
A Framework for Noise Analysis and Verification of

Analog Circuits

Rajeev Narayanan

A Thesis

in

The Department

of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy at

Concordia University

Montréal, Québec, Canada

March 2012

c© Rajeev Narayanan, 2012

CONCORDIA UNIVERSITY

Division of Graduate Studies

This is to certify that the thesis prepared

By: Rajeev Narayanan

Entitled: A Framework for Noise Analysis and Verification of Analog Circuits

and submitted in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

complies with the regulations of this University and meets the accepted standards with

respect to originality and quality.

Signed by the final examining committee:

Dr. Sedaghati, Ramin (Chair)

Dr. Massicotte, Daniel (External Examiner)

Dr. Cowan, Glenn (Examiner)

Dr. Dolatabadi, Ali (External to Program)

Dr. Zahangir, Kabir (Examiner)

Dr. Tahar, Sofiène (Supervisor)

Approved by

Chair of the ECE Department

2012

Dean of Engineering

ABSTRACT

A Framework for Noise Analysis and Verification of Analog Circuits

Rajeev Narayanan, Ph.D.

Concordia University, 2012

Analog circuit design and verification face significant challenges due to circuit complexity

and short market windows. In particular, the influence of technology parameters on circuits,

noise modeling and verification still remain a priority for many applications. Noise could

be due to unwanted interaction between the various circuit blocks or it could be inherited

from the circuit elements. Current industrial designs rely heavily on simulation techniques,

but ensuring the correctness of such designs under all circumstances usually becomes im-

practically expensive. In this PhD thesis, we propose a methodology for modeling and

verification of analog designs in the presence of noise and process variation using run-time

verification methods. Verification based on run-time techniques employs logical or statisti-

cal monitors to check if an execution (simulation) of the design model violates the design

specifications (properties). In order to study the random behavior of noise, we propose an

approach based on modeling the designs using stochastic differential equations (SDE) in the

time domain. Then, we define assertion and statistical verification methods in a MATLAB

SDE simulation framework for monitoring properties of interest in order to detect errors.

In order to overcome some of the drawbacks associated with monitoring techniques, we

define a pattern matching based verification method for qualitative estimation of the simu-

lation traces. We illustrate the efficiency of the proposed methods on different benchmark

circuits.

iii

To My Parents, Wife, Children, and In-Laws

iv

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my advisor Dr. Sofiène Tahar. I feel very

fortunate that he took me on when I was left without a supervisor after my first year. I am

very grateful for the opportunities he had provided me, right from presenting in prestigious

conferences down to coaching an intern. I appreciate all his contributions of time and fund-

ing to make my Ph.D a successful one.

I am also thankful to the past and present members of the HVG group. The group

has been a good sounding board, and a source of friendships. In particular, I would like

to extend a special thanks to Dr. Mohammed Zaki, a past member of the HVG group for

his encouragement, camaraderie and pointers. Zaki has played a key role in making my re-

search experience a stimulating one. Some memorable people who have been inspirations

in many ways would be Billy, Sanaz Afshar Khan, Naeem Abbasi and Liya Liu.

I am thankful to the people that I have had a chance to work with outside the HVG.

In particular I would like to thank Dr. Behzad Akbarpour and Prof. Lawrence Paulson

(University of Cambridge) for their collaboration. It was very motivating for me to work

with them. Last but not least, I would like to thank my family for their support and encour-

agement. For my Father, who has been steadfast in his support of my Ph.D and my wife

who has stood beside me through it all.

v

TABLE OF CONTENTS

LIST OF TABLES . ix

LIST OF FIGURES . x

LIST OF ACRONYMS . xiii

1 Introduction 1

1.1 Motivation . 1

1.2 Noise and Process Variation in Analog Circuits 5

1.3 Problem Statement . 7

1.4 State-of-the-Art . 8

1.5 Thesis Objectives . 11

1.6 Proposed Methodology . 11

1.7 Thesis Contributions . 14

1.8 Thesis Organization . 15

2 Preliminaries 17

2.1 Stochastic Differential Equation (SDE) . 17

2.1.1 Finding the Analytical Solution of SDE 21

2.1.2 Numerical Approximation of the SDE 24

2.2 Statistical Hypothesis Testing . 29

3 Verification using Deterministic Monitors 33

3.1 Introduction . 33

3.2 Assertion Based Verification Methodology 35

3.3 Applications . 40

3.3.1 Tunnel Diode Oscillator . 40

vi

Property Observations . 41

3.3.2 Colpitts Oscillator . 45

Property Observations . 47

3.3.3 PLL Based Frequency Synthesizer 50

Property Observations . 51

3.4 Summary . 55

4 Quantitative Analysis using Statistical Techniques 57

4.1 Introduction . 57

4.2 Statistical Verification Methodology . 58

4.2.1 MonteCarlo Algorithm . 60

4.2.2 Bootstrap Algorithm . 62

4.3 Applications . 65

4.3.1 Colpitts Oscillator . 65

Statistical Property Observation 66

4.3.2 Band-Gap Reference Generator 68

Statistical Property Observation 70

4.3.3 PLL Based Frequency Synthesizer 72

Statistical Property Observation 74

4.4 Summary . 77

5 Qualitative Estimation Using Pattern Matching 79

5.1 Introduction . 80

5.2 Proposed Methodology . 84

5.2.1 Longest Closest Subsequence (LCSS) 85

5.2.2 Dynamic Time Warping (DTW) 89

vii

5.2.3 Hypothesis Testing . 93

5.3 Applications . 96

5.3.1 Colpitts Oscillator Circuit . 96

5.3.2 PLL based Frequency Synthesizer 99

5.4 Summary . 105

6 Conclusions and Future Work 106

6.1 Conclusions . 106

6.2 Future Work . 108

A AnalogSDE: A Verification Tool for Analog Circuits 110

Bibliography 116

viii

LIST OF TABLES

2.1 SDE Formulas . 21

2.2 Statistical Estimation Error . 29

3.1 Tunnel Diode Oscillator Parameters for Property 1 41

3.2 Tunnel Diode Oscillator Parameters for Property 2 44

3.3 Colpitts Oscillator Parameters . 48

3.4 RC- Low Pass Filter . 54

4.1 Rejection Region for Different Tail Test 62

4.2 Statistical Runtime Verification Results for Colpitts Oscillator. 67

4.3 Statistical Runtime Verification Results for Band-Gap Reference Generator. 71

4.4 Statistical Runtime Verification Results for the PLL Lock-Time Property. . 76

5.1 Dynamic Time Warping Matrix . 91

5.2 Longest Closest Subsequence Computation Results. 98

5.3 DTW and Hypothesis Tesing Results for the PLL 103

ix

LIST OF FIGURES

1.1 System-on-Chip [25]. 2

1.2 Respin in System on Chip [25]. 3

1.3 Challenges in Analog Designs [86]. 4

1.4 Analog Modeling and Verification Framework. 12

2.1 ODE vs. SDE [2]. 18

2.2 Thermal Noise in Time Domain [107]. 19

2.3 Sampling Mixer Circuit. 21

2.4 Tunnel Diode Oscillator . 25

2.5 Poisson White Shot Noise (PWSN) [70]. 26

2.6 Accept/Reject Hypothesis Testing . 30

3.1 Assertion Based Environment . 35

3.2 Assertion Based Run-Time Verification 36

3.3 Assertion Monitoring . 38

3.4 Negative Resistance Region [29]. 40

3.5 Property 1 FSM . 42

3.6 Property 1 Simulation Results . 43

3.7 Property 2 FSM . 44

3.8 Property 2 Simulation Results . 45

3.9 Colpitts Oscillator . 46

3.10 No Oscillation Property FSM . 48

3.11 Simulation Result of Colpitts Oscillator 49

3.12 PLL Based Frequency Synthesizer . 50

x

3.13 VCO Output with/without Noise . 52

3.14 Lock-Time Property FSM . 52

3.15 Lock-Time Property Results . 54

3.16 Lock-Time Property Results . 54

4.1 Statistical Run-Time Verification Methodology 59

4.2 Statistical Hypothesis Testing . 59

4.3 Simulation Result of Colpitts Oscillator 66

4.4 Shmoo Plotting of Colpitts Oscillator Results. 68

4.5 Band Gap Reference Circuit [52]. 69

4.6 Shmoo Plotting of Band-Gap Reference Generator Results. 72

4.7 PLL Based Frequency Synthesizer . 73

4.8 VCO Output with/without Noise . 73

4.9 PLL Lock-Time Verification . 75

4.10 Jitter Deviation in VCO. 75

4.11 Shmoo Plotting of PLL Results. 77

5.1 Analog Verification. 82

5.2 Overview of Pattern Matching Verification Methodology 85

5.3 Chua Circuit. 87

5.4 Chua Simulation Result with Process Variation. 87

5.5 LCSS Table of Computation. 89

5.6 Tracing LCSS for the Chua Circuit . 89

5.7 Dynamic Time Warping Example . 91

5.8 Dynamic Time Warping Results . 93

5.9 Colpitt’s Simulation Results . 97

5.10 Cumulative Distributive Function for Table 5.2. 98

xi

5.11 Probability Plot for Table 5.2. 100

5.12 VCO Output . 102

5.13 VCO Output Spectrogram . 102

5.14 VCO Output Warped using DTW . 103

5.15 Influence of the Jitter on the Cost . 104

A.1 Overview of the Noise Analysis and Verification Framework 111

A.2 Class Diagram for AnalogSDE Tool Framework. 113

xii

LIST OF ACRONYMS

ABV Assertion Based Verification

AC Alternating Current

ACK Acknowledgement

AMS Analog Mixed Signal

ASIC Application Specific Integrated Circuits

BDD Binary Decision Diagram

BJT Bipolar Junction Transistor

CAD Computer-Aided Design

CDF Cumulative Distribution Function

CT Continuous-Time

dB Decibel

DAE Differential Algebraic Equation

DC Direct Current

DT Discrete-Time

FSM Finite State Machine

HDL Hardware Description Language

HOL Higher Order Logic

IP Intellectual Property

KCL Kirchoff Current Law

KVL Kirchoff Voltage Law

LCS Longest Common Subsequence

LCSS Longest Closest Subsequence

LPHN Labeled Hybrid Petri Net

xiii

MNA Modified Nodal Analysis

MOR Model Order Reduction

MOS Metal Oxide Semiconductor

MS Mixed Signal

NF Noise Figure

ODE Ordinary Differential Equation

PCB Printed Circuit Board

PDF Probability Distribution Function

PLL Phase Locked Loop

PWSN Poisson White Shot Noise

RF Radio Frequency

RMS Root-Mean Square

RTL Register Transfer Logic

RTV Run-Time Verification

SDE Stochastic Differential Equation

SPICE Simulation Program with Integrated Circuit Emphasis

SoC System on Chip

SRE System of Recurrence Equations

SNR Signal-to-Noise Ratio

SSNR Segmental Signal-to-Noise Ratio

VCO Voltage Controlled Oscillator

xiv

Chapter 1

Introduction

1.1 Motivation

“Design is not just what it looks like and feels like. Design is how it works.”

Steve Jobs (1955-2011).

The above statement has many connotations in science and engineering, especially, in the

area of semiconductor (chip) design. Over the last decade, high performance System-on-

Chip (SoC) [78] based printed circuit board (PCB) has played a pivotal role in the growth

of consumer electronics (iphones, cameras, game console, laptops, etc.), embedded sys-

tems and computing servers. A typical SoC, shown in Figure 1.1, can be characterized by

its interaction between different intellectual property (IP) units, advanced microprocessor,

custom built radio frequency (RF), and analog and mixed signal (AMS) circuitry. An AMS

circuit combines analog and digital units on a single chip and remains the backbone to any

SoC design as it represents the interface to the external world. Apart from generating sys-

tem reference clock (e.g., a phase locked loop (PLL)), front and back end AMS circuits

are responsible for data translation across analog/digital domains (A/D, D/A converters),

1

Interface
Video/Camera

Image
Processor

Custom
ASIC

Interface
WiFi

Interface
Memory

 Party Modemrd3

RF

Bluetooth

PMU

Digital DesignMixed SignalAnalog/RF

MemoryPLL

Driver

IO/Keypad

USB

SIM

Intellectual Property

LCD

Audio

TV

FM

Micro
Processor

DSP

Figure 1.1: System-on-Chip [25].

and circuit biasing (e.g., a Band-Gap reference) which facilitates the correct and stable op-

eration of the SoC. The complexity of an SoC continues to escalate against a backdrop

of process scaling, tenacious competition among different vendors and aggressive time-

to-market schedules. As most of the analog circuit within an AMS block is handcrafted,

the fast paced product cycle has created a unique challenge to its traditional design and

verification techniques.

A recent report [25], depicted in Figure 1.2, reveals that 70% of the product re-spin are

due to functional errors, with industry/research groups spending more than 80% of effort on

verification. Though, the combined analog/RF designs occupy less than 20-30% of the chip

area, they contribute to more than 50% of the design failures [25]. This is not surprising, as

in reality, analog design and verification process tend to focus on a much larger set of design

specification [86] to find an optimal trade-off for better circuit performance and yield, as

summarized in Figure 1.3.

Over the last decade, computer-aided design (CAD) tool development has seen a

2

0 10 20 30 40 50 60 70

Others

Power

IR Drops

Firmware

Crosstalk

Yield/Reliability

Clocking

Mixed Signal

Fast Path

Slow Path

Tuning

Logic/Function

Percentage of Designs Requiring Two or More Respins

Figure 1.2: Respin in System on Chip [25].

tremendous growth in ensuring the correctness of analog designs influenced by noise, fluc-

tuations, environment constraints, and manufacturing variations. Yet, the analog design

and verification process remains a very complex and daunting process, and still lags its

digital counterpart in many aspects such as, abstraction, automation, simulation run-times,

and IP (Intellectual Property) reusability [79]. The analog design flow has remained es-

sentially the same for the past twenty years [64]. This transistor-level analog design flow

starts with the front-end design of the individual blocks using a schematic capture program

(usually SPICE circuit simulator [15]), which are then verified through multiple simulation

by combining noise and process variation details to form the overall design [64]. Even in

the current state-of-the art, circuit parameters (W
L

ratio of transistors, power consumption,

cutoff frequency, etc.) are determined manually or with little automation and then verified

through visual inspection using simulation. Till date, performing system level verification

at micromodel (transistor) level using SPICE may lead to weeks/months of labor intensive

3

circuit simulation to validate the design and can become impractically expensive.

Process VariationSignal Distortion

Parasitics

Area, Speed, & Power

Noise

Gain & Bandwidth

Environment ConstraintsFluctations

Analog Design
Optimization

Figure 1.3: Challenges in Analog Designs [86].

To address the above challenges, industry/research groups [63] have complemented

the traditional circuit level verification approach with the behavioral level modeling and

verification at a higher level of abstraction. The advantage of such an approach is that the

verification for the whole design can be automated and performed much faster. This speed-

up, however, does not come without a price. The first cost is the accuracy of the behavioral

model against the actual transistor-level designs. Secondly, the model has to account for

physical (threshold voltage, leakage current, etc.), functional (noise, jitter) and environ-

mental (temperature) constraints. Current modeling and verification methods using hard-

ware description language (HDL) environments ([5], [121], and [58]) can be very effective

to understand the functional behavior of the designs, but in reality, it does not guarantee that

the design will maintain the same behavior with effects like noise, process variation, and so

on. Therefore, there is a need for a new modeling and verification paradigm to complement

the classical verification methods to handle noise, process variation and other constraints at

a higher level of abstraction in order to avoid costly errors downstream.

4

1.2 Noise and Process Variation in Analog Circuits

Noise is a random phenomenon whose origin has been studied by many researchers for

decades, yet it still remains a mysterious threat to any hardware systems [52]. The sources

of noise could be due to unwanted interaction between different circuit blocks (e.g., cross-

talk noise) or it could be inherited from the circuit elements (e.g., thermal, shot and flicker) [66].

Additionally, a large amount of simultaneously switching exhibited by digital signal can

also cause noise in sensitive analog circuits and can result in unwanted oscillation or false

spikes. Noise can also be transmitted around a chip through the power rails, the package

and the substrate. Other types of noise common in deep sub-micron technology are the

excess and the telegraph noise [81]. While the excess noise occurs due to the heating of

charge carriers by the high lateral electric field, telegraph noise happens due to the trapped

charges near the Fermi level [81].

Thermal noise is associated with the random thermal motion of carriers in any con-

ducting material and in general considered to be independent of the conventional cur-

rent [66]. The extent of the motion is proportional to the resistance of the material and

its absolute temperature T (◦K). As T approaches zero, thermal noise tends to die out. Shot

noise is generally found in junction semiconductors, and its existence is attributed to the

motion of charges across the junction between two semiconductor materials. For instance,

in a semiconductor p-n junction, the movement of charge carriers into the depletion region

generates a small pulse, this contributes to shot noise. In order to model shot noise, one

has to understand the rate at which this pulse arrive and the corresponding amplitude. At

any given time, such random pulses take Poisson distribution path with its amplitude to be

fixed/varying [52]. Effective at lower frequencies, the 1/f noise, also called flicker noise is

due to impurities in a conductive channel , for instance, varying doping concentration in

active devices [66]. Flicker noise is a general form of a power law noise or a 1/fα, noise

5

where α is considered to vary between 0 and 2 [66]. Cross-talk noise, is due to capacitive

and inductive coupling between the lines that run close to one another, meaning, the signal

on one line will influence the behavior of the signal in the adjacent lines. This kind of in-

terference effect depends on the frequency of the signal, the proximity of the two lines, and

the total distance that the two lines run adjacent to one another [52].

Can we eliminate noise? The short answer is that it depends on the type of noise and

its origin. For instance, with proper layout and shielding techniques between the analog

and digital blocks or between two neighboring lines in a design, interference noise can be

nullified [66]. On the other hand, the inherent (e.g., thermal, shot and flicker) noise can

be reduced but cannot be eliminated completely. This is because, the dynamics of such

noise are influenced by the way active/passive elements are manufactured and environment

constraints that could totally alter its behavior.

With the reduction in feature dimensions to a nanotechnology process, analog de-

signs are becoming more challenging to analyze and verify. The manufacturing steps such

as Local Oxidation, Photolithography, Ion Implantation, and Etching present a completely

different set of constraints on the design [124]. For instance, in a MOS transistor, can we

assume the ultra-thin oxide layer that separates the gate from the channel has a smooth

surface? Absolutely not, it is difficult to control the manufacturing process entirely [3]

and hence process variation will create disparities at different points in a device [30]. The

sources of variations can be classified as interdie or intradie variations [124]. While, in-

terdie variation, also called global variation, assumes the device/circuit parameter discrep-

ancies to be the same across die-to-die or lot-to-lot or wafer-to-wafer [124], intradie, also

called local variation, reflects the mismatch in a component with reference to an adjacent

component [124]. In this case, the devices in the same circuit might have different varia-

tions, thereby posing a serious threat on circuit performance and functionality.

6

Poly resistors that are built with poly layer deposited over field oxide are used widely

to represent resistors in analog designs and its value depends on the sheet resistance (Rsh)

associated with the poly layer. For a given process the variations in poly resistance are

mainly due to fluctuation in film thickness, doping concentration, doping profile and an-

nealing conditions [124]. A capacitor component in an analog circuit can be constructed at

various levels (poly-to-poly, metal-to-metal and junction). However, a metal-oxide semi-

conductor (MOS) transistor based capacitor has an adverse impact on the performance

of the circuit mainly due to the fact that it inherits a large deviation in the capacitance

value [124]. This, in turn, alters the total input/output capacitance of the circuit, thereby,

resulting in slower processing of the analog signal. For a MOS transistor, the process vari-

ation may cause a deviation in threshold voltage (Vt), length and width of the transistor (L

and W), or oxide thickness (Tox) , which may change, the device characteristics across the

die/wafer.

1.3 Problem Statement

Analog circuits are increasingly evolving into abstract designs that rely heavily on the be-

havioral models and can yield simulation performance improvements that can make the

full chip verification a reality. Much CAD literature were focussed on studying such pos-

sible system level modeling/verification frameworks for AMS designs. The verification

approaches that have been developed (e.g., [50], [128], [79], [53], [11], [23]) in the re-

cent years make use of mathematical models in the form of ordinary differential equations

(ODE) or differential algebraic equations (DAE) to characterize the functional behavior of

the designs. Unfortunately, these methods fall short in addressing the following real-world

uncertainties associated with the circuit behavior due to:

7

• More often, analog designs act upon unpredictable environmental conditions, ran-

dom noise effects, and semiconductor manufacturing disparities that may alter the

functional characteristics of the circuit. Several work for modeling noise compute

the power spectral density (PSD) response of a transistor-level circuit simulation to

the collection of small noise sources. The noise analysis can be combined with pro-

cess variation for a statistical estimation of the circuit failures. At the circuit-level,

simulating and validating an analog design with noise and process variation is ex-

ceptionally costly both in terms of time and memory resource allocation. Finding a

way to reduce the simulation time to verify the analog designs with noise and process

conditions, while trading off some accuracy is extremely valuable in detecting circuit

failures earlier in the design cycle.

• Verification of analog designs is still manual or semi-automatic. Current verification

methods at a higher level of abstraction rely heavily on testbench structures that can

report a design failure for a single bounded simulation trace. While this may be suffi-

cient enough to validate the functional behavior, the unpredictable noise and process

conditions require an exhaustive validation to quantify the failure in terms of circuit

confidence level. To find a way that could provide a probability of failure at a higher

level of abstraction can be very useful to estimate the overall design failures during

the verification process.

1.4 State-of-the-Art

Verification methods for analog circuits in the presence of noise and process variation have

been developed in theory and in practice primarily at the transistor level of abstraction [81].

More recently, advances have been made in the area of noise modeling and simulation using

8

stochastic differential equations (SDE) [107]. A SDE is an extension to ordinary differential

equation (ODE) with stochastic term that could model thermal/shot noise behavior in an

analog circuit. This has attracted CAD tool developers to complement the traditional small-

signal noise analysis with the SDE based approach.

For instance, Synopsys has introduced a tool HSPICE RF [120] implementing SDE

techniques to make a direct prediction on the statistical behavior of analog/RF circuits. The

results include the usual deterministic transient analysis waveforms and the time-varying

root-mean square (RMS) noise behavior. Likewise, an open source tool, f REEDA [47]

provides a leverage to model and analyze noise using SDEs. Based on f REEDA, the au-

thors in [74] have performed an SDE based phase noise simulation in the time domain.

Interesting contribution through a time-domain numerical integration methods for behav-

ioral noise analysis have been reported in [97], [40], and [122]. These methods evaluate

an electronic oscillator with new physical descriptions of thermal noise by combining the

non-equilibrium statistical mechanics with the SDE based Langevin approach [107].

Other specific attempts to bring the simulation of AMS circuit closer to logic sim-

ulation take advantage of analyzing noise at a higher level of abstraction using HDLs

([76], [79], [80] and [81]) or MATLAB/Simulink framework with the focus on measur-

ing the frequency response of the circuit in terms of signal-to-noise ration (SNR) and noise

figure (NF). SNR is a measure used to determine the quality of a signal that is corrupted

by noise, and NF is a quality measure of SNR degradation [81]. For instance, the au-

thors in [112] have developed behavioral models for a sigma-delta modulator that takes

into account sampling jitter, and kT/C noise. In the end, the measured frequency response

is compared with the specification for design validation.

For process variation, designers use a combination of Worst-Case, MonteCarlo or

9

Mismatch [124] analysis to verify analog circuits. The worst-case analysis method for ana-

log circuits incorporates design models with pessimistic process corners. These worst-case

variations are determined in the foundry design document, and their values are derived from

certain parameter distribution. For instance, the process corners are constructed to maxi-

mize/minimize one specific performance of the device (e.g., speed, power, area, etc.) and

can provide faster results [124]. However, the worst-case analysis that targets single device

variation may increase the overall design effort and cost. The MonteCarlo method takes into

account a predefined distribution (usually normal distribution) of the device parameters due

to process variation. When defining normal distribution, the designers have to use certain

standard deviation, usually, it is ±3σ parameter distribution. Unlike worst-case that targets

for single device performances, MonteCarlo methods use a repeated simulation technique

for multiple device performance [124]. In the end, it provides a statistical estimate of the

analysis with a certain confidence level, but at the cost of simulation run-time. Mismatch

analysis [30] relies on the circuit configuration and the outcome may have different distri-

butions. This is because there may be cases where there is no analytical dependence of the

output on some of the device parameters such as, the threshold voltage Vt or the effective

channel length Leff . In such cases, the output curves carry different skews according to the

mean value, which cannot be fitted to a normal or log-normal distribution function.

In summary, noise and process variations in analog circuits are analyzed through

circuit level simulation, which is time consuming and do not facilitate system level veri-

fication. Attempts to handle noise at a higher level of abstraction still lags in providing a

unified approach in quantifying the design failures.

10

1.5 Thesis Objectives

The objective of this thesis is the development of a unified behavioral modeling and verifi-

cation framework for noise analysis and process variation in analog circuits. In particular,

we aim at developing:

• Modeling techniques that could describe the continuous and discrete behavior of a

circuit in the presence of noise. For example, by providing mathematical models

to capture the statistical and stochastic behaviors at the different levels of design

abstraction.

• Quantitative and qualitative validation techniques based on run-time verification that

could allow us to integrate process variation to monitor deterministic/statisitical prop-

erties and to quantify the failures in the analog design.

1.6 Proposed Methodology

Figure 1.4 shows our proposed analog modeling and verification framework. Given an ana-

log design, the first step is to describe the functional behavior as a system of ODEs. We

use the Dymola modeling [37] or the MATLAB [84] tool environment to systematically

transform the SPICE netlist to a set of ODEs. Depending on the circuit configuration, the

next step is to include thermal and shot noise as a set of stochastic processes that adhere

to certain probability distributions to describe the circuit noise behavior as shown in Fig-

ure 1.4. This is done through the use of Stochastic Differential Equation (SDE). As there

are no known functions/procedures that can automatically incorporate stochastic processes,

SDEs have to be generated manually.

To find an analytical solution for the SDEs special mathematical interpretation in

the form of stochastic calculus to handle randomness is required [107]. If an analytical

11

(Thermal, Shot)
Noise Type

"accepted/rejected" for a
Statistical Property is

Deterministic Property is

given confidence interval

simulation trace
verified for "one" bounded

Percentage of
Matching

Initialization

 Run−Time Verification

Simulation Parameters

Deterministic / Statistical

Design Parameters

Technology
Library

Qualitative Estimation

 Model Generation

Design Parameters

Property

Verification
Based
Statistical

Approximation
Numerical

Description
Analog Circuit

(SDE)
Equation
Differential

Specification

Stochastic
Probability
Distribution

Equation
(ODE)

Ordinary
Differential

Probability
Distribution

Assertion

Verification
Based

Pattern

Technique
Matching

Figure 1.4: Analog Modeling and Verification Framework.

solution is possible, process variation can be integrated in a symbolic simulation [11] or

formal verification [140] environment to verify the analog circuit with noise. However, as

most analog circuits do not have a closed-form solution, the behavioral noise verification

has to rely on well established numerical approximation methods for the SDEs. The details

pertaining to the modeling technique based on analytical and numerical approximation of

SDEs are presented in Chapter 2.

For process variation, technology vendors create a library of devices with different

corners such as slow, nominal and fast [30]. Each process corner characterizes the device in

terms of power consumption, speed, etc., thereby allowing designers to choose from a range

of devices based on the application and design requirements. Based on the type of process,

12

various design parameters in the circuit are calculated using Gaussian distribution with a

known ±3σ deviation as shown in Figure 1.4 and are then passed on as design parameters

during simulation..

Thereafter, the SDE numerical approximation of the analog circuit, process variation,

and the initial condition of the circuit current and voltages are evaluated in a MATLAB sim-

ulation environment using a qualitative verification method in the form of pattern matching

and a quantitative verification in the form of assertion/statistical based methods as shown

in Figure 1.4. These methods are briefly described in the sequence.

1. Quantitative approaches are run-time verification methods for monitoring whether an

execution of the design model violates the design specifications (properties). The

deterministic quantitative method is based on finite-state machine (FSM) implemen-

tation of simple assertion [12]. These FSM that represent the property of interest

are evaluated in a MATLAB environment with noise, process variation, and circuit

initial conditions for “one” bounded interval, meaning one simulation trace. A sim-

ulation trace is defined as the output of any observation points in the analog circuit

over a period of time. In the end, the monitor reports if the property has passed or

failed as depicted in Figure 1.4. The details related to assertion based verification

methodology are presented in Chapter 3.

2. The statistical technique relies on MATLAB based statistical monitors in the front-

end and hypothesis testing in the back-end to verify statistical properties of the design.

The property to be verified is represented as a null hypothesis and in the end, a circuit

is accepted/rejected with a certain confidence level and error margin. The front-

end monitors can be classified based on the sampling and re-sampling of the analog

output with a known/unknown set of distribution. Popular finance methods such as

the MonteCarlo [96] and Bootstrap [31] can be used to implement the monitors. The

13

details related to statistical monitors based on MonteCarlo, Bootstrap technique and

hypothesis testing are presented in Chapter 4.

3. The missing qualitative analysis of the circuit acceptance/rejection is addressed through

a pattern matching method as depicted in Figure 1.4. The pattern matching verifi-

cation methodology is developed by modifying two popular dynamic programming

algorithms [36]: the “longest common subsequence” (LCS) and the “dynamic time

warping” (DTW). The idea of both these algorithms is to find the subsequence sim-

ulation trace between an ideal and a non-ideal analog signal and use the combination

of MonteCarlo and hypothesis testing to determine the probability of acceptance/re-

jection as shown in Figure 1.4. The algorithm details are presented in Chapter 5.

1.7 Thesis Contributions

The primary focus of this thesis is on the idea of developing a framework for analog circuit

verification in the presence of noise and process variation. The approach allows us to study

some of the effects in a traditional analog design flow at a higher level of abstraction. This

is quite useful and important for the performance evaluation of circuits for analog design

exploration. The thesis makes the following contributions.

• A modeling and a quantitative estimation infrastructure that allows us to capture the

noise dynamics in the form of SDEs and integrate process variation for the determin-

istic monitoring of the specification. We applied the technique on a Tunnel Diode

oscillator, a Colpitts oscillator, and a Phase Locked Loop (PLL) circuit for a 0.18μm

fabrication process. We have shown that the properties that are satisfied without noise

have failed in the presence of noise and process variation, thereby making the method

efficient in finding bugs.

14

• A statistical approach based on the combination of hypothesis testing with different

monitoring (MonteCarlo and Bootstrap) techniques is developed which will increase

the confidence level of the design/verification process. We illustrate the proposed

approach on a Tunnel Diode oscillator, a Colpitts oscillator and a PLL circuit for a

0.18μm fabrication process. The method estimates the acceptance/rejection of the

circuit with a certain confidence interval.

• A pattern matching based verification approach is developed for the qualitative anal-

ysis of the circuit simulation traces that have noise and process conditions to achieve

a more meaningful quantification of circuit failures. We extend the LCS and DTW

algorithms to handle set of simulation sequences derived from an analog circuit. We

perform statistical techniques to estimate the probability of failure. The approach is

illustrated on a Colpitts oscillator and a PLL circuit for a 0.18μm fabrication process.

Advantages of the proposed methods are robustness and flexibility to account for a

wide range of variations.

• The whole thesis framework is developed as a AnalogSDE MATLAB tool for au-

tomatic verification of noise and process variation in an analog circuit. The tool is

developed using MATLAB based object-oriented approach in form of object classes

and functions.

1.8 Thesis Organization

The rest of the thesis is organized as follows. In Chapter 2, we provide a brief introduction

about stochastic differential equation to equip the reader with some notation and concepts

that are going to be used in the rest of this thesis. We also discuss about statistical tech-

niques that are necessary to understand Chapter 4. Chapter 3 describes the framework for

15

verifying the property specification of an analog design using assertion based technique.

The effectiveness of this methodology is demonstrated for a Colpitts oscillator, a Tunnel

Diode oscillator and a PLL based frequency synthesizer circuit. Chapter 4 presents the

methodology for the quantitative analysis using statistical techniques. In this chapter, we

compare the efficiency of MonteCarlo and Bootstrap algorithms based hypothesis testing

for different benchmark circuits. Next, in Chapter5, we demonstrate the longest closest

subsequence (LCSS) and the dynamic time warping (DTW) pattern matching algorithms

to ensure the correctness of analog designs with noise and process variation. We illustrate

the practical effectiveness of the proposed approach by successfully applying it for the ver-

ification of a Colpitts oscillator and a PLL circuit. Appendix A gives an overview of the

developed tool, AnalogSDE, including class diagrams, functions and decision procedures.

Finally, Chapter 6 concludes the thesis and outlines some future research directions.

16

Chapter 2

Preliminaries

In this chapter, we provide a brief introduction to the Stochastic Differential Equation (SDE)

modeling technique for analog circuits and present an overview of the stochastic calculus

needed to derive the analytical and numerical solution. We also present a general idea about

different statistical technique that will be used as a part of the verification framework.

2.1 Stochastic Differential Equation (SDE)

An SDE is an ordinary differential equation (ODE) with a stochastic process that can model

unpredictable real-life behavior of any continuous system [107]. The random process in

the SDE can be purely additive or it may multiply with some deterministic term. The

underlying difference between an ODE and an SDE lies in their solution, with the ODE

following a smooth trajectory and the SDE will have some random disturbance as shown in

Figure 2.1. Because of this, SDE has been the main modeling platform for understanding

the outcome of stock prices, population growth and electronics systems [107].

Given a probability space ω [119], a stochastic process in an SDE with state space E

is a collection {Xt; t ε T} of random variables Xt that takes values in E. If T is countable (T

17

ODE Trajectory

0

x0

Xt

x

SDE Trajectory

Xt

Figure 2.1: ODE vs. SDE [2].

= N = 0, 1, 2, ...), the process is said to be a discrete parameter process, else, a continuous

parameter process. The random term in the SDE is incorporated as an uncorrelated white

gaussian noise which can be contemplated as the derivative of Brownian motion [107] (or

the Wiener process [56]). A Wiener process is a family of random variables Wt that can

be used to model thermal noise in time domain as shown in Figure 2.2. It is indexed by

nonnegative real numbers t, defined on a common probability space with the following

properties:

− W0 = 0.

− With probability 1, the function t → Wt is continuous in t as shown in Figure 2.2 (a).

− The process Wt has stationary, independent increments.

− The increment Wt+s - Ws has the Normal(0, t) distribution as shown in Figure 2.2 (b).

To understand better, let us consider the population growth model describe by the

following ordinary differential equation

dN

dt
= a(t)N(t); N(0) = A (2.1)

18

0 0.2 0.4 0.6 0.8 1
x 10−3

−2

−1

0

1

2 x 10−3

Time (Sec)

N
oi

se
 V

ol
ta

ge
 (V

ol
ts

)

−1.5 −1 −0.5 0 0.5 1 1.5
x 10−3

0

100

200

300

400

Noise Voltage (Volts)

D
en

si
ty

 F
un

ct
io

n

(a) (b)

Figure 2.2: Thermal Noise in Time Domain [107].

where N(t) is the size of the population at time t, and a(t) is the relative rate of growth at

time t and A is some initial constant. But, a(t) is unknown and is random in nature. Hence

a reasonable mathematical interpretation of the randomness for the above equation can be

described as
dN

dt
= a(t)N(t) + ξtN(t); N(0) = A (2.2)

The term a(t)N(t) is the deterministic drift coefficient while the term ξtN(t) represents the

stochastic effect [107]. In SDE terminology, the above equation can be represented in two

forms [107]: Itô or Stratonovich. Both these form depend on the limit interval that defines

the integral of the noise term. As the noise term in an SDE is considered to fluctuate an

infinite number of times with infinite variance, different choices of those time interval may

lead to different stochastic calculi. For instance, let us consider the following function

∫ t

0

f(t)dt = lim
n→∞

n∑
j=1

f(τj)(tj+1 − tj) (2.3)

where τj is in the interval (tj, tj+1). Then,

τj = tj ← Itô

τj =
tj + tj+1

2
← Stratonovich

(2.4)

19

If we consider ξt in the SDE Equation (2.2) to be the path-wise derivative of Brownian

motion (or Wiener process) dBt, then Equation (2.2) can be written in Itô differential and

integral form as given by

dN = a(t)N(t)dt +N(t)dBt

N =

∫ t

0

a(s)N(s)ds +

∫ t

0

N(s)dBs

(2.5)

However, to solve Equation (2.5), traditional calculus lack the structure to handle

stochastic process, and hence there is a need for a special mathematical interpretation in

the form of stochastic calculus to solve the equations involving Brownian motion [107]. If

we consider the random term to be the approximation to continuously fluctuating noise and

with finite memory, it is appropriate to use the Stratonovich representation. On the other

hand, if the random term is considered as a finite pulse, it is suitable to use the Itô form.

In addition, Stratonovich SDEs are easier to solve analytically, and the Itô SDEs are better

handled using numerical schemes.

Stochastic calculus uses the concept of expectation and Itô isometry to solve SDEs.

Expectation determines the behavior of any system in the absence of randomness and hence

it is easy to conclude that the expectation of any random process (Brownian or Wiener)

is zero. As Brownian motion cannot be solved using definite integral, the goal of Itô

isometry is to replace the Brownian motion dBs by a deterministic term ds for solving

SDEs. Table 2.1 summarizes some of the theorems and axioms that are key for solving the

SDEs [107].

For analog circuits, the noise modeling is a straight forward approach that relies on

the extraction of the ODE and transforming them to SDEs. Once, the SDE models are gen-

erated, we can apply stochastic calculus to find an analytical solution. A detailed analysis

of finding a closed form solution is described in the next section.

20

Table 2.1: SDE Formulas

Expectation of a Brownian motion
∫ t

0

FsdBs = 0

Substitution-by-parts d(etXt) = etXtdt + etdXt

Itô Isometry property E

([∫ t

0

FsdBs

]2
)

= E

([∫ t

0

F 2
s ds

])
Noise Nt = Xt − E[Xt]

Variance of the noise V ar[N2
t] = E[X2

t] − E[Xt]
2

2.1.1 Finding the Analytical Solution of SDE

Consider the mixer circuit as shown in Figure 2.3. If we assume that the transistor operates

Vg

Vs

C

Vd

Figure 2.3: Sampling Mixer Circuit.

in the triode region, the voltage across the capacitor can be written as

C
dVd

dt
= K(Vgs − Vt)Vds − K

2
V 2

ds (2.6)

where, K = μCox
W
L

. Rewriting Equation (2.6) and neglecting nonlinear terms we have

C
dVd

dt
+ K(Vg − Vt)Vd = K(Vg − Vt)Vs (2.7)

Assuming the noise at the gate

K(Vg + σξt − Vt)Vd + C
dVd

dt
= K(Vg + σξt − Vt)Vs (2.8)

21

Replace ξtdt = dWt; Vd = Xt; gt = K(Vg − Vt); Vs = ut; in Equation (2.8) we have,

gtXtdt + KσXtdWt + CdXt = gtutdt + KσutdWt (2.9)

=⇒ CdXt = gt(ut − Xt)dt + Kσ(−Xt + ut)dWt (2.10)

Hence, from Equation (2.10) we have

dXt =
gt

C
(ut − Xt)dt +

Kσ

C
(−Xt + ut)dWt (2.11)

Equation (2.11) is the SDE for the mixer. Integrating both sides of Equation (2.11), we have

Xt = X0 +

∫ t

0

gt

C
(us − Xs)ds +

∫ t

0

Kσ

C
(−Xs + us)dWs (2.12)

Taking Expectation on Equation (2.12), we have

E[Xt] = E[X0] + E

[∫ t

0

gt

C
(us − Xs)ds

]
(2.13)

Since

E

[∫ t

0

Kσ

C
(−Xs + us)dWs

]
= 0, (2.14)

differentiating Equation (2.14) and rearranging it, we have

dE[Xt]

dt
+

gt

C
E[Xt] =

gt

C
ut (2.15)

Equation (2.13) describes the mean of the output process which is the output of the

circuit without noise. To find E[X2
t] from Equation (2.13) we use the following theorem

based on stochastic calculus

The Quadratic Variance is given by

〈Wt〉 = lim
n∑

i=1

(
Wti − Wt(i−1)

)2

(2.16)

22

For Wiener process 〈Wt〉 = t and based on Ito isometry, we have〈∫ t

0

f(Ws, s)dWs

〉
=

∫ t

0

f2(Ws, s)ds (2.17)

Based on stochastic integration definition, we have

φ(Xt) = φ(X0) +

∫ t

0

φ
′
(Xs)dXs +

1

2

∫ t

0

φ
′′
(Xs)d〈Xs〉 (2.18)

where φ(x) is any twice differential form function with continuous second derivative. Ito

allows non-linear transformation of stochastic process, we need some stochastic calculus to

solve for E[X2
t].

Assuming the second order continuous function is φ(x) = x2, then we have

φ
′
(x) = 2x; φ

′′
= 2; (2.19)

Then Equation (2.18) becomes

X2
t = X2

0 +

∫ t

0

2XsdXs + 〈X〉t (2.20)

Now the goal is to remove 〈X〉t. Integrating Equation (2.11), we have

Xt =

∫ t

0

gt

C
(us − Xs)ds +

∫ t

0

K

C
(us − Xs)σdWs (2.21)

Based on Ito isometry property, we have

〈Xt〉 =
σ2K2

C2

∫ t

0

(us − Xs)
2ds (2.22)

Hence, substituting Equation (2.22) and (2.11) in (2.20) we have

E[X2
t] = E[X2

0] +

∫ t

0

2gt

C

(
E[Xs]us − E[X2

s]
)
ds +

∫ t

0

σ2K2

C2
(E[us − Xs])

2 (2.23)

Let us take output noise Nt = Xt − E[xt] then we have

E[N2
t] = E[X2

t] − E[Xt]
2 (2.24)

23

Differentiating both sides of Equation (2.24) we have

dE[N2
t]

dt
=

dE[X2
t]

dt
− 2E[Xt]

dE[Xt]

dt
(2.25)

Differentiating Equation (2.23) we have,

dE[X2
t]

dt
=

2gt

C

(
E[Xt]ut − E[X2

t]
)

+
σ2K2

C2
(E[ut − Xt])

2 (2.26)

From Equation (2.23) and substituting Equations (2.26), and (2.15), we have

dE[N2
t]

dt
=

(−2gt

C
+

σ2K2

C2

)
E[X2

t]−
(

2utσ
2K2

C2

)
E[Xt]+

2gt

C
E[Xt]

2+
u2

t σ
2K2

C2
(2.27)

Rearranging we have

dE[N2
t]

dt
+

(
2gt

C
− σ2K2

C2

)
E[N2

t] = −
(

2utσ
2K2

C2

)
E[Xt] +

σ2K2

C2
E[Xt]

2 +
u2

t σ
2K2

C2

(2.28)

Rearranging the above equation, we have

dE[N2
t]

dt
+

(
2gt

C
− σ2K2

C2

)
E[N2

t] =

(
2utσ

2K2

C2

)
(E[Xt] − ut) (2.29)

In summary, the equation for mean and variance of the output process in the presence

of noise at the gate is given by

dE[Xt]

dt
+

gt

C
E[Xt] =

gt

C
ut

dE[N2
t]

dt
+

(
2gt

C
− σ2K2

C2

)
E[N2

t] =

(
2utσ

2K2

C2

)
(E[Xt] − ut)

(2.30)

2.1.2 Numerical Approximation of the SDE

The methods based on numerical analysis are reported in [71], which involve discrete time

approximation in a finite time interval over the sample paths. To realize SDE based numer-

ical method, let us apply to a tunnel diode oscillator circuit.

24

R L

C D

Vc

V I

Figure 2.4: Tunnel Diode Oscillator

The current through the resistor and inductor I and the voltage across the capacitor

VC can be described by

V̇C =
1

C
(−Id(VC) + I)

İ =
1

L
(−VC − 1

G
I + V)

(2.31)

where Id(VC) describes the non-linear tunnel diode behavior. If we consider thermal noise

in the passive elements (R, L, C) and shot noise in the diode D, a reasonable mathematical

interpretation of the randomness for Equation (2.31) can be described as

V̇C =

A1︷ ︸︸ ︷
1

C
(−Id(VC) + IL) +αξ1(t) + ζ(t)

İ =

A2︷ ︸︸ ︷
1

L
(−VC − RI + V) +

3∑
k=2

αξk(t) + ζ(t)

(2.32)

where
3∑

k=1

αξk represents the thermal noise model for the passive elements with certain

amplitude α and ζ(t) represents Poisson white shot noise (PWSN) [70] that has random

pulses, which occurrence is based on Poisson distribution. The strengths of the pulses takes

a white noise (gaussian) distributed independent values as shown in Figure 2.5 (a), (b).

During noise analysis, choosing a fixed amplitude for such random pulse does not

make the evaluation completely random. Hence, models based on PWSN as shown in

Figure 2.5 allows Poisson distribution for the random pulses and a white noise (Gaussian)

distribution for its amplitude. Mathematically, the probability that a random sequence of k

25

0 0.2 0.4 0.6 0.8 1
x 10−3

−1.5

−1

−0.5

0

0.5

1

1.5 x 10−3

Time (Sec)

W
ie

ne
r P

ro
ce

ss
 (

W
t)

3.48 3.482 3.484 3.486 3.488 3.49
x 10−5

−1

−0.5

0

0.5

1 x 10−3

Time (Sec)

S
ho

t N
oi

se
 (V

ol
ts

)

(b)(a)

Figure 2.5: Poisson White Shot Noise (PWSN) [70].

pulses occurs in the interval (0, t) is given by

Prob{n(t) = k} =
(λt)ke−λt

k!
(2.33)

If we consider dBt and dBst to represent stochastic processes for the thermal and shot

noise, respectively, then Equation (2.32) can be rewritten as

dVC =
1

C
(−Id(VC) + I)dt + αdWt + dWst

dI =
1

L
(−VC − RI + V)dt +

3∑
k=2

αdWkt + dWkst

(2.34)

Based on the simplest Euler-Maruyama time discretization approach [71], Equation

(2.34) can be rewritten as

VCn+1 = VCn +
Δn

C
(−Id(VCn) + In) + αΔW1n + ΔWsn

In+1 = In +
Δn

L
(−VCn − RIn + V) +

3∑
k=2

αΔWkn + ΔWsn

(2.35)

where for time step τ ,

Δn = τn+1 − τn; ΔWn = ΔWsn = Wτn+1 − Wτn (2.36)

for n=0,1,2· · ·N-1; and for maximum N simulation steps.

26

In general, any SDE that takes a form as in Equation (2.35) is suited to represent the

additive noise behavior in an analog circuit. Higher order numerical approximation such as

the Milstein method [71] uses multiple stochastic integrals in terms of several Wiener pro-

cesses and can be used to model the multiplicative noise behavior. To better understand the

Milstein method of noise model, let us consider the tunnel diode oscillator shown in Fig-

ure 2.4. If we consider noise to exist in multiplicative form, then, rewriting Equation (2.34)

in matrix form, we get

dY =

⎛
⎜⎝ dVC

dI

⎞
⎟⎠ =

⎛
⎜⎝ A1

A2

⎞
⎟⎠ dt +

⎛
⎜⎝ I

VC

⎞
⎟⎠ dW 1

t +

⎛
⎜⎝ VC

I

⎞
⎟⎠ dW 2

t (2.37)

with

b1 =

⎛
⎜⎝ b(1,1)

b(2,1)

⎞
⎟⎠ =

⎛
⎜⎝ I

VC

⎞
⎟⎠ ; b2 =

⎛
⎜⎝ b(1,2)

b(2,2)

⎞
⎟⎠ =

⎛
⎜⎝ VC

I

⎞
⎟⎠ ;

A general Milstein approximation for the SDE can be written as

Y k
n+1 = Y k

n + akΔn +
M∑

j=1

bj,kΔW j +
M∑

j1,j2=1

Lj1bk,j2I(j1, j2) (2.38)

Applying Equation (2.38) to Equation (2.35), we get⎛
⎜⎝ VCn+1

In+1

⎞
⎟⎠ =

⎛
⎜⎝ VCn

In

⎞
⎟⎠ +

⎛
⎜⎝ A1

A2

⎞
⎟⎠ Δn +

⎛
⎜⎝ In

VCn

⎞
⎟⎠ ΔW 1

n

+

⎛
⎜⎝ VCn

In

⎞
⎟⎠ ΔW 2

n +
2∑

j1,j2=1

Lj1bk,j2I(j1, j2)

(2.39)

where Lj [71] is the partial differential operator as defined by, Lj =
N∑

k=1

bk,j ∂

∂xk
and

27

I(j1, j2) is the Ito integral. Expanding Lj for j = 1, 2, we get

L1 =
2∑

k=1

bk,1 ∂

∂xk
= b1,1 ∂

∂x1
+ b2,1 ∂

∂x2

L2 =
2∑

k=1

bk,2 ∂

∂xk
= b1,2 ∂

∂x1
+ b2,2 ∂

∂x2

(2.40)

Hence, the final Milstein numerical approximation for Equation (2.40) is given by

⎛
⎜⎝ VCn+1

In+1

⎞
⎟⎠ =

⎛
⎜⎝ VCn

In

⎞
⎟⎠ +

⎛
⎜⎜⎜⎝

1

C
(−Id(VCn) + In)

1

L
(−VCn − 1

G
In + V)

⎞
⎟⎟⎟⎠ Δn

+

⎛
⎜⎝ In

VCn

⎞
⎟⎠ ΔW 1

n +

⎛
⎜⎝ VCn

In

⎞
⎟⎠ ΔW 2

n +

⎛
⎜⎝ VCn

In

⎞
⎟⎠ I(1, 1)

+

⎛
⎜⎝ In

VCn

⎞
⎟⎠ I(1, 2) +

⎛
⎜⎝ In

VCn

⎞
⎟⎠ I(2, 1) +

⎛
⎜⎝ VCn

In

⎞
⎟⎠ I(2, 2)

(2.41)

where the Ito integral I(j1, j2) [71] can be expressed as

I(1, 1) = I(2, 2) =

∫ tn+1

tn

∫ t

tn

dW j1
s dW j2

t =
1

2

(
(ΔW j1

n)2 − Δn

)

I(1, 2) = I(2, 1) =

∫ tn+1

tn

∫ t

tn

dW j1
s dW j2

t =
1

2

(
ΔW j1

n ΔW j2
n

)
Equation (2.41) represents the numerical approximation for the tunnel diode oscilla-

tor. Unlike analytical solution, numerical approximation tends to have some error. Mathe-

matically, this absolute error at the final time instant “T” is defined as,

ε(δ) = E(|XT − YN |) ≤
√

E(|XT − YN |)2 (2.42)

The absolute error determines how close the numerical solution “Y” is with respect to

the analytical solution “X”. For the case where the analytical solution cannot be determined,

28

Table 2.2: Statistical Estimation Error

H0 is True H1 is True

Accept H0 Correct Decision Wrong Decision - Type II Error
Reject H0 Wrong Decision - Type I Error Correct Decision

then the absolute error can be calculated as the absolute difference between the numerical

approximation solutions that are derived with different step-size Δn and
Δn

2
[2].

2.2 Statistical Hypothesis Testing

Hypothesis testing [96] is the use of statistics to make decision about acceptance or rejection

of some statements based on the data from a random sample, meaning, to determine the

probability that a given hypothesis is true. Hypothesis testing in general has two parts:

1. Null hypothesis, denoted by H0, which is what we want to test (e.g., jitter period ≤
3.2 ns), and

2. Alternative hypothesis, denoted by H1, which is what we want to test against the null

hypothesis (e.g., jitter period > 3.2 ns).

If we reject H0, then the decision to accept H1 is made. The conclusion is drawn with

certain probability of error for a specific confidence interval as summarized in Table 2.2.

The error associated with such statistical estimate for a given confidence interval can be

classified to be [85]:

Type I or False positive - H0 is rejected when it is in fact true with error α.

Type II or False negative - H0 is true when it is in fact false with error β.

29

The quantification of error can be made by measuring the probability of accepting/re-

jecting H0 when it is actually true/false, respectively. If α and β denote such probabilities

then, mathematically they can be represented as

α = Pr{ reject H0 | H0 is true }
β = Pr{ accept H0 | H0 is false }

(2.43)

The choice to accept or reject is determined by the direction with which the null

hypothesis is proved to be true or false. This direction is decided based on a one-tailed test

(upper or lower) or a two-tailed test as shown in Figure 2.6.

−4 −2 0 2 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

D
en

si
ty

Confidence Intervale (α = 0.1)
−4 −2 0 2 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

D
en

si
ty

Confidence Intervale (α = 0.1)
−4 −2 0 2 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

D
en

si
ty

Confidence Intervale (α = 0.1)

Acceptance
Region

Lower Tail Test Upper Tail Test Two Tailed Test

Acceptance
Region

Acceptance
Region

(a) (b) (c)

Figure 2.6: Accept/Reject Hypothesis Testing

The upper tail distribution represents the rejection region for the case where a large

value of the test statistic provide evidence for rejecting H0. On the other hand, a lower tail

distribution is used if only a small value of the test statistic show proof of H0 rejection [49].

The bounded hypothesis testing [49] also called the two-tailed test is determined by

a bounded region [x1, x2], such that such that H0 satisfies the following:

H0 : P (x1 < X < x2) = P (X < x2) − P (X < x1) = 1 − α (2.44)

30

For instance, α = 0.05 and α = 0.01 refer to the confidence level of 95% and 99%,

respectively. For the case, where the confidence interval is divided equally between the

lower and upper bounds, the probability can be determined as follows:⎧⎪⎨
⎪⎩

P (X < x1) =
α

2
= 0.05

P (X < x2) = 1 − α

2
= 0.95

(2.45)

In any of the above hypothesis testing measures, if the observed sample data over a

given interval is within some critical region, then we reject the null hypothesis H0, else we

accept H0 as shown by the shaded region in Figure 2.6. In general, the steps in statistical

hypothesis testing can be summarized as follows:

1. State the null and alternative hypothesis.

2. Take a random sample from the population of interest.

3. Estimate the statistical measure related to the null hypothesis.

4. Interpret the results to make a decision about acceptance/rejection of the null hypoth-

esis using critical value or p-value approach with certain standard error.

The critical-value approach [49] determines a critical region in which the null hy-

pothesis will be rejected. It depends on the type of tail test (upper lower or two tailed),

observed value and the significant level α. The observed value Tobs is calculated based

on the sample mean x̄, the mean value under the null hypothesis and standard error σ̄ as

described below,

Tobs =
x̄ − μ0

σ̄
(2.46)

If the observed value Tobs is greater than the critical value, we reject the null hypothesis H0

otherwise, we retain H0. The P-value approach [49] involves defining the probability of the

test statistic to be in the direction of the alternative hypothesis, when the null hypothesis is

true. If the derived P-value tends to be smaller it is more likely to reject H0.

31

The accuracy of the hypothesis testing depends on how good the sample statistics

(mean, variances and percentiles) that determines the standard error are estimated. Sam-

pling by far is concerned with the selection of a subset of the observed data to make a

desired statistical inference. Based on the sampling method used one may be able to derive

different standard errors and hence the accuracy of the results may vary during hypothesis

testing. Some of the popular techniques such as the MonteCarlo [96], and BootStrap [31]

are widely used in the financial sector and the extent of their application for analog circuit

verification are detailed in Chapters 4 and 5.

32

Chapter 3

Verification using Deterministic

Monitors

This chapter presents a framework for verifying the property specification of an analog

and MS designs using assertion based technique. The framework allows us to model and

verify the deterministic property in the presence of shot noise, thermal noise, and process

variations. The idea is to use stochastic differential equations (SDE) to model noise in ad-

ditive and multiplicative form and then combine process variation in a runtime verification

environment. The practical effectiveness of the proposed framework are compared for Col-

pitts oscillator, Tunnel Diode oscillator and a Phase Locked Loop (PLL) based frequency

synthesizer circuit.

3.1 Introduction

Verification approaches that increase the probability of designs being correct the first time

is the key to a successful tapeout, and methodologies that could be easily integrated into the

existing verification flow can lead us to reduction in debugging time and cost. Traditionally,

33

designs were verified based on a constrained random test environment. The idea is to use

stimulus generation (testbench) that verify a specific functionality of the design [132]. This

approach is known as run-time verification [80]. High-level HDLs provide mechanisms to

create complex stimulus patterns and facilitate the re-use of the testbench models.

For a robust verification environment, every test should facilitate a way to detect and

isolate bugs automatically and dynamically. This can be accomplished efficiently using

assertions in a run-time verification. Assertion Based Verification (ABV) [127] is a debug-

ging technique that has played a central role in the verification of SoC designs. An assertion

is a simple description of a property specification for identifying the design failures. For

instance, if a property that is being monitored does not behave appropriately, the assertion

fails and the user is notified [46]. Depending on the severity of the failure, it could even

stop the simulation. The biggest advantage of writing assertions is that, it could be re-used

for future designs and can also be used successfully with formal verification. For instance,

to check for any violation between two mutually exclusive signals A and B, following

assertion can be used,

if (A and B) then

Violation = ’1’;

end if

An assertion based environment is shown in Figure 3.1. An assertion can be con-

structed as a finite state machine (FSM) [72] with a set of timers constraints specified on

each state location. The timer constraints are defined over a set of design variables that

form the stimulus to the design under test (DUT). The monitors can also be constructed

using FSM, with the acceptance condition to verify the property.

Both the stimulus and monitors can be implemented using any HDLs. The whole

34

1
2

N

1

2

N

Trigger

Feedback

DUT

MonitorStimulus

Figure 3.1: Assertion Based Environment

environment can be simulated using any standard simulator to perform run-time verifica-

tion [46]. A communication mechanism can be established in an automatic fashion between

the stimulus generator and the monitor. This is especially helpful when regression test is

carried with the feedback signals from the monitor guiding the stimulus to choose next test

vector.

The run-time verification environment for AMS designs is still emerging and in the

current state-of-the art methodologies have been developed to verify the functional aspect

of the design. Due to the lack of a unified verification environment, the uncertainties due to

noise and process variation are seldom handled using top-level simulation. To address this,

we propose in this chapter a run-time verification framework for monitoring the property of

an analog/MS circuit with process variation, thermal/shot noise in additive and multiplica-

tive form.

3.2 Assertion Based Verification Methodology

Figure 3.2 shows the overall assertion based run-time verification methodology. Thereafter,

given an analog design described as a system of ODEs, the idea is to include a stochastic

35

process that describes the noise behavior. Due to the statistical behavior of the noise, we

propose to use stochastic differential equations (SDE) as an analog noise model in additive

and multiplicative forms as described by the tunnel diode oscillator example in Chapter 2.

Specification

SDE Extraction

Parameters

Generation
Model

ViolationSuccess

Initialization
PropertyTechnology

Library

Differential

(ODE)
Equation

Circuit
Analog

Probability
Distribution

Numerical
SDE Model

Assertion Based Verification

Ordinary

Description

Figure 3.2: Assertion Based Run-Time Verification

The implementation of the time-domain thermal noise model based on Wiener pro-

cess is described in Algorithm 3.1.

Algorithm 3.1 Wiener Process Generation
Require: ΔT, SEED
Ensure: ΔT > 0

1: if SEED = 0 then

2: randn(state, 0)
3: else if SEED = 1 then

4: randn(state, sum(clock))
5: else

6: Undefined SEED!
7: end if

8: DW =
√

ΔT × randn
9: W = W + DW

10: return W , DW

36

This time-domain generation depends on the simulation step-size ΔT and the type

of SEED used. SEED is a control parameter for generating pseudo-random numbers.

Based on the SEED value, the algorithm generates either a fixed (SEED=0) or a variable

(SEED =1) pseudo random number (lines 1-7). This is followed by an incremental noise

generation (lines 8-9). The implementation of PWSN as described in Chapter 2 is shown

in Algorithm 3.2. The algorithm uses the built-in MATLAB Poisson function for generat-

ing the random pulses (line 1). Then, the amplitude of those pulses are determined using

Gaussian distribution (line 2).

Algorithm 3.2 Shot Noise Generation
Require: ΔT, N
Ensure: ΔT, N > 0

1: Temp = random(′Poisson′, N)
2: VShot(Temp) = sqrt(ΔT) × randn
3: return VShot

For process variation, different circuit parameters are derived using Gaussian distri-

bution with a known ±3σ deviation as described in Algorithm 3.3. Technology vendors

provide the lower and the upper bound associated with the circuit parameter variation.

Based on the given upper/lower limits, the algorithm generates “n′′ different values for the

circuit parameters with the pseudo random number randn (line 3). The parameter gen-

eration has the probability density function (PDF) that take a Gaussian distribution (lines

1-2).

Algorithm 3.3 Process Parameter Variation
Require: lower bound, nominal bound, upper bound, randn, inc, sigma bound, n
Ensure: n > 0

1: Dist ← lower bound : inc : upper bound

2: PDF ← (1/(
√

(2 × π) × sigma bound)) × exp(−(Dist−nominal bound)2

(2×(sigma bound)2)
)

3: Param ← sigma bound × randn(n, 1) + nominal bound
4: return Param

37

For environment constraints, this may include the amplitude of the noise, initial con-

ditions of the circuit current and voltages. The environment constraints are passed as a

parameter to the design under verification during simulation along with process variation.

The SDE numerical approximation of the design, along with the properties to be moni-

tored, and the environment constraints are evaluated using assertions in a MATLAB [123]

simulation environment for “one” simulation trace. The implementation of finite state ma-

chine (FSM) based assertion and the corresponding algorithm is shown in Figure 3.3 and

Algorithm 3.4, respectively.

T<= Nmax

T > Nmax

T > Nmax

T<= Nmax

T > Nmax

T<= Nmax

Cycling
 &
Violation

Error
State

 Stop
 Simulation

T = 0

Violation = 0

Violation = 1

Violation = 1

Violation = 0

Violation = 0

Initialization

Figure 3.3: Assertion Monitoring

The FSM has four states namely, Initialization, Cycling & Violation, Error and Stop

Simulation. The maximum simulation time, Nmax, and inputs like initial voltage, current

and output violation are set in the Initialization state (lines 2-4 in Algorithm 3.4). Here,

Nmax represents a single simulation trace for which the design will be evaluated. As soon

as the simulation starts, the FSM goes to the Cycling & Violation state and remains there

until the time T ≤ Nmax and V iolation = 0 (lines 5-6 in Algorithm 3.4). An assertion

is a piece of code that evaluates the outputs of the simulator and checks whether the prop-

erty satisfies the design specification. If the property is satisfied, the monitor reports the

38

satisfaction. Otherwise, the monitor can assert violation = 1 and can possibly enter to an

Error state (lines 7-8 in Algorithm 3.4) or terminate the simulation using exit command

(Stop Simulation state) (lines 9-11 in Algorithm 3.4) as shown in Figure 3.3. The mon-

itor could be as simple as observing a current or voltage, or could be more complicated,

taking several signals, processing and then comparing them against the expected results.

The monitors could be constructed so that signals could be observed in an online or offline

fashion [132]. While the online monitoring is more practical when simpler properties are

needed to be verified and violations are identified as soon as they occur, offline monitors

allow the verification of more complex properties but require the gathering of simulation

results which can cost a lot of memory resources.

Algorithm 3.4 Assertion Based Verification:
Ensure: Nmax, T
Ensure: Nmax > 0, T > 0

1: for i ← 1 to Nmax do

2: if (State = Initialization and T ≤ Nmax) then

3: V iolation ← ′0′

4: I ← AssignInputs
5: else if (State = Cycling & V iolation and T ≤ Nmax) then

6: V iolation ← Evaluatetrace(V iolation, I, Simtrace)
7: else if (State = Error and T ≤ Nmax and V iolation = ′1′) then

8: V iolation ← ′1′

9: else if (State = Stop Simulation or T > Nmax) then

10: V iolation ← ′1′

11: Exit
12: else

13: {“INVALID STATE”}
14: end if

15: end for

16: return V iolation

39

3.3 Applications

To illustrate the efficiency of the proposed methodology, we have applied it on several

benchmark circuits, including a tunnel diode oscillator [57], a Colpitts oscillator [69] and a

PLL based frequency synthesizer in a MATLAB environment. Experiments were run on a

Windows Vista OS, AMD Dual-Core Processor with 4GB RAM.

3.3.1 Tunnel Diode Oscillator

The circuit diagram of a tunnel diode oscillator is shown in Figure 2.4 (Chapter 2). The

tunnel diode exploits a phenomenon called resonant tunneling due to its negative resistance

characteristic at very low forward bias voltages. This means that for some range of voltages,

the current decreases with increasing voltage as shown in Figure 3.4. This characteristic

makes the tunnel diode useful as an oscillator.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Input Voltage (Volts)

In
d
u
ct

o
r

C
u
rr

en
t

(A
m

p
s)

Figure 3.4: Negative Resistance Region [29].

The numerical model of the SDE in additive and multiplicative form, presented in

Chapter 2 is simulated in a MATLAB environment and using 0.18μm process parameters.

The process variation is considered for the resistor and the capacitor elements only. Due

to lack of available process data, only the nominal values are assumed. However, if the

40

manufacturing variations are known for the inductors the methodology can be scaled to

adopt those changes. As any underlying assumption on the distribution cannot be made for

the initial condition (V0), in all the cases it is considered to be a constant.

Property Observations

In general, for tunnel diode oscillation, the kind of properties we are interested to verify

are: “Is the system behavior the same for the set of initial condition?” or “For which set

of parameters values, the circuit oscillates or dies?” The properties that we verify are the

oscillation and no oscillation for different 0.18μm process corners shown in Table 3.1.

Table 3.1: Tunnel Diode Oscillator Parameters for Property 1

Parameter Slow Process Corner Nominal Process Corner Fast Process Corner

Sheet Resistance(Rsh)Ω/� 6.715 6.32 5.925
Resistance (R)Ω 0.425 0.4 0.375
Inductor (L) H 1e-6 1e-6 1e-6
Capacitor (C) F 1200e-12 1000e-12 800e-12

V0 Volts 0.131 0.131 0.131
I0 Amps 0.04e-3 0.04e-3 0.04e-3

Property 1: We verify that for the set of parameters given in Table 3.1, there is no oscillatory

behavior. The behavior in question is stated as the bounded safety property, meaning for no

oscillation property to be satisfied, if for the given simulation time step a certain threshold

will not be reached then the property is violated thereby enabling a violation signal. The

implementation of the assertion as a FSM for verification of no oscillation property is shown

in Figure 3.5.

The FSM has five states namely, initialization, cycling, violation & cycling, error and

stop simulation. The maximum simulation time, Nmax, and inputs like initial voltage, cur-

rent and output violation are set in the initialization state. As soon as the simulation starts,

41

V > 0.6c

V > 0.6c

V > 0.6c

maxN = 10*10

 4
 or

and
T <= 5.5*10 4

Initilization

Cycling

Error
max

max

max Cycling
 &

Stop
Simulation

 4

and
T <= Nmax

 4

Violation = 0

T = 0

T<= N

T <= 3.8*10

T > 5.5*10

max
Violation = 1

Violation = 0

Violation = 0
T > 5.5*10

T > N

T > N

T > N

Violation

T>3.8*10

 4

 4

Figure 3.5: Property 1 FSM

the FSM goes to the cycling state and remains until T < 3.8 ∗ 104 or T > 5.5 ∗ 104, where

the output voltage Vc(t) is just reported and not observed for any violation. This is because,

though the simulation is done from T = 0 to T = Nmax, the no oscillatory property is

verified for the bounded interval T > 3.8∗104 to T ≤ 5.5∗104. As T becomes greater than

3.8 ∗ 104, the FSM goes into the violation & cycling state where the property is verified for

any violation, meaning if VC(t) < 0.6, the property is satisfied or else the violation signal is

asserted and the FSM enters into the error state where it remains there till T ≤ Nmax, and

then goes to the stop simulation state. The results for the verification of Property 1 is shown

in Figure 3.6. The results are obtained by simulating the numerical approximation of the

SDEs and the assertion using MATLAB. However, the more interesting question that has

to be answered is “For the given set of initial conditions and bounded region, how does the

influence of noise and process variation affect the oscillatory behavior of the tunnel diode

oscillator?” meaning will the tunnel diode oscillator, which has been proved to be stable

and non oscillating, produce the same stable result in the presence of noise?

We simulated the tunnel diode oscillator for three different process corners (slow,

nominal and fast) as shown in Figure 3.6. The noise is modeled and simulated as a Wiener

process as shown in the Figure 3.6 (a). From the simulation results, Figures 3.6 (b) and (c),

42

ime ����� ime �����

ime ����� ime �����

Figure 3.6: Property 1 Simulation Results

we note that for the given set of parameters, the property is satisfied for slow and nominal

process corners. However, for the fast process corner and T > 3.8 ∗ 104 (Figure 3.6 (d))

the output has a stable oscillation, thereby detecting a violation. The additive noise W2 and

W3 along with the changes in resistor and capacitor due to process variation in the voltage

equation Vc(t) causes the tunnel diode oscillator circuit to move to negative resistance re-

gion, thereby creating oscillation.

In summary, for the given set of initial conditions and device parameters, though the

authors in [57] have verified the no oscillation property in the absence of noise and process

variation, we demonstrated that the property fail with noise and process variation.

Property 2: We verify that for the set of parameters and initial conditions given in Table 3.2,

the tunnel diode produces a stable oscillation.

43

Table 3.2: Tunnel Diode Oscillator Parameters for Property 2

Parameter Slow Process Corner Nominal Process Corner Fast Process Corner

Sheet Resistance(Rsh)Ω/� 6.715 6.32 5.925
Resistance (R)Ω 0.17 0.16 0.15
Inductor (L) H 1e-6 1e-6 1e-6
Capacitor (C) F 1200e-12 1000e-12 800e-12

V0 Volts 0.131 0.131 0.131
I0 Amps 0.04e-3 0.04e-3 0.04e-3

The oscillation property can be understood as within the time interval [0, T] on every

computation path, whenever the Vc amplitude will reach [0.9v, 1.0v], it will reach this value

again until the simulation stops. We show that within a bounded region, we prove whether

the oscillation dies in the presence of noise, meaning, no oscillatory behavior, even though

in the noiseless model it was proved to oscillate [57]. The implementation of the assertion

as an FSM for verifying the absence of oscillation is shown in Figure 3.7. The details follow

V > 0.6c

V > 0.6c

V <= 0.6

maxN = 10*10

 4T>=4.0*10

 4

ErrorStop
Simulation

max

and
T <= N

and
Violation = 0

c

max
max

max

T<= Nmax
 &

Initilization
Violation = 0

T<4.0*10

Violation = 0

T > N

T > N

T > N
max

Violation

Cycling

T > N

Cycling

 4
T = 0

Violation = 1

Figure 3.7: Property 2 FSM

exactly like in Property 1 except that the bounded region for verification of no oscillatory

behavior is between T ≥ 4.0∗104 until T=Nmax. The simulation results for the verification

of Property 2 are shown in Figure 3.8. The dotted line represents the output oscillation in

the absence of noise, while the bold line represents the output oscillation in the presence of

noise and process variation.

44

ime (Sec) (Sec)ime

(Sec)ime (Sec)ime

Figure 3.8: Property 2 Simulation Results

From the simulation results, we notice that the tunnel diode produces a stable oscil-

lation in the absence of noise. However, in the bounded region from T ≥ 4.0 ∗ 104 until T

= 10.0 ∗ 104, the oscillatory behavior dies out in the presence of noise for all the process

corners, thereby detecting a violation as shown in Figures 3.8(b), (c) and (d). This shows

that the noise and process variation has an adverse effect on the performance of the design

under verification. Moreover, we demonstrated that the oscillatory behavior which has been

proved in [57] does not hold under noisy and process variation conditions, thereby making

our methodology robust in detecting errors.

3.3.2 Colpitts Oscillator

The circuit diagram for a MOS transistor based Colpitts oscillator [69] is shown in Figure

3.9 (a) with the small-signal shown in Figure 3.9 (b). For the correct choice of component

values the circuit will oscillate. This is due to the bias current and negative resistance of the

45

passive tank.

Vdd

VC1

VC2

C1

C2

VG

R L

Iss

C1

C2

LR

gmVb

Vout

(a) (b)

Figure 3.9: Colpitts Oscillator

The simplified system of equations that describe the behavior of the Colpitts oscillator

is given by [69]:

V̇C1 =
1.2 − (VC1 + VC2)

RC
+

IL

C
− Ids

C

V̇C2 =
1.2 − (VC1 + VC2)

RC
+

IL

C
− Iss

C

İL =
1.2 − (VC1 + VC2)

L

(3.1)

where, for V = VC1 + VC2

Ids =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if VC2 > 0.3

K
W

L
((0.3 − VC2)(VC1) − 0.5(VC1)

2) if V < 0.3

K
W

L
(0.3 − VC2)

2 if V ≥ 0.3

If thermal noise is considered for the passive components and shot noise for the MOS

transistor, then Equation (3.1) can be extended to SDE form as given below

46

V̇C1 =
1.2 − (VC1 + VC2)

RC
+

IL

C
− Ids

C
+

2∑
k=1

αξk(t)

V̇C2 =
1.2 − (VC1 + VC2)

RC
+

IL

C
− Iss

C
+

2∑
k=1

αξk(t)

İL =
1.2 − (VC1 + VC2)

L
+ αξ3(t) + ζ(t)

(3.2)

where
3∑

k=1

αξk represents the thermal noise model for the passive elements with certain

amplitude α and ζ(t) represents poisson white shot noise (PWSN) due to random carrier

motion (current) in the MOS transistor.

The above SDE model is numerically approximated using Euler/Milstein technique

and simulated with process variation in a MATLAB simulation environment.

Property Observations

The property that we are interested in analyzing is “Whether for the given parameters and

initial conditions (Iss, Vdd, transconductance) the circuit will oscillate?” The simulation

results in Figure 3.11 show the variation of output voltages Vc1 and Vc2 with and without

noise. The property that is verified is the no oscillation for different circuit parameters

shown in Table 3.3. The behavior in question is stated as the bounded safety property,

meaning for the given simulation time step oscillation will not occurs if the current cannot

exceed a certain threshold.

For the no oscillation property to be satisfied, the current through the inductor IL

should be bounded within [−0.004, 0.004]. If verified to true, the property is satisfied else a

violation signal is enabled. The implementation of the assertion as an FSM for verification

of no oscillation property is shown in Figure 3.10.

47

Table 3.3: Colpitts Oscillator Parameters

Parameter Slow Process Corner Nominal Process Corner Fast Process Corner

Sheet Resistance(Rsh)Ω/� 6.715 6.32 5.925
Resistance (R)Ω 408 384 360
Inductor (L) H 3e-6 3e-6 3e-6

Capacitor (C1 = C2 = C) F 24e-12 20e-12 16e-12
Transconductance (mA

V 2 0.0067 10.0 0.0133
Vdd Volts 1.2 1.2 1.2
ISS Amps 100e-6 100e-6 100e-6

The FSM has four states namely, initialization, cycling, error and stop simulation.

The maximum simulation time, Nmax, and output violation are set in the initialization state.

As soon as the simulation starts, the FSM goes to the cycling state and remains until T ≤
Nmax and there are no violations observed. If the inductor current crosses the bounded

threshold, the FSM asserts the violation signal and goes into the error state where it remains

there till T ≤ Nmax and then goes to the stop simulation state.

IL< 0.004

IL> −0.004

T<= Nmax

T<= Nmax

T > N

max

ErrorInitialization

T > Nmax

T = 0

Violation = 0

max

and

and

Simulation
Stop

T > N

Violation = 1

Violation = 0

Violation = 1

maxN = 10*10 5

Cycling

Figure 3.10: No Oscillation Property FSM

From the simulation results, we notice that the Colpitts oscillator does not oscillate in

the absence of noise (solid line). However, for the slow, nominal and fast process corners in

48

the bounded region from T=5.8 ∗ 104 until T=10.0 ∗ 104, the variation in device parameter

and additive noise in the inductive current equation has caused an increase in the inductive

current, thereby detecting violation at T=9.0∗104, T=8.9∗104 and T=5.9∗104 as shown in

Figure 3.11 (b), respectively. This shows that the noise and process variation has an adverse

effect on the performance of the design under verification. The simulation result does not

mean that the Colpitts oscillator is oscillating but, shows that the inductor current is large

enough to trigger other circuits when connected to a bigger designs.

0 1 2 3 4 5 6 7 8 9 10

x 10
4

-0.01

-0.005

0

0.005

0.01

t

W
(t

)

Wiener Process

�����ime
(a)

0 2 4 6 8 10

x 10
4

-5

0

5
x 10

-3

t

IL
(t

)

0 2 4 6 8 10

x 10
4

0

0.5

1

1.5

t

V
io

la
ti
o
n

0 2 4 6 8 10

x 10
4

-5

0

5
x 10

-3

t

IL
(t

)

0 2 4 6 8 10

x 10
4

0

0.5

1

1.5

t

V
io

la
ti
o
n

0 2 4 6 8 10

x 10
4

-5

0

5
x 10

-3

t

IL
(t

)

0 2 4 6 8 10

x 10
4

0

0.5

1

1.5

t

V
io

la
ti
o
n

Inductor Current for Slow Process Corner Violation for a Slow Process Corner

Inductor Current for Nominal Process Corner Violation for a Nominal Process Corner

Inductor Current for Fast Process Corner Violation for a Fast Process Corner

ime ����� ime �����

ime ����� ime �����

ime ����� ime �����

(b)

Figure 3.11: Simulation Result of Colpitts Oscillator

49

3.3.3 PLL Based Frequency Synthesizer

A PLL based frequency synthesizer [21] is a classical AMS design that is commonly seen in

communication systems for clock generation and recovery. Figure 3.12 shows a typical PLL

based frequency synthesizer. It is composed of two comparators, a phase/frequency detec-

tor, charge pump, analog filter, voltage controlled oscillator (VCO) and a divider. Based on

the input reference signal, the phase detector compares the reference signal, injected to the

loop, to the VCO’s output and produces a signal which varies in proportion to the difference

in their phases. This output passes through a low pass filter to be used as a control signal

to drive the voltage controlled oscillator. Thereafter, the VCO will lock to the reference

signal, thereby producing a periodic signal.

Phase &
Frequency
Detector

Charge
Pump

Charge
Out

VCO_out

Freq_Sel

Ref_Signal

VCO_pfd

VCO_out

Comparator

ComparatorDivider

DN

UP
Ref_pfd

Fi
lte

r_
ou

t

Voltage
Controlled
Oscillator

Analog
Filter

Figure 3.12: PLL Based Frequency Synthesizer

The reference signal (Ref Signal) at the input is a simple sinusoidal wave with fre-

quency ω0. The VCO output (VCO out) is a cosine signal with frequency N+1 times of the

reference frequency, where N is determined by the frequency select signal (Freq Sel). If

the Freq Sel is ‘0’, then the frequency of the reference input and VCO output will be the

same or else the frequency will be divided accordingly based on the divider.

For this application, digital blocks are implemented as a difference equation [68] in

a MATLAB simulation environment. For continuous time components the formulation is

based on the semi-automatic generation of recurrence equation models as described in [11].

The behavior of the low-pass filter is modeled as an ODE and the SDE representation of its

50

noisy (additive and multiplicative) behavior can be described as

Ḟo =
1

RC
(CPo(t) − Fo(t)) +

2∑
k=1

αξk(t)

Ḟo =
1

RC
(CPo(t) − Fo(t)) + αξk(t)Fo(t)

(3.3)

where, Fo and CPo represents the filter and charge-pump output, respectively, R and C

represents the resistor and capacitor component in the filter circuit. The next step is to

apply the Euler/Milstein scheme described in Chapter 2 to generate the following numerical

model:
FOn+1 = FOn +

(
Δn

RC

)
(CPo(n) − Fo(n)) + αΔWsn

FOn+1 = FOn +

(
Δn

RC

)
(CPo(n) − Fo(n)) + αΔWn +

1

2

(
(ΔWn)2 − Δn

)
FOn

(3.4)

where, Fo(n) and CPo(n) are the discrete representation of the filter and charge-pump

output, respectively,

Property Observations

A critical property of a frequency synthesizer is the “lock-time”, meaning, if the Freq Sel

is activated, the PLL will lock at the desired frequency within a certain time as identified

in the specification. The verification challenge is “Will the above property hold true in the

presence of noise and process variation?”

The first step is to model the PLL and simulate it in a MATLAB simulation environ-

ment. The simulation result at the VCO output is shown in Figure 3.13. The dotted/bold

waveforms represent the VCO output without noise and with noise, process variation, re-

spectively.

51

0 0.5 1 1.5 2 2.5 3
x 10−5

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time (Sec)

V
C

O
O

u
tp

u
t

(V
o
lt
s)

Figure 3.13: VCO Output with/without Noise

Property 1:

The lock-time is considered a safety property and is measured by the changes to the filter

output with respect to the freq sel signal. The implementation of the assertion as an FSM

for verification of no oscillation property is shown in Figure 3.14.

maxN

max

T<= Lock_Time

T> Lock_Time & Filter_Out < New_DC_Level

Violation = 0

Violation = 1

Initialization

T = 0

Violation = 0

T > N

T<= N

max

T > N

max

T > Nmax

Error

Cycling

Simulation
Stop

T<= N

max

Figure 3.14: Lock-Time Property FSM

The FSM has four states namely, initialization, cycling, error and stop simulation.

The maximum simulation time, Nmax, and output violation are set in the initialization state.

As soon as the simulation starts, the FSM goes to the cycling state and remains until T ≤
Nmax and there are no violations observed. If the PLL fails to lock with 0.001 sec as given

52

in the specification, the FSM asserts the violation signal and goes into the error state where

it remains there till T ≤ Nmax and then goes to the stop simulation state. The snapshot to

verify the above property can be described as

while (freq_sel[i]==1 && freq_sel[i-1]==0)

for n = 1: Nmax

if (filter_out[n]== New_DC_Level && T_sample*(n-i)

<=Lock_time) then

Violation = 0; // Property is Satisfied

else

Violation = ’1’; // Property is Violated

end if

end for

end while

The simulation results for Property1 are shown in Figure 3.15. It is interesting to note

that the authors in [136] have shown that the lock-time property is satisfied. However, that

is not the case when noise and process variation are considered. It is obvious that there

will some effect of noise and the filter output will not stable. To accommodate this, the

assertion is modified to check if the New DC Level falls within certain range p. In this

case, for p = ±1%, the filter output exceeds the threshold level. However, by increasing

p, the property will be satisfied, but at the cost of accuracy. Choosing the value of p will

depend on the type of application and designers choice.

It should be noted that the property fails because of the additive noise at the filter

output and process variation in the resistor and the capacitor elements. Since, noise and

process variation are random quantities, the assertion in the above case has failed due to

high level of noise and process conditions. In reality, one may not come across such a level

53

0 0.5 1.5 2.75 4
x 10−3

−0.5

0

1.0

2.5

3

Time (sec)

F
il
te

r
O

u
tp

u
t

(V
o
lt
s)

Freq Sel

Violation

Figure 3.15: Lock-Time Property Results

of noise and manufacturing conditions.

To check the consistency of MATLAB based SDE analysis with the circuit level noise

analysis, we conducted an experiment for a RC low-pass filter as shown in Figure 3.16. Here

R = 1Ω and C = 1F are the resistor and the capacitor of the filter circuit, respectively. X(t)

is the white noise source representing the thermal noise in the resistor.

R CX(t)

Figure 3.16: Lock-Time Property Results

Table 3.4: RC- Low Pass Filter

Noise Quantity Circuit Simulator MATLAB SDE Analysis

Average Power (Pavg) watts 0.5 0.57
Noise Bandwidth Hz 0.25 0.29

The simulation results are summarized in Table 3.4. It can be noted that the SDE

analysis results at a higher-level of abstraction does not match with the circuit-level sim-

ulation results. The difference is due to white noise source generator, as each simulator

54

tend to use different pseudo-random number generator. Therefore, the average noise power

generated at a given time will be different.

3.4 Summary

In this chapter, we have presented a practical assertion based verification methodology for

noise and process variation in analog designs. The approach is based on modeling the noise

using SDEs and numerically simulating, in MATLAB, the model with a given fabrication

process parameter variations, and monitor the property of interest in an online fashion. We

have used the proposed methodology to verify the oscillatory behavior of a Tunnel diode

and a Colpitts oscillator circuits and the “lock-time” property of a PLL based frequency

synthesizer. We showed that the properties that are satisfied without noise, have failed in

the presence of noise and process variation, thereby proving that the proposed verification

environment is efficient in finding bugs. This process is much more reliable than manual

(visual or textual) inspection of simulation traces which will cost lots of time.

The above simulation results were derived for one particular set of Wiener process

and for 0.18μm process technology. The FSM for verifying the property of interest is con-

structed using if-then-else MATLAB constructs. The methodology could be easily extended

for other technologies by calculating device parameters based on process variation for dif-

ferent process corners or using probability distribution. The values of the Wiener process

depend on the random number generator of the system and so we may find different sets of

W1, W2 and W3 during each simulation run. Therefore we conclude that, for this particular

set of parameter values of W1, W2 and W3 and initial conditions, the properties in the Tun-

nel diode, Colpitts oscillators and the PLL are violated, but, one can get a different set of

values for the Wiener processes for which the property holds. Hence, the verification has to

be done for multiple trajectories before concluding the correctness of the design.

55

The downside of assertion based approach is that the design is evaluated for one

simulation trace. So, the question is “What happens if we don’t detect any violation on

that trace?”. “Does that mean the circuit will work under all conditions?”. In general,

simulation based approach cannot provide a complete coverage on the design evaluation.

However, the verification method can incorporate additional constraints to improve the con-

fidence level of the design. This is very important while dealing with process variation and

noise, as the design may encounter various operating conditions. Hence, to gain high confi-

dence in the circuit, the design has to be evaluated statistically through multiple simulation

and with different noise and process conditions. In the end, the acceptance/rejection of a

circuit has to be measured from all simulation samples that may involve hypothesis testing

and probabilistic measures. Therefore, we propose in the next chapter, a statistical based

run-time verification environment to ensure the correctness of an analog circuit with certain

confidence interval. This quantitative approach will help designers to assess the circuit with

certain confidence at a higher level of abstraction and can facilitate system-level verifica-

tion.

56

Chapter 4

Quantitative Analysis using Statistical

Techniques

This chapter presents a framework for the statistical analysis of analog circuits. The frame-

work allows us to model and verify the statistical property of an analog designs in the

presence of shot noise, thermal noise, and process variations. The idea is to use stochastic

differential equations (SDE) to model noise in additive and multiplicative form and then

combine process variation in a statistical runtime verification environment. To illustrate

the practical effectiveness of the proposed framework, the efficiency of MonteCarlo and

Bootstrap statistical techniques are compared for Colpitts oscillator, Band-Gap reference

generator and a Phase Locked Loop (PLL) based frequency synthesizer circuit.

4.1 Introduction

Assertion based method discussed in Chapter 3 is a powerful mechanism to verify the func-

tional properties of the design without any uncertainties. Due to the stochastic nature of

the noise, the assertion based verification technique cannot provide a greater insight to gain

57

confidence on the circuit. This is because, assertion based verification results are derived

by simulating the design for a single trace and then looking for any violation.

To address the above problem, we propose in this chapter a run-time verification

framework for monitoring the statistical property of an analog circuit. Statistical run-

time verification combines hypothesis testing [96] and MonteCarlo/Bootstrap simulation

for monitoring the statistical behavior in an analog circuit. The framework is developed to

handle uncertainties in an analog design due to noise and process variation.

4.2 Statistical Verification Methodology

Figure 4.1 shows the overall statistical run-time verification methodology. Thereafter, given

an analog design described as a system of ODEs, the idea is to generate SDEs that express

the noise behavior. For the case of the circuits that do not have closed form solution, the

approach is to numerically approximate the SDE’s based on Euler-Maruyama technique

as described in Chapter 2. For process variation, technology vendors create a library of

devices with different corners [30] that characterize the device in terms of power, speed,

etc. This allows designers to choose from a range of devices based on the application and

requirements. For a 0.18μm process, different circuit parameters are derived using Gaussian

distribution with a known ±3σ deviation.

For environment constraints, this may include the amplitude of the noise, initial con-

ditions of the circuit current and voltages. The SDE model, process variation, and the

environment constraints are evaluated using MonteCarlo/Bootstrap statistical technique in

a MATLAB simulation environment.

Statistical run-time verification combines hypothesis testing and resampling methods

for monitoring the statistical behavior in an analog circuit. The basic idea behind the re-

sampling methods is to simulate the SDE model and sample them in order to calculate the

58

Accept With Confidence Level Reject With Confidence Level

Statistical
Property

Parameters

SDE Extraction

Model
Generation

Initialization
Technology
Library

Circuit
Ordinary
Differential

(ODE)
Equation

Statistical Run Time Verification

Description

Analog

Probability
Distribution

Numerical
SDE Model

Figure 4.1: Statistical Run-Time Verification Methodology

desired statistics for a given confidence level δ.

Figure 4.2 shows the methodology for statistical simulation procedure based on hy-

pothesis testing. The statistical property, is expressed as a null hypothesis H0, while the

alternative hypothesis H1 becomes the counterexample naturally. For the given numerical

SDE model and the specified tail test, MonteCarlo or Bootstrap monitoring is carried out

based on the given confidence level δ and the calculated significance level α. The statisti-

cal property is verified if the null hypothesis H0 is accepted, else, the monitor reports the

violation of the property. In all cases, an error margin ε is generated as shown in Figure 4.2.

H0?

RejectH0

Accept

Error Margin

Confidence Level

Initialization
Confidence

Interval

Property
Statistical Technology

Library

Error Margin

Reject

H0

Numerical SDE Model

Parameters

H0

Property is False

Monitor
Null Statistical

Property is True

Probability
DistributionHypothesis

Figure 4.2: Statistical Hypothesis Testing

59

4.2.1 MonteCarlo Algorithm

The MonteCarlo method refers to a technique of solving problems using random variables.

It is widely used to investigate statistical problems such as inference statistics of a given

population of interest. The basic idea behind the MonteCarlo method is to sample the

given population model for M trials and then calculate the desired statistics (such as mean,

median, variance, skewness, etc.). To apply MonteCarlo based hypothesis testing, it is

necessary that the distribution of the sampling population is known in advance [85].

One of the most important components of MonteCarlo simulation is the use of de-

terministic algorithm to generate a normally distributed unbiased pseudo random number.

These random numbers are then used to sample the true population of interest, in this case

the analog circuit output. In general, there is no theory that governs the number of trials in

MonteCarlo simulation. However, a trade off exists between those numbers and the simula-

tion run-times. The higher confidence can be gained by choosing a larger number of trials,

but at the cost of run-times [96].

The detailed procedure for Monte-Carlo hypothesis testing for an analog circuit is

illustrated in Algorithm 4.1, where output vector denotes the observed output of an analog

circuit with noise and process variation. M represents the number of MonteCarlo trials, α

a chosen significant level and type test represents the type of test to be performed (upper,

lower, or two-tailed).

The initialization steps (lines 1-4) are followed by the computation of the standard

score to determine the observed analog output Tobs (loop between lines 5 and 9). This

calculation is done with certain standard error margin as defined to be

E =

∑n
i=1(xi − x̄)2

N(N − 1)
(4.1)

where X = (x1, x2, ..., xN) represents the MonteCarlo sample, μ is the mean x̄ the pseudo

60

Algorithm 4.1 MonteCarlo Based Hypothesis Testing:
Require: output vector, M , α, type test

1: V ← output vector
2: N ← length(V)
3: mu ← mean(V)
4: sig ← standard error(V)
5: for i ← 1 to M do

6: r ← random number generator(N)
7: MCsample ← sig ∗ r + mu

8: Tobs(i) ← mean(MC sample)−mu
sig

9: end for

10: while type test = “upper tail test′′ do

11: critical value = quantile(1 − α)
12: if critical value ≥ Tobs then

13: Accept H0

14: else

15: Reject H0

16: end if

17: end while

18: while type test = “lower tail test′′ do

19: critical value = quantile(α)
20: if critical value ≤ Tobs then

21: Accept H0

22: else

23: Reject H0

24: end if

25: end while

26: while type test = “two tail test′′ do

27: critical value low = quantile(α
2
)

28: critical value up = quantile(1−α
2

)
29: if critical value up ≤ Tobs ‖ critical value low ≥ Tobs then

30: Reject H0

31: else

32: Accept H0

33: end if

34: end while

61

random sample mean, and E defines the standard error of the population under the hypoth-

esis that H0 is true. The next step is to compute the critical value in order to specify the

rejection region (alternative hypothesis). Depending on the type of the test, the quantile

procedure [96] (lines 11,19, 27 and 28) can be used to determine the critical value. With

the estimated critical value, the rejection region under the assumption of H0 being true can

be determined for each of the tail test as defined in Table 4.1.

Table 4.1: Rejection Region for Different Tail Test

Tail Test Rejection Region

Upper [(100 × (1 − α))%, +∞]

Lower [−∞, (100 × α)%]

Two-Tailed [−∞, (100 × α

2
)%] ∪ [(100 × (1 − α

2
))%, +∞]

If the observed value Tobs is greater than the critical value, the null hypothesis H0 is

rejected as described in Algorithm 4.1 (lines 10-32). One of the drawbacks of the Mon-

teCarlo simulation is that the assumption on the distribution which leads directly to the

question “What will happen when the assumption of the underlying distribution is violated

or unknown?” In such cases, techniques such as the Bootstrap will provide a perfect plat-

form to reason about the statistical inference of the population.

4.2.2 Bootstrap Algorithm

The bootstrap is a general purpose method for estimating the statistical property without

making any assumptions about the underlying distribution of the population [31]. In this

sense, it is considered as a non parametric technique or distribution free. The basic idea

behind the bootstrap technique can be described as follows [31]: “Given a random sample

of N data X = (x1, x2, ..., xN) from an unspecified distribution F , the maximum likelihood

62

estimator of F is the distribution that puts an equal point probability of
1

N
to each data of

X”.

The detailed procedure for Bootstrap based hypothesis testing for an analog circuit is

illustrated in Algorithm 4.2, where output vector denotes the observed output of an analog

circuit with noise and process variation. B represents the number of bootstrap samples, α

a chosen significant level and type test represents the type of test to be performed (upper,

lower, or two-tailed).

The first step is to draw randomly B samples with replacement from the simulated

circuit output of size N (line 4). This is followed by test statistic estimation for each boot-

strap replication in order to measure discrepancy between the data and H0. The results are

then in Tboot as a vector (line 5). The quantile procedure is then used to compute the critical

value by type of test:

• The 1−α quantile of the empirical distribution for an upper tail test as shown in line

9.

• The α quantile of the empirical distribution for a lower tail test as mentioned in line

17.

• The α
2

and (1 − α
2
) quantile of the empirical distribution for a two sided test as given

in lines 25 and 26.

Once the critical value is determined, a decision regarding the violation of a statistical

property is done using hypothesis testing (lines 16-31). For instance, in the case of a lower

tail test (lines 16-23), if the observed value Tboot is lower than the computed critical value

than we reject H0, meaning the statistical property has failed.

63

Algorithm 4.2 Bootstrap Based Hypothesis Testing:
Require: output vector, B, α, type test

1: V ← output vector
2: N ← length(V)
3: for i ← 1 to B do

4: rep ← Resample Bootstrap(V,N)
5: Tboot(i) ← Compute test statistic(rep)
6: end for

7: Tsorted ← sort ascending order(Tboot)
8: while type test = “upper tail test′′ do

9: critical value = Tsorted(B ∗ (1 − α))
10: if critical value ≥ Tobs then

11: Accept H0

12: else

13: Reject H0

14: end if

15: end while

16: while type test = “lower tail test′′ do

17: critical value = Tsorted(B ∗ α)
18: if critical value ≤ Tobs then

19: Accept H0

20: else

21: Reject H0

22: end if

23: end while

24: while type test = “two tail test′′ do

25: critical value low = Tsorted(B ∗ α
2
)

26: critical value up = Tsorted(B ∗ 1−α
2

)
27: if critical value up ≤ Tobs ‖ critical value low ≥ Tobs then

28: Reject H0

29: else

30: Accept H0

31: end if

32: end while

64

4.3 Applications

To illustrate the efficiency of the proposed methodology, the approach is illustrated on a

tunnel diode, Colpitts oscillator and PLL circuits. The effect of thermal noise on passive

components (Resistor, Capacitor and Inductor) and shot noise on the transistors has been

analyzed in additive and multiplicative form. The first step in noise analysis is to identify

and incorporate the sources of noise as a stochastic process in the form of SDE. Thermal

and Shot noise are defined based on the method described in Chapter 2. The experiment

results are derived separately for additive and multiplicative noise in a statistical based

MATLAB simulation environment on a Windows Vista OS (AMD Dual-Core, 4GB RAM)

machine. Unlike assertion based verification method discussed in Chapter 3 where the pro-

cess conditions are considered for only three corners (slow, nominal and fast), for statistical

verification, based on MonteCarlo/Bootstrap trials, many independent circuit parameters

are generated using Gaussian distribution.

4.3.1 Colpitts Oscillator

The circuit diagram for a MOS transistor based Colpitts oscillator is shown in Figure 3.9 (a).

For the correct choice of component values, the circuit will oscillate due to the bias current

and negative resistance of the passive tank. The frequency of oscillation is determined by

L, C1 and C2.

The SDE model presented in Chapter 3 is numerically approximated using Euler/Mil-

stein technique and simulated with process variation in a MATLAB simulation environ-

ment. The deterministic property that was verified is “Whether for the given parameters

and initial conditions, the inductor current is within a certain bound or not for oscillation?”

The simulation results in the Figure 4.3 show the variation of inductor current IL(t) with

(bold line) and without noise (dotted line).

65

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x 10−6

−3

−2

−1

0

1

2

3 x 10−3

Time (Sec)

In
d
u
ct

o
r

C
u
rr

en
t

(A
m

p
s)

Figure 4.3: Simulation Result of Colpitts Oscillator

Statistical Property Observation

For statistical run-time verification one would be interested to know “Whether for the

given confidence level α, process variation and M/B MonteCarlo/Bootstrap trials, what is

the probability of acceptance and rejection of oscillation for multiple trajectories Trac?”

where Trac represents different kind of the same analog circuit, but with different noise

and process conditions. For the oscillator, the current through the inductor IL should be

bounded within [−0.004, 0.004]. As a result, the null hypothesis H0 and the alternative

hypothesis H1 of this property can be expressed as:

H0 : −0.004 ≤ IL ≤ 0.004;

H1 : IL > 0.004 ‖ IL < −0.004;
(4.2)

Both the MonteCarlo and Bootstrap experiments were conducted for the confidence

level α = 0.05 for different tail tests, with shot/thermal noise in the circuit elements, and

with the circuit parameter generation using a normally distributed process variation model.

The results are summarized in Table 4.2.

From Table 4.2, it can be noted that, irrespective of the tail test, that the MonteCarlo

technique exhibits false violation (column 3). In the MonteCarlo method, first the mean of

the output is derived, followed by the creation of different sampling points based on normal

66

Table 4.2: Statistical Runtime Verification Results for Colpitts Oscillator.

Additive Noise (TRAC = 200, M = MonteCarlo Trials, B = Bootstrap Trials, P.V = Process Variation, A = Accept, R = Reject, α = 0.05)
No Shot/Thermal Noise & P.V Shot/Thermal Noise Only P.V Only Shot/Thermal Noise & P.V Only

M= Tail MonteCarlo Bootstrap MonteCarlo Bootstrap MonteCarlo Bootstrap MonteCarlo Bootstrap

B= Test A R A R A R A R A R A R A R A R

Lower 192 8 200 0 179 21 191 9 180 20 187 13 147 53 184 16
1000 Upper 194 6 200 0 173 27 194 6 178 22 189 11 153 47 182 18

Two 190 10 200 0 169 31 189 11 175 25 181 19 138 62 180 20
Lower 188 12 200 0 164 36 193 7 172 28 185 15 151 49 179 21

10000 Upper 187 13 200 0 163 37 194 6 180 20 187 13 143 57 184 16
Two 183 17 200 0 164 36 191 9 175 25 181 19 132 68 179 21
Lower 188 12 200 0 159 41 189 11 177 23 182 18 122 78 174 26

50000 Upper 187 13 200 0 161 39 188 12 174 26 181 19 127 73 179 21
Two 181 19 200 0 159 41 183 17 171 29 179 21 120 80 173 27

Multiplicative Noise (TRAC = 200, M = MonteCarlo Trials, B = Bootstrap Trials)
Lower 194 6 200 0 188 12 196 4 180 20 187 13 189 11 194 6

1000 Upper 197 3 200 0 190 10 193 6 178 22 189 11 185 15 196 4
Two 193 7 200 0 185 15 194 6 175 25 181 19 177 23 189 11
Lower 199 1 200 0 181 19 191 9 172 28 185 15 180 29 184 16

10000 Upper 197 3 200 0 183 17 193 7 180 20 187 13 177 23 181 19
Two 194 6 200 0 188 12 196 4 175 25 181 19 179 21 184 16
Lower 197 3 200 0 187 13 191 9 177 23 182 18 181 19 188 12

50000 Upper 197 3 200 0 182 18 193 7 174 26 181 19 171 29 185 15
Two 195 5 200 0 186 14 191 9 182 18 187 13 164 36 181 19

distribution with a known standard deviation. Such a process may sometimes lead to a

value that is out of bound with the observed value thereby, giving rise to false violation. It

can also be seen that process variation (columns 11-14) in all the passive components has

a greater effect on the acceptance/rejection of the circuit and with the combined effect of

noise and process variation (columns 15-18) the hypothesis testing exhibited considerable

failure of the statistical property.

The effect of process variation and noise on the statistical results can be visualized

using shmoo plots as shown in Figure 4.4. Though the process variation is considered in

all circuit elements, the figure is shown only for the process variation in capacitor with

respect to the resistor. The capacitance values are generated based on Gaussian distribution

as described in Chapter 3. The standard deviation in this case is 10% of the mean value as

specified in the 0.18μm technology library document [1]. At each capacitance value, the

resistor is swept based on the values generated using normal distribution and the hypothesis

testing result is analyzed by writing ’1’ for acceptance or ’0’ for rejection. It can be noted

that higher values of capacitance, can make the oscillator stable, meaning non-oscillating.

In addition, the number of MonteCarlo trials has an adverse effect on the outcome of

67

the acceptance, but, a large Bootstrap trial have made little impact on the outcome. This is

because, the data generation process for the Bootstrap does not assume any distribution of

the output data. For this experiment, the worst case run-time for M/B = 50000 is around

5-6 hrs, which though is considerably less than the simulation done at the circuit level.

20.1e−6 23.4e−6 26.1e−6
4730

4800

4880

Process Variation in Capacitor (F)

P
ro

ce
ss

V
a
ri
a
ti
o
n

in
th

e
R

es
is
to

r
(O

h
m

)

FAILPASS

Figure 4.4: Shmoo Plotting of Colpitts Oscillator Results.

4.3.2 Band-Gap Reference Generator

For any biasing circuits, one of the most important performance issue is their dependence

on temperature. The variation in temperature, noise and process variation attributes to the

fractional change in the output voltage/current, thereby affecting the functionality of the

design [52]. Figure 4.5 shows a BJT based reference generator biasing circuit, and the

question is “How does the variation of noise with respect to temperature affect the behavior

of the circuit?”

The output voltage is based on the summation of the voltage across base-emitter

(VBE) and the reference voltage (VT). The behavior of the above circuit can be described as

dVo

dT
= (γ − β)

VT

T

(
T0 − T

T

)
(4.3)

68

Generator

VCC

I

−

+
Vo = + VT

SUM

TV TV

VBE VBE

Figure 4.5: Band Gap Reference Circuit [52].

where VT is the input voltage. If we consider a temperature varying shot noise process ζ(T)

in the transistor, Equation (4.3), can be rewritten to incorporate randomness in additive and

multiplicative form as:

dVo

dT
= (γ − β)

VT

T

(
T0 − T

T

)
+ ζ(T)

dVo

dT
= (γ − β)

VT

T

(
T0 − T

T

)
+ ζ(T)Vo(T)

(4.4)

where γ and β are temperature independent constants [52] and T is the temperature. The

shot noise process in Equation (4.4) is modeled as a PWSN numerical model with a white

noise (Gaussian) distribution for the noise amplitude. For additive/multiplicative SDEs in

the form of Equation (4.4), the SDE time discretization Euler/Milstein scheme with a step-

size Δn is applied to generate the following numerical model:

Von+1 = Von + (γ − β)
VT

T

(
T0 − T

T

)
Δn + ΔWsn

Von+1 = Von + (γ − β)
VT

T

(
T0 − T

T

)
+ ΔWsn +

1

2

(
(ΔWsn)2 − Δn

)
Von

(4.5)

69

In the statistical analysis presented for the band-gap reference generator, since man-

ufacturing techniques for BJT are different from those of CMOS, the effect of process

variation for BJT’s are not considered. The effect of the variation in the input voltage (VT)

is also studied.

Statistical Property Observation

The property of interest is: “Whether for the given set of parameters and variation in

temperature T, will the output voltage Vo be greater than a certain threshold voltage?” The

analysis was done only for thermal noise in additive form and does not provide a statistical

estimate to gain confidence in the circuit verification.

For statistical run-time verification, it would be intriguing to extend the above prop-

erty to “Whether for the given confidence level α, M MonteCarlo trials and B Bootstrap

trials, what is the probability of acceptance and rejection of the output voltage Vo for mul-

tiple trajectories TRAC and varying input voltage VT ?” Here, TRAC is used to de-

pict the band-gap reference circuit under different shot noise processes. For instance, if

TRAC = 100, it represents “100” band-gap reference circuit models that have independent

shot noise characteristics. For this case, the output voltage Vo should be bounded within

[Vo ≥ 3.13mV] [52]. As a result, the null hypothesis H0 and the alternative hypothesis H1

of this property can be, respectively, expressed as

H0 : Vo ≥ 3.13e−3;

H1 : Vo < 3.13e−3;
(4.6)

Both the MonteCarlo and Bootstrap experiments were conducted for the confidence

level δ = 0.95 (α = 0.05) for different tail tests, with shot noise only and with TRAC =

200 and with varying input voltage (20mV ≤ VT ≤ 29mV). The results are summarized

in Table 4.3.

70

Table 4.3: Statistical Runtime Verification Results for Band-Gap Reference Generator.

Additive Noise (TRAC = 200, M = MonteCarlo Trials, B = Bootstrap Trials, α = 0.05)
No Noise With Shot Noise and VT

M = Tail MonteCarlo BootStrap MonteCarlo BootStrap

B = Test Accept Reject Accept Reject Accept Reject Accept Reject

Lower 197 3 200 0 151 49 185 15
1000 Upper 193 7 200 0 159 41 187 13

Two 191 9 200 0 147 53 176 24
Lower 198 2 200 0 142 58 181 19

10000 Upper 199 1 200 0 151 49 182 18
Two 193 7 200 0 152 48 178 22

Lower 198 2 200 0 133 67 186 14
50000 Upper 198 2 200 0 127 83 190 10

Two 197 3 200 0 121 89 179 21
Multiplicative Noise (TRAC = 200, M = MonteCarlo Trials, B = Bootstrap Trials)
Lower 200 0 200 0 181 19 199 1

1000 Upper 199 1 200 0 181 19 199 1
Two 199 1 200 0 179 21 194 6

Lower 199 1 200 0 188 12 199 1
10000 Upper 198 2 200 0 183 17 199 1

Two 198 2 200 0 171 29 198 2
Lower 198 2 200 0 193 7 197 3

50000 Upper 199 1 200 0 191 9 197 3
Two 197 3 200 0 191 9 191 9

From Table 4.3, it is interesting to see that even in the absence of noise (column 3),

irrespective of the tail test, the MonteCarlo technique produces some rejection as shown

by the shaded region. This is because of the MonteCarlo theoretical assumption of normal

distribution of the output voltage Vo has resulted in this false rejection. As the Bootstrap

technique does not take into account any assumption on the output distribution, it has 100%

acceptance of the output in the absence of noise (column 5). In cases where the shot noise

and VT variation are considered (columns 6-10), it can be seen that Bootstrap has more ac-

ceptance than MonteCarlo because of their resampling method. Also, the effect of additive

shot noise is greater than that of multiplicative noise. This is because, the amplitude of shot

noise is in the order of millivolts and when multiplied by the output voltage the effect is

almost negligible.

The effect of shot noise and VT on the statistical results can be pictured using shmoo

plots as shown in Figure 4.6. For each VT , the circuit is evaluated for different shot noise

models by sweeping the amplitude appropriately. In the end, the total statistical result

71

22e−3 24e−3 28e−3
−0.015

0.01

0.03

Variation in Input Voltage V
T
 (Volts)

Sh
ot

 N
oi

se
 V

ar
ia

tio
n

(V
ol

ts
)

PASS FAIL

Figure 4.6: Shmoo Plotting of Band-Gap Reference Generator Results.

represents the number of passed/failed circuits that equal the total number of trajectories

TRAC. The hypothesis testing result is analyzed by writing ’1’ for acceptance or ’0’ for

rejection. The plot is shown for the MonteCarlo statistical results.

For this circuit, the worst case run-time for M/B = 50000 is around 3-4 hrs, which

though is considerably less than the simulation done at the circuit level.

4.3.3 PLL Based Frequency Synthesizer

One of the major challenges for the verification of an AMS design, such as the PLL is eval-

uating the uncertainties due to short-term frequency perturbation known as the jitter [39].

Jitter, a time-domain measure, is an unwanted contraction or expansion in the output oscil-

lating signal from its ideal position. Such instability can result in wrong synchronization of

the AMS design and eventually lead to the loss of data.

The authors in [136] have made use of the jitter models from [39] and have combined

hypothesis testing and MonteCarlo to provide a statistical estimate of the jitter property

72

Phase &
Frequency
Detector

Charge
Pump

Charge
Out

VCO_out

Freq_Sel

Ref_Signal

VCO_pfd

VCO_out

Comparator

ComparatorDivider
Noise
Jitter

DN

UP
Ref_pfd

Fi
lte

r_
ou

t

Voltage
Controlled
Oscillator

Analog
Filter

Figure 4.7: PLL Based Frequency Synthesizer

specification. Unfortunately, they failed to address the issue related to noise in the fil-

ter circuit and process variation associated with the circuit elements. Figure 4.7 shows a

PLL based frequency synthesizer with jitter associated with the voltage controlled oscilla-

tor (VCO)1.

The jitter model from [136] is used to address the issue of period jitter associated with

the VCO. In general, it is modeled as a variation in the frequency of the VCO as shown in

Figure 4.8.

KVCO ModulatorIntegratorFilter_Out(t) VCO_Output(t)
ω(t) φ(t)

Jθ

Figure 4.8: VCO Output with/without Noise

If T is the period of the ideal signal, then the frequency of the jittery signal can be

defined as [76]

Jitterfreq =
f

1 + Jθf
(4.7)

where J is the jitter deviation, f is the input frequency and θ is the Gaussian random

process. Using the VCO gain Kvco and the phase equation of the VCO from [76], the VCO

output for a reference signal Acosωt can be derived as

V CO output = Acos

(
ωt + Kvco

∫ t

0

Filterout(τ)

1 + Jθ·Kvco·Filterout(τ)
2π

dτ + φ0

)
(4.8)

1Please refer to Chapter 3 for a more detailed explanation.

73

With the jitter been defined, the next step is to represent the SDE behavior of the filter

with additive and multiplicative thermal noise. This SDE representation can be described

as

Ḟo =
1

RC
(CPo(t) − Fo(t)) +

2∑
k=1

αξk(t)

Ḟo =
1

RC
(CPo(t) − Fo(t)) + αξk(t)Fo(t)

(4.9)

where, Fo and CPo represent the filter and charge-pump outputs, respectively, and R and C

represents the resistor and capacitor components in the filter circuit, respectively. The next

step is to apply the Euler/Milstein scheme described in Chapter 2 to generate the following

numerical model:

FOn+1 = FOn +

(
Δn

RC

)
(CPo(n) − Fo(n)) + αΔWsn

FOn+1 = FOn +

(
Δn

RC

)
(CPo(n) − Fo(n)) + αΔWn +

1

2

(
(ΔWn)2 − Δn

)
FOn

(4.10)

Statistical Property Observation

The lock-time is an isolated property for all PLL based frequency synthesizers, i.e., once

the PLL gets locked, the VCO will start oscillating until there is a change to the Freq Sel

signal. The method of verifying the “lock time” property is to check if the output of the

low-pass filter has reached a new DC value within the lock time as shown in Figure 4.9.

In [135], the authors have verified the property without accounting for jitter in VCO and

thermal noise in the filter.

For statistical run-time verification, the lock-time property is “For the given confi-

dence level α, M Monte Carlo trials, B Bootstrap trials, and multiple trajectory TRAC,

what is the probability of acceptance and rejection that the PLL meet the lock-time of

74

0 0.5 1 1.5 2 2.5 3 3.5 4
x 10−3

0

0.5

1

1.5

2

2.5

3

3.5

Time (Sec)

F
il
te

r
O

u
tp

u
t

(V
o
lt
s)

Figure 4.9: PLL Lock-Time Verification

0.001sec.?” Hence, the null hypothesis H0 and the alternative hypothesis H1 of this prop-

erty can be, respectively, expressed as

H0 : lock time ≤ 0.001;

H1 : lock time > 0.001;
(4.11)

The simulation was carried out under the significance level α = 0.05 and the jitter

deviation as a normally distributed model as shown in Figure 4.10. The results for “200”

trajectories are summarized in Table 4.4.

1e−7 4e−7 9e−7 12e−7
0

50

100

150

200

250

300

Jitter Deviation (Sec)

D
en

si
ty

Figure 4.10: Jitter Deviation in VCO.

From Table 4.4, the combined jitter/thermal noise and process variation (columns 15-

18) have substantially increased the PLL rejection, meaning PLL has failed to lock. The

75

Table 4.4: Statistical Runtime Verification Results for the PLL Lock-Time Property.

Additive Noise (TRAC = 200, M = MonteCarlo Trials, B = Bootstrap Trials, P.V = Process Variation, A = Accept, R = Reject, α = 0.05)
No Noise & P.V Noise Only P.V Only Noise & P.V Only

M= Tail MonteCarlo Bootstrap MonteCarlo Bootstrap MonteCarlo Bootstrap MonteCarlo Bootstrap

B= Test A R A R A R A R A R A R A R A R

Lower 152 48 200 0 129 71 181 19 180 20 187 13 137 63 174 26
1000 Upper 154 46 200 0 123 77 184 16 178 22 189 11 133 67 172 28

Two 150 50 200 0 129 71 189 11 175 25 181 19 131 69 170 30
Lower 168 32 200 0 124 76 173 27 172 28 185 15 121 79 169 31

10000 Upper 167 33 200 0 123 77 174 26 180 20 187 13 123 77 167 33
Two 163 37 200 0 124 76 171 29 175 25 181 19 122 78 164 36
Lower 148 52 200 0 119 81 177 23 177 23 182 18 112 88 164 36

50000 Upper 147 53 200 0 111 89 178 22 174 26 181 19 117 83 169 31
Two 141 59 200 0 107 93 171 29 171 29 179 21 110 90 161 39

Multiplicative Noise (TRAC = 200, M = MonteCarlo Trials, B = Bootstrap Trials)
Lower 154 46 200 0 128 72 189 11 180 20 187 13 139 61 177 26

1000 Upper 157 43 200 0 120 80 185 15 178 22 189 11 135 65 176 24
Two 153 47 200 0 125 75 181 19 175 25 181 19 137 63 175 25
Lower 159 41 200 0 121 79 175 25 172 28 185 15 130 70 174 26

10000 Upper 157 43 200 0 123 77 174 26 180 20 187 13 127 73 171 29
Two 154 46 200 0 118 82 171 29 187 13 188 12 124 76 169 31
Lower 147 53 200 0 107 93 171 29 175 25 181 19 111 89 168 32

50000 Upper 147 53 200 0 102 98 172 28 177 23 182 18 111 89 165 35
Two 145 55 200 0 106 94 169 31 171 29 179 21 114 86 161 39

presence of jitter/thermal noise alone has shown higher rejection. This is obvious that the

effect of thermal noise is reflected through the filter output, and at the VCO input, which

again adds up the jitter noise. As the VCO is considered to be very sensitive, even a slight

change to the input may cause substantial changes to its output. In some cases, the failure

to lock does not mean that the VCO is not oscillating but, the oscillation is either “ugly” or

delayed.

It is also obvious that the case of process variation only (columns 11-14) for additive/-

multiplicative noise have resulted in the same number of rejection. This is because, both

these cases have been simulated with the same process variation parameters. Also, both

the additive/multiplicative noise have an equal influence on the overall rejections. This

is because of the sensitive nature of the VCO, and even a millivolt drift in the input can

cause substantial changes to the oscillation. A shmoo plot representing the pass/fail based

on the lock-time is shown in Figure 4.11. For this circuit, the worst case run-time for

76

27.8e3 31.4e3 33.6e3
1e−7

4e−7

9e−7

Process Variation in Resistor (Ohms)

J
it
te

r
D

ev
ia

ti
o
n

(S
ec

)

PASS FAIL

Figure 4.11: Shmoo Plotting of PLL Results.

M/B = 50000 is around 7-8 hrs, which is substantially high compared to previous circuits.

4.4 Summary

This chapter presented a methodology for the statistical verification of noise and process

variation in an analog circuit. The approach is based on thermal and shot noise modeling

in additive and multiplicative form using SDEs, and then integrating the device variation

due to the 0.18μm fabrication process in an SDE based simulation framework for verifying

the statistical properties of the design. Our approach is illustrated on a Colpitts Oscillator,

Band-Gap Reference generator and a PLL based frequency synthesizer circuit.

The statistical run-time verification method involves repeated simulation and can con-

sume a lot of time and memory resources. The idea is to build a certain level of confidence

in the circuit by analyzing the results from a large sample. The total number of samples

depends on the values of M and B, and it is obvious that the higher those values are, the

higher will be the confidence. As 100% confidence cannot be achieved using the run-time

verification approach, it is necessary to complement them with other methods. Many en-

hancements can be made by combining run-time verification with formal methods to prove

77

properties of a given circuit.

So far in Chapters 3 and 4, we have established a quantitative based method for eval-

uating the analog circuit behavior with noise and process variation. By quantitative mea-

surement, we mean that the circuit is evaluated either for “one” simulation trace (assertion)

or multiple simulation traces (statistical). One of the key issues that remain unanswered

is the quality of the simulation results. At transistor level simulation, the circuit quality is

measured based on different criteria such as, SNR, NF and so on. But, if we look closely at

those results, both SNR and NF represent a measurable quantity that may vary for different

process conditions. However, the quality of a circuit can be determined by the quality of

the simulation trace(s) it generates. From a verification perspective, such a metric remains

to be a critical component, as it can determine if the simulation traces are “good”, “bad” or

“ugly”. In the current state-of-the art, the quality of the simulation trace(s) are determined

through visual inspection, which can be less productive and prone to human errors. Both,

assertion/statistical based methods do not address this issue. Therefore, we propose in the

next chapter a pattern matching based verification technique that could ensure not only the

correctness of the analog design, but also the quality of its simulation trace.

78

Chapter 5

Qualitative Estimation Using Pattern

Matching

From a functional verification perspective, the methods that have been discussed in Chap-

ters 3 and 4 present a quantitative way to measure the circuit behavior. Unfortunately,

assertion/statistical based verification approaches can sometimes exhibit violation that may

not be associated with real design failures. For instance, if the output trace of a non-ideal

circuit follow the trace of an ideal circuit for say 99.9% and violates for just 0.1% of the

simulation time due to false spike in the simulator, then assertion/statistical methods will

report a bug in the design. In such cases, the quantification methods fall short to enumer-

ate the method of failure for the circuit behavior appropriately. To determine the quality

of an analog circuit it is necessary to have methods that can estimate the overall quality

of the circuit based on the simulation trace(s). This chapter relies on the combination of

two pattern matching algorithms at a higher level of abstraction for the qualitative verifica-

tion of an analog circuit influenced by random jitter conditions. The first algorithm, is the

longest closest subsequence (LCSS), a variant of the longest common subsequence (LCS)

79

that is effective in estimating the percentage of matching between ideal and non-ideal cir-

cuit simulation traces influenced by noise and process variations. The second algorithm is

a modification of dynamic time warping (DTW) that is used to handle instabilities in the

simulation traces due to jitter conditions. The underlying idea of both these algorithm is

to find the subsequence simulation trace between a set of analog signal traces and then use

the combination of MonteCarlo and hypothesis testing to determine the probability of ac-

ceptance/rejection of those traces. The practical effectiveness of the proposed methodology

is displayed using a Colpitts oscillator and a Phase Locked Loop (PLL) based frequency

synthesizer circuit.

5.1 Introduction

Verification of analog designs is faced with immense challenges with the uncertainties due

to short-term frequency perturbation known as the jitter [59] and the effect due to noise and

process variations. The sources of jitter could be inherited from the circuit elements or from

unwanted interaction between different analog/digital blocks. The amplitude associated

with the jitter can be either bounded (deterministic jitter) or unbounded (random jitter)

with respect to time [61]. The quantification of jitter relies on the kind of measurement

used between the jittery and the ideal signal. Such enumeration is done with respect to the

phase, edge-to-edge or the period [61] of jittery signal. The phase jitter is the edge timing

difference between the ideal and the non-ideal signal. Period jitter is the difference between

the phase jitter of the current cycle and that of the previous one. Edge-to-edge, also known

as cycle-to-cycle jitter, is the two consecutive period deviation from the corresponding ideal

signal period. All three jitter metrics are interrelated, meaning, the cycle-to-cycle jitter

is considered to be the first difference function of period jitter and the second difference

function of the phase jitter [87].

80

The jitter model, the verification environment and the class of AMS circuit are key

components for evaluating the jitter. Due to its random nature, the first step in jitter mea-

surement is to characterize its behavior as a probabilistic function and the most prominent

approach is the use of a Gaussian distributed model [87]. This chapter addresses the above

issues, by ensuring the correctness of analog circuits in the presence of noise (jitter, thermal,

and shot) and process variations using the concept of pattern matching.

The pattern matching techniques are commonly applied to the characterization and

validation of high-speed analog and digital circuits. Quite often they are associated with the

study of crosstalk, coupling, delays in the data transmission lines [60] during the post-layout

and board-level signal integrity (SI) analysis. CAD tools for SI analysis (e.g., [65]) provide

a unique waveform comparison capability that can ensure a reliable high-speed data trans-

mission, achieved through interconnect characterization and lab measurements [18]. In the

current state-of-the-art, SI analysis can be performed only on the circuit-level simulation

traces and board-level design waveforms. In general, any SPICE based simulator can gen-

erate SI analysis models for an analog circuit which then could be ported to any standard

CAD tool to determine the quality of the simulation traces through waveform comparison.

Such a specific trace comparison method can assist the designers to examine the design

failures for validity.

To resolve the issue of false violation, the approach based on quantitative methods

has to be complemented with a more meaningful analysis of the circuit simulation trace. In

the current design/verification flow, the missing qualitative assessment of an AMS design

at a higher level of abstraction can be achieved by extending the pattern matching concepts

developed in SI analysis to the functional verification. As depicted in Figure 5.1, the verifi-

cation based on pattern matching will also help to address the question of “How to decide

on the acceptance/rejection of a circuit simulated with N different process conditions and

81

by N different designers?”

Ideal Design
Model

Designer 2

Designer 1

Time

V(t)
Design
Constraints

Analog Circuit
Simulation

Designer N

Figure 5.1: Analog Verification.

As most of the SI based waveform comparison algorithms are propriety to the tool

developers, the challenge is to develop an algorithm that is tailored towards the AMS ver-

ification. This chapter takes a look at two popular pattern matching algorithms that are

based on dynamic programming [36]. The underlying idea of these algorithms is to find the

subsequence simulation trace between a set of analog signal traces and combine hypothesis

testing to determine the probability of failures. Hypothesis testing [96] is the use of statis-

tics to determine the probability that a given hypothesis is true. The statistical property, is

expressed as a null hypothesis and in the end, a circuit is accepted/rejected with a certain

confidence level and error margin.

The Longest Common Subsequence (LCS) is a pattern matching algorithm that finds

its applications in computational biology, chip layout design, and so on [129]. In DNA

matching, the idea is to find the longest subsequence common to all sequences in a set

of sequences [36]. As opposed to the traditional approach of comparing the output of the

design to its specification value, we can extend the LCS algorithm to estimate in terms of

percentage the exact (100%) or “closely” matched simulated output relative to the ideal

circuit output. By doing so, instead of blindly rejecting the circuit that violates the spec-

ification, designers will have more information during the evaluation and hence can make

viable decisions.

82

The LCSS algorithm is efficient in finding the percentage of the closest match be-

tween a set of simulation trace that operates with the same time-period (frequency). Any

variation to the operating frequency between the ideal and the non-ideal signal (e.g., jitter)

will produce erroneous matching results. Alternatively, Dynamic Time Warping (DTW) [115]

is a pattern matching algorithm that finds its applications in audio, video, and graphics de-

signs to cope for different signal speeds. DTW is a method that finds an optimal path

between two given time series sequences. Similar to LCSS, the DTW algorithm can be

extended to measure the best possible closest match between the jittery output signal and

the specification. Therefore, it facilitates a unified approach for verifying jitter in an AMS

design. The main advantage of the pattern matching based approach is that the whole

verification process is independent of the circuit models and can be applied to perform a

qualitative assessment of any black-box design.

In analog designs, a “closely” matched relation can be defined in many different

ways. Let us consider V1 and V2 as the output sequences of an ideal and a non-ideal circuit,

respectively. First, we say that two output sequences of values V1 and V2 are similar if one

is a subsequence of the other [36]. Alternatively, another way to measure the similarity

between V1 and V2 is by finding a third longest sequence of values V3 that appear in each of

the sequences V1 and V2 [36]. In reality, it is difficult to find a one-to-one mapping between

V1 and V2 and hence, designers have to define an acceptable tolerance range for the output

as a part of the specification. Thereafter, the LCSS and DTW algorithms are defined to

quantify the simulated output relative to a specification template. In the next section of

this chapter we discuss details of the proposed methodology and its application to analog

circuits. For noise, the idea is to apply SDE to model design and integrate device variation

in a MATLAB simulation environment. The efficiency of LCSS algorithm is illustrated on a

Colpitts oscillator circuit to study the effect of noise and process conditions. The influence

83

of jitter noise on the “lock-time” property of a phase locked loop (PLL) based frequency

synthesizer is analyzed through DTW algorithm.

5.2 Proposed Methodology

Figure 5.2 shows the overall verification methodology based on pattern matching algorithm.

Given an analog design described as a system of ODEs, the idea is to generate SDEs that

describe the noise behavior. For the case of circuits that do not have a closed form solution,

the approach is to numerically approximate the SDE’s based on Euler-Maruyama technique

as described in the Chapter 2. For process variation, the different circuit parameters are

derived using Gaussian distribution as described in Algorithm 3.3. The SDE model, process

variation, and the environment constraints are evaluated using MonteCarlo simulation in a

MATLAB environment. We then generate a set of sequences, one considered to be the

sequence of an ideal circuit (without noise and process variation) and the rest to be of a

non-ideal circuit (with noise and process variation). These sequences along with the given

tolerance level (p) are evaluated using the LCSS and DTW algorithms in a MonteCarlo

simulation environment to decide on the probability of accepting or rejecting of the circuit

as shown in Figure 5.2. The decision to use LCSS or DTW is determined by evaluating the

frequency match between the ideal and non-ideal signals. If the frequency matches then the

LCSS algorithm is used, else the DTW algorithm as depicted in Figure 5.2.

In general, the relative error of MonteCarlo method can be monitored by the figure

of merit [25]. For example, 90% accuracy and 90% confidence level can be achieved when

figure of merit equals to 0.1. However, a trade-off exists between the number of trials and

the simulation run times [96].

84

Library

Parameters

Design

[Step−Size, V(0), I(0) etc...]

Model

Generation

Distribution

SDE Extraction

Normal, Poisson

Simulation Trace (1..M)

Initialization

Yes

Percentage of MatchingProbability of Accept/Reject

Confidence Interval

No

Simulation Trace (1..M)

Technology

Trace (1..M)

Simulation

Stochastic
Differential
Equation
(SDE)

Numerical
Approximation

Probability
Distribution

Probability
Distribution

Analog

Description
Circuit

Noise Type
(Thermal, Shot)

Dynamic Time Warping

Equation
(ODE)

Longest Closest Subsequence

Frequency
Match?

(LCSS)
Hypothesis Testing

(DTW)

Differential
Ordinary

Environment
MonteCarlo Simulation

MATLAB

Figure 5.2: Overview of Pattern Matching Verification Methodology

5.2.1 Longest Closest Subsequence (LCSS)

Given two sequences of analog circuit output values X = {X1, X2, . . . Xm} and Y =

{Y1, Y2, . . . Yn}, then ∃Z = {Z1, Z2, . . . Zk}, an increasing maximum-length common sub-

sequence, if Z is a subsequence of both X and Y . Here, we choose X to be the output

sequence of an ideal circuit and Y is the output of the non-ideal circuit. It can also be noted

that the length of k ≤ length of m/n. To extend the LCS theorem [36] for analog circuits,

we need to define a tolerance parameter p that describes the allowable boundary conditions

for the sequence Y with respect to X . The recursive solution will detect only the values

85

that are not in the region as defined by X − p and X + p. A large value of p means less

accuracy and vice-versa.

Property 1 Let X = {X1, X2, . . . Xn} and Y = {Y1, Y2, . . . Ym} be sequences, and let

Z = {Z1, Z2, . . . Zk} be any LCSS of X and Y . Then, for the given p,

(1) If Yn ≤ (Xm+p) and Yn ≥ (Xm-p), then Zk is an LCSS of Xm and Yn.

(2) If Xm �= Yn and Zk �= Xm, then Z is an LCSS of Xm−1 and Y .

(3) If Xm �= Yn and Zk �= Yn, then Z is an LCSS of X and Yn−1.

A brute-force method to compute LCSS(X,Y) involves computing all subsequences

of X , checking if they are subsequences of Y and be the longest. For a given sequence

(X and Y) of length m and n, respectively, we have 2m subsequences of X and it takes

O (n · 2m) to compute the LCSS. As we can see from Property 1, there are overlapping

subproblems in finding the LCSS of X and Yn−1 and Xm−1 and Y , hence, it is efficient

to implement the above property recursively with the computation time of O (m · n). The

recursive solution to the LCSS problem is based on finding an intermediate length C[i, j]

of LCSS(X ,Y), where i and j represent the ith and jth position of X and Y , respectively.

If either i = 0 or j = 0, one of the sequences has length zero, so the LCSS has length zero

as defined in Property 2.

Property 2 Require: i,j �= 0

C[i, j] =

⎧⎪⎨
⎪⎩

C[i − 1, j − 1] + 1; if Yj ∈ [Xi − p, Xi + p]

max{C[i, j − 1], C[i − 1, j]}; otherwise

To better understand the Properties 1 and 2, let us apply them to the Chua circuit [32]

shown in Figure 5.3. The behavior of chaos is caused by the non-linear resistance RL. If the

86

R

L C1 C2 RL

Vc2Vc1

Figure 5.3: Chua Circuit.

value of the non-active circuit components are chosen properly, instead of chaos, the circuit

will demonstrate a stable oscillation as shown in Figure 5.4 (a).

The dotted waveform (X) represents the simulation result of the circuit in the ab-

sence of noise, and the bold line represents the result in the presence of noise (Y) and

process variation for R, L, C1 and C2 with a distribution shown in Figures 5.4 (b) to (d).

For illustration purposes, we have taken four sample points and a tolerance level of p =

4% from the simulation results (Figure 5.4 (a)) to find the LCSS. The first step is to apply

the recursive solution to create a matrix table for the two sequences X and Y as shown in

Figure 5.5.

0 1 2 3
x 10−4

−0.4

−0.2

0

0.2

0.4

Time (sec)

V
c1

(t)

Voltage Across Capacitor C1

1400 1500 1600 1700 1800
0

100

200

300

400

R (Ohms)

D
en

si
ty

Resistance R Distribution

3 3.5 4 4.5 5 5.5 6
x 10−10

0

100

200

300

400

C1, C2 (F)

D
en

si
ty

Capacitance C1, C2 Distribution

0.8 0.9 1 1.1 1.2
x 10−3

0

100

200

300

400

L (H)

D
en

si
ty

Inductor L Distribution

(c) (d)

(a) (b)

Figure 5.4: Chua Simulation Result with Process Variation.

The implementation of the LCSS matrix table in Figure 5.5 is described in Algo-

rithm 5.1. First, we define an intermediate LCSS C[i, j] and initialize it to zeros (lines

87

3-8). If sequence Yj does match with Xi, then C[i, j] is computed by adding “1” to the

value in the position C[i − 1, j − 1] (lines 11-12) as shown by the entries “B”, “D” and

all the dotted arrows in Figure 5.5. If the sequence Yj does not match with Xi, then based

on the comparison (bold arrows in Figure 5.5) between C[i − 1, j] and C[i, j − 1] (line

14) we determine the corresponding value in table. For instance, if the computation of

maxC[i − 1, j], C[i − 1, j] (line 14) resulted in C[i − 1, j] > C[i − 1, j], then we make

C[i, j] = C[i− 1, j], if not C[i, j − 1] is marked by the entry “A” or “C” in Figure 5.5. The

algorithm continues until we reach the end of the sequence, and it returns the matrix table

C[i, j] (line 18).

Algorithm 5.1 : LCSS algorithm
Require: X, Y, p

1: m ← Length[X]
2: n ← Length[Y]
3: for i ← 0 to m do

4: C[i, 0] ← 0
5: end for

6: for j ← 0 to n do

7: C[0, j] ← 0
8: end for

9: for i ← 1 to m do

10: for j ← 1 to n do

11: if (Yj ≤ (Xi + p)) &&(Yj ≥ (Xi -p)) then

12: C[i, j] ← C[i − 1, j − 1] + 1
13: else

14: C[i, j] ← max{C[i − 1, j], C[i, j − 1]}
15: end if

16: end for

17: end for

18: return C

Now, using the matrix table C[i, j] we can trace back the path to determine the longest

closest sequence between the two analog output sequences. The elements of the LCSS are

encountered in reverse order by this method as described in Algorithm 5.2, which performs

an inverse operation of Algorithm 5.1 to determine the values associated with the index.

88

0.241 0.243 0.245 0.247

0.259

0.257

0.253

0.249

Vc1(t) (Dotted Line)

V
c1

(t)
 (B

ol
d

Li
ne

)

0

0

0

1

0

0

0

1

0

0

1

1

0

0

1

2

0

0

0

1

0

0

0

1

0

0

1

1

0

0

1

20

0

0

0

0 0 0 0

Virtual Zero

Virtual Zero

B

D

C

A

Figure 5.5: LCSS Table of Computation.

The starting point is C[m,n] and each row and column are parsed until C[i, j] changes to

a new value (lines 7-12). By doing so, we are in a position to detect the index of matched

values (or its deleted ones) (line 13). In the case of the Chua circuit for the given tolerance

level, we found only two closely matching values of Y with X for the chosen four sequence

points as shown by the circled points in Figure 5.6.

0.241 0.243 0.245 0.247

0.259

0.257

0.253

0.249

Vc1(t) (Dotted Line)

V
c1

(t)
 (B

ol
d

Li
ne

)

0

0

0

1

0

0

0

1

0

0

1

1

0

0

1

2

0

0

0

1

0

0

0

1

0

0

1

1

0

0

1

2

Tracing Path

Figure 5.6: Tracing LCSS for the Chua Circuit

5.2.2 Dynamic Time Warping (DTW)

Dynamic time warping (DTW) is an algorithm developed by the speech recognition com-

munity to handle the matching of non-linearly expanded or contracted signals [118]. The

algorithm finds the optimal path through a matrix of points representing possible time align-

ments between the signals. The optimal alignment can be efficiently calculated via dynamic

programming.

89

Algorithm 5.2 Traceback Algorithm
Require: C

1: lig ← n + 1
2: col ← m + 1
3: index ← []
4: num ← C[lig, col]
5: if num �= 0 then

6: while (lig >= 2) && (col >= 2) && num > 0 do

7: while (C[lig, col − 1] >= num) && C[lig, col − 1] >= C[lig − 1, col] do

8: col ← col − 1
9: end while

10: while (C[lig − 1, col] >= num) && C[lig, col − 1] <= C[lig − 1, col] do

11: lig ← lig − 1
12: end while

13: index ← [col − 1, index]
14: num ← num − 1
15: lig ← lig − 1
16: col ← col − 1
17: end while

18: else

19: print ” There is no matching ”
20: end if

21: return index

Property 3 Given any two sequences x = {x1, x2, . . . xm} and y = {y1, y2, . . . yn}, then

the distance of the best possible partial path is defined as,

D(i, j) = d(xi, yj) + min

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

D(i, j − 1)

D(i − 1, j)

D(i − 1, j − 1)

(5.1)

where, 1 ≤ i ≤ m; 1 ≤ j ≤ n. d(x, y) is a distance between the signals.

To better understand the algorithm, let us apply it to the following traces shown in the

Figure 5.7.

The dotted waveform represents the jitter signal (Y) and the bold trace is the ideal

signal (X). We have the following values for X and Y,

X = [00000111110000011111]

Y = [00000111100000111111]

90

0 100 200 300 400 500 600 700 800 900
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time (ns)

A
m

p
li
tu

d
e

(V
o
lt
s)

tn Tn Tn+1 Tn+2

Δtn

Figure 5.7: Dynamic Time Warping Example

The first step is to determine a “m by n” matrix table that represents the best possible

distance between X and Y as shown in Table 5.1.

Table 5.1: Dynamic Time Warping Matrix

D[i, j] 1 2 3 4 5 6 7 8 · · ·· 21
1 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ · · ·· ∞
2 ∞ 0 0 0 0 0 1 2 · · ·· 10
3 ∞ 0 0 0 0 0 0 1 · · ·· 10
4 ∞ 0 0 0 0 0 0 0 · · ·· 10
5 ∞ 0 0 0 0 0 0 0 · · ·· 10
6 ∞ 0 0 0 0 0 0 0 · · ·· 10
7 ∞ 1 1 1 1 1 0 0 · · ·· 4
· · ·· · · ·· · · ·· · · ·· · · ·· · · ·· 6
· · ·· · · ·· · · ·· · · ·· · · ·· · · ·· 6
16 · · ·· · · ·· · · ·· 0 1 · · ·· 6
· · ·· · · ·· · · ·· · · ·· · · ·· · · ·· 6
21 ∞ 10 10 10 10 10 10 5 · · ·· 0

The importance of this table is to understand the contraction and expansion of the two

simulation traces. By contraction, we mean the jitter signal period is shifted to the left of

the ideal signal and expansion represents the right shift of the jittery signal with respect to

the ideal signal.

The implementation of the matrix table is described in Algorithm 5.3. The algorithm

starts by reading the two sequences X and Y. The entries in the matrix table are generated as

91

follows: First, we define a matrix D that fills the first row and column with ∞ and D(0, 0)

with 0 (lines 3-9). Then, it takes the minimum between D(i− 1, j − 1), D(i, j − 1), D(i−
1, j), and adds to it the cost which is the distance between xi and yj (lines 10-15). Here i

and j represent the indexes of the sequences X and Y, respectively. The algorithm continues

until we reach the end of the sequence, and it returns the matrix table D for determining the

optimal path and allows us to have the minimum cost alignment D(n,m).

Algorithm 5.3 : DTW Algorithm
Require: x, y

1: n ← length(x)
2: m ← length(y)
3: for i ← 1 to m do

4: D(0, i) ← inf
5: end for

6: for j ← 1 to n do

7: D(j, 0) ← inf
8: end for

9: D(0, 0) ← 0
10: for i ← 1 to m do

11: for j ← 1 to n do

12: cost ← d(x(i) − y(j))
13: D(i, j) ← cost + min(D(i − 1, j − 1), D(i, j − 1), D(i − 1, j))
14: end for

15: end for

16: return D

Once, the matrix table is generated it is necessary to trace back the path to detect

those values that represent the contraction and expansion. Algorithm 5.4 describes the way

the trace-back is done. A visual representation of the DTW results with contraction and

expansion is shown in Figure 5.8, with the jittery/ideal signal in X and Y-axis, respectively.

The algorithm detects the contraction (vertical line) or expansion (horizontal line) of

the output signal. The result is skew from the diagonal which is the ideal output without any

jitter noise. A good path is unlikely to wander very far from the diagonal. When there is no

92

Signal with Jitter (Y)

Id
ea

l
S
ig

n
a
l
(X

)

100 200 300 400 500 600 700 800

100

200

300

400

500

600

700

800

Expansion

Contraction

Figure 5.8: Dynamic Time Warping Results

timing difference between these patterns, the warping function coincides with the diagonal

line j = i. It deviates further from the diagonal line as the timing difference grows. The

closer the two lines are, the better the cost function. From a verification point of view, this

means that the jitter does not have any effect on the simulation trace.

Algorithm 5.4 takes the matrix D as an input. It starts from the end D(n,m) (line 2-3)

and calculates the points that contributed for the minimum cost function. For instance, if

the minimum is at D(i-1,j-1) (line 7), then the algorithm will subtract diagonally -1 from

both i and j (line 8-9), else, it will just subtract -1 from i or from j (line 10-13). The

values associated in the i th and j th positions are then regrouped (stored) in p and q vectors,

respectively (line 17-18). The algorithm returns p, q values that constitute the minimum

path.

5.2.3 Hypothesis Testing

For a given analog circuit, every output simulation trace is considered to be a random vari-

able X. As defined in Chapter 2, for a specified confidence level, a two-tailed test can be

applied to decide on the acceptance/rejection of the circuit. The detailed procedure for

bounded hypothesis testing is illustrated in Algorithm 5.5.

93

Algorithm 5.4 : Trace-Back Algorithm
Require: D

1: [n,m] ← size(D)
2: i ← n
3: j ← m
4: p ← i
5: q ← j
6: while i > 1 && j > 1 do

7: if min(D(i − 1, j − 1), D(i, j − 1), D(i − 1, j)) = D(i − 1, j − 1) then

8: i ← i − 1
9: j ← j − 1

10: else if min(D(i − 1, j − 1), D(i, j − 1), D(i − 1, j)) = D(i − 1, j) then

11: i ← i − 1
12: else if min(D(i − 1, j − 1), D(i, j − 1), D(i − 1, j)) = D(i, j − 1) then

13: j ← j − 1
14: else

15: “Exit′′

16: end if

17: p = [i, p]
18: q = [j, q]
19: end while

20: return p, q

The first step is to determine the kind of distribution associated with the output simu-

lation trace. It is quite natural to assume a normal distribution for the outputs, however, the

variation due to technology and mismatch may sometimes lead to other distributions. Lines

(1-19) take into account different distributions and in turn deduce the cumulative distribu-

tion function (CDF (x)). This is followed by the search for “lower” and “upper” bounds of

the critical value that satisfy Equation (2.45) (lines 20-27). Both the “lower” and “upper”

bounds define the acceptance region (where H0 is accepted) for every random variable X.

94

Algorithm 5.5 : Hypothesis Testing (Two-Tailed Test)
Require: Distribution, Parameters

1: if (Distribution = LogNormal) then

2: σ ← Parameters(1)
3: μ ← Parameters(2)
4: γ ← Parameters(3)

5: CDF (x) ← Φ
(

ln(x−γ)−μ
σ

)
6: else

7: if (Distribution = Normal) then

8: σ ← Parameters(1)
9: μ ← Parameters(2)

10: CDF (x) ← Φ
(

x−μ
σ

)
11: else

12: if (Distribution = Weibull) then

13: α ← Parameters(1)
14: β ← Parameters(2)
15: γ ← Parameters(3)

16: CDF (x) ← 1 − exp
(
−

(
x−γ

β

)α)
17: end if

18: end if

19: end if

20: lower ← Initial V alue Low
21: while CDF (Lower) ≤ 0.05 do

22: lower ← lower + Step
23: end while

24: upper ← Initial V alue Up
25: while CDF (Upper) ≤ 0.95 do

26: upper ← upper + Step
27: end while

28: return lower, upper

95

5.3 Applications

The efficiency of the proposed methodology is illustrated on a Colpitts and a PLL based

frequency synthesizer circuits. LCSS is used to evaluate the Colpitts oscillator circuit in-

fluenced by noise and process variation. The effect of jitter is analyzed through the DTW

algorithm. We have used the MATLAB simulation environment (Windows Vista, AMD

Dual-Core, 4GB RAM) for a 0.18μm process [1] conditions. We have also applied the pro-

posed methodology to a transistor level Rambus [67] Ring Oscillator circuit for the 90nm

technology. The results can be found in [104].

5.3.1 Colpitts Oscillator Circuit

The circuit diagram for a MOS transistor based Colpitts oscillator is shown in Figure 3.9.

For the correct choice of component values the circuit will oscillate due to the bias current

and negative resistance of the passive tank. The frequency of oscillation is determined by

L, C1 and C2.

Finding the Longest Closest Subsequence

The first step in finding the LCSS, is to generate two sets of sequences (ideal and non-ideal)

for different cases as shown in Figure 5.9. For such simulation results, the property of

interest is: “Whether or not for the given set of parameters, the inductor current is within a

certain bound?”

Figures 5.9 (a) to (d) show the simulation results for the Colpitt’s oscillator under

both ideal and non-ideal conditions. Figure 5.9 (a) shows the results in the absence of noise

and process variation, which will be considered as an ideal output. From the Figures 5.9

(b) to (d), we note that, for the total simulation time of 1.0 × 10−6, we come across some

increase in amplitude for the circuit influenced by noise and process variation at certain

96

0 0.2 0.4 0.6 0.8 1
x 10−6

−2

−1

0

1

2

3
x 10−3

Time (sec)

I L (t
)(

A
m

ps
)

IL(t)− No Noise and Process Variation

0 0.2 0.4 0.6 0.8 1
x 10−6

−4

−2

0

2

4
x 10−3

Time (sec)

I L (t
)(

A
m

ps
)

IL(t) − Process Variation Only

0 0.2 0.4 0.6 0.8 1
x 10−6

−2

−1

0

1

2

3
x 10−3

Time (sec)

I L (t
)(

A
m

ps
)

IL (t) − Noise Only

0 0.2 0.4 0.6 0.8 1
x 10−6

−4

−2

0

2

4
x 10−3

Time (sec)

I L (t
)(

A
m

ps
)

IL(t) − Noise and Process Variation

(a) (b)

(d)(c)

Figure 5.9: Colpitt’s Simulation Results

simulation points. This is because, the variation in device parameter and additive noise

in the current equation has caused an increase in the inductive current thereby creating a

non-uniform output. The question now is: “Do we have to reject those circuits entirely?”

To assist the designer in making a better decision, we can determine for different tolerance

levels, the LCSS for different conditions using the technique described in Section 5.2.1. All

together, we have one ideal and seven different Colpitts oscillator circuit implementations.

For each of the seven different circuits, we compare the sequence with the ideal sequence

in order to generate the LCSS as summarized in the top half of Table 5.2.

The experiments were conducted for different tolerance levels and for a sequence

length of 1000 between the two outputs and for three different process conditions (slow, nominal

and fast). From Table 5.2, we see that when we consider the effect of noise only (column

2), based on the tolerance level, we find a smaller number of closely matched sequences.

This is because, the additive Wiener process in the SDE model makes the inductor current

to deviate from its specified value, thereby creating discrepancies between the ideal circuit

97

Table 5.2: Longest Closest Subsequence Computation Results.

MonteCarlo Trials M= 1000, P.V = Process Variation

Tolerance With Noise Only With P.V Only With Noise & P.V

(%) No. of LCSS No. of Slow LCSS No. of Nominal LCSS No. of Fast LCSS No. of Slow LCSS No. of Nominal LCSS No. of Fast LCSS

0.1 472 237 1000 2 235 440 2
0.5 585 341 1000 6 334 559 8
1.0 603 345 1000 12 338 573 16
2.0 640 349 1000 22 342 603 31
5.0 801 366 1000 53 358 705 71
8.0 948 373 1000 82 373 866 107
10.0 971 374 1000 100 385 976 129
12.0 973 375 1000 118 396 978 149
15.0 976 377 1000 144 397 980 182

No. of LCSS Computation for Different Monte Carlo Trials for Tolerance = 10%.

Monte Carlo With Noise Only With P.V Only With Noise & P.V

Trials No. of LCSS No. of Slow LCSS No. of Nominal LCSS No. of Fast LCSS No. of Slow LCSS No. of Nominal LCSS No. of Fast LCSS

10000 901 393 916 141 394 1000 121
25000 1000 411 845 147 399 979 139
50000 875 471 831 133 443 991 153

100000 893 479 971 119 471 963 155

and the noisy circuit. A tolerance level of 0.1% means that the output sequence of the

non-ideal circuit is within ±0.1% range of the ideal circuit output. It is also evident from

columns 3-5, that the analysis with parameter variation due to 0.18μm shows little effect

for the nominal process and adverse effect for the fast process corner. This is because ±3σ

parameter variation is large enough to create discrepancy on the inductor current. In con-

trast, in columns 6-8 of Table 5.2, it is evident that the effect of noise and process variation

have led to minimum number of matches between the two sequences.

0 100 200 300 400 500 600 700 800 900 1000
0.005
0.01

0.05

0.1

0.25

0.5

0.75

0.9

0.95

0.99
0.995

Data

P
ro

ba
bi

lit
y

<50% of Sequence Match

> 90% of Sequence Match

50 to 75% of Sequence Match

Figure 5.10: Cumulative Distributive Function for Table 5.2.

98

The best way to describe the results shown in Table 5.2 is through probability plot as

shown in Figure 5.10. Depending upon the type of simulation results, a lower probability of

sequence match means lower tolerance level and vice-versa. For instance, in the noise only

case (column 2), we can achieve a high level of sequence matching for a high tolerance

level. However, for process variation cases, if we consider an acceptable tolerance level

(say 10%), then we move into higher probability range for the nominal corners, but will

have minimum matching depending on the process corners.

We carried out the analysis for different MonteCarlo trials for a tolerance level of 10%

and the results are summarized in the bottom half of Table 5.2. As seen, it is apparent that

with a large number of MonteCarlo trials, we have the leverage to work on a larger group

of samples and the variation on the length of the sequences tends to change considerably

when compared to the previous results.

The results for the MonteCarlo trials are plotted as normal distribution curve as shown

in Figure 5.11. The combined MonteCarlo and LCSS analysis can be different for tolerance

confidence levels and the accuracy would be compromised if the tolerance level is too high

or the number of trials being too low. Higher tolerance levels would increase the error

margin and degrade the reliability.

5.3.2 PLL based Frequency Synthesizer

Lots of progress has been made in estimating the effect of jitter for an analog design in

phase/voltage domains. For instance, for a PLL design, researchers achieve a good fit

between the measured and the extracted values by advocating the use of gaussian dis-

tributed jitter models that are simulated at higher level of abstraction using the phase do-

main method [39]. Taking a step further, the author in [76] used the ideas of [39] to develop

a methodology for commercial purposes by integrating Verilog-A based jitter model with

99

0 100 200 300 400 500 600 700 800 900 1000

0.05

0.1

0.25

0.5

0.75

0.9

0.95

Data

P
ro

ba
bi

lit
y

<50% of Sequence Match

> 90% of Sequence Match

50 to 75% of Sequence Match

Figure 5.11: Probability Plot for Table 5.2.

Spectre [77]. As this involves behavioral simulation, it lays a strong foundation for a system

level verification of analog/mixed-signal designs.

A similar phase-domain approach reported in [111] calculates the overall jitter noise

power of a ΔΣ modulator based frequency synthesizer as a function of the bandwidth.

However, with the need for accurate sampling associated with the modulator, the overall

system dynamic response appears to be very slow. A different phase domain technique

proposed in [99] makes use of non-linear equations for the phase error that are solved to

detect random unsteadiness that characterize the timing jitter. Another methodology based

on voltage domain models reported in [76] allows the designer to formulate the jitter noise

in terms of voltages that are then added to the circuit. The use of a voltage-domain method

in a Verilog-A environment has been campaigned by the authors in [94], wherein, the jitter

properties of the synthesizer are extracted from transistor level through simulation. Un-

fortunately, simulation based verification approaches remain rigid to that particular analog

design and taking an unified approach require colossal changes to the methodology and

hence, is impractically expensive.

100

Figure 3.12 shows a PLL based frequency synthesizer that is commonly used in com-

munication systems for clock generation and recovery. It is composed of two comparators,

a phase/frequency detector, a charge pump, an analog filter, a voltage controlled oscillator

(VCO) and a divider.

We incorporate in a MATLAB simulation environment the SRE based models [10]

for the VCO with jitter and for the other blocks of the PLL design. We have applied the

DTW algorithm in two ways: First, to study the effect of jitter on the “lock-time” property,

and second, to estimate the optimal cost alignment by combining MonteCarlo simulation

for “1000” trials with the bounded hypothesis testing.

Lock-Time Property Observation:

The critical property of a frequency synthesizer is the “lock-time”, meaning, if the Freq Sel

is activated, the PLL will lock at the desired frequency within a certain time as identified

in the specification. However, the jitter in the VCO circuit may cause a drift in its output

that may lead to changes to the lock-time. The lock-time is an isolated property for all PLL

based frequency synthesizers, i.e., once the PLL gets locked, the VCO will start oscillating

until there is a change to the Freq Sel signal. The conventional method [76] of verifying

the “lock time” property is to check if the output of the low-pass filter has reached a new

DC value within the lock time. Unlike such an approach that is dependent on the design

under test, the proposed DTW method allows designers to work on the VCO simulation

trace directly by finding the lock time and the minimum cost function associated with it.

Finding the Optimal Cost Function

The first step in finding the optimal cost, is to simulate the design and generate two sets of

sequences as shown in Figure 5.12. The dotted/bold line represents the ideal/jitter signal,

respectively. This is followed by generating the spectrogram of those two VCO signals as

shown in Figure 5.13 because the total simulation trace of the VCO output has more than

101

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x 10−5

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time (Sec)

V
C

O
_O

ut
 (V

ol
ts

)
Figure 5.12: VCO Output

one million samples. This spectrogram of the VCO output with jitter will be compared with

the spectrogram of the ideal output signal which has a constant frequency (horizontal line).

We then apply the DTW algorithm to determine the minimum cost alignment between the

two outputs. If the observed cost is very big with respect to the cost of the ideal output,

it can be concluded that there is large deviation in the signal frequency compared with the

ideal one.

Time (Sec)

Fr
eq

ue
nc

y
(H

z)

0.5 1 1.5 2
x 10−3

4

5

6

7

8

9

10
x 106

Figure 5.13: VCO Output Spectrogram

The lock time can now be determined by looking at the time when the minimum

path calculated by the DTW algorithm crosses the diagonal as shown in Figure 5.14. This

information is stored in the matrix D(m,n) and can be mapped directly to the corresponding

time in the simulation trace. The novelty of such an approach lies in the fact that the

DTW algorithm will not only classify outputs based on the frequency quality but can also

102

determine the value of the lock time. In this case, the lock time was determined to be 1.0944

ms.

VCO Signal Output with Jitter

Id
ea

l S
ig

na
l

50 100 150 200 250 300

50

100

150

200

250

300

Lock Time

Figure 5.14: VCO Output Warped using DTW

Decision Based on Hypothesis Testing

Since the jitter is considered to be a random noise that has Gaussian distribution, we have

performed MonteCarlo simulation for “1000” trials to evaluate the cost and then used hy-

pothesis testing to reason about the results. For this kind of verification, one would be

interested to know “Whether for the given confidence level α, and M MonteCarlo trials,

what is the region of acceptance and rejection of the circuit?”

Table 5.3: DTW and Hypothesis Tesing Results for the PLL

J
Jitter Effect Minimum Alignment Cost Lock Time

Mean Variance Acceptance Region Mean Variance Acceptance Region (ms)

1e-13 -2.73e-7 8.12e-5 [-1.338e-4 - 1.333e-4] 153.190 0.00544 [153.181 - 153.199] 1.0944
1e-12 -1.0032e-5 8.0281e-4 [0.00131 - -0.00133] 153.197 0.00748 [153.185 - 153.209] 1.0944
1e-11 -3.1265e-5 0.0081 [-0.01332 - 0.01326] 153.194 0.01492 [153.169 - 153.218] 1.0944
1e-10 -6.6129e-4 0.0810 [-0.13396 - 0.13264] 153.122 0.14995 [152.875 - 153.369] 1.0944
5e-10 0.0015 0.4081 [-0.6697 - 0.6728] 152.930 0.65085 [151.860 - 154.001] 1.0944
7e-10 -0.0044 0.5694 [-0.9410 - 0.9322] 153.059 0.99108 [151.429 - 154.689] 1.0944
9e-10 0.0068 0.7304 [-1.1946 - 1.2082] 153.443 1.16306 [151.529 - 155.355] 1.0944
1e-9 -0.0015 0.8215 [-1.3528 - 1.3497] 153.691 1.33621 [151.492 - 155.888] 1.2096
2e-9 -0.0035 1.6325 [-2.6887 - 2.6817] 158.179 2.36523 [154.288 - 162.069] 1.7472
3e-9 -0.01598 2.4520 [-4.0493 - 4.0174] 166.015 3.26501 [160.644 - 171.385] —
5e-9 -0.01079 4.1609 [-6.8549 - 6.8333] 185.937 3.69045 [179.867 - 192.007] —

As a part of the specification, designers have to specify the confidence interval and

103

the cost. This cost will be checked if it is in the acceptance region of tolerance of the jittery

signal with respect to the ideal signal. Table 5.3 summarizes the results for different jitter

“J” deviations. The table is derived by taking into account the jitter factor that represents the

effect of jitter on the phase of the VCO output signal and are plotted as a normal probability

function as shown in Figure 5.15.

The results show that the minimum cost is also following a normal distribution like

the jitter noise in the V CO with different means and different deviations. When comparing

Table 5.3 with the plot, we see that unlike the jitter “J” that has a zero mean, the mean of

the jitter factor is small with an increasing variance. Also, the minimum cost alignment

increases linearly when the jitter noise increases in terms of mean and variance.

150 152 154 156 158 160
0

10

20

30

40

50

60

70

80

90

 Minimum Cost Alignment

D
en

si
ty

 F
un

ct
io

n

−4 −2 0 2 4
0

100

200

300

400

500

600

700

Jitter Effect

D
en

si
ty

 F
un

ct
io

n

Figure 5.15: Influence of the Jitter on the Cost

We also see that when “J” is large, the PLL fails to lock as represented by the “dashed

entry” in Table 5.3. The spectrogram in such a case will show the minimum path failing to

cross the diagonal line. We use hypothesis testing to find the acceptance region for each “J”

as shown in Table 5.3.

104

5.4 Summary

This chapter presented a pattern matching to account for thermal, shot, jitter noise, and

process variation in an analog circuit. For noise, the idea is to apply SDE to model design

and integrate device variation in a MATLAB simulation environment. The effect of noise

and manufacturing constraints are analyzed by performing a statistical method by combin-

ing MonteCarlo simulation with two pattern matching algorithms (LCSS and DTW) and

hypothesis testing to determine the probability of acceptance/rejection of the simulation

traces. The efficiency of LCSS algorithm is illustrated on a Colpitts oscillator circuit to

study the effect of noise and process conditions. The influence of jitter noise on the “lock-

time” property of a PLL based frequency synthesizer is analyzed through DTW algorithm.

The conventional verification method may require major changes to the test-bench

structure during scaling of analog designs, and still cannot answer the question: “How do

we choose the test set?” or “Can we retain the same test points?” This is because, the

test points are chosen in such a way that it represents the limit of operation of the design

which of course may or may not change when the designs are scaled. However, DTW

based techniques work on the simulation trace in polynomial time and hence it will be

well suited for verifying “black-box” analog/mixed-signal (AMS) designs. Also, the use

of spectrogram has provided an alternative solution to the memory usage problem faced by

AMS design verification. The statistical environment provides designers with additional

information about the acceptance region, thereby allowing them to make better decisions.

105

Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis, we have proposed modeling and verification approach of analog and mixed

signal circuits with noise and process variation. The approach allows us to study some of

the effects in a traditional analog design flow at the system level. The main idea is to use

stochastic differential equation (SDE) to model thermal and shot noise and then integrate

process variation in a MATLAB simulation environment. As the industrial verification en-

vironment relies on simulation, we believe that the methodology presented in this thesis can

be quite useful for the performance evaluation of analog circuit for architecture exploration.

Towards the development of a successful SDE based noise analysis, the thesis mainly

contributes in three directions.

1. Firstly, it presents a framework that allow us to model and verify the deterministic

property in the presence of shot noise, thermal noise, and process variations. The

idea is to use stochastic differential equations (SDE) to model noise in additive and

multiplicative form and then combine process variation in a runtime verification en-

vironment. The practical effectiveness of the proposed framework is compared for

106

Colpitts oscillator, Tunnel Diode oscillator and a Phase Locked Loop (PLL) based

frequency synthesizer circuit. We have shown that the properties that are satisfied

without noise have failed in the presence of noise and process variation, thereby mak-

ing the method efficient in finding bugs.

2. Secondly, a framework is presented to model and verify the statistical property of

an analog designs in the presence of shot noise, thermal noise, and process varia-

tions. The idea is to use SDEs to model noise in additive and multiplicative form and

then combine process variation in a statistical runtime verification environment. Sta-

tistical run-time verification combines hypothesis testing and MonteCarlo/Bootstrap

simulation for monitoring the statistical behavior in an analog circuit. To illustrate

the practical effectiveness of the proposed framework, the efficiency of MonteCarlo

and Bootstrap statistical techniques are compared for Colpitts oscillator, Band-Gap

reference generator and a PLL based frequency synthesizer circuit.

3. Thirdly, the thesis presents a methodology that relies on two different pattern match-

ing algorithms for the qualitative estimation of analog circuits with noise and process

variation. The first algorithm, is the longest closest subsequence (LCSS), a variant

of the longest common subsequence (LCS) that is effective in estimating the percent-

age of matching between an ideal and non-ideal circuit simulation traces influenced

by noise and process variations. The second algorithm is a modification of dynamic

time warping (DTW) that is used to handle instabilities in the simulation traces due

to jitter conditions. The underlying idea of both these algorithm is to find the sub-

sequence simulation trace between a set of analog/mixed-signal traces and then use

the combination of MonteCarlo and hypothesis testing to determine the probability

of acceptance/rejection of those traces.

107

The successful handling of these diverse simulation methodologies clearly demon-

strates its feasibility for real-world industrial designs. We believe that the foundation set in

the thesis is the first step towards analyzing noise and process variation at a higher level of

abstraction. The main limitation of the proposed approach is that the models used for ana-

log circuits are primitive with a trade-off in accuracy. To overcome this, we may need to use

complex models for circuit elements. In addition, the simulation based methods are deemed

inaccurate for safety critical applications. Because of this, the proposed approach should be

complemented with formal techniques such as theorem proving and model checking, which

can prove to be very useful when precision of the results is of prime importance.

6.2 Future Work

The results presented in this thesis open new avenues in using SDE based methodology

for the verification of AMS designs. Building on our results, more features can be added

to strengthen the capabilities of the methodology to handle complex designs. Some of the

future extensions are outlined below.

1. The simulation at the circuit level using SPICE incorporates complex models that

are considered highly accurate. These standard compact models (BSIM3v3, Philips

LEVEL9 or EKV) allow many nanotechnology process variation on device parame-

ters. Some of the parameters such as, the variation in oxide thickness (tox), threshold

voltage (Vt), aging may considerably affect the performance of AMS designs. In or-

der to have a robust design, it is necessary that the verification environment is mature

enough to handle such complex issues. Hence, it is necessary to look into developing

models that could be integrated with the verification methodology presented in this

thesis.

108

2. Extraction of the SDE equations from the spice netlist descriptions is an area that

needs to be explored. We have tools that can extract ODEs from the spice netlist, and

we need to investigate how that could be extended for SDE extraction automatically.

In addition, developing higher order numerical approximation in the form of Taylor

series has to be explored.

3. The formalization and verification of AMS design is an interesting direction. The

theories and infrastructure developed in the context of higher-order logic (HOL) [75]

have used random variables to verify the statistical properties of probabilistic sys-

tems [108]. Due to the stochastic nature of noise, it would be intriguing to use HOL

to develop an infrastructure for noise. Formal approaches such as model checking

have theories associated with discrete and continuous Markov Chains [62]. As SDEs

are considered to be a Markov process, a research direction to use reachability anal-

ysis has to be explored.

4. Both the quantitative and qualitative approaches can be extended to accommodate

evidential reasoning methods such as Multi-Value Attribute Theory [19] or Hierar-

chical Analysis [51]. These methods would help us to extract a rank from a pool of

simulation results, on the basis of the qualitative/quantitative impact of the results.

109

Appendix A

AnalogSDE: A Verification Tool for

Analog Circuits

As a part of the thesis, we have developed a tool for automatic verification of analog design

with noise and process variation. The following are the features of the proposed tool:

1. Support automatic generation of thermal, shot noise in “additive” and “multiplica-

tive” forms.

2. Probability Distribution for Circuit Parameters to study the effect of process varia-

tions

3. Run-Time Verification for Online Monitoring Noise

(a) Assertion Based Verification

(b) Statistical Based Verification

i. MonteCarlo Based Hypothesis Testing

ii. Bootstrap Based Hypothesis Testing

4. Formal Verification Using MetiTarski

110

Figure A.1 shows the tool framework that integrates formal and semi-formal verifi-

cation in the MATLAB environment.

Specification

MetiTarski

SDE Numerical Model SDE Numerical ModelDesign Parameters

Normal Distribution − Thermal Noise
Poisson Distribution − Shot Noise

SDE Extraction

Model

Generation

SDE_Model

Parameters

[Step−Size, V(0), I(0) etc...]

Design Parameters

Property is True Property is False

Initialization

Property

Technology
Library Statistical

Stochastic

Equation

Equation
Differential

Analog

(SDE)

Circuit
Description

Monitor Interface

MATLAB Tool Interface

SDE Simulator

Monitor
Deterministic Numerical

Monitor

Noise Type

Model N

Probability

(Thermal, Shot)
Probability

Distribution

Numerical

Distribution

Other

Model 1

Solver
Solvers

Ordinary

Interface

(ODE)

Differential

Figure A.1: Overview of the Noise Analysis and Verification Framework

Thereafter, given an analog design described as a system of ODEs, the idea is to

include a stochastic process that describes the noise behavior. Since there are no functions

that can automatically incorporate stochastic processes, we manually generate the SDEs.

Depending on the type of process and technology library, various design parameters in the

circuit are calculated using different probability distributions. We have used 0.18μm CMOS

technology to evaluate the tool for different benchmark circuits.

The SDE simulator is a MATLAB decision procedure for simulating the design. The

input to the SDE simulator is the SDE numerical model, design parameters and the property

to be monitored. The design parameters may include the amplitude of the noise, initial

conditions of the circuit current and voltages, step size, and simulation cycle. The property

111

of interest could be monitored using deterministic or statistical monitors, based on user

selection at the SDE simulator level. All communications to the monitors occur through

the monitor interface, which is a decision procedure that controls the monitor selection and

data paths.

The deterministic monitors are based on finite-state machine and is implemented as

a simple assertions. The details of which can be found in Chapter 3. In contrast, the sta-

tistical monitors combines hypothesis testing procedures and different statistical technique

(MonteCarlo and Bootstrap) to verify the statistical property of the design. Please refer to

Chapter 4 for more details. In general, for any given simulation run, the user can generate

various simulation and histogram plots to monitor the property of interest.

On the formal verification side, we integrate external solvers such as automated the-

orem prover (MetiTarski) into the simulation environment. The idea is to formally verify

the numerical model for every simulation step size by calling the external solver through

the solver interface. The SDE simulator engine passes the required parameters (simulation

time, step-size, design parameters, etc.) to MetiTarski. For MetiTarski, the properties of

interest is described as inequalities over special functions. If MetiTarski is successful, it

delivers a proof and we are done. If unsuccessful, it will run until terminated by the timer

in the SDE simulator. At this point, the SDE simulator has to decide if the property could

be verified using other solvers or to report a bug.

We have applied the tool framework on several benchmark circuits such as Schmitt

trigger, Colpitts and Tunnel Diode oscillators and the results are presented in Chapters 3

and 4.

Figure A.2 shows the corresponding class diagram of the AnalogSDE tool frame-

work.

112

Figure A.2: Class Diagram for AnalogSDE Tool Framework.

The classes are developed using MATLAB based object-oriented programming [123].

The class diagram can be described as follows:

1. AnalogDesign Class: This represents the overall design of the analog circuit that

includes defining circuit and simulation parameters. Load Config file is used to get

all the parameters associated with the design. This may include the amplitude of the

noise, initial conditions of the circuit current and voltages, step size, and simulation

cycle. Also, the configuration file also includes the number of state variables in the

design.

2. SimParameter Class: This class has an built-in checker to verify if the loaded simu-

lation parameters meet the simulation standards. For instance, to check if the dimen-

sion of the noise DIM is a positive integer, the checker does the following

if(Param_obj.DIM <=0)

error(’The Number of Noise Source must

113

be a positive integer’);

end

3. Noise Process: This class generates the thermal and shot noise based on gaussian

and poisson white noise distribution. The input to this class is the number of noise

sources (DIM) and the simulation step-size (Delta). Based on this, it generates

multi-dimensional noise.

4. ParameterDist Class: The input to this class is the design parameter along with the

LoadConfig file. Based on the technology, this class uses probability distribution to

generate circuit parameters. The technology information is provided by the user in

the LoadConfig file.

5. SDEModel Class: This is the class where the input from the noise modeling and

simulation of the design is carried out. The model is based on the number of state vari-

ables STATEV AR in the design. The model is simulated along with process varia-

tion from the ParameterDist Class and parameters from the SimParameter Class.

The results are then sent to the verification environment.

6. Verification Class: Both assertion and statistical based verification are carried out

within this class. The user has to specify the type of verification “ASSERT” for

ABV or “STAT Mont” for MonteCarlo based statistical verification or “STAT BS”

for MonteCarlo based statistical verification. In addition, the class requires the prop-

erty (deterministic or statistical) to be specified as a function as given by

“V erification Class.setAssertion Nb Output Chk()′′ for ABV or

“V erification Class.set Statistical NbOutput Chk()′′ for statistical verification.

Formal approach can also be done using this verification class. This require the user

114

to specify “Formal” in the Load Config and the user has to work in an Unix envi-

ronment.

7. Plot Class: Using this class, the user can plot histograms and other 2-D plots.

115

Bibliography

[1] 0.18μm CMOS Fabrication Process. http://www.tsmc.com, 2008.

[2] K. S. Abe, and W. T. Shaw. Measure Order of Convergence Without an Exact Solution,

Euler Vs Milstein Schme. International Journal of Pure and Applied Mathematics.

(24)3: pp. 365-381, 2005.

[3] D. Abercrombie, B. Koenemann. Process/Design Learning from Electrical Test.

IEEE/ACM International Conference on Computer-Aided Design, pp. 733-738, 2004.

[4] A. Biere, A. Cimatti, E. Clarke, O. Strichman, and Y. Zhu. Bounded Model Checking.

Advances in Computers. Academic Press, 58:118-149, 2003.

[5] Accellera, Verilog-AMS Language Reference Manual Analog & Mixed-Signal Exten-

sions to Verilog-HDL. http://www.designers-guide.org/, 2003.

[6] Accellera Property Specification Language. http://www.accellera.org/,

2004.

[7] B. Akbarpour and L. C. Paulson. MetiTarski: An Automatic Prover for the Elementary

Functions, In Intelligent Computer Mathematics, LNCS 5144, pp. 217231, Springer,

2008.

116

[8] B. Akbarpour and L. C. Paulson. Applications of MetiTarski in the Verification of

Control and Hybrid Systems, In Hybrid Systems: Computation and Control, LNCS

5469, pp. 1-15, Springer, 2009.

[9] H. Al-Junaid, T.Kazmierski. HDL Models of Ferromagnetic Core Hysteresis Using

Timeless Discretisation of the Magnetic Slope. IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, 25(12): pp. 2757-2764, 2006.

[10] G. Al-Sammane. Simulation Symbolique des Circuits Decrits au Niveau Algorith-

mique. PhD thesis, Universitè Joseph Fourier, 2005.

[11] G. Al Sammane, M. Zaki, and S. Tahar. A Symbolic Methodology for the Verification

of Analog and Mixed Signal Designs. IEEE/ACM Design Automation and Test in

Europe, pp. 249-254, April 2007.

[12] G. Al Sammane, M.H. Zaki, Z.J. Dong and S. Tahar. Towards Assertion Based Veri-

fication of Analog and Mixed Signal Designs Using PSL. Forum on Specification &

Design Languages, pp. 293-298, 2007.

[13] Analoginsydes. The Intelligent Symbolic Design System for Analog Circuits. http:

//www.analog-insydes.de/, 2010.

[14] B. Ankele,W. Hölzl, and P. O’Leary. Enhanced MOS parameter extraction and SPICE

modeling for mixed signal analogue and Digital Circuit Simulation. IEEE Interna-

tional Conference on Microelectronic Test Structures, pp. 133137, 1989.

[15] P. Antognetti and G. Massobrio. Semiconductor Device Modeling with SPICE,

McGraw-Hill, New York, 1988.

117

[16] A. Aziz, K. Sanwal, V. Singhal, and R.K. Brayton. Verifying Continuous Time

Markov Chains. In Computer Aided Verification, LNCS 1102, pp.269-276, Springer,

1996.

[17] Z. Bai. Krylov Subspace Techniques for Reduced-Order Modeling of Large-Scale Dy-

namical Systems. Journal of Applied Numerical Mathematics. 43(1): pp. 9-44, 2002.

[18] H. B. Bakoglu. Circuits Interconnects, and Packaging for VLSI. Addison Wesley,

1990.

[19] V. Belton, and T. J. Stewart. Multiple Criteria Decision Analysis: An Integrated Ap-

proach. Kluwer Academic Publishers, 2002.

[20] Berkeley Design Automation, Inc. Efficient Noise Analysis for Complex Non-

Periodic Analog/RF Blocks. http://www.berkeley-da.com/prod/

datasheets/Berkeley_DA_Noise_Analisys_Analog_RF_WP.pdf,

2009.

[21] R. Best. Phase Locked Loops: Design, Simulation, and Applications, McGraw-Hill,

2007

[22] P. Bolcato and R. Poujois. A New Approach for Noise Simulation in Transient Anal-

ysis. IEEE International Symposium on Circuits and Systems, pp. 887-890, 1992.

[23] T.E. Bonnerud, B. Hernes, T. Ytterdal. A Mixed-signal Functional Level Simulation

Framework based on SystemC for System-on-a-Chip Applications. IEEE Custom In-

tegrated Circuits, pp. 541-544, 2001.

[24] F. Bouchhima, M. Brirel, G. Nicolescu1, M. Abid, E. M. Aboulhamid. A System-

C/Simulink Co-Simulation Framework for Continuous/Discrete-Events Simulation,

IEEE Behavioral Modeling and Simulation, pp. 1-6, 2006.

118

[25] Cadence Design Systems. Using a SoC Functional Verification Kit to Improve Pro-

ductivity, Reduce Risk, and Increase Quality. White Paper, http://w2.cadence.

com/whitepapers/SoC_fv_Kit_wp.pdf, 2007.

[26] Cadence Design Systems. The Role of Assertions in Verification Methodologies-

Using Assertions in a Simulation Environment. White Paper, http:

//www.cadence.com/rl/Resources/application_notes/CDN_

Assertions_in_Verification_Methodologies.pdf, 2003.

[27] F. E. Cellier and A. Nebot, The Modelica Bond Graph Library. Swiss Federal Institute

of Technology, Technical Report, 2007.

[28] Celoxia Inc. http://www.celoxica.com/, 2008.

[29] W. K. Chen, The Circuits and Filters Handbook. CRC Press LLC, New York, 2006.

[30] Y. Cheng. The Influence and Modeling of Process Variation and Device Mismatch

on Analog/RF Circuit Design. IEEE International Caracas Conference on Devices,

Circuits and Systems, pp. 1-8, 2002.

[31] M. R. Chernick. Bootstrap Methods, A Practitioner’s Guide. Wiley Series, 1999.

[32] L. O. Chua, Chuas Circuit : An Overview Ten Years Later, Journal of Circuits, Sys-

tems and Computers, Vol. 4, pp. 117159, 1994.

[33] A. Chutinan, B. H. Krogh. Computational Techniques for Hybrid System Verification.

IEEE Transaction on Automotive and Control 48(1): pp. 6475, 2003.

[34] E. Clarke, A. Donze and A. Legay. Statistical Model Checking of Mixed-Analog Cir-

cuits With an Application to a Third-Order Delta-Sigma Modulator. In Hardware and

Software: Verification and Testing, LNCS. 5394, pp. 149-163, Springer, 2008.

119

[35] E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. MIT press, December

1999.

[36] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms,

The MIT Press, 2001.

[37] Dassault Systemes, The Dymola Modelling Laboratory. http://www.dymola.

com/index.htm, 2011.

[38] W. B. Davenport and W. L. Root. An Introduction to the Theory of Random Signals

and Noise. IEEE Press, 1987.

[39] A. Demir, E. Liu, A. Vincentelli, and I. Vassiliou. Behavioral Simulation Techniques

for Phase/Delay Locked Systems. IEEE Custom Integrated Circuits Conference, pp.

453-456, 1994.

[40] A. Demir. Analysis and Simulation of Noise in Nonlinear Electronic Circuits and

Systems. Ph.D. dissertation, University of California, Berkeley, 1997.

[41] A. Demir, A. Mehrotra and J. Roychowdhury. Phase Noise in Oscillators: A Unifying

Theory and Numerical Methods for Characterization. IEEE Transactions on Circuits

and Systems-II, Vol.47, pp. 655674, 2000.

[42] W. Denman, Towards the Automated Modelling and Formal Verification of Analog

Designs. M.A.Sc Thesis, Dept of ECE, Concordia Univesity, Montreal, Canada, April

2009.

[43] A. Dunlop, A. Demir, P. Feldmann, S. Kapur, D. Long, R. Melville and J. Roychowd-

hury. Tools and Methodology for RF IC Design, IEEE International Conference on

Computer-Aided Design, pp. 414-420, 1998.

120

[44] L. Feng. Review of Model Order Reduction Methods for numerical Simulation of

Nonlinear Circuits. Applied Mathematics and Computation. 167(1): pp. 576-591,

2005.

[45] I. M. Filanovsky, C. J. M. Verhoeven, and M. Reja. Remarks on Analysis, Design and

Amplitude Stability of MOS Colpitts Oscillator. IEEE Transactions on Circuits and

Systems-II, (54)9: pp. 800-804, 2007.

[46] H. D. Foster, A. C. Krolink. Creating Assertion-Based IP (Integrated Circuits and

Systems). Springer, 2010.

[47] f reedaTM : http://www.freeda.org/, 2011.

[48] G. Frehse. PHAVer: Algorithmic Verification of Hybrid Systems Past HyTech. In Hy-

brid Systems: Computation and Control, LNCS.3414, pp. 258273, Springer, 2005.

[49] J. E. Freund. Modern Elementary Statistics. Prentice hall, 1984.

[50] A. Ghosh, R. Vemuri, and D. R. Vemuri. Formal Verification of Synthesized Analog

Designs. IEEE International Conference on Computer Design. pp. 4045, 1999.

[51] J. Gordon and E. H. Shortllife. A Method for Managing Evidential Reason-

ing in a Hierarchical Hypothesis Space. Technical Report, Stanford Univer-

sity, ftp://reports.stanford.edu/pub/cstr/reports/cs/tr/84/

1023/CS-TR-84-1023.pdf, 1984.

[52] P. A. Gray, P. J. Hurst, S. H. Lewis and R. G. Meyer. Analysis and Design of Analog

Integrator Circuits. Wiley, 2009.

[53] M. Greenstreet. Verifying Safety Properties of Differential Equations. In Computer

Aided Verification, LNCS.1102, pp. 277287, Springer, 1996.

121

[54] M. Greenstreet, I. Mitchell. Integrating Projections. In HybridSystems: Computation

and Control. LNCS. 1386, pp. 159174, Springer, 1998.

[55] M. Greenstreet, and S. Yang. Verifying Start-Up Conditions for a Ring Oscillator,

ACM Great Lakes Symposium on VLSI, pp. 201-206, 2008.

[56] C.M. Grinstead and J.L. Snell. Introduction to Probability. American Mathematical

Society, 1997.

[57] S. Gupta, B. H. Krogh, and R. A. Rutenbar. Towards Formal Verification of Analog

Designs, IEEE/ACM International Conference on Computer Aided Design. pp. 210-

217, 2004.

[58] W. Haas, U. Heinkel, H. Braisz, T. Gentner, M. Padeffke, T. Buerner, G. Alexander

and F. Alexander. The VHDL Reference: A Practical Guide to Computer-Aided Inte-

grated Circuit Design Including VHDL-AMS, Wiley, 2000.

[59] A. Hajimiri, S. Limotyrakis and T. H. Lee. Jitter and Phase Noise in Ring Oscillators.

IEEE Journal of Solid-State Circuits, 34(6): pp. 790-804, 1999.

[60] R. J. Haller. The Nuts and Bolts of Signal-Integrity Analysis. Electronics Design,

Strategies, News (EDN), 2000

[61] F. Herzel and B. Razavi. A Study of Oscillator Jitter Due to Supply and Substrate

Noise. IEEE Transactions on Circuits and Systems-II, 46(1):56-62, 1999.

[62] A. Hinton, M. Kwiatkowska, G. Norman and D. Parker. PRISM: A Tool for Auto-

matic Verification of Probabilistic Systems. International Conference on Tools and

Algorithms for the Construction and Analysis of Systems, LNCS.3920, pp. 441-444,

Springer, 2006.

122

[63] M. Horowitz. Digital Analog Design. Workshop on Frontiers in Analog Circuit Syn-

thesis and Verification. 2011.

[64] R. Hum, Where are the dragons? Workshop on Frontiers in Analog Circuit Synthesis

and Verification, 2011.

[65] IO Methodology Inc. SimDETM Waveform. http://www.iometh.com/

Product/SignalMeth/index.html, 2012.

[66] D. A. Johns and K. Martin. Analog Integrated Circuit Design. Wiley, 1997.

[67] K. D. Jones, J. Kim, and V. Konrad. Some “Real World” Problems in the Analog and

Mixed Signal Domains. International Workshop on Designing Correct Circuits, pp.

51-59, 2008.

[68] W. G. Kelley, and A. C. Peterson. Difference Equations: An Introduction with Appli-

cations. Academic Press, 2001.

[69] M. Kennedy. Chaos in the Colpitts Oscillator. IEEE Transactions on Circuits and Sys-

tems, 41(11): pp. 771774, 1994.

[70] C. Kim, E. K. Lee, P. Hänggi, and P. Talkner. Numerical Method for Solving Stochas-

tic Differential Equations with Poissonian White Shot Noise. Physical Review E.

(76)1:1-10, 2007.

[71] P. E. Kloden and E. Platen. Numerical Solution of Stochastic Differential Equations.

Springer, 1995.

[72] Z. Kohavi. Switching and Finite Automata Theory. McGraw-Hill, 1978.

[73] E. Kolarova. Modelling RL Electrical Circuits by Stochastic Diferential Equations.

International Conference on Computer as a Tool, pp. 1236-1238, 2005.

123

[74] N. M. Kriplani, A. Victor and M. B. Steer. Time-Domain Modelling of Phase Noise

in an Oscillator. European Microwave Conference, pp. 514-517, 2006.

[75] T. Kropf. Introduction to Formal Hardware Verification, Springer, 2000.

[76] K. Kundert. Predicting the Phase Noise and Jitter of PLL-Based Frequency Synthe-

sizers. https://www.desingers-guide.com, 2003.

[77] K. Kundert. The Designers Guide to SPICE and Spectre. Kluwer Academic Publish-

ers, 1995.

[78] K. Kundert, H. Chang, D. Jefferies, G. Lamant, E. Malavasi, F. Sendig. Design of

Mixed-signal Systems-on-a-chip, IEEE Transaction on Computer-Aided Design of

Integrated Circuits and Systems, 19(12):1561-1571, 2000.

[79] K. Kundert, H. Chang. Top-Down Design and Verification of Mixed-Signal Circuits.

Designers Guide Consulting, http://www.designers-guide.com/docs/

tddv.pdf, 2009.

[80] K. Kundert and H. Chang. Verification of Complex Analog Integrated Circuits. IEEE

Custom Integrated Circuits Conference, pp.177-184, 2006.

[81] K. Kundert, J. K. White and A. Sangiovanni-Vincentelli. Steady-State Methods for

Simulating Analog and Microwave Circuits, Kluwer Academic Press, 1990.

[82] R. P. Kurshan, K. L. McMillan. Analysis of Digital Circuits Through Symbolic Re-

duction. IEEE Trans. Computer-Aided Design. 10(11): pp. 13501371, 1991.

[83] M. Kwiatkowska, G. Norman and D. Parker. Stochastic Model Checking. Formal

Methods for the Design of Computer, Communication and Software Systems: Per-

formance Evaluation, Vol. 4486: pp 220-270, Springer, 2007.

124

[84] O. Lahiouel, H. Aridhi, M. H. Zaki, and S. Tahar. Tool for Modeling and Analysis of

Electronic Circuits and Systems. Technical Report, Dept. of ECE, Concordia Univer-

sity, Montreal, http://hvg.ece.concordia.ca/Publications/TECH_

REP/TMAES.pdf, 2011.

[85] E. L. Lehmann, J. P. Romano. Testing Statistical Hypotheses. Springer. 2005.

[86] L. L. Lewyn, T. Ytterdal, C. Wulff, and K. Martin. Analog Circuit Design in Nanoscale

CMOS Technologies. Proceedings of the IEEE, 95(10):1687-1714, 2009.

[87] M.P. Li. Jitter, Noise, and Signal Integrity at High-Speed. Prentice Hall, 2007.

[88] L. Ling and W. Burleson. Analysis and Mitigation of Process Variation Impacts on

Power-Attack Tolerance. IEEE/ACM Design, Automation Conference, pp.238-243,

2009.

[89] S. Little, D. Walter, K. Jones, and C. Myers. Analog/Mixed-Signal Circuit Verifica-

tion Using Models Generated from Simulation Traces. In Automated Technology for

Verification and Analysis, LNCS 4762, pp.114128, Springer, 2007.

[90] R. Ludwig and P. Bretchko. RF Circuit Design, Theory and Applications. Pearson

Education, 2004.

[91] O. Maler and D. Nickovic. Monitoring Temporal Properties of Continuous Signals. In

Formal Modelling and Analysis of Timed Systems, LNCS 3253, 152-166, Springer,

2004.

[92] S. A. Maas, Nonlinear Microwave and RF Circuits. Artech House, 2003.

125

[93] S. K. Magierowski and S. Zukotynski. CMOS LC-Oscillator Phase-Noise Analysis

Using Nonlinear Models. IEEE Transaction on Circuits and Systems, 51(4): 664-677,

2004.

[94] X. Mao, H. Yang, and H. Wang. Behavioral Modeling and Simulation of Jitter and

Phase Noise in Fractional-N PLL Frequency Synthesizer. IEEE Behavioral Modeling

and Simulation Conference, pp. 25-30, 2004.

[95] D. E. Martin, P. A. Wilsey, R. J. Hoekstra, E. R. Keiter, S. A. Hutchinson, T. V.

Russo, and L. J. Waters. Integrating Multiple Parallel Simulation Engines for Mixed-

technology Parallel Simulation, IEEE Simulation Symposium. pp. 45-52, 2002.

[96] W. L. Martinez and A. R. Martinez. Computational Statistics Handbook with MAT-

LAB. Chapman & Hall/CRC, 2002.

[97] W. Mathis, and T. Thiessen. On Noise Analysis of Oscillators Based on Statistical Me-

chanics. International Conference on Mixed Design of Integrated Circuits & Systems,

pp. 472-477, 2009.

[98] K. Mayaram, D. C. Lee, S. Moinian, D. A. Rich, and J. Roychowdhury. Computer-

Aided Circuit Analysis Tools for RFIC Simulation: Algorithms, Features, and Lim-

itations. IEEE Transactions on Circuits and Systems- II: Analog and Digital Signal

Processing, 47(4), April 2000.

[99] J. A. McNeill. Jitter in Ring Oscillators. IEEE Journal of Solid-State Circuits, 32(6):

pp. 870-879, 1997.

[100] L. Mendonc-a de Moura, B. Dutertre, N. Shankar. A Tutorial on Satisfiability Mod-

ulo Theories. In Computer Aided Verification. LNCS.4590, pp.2036, Springer, 2007.

126

[101] R. Meolic, T. Kapus and Z. Brezocnik. CTL and ACTL patterns. International Con-

ference on Trends in Communications. Vol. 2, pp. 540-543, 2001.

[102] R. G. Miller. The Jackknife– A Review. Biometrika, (61)1: pp. 1-15, 1974.

[103] K. Morin-Allory, L. Fesquet, B. Roustan, and D. Borrione. Asynchronous Online-

Monitoring of Logical and Temporal Assertions. Embedded Systems Specification

and Design Languages, LNEE. 10, pp. 243-253 Springer, 2008.

[104] R. Narayanan, A. Daghar, M. Zaki, and S. Tahar: Using LCSS Algorithm for Circuit

Level Verification of Analog Designs. Technical Report, Department of Electrical and

Computer Engineering, Concordia University, February 2012.

[105] E. Naviasky, and M. Nizic. Cadence Design Services. Mixed-Signal Design

Challenges and Requirements. http://www.cadence.com/rl/Resources/

white_papers/mixed_signal_challenges_wp.pdf, 2009.

[106] H. Nyquist. Thermal Agitation of Electric Charge in Conductors, Physical Review

Letter, (32)1: pp. 110-113, 1928.

[107] B. Oksendal. Stochastic Differential Equations: An Introduction with Applications.

Springer, 2000.

[108] Osman Hassan. Formal Probabilistic Analysis using Theorem Proving, PhD Depart-

ment of Electrical and Computer Engineering, Concordia University, Montreal, Que-

bec, Canada, April 2008.

[109] P. Paper, M. Jamal Deen and O. Marinov. Noise in Advanced Electronic Devices and

Circuits. AIP International Conference on Noise in Physical Systems and 1/f Fluctua-

tions, Vol.780, pp. 3-12, 2005.

127

[110] F. Pcheux, C. Lallement, A. Vachoux. VHDL-AMS and Verilog-AMS as Alternative

Hardware Description Languages for Efficient Modeling of Multidiscipline Systems.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,

24(2): pp.204-225, 2005.

[111] M. H. Perrott, M. D. Trott, and C. G. Sodini. A Modeling Approach for ΔΣ

Fractional-N Frequency Synthesizers Allowing Straightforward Noise Analysis. IEEE

Journal of Solid State Circuits, 37(8): pp. 1028-1038, 2002.

[112] A.S. Priya, and P. Vaya. Modeling of Sigma-Delta Modulator Non-Idealities in MAT-

LAB/SIMULINK. IEEE International Conference on Communication Systems and

Network Technologies, pp. 310-315, 2011.

[113] PVS Specification and Verification System. http://pvs.csl.sri.com/,

2009.

[114] QEPCAD - Quantifier Elimination by Partial Cylindrical Algebraic Decomposition,

http://www.usna.edu/Users/cs/qepcad/B/QEPCAD.html, 2009.

[115] L. R. Rabiner and B. Juang. Fundamentals of Speech Recognition. Prentice-Hall,

Inc., 1993.

[116] T. K. Rawat, A. Lahiri, and A. Gupta. Noise Analysis of Single-Ended Input Differ-

ential Amplifier using Stochastic Differential Equation. International Journal of Com-

puter, Information, and Systems Science, and Engineering, 2(3):192-196, 2008.

[117] R. Rohrer, L. Nagel, R. G. Meyer and L.Weber, Computationally Efficient Electronic

Circuit Noise Calculation. IEEE Journal of Solid-State Circuits Society, (6)4: pp. 204-

213, 1971.

128

[118] H. Sakoe, and S. Chiba. Dynamic Programming Algorithm Optimization for Spoken

Word Recognition, IEEE Transactions on Acoustics, Speech and Signal Processing,

26(1), pp. 43- 49, 1978.

[119] D. Stirzaker. Elementary Probability. Cambridge Press, 2003.

[120] Synopsys HSPICE User Guide: RF Analysis. http://www.synopsys.com,

2009.

[121] SystemC-AMS User Community. http://www.systemc-ams.org, 2008

[122] W. E. Thain Jr et. al. Simulating Phase Noise in Phase Locked Loops with a Circuit

Simulator. IEEE International Symposium on Circuits and Systems, Vol. 3, pp. 1760-

1763, 1995.

[123] The Mathworks Inc. MATLAB User Guide. http://www.mathworks.com/,

2011.

[124] M. Bühler, J. Koehl, J. Bickford, J. Hibbeler, R. Sommer, M. Pronath, and A. Ripp.

DFM/DFY Design for Manufacturability and Yield - Influence of Process Variations

in Digital, Analog and Mixed-Signal Circuit Design. IEEE/ACM Design, Automation

and Test in Europe, pp. 387 - 392, 2006.

[125] M. Vasilevski, F. Pecheux, H. Aboushady, and L. de Lamarre. Modeling Heteroge-

neous Systems Using SystemC-AMS Case Study: A Wireless Sensor Network Node.

IEEE Behavioral Modeling and Simulation Workshop, pp.1-6, 2007.

[126] V. Vasudevan. A Time-Domain Technique for Computation of Noise-Spectral Den-

sity in Linear and Nonlinear Time-Varying Circuits. IEEE Transaction on Circuits and

SystemsI: Vol. 51(2), 2004.

129

[127] S. Vijayaraghavan and M. Ramanathan. A Practical Guide for SystemVerilog Asser-

tions. Springer, 2005.

[128] C. Yan, M. Greenstreet. Circuit-Level Verification of a High-Speed Toggle. IEEE

International Conference on Formal Methods in Computer-Aided Design, pp.199206,

2007.

[129] M. Yoshikawa and H. Terai. Constraint-Driven Floorplanning based on Genetic Al-

gorithm. ACM International Conference on Computer Engineering and Applications,

pp.147-151, 2007

[130] H.L.S. Younes and R.G. Simmons. Probabilistic Verification of Discrete Event Sys-

tems Using Acceptance Sampling. In Computer Aided Verification, LNCS 2404, pp.

23-39, Springer, 2002.

[131] W. Yu, and B. H. Leung. Noise Analysis for Sampling Mixers Using Stochastic Dif-

ferential Equations. IEEE Transactions on Circuits and Systems- II: Analog and Dig-

ital Signal Processing, Vol. 46(6), 1999.

[132] J. Yuan, C. Pixley, and A. Aziz Constraint-Based Verification, Springer, 2006.

[133] D. Walter, S. Little, N. Seegmiller, C. Myers and T. Yoneda. Symbolic Model Check-

ing of Analog/Mixed-Signal Circuits. IEEE Asia and South Pacific Design Automa-

tion Conference, pp.316323, 2007.

[134] P. Wambacq, P. Dobrovolny, S. Donnay, M. Engels and I. Bolsens. Compact Model-

ing of Nonlinear Distortion in Analog Communication Circuits. IEEE/ACM Design,

Automation and Test in Europe, pp.350-354, 2000.

130

[135] Z. Wang, N. Abbasi, R. Narayanan, M. Zaki, G. Sammane and S. Tahar. Verification

of Analog and Mixed Signal Designs using On-line Monitoring, IEEE Mixed-Signals,

Sensors, System Test Workshop, pp. 1-6, 2009.

[136] Z. Wang, M. H. Zaki, and S. Tahar. Statistical Runtime Verification of Analog and

Mixed Signal Designs. IEEE International Conference on Signals, Circuits and Sys-

tems. pp. 1-6, 2009.

[137] J. F. Witte, K .A. A. Makinwa and J. H. Huijsing: Dynamic Offset Compensated

CMOS Amplifiers. Analog Circuits and Signal Processing, Springer, 2009.

[138] C. F. J. Wu. Jackknife, Bootstrap and Other Resampling Methods in Regression

Analysis. Annals of Statistics. (14)4: pp. 1261-1295, 1986.

[139] M. Zaki. Techniques for the Formal Verification of Analog and Mixed- Signal De-

signs, PhD Thesis, Department of Electrical and Computer Engineering, Concordia

University, 2008.

[140] M. Zaki, S. Tahar and G. Bois. Formal Verification of Analog and Mixed Signal

Designs: A Survey. Microelectronics Journal, Elsevier, 39(12): 1395-1404, 2008.

131

