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ABSTRACT 

 
High-Speed Pipeline VLSI Architectures for Discrete Wavelet 

Transforms 

 

Cheng Jun Zhang, Ph.D. 

Concordia University, 2012 

 

The discrete wavelet transform (DWT) has been widely used in many fields, such as 

image compression, speech analysis and pattern recognition, because of its capability of 

decomposing a signal at multiple resolution levels. Due to the intensive computations 

involved with this transform, the design of efficient VLSI architectures for a fast 

computation of the transforms have become essential, especially for real-time 

applications and those requiring processing of high-speed data. The objective of this 

thesis is to develop a scheme for the design of hardware resource-efficient high-speed 

pipeline architectures for the computation of the DWT. The goal of high speed is 

achieved by maximizing the operating frequency and minimizing the number of clock 

cycles required for the DWT computation with little or no overhead on the hardware 

resources. In this thesis, an attempt is made to reach this goal by enhancing the inter-

stage and intra-stage parallelisms through a systematic exploitation of the characteristics 

inherent in discrete wavelet transforms. 

In order to enhance the inter-stage parallelism, a study is undertaken for determining 

the number of pipeline stages required for the DWT computation so as to synchronize 

their operations and utilize their hardware resources efficiently. This is achieved by 

optimally distributing the computational load associated with the various resolution levels 

to an optimum number of stages of the pipeline. This study has determined that 

employment of two pipeline stages with the first one performing the task of the first 
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resolution level and the second one that of all the other resolution levels of the 1-D DWT 

computation, and employment of three pipeline stages with the first and second ones 

performing the tasks of the first and second resolution levels and the third one performing 

that of the remaining resolution levels of the 2-D DWT computation, are the optimum 

choices for the development of 1-D and 2-D pipeline architectures, respectively. The 

enhancement of the intra-stage parallelism is based on two main ideas. The first idea, 

which stems from the fact that in each consecutive resolution level the input data are 

decimated by a factor of two along each dimension, is to decompose the filtering 

operation into subtasks that can be performed in parallel by operating on even- and odd-

numbered samples along each dimension of the data. It is shown that each subtask, which 

is essentially a set of multiply-accumulate operations, can be performed by employing a 

MAC-cell network consisting of a two-dimensional array of bit-wise adders. The second 

idea in enhancing the intra-stage parallelism is to maximally extend the bit-wise addition 

operations of this network horizontally through a suitable arrangement of bit-wise adders 

so as to minimize the delay of its critical path. 

In order to validate the proposed scheme, design and implementation of two specific 

examples of pipeline architectures for the 1-D and 2-D DWT computations are 

considered. The simulation results show that the pipeline architectures designed using the 

proposed scheme are able to operate at high clock frequencies, and their performances, in 

terms of the processing speed and area-time product, are superior to those of the 

architectures designed based on other schemes and utilizing similar or higher amount of 

hardware resources. Finally, the two pipeline architectures designed using the proposed 

scheme are implemented in FPGA. The test results of the FPGA implementations 

validate the feasibility and effectiveness of the proposed scheme for designing DWT 

pipeline architectures. 
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Chapter 1   

Introduction 
 

 

1.1 Background 

In recent years, the discrete wavelet transform (DWT) has been widely and 

increasingly used in many fields such as image compression, speech analysis and pattern 

recognition because of its capability of decomposing a signal at multiple resolution levels 

[1]−[18]. The DWT decomposes a signal into components in different octaves or 

frequency bands by choosing appropriate scaling and shifting factors where the small 

scaling factor corresponds to fine details of the signal and the large scaling factor to 

coarse details, and the shifting factor corresponds to the time or space localization of the 

signal [19]−[21]. In contrast to other transforms, such as Fourier or cosine transforms 

where the signals are represented in frequency domain only, the DWT decomposes a 

signal so that it is represented more efficiently and localized in both time (space) and 

frequency domains. In other words, in the DWT, the time (space) information is not lost 

in the transformed signal, which is very attractive for the analysis of signals, especially 

for signals with non-stationary or transitory characteristics [22], [23]. 
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In accordance with the multiple-level decomposition of a signal, the computation of 

the DWT can be performed by repeating a process in which a fully scalable window is 

shifted along the dimensions of the signal with the window size becoming shorter in each 

repetition. The computing processes of the DWT can be carried out by executing 

recursively a set of instructions developed in software programs such as SimuWave in 

Simulink, Wavelet toolbox in MATLAB and WavBox in Toolsmiths [24]−[27]. The 

software implementation for the computation of the DWT is flexible in setting different 

values of the parameters of the transform and changing the codes for the algorithms. 

Regardless of the effort devoted to the design of software algorithms and optimized codes 

for their implementations, no general-purpose or DSP processor used for their 

implementation can provide a performance in terms of the computing speed and resource 

optimization that can possibly be achieved by a hardware implementation [28]−[33]. 

Hardware implementations, in which the computation of the DWT is performed by a 

custom hardware circuit, it is possible to address the requirements of specific applications 

such as the speed, power or size of the circuit. In the literature, there exist a number of 

design efforts on the development of architectures for the DWT computation that focus 

on such requirements of applications [34]−[41]. However, many applications of the DWT 

computation involve large-volume data such as image or video. The fact that the DWT is 

multiple resolution level operation adds even more to the vastness of the data to be 

processed, which adversely affects the requirements of speed, power and the circuit area 

of the architectures for such applications. Thus, it remains a challenging task to design 

high-speed, low-power and area-efficient VLSI architectures to implement the DWT 

computation for real-time applications. 
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1.2 Motivation 

In the past, several types of architectures have been proposed aimed at providing 

high-speed computation of the DWT using resource-efficient hardware. The architectures 

in [42]−[51] employ a single processor to perform the computations of all the resolution 

levels of the DWT, mostly based on the recursive pyramid algorithm (RPA) [52]. 

Naturally, by using a single processor in these architectures, the computations of the 

various resolution levels of the DWT are performed in a sequential manner, since the 

computation at one resolution level requires the output data from its preceding level. 

Even though these architectures have low design and hardware complexities, they do not 

focus on providing a fast computation of the DWT. Therefore, this type of architectures is 

not attractive for real-time applications. In an effort to overcome the problem of slow 

computation, architectures that employ two or more parallel processors have been 

proposed [53]−[60]. In this type of architectures, the computation associated with one 

level is performed by more than one processor thereby increasing the overall processing 

speed of the DWT computation. These type architectures even though provide parallelism 

to the computations associated with a given resolution level, they do not have parallelism 

between the resolution levels. In order to further improve the parallelism for the DWT 

computation, and hence the computational speed, the architectures that employ a number 

of pipelined stages, each performing the task of one or more resolution levels of the DWT, 

have been proposed [61]−[67]. The focus in the design of these architectures is on 

introducing some parallelism in the computations associated with the multiple resolution 

levels of the DWT, thus aiming at providing a high throughput and overall a short 

computing time.  
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From the foregoing discussion, it is clear that pipeline architectures are well suited 

for the DWT computation of large-volume data. However, no systematic approach seems 

to exist in determining the number of stages, mapping of the resolution levels to the 

stages and the design of the stages themselves so as to minimize the computation time 

and maximize the utilization of the hardware resource of the pipeline. 

 

1.3 Scope of the Thesis  

The operation of discrete wavelet transform has the characteristic of getting the 

amount of computations in successive resolution levels reduced by a factor of two along 

each dimension of the signal. This thesis in conformity with this inherent feature of the 

DWT undertakes a study of designing fast and hardware resource-efficient pipeline 

architectures for the computation of the 1-D and 2-D discrete wavelet transforms. With 

this overall objective, the mapping of the computational tasks associated with the various 

resolution levels of the DWT to an optimum number of pipeline stages is first 

investigated, and then an efficient design of the stages are explored from the standpoint 

of maximizing the inter-stage and intra-stage parallelisms of the pipeline architectures 

with an efficient utilization of the hardware resources employed. 

 

1.4 Organization of the Thesis 

The thesis is organized as follows. 

In Chapter 2, first, discrete mathematical models for the computation of 1-D and 2-D 

wavelet transforms are presented and the methods for their computation are described. 
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The existing architectures for the computation of these transforms are then reviewed and 

classified. 

In Chapter 3, a study for developing a scheme aimed for the design of a resource-

efficient pipeline architecture for fast computation of the 1-D DWT is undertaken. With 

this goal in mind, the number of stages of the pipeline is first determined so as to map the 

computational tasks of the various resolution levels of the DWT to the pipeline stages in 

a most optimal manner. The second part of this chapter then focuses on the design of the 

pipeline stages themselves so as to maximize the inter-stage and intra-stage parallelisms. 

A case study for the design and FPGA implementation of a pipeline architecture is 

undertaken to illustrate and validate the proposed scheme and to compare it with other 

existing schemes for the design of architectures for the 1-D DWT computation. 

Since the complexities in two-dimensional signal processing are generally quite 

different from that in 1-D case and they often call for a different approach for their 

solutions, in Chapter 4, an investigation is undertaken for developing a scheme for a 

pipeline architecture for the computation of the 2-D DWT. Various components of the 

design of pipeline architecture are looked into with the overall goal being the same as that 

in the design of the 1-D DWT pipeline architectures, namely, the development of a fast 

resource-efficient pipeline architecture. A circuit for a 2-D DWT computation is designed, 

simulated and implemented in FPGA, and the simulation and implementation results are 

then compared with those for the existing architectures to validate the efficiency of the 

proposed design. 
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Chapter 5 concludes the thesis by summarizing the work contained therein, 

highlighting the contributions made, and stating the scope of some possible future work 

arising from the work of this thesis. 
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Chapter 2   

Background Material and Related Previous Work 
 

 

This chapter provides background material necessary for the development of the 

architectures of the 1-D and 2-D discrete wavelet transforms undertaken in the following 

chapters. First, the mathematical formulations of the 1-D and 2-D discrete wavelet 

transforms are presented, and methods for their computations are described. This is 

followed by a review of the various existing architectures, classified as single-processor, 

parallel-processor and pipeline architectures for the 1-D and 2-D DWT computations. 

 

2.1 Fundamentals of the Discrete Wavelet Transform 

2.1.1 Definitions of Wavelet Transforms 

The wavelet transform was first introduced by Jean Morlet in 1981 [68]. The 

continuous wavelet transform (CWT) of a signal )()( 2 Rxf L∈  (Hilbert space) is an 

integral operation defined as 

�
+∞

∞−

−
= dx

a

bx
xf

a
baw )()(

1
),( ψ         (2.1) 
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where ),( baw are the wavelet coefficients, )(
a

bx −
ψ are the wavelets generated by a basic 

wavelet function )()(� 2 Rx L∈ , the so-called the mother wavelet, a is the dilation 

parameter that scales the wavelet function by compressing or stretching it, and b is the 

translation parameter that locates the position of the wavelet function by shifting it. It is 

seen from this definition that the wavelet transform is a linear operation. By changing the 

variable 'axx =  and expressing the dilation parameter as jv
aa 1= , where a1 and vj (j=1, 2, 

3, …) are real numbers, (2.1) becomes 

')'()'(),(
1

111 �
+∞

∞−
−= dx

a

b
xxafabaw

j

jjj

v

vvv
ψ        (2.2) 

Therefore, the wavelet transform can be seen as a decomposition of the signal )(xf  

into a number of resolution levels with j = 1, 2, 3, · · ·  . Fig. 2.1 shows a hierarchical 

structure for the decomposition of a signal f(x) into multiple resolution levels of the 

wavelet transform. It is seen from this figure that, in order to obtain the wavelet 

coefficients ),( 1 baw jv  of a certain resolution level j, the signal f(x) is first scaled by a 

factor of jv
a1 , and then integrated with a dilated and translated wavelet function 

)(
1

jv
a

b
x −ψ  followed by a multiplication by the magnitude factor jva1 . It is also seen 

from this figure that the wavelet transform is very suitable for analyzing the hierarchical 

structure of the function f(x) because of its mathematical microscopic property that allows 

a signal to be represented by a number of functions with automatic scalability [69]. 
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2.1.2 Mathematical Formulations 

(a) Expression for the 1-D DWT 

According to (2.1), continuous wavelet transform may use an infinite number of 

wavelets )(
a

bx −
ψ . Thus, it is not practical in analysis of a signal due to the redundant 

calculation resulting from the dilation and translation parameters [70]. Discrete wavelets 

are introduced to address this problem. Discrete wavelets are not continuously scalable 

and translatable, but can be scaled and translated in discrete steps as denoted by 

( )00
2

0, )( kbxaax jj
kj −= ψψ           (2.3) 

where a0 and b0 are scale and translation factors, respectively, and k and the scale index j 

are two integers. Generally, the value of the scale factor a0 is chosen as two so as to 

achieve a dyadic sampling along the frequency axis, and the translation factor b0 has a 

Scaled 
by a1

Scaled 
by a1

Scaled 
by a1

f(x)
f(a1x) f(a1

j-1x)

�
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Figure 2.1:  Hierarchical structure for the decomposition of a signal f(x) into multiple 

resolution levels of the wavelet transform. 
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value of unity so as to achieve a dyadic sampling along the time axis. Note that the 

function )(, xkjψ  has fine scale or high frequency when the scale index j becomes large. 

Discrete wavelets are still continuous functions of x but discretized in the time-scale 

space. The discrete form of the wavelet transform can now be formulated as 

�
+∞

∞−
= dxxxfkjw kj )()(),( ,ψ           (2.4) 

A dilation of wavelet functions by a factor of two in the time domain leads to a 

reduction of their frequency by one-half. Since the wavelet functions have a feature of a 

band-pass filter, in order to cover the entire frequency band down to zero when 

decomposing a signal, an infinite number of levels would be required. To solve this 

problem, a scaling function )(xφ , also called the father wavelet, was introduced by Mallat 

in 1989 [71]. The scaling function )(xφ  has a feature of a lowpass filter, and must satisfy 

the two-scale dilation property given by 

� −=
k

kxkhx )2()(2)( φφ           (2.5) 

� −=
k

kxkgx )2()(2)( φψ           (2.6) 

where )(kh and )(kg are the coefficients of two digital filters. If functions 

( )kxx jj
kj −= 22)( 2

, φφ and kj ,ψ are orthogonal, the coefficients )(kh and )(kg are the 

inner products �� − k,10,0 ,φφ and �� − k,10,0 ,φψ , respectively. 

Since the scaling function has the feature of a lowpass filter, it sets a low bound on 

frequency for the decomposition of a signal. For the decomposition of any given scale 

index j, the scaling functions kj ,φ  and wavelet functions kj ,ψ  share the entire frequency 

band, and only the frequency band of the scaling functions kj ,φ  will be covered by further 
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decompositions of the scale index j−1, as shown in Fig. 2.2 [72]. Therefore, by 

combining the scaling and wavelet functions, the entire frequency band is covered with a 

limited number of resolution levels. 

kj ,ψkj ,2−ψ kj ,1−ψkj ,3−ψ

kj ,2−φ

jωjω2
1

jω4
1

jω8
1 Frequency

kj ,φ
kj ,1−φ

Magnitude

 

Figure 2.2:  Frequency bands covered by the scaling and wavelet functions. 

 

Due to the dilation property of the scaling and wavelet functions and their relations 

given by (2.5) and (2.6), for any scale index j, a signal f(x) can always be expanded in 

terms of the scaled and translated wavelet and scaling functions, )2( kxj −ψ and 

)2( kxj −φ , as 

� � −+−=
k k

jj kxkjwkxkjcxf )2(),()2(),()( ψφ      (2.7) 

where ),( kjc  and ),( kjw  are, respectively, the scaling and wavelet coefficients 

associated with a scale index j. In order to obtain the coefficients ),( kjc  and ),( kjw , we 

need to compute the inner products �−� )2(),( kxxf jφ  and �−� )2(),( kxxf jψ , 

respectively. Using (2.4)−(2.7) and after some manipulation, we can obtain the 

coefficients, ),( kjc  and ),( kjw , as 

� +−=
m

mjckmhkjc ),1()2(),(          (2.8) 

� +−=
m

mjckmgkjw ),1()2(),(          (2.9) 
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It is seen from the above two equations that the wavelet or scaling coefficients at a 

resolution level with the scale index j are formulated as a convolution of the coefficients 

of a digital filter and the scaling coefficients at the resolution level with the scale index 

(j+1). 

 

(b) Expression for the 2-D DWT 

In order to decompose a 2-D signal, the 1-D scaling and wavelet functions have to be 

extended to two dimensions. A 2-D function can be obtained simply by multiplying two 

1-D functions along x and y directions, respectively. Thus, the 2-D scaling function can 

be generated from the 1-D scaling functions, as  

)()(),( yxyx φφφ =            (2.10) 

Using (2.10) in the manner similar to that for obtaining (2.8), the 2-D scaling 

coefficients associated with the scale index j for the 2-D DWT can be obtained as 

�� +−−=
x ym m

yxxxyyyx mmjckmhkmhkkjc ),,1()2()2(),,(   (2.11) 

Similar to (2.10), three types of 2-D wavelet functions, namely, vertical wavelet 

)()( xvψ , horizontal wavelet )()( xhψ , and diagonal wavelet )()( xdψ , can be obtained 

using the 1-D scaling and wavelet functions as  

)()(),()( yxyxv ψφψ =            (2.12) 

)()(),()( yxyxh φψψ =            (2.13) 

)()(),()( yxyxd ψψψ =            (2.14) 

which lead to three types of wavelet coefficients given by  

�� +−−=
x ym m

yxxxyyyx
v mmjckmhkmgkkjw ),,1()2()2(),,()(     (2.15) 
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�� +−−=
x ym m

yxxxyyyx
h mmjckmgkmhkkjw ),,1()2()2(),,()(    (2.16) 

�� +−−=
x ym m

yxxxyyyx
d mmjckmgkmgkkjw ),,1()2()2(),,()(    (2.17) 

It is seen from (2.11) and (2.15)−(2.17) that four components of the 2-D DWT at the 

resolution level with a scale index j are produced using the scaling coefficients at the 

level with a scale index (j+1). It should be noted that if the 2-D scaling and wavelet 

functions used in the 2-D DWT are non-separable in terms of x and y, the product of two 

1-D filter coefficients in the right side of (2.11) and (2.15)−(2.17) will be replaced by a 

2-D filter coefficient. 

 

2.1.3 Computations of Discrete Wavelet Transforms 

(a) Computation of the 1-D DWT 

According to (2.8) and (2.9), the method for computing the 1-D DWT can be viewed 

as a sequence of operations along a binary tree consisting of a set of two-channel filter 

banks [73]. Fig. 2.3 shows an example of a binary tree for a 3-level DWT computation of 

1-D signal s(n). It is seen from this figure that the decomposition at any level of the DWT 

is computed by using a two-channel filter bank consisting of one highpass filter GH(z) 

and one lowpass filter GL(z), followed by a decimation operation by a factor of two in 

each channel. For a given resolution level j (j=1, 2, 3), the output samples of the two 

channels consist of a lowpass component cj
(L)(n) and a highpass component wj

(H)(n), of 

which only the component cj
(L)(n) is used as input for the decomposition at the next level 

j+1. The computation for the resolution level j has a complexity of O(N0L/2j−1), where N0
  

and L are, respectively, the number of samples of the input signal s(n) and the length of 
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each of the two filters. It should be noted that as the resolution level j increases, the 

dilation parameter of the wavelets associated with the resolution level j becomes smaller 

and smaller, which results in representing the signal by functions having a coarser scale. 

 

(b) Computation of the 2-D DWT 

The computation of the 2-D DWT is more involved than that of the 1-D DWT, both 

in terms of the amount of processing as well as the complexity of the algorithm used for 

the computation. 

(i) Separable Approach for the 2-D DWT Computation 

A straightforward way to perform the computation of the 2-D DWT is to use a 

separable approach. In the separable approach, the impulse response G(z1, z2) of each 2-D 

filter used for the DWT computation is product separable, i.e., G(z1, z2) = G1(z1)G2(z2), 

The filter G1(z1) is used to process the 2-D data of  successive rows (columns). Then, the 

resulting 2-D data is processed successively along the columns (rows) using the filter 

G2(z2). A binary tree representation for a 2-level DWT computation of 2-D signal s(n1, n2) 

based on the separable approach is shown in Fig. 2.4. It is seen from this figure that the 
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Figure 2.3:  Binary tree representation of a 3-level 1-D DWT decomposition. 
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computation for the decomposition of a given level j consists of two decomposition steps: 

row-wise decomposition of the 2-D input data using and column-wise decomposition of 

the 2-D data resulting from the row-wise decomposition. In the row-wise decomposition, 

each row of the 2-D input data is filtered using the two-channel horizontal filter bank 

(G1H(z1) or G1L(z1)) and then downsampled by a factor of two, to produce horizontal 

highpass and lowpass components, each component having one-half of the numbers of 

samples in the rows of the 2-D input data. In the column-wise decomposition, each 

column of the two resulting components is filtered by using the two-channel vertical filter 

bank (G2H(z2) or G2L(z2)) and downsampled by a factor of two so that in total four 

components, specified as the HH component wj
(HH)(n1, n2), LH component wj

(LH)(n1, n2), 

HL component wj
(HL)(n1, n2) and LL component cj

(LL)(n1, n2), are obtained as outputs of 

the given level j. Among the four outputs, only the LL component cj
(LL)(n1, n2) is used for 

the computation of the next resolution level, which is an iteration of the above two steps. 
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Figure 2.4:  Binary tree representation of the computation of a 2-level 2-D DWT based 

on separable approach. 
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It should be noted that each of the four resulting components has one-quarter of the 

number of samples of the 2-D input data to the jth level. The computation of the 

resolution level j has a complexity of O(N0M0L/4j−1), where N0 and M0 are the numbers of 

the rows and columns of the 2-D input data. 

(ii) Non-separable Approach for the 2-D DWT Computation 

Obviously, separable approach is a simple way to compute the 2-D DWT. However, 

separable filters being a special class of 2-D filters are not capable to approximate well 

all arbitrary frequency responses. In this regard, a non-separable approach of the 2-D 

computation provides more flexibility. In the non-separable approach depicted in Fig. 

2.5, the DWT of a 2-D signal s(n1, n2) is computed by carrying out four separate 2-D 

filtering operations using four 2-D filters: a highpass-highpass (HH) filter GHH(z1, z2), a 

highpass-lowpass (HL) filter GHL(z1, z2), a lowpass-highpass (LH) filter GLH(z1, z2), and a 

lowpass-lowpass (LL) filter GLL(z1, z2). The output signals of these four filters are then 
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Figure 2.5:  Representation of the computation of a 2-level 2-D DWT based on non-

separable approach. 
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decimated by a factor of two in the horizontal and vertical directions producing, 

respectively, the HH, HL, LH and LL components. The computation of the resolution 

level j using the non-separable approach has a complexity of O(N0M0L
2/4j−1), where N0 

and M0 are, respectively, the numbers of rows and columns of the 2-D input data, and L2 

is the number of coefficients in each of the L×L 2-D filters. 

 

2.2 Review of the Architectures 

2.2.1 Categorization of the Architectures 

In recent years, many architectures have been proposed for the DWT computation 

[74]−[109]. These architectures aim at providing high performances, in terms of their 

speed, area, throughput, latency and power consumption. The filtering operation involved 

in the DWT computation is usually the convolution operation, that is, FIR filtering. The 

structure of the filter could be a direct realization, or it could be a systolic, lattice, bit-

wise or lifting based realization depending on the way that the basic convolution 

operation is manipulated or formulated [110]−[128]. For example, the lifting scheme 

proposed by Sweldens [129], [130] exploits the relationship that exists between the 

lowpass filter GL and the highpass filter GH for the computation of the DWT. In this case, 

the polyphase matrix Q(z) = [GL GH]T can then be factorized as 
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where K is a constant, and the two so called Laurent polynomials si(z) and ti(z) have low 

orders. It is seen from (2.18) that the lifting-scheme based filtering operation requires a 
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cascade of lifting steps, and thus, leads to a large latency and a long critical path of the 

resulting lifting architecture. 

The filtering operation is carried out by using a processor that employs a certain type 

of filter structure. An architecture may use one or multiple such processors to perform the 

DWT computation. For the purpose of reviewing these existing architectures, we 

categorize them as single-processor architectures, parallel-processor architectures and 

pipeline architectures, depending on their configuration and the number of processors 

used by them. In a single-processor architecture, only one processor carries out the 

filtering operation by computing the samples of the DWT in a recursive manner. In a 

parallel-processor architecture, multiple processors are used to carry out the filtering 

operations so that more than one sample is computed at a time. In this type of architecture, 

the filtering operations to decompose the input signal into various components are carried 

out in parallel, whereas the computations of various resolution levels are still performed 

recursively by the parallel processors. In a pipeline architecture, a certain number of 

stages, each consisting of one or more processors, are pipelined so that the computation 

of each decomposition level as well as that of the multiple resolution levels are performed 

in parallel. Fig. 2.6 depicts the block diagrams for the three categories of the architectures. 

In each of these three broad categories, architectures may differ considerably because of 

the internal structures of processors employed for the filtering operation. In the following, 

examples of 1-D and 2-D architectures are given for each of the categories, and their 

salient features discussed. 
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Figure 2.6:  Block diagrams of three types of architectures. (a) Single-processor 

architecture, (b) parallel-processor architecture, and (c) pipeline architecture. 
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2.2.2 Architectures for 1-D DWT Computation 

(a) Single-processor Architectures 

 In the single-processor category, the VLSI architecture proposed by Guo et al. [42] 

is an example, in which only a single multiplier and a single adder, as shown in Fig. 2.7, 

are used, and thus, requires substantially large computation time. Fig. 2.8 depicts another 

example of this category, in which the processor utilizes a systolic array of multiply-

accumulate (MAC) cells and a bank of shift registers for the filtering operations [43]. 

However, this architecture is slow because of the delays involved in the propagation of 

the signal through the array of MAC cells. The lifting-scheme based processor, proposed 

by Liao et al. [44], is yet another example of the single-processor architecture, in which 

the processor consists of a cascade of lifting steps, as shown in Fig 2.9, and it is used to 

compute the samples of the first resolution level at every other clock cycles and those of 

the other levels at the intervening clock cycles. However, a cascade of many lifting steps 

would result in quite a long critical path for this type of architecture. 
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Figure 2.7:  An architecture using one multiplier and one adder [42]. 
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Figure 2.8:  An architecture using a processor employing a systolic array of MAC 

cells [43]. 

 

 

(b) Parallel-processor Architectures 

In the parallel-processor category, Chakrabarti and Vishwanath [53] have proposed 

an architecture that uses two processors operating in parallel, one for lowpass and the 

other for highpass filtering operations, and one storage unit, as shown in Fig. 2.10. Since 
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Figure 2.9:  A lifting-based architecture using Daub-4 filters. Rj and Dj represent,

respectively, the registers and delay units for the computation of the jth level [44]. 
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this architecture has as many memory blocks as the number of resolution levels for 

storing the lowpass data, it requires a large memory space. 
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Figure 2.10:  A parallel architecture proposed by Chakrabarti and Vishwanath [53]. 
 

The folded architecture proposed by Parhi and Nishitani [54] is an example of a 

parallel-processor architecture, in which a pair of lowpass and highpass systolic filters 

and a set of shift registers are used to perform the computations of multiple resolution 
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Figure 2.11:  A folded architecture proposed by Parhi and Nishitani [54] using 4-tap 

filter. 



 
 

23

levels, as shown in Fig. 2.11. This architecture requires complex routing, and has a low 

throughput rate for large-size filters. 

Masud and McCanny [55] have proposed a two-processor architecture, as shown in 

Fig. 2.12, using L-tap lowpass and highpass filters operating in parallel. However, in this 

architecture, each of the two filters uses only L/2 MAC cells that operate on odd and even 

numbered coefficients in consecutive clock cycles. The architecture results in a large 

computation time and has a complex control unit. 

 

(c) Pipeline Architectures 

The architecture proposed by Marino et al. [61] and shown in Fig. 2.13 is an example 

of a pipeline architecture, in which a number of pipeline stages Bj (j=1, 2, …, J) are 

employed for the computations of J resolution levels. The computation of the jth 

resolution level is performed by the jth stage using � �22/ −= j
j LW  MAC cells, as shown 

in Fig. 2.13. However, the architecture requires a large amount of hardware resource 

when the number of resolution levels becomes large. Moreover, since the organization of 

MAC cells differs from stage to stage, the design complexity is quite high. 
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Figure 2.12:  An architecture proposed by Masud and McCanny [55]. 
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Figure 2.13:  A pipeline architecture proposed by Marino et al. [61]. (a) Block diagram of 

the architecture. (b) Structure of B1 when a 6-tap filter is used. 

 

Park [62] has proposed a scalable pipeline architecture, in which a certain stage Bj of 

the pipeline utilizes the number of parallel multipliers Mj that is one-half of that of the 

preceding stage, and uses a data recorder unit (DRU) for constructing the input data 

sequence, as shown in Fig. 2.14. However, the architecture is restricted for of the 

computation of the DWT which has three resolution levels and the number of filter length 

L is divisible by 4. 

A lifting-scheme based architecture proposed by Chen [63] and shown in Fig. 2.15 is 

another example of a pipeline architecture, in which a certain number of identical stages, 

each consisting of splitting, predicting and updating units for the computation of a 

resolution level, are employed. In this architecture, since the number of computations 

performed by each stage is not consistent with the amount of hardware resource it 

employs, the architecture has low utilization of hardware resources. 
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Figure 2.15:  A lifting-scheme based pipeline architecture [63]. 
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Figure 2.14:  A scalable 3-stage architecture proposed by Park [62]. (a) Block diagram of 

the architecture. (b) Structure of the first stage. 
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2.2.3 Architectures for 2-D DWT Computation 

(a) Single-processor Architectures 

In a single-processor category, the architecture of [47] is an example of a 

multiplierless architecture, and therefore, is restricted to only certain types of wavelets. 

Moreover, the architecture is not scalable. The architecture proposed by Movva and 

Srivivasan [48] is another example in the single-processor category for the 2-D DWT 

computation that uses the separable approach. In this architecture, the 2-D DWT is 

obtained by performing a row-wise computation followed by a column-wise computation 

using a single lifting-scheme based processor. The architecture is a low-speed and 

requires a large memory space. Hung et al. [49] have proposed a single-processor 

architecture using the non-separable approach, illustrated Fig. 2.16, in which an L×L-tap 

filtering operation is carried out by a processor consisting of a cascade of three blocks: 

parallel multipliers, L accumulators along the row direction and one accumulator along 

the column direction. The architecture has low computational speed, since the samples of 

the four decomposed components are computed sequentially. The architecture [50] 

shown in Fig. 2.17 is another example of a single-processor architecture, in which the 

processor consists of � �2/L  adders and � �2/L  parallel processing blocks, where L is 

the filter length, followed by an accumulator. The architecture requires large storage 

(delay units) to store the lowpass-lowpass output components of various resolution levels. 

Fig. 2.18 shows another single-processor architecture proposed by Meher et al. [51] for 

the computation of the 2-D DWT using separable approach, in which the computation is 

performed by two blocks, referred to as Subcell-1 and Subcell-2. Subcell-1 employs 

parallel multiplication units and adders for row-wise filtering operation,  whereas 
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Subcell-2 employs one delay cell and a systolic array of multiplication and adder units for 

column-wise operation. 
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Figure 2.16:  A single-processor architecture for the 2-D DWT computation [49]. 
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Figure 2.17:  An architecture proposed by Uzun and Amira [50] for the 2-D DWT 

computation using 9/7-tap filters. 
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                                                            (c) 

Figure 2.18:  An architecture proposed by Meher et al. [51] for the 2-D DWT 

computation using separable approach. (a) Top-level architecture. (b) Structure of 

Subcell-1. (c) Structure of Subcell-2. 

 

(b) Parallel-processor Architectures 

In the category of parallel-processor architectures, Chakrabarti and Mumford [57] 

have proposed a four-processor architecture, as shown in Fig. 2.19, in which Filter Hor 1 

performs the horizontal filtering operation of the resolution level 1=j , Filter Ver 1 and 

Filter Ver 2 perform, respectively, the vertical lowpass and highpass filtering operations 

of the resolution levels ,...,3,2,1=j  and Filter Hor 2 performs the horizontal filtering 

operations of the resolution levels ...,3,2=j . In this architecture, since the amounts of 

computations assigned to the four processors are not proportional to the amount of 
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hardware employed by them, the architecture has drawback of having low hardware 

utilization. 
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Figure 2.19:  A 2-D DWT architecture proposed by Chakrabarti and Mumford [57]. 

 

The architecture [58] shown in Fig. 2.20 is another example of parallel-processor 

architecture for the 2-D DWT computation, in which two processors employing a poly-

phase decomposition technique are used for row-wise filtering operation, and four other 

processors employing a filter coefficient folding technique are used for column-wise 

filtering operation. The architecture has a high design complexity, since the parallel 

processors have different structures. 
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Figure 2.20:  A parallel-processor architecture proposed by Wu and Chen [58] for the 2-D 

DWT computation. (a) Top-level architecture. (b) Structure of the transform module with 

six processors. 
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(c) Pipeline Architectures 

The architecture [64] shown in Fig. 2.21 is an example of a pipeline architecture for 

the computation of the 2-D DWT. In this architecture, four processors, RF1, CF1, RF2 

and CF2, form a pipeline, in which the first two processors are used to perform, 

respectively, the row-wise and column-wise operations of level 1 and remaining two to 

perform, respectively, the row-wise and column-wise operations of the remaining levels. 

The architecture has a large latency and requires large storage space. 

Processor
RF1

Input
Other output 
components

Lowpass-lowpass output 
component of level 1

Storage 1 Storage 2

Processor
CF1

Processor
RF2

Processor
CF2

MUX

Figure 2.21:  A pipeline architecture proposed by Jou et al. [64] for the 2-D DWT

computation. 

 

The architecture shown in Fig. 2.22 is another example of a pipeline architecture 

proposed by Mihi� [65]. In this architecture, a J-level 2-D DWT is performed using a 

pipeline of J2  processors, each employing a semi-systolic array of MAC cells for row- 

or column-wise filtering operation of a resolution level. The architecture has a very large 

latency, and it is not practical for the computation of the DWT with large number of 

resolution levels. 

The architecture of [66] (see Fig. 2.23) is yet another example of a pipeline 

architecture for the 2-D DWT computation. In this architecture, a pipeline of two stages, 

one for the computation of the first resolution level and the other for the computation of 
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all the remaining levels, and each employing L parallel processing blocks, are used. The 

design complexity of this architecture is high, since the structures of the processing 

blocks are different. Also, it has a high hardware resource complexity, since each 

processing block has a large number of MAC cells. 

Level-1 horizontal filter

Level-1 vertical filter

Level-2 horizontal filter

Level-2 vertical filter

Input
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Output components of 
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Lowpass-lowpass
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Output components of 
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Level-J vertical filter
Output components of 
level J

Level-J horizontal filter

 

Figure 2.22:  An architecture using a pipeline of 2J stages [65]. 
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Figure 2.23:  A two-stage pipeline architecture proposed by Marino [66]. (a) Top-level 

architecture. (b) The structure of the stage B1 for L= 6. 
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2.3 Summary 

In this chapter, starting with the mathematical definitions of the 1-D and 2-D wavelet 

transforms, discrete formulations have been provided for their practical computations. 

These discrete formulations are seen to follow a binary-tree structure for the computation 

of the 1-D DWT and, depending on the separable or non-separable approaches, a binary-

tree or quadtree structures for the computation of the 2-D DWT. For the purpose of 

reviewing the existing architectures for the computation of the 1-D and 2-D wavelet 

transforms, they have been classified as single-processor, parallel-processor or pipeline 

architectures.  A number of architectures from the literature in each of the categories, 

both for the 1-D and 2-D DWT computations, have been briefly reviewed. It has been 

seen that whereas the architectures in the single-processor and parallel-processor 

categories are efficient in terms of the speed and employment of hardware resources, 

respectively, the pipeline architectures are a good compromise between hardware 

resource complexity and speed. 
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Chapter 3   

A Scheme for the Design of Pipeline Architectures 

for 1-D Discrete Wavelet Transform 
 

 

In Chapter 2, a number of pipeline architectures [61]−[63] for the computation of the 

1-D discrete wavelet transform were briefly reviewed. These architectures employ a large 

number of pipeline stages or utilize a large number of MAC cells to perform the filtering 

operations of the stages, and thus, have high complexity in terms of hardware resources 

[61], [62] or large latency [63]. In other words, the speed provided by these architectures 

is not commensurate with the hardware resources employed by them, The reason for 

these drawbacks is that the schemes used for the development of these architectures have 

not fully exploited certain characteristics inherent in the discrete wavelet transform. 

In this chapter, a scheme for design of pipeline architectures for a fast computation of 

the DWT is proposed [131]−[133]. The goal of fast computation is achieved by 

minimizing the number and period of the clock cycles. The main idea in minimizing 

these two parameters is to optimally distribute the task of the DWT computation among 

the stages of the pipeline, and to maximize the inter- and intra-stage parallelisms of the 
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pipeline by synchronizing the operations of the stages optimally and by utilizing the 

available hardware resources judiciously. 

The chapter is organized as follows. In Section 3.1, a matrix formulation for the 1-D 

DWT computation is presented. In Section 3.2, a study is undertaken to determine the 

number of stages in the pipeline to optimally assign to them the task of the 1-D DWT 

computation. Based on this study, in Section 3.3, a scheme for the design of a pipeline 

architecture is developed. In Section 3.4, the performance of the pipeline architecture for 

the DWT computation using the proposed design scheme is assessed and compared with 

that of other existing architectures. A specific example of designing an architecture for 

the DWT computation is also considered and the resulting architecture is simulated and 

implemented on an FPGA board in order to demonstrate the realizability and validity of 

the proposed scheme. Section 3.5 summarizes the work of this chapter by highlighting 

the salient features of the proposed design scheme and the resulting pipeline 

architectures. 

 

3.1 Formulation of the 1-D DWT Computation 

3.1.1 Matrix Formulation 

The 1-D DWT of a signal is computed by performing the filtering operation 

repeatedly, first on the input data and then on the LL data after decimating it by a factor 

of two for the successive resolution levels. The filtering operation uses a quadrature 

mirror filter bank with lowpass and highpass filters to decompose the signal into lowpass 

and highpass subband signals, respectively. The transform can be expressed using a 

matrix formulation in order to provide a better insight into the underlining operations of 
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the DWT as well as to facilitate the proposed scheme for the design of the architecture for 

its computation. 

Let the signal be denoted as T
121 ],,,,[ NN ssss −= �S , where N, the number of samples 

in the input signal, is chosen to be 2J, J being an integer. Assume that hi and gi (i = 

0,1,…,L−1) are the coefficients of the L-tap lowpass and highpass filters, respectively. 

Then, by expressing the transform matrices for the lowpass and highpass computations at 

the jth (j=1,2,…,J) level decomposition as 
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respectively, where both H(j) and G(j) have a size of (N/2j)× (N/2j-1), the outputs of the 

transform at the jth level can be computed from the following: 
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where C(j) and W(j) represent the column vectors of size N/2j and consist of lowpass and 

highpass output samples, respectively, at the resolution level j, with C(0)=S. It is clear 

from (3.1a) and (3.1b) that the lengths of the filters and the size of the input samples 

control the number of non-zero entries of the matrices involved, which in turn, 

determines the complexity of the DWT computation. If the decomposed signals are 
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required to be reassembled into the original form without loss of information, the lowpass 

and highpass filters must satisfy the perfect reconstruction condition given by 

iL
i

i hg −−
+−= 1

1)1(            (3.3) 

A border extension of the input signal becomes necessary for the processing of the 

samples on or near the border of a finite-length signal. There are generally three ways by 

which the border can be extended in a DWT computation, zero padding, symmetric 

padding and periodic padding [134]. Even though from the point of view of hardware 

cost, zero padding is the least expensive, the periodic padding is the most commonly used 

method for border extension, since it allows a precise recovery of the original signal at or 

near the border. This method extends the original sequence S by appending it with its first 

L−2 samples as 

T
231121 ],,,,,,,,[ −−−= LLNN sssssss ��pS        (3.4) 

Thus, in order to operate on the padded input sequence Sp, the transform matrices H(j) 

and G(j) have to be modified by appending each by additional 2−L columns. The elements 

of the appended columns in a row of a modified transform matrix assume a zero value, if 

all the filter coefficients already appear in the corresponding row of (3.1a) or (3.1b). 

Otherwise, the elements in the row are made to assume the missing values of the filter 

coefficients so that all the coefficients appear in that row of the modified transform 

matrix. 
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3.1.2 Reformulation of (3.2) 

It is seen from (3.1) that due to the decimation-by-two requirement of the DWT, 

entries in the successive rows of matrices H(j) and G(j), and therefore, in their modified 

versions, are shifted to right by two positions. This property can be utilized to decompose 

the arithmetic operations in (3.2) into two parts so that the operations in one part can be 

performed simultaneously with those of the other one. For this purpose, we now 

decompose each of the modified transform matrices H(j) and G(j) by separating the even 

and odd numbered columns of each matrix into two sub-matrices. The resulting sub-

matrices, taking into account the perfect reconstruction condition specified by (3.3), can 

be expressed as 
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in which the entries in the successive rows are shifted to right by only one position. With 

this decomposition of the transform matrices, the DWT computation as given by (3.2) 

can be reformulated as 
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where )( j
evenC  and )( j

oddC  are the two sub-vectors consisting of even and odd numbered 

samples, respectively, in the padded vector of C(j). 

It is seen from (3.6) that the operations in each of the two terms are identical, and 

also, they can be performed independently in parallel. Furthermore, in view of the 

structures of the decomposed transform matrices as given by (3.5), the filtering operation 

can be carried out by employing the conventional clocking mechanism used for 

implementing digital systems. 

 

3.2 Choice of a Pipeline for the 1-D DWT Computation 

In a pipeline structure for the DWT computation, multiple stages are used to carry out 

the computations of the various resolution levels of the transform. Thus, the computation 

corresponding to each resolution level needs to be mapped to a stage or stages of the 

pipeline. In order to maximize the hardware utilization of a pipeline, the hardware 

resource of a stage should be proportional to the amount of the computation assigned to 



 
 

40

the stage. Since the amount of computations in successive resolution levels of the 

transform get reduced by a factor of two, two scenarios can be used for the distribution of 

the computations to the stages of a pipeline. In the first scenario, the resolution levels are 

assigned to the stages so as to equalize the computations carried out by each stage, that is, 

the hardware requirements of all the stages are kept the same. In the second scenario, the 

computations of the successive resolution levels are assigned to the successive stages of a 

pipeline, on a one-level-to-one-stage basis. Thus, in this case, the hardware requirement 

of the stages gets reduced by a factor of two as they perform the computations 

corresponding to higher-level decompositions. 

Fig. 3.1 shows a stage-equalized pipeline structure, in which the computations of all 

the K=log2N levels are distributed equally among the M stages. The process of stage 

equalization can be accomplished by dividing equally the task of a given level of 

decomposition into smaller subtasks and assigning each such subtask to a single stage 

and/or by combining the tasks of more than one consecutive level of decomposition into a 

single task and assigning it to a single stage. Note that generally a division of the task 

would be required for low levels of decomposition and a combination of the tasks for 

high levels of decomposition. 

Input
of N=2K

samples
· · ·   Stage 1 Stage 2 Stage M

 

Figure 3.1:  Stage-equalized pipeline structure. 

 

In a one-to-one mapped structure, the computations of K resolution levels are 

distributed exactly among K stages, one level to one stage. In practical applications, a 

structure with less than K stages is used for the computation of a K-level DWT, as shown 
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in Fig. 3.2. In this structure, the computations of the first I−1 levels are carried out by the 

stages i=1, 2, ���, I−1, respectively, and those of the last K−I+1 levels are performed 

recursively by the Ith stage. The amount of hardware resources of a stage is one-half of 

that of its preceding one except for the Ith stage that has the same size as that of the 

preceding stage. 

Input
of N=2K

samples
· · ·  

Level 1 Level 2
Level
I-1

Stage 1 Stage 2 Stage
I-1

Stage
I

Levels
I to K

 

Figure 3.2:  A one-to-one mapped pipeline structure with I (I<K) stages. 

 

The structures of Fig. 3.1 and Fig. 3.2 can be used to perform the computations of 

multiple levels of decomposition. The computation of each level is performed as an L-tap 

FIR filtering operation by summing the L products of the input samples and the filter 

coefficients, as described by (3.2). Generally, one MAC cell is used to carry out one 

multiplication of an input sample by a coefficient followed by one accumulation 

operation. In order to perform an uninterrupted L-tap filtering operation with easy control, 

one can thus use a network of L basic units of such a MAC cell. Since all the resolution 

levels perform L-tap filtering operations, it would be desirable that each resolution level 

performs its filtering operation using this same type of MAC-cell network. However, in 

the context of one-to-one mapped pipeline structure of Fig. 3.2, in which the requirement 

is that the hardware resource should get reduced by a factor of two from one stage to the 

next, the use of the same MAC-cell network for all the stages would not be possible 

unless the pipeline has only two stages.  In other words, the first stage performs the  

level-1 computation and the second stage performs the computations corresponding to all 
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the remaining levels recursively. In the context of a stage-equalized pipeline structure of 

Fig. 3.1, where the requirement is that all the stages should have the same hardware 

resource, the same MAC-cell network can be used easily for all the stages. However, in 

this case, the same amount of the computations cannot be assigned to all the stages that 

are based on the same MAC-cell network unless again there are only two stages in the 

pipeline. 

In a situation of a pipeline of more than two stages, each based on a network of L 

MAC cells, one cannot achieve a resource-efficient architecture. Thus, for either pipeline 

structure, i.e., the one-to-one mapped or stage-equalized, a two-stage pipeline would be 

the best choice in terms of the hardware efficiency as well as from the standpoint of 

design and implementation simplicity. Note that the two-stage version of either pipeline 

structure is the same and it is shown in Fig. 3.3. An additional advantage of the two-stage 

pipeline is in the design flexibility of a MAC-cell network where the multiplication and 

accumulation operations can be furnished together by using logic gates. These logic gates 

could be arranged into more efficient arrays yielding a shorter propagation delay for the 

MAC-cell network. Based on the above discussion, it seems logical to use the two-stage 

pipeline structure of Fig. 3.3 for the design and implementation of an architecture for the 

1-D DWT computation. The next section is concerned specifically with a detailed design 

of the architecture. 

Stage 1 Stage 2

Levels 2 to JLevel 1  

Figure 3.3:  Pipeline structure with two stages. 
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3.3 Design of the Architecture 

In the previous section, we advocated a two-stage pipeline structure for the 

computation of the 1-D DWT. The structure, whose development is constrained by the 

nature of the DWT computation, is capable of optimizing the use of hardware resources. 

In this two-stage structure, stage 2 performs by operating on the data produced by stage 1 

as well as on those produced by itself, and therefore, the operations of the two stages 

need to be synchronized in a best possible manner [133]. In this section, we present the 

design of the proposed two-stage pipeline architecture focusing on data synchronization, 

the details of the various components comprising the stages, and inter and intra stages 

data flow. 

 

3.3.1 Synchronization of Stages 

In order to develop a suitable synchronization scheme, consider the timing diagram 

for the relative operations of the two stages shown in Fig. 3.4, where t1 and t2 are the 

times taken individually by stage 1 and stage 2, respectively, to carry out their operations, 

and ta and tc are the time spans during which stage 1 or stage 2 alone is operational, and tb 

is the overlapped time span for the two stages. Our objective is to minimize ta+tb+tc. 

Since the operation of stage 1 is independent of that of stage 2, it can continue its 

operation continuously until the computation of all the samples of resolution level 1 are 

computed. In Fig. 3.4, the slots shown for stage 1 correspond to N/2 samples of resolution 

level 1 that it has to compute. The presence of continuous slots indicates that stage 1 can 

continue its operation uninterruptedly without having any idle slot. Thus, the minimal 

possible value for t1 is equal to N�Tc/2, where Tc is the time required to compute one 
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output sample. If J=log2N and we assume that the DWT operation has to be carried out 

for all the J levels, then the number of samples that stage 2 has to compute is N/2−1. 

Thus, the lowest bound for t2 is (N/2−1)Tc. Now, by choosing a value of tc equal to its 

lowest bound, if one can show that t2=t1−Tc (i.e. stage 2 does not have any idle slot during 

t2), then indeed not only ta+tb+tc will be minimized but one also achieves its lowest bound. 

Now, we will show that for the proposed architecture this is so possible. 

Stage 2

Stage 1

ta

tctb

t2

t1

�  �  �

 

Figure 3.4:  Timing diagram for the operations of two stages. 

 

Let us first determine the lowest bound on tc. Since the last sample of level 1 as 

produced by stage 1 becomes available only at the end of tb, a sample at level j≥2 that 

depends on this last sample directly or indirectly could not possibly be computed during 

the time span tb, and therefore, has to be computed during tc. Assume that (i) during tc we 

compute nc samples of levels 2 and higher, which could not possibly be computed during 

tb, and (ii) other output samples necessary for computing those nc samples have already 

been computed during tb. The lowest bound on tc is ncTc. Therefore, in order to compute 

this bound, we need to determine the value of nc. The last sample of level 1, which is 

computed at the end of tb, is )1(
2/NC . There are k=�L/2� output samples at level 2 that depend 

on this sample and they are given as ,)2(
iC  i=
(2J−1−L+2)/2�,…,2J−2, where �x� and 
x� 

represent the smallest integer larger than or equal to x and the largest integer less than or 
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equal to x, respectively. Next, at level 3, there are �(k+L−2)/2� output samples that 

indirectly depend on )1(
2/NC and they are given as ,)3(

iC i=
(2J−2−k−L+4)/2�,…,2J−3. Similarly, 

we can determine the numbers and samples that depend indirectly on )1(
2/NC for other 

levels. Table 3.1 givens the listing of the numbers and samples of levels from j=2 to J 

that depend on )1(
2/NC . After adding the expression in the third column of this table and 

some manipulation, it can be shown that the value of nc can be obtained as 
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In Fig. 3.4, ta is chosen to be (nc+1)Tc. Next, we explore the possibility of developing 

a synchronization scheme for computing all the output samples in the context of Fig. 3.4 

with the objective that stage 2 does not create any idle slots. In developing such a scheme, 

one has to take into consideration, the requirement of the underlying filtering operation of 

Table 3.1:  Indices and numbers of samples computed in time tc 
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the wavelet computation. This filtering operation imposes the constraint that the first 

output sample at level j cannot be computed until L samples at level j−1 have already 

been computed and each of the subsequent samples at level j cannot be computed unless 

two new samples at level j−1 have already been computed. Note that this requirement of 

the filtering operation imposes a constraint on the operation of stage 2 only, since stage 1 

operates sequentially and unilaterally to compute the level-1 output samples only. Under 

this constraint, we now give three steps of the synchronization that govern the 

computation of the output samples at various resolution levels by stage 1 and 2. 

Step 1: Stage 1 operates continuously to compute the level-1 output samples 

sequentially. 

Step 2: Stage 2 starts the computation of level-2 samples beginning at the time 

slot (nc+2). 

Step 3: (a) When stage 2 is computing an output sample at the lowest incomplete 

level j�2. After completing the computation of the present sample at this 

level stage 2 moves on to the computation of a sample at the lowest higher 

level, if the data required for the computation of this sample have become 

available; otherwise stage 2 continues with the computation of the next 

sample at the present level j. 

(b) When stage 2 is computing an output sample at a level other than the 

lowest incomplete level. After completing the computation of the present 

sample, stage 2 moves its operation to the lowest incomplete level. 
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The rationale behind Step 3(a) is that moving the operation of stage 2 to a higher 

level allows more data from level 1 as produced by stage 1 to become available, since the 

availability of the output samples of level 1 is crucial for the computation of the samples 

at higher levels. On the other hand, the rationale behind Step 3(b) is that there are always 

more samples to be computed at lower levels than that at higher levels, and therefore, 

more time needs to be spent in computing lower level samples.  

The nature of the filtering operation coupled with the decimation by a factor of 2 

requires that, in order for stage 2 to compute a level-2 sample at slot m, stage 2 needs L 

level-1 samples computed by stage 1 at slots i+1, i+2,…, i+L (i<m−L), of which the 

samples produced at the last two slots must not have been previously used for the 

computation of level-2 samples. If stage 2 can meet this requirement during the entire 

time span tb, then it can continue its operation uninterruptedly without creating an idle 

slot. We will now show that, based on the steps presented above, stage 2 would indeed be 

able to meet this requirement. For this purpose, consider an algorithm, Algorithm 1, 

which synchronizes the operation of stage 2 during the time span tb. In this algorithm, we 

have made use of two counters, namely p and q. The counters p and q represent the total 

number of samples having been computed at level 2 and that at the levels higher than 2, 

respectively, at a particular instant of stage-2 operation. Note that at the time that stage 2 

starts its operation, stage 1 has already produced nc+1 level-1 samples. Since a length-L 

filtering operation would require L input samples and (nc+1)>L, stage 2 not only can start 

the computation of level-2 samples, but it can continue the computation of the succeeding 

level-2 samples at least for some time. Since the computation of each level-2 sample 

makes use of two new level-1 samples during the time in which only one level-1 sample 
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is produced by stage 1, the number of available level-1 samples is reduced by one after 

the computation of each level-2 sample. However, since stage 2, following Step 3 of the 

synchronization, is allowed to compute the samples at levels higher than 2 without 

making use of the samples from level 1, the reservoir of level-1 samples is increased by 

one after the computation of one such a higher-level sample. Therefore, at a particular 

time, there are nb=nc+1−(p−q) level-1 samples available to be used by stage 2 for the 

computation of the succeeding level-2 samples. Since p increases faster than q, p−q 

reaches its maximum value at the time slot just before the end of the time span tb. At this 

time slot, 
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Since in practice the filter length L is such that L<2J−1−1, the above inequality can be 

written as 
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Thus, the lowest bound on nb is greater than or equal to L. Therefore, during the entire 

course of the time span tb, there will always exist sufficient number of samples available 

to stage 2 for it to continue its level-2 computation in the frame work of Algorithm 1. In 
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other words, during the time span tb, stage 2 would never have to cease its operation for 

the lack of availability of at least 2 new level-1 samples, that is, the block in Algorithm 1 

that introduces a unit delay Tc will never be used during the execution of the algorithm. 

 

Algorithm 1: Synchronizing the operation of stage 2 during tb 

Initialize p  0, q  0 

While p + q � 2J−1 − nc 

If (at least 2 new samples available from level 1) then 

Compute a new sample at level 2 

p  p + 1 

If (enough data available from the lowest level k � 2) then 

Compute a new sample at level k + 1 

q  q + 1 

End if 

Else 

Unit delay Tc 

End if 

End while 

End algorithm 

 

Stage 2

Stage 1

Level 7
Level 6
Level 5
Level 4
Level 3
Level 2

ta tctb

Figure 3.5:  Synchronization scheme for a 128-point (J=7) DWT computation using 

length-4 (L=4) FIR filter. 
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We now consider an example to illustrate the synchronization scheme that has been 

presented above. For this purpose, we consider a 128-point (J=7) DWT computation 

using 4-tap (L=4) FIR filters. The synchronized operation of the two stages is shown in 

Fig. 3.5, in which each rectangle represents a time slot during which a lowpass output 

sample is produced. Stage 1 starts the computation of the first level-1 output sample at 

slot 1 and continuous its operation until slot 64 when the computation of the 64th level-1 

output sample is completed. Equation (7) can be used to obtain the value of nc as 13. 

Thus, at the slot number (nc+2)=15, stage 2 starts the computation of the first level-2 

output sample. At this point, the reservoir of level-1 available samples contains 

(nc+1)=14 samples. Note that the number of samples in this reservoir decreases by one 

sample as one new level-2 sample is computed and it increases by one as one sample at a 

level higher than 2 is computed. However, the general trend is a decline in the number of 

available level-1 samples from 14 samples at slot 15 to 4 samples at slot 65 when the 

computations of all level-1 samples are completed. At slot 66, an output sample at level 4 

is computed, since the required samples from level-3 have become available for its 

computation. After this computation, stage 2 returns its operation to the computation of 

the last level-2 output sample. Note that for the computation of this last level-2 sample, 

two padded samples would be required, since at this time no level-1 output sample is 

unused. Beyond this point, all the remaining samples from level 3 to level 7 are computed 

using Step 3 of the synchronization. 
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3.3.2 Design of Stages 

Since in the stage-equalized architectures, the two stages together perform the DWT 

computation with amount and the type of computations of the individual stages being the 

same, each of the two stages can use identical processing units. However, the control 

units to be employed by the stages have to be different, since, as seen from Algorithm 1 

of the previous subsection, the operation of stage 1 is autonomous, whereas stage 2 must 

always synchronize its operation with that of stage 1. Based on this algorithm, the design 

of the control unit used by stage 2 would have to be a bit more involved than that of the 

control unit used by stage 1. Obviously, in order to synchronize the operation of stage 2 

with that of stage 1, a buffer has to be used to store the lowpass output samples from the 

two stages. Fig. 3.6 gives a block diagram incorporating all these requirements for the 

design of the proposed architecture. The two processing units are referred as PU1 in stage 

1 and PU2 in stage 2. Note that in this architecture, the highpass samples from PU1 and 

PU2 are outputted directly. 

C(1)

Stage 2

Buffer
Input

Stage 1

Control
Unit 1

PU2PU1

Output

Control
Unit 2

W(j)
C(0)

W(1)

C( j )

 

Figure 3.6:  Block diagram of the two-stage architecture. 
 

In each stage, the processing unit by employing L multiplication-and-accumulation 

(MAC) cells network performs an L-tap filtering operation and at each clock cycle 
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generates a total of L product terms and their sum. Since, normally, the interval between 

the two consecutive input samples must not be smaller than the delay of a MAC cell, the 

maximal allowable data rate of the input to the processing unit would be determined by 

this delay. However, if the L-MAC-cell network is organized into m sub-networks 

operating in parallel, the input samples can be applied to these sub-networks in an 

interleaved manner. The interval of the two consecutive input samples can thus be 

shortened by a factor m. To this end, considering the problem at hand in which a two-

subband filtering operation is performed and for each consecutive resolution level the 

input data is decimated by a factor of 2, the L MAC cells can be conveniently organized 

into a pair of even and odd filter blocks. These even and odd filter blocks, which receive 

the even and odd numbered input samples, respectively, employ L/2-MAC-cell networks, 

and each produces only L/2 product terms and their sums. The partial sums from the two 

networks are required to be added in an accumulation block by using a carry propagation 

adder (CPA), as shown in Fig. 3.7. Since the delay of the accumulate block is comparable 

to that of the L/2-MAC-cell network, it is useful to pipeline them for parallel computation. 

Since the high-pass operation differs from that of the low-pass operation only in 

reversing the sign of the even-numbered coefficients, the proposed organization of the 

processing unit would allow the filter block to use the same filter coefficients simply by 

introducing a sign inversion block into the even filter block. 



 
 

53

As discussed earlier and seen from Fig. 3.6, all the output data must be synchronized 

in accordance with Algorithm 1. This synchronization process is facilitated by 

introducing in stage 2 a buffer, which stores output data from the two stages and provides 

input data to stage 2. According to Step 2 of the synchronization scheme, during the time 

span ta, the number of samples that need to be stored for the operation of stage 2 

increases until nc+1. However, this number will not exceed nc+1 during the time spans tb 

and tc, since the number of samples newly produced by stage 1 and 2 is equal to or less 

than that consumed by stage 2. Thus, the minimum capacity of the buffer for the 

operation of stage 2 is nc+1 registers. Since the number of output samples at a level that 

would be needed to compute an output sample at the next higher level will not exceed the 

filter length L, the buffer, therefore, is divided into k=
(nc+1)/L� channels, as shown in 

Fig. 3.8. Each channel consists of L shift registers except channel k that only has (nc+1 
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Figure 3.7:  Block diagram of the processing unit for L-tap filtering computation 

assuming L to be an even number. 
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mod L) registers, where (a mod b) is the remainder on division of a by b. Channel 1 is 

used for storing only the level-1 samples produced by PU1, whereas channel j=2,...,k for 

the level-j samples during tb and tc, and would also be used for storing the level-1 samples 

during ta. Note that channel 2 is also chosen to store the samples of the remaining levels 

j≥k since the time slot that all the level-2 samples have been consumed. 

L

(nc+1 mod L)

Channel 1

Channel k

· · ·

· · ·

Channel 2

Shift 
register

To 
PU2MUX

MUX

. . . 

From 
PU2

From 
PU1

... 

· · ·

DEMUX

... 

 

Figure 3.8:  Structure of the buffer. 
 

 

3.3.3 Design of L/2-MAC-cell Network 

In the processing unit shown in Fig. 3.7, each physical link from a given input bit to 

an output bit of an L/2-MAC-cell network gives rise to a channel or data path having a 

delay that depends on the number and the types of operations being carried out along that 

path [133]. Thus, it is crucial to aim at achieving the shortest critical data path when 

designing an L/2-MAC-cell network for our architecture. In order to have a better 

appreciation of the operations of an L/2-MAC-cell network, let us consider an example of 

the filtering operation of one such network with L/2=2. Let us assume that the input 

samples and the filter coefficients have the wordlengths of 6 and 3, respectively. Each 
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MAC-cell network has 6 partial products, with a total of 36 bits, which can be produced 

in parallel, as shown in Fig. 3.9(a). Our objective is to design a MAC-cell network, in 

which the bits of the partial products are accumulated in such a way as to optimize the 

delays of the data paths from the individual bits of the partial products to the output bits 

of the MAC-cell network. 

Even though all the bits of the partial products as given by the array shown in Fig. 

3.9(a) are available simultaneously, they cannot be used in parallel to produce 

simultaneously all the bits of an output sample. The reason for this is that the processes of 

accumulation of the bits in each column of the array of the partial products have to be 

carried out bit-wise and at the same time one has to take care of the propagations of the 

carry bits. In other words, the accumulation of the partial products has to be carried out in 

a certain sequence. Thus, the task of accumulation can be divided into a sequence of 

layers such that the operations of the first layer depend only on the partial products bits 

and those of the succeeding layers depend on the partial product bits not yet used as well 

as on the bits of the results of the preceding layers. In order to meet our goal of 

minimizing the critical path from a partial product bit to a bit of the output sample, we 

can organize the layers of the MAC-cell network that would carry out the accumulation 

of the partial products based on the following guiding principle. Minimize the number of 

layers while minimizing the delay of each layer. The number of layers can be minimized 

by assigning to each layer the maximum number of such tasks that can be performed 

independent of each other in parallel. The accumulation task in each layer can be 

performed by using full-adder (3:2) and double-adder (2×2:3) modules, as shown in Fig. 

3.9(b). The two types of module are chosen, since (i) their delays are about the same so 
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that the delay of any layer can be made to be equal to this delay irrespective of whether 

the layer uses one type or two types of modules, and (ii) the two modules can be used 

together in such a way so that they produces of a smaller number of the propagating carry 

bits, and therefore, their combined use helps in reducing the number of layers. 

With the choice of the combination of the full-adders and double-adders, the first 

layer can be formed by using as many modules as necessary with the maximum number 

of partial product bits being utilized as 3-bit or 4-bit inputs to the respective modules. 

Scanning the partial product array from right to left, a maximum number of bits of this 

array are first used as inputs to as many full-adder modules as necessary, since in 

comparison to a double-adder this module is more efficient in consuming the bits of the 

input array. In this process, whenever in a column (i) only two bits of the partial product 

array are left unused, these two bits along with a pair of bits from the neighbouring left 

column of the array are used as inputs to a double-adder modules, and (ii) only one bit of 

the partial product array is left unused, then this bit is used in the next layer for 

accumulation. Note that the case of using a double-adder also helps in propagating two 

carry bits, one internal and the other external to the adder, to the left within the same time 

delay as that of the full-adder. The next layer can then be formed again by using as many 

modules as necessary with inputs from the partial product bits, still unused, and the sum 

and carry output bits from the previous layers being utilized in a carry-save manner. This 

process can be continued until after the last layer when all the bits of an output sample 

are produced. 
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Based on the principles and the procedure enunciated above, we can now give 

formally an algorithm, Algorithm 2, which carries out the organization of a MAC-cell 

network, given L/2 input samples and L/2 filter coefficients. Fig. 3.9(c) gives an 

illustration of the organization of the adder modules into three layers of a MAC-cell 

network for the example considered earlier. It is seen from this figure that the delay of the 

critical path is equal to that of three full-adders for this particular example. 

 

Two 6-bit 
samples

Two 3-bit 
coefficients

Array of partial product 
bits

�

�

Carry  Sum1 Sum2

Double-adder 
(2�2:3)

Full-adder (3:2)

Carry   Sum

Partial 
product bit
Sum bit
Carry bit

Output bits to next stage

Layer2

Layer3

Layer1

Array of partial 
product bits

(a)

(b)

(c)  

Figure 3.9:  A two-dimensional array of bit-wise additions. (a) Formation of an array of 

partial products. (b) Two types of bit-wise adders. (c) A layered organization of bit-

wise addition using the two modules in (b). 
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Algorithm 2: Organizing the bit-wise modules of the MAC-cell network 

Initialize an NI(k)×MI array AI of partial product bits from the L/2 X-bit samples 

and L/2 Y-bit filter coefficients, where MI=X+Y−1 and 

I
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While NI(k) ≥ 3 for any 1 ≤ k ≤ MI  

Initialize the elements of an NO(k)×(MI+1) array AO by NO(k) ← zeros for 

k=1,…,MI +1 

For every column i=MI ,…,2,1 

While NI(i) ≥ 3 

Assign 3 bits, AI[NI(i)−  −,i], AI[NI(i)−  −,i], AI[NI(i)−  −,i], as 

inputs to a full-adder 

Append one sum bit to AO[++NO(i),i], and one carry bit to 

AO[++NO(i−1),i−1] in AO 

End while 

If NI(i)=2 and NI(i−1) ≥ 2 then 

Assign 2×2 bits, AI[NI(i−1)− −,i−1], AI[NI(i−1)− −,i−1],  

AI[NI(i)− −,i], AI[NI(i)−  −,i], as inputs to a double-adder 

Append two sum bits to AO[++NO(i),i], AO[++NO(i−1),i−1], and 

one carry bit  to AO[++NO(i−2),i−2]  in AO 

Else 

Carry forward unused bits AI[NI(i)− −,i] to AO[++NO(i),i] in AO 

End if 

End for 

AI ←←←← AO 

End while 

End algorithm 
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Using Algorithm 2, a generalized structure for the MAC-cell network, as shown in 

Fig. 3.10, can be generated with L/2 X-bit samples and L/2 Y-bit filter coefficients as 

inputs to the network. Layer0 produces a total of X�Y�L/2 partial product bits. The 

accumulations of these partial product bits are carried out successively by a set of layers 

of adder modules. A variable size array is used as input to each layer. This array initially 

contains only the partial product bits, and for successive layers, it contains the sum and 

carry bits from the previous layers and the partial product bits still unused. An input to a 

layer that consists of a partial product bit or a sum bit is shown in the figure by an arrow 

going down vertically into the layer, whereas an input that consists of a carry bit is shown 

by an arrow going down leftward. The MAC-cell network has a total of 

Z=�log3/2[min(X,Y)�L/4]� layers, which is the minimum number of layers with the choice 

of using the maximum number of full-adders followed by, if necessary, the double-adders 

in each layer. The number of adder modules used for each layer progressively decreases 

from Layer0 to LayerZ. The output bits of the MAC-cell network are then used by the 

accumulation block of the processing unit to produce the final sum. In above design of 

the MAC-cell network, optimization of its critical path is carried out by incorporating and 

arranging the multiply and accumulate operations into multiple layers. This leads to a 

network that has a critical path with a smaller delay than the delay of the MAC cell used 

in DSP processors, in which the delay of the critical path is simply the sum of the delays 

associated with a multiplier and an accumulator. The critical path of the MAC-cell 

network could be shortened further by encoding the input data to the MAC-cell network 

using booth encoders. Thus, the delay of the MAC-cell network is reduced by making a 

smaller number of carry bits to propagate through the MAC-cell network. However, such 
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an improvement can be achieved with an expense of additional hardware resources to be 

used for encoders. 

 

 

3.4 Performance Evaluation and FPGA Implementation 

In order to evaluate the performance of the architecture resulting from the proposed 

scheme, we need to make use of certain metrics that characterize the architecture in terms 

of the hardware resources used and the computation time. The hardware resources used 

for the filtering operation are measured by the number of multipliers (NMUL) and the 

number of adders (NADD), and that used for the memory space and pipeline latches is 

measured by the number of registers (NREG). The computation time, in general, is 

technology dependent. However, a metric, that is independent of the technology used but 

can be utilized to determine the computation time T, is the number of clock cycles (NCLK) 

consumed from the instant the first sample is inputted to the last sample outputted 

assuming a given clock cycle period, say unity, as the latency of a MAC cell. 
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Figure 3.10:  Structure of the L/2-MAC-cell network. 
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For a J-level DWT computation of an N-sample sequence using L-tap filters, the 

expressions for the metrics mentioned above for various architectures are summarized in 

Table 3.2. Assuming that the number of samples N is much larger than J�L, it is seen from 

the table that compared to the architecture of [61], all the other architectures, including 

the proposed one, require approximately twice the number of clock cycles, except the 

architecture of [43], which requires four times as many clock cycles. This performance of 

[61] is achieved by utilizing the hardware resources of adders and multipliers that is four 

times that required by the architecture of [43] and twice that required by any of the other 

architectures. However, if the value of J�L cannot be neglected in comparison to that of N, 

the values of N, J and L should be taken into consideration while comparing the 

architectures in terms of NCLK. In this regard, only for the proposed architecture and the 

architecture of [62], NCLK is independent of the filter length with the proposed 

architecture giving the lowest value of NCLK for a given N. The proposed architecture 

requires the number of registers that is at least 20% less than that required by any of the 

Table 3.2:  Comparison of various architectures 

Architecture NMUL NADD NREG NCLK 

Parallel [53] 2L 2L−2 JL+4L N+JL 

Systolic [43] L L−1 2JL+L+2 2N+2JL 
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other architectures when the filter length L is large. It should be noted that approximately 

20% of the hardware resource comprises registers. 

Since the area of the circuit for the DWT computation depends on the filter length L 

and the total number of samples N, it would be useful to have a measure of the area of the 

circuit as functions of L and N. Only the proposed architecture and those of [53] and [62] 

are used for this study, since the numbers of multipliers and the numbers of adders for 

these architectures are the same. Thus, any difference in the areas of the three 

architectures could be accounted for due mainly to the difference in the number of the 

registers used by each of the architectures. As seen from Table 3.2, the number of 

registers for the architecture of [53] is (J+4)L and that for the architecture of [62] is 

approximately JL+2J+2L=(J+2)L+2J. However, the number of registers for the proposed 

architecture not only depends directly on the filter length L but also indirectly on L and N 

through the parameter nc. These dependencies are intuitively obvious from the fact that as 

the filter length or the number of samples increases, the starting point of stage 2 gets 

more delayed. In other words, nc is increased. However, it is seen from this figure that the 

dependence of nc on N is relatively much more non-linear than its dependence on L. The 

results of Fig. 3.11 can be used to obtain a measure of the area of the proposed 

architecture as functions of L and N. We estimate the areas of the proposed architecture 

along with that of the other two architectures under the assumption that the ratio of areas 

of one multiplier, one adder and one register is 12:3:1. The plots of the estimates of the 

areas as functions of L and N are shown in Fig. 3.12. It is obvious from this figure that 

area of the proposed architecture is, in general, lower than those of the other two 

architectures. The lower area of the proposed architecture can be attributed due mainly to 
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the presence of the parameter nc in its expression for the NREG. Recall that nc is a 

parameter that we minimized in the design of the proposed architecture in order to 

maximize the parallelism between the two stages, and a lower value of nc, in turn, results 

in smaller number of registers required to store the results of the operations of stage 1 

before the operation of stage 2 starts. 
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Figure 3.11:  Estimated values of nc. (a) nc versus filter length L (N=28), and (b) nc 

versus signal length N (L=16). 
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Figure 3.12:  Estimated areas of the three architectures. (a) Area A versus filter length L 

(N=28), and (b) area A versus signal length N (L=16). 
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Considering the clock cycle period Tc as the delay of the MAC cell used by an 

architecture, the computation time can be obtained as T=NCLKTc. Note that the reciprocal 

of Tc is simply the throughput of the architecture assuming that one sample is inputted 

during each clock cycle. Using T, one can determine the area-time complexity, AT, where 

the area, A, mainly comprises the areas of the multipliers, adders and registers. In order to 

evaluate the performance of the architectures in terms of Tc and AT, we consider an 

example of designing a circuit for the DWT computation where the sample size N=128 

and the number of the resolution levels J=7. We use Daubechies 6-tap filter (L=6) as 

analysis filters and the sample and filter coefficient wordlengths are taken as 8 bits. The 

carry propagation adder of the processing unit utilizes the structure of a combination of 

carry-skip and carry-select adders [135]. The registers are designed using D-type flip-

flops (DFF). All the modules, such as partial products generator, DFF, full-adder, double-

adder, multiplexer and demultiplexer, used in the proposed architecture are designed by 

using 0.35-micron CMOS technology and simulated by using HSpice to obtain the 

delays. Note that these same modules are also used to evaluate the performance of all the 

other architectures. Table 3.3 shows the values of the clock cycle period and the area-

time complexity for the various architectures. It is seen from this table that the proposed 

architecture has significantly smaller value of the clock cycle period compared to that of 

all the other architectures. The proposed architecture has the highest throughput of 138 

MBPS (megabytes per second) and the lowest complexity in terms of area-time and area-

(time)2, among all the architectures considered. 

In order to estimate the power consumption of the proposed architecture, an example 

of the proposed architecture is constructed for a 7-level DWT computation of 8-bit 
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samples using 6-tap filters and simulated at a clock frequency of 138 MHz using 

Synopsys Power Compiler. The resulting power consumption values are 154.2 mW and 

67.6 mW using 0.35-micron (VDD = 3.3 V) and 0.18-micron (VDD = 1.8 V) technologies, 

respectively. 

In order to have a fair comparison of the power consumption performance of 

different architectures, the circuit complexities and the technologies used for the circuit 

design of the architectures under consideration must be the same. In this regard, estimates 

of the power consumption for the architectures listed in Table 3.3 are either unavailable 

or, if available, the underlying architectures have been designed with substantial 

differences in the circuit complexities and process technologies. Despite this difficulty in 

carrying out a fair comparison of power consumption of architectures, we compare the 

estimated power consumption of the proposed architecture with that given in [136]. The 

architecture of [136] is also a pipeline architecture that uses the same filter core as that 

used in [55] of Table 3.3. In [136], an example of the architecture using 9/3 filters and 9-

bit samples has been constructed, and simulated for an operation at 100 MHz clock 

frequency using a 0.35-micron technology. The resulting power consumption figure is 

325 mW. This value of power consumption is more than twice the value of 154.2 mW 

Table 3.3:  Evaluation of various architectures 

Architecture Tc (ns) A�T A�T2 

Parallel [53] 17.8 243 4325 

Systolic [43] 11.8 141 1664 

Pipelined [61] 11.8 183 2159 

DRU [62] 10.2 117 1193 

IP core [55] 11.8 159 1876 

Proposed 7.2 62 446 
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obtained from the example of the proposed architecture in 0.35-micron technology, 

which is constructed by employing 6-tap filters operating on 8-bit samples at 138 MHz 

clock frequency. 

In order to verify the estimated results for the example of the DWT computation 

considered above, an implementation of the circuit is carried out in FPGA. Verilog is 

used for the hardware description and Xilinx ISE 8.2i for the synthesis of the circuit on 

Virtex-II Pro XC2VP7-7 board. The FPGA chip consists of 36×36 arrays with 11,088 

logic cells and it is capable of operating with a clock frequency of up to 400 MHz. The 

implementation is evaluated with respect to the clock period (throughput) measured as 

the delay of the critical path of the MAC-cell network, and the resource utilization (area) 

measured as the numbers of configuration logic block (CLB) slices, DFFs, look-up tables 

(LUTs) and input/output blocks (IOBs). The resources used by the implementation are 

listed in Table 3.4. The circuit is found to perform well with a clock period as short as 8.7 

ns, a value that is reasonably close to the estimated value of 7.2 ns. The power 

consumption of the FPGA chip on which the designed circuit implemented is measured 

to be 105 mW (VDD=1.5 V). Thus, the simulated value of 67.6 mW is reasonably realistic 

for power consumption for the circuit realizing the proposed architecture, considering the 

measured value of the power consumption also includes the power dissipated by the 

unused slices in FPGA. 
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Table 3.4:  Resources used in FPGA devices 

Resource Number 
used 

Total number 
available 

Percentage 
used 

CLB Slices 1532 4928 31% 

Flip Flop Slices 858 9856 8% 

4-input LUTs 2888 9856 29% 

Bonded IOBs 38 248 15% 
 

 

In order to further validate the proposed scheme, the FPGA implantation results of 

the proposed architecture are obtained and compared with those of existing architectures. 

The implementation results for the architectures given in [137]−[141] and for the 

proposed one are listed in Table 3.5. It is seen from this table that the proposed 

architecture provides the highest operational clock frequency with a hardware cost 

similar to that of the existing architectures. 

 

Table 3.5:  FPGA implementation results for various 1-D architectures 

Architecture Number of CLB/LE 
slices* 

fmax (MHz) Device 

[137]  615 73 (L=4)  XC4036  

[138]  369 26  XCV3000  

[139]  422 94  XC300  

[140]  837  14.8  Virtex V100  

[141] 678 96.6 Stratix 

Proposed  567 125  XC2VP30  

*  The slices excluding RAM  
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3.5 Summary 

In this chapter, a scheme for the design of a pipeline architecture for real-time 

computation of the 1-D DWT has been presented. The objective has been to achieve a 

low computation time by maximizing the operational frequency (1/Tc) and minimizing 

the number of clock cycles (NCLK) required for the DWT computation, which in turn, 

have been realized by developing a scheme for an enhanced inter-stage and intra-stage 

parallelisms for the pipeline architecture. 

A study has been undertaken that suggests that, in view of the nature of the DWT 

computation, it is most efficient to map the overall task of the DWT computation to only 

two pipeline stages, one for performing the task of the level-1 DWT computation and the 

other for performing that of all the remaining resolution levels. In view of the fact that the 

amount and nature of the computation performed by the two stages are the same, their 

internal designs ought to be the same. There are two main ideas that have been employed 

for the internal design of each stage in order to enhance the intra-stage parallelism. The 

first idea is to decompose the filtering operation into two subtasks that operate 

independently on the even- and odd-numbered input samples, respectively. This idea 

stems from the fact that the DWT computation is a two-subband filtering operation, and 

for each consecutive resolution level, the input data are decimated by a factor of two. 

Each subtask of the filtering operation is performed by a MAC-cell network, which is 

essentially a two-dimensional array of bit-wise adders. The second idea employed for 

enhancing the intra-stage parallelism is to organize this array in a way so as to minimize 

the delay of the critical path from a partial product input bit to a bit of an output sample 
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through this array. In this chapter, this has been accomplished by minimizing the number 

of layers of the array while minimizing the delay of each layer. 

In order to assess the effectiveness of the proposed scheme, a pipeline architecture 

has been designed using this scheme and simulated. The simulation results have shown 

that the architecture designed based on the proposed scheme would require the smallest 

number of clock cycles (NCLK) to compute N output samples and a reduction of at least 

30% in the period of the clock cycle Tc in comparison to those required by the 

architectures with a comparable hardware resource requirement. An FPGA 

implementation of the architecture designed has been obtained demonstrating the 

effectiveness of the proposed scheme for designing efficient and realizable architectures 

for the DWT computation. 
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Chapter 4   

A Scheme for the Design of Pipeline Architectures 

for 2-D Discrete Wavelet Transform 
 

 

As discussed in Chapter 2, the architectures for the computation of the 2-D DWT can 

be classified into separable and non-separable architectures. In a separable approach, the 

2-D filtering operation of an architecture is divided into two 1-D filtering operations. A 

separable pipeline architecture for the computation of the 2-D DWT can easily be 

developed by using the scheme proposed in the previous chapter. However, the resulting 

architecture would have a large latency. Moreover, separable filters of this architecture 

would not be able to approximate well arbitrary frequency responses. On the other hand, 

a pipeline architecture using non-separable filters should provide more flexibility in 

providing low latency and in employing filters with arbitrary frequency responses. 

In this chapter, a scheme for the design of fast pipeline architectures for the 

computation of the 2-D DWT based on the non-separable approach is developed [142], 

[143]. Even though the goal of fast computation is achieved by minimizing the number 

and period of clock cycles, the main ideas of the 1-D scheme of optimally distributing the 

task of the 2-D DWT computation and maximizing the inter-and intra-stage parallelisms 
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cannot be extended in a straightforward manner to case of non-separable 2-D 

architectures. The work of this chapter, while developing a scheme for the design of non-

separable pipeline architectures for the computation of 2-D DWT, is specifically focused 

on optimally distributing the overall task of the 2-D DWT computation and on 

maximizing the inter- and intra-stage parallelisms of the pipeline. 

The chapter is organized as follows. In Section 4.1, a mathematical formulation of the 

2-D DWT computation necessary for the development of the proposed architecture is 

presented. In Section 4.2, a study is conducted to determine the number of stages of a 

pipeline necessary for optimally mapping the task of the DWT computation onto the 

stages of the pipeline. Based on this study, in Section 4.3, a three-stage pipeline 

architecture is developed with an efficient structure of the 2-D input data and an optimal 

organization of the processing units in each of the stages. In Section 4.4, the performance 

of the proposed architecture is assessed and compared with that of other existing 

architectures and validated by an FPGA implementation. Section 4.5 summarizes the 

work of this chapter and highlights the salient features of the proposed scheme. 

 

4.1 Formulations for the Computation of the 2-D DWT 

The 2-D DWT is an operation through which a 2-D signal is successively 

decomposed in a spatial multi-resolution domain by lowpass and highpass FIR filters 

along each of the two dimensions. The four FIR filters, denoted as highpass-highpass 

(HH), highpass-lowpass (HL), lowpass-highpass (LH) and lowpass-lowpass (LL) filters, 

produce, respectively, the HH, HL, LH and LL subband data of the decomposed signal at 

a given resolution level. The samples of the four subbands of the decomposed signal at 
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each level are decimated by a factor of two in each of the two dimensions. For the 

operation at the first level of decomposition, the given 2-D signal is used as input, 

whereas for the operations of the succeeding levels of decomposition, the decimated LL 

subband signal from the previous resolution level is used as input. 

 

4.1.1 Formulation for the Computation of Four Subbands 

Let a 2-D signal be represented by an N0×N0 matrix S(0), with its (m,n)th element 

denoted by S(0)(m,n) (0≤m ,n≤N0−1), where N0 is chosen to be 2J, J being an integer. Let 

the coefficients of a 2-D FIR filter P (P=HH, HL, LH, LL) be represented by an L×M 

matrix H(P). The (k,i)th coefficient of the filter P is denoted by H(P)(k,i) (0≤k≤L−1, 

0≤i≤M−1). The decomposition at a given level j=1, 2, · · · , J can be expressed as 
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where A(j)(m,n), B(j)(m,n), D(j)(m,n) and S(j)(m,n) (0≤m,n≤Nj−1) denote the (m,n)th 

elements of the four Nj×Nj (Nj=N0/2
j) matrices, A(j), B(j), D(j) and S(j), respectively, 

representing the HH, HL, LH and LL subbands of the 2-D input signal at the jth level. It 

is seen from (4.1) that the four decomposed subbands at a level are obtained by 

performing four 2-D convolutions. Each 2-D convolution can be seen as a sum of the 

products of the L×M filter coefficients and the elements contained in an L×M window 
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sliding on a 2-D data. The decimation by a factor of two in both the horizontal and 

vertical dimensions can be accomplished by sliding the L×M window by two positions 

horizontally and vertically for the computation of two successive samples. Only the LL 

subband data of decomposition are used as input for the decomposition at the next level. 

After J iterations, the 2-D signal S(0) is transformed into J resolution levels, with HH, HL 

and LH subbands from each of the first J−1 levels and HH, HL, LH and LL subbands 

from the last (Jth) level. Since Nj=N0/2
j, the number of samples that need to be processed 

at each level j is one quarter of that at the preceding level. 

 

4.1.2 Formulation for a Four-Channel Filtering Operation 

In order to facilitate parallel processing for the 2–D DWT computation, the L×M 

filtering operation needs to be divided into multi-channel operations, each channel 

processing one part of the 2-D data. It is seen from (4.1) that the even and odd indexed 

elements are always operated on the even and odd indexed filter coefficients, 

respectively. The matrix S(j) representing the LL subband at the jth level can, therefore, 

be divided into four (Nj/2+L/2)×(Nj/2+M/2) sub-matrices, )()()( ,, j
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j
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j
ee SSS and )( j

ooS , whose 
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taking into consideration the periodic padding samples at the boundary [134]. It is seen 

from (4.2) that the data at any resolution level are divided into four channels for 

processing by first separating the even and odd indexed rows of S(j), and then separating 
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the even and odd indexed columns of the resulting two sub-matrices. The data in each 

channel can then be computed by an (L/2×M/2)-tap filtering operation. In order to 

facilitate such a 4-channel filtering operation, the filter coefficients, as used in (4.1), need 

to be decomposed appropriately. Accordingly, the matrix H(P) needs to be decomposed 

into four (L/2×M/2) sub-matrices, )()()( ,, P
eo

P
oe

P
ee HHH  and )(P

ooH , whose (k,i)th 
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respectively. By using (4.2) and (4.3) in (4.1), any of the four subband signals, A(j), B(j), 

C(j) and S(j), at the jth resolution level, can be computed as a sum of four convolutions 

using (L/2×M/2)-tap filters. For example, the LL subband given by (4.1d) can now be 

expressed as 
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At any resolution level, the separation of the subband processing corresponding to 

even and odd indexed data as given by (4.4) is consistent with the requirement of 

decimation of the data in each dimension by a factor of two in the DWT computation. It 

is also seen from (4.4) that the filtering operations in the four channels are independent 

and identical, which can be exploited in the design of an efficient pipeline architecture for 

the 2-D DWT computation. 
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4.2 Pipeline for the 2-D DWT Computation 

In a pipeline structure for the DWT computation, multiple stages are used to carry out 

the computations of the various resolution levels of the transform [144]. The computation 

corresponding to each resolution level needs to be mapped to a stage or stages of the 

pipeline. It is seen from the formulation in Section 4.1 that the task of computing the jth 

resolution level in a J-level DWT computation consists of computing N0
2/4 j−1 samples, 

where N0=2J. The computation of each sample actually performs an (L×M)-tap HH, HL, 

LH or LL FIR filtering operation that comprises the operations of (L×M) multiplications 

followed by (L×M) accumulations. Assuming that these operations for the computation of 

one sample are carried out by a unit of filter processor, the overall task of the DWT 

computation would require a certain number of such filter units. In order to design a 

pipeline structure capable of performing a fast computation of the DWT with low 

expense on hardware resources and low design complexity, an optimal mapping of the 

overall task of the DWT computation to the various stages of the pipeline needs to be 

determined. Any distribution of the overall task of the DWT computation to stages must 

consider the inherent nature of the sequential computations of the resolution levels that 

limit the computational parallelism of the pipeline stages, and consequently the latency of 

the pipeline. The key factors in the distribution of the task to the stages are the 

maximization of the inter-stage and intra-stage computational parallelism and the 

synchronization of the stages within the constraint of the sequential nature of the 

computation of the resolution levels. The feature of identical operations associated with 

the computations of all the output samples irrespective of the resolution levels in a DWT 

computation can be exploited to maximize the intra-stage parallelism of the pipeline. 
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Further, in order to minimize the expense on the hardware resources of the pipeline, the 

number of filter units used by each stage ought to be minimum and proportional to the 

amount of the task assigned to the stage. 

A straightforward mapping of the overall task of the DWT computation to a pipeline 

is one-level to one-stage mapping, in which the tasks of J resolution levels are distributed 

to J stages of the pipeline. In this mapping, the amount of hardware resources used by a 

stage should be one-quarter of that used by the preceding stage. Thus, the ratio � of the 

hardware resource used by the last stage to that used by the first stage has a value of 

1/4J−1. For images of typical size, this parameter would assume a very small value. 

Hence, for a structure of the pipeline that uses identical filter units, the number of these 

filter units would be very large. Further, since the number of such filter units employed 

by the stages would decrease exponentially from one stage to the next in the pipeline, it 

will make their synchronization very difficult. The solution to such a difficult 

synchronization problem, in general, requires more control units, multiplexers and 

registers, which result in a higher design complexity. A reasonably large value of �<1 

would be more attractive for synchronization. In this respect, the parameter � can be seen 

as a measure of design difficulty, with a smaller value of this parameter representing a 

greater design complexity. 

The parameter � can be increased from its value of 1/4J−1 in the one-level to one-

stage pipeline structure by dividing the large-size stages into a number of smaller stages 

or merging the small-size stages into larger ones. However, dividing a stage of the one-

level to one-stage pipeline into multiple stages would require a division of the task 

associated with the corresponding resolution level into sub-tasks, which in turn, would 
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call for a solution of even a more complex problem of synchronization of the sub-tasks 

associated with divided stages. On the other hand, merging multiple small-size stages of 

the pipeline into one stage would not create any additional synchronization problem. As a 

matter of fact, such a merger could be used to reduce the overall number of filter units of 

the pipeline. 

In view of the above discussion, the synchronization parameter � can be increased by 

merging a number of stages at tail end of the pipeline. Fig. 4.1 shows the structure of a 

pipeline in which the stages I to J of the one-level to one-stage pipeline have been 

merged. In this structure, the tasks of the resolution level from j=1 to j=I−1 are mapped 

to stage 1 to I−1, respectively, whereas those of the resolution levels j=I, · · · , J, are 

mapped all together to the Ith stage. Note that the total amount of computations 

performed by stage I is less than one-half of that performed by stage I−1. Considering the 

fact that the number of filter units employed by each stage of the pipeline is an integer, it 

is reasonable to have the ratio of the numbers of filter units used by the last two stages 

(i.e., stages I−1 and I) to be 2:1. The value of the parameter � is now increased from 

1/4J−1 to 1/4I−1.5. However, now the resources employed by stage I would not be fully 

utilized, which would lower the efficiency of the hardware utilization of the pipeline of 

Fig. 4.1. Assume that the parameter � represents the hardware utilization efficiency 

defined as the ratio of the resources used to that employed by the pipeline. The hardware 

utilization efficiency � of the pipeline in Fig. 4.1 can be shown to be equal to 

(1−4−J)/(1+4−I+0.5). Since for images of typical size, 4−J is negligibly small compared to 

one, the expression for � can be simplified as 1/(1+4−I+0.5). As the number of stages I 

employed by the pipeline increases, the hardware utilization efficiency increases with the 
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parameter � approaching unity for a maximum efficiency. On the other hand, the 

difficulty in synchronizing the stages gets worse as the parameter � decreases with 

increasing value of I. A variation in the value of I results in the values of � and � that are 

in conflict from the point of view of stage synchronization and hardware utilization 

efficiency. Therefore, a value of I needs to be determined that optimizes the values of � 

and � jointly. 

Input
of N0×N0

samples

· · ·  

Level 1 Level 2
Levels
I to J

Stage 1 Stage 2 Stage
I

 

Figure 4.1:  Pipeline structure with I stages for J-level computation. 

 

Considering an example of an image of size 28×28, in which case J=8. Fig. 4.2 gives 

the plots of � and � as a function I, the number of stages employed by the pipeline. It is 

seen from this figure that I=3 provides the best compromise between the values of � and 

�. Therefore, a 3-stage pipeline with an acceptable value for the synchronization 

parameter and high hardware utilization efficiency would be the best choice of a pipeline. 

Note that the size of the images used in typical applications would have little bearing on 

the conclusion thus reached regarding the number of stages employed in the pipeline. 

Also, note that a 3-stage pipeline can perform the DWT computation for a variable 

number of resolution levels from 3 to J. With three as the optimal choice of the number 

of stages in a pipeline, one can now choose the minimum numbers of filter units as 8, 2 

and 1 for the stages 1, 2 and 3 in order to perform the tasks associated with the resolution 

levels 1, 2 and 3 to J together, respectively. The next section is concerned specifically 

with a detailed design of the 3-stage pipeline structure. 
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(a)                           (b) 

Figure 4.2:  Parameters � and � plotted as functions of the number of stages I used in a 

pipeline architecture. (a) � versus I, (b) � versus I. 

 

4.3 Design of the Architecture 

In the previous section, we advocated a three-stage pipeline structure for the 

computation of the 2-D DWT to realize an optimal combination of the parameters for the 

hardware utilization and pipeline synchronization. In this three-stage structure, like in any 

pipeline architecture, the operations in a given stage depend on the data produced by the 

preceding stage. However, because of the way that the computational load of the various 

resolution levels of the 2-D DWT computation has been distributed among the three 

stages, the operations in the first and second stages of the pipeline do not depend on the 

data produced by themselves, whereas that in stage 3 does depend on the data produced 

by itself. The operations of the three stages need to be synchronized in a manner so that 

the three stages perform the computation of multiple resolution levels within a minimum 

possible time period while using the available hardware resources maximally. In this 

section, we present the design of the proposed 3-stage pipeline architecture, starting with 

the synchronization of the operations of the stages, and then focusing on the details of the 

intra-stage design so as to provide an optimal performance. 
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4.3.1 Synchronization of Stages 

Recall from Section 4.2 that the distribution of the computational load among the 

three stages, and the hardware resources made available to them are in the ratio 8:2:1. 

Accordingly, the synchronization of the operations between the stages needs to be carried 

out under this constraint of the distribution of the computational load and hardware 

resources. According to the nature of the DWT, the computation of a resolution level j 

depends on the data computed at its previous level j–1, in which the number of 

computations is four times of that at the resolution level j. Therefore, the stages of 

pipeline need to be synchronized in such a way that each stage starts the operation at an 

earliest possible time when the required data become available for its operation. Once the 

operation of a stage is started, it must continue until the task assigned to it is fully 

completed. 

Consider the timing diagram given in Fig. 4.3 for the operations of the three stages, 

where t1, t2 and t3 are the times taken individually by stages 1, 2 and 3, respectively, to 

complete their assigned tasks, and ta and tb are the times elapsed between the starting 

points of the tasks by stages 1 and 2, and that by stages 2 and 3, respectively. Note that 

the lengths of the times t1, t2 and t3 to complete the tasks by individual stages are 

approximately the same, since the ratios of the tasks assigned and the resources made 

available to the three stages are the same. The average times to compute one output 

sample by stages 1, 2 and 3 are in the ratio 1:4:8. In Fig. 4.3, the relative widths of the 

slots in the three stages are shown to reflect this ratio. Our objective is to minimize the 

total computation time ta+tb+t3 by minimizing ta, tb and t3 individually. 
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Figure 4.3:  Timing diagram for the operations of three stages. 

 

Assume that 2-D output samples for a resolution level are computed row-by-row 

starting from the upper-left corner sample. Since the operations in stage 1 are 

independent of those in the other two stages, it can operate continuously to compute all 

the samples of level 1. The value of t1 is equal to TsN1
2, where Ts is the average time 

taken by stage 1 to compute one output sample. Since the operations of stages 2 and 3 

require the output data computed by stages 1 and 2, respectively, their operations must be 

delayed by certain amount of times so that they can operate continuously with the data 

required by them becoming available. We now give the lowest bound on ta and tb so that 

once stages 2 and 3 start their operations they could continue their operations 

uninterruptedly. Since the operation of stage 2 starts at time ta, the (i,k)th output sample 

of level 2, denoted by S(2)(i,k), will be computed starting at the time instant 

tx=ta+4Ts(i�N2+k), where 4Ts is the average time taken by stage 2 to compute one output 

sample. Using (4.1), among the level-1 samples required for the computation of S(2)(i,k), 

the (2i+L−1, 2k+M−1)th level-1 sample, denoted by S(1)(2i+L−1, 2k+M−1), is the latest 

output sample computed at the time instant ty=Ts[N1(2i+L−1)+2k+M−1]+Ts. Now, if at 

the time of starting the calculation of the output sample S(2)(i,k), i.e. tx, the sample 

S(1)(2i+L−1,2k+M−1) has already been calculated by stage 1, all the leve-1 samples 

necessary to calculate this level-2 output sample would be available. This requires us to 



 
 

82

impose the constraint tx>ty, for all i and k, i.e. 0�i ,  k�N2−1. This condition implies that 

)2( 11 kMNLNTt sa −+−>          (4.5) 

The minimum value of ta is given by  

])1([ 1min MLNTt sa +−=           (4.6) 

Assume that stage 3 computes all the output samples of all remaining levels (i.e. level 

3 to level J) in a sequential manner. We only need to consider the requirement of the data 

availability for the computation of level-3, which uses the level-2 samples computed by 

stage 2. Then, in a way similar to that obtaining ta min, by imposing the condition that at 

the time instant of starting the calculation of a level-3 output sample by stage 3, all the 

samples in the window of the level-2 output samples are available, it can be shown that 

the minimum value of tb is given by 

])22/([4 22min MLNNTt sb +−+=         (4.7) 

Based on the above discussion, the operations of the three stages can be arranged in 

the following manner: 

Step 1. Stage 1 operates continuously on the input signal to compute the level-1 

output samples sequentially. 

Step 2. Stage 2 starts its operation immediately following the computation of the 

(L−1, M)th level-1 output sample, S(1)(L−1,M), and then continues its operation of all 

other level-2 output samples in a sequential manner. 

Step 3. Stage 3 starts its operation for the computation of level-3 samples 

immediately after stage 2 completes the computation of the (N2/2+L−2, M−1)th level-2 

output sample, S(2)(N2/2+L−2, M−1), and then continues the computation of other level-3 

output samples sequentially. Computations of the output samples of levels 4 to J are 
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carried out sequentially by the stage 3 following the computation of level-3 output 

samples. 

 

4.3.2 Design of Stages 

As discussed in Section 1.4, in the proposed three-stage architecture, stages 1 and 2 

perform the computations of levels 1 and 2, respectively, and stage 3 that of all the 

remaining levels. Since the basic operation of computing each output sample, regardless 

of the resolution level or the subband, is the same, the computation blocks in the three 

stages can differ only in the number of identical processing units employed by them 

depending on the amount of the computations assigned to the stages. As seen from (4), an 

(L×M)-tap filtering operation is decomposed into four independent (L/2×M/2)-tap 

filtering operations, each operating on the 2-D L/2×M/2 data resulting from the even or 

odd numbered rows and even or odd numbered columns of an L×M window of an LL-

subband data. A unit consisting of L/2×M/2 MAC cells can now be regarded as the basic 

processing unit to carry out an (L/2×M/2)-tap filtering operation. An L×M window of the 

raw 2-D input data or that of an LL-subband data must be decomposed into four distinct 

L/2×M/2 sub-windows in accordance with the four decomposed terms given by the right 

side of (4). This decomposition of the data in an L×M window can be accomplished by 

designing for each stage an appropriate data scanning unit (DSU) based on the way the 

raw input or the LL-subband data is scanned. The stages would also require memory 

space (buffer) to store the raw input data or the LL-subband data prior to scanning. Since 

stages 1 and 2 need to store only part of a few rows of raw input or LL-subband data at a 

time, they require a buffer of size of O(N), whereas since stage 3 needs to store the entire 
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LL-subband data of a single resolution level, it has a buffer of size of O(N2). Fig. 4.4 

gives the block diagram of the pipeline showing all the components required by the three 

stages. Note that the data flow shown in this figure comprises only the LL-subband data 

necessary for the operations of the stages. The HH, HL and LH subband data are 

outputted directly to an external memory. Now, we give details on the structure of the 

data scanning unit to scan the 2-D data and establish four distinct L/2×M/2 sub-windows, 

as well as on the distribution of the filtering operations to the processing units in each 

stage. 

 

(a) Structure of the Data Scanning Unit 

In accordance with (4.4), an L×M window of the raw 2-D input data stored in Buffer1 

or an LL-subband data stored in Buffer2 or Buffer3 must be partitioned into four L/2×M/2 

sub-windows, and stored into the DSU of the corresponding stage. Further, this same 

equation also dictates that a 2-D input data must be scanned in a sequential manner 

shown in Fig. 4.5(a). According to this sequence of scanning, the samples in a set of data 
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Figure 4.4:  Block diagram of the three-stage architecture. 
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comprising L rows of a 2-D input data are scanned starting from the top-left corner. Once 

the scanning of all the samples of L rows is completed, the process is repeated for another 

L rows after shifting down by two row positions. The objective is then to design a 

structure for a DSU so that samples scanned with this sequential mode get partitioned 

into the four sub-windows (Fig. 4.5(b)). 

In order to partition an L×M window into four L/2×M/2 sub-windows, the structure of 

the DSU must first partition the samples of the window into two parts depending on 

whether a sample belongs to an even-indexed or odd-indexed row; then the samples in 

each part must be partitioned further into two parts depending on whether a sample 

belongs to an even-indexed or odd-indexed column. The first partition can be achieved by 

directing scanned samples alternatively to two sets of L/2 shift registers. The second 

partition can be achieved by reorganizing the samples stored in the shift registers of the 

two sets depending on whether a sample belongs to even-indexed or odd-indexed column 

Sub-window 1

Sub-window 2

Sub-window 3

Sub-window 4

Partitioned
L/2�M/2 data

L�M
window

(a) (b)

L

 

Figure 4.5:  Diagram illustrating the data scanning. (a) Scanning of an Nj×Nj 2-D data. 

(b) Partitioning of an L×M window into four L/2×M/2 sub-windows. The solid and 

empty circles represent the samples in even-indexed and odd-indexed rows, 

respectively, whereas the black and grey circles represent the samples in even-indexed 

and odd-indexed columns, respectively. 
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by employing demultiplexers. Finally, the samples of the four sub-windows can be 

stored, respectively, into four units of L/2×M/2 parallel registers. Fig. 4.6 shows a 

structure of the DSU to accomplish this task. This data scanning scheme automatically 

incorporates the downsampling operations by two in the vertical and horizontal directions 

(as required by the transform), and thus no additional peripheral circuits and registers are 

required for the downsampling operations by the architecture. As a result, the data 

scanning scheme, in comparison to the other schemes [145], requires less hardware 

resources for the control units and fewer registers for the stages. 
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Figure 4.6:  Structure of the data scanning unit (DSU). 

 

(b) Distribution of filtering operations among the processing units employed by 

stages 

In accordance with (4.1) and (4.4), decomposing input data into four subbands 

requires four L×M filtering operations, and each of the four filtering operations requires 

four (L/2×M/2)-tap filtering operations. Thus, a total of 16 (L/2×M/2)-tap filtering 

operations are involved for the computation of the samples for the four subbands using an 
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L×M window of the input data. Now, for each stage, these 16 types of filtering operations 

must be assigned to the processing units available to the stage using four sub-windows of 

data from its DSU. Given the available resources of the stages, the objective here is to 

process the 16 types of filtering operations with maximized computational parallelism 

and with priority given to the computation of the samples of LL subband. 

In stage 1, since eight processing units are available, the processing task can be 

distributed among them so that one processing unit carries out the subtask of (L/2×M/2)-

tap filtering operations corresponding to a pair of subbands from the LL, LH, HL and HH 

using the data of one sub-window. One such distribution of the task is shown in Fig. 4.7, 

from which it is seen that each of the processing units PU1 to PU4 carries out the LL and 

LH filtering operations sequentially using the sub-windows 1 to 4, respectively, whereas 

each of the processing units PU5 to PU8 carries out the HH and HL filtering operations 

using the same sub-windows. In stage 1, the LL and HH subband samples are produced 

in parallel in one clock cycle, whereas the LH and HL subband samples are produced in 

parallel in the next. 

Output sample 2
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Sub-window 4

Sub-window 1
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Figure 4.7:  Structure of eight processing units employed by stage 1. 
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Since stage 2 employs two processing units, each must perform the task of all the 

four subbands using two sub-windows. As the data of the four sub-windows, 1 to 4, 

become available in a sequential manner, sub-windows 1 and 3 are sequentially assigned 

to PU9, whereas sub-windows 2 and 4 in a similar manner are assigned to PU10. This 

distribution of the task for stage 2 is shown in Fig. 4.8, from which it is seen that each of 

the processing units, PU9 and PU10, carries out the (L/2×M/2)-tap filtering operations. In 

stage 2, PU9 and PU10 operating in parallel produce the LL, LH, HH and HL subband 

samples sequentially in eight consecutive clock cycles. 

Register

PU10

PU9

Sub-window 1

Sub-window 3

Sub-window 2

Sub-window 4
(LL, LH, 
HH, HL)

(LL, LH, 
HH, HL)

Output sample
MUX

Adder

 

Figure 4.8:  Structure of two processing units employed by stage 2. 

Since only one processing unit, PU11, is employed by stage 3, it has to carry out all 

the filtering operations for each of the four sub-windows, as shown in Fig. 4.9. In this 

figure, the four sub-windows, 1 to 4, are chosen successively, as input to PU11. For each 

sub-window, the processing unit PU11 then carries out the (L/2×M/2)-tap filtering 

operations. In this stage, PU11 produces sequentially the LL, LH, HH and HL subband 

samples in 16 consecutive clock cycles. 
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Figure 4.9:  Structure of one processing unit employed by stage 3. 

 

Note that one processing unit at a time processes the samples of only one sub-

window corresponding to one of the four subbands. Assume that such a processing time 

by a processing unit to be one time unit. Now, since stages 1, 2 and 3 have 8, 2 and 1 

processing units, respectively, they can process sub-windows at the rates of 2, 1/2 and 1/4 

sub-windows per unit time. This coupled with the fact that the processing loads (i.e. the 

number of sub-windows) assigned to the three stages are in the ratio 8:2:1, lets us to 

conclude that the operations of the three stages are mutually synchronized. 

 

(c) Design of the Processing Unit 

In each stage, a processing unit carries out an (L/2×M/2)-tap filtering operation using 

the samples of an L/2×M/2 sub-window at a time to produce the corresponding output. 

Since the sub-windows cannot be fed into a processing unit at a rate faster than the rate at 

which these sub-windows are processed by the processing unit, the processing time to 

process a sub-window (one time unit) is critical in determining the maximum clock 

frequency at which the processing units can operate. Each physical link from a given bit 

of the input to an output bit of the processing unit gives rise to a data path having a delay 

that depends on the number and the types of operations being carried out along that path. 
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Therefore, it is crucial to aim at achieving the shortest possible delay for the critical path 

when designing a processing unit for our architecture [131]−[133], [142], [143]. 

The filtering operation carried out by a processing unit, as described above, can be 

seen as L/2×M/2 parallel multiplications followed by an accumulation of the L/2×M/2 

products. If the input samples and the filter coefficients have the wordlengths of X and Y 

bits, respectively, then the processing unit produces an array of (Y*L*M/4)×X bits 

simultaneously in one clock cycle.  

In order to obtain the output sample corresponding to a given sub-window, the bits of 

the partial products must be accumulated vertically downward and from right to left by 

taking the propagation of the carry bits into consideration. The task of this accumulation 

can be divided into a sequence of layers. The shortest critical data path can be achieved 

by minimizing the number of layers and the delay of the layers. In each layer, a number 

of bits consisting of the partial product bits and/or the carry bits from different rows need 

to be added. This can be done by employing in parallel as many bit-wise adders as 

needed in each layer. The idea behind using bit-wise adder is to produce to the extent 

possible the number of output bits from a layer is smaller than the number of input bits to 

that layer. This can be done by using full adders and specifically designed double adders, 

in which the full adder consumes 3 bits and produces 2 bits (one sum and one carry bits) 

whereas the double adder consumes two pairs of bits (2×2) from neighbouring columns 

and produces 3 bits (one sum and two carry bits/two sum and one carry bits). The two 

types of adders have equal delay, and are efficient in generating carry bits and 

compressing the number of partial products [133]. With this structure of the layers, the 

number of layers becomes minimum possible and the delay of a layer is equal to that of a 
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full adder or equivalently to that of a double adder, thereby providing the shortest critical 

path for the accumulation network. 

Since the two rows of bits produced by the accumulation network still remain 

unaccumulated, they finally need to be added to produce one row of output bits in the 

final phase of the task of a processing unit by using a carry propagation adder. Note that 

tasks of the accumulation network and the carry propagation adder can be made to have 

some partial overlap, since the latter can start its processing as soon as the rightmost pairs 

of bits becomes available from the former. Fig. 4.10 depicts a block diagram of a 

processing unit based on the above discussion. 

Partial products generator

Bit-wise accumulation
network

Carry propagation adder

A sub-windowCoefficients

Output of  the processing unit

Processing unit

An array of  partial 
product bits

Two rows of bits

 

Figure 4.10:  Block diagram of a processing unit. 
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4.4 Performance Results and Comparisons 

4.4.1 Performance of the Proposed Architecture 

In order to evaluate the performance of a computational architecture, one needs to 

make use of certain metrics that characterize the architecture in terms of the hardware 

resources used and the computation time. In this chapter, the hardware resources used for 

the filtering operation are measured by the number of multipliers (NMUL) and the number 

of adders (NADD), and that used for the storage of data and filter coefficients are measured 

by the number of registers (NREG). The computation time, in general, is technology 

dependent. However, a metric that is technology independent and can be used to 

determine the computation time T is the number of clock cycles (NCLK) elapsed between 

the first and the last samples inputted to the architecture. Assuming that one clock period 

is Tc , the total computation time can then be obtained as T=NCLKTc. 

For a J-level 2-D DWT computation of an N×N image using (L×L)-tap filters, the 

expressions for the metrics mentioned above for the proposed 3-stage architecture are 

given in Table 4.1. It is seen from this table that the numbers of multipliers, adders and 

registers in the DSUs employed by the architecture depend only on the filter length, 

whereas the number of the registers of the buffers depends also on the image size. 

 

Table 4.1:  Performance metrics for the proposed 2-D architecture 

NCLK NMUL NADD NREG 

DSUs Buffers 

N2/2 11L2/4 11Log2(L
2/2)+9 3L2+3L 3NL/4+3N2/128 
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In order to evaluate the performance of the proposed architecture in terms of Tc , we 

consider an example of designing a circuit for the DWT computation of an image of size 

N=512. For this purpose, we use 2-D filters of size L=M=4, wordlength for the filter 

coefficients as 8-bit, and the number of resolution levels J=6. The input samples are 

encoded by using a radix-4 booth encoder and used as one of the two operands for the 

multiplication operation. All the carry propagation adders of the architecture have a 16-

bit wordlength and use a structure that combines the carry-skip and carry-select adders 

[135]. The circuit is synthesized in RTL by using Synopsys with 0.18-μm CMOS 

technology. The synthesized results show that the circuit can operate with a minimum 

clock period of 6.5 ns (i.e. at a maximum clock frequency of 153 MHz). The circuit has a 

core area of 4.95×3.84 mm2, and consists of 850K logic gates and a 24.5K-RAM. The 

power consumed by the circuit is obtained as 214 mW at 100 MHz clock frequency. 

 

 

Table 4.2:  Resources utilized in FPGA device for the circuit implementation 

for the 2-D DWT computation when N=512, L=M=4 and J=6 

Resource Number used Percentage used 

CLB Slices 2842 20% 

Flip-flop Slices 1059 3% 

4-input LUTs 4989 18% 

Bonded IOBs 130 23% 

BRAMs 8 5% 
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In order to validate the circuit design based on the proposed architecture, the circuit is 

implemented on a typical FPGA board, Virtex-II Pro XC2VP30-7. The board is capable 

of operating with a clock frequency of up to 400 MHz at a core voltage of VDD=1.5 V. 

The resources utilized by the FPGA implementation in terms of the numbers of 

configuration logic block (CLB) slices, flip-flop slices, 4-input look-up tables (LUTs), 

input/output blocks (IOBs) and block RAMs (BRAMs) are given in Table 4.2. The circuit 

implemented is found to perform well with a clock period as short as 7.4 ns (i.e. a 

maximum clock frequency of 134 MHz). The time for the DWT computation of an image 

of size 512×512 is 0.97 ms. In other words, the circuit is able to process motion pictures 

with a speed of 1022 frames per second (FPS). The power consumption of the FPGA 

device on which the circuit is implemented is measured to be 303 mW at 100 MHz clock 

frequency. This measured value for the power consumption compares reasonably well 

with the simulated value of 214 mW, considering that the measured value also includes 

the power dissipated by the unused slices within the FPGA device. 

In order to validate the proposed architecture further, various circuits, which are 

designed based on the proposed architecture for the values of N=128, 256, 512, 1024, 

2048 and J=3, 6, are implemented on the same type of FPGA board as used above. The 

implementation results for the various circuits are shown in Fig. 4.11. It is seen from this 

figure that the number of CLB slices (NCLB) changes very slightly with the image size N 

or the number of resolution levels J (Fig. 4.11(a)), while the number of BRAMs (NBRAM) 

increases rapidly (Fig. 4.11(b)). These results are consistent with the performance 

evaluation results provided in Table 4.1, and also demonstrate that the circuits for the 

DWT computation of images of different size and with different number of resolution 
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levels can be implemented essentially by varying the size of the buffer used. The 

performance of only a slight decrease in the maximum clock frequency (fmax) and that of 

a logarithmic decrease in the number of frames per second (NFPS), as the image size 

increases (Fig. 4.11(c) and (d)), are in conformity with the normal expectation. 
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Figure 4.11:  Results of various FPGA implementations with N=128, 256, 512, 1024, 

2048, and J=3, 6. (a) The numbers of CLB slices versus N, (b) the numbers of BRAMs

versus N, (c) the maximum clock frequencies versus N, and (d) the numbers of frames per

second versus N. 
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4.4.2 Comparisons of Various 2-D Architectures 

In order to compare the hardware utilization and computation time of the proposed 

and other architectures, expressions for the relevant performance metrics for a J-level 

DWT computation of an N×N image using (L×L)-tap filters for the various architectures 

are given in Table 4.3. It is seen from this table that the architecture of Prop. 4 in [146] 

and that of [66], require, respectively, N2/12 and N2/4 clock cycles, which are smaller 

than N2/2 clock cycles required by the proposed architecture. This performance of [66] is 

achieved by utilizing the hardware resources of adders and multipliers that is more than 

twice of that required by the proposed architecture. Also, it is to be noted that in [146] the 

amount of the hardware resources (adders, multipliers and delay units) is larger than that 

required by the proposed architecture. Indeed, a smaller value of NCLK does not 

necessarily mean a smaller computation time T, since the clock period Tc may 

significantly differ from one architecture to another. It is also seen from Table 4.3 that the 

hardware utilization of the proposed architecture is higher than that of the pipeline 

architectures in [44], [66], [147] and [148], and it is only slightly lower than that of [146], 

in which 100% hardware utilization is achieved by using a much larger number of adders. 

Furthermore, the proposed architecture provides a shorter latency compared with the 

architectures in [44], [147], [149] and [150] that use 1-D type filters. On the other hand, 

the architectures in [146] and [66] provide smaller latencies, but employ proportionally 

larger hardware resources. 



 
 

97

 

Table 4.3:  Performance metrics for various 2-D architectures 

Architecture No. of 
multipliers 

No. of 
adders 

Storage size Filter 
type 

No. of 
clock 
cycles 

Hardware 
utilization 

Latency 

Recursive 
architecture 

[44] 

12 16 4N 1-D 
(9/7) 

N2+N 50%-70% TcN2 

Generic folded 
[149] 

6J (L/2) 6J(1+ 
log2(L/2)

) 

4(L−1)N/3 1-�  N2 N/A�  TcN2 

Symmetrically 
extended 

[147] 

L/2+L/4+ 
L/8 

2(L/2+ 
L/4+L/8) 

(L+0.5)N 1-D 1.5N2 87.5% 1.5TcN
2 

Parallel 
FDWT [150] 

12 16 3N/2 1-D 
(9� 7) 

N2 N/A TcN2 

Line-based 
[151] 

N/A N/A N/A N/A N/A N/A N/A 

Parallel    
Prop. 4 [146] 

96 240 [4N+32J +256] 
(on chip delay 

units) 

[8N+128(J−1)] 
(off 

chip� buffer) 

2-D 
(L=4) 

N2/12 100% TcN2/1
2 

Arch2D-II 
[152] 

L2/2 L2/2+L N/A 2-D 2N2/3 N/A 2TcN2/
3 

Pipeline [66] 6L2 6L2 2NL 2-D N2/4 66.7% TcN2/4 

Parallel 
structure [148] 

48 24 6N/2+6N/4 
(J=3) 

2-D 
(4×4) 

L2N2/16
+L2N/8 

� 5.6% N/A 

Proposed 11L2/4 11log2 

(L2/2)+9 
3L+3L2 (on chip 

delay units) 

3NL/4+3N2/128 
(off chip buffer) 

2-D N2/2 96% TcN2/2 

N/A: Not available 
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The performance of the proposed architecture is now compared with various other 

architectures in terms of the FPGA implementation results available in the literature. The 

FPGA implementation results for the architectures presented in [44] and [147]−[152] are 

listed in Table 4.4. It is seen from this table that the implemented circuit for the proposed 

architecture requires a time of 0.97 ms to compute a 6-level DWT of an image of size 

512×512, which is about one-half and one-third of the closest computation times offered 

by the implementations of the architectures of [152] and [150], respectively. In 

comparison to the architecture of [150], the proposed architecture provides this 3 times 

increase in the speed of computation at the expense only about 67% increase in the 

hardware. In comparison to the architecture of [152], the proposed architecture provides 

an improvement of 50% in the speed of computation while at the same times consumes 

about 35% less hardware resources. In order to have a fair comparison with the non-

separable architecture of [152], whose computation time is next best to that of the 

proposed architecture, we have implemented the latter also on Virtex 2000E. The 

implementation of the proposed architecture on this device results in a computation time 

of 1.4 ms and in 3430 used CLB slices. Thus, with the architecture of [152] and the 

proposed architecture implemented on the same FPGA device, the latter gives a 17% gain 

in the computational speed and 21% reduction in the hardware resources. Overall, the 

area-time and area-(time)2 products of the proposed architecture have values that are, 

respectively, at least 33% and 78% smaller than those of the other architectures. 
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Table 4.4:  Comparison of various FPGA implementations 

Architecture Image 

size 

(N) 

No. of 

CLB 

slices 

RAM 

size (bits) 

fmax 

(MHz) 

T 

(ms) 

Area×T* Area×T2 Device 

Recursive 

architecture 

[44] 

512 

(J=3) 

879 10N 50 5.3 4659 24692 XC2V250 

Generic folded 

[149] 

256 

(J=3) 

4720 10×(4K) 75 0.874 4125 3605 Virtex 600E-

8 

Symmetrically 

extended [147] 

512 

(J=3) 

2559 17×(18K) 44.1 9 23031 207279 XC2V500 

Parallel FDWT 

[150] 

512 

(J=5) 

1700 3N/2 171.8 3.1 5270 16337 Virtex 2 

Line-based 

[151] 

512 

(J=6) 

2950 4×(18K) 113.6 5.2 15340 79768 XC4VLX15 

Parallel  

Prob. 4 [146] 

Implementation results not available 

Arch2D-II 

[152] 

512 

(J=3) 

4348 24×(18K) 105 1.7 7392 12566 Virtex 2000E 

Pipeline [66] Implementation results not available 

Parallel 

structure [148] 

512 

(J=3) 

3580 2304 45 5.9 21122 124619 XCV600E 

Proposed 512 

(J=6) 

2842 8×(18K) 135 0.97 2757 2674 XC2VP30 

*The value of area in the calculation of area-time product is replaced by the No. of CLB 

slices since the former is proportional to the latter. 
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4.5 Summary 

In this chapter, a scheme for the design of pipeline architectures for a high-speed 

non-separable computation of the 2-D DWT has been proposed. The objective has been 

to achieve a short computation time by maximizing the operational clock frequency 

(1/Tc) and minimizing the number of clock cycles (NCLK) required for the 2-D DWT 

computation by developing a scheme for enhanced inter-stage and intra-stage 

computational parallelism for the pipeline architecture. 

To enhance the inter-stage parallelism, a study has been undertaken that suggests 

that, in view of the nature of the DWT computation, it is most efficient to map the overall 

task of the DWT computation to only three pipeline stages for performing the 

computation tasks corresponding to the resolution level 1, level 2, and all the remaining 

levels, respectively. Two parameters, one specifying the design complexity from the 

point of view of synchronizing the operations of the stages and the other representing the 

utilization of the hardware resources of the pipeline, have been defined. It has been 

shown that the best combination for the value of these parameters is achieved when the 

pipeline is chosen to have three stages. In order to enhance the intra-stage parallelism, 

two main ideas have been employed for the internal design of each stage. The first idea is 

to divide the 2-D filtering operation into four subtasks that perform independently and 

simultaneously on the elements of even or odd indexed rows and columns of the 2-D 

input data. This idea stems from the fact that for each consecutive resolution level, the 

input data are decimated by a factor of two along the rows and columns of the 2-D data. 

Each subtask of the filtering operation is performed by a processing unit. The second idea 

employed is in organization of the array of bit-wise adders, which is the core of the 
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processing unit, in a way so as to minimize the delay of the critical path from a partial 

product input bit to a bit of an output sample through this array. In this chapter, this has 

been accomplished by minimizing the number of layers of the array while at the same 

time minimizing the delay of each layer. 

In order to validate the proposed scheme, a circuit for the DWT computation has 

been designed, simulated and implemented in FPGA. The circuit is designed for a filter 

length L=M=4 and simulated for the number of the resolution levels J=6 and data size 

N×N=512×512. The simulation results have shown that the circuit designed based on the 

proposed scheme is able to operate at a maximum clock frequency fmax=153 MHz. The 

results of the FPGA implementation have shown that the circuit can process a 512×512 

image in 0.97 ms, which is at least two times faster than that of the other FPGA 

implementations, and in some instances, even with less hardware utilization. Finally, it is 

worth noting that the architecture designed in this chapter is scalable in that its processing 

speed can be adjusted upward or downward by changing the number of MAC cells in 

each of the processing units by a factor equal to that of the reduction required in the 

processing speed. 
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Chapter 5   

Conclusion 
 

 

5.1 Concluding Remarks 

The DWT is a computationally intensive transform because of the processing of large 

volumes of data at multiple resolution levels involved in its computation. Therefore, it is 

imperative to design efficient VLSI architectures to implement the DWT computation for 

real-time applications, especially those requiring processing of high-frequency signals or 

broadband data. Many pipeline architectures focusing on providing high computational 

speed or efficient hardware utilization have been proposed in the literature. However, 

these architectures have not exploited in their designs the features inherent in the 

definition of the DWT to the extent possible. Consequently, the speed provided by these 

architectures is not commensurate with the amount of hardware utilized by them. 

The objective of this thesis has been to develop a scheme for the design of hardware 

resource-efficient high-speed pipeline architectures for the computation of the 1-D and  

2-D DWT. The goal of high speed has been achieved by maximizing the operating 

frequency and minimizing the number of clock cycles required for the DWT computation, 
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which in turn, have been realized by enhancing the inter-stage and intra-stage 

parallelisms of pipeline architectures. 

In order to enhance the inter-stage parallelism, a study has been undertaken for 

determining the number of pipeline stages required for the DWT computation so as to 

synchronize their operations while providing to each stage the amount of hardware 

resources proportional to the task assigned to it. This study has determined that 

employment of two pipeline stages with the first one performing the task of the first 

resolution level and the second one that of all the other resolution levels of the 1-D DWT 

computation, and employment of three pipeline stages with the first and second ones 

performing the tasks of the first and second resolution levels and the third one performing 

that of the remaining resolution levels of the 2-D DWT computation, are the optimum 

choices for the development of 1-D and 2-D pipeline architectures, respectively.  

With the number of pipeline stages as determined above, coupled with the fact that 

the nature of the filtering operations required in all the subbands and resolution levels is 

the same, the intra-stage parallelism has been enhanced by employing the following two 

main ideas. The first idea, which stems from the fact that in each consecutive resolution 

level the input data are decimated by a factor of two along each of the data dimensions, is 

that the filtering operations of a stage can be conveniently divided into a certain number 

of subtasks (two subtasks for the 1-D data and four subtasks for the 2-D data) that can be 

performed in parallel by operating on even- and odd-numbered samples along each 

dimension of the samples. Each subtask is an FIR filtering operation performing a set of 

multiply-accumulate operations, which can be accomplished by employing a MAC-cell 

network consisting of a two-dimensional array of bit-wise adders. The second idea in 
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enhancing the intra-stage parallelism has been the design of this network so as to 

minimize its critical path. This has been achieved by maximally extending the bit-wise 

addition operations of the network horizontally through a suitable arrangement of half, 

full and specifically designed double adders. 

In order to validate the proposed scheme for the design of pipeline architectures, two 

specific design examples have been considered, one for the 1-D DWT computation and 

the other for the 2-D DWT computation. For the 1-D case, a pipeline architecture has 

been designed to compute a 7-level DWT using 6-tap 1-D filters and simulated using 

0.35-micron technology, whereas for the 2-D case, a pipeline architecture has been 

designed for the computation of a 6-level DWT using 4×4-tap 2-D filters and simulated 

using 0.18-micron technology. The simulation results for the 1-D example have shown 

that the architecture designed is able to operate at a maximum clock frequency of 138 

MHz. Furthermore, in comparison to other 1-D architectures designed using comparable 

amount of hardware resources, it provides at least 30% reduction in the computation 

time, and has an area-time product that is at least 45% smaller. The simulation results for 

the 2-D example have shown that the architecture designed is capable of operating at a 

maximum clock frequency of 153 MHz, and in comparison to other 2-D architectures 

using similar amount of hardware resources, it is at least two times faster, and has an 

area-time product that is at least 33% smaller. Finally, the two pipeline architectures have 

been implemented on a Xilinx FPGA board to test their performance in a real circuit 

environment. The test results have been found to be in conformity with those obtained 

from the simulations. 
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In conclusion, this thesis has been concerned with the design of hardware resource-

efficient high-speed pipeline architectures for discrete wavelet transforms. In order to 

meet this objective, a number of novel ideas and schemes that enhance the inter- and 

intra-stage parallelisms of the pipeline stages have been advanced. The effectiveness of 

these ideas and schemes has been validated through designs, simulations and 

implementations of specific cases of 1-D and 2-D DWT architectures. 

 

5.2 Scope for Future Work 

In this thesis, a scheme has been proposed for the design of high-speed hardware-

resource-efficient pipeline architectures for the DWT computation. In order to achieve 

this goal, certain characteristics inherent in the 1-D and 2-D discrete wavelet transforms 

have been exploited so as to maximize the inter- and intra-stage parallelisms of the 

pipeline stages. One could investigate the possibility of optimizing the proposed 

architectures further, in terms of their operating speed or the amount of hardware 

resources employed. Also, the scheme for the design of 1-D and 2-D pipeline 

architectures could be extended to higher dimensions. 

In certain applications of the DWT, only some specific types of filters need to be 

employed [153]−[155]. For example, in speech recognition systems, 9/7 or 5/3 filters are 

often employed. The relationships that exist between the coefficients of the filters in 

various subbands could then be utilized to further enhance the operating speed of the 

pipelines. 

In applications such as video compression, medical imaging and geographic data 

analysis, it is 1-D or 2-D wavelet transforms that are employed. The use of 1-D or 2-D 
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wavelet architectures in such applications results in high latency. A study could be 

undertaken to extend the scheme proposed in this thesis for the design of 1-D and 2-D 

pipeline architectures to 3-D pipeline architectures with a view to increase the processing 

speed of the applications involving 3-D data. 
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