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ABSTRACT

Load Balancing for the Agile All-Photonic Network

Imad Khazali, Ph.D.

Concordia University, 2012

The Agile All-Photonic Network (AAPN) uses Time Division Multiplexing (TDM)

to better utilize the bandwidth of Wavelength Division Multiplexing (WDM) sys-

tems. It uses agile all-photonic switches as advances in the photonic switching tech-

nology made the design of all-photonic devices with switching latency in the sub-

microseconds feasible. The network has a simplified overlaid star architecture that

can be deployed in a Metropolitan Area Network (MAN) or a Wide Area Network

(WAN) environment. This overlaid architecture, as opposed to general mesh architec-

ture, scales network capacity to multiples of Tera bits per second, simplifies routing,

increases reliability, eliminates wavelength conversion, and the need for accurate traf-

fic engineering.

The objective of this thesis is to propose and analyze different load balancing

methods for the deployment of the AAPN network in a WAN environment. The anal-

ysis should provide interested Internet Service Providers (ISPs) with a comprehensive

study of load balancing methods for using the AAPN network as their backbone net-

work. The methods balance the load at the flow level to reduce packet reordering.

The methods are stateless and can compute routes quickly based on the packet flow
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identifier. This is an important issue when deploying AAPN as an Internet backbone

network where the number of flows is large and storing flow state in lookup tables

can limit the network performance.

The load balancing methods, deployed at the edge nodes, require reliable signaling

with the bandwidth schedulers at the core nodes. To provide a reliable channel

between the edge and core nodes, the Control Messages Delivery Protocol (CMDP) is

proposed as part of this thesis work. The protocol is designed to work in environments

where propagation delays are long and/or the error rates are high. It is used to deliver

a burst of short messages in sequence and with no errors. Combined with the reliable

routing protocol proposed previously for the AAPN network, they form the control

plane for the network.

To extend the applicability of the load balancing methods to topologies beyond

AAPN overlaid star topology, the Valiant Load Balancing (VLB) method is used to

build an overlaid star topology on top of the physical network. The VLB method

provides guaranteed performance for highly variable traffic matrices within the hose

traffic model constraints. In addition to the guaranteed performance, deploying the

VLB method in the AAPN network, eliminates signaling and replaces the dynamic

core schedulers with static scheduler that can accommodate all traffic matrices within

the hose traffic model boundaries.

iv



Acknowledgments

I have had the good fortune of having Dr. Anjali Agarwal as my thesis advisor.

She has not only offered invaluable assistance and supported me financially but also

given me the freedom to explore and find my own research topic.

Deepest thanks to the members of my supervisory committee, Dr. Ahmed Elha-

keem, Dr. Ferhat Khendek, Dr. Olga Ormandjieva and my external examiner Dr

Michel Kadoch without their knowledge and assistance this thesis would not have

been successful.

I owe my deepest thanks to my father, mother, brothers and sisters for deep love

and encouragements they have given me.

Next, I would like to thank all the people in my lab for making it a friendly and

lively working place.

Lastly, I would like to express my deep gratitude to my wife Ola for her assistance

in many ways for the successful completion of this thesis. During the many late nights

and long weekends I spent working on this thesis; her patience was tried, but never

failed. Most importantly, she has provided me with two beautiful children, Yamen

and Lana, who have brought more happiness into my life than I deserve.

v



To My Mother, father, and Wife

vi



Table of Contents

List of Tables xiii

List of Figures xiv

List of Abbreviations xvii

1 Introduction 1

1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation and Application . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 List of Objectives and Contributions . . . . . . . . . . . . . . . . . . 4

1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background 8

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 The Agile All-Photonic Network . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 The Edge Node Architecture . . . . . . . . . . . . . . . . . . . 11

2.2.2 The Core Node Architecture . . . . . . . . . . . . . . . . . . . 12

2.2.3 AAPN Core Scheduling Algorithms . . . . . . . . . . . . . . . 13

vii



2.3 Load Balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.1 Backbone Network Design and Load Balancing . . . . . . . . 15

2.3.2 Hashing and Load Balancing . . . . . . . . . . . . . . . . . . . 16

2.4 The Adaptive HRW algorithm . . . . . . . . . . . . . . . . . . . . . . 17

2.4.1 HRW Packet-to-Processor Mapping . . . . . . . . . . . . . . 18

2.4.2 Adaptive HRW Triggering Policy . . . . . . . . . . . . . . . . 19

2.4.3 Adaptive HRW Adaptation Policy . . . . . . . . . . . . . . . 20

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Control Messages Delivery Protocol 22

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.1 Motivation for Reliable Signaling in AAPN . . . . . . . . . . . 23

3.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 The Control Messages Delivery Protocol . . . . . . . . . . . . . . . . 24

3.3.1 CMDP Protocol Usage and Applicability . . . . . . . . . . . . 24

3.3.2 CMDP Protocol Features . . . . . . . . . . . . . . . . . . . . 25

3.3.3 CMDP Protocol Packets . . . . . . . . . . . . . . . . . . . . . 26

3.3.4 CMDP Protocol FEC and ARQ Mechanisms . . . . . . . . . . 28

3.4 The CMDP Protocol Operation . . . . . . . . . . . . . . . . . . . . . 30

3.4.1 AAPN Signaling Protocol Control Messages . . . . . . . . . . 30

3.4.2 Deployment for the AAPN REQ Message . . . . . . . . . . . . 31

3.4.2.1 The CMDP Handshake Phase . . . . . . . . . . . . . 32

viii



3.4.2.2 The CMDP Error Free Operation for the REQ Message 33

3.4.2.3 The CMDP FEC Error Recovery for the REQ Message 34

3.4.2.4 The CMDP ARQ Error Recovery for the REQ Message 34

3.4.3 Deployment for AAPN GNT Message . . . . . . . . . . . . . . 35

3.4.3.1 The CMDP Error Free Operation for the GNT Message 36

3.4.3.2 The CMDP FEC Error Recovery for the GNT Message 37

3.4.3.3 The CMDP ARQ Error Recovery for the GNT Message 39

3.4.3.4 The CMDP For Non-Consecutive GNT Messages . . 39

3.5 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 Load Balancing for the AAPN Network 46

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3 The Adaptive Routing Architecture for the AAPN Network . . . . . 47

4.3.1 The AAPN Adaptation Triggering Policy . . . . . . . . . . . 51

4.3.2 The AAPN Minimal Flow Remapping Triggering Policy . . . . 54

4.3.3 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . 55

4.4 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4.1 Simulations Input . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4.2 The AAPN Routing Architecture Parameters . . . . . . . . . 58

4.4.3 Routing Architecture Performance Simulations . . . . . . . . 59

ix



4.4.4 Routing Architecture with Different Link Sets Measurement

Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4.5 Routing Architecture with Minimal Remapping Performance

Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5 Load Balancing with QoS for the AAPN Network 75

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2 The QoS Routing Architecture for the AAPN Network . . . . . . . . 76

5.2.1 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . 77

5.3 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.3.1 Simulations Input . . . . . . . . . . . . . . . . . . . . . . . . 78

5.3.2 The Static and Adaptive Load Balancing Methods Parameters 80

5.3.3 Simulations Results . . . . . . . . . . . . . . . . . . . . . . . . 80

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6 Flow-Based Routing Architecture for Valiant Load-Balanced Net-

works 85

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.3 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.4 The Adaptive Routing Architecture for the VLB Network . . . . . . . 89

6.4.1 Mapping Policy . . . . . . . . . . . . . . . . . . . . . . . . . . 90

x



6.4.2 Triggering Policy . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.4.3 Adaptation Policy . . . . . . . . . . . . . . . . . . . . . . . . 91

6.4.4 Minimal Flow Remapping Selection Scheme . . . . . . . . . . 91

6.4.5 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . 93

6.5 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.5.1 Simulations Input . . . . . . . . . . . . . . . . . . . . . . . . 94

6.5.2 Routing Architecture Parameters . . . . . . . . . . . . . . . . 95

6.5.3 Simulations Results . . . . . . . . . . . . . . . . . . . . . . . . 95

6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7 Conclusion and Future Work 102

7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

A Load Balancing with Minimal Flow Remapping for Network Proces-

sors 106

A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

A.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

A.3 The Minimal Flow Remapping Selection Scheme . . . . . . . . . . . . 110

A.4 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

A.4.1 Simulations Input . . . . . . . . . . . . . . . . . . . . . . . . 114

A.4.2 The Adaptive HRW Method Parameters . . . . . . . . . . . . 115

A.4.3 Simulations Results . . . . . . . . . . . . . . . . . . . . . . . . 115

xi



A.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

xii



List of Tables

4.1 Requests dropped statistics for the ideal, static, and adaptive load

balancing methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2 Requests dropped statistics for the downstream, upstream, and adap-

tive load balancing methods. . . . . . . . . . . . . . . . . . . . . . . . 68

4.3 Requests dropped statistics for the minimal remapping and adaptive

load balancing methods. . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.1 Flow remappings when using no selection scheme and when using the

selection scheme in the VLB network. . . . . . . . . . . . . . . . . . . 100

A.1 Flow remappings when using no selection scheme and when using the

selection scheme in the load balanced router. . . . . . . . . . . . . . . 116

xiii



List of Figures

2.1 The AAPN overlaid architecture. . . . . . . . . . . . . . . . . . . . . 11

2.2 The AAPN edge node architecture. . . . . . . . . . . . . . . . . . . . 12

2.3 The AAPN layered core node architecture. . . . . . . . . . . . . . . . 13

3.1 The CMDP protocol packets. . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Protocol Data Packet (PDP) with m = 1. . . . . . . . . . . . . . . . 29

3.3 The AAPN network signaling messages for timeslot resources. . . . . 31

3.4 The CMDP Handshake Phase . . . . . . . . . . . . . . . . . . . . . . 32

3.5 The CMDP error free operation for REQ messages. . . . . . . . . . . 33

3.6 The CMDP FEC error recovery for REQ messages. . . . . . . . . . . 35

3.7 The CMDP ARQ error recovery for REQ messages. . . . . . . . . . . 36

3.8 The CMDP error free operation for GNT messages. . . . . . . . . . . 37

3.9 The CMDP FEC error recovery for GNT messages. . . . . . . . . . . 38

3.10 The CMDP ARQ error recovery for GNT messages. . . . . . . . . . . 40

3.11 The CMDP for non-consecutive GNT messages. . . . . . . . . . . . . 41

xiv



3.12 Average Delay versus Error Rate in AAPN MAN and WAN environ-

ments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1 The adaptive routing architecture for the AAPN network . . . . . . . 49

4.2 The traffic load on the downstream and upstream links with shortest

path routing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3 The traffic load on the downstream and upstream links with the static

load balancing method. . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.4 The traffic load on the downstream and upstream links with the adap-

tive load balancing method. . . . . . . . . . . . . . . . . . . . . . . . 62

4.5 The number of requests dropped every ∆T period on the downstream

and upstream links. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.6 The number of flows appearing and remapped every ∆T period for the

adaptive and minimal remapping adaptive load balancing methods. . 67

4.7 The traffic load on the downstream and upstream links when the adap-

tation triggering policy is based on traffic loads from the downstream

links. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.8 The traffic load on the downstream and upstream links when the adap-

tation triggering policy is based on traffic loads from the upstream links. 70

4.9 The traffic load on the downstream and upstream links. . . . . . . . . 72

5.1 The QoS routing architecture for routing the BE and EF traffic. . . . 77

xv



5.2 The actual and ideal traffic dropped on the downstream links of edge

node 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.3 The traffic load on the downstream links for the F-FSNDP-EF and

F-FSNDP-FF traffic models. . . . . . . . . . . . . . . . . . . . . . . . 83

6.1 Five edge nodes interconnected by a fully logical mesh. . . . . . . . . 88

6.2 Routing architecture for balancing the Internet traffic over the VLB

network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.3 The traffic load on the link set with the static HRW scheme. . . . . . 96

6.4 The traffic load on the link set with the adaptive HRW scheme. . . . 97

6.5 The traffic load on the link set with the adaptive HRW scheme with

minimal flow remapping. . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.6 The total number of flows appearing and the total number of flows

remapped every ∆T period. . . . . . . . . . . . . . . . . . . . . . . . 99

6.7 The figure shows the percentage of traffic dropped every ∆T in excess

of the ideal drop when static, no selection, and minimal flow remapping

selection schemes are deployed. . . . . . . . . . . . . . . . . . . . . . 100

A.1 The filtered workload intensity on the different network processors. . 117

A.2 The total number of flows appearing and the total number of flows

remapped every ∆T period. . . . . . . . . . . . . . . . . . . . . . . . 118

A.3 The figure shows the number of packets dropped every ∆T . . . . . . . 119

xvi



List of Abbreviations

AAPN Agile All-Photonic Network

AHRW Adaptive Highest Random Weight

ARQ Automatic Repeat reQuest

ATM Asynchronous Transfer Mode

BE Best Effort

CAC Connection Admission Control

CARP Cache Array Routing Protocol

CMDP Control Messages Delivery Protocol

CP Control Processor

EF Expedited Forwarding

F–FSNDP-FF Fractal-Fractal Shot Noise Driven Poisson Point Process-Fractal Filter

F-FSNDP-EF Fractal-Fractal Shot Noise Driven Poisson Point Process-Exponential

Filter

FE Forwarding Engine

FEC Forward Error Control

GNT Grant

xvii



H-FSNDP Homogeneous-Fractal Shot Noise Driven Poisson Point Process

HRW Highest Random Weight

IP Internet Protocol

ISP Internet Service Provider

LLP Least Loaded Path

MAN Metropolitan Area Network

MDP Markov Decision Process

MPLS Multi-Protocol Label Switching

MTP2 Message Transport Part 2

NPU Network Processing Unit

OSPF Open Shortest Path First

PDP Protocol Data Packet

QoS Quality Of Service

REQ Request

SP Strict Priority

SS7 Signaling System 7

SSCOP Service Specific Connection Oriented Protocol

TCP Transmission Control Protocol

TDM Time Division Multiplexing

VLB Valiant Load Balancing

VOQ Virtual Output Queue

WAN Wide Area Network

xviii



WDM Wavelength Division Multiplexing

xix



Chapter 1

Introduction

In this chapter, we briefly describe the problem of deploying the AAPN network as

the backbone network of an Internet Service Provider (ISP). We also present the moti-

vation and application of the proposed deployment. After that, we list the objectives

and contributions of this research. Finally, an outline section is added to describe the

structure of this thesis.

1.1 Problem Statement

ISPs are facing great challenges in provisioning their network resources due to the

rapid growth in the number of Internet users and the complexity of its traffic patterns.

Many emerging applications like voice over IP, peer-to-peer, and video on demand are

characterized with highly variable traffic that is very difficult to predict and estimate.

Currently, ISPs handle this variability in traffic by overprovisioning their backbone
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networks capacity with typical utilizations of around 20% [1].

Research has been conducted recently to design high-speed, high-bandwidth, in-

expensive backbone networks that can handle the rapid growth in Internet users and

their high traffic volume; the Agile All-Photonic Network (AAPN) is an example of

such networks [2]-[4]. The network is designed to provide the simplicity and flexibil-

ity ISPs are looking for to better utilize their network resources. It has an overlaid

star topology, that provides simplified routing and protection. It also provides the

agility needed to handle variable traffic patterns as advances in the photonic switch-

ing technology made the design of all-photonic devices with switching latency in the

sub-microseconds feasible.

This thesis focuses on studying the problem of deploying AAPN as the backbone

network for ISPs where IP routers are interconnected by the AAPN network. More

specifically, it focuses on designing a routing architecture for balancing the IP traffic

load over the AAPN network while minimizing packet reordering within one flow

identified by common fields within the packet header. Since the number of flows

is large in the backbone networks, storing flow state in lookup tables can limit the

network performance. Hence the routing architecture should eliminate the need for

flow lookup tables. Static and adaptive load balancing methods are to be studied and

their behavior and effect on the network performance in terms of packet drop and

flow remapping are to be analyzed.

To provide a reliable channel between the edge and core nodes in the AAPN

network, the Control Messages Delivery Protocol (CMDP) is proposed as part of this
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thesis. The protocol is designed to work in environments where propagation delays

are long and/or the error rates are high. It is used to deliver a burst of short messages

in sequence and with no errors. Combined with the reliable routing protocol proposed

previously for the AAPN network [5], they form the control plane for the network

that supports the operation of the load balancing methods.

To extend the applicability of the load balancing methods to topologies beyond

AAPN overlaid star topology, the Valiant Load Balancing (VLB) method [6], [7] is

used to build an overlaid star topology on top of the physical topology. Deploying the

VLB method in the AAPN network, eliminates signaling and replaces the dynamic

core schedulers with a static scheduler that can accommodate all traffic matrices

within the hose traffic model boundaries [8].

1.2 Motivation and Application

This thesis work is motivated by the extensive research in the areas of agility in

all-photonic networks and load balancing of Internet traffic over the ISP backbone

networks. The thesis should provide interested ISPs with a comprehensive study of

load balancing methods for deploying the AAPN network as their backbone network.

It should also support the deployment of the AAPN network at the core of an IP

network using the overlay Internetworking model, where control in the AAPN network

is hidden from control in the IP network.
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1.3 List of Objectives and Contributions

The main objectives and contributions of this thesis are:

1. A distributed routing architecture that balances the IP traffic in the AAPN

network. An instance of this architecture is associated with every source-

destination edge node pair in the network.

2. A Control Messages Delivery Protocol (CMDP) that is used to reliably deliver

signaling messages in the AAPN network.

3. A static load balancing method that is stateless, resilient, and preserves packets

ordering.

4. Adaptive load balancing methods that improve on the static method by reducing

the packet dropping probability:

(a) A variation that adapts the balancing weights based on the traffic load on

the downstream links from the source edge node to the core nodes.

(b) A variation that adapts the balancing weights based on the traffic load on

the upstream links from the core nodes to the destination edge node.

(c) A variation that adapts the balancing weights based on the traffic load on

both the downstream and upstream links.

5. An adaptive load balancing method that reduces the number of flows remapped

while keeping the AAPN network balanced.
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6. An adaptive load balancing method that supports two classes of traffic: the

Expedited Forwarding (EF) class that requires low jitter and packet drop rate,

and the Best Effort (BE) class.

7. A distributed routing architecture that balances the IP traffic in the VLB net-

work. This architecture extends the applicability of the load balancing methods

to networks with general topologies.

1.4 Thesis Outline

The thesis is organized as follows. Chapter 2 presents the previous fundamental work

on the fields of AAPN network and load balancing for backbone networks. It then

presents the adaptive Highest Random Weight (adaptive HRW) method on which the

AAPN routing architecture is based.

Chapter 3 describes the Control Messages Delivery Protocol (CMDP). The chapter

starts with the motivation and usage of this protocol. It then describes its features

and design. It also demonstrates the CMDP protocol deployment in the AAPN

network through a number of examples. The examples show the operation of the

protocol under different scenarios, each illustrates a specific aspect of the protocol

operation. The examples cover the reliable transport of the two AAPN signaling

messages, namely: the AAPN Request message (REQ) and the AAPN Grant message

(GNT). The chapter concludes with simulation analysis of the protocol behavior when

deployed in MAN and WAN environments.
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Chapter 4 describes the load balancing routing architecture for the AAPN net-

work. The chapter starts with the literature review for routing in the AAPN network.

It then describes the schematic diagram of the architecture with the different map-

ping levels used. It later describes the different static and adaptive variations of the

architecture. The chapter concludes with simulation analysis of the architectures in

WAN environment.

Chapter 5 describes the load balancing QoS routing architecture for the AAPN

network. The chapter starts with a description of the schematic diagram of the

architecture. The architecture is based on the static and adaptive architectures de-

scribed in chapter 4. The chapter concludes with simulation analysis of architecture

in WAN environment. The analysis uses traffic that belongs to two DiffServ traffic

classes, namely: Expedited Forwarding (EF) that is sensitive to variations in end-to-

end delay and traffic drop rate, and Best Effort (BE) that can tolerate variations in

end-to-end delay.

Chapter 6 extends the application of the routing architecture to the general mesh

topology. The idea is to create a two-hop virtual topology similar to the overlaid star

topology on top of the physical network. The Valiant Load Balancing (VLB) method

is used to create the virtual topology.

Chapter 7 concludes the thesis and lists the future work.

Appendix A deploys the minimal flow remapping scheme described in chapter 4 in

the Internet router architecture from [38]. The objective is to show that load balancing

methods proposed in this thesis are also applicable to the router architecture from
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[38]. Deploying the QoS architecture described in chapter 5 in the router architecture

is left for future work. The scheme identifies, for an underutilized (overutilized)

network processor, the input ports causing the network processor to be underutilized

(overutilized). The objective is to further reduce the number of flows remapped while

keeping the packet processing workload balanced among the different processing units

within the router.
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Chapter 2

Background

2.1 Introduction

In this chapter we review the previous fundamental work in fields related to this thesis

work. First, we review the up to date research on the Agile All-Photonic Network

(AAPN) proposed recently as an agile, high capacity core network. Second, we review

the related research in the area of load balancing, more specifically in the areas of

load balancing for backbone networks design and hashing and load balancing. We end

this chapter by presenting the adaptive Highest Random Weight (HRW) algorithm

used to design load balanced Internet routers.
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2.2 The Agile All-Photonic Network

The emergence of WDM systems [9] has dramatically increased the raw capacity of

optical links. Using WDM systems, one fibre can carry a number of optical wave-

lengths, each with a capacity of up to 40 Giga bits per second. With time, new optical

devices were developed that are capable of performing networking functions such as

optical channel switching and optical channel add/drop [10]. This enabled photonic

networks (a cloud of optical devices) to establish an end-to-end light paths, that are

transparently able to carry different types of payloads at different bit rates. This

eliminated the costly optical-electronic-optical conversions and header processing at

the core nodes.

Early photonic networks have a modularity problem as light paths, established

by concatenating wavelengths, have a fixed bandwidth capacity in the order of few

Giga bits per second. To solve this problem, research toward multiplexing on the

wavelengths has been conducted. Two types of multiplexing methods are studied:

statistical multiplexing and synchronous multiplexing. Statistical multiplexing has

two forms: burst multiplexing [11] and packet multiplexing [12]. Burst multiplexing

allows bursts (can be thought of as containers that can carry variable number of

packets) of different sizes from different sources to statistically share the wavelength.

Packet multiplexing allows packets of different sizes from different sources to statisti-

cally share a wavelength. Synchronous multiplexing uses time division multiplexing

technique to share the wavelength between the different sources. Each source is given
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a fixed length timeslot to transmit its data over the shared wavelength. The Agile All-

Photonic Network (AAPN) [2]-[4] is an example of a network that uses synchronous

time division multiplexing to better utilize the bandwidth of WDM systems. AAPN

research originates from the research into the PetaWeb network [13]-[16].

AAPN uses agile all-photonic switches as advances in the photonic switching

technology made the design of all-photonic devices with switching latency in the

sub-microseconds feasible. It proposes a simplified overlaid star network architecture

that can be deployed as a MAN or WAN network. This overlaid architecture, as op-

posed to general mesh architecture, scales network capacity to multiples of Tera bits

per second, simplifies routing, increases reliability, eliminates wavelength conversion

and the need for accurate traffic engineering [16]. With careful topological design,

AAPN can achieve the wide geographical area coverage needed to be deployed as

an Internet backbone transport network [4]. The use of all-photonic switches at the

core introduces new network control challenges as photonic buffers are proven to be

infeasible at least in the near future.

AAPN has an overlaid star topology, where each edge node is connected to a

number of photonic core nodes, see figure 2.1. AAPN core node operates at the

timeslot modularity where bandwidth allocated for a source-destination edge node

pair is a multiple of timeslots.
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Figure 2.1: The AAPN overlaid architecture.

2.2.1 The Edge Node Architecture

The main function of an edge node in an AAPN network is to perform traffic aggre-

gation, see figure 2.2. IP Packet flows are terminated at the AAPN edge nodes and

are put into a unified data format before transmission. The data units are then sent

to a Virtual Output Queue (VOQ) that is associated with a destination edge node

and is served by an outgoing link to the core node. Data units from the VOQs are

then aggregated and packaged into timeslots and sent to the core node. The timeslot

takes 10 µs to transmit and is the unit into which time intervals are sliced. At the

receipt of a timeslot, the destination edge node reassembles the constituent packet

flows, releasing them into their respective IP routers.

The AAPN network must have the ability to identify and aggregate multiple IP

packet flows into a timeslot. Regardless of the routing scheme used, consecutive

timeslots carrying traffic that belongs to the same flows can be routed through the

same core node or independently through different core nodes. The later case requires

11



re-sequencing buffers to be implemented at the destination edge node to reconstruct

the original IP packet flows.

Figure 2.2: The AAPN edge node architecture.

2.2.2 The Core Node Architecture

AAPN is an agile self-configuring network, in which a core photonic node connects

high capacity, fast electro-photonic edge nodes. An AAPN core node operates at

the timeslot modularity where the bandwidth allocated for a given source-destination

edge node pair, at any time, is an integer multiple of timeslots. The core node

in AAPN is a layered space switch, see Figure 2.3. Each layer is used to switch

timeslots on a specific wavelength. The number of layers is equal to the number of
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input wavelengths coming from each edge node. No wavelength conversion is used

in AAPN; an incoming timeslot on an incoming wavelength on an incoming port is

switched, with no conversion, to the same timeslot position on the same outgoing

wavelength on an outgoing port.

Figure 2.3: The AAPN layered core node architecture.

2.2.3 AAPN Core Scheduling Algorithms

Scheduling algorithms for the AAPN network can be divided into three categories:

frame-by-frame, slot-by-slot and burst scheduling. In frame-by-frame scheduling [17]-

[20], the core configuration is updated every frame to follow the traffic changes at the

edge nodes. A frame is a fixed number of contiguous timeslots. The traffic demands of

an edge node are signaled to the core nodes at the beginning of every frame [21]. With

the frame-by-frame scheduler running at the core node, an AAPN core configuration
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can follow traffic demand changes at the network edges as fast as a frame interval.

In slot-by-slot scheduling [22]-[23], the core configuration is updated every timeslot

to follow the traffic changes at the edges. The traffic demands of an edge node are

signaled to the core at the beginning of every timeslot [21]. With the slot-by-slot

scheduler running at the core node, an AAPN core configuration can follow traffic

demand changes at the network edges as fast as a timeslot interval.

In burst scheduling [24], the core configuration is updated continuously to follow

the traffic changes at the edges. Burst allocation requests are signaled to the core

when needed [21]. Such a signal or request informs the core scheduler of the burst

length and the burst destination.

2.3 Load Balancing

Load balancing is a technique for distributing the workload evenly over two or more

processors, network paths, or other resources. Load balancing can serve different

objectives like increasing throughout, resource utilization, reliability, and reducing

response time. For a general survey on load balancing, see [25]. Load balancing

techniques can be either static or dynamic [26]. Static load balancing schemes require

low overhead as the system state is known in advance but can not adapt to fluctuations

in system state. Dynamic load balancing schemes, on the other hand, require changes

in system state before making the decisions.
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2.3.1 Backbone Network Design and Load Balancing

Recently, researchers have been investigating the design of load balanced backbone

networks that can accommodate highly variable traffic matrices. They have proposed

load balancing network designs that can provide guaranteed performance for highly

variable traffic matrices [6], [7]. The research is based on deploying the Valiant Load

Balancing (VLB) as the method for routing the traffic over the network. The VLB

method was first proposed by Valiant for processor interconnection networks [27] and

was used for designing scalable load balanced routers with performance guarantees

[28]-[30]. The method routes traffic over the network twice: first the traffic entering

the network is balanced over a set of intermediate nodes and then it is sent to the

final destination.

The research is separately conducted by groups from Stanford university and Bell

Labs. The network design from Stanford described in [6], [31] assumes a logical mesh

topology for the backbone network, and routes traffic using the VLB method over

the full mesh. This allows the network to efficiently accommodate highly variable

traffic with no dynamic reconfiguration of the network resources. The two phase

routing method from Bell Labs described in [7], generalizes the VLB method to

general network topologies by using arbitrary load balancing on the intermediate

nodes. They provide different linear programming formulations of the problem for

different objectives [32]-[34].

The VLB load balancing method has many advantages: It handles unpredictable
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traffic that falls within the constraints of the hose traffic model for the network. More-

over, it avoids any need for dynamic reconfiguration of the network to accommodate

changes in the traffic matrix. Routing is oblivious and independent of the specific

traffic matrix. Finally, it is efficient in the sense that it has minimal total capacity

provisioned.

Keslassy et al. [29]-[30] considered the use of two phase load balancing for de-

signing the interconnect inside the load balanced switch. Keslassy’s work proved that

using two phase load balancing on a uniform mesh gives the highest throughput for

a given interconnect capacity.

2.3.2 Hashing and Load Balancing

Hashing has been used extensively in networking domain for workload distribution.

[35] describes a hash-based scheme for web caches, called Highest Random Weight

(HRW), that can achieve high web cache hit rate, load balancing, and minimum

disruption in case of server failure or reconfiguration. The HRW has been extended

in [36] to accommodate heterogeneous servers.

Hashing is widely used in designing multi-processor routers because, compared to

round robin and minimum-load mappings, it preserves the packet order of individual

TCP flows. Hashing distributes the incoming packet processing load over the different

processers inside the router based on one or more fields within the incoming IP packet

header. Studies in [37] has shown that static hashing, even though preserves packet

ordering, could result in load imbalance. [37] reduces imbalance in load distribution by
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dynamically re-mapping large flows to different processors. [38] proposes an adaptive

load balancing method that extends the work from [36] by adding an adaptive control

loop to dynamically map incoming flows to processers while preserving the minimum

disruption property, its called the adaptive HRW method. [39] extends the work in

[37] by re-mapping bursts inside the flows, this is possible due to the bursty nature

of Internet traffic.

Hashing is widely used for Internet traffic balancing over multiple links [40]. In

[41], the performance of various static hashing methods and one adaptive method

for balancing traffic over multiple links is evaluated. [42] measures the flow volumes

periodically to detect high volume flows and moves them to lightly loaded links. [43]

exploits the burstiness of Internet traffic to balance load bursts within a flow over the

multiple links.

2.4 The Adaptive HRW algorithm

The adaptive HRW algorithm, described in [38], balances the incoming processing

load among the different Network Processor Units (NPUs) in the router. It dynam-

ically maps incoming packet flows to NPUs using a weighted hash function while

preserving the minimal disruption property in [35]. The mapping is done using the

Highest Random Weight (HRW) [35]-[36] hash function over the flow identifier ~v. Pe-

riodically, the workload intensity of each NPU is measured and forwarded to a central

processor (CP). The CP determines the system state (underutilized or overutilized)
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and the mapping weights are adjusted accordingly.

2.4.1 HRW Packet-to-Processor Mapping

Mapping of packets with a flow identifier vector ~v is computed as follows:

f(~v) = j

⇔ (2.1)

xjg(~v, j) = max
k∈{1...m}

xkg(~v, k)

where xj ∈ R+ is the weight assigned to NPU j and j ∈ {1...m}, m is the number

of NPUs, g(~v, j) is a pseudorandom function with g : ~v×{1...m} → (0, 1) (i.e., g(~v, j)

is assumed to be a random variable in (0, 1) with uniform distribution). The weights

~x = (x1...xm) determine the fraction of the identifier vector space assigned to each

NPU and has a 1-to-1 correspondence with the partition vector ~p computed using

theorem 1 [36].

Theorem 1 (Ross) Let p1...pm be given target probabilities. Reorder the destina-

tions so that p1 ≤ ... ≤ pm. Let

x1 = (mp1)
1
m (2.2)

and let (x2...xm) be calculated recursively as follows:

xn = [
(m− n− 1)(pn − pn−1)∏n

i=1 xi
+ xm−n−1n−1 ]

1
m−n−1 (2.3)
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Then the HRW mapping algorithm with multipliers (x1...xm) will map the fraction

pn of incoming objects to the nth destination, n = 1, ...,m.

The HRW mapping possesses the following significant advantages over other hash-

based load balancing schemes:

Load balancing The mapping provides load balancing over the request object

space, even for the heterogeneous case. It allows to split the hashed objects into hash

buckets of arbitrary size, as determined by predefined weights.

Minimal disruption In case of a processor failure, removal or addition, the

number of request objects that are re-mapped to another destination is minimal.

2.4.2 Adaptive HRW Triggering Policy

The triggering policy exploits two dynamic thresholds to determine whether an NPU

is underutilized or overutilized. To evaluate the status of individual NPUs, periodic

NPU workload intensity ρj(t) is measured and filtered every ∆T :

ρj(t) =
1

r
ρj(t) +

r − 1

r
ρj(t−∆T ) (2.4)

where r is an integer constant.

A similar measure is used for the total system workload intensity:

ρ(t) =
1

r
ρ(t) +

r − 1

r
ρ(t−∆T ) (2.5)

Triggering policy uses the dynamic threshold:

19



ερ(t) =
1

2
(1 + ρ(t)) (2.6)

and a fixed hysteresis bound εh > 0, to prevent adaptation within the following

interval:

[(1− εh) ρ(t), (1 + εh) ρ(t)] (2.7)

εh is set to a value close to 0, for example 0.01, thus preventing adaptation when the

load stays within 1% of the total system workload intensity.

2.4.3 Adaptive HRW Adaptation Policy

The adaptation policy preserves the minimal disruption property by having a subset

of the elements in the weight vector ~x multiplied by a constant factor α. For values of

α < 1, the subset of elements multiplied will have their load partition decreased while

the rest of elements will have their load partition increased. For values of α > 1, the

subset of elements multiplied will have their load partition increased while the rest of

elements will have their load partition decreased. The following equation is used to

compute α when the system is underutilized (i.e., ρ(t) ≤ 1) and one or more NPUs

are overutilized (i.e., ρj(t) > ερ(t) [38]:

α(t) =

 ερ(t)

min
{
ρj(t), ρj(t) > ερ(t)

}


1/m
(2.8)
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Conversely, α is computed in a symmetrical way when the system is overutilized

(i.e., ρ(t) > 1):

α(t) =

 ερ(t)

max
{
ρj(t), ρj(t) < ερ(t)

}


1/m
(2.9)

2.5 Summary

In this chapter we reviewed the previous work in fields related to this thesis work.

First, we review the research on the Agile All-Photonic Network (AAPN) proposed

recently as a high capacity core network. Second, we review the related research in the

area of load balancing, more specifically in the areas of load balancing for backbone

networks design and hashing and load balancing. The chapter ended by presenting

the adaptive Highest Random Weight (HRW) algorithm used to design load balanced

Internet routers.
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Chapter 3

Control Messages Delivery

Protocol

3.1 Introduction

This chapter describes the Control Messages Delivery Protocol (CMDP) that sup-

ports the reliable delivery of short control messages in a high delay and/or high error

rate environment. The protocol uses a hybrid FEC/ARQ mechanism to recover from

damaged (or lost) messages. It dynamically adapts its Forward Error Correction

(FEC) capabilities to the channel error rate. Its FEC mechanism automatically re-

covers damaged messages before resorting to the Automatic Repeat reQuest (ARQ)

mechanism. Its FEC mechanism minimizes the round trip delay by reducing the

number of messages that need to be retransmitted using the ARQ mechanism.

22



3.1.1 Motivation for Reliable Signaling in AAPN

Traffic arriving at an AAPN edge node is classified and stored in the appropriate

VOQ. A request for timeslot resources is then constructed and sent to the core node.

The core node collects and classifies all requests received from the edge nodes and

runs its scheduling algorithm to generate a new configuration of the core switches.

Grants corresponding to the new configuration are constructed and sent to their

corresponding edge nodes. Since requests and grants messages correspond to data

awaiting service at the edge nodes, damaged (or lost) requests or grants result in

VOQ buffers building up. As VOQ buffers build up data awaiting service starts

to experience longer buffering delays. To prevent long buffering delays, an efficient

delivery protocol is needed to provide for reliable delivery of the requests and grants

messages.

3.2 Literature Review

In the literature, many reliable link and transport layer protocols have been de-

signed and implemented for high-speed environments. Doeringer et al. [44] provides

a comparative survey of eight transport protocols that depend on conventional ARQ

mechanisms to recover from damaged messages. Signaling System 7 (SS7), designed

for the telephone network, uses a link layer protocol called Message Transport Part 2

(MTP2) that depends on Go-Back-N ARQ mechanism. ATM control plane, designed

for the B-ISDN network, uses a link layer protocol called Service Specific Connection
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Oriented Protocol (SSCOP) [45] that depends on Selective-Repeat ARQ mechanism.

Even though these protocols can be used in an AAPN environment, most of them are

heavily dependent on the conventional ARQ mechanisms.

As conventional ARQ mechanisms are time costly when used in AAPN’s long delay

WAN environment, a reliable delivery protocol that is based on a hybrid FEC/ARQ

mechanism is being proposed in this work. Although the FEC/ARQ concept is not

new, this work is different from existing FEC/ARQ mechanisms [46]-[49]. These works

focus mainly on optimizing throughput and/or power in wireless transmissions, our

work, on the other hand, focuses more on minimizing the end to end delay especially

for links with long propagation delays.

We propose a light weight FEC mechanism to reduce processing at the receiver

side, this is important for systems with a receiver side that interacts with large number

of senders at the same time. For example, in the AAPN network the core node

acts as a receiver of bandwidth requests from all source edge nodes. The proposed

protocol is based on the SSCOP protocol that targets large bandwidth delay product

environments.

3.3 The Control Messages Delivery Protocol

3.3.1 CMDP Protocol Usage and Applicability

The CMDP protocol is mainly designed to work in environments where propagation

delays are long and/or the error rates are high. It is used to deliver a burst of
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short messages in sequence and with no errors. Small messages are mainly control

messages, hence the name Control Messages Delivery Protocol (CMDP). The protocol

is originally designed for the AAPN network where propagation delays between the

edge nodes and the core nodes are significant and any retransmission could result in

long buffering latency at the edge nodes.

The protocol’s applicability can be extended beyond the AAPN networks to re-

mote control in wireless environments with high noise rates and/or long propagation

delay characteristics. For example, the protocol can be used in satellite commu-

nications to reliably deliver a sequence of commands to control the movement and

operation of a remote satellite in real time. Another possible application is the remote

control of robots, on earth or in outer space, by uploading the robot with a sequence

of instructions to program and control the movement and operation of its devices.

3.3.2 CMDP Protocol Features

The protocol is a link layer protocol that builds on an environment that delivers

messages with possible errors and gaps. Its main responsibility is the detection,

report, and correction of damaged messages. The protocol uses a hybrid FEC/ARQ

mechanism to recover from damaged messages. The FEC mechanism allows for self-

recovering from damaged messages. For situations where the FEC mechanism fails

to recover from severe errors, a Selective-Repeat ARQ mechanism takes over and

triggers retransmissions of undelivered messages.

The protocol FEC error control mechanism is designed for AAPN’s high speed
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environment. Some transmission bandwidth is sacrificed to minimize processing at

the receiver side. It also optimizes operation for the normal error free communication.

This is important because AAPN core nodes receive requests for bandwidth from all

edge nodes in the network, which makes processing minimization at the core node

very crucial. The protocol adapts its FEC capabilities to the environment’s error

rate. The sender and receiver sides of the protocol periodically negotiate their FEC

capabilities by the periodic exchange of CMDP control packets.

3.3.3 CMDP Protocol Packets

The CMDP has three packets to support the reliable transfer of control messages:

the Protocol Data Packet (PDP), for delivering the control messages, and the POLL

and STAT packets for controlling the CMDP PDP packet flow.

The PDP packet extends the control message (CM), with a sequence number

(SN) and a variable size merging field, see figure 3.1a. The two redundant fields

support the protocol’s FEC/ARQ capabilities. The merging field consists of the last

(m) control messages generated by the sender side. The CMDP field identifies the

protocol instance the PDP packet belongs to.

The protocol control flow uses a sender-dependent strategy that lets the sender

instruct the receiver to generate a complete state report by sending a POLL packet.

This is desirable in an AAPN environment with different propagation delays associ-

ated with different edge nodes, since it eliminates the need for timers tuned to the

round trip propagation delay. POLL packets are sent periodically by the sender,
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and the receiver responds with a STAT packet that represents the complete state of

the receiver. The time period (t) between consecutive POLL packets is a protocol

parameter; its value varies with the channel error rate and is controlled by the sender.

The POLL packet has three fields: one field identifies the CMDP instance the

POLL packet belongs to, the second field contains the sequence number of the next

PDP packet to be sent, and the third field contains the merging parameter value (m)

used at the sender, see figure 3.1b.

The STAT packet has three fields: one field identifies the CMDP instance the

STAT packet belongs to, the second field contains the merging parameter value (m)

used at the receiver, and the third field is variable in length and contains a list of all

currently outstanding PDP packets, see figure 3.1c. The receiver knows which PDP

packets are outstanding by examining gaps in the received PDP packets and the PDP

sequence number contained in the POLL packet. The protocol POLL/STAT packet

exchange is resilient to damage or loss since each STAT packet contains the complete

state of the receiver.

(a) The Protocol Data Packet. (b) The POLL Packet.

(c) The STAT Packet.

Figure 3.1: The CMDP protocol packets.
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The protocol has two phases of operation, a handshake phase and a transfer

phase. The protocol begins with the handshake phase during which the sender and

receiver exchange POLL/STAT packets to initialize the protocol merging parameter

(m). After the handshake phase is complete, the sender and receiver are all setup

to start the transfer phase. During the transfer phase, control messages received by

the CMDP sender are encapsulated in PDP packets and sent to the CMDP receiver.

At the receiver, PDP packets are checked for in-sequence delivery. In-sequence PDP

packets are considered error free and the control message it carries is extracted and

passed up the hierarchy. POLL packets trigger the ARQ error control mechanism to

recover those damaged PDP packets.

3.3.4 CMDP Protocol FEC and ARQ Mechanisms

The FEC mechanism merges the previously sent control message(s) (or part of it)

with the current control message to form the CMDP PDP packet. The number of

messages merged is a protocol parameter, called merging parameter (m), and its

value varies with the channel’s error rate. Figure 3.2 shows an example of a PDP

packet with merging parameter set to 1. This PDP packet is capable of recovering

the previous control message if the previous PDP packet is damaged.

For the AAPN network with fiber-optic channels, an initial value of 1 can be

assigned to the merging parameter. As the channel’s error rate increases due to

reasons like interference, the protocol can negotiate higher values for the parameter

to better recover from damaged PDP packets. A good indication of the variation in
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the channels error rate is the variation in the number of PDP packets that escape the

FEC mechanism and need to be recovered using the ARQ mechanism.

Figure 3.2: Protocol Data Packet (PDP) with m = 1.

The FEC mechanism is called only when PDP packets are damaged. Damaged

PDP packets are detected when out-of-sequence PDP packets are received. In-

sequence PDP packets are handled with minimum processing overhead as the merging

field related to the FEC mechanism is discarded.

The ARQ mechanism used in the CMDP protocol is a Selective-Repeat mech-

anism. The sender sends PDP packets to the receiver, storing them for potential

retransmission until acknowledged by the receiver. The PDP packets are numbered

and the sender retransmits only those that have been explicitly requested by the re-

ceiver. The receiver requests explicit retransmission of those PDP packets that could

not be recovered using the FEC mechanism.

PDP packets handled by the ARQ mechanism have FEC capabilities, where one

retransmitted PDP packet can recover up to the number of control messages embed-

ded in it, for example the PDP packet in figure 3.2 can recover two control messages at

the same time. Such feature reduces the PDP packets that need to be retransmitted.
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3.4 The CMDP Protocol Operation

The operation of the CMDP protocol is best understood using examples. First, we

describe the AAPN signaling protocol control messages. Next, the CMDP protocol

deployment in the AAPN network is demonstrated through a number of examples.

The examples show the operation of the protocol under different scenarios, each il-

lustrates a specific aspect of the protocol operation. The examples cover the reliable

transport of the two AAPN signaling messages, namely: the AAPN Request message

(REQ) and the AAPN Grant message (GNT).

3.4.1 AAPN Signaling Protocol Control Messages

An AAPN network can cover a wide range of geographical areas and can be deployed

as a MAN or WAN network. As such, a signaling protocol is needed to facilitate the

operation of the scheduler implemented at the core and edge nodes. The protocol

has two control messages, a request (REQ) and a grant (GNT). The REQ message

originates at an edge node and is destined to a core node, see figure 3.3a. It is

associated with a given destination and mainly consists of two fields: one field specifies

the destination edge node (D) to which timeslots are being requested, and the other

field specifies the number of timeslots requested (R).

The GNT message originates at a core node and is destined to an edge node, see

figure 3.3b. It is associated with a given timeslot on a given wavelength and mainly

consists of three fields: one field specifies the timeslot scheduled (T), the second field
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specifies the wavelength (W) on which the timeslot resides, and the last field specifies

the destination edge node (D) to which the timeslot is allocated.

(a) The REQ message. (b) The GNT message.

Figure 3.3: The AAPN network signaling messages for timeslot resources.

3.4.2 Deployment for the AAPN REQ Message

The following conventions are used in the examples for the CMDP protocol version

used to reliably deliver the REQ control messages from an edge node to a core node.

1. The sender is an edge node, the receiver is a core node, and the control message

delivered is the REQ message.

2. Examples are associated with a destination edge node whose address identifies

the CMDP instance (address is not shown in the CMDP packets).

3. POLL CMDP packet is represented as: POLL (m, S).

4. STAT CMDP packet is represented as: STAT (m, outstanding list).

5. PDP CMDP packet is represented as: PDP (S, R, merging field).
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3.4.2.1 The CMDP Handshake Phase

Figure 3.4 shows the time flow diagram for the handshake phase of the CMDP pro-

tocol. The diagram depicts error free operation of the protocol’s startup phase. The

merging field m = 1, which means that each PDP packet will carry its REQ control

message and the (R) field of the previously sent REQ control message (i.e., the FEC

mechanism will be able to recover one damaged or lost REQ control message). The

handshake phase is repeated when a new value for m is needed. For example, if more

messages are recovered using the ARQ mechanism, the merging field can be increased

to try to reduce the number of retransmissions. On the other hand, if less messages

are recovered using the ARQ mechanism, the merging field can be decreased to reduce

the amount of bandwidth used by the protocol data packets.

Figure 3.4: The CMDP Handshake Phase
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3.4.2.2 The CMDP Error Free Operation for the REQ Message

Figure 3.5 shows the time flow diagram of the CMDP protocol operation in the error

free case. The diagram shows an edge node signaling three REQ control messages (5,

2, and 8) to a core node. The CMDP protocol instance, associated with the intended

destination edge node, generates three PDP packets. Each PDP packet carries its

REQ control message and the (R) field of the previously sent REQ control message.

The POLL packet sent by the edge node, informs the core node that the next PDP

packet to be sent will have a sequence number equal to 4. The STAT packet, sent by

the core node, informs the edge node that all PDP packets have been received error

free.

Figure 3.5: The CMDP error free operation for REQ messages.
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3.4.2.3 The CMDP FEC Error Recovery for the REQ Message

Figure 3.6 shows the time flow diagram of the CMDP protocol operation in a faulty

environment. The diagram shows an edge node signaling three REQ control messages

(5, 2, and 8) to a core node. The CMDP protocol instance, associated with the

intended destination edge node, generates three PDP packets. Each PDP packet

carries its REQ control message and the (R) field of the previously sent REQ control

message. The core node recovers the second PDP packet as soon as it receives PDP

packet number 3. The POLL packet, sent by the edge node, informs the core node

that the next PDP packet to be sent will have a sequence number equal to 4. The

STAT packet, sent by the core node, informs the edge node that all PDP packets

have been received error free.

3.4.2.4 The CMDP ARQ Error Recovery for the REQ Message

Figure 3.7 shows the time flow diagram of the CMDP protocol operation in a faulty

environment. The diagram shows an edge node signaling three REQ control messages

(5, 2, and 8) to a core node. The CMDP protocol instance, associated with the

intended destination edge node, generates three PDP packets. Each PDP packet

carries its REQ control message and the (R) field of the previously sent REQ control

message. The POLL packet, sent by the edge node, informs the core node that the

next PDP packet to be sent will have a sequence number equal to 4. Using the

received POLL packet, the STAT packet, sent by the core node, informs the edge
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Figure 3.6: The CMDP FEC error recovery for REQ messages.

node that PDP packets two and three have been damaged or lost and need to be

retransmitted (list {1, 3} in the STAT packet means PDP 1 has been received while

PDPs 2 and 3 are lost).

3.4.3 Deployment for AAPN GNT Message

The following conventions are used in the examples for the CMDP protocol version

used to reliably deliver the GNT control messages from a core node to an edge node.

1. The sender is a core node, the receiver is an edge node, and the control message

delivered is the GNT message.

2. Examples are associated with a wavelength whose number identifies the CMDP

instance (wavelength number is not shown in the CMDP packets).
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Figure 3.7: The CMDP ARQ error recovery for REQ messages.

3. Timeslots not assigned to the source edge node are given D = S in the PDP

packet (i.e., the address of the source edge node), see example in figure 3.11.

4. POLL CMDP packet is represented as: POLL (m, S)

5. STAT CMDP packet is represented as: STAT (m, outstanding list)

6. PDP CMDP packet is represented as: PDP (S, T, D, merging field)

3.4.3.1 The CMDP Error Free Operation for the GNT Message

Figure 3.8 shows the time flow diagram of the CMDP protocol operation in the

error free case. The diagram shows a core node signaling three GNT control mes-

sages (timeslot 15 to destination 7, timeslot 16 to destination 1, and timeslot 17 to

destination 3) to an edge node. The CMDP protocol instance, associated with the
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wavelength on which the timeslots reside, generates three PDP packets. Each PDP

packet carries its GNT control message and the (D) field of the previously sent GNT

control message. The POLL packet, sent by the core node, informs the edge node

that the next PDP packet to be sent will have a sequence number equal to 4. The

STAT packet, sent by the edge node, informs the core node that all PDP packets

have been received error free.

Figure 3.8: The CMDP error free operation for GNT messages.

3.4.3.2 The CMDP FEC Error Recovery for the GNT Message

Figure 3.9 shows the time flow diagram of the CMDP protocol operation in a faulty

environment. The diagram shows a core node signaling three GNT control mes-
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sages (timeslot 15 to destination 7, timeslot 16 to destination 1, and timeslot 17 to

destination 3) to an edge node. The CMDP protocol instance, associated with the

wavelength on which the timeslots reside, generates three PDP packets. Each PDP

packet carries its GNT control message and the (D) field of the previously sent GNT

control message. The edge node recovers the second PDP packet as soon as it receives

PDP packet number 3. The POLL packet, sent by the core node, informs the edge

node that the next PDP packet to be sent will have a sequence number equal to 4.

The STAT packet, sent by the edge node, informs the core node that all PDP packets

have been received error free.

Figure 3.9: The CMDP FEC error recovery for GNT messages.
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3.4.3.3 The CMDP ARQ Error Recovery for the GNT Message

Figure 3.10 shows the time flow diagram of the CMDP protocol operation in a faulty

environment. The diagram shows a core node signaling three GNT control mes-

sages (timeslot 15 to destination 7, timeslot 16 to destination 1, and timeslot 17 to

destination 3) to an edge node. The CMDP protocol instance, associated with the

wavelength on which the timeslots reside, generates three PDP packets. Each PDP

packet carries its GNT control message and the (D) field of the previously sent GNT

control message. The POLL packet, sent by the core node, informs the edge node

that the next PDP packet to be sent will have a sequence number equal to 4. Using

the received POLL packet, the STAT packet, sent by the edge node, informs the core

node that PDP packets two and three have been damaged or lost and need to be

retransmitted (list {1, 3} in the STAT packet means PDP 1 has been received while

PDPs 2 and 3 are lost).

3.4.3.4 The CMDP For Non-Consecutive GNT Messages

Figure 3.11 shows the time flow diagram of the CMDP protocol operation when non-

consecutive timeslots need to be signaled to an edge node. The diagram shows a core

node signaling two GNT control messages (timeslot 15 to destination 7, and timeslot

18 to destination 3) to an edge node. The CMDP protocol instance, associated with

the wavelength on which the timeslots reside, generates three PDP packets. Each

PDP packet carries its GNT control message and the (D) field of the previously sent
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Figure 3.10: The CMDP ARQ error recovery for GNT messages.

GNT control message. Notice that PDP packet number 2 does not correspond to a

real GNT control message (D=S), but is sent to allow for the recovery of PDP packet

1 in case it is damaged or lost. Notice also that the merging field for PDP packet

number 3 is redundant as it recovers PDP packet number 2 which carries no real

GNT control message (D=S). The POLL packet, sent by the core node, informs the

edge node that the next PDP packet to be sent will have a sequence number equal

to 4. The STAT packet, sent by the edge node, informs the core node that all PDP

packets have been received error free.
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Figure 3.11: The CMDP for non-consecutive GNT messages.

3.5 Numerical Results

In this section, the CMDP protocol average delivery delay performance, for different

values of the merging field (m), is studied in a simulated AAPN environment. The

simulation model is implemented using the OPNET tool. It contains a CMDP pro-

tocol instance that is running between an edge node that acts as the CMDP sender

and a core node that acts as the CMDP receiver. The protocol instance is used to

reliably deliver REQ messages associated with a given destination edge node. The

transmission channel generates random bit errors.

To reduce error check at the core node, a thin layer that multiplexes PDPs from

different CMDP instances is used. PDP packets from different CMDP instances are

multiplexed to reduce processing at the core. It is assumed that the new multiplexed
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packet average size is equal to 1000 bits.

The protocol is evaluated in a transmission channel that produces random errors

with bit error rates ranging from 10−4 (packet error rate of 10−1) to 10−9 (packet error

rate of 10−6). The time period (t) between consecutive POLL packets is assumed to

be fixed and is equal to the round trip propagation delay. It is assumed that a Slot-

By-Slot scheduling algorithm is used at the core node, where traffic changes (i.e.,

REQ control messages) is signaled to the core node every timeslot (i.e., every 10 µs).

Two scenarios, Metropolitan Area Network (MAN) and Wide Area Network (WAN),

are studied. MAN is defined as an AAPN network with 500 km optical links d = 2.5

ms, while WAN is defined as an AAPN network with 8000 km optical links d = 40

ms.

Figures 3.12a and 3.12b show the delivery delay performance of the protocol for

merging field values ranging from m = 0 to m = 3 in AAPN MAN and WAN

environments respectively. For m = 0, only the ARQ mechanism is used to recover

damaged REQ messages and as expected the delay is too high. As (m) increases

more REQ messages are recovered using the FEC mechanism and the delivery delay

drops. The figures show how powerful the FEC mechanism is, as it takes full control

of recovery at m = 1 for packet error rate equal to 10−3 and at m = 2 for packet error

rate equal to 10−2.

Notice the huge gap in average delay between m = 0 and m = 1 at packet error

rate equal to 10−1 for AAPN WAN environment in figure 3.12b. After inspection

of the simulation results it was noticed that the average delay at m = 0 and packet
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error rate equal to 10−1 was unstable and kept on increasing as a function of the

simulation time. Using the FEC mechanism with m = 1 stabilized the average delay

and brought it within boundaries.
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(a) AAPN MAN environment.

(b) AAPN WAN environment.

Figure 3.12: Average Delay versus Error Rate in AAPN MAN and WAN environ-

ments.
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3.6 Summary

We have described the Control Messages Delivery Protocol (CMDP) that is mainly

designed to work in environments where propagation delays are long and/or the error

rates are high. It is used to deliver a burst of short messages in sequence and with no

errors. Small messages are mainly control messages, hence the name Control Messages

Delivery Protocol (CMDP).

The protocol is originally designed for the AAPN network where propagation

delays between the edge and core nodes are significant and any retransmission could

result in long buffering latency at the edge nodes. The protocol delay performance has

been evaluated for both MAN and WAN AAPN environments. The results showed

how powerful is the FEC mechanism as it takes full control of recovery at m = 1 for

packet error rate equal to 10−3 and at m = 2 for packet error rate equal to 10−2.

We demonstrated the CMDP protocol deployment in the AAPN network through

a number of examples. The examples showed the operation of the protocol under

different scenarios, each illustrates a specific aspect of the protocol operation. The

examples covered the reliable transport of the two AAPN signaling messages, namely:

the AAPN Request message (REQ) and the AAPN Grant message (GNT).
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Chapter 4

Load Balancing for the AAPN

Network

4.1 Introduction

This chapter describes a routing architecture that balances incoming Internet flows

over the AAPN network. The architecture is based on the adaptive Highest Random

Weight (adaptive HRW) algorithm proposed to design load balanced Internet routers.

It assigns traffic load balancing weights to each source-destination edge node pair in

the network. The weights are adapted based on the traffic load of the downstream

and upstream links in the network.

The architecture can be seen as a combination of adaptive scheduling at the core

nodes and adaptive load balancing at the edge nodes. The architecture is stateless

and can compute routes quickly based on the packet flow identifier.
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4.2 Literature Review

In [50], routing at the connection level has been studied and simulated. The methods

perform connection admission control each time a new connection request is received,

if no timeslot resources are available on the selected path, the connection is rejected.

In [51], the Valiant Load Balancing method [6], [7] has been used to eliminate the

need for adaptive scheduling at the core nodes. The method replaces the adaptive

scheduler [17]-[20] with a fixed scheduler that can handle any input traffic matrix

within the boundaries of the hose traffic model [8]. The method routes at the timeslot

level and so requires resequencing at the destination edge nodes. Since the traffic

travels the network twice, end to end delay becomes a serious issue when deployed in

a WAN environment.

In [52] and [53], routing and protection of MPLS LSPs over the AAPN network

has been studied. The methods deploy the AAPN network as the OSPF backbone

area [54]-[57].

4.3 The Adaptive Routing Architecture for the

AAPN Network

In this section, we describe the adaptive routing architecture for the AAPN network.

The architecture is distributed and is implemented at the different edge nodes in the

network. Figure 4.1 represents the block diagram of the routing architecture at the
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source edge node with ID equal to one. The diagram consists of two processing stages:

a classification stage and a two-level mapping stage associated with every destination

edge node in the AAPN network.

At the classification stage, the destination edge node of the incoming packets is

determined using the AAPN routing tables described in [5]. The classified packets

associated with a destination edge node are then mapped twice: the first map fc(~v),

called core selection, routes the packets to a core node while the second map f cw(~v),

called wavelength selection, routes the packets to a wavelength through core node c

selected by fc(~v). The mapped packets are then stored in the Virtual Output Queue

(VOQ) associated with the destination edge node on the selected wavelength.

The fc(~v) and f cw(~v) mappings route packets at the flow level and are computed

using equation 2.1. Each core node is assigned a mapping weight from the weight

vector ~x = (x1...xd), where d is the number of core nodes. Each wavelength is assigned

a mapping weight from the weight vector ~y = (y1...ye), where e is the number of

wavelengths through the core node. For AAPN networks with single wavelength per

fibre, only the fc(~v) mapping function is used.

Core and wavelength selections work in tandem with no interaction to balance the

incoming Internet flows over the AAPN network. For a given source-destination edge

node pair, fc(~v), balances the Internet flows over the fiber link paths going through

the different core nodes, then f cw(~v), balances the Internet flows mapped to the fiber

link path going through core node c over the different wavelengths in this path. The

subscripts c in fc(~v) and w in f cw(~v) are used to define core and wavelength selec-
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Figure 4.1: The adaptive routing architecture for the AAPN network

tion types, while superscript c in f cw(~v) defines the instance of wavelength selection

associated with core node c selected by the fc(~v) mapping function.

Ideally, the two-level mapping functions should balance the incoming traffic over

the different fibre links and wavelengths of the AAPN network, but in reality, the

functions could result in gross imbalance due to the Internet flow duration distribution

[37], [58] and flow identification distribution [59]. Thus an adaptation loop is needed

to keep the fibre links, and wavelengths within, from being congested. It adapts the

weight vectors ~x and ~y, based on the fibre links and wavelengths traffic loads, using

equations 2.8 and 2.9. A traffic load is measured every frame and is defined as the

percentage of timelsots requested per frame.

Compared to the adaptive HRW algorithm, the mapping in AAPN consists of two

functions working in tandem with no interaction. Also, in the adaptive HRW the

CP triggers adaptation of the weights based on the workload measurements of the
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set of NPUs, while in AAPN mappings, two sets of traffic load measurements are

used to trigger weights adaptation. For the fc(~v) function associated with a source-

destination edge node pair, the two traffic load measurement sets are the set of traffic

load measurement of the downstream fibre links associated with the source edge node

and the set of traffic load measurement of the upstream fibre links associated with the

destination edge node. For the f cw(~v) function associated a source-destination edge

node pair and core node c, the two traffic load measurement sets are the set of traffic

load measurement of the downstream wavelengths on the fibre link from the source

edge node to core node c and the set of traffic load measurement of the upstream

wavelengths on the fibre link from core node c to the destination edge node.

Notice that triggering weight adaptation by two interrelated sets of traffic load

measurements could result in instability and oscillations (i.e., triggering adaption to

balance the traffic load over the downstream set of fibre links (wavelengths) could

result in imbalance on the upstream set of fibre links (wavelengths) and visa versa).

For this, one major objective of the simulations study is to prove the stability of the

weights adaption triggering policy.

The adaptation triggering policy for the AAPN network is different from the policy

used in the adaptive HRW algorithm. The next two sections describe two variations

of the AAPN adaptation policy.
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4.3.1 The AAPN Adaptation Triggering Policy

The default triggering policy applies to the adaptation of both weight vectors ~x and ~y.

The term channel is used in this section to generalize the description of the triggering

policy, but when used for core selection it means a fiber link and when used for

wavelength selection it means a wavelength.

We categorize the channels into downstream and upstream types. A downstream

channel connects a source edge node to a core node while an upstream channel con-

nects a core node to a destination edge node. The traffic load on a downstream

channel originates at the source edge node and is destined to the other edge nodes,

while the traffic load on an upstream channel originates at the source edge nodes and

is destined to the destination edge node.

The channel set is defined differently for the fiber links and wavelengths. The

downstream fiber link set associated with an edge node is defined as the set of links

connecting this edge node to all the core nodes, while the upstream fiber link set

associated with an edge node is defined as the set of links connecting the core nodes

to this edge node. The downstream wavelength set associated with an edge node is

defined as the set of wavelengths connecting this edge node to a core node, while

the upstream wavelength set associated with an edge node is defined as the set of

wavelengths connecting the core node to this edge node.

The policy uses the two channel sets traffic loads to adapt the weight vectors

associated with a source-destination edge node pair. In cases where both traffic
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load sets require adaptation, only one set, chosen randomly, is allowed to trigger the

adaptation. The traffic loads for the two sets of channels are measured at different

points in the network. The downstream channel set traffic loads are measured at the

source edge node, while the upstream channel set traffic loads are measured at the

core nodes. Measurement and filtering are performed periodically every frame, while

the computation of dynamic threshold, channel set average traffic load, and weight

vectors adaptation are performed at the edge nodes every ∆T . ∆T is chosen to be an

integer multiple of the frame size and greater than the maximum round trip signaling

delay between the edge and core nodes. This gives the weight vector changes enough

time to propagate and take effect at the core nodes.

The traffic load of channel j, ρj(tn), is computed every frame as follows:

ρj(tn) =
λj(tn)

F
(4.1)

where λj(tn) is the total number of timeslots requested in the nth frame, tn is a

discrete time measured at the end of each frame, and F is the frame size in timeslots.

Notice that if channel j is a fiber link then λj(tn) represents the total timeslots

requested on all z wavelengths that goes through the fiber link and F is replaced by

zF .

The channel filtered traffic load, ρj(tn), is also computed every frame as follows:

ρj(tn) =
1

r
ρj(tn) +

r − 1

r
ρj(tn − tn−1) (4.2)
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where tn − tn−1 = F ∗ Ts, is the frame size in seconds and r is the filtering constant

computed using equation 4.3 to reduce the effect of short term fluctuations in the

channel traffic load.

r =
∆T

F ∗ Ts
(4.3)

The channel set average traffic load, ρ(tn), is computed every ∆T as follows:

ρ(tn) =

∑L
j=1 ρj(tn)

L
(4.4)

where tn is the time at the end of the nth frame and L is the number of channels in

the channel set.

Based on the computed values, a channel set is considered underutilized if ρ(tn) ≤

1 and overutilized if ρ(tn) > 1. A channel is considered overutilized if ερ(tn) ≤ ρj(tn)

and underutilized if ερ(tn) > ρj(tn) where the dynamic threshold, ερ(tn), is computed

every ∆T using equations 2.6 and 2.7.

The policy triggers adaptation of the weight vectors when imbalance occurs in the

network. For example, assume that the upstream channel set going to a destination

edge node is underutilized (overutilized) and one or more channels within the set are

overutilized (underutilized), this will force all edge nodes to adapt their weight vectors

to that destination edge node. In another example, assume that the downstream

channel set coming from an edge node is underutilized (overutilized) and one or more

channels within the set are overutilized (underutilized), this will force the edge node
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to adapt his weight vectors to all destination edge nodes.

4.3.2 The AAPN Minimal Flow Remapping Triggering Pol-

icy

The default triggering policy requires all edge nodes to adapt their weight vectors

when the channel set is underutilized (overutilized) and one or more channels within

the set is overutilized (underutilized). In this section, we describe a variation of the

policy that triggers those edge nodes that are most responsible for the channel state

(also called the selection scheme). In this variation, not only a channel total traffic

load is measured and filtered every frame, but the traffic load contributed by each

source-destination edge node pair is also measured and filtered using equation 4.5.

Equation 4.5 is interpreted differently depending on the channel type. For a

downstream channel l connecting a source edge node to a core node, R
l

x(tn) and

Rl
x(tn) are the filtered traffic load and the traffic load to destination edge node x in

the nth frame respectively. For an upstream channel l connecting a core node to

destination edge node, R
l

x(tn) and Rl
x(tn) are the filtered traffic load and the traffic

load from source edge node x in the nth frame respectively.

R
l
x(tn) =

1

r
Rl
x(tn) +

r − 1

r
R
l
x(tn − tn−1) (4.5)

To identify those edge nodes responsible for channel l state, we define the following

two dynamic thresholds that are computed every ∆T :
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εu(tn) = R
mean

(tn) +R
SD

(tn)

εo(tn) = R
mean

(tn)−RSD
(tn)

(4.6)

where R
mean

(tn) is the mean value and R
SD

(tn) is the standard deviation of the

filtered traffic loads at the end of the nth frame:

R
mean

(tn) =

∑N
x R

l

x(tn)

N − 1
(4.7)

R
SD

(tn) =

√√√√√∑N
x

(
R
l

x(tn)−Rmean
(tn)

)2
N − 1

(4.8)

where N is the number of edge nodes in the network.

Based on the computed values, if the set of downstream channels from a source

edge node is underutilized and one of the channels l is overutilized, then destination

edge node x is contributing to the channel state if εu(tn) ≤ R
l

x(tn). Conversely, if the

set of downstream channels is overutilized and one of the channels is underutilized,

then the traffic load to the destination edge node x is contributing to the channel state

if εo(tn) ≥ R
l

x(tn). The traffic load to the destination edge node x is not contributing

to the channel state if εo(tn) < R
l
x(tn) < εu(tn). Similar argument applies to the

upstream channels where the traffic is going to a destination edge node.

4.3.3 Complexity Analysis

When a new packet arrives at an edge node, it needs to go through the different

processing stages shown in figure 4.1. At the classification stage, a lookup table
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operation is performed using the AAPN routing table to determine the destination

edge node of the packet. This operation should be quick as the routing table is

relatively small, for more details see [5].

The packet is then mapped twice: the first map fc(~v), called core selection and

the second map f cw(~v), called wavelength selection. Based on equation 2.1, the com-

putational effort for mapping the packet to the right VOQ is O(d) + O(e), where d

is the number of core nodes in the network and e is the number of wavelengths going

through the core node selected by fc(~v). An important component in the performance

of the mapping functions is the hashing function g(~v, j), for a survey of hash functions

for implementing the mapping, see [60]. In our simulations, we have used Fibonacci

hashing to compute the g(~v, j) function.

The architecture requires traffic loads for two sets of channels to be measured

at different points in the network. The downstream channel set traffic loads are

measured at the source edge node, while the upstream channel set traffic loads are

measured at the core nodes. Measurement and filtering are performed periodically

every frame, while the computation of dynamic threshold, channel set average traffic

load, and weight vectors adaptation are performed at the edge nodes every ∆T . To

get the measurements information from the core nodes to the edge nodes, a signaling

component is needed. An extension of the CMDP protocol could added to handle the

reliable signaling of the measured information.
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4.4 Numerical Results

The OPNET tool has been used to simulate an AAPN network with 16 edge nodes

and 8 core nodes. Since core and wavelength selections work independently, fiber

links with one wavelength are used. Each wavelength has a capacity of 1 Gb/s. The

round trip delay, RTD, is set to 40 ms and the frame size on each wavelength, µ, is

set to 100 timeslots.

The objectives of the simulations are threefold. First, the performance of the

routing architecture is studied and compared to the shortest path routing from the

literature. Second, the performance of the routing architecture with three different

channel set traffic load measurements is studied: using traffic load measurements from

the downstream channel set, upstream channel set, and downstream and upstream

channel sets. Third, the performance of the routing architecture with minimal flow

remapping is studied. Any edge node can be selected to study the behavior; we choose

edge node number 8.

4.4.1 Simulations Input

Each edge node generates self-similar traffic represented by the H-FSNDP fractal

point process [61]. In the H-FSNDP model, the flow arrival process follows a Poisson

model and the flow duration is heavy tailed Pareto model. Packets inter-arrival time

within a flow is exponentially distributed. The following parameters describe the

input traffic, the parameters are chosen to keep the load on the network close to 1.0:
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1. The flow average arrival rate is 223,000 flow/s.

2. The Hurst parameter is 0.8 and the Fractal Onset Time Scale is 0.001.

3. The average flow duration is 0.3 s.

4. The flow packet average arrival rate is 128 packets/s.

5. The packet size is exponentially distributed with average size of 1024 bits (i.e.,

on average, each timeslot carries (109 ∗ 10µ)/1024 = 10 packets).

The incoming flows at each edge node are uniformly distributed to all other edge

nodes in the network. The flow identifier distribution is a truncated normal distribu-

tion N(0, 1) out of the 32-bit integer space [38]. This approximates the distribution

of IP source and destination addresses as described in [59].

4.4.2 The AAPN Routing Architecture Parameters

Link traffic loads at the edge and core nodes are computed every frame, where the

frame length is equal to 100 ∗ 10µ = 1ms. The adaptation period, ∆T , is set to 100

ms (i.e., k is set to 2.5). The Fibonacci hashing used in [38], is used here to compute

g(~v, j). The filtering constant, r, is set to 100. The hysteresis bound, εh, is set to

0.01 and the initial values for the adaptation weights are set according to the link

capacities using equation 2.3 (i.e., xc = 1.0)[36].
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4.4.3 Routing Architecture Performance Simulations

The behavior of three different routing architectures are compared in this section:

1) a static version of the routing architecture with no adaptation (also called the

static load balancing method); 2) an adaptive version of the routing architecture

with adaptation based on the upstream and downstream link sets traffic load (also

called the adaptive load balancing method); 3) the shortest path routing, where the

traffic between any edge node pair is sent through the core node that is part of the

shortest path between the edge node pair.

Figure 4.2 shows the link traffic loads when shortest path routing is deployed.

Figure 4.2a shows the traffic load on the downstream links from edge node 8, while

figure 4.2b shows the traffic load on the upstream links to edge node 8. The average

traffic load for the link sets is shown in bold, it is used as the ideal reference traffic

load. The figures show how the traffic loads are widely spread around the average

traffic load (some links have zero traffic load); this is due to the combination of the

shortest path routing and the flow duration Pareto distribution.

Figures 4.3 shows the link traffic loads when the static load balancing method

is deployed. Figure 4.3a shows the traffic load on the downstream links from edge

node 8, while figure 4.3b shows the traffic load on the upstream links to edge node

8. The average traffic load for the link sets is shown in bold, it is used as the ideal

reference traffic load. The figures show how the traffic load on the links is relatively

spread around the average traffic load. To measure the spread around the average,
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(a) The traffic load on the downstream links.

(b) The traffic load on the upstream links.

Figure 4.2: The traffic load on the downstream and upstream links with shortest path

routing.

60



(a) The traffic load on the downstream links.

(b) The traffic load on the upstream links.

Figure 4.3: The traffic load on the downstream and upstream links with the static

load balancing method.
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(a) The traffic load on the downstream links.

(b) The traffic load on the upstream links.

Figure 4.4: The traffic load on the downstream and upstream links with the adaptive

load balancing method.
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the variance (confidence interval) of the traffic load on the different links with respect

average traffic load is computed. Using the results it was found that the confidence

interval is 0.10%.

Figures 4.4 shows the link traffic loads when the adaptive load balancing method is

deployed. Figure 4.4a shows the traffic load on the downstream links from edge node

8, while figure 4.4b shows the traffic load on the upstream links to edge node 8. The

average traffic load for the link sets is shown in bold, it is used as the ideal reference

traffic load. The figures show how the traffic load on the links remain within the

closest vicinity of the average traffic load when the adaptive load balancing method

is deployed. They also show how stable the adaptive load balancing method is even

when the weights adaptation is triggered by the downstream and upstream link sets

traffic load. To measure the spread around the average, the variance (confidence

interval) of the traffic load on the different links with respect average traffic load

is computed. Using the results it was found that the confidence interval is 0.06%.

This numerically shows that the adaptive load balancing outperforms the static load

balancing.

Figure 4.5 shows the requests dropped on the downstream and upstream links

every ∆T period. As mentioned earlier, each request is for a timeslot and each time

slot can carry up to 10 packets on average. Figure 4.5a shows the requests dropped

on the downstream links of edge node 8, while figure 4.5b shows the requests dropped

on the upstream links of edge node 8. The figures show the number of requests

dropped every ∆T period when adaptive load balancing and static load balancing
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Downstream Links Upstream Links

Ideal Load Balancing 0.80% 0.76%

Adaptive Load Balancing 1.67% 1.60%

Static Load Balancing 3.10% 3.00%

Table 4.1: Requests dropped statistics for the ideal, static, and adaptive load balanc-

ing methods.

methods are deployed. The ideal load balancing is also shown for comparison. The

ideal request drop is computed as the difference between the requests received and the

requests the link set can handle in ∆T period. The requests the link set can handle

in ∆T = 0.1s is equal to number of links in the link set (8) * number of frames

in ∆T (100) * Frame size in requests (100); any requests received in excess of this

value (i.e., 80, 000) are dropped for the ideal load balancing. The figures show how

the adaptive load balancing method outperforms the static load balancing method.

Table 4.1 summarizes the total requests dropped, as a percentage of the total requests

sent on the downstream and upstream link sets, for the different methods.

Figure 4.6 shows, in a logarithmic scale, the number of flows appearing and the

flows remapped every ∆T period for edge node 8 when the adaptive load balancing

4.6a and the minimal remapping adaptive load balancing 4.6b methods are deployed.

The thick line at the top is actually 15 lines, each representing the flows leaving edge

node 8 and going to each of the other 15 edge nodes every ∆T . From the figure, the

flows going to each node is around 6,000, which is expected due to the adaptive load
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(a) The number of requests dropped every ∆T period on the downstream links.

(b) The number of requests dropped every ∆T period on the upstream links.

Figure 4.5: The number of requests dropped every ∆T period on the downstream

and upstream links.
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balancing. Each curve at the bottom is associated with a destination edge node, it

represents the number of flows remapped every ∆T . The figure shows the stability

of remapping for the different destination edge nodes and it also shows that less than

1% of the appearing flows is actually remapped.

4.4.4 Routing Architecture with Different Link Sets Mea-

surement Simulations

The behavior of three different routing architectures are compared in this section: 1)

an adaptive version of the routing architecture with adaptation based on the down-

stream link set traffic load (also called downstream adaptive load balancing method);

2) an adaptive version of the routing architecture with adaptation based on the up-

stream link set traffic load (also called upstream adaptive load balancing method); 3)

an adaptive version of the routing architecture with adaptation based on the down-

stream and upstream link sets traffic load (adaptive load balancing method from the

previous section).

The figures 4.7 and 4.8 show the link traffic loads when the downstream link set

traffic load and the upstream link set traffic load are used to trigger vector weights

adaptation respectively. The average traffic load for the link sets is shown in bold, it

is used as the ideal reference traffic load. Figure 4.7a shows how the traffic load on the

downstream links remain within the closest vicinity of the average traffic load when

the adaptation triggering policy is based on traffic loads from the downstream links,
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(a) Flows appearing and remapped for the adaptive method.

(b) Flows appearing and remapped for the minimal remapping method.

Figure 4.6: The number of flows appearing and remapped every ∆T period for the

adaptive and minimal remapping adaptive load balancing methods.
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Downstream Links Upstream Links

Downstream Adaptive Load Balancing 1.68% 3.40%

Upstream Adaptive Load Balancing 3.50% 1.63%

Adaptive Load Balancing 1.67% 1.60%

Table 4.2: Requests dropped statistics for the downstream, upstream, and adaptive

load balancing methods.

while figure 4.7b shows how the traffic load on the upstream links spreads around

the average traffic load. Figure 4.8b shows how the traffic load on the upstream links

remain within the closest vicinity of the average traffic load when the adaptation trig-

gering policy is based on traffic loads from the upstream links, while figure 4.8a shows

how the traffic load on the downstream links spreads around the average traffic load.

Compared to figure 4.4, it is clear that the adaptive load balancing method outper-

forms the downstream and upstream load balancing methods by keeping the traffic

load within the closest vicinity of the average traffic load for both the downstream

and upstream link sets.

Table 4.2 summarizes the total requests dropped, as a percentage of the total

requests sent on the downstream and upstream link sets, for the different methods.

Compared to table 4.1, it shows that the total requests dropped for the upstream

links when the downstream adaptive load balancing method is deployed and for the

downstream links when the upstream adaptive load balancing method is deployed are

worse than that for the static load balancing method.
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(a) The traffic load on the downstream links.

(b) The traffic load on the upstream links.

Figure 4.7: The traffic load on the downstream and upstream links when the adap-

tation triggering policy is based on traffic loads from the downstream links.
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(a) The traffic load on the downstream links.

(b) The traffic load on the upstream links.

Figure 4.8: The traffic load on the downstream and upstream links when the adap-

tation triggering policy is based on traffic loads from the upstream links.
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4.4.5 Routing Architecture with Minimal Remapping Per-

formance Simulations

In this section, the behavior of the minimal remapping load balancing routing archi-

tecture (also called the minimal remapping load balancing method) is studied and

compared to the adaptive load balancing method discussed perviously. As mentioned

earlier, the objective of this method is to reduce the number of flows remapped while

keeping the traffic load balanced over the different links in the network.

Figure 4.6b shows the number of flows appearing and the flows remapped every

∆T period when the minimal remapping adaptive load balancing method is deployed.

Compared to the adaptive load balancing method remapping in figure 4.6a, the figure

shows significant reduction in flow remapping. When adding up the remapped flows

over the simulation period it was found that around 1% and 0.2% of the appearing

flows are remapped when the default and minimal flow remapping triggering policies

are deployed respectively. This gives the minimal flow remapping triggering policy a

significant reduction in flow remapping compared to the default triggering policy.

Figure 4.9 shows how the traffic load on the downstream and upstream link sets

remain within the closest vicinity of the average traffic load when the minimal remap-

ping load balancing method is deployed. Figure 4.9a shows the load on the down-

stream links from edge node 8, while figure 4.9b shows the load on the upstream links

to edge node 8. The average load for the link sets is shown in bold, it is used as the

ideal reference load.
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(a) The traffic load on the downstream links.

(b) The traffic load on the upstream links.

Figure 4.9: The traffic load on the downstream and upstream links.
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Downstream Links Upstream Links

Minimal Adaptive Load Balancing 1.68% 1.63%

Adaptive Load Balancing 1.67% 1.60%

Table 4.3: Requests dropped statistics for the minimal remapping and adaptive load

balancing methods.

Table 4.3 summarizes the total requests dropped, as a percentage of the total

requests sent on the downstream and upstream link sets, for the adaptive load bal-

ancing and the minimal remapping adaptive load balancing methods. It shows that

the minimal reampping adaptive load balancing method has a total request drop that

is very close to that of the adaptive load balancing method.

4.5 Summary

We have described a routing architecture that balances incoming Internet flows over

the AAPN network. The architecture is based on the adaptive Highest Random

Weight (adaptive HRW) algorithm proposed to design load balanced Internet routers.

It assigns traffic load balancing weights to each source-destination edge node pair in

the network. The weights are adapted based on the traffic load of the downstream

and upstream links in the network. The architecture can be seen as a combination of

adaptive core node scheduling and adaptive load balancing at the edge nodes. It is

stateless and can compute routes quickly based on the packet flow identifier.
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We presented an extensive numerical evaluation of static and adaptive variations

of the routing architecture and studied their effect on the network performance in

terms of packet drop and flow remapping. The first part of the simulation results

shows the stability of the adaptive load balancing method even when the weights

adaptation is triggered by two different groups of traffic load. It also shows that

the load on the links remain within the closest vicinity of the average load when the

adaptive load balancing and minimal remapping adaptive load balancing methods are

deployed with a small fraction of flows remapped.

The second part of the simulation results shows that neither the downstream nor

the upstream load balancing method is enough to ensure balancing on all the links in

the network; the adaptive load balancing method outperforms them both.

The third part of the simulation shows that the minimal remapping adaptive load

balancing method enhances the adaptive load balancing method while reducing the

number of flows remapped.

Performance measurements, in terms of requests dropped, show that the adaptive

load balancing method significantly outperforms the static load balancing method.
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Chapter 5

Load Balancing with QoS for the

AAPN Network

5.1 Introduction

This chapter describes a Quality of Service (QoS) routing architecture that balances

Internet flow traffic with different QoS requirements in the AAPN network. The

architecture is based on the static and adaptive load balancing methods described

in chapter 4. The static load balancing method is based on the static HRW used

for designing load balanced web caches while the adaptive load balancing method is

based on the adaptive HRW used for designing load balanced Internet routers.

The routing architecture performance is investigated using traffic that belongs

to two DiffServ traffic classes, namely: Expedite Forwarding (EF) that is sensitive

to variations in end-to-end delay & traffic drop rate and Best Effort (BE) that can
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tolerate variations in end-to-end delay.

Different routing methods are used to handle the two traffic classes: while the

static load balancing method is used to route the EF traffic, the adaptive load bal-

ancing method is used route the BE traffic. The objective is to have EF packets that

belong to the same flow traverse the same path and to preserve load balancing by

remapping the BE flows when needed.

5.2 The QoS Routing Architecture for the AAPN

Network

The architecture is distributed and is implemented at the different edge nodes in

the AAPN network. Figure 5.1 represents the block diagram of the QoS routing

architecture. It exploits the static and adaptive load balancing methods described

in chapter 4. The architecture splits the incoming traffic into two classes: Expedite

Forwarding (EF) and Best Effort (BE). It then routes the BE traffic using the adaptive

load balancing method and the EF traffic using the static load balancing method.

The static and adaptive load balancing methods were studied and deployed sep-

arately to route traffic that belongs to a single traffic class. The results have shown

that the adaptive method outperforms the static method in terms of packets dropped

at the cost of 1% flow remapping.

The static and adaptive load balancing methods share the same block diagram,
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Figure 5.1: The QoS routing architecture for routing the BE and EF traffic.

see figure 4.1 in chapter 4. It consists of two processing stages: classification stage

and a two-level mapping stage associated with every destination edge node in the

network. At the classification stage, the destination edge node of the incoming packets

is determined using the AAPN routing tables described in [5]. The classified packets

are mapped twice: the first map fc(~v), called core selection, routes the packets to a

core node while the second map f cw(~v), called wavelength selection, routes the packets

to a wavelength through core node c selected by fc(~v). The mapped packets are stored

in the VOQ associated with the destination edge node on the selected wavelength.

5.2.1 Complexity Analysis

When a new packet arrives at an edge node, it needs to go through the different

processing stages shown in figure 5.1. At the splitting stage, a single check on one

or more fields in the packet header is performed to determine the traffic class the

packet belongs too. This operation should be quick as only two traffic classes are
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assumed. Regardless of the traffic class the packet belongs too, it should go through

the different processing stages shown in figure 4.1. For more information, see the

complexity analysis section in chapter 4 for the static and adaptive load balancing

architectures.

5.3 Numerical Results

The OPNET tool is used to simulate an AAPN network with 16 edge nodes and 8

core nodes. Since core and wavelength selections work independently, fiber links with

one wavelength are used. Each wavelength has a capacity of 1 Gb/s. The maximum

round trip signaling delay is set to 40 ms and the frame size on each wavelength, F ,

is set to 100 timeslots.

5.3.1 Simulations Input

The F-FSNDP-EF and F-FSNDP-FF fractal point processes are used for generating

traffic at the different edge nodes [61]. The processes represent scenarios where the

flow arrival process is fractal while the flow duration is exponentially distributed

for the F-FSNDP-EF process and heavy tailed Pareto for the F-FSNDP-FF process.

Packets inter-arrival time within a flow is exponentially distributed. The following

parameters describe the traffic for both processes, the parameters are chosen to keep

the traffic load on the network around 1.0:

1. The flow average arrival rate is 198,000 flow/s.
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2. Arrival process Hurst parameter is 0.7 and the Fractal Onset Time Scale is 1.0.

3. The average flow duration is 0.3 s.

4. The flow packet average arrival rate is 128 packets/s.

5. The packet size is exponentially distributed with average size of 1024 bits (i.e.,

on average, each timeslot carries (109 ∗ Ts)/1024 = 10 packets).

For the F-FSNDP-FF process, the flow duration hurst parameter is 0.8 and the

Fractal Onset Time Scale is 0.001. The flow identifier distribution for both processes

is a truncated normal distribution N(0, 1) out of the 32-bit integer space [38]. This

approximates the distribution of IP source and destination addresses as described in

[59].

Bernoulli distribution is used to divide the incoming flow traffic into BE and EF

classes, where the probability p represents the percentage of EF traffic with respect

to the total BE and EF traffic. The probability p takes values over the [0, 1.0] range

with 0.1 increases. The objective is to study the architecture for different amounts

of BE and EF traffic. Notice that for p = 0, all the incoming traffic is BE traffic and

only the adaptive load balancing method is used, while for p = 1.0, all the incoming

traffic is EF traffic and only the static load balancing method is used.
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5.3.2 The Static and Adaptive Load Balancing Methods Pa-

rameters

Link traffic loads at the edge and core nodes are computed every frame, where the

frame length is equal to 1 ms. The adaptation period, ∆T , is set to 100 ms. The

Fibonacci hashing used in [38], is used here to compute g(~v, j). The filtering constant,

r, is set to 100. The hysteresis bound, εh, is set to 0.01 and the initial values for the

adaptation weights are set according to the link capacities using equation 2.3 (i.e., xc

= 1.0)[36].

5.3.3 Simulations Results

Any link set of any edge node can be selected to study the behavior; we choose the

downstream link set of edge node number 8, where a downstream link connects a

source edge node to a core node, while an upstream link connects a core node to a

destination edge node.

Figure 5.2 shows the actual traffic dropped, as a percentage of the incoming traffic,

when the F-FSNDP-FF traffic model is used to generate traffic at the network edge

nodes. It represents the scenario where the percentage of EF traffic, p, changes over

the range [0, 1.0]. For each value of p, the simulation is run for 20 seconds and the

actual traffic dropped is computed, at the end of the simulation, as the sum of the

traffic dropped on the link set every frame. The figure also shows the ideal traffic

dropped, as a percentage of the incoming traffic, which is computed as the sum of
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the ideal traffic dropped every frame. The ideal traffic dropped on a link set is the

difference between the incoming traffic and the link set capacity.

As the figure shows, the traffic dropped is the lowest at p = 0, since all the incom-

ing traffic belongs to the BE class and is available for remapping by the adaptive load

balancing method. As p increases, less and less BE traffic is available for remapping

and so the traffic dropped starts to slightly increase. The traffic dropped is the high-

est at p = 1.0, since all the incoming traffic belongs to the EF class and is routed by

the static load balancing method. Notice that, since schedulers with Strict Priority

(SP) discipline are deployed at the core nodes, most the traffic dropped belongs to

the BE class, except for p = 1.0 since all the incoming traffic belongs to the EF class.

As for the percentage of BE flows remapped, it was found that as the percentage

of EF traffic, p, changes over the range [0, 0.9], the flows remapped slightly drops

from 1% to 0.87%. This is because as the EF traffic increases less and less BE traffic

is available for remapping.

Figures 5.3a and 5.3b shows the traffic load on the different downstream links when

the F-FSNDP-EF and F-FSNDP-FF traffic models are respectively used to generate

traffic at the network edge nodes. The average traffic load for the link set is shown in

bold, it is used as the ideal reference load. The figure represents the scenario where 0.9

of the traffic is statically routed (i.e., EF traffic) and 0.1 is adaptively routed (i.e., BE

traffic) to re-balance the network. This represents the extreme case in our simulations

since only 0.1 of the incoming traffic is available for adaptation (i.e., remapping). The
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Figure 5.2: The actual and ideal traffic dropped on the downstream links of edge

node 8.

results show a stable behavior of the architecture using the two traffic models with

the traffic load on the links remain within the closest vicinity of the average traffic

load.

5.4 Summary

We have described a QoS routing architecture that balances Internet flow traffic with

different QoS requirements in the AAPN network. Different routing methods are used

to handle the two traffic classes: while the static load balancing method is used to

route the EF traffic, the adaptive load balancing method is used route the BE traffic.
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(a) The traffic load on the downstream links for the F-FSNDP-EF traffic model.

(b) The traffic load on the downstream links for the F-FSNDP-FF traffic model.

Figure 5.3: The traffic load on the downstream links for the F-FSNDP-EF and F-

FSNDP-FF traffic models.
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The objective is to have EF packets that belong to the same flow traverse the same

path and to preserve load balancing by remapping the BE packets when needed.

Simulation results show a stable behavior of the architecture using the F-FSNDP-

EF and F-FSNDP-FF input traffic models with the traffic load on the links remain

within the closest vicinity of the average traffic load.
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Chapter 6

Flow-Based Routing Architecture

for Valiant Load-Balanced

Networks

6.1 Introduction

This chapter describes a routing architecture that balances incoming Internet flows

over the Valiant Load-Balanced (VLB) networks. The architecture is based on the

adaptive HRW algorithm proposed to design load balanced Internet routers. To

reduce flow remapping, the architecture extends the adaptive HRW algorithm with a

minimal flow remapping selection scheme that identifies the traffic causing imbalance

in the network and needs to be rerouted, where rerouting is implemented by adapting

the weight vectors associated with the traffic.

85



Compared to the adaptive HRW method, the selection scheme further reduces

flow remapping and the effect of packets reordering. The architecture is stateless and

can compute routes quickly based on the packet flow identifier. This is an important

issue when deploying the VLB network as an Internet backbone network where the

number of flows is large and storing flow state information in lookup tables could

limit the network performance.

6.2 Literature Review

Recently, researchers have been investigating the design of load balanced backbone

networks that can accommodate highly variable traffic matrices. They have proposed

load balancing network designs [6], [7] that can provide guaranteed performance for

highly variable traffic matrices within the hose traffic model constraints [8]. The

research is based on deploying the Valiant Load Balancing (VLB) as the method for

routing the traffic over the network. The VLB method was first proposed by Valiant

for processor interconnection networks [27] and was used later for designing scalable

load balanced routers with performance guarantees [28]-[30].

The valiant load balanced networks deploy the VLB method in a logical mesh

topology network, see Fig. 6.1. The mesh topology could be implemented using

tunneling or MPLS LSPs or another method depending on the underlying technology.

The VLB method routes traffic over the network in two phases: in the first phase

(load balancing phase), each node balances its traffic to all N nodes in the network,
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regardless of the packet destination. Each node receives 1/N -th of every node’s traffic.

In the second phase (forwarding phase), packets are delivered to their destination.

Suppose that the incoming traffic rate to each node is less than or equal to r, and the

traffic is uniformly balanced over the N nodes in the network, the actual traffic on

each link due to the first routing is at most r/N . Since each node can receive traffic

at a maximum rate of r, and it receives 1/N -th of the traffic from every node, the

actual traffic on each link due to the second routing is also at most r/N . Therefore, to

guarantee 100% throughput for any traffic matrix within the constraints of the hose

traffic model, a full-mesh network where each link has capacity 2r/N is sufficient.

In this chapter, we propose an adaptive routing architecture for the balancing

phase. It routes traffic at the flow level to reduce the effects of packets reordering at

the destinations.

6.3 Problem Description

One concern with VLB method is packet re-sequencing at the destination. When

packets from the same flow travel through different routes with different delays, they

may arrive at the destination out of order. By using flow-based hashing, it is possible

to ensure that no single Internet flow is sent over multiple routes. But as shown in

[37] and [41], static hashing, even though preserves packet ordering, could result in

load imbalance. Due to uneven packet flow popularities and highly skewed size dis-
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Figure 6.1: Five edge nodes interconnected by a fully logical mesh.

tributions, significant imbalance can occur and so dynamic hashing is a more efficient

candidate.

In this chapter, we present a routing architecture that balances incoming Internet

flows over the VLB networks. It is based on the adaptive HRW algorithm proposed

to design load balanced Internet routers [38] and load balanced AAPN networks

[62]. The architecture extends the adaptive HRW algorithm with a minimal flow

remapping selection scheme that identifies those source-destination edge node pairs

whose flow traffic is causing imbalance in the network and need to adapt their weights.

The architecture is stateless and can compute routes quickly based on the packet

flow identifier. This is an important issue when deploying the VLB network as an

Internet backbone network where the number of flows is large and storing flow state

information in lookup tables could limit the network performance.
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Figure 6.2: Routing architecture for balancing the Internet traffic over the VLB

network.

6.4 The Adaptive Routing Architecture for the

VLB Network

The architecture is distributed and is implemented at the different nodes in the net-

work, see Fig. 6.2. It consists of two processing stages: a classification stage and a

mapping stage. The mapping stage consists of a number of mapping functions f(~v),

each function is associated with a destination node in the network. At the classifica-

tion stage, the destination node of the incoming packets is determined. The classified

packets are then mapped to an intermediate node using the mapping function f(~v)

associated with that destination node.
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The f(~v) function balances the Internet flows over the two-hop routes going

through the different intermediate nodes. Notice that only the load balancing phase

traffic could be rerouted, forwarding phase traffic is sent directly to its destination.

6.4.1 Mapping Policy

The mapping function f(~v), associated with a destination node, route packets to that

destination at the flow level and is computed using equation 2.1. Each intermediate

node is assigned a mapping weight from the weight vector ~v = (v1...vN), where N is

the number of intermediate nodes.

6.4.2 Triggering Policy

The objective of the policy is to monitor the traffic loads on the set of logical links

connecting a node to all the intermediate nodes. It triggers adaptation when imbal-

ance in the logical link set is discovered. Imbalance occurs if the logical link set is

overutilized (underutilized) and one or more links are underutilized (overutilized).

The policy requires periodic measurement and filtering of the traffic load on each

link. The traffic load ρj(t) on link j, is computed every ∆T period as follows:

ρj(t) =
λj(t)

2r/N
(6.1)

where λj(t) is the measured rate on link j and 2r/N is the link rate.

The filtered traffic load on link j, ρj(t), is also computed every ∆T period using
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equation 2.4. To evaluate the status of the logical link set, the filtered traffic load ρ(t)

of the link set is measured using equation 2.5. The set traffic load, ρ(t), is defined

as the measured rate on the link set divided by the link set capacity, where the set

measured rate is the sum of the individual link measured rates and the set capacity

is N ∗ (2r/N).

Based on the computed values, the link set is underutilized if ρ(t) ≤ 1 and overuti-

lized if ρ(t) > 1. A link is overutilized if ερ(t) ≤ ρj(t) and underutilized if ερ(t) > ρj(t)

where the dynamic threshold, ερ(t), is computed every ∆T using equation 2.6 and

2.7.

6.4.3 Adaptation Policy

Ideally, the mapping functions f(~v) should balance the incoming Internet traffic over

the different logical links in the network, but in reality, the functions could result in

gross imbalance. Thus adaptation and rerouting of some of the traffic flows is needed

to keep links from being congested. Adaptation is done by recomputing the weight

vectors ~v, based on measured links traffic loads, using equations 2.8 and 2.9. It should

be noted that only the balancing phase traffic is subject to rerouting.

6.4.4 Minimal Flow Remapping Selection Scheme

When a node detects imbalance in the link set, adaptation of the weight vectors ~v

is needed, but the question is, which weight vectors to adapt? The architecture as

described so far, requires the node to adapt all its weight vectors. In this section, we
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describe a selection scheme that identifies the traffic causing the imbalance and needs

to be rerouted. Since the traffic entering a node is classified using its destination,

identifying the traffic also means identifying the destination node and the weight

vector associated with that node.

The scheme requires the node to measure and filter the traffic load entering the

network to all destination nodes in the network. This is done using equation 6.2.

ρij(t) =
1

r
ρij(t) +

r − 1

r
ρij(t−∆T ) (6.2)

where ρij(t) and ρij(t) are the measured and filtered traffic load for destination i on

link j.

To identify the traffic causing link j to be underutilized or overutilized, we define

the following two dynamic thresholds. The thresholds are computed every ∆T :

εu(t) = R
mean

(t) +R
SD

(t)

εo(t) = R
mean

(t)−RSD
(t)

(6.3)

where R
mean

(t) is the mean value and R
SD

(t) is the standard deviation of the filtered

traffic loads from equation 6.2:

R
mean

(t) =

∑N
i ρij(t)

N − 1
(6.4)

R
SD

(t) =

√√√√∑N
i

(
ρij(t)−R

mean
(t)
)2

N − 1
(6.5)

where N is the number of nodes in the network.
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Based on the computed values, if a link set, associated with a node, is underutilized

and one of the links j is overutilized, then the traffic going to node i is contributing

to the link state if εu(t) ≤ ρij(t). Conversely, if the link set is overutilized and one of

the links j is underutilized, then the traffic going to node i is contributing to the link

state if εo(t) ≥ ρij(t). The traffic going to node i is not contributing to the link state

if εo(t) < ρij(t) < εu(t).

6.4.5 Complexity Analysis

When a new packet arrives at a node, it needs to go through the different processing

stages shown in figure 6.2. At the classification stage, a lookup table operation is

performed to determine the destination edge node of the packet. This operation

should be quick as the routing table is relatively small.

The packet is then mapped using the function f(~v). Based on equation 2.1, the

computational effort for mapping the packet to the right intermediate node is O(N),

where N is the number of intermediate nodes in the network. An important compo-

nent in the performance of the mapping functions is the hashing function g(~v, j), for a

survey of hash functions for implementing the mapping, see [60]. In our simulations,

we have used Fibonacci hashing to compute the g(~v, j) function.

The architecture requires traffic loads to be measured locally at different source

nodes in the network. Measurement and filtering are performed periodically every

∆T .
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6.5 Numerical Results

The OPNET tool is used to simulate a fully meshed VLB network with N = 16 nodes.

All nodes are of equal capacity r with traffic parameters for each node described in the

next section. The network diameter (i.e., delay from a source node to an intermediate

node) is set to 40 ms. Link capacity is set to 2r/N .

6.5.1 Simulations Input

Each node receives self-similar traffic represented by the F-FSNDP-EF fractal point

process [61]. In the F-FSNDP-EF model, the flow arrival process is fractal while the

flow duration is exponentially distributed. Packets inter-arrival time within a flow

is exponentially distributed. The traffic entering and leaving the network is set to

meet the constraints of the hose traffic model at all times. The following parameters

describe the input traffic:

1. The flow average arrival rate is 100,000 flow/s.

2. The Hurst parameter is 0.8 and the Fractal Onset Time Scale is 0.001.

3. The Average flow duration is 2.0 s.

4. The flow packet average arrival rate is 128 packets/s.

5. The packet size is exponentially distributed with average size of 1024 bits (i.e.,

on average, each timeslot carries (109 ∗ Ts)/1024 = 10 packets).

94



The flow identifier distribution is a truncated normal distribution N(0, 1) out of

the 32-bit integer space [38]. This approximates the distribution of IP source and

destination addresses as described in [59]. The traffic is uniformity distributed to all

destinations in the network, the objective to see how the traffic from different sources

to different destinations affect each other when the network is working at full capacity.

6.5.2 Routing Architecture Parameters

The adaptation period, ∆T , is set to 100 ms which is greater than the network

diameter. This is important to make sure that effects of any weight adaptation

propagates through the network. The Fibonacci hashing used in [38], is used to

compute g(~v, j). The filtering constant, r, is set to 100. The hysteresis bound, εh, is

set to 0.01 and the initial values for the adaptation weights are set according to the

logical link capacities using equation 2.3 (i.e., xj = 1.0)[36].

6.5.3 Simulations Results

Simulation results shown here are for one of the nodes, similar results were generated

for the other nodes.

Figures 6.3, 6.4, and 6.5 show how the traffic load on the different logical links

remain within the closest vicinity of the link set average traffic load (which represents

the ideal traffic load solution) when no selection scheme and minimal flow remapping

selection scheme are deployed in the routing architecture. The figure also shows

the case when the static routing architecture is used (i.e, no adaption of the weight
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Figure 6.3: The traffic load on the link set with the static HRW scheme.

vectors). The results show that it is enough to trigger adaptation of the traffic that

is contributing to the imbalance to keep the network balanced.

Figure 6.6 shows, in a logarithmic scale, the total number of flows appearing and

the total number of flows remapped, every ∆T , when no selection scheme and min-

imal flow remapping selection scheme are deployed in the routing architecture. The

figure shows significant reduction in the amount of flows remapped when the selection

scheme is deployed.compared to the case where no selection scheme is deployed.

Table 6.1 presents the percentage of flows remapped when the selection scheme is
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Figure 6.4: The traffic load on the link set with the adaptive HRW scheme.

deployed in the routing architecture. It shows that using the selection scheme gives

51% improvement compared to the routing architecture with no selection scheme.

Fig. 6.7 shows the percentage of traffic dropped every ∆T in excess of the ideal

drop when static, no selection, and minimal flow remapping selection schemes are

deployed. The ideal traffic drop is computed as the difference between the traffic

received and the link set capacity. The figure shows how the adaptive architectures

with no selection and minimal flow remapping selection schemes outperform the static

architecture. It also shows that the drop rate of the minimal remapping selection and

the no selection schemes are within the same range.
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Figure 6.5: The traffic load on the link set with the adaptive HRW scheme with

minimal flow remapping.

6.6 Summary

We have described a routing architecture that balances Internet flows over the VLB

network. The architecture is based on the adaptive HRW algorithm proposed to

design load balanced Internet routers. To reduce flow remapping, the architecture

extends the adaptive HRW algorithm with a minimal flow remapping selection scheme

that identifies the traffic causing imbalance in the network and needs to be rerouted.

The architecture is stateless and can compute routes quickly based on the packet flow

identifier.

The simulation results show that the load on the links remain within the closest
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Figure 6.6: The total number of flows appearing and the total number of flows

remapped every ∆T period.

vicinity of the average load at the cost of remapping a small fraction of flows. The

results show significant reduction in the amount of flows remapped when the selection

scheme is deployed. Performance measures, in terms of traffic dropped, show that the

adaptive routing architecture significantly outperforms the static routing architecture.

Deploying the routing architecture requires measuring the traffic load on the log-

ical link set. We believe that the significant reduction in flow remapping and traffic

drop are worth this measurement. Furthermore, these measurements are local to the

source node and should not have big impact on the performance of current powerful

edge nodes.

The focus of this work was on VLB networks with nodes of equal capacity, the
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Flow Remappings %all

Routing Architecture with no Selection Scheme 0.84%

Routing architecture with Selection Scheme 0.41%

Improvement of selection over no selection %

1 - (selection / no selection) 51.0%

Table 6.1: Flow remappings when using no selection scheme and when using the

selection scheme in the VLB network.

Figure 6.7: The figure shows the percentage of traffic dropped every ∆T in excess

of the ideal drop when static, no selection, and minimal flow remapping selection

schemes are deployed.
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work should also be applicable to networks with general topologies and heterogenous

nodes. In this case, linear programming formulation is used to compute the logical

link capacities and identify the intermediate nodes [7]. The result is a mesh network

with different logical link capacities and node capacities. The routing architecture

described here should work fine with the computed logical link capacities since the

HRW algorithm [36] is designed for heterogeneous environments too.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

The problem of deploying AAPN as the backbone network for ISPs where IP routers

are interconnected by the AAPN network is studied in this thesis. More specifically,

the thesis focused on designing a routing architecture for balancing the IP traffic load

over the AAPN network while minimizing packet reordering within one flow identified

by common fields within the packet header.

Since the number of flows is large in the backbone networks, storing flow state

in lookup tables can limit the network performance. Hence the routing architecture

eliminates the need for flow lookup tables. Different static and adaptive load balanc-

ing methods were studied and their behavior and effect on the network performance

in terms of packet drop and flow remapping is analyzed.

The applicability of the load balancing methods to topologies beyond AAPN over-
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laid star topology is extended using the Valiant Load Balancing (VLB) method. The

method is used to build an overlaid star topology on top of the physical topology.

Deploying the VLB method in the AAPN network, eliminated signaling and replaced

the dynamic core schedulers with a static scheduler that can accommodate all traffic

matrices within the hose traffic model boundaries.

The Control Messages Delivery Protocol (CMDP) is proposed as part of this thesis

to provide a reliable channel between the edge and core nodes in the AAPN network.

The protocol is designed to work in environments where propagation delays are long

and/or the error rates are high. It is used to deliver a burst of short messages in

sequence and with no errors. Combined with the reliable routing protocol proposed

previously for the AAPN network, they form the control plane for the network that

supports the operation of the load balancing methods.

In summary, this thesis work should provide interested ISPs with a comprehensive

study of load balancing methods and a control plane for deploying the AAPN network

as their backbone network. The thesis work should support the deployment of the

AAPN network at the core of an IP network using the overlay internetworking model,

where control in the AAPN network is hidden from control in the IP network.

The static load balancing method has the advatage that no remapping is per-

formed and so requires not measurments. It has the disadvantage that the traffic

drop rate is high compared to the adaptive load balancing method. The adaptive

load balancing method, event though it has low drop rate, requires traffic measure-

ments on both the upstream and downstream link sets. It also requires some flows to
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be remapped (i.e., some resquencing is needed). It was found in the simulations that

1% of the incoming flows were remapped. The minimal flow remapping load balancing

method reduces the flows remapped compared to the adaptive load balancing. It was

found in the simulations that 0.2% of the incoming flows were remapped. It requires

further measurements on both the upstream and downstream link sets. The QoS

load balancing method supports two classes of traffic and is dependent on both the

static and adaptive load balancing methods. Either the adaptive load balancing or

the minimal flow remapping load balancing method can be used in the QoS method.

7.2 Future Work

Following the previous discussion, it would be interesting to extend our work to rout-

ing at the connection level. Most of the modern routing methods at the connection

level are state dependent. Two interesting methods are: the Markov Decision Process

(MDP) model [63]-[66], which allows for formulating the problem as an optimization

of an objective function, and the Least Loaded Path (LLP) method [63], [67]. Our

objective is to present a new formulation of the routing and Connection Admission

Control (CAC) problem that maximizes the revenue from the network while reducing

the average end to end delay.

The formulation is not restricted to AAPN’s overlaid star topology but can be

used in networks with general topology. Routing at the connection level is motivated

by the deployment of AAPN network at the core of a circuit-switched network like
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MPLS. The method requires the connection state on each link and can produce a

near optimal routing in terms of network revenue and average delay. The exact MDP

optimal model is relatively heavy in processing and memory requirements, but using

simplifications the method can produce a sub-optimal method with manageable levels.

The method facilities traffic distribution control and can provide for efficient trade

off between revenue and average delay objectives.

The LLP method is well known in the literature and industry and is considered

one of the best performing routing methods in use. LLP checks the current state of

the different paths in the network and routes the new connection over the least loaded

path. A path load is equal to the load of the most loaded link a long the path. The

method requires the aggregate state information from all links in the network. The

method has been implemented in real networks in both Canada and the US.
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Appendix A

Load Balancing with Minimal Flow

Remapping for Network Processors

This appendix deploys the minimal flow remapping scheme described in chapter 4 in

the Internet router architecture from [38]. The objective is to show that load balancing

methods proposed in this thesis are also applicable to the router architecture from

[38]. Deploying the QoS architecture described in chapter 5 in the router architecture

is left for future work.

A.1 Introduction

Maintaining high performance in parallel processing routers while preserving packet

ordering within the flows is a difficult problem. To preserve packet ordering, hashing

at the flow level has been used to distribute packet processing workload among the
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router processing units. Even though it preserves ordering, hashing alone may cause

significant workload imbalance and thus adaptive methods are usually needed.

In this appendix, we present an input port selection scheme that can be augmented

with the adaptive Highest Random Weight (adaptive HRW) method. The adaptive

HRW is a hash-based method that works at the flow level and is used to balance packet

processing workload among the router processing units. When imbalance occurs, the

adaptive HRW method triggers all input ports to re-balance their workload among the

processing units. When augmented the selection scheme, the adaptive HRW method

should be able to identify the subset of input ports responsible for the imbalance.

Due to the exponential growth of the Internet traffic, old fashion centralized

routers with a single general purpose processor have been replaced with high per-

formance multiprocessor routers [68], [69]. The multiprocessor router architecture

utilizes special purpose processing units, also called network processors (NP) or for-

warding engines (FE), and can be classified into distributed and parallel architectures.

The distributed architecture [70], deploys the network processors at the different

router input ports; each network processor (or set of network processors) is responsible

for processing the packet workload for that input port. Since the traffic at the different

input ports is rarely evenly distributed, underutilization is a major drawback of this

architecture.

The parallel architecture [71], [72], enhances the router utilization by deploying a

pool of network processors far from the router input ports. The objective is to remove

any processor-port association. The architecture suffers from two drawbacks: first,
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the network processors interconnect topology could limit the router’s performance

and second, the scheduler responsible for balancing the incoming processing workload

among the different network processors is a single point of failure for the entire router.

This appendix presents an input port selection scheme that can be augmented with

the adaptive Highest Random Weight (adaptive HRW) method [38]. The method was

proposed for balancing processing workload among the pool of network processors.

When deployed with the adaptive HRW method, the selection scheme should further

reduce the number of flows remapped while balancing the packet processing workload

among the different network processors within the router.

A.2 Related Work

In the networking domain, load balancing among web caches was the main objective

of the work in [35]. It lists the main design goals of a load mapping method, namely:

low overhead, load balancing, high cache hit rate, and minimal disruption. The work

presents the Highest Random Weight (HRW) hashing method that maps web object

requests to different web caches. The method eliminates object duplications, achieves

fault tolerance, and keeps objects disruption to minimum. Minimal disruption is

important when adding/removing web caches since only a minimum number of object

requests are migrated among the web caches. Ref. [36] enhances the HRW method by

extending it to heterogeneous web caches. The method assigns multipliers (weights)

to the different web caches that are proportional to the caches storage capacities. The
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method is implemented by some Microsoft products and is known as the Cache Array

Routing Protocol (CARP).

In the router design domain, load balancing among the router network processors

was the main objective of the work in [37] and [43]. The main goal is to design

load sharing methods for balancing packet processing workload among the network

processors while trying to preserve packets order within the flows. Ref. [37], presents

a hash-based method that exploits the highly skewed Internet flow size distribution to

design a scheduler that only shifts few aggressive flows from heavily loaded forwarding

engines. Ref. [43], presents another hash-based method that exploits the bursty

nature of the Internet traffic to design a scheduler that shifts bursts within the flows.

It is based on the insight that TCP flow bursts are the primary source of burstiness

of Internet traffic. The two methods are adaptive but require considerable flow state

information to be stored in the router.

The adaptive HRW method [38], presents a load balancing scheme for processing

packets in IP routers. The method is based on the HRW hashing [36] augmented with

an adaptive control loop. Although the HRW method ensures load balancing over

the request object space, load imbalance could happen due to uneven popularity of

the individual objects. An important goal of the method is to preserve the minimal

disruption property when balancing the processing workload among the network pro-

cessors. A comparison, between the adaptive HRW method and the load balancing

method from [37], is presented by the work in [39].

In this appendix, we present a selection scheme that can be augmented with the
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adaptive HRW method. The objective is to further reduce flow remapping while

keeping the IP router balanced. When imbalance occurs in the router’s network

processor set, the adaptive HRW method triggers all input ports to adapt their weights

to re-balance the router. The selection scheme should help identify and trigger the

subset of input ports that is responsible for the router imbalance.

A.3 The Minimal Flow Remapping Selection Scheme

The motivation behind the selection scheme is that the workloads due to the actual

traffic at the input ports may be different and so require different weight vectors ~x.

Some input ports may have well behaving traffic workload that is already balanced

while other ports may have badly behaving traffic workload that requires weight

vector adaptation. The adaptive HRW method monitors the status of the router and

the individual network processors and if imbalance occurs, it adapts the weight vector

at all input ports. The objective of the selection scheme is to adapt the weight vectors

at a subset of the input ports. Compared to the adaptive HRW scheme this should

further minimize the amount of flows remapped while keeping the router balanced.

The selection scheme identifies, for an underutilized (overutilized) network proces-

sor, the input ports causing the network processor to be underutilized (overutilized).

The scheme is based on the triggering policy used to determine the status of the

individual network processors. To identify the input ports causing imbalance, the

scheme requires for each network processor j the periodic measurement of the work-
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load intensity ρij(t) from every input port i. Network processor j workload intensity

from input port i is defined as the actual network processor workload from the input

port divided by the network processor capacity. Equation A.1 shows how the filtered

workload intensity at network processor j from input port i is calculated.

ρij(t) =
1

r
ρij(t) +

r − 1

r
ρij(t−∆T ) (A.1)

where ρij(t) is the filtered workload intensity for input port i at network processor j

and r is the filtering constant.

The scheme uses the dynamic threshold εj(t) defined in equation A.2 to determine

whether an input port is contributing to network processor j underutilization or

overutilization status:

εj(t) =
1

2N

(
1 + ρj(t)

)
(A.2)

where N is the number of input ports in the router and ρj(t) is the filtered workload

intensity for network processor j computed using equation 2.4. N is used in equation

A.2 since a network processor workload intensity from an input port is computed

using the network processor capacity.

Algorithm 1 shows how the selection scheme works when the router is underutilized

and one or more network processors are overutilized. The algorithm has the following

input: the set of input ports, the set of overutilized network processors, the set of

filtered workload intensities ρij(t), and the set of dynamic thresholds εj(t). The
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output of the algorithm is a subset A of the input ports whose weight vectors ~x

will be adapted. The algorithm loops through the overutilized network processors

and for each processor it identifies the input ports contributing to the processor’s

overutilization status. An input port i is contributing to the overutilization of network

processor j if ρij(t) ≥ εj(t).

Input: overutilized network processors set, input ports set, ρij(t), εj(t)

Output: subset of input ports that require adaptation

A = ∅

foreach overutilized network processor j do

foreach input Port i do

if ρij(t) ≥ εj(t) then

A = A ∪ {i}

end

end

end

Algorithm 1: The selection scheme when the router is underutilized and one or

more network processors are overutilized

Algorithm 2 shows how the selection scheme works when the router is overutilized

and one or more network processors are underutilized.
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Input: underutilized network processors set, input ports set, ρij(t), εj(t)

Output: subset of input ports that require adaptation

A = ∅

foreach underutilized network processor j do

foreach input Port i do

if ρij(t) < εj(t) then

A = A ∪ {i}

end

end

end

Algorithm 2: The selection scheme when the router is overutilized and one or more

network processors are underutilized
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A.4 Numerical Results

The OPNET tool is used to simulate a router with 16 input ports and 8 network

processors. Depending on the parameters of the input traffic described later, it is

assumed that each network processor is capable of processing the full workload from

two input ports. The goal is to investigate the performance with respect to the router

bounds.

A.4.1 Simulations Input

Each input port generates self-similar traffic represented by the F-FSNDP-FF fractal

point process [61]. In the F-FSNDP-FF model, the flow arrival process is fractal and

the flow duration is heavy tailed Pareto model. Packets inter-arrival time within a

flow is exponentially distributed. The following parameters describe the input traffic,

the parameters are chosen to keep the total workload intensity on the router around

1.0:

1. The flow average arrival rate is 5,000 flow/s.

2. Arrival process Hurst parameter is 0.7 and the Fractal Onset Time Scale is 1.0.

3. The Average flow duration is 0.3 s.

4. The flow duration Hurst parameter is 0.8 and the Fractal Onset Time Scale is

0.001.

5. The flow packet average arrival rate is 128 packets/s.
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The flow identifier distribution is a truncated normal distribution N(0, 1) out of

the 32-bit integer space [38]. This approximates the distribution of IP source and

destination addresses as described in [59].

A.4.2 The Adaptive HRW Method Parameters

The adaptive HRW parameters are taken from [38] where the adaptation period, ∆T ,

is set to 15ms, the filtering constant, r, is set to 3, and the hysteresis bound, εh, is

set to 0.01. The Fibonacci hashing is used here to compute g(~v, j). It is assumed

that network processors with equal processing capacities are used in the router and

the initial values for the adaptation weight vector are proportional to the network

processors capacities using equation 2.3 (i.e., xj = 1.0)[36].

A.4.3 Simulations Results

Figure A.1 shows the filtered workload intensity on the different network processors

when no selection (a) and minimal flow remapping selection scheme (b) are deployed

with the adaptive HRW method. The filtered router workload intensity is shown in

bold, it is used as the ideal reference workload intensity. It shows how the work-

load intensity for the different network processors remain within the closest vicinity

of the router workload intensity (which represents the ideal workload intensity so-

lution) when no selection scheme and the minimal flow remapping selection scheme

are deployed with the adaptive HRW method. This proves that it is enough to trig-

ger weight vector adaptation of a subset of the input ports whose flow workload is
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contributing to the imbalance to keep the router balanced.

Figure A.2 shows, in a logarithmic scale, the total number of flows appearing

and the total number of flows remapped, every ∆T at all input ports, when no

selection scheme and the minimal flow remapping selection scheme are deployed with

the adaptive HRW method. The figure shows significant reduction in the amount of

flows remapped when the selection scheme is deployed compared to the case where

no selection scheme is deployed.

Table A.1 presents the percentage of flows remapped when the selection scheme is

deployed with the adaptive HRW method. It shows that using the selection scheme

gives 57% improvement (i.e., reduction in flow remapping) compared to the adaptive

HRW with no selection scheme.

Flow Remappings %all

Adaptive HRW with no Selection Scheme 1%

Adaptive HRW with Selection Scheme 0.43%

Improvement of selection over no selection %

1 - (selection / no selection) 57.0%

Table A.1: Flow remappings when using no selection scheme and when using the

selection scheme in the load balanced router.
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(a)

(b)

Figure A.1: The filtered workload intensity on the different network processors.
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Figure A.2: The total number of flows appearing and the total number of flows

remapped every ∆T period.

Figure A.3 compares the number of packets dropped every ∆T when no selection

and minimal flow remapping selection schemes are deployed. It shows how both

curves closely follow the total router curve which represents the ideal packet drop.

The ideal packet drop is computed as the difference between the packets received and

the network processor set capacity.
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Figure A.3: The figure shows the number of packets dropped every ∆T .

A.5 Summary

We described a selection scheme that can be augmented with the adaptive HRW

method. The selection scheme identifies, for an underutilized (overutilized) network

processor, the input ports causing the network processor to be underutilized (overuti-

lized). The simulation results show that deploying the selection scheme with the

adaptive HRW method further reduces the number of flows remapped while keeping

the packet processing workload balanced among the different processing units within

the router.

Deploying the selection scheme with the adaptive HRW method requires measur-

ing the processing workload at each network processer from every input port. We
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believe that the significant reduction in flow remapping is worth this measurement.

Furthermore, these measurements should not have big impact on the performance of

current powerful routers.
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