF for three arbitrary time instants is:

P [X(t3) = x3, X(t2) = x2, X(t1) = x1] =

P [X(t1) = x1]× P [X(t2) = x2|X(t1) = x1]× P [X(t3) = x3|X(t2) = x2]

the joint pmf of X(t) at arbitrary time instants is given by the product of the pmf of the

initial time instant and the probabilities for the subsequent transitions, clearly the state

transition probabilities determines the statistical behaviour of Markov Chain [13].

62. CHAPTER 3. THE PROBABILISTIC MODEL

letXn be a discrete-time integer-valued Markov chain, whereXn takes values on a countable

set of integers, in our model these values are the peer states defined by the number of useful

pieces in its buffer {0, · · · , L}, we say that Markov chain is finite if Xn takes values from a

finite set.

The joint pmf for the first n+ 1 values of the process is:

P [Xn = in, · · · , X0 = i0] = P [X0 = i0] · · ·P [Xn = ii|Xn−1 = in−1]

The joint pmf for a particular sequence is simply the product of the probability for the

initial state and the probabilities for the subsequent one-step state transitions.

In our model and in the steady-state we assume the transition probabilities are independent

of time, that is:

P [Xn+1 = j|Xn = i] = Pij

Then Xn is said to have a homogeneous transition probabilities [13].

By defining the probability of one death and the probability of birth(s) in a time slot we

can write the transition probability matrix for markov chain:

P =

Z0,0 Z0,1 Z0,L

β1 Z1,0 Z1,L−1

...

0 β2 Z2,0 ... Z2,L−2

0 0 ... βL ZL,0

(3.5)

the rows of the transition matrix will add to 1, since:

j

Pij = 1

63. CHAPTER 3. THE PROBABILISTIC MODEL

And P is (L+1)× (L+1) nonnegative square matrix with rows that each adds up to 1. as

an example assuming H = 1 then we have three possible transitions:

• moving to the previous state with the probability βi

• moving to the next state with probability Zi,1

• to stay in the same state with probability Zi,0

then the transition matrix for L = 2:

P =

Z0,0 Z0,1 0

β1 Z1,0 Z1,1

0 β2 Z2,0

The summation of the first row is:

Z0,0 + Z0,1 + 0 = µ0r0,1 + (1− µ0)r0,0 + (1− µ0)r0,1

= 0× r0,1 + (1− 0)r0,0 + (1− 0)r0,1

= r0,0 + r0,1

= 1

The summation of the second row is:

β1 + Z1,0 + Z1,1 = µ1r1,0 + (1− µ1)r1,0 + µ1r1,1 + (1− µ1)r1,1

= µ1r1,0 + r1,0 − µ1r1,0 + µ1r1,1 + r1,1 − µ1r1,1

= r1,0 + r1,1

= 1

64. CHAPTER 3. THE PROBABILISTIC MODEL

The summation of the third row is:

β2 + Z2,0 + 0 = µ2r2,0 + µ2r2,1 + (1− µ2)r2,0

= 1× r2,0 + 1× r2,1 + (1− 1)r2,0

= r2,0 + r2,1

= 1

The proof can be easily generalized as the following.

Proof Rows of transition matrix defined in Eq 3.5 each sums up to one.

For row i > 0 the proof is as following:

βi +

k=L−i
k=0

Zi,k = βi +

k=L−i
k=0

(µiri,k+1 + (1− µi)ri,k)

= µiri,0 + µi

k=L−i
k=0

(ri,k+1 − ri,k) +

k=L−i
k=0

ri,k

= µiri,0 + µi(ri,L−i+1 − ri,0) +
k=L−i
k=0

ri,k

= µiri,L−i+1 +
k=L−i
k=0

ri,k

= 0 +
k=L−i
k=0

ri,k

=
k=D
k=0

ri,k = 1

For row i = 0:

k=L
k=0

Z0,k =
k=L
k=0

(µ0r0,k+1 + (1− µ0)r0,k)

= µ0

k=L
k=0

(r0,k+1 − r0,k) +
k=L
k=0

r0,k

= 0×
k=L
k=0

(r0,k+1 − r0,k) + 1

= 1

65. CHAPTER 3. THE PROBABILISTIC MODEL

Assuming at time n the state vector is π(n) = [p
(n)
0 , p

(n)
1 ,, p

(n)
L] and the transition

matrix at time (n) is P (n). We have the following relation between the state-vector at time

n+ 1 and the state vector at time n:

π(n+1) = π(n)P (3.6)

The relation between the state-vector at time 0 and the state-vector at time n is given as

the following:

π(n) = π(0)P (n) = π(0)Pn

At the steady state we have the following equilibrium equation:

π = πP (3.7)

where π is the state vector in the steady state:

π = lim
n→∞

π(n)

The numerical solution result would be obtained by finding the steady-state vector π =

[P0, P1, · · · , PL] that describes the probability a peer would have specific number of useful

pieces in its buffer.

3.9 Interesting factor Ui

For a randomly selected peer with i useful pieces we denote Ui to be the probability that a

randomly selected peer with i useful pieces is interested in downloading pieces from a one

of its neighbours, this interesting factor is calculated based on the calculation of F (i, j) in

the previous chapter. The number of neighbours for any peer is assumed to be constant

H, and the steady-state probability for the peer is assumed to be available which is the

66. CHAPTER 3. THE PROBABILISTIC MODEL

state-vector π = [P0, · · · , PL]

Ui = Pr(peer with i useful pieces is interested

in downloading pieces from a neighbour)

Ui =

j=L
j=0

(1− F (i, j))Pj (3.8)

Where Pj is the probability a peer has j useful pieces. This factor is very important in our

model and later we will plot curves for the numerical results for this factor.

We can also define U to be the general interesting factor, which is the probability a ran-

domly selected peer is interested in any neighbour, even though it is not used widely in our

calculations:

U =

i

UiPi (3.9)

3.10 F (H, i
′
, K)

In [32] when calculating the the probability ri,n they used a simple formula to calculate the

probability of a neighbour is sending a request to a peer B with j pieces, this probability

is qj :

qj =
N
k=0

Pk(1− F (k, j))

Where F (i, j) is the probability a peer A with i pieces is not interested in peer B with j

pieces in Bittorrent file sharing application; this formula is very simple because it depends

only on the interesting factor while sending the request to a neighbour is very difficult

problem, for example: when a peer A is interested in peer B that does not mean A is going

to choose B, especially in streaming applications where we have assumed the peer is going

to send only request for each missing pieces and one request for each neighbour.

To fully describe the problem we define F (H, i
′
, k) to be the Probability that a peer with i

67. CHAPTER 3. THE PROBABILISTIC MODEL

useful pieces in its buffer, and is looking for i
′
= L− i pieces will send k requests to its H

neighbours in a time slot.

Where i
′
is the number of missing pieces, and k should be less than the maximum number

of requests as defined in Eq 3.2, in other words:

0 ≤ k ≤ D

To calculate this probability we need to understand the mechanism of sending a request, this

probability describes what is called in the literature the scheduling algorithm. For simplicity

we assume general random approach, the peer as we said maintains a list of neighbours, the

peer is going to choose a neighbour randomly from the list and then sending a request to that

neighbour with probability of Ui, and it chooses not to send the request with probability

1− Ui. This will be continued until the requests number is 0, the number of neighbours is

0 or there is no more missing pieces, We can use iterative algorithm to calculate it:

F (H, i
′
, k) = Ui × F (H − 1, i

′ − 1, k − 1) + (1− Ui)× F (H − 1, i
′
, k) (3.10)

As we note the iterative method contains two recursive functions on the right hand side,

computing this value is also a challenging problem discussed in the next chapter, but for

now we know that the recursive calculation ends when reaching the initial conditions, it

turns out that there are(6) initial conditions represented as a tree (the initial conditions

tree) illustrated in the Fig 3.2:

Ui the probability of sending request to one neighbour defined in Eq 3.8

H − 1 because one request is sent for each neighbour

i
′ − 1 missing pieces will be now less with one after the request

k − 1 the requests are now less with one request

68. CHAPTER 3. THE PROBABILISTIC MODEL

Figure 3.2: initial conditions tree

The cases for initial conditions:

• Pr(C1) = 1 → when there is no neighbour the peer is certainly not going to send any

request

• Pr(C2) = 0 → the complement of C1

• Pr(C3) = 1 → when there are neighbours and no missing pieces that means the buffer

is full of useful pieces there would be no request

• Pr(C5) = 0 → the complement of C3

• Pr(C6) by applying the Eq 3.10 iteratively

The case C4 needs a little more explanation. This case means: the peer is connected to

some neighbours and there are some missing pieces, then what is the probability the

peer will not send any request in the current time slot?

The peer will not send any request only when the peer is not interested in any neighbour,

this can be calculated using the following equation for peer with i useful pieces:

Pr(C4) =

j=L
j=0

F (i, j)Pj

H

= (1− Ui)
H

69. CHAPTER 3. THE PROBABILISTIC MODEL

By applying Eq 3.10 iteratively and using the initial conditions we obtain F (H, i
′
, k), as

an example we obtained a table for some numerical results. From Table 3.1 we note that

Table 3.1: Results for F (H, i
′
, k)

H i
′

K Value Sum

1 3 0 0.00312543 1.00000043

1 3 1 0.996875

1 3 2 0

2 2 0 0.00851766 1.00662666

2 2 1 0.174174

2 2 2 0.823935

1 2 0 0.0204852 1.0000002

1 2 1 0.979515

1 2 2 0

1 1 0 0.0922911 1.0000001

1 1 1 0.907709

2 3 0 0.000419643 1.000355343

2 3 1 0.0404867

2 3 2 0.959449

the max number of requests can’t be greater than H and i
′
and we note the following

distribution:

k=D
k=0

F (H, i
′
, k) = 1

3.11 Average number of requests K̄

Let K̄i be the average number of requests sent by a peer with i useful pieces to its neighbours,

then it is given by the following equation:

K̄i = E[F (H, i‘, k)] =
k=D
k=0

F (H, i‘, k)× k (3.11)

70. CHAPTER 3. THE PROBABILISTIC MODEL

From Eq 3.11 and by unconditioning over i we get K̄ the average number of requests sent

by a randomly selected peer to its neighbours.

K̄ =
i=L
i=0

K̄i × Pi (3.12)

We have also to note in our model and calculation of F (H, i
′
,K) we assumed there is at

maximum one request sent per neighbour, which results in K̄ ≤ H, this parameter is very

important as we will see in justifying the numerical results.

3.12 Distribution of received requests X

To calculate the probability of fulfilment a request as the next step in our model, we use a

similar approach as in [32], but here the problem is more complex, and also it contains a

new parameter which is F (H, i
′
, k). The calculation would be illustrated by the Fig 3.3.

In the Fig.3.3 a reference peer A sends requests to its neighbours with certain probability

F (H, i
′
, k), one of these neighbours is B we consider it as a reference neighbour, any neigh-

bour would fulfil the request with certain probability that is Q, this probability should be

calculated.

Any peer during the time slot will receive many requests from neighbours, that is B would

receive requests from neighbours including A, how the peer is going to fulfil the re-

quests?

It simply chooses one of these requests randomly to be fulfilled, or as we will see later it

chooses at maximum β requests to be fulfilled. We define a random variable X to be the

number of requests received from H neighbours, then X is a Binomial random variable with

parameters: H,α.

Where α is the probability the peer is receiving request from a neighbour. In the Fig 3.3

when referring to B, then α means the probability that B receives a request from A, and

it is the same probability that B receives a request from C.

Pr(X = i) =

H

i

αi(1− α)H−i (3.13)

71. CHAPTER 3. THE PROBABILISTIC MODEL

To calculate the probability α, we consider the peer B in the Fig.3.3, to derive α we assume

the number of requests sent by C is constant k which results in the following argument:

• If k = 1 then peer C is going to choose any neighbour with probability 1
H

• If k = 2 then peer C is going to choose any neighbour for sending the request to it

with probability 2
H

• · · ·

• in General when the peer sends k requests then the probability a neighbour will receive

a request is k
H

This can be easily justified by remembering that a peer will choose any peer from the list

randomly and uniformly to send it a request with probability Ui, assuming the peer has i

useful pieces then:

αi =
1

H
F (H, i

′
, 1) +

2

H
F (H, i

′
, 2) + · · ·+ D

H
F (H, i

′
, D)

=

D
k=1

kF (H, i
′
, k)

H

Where D is defined in Eq 3.2 and by using the definition of Ki in Eq 3.11

αi =
K̄i

H
(3.14)

And by unconditioning over i we get the equation of α:

α =

L
i=0

αiPi =
K̄

H
(3.15)

From Eq 3.15 and Eq 3.13 the average number of requests received from a neighbour is:

X̄ = Hα

= H
K̄

H

72. CHAPTER 3. THE PROBABILISTIC MODEL

Figure 3.3: The calculation of Q

which means the average number of received requests from neighbours is:

X̄ = K̄ (3.16)

This also means in the steady-state what the peer sends is also what it receives from

neighbours, given that the peer will choose any neighbour equally for sending the request.

We need to mention that F (H, i
′
,K) is to measure the probability a peer will send

number of requests to neighbours, while X measure the probability a peer receives

number of requests from neighbours. These two parameters are different, the first

one is calculated from the peer perspective, which chooses one neighbour randomly

each time and sends the request with certain probability. While the second one is

from neighbours perspective, neighbours are independent when sending requests

to a specific peer.

3.13 Probability of fulfilling a request Q

When the peer B in the Fig 3.3 receives many requests, the peer chooses one of these

requests randomly to be fulfilled, the probability of fulfilling a specific request is Q and can

be found by this table:

Where X is the random variable representing the number of requests a peer receives from

73. CHAPTER 3. THE PROBABILISTIC MODEL

Table 3.2: Q Calculation

X 1 2 · · · H

Q 1 0.5 · · · 1
H

H neighbours, then we can calculate Q as in the following equation:

Q =
k=H
k=1

1

k
Pr(X = k) (3.17)

The previous equation is derived assuming that the peer can upload only one chunk per

time slot, but When releasing the upload bandwidth then Q is calculated as the following,

given that β denotes the upload bandwidth:

Q =
H
k=1

min(1,
β

k
)Pr(X = k) (3.18)

3.14 ri,n

After calculating Q we can find the probability a peer with i useful pieces downloads n

chunks in the current time slot, the peer will send k requests with probability F (H, i
′
, k),

and the probability of fulfilling a request is Q then ri,n is calculated as the following:

ri,n =

D
k=n

k

n

Qn(1−Q)k−nF (H, i‘, k) (3.19)

3.15 Paradox of Q

One may choose to calculate Q in another way which is:

Q =
H−1
k=0

1

k + 1
Pr(X = k)

Where X is now the number of requests received from H − 1 neighbours, but we found

this approach is not correct since it gives the highest continuity always to be at H = 1,

so increasing H is actually decreasing the continuity which contradicts the common sense

74. CHAPTER 3. THE PROBABILISTIC MODEL

in these applications, the problem can be explained when we there is only one neighbour

H = 1, then the probability of fulfilling the request is Q = 1, because then Pr(X = 0) = 1

for X now represents the number of requests received from H − 1 then:

Q =
1

1 + 0
Pr(X = 0) = 1

and the probability of sending a request to one neighbour is very high, that will result in

the highest continuity at H = 1, also by using the lower bound of Jensen Inequality then

Q can be approximated to the following value:

Q ≈ 1

1 + H−1
H K̄

the interpretation is: picking one request from (requests received from H − 1 neighbours

+ 1), this actually breaks the assumption that the peer is sending on average K̄ and

should receive on average also K̄, then to solve this paradox the best approximation for this

probability would be:

Q =

1 K̄ <= 1

1
K̄

K̄ > 1

This equation imposes the fact that the average number of received requests is the same

as the average number of sent requests, which is actually used in the calculation of α, the

previous equation is an approximation for the calculation of Q used in the Eq 3.17, and

then Q can be understood by that equation: the probability a neighbour receives at least

one request and fulfilling one of these requests.

3.16 Average download rate D̄

Average download rate is also another important parameter to be calculated, this parame-

ter can be used to justify the continuity. The larger the average download rate the better

continuity the peer will experience, given that the peer has i useful pieces then the average

75. CHAPTER 3. THE PROBABILISTIC MODEL

download rate is:

Di =
D

k=0

kri,k (3.20)

Then the average download rate for a peer is:

D =
L
i=0

DiPi (3.21)

3.17 Efficiency η

The efficiency is calculated following the same approach in [27], in this paper the efficiency

is defined as: for a given peer the efficiency is the probability the peer is now uploading

data to its neighbours, we use the parameter α to get the following expression:

η = Pr(The peer is uploading to neighbours)

= Pr(Peer receives at least one request)

= 1− Pr(X = 0)

where X is the number of received requests from H neighbours, this means the peer would

be in uploading state just when the peer receives at least one request from its neighbours,

therefore:

η = 1− (1− α)H (3.22)

3.18 Continuity Pc

Given a randomly selected peer in the network, then the probability that this peer is now

listening to or watching the live stream, is known as the probability of continuity and

denoted as Pc, this probability is actually the probability the current time slot is busy, we

76. CHAPTER 3. THE PROBABILISTIC MODEL

have seen this probability in Eq 3.1, then by unconditioning over i:

Pc =
L
i=0

µiPi (3.23)

As we can see this probability is actually the average number of useful pieces over the buffer

length, using Eq 3.1:

Pc =
L
i=0

µiPi

=
L
i=0

i

L
Pi

=
N̄

L

Where N̄ denotes the average number of useful pieces in the buffer.

3.19 Discussion of Numerical results

In this section we plot some numerical results and discuss the implications.

3.19.1 Continuity Pc as a function of H

• From the Fig 3.4 it is noted that when increasing H then the continuity increases until

H reaches a threshold H̃, we call this threshold the saturation point and is denoted

as H̃.

• Values less than H̃ are denoted as −H and values greater than H̃ are denoted as +H

• It is noted also that this threshold would be in the first few values{1, 2, 3, 4, 5} and the

precise value depends on the value of delay T . Here we have to mention that in [42]

the paper that presents the DONet a data-driven overlay network for live streaming

applications, in their experiment with a prototype implementation of 200-300 nodes

and operating in PlanetLab test-bed, plotting the curve of Continuity Index the result

was: ”To Evaluate the continuity we define the continuity index which is the number of

segments that arrive before or on playback deadline over the total number of segments,

77. CHAPTER 3. THE PROBABILISTIC MODEL

Figure 3.4: Continuity with different values of H and T, L = 40

Fig.7 shows that the continuity index as a function of M , the number of partners, we

can see that the continuity increases with increasing M because each node may have

more choices of suppliers, the improvments with more than 4 partners are marginal,

using 4 partners is reasonably good even under high rates, considering that the control

overhead increases with more than 4 partners, we believe that M = 4 is good practical

choice” [42].

• the result in [42] is similar to our result in the Fig 3.4, but in our result we notice that

after H̃ the continuity decreases at very slow rate 10−5, and this is also explained later

because of our model assumptions, while in [42] it is mentioned that after 4 partners

the continuity will decrease because of the control overhead which is the real practical

reason in their experiment.
Pc ↑ When H ↑ and H ∈ −H

Pc ↓ When H ↑ and H ∈ +H

78. CHAPTER 3. THE PROBABILISTIC MODEL

3.19.2 Average request rate K̄

Figure 3.5: K̄ as a function of H - and T = 35, L = 40

It is noted from the Fig 3.5 that increasing the number of neighbours H increases the

average request rate K̄, but the increment is not linear, and that is because after few number

of neighbours, the buffer would be almost full of useful pieces (in the case of tow neighbours,

there is a possibility of downloading two chunks and playing one, because of buffering). As

illustrated in Fig 3.6 the average number of useful pieces in the buffer is very high even

at small values of H, which means small number of missing pieces as illustrated in Fig 3.7

where we define the parameter M̄ as the following:

M̄ = L− N̄ (3.24)

Where N̄ is the average number of useful pieces in the buffer and is calculated as the

following:

N̄ =

L
i=0

iPi = PcL (3.25)

the small number of missing pieces illustrated in the Fig 3.7 is the reason for small rate of

79. CHAPTER 3. THE PROBABILISTIC MODEL

Figure 3.6: N̄ as a function of H - and T = 35, L = 40

Figure 3.7: M̄, K̄ as a function of H - and T = 35, L = 40

80. CHAPTER 3. THE PROBABILISTIC MODEL

K̄ increment.

3.19.3 Comparison between DONet and our model results

From the Fig 3.8 (Figure. 7 in [42]),Fig 3.9 we can compare the results obtained from the

experiment in [42] and our model for the continuity as a function of the H the number of

partners, we notice that our results are very close to the practical results obtained in [42],

we used the same buffer length L = 60, we defined T = 60 in our model, and used the

same number of partners for sample points. In emperical results the continuity was around

98% while in our model the continuity is around 97%. Taking into consideration lot of

assumptions in our model we believe that the result is very encouraging.

Figure 3.8: DONet results taken from [42]

3.19.4 The average number of received requests αH

From Fig 3.10 as expected increasing the number of neighbours will decrease the probability

of receiving a request from a neighbour, obviously the reason is because the neighbour would

have more choices, but the product αH illustrated in the Fig 3.11 increases in the same

way K̄ increase in the Fig 3.5. That is also obvious because the product αH is actually

the expected value of the binomial random variable X, which means the average number of

received requests, the more neighbours maintained by a peer the more requests it receives.

81. CHAPTER 3. THE PROBABILISTIC MODEL

C
o
n
ti
n
u
it
y

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

H

1 2 3 4 5 6 7

Figure 3.9: Comparison between our model and DONet results

And based on our assumptions and how we calculated α it is expected that the peer will

receive on average what it sends on average, comparing the two diagrams of Fig 3.5 and

Fig 3.11 there is a match, they are the same values.

Figure 3.10: α with different values of H

82. CHAPTER 3. THE PROBABILISTIC MODEL

Figure 3.11: αH The Average number of received requests as a function of H

3.19.5 Probability of fulfilling a request Q

Increasing the number of neighbours H increases also the average number of received re-

quests αH as illustrated in the Fig 3.11, and recall that the request is fulfilled by randomly

choosing one of the received requests to be fulfilled, then the probability of fulfilling a spe-

cific request would decrease always as illustrated in the Fig 3.12, but the decrement rate

would be slower in the range +H.

This relation is illustrated as the following:

H ↑⇒ αH ↑⇒ Q ↓

3.19.6 Average download rate D̄

From the Fig 3.13 we notice that increasing H increases the average download rate D̄ in the

range −H but then it will decrease in the range +H, and this complies with the behaviour

of continuity Pc illustrated in the Fig 3.4.

From the Fig 3.13 we notice also that D̄ < 1, this can be explained mathematically,

83. CHAPTER 3. THE PROBABILISTIC MODEL

Figure 3.12: Q, 1
K̄

with different values of H

Figure 3.13: D̄ with different values of H

84. CHAPTER 3. THE PROBABILISTIC MODEL

from the Fig 3.12 we notice that Q < 1
K̄

then:

D̄ = K̄Q

< K̄
1

K̄

< 1

Also here we have to mention that, the Jensen Inequality [16][Page 1066] if it is applied it

should give the following:

E[f(X)] ≥ f(E[X])

E[
1

X
] ≥ f(K̄)

Q ≥ 1

K̄

Which is the opposite to our numerical results, the reason we can’t apply the Jensen In-

equality to the function 1
X where X defined in the Eq 3.13, because X is not convex even

though the second derivative is positive, also it is because 1
X defined as 0 when X = 0

this will make the function quasiconcave, we did not dig too much into the details of this

function, but the justification is enough to explain why we get this upper limit.

We can not apply Jensen Inequality on Q to get the lower limit, because the

function is not convex.

3.19.7 Why Pc increases in the range −H?

The behaviour of Pc is reflected by the average download rate D̄, which also increases in the

range −H. The average download rate can be justified because of the product K̄Q which

has the following behaviour:

−H QK̄ ↑

+H QK̄ ↓

85. CHAPTER 3. THE PROBABILISTIC MODEL

From the Fig 3.12 and the Fig 3.5, in the range +H it is noted that Q decreases faster than

the increment of K̄, so after H̃ there is no improvement in the system, on the contrary it

will initiate a competition because of the nature of our model.

when the peer sends a request to a neighbour it does it randomly and independently of

other neighbours, that would cause the probability of a competition with other peers to

increase.

After H̃ the choices of peer would increase because K̄ does not increase linearly,

the system is not intelligent enough to use the resources efficiently because peers

do not communicate with each other, this will result in a competition tendency in

our model.

To get a deeper insight from Fig 3.7 before H̃ there are many missing pieces and few

number of peers, for example at the first sample: {H = 1, M̄ = 3.5} then K̄ is limited by

H according to our assumption, and just after 2 peers M̄ drops under 2 which causes K̄ to

be limited by M̄ not H and the match happens at H̃.

3.19.8 The effect of buffer length L

From the Fig 3.14, increasing the buffer length would increase both the efficiency and

continuity, but there is also a trade-off because increasing L in this kind of applications

will increase the overhead of exchanging messages among neighbours because the peers will

exchange the buffer map to create the partial view of the overlay. In Coolstreaming the

buffer size is usually 120, as noted from Fig 3.14 after L = 100 the continuity is over 98%.

3.19.9 The effect of maximum allowed delay T

As defined in Sec 2.2.4 and CoolStreaming documentation it is the maximum allowed devi-

ation between the peer playback pointer and the playback pointer of other neighbours.

As stated in CoolStreaming: it is used to indicate whether the partner is sufficient or not,

it’s a measurement for the partner insufficiency. In our model: when the neighbour play-

back pointer falls behind or is far ahead the peer playback pointer that’s an indication that

the neighbour is insufficient, this insufficiency is because the neighbour upload bandwidth

86. CHAPTER 3. THE PROBABILISTIC MODEL

Figure 3.14: L The Effect of Buffer length on Pc, η

is not enough. In our model this can be interpreted in the same way, the peer should be

synchronized with other neighbours.

From the Fig 3.4 it is noted that increasing T causes the continuity to decrease, which

means smaller values of T are preferred unlike the effect of buffer length L, but there is

also a trade-off; increasing T means the peer would be more tolerant regarding the partner

selection, and it would be easier to find the suitable partner in the overly, while smaller T

means the peer would be very strict and demanding, which will lead to more reselection

rate, and instability in the overly, and more maintenance overhead.

This negative effect can not be measured in our model because the assumption is that we

have infinite number of peers in the overlay and always the peer can find H neighbours that

satisfy T inequality in the Eq 2.1. When addressing the First Chunk Problem we give a

parameter for measuring the sliding action and lack of synchronization.

The reason behind the decrement of Pc when increasing T can be easily explained by the

broken relation definition, when increasing T the common window between two peers in-

creases which means the probability of broken relation increases, this effect can be found

87. CHAPTER 3. THE PROBABILISTIC MODEL

in the Fig 3.15, by increasing T the average interesting factor U decreases which causes the

continuity to decrease as illustrated in the same figure.

Figure 3.15: Effect of Delay T on Interesting factor U and Continuity Pc

3.19.10 Efficiency η

The efficiency as calculated in the Eq 3.22 is the probability a peer is in the uploading state,

in other words it is the probability of peer contribution in the overlay, from the Fig 3.16 we

notice the following:

• Increasing T results in the decrement of the efficiency η that can be explained with

the same argument used before, increasing T increases the probability of a broken

relation.

• Increasing the number of neighbours decreases the efficiency, this behaviour does

not mean the continuity should always decrease, because although the contribution

of one peer decreases but the number of neighbours increases, the reason behind this

decrement is obvious, increasing the number of neighbours H means the probability of

88. CHAPTER 3. THE PROBABILISTIC MODEL

receiving a request from a neighbour decreases α, and the probability of not receiving

a request from a neighbour 1−α increases, and hence the probability of not receiving

a request from all neighbours increases (1 − α)H . The decreased efficiency supports

the integrity of our discussion, in which increasing the number of neighbours initiates

the competition.

• We note also the efficiency in the range −H is higher than the efficiency in the range

+H

Figure 3.16: η with different values of H and T

Here we have to mention that the contribution of the peer in the overlay would decrease by

increasing the number of the neighbours, because those neighbours would have more choices

for sending the request, and the system depends on the partial view, there is no complete

picture in the data-driven approach, but the implementation is simpler.

89. CHAPTER 3. THE PROBABILISTIC MODEL

3.19.11 Releasing upload bandwidth β

We obtained numerical results for different values of uploading bandwidth β assuming

homogeneous peers, where each peer has the same uploading capability.

It is noted from the Fig 3.17 that the Continuity Pc increases as we increase the uploading

bandwidth, but also we notice that there is a threshold, after specific value of β we notice

that increasing the uploading bandwidth does not improve the continuity. This can be easily

explained by the Fig 3.19 which represents the average request rate K̄ for different values

of upload bandwidth β, from that figure we notice that increasing the uploading bandwidth

will decrease K̄, because the peer can now download more chunks in a time slot, this will

cause the buffer to be almost full, and when K̄ is stable on a specific value then also Q will

stabilize, then the product QK̄ will also be fixed, and so do the average download rate and

hence the continuity.

The Fig 3.18 represents the effect of the uploading bandwidth β on the efficiency η, from

this figure it is noted that increasing the uploading bandwidth will decrease the efficiency,

this is easily explained by the parameter K̄, which decreases by increasing β which means

also decreasing the probability of receiving a request from neighbour α, this is the main

reason for the efficiency decrease.

3.19.12 Releasing uploading bandwidth for Heterogeneous peers

We assumed in the previous sections the homogeneous peers, which means all peers have

the same capabilities like: the number of partners H and also the uploading bandwidth β,

these parameters assumed to be constant. Now we consider the case of heterogeneous peers

regarding the uploading bandwidth.

We assume the random variable W to be the number of chunks a peer can upload in one

time slot, with the probability mass function:

Pr(W = n), with

∀n

Pr(W = n) = 1

90. CHAPTER 3. THE PROBABILISTIC MODEL

Figure 3.17: Continuity as a function of upload bandwidth β

Figure 3.18: η as a function of upload bandwidth β

91. CHAPTER 3. THE PROBABILISTIC MODEL

Figure 3.19: K̄ as a function of upload bandwidth β

this random variable replaces the parameter β in the previous analysis.

Then Q the probability of fulfilling a request is given by the following expression:

Q =
H
k=1

∀n

min(1,
n

k
)Pr(X = k)Pr(W = n) (3.26)

Assuming the random variable W is uniform with the following PMF:

Pr(W = n) =
1

7
, n : 1, 2, , 3, 4, 5, 6, 7

Substituting this PMF in Eq 3.27 we get the following expression for Q:

Q =
1

7

H
k=1

7
n=1

min(1,
n

k
)Pr(X = k) (3.27)

In the Fig 3.20 we plot the continuity for two cases:

• Homogeneous peers with uploading bandwidth β = 4

92. CHAPTER 3. THE PROBABILISTIC MODEL

• Heterogeneous peers with uploading bandwidth as random variable W and PMF:

Pr(W = n) = 1
7 , n : 1, · · · , 7 and the expected value is: W̄ = 4

Figure 3.20: The heterogeneous and homogeneous peer continuity

From Fig 3.20 It is noted that the continuity in the heterogeneous case is lower than the

continuity for the homogeneous case, this is expected due to the variability of the random

variable W .

3.20 Conclusion

In this chapter we completed the basic model for live streaming applications, using the

concept of broken relation we proposed a Markovian model, and calculated the terms of

probability transition matrix. Then we plotted the numerical results.

Using our model we got a continuity that is similar to empirical results, and we extended

the model to address the heterogeneous uploading bandwidth.

we found that increasing the number of neighbours does not necessary result in better

continuity, also increasing the buffer length gives better continuity but there is a trade-off.

93. CHAPTER 3. THE PROBABILISTIC MODEL

we discussed the effect of delay on the continuity as well as the efficiency.

We believe that this model provides the system designer with a fundamental mathematical

model to help choosing and tweaking the system parameters. In the following chapter we

discuss the problems in the numerical solution and in later chapter we show that the model

is very flexible by addressing the first chunk problem.

94. CHAPTER 4. PROBLEMS IN NUMERICAL SOLUTION

Chapter 4

Problems in numerical solution

4.1 Introduction

I
n this chapter we present two problems encountered in the numerical solution, the

first problem is related to the calculation of probability of sending K requests for

a peer with i useful pieces and maintaining a list of H neighbours. The second problem is

how to iteratively solve the Markovian model. We believe these two problems are important

for any researcher building on the top of this model.

4.2 The initial conditions tree - F (H, i
′
, K)

We used the Eq 3.10 to calculate the probability that a peer with i useful pieces sends k

requests to H neighbours, here we write down the equation again:

F (H, i
′
, k) = UiF (H − 1, i

′ − 1, k − 1) + (1− Ui)F (H − 1, i
′
, k)

This function is used extensively in the numerical solution, and finding the result of this

function is not a simple task, because this type of functions is known in the computer

science literature as tree recursive function, it will be explained next using [1] and we

suggest algorithm for more efficient computation.

95. CHAPTER 4. PROBLEMS IN NUMERICAL SOLUTION

4.2.1 Linear recursion and iteration

The simplest example of recursion is the calculation of the factorial function defined by:

n! = n× (n− 1)× (n− 2) · · · × 1

The idea of recursion is to calculate the term (n− 1)! and multiply it by n:

n! = n× [(n− 1)× (n− 2) · · · 1] = n× (n− 1)!

By adding the initial condition 1! = 1 then the recursive function can be written in simple

C++ computer program to calculate the factorial as the following:

Listing 4.1: Factorial Recursive Function

i n t f a c t o r i a l (i n t n)

{

i f (n==1) re turn 1 ;

re turn n∗ f a c t o r i a l (n−1);

}

the execution path for 6! can be visualized in the Fig 4.1.

Also we can describe a rule for computing n! by specifying that we first multiply 1 by 2

Figure 4.1: Execution path of the factorial recursive function

and the result by 3 · · · and so on until we reach n, this implementation is known as iterative

solution, and is implemented in C++ program using a simple loop:

96. CHAPTER 4. PROBLEMS IN NUMERICAL SOLUTION

Listing 4.2: Factorial Iterative Function

i n t f a c t o r i a l (i n t n)

{

i n t r e s =1;

f o r (i n t i =1; i<=n ; i++)

r e s∗=i ;

re turn r e s ;

}

The execution path can be visualized as in the Fig.4.2.

Comparing the two approaches, the first process reveals a shape of expansion followed

by a contraction, this is because the process or the recursive function builds up a chain

of deferred operations, and the contraction happens when these operations are actually

performed, this process is called the recursive process. Where the execution requires to

keep track of operations to be performed later. In the recursive process for calculating the

n! grows linearly with n.

While in the second process there is no expansion in the execution path, and all we need

is to keep track of only one variable res, this process is called the iterative process, whose

state is summarized by fixed number of state variables. Hence we can conclude that the

problem with recursive computation: it consumes a lot of memory; this will be a problem

for calculating large values of n!, the stack is used to store the local variables at each call

and it is considered very small in size (few megabytes); another problem with recursive

process is the performance because function call is expensive.

Figure 4.2: Execution path of the factorial iterative function

97. CHAPTER 4. PROBLEMS IN NUMERICAL SOLUTION

4.2.2 Tree Recursion

Recursion can be also more complex, consider generating the sequence of Fibonacci numbers,

in which each number is the sum of the preceding two:

0, 1, 1, 2, 3, 5, 8, 12, 21, · · ·

The Fibonacci numbers are defined by the following rule:

Fib(n) =

0 if n = 0

1 if n = 1

Fib(n− 1) + Fib(n− 2) otherwise

this rule can be implemented by the following C++ recursive function:

Listing 4.3: Fibonacci Recursive Function

i n t f i b (i n t n)

{

i f (n==0) re turn 0 ;

i f (n==1) re turn 1 ;

re turn f i b (n−1)+ f i b (n−2);

}

Because the function calls itself twice, the execution path will be like a tree, at each level

the branches split into two(except the bottom), the execution path is illustrated in the Fig

4.3. This way of calculating the Fibonacci numbers is inefficient for the following reasons:

• there is much of redundant calculations, for example in the Fig 4.3 the Fib(3) is

calculated twice.

• the number of steps grows exponentially with n, so the processing time is very large

Thus as stated in [1] the tree-recursive processes are useless, and the problem of calculating

F (H, i
′
,K) is considered tree-recursive process, that can be implemented as a recursive

98. CHAPTER 4. PROBLEMS IN NUMERICAL SOLUTION

Figure 4.3: Execution path of the Fibonacci

function using the initial conditions in Fig 3.2:

Listing 4.4: Our Problem Recursive function

double F(i n t H, i n t ip , i n t K, double Ui)

{

i f (K>ip | | K>H) return 0 ;

i f (H==0 && K==0) return 1 ;

i f (H==0 && K>0) re turn 0 ;

i f (H>0 && K>0 && ip==0) return 0 ;

i f (H>0 && K==0 && ip==0) return 1 ;

i f (H>0 && K==0 && ip>0)

{

re turn qPow(1−Ui ,H) ;

}

re turn Ui∗F(H−1, ip−1,K−1,Ui)+(1−Ui)∗F(H−1, ip ,K, Ui) ;

}

Using this function for F (5, 3, 2, 0.5) there would be a calling tree illustrated in the Fig 4.4.

We tested the function with some values that could be encountered in P2P scenarios, and

99. CHAPTER 4. PROBLEMS IN NUMERICAL SOLUTION

Figure 4.4: Execution tree of the F (5, 3, 2)

the result was very disappointing regarding the performance, in the Table 4.1 the count

field represents how many times the function was called and reflects the number of tree

nodes, and time field is in seconds. It is obvious from the table that we can not use this

method in the numerical solution, as we increase the number of the partners the execution

times grows exponentially, for large values the stack overflow fatal error occurs.

Table 4.1: Results for recursive execution of F (H, i‘,K)

H i
′

K Time Count

5 3 2 0 29

10 9 8 0 329

20 15 13 0.007 406979

25 20 18 0.032 3124549

25 20 10 0.195 10623569

30 20 10 1.548 88704329

30 20 15 6.168 601080389

35 20 15 136.575 11135805119

4.2.3 Simulating the call stack

The issue with the recursive tree process is the function calls which are very expensive and

require storing the memory frame in the stack, and also the limitation of the stack size.

These issues can be solved by building our stack in the heap, by designing a data structure

to store the nodes of the recursive tree.

100. CHAPTER 4. PROBLEMS IN NUMERICAL SOLUTION

To simulate the stack, we have used the data structure QStack in Qt framework, and also

designed a custom node class FNode and many other classes, there are lot of technical

details regarding the OOP implementation that will be avoided in this context, but we

provide the pseudo code for the algorithm:

Listing 4.5: Pseudo code for custom stack algorithm

stack . push (root) ;

cur r ent=root ;

whi l e (! root . i sVa l i d ())

{

i f (! cu r r ent . i sVa l i d ())

{

s tack . push (cur rent . l e f t) ;

}

i f (cur rent . i sVa l i d () && current . i s L e f t ())

{

s tack . push (cur rent . parent . r i g h t) ;

}

i f (cur rent . i sVa l i d () && ! cur rent . i s L e f t ())

{

r i g h t=stack . pop () ;

l e f t=stack . pop () ;

parent=stack . top () ;

parent . setValue (u∗ l e f t . va lue+(1−u)∗ r i g h t . va lue) ;

d e l e t e l e f t , r i g h t ;

}

cur rent=stack . top ;

}

The algorithm is actually the depth-first traversal that will try to go deeper in the tree

before examining the siblings; some points to explain the algorithm:

101. CHAPTER 4. PROBLEMS IN NUMERICAL SOLUTION

• current, root are actually data structure FNode where the initial conditions are im-

plemented

• in FNode there are two pointers for the left and right nodes, and parent refers to the

parent node; in the real code we eliminated the need for these pointers

• stack.push(), stack.pop(), stack.top(): operations to insert new node on the top of the

stack, remove the node at the top of the stack, and return the top of the stack without

removing it.

• isValid() indicates whether the node value has been calculated or not, and when used

with the root it indicates that the function value has been calculated

• delete operation will keep the data structure very small and it is more effective than

the recursive call

• isLeft() indicates whether the node is left for its parent or not

these points will make the previous algorithm very easy to understand, we check the current

node, if it has a valid value then we have two possibilities: it is left node, then we need to

traverse to the right node at the same level, or it is right then we have obtained the value

of the parent. When it does not have a valid value then the left node is traversed.

Table 4.2: Results for simulated call stack algorithm

H i
′

K Time (msec)

5 3 2 0.3125

10 9 8 0.0439443

20 15 13 0.0739288

25 20 18 0.014326

25 20 10 0.0974166

30 20 10 0.0279816

30 20 15 0.144464

35 20 15 0.0945276

From Table 4.2 the execution time (in milliseconds) is very efficient when compared to

Table 4.1, most of the calculations takes almost 0sec, which allows us to test the numerical

results on very large value of parameters.

102. CHAPTER 4. PROBLEMS IN NUMERICAL SOLUTION

4.2.4 Multilevel Cache structure

In the Fibonacci execution path illustrated in the Fig 4.3, we mentioned that the calculation

is not that efficient for some reasons and one of them is the redundant calculations, like

calculating Fib(3) twice in the Fig 4.3.

To solve this problem we can cache the results of the function F (H, i
′
,K) in a data structure,

when a node is constructed, the cache is checked, either it has been already calculated so

we retrieve the value or it is new node then we calculate it and insert it in the right position

in the cache.

The most efficient cache would be a dictionary like data structure, so we used theQMap data

structure provided as template class in the Qt C++ framework, that stores < key, value >

pairs and provides a fast lookup of the value associated with a key; most programming

languages provide a similar container type.

But to fit our problem we nested many QMap templates to get a multilevel data structure

cache defined like the following:

Listing 4.6: Multilevel data structure cache

QMap<i n t , QMap <int , QMap < i n t , double > ∗ > ∗ > ∗ cache ;

Where the first level is for H, second level is for i
′
and the third one is for K. With this data

structure we minimize the redundant information to be stored in a table data structure.

Adding this cache saves millions of CPU cycles in the numerical solution, we defined a hit

count to be the number of matches found in the cache(the saved operations) and Items to

be the number of items maintained by the cache. The Table 4.3 lists cache statistics in the

last iteration in the numerical solution; the hit count in one cycle can be very large like in

the last row of the Table 4.3 where the hit count reached 26 millions. One last note, the

content of the Cache is cleared after each cycle in the numerical solution, because after each

cycle as we will see the values of the interesting factors Ui are changed which causes the

cache to be stale.

103. CHAPTER 4. PROBLEMS IN NUMERICAL SOLUTION

Table 4.3: Cache hit count

L T H Hits Items

25 5 3 123322 146

25 5 10 848054 1210

25 5 15 2154054 2440

25 5 20 3952024 3920

25 5 25 5978464 5525

40 10 20 13533044 7070

40 10 30 26361704 14105

4.3 Method used to get the steady-state solution for the

markov chain

4.3.1 Iterative solution for Markov chain

Markov chains concerns are about the sequence of random variables which correspond to

states of certain system, in such a way the state at one time epoch depends only on the

previous states [5]. We will present a simple example about Markov chains and explain how

to find the stationary distribution.

Example There are two companies A and B, A marketing research indicated that a cus-

tomer of A may switch to B in his next shopping with probability α > 0 while a customer

of B may switch to A in his next shopping with probability β > 0, hence the question is:

what would be the market share of the two companies in the long-run?

This example can be easily represented by two-state Markov chain with the following one-

step transition probability matrix:

P =

 1− α α

β 1− β

Definition P (n) = Pn where P (n) is the nth step transition probability matrix and P is

the one-step transition probability matrix.

104. CHAPTER 4. PROBLEMS IN NUMERICAL SOLUTION

The matrix P (n) elements are: P
(n)
ij = Pr(X(n+1) = j|X(n) = i) and

j
Pij = 1 In the

marketing example assuming α = 0.3, β = 0.4 then:

P =

 0.7 0.3

0.4 0.6

The n transition matrices are:

P 2 =

 0.61 0.39

0.52 0.48

P 3 =

 0.583 0.417

0.556 0.444

P 4 =

 0.5749 0.4251

0.5668 0.4332

P 5 =

 0.57247 0.42753

0.57004 0.42996

· · ·

P 8 =

 0.57145669 0.42854331

0.57139108 0.42860892

We notice that the matrix power will converge to matrix with identical rows, where the

columns are multiples of the eigenvector of [1, 1]. Assuming that the state vector of the

marketing example is π = [π0, π1], with π0 the proportion of time a customer is shopping

with A and π1 is the proportion of time the customer is shopping with B, starting with the

105. CHAPTER 4. PROBLEMS IN NUMERICAL SOLUTION

initial condition π(0) = [1, 0] we get the following transitions:

π(1) = π(0)P = [1, 0]

 0.7 0.3

0.4 0.6

 = [0.7, 0.3]

π(2) = π(1)P = [0.7, 0.3]

 0.7 0.3

0.4 0.6

 = [0.61, 0.39]

· · ·

π(8) = [0.57145669, 0.42854331]

we notice that π(8) is almost identical to the rows of the matrix P (8), these primitive results

can be summarized as the following: The nth state vector can be found in two methods:

• π(n) = π(n−1)P

• π(n) = π(0)P (n)

when n → ∞ then: limn→∞ π(n) = π we call π the stationary distribution because: π(n) =

π(n−1)P and taking the limit

π = πP with

i

πi = 1 (4.1)

According to [5] for any Aperiodic and Irreducible Markov chain there is a stationary

distribution. The equation 4.1 represents a system of linear equations, by solving this

system we can obtain the stationary distribution for the marketing example:

π = [
β

α+ β
,

α

α+ β
]

With α = 0.3, β = 0.4 the stationary distribution is: π = [0.571428571, 0.42857141428]

which complies with the previous results. With large-scaled applications it is not practical

to solve the system of linear equations so iterative methods are used.

106. CHAPTER 4. PROBLEMS IN NUMERICAL SOLUTION

4.3.2 Numerical Solution for Our Model

Our model illustrated in Fig 3.1 is actually simple Markov chain, because in P2P streaming

applications the buffer is designed to accommodate only small number of chunks like 60 in

the DONet, so the number of states is very small in comparison to large scaled systems

with thousands of states.

The iterative solutions to find the stationary distribution is used not only in the Markov

chain, in [5] [17] [3] there is extensive explanation for the use of Power method to find in

general the dominant eigenvector for any square matrix, and one of the applications to this

iterative method is the PageRank algorithm used by Google to find the popularity of web

pages.

In [17] they mentioned Markov chains as one application, with a difference in the application

of the algorithm, since the transition matrix with each row sum to one then the iterative

algorithm is actually the relation we found in the previous subsection:

π(n) = π(n−1)P (4.2)

we start by initial state vector π(0) and then we find the next iteration by using Eq 4.2, but

our model is not that simple because the transition probabilities are derived depending on

the steady-state vector, hence we propose the following algorithm to find the steady state

distribution.

1. Assume the initial state distribution is the uniform distribution π(0) = [1
L+1 , · · · ,

1
L+1]

2. calculate the transition probability by calculating the different parameters:

Ui, F (H, i
′
,K), K̄, α,X,Q, ri,n, Q, µi, βi, Zi,k

3. We got a Markov chain transition probabilities then we apply the Power method for

107. CHAPTER 4. PROBLEMS IN NUMERICAL SOLUTION

this subproblem as the following:

π(n+1) = π(n)P = π(n)

Z0,0 Z0,1 Z0,L

β1 Z1,0 Z1,L−1

...

0 β2 Z2,0 ... Z2,L−2

0 0 ... βL ZL,0

4. After the previous step we got the π(1) then we use it for the first step to get π(2)

In this algorithm we use two loops: one for the π(i) and one for the power method iteration

that should be applied for each sub-problem, we end each loop when the following condition

is satisfied:

Max

|π(n+1)

i − π
(n)
i |

π
(n)
i

<= ϵ, i ∈ [0, · · · , L]

Where ϵ is error rate defined in the algorithm.

4.3.3 GUI Software to find the numerical solution

Using this algorithm we were able to design a GUI program for finding the numerical

solution of the Markov chain, this program automates running the scenarios for a range of

H values, and is represented in the Fig 4.5 The program contains four sections:

• Section for entering the parameters of the experiment H,β, L, T, ϵ

• Section for displaying the numerical results and the ability to copy these results in

CSV format to clipboard and then paste it in the OpenOffice Spreadsheet

• Section to display the F (i, j)

• Section to display the stationary distribution

This program was created with Nokia Qt C++ framework.

108. CHAPTER 4. PROBLEMS IN NUMERICAL SOLUTION

Figure 4.5: GUI Program to find the numerical solution

4.4 Conclusion

In this chapter we presented two main problems in the numerical solution, the first one is

related to the calculation of F (H, i
′
, k), this problem is a tree recursive, we proposed an

algorithm for simulating the stack in the heap structure, and also we suggested a multi-

level cache to speed up the calculation. The second problem is how to iteratively solve the

Markovian model, we presented the concept of Power Method and explained how it can be

used to numerically solve our model.

In next chapter we attack a problem called The First Block Problem, when the peer some-

times downloads the chunk even though it missed the playback deadline. we modify our

model and show that ignoring this chunk is beneficial to the whole system. Finally we

suggest a freezing and skipping approach for the playback pointer.

109. CHAPTER 5. THE FIRST BLOCK PROBLEM

Chapter 5

The First Block Problem

Science is a first-rate piece of furniture

for a man’s upper chamber, if he has

common sense on the ground floor.

Oliver Wendell Holmes

5.1 Introduction

I
n the previous chapters, we calculated the probability of broken relation F (i, j) then

we used this parameter to build the Markovian model to extract the stationary

distribution for the number of useful pieces in the buffer, but we did not explain very

important aspect of the video streaming on the peer side, which is the dynamics of the peer

playback pointer, the main focus of the study till now was on the relation between peers.

In this chapter we build on our model to show how theoretically the playback pointer

changes the position in the range of length T , by answering a fundamental question: how

long the peer should freeze the playback pointer if the first chunk is not downloaded, and

how many chunks should be skipped?. We suggest a method to change the position of the

playback pointer, and we calculate a parameter SA which is the probability of initiating a

sliding action that can be used with a counter SP , the number of sliding actions, to help

the system designer in evaluating the performance of the application.

In this chapter we use the abstract model to answer a question that could be encountered by

the system designer: should the peer download a chunk that is not going to be interesting to

110. CHAPTER 5. THE FIRST BLOCK PROBLEM

the peer but it could be used to fulfil other peers requests, in other words, which approach

is preferred in designing these systems, the selfish peer or the collaborative peer, we believe

answering this critical question with abstract model is very important for shedding the light

on very complicated details in these applications.

5.2 Capturing the problem

We mean by the dynamics of the playback pointer, how the position of the playback pointer

(tA for peer A) moves in the range [ts−T, · · · , ts−1], we just assumed this range and without

delving too much in the details we made an assumption that the playback pointer position

is a uniform distribution in that range.

Recalling that also the parameter ts is used as an abstract concept in our study, because the

range itself can not be implemented in any peer to peer streaming application, obviously

because getting the value of ts requires periodically pulling the streamer for the ts which

causes a huge load on the server. This problem is basically the one we are trying to avoid

with P2P streaming application. So we assumed this theoretical range to simplify our

model.

But this concept of delay itself is not quiet theoretical, in [21] [41] the parameter Tp is defined

to be as the threshold of the maximum sequence number deviation of the latest received

blocks between the partners and the parents of node A, while another parameter Ts is

defined to be the threshold of the maximum sequence number deviation allowed between

the latest received blocks in any two substreams in node. These two parameters {Ts, Tp}

are used in two inequalities to monitor the performance and predict problems in streaming.

They didn’t use parameter similar to ts in our study but they used the latest received block

id for each parent or partner to approximate the synchronization, and that’s because of the

technical issues and the nature of P2P application that requires minimizing the server load.

We used this concept to suggest simple algorithm to get an approximation of ts in Eq 2.2.

In our model one problem we did not address till now, the problem is related to the lower

111. CHAPTER 5. THE FIRST BLOCK PROBLEM

bound of the inequality in Eq 2.1 we write it again:

ts − T ≤ tA ≤ ts − 1

We observed the problem of the first chunk or first block when tA is at the lower bound

ts − T , if the slot at ts− T is empty then the peer will send request for that missing piece.

When the chunk is found at some partners then the chunk would be downloaded. Even in

this theoretical model the problem is that the downloading process is not instantaneous, it

takes time t > 0, this time in our model depends on the uploading bandwidth for the peer

but we did not assume this time to be zero, which reconciles with real applications.

Hence downloading the first chunk at tA = ts − T will result in chunk that is beyond the

allowed range in our model, we denote this problem as the first chunk problem or first

block problem.

the Fig 5.1 illustrates the case when tA = ts − T , here the peer will send request for the

Figure 5.1: The buffer when tA = ts − T

Figure 5.2: The buffer when tA = ts − T , after downloading the first chunk

first chunk located at tA, then the request could be fulfilled by a neighbour, and because

times progresses in the stream then ts advances with 1 slot, this causes the downloaded

chunk to be at ts − T − 1 as illustrated in the Fig 5.2, this means the downloaded chunk is

not useful piece, it is downloaded but not played out because it is beyond the range.

112. CHAPTER 5. THE FIRST BLOCK PROBLEM

For sure, this is an abstract problem because the range itself as we have explained can not

be built in this deterministic way, but investigating this problem is useful to understand

the dynamics of the playback pointer.

In the previous chapters we assumed the chunk is downloaded and would be con-

sidered an old piece, regarding the strict bounds in our model, this downloaded

piece is not going to be requested by any neighbour simply because these neigh-

bours themselves respect the range of ts. But in real applications, this downloaded

chunk could be used by other peers because peers in the overlay would be semi-

synchronized, we refer to this concept as collaborative peer. But it provides

no improvement for the peer itself, hence it is considered useless from the peer

perspective. In the next section we will repeat the calculation of F (i, j) and with

concerning the problem of the first chunk, by assuming the peer will ignore the

first chunk, we refer to this approach as the selfish peer, the goal of this study

is to answer this question: which is better, the selfish peer or collaborative peer,

concerning the continuity in the whole overlay.

5.3 Modifying the broken relation

When considering the problem of the first chunk, the model itself is not going to be changed,

to explain it we need to understand what happens in the implementation.

The peer receives the buffer maps from neighbours as periodic messages, then it checks

the buffer maps for missing pieces, at the beginning of the time slot it sends requests to

neighbours asking for these missing pieces. When considering the first chunk problem the

peer does not send a request for the first chunk when tA = ts − T , in other words, the peer

ignores the first chunk when checking for the missing pieces.

The interpretation of this approach simply suggests to modify the interesting factor Ui,

hence the broken relation should be also modified, but the Markovian model itself would be

the same, because peers would communicate in the same way, also the transition probability

matrix will be the same, but it gives different results because of different interesting factor.

We are going to use the same notations used in the first chapter, and also we are going

113. CHAPTER 5. THE FIRST BLOCK PROBLEM

to use the same probabilities U(x, i,G), P (i, j, G,K, x) defined in Eq 2.6 and Eq 2.7. We

explain the changes should be made to the five different cases.

5.3.1 Case1 - tB ≤ tA − L

Obviously in this case the First Chunk Problem can not happen, from Fig 5.3 the case:

tA = ts − T is impossible because we are assuming tB ≤ tA −L. Then we calculate it as we

did in the first chapter.

Assuming event FBC1 = tB ≤ tA − L then:

Pr(FBC1) = Pr(C1) (5.1)

Where Pr(C1) is given in Eq 2.8.

Figure 5.3: First Chunk Problem: Case1

5.3.2 Case2 - tA − L+ 1 ≤ tB ≤ tA − 1

In this case the first chunk problem can’t happen, from Fig 5.2 the most extreme case is

when: tB = ts − T and is explained in Fig 5.2-(b). It is obvious that the case: tA = ts − T

can’t happen because then the range of tB would be: tB ∈ [tA − L + 1, · · · , tA − 1] =

[ts − T −L+1, · · · , ts − T − 1] which contradicts our assumption about the range of PPP .

Then the calculation of the event FBC2 = tA −L+ 1 ≤ tB ≤ tA − 1 would be the same as

the calculation of C2 defined in Eq 2.9.

Pr(FBC2) = Pr(C2) (5.2)

114. CHAPTER 5. THE FIRST BLOCK PROBLEM

Figure 5.4: First Chunk Problem: Case2

5.3.3 Case3 - tA ≤ tB ≤ tA + L− 1

This is the first case where the First chunk Problem is observed, Fig 5.5 illustrates the

possible positions of tA, to calculate this probability we break the problem into two parts,

by solving the problem for two cases:

• The first case is denoted as FBC31, this case corresponds to the range tA > ts − T ,

it is illustrated in Fig 5.5-(a)

• The second case is denoted as FBC32, this case corresponds to the range tA = ts−T

, it is illustrated in Fig 5.5-(b)

115. CHAPTER 5. THE FIRST BLOCK PROBLEM

Figure 5.5: First Chunk Problem: Case3

To calculate FBC31 we use the same approach in the first chapter for C3, we will get the

same equation but with different range for tA then:

Pr(FBC31) =

K=j
K=0

G=i
G=min(K,i)

tB=tA+L−1
tB=tA

ts−1
tA=ts−T+1

R=L−j
R=0

P (i, L− j, i−G,R, tBA)P (i, j, G,K,L− tBA)Pr(e2)
1

T 2
+

K=j
K=0

G=i
G=min(K,i)

tB=ts−1
tB=tA

ts−1
tA=ts−T+1

R=L−j
R=0

P (i, L− j, i−G,R, tBA)P (i, j, G,K,L− tBA)(1− Pr(e2))
1

T 2

(5.3)

With e2 is the same event defined in Eq 2.5. For the second range when tA = ts − T , the

problem needs a more explanation, although we are going to use the same approach but

here we encounter another problem. By ignoring the first chunk as illustrated in the Fig

5.5-(b) we will get two common ranges for the two buffers as in FBC31, the number of

useful pieces for peer A is assumed to be i then the number of useful pieces in the common

range L − tBA is a random variable denoted as G1, in the same way the number of useful

116. CHAPTER 5. THE FIRST BLOCK PROBLEM

pieces in the common range tBA − 1 is another random variable G2, with the following

relation is true: G1 +G2 + I(FB) = 1.

FB is an event that indicates the occupancy of the first chunk, this event happens with

probability µi, which is defined in Eq 3.1, and the complement event is then F̄B = 1 − µi

that corresponds to an empty first chunk, then the indicator function is defined as the

following:

I(FB) =

1 With µi

0 With 1− µi

(5.4)

depending on the indicator function we have two possibilities for the values of G1, G2

assuming the peer has i useful pieces:

• I(FB) = 1: then G1 ∈ [0, · · · , i− 1] and G2 ∈ [0, · · · , i− 1−G1]

• I(FB) = 0: then G1 ∈ [0, · · · , i] and G2 ∈ [0, · · · , i−G1]

and by using one random variable G1 = G:

• I(FB) = 1: then G ∈ [0, · · · , i− 1] and the remaining part is ∈ [0, · · · , i− 1−G]

• I(FB) = 0: then G ∈ [0, · · · , i] and the remaining part is ∈ [0, · · · , i−G]

Using the previous argument we can define these two conditional probabilities:

Pr(FBC32|I(FB) = 1) =

K=j
K=0

G=i−1
G=min(K,i−1)

tB=tA+L−1
tB=ts−T

R=L−j
R=0

P (i, L− j, i− 1−G,R, tBA − 1)P (i, j, G,K,L− tBA)Pr(e2)
1

T 2
+

K=j
K=0

G=i−1
G=min(K,i−1)

tB=ts−1
tB=ts−T

R=L−j
R=0

P (i, L− j, i− 1−G,R, tBA − 1)P (i, j, G,K,L− tBA)

(1− Pr(e2))
1

T 2

(5.5)

117. CHAPTER 5. THE FIRST BLOCK PROBLEM

Pr(FBC32|I(FB) = 0) =

K=j
K=0

G=i
G=min(K,i)

tB=tA+L−1
tB=ts−T

R=L−j
R=0

P (i, L− j, i−G,R, tBA − 1)P (i, j, G,K,L− tBA)Pr(e2)
1

T 2
+

K=j
K=0

G=i
G=min(K,i)

tB=ts−1
tB=ts−T

R=L−j
R=0

P (i, L− j, i−G,R, tBA − 1)P (i, j, G,K,L− tBA)

(1− Pr(e2))
1

T 2

(5.6)

Then by unconditioning over I(FB) we get the following probability:

Pr(FBC32) = µiPr(FBC32|I(FB) = 1) + (1− µi)Pr(FBC32|I(FB) = 0) (5.7)

Using Eq 5.3, and Eq 5.7 we get the probability of the third case considering the first chunk

problem:

Pr(FBC3) = Pr(FBC31) + Pr(FBC32) (5.8)

5.3.4 Case4 - tA + L ≤ tB

In this case as illustrated in Fig 5.6 there are many possibilities for the position of tB, in (c)

we notice the first chunk problem, this happens only when: tA = ts − T and tB = tA + L,

so this case should be calculated as three subproblems:

• FBC41 which corresponds to tA > ts − T

• FBC42 which corresponds to tA = ts − T and tB > tA + L

• FBC43 which corresponds to tA = ts − T and tB = tA + L

118. CHAPTER 5. THE FIRST BLOCK PROBLEM

Figure 5.6: First Chunk Problem: Case4

119. CHAPTER 5. THE FIRST BLOCK PROBLEM

For the probability of FBC41 it is calculated as in Eq 2.13 but with truncated range of tA

and e2 is given in Eq 2.5:

Pr(FBC41) =

L−j
R=0

i
G=min(R,i)

ts−1
tB=tA+L

ts−1
tA=ts−T+1

Pr(e2)P (i, L− j,G,R, tAB + 2L)
1

T 2
(5.9)

For the second event FBC42 we calculate it by assuming tA = ts − T and tB > tA + L:

Pr(FBC42) =

L−j
R=0

i
G=min(R,i)

ts−1
tB=ts−T+L+1

Pr(e2)P (i, L− j,G,R, ts − T − tB + 2L)
1

T 2
(5.10)

The third event FBC43 represents the first block problem, here the range should be reduced

by one for ignoring the first chunk,then the common range would be:

tAB + 2L− 1 = tA − tB + 2L− 1 = tA − (tA + L) + 2L− 1 = L− 1

which is illustrated in the Fig 5.6-(c), then the calculation is as the following:

Pr(FBC43) =

L−j
R=0

i
G=min(R,i)

Pr(e2)P (i, L− j,G,R,L− 1)
1

T 2
(5.11)

From equations: Eq 5.9, Eq .5.10, Eq 5.11 the probability of the fourth case is given as:

Pr(FBC4) = Pr(FBC41) + Pr(FBC42) + Pr(FBC43) (5.12)

5.3.5 Case5 - tA + L ≤ tB − L

In the fifth case, the issue of first block is not recognized as illustrated in the Fig 5.7, hence

the probability is simply the probability calculated in Eq 2.15:

Pr(FBC5) = Pr(C5) (5.13)

120. CHAPTER 5. THE FIRST BLOCK PROBLEM

Figure 5.7: First Chunk Problem: Case5

5.3.6 Broken relation in the first chunk problem

After calculating the probabilities of broken relation in five cases, we define FB(i, j) to be

the probability of broken relation with first chunk problem is taken into consideration, then

this probability is given by the following equation:

Pr(FB) = Pr(FBC1) + Pr(FBC2) + Pr(FBC3) + Pr(FBC4) + Pr(FBC5) (5.14)

where Pr(FBC1), P r(FBC2), P r(FBC3), P r(FBC4), P r(FBC5) are given by equations:

Eq 5.1, Eq 5.2, Eq 5.8, Eq 5.12, Eq 5.13. Using this new probability we can modify our

solution and compare the results with the original model.

5.4 Numerical results

After finding the probability of the broken relation, the model itself is not going to be

changed because what is modified is just the interesting factor, then we use the same model

proposed in the second chapter. We have modified the GUI program to include the first

block option, which means instead of using the probability F (i, j), use the new broken

relation FB(i, j) as illustrated in the Fig 5.8.

Using this new option in GUI program, we run some scenarios to get the numerical results,

that allows us to make the comparison between the model for collaborative peer and the

model for selfish peer.

We run a scenario for L = 40, T = 20 twice, one without the first chunk assumption and

the second one is with first chunk option.

121. CHAPTER 5. THE FIRST BLOCK PROBLEM

Figure 5.8: GUI Program to find the numerical solution with first block option

• In Fig 5.9, PcFB represents the continuity with first chunk option, in this figure the

change is not obvious, because actually the continuity in the first chunk case is very

close to the normal continuity. To recognize the difference we plot the value PcFB−Pc

as a function of neighbours, then we notice there is an improvement on the continuity,

but this improvement is extremely small as illustrated in Fig 5.10. The improvement

is around 10−5 and it is noted in the first few values of H, in other words in the range

−H. Here we have to mention again, although this is an abstract simple model with

lot of assumptions, the continuity improved, which supports the common sense when

designing the applications. Then we can say the selfish peer design is preferred in

this sort of applications, of course this result should be supported by simulations and

empirical results, which unfortunately we did not include in our work.

• In Fig 5.11 the efficiency with first chunk option is denoted as ηFB, we notice that

also the efficiency is almost the same as the efficiency without first chunk option, but

numerical results show some deviation, so we plot this deviation ηFB−η as a function

of the number of neighbours H as illustrated in Fig 5.12, this figure shows efficiency

122. CHAPTER 5. THE FIRST BLOCK PROBLEM

Figure 5.9: Continuity with different values of H and T = 5, L = 40, with first chunk

Figure 5.10: Pc − PcFB as a function of H

with first chunk to be less than the normal efficiency calculated with F (i, j). Here

we got more continuity but less efficiency, this is due to the fact that the peers are

going to ask for fewer pieces when ignoring the the first chunk, hence the efficiency

decreases, but the continuity shows a marginal improvement.

• To get better understanding why the continuity increases with first chunk option,

we plot the interesting factor U and interesting factor with first chunk option UFB

as functions of H, the result in Fig 5.13 shows that the interesting factor UFB is

higher than U , which explains the improvement on the continuity. The increment

123. CHAPTER 5. THE FIRST BLOCK PROBLEM

Figure 5.11: Efficiency η with different values of H and T = 5, L = 40, with first chunk

Figure 5.12: ηFB − η as a function of H

in interesting factor also can be explained by the calculation of FB(i, j), in this

parameter some cases (third and fourth) by ignoring the first chunk causes the common

range between two buffers to be smaller, which means the broken relation would be

smaller.

Based on this numerical results, we say that ignoring the first chunk gives a better conti-

nuity. In spite of the marginal improvement in mathematical model, the real systems could

124. CHAPTER 5. THE FIRST BLOCK PROBLEM

Figure 5.13: Interesting factor UFB as a function of H

experience better performance.

5.5 Proposing a freezing and skipping method

Based on the first block problem, we are ready now to answer some technical questions,

how the peer playback pointer moves, and under what conditions.

This question can be answered by considering the peer playback pointer at random position

in the range [ts − T, · · · , ts − 1]. let’s investigate the following scenario:

• Peer playback pointer tA is at position x ∈]ts − T, · · · , ts − 1]

• the first chunk is missing, but the peer can freeze and benefit from the the available

time x − (ts − T), freezing means the playback pointer is not going to be advanced

the next time slot, which means the lower bound ts − T will increase by one slot to

be closer to tA

• there is a probability that the peer will not download the missing piece at tA until

125. CHAPTER 5. THE FIRST BLOCK PROBLEM

tA = ts−T here the peer should ignore the first chunk, because downloading it will be

useless, and as we have seen, not downloading the first chunk gives better continuity.

This scenario is visualized in the Fig 5.14, in (a) the peer is ahead of lower bound ts − T

and is missing the first piece (missing pieces in black), then the peer can send request for

this chunk and freezing the playback pointer which causes the playing time to freeze with

one time slot. After some few slots the peer is still missing the first chunk, and as we note

in (b) some useful pieces were downloaded during the freezing process. In (b) the peer

should forward the playback pointer, then as we propose it should skip the missing pieces

till reaching the first busy slot, then the buffer would be visualized as in (c).

Proposition: regarding the previous scenario, when tA = ts − T then at the end of

Figure 5.14: sliding action scenario

the time slot the peer should advance the playback pointer or it will be out of the range

[ts − T, · · · , ts − 1] which violates our assumptions, here we propose that the peer should

skip all empty slots till it reaches the first busy slot. This gives three benefits:

• the first benefit is to utilize downloaded pieces while the playback pointer was in

126. CHAPTER 5. THE FIRST BLOCK PROBLEM

freezing state

• when the playback pointer reaches tA = ts−T that indicates the required pieces could

not be downloaded.

• pieces not downloaded during the consecutive freezing periods are most likely to be

rare, so skipping these pieces would avoid the peer future freezing periods.

Using the previous approach, we refer to the skipping action as sliding action, which

means to skip the empty slots and playing the first busy slot. This sliding action means the

stream suffer from lags, these lags could be a result of insufficient partners, then the peer

can initiate a new adaptation process to select new ones. The system designer can use this

concept to define a counter SAC, the sliding action counter, with every sliding action the

counter is increased, then after a certain threshold the peer should select new partners.

5.5.1 Probability of sliding action

We can calculate the probability of sliding Action, this event is denoted as SA by defining

the conditional probability SAx to be the probability of sliding action for a peer with

playback pointer at position x ∈ [1, · · · , T], then the sliding action will happen when the

first chunk is missing for x− 1 slots and at the end of the xth slot there would be a sliding

action. The first chunk would be empty in our model with probability 1− Pc, where Pc is

the probability of continuity, then the probability is give by:

Pr(SA) =
T

x=1

Pr(SAx)Pr(x)

=

T
x=1

(1− Pc)
x−1 1

T
(5.15)

Running simple scenario for L = 25, T = 20 we plot both the continuity in Fig 5.16 and

probability of sliding action in Fig 5.15.

the result is self explanatory, with higher continuity the probability of sliding action would

be smaller, which is the expected behaviour.

127. CHAPTER 5. THE FIRST BLOCK PROBLEM

Figure 5.15: Probability of sliding action as a function of H

Figure 5.16: continuity for L = 25, T = 20 as a function of H

128. CHAPTER 5. THE FIRST BLOCK PROBLEM

5.6 Conclusion

In this chapter we investigated the problem of First Block or First Chunk. By capturing

this problem and studding the dynamics of playback pointer in the tolerant delay range,

we were able to propose a method for freezing and skipping the playback pointer.We also

provided the system designer with probability of skipping action. We proved that ignoring

the first chunk in particular cases gives better continuity. The First chunk problem required

more sophisticated calculation than the original model, though the Markovian model was

not modified, which proves the flexibility and extensibility properties of our the model.

129. CHAPTER 6. CONCLUSION, LIMITATIONS AND FUTURE WORK

Chapter 6

Conclusion, Limitations and

Future Work

we often discover what will do by

finding out what will not do; and

probably he who never made a mistake

never made a discovery

Samuel Smiles

6.1 Concluding our work

P
2P streaming emerged in recent years as compelling applications, in this sort

of applications peers play the role of both viewers and streamers, which was

previously reserved to servers. Proposals for designing P2P streaming frameworks can be

categorized into two main approaches: the tree-based approach and the data-driven ap-

proach.

In tree based approach nodes are positioned in tree starting with root as a streamer, the

structure is built by exploiting some DHT schemes like Pastry. This approach is natural

in streaming applications because it achieves the minimum delay. however, tree-based ap-

proach suffers from drawbacks, such as failure in a node located at the top of the tree would

cause service interruption for many sibling nodes. Also maintaining the tree structure is

130. CHAPTER 6. CONCLUSION, LIMITATIONS AND FUTURE WORK

overwhelming task, while nodes leave and join the overlay, the structure should respond

to these changes as quickly as possible, this results in much complicated design and lot of

overhead for control messages.

Nodes in tree could be at the bottom, then they are known as leaves. The pure tree based

approach does not benefit from the leaves bandwidth, and taking into consideration the

number of leaves in binary tree would be more than 50% of nodes, thereby this design is

not efficient. To solve these problems mutliple trees approaches were proposed. In such

models the stream is divided into many substreams, each substream is disseminated with

one specific tree structure, then the node could be leaf in one tree but interior node in

other tree, and failure of one substream does not cause service failure. But the design and

implementation would be even more complicated when dealing with forest of substream

trees.

Unlike tree-based approaches, the data-driven approaches are much simpler in design. The

overlay does not require a specific structure, because peers communicate in a manner similar

to BitTorrent protocol. Membership management could be done using centralized track-

ers or by using gossip algorithm. This model is known as pull-based model, in which the

peer sends requests for missing pieces to neighbours. The basic model has been also im-

proved with hybrid push-pull mechanism, where peer asks to subscribe to some substreams

from parent nodes, then the parent node pushes the substream to the child. Data-driven

approaches proved to be more resilient to churn rate than the tree-based approaches do.

In our thesis we proposed a Markovian model to shed the light on the data-driven P2P

streaming systems performance, and designed a desktop application using Qt Framework

to specify the system configuration and extract the system performance metrics. This work

can be described as three major phases.

First phase was analysing the relation between two buffers, by calculating the probability

of broken relation denoted as F (i, j), that is the probability a peer with i useful pieces is not

interested in downloading pieces from another peer with j useful pieces. In this calculation

we took into consideration the random location of playback pointers, and the random posi-

tions of chunks in the buffer map. We were able to limit the calculation to five cases with

the help of some definitions and probabilities like the probability of partial broken relation.

131. CHAPTER 6. CONCLUSION, LIMITATIONS AND FUTURE WORK

Second Phase was dedicated to propose the basic model, in P2P streaming applications

we are interested in the system performance experienced by a randomly selected peer, this

model is the user state model. The performance of the system is then simply the continu-

ity of live stream, which was the motivation for defining the user state to be the number

of chunks available in the buffer at any instance of time. We gradually built the Markov

chain, by defining the transition probabilities matrix, and proved that the rows of probabil-

ity transition matrix each sum up to one. We also provided some assumptions to simplify

the model, such as the peer can send only one request for each missing piece, the peer can

upload one chunk per time slot, and peers are assumed to be homogeneous.

Then we released the uploading bandwidth restriction, by assuming the peer is able to up-

load β chunks per time slot, and finally we addressed the case of heterogeneous peers with

uploading bandwidth is assumed to be a random variable W .

By numerically solving this model, we got many results which are summarized as the fol-

lowing:

1. Increasing the number of neighbours increases the continuity to a certain threshold,

after which the continuity improvement is marginal. This threshold as we found is in

the first few values 1 · · · 5, which complies with empirical results obtained in DONet.

2. Increasing the maximum allowed delay causes the continuity to drop down, hence

smaller values of delay are preferred. But we argued that smaller values of delay

makes peer more demanding when searching for partners.

3. Increasing the buffer length causes the continuity to increase, but also there is a trade-

off, because the buffer map is exchanged among peers to share information and build

partial view of overlay.

4. The efficiency of the system is defined as the proportion of time in which the peer is

uploading to other peers. We found that by increasing the number of neighbours the

efficiency decreases, we justified that with more neighbours the peer has more choices

for sending the request.

5. Increasing the uploading bandwidth results in increasing the continuity, but also for

132. CHAPTER 6. CONCLUSION, LIMITATIONS AND FUTURE WORK

a certain threshold after which the improvement is marginal.

6. Continuity for heterogeneous case is lower than the continuity in the homogeneous

case because of the variability of uploading bandwidth.

Third phase was to explain the flexibility of our model to answer more difficult ques-

tions. In this section we attacked the problem of the first chunk that is downloaded and

not played out because of missing the playback deadline. After describing the problem we

modified the calculation of broken relation to ignore the first chunk in the cases when the

playback pointer is at the lower bound of the defined range. We also discussed the relation

between the abstract model and the real applications which does not have strict and de-

terministic range for the playback pointers, so peers are not fully synchronized but we say

they are semi-synchronized. The relations are also not static, because the environment is

very dynamic, peers could periodically change the partnership relations. For these reasons

when the first chunk is downloaded, it could be used by other peers in real applications.

We referred to this concept as collaborative peer. But it provides no improvement for the

peer itself, hence it is considered useless from the peer perspective. when constructing the

model for solving the problem of the first chunk, we assumed the peer will ignore the first

chunk, and we referred to this approach as the selfish peer. By getting the numerical results

we approved that ignoring the first chunk would provide better continuity even though the

theoretical improvement is very small, we believe that real application would experience

much better performance.

Finally we proposed a very simple theoretical approach for freezing and skipping the play-

back pointer, this approach benefits from the delay tolerance, suggests to freeze the playback

pointer for the grace period allowed by the delay when the current slot is missing the re-

quired chunk, then when reaching the lower bound the peer should ignore the first chunk

for better continuity, and at the end of the time slot skip the empty slots till reaching the

first busy slot. This approach gives the following benefits:

• the first benefit is to utilize downloaded pieces while the playback pointer was in

freezing state

133. CHAPTER 6. CONCLUSION, LIMITATIONS AND FUTURE WORK

• when the playback pointer reaches the lower bound, it indicates that the required

pieces could not be downloaded.

• pieces not downloaded during the consecutive freezing periods are most likely to be

rare, so skipping this pieces would avoid the peer any possible future freezing periods.

We provided the system designer with the probability of initiating a skipping action, the

numerical results show this parameter is inversely proportional to continuity.

6.2 Limitations and future work

In spite of the promising results obtained from the Markovian model, we have to mention

that this model is simple and does not capture all aspects of P2P live streaming applications.

We fairly mention the limitations of this model to overcome them in future work:

1. The number of neighbours H is assumed to be constant and identical for all peers,

this simplified our model based on the argument of randomly selecting one peer and

finding the probability distribution of useful chunks in its buffer. The variability of

this parameter in data-driven approach has a minor effect compared to tree-based

approaches. However, this assumption and many others make the model incapable of

analysing the transient behaviour. Modelling the system using user space approach

(selecting one peer) means also the model can not consider the effect of overlay size

on the continuity.

2. We assumed that the peer randomly selects a neighbour and with the probability of

interesting factor, it sends a request for a missing piece. This is very simple approach

compared to the real implementation of the scheduler. The algorithm could select

some missing pieces with higher priority than other pieces, like in the rarest first

or greedy approach. Our model can be modified to meet these approaches in the

calculation of F (H, i
′
, k) that resembles the scheduler in the real implementation.

3. We assumed a theoretical deterministic range for the playback pointer with maximum

allowed delay to be constant T . We extensively justified this assumption and provided

134. CHAPTER 6. CONCLUSION, LIMITATIONS AND FUTURE WORK

some approaches to approximate it in real applications. Even though the fixed value

of T made the calculation of the probability of broken relation straightforward, it can

be modified to include an average value assumed by the system designer, such as:

all playback pointers’ deviations should be less than 10 slots. Assuming the delay to

be a random variable would make the model more consistent, and it complicates the

calculation of F (i, j) though.

4. although the basic model numerical results complied with empirical results from the

literature, the first chunk problem should be approved with simulation software. And

it can be further generalized to ignore the first γ chunks, and finding the optimal

value of chunks to be ignored. This problem can be integrated with priority analysis

for more complicated model.

We hope to fill these gaps in a future work.

135. BIBLIOGRAPHY

Bibliography

[1] Harold Abelson. Structure and Interpretation of Computer Programs. MIT Press,

Cambridge, 1996. ISBN 0262011530.

[2] B. Beverly Yang and H. Garcia-Molina. Designing a super-peer network. In Data

Engineering, 2003. Proceedings. 19th International Conference on, pages 49 – 60, march

2003. doi: 10.1109/ICDE.2003.1260781.

[3] Eric A. Carlen. The power method. http://people.math.gatech.edu/~carlen/

2605S04/Power.pdf. URL http://people.math.gatech.edu/~carlen/2605S04/

Power.pdf.

[4] Miguel Castro, Peter Druschel, Anne-Marie Kermarrec, Animesh Nandi, Antony Row-

stron, and Atul Singh. Splitstream: High-bandwidth multicast in cooperative environ-

ments. In SOSP ’03, pages 298–313, 2003.

[5] Ching. Markov chains : models, algorithms and applications. Springer, New York,

2006. ISBN 0387293353.

[6] Cisco. Cisco visual networking index: Forecast and methodology, 2010-2015. White

Paper, June 2011.

[7] I. Clarke, S.G. Miller, T.W. Hong, O. Sandberg, and B. Wiley. Protecting free expres-

sion online with freenet. Internet Computing, IEEE, 6(1):40 –49, jan/feb 2002. ISSN

1089-7801. doi: 10.1109/4236.978368.

[8] Ian Clarke. A distributed decentralised information storage and retrieval system. un-

dergraduate thesis, University Of Edinburgh, 1999.

http://people.math.gatech.edu/~carlen/2605S04/Power.pdf
http://people.math.gatech.edu/~carlen/2605S04/Power.pdf
http://people.math.gatech.edu/~carlen/2605S04/Power.pdf
http://people.math.gatech.edu/~carlen/2605S04/Power.pdf

136. BIBLIOGRAPHY

[9] Bram Cohen. Incentives build robustness in bittorrent. In 1st Workshop on Economics

of Peer-to-Peer Systems, May 2003.

[10] J. Dilley, B. Maggs, J. Parikh, H. Prokop, R. Sitaraman, and B. Weihl. Globally

distributed content delivery. Internet Computing, IEEE, 6(5):50 – 58, sep/oct 2002.

ISSN 1089-7801. doi: 10.1109/MIC.2002.1036038.

[11] D. Doval and D. O’Mahony. Overlay networks: A scalable alternative for p2p. Internet

Computing, IEEE, 7(4):79 – 82, july-aug. 2003. ISSN 1089-7801. doi: 10.1109/MIC.

2003.1215663.

[12] Bin Fan, Dah-Ming Chiu, and J.C.S. Lui. The delicate tradeoffs in bittorrent-like

file sharing protocol design. In Network Protocols, 2006. ICNP ’06. Proceedings of

the 2006 14th IEEE International Conference on, pages 239 –248, nov. 2006. doi:

10.1109/ICNP.2006.320217.

[13] Alberto Garcia. Probability, statistics, and random processes for electrical engineering.

Pearson/Prentice Hall, Upper Saddle River, NJ, 2008. ISBN 0131471228.

[14] Max Haot. Who powered youtube live? an industry comment. http://www.

livestream.com/blog/?p=756. URL http://www.livestream.com/blog/?p=756.

[15] Yang hua Chu, S.G. Rao, S. Seshan, and Hui Zhang. A case for end system multicast.

Selected Areas in Communications, IEEE Journal on, 20(8):1456 – 1471, oct 2002.

ISSN 0733-8716. doi: 10.1109/JSAC.2002.803066.

[16] Alan Jeffrey. Table of Integrals, Series and Products. Academic, San Diego, 2007.

ISBN 0123736374.

[17] Ph. D John H. Mathews. The power method for eigenvectors. http://math.

fullerton.edu/mathews/n2003/PowerMethodMod.html, 2003. URL http://math.

fullerton.edu/mathews/n2003/PowerMethodMod.html. online resource.

[18] T. Klingberg and R. Manfredi. Gnutella 0.6. Rfc, Network Working Group, June 2002.

http://rfc-gnutella.sourceforge.net/src/rfc-0_6-draft.html.

http://www.livestream.com/blog/?p=756
http://www.livestream.com/blog/?p=756
http://www.livestream.com/blog/?p=756
http://math.fullerton.edu/mathews/n2003/PowerMethodMod.html
http://math.fullerton.edu/mathews/n2003/PowerMethodMod.html
http://math.fullerton.edu/mathews/n2003/PowerMethodMod.html
http://math.fullerton.edu/mathews/n2003/PowerMethodMod.html
http://rfc-gnutella.sourceforge.net/src/rfc-0_6-draft.html

137. BIBLIOGRAPHY

[19] M. Knoll, A. Wacker, G. Schiele, and T. Weis. Bootstrapping in peer-to-peer systems.

In Parallel and Distributed Systems, 2008. ICPADS ’08. 14th IEEE International Con-

ference on, pages 271 –278, dec. 2008. doi: 10.1109/ICPADS.2008.26.

[20] R. Kumar, Yong Liu, and K. Ross. Stochastic fluid theory for p2p streaming systems. In

INFOCOM 2007. 26th IEEE International Conference on Computer Communications.

IEEE, pages 919 –927, may 2007. doi: 10.1109/INFCOM.2007.112.

[21] Bo Li, Susu Xie, G.Y. Keung, Jiangchuan Liu, I. Stoica, Hui Zhang, and Xinyan Zhang.

An empirical study of the coolstreaming+ system. Selected Areas in Communications,

IEEE Journal on, 25(9):1627 –1639, december 2007. ISSN 0733-8716. doi: 10.1109/

JSAC.2007.071203.

[22] Xiuqi Li and Jie Wu. Searching techniques in peer-to-peer networks. Aspects of Ad

Hoc Sensor and PeertoPeer Networks, pages 1–31, 2006. URL http://citeseerx.

ist.psu.edu/viewdoc/download?doi=10.1.1.84.4014&rep=rep1&type=pdf.

[23] Hao Liu and G. Riley. How efficient peer-to-peer video streaming could be? In

Consumer Communications and Networking Conference, 2009. CCNC 2009. 6th IEEE,

pages 1 –5, jan. 2009. doi: 10.1109/CCNC.2009.4784765.

[24] Jiangchuan Liu, S.G. Rao, Bo Li, and Hui Zhang. Opportunities and challenges of

peer-to-peer internet video broadcast. Proceedings of the IEEE, 96(1):11 –24, jan.

2008. ISSN 0018-9219. doi: 10.1109/JPROC.2007.909921.

[25] Vinay Pai, Kapil Kumar, Karthik Tamilmani, Vinay Sambamurthy, Alexander E.

Mohr, and Er E. Mohr. Chainsaw: Eliminating trees from overlay multicast. In

in IPTPS, pages 127–140, 2005.

[26] Hyojin Park, Jinhong Yang, Juyoung Park, Shin Gak Kang, and Jun Kyun Choi. A

survey on peer-to-peer overlay network schemes. In Advanced Communication Tech-

nology, 2008. ICACT 2008. 10th International Conference on, volume 2, pages 986

–988, feb. 2008. doi: 10.1109/ICACT.2008.4493931.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.84.4014&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.84.4014&rep=rep1&type=pdf

138. BIBLIOGRAPHY

[27] Dongyu Qiu and R. Srikant. Modeling and performance analysis of bittorrent-like

peer-to-peer networks. SIGCOMM Comput. Commun. Rev., 34:367–378, August 2004.

ISSN 0146-4833. doi: http://doi.acm.org/10.1145/1030194.1015508. URL http://

doi.acm.org/10.1145/1030194.1015508.

[28] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Shenker.

A scalable content-addressable network. SIGCOMM Comput. Commun. Rev., 31(4):

161–172, August 2001. ISSN 0146-4833. doi: 10.1145/964723.383072. URL http:

//doi.acm.org/10.1145/964723.383072.

[29] The Register. Google goes gaga for optero. http://www.theregister.co.uk/2006/

03/04/goog_opteron_sun/, 2006. URL http://www.theregister.co.uk/2006/03/

04/goog_opteron_sun/. online resource.

[30] John Risson and Tim Moors. Survey of research towards robust peer-to-peer networks:

Search methods. Computer Networks, 50(17):3485 – 3521, 2006. ISSN 1389-1286.

doi: 10.1016/j.comnet.2006.02.001. URL http://www.sciencedirect.com/science/

article/pii/S1389128606000223.

[31] Antony I. T. Rowstron and Peter Druschel. Pastry: Scalable, decentralized object loca-

tion, and routing for large-scale peer-to-peer systems. In Proceedings of the IFIP/ACM

International Conference on Distributed Systems Platforms Heidelberg, Middleware ’01,

pages 329–350, London, UK, UK, 2001. Springer-Verlag. ISBN 3-540-42800-3. URL

http://dl.acm.org/citation.cfm?id=646591.697650.

[32] Weiqian Sang and Dongyu Qiu. On the efficiency of peer-to-peer file sharing. In

Multimedia and Expo, 2007 IEEE International Conference on, pages 32 –35, july

2007. doi: 10.1109/ICME.2007.4284579.

[33] R. Schollmeier. A definition of peer-to-peer networking for the classification of peer-

to-peer architectures and applications. In Peer-to-Peer Computing, 2001. Proceedings.

First International Conference on, pages 101 –102, aug 2001. doi: 10.1109/P2P.2001.

990434.

http://doi.acm.org/10.1145/1030194.1015508
http://doi.acm.org/10.1145/1030194.1015508
http://doi.acm.org/10.1145/964723.383072
http://doi.acm.org/10.1145/964723.383072
http://www.theregister.co.uk/2006/03/04/goog_opteron_sun/
http://www.theregister.co.uk/2006/03/04/goog_opteron_sun/
http://www.theregister.co.uk/2006/03/04/goog_opteron_sun/
http://www.theregister.co.uk/2006/03/04/goog_opteron_sun/
http://www.sciencedirect.com/science/article/pii/S1389128606000223
http://www.sciencedirect.com/science/article/pii/S1389128606000223
http://dl.acm.org/citation.cfm?id=646591.697650

139. BIBLIOGRAPHY

[34] S.M.Y. Seyyedi and B. Akbari. Hybrid cdn-p2p architectures for live video streaming:

Comparative study of connected and unconnected meshes. In Computer Networks and

Distributed Systems (CNDS), 2011 International Symposium on, pages 175 –180, feb.

2011. doi: 10.1109/CNDS.2011.5764567.

[35] R. Stern. Napster: a walking copyright infringement? Micro, IEEE, 20(6):4 –5, 95,

nov/dec 2000. ISSN 0272-1732. doi: 10.1109/40.888696.

[36] I. Stoica, R. Morris, D. Liben-Nowell, D.R. Karger, M.F. Kaashoek, F. Dabek, and

H. Balakrishnan. Chord: a scalable peer-to-peer lookup protocol for internet appli-

cations. Networking, IEEE/ACM Transactions on, 11(1):17 – 32, feb 2003. ISSN

1063-6692. doi: 10.1109/TNET.2002.808407.

[37] Athena Vakali and George Pallis. Content delivery networks: Status and trends. IEEE

INTERNET COMPUTING, December 2003.

[38] Wamberto Vasconcelos. Cs4027. lectures, University of Aberdeen. http://www.abdn.

ac.uk/~csc232/teaching/CS4027/abdn.only/p2p-freenet.pdf.

[39] A. Vlavianos, M. Iliofotou, and M. Faloutsos. Bitos: Enhancing bittorrent for sup-

porting streaming applications. In INFOCOM 2006. 25th IEEE International Con-

ference on Computer Communications. Proceedings, pages 1 –6, april 2006. doi:

10.1109/INFOCOM.2006.43.

[40] Wikipedia. Napster. http://en.wikipedia.org/wiki/Napster. URL http://en.

wikipedia.org/wiki/Napster. online resource.

[41] Susu Xie, Bo Li, G.Y. Keung, and Xinyan Zhang. Coolstreaming: Design, theory,

and practice. Multimedia, IEEE Transactions on, 9(8):1661 –1671, dec. 2007. ISSN

1520-9210. doi: 10.1109/TMM.2007.907469.

[42] Bo Lis Xinyan Zhang, Jiangchuan Liut and Tak-Shng Peter Yum. Coolstreamingdonet:

A data-driven overlay network for peer-to-peer live media streaming. In INFOCOM

2005. 24th Annual Joint Conference of the IEEE Computer and Communications So-

cieties., 2005.

http://www.abdn.ac.uk/~csc232/teaching/CS4027/abdn.only/p2p-freenet.pdf
http://www.abdn.ac.uk/~csc232/teaching/CS4027/abdn.only/p2p-freenet.pdf
http://en.wikipedia.org/wiki/Napster
http://en.wikipedia.org/wiki/Napster
http://en.wikipedia.org/wiki/Napster

140. BIBLIOGRAPHY

[43] Beverly Yang and Hector Garcia-Molina. Comparing hybrid peer-to-peer systems (ex-

tended). Technical Report 2000-35, Stanford InfoLab, 2000. URL http://ilpubs.

stanford.edu:8090/455/.

[44] Hao Yin, Xuening Liu, Geyong Min, and Chuang Lin. Content delivery networks: a

bridge between emerging applications and future ip networks. Network, IEEE, 24(4):

52 –56, july-august 2010. ISSN 0890-8044. doi: 10.1109/MNET.2010.5510919.

[45] Yipeng Zhou, Dah Ming Chiu, and J.C.S. Lui. A simple model for analyzing p2p

streaming protocols. In Network Protocols, 2007. ICNP 2007. IEEE International

Conference on, pages 226 –235, oct. 2007. doi: 10.1109/ICNP.2007.4375853.

http://ilpubs.stanford.edu:8090/455/
http://ilpubs.stanford.edu:8090/455/

	Background and literature review
	Introduction
	Significance and Emergence of P2P
	P2P Classification
	Centralized index
	Local Index
	Distributed Index

	Unstructured and structured overlays
	Unstructured P2P networks
	Structured P2P networks

	P2P Live streaming
	Tree-based approach
	Data-driven approach
	Hybrid push-pull model

	Related work
	Thesis organization

	The probability of broken relation
	Introduction
	Definitions
	Chunks
	Peer Playback Pointer - PPP
	Stream Playback pointer - SPP
	Maximum Allowed Delay - T
	Buffer
	Useful Pieces
	Old pieces
	Missing pieces
	Virtual Buffer
	Relation between T and L

	Important events
	The probability of finding partial useful pieces - U(x,i,G)
	The probability of Partial Broken Relation - P(i,j,G,K,x)

	The cases of broken relation
	Case1 - tB tA-L
	Case2 - tA-L+1 tB tA-1
	Case3 - tA tB tA+L-1
	Case4 - tA+L tB
	Case5 - tA+L tB-L
	The probability of broken relation

	Discussion
	Conclusion

	The Probabilistic model
	Introduction
	User state
	Probability of busy slot i
	Max number of requests D
	ri,n
	Death rate i
	Birth rate Zi,k
	Markov chain
	Interesting factor Ui
	F(H,i',K)
	Average number of requests
	Distribution of received requests X
	Probability of fulfilling a request Q
	ri,n
	Paradox of Q
	Average download rate
	Efficiency
	Continuity Pc
	Discussion of Numerical results
	Continuity Pc as a function of H
	Average request rate
	Comparison between DONet and our model results
	The average number of received requests H
	Probability of fulfilling a request Q
	Average download rate
	Why Pc increases in the range -H?
	The effect of buffer length L
	The effect of maximum allowed delay T
	Efficiency
	Releasing upload bandwidth
	Releasing uploading bandwidth for Heterogeneous peers

	Conclusion

	Problems in numerical solution
	Introduction
	The initial conditions tree - F(H,i',K)
	Linear recursion and iteration
	Tree Recursion
	Simulating the call stack
	Multilevel Cache structure

	Method used to get the steady-state solution for the markov chain
	Iterative solution for Markov chain
	Numerical Solution for Our Model
	GUI Software to find the numerical solution

	Conclusion

	The First Block Problem
	Introduction
	Capturing the problem
	Modifying the broken relation
	Case1 - tB tA-L
	Case2 - tA-L+1 tB tA-1
	Case3 - tA tB tA+L-1
	Case4 - tA+L tB
	Case5 - tA+L tB-L
	Broken relation in the first chunk problem

	Numerical results
	Proposing a freezing and skipping method
	Probability of sliding action

	Conclusion

	Conclusion, Limitations and Future Work
	Concluding our work
	Limitations and future work

