

HIGH-SPEED PIPELINE VLSI ARCHITECTURES

FOR

DISCRETE WAVELET TRANSFORMS

CHENG JUN ZHANG

A THESIS
IN

THE DEPARTMENT
OF

ELECTRICAL AND COMPUTER ENGINEERING

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

CONCORDIA UNIVERSITY
MONTRÉAL, QUÉBEC, CANADA

MARCH 2012

© CHENG JUN ZHANG, 2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Concordia University Research Repository

https://core.ac.uk/display/211514102?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

CONCORDIA UNIVERSITY

SCHOOL OF GRADUATE STUDIES

This is to certify that the thesis prepared

By: Cheng Jun Zhang

Entitled: High-Speed Pipeline VLSI Architectures for Discrete Wavelet
Transforms

and submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY (Electrical & Computer Engineering)

complies with the regulations of the University and meets the accepted standards with
respect to originality and quality.

Signed by the final examining committee:

 Chair

 Dr. N. Bhuiyan

 External Examiner
 Dr. P.K. Meher

 External to Program
 Dr. C.Y. Su

 Examiner
 Dr. M.N.S. Swamy

 Examiner
 Dr. W-P. Zhu

 Thesis Co-Supervisor
 Dr. M.O. Ahmad

 Thesis Co-Supervisor
 Dr. C. Wang

Approved by
 Dr. J.X. Zhang, Graduate Program Director

April 5, 2012

 Dr. Robin A.L. Drew, Dean
 Faculty of Engineering & Computer Science

iii

ABSTRACT

High-Speed Pipeline VLSI Architectures for Discrete Wavelet

Transforms

Cheng Jun Zhang, Ph.D.

Concordia University, 2012

The discrete wavelet transform (DWT) has been widely used in many fields, such as

image compression, speech analysis and pattern recognition, because of its capability of

decomposing a signal at multiple resolution levels. Due to the intensive computations

involved with this transform, the design of efficient VLSI architectures for a fast

computation of the transforms have become essential, especially for real-time

applications and those requiring processing of high-speed data. The objective of this

thesis is to develop a scheme for the design of hardware resource-efficient high-speed

pipeline architectures for the computation of the DWT. The goal of high speed is

achieved by maximizing the operating frequency and minimizing the number of clock

cycles required for the DWT computation with little or no overhead on the hardware

resources. In this thesis, an attempt is made to reach this goal by enhancing the inter-

stage and intra-stage parallelisms through a systematic exploitation of the characteristics

inherent in discrete wavelet transforms.

In order to enhance the inter-stage parallelism, a study is undertaken for determining

the number of pipeline stages required for the DWT computation so as to synchronize

their operations and utilize their hardware resources efficiently. This is achieved by

optimally distributing the computational load associated with the various resolution levels

to an optimum number of stages of the pipeline. This study has determined that

employment of two pipeline stages with the first one performing the task of the first

iv

resolution level and the second one that of all the other resolution levels of the 1-D DWT

computation, and employment of three pipeline stages with the first and second ones

performing the tasks of the first and second resolution levels and the third one performing

that of the remaining resolution levels of the 2-D DWT computation, are the optimum

choices for the development of 1-D and 2-D pipeline architectures, respectively. The

enhancement of the intra-stage parallelism is based on two main ideas. The first idea,

which stems from the fact that in each consecutive resolution level the input data are

decimated by a factor of two along each dimension, is to decompose the filtering

operation into subtasks that can be performed in parallel by operating on even- and odd-

numbered samples along each dimension of the data. It is shown that each subtask, which

is essentially a set of multiply-accumulate operations, can be performed by employing a

MAC-cell network consisting of a two-dimensional array of bit-wise adders. The second

idea in enhancing the intra-stage parallelism is to maximally extend the bit-wise addition

operations of this network horizontally through a suitable arrangement of bit-wise adders

so as to minimize the delay of its critical path.

In order to validate the proposed scheme, design and implementation of two specific

examples of pipeline architectures for the 1-D and 2-D DWT computations are

considered. The simulation results show that the pipeline architectures designed using the

proposed scheme are able to operate at high clock frequencies, and their performances, in

terms of the processing speed and area-time product, are superior to those of the

architectures designed based on other schemes and utilizing similar or higher amount of

hardware resources. Finally, the two pipeline architectures designed using the proposed

scheme are implemented in FPGA. The test results of the FPGA implementations

validate the feasibility and effectiveness of the proposed scheme for designing DWT

pipeline architectures.

v

ACKNOWLEDGEMENTS

I would like to take this opportunity to express my deep gratitude to my supervisors,

Dr. M. Omair Ahmad, and Dr. Chunyan Wang, for their support, encouragement, and

invaluable guidance during this research. I am grateful to them for providing me freedom

and motivation to explore new ideas in this research. I also thank them for spending

countless long hours discussing the research in this thesis, and correcting and improving

the writing of this thesis. The useful suggestions and comments provided by the members

of the supervisory committee, Dr. M.N.S. Swamy, Dr. Weiping Zhu, and Dr. Chunyi Su,

and by the External Examiner, Dr. Pramod K. Meher, as well as those of the anonymous

reviewers of my journal papers, are deeply appreciated.

I would like to acknowledge the financial support provided by Concordia University

and the Natural Sciences and Engineering Research Council (NSERC) of Canada, which

were crucial to completing this research.

vi

Table of Contents

List of Figures ... ix�

List of Tables ... xii�

List of Acronyms .. xiii�

List of Symbols ...xv�

Chapter 1 Introduction ...1�

1.1� Background .. 1�

1.2� Motivation .. 3�

1.3� Scope of the Thesis .. 4�

1.4� Organization of the Thesis ... 4�

Chapter 2 Background Material and Related Previous Work7�

2.1� Fundamentals of the Discrete Wavelet Transform .. 7�

2.1.1� Definitions of Wavelet Transforms .. 7�

2.1.2� Mathematical Formulations .. 9�

2.1.3� Computations of Discrete Wavelet Transforms 13�

2.2� Review of the Architectures... 17�

2.2.1� Categorization of the Architectures .. 17�

2.2.2� Architectures for 1-D DWT Computation 20�

2.2.3� Architectures for 2-D DWT Computation 26�

2.3� Summary .. 33

vii

Chapter 3 A Scheme for the Design of Pipeline Architectures for 1-D Discrete

Wavelet Transform ...34�

3.1� Formulation of the 1-D DWT Computation .. 35�

3.1.1� Matrix Formulation .. 35�

3.1.2� Reformulation of (3.2) .. 38�

3.2� Choice of a Pipeline for the 1-D DWT Computation 39�

3.3� Design of the Architecture ... 43�

3.3.1� Synchronization of Stages .. 43�

3.3.2� Design of Stages ... 51�

3.3.3� Design of L/2-MAC-cell Network ... 54�

3.4� Performance Evaluation and FPGA Implementation 60�

3.5� Summary .. 68�

Chapter 4 A Scheme for the Design of Pipeline Architectures for 2-D Discrete

Wavelet Transform ...70�

4.1� Formulations for the Computation of the 2-D DWT 71�

4.1.1� Formulation for the Computation of Four Subbands 72�

4.1.2� Formulation for a Four-Channel Filtering Operation 73�

4.2� Pipeline for the 2-D DWT Computation .. 75�

4.3� Design of the Architecture ... 79�

4.3.1� Synchronization of Stages .. 80�

4.3.2� Design of Stages ... 83�

4.4� Performance Results and Comparisons ... 92�

4.4.1� Performance of the Proposed Architecture 92�

4.4.2� Comparisons of Various 2-D Architectures 96�

4.5� Summary .. 100

viii

Chapter 5 Conclusion ...102�

5.1� Concluding Remarks .. 102�

5.2� Scope for Future Work... 105�

References…... ..107�

ix

List of Figures

Figure 2.1: Hierarchical structure for the decomposition of a signal f(x) into

multiple resolution levels of the wavelet transform. 9�

Figure 2.2: Frequency bands covered by the scaling and wavelet functions. 11�

Figure 2.3: Binary tree representation of a 3-level 1-D DWT decomposition. 14�

Figure 2.4: Binary tree representation of the computation of a 2-level 2-D DWT

based on separable approach. ... 15�

Figure 2.5: Representation of the computation of a 2-level 2-D DWT based on

non-separable approach. ... 16�

Figure 2.6: Block diagrams of three types of architectures.. .. 19�

Figure 2.7: An architecture using one multiplier and one adder [42]. 20�

Figure 2.8: An architecture using a processor employing a systolic array of MAC

cells [43]. .. 21�

Figure 2.9: A lifting-based architecture using Daub-4 filters. Rj and Dj represent,

respectively, the registers and delay units for the computation of the jth

level [44]. .. 21�

Figure 2.10: A parallel architecture proposed by Chakrabarti and Vishwanath [53]. 22�

Figure 2.11: A folded architecture proposed by Parhi and Nishitani [54] using 4-tap

filter. ... 22�

Figure 2.12: An architecture proposed by Masud and McCanny [55]. 23�

Figure 2.13: A pipeline architecture proposed by Marino et al. [61] 24�

Figure 2.14: A scalable 3-stage architecture proposed by Park [62].. 25�

x

Figure 2.15: A lifting-scheme based pipeline architecture [63]. 25�

Figure 2.16: A single-processor architecture for the 2-D DWT computation [49]. 27�

Figure 2.17: An architecture proposed by Uzun and Amira [50] for the 2-D DWT

computation using 9/7-tap filters. ... 27�

Figure 2.18: An architecture proposed by Meher et al. [51] for the 2-D DWT

computation using separable approach.. ... 28�

Figure 2.19: A 2-D DWT architecture proposed by Chakrabarti and Mumford [57]. 29�

Figure 2.20: A parallel-processor architecture proposed by Wu and Chen [58] for

the 2-D DWT computation.. ... 30�

Figure 2.21: A pipeline architecture proposed by Jou et al. [64] for the 2-D DWT

computation. ... 31�

Figure 2.22: An architecture using a pipeline of 2J stages [65]. 32�

Figure 2.23: A two-stage pipeline architecture proposed by Marino [66].. 32�

Figure 3.1: Stage-equalized pipeline structure. ... 40�

Figure 3.2: A one-to-one mapped pipeline structure with I (I<K) stages. 41�

Figure 3.3: Pipeline structure with two stages. ... 42�

Figure 3.4: Timing diagram for the operations of two stages. 44�

Figure 3.5: Synchronization scheme for a 128-point (J=7) DWT computation

using length-4 (L=4) FIR filter. .. 49�

Figure 3.6: Block diagram of the two-stage architecture. ... 51�

Figure 3.7: Block diagram of the processing unit for L-tap filtering computation

assuming L to be an even number. ... 53�

Figure 3.8: Structure of the buffer. ... 54�

Figure 3.9: A two-dimensional array of bit-wise additions.. .. 57�

Figure 3.10: Structure of the L/2-MAC-cell network. .. 60�

Figure 3.11: Estimated values of nc.. .. 63�

xi

Figure 3.12: Estimated areas of the three architectures.. .. 63�

Figure 4.1: Pipeline structure with I stages for J-level computation. 78�

Figure 4.2: Parameters � and � plotted as functions of the number of stages I used

in a pipeline architecture. ... 79�

Figure 4.3: Timing diagram for the operations of three stages. 81�

Figure 4.4: Block diagram of the three-stage architecture. ... 84�

Figure 4.5: Diagram illustrating the data scanning.. ... 85�

Figure 4.6: Structure of the data scanning unit (DSU). .. 86�

Figure 4.7: Structure of eight processing units employed by stage 1. 87�

Figure 4.8: Structure of two processing units employed by stage 2. 88�

Figure 4.9: Structure of one processing unit employed by stage 3. 89�

Figure 4.10: Block diagram of a processing unit. ... 91�

Figure 4.11: Results of various FPGA implementations with N=128, 256, 512, 1024,

2048, and J=3, 6.. ... 95�

xii

List of Tables

Table 3.1: Indices and numbers of samples computed in time tc 45�

Table 3.2: Comparison of various architectures .. 61�

Table 3.3: Evaluation of various architectures .. 65�

Table 3.4: Resources used in FPGA devices ... 67�

Table 3.5: FPGA implementation results for various 1-D architectures 67�

Table 4.1: Performance metrics for the proposed 2-D architecture 92�

Table 4.2: Resources utilized in FPGA device for the circuit implementation for the

2-D DWT computation when N=512, L=M=4 and J=6 93�

Table 4.3: Performance metrics for various 2-D architectures .. 97�

Table 4.4: Comparison of various FPGA implementations ... 99�

xiii

List of Acronyms

1-D: One-dimensional

2-D: Two-dimensional

BRAM: Block random access memory

CLB: Configuration logic block

CPA: Carry propagation adder

CWT: Continuous wavelet transform

DFF: D-type flip-flop

DRU: Data recorder unit

DSP: Digital signal processing

DSU: Data scanning unit

DWT: Discrete wavelet transform

FIR: Finite impulse response

FPGA: Field programmable gate array

FPS: Frames per second

HH: Highpass-highpass

HL: Highpass-lowpass

IOB: Input/output block

xiv

LH: Lowpass-highpass

LL: Lowpass-lowpass

LUT: Look-up table

MAC: Multiply-accumulate

MBPS: Megabytes per second

N/A: Not available

PU: Processing unit

RPA: Recursive pyramid algorithm

SIMD: Single instruction multiple data

VLSI : Very large scale integration

xv

List of Symbols

a : Dilation parameter

A : Area

AI : An array of input bits to a layer of MAC-cell network

AO : An array of output bits from a layer of MAC-cell network

A(m,n) : Highpass-highpass subband sample with index (m, n)

b : Translation parameter

B(m,n) : Highpass-lowpass subband sample with index (m, n)

c(i) : Transformed scaling coefficients

D(m,n) : Lowpass-highpass subband sample with index (m, n)

maxf : Maximum operational clock frequency

f(.) : Function representing an input signal

G(z) : Impulse response of a filter

G : Transform matrix representing a highpass filtering operation

ig : The ith coefficient of a highpass filter

H : Transform matrix representing of a lowpass filtering operation

ih : The ith coefficient of a lowpass filter

),()(ikH P : The (k,i)th coefficient of the 2-D filter P

I: Number of pipeline stages

J : Largest resolution level

xvi

j : Index of resolution levels

L : Length of filter

)(2 RL : Hilbert space

M : Length of filter

nx : Number of samples computed in time span tx (x=b or c)

N : Number of input samples along one dimension

NADD : Number of adders

NCLK : Number of clock cycles

Nj : Number of samples at the jth resolution level

NMUL : Number of multipliers

NREG : Number of registers

p : Counter for samples computed at resolution level 2

q : Counter for samples computed at resolution levels higher than 2

Q(z): Transform matrix for two-channel wavelet filters

S : Matrix representation of an input signal

S(m,n) : Lowpass-lowpass subband sample with index (m, n)

si : The ith input sample

ta : Time span during which the first stage operates alone

tb : Time span during which the stages of a pipeline operate in parallel

tc : Time span during which the last stage operates alone

ti : Operating time period of the ith pipeline stage (i=1, 2, 3)

T : Computation time

Tc : Clock period

xvii

Ts : Average time to compute one sample by stage 1

w(i) : Transformed wavelet coefficients

X : Wordlength of input samples

Y : Wordlength of filter coefficients

Z : Number of layers of a MAC-cell network

� : Parameter representing the design complexity with respect to the

synchronization of pipeline stages

� : Parameter representing hardware utilization efficiency

(.)� : Wavelet function

(.)� : Scaling function

1

Chapter 1

Introduction

1.1 Background

In recent years, the discrete wavelet transform (DWT) has been widely and

increasingly used in many fields such as image compression, speech analysis and pattern

recognition because of its capability of decomposing a signal at multiple resolution levels

[1]−[18]. The DWT decomposes a signal into components in different octaves or

frequency bands by choosing appropriate scaling and shifting factors where the small

scaling factor corresponds to fine details of the signal and the large scaling factor to

coarse details, and the shifting factor corresponds to the time or space localization of the

signal [19]−[21]. In contrast to other transforms, such as Fourier or cosine transforms

where the signals are represented in frequency domain only, the DWT decomposes a

signal so that it is represented more efficiently and localized in both time (space) and

frequency domains. In other words, in the DWT, the time (space) information is not lost

in the transformed signal, which is very attractive for the analysis of signals, especially

for signals with non-stationary or transitory characteristics [22], [23].

2

In accordance with the multiple-level decomposition of a signal, the computation of

the DWT can be performed by repeating a process in which a fully scalable window is

shifted along the dimensions of the signal with the window size becoming shorter in each

repetition. The computing processes of the DWT can be carried out by executing

recursively a set of instructions developed in software programs such as SimuWave in

Simulink, Wavelet toolbox in MATLAB and WavBox in Toolsmiths [24]−[27]. The

software implementation for the computation of the DWT is flexible in setting different

values of the parameters of the transform and changing the codes for the algorithms.

Regardless of the effort devoted to the design of software algorithms and optimized codes

for their implementations, no general-purpose or DSP processor used for their

implementation can provide a performance in terms of the computing speed and resource

optimization that can possibly be achieved by a hardware implementation [28]−[33].

Hardware implementations, in which the computation of the DWT is performed by a

custom hardware circuit, it is possible to address the requirements of specific applications

such as the speed, power or size of the circuit. In the literature, there exist a number of

design efforts on the development of architectures for the DWT computation that focus

on such requirements of applications [34]−[41]. However, many applications of the DWT

computation involve large-volume data such as image or video. The fact that the DWT is

multiple resolution level operation adds even more to the vastness of the data to be

processed, which adversely affects the requirements of speed, power and the circuit area

of the architectures for such applications. Thus, it remains a challenging task to design

high-speed, low-power and area-efficient VLSI architectures to implement the DWT

computation for real-time applications.

3

1.2 Motivation

In the past, several types of architectures have been proposed aimed at providing

high-speed computation of the DWT using resource-efficient hardware. The architectures

in [42]−[51] employ a single processor to perform the computations of all the resolution

levels of the DWT, mostly based on the recursive pyramid algorithm (RPA) [52].

Naturally, by using a single processor in these architectures, the computations of the

various resolution levels of the DWT are performed in a sequential manner, since the

computation at one resolution level requires the output data from its preceding level.

Even though these architectures have low design and hardware complexities, they do not

focus on providing a fast computation of the DWT. Therefore, this type of architectures is

not attractive for real-time applications. In an effort to overcome the problem of slow

computation, architectures that employ two or more parallel processors have been

proposed [53]−[60]. In this type of architectures, the computation associated with one

level is performed by more than one processor thereby increasing the overall processing

speed of the DWT computation. These type architectures even though provide parallelism

to the computations associated with a given resolution level, they do not have parallelism

between the resolution levels. In order to further improve the parallelism for the DWT

computation, and hence the computational speed, the architectures that employ a number

of pipelined stages, each performing the task of one or more resolution levels of the DWT,

have been proposed [61]−[67]. The focus in the design of these architectures is on

introducing some parallelism in the computations associated with the multiple resolution

levels of the DWT, thus aiming at providing a high throughput and overall a short

computing time.

4

From the foregoing discussion, it is clear that pipeline architectures are well suited

for the DWT computation of large-volume data. However, no systematic approach seems

to exist in determining the number of stages, mapping of the resolution levels to the

stages and the design of the stages themselves so as to minimize the computation time

and maximize the utilization of the hardware resource of the pipeline.

1.3 Scope of the Thesis

The operation of discrete wavelet transform has the characteristic of getting the

amount of computations in successive resolution levels reduced by a factor of two along

each dimension of the signal. This thesis in conformity with this inherent feature of the

DWT undertakes a study of designing fast and hardware resource-efficient pipeline

architectures for the computation of the 1-D and 2-D discrete wavelet transforms. With

this overall objective, the mapping of the computational tasks associated with the various

resolution levels of the DWT to an optimum number of pipeline stages is first

investigated, and then an efficient design of the stages are explored from the standpoint

of maximizing the inter-stage and intra-stage parallelisms of the pipeline architectures

with an efficient utilization of the hardware resources employed.

1.4 Organization of the Thesis

The thesis is organized as follows.

In Chapter 2, first, discrete mathematical models for the computation of 1-D and 2-D

wavelet transforms are presented and the methods for their computation are described.

5

The existing architectures for the computation of these transforms are then reviewed and

classified.

In Chapter 3, a study for developing a scheme aimed for the design of a resource-

efficient pipeline architecture for fast computation of the 1-D DWT is undertaken. With

this goal in mind, the number of stages of the pipeline is first determined so as to map the

computational tasks of the various resolution levels of the DWT to the pipeline stages in

a most optimal manner. The second part of this chapter then focuses on the design of the

pipeline stages themselves so as to maximize the inter-stage and intra-stage parallelisms.

A case study for the design and FPGA implementation of a pipeline architecture is

undertaken to illustrate and validate the proposed scheme and to compare it with other

existing schemes for the design of architectures for the 1-D DWT computation.

Since the complexities in two-dimensional signal processing are generally quite

different from that in 1-D case and they often call for a different approach for their

solutions, in Chapter 4, an investigation is undertaken for developing a scheme for a

pipeline architecture for the computation of the 2-D DWT. Various components of the

design of pipeline architecture are looked into with the overall goal being the same as that

in the design of the 1-D DWT pipeline architectures, namely, the development of a fast

resource-efficient pipeline architecture. A circuit for a 2-D DWT computation is designed,

simulated and implemented in FPGA, and the simulation and implementation results are

then compared with those for the existing architectures to validate the efficiency of the

proposed design.

6

Chapter 5 concludes the thesis by summarizing the work contained therein,

highlighting the contributions made, and stating the scope of some possible future work

arising from the work of this thesis.

7

Chapter 2

Background Material and Related Previous Work

This chapter provides background material necessary for the development of the

architectures of the 1-D and 2-D discrete wavelet transforms undertaken in the following

chapters. First, the mathematical formulations of the 1-D and 2-D discrete wavelet

transforms are presented, and methods for their computations are described. This is

followed by a review of the various existing architectures, classified as single-processor,

parallel-processor and pipeline architectures for the 1-D and 2-D DWT computations.

2.1 Fundamentals of the Discrete Wavelet Transform

2.1.1 Definitions of Wavelet Transforms

The wavelet transform was first introduced by Jean Morlet in 1981 [68]. The

continuous wavelet transform (CWT) of a signal)()(2 Rxf L∈ (Hilbert space) is an

integral operation defined as

�
+∞

∞−

−
= dx

a

bx
xf

a
baw)()(

1
),(ψ (2.1)

8

where),(baw are the wavelet coefficients,)(
a

bx −
ψ are the wavelets generated by a basic

wavelet function)()(� 2 Rx L∈ , the so-called the mother wavelet, a is the dilation

parameter that scales the wavelet function by compressing or stretching it, and b is the

translation parameter that locates the position of the wavelet function by shifting it. It is

seen from this definition that the wavelet transform is a linear operation. By changing the

variable 'axx = and expressing the dilation parameter as jv
aa 1= , where a1 and vj (j=1, 2,

3, …) are real numbers, (2.1) becomes

')'()'(),(
1

111 �
+∞

∞−
−= dx

a

b
xxafabaw

j

jjj

v

vvv
ψ (2.2)

Therefore, the wavelet transform can be seen as a decomposition of the signal)(xf

into a number of resolution levels with j = 1, 2, 3, · · · . Fig. 2.1 shows a hierarchical

structure for the decomposition of a signal f(x) into multiple resolution levels of the

wavelet transform. It is seen from this figure that, in order to obtain the wavelet

coefficients),(1 baw jv of a certain resolution level j, the signal f(x) is first scaled by a

factor of jv
a1 , and then integrated with a dilated and translated wavelet function

)(
1

jv
a

b
x −ψ followed by a multiplication by the magnitude factor jva1 . It is also seen

from this figure that the wavelet transform is very suitable for analyzing the hierarchical

structure of the function f(x) because of its mathematical microscopic property that allows

a signal to be represented by a number of functions with automatic scalability [69].

9

2.1.2 Mathematical Formulations

(a) Expression for the 1-D DWT

According to (2.1), continuous wavelet transform may use an infinite number of

wavelets)(
a

bx −
ψ . Thus, it is not practical in analysis of a signal due to the redundant

calculation resulting from the dilation and translation parameters [70]. Discrete wavelets

are introduced to address this problem. Discrete wavelets are not continuously scalable

and translatable, but can be scaled and translated in discrete steps as denoted by

()00
2

0,)(kbxaax jj
kj −= ψψ (2.3)

where a0 and b0 are scale and translation factors, respectively, and k and the scale index j

are two integers. Generally, the value of the scale factor a0 is chosen as two so as to

achieve a dyadic sampling along the frequency axis, and the translation factor b0 has a

Scaled
by a1

Scaled
by a1

Scaled
by a1

f(x)
f(a1x) f(a1

j-1x)

�

)(bx −ψ)(
1a

b
x −ψ)(1

1
−

− ja

b
xψ

�1a �−1
1

ja

w(a1
0,b) w(a1,b) w(a1

j-1,b)

f(a1
2x)

·· ·

Level 1 Level 2 Level j

· ··

· · ·

Figure 2.1: Hierarchical structure for the decomposition of a signal f(x) into multiple

resolution levels of the wavelet transform.

10

value of unity so as to achieve a dyadic sampling along the time axis. Note that the

function)(, xkjψ has fine scale or high frequency when the scale index j becomes large.

Discrete wavelets are still continuous functions of x but discretized in the time-scale

space. The discrete form of the wavelet transform can now be formulated as

�
+∞

∞−
= dxxxfkjw kj)()(),(,ψ (2.4)

A dilation of wavelet functions by a factor of two in the time domain leads to a

reduction of their frequency by one-half. Since the wavelet functions have a feature of a

band-pass filter, in order to cover the entire frequency band down to zero when

decomposing a signal, an infinite number of levels would be required. To solve this

problem, a scaling function)(xφ , also called the father wavelet, was introduced by Mallat

in 1989 [71]. The scaling function)(xφ has a feature of a lowpass filter, and must satisfy

the two-scale dilation property given by

� −=
k

kxkhx)2()(2)(φφ (2.5)

� −=
k

kxkgx)2()(2)(φψ (2.6)

where)(kh and)(kg are the coefficients of two digital filters. If functions

()kxx jj
kj −= 22)(2

, φφ and kj ,ψ are orthogonal, the coefficients)(kh and)(kg are the

inner products �� − k,10,0 ,φφ and �� − k,10,0 ,φψ , respectively.

Since the scaling function has the feature of a lowpass filter, it sets a low bound on

frequency for the decomposition of a signal. For the decomposition of any given scale

index j, the scaling functions kj ,φ and wavelet functions kj ,ψ share the entire frequency

band, and only the frequency band of the scaling functions kj ,φ will be covered by further

11

decompositions of the scale index j−1, as shown in Fig. 2.2 [72]. Therefore, by

combining the scaling and wavelet functions, the entire frequency band is covered with a

limited number of resolution levels.

kj ,ψkj ,2−ψ kj ,1−ψkj ,3−ψ

kj ,2−φ

jωjω2
1

jω4
1

jω8
1 Frequency

kj ,φ
kj ,1−φ

Magnitude

Figure 2.2: Frequency bands covered by the scaling and wavelet functions.

Due to the dilation property of the scaling and wavelet functions and their relations

given by (2.5) and (2.6), for any scale index j, a signal f(x) can always be expanded in

terms of the scaled and translated wavelet and scaling functions,)2(kxj −ψ and

)2(kxj −φ , as

� � −+−=
k k

jj kxkjwkxkjcxf)2(),()2(),()(ψφ (2.7)

where),(kjc and),(kjw are, respectively, the scaling and wavelet coefficients

associated with a scale index j. In order to obtain the coefficients),(kjc and),(kjw , we

need to compute the inner products �−�)2(),(kxxf jφ and �−�)2(),(kxxf jψ ,

respectively. Using (2.4)−(2.7) and after some manipulation, we can obtain the

coefficients,),(kjc and),(kjw , as

� +−=
m

mjckmhkjc),1()2(),((2.8)

� +−=
m

mjckmgkjw),1()2(),((2.9)

12

It is seen from the above two equations that the wavelet or scaling coefficients at a

resolution level with the scale index j are formulated as a convolution of the coefficients

of a digital filter and the scaling coefficients at the resolution level with the scale index

(j+1).

(b) Expression for the 2-D DWT

In order to decompose a 2-D signal, the 1-D scaling and wavelet functions have to be

extended to two dimensions. A 2-D function can be obtained simply by multiplying two

1-D functions along x and y directions, respectively. Thus, the 2-D scaling function can

be generated from the 1-D scaling functions, as

)()(),(yxyx φφφ = (2.10)

Using (2.10) in the manner similar to that for obtaining (2.8), the 2-D scaling

coefficients associated with the scale index j for the 2-D DWT can be obtained as

�� +−−=
x ym m

yxxxyyyx mmjckmhkmhkkjc),,1()2()2(),,((2.11)

Similar to (2.10), three types of 2-D wavelet functions, namely, vertical wavelet

)()(xvψ , horizontal wavelet)()(xhψ , and diagonal wavelet)()(xdψ , can be obtained

using the 1-D scaling and wavelet functions as

)()(),()(yxyxv ψφψ = (2.12)

)()(),()(yxyxh φψψ = (2.13)

)()(),()(yxyxd ψψψ = (2.14)

which lead to three types of wavelet coefficients given by

�� +−−=
x ym m

yxxxyyyx
v mmjckmhkmgkkjw),,1()2()2(),,()((2.15)

13

�� +−−=
x ym m

yxxxyyyx
h mmjckmgkmhkkjw),,1()2()2(),,()((2.16)

�� +−−=
x ym m

yxxxyyyx
d mmjckmgkmgkkjw),,1()2()2(),,()((2.17)

It is seen from (2.11) and (2.15)−(2.17) that four components of the 2-D DWT at the

resolution level with a scale index j are produced using the scaling coefficients at the

level with a scale index (j+1). It should be noted that if the 2-D scaling and wavelet

functions used in the 2-D DWT are non-separable in terms of x and y, the product of two

1-D filter coefficients in the right side of (2.11) and (2.15)−(2.17) will be replaced by a

2-D filter coefficient.

2.1.3 Computations of Discrete Wavelet Transforms

(a) Computation of the 1-D DWT

According to (2.8) and (2.9), the method for computing the 1-D DWT can be viewed

as a sequence of operations along a binary tree consisting of a set of two-channel filter

banks [73]. Fig. 2.3 shows an example of a binary tree for a 3-level DWT computation of

1-D signal s(n). It is seen from this figure that the decomposition at any level of the DWT

is computed by using a two-channel filter bank consisting of one highpass filter GH(z)

and one lowpass filter GL(z), followed by a decimation operation by a factor of two in

each channel. For a given resolution level j (j=1, 2, 3), the output samples of the two

channels consist of a lowpass component cj
(L)(n) and a highpass component wj

(H)(n), of

which only the component cj
(L)(n) is used as input for the decomposition at the next level

j+1. The computation for the resolution level j has a complexity of O(N0L/2j−1), where N0

and L are, respectively, the number of samples of the input signal s(n) and the length of

14

each of the two filters. It should be noted that as the resolution level j increases, the

dilation parameter of the wavelets associated with the resolution level j becomes smaller

and smaller, which results in representing the signal by functions having a coarser scale.

(b) Computation of the 2-D DWT

The computation of the 2-D DWT is more involved than that of the 1-D DWT, both

in terms of the amount of processing as well as the complexity of the algorithm used for

the computation.

(i) Separable Approach for the 2-D DWT Computation

A straightforward way to perform the computation of the 2-D DWT is to use a

separable approach. In the separable approach, the impulse response G(z1, z2) of each 2-D

filter used for the DWT computation is product separable, i.e., G(z1, z2) = G1(z1)G2(z2),

The filter G1(z1) is used to process the 2-D data of successive rows (columns). Then, the

resulting 2-D data is processed successively along the columns (rows) using the filter

G2(z2). A binary tree representation for a 2-level DWT computation of 2-D signal s(n1, n2)

based on the separable approach is shown in Fig. 2.4. It is seen from this figure that the

GH(z)

GL(z)

2

GH(z)

GL(z)

w1
(H)(n)

w2
(H)(n)

w3
(H)(n)

c1
(L)(n)

c2
(L)(n)

c3
(L)(n)

s(n)

Level 1 Level 3Level 2

2

2

2

2

2

GL(z)

GH(z)

Figure 2.3: Binary tree representation of a 3-level 1-D DWT decomposition.

15

computation for the decomposition of a given level j consists of two decomposition steps:

row-wise decomposition of the 2-D input data using and column-wise decomposition of

the 2-D data resulting from the row-wise decomposition. In the row-wise decomposition,

each row of the 2-D input data is filtered using the two-channel horizontal filter bank

(G1H(z1) or G1L(z1)) and then downsampled by a factor of two, to produce horizontal

highpass and lowpass components, each component having one-half of the numbers of

samples in the rows of the 2-D input data. In the column-wise decomposition, each

column of the two resulting components is filtered by using the two-channel vertical filter

bank (G2H(z2) or G2L(z2)) and downsampled by a factor of two so that in total four

components, specified as the HH component wj
(HH)(n1, n2), LH component wj

(LH)(n1, n2),

HL component wj
(HL)(n1, n2) and LL component cj

(LL)(n1, n2), are obtained as outputs of

the given level j. Among the four outputs, only the LL component cj
(LL)(n1, n2) is used for

the computation of the next resolution level, which is an iteration of the above two steps.

G1H(z1)

G1L(z1)

2

G2H(z2)

G2L(z2)

w1
(HH)(n1,n2)

w1
(HL)(n1,n2)

w1
(LH)(n1,n2)

c1
(LL)(n1,n2)

s(n1,n2)

Level 1 Level 2

2

2

2

G2H(z2)

G2L(z2) 2

2

G1H(z1)

G1L(z1)

2

G2H(z2)

G2L(z2) 2

2

2

G2H(z2)

G2L(z2) 2

2

Row-wise Column-wise

Row-wise Column-wise

w2
(HH)(n1,n2)

w2
(HL)(n1,n2)

w2
(LH)(n1,n2)

c2
(LL)(n1,n2)

Figure 2.4: Binary tree representation of the computation of a 2-level 2-D DWT based

on separable approach.

16

It should be noted that each of the four resulting components has one-quarter of the

number of samples of the 2-D input data to the jth level. The computation of the

resolution level j has a complexity of O(N0M0L/4j−1), where N0 and M0 are the numbers of

the rows and columns of the 2-D input data.

(ii) Non-separable Approach for the 2-D DWT Computation

Obviously, separable approach is a simple way to compute the 2-D DWT. However,

separable filters being a special class of 2-D filters are not capable to approximate well

all arbitrary frequency responses. In this regard, a non-separable approach of the 2-D

computation provides more flexibility. In the non-separable approach depicted in Fig.

2.5, the DWT of a 2-D signal s(n1, n2) is computed by carrying out four separate 2-D

filtering operations using four 2-D filters: a highpass-highpass (HH) filter GHH(z1, z2), a

highpass-lowpass (HL) filter GHL(z1, z2), a lowpass-highpass (LH) filter GLH(z1, z2), and a

lowpass-lowpass (LL) filter GLL(z1, z2). The output signals of these four filters are then

GLH(z1, z2)

GLL(z1, z2)

w1
(HH) (n1,n2)

w1
(HL)(n1,n2)

w1
(LH)(n1,n2)

c1
(LL)(n1,n2)

s(n1,n2)

Level 1 Level 2

(2,2)

(2,2)

GHH(z1, z2)

GHL(z1, z2) (2,2)

(2,2)

w2
(HH) (n1,n2)

w2
(HL)(n1,n2)

w2
(LH)(n1,n2)

c2
(LL)(n1,n2)

GLH(z1, z2)

GLL(z1, z2) (2,2)

(2,2)

GHH(z1, z2)

GHL(z1, z2) (2,2)

(2,2)

Figure 2.5: Representation of the computation of a 2-level 2-D DWT based on non-

separable approach.

17

decimated by a factor of two in the horizontal and vertical directions producing,

respectively, the HH, HL, LH and LL components. The computation of the resolution

level j using the non-separable approach has a complexity of O(N0M0L
2/4j−1), where N0

and M0 are, respectively, the numbers of rows and columns of the 2-D input data, and L2

is the number of coefficients in each of the L×L 2-D filters.

2.2 Review of the Architectures

2.2.1 Categorization of the Architectures

In recent years, many architectures have been proposed for the DWT computation

[74]−[109]. These architectures aim at providing high performances, in terms of their

speed, area, throughput, latency and power consumption. The filtering operation involved

in the DWT computation is usually the convolution operation, that is, FIR filtering. The

structure of the filter could be a direct realization, or it could be a systolic, lattice, bit-

wise or lifting based realization depending on the way that the basic convolution

operation is manipulated or formulated [110]−[128]. For example, the lifting scheme

proposed by Sweldens [129], [130] exploits the relationship that exists between the

lowpass filter GL and the highpass filter GH for the computation of the DWT. In this case,

the polyphase matrix Q(z) = [GL GH]T can then be factorized as

�
�

�
	

�
�
�

�
	

�
�
�

�
	

�
= ∏

= 01

1)(

1)(

01

/10

0

1

zs

ztK

K i
m

i i

Q(z) (2.18)

where K is a constant, and the two so called Laurent polynomials si(z) and ti(z) have low

orders. It is seen from (2.18) that the lifting-scheme based filtering operation requires a

18

cascade of lifting steps, and thus, leads to a large latency and a long critical path of the

resulting lifting architecture.

The filtering operation is carried out by using a processor that employs a certain type

of filter structure. An architecture may use one or multiple such processors to perform the

DWT computation. For the purpose of reviewing these existing architectures, we

categorize them as single-processor architectures, parallel-processor architectures and

pipeline architectures, depending on their configuration and the number of processors

used by them. In a single-processor architecture, only one processor carries out the

filtering operation by computing the samples of the DWT in a recursive manner. In a

parallel-processor architecture, multiple processors are used to carry out the filtering

operations so that more than one sample is computed at a time. In this type of architecture,

the filtering operations to decompose the input signal into various components are carried

out in parallel, whereas the computations of various resolution levels are still performed

recursively by the parallel processors. In a pipeline architecture, a certain number of

stages, each consisting of one or more processors, are pipelined so that the computation

of each decomposition level as well as that of the multiple resolution levels are performed

in parallel. Fig. 2.6 depicts the block diagrams for the three categories of the architectures.

In each of these three broad categories, architectures may differ considerably because of

the internal structures of processors employed for the filtering operation. In the following,

examples of 1-D and 2-D architectures are given for each of the categories, and their

salient features discussed.

19

Processor

Memory

Other decomposed
components of the
signal

Lowpass decomposed
component of the signal

DEMUXMUX

Input
signal

(a)

Processor

Memory
Lowpass decomposed
component of the
signal

MUX

Processor

� � �
Input
signal

Processor

� � �

� � �
� � � Other decomposed

components of the
signal

DEMUX

(b)

Processor

Processor

Lowpass decomposed component

� � �

Processor

� � �
DEMUX

� � �

Processor

MUX

Stage 1 Stage K

Other
decomposed
component of
the signal

Other decomposed
component of the
signal

Input
signal

Lowpass decomposed
component

(c)

Figure 2.6: Block diagrams of three types of architectures. (a) Single-processor

architecture, (b) parallel-processor architecture, and (c) pipeline architecture.

20

2.2.2 Architectures for 1-D DWT Computation

(a) Single-processor Architectures

 In the single-processor category, the VLSI architecture proposed by Guo et al. [42]

is an example, in which only a single multiplier and a single adder, as shown in Fig. 2.7,

are used, and thus, requires substantially large computation time. Fig. 2.8 depicts another

example of this category, in which the processor utilizes a systolic array of multiply-

accumulate (MAC) cells and a bank of shift registers for the filtering operations [43].

However, this architecture is slow because of the delays involved in the propagation of

the signal through the array of MAC cells. The lifting-scheme based processor, proposed

by Liao et al. [44], is yet another example of the single-processor architecture, in which

the processor consists of a cascade of lifting steps, as shown in Fig 2.9, and it is used to

compute the samples of the first resolution level at every other clock cycles and those of

the other levels at the intervening clock cycles. However, a cascade of many lifting steps

would result in quite a long critical path for this type of architecture.

Memory

Multiplier

Delay unitFilter coefficient

Adder

Input

Highpass output
component

Lowpass output component

DEMUX

+

Figure 2.7: An architecture using one multiplier and one adder [42].

21

Systolic filter
Input

OutputR26 R3 R1R2R15 R14

MAC

MAC

MAC
...

D D ... D

.

Register bank

Input delay

R26 R3 R1R2R15 R14

.

D D D

Control unit

DEMUX

Figure 2.8: An architecture using a processor employing a systolic array of MAC

cells [43].

(b) Parallel-processor Architectures

In the parallel-processor category, Chakrabarti and Vishwanath [53] have proposed

an architecture that uses two processors operating in parallel, one for lowpass and the

other for highpass filtering operations, and one storage unit, as shown in Fig. 2.10. Since

+

+

R1

RJ

RJ
�

R2

���

R3
�

���
R3

���

D1

DJ

D2

���

D3 +

+

Highpass
output
component

Lowpass output component

���
Multiplier

Input

MUX

Adder

�

�

	

�

�

Figure 2.9: A lifting-based architecture using Daub-4 filters. Rj and Dj represent,

respectively, the registers and delay units for the computation of the jth level [44].

22

this architecture has as many memory blocks as the number of resolution levels for

storing the lowpass data, it requires a large memory space.

Lowpass filter

. . .

MUX

Storage unit

Input

Output

Highpass filter

Shift registers to store
the 1st-level data

Shift registers to store
the (J-1)th-level data

Shift registers to store
the input data

DEMUX

Figure 2.10: A parallel architecture proposed by Chakrabarti and Vishwanath [53].

The folded architecture proposed by Parhi and Nishitani [54] is an example of a

parallel-processor architecture, in which a pair of lowpass and highpass systolic filters

and a set of shift registers are used to perform the computations of multiple resolution

Multipliers

Delay
units

D

Adders

Input

Highpass output component

Lowpass output component

Registers

D

D

R R R R

MUX

��� ��� ���

D D+ +

+ + +

+

D D

Figure 2.11: A folded architecture proposed by Parhi and Nishitani [54] using 4-tap

filter.

23

levels, as shown in Fig. 2.11. This architecture requires complex routing, and has a low

throughput rate for large-size filters.

Masud and McCanny [55] have proposed a two-processor architecture, as shown in

Fig. 2.12, using L-tap lowpass and highpass filters operating in parallel. However, in this

architecture, each of the two filters uses only L/2 MAC cells that operate on odd and even

numbered coefficients in consecutive clock cycles. The architecture results in a large

computation time and has a complex control unit.

(c) Pipeline Architectures

The architecture proposed by Marino et al. [61] and shown in Fig. 2.13 is an example

of a pipeline architecture, in which a number of pipeline stages Bj (j=1, 2, …, J) are

employed for the computations of J resolution levels. The computation of the jth

resolution level is performed by the jth stage using � �22/ −= j
j LW MAC cells, as shown

in Fig. 2.13. However, the architecture requires a large amount of hardware resource

when the number of resolution levels becomes large. Moreover, since the organization of

MAC cells differs from stage to stage, the design complexity is quite high.

Input

Multiplier

Delay units
D

Adder

Lowpass output
component

Highpass output
component

���

D D D DDD

h0

h1

hL-1

hL

���

g0

g1

h2

h3

h4

h5

g2

g3

g4

g5

gL-1

gL

Register

Filter
coefficients

+ + +

+

+

+++

���

Figure 2.12: An architecture proposed by Masud and McCanny [55].

24

Input ���

���

Hj: Highpass output of the jth level

B1

B2

BJ

��
�

		
�= −22J

J L/W

LW =2

LW 21 =

H1

H2

HJ

L1

Lj: Lowpass output of the jth level

LJ

L2

Multiplier

Delay unit

Adder
Highpass
output
component

Lowpass
output
component

D L

D LD

D

h4

g5

h2 h0

g3 g1

Filter
coefficients

+ + +

+++

D LD

g4 g2 g0

++
D LD

h5 h2 h1

+ +
Latch

Odd-numbered
input samples

Even-numbered
input samples

(a) (b)

Figure 2.13: A pipeline architecture proposed by Marino et al. [61]. (a) Block diagram of

the architecture. (b) Structure of B1 when a 6-tap filter is used.

Park [62] has proposed a scalable pipeline architecture, in which a certain stage Bj of

the pipeline utilizes the number of parallel multipliers Mj that is one-half of that of the

preceding stage, and uses a data recorder unit (DRU) for constructing the input data

sequence, as shown in Fig. 2.14. However, the architecture is restricted for of the

computation of the DWT which has three resolution levels and the number of filter length

L is divisible by 4.

A lifting-scheme based architecture proposed by Chen [63] and shown in Fig. 2.15 is

another example of a pipeline architecture, in which a certain number of identical stages,

each consisting of splitting, predicting and updating units for the computation of a

resolution level, are employed. In this architecture, since the number of computations

performed by each stage is not consistent with the amount of hardware resource it

employs, the architecture has low utilization of hardware resources.

25

Stage 3

Stage 1

Input

+

Stage 2

+

P US

H1

L1

+

+

P US

H2

L2

+

+

P US

H3

L3

S: splitting unit; P: predicting unit; U: updating unit

Hj: highpass output of the jth level
Lj: lowpass output of the jth level

Figure 2.15: A lifting-scheme based pipeline architecture [63].

Input
B1

B2

B3

4/3 LM =
2/2 LM =LM =1

H1

H2

H3
L1

L3

L2

Hj: Highpass output of the jth level

Lj: Lowpass output of the jth level
 Multiplier

DEMUX

AdderMUX

Output

D

L

L

L

L

h1 g1

g0h0

g2h2

g3h3

Delay unit

Input

+

+

+

D

D

D

D

a

a

b

d

d

b
c

c

d

c

DRU

Latch

(a) (b)

Figure 2.14: A scalable 3-stage architecture proposed by Park [62]. (a) Block diagram of

the architecture. (b) Structure of the first stage.

26

2.2.3 Architectures for 2-D DWT Computation

(a) Single-processor Architectures

In a single-processor category, the architecture of [47] is an example of a

multiplierless architecture, and therefore, is restricted to only certain types of wavelets.

Moreover, the architecture is not scalable. The architecture proposed by Movva and

Srivivasan [48] is another example in the single-processor category for the 2-D DWT

computation that uses the separable approach. In this architecture, the 2-D DWT is

obtained by performing a row-wise computation followed by a column-wise computation

using a single lifting-scheme based processor. The architecture is a low-speed and

requires a large memory space. Hung et al. [49] have proposed a single-processor

architecture using the non-separable approach, illustrated Fig. 2.16, in which an L×L-tap

filtering operation is carried out by a processor consisting of a cascade of three blocks:

parallel multipliers, L accumulators along the row direction and one accumulator along

the column direction. The architecture has low computational speed, since the samples of

the four decomposed components are computed sequentially. The architecture [50]

shown in Fig. 2.17 is another example of a single-processor architecture, in which the

processor consists of � �2/L adders and � �2/L parallel processing blocks, where L is

the filter length, followed by an accumulator. The architecture requires large storage

(delay units) to store the lowpass-lowpass output components of various resolution levels.

Fig. 2.18 shows another single-processor architecture proposed by Meher et al. [51] for

the computation of the 2-D DWT using separable approach, in which the computation is

performed by two blocks, referred to as Subcell-1 and Subcell-2. Subcell-1 employs

parallel multiplication units and adders for row-wise filtering operation, whereas

27

Subcell-2 employs one delay cell and a systolic array of multiplication and adder units for

column-wise operation.

Parallel multipliers

data controller

Row accumulator

Row accumulator

Row accumulator

���

Column
accumulator

Input

Lowpass-lowpass
output component

Other output
components

+L

Processor

Figure 2.16: A single-processor architecture for the 2-D DWT computation [49].

Input

Even-numbered
input samples

Delay units
Accumulator

Output
components

+

+

+

+

P2

P3

P1

P0

P4 +

Odd-numbered
input samples

Adders Processing blocks

Processor

Figure 2.17: An architecture proposed by Uzun and Amira [50] for the 2-D DWT

computation using 9/7-tap filters.

28

Input samples

Output 1

Subcell-2

Subcell-1

Output 2

Input samples

VL

+ +

+ +
+ +

VH

MU MU MU MU

 (a) (b)

MU MU MU MU

AC

VL VH

LC

Output 1

Output 2
AC AC AC

MU

AC

LC

Multiplication unit

Adder cell

Line Changer

+ Adder

 (c)

Figure 2.18: An architecture proposed by Meher et al. [51] for the 2-D DWT

computation using separable approach. (a) Top-level architecture. (b) Structure of

Subcell-1. (c) Structure of Subcell-2.

(b) Parallel-processor Architectures

In the category of parallel-processor architectures, Chakrabarti and Mumford [57]

have proposed a four-processor architecture, as shown in Fig. 2.19, in which Filter Hor 1

performs the horizontal filtering operation of the resolution level 1=j , Filter Ver 1 and

Filter Ver 2 perform, respectively, the vertical lowpass and highpass filtering operations

of the resolution levels ,...,3,2,1=j and Filter Hor 2 performs the horizontal filtering

operations of the resolution levels ...,3,2=j . In this architecture, since the amounts of

computations assigned to the four processors are not proportional to the amount of

29

hardware employed by them, the architecture has drawback of having low hardware

utilization.

Filter
Hor 2

Filter
Hor 1

Input

Storage 1

Storage 2

Other output components

Filter
Ver 1

Filter
Ver 2Lowpass-lowpass

output component

Figure 2.19: A 2-D DWT architecture proposed by Chakrabarti and Mumford [57].

The architecture [58] shown in Fig. 2.20 is another example of parallel-processor

architecture for the 2-D DWT computation, in which two processors employing a poly-

phase decomposition technique are used for row-wise filtering operation, and four other

processors employing a filter coefficient folding technique are used for column-wise

filtering operation. The architecture has a high design complexity, since the parallel

processors have different structures.

30

Input
(N�N)

Lowpass-lowpass output component

Other output
components

RAM
(N2/4)

Transform
module

Selected
input data

MUX

(a)

D

+

+

D

+

+

D

+

+

+ L

+ L

+ L

+ L

h0 h1h2 h3

g0 g1g2 g3

+ L

+ L

+ L

+ L

h0 h1h2 h3

g0 g1g2 g3

h0

h1

h2

h3

g0

g1

g2

g3

Filter
coefficients

: Multiplier

MUX

Selected
input data Lowpass-highpass

output component

Highpass-highpass
output component

Highpass-lowpass
output component

Lowpass-lowpass
output component

: LatchL

D : Delay unit + : Adder

Processors

(b)

Figure 2.20: A parallel-processor architecture proposed by Wu and Chen [58] for the 2-D

DWT computation. (a) Top-level architecture. (b) Structure of the transform module with

six processors.

31

(c) Pipeline Architectures

The architecture [64] shown in Fig. 2.21 is an example of a pipeline architecture for

the computation of the 2-D DWT. In this architecture, four processors, RF1, CF1, RF2

and CF2, form a pipeline, in which the first two processors are used to perform,

respectively, the row-wise and column-wise operations of level 1 and remaining two to

perform, respectively, the row-wise and column-wise operations of the remaining levels.

The architecture has a large latency and requires large storage space.

Processor
RF1

Input
Other output
components

Lowpass-lowpass output
component of level 1

Storage 1 Storage 2

Processor
CF1

Processor
RF2

Processor
CF2

MUX

Figure 2.21: A pipeline architecture proposed by Jou et al. [64] for the 2-D DWT

computation.

The architecture shown in Fig. 2.22 is another example of a pipeline architecture

proposed by Mihi� [65]. In this architecture, a J-level 2-D DWT is performed using a

pipeline of J2 processors, each employing a semi-systolic array of MAC cells for row-

or column-wise filtering operation of a resolution level. The architecture has a very large

latency, and it is not practical for the computation of the DWT with large number of

resolution levels.

The architecture of [66] (see Fig. 2.23) is yet another example of a pipeline

architecture for the 2-D DWT computation. In this architecture, a pipeline of two stages,

one for the computation of the first resolution level and the other for the computation of

32

all the remaining levels, and each employing L parallel processing blocks, are used. The

design complexity of this architecture is high, since the structures of the processing

blocks are different. Also, it has a high hardware resource complexity, since each

processing block has a large number of MAC cells.

Level-1 horizontal filter

Level-1 vertical filter

Level-2 horizontal filter

Level-2 vertical filter

Input

�
�
�

Output components of
level 1

Lowpass-lowpass
output component

Output components of
level 2

Level-J vertical filter
Output components of
level J

Level-J horizontal filter

Figure 2.22: An architecture using a pipeline of 2J stages [65].

Input

Other output
components

Lowpass-lowpass
output component

B2

(j >1)

B1

(j =1)

Output component
of level 1

Input

Even-numbered
input samples

P5

P2

P3

P1

P0

P4
+

Odd-numbered
input samples

Accumulator

Output
components

Processing blocks

DEMUX

(a) (b)

Figure 2.23: A two-stage pipeline architecture proposed by Marino [66]. (a) Top-level

architecture. (b) The structure of the stage B1 for L= 6.

33

2.3 Summary

In this chapter, starting with the mathematical definitions of the 1-D and 2-D wavelet

transforms, discrete formulations have been provided for their practical computations.

These discrete formulations are seen to follow a binary-tree structure for the computation

of the 1-D DWT and, depending on the separable or non-separable approaches, a binary-

tree or quadtree structures for the computation of the 2-D DWT. For the purpose of

reviewing the existing architectures for the computation of the 1-D and 2-D wavelet

transforms, they have been classified as single-processor, parallel-processor or pipeline

architectures. A number of architectures from the literature in each of the categories,

both for the 1-D and 2-D DWT computations, have been briefly reviewed. It has been

seen that whereas the architectures in the single-processor and parallel-processor

categories are efficient in terms of the speed and employment of hardware resources,

respectively, the pipeline architectures are a good compromise between hardware

resource complexity and speed.

34

Chapter 3

A Scheme for the Design of Pipeline Architectures

for 1-D Discrete Wavelet Transform

In Chapter 2, a number of pipeline architectures [61]−[63] for the computation of the

1-D discrete wavelet transform were briefly reviewed. These architectures employ a large

number of pipeline stages or utilize a large number of MAC cells to perform the filtering

operations of the stages, and thus, have high complexity in terms of hardware resources

[61], [62] or large latency [63]. In other words, the speed provided by these architectures

is not commensurate with the hardware resources employed by them, The reason for

these drawbacks is that the schemes used for the development of these architectures have

not fully exploited certain characteristics inherent in the discrete wavelet transform.

In this chapter, a scheme for design of pipeline architectures for a fast computation of

the DWT is proposed [131]−[133]. The goal of fast computation is achieved by

minimizing the number and period of the clock cycles. The main idea in minimizing

these two parameters is to optimally distribute the task of the DWT computation among

the stages of the pipeline, and to maximize the inter- and intra-stage parallelisms of the

35

pipeline by synchronizing the operations of the stages optimally and by utilizing the

available hardware resources judiciously.

The chapter is organized as follows. In Section 3.1, a matrix formulation for the 1-D

DWT computation is presented. In Section 3.2, a study is undertaken to determine the

number of stages in the pipeline to optimally assign to them the task of the 1-D DWT

computation. Based on this study, in Section 3.3, a scheme for the design of a pipeline

architecture is developed. In Section 3.4, the performance of the pipeline architecture for

the DWT computation using the proposed design scheme is assessed and compared with

that of other existing architectures. A specific example of designing an architecture for

the DWT computation is also considered and the resulting architecture is simulated and

implemented on an FPGA board in order to demonstrate the realizability and validity of

the proposed scheme. Section 3.5 summarizes the work of this chapter by highlighting

the salient features of the proposed design scheme and the resulting pipeline

architectures.

3.1 Formulation of the 1-D DWT Computation

3.1.1 Matrix Formulation

The 1-D DWT of a signal is computed by performing the filtering operation

repeatedly, first on the input data and then on the LL data after decimating it by a factor

of two for the successive resolution levels. The filtering operation uses a quadrature

mirror filter bank with lowpass and highpass filters to decompose the signal into lowpass

and highpass subband signals, respectively. The transform can be expressed using a

matrix formulation in order to provide a better insight into the underlining operations of

36

the DWT as well as to facilitate the proposed scheme for the design of the architecture for

its computation.

Let the signal be denoted as T
121],,,,[NN ssss −= �S , where N, the number of samples

in the input signal, is chosen to be 2J, J being an integer. Assume that hi and gi (i =

0,1,…,L−1) are the coefficients of the L-tap lowpass and highpass filters, respectively.

Then, by expressing the transform matrices for the lowpass and highpass computations at

the jth (j=1,2,…,J) level decomposition as

�
�
�
�
�
�

�

�

	
	
	
	
	
	

�

=

−−−

−

1

3

0

210

123

1

1

3

0

210

)(

0

0

0

0

0

0

0

0

0

0

0

0

0

000

0

0

0

0

0

0

0

0

0

0

h

h

h

hhh

hhh

h

h

h

h

hhh

LLL

L

j

�

�

�

�

�

�

�

�

H (3.1a)

�
�
�
�
�
�

�

�

	
	
	
	
	
	

�

=

−−−

−

1

3

0

210

123

1

1

3

0

210

)(

0

0

0

0

0

0

0

0

0

0

0

0

0

000

0

0

0

0

0

0

0

0

0

0

g

g

g

ggg

ggg

g

g

g

g

ggg

LLL

L

j

�

�

�

�

�

�

�

�

G (3.1b)

respectively, where both H(j) and G(j) have a size of (N/2j)× (N/2j-1), the outputs of the

transform at the jth level can be computed from the following:

)1(

)(

)(

)(

)(
−⋅�

�

�
	

�
=�
�

�
	

� j

j

j

j

j

C
G

H

W

C
 (3.2)

where C(j) and W(j) represent the column vectors of size N/2j and consist of lowpass and

highpass output samples, respectively, at the resolution level j, with C(0)=S. It is clear

from (3.1a) and (3.1b) that the lengths of the filters and the size of the input samples

control the number of non-zero entries of the matrices involved, which in turn,

determines the complexity of the DWT computation. If the decomposed signals are

37

required to be reassembled into the original form without loss of information, the lowpass

and highpass filters must satisfy the perfect reconstruction condition given by

iL
i

i hg −−
+−= 1

1)1((3.3)

A border extension of the input signal becomes necessary for the processing of the

samples on or near the border of a finite-length signal. There are generally three ways by

which the border can be extended in a DWT computation, zero padding, symmetric

padding and periodic padding [134]. Even though from the point of view of hardware

cost, zero padding is the least expensive, the periodic padding is the most commonly used

method for border extension, since it allows a precise recovery of the original signal at or

near the border. This method extends the original sequence S by appending it with its first

L−2 samples as

T
231121],,,,,,,,[−−−= LLNN sssssss ��pS (3.4)

Thus, in order to operate on the padded input sequence Sp, the transform matrices H(j)

and G(j) have to be modified by appending each by additional 2−L columns. The elements

of the appended columns in a row of a modified transform matrix assume a zero value, if

all the filter coefficients already appear in the corresponding row of (3.1a) or (3.1b).

Otherwise, the elements in the row are made to assume the missing values of the filter

coefficients so that all the coefficients appear in that row of the modified transform

matrix.

38

3.1.2 Reformulation of (3.2)

It is seen from (3.1) that due to the decimation-by-two requirement of the DWT,

entries in the successive rows of matrices H(j) and G(j), and therefore, in their modified

versions, are shifted to right by two positions. This property can be utilized to decompose

the arithmetic operations in (3.2) into two parts so that the operations in one part can be

performed simultaneously with those of the other one. For this purpose, we now

decompose each of the modified transform matrices H(j) and G(j) by separating the even

and odd numbered columns of each matrix into two sub-matrices. The resulting sub-

matrices, taking into account the perfect reconstruction condition specified by (3.3), can

be expressed as

�
�
�
�
�
�

�

�

	
	
	
	
	
	

�

=

−−

−

−−

−

24

2

0

20

24

2

0

20

)(

0

0

0

00

0

0

00

0

0

0

LL

L

LL

L

j
even

hh

h

h

hh

hh

h

h

hh

�

�

�

�

�

�

�

�

�

�

H (3.5a)

�
�
�
�
�
�

�

�

	
	
	
	
	
	

�

=

−−

−

−−

−

13

1

1

31

13

1

0

31

)(

0

0

0

00

0

0

00

0

0

0

LL

L

LL

L

j
odd

hh

h

h

hh

hh

h

h

hh

�

�

�

�

�

�

�

�

�

�

H (3.5b)

�
�
�
�
�
�

�

�

	
	
	
	
	
	

�

−=

−

−−

−

−−

13

1

1

31

13

1

1

31

)(

0

0

0

00

0

0

00

0

0

0

hh

h

h

hh

hh

h

h

hh

L

LL

L

LL

j
even

�

�

�

�

�

�

�

�

�

�

G (3.5c)

39

�
�
�
�
�
�

�

�

	
	
	
	
	
	

�

=

−

−−

−

−−

02

0

2

42

02

0

2

42

)(

0

0

0

00

0

0

00

0

0

0

hh

h

h

hh

hh

h

h

hh

L

LL

L

LL

j
odd

�

�

�

�

�

�

�

�

�

�

G (3.5d)

in which the entries in the successive rows are shifted to right by only one position. With

this decomposition of the transform matrices, the DWT computation as given by (3.2)

can be reformulated as

)1(

)(

)(
)1(

)(

)(

)(

)(
−− ⋅�

�

�
	

�
+⋅�

�

�
	

�
=�

�

�
	

� j
oddj

odd

j
oddj

evenj
even

j
even

j

j

C
G

H
C

G

H

W

C
 (3.6)

where)(j
evenC and)(j

oddC are the two sub-vectors consisting of even and odd numbered

samples, respectively, in the padded vector of C(j).

It is seen from (3.6) that the operations in each of the two terms are identical, and

also, they can be performed independently in parallel. Furthermore, in view of the

structures of the decomposed transform matrices as given by (3.5), the filtering operation

can be carried out by employing the conventional clocking mechanism used for

implementing digital systems.

3.2 Choice of a Pipeline for the 1-D DWT Computation

In a pipeline structure for the DWT computation, multiple stages are used to carry out

the computations of the various resolution levels of the transform. Thus, the computation

corresponding to each resolution level needs to be mapped to a stage or stages of the

pipeline. In order to maximize the hardware utilization of a pipeline, the hardware

resource of a stage should be proportional to the amount of the computation assigned to

40

the stage. Since the amount of computations in successive resolution levels of the

transform get reduced by a factor of two, two scenarios can be used for the distribution of

the computations to the stages of a pipeline. In the first scenario, the resolution levels are

assigned to the stages so as to equalize the computations carried out by each stage, that is,

the hardware requirements of all the stages are kept the same. In the second scenario, the

computations of the successive resolution levels are assigned to the successive stages of a

pipeline, on a one-level-to-one-stage basis. Thus, in this case, the hardware requirement

of the stages gets reduced by a factor of two as they perform the computations

corresponding to higher-level decompositions.

Fig. 3.1 shows a stage-equalized pipeline structure, in which the computations of all

the K=log2N levels are distributed equally among the M stages. The process of stage

equalization can be accomplished by dividing equally the task of a given level of

decomposition into smaller subtasks and assigning each such subtask to a single stage

and/or by combining the tasks of more than one consecutive level of decomposition into a

single task and assigning it to a single stage. Note that generally a division of the task

would be required for low levels of decomposition and a combination of the tasks for

high levels of decomposition.

Input
of N=2K

samples
· · · Stage 1 Stage 2 Stage M

Figure 3.1: Stage-equalized pipeline structure.

In a one-to-one mapped structure, the computations of K resolution levels are

distributed exactly among K stages, one level to one stage. In practical applications, a

structure with less than K stages is used for the computation of a K-level DWT, as shown

41

in Fig. 3.2. In this structure, the computations of the first I−1 levels are carried out by the

stages i=1, 2, ���, I−1, respectively, and those of the last K−I+1 levels are performed

recursively by the Ith stage. The amount of hardware resources of a stage is one-half of

that of its preceding one except for the Ith stage that has the same size as that of the

preceding stage.

Input
of N=2K

samples
· · ·

Level 1 Level 2
Level
I-1

Stage 1 Stage 2 Stage
I-1

Stage
I

Levels
I to K

Figure 3.2: A one-to-one mapped pipeline structure with I (I<K) stages.

The structures of Fig. 3.1 and Fig. 3.2 can be used to perform the computations of

multiple levels of decomposition. The computation of each level is performed as an L-tap

FIR filtering operation by summing the L products of the input samples and the filter

coefficients, as described by (3.2). Generally, one MAC cell is used to carry out one

multiplication of an input sample by a coefficient followed by one accumulation

operation. In order to perform an uninterrupted L-tap filtering operation with easy control,

one can thus use a network of L basic units of such a MAC cell. Since all the resolution

levels perform L-tap filtering operations, it would be desirable that each resolution level

performs its filtering operation using this same type of MAC-cell network. However, in

the context of one-to-one mapped pipeline structure of Fig. 3.2, in which the requirement

is that the hardware resource should get reduced by a factor of two from one stage to the

next, the use of the same MAC-cell network for all the stages would not be possible

unless the pipeline has only two stages. In other words, the first stage performs the

level-1 computation and the second stage performs the computations corresponding to all

42

the remaining levels recursively. In the context of a stage-equalized pipeline structure of

Fig. 3.1, where the requirement is that all the stages should have the same hardware

resource, the same MAC-cell network can be used easily for all the stages. However, in

this case, the same amount of the computations cannot be assigned to all the stages that

are based on the same MAC-cell network unless again there are only two stages in the

pipeline.

In a situation of a pipeline of more than two stages, each based on a network of L

MAC cells, one cannot achieve a resource-efficient architecture. Thus, for either pipeline

structure, i.e., the one-to-one mapped or stage-equalized, a two-stage pipeline would be

the best choice in terms of the hardware efficiency as well as from the standpoint of

design and implementation simplicity. Note that the two-stage version of either pipeline

structure is the same and it is shown in Fig. 3.3. An additional advantage of the two-stage

pipeline is in the design flexibility of a MAC-cell network where the multiplication and

accumulation operations can be furnished together by using logic gates. These logic gates

could be arranged into more efficient arrays yielding a shorter propagation delay for the

MAC-cell network. Based on the above discussion, it seems logical to use the two-stage

pipeline structure of Fig. 3.3 for the design and implementation of an architecture for the

1-D DWT computation. The next section is concerned specifically with a detailed design

of the architecture.

Stage 1 Stage 2

Levels 2 to JLevel 1

Figure 3.3: Pipeline structure with two stages.

43

3.3 Design of the Architecture

In the previous section, we advocated a two-stage pipeline structure for the

computation of the 1-D DWT. The structure, whose development is constrained by the

nature of the DWT computation, is capable of optimizing the use of hardware resources.

In this two-stage structure, stage 2 performs by operating on the data produced by stage 1

as well as on those produced by itself, and therefore, the operations of the two stages

need to be synchronized in a best possible manner [133]. In this section, we present the

design of the proposed two-stage pipeline architecture focusing on data synchronization,

the details of the various components comprising the stages, and inter and intra stages

data flow.

3.3.1 Synchronization of Stages

In order to develop a suitable synchronization scheme, consider the timing diagram

for the relative operations of the two stages shown in Fig. 3.4, where t1 and t2 are the

times taken individually by stage 1 and stage 2, respectively, to carry out their operations,

and ta and tc are the time spans during which stage 1 or stage 2 alone is operational, and tb

is the overlapped time span for the two stages. Our objective is to minimize ta+tb+tc.

Since the operation of stage 1 is independent of that of stage 2, it can continue its

operation continuously until the computation of all the samples of resolution level 1 are

computed. In Fig. 3.4, the slots shown for stage 1 correspond to N/2 samples of resolution

level 1 that it has to compute. The presence of continuous slots indicates that stage 1 can

continue its operation uninterruptedly without having any idle slot. Thus, the minimal

possible value for t1 is equal to N�Tc/2, where Tc is the time required to compute one

44

output sample. If J=log2N and we assume that the DWT operation has to be carried out

for all the J levels, then the number of samples that stage 2 has to compute is N/2−1.

Thus, the lowest bound for t2 is (N/2−1)Tc. Now, by choosing a value of tc equal to its

lowest bound, if one can show that t2=t1−Tc (i.e. stage 2 does not have any idle slot during

t2), then indeed not only ta+tb+tc will be minimized but one also achieves its lowest bound.

Now, we will show that for the proposed architecture this is so possible.

Stage 2

Stage 1

ta

tctb

t2

t1

� � �

Figure 3.4: Timing diagram for the operations of two stages.

Let us first determine the lowest bound on tc. Since the last sample of level 1 as

produced by stage 1 becomes available only at the end of tb, a sample at level j≥2 that

depends on this last sample directly or indirectly could not possibly be computed during

the time span tb, and therefore, has to be computed during tc. Assume that (i) during tc we

compute nc samples of levels 2 and higher, which could not possibly be computed during

tb, and (ii) other output samples necessary for computing those nc samples have already

been computed during tb. The lowest bound on tc is ncTc. Therefore, in order to compute

this bound, we need to determine the value of nc. The last sample of level 1, which is

computed at the end of tb, is)1(
2/NC . There are k=�L/2� output samples at level 2 that depend

on this sample and they are given as ,)2(
iC i=
(2J−1−L+2)/2�,…,2J−2, where �x� and
x�

represent the smallest integer larger than or equal to x and the largest integer less than or

45

equal to x, respectively. Next, at level 3, there are �(k+L−2)/2� output samples that

indirectly depend on)1(
2/NC and they are given as ,)3(

iC i=
(2J−2−k−L+4)/2�,…,2J−3. Similarly,

we can determine the numbers and samples that depend indirectly on)1(
2/NC for other

levels. Table 3.1 givens the listing of the numbers and samples of levels from j=2 to J

that depend on)1(
2/NC . After adding the expression in the third column of this table and

some manipulation, it can be shown that the value of nc can be obtained as

()
� �

� �()12

212312
22

2

2

log

log

3

232

−+

�
�

�
	
	

�
��

�
��
�

�
+⋅−−+��

�
		
�

+��
�

		
�

= �
−

=

−−−

L

LJ

j

jjj
c L

LL
n

 (3.7)

In Fig. 3.4, ta is chosen to be (nc+1)Tc. Next, we explore the possibility of developing

a synchronization scheme for computing all the output samples in the context of Fig. 3.4

with the objective that stage 2 does not create any idle slots. In developing such a scheme,

one has to take into consideration, the requirement of the underlying filtering operation of

Table 3.1: Indices and numbers of samples computed in time tc

Level Indices of samples)(j
iC Number of samples

2
 �{ }22 2,,12/2 −− +−= JJ Li � � �2/Lk =

3
 �{ }33 2,,2/)4(2 −− −+−= JJ Lki � � �2/)2(−+ Lk

�
�
�

�
�
�

�
�
�

j

�
�
�

�
�
�

��
�

	

	 −

+
−−

+= −

−

− jJ
j

jJ LkL
i 2,,

2

25

2

1
2

2
� �

�

�
	
	

� −
+

+−
− 2

32

2

1
2

LLk
j

�
�
�

�
�
�

�
�
�

J JJi −= 2 1

46

the wavelet computation. This filtering operation imposes the constraint that the first

output sample at level j cannot be computed until L samples at level j−1 have already

been computed and each of the subsequent samples at level j cannot be computed unless

two new samples at level j−1 have already been computed. Note that this requirement of

the filtering operation imposes a constraint on the operation of stage 2 only, since stage 1

operates sequentially and unilaterally to compute the level-1 output samples only. Under

this constraint, we now give three steps of the synchronization that govern the

computation of the output samples at various resolution levels by stage 1 and 2.

Step 1: Stage 1 operates continuously to compute the level-1 output samples

sequentially.

Step 2: Stage 2 starts the computation of level-2 samples beginning at the time

slot (nc+2).

Step 3: (a) When stage 2 is computing an output sample at the lowest incomplete

level j�2. After completing the computation of the present sample at this

level stage 2 moves on to the computation of a sample at the lowest higher

level, if the data required for the computation of this sample have become

available; otherwise stage 2 continues with the computation of the next

sample at the present level j.

(b) When stage 2 is computing an output sample at a level other than the

lowest incomplete level. After completing the computation of the present

sample, stage 2 moves its operation to the lowest incomplete level.

47

The rationale behind Step 3(a) is that moving the operation of stage 2 to a higher

level allows more data from level 1 as produced by stage 1 to become available, since the

availability of the output samples of level 1 is crucial for the computation of the samples

at higher levels. On the other hand, the rationale behind Step 3(b) is that there are always

more samples to be computed at lower levels than that at higher levels, and therefore,

more time needs to be spent in computing lower level samples.

The nature of the filtering operation coupled with the decimation by a factor of 2

requires that, in order for stage 2 to compute a level-2 sample at slot m, stage 2 needs L

level-1 samples computed by stage 1 at slots i+1, i+2,…, i+L (i<m−L), of which the

samples produced at the last two slots must not have been previously used for the

computation of level-2 samples. If stage 2 can meet this requirement during the entire

time span tb, then it can continue its operation uninterruptedly without creating an idle

slot. We will now show that, based on the steps presented above, stage 2 would indeed be

able to meet this requirement. For this purpose, consider an algorithm, Algorithm 1,

which synchronizes the operation of stage 2 during the time span tb. In this algorithm, we

have made use of two counters, namely p and q. The counters p and q represent the total

number of samples having been computed at level 2 and that at the levels higher than 2,

respectively, at a particular instant of stage-2 operation. Note that at the time that stage 2

starts its operation, stage 1 has already produced nc+1 level-1 samples. Since a length-L

filtering operation would require L input samples and (nc+1)>L, stage 2 not only can start

the computation of level-2 samples, but it can continue the computation of the succeeding

level-2 samples at least for some time. Since the computation of each level-2 sample

makes use of two new level-1 samples during the time in which only one level-1 sample

48

is produced by stage 1, the number of available level-1 samples is reduced by one after

the computation of each level-2 sample. However, since stage 2, following Step 3 of the

synchronization, is allowed to compute the samples at levels higher than 2 without

making use of the samples from level 1, the reservoir of level-1 samples is increased by

one after the computation of one such a higher-level sample. Therefore, at a particular

time, there are nb=nc+1−(p−q) level-1 samples available to be used by stage 2 for the

computation of the succeeding level-2 samples. Since p increases faster than q, p−q

reaches its maximum value at the time slot just before the end of the time span tb. At this

time slot,

 �2/2 2 Lp J −= − (3.8a)

� ��
=

−

−−−

�
�
�

�

	
	

	 −⋅+−−−
=

J

i
i

iiJ LL
q

3
2

322

2

123)12(2/2
 (3.8b)

Thus, using (3.7), (3.8a) and (3.8b), the lowest bound of nb during the time span tb is

calculated as

�
�

�
�
�
�

�
��

�
��
�

�
��
�

		
�

+−−−��
�

	

	

−−+≥ −−

2
12

2
21 22 L

n
L

nn c
JJ

cb (3.9)

Since in practice the filter length L is such that L<2J−1−1, the above inequality can be

written as

oddisLif

evenisLif

L

LLL
nb

�
�
�

+
=��

�
	

	
−−��

�
		
�

≥
122

 (3.10)

Thus, the lowest bound on nb is greater than or equal to L. Therefore, during the entire

course of the time span tb, there will always exist sufficient number of samples available

to stage 2 for it to continue its level-2 computation in the frame work of Algorithm 1. In

49

other words, during the time span tb, stage 2 would never have to cease its operation for

the lack of availability of at least 2 new level-1 samples, that is, the block in Algorithm 1

that introduces a unit delay Tc will never be used during the execution of the algorithm.

Algorithm 1: Synchronizing the operation of stage 2 during tb

Initialize p 0, q 0

While p + q � 2J−1 − nc

If (at least 2 new samples available from level 1) then

Compute a new sample at level 2

p p + 1

If (enough data available from the lowest level k � 2) then

Compute a new sample at level k + 1

q q + 1

End if

Else

Unit delay Tc

End if

End while

End algorithm

Stage 2

Stage 1

Level 7
Level 6
Level 5
Level 4
Level 3
Level 2

ta tctb

Figure 3.5: Synchronization scheme for a 128-point (J=7) DWT computation using

length-4 (L=4) FIR filter.

50

We now consider an example to illustrate the synchronization scheme that has been

presented above. For this purpose, we consider a 128-point (J=7) DWT computation

using 4-tap (L=4) FIR filters. The synchronized operation of the two stages is shown in

Fig. 3.5, in which each rectangle represents a time slot during which a lowpass output

sample is produced. Stage 1 starts the computation of the first level-1 output sample at

slot 1 and continuous its operation until slot 64 when the computation of the 64th level-1

output sample is completed. Equation (7) can be used to obtain the value of nc as 13.

Thus, at the slot number (nc+2)=15, stage 2 starts the computation of the first level-2

output sample. At this point, the reservoir of level-1 available samples contains

(nc+1)=14 samples. Note that the number of samples in this reservoir decreases by one

sample as one new level-2 sample is computed and it increases by one as one sample at a

level higher than 2 is computed. However, the general trend is a decline in the number of

available level-1 samples from 14 samples at slot 15 to 4 samples at slot 65 when the

computations of all level-1 samples are completed. At slot 66, an output sample at level 4

is computed, since the required samples from level-3 have become available for its

computation. After this computation, stage 2 returns its operation to the computation of

the last level-2 output sample. Note that for the computation of this last level-2 sample,

two padded samples would be required, since at this time no level-1 output sample is

unused. Beyond this point, all the remaining samples from level 3 to level 7 are computed

using Step 3 of the synchronization.

51

3.3.2 Design of Stages

Since in the stage-equalized architectures, the two stages together perform the DWT

computation with amount and the type of computations of the individual stages being the

same, each of the two stages can use identical processing units. However, the control

units to be employed by the stages have to be different, since, as seen from Algorithm 1

of the previous subsection, the operation of stage 1 is autonomous, whereas stage 2 must

always synchronize its operation with that of stage 1. Based on this algorithm, the design

of the control unit used by stage 2 would have to be a bit more involved than that of the

control unit used by stage 1. Obviously, in order to synchronize the operation of stage 2

with that of stage 1, a buffer has to be used to store the lowpass output samples from the

two stages. Fig. 3.6 gives a block diagram incorporating all these requirements for the

design of the proposed architecture. The two processing units are referred as PU1 in stage

1 and PU2 in stage 2. Note that in this architecture, the highpass samples from PU1 and

PU2 are outputted directly.

C(1)

Stage 2

Buffer
Input

Stage 1

Control
Unit 1

PU2PU1

Output

Control
Unit 2

W(j)
C(0)

W(1)

C(j)

Figure 3.6: Block diagram of the two-stage architecture.

In each stage, the processing unit by employing L multiplication-and-accumulation

(MAC) cells network performs an L-tap filtering operation and at each clock cycle

52

generates a total of L product terms and their sum. Since, normally, the interval between

the two consecutive input samples must not be smaller than the delay of a MAC cell, the

maximal allowable data rate of the input to the processing unit would be determined by

this delay. However, if the L-MAC-cell network is organized into m sub-networks

operating in parallel, the input samples can be applied to these sub-networks in an

interleaved manner. The interval of the two consecutive input samples can thus be

shortened by a factor m. To this end, considering the problem at hand in which a two-

subband filtering operation is performed and for each consecutive resolution level the

input data is decimated by a factor of 2, the L MAC cells can be conveniently organized

into a pair of even and odd filter blocks. These even and odd filter blocks, which receive

the even and odd numbered input samples, respectively, employ L/2-MAC-cell networks,

and each produces only L/2 product terms and their sums. The partial sums from the two

networks are required to be added in an accumulation block by using a carry propagation

adder (CPA), as shown in Fig. 3.7. Since the delay of the accumulate block is comparable

to that of the L/2-MAC-cell network, it is useful to pipeline them for parallel computation.

Since the high-pass operation differs from that of the low-pass operation only in

reversing the sign of the even-numbered coefficients, the proposed organization of the

processing unit would allow the filter block to use the same filter coefficients simply by

introducing a sign inversion block into the even filter block.

53

As discussed earlier and seen from Fig. 3.6, all the output data must be synchronized

in accordance with Algorithm 1. This synchronization process is facilitated by

introducing in stage 2 a buffer, which stores output data from the two stages and provides

input data to stage 2. According to Step 2 of the synchronization scheme, during the time

span ta, the number of samples that need to be stored for the operation of stage 2

increases until nc+1. However, this number will not exceed nc+1 during the time spans tb

and tc, since the number of samples newly produced by stage 1 and 2 is equal to or less

than that consumed by stage 2. Thus, the minimum capacity of the buffer for the

operation of stage 2 is nc+1 registers. Since the number of output samples at a level that

would be needed to compute an output sample at the next higher level will not exceed the

filter length L, the buffer, therefore, is divided into k=
(nc+1)/L� channels, as shown in

Fig. 3.8. Each channel consists of L shift registers except channel k that only has (nc+1

DEMUX

CPA

Odd filter
block

Accumulation block

+/−

Latch block for filter
coefficients

Latch
Latch

Latch

Even filter
block

L/2-
MAC-Cell
network

L/2-
MAC-Cell
network

)()(
1 ,, j

i
j

i CC +�

�,,,,)1(
1

)1(
1

)1()1(+
+

+
+

++ j
k

j
k

j
k

j
k WCWC

h2 hL-2h0

hL-3 h1hL-1
…

…

MUX

)(, j
iC�

)(
1, j

iC +�

+

Figure 3.7: Block diagram of the processing unit for L-tap filtering computation

assuming L to be an even number.

54

mod L) registers, where (a mod b) is the remainder on division of a by b. Channel 1 is

used for storing only the level-1 samples produced by PU1, whereas channel j=2,...,k for

the level-j samples during tb and tc, and would also be used for storing the level-1 samples

during ta. Note that channel 2 is also chosen to store the samples of the remaining levels

j≥k since the time slot that all the level-2 samples have been consumed.

L

(nc+1 mod L)

Channel 1

Channel k

· · ·

· · ·

Channel 2

Shift
register

To
PU2MUX

MUX

. . .

From
PU2

From
PU1

...

· · ·

DEMUX

...

Figure 3.8: Structure of the buffer.

3.3.3 Design of L/2-MAC-cell Network

In the processing unit shown in Fig. 3.7, each physical link from a given input bit to

an output bit of an L/2-MAC-cell network gives rise to a channel or data path having a

delay that depends on the number and the types of operations being carried out along that

path [133]. Thus, it is crucial to aim at achieving the shortest critical data path when

designing an L/2-MAC-cell network for our architecture. In order to have a better

appreciation of the operations of an L/2-MAC-cell network, let us consider an example of

the filtering operation of one such network with L/2=2. Let us assume that the input

samples and the filter coefficients have the wordlengths of 6 and 3, respectively. Each

55

MAC-cell network has 6 partial products, with a total of 36 bits, which can be produced

in parallel, as shown in Fig. 3.9(a). Our objective is to design a MAC-cell network, in

which the bits of the partial products are accumulated in such a way as to optimize the

delays of the data paths from the individual bits of the partial products to the output bits

of the MAC-cell network.

Even though all the bits of the partial products as given by the array shown in Fig.

3.9(a) are available simultaneously, they cannot be used in parallel to produce

simultaneously all the bits of an output sample. The reason for this is that the processes of

accumulation of the bits in each column of the array of the partial products have to be

carried out bit-wise and at the same time one has to take care of the propagations of the

carry bits. In other words, the accumulation of the partial products has to be carried out in

a certain sequence. Thus, the task of accumulation can be divided into a sequence of

layers such that the operations of the first layer depend only on the partial products bits

and those of the succeeding layers depend on the partial product bits not yet used as well

as on the bits of the results of the preceding layers. In order to meet our goal of

minimizing the critical path from a partial product bit to a bit of the output sample, we

can organize the layers of the MAC-cell network that would carry out the accumulation

of the partial products based on the following guiding principle. Minimize the number of

layers while minimizing the delay of each layer. The number of layers can be minimized

by assigning to each layer the maximum number of such tasks that can be performed

independent of each other in parallel. The accumulation task in each layer can be

performed by using full-adder (3:2) and double-adder (2×2:3) modules, as shown in Fig.

3.9(b). The two types of module are chosen, since (i) their delays are about the same so

56

that the delay of any layer can be made to be equal to this delay irrespective of whether

the layer uses one type or two types of modules, and (ii) the two modules can be used

together in such a way so that they produces of a smaller number of the propagating carry

bits, and therefore, their combined use helps in reducing the number of layers.

With the choice of the combination of the full-adders and double-adders, the first

layer can be formed by using as many modules as necessary with the maximum number

of partial product bits being utilized as 3-bit or 4-bit inputs to the respective modules.

Scanning the partial product array from right to left, a maximum number of bits of this

array are first used as inputs to as many full-adder modules as necessary, since in

comparison to a double-adder this module is more efficient in consuming the bits of the

input array. In this process, whenever in a column (i) only two bits of the partial product

array are left unused, these two bits along with a pair of bits from the neighbouring left

column of the array are used as inputs to a double-adder modules, and (ii) only one bit of

the partial product array is left unused, then this bit is used in the next layer for

accumulation. Note that the case of using a double-adder also helps in propagating two

carry bits, one internal and the other external to the adder, to the left within the same time

delay as that of the full-adder. The next layer can then be formed again by using as many

modules as necessary with inputs from the partial product bits, still unused, and the sum

and carry output bits from the previous layers being utilized in a carry-save manner. This

process can be continued until after the last layer when all the bits of an output sample

are produced.

57

Based on the principles and the procedure enunciated above, we can now give

formally an algorithm, Algorithm 2, which carries out the organization of a MAC-cell

network, given L/2 input samples and L/2 filter coefficients. Fig. 3.9(c) gives an

illustration of the organization of the adder modules into three layers of a MAC-cell

network for the example considered earlier. It is seen from this figure that the delay of the

critical path is equal to that of three full-adders for this particular example.

Two 6-bit
samples

Two 3-bit
coefficients

Array of partial product
bits

�

�

Carry Sum1 Sum2

Double-adder
(2�2:3)

Full-adder (3:2)

Carry Sum

Partial
product bit
Sum bit
Carry bit

Output bits to next stage

Layer2

Layer3

Layer1

Array of partial
product bits

(a)

(b)

(c)

Figure 3.9: A two-dimensional array of bit-wise additions. (a) Formation of an array of

partial products. (b) Two types of bit-wise adders. (c) A layered organization of bit-

wise addition using the two modules in (b).

58

Algorithm 2: Organizing the bit-wise modules of the MAC-cell network

Initialize an NI(k)×MI array AI of partial product bits from the L/2 X-bit samples

and L/2 Y-bit filter coefficients, where MI=X+Y−1 and

I

I

MkYX

YXkYX

YXk

LkYX

LYX

kL

kN

≤≤

−≤≤

−≤≤

�
�

�
�

�

⋅−+

⋅=

),max(

1),max(),min(

1),min(1

2/)(

2/),min(

2/

)(

While NI(k) ≥ 3 for any 1 ≤ k ≤ MI

Initialize the elements of an NO(k)×(MI+1) array AO by NO(k) ← zeros for

k=1,…,MI +1

For every column i=MI ,…,2,1

While NI(i) ≥ 3

Assign 3 bits, AI[NI(i)− −,i], AI[NI(i)− −,i], AI[NI(i)− −,i], as

inputs to a full-adder

Append one sum bit to AO[++NO(i),i], and one carry bit to

AO[++NO(i−1),i−1] in AO

End while

If NI(i)=2 and NI(i−1) ≥ 2 then

Assign 2×2 bits, AI[NI(i−1)− −,i−1], AI[NI(i−1)− −,i−1],

AI[NI(i)− −,i], AI[NI(i)− −,i], as inputs to a double-adder

Append two sum bits to AO[++NO(i),i], AO[++NO(i−1),i−1], and

one carry bit to AO[++NO(i−2),i−2] in AO

Else

Carry forward unused bits AI[NI(i)− −,i] to AO[++NO(i),i] in AO

End if

End for

AI ←←←← AO

End while

End algorithm

59

Using Algorithm 2, a generalized structure for the MAC-cell network, as shown in

Fig. 3.10, can be generated with L/2 X-bit samples and L/2 Y-bit filter coefficients as

inputs to the network. Layer0 produces a total of X�Y�L/2 partial product bits. The

accumulations of these partial product bits are carried out successively by a set of layers

of adder modules. A variable size array is used as input to each layer. This array initially

contains only the partial product bits, and for successive layers, it contains the sum and

carry bits from the previous layers and the partial product bits still unused. An input to a

layer that consists of a partial product bit or a sum bit is shown in the figure by an arrow

going down vertically into the layer, whereas an input that consists of a carry bit is shown

by an arrow going down leftward. The MAC-cell network has a total of

Z=�log3/2[min(X,Y)�L/4]� layers, which is the minimum number of layers with the choice

of using the maximum number of full-adders followed by, if necessary, the double-adders

in each layer. The number of adder modules used for each layer progressively decreases

from Layer0 to LayerZ. The output bits of the MAC-cell network are then used by the

accumulation block of the processing unit to produce the final sum. In above design of

the MAC-cell network, optimization of its critical path is carried out by incorporating and

arranging the multiply and accumulate operations into multiple layers. This leads to a

network that has a critical path with a smaller delay than the delay of the MAC cell used

in DSP processors, in which the delay of the critical path is simply the sum of the delays

associated with a multiplier and an accumulator. The critical path of the MAC-cell

network could be shortened further by encoding the input data to the MAC-cell network

using booth encoders. Thus, the delay of the MAC-cell network is reduced by making a

smaller number of carry bits to propagate through the MAC-cell network. However, such

60

an improvement can be achieved with an expense of additional hardware resources to be

used for encoders.

3.4 Performance Evaluation and FPGA Implementation

In order to evaluate the performance of the architecture resulting from the proposed

scheme, we need to make use of certain metrics that characterize the architecture in terms

of the hardware resources used and the computation time. The hardware resources used

for the filtering operation are measured by the number of multipliers (NMUL) and the

number of adders (NADD), and that used for the memory space and pipeline latches is

measured by the number of registers (NREG). The computation time, in general, is

technology dependent. However, a metric, that is independent of the technology used but

can be utilized to determine the computation time T, is the number of clock cycles (NCLK)

consumed from the instant the first sample is inputted to the last sample outputted

assuming a given clock cycle period, say unity, as the latency of a MAC cell.

Ci+L-2
(j) . . . Ci+2

(j) Ci
(j)

...

…

. . . h0/hL-1
h2/hL-3

L/2 input samples

Output bits

. . .

Layer0
Partial product bits

. . .

LayerZ

hL-2/h1

. . .

Layer2

Layer1

Figure 3.10: Structure of the L/2-MAC-cell network.

61

For a J-level DWT computation of an N-sample sequence using L-tap filters, the

expressions for the metrics mentioned above for various architectures are summarized in

Table 3.2. Assuming that the number of samples N is much larger than J�L, it is seen from

the table that compared to the architecture of [61], all the other architectures, including

the proposed one, require approximately twice the number of clock cycles, except the

architecture of [43], which requires four times as many clock cycles. This performance of

[61] is achieved by utilizing the hardware resources of adders and multipliers that is four

times that required by the architecture of [43] and twice that required by any of the other

architectures. However, if the value of J�L cannot be neglected in comparison to that of N,

the values of N, J and L should be taken into consideration while comparing the

architectures in terms of NCLK. In this regard, only for the proposed architecture and the

architecture of [62], NCLK is independent of the filter length with the proposed

architecture giving the lowest value of NCLK for a given N. The proposed architecture

requires the number of registers that is at least 20% less than that required by any of the

Table 3.2: Comparison of various architectures

Architecture NMUL NADD NREG NCLK

Parallel [53] 2L 2L−2 JL+4L N+JL

Systolic [43] L L−1 2JL+L+2 2N+2JL

Pipelined [61]
�

=
− �
�

�
	
	

�J

k
k

L

1
22

 �
=

− �
�

�
	
	

�J

k
k

L

1
22

2JL+J+

�
=

− �
�

�
	
	

�J

k
k

L

1
22

N/2+JL/2

DRU [62]
�

=
− �
�

�
	
	

�J

k
k

L

1
12

 �
=

− ��
�

		
�J

k
k

L

1
12

−1 JL+2J+

� ��
=

−
J

k

kL
1

12/

N+2J

IP core � [55] � �4/LJ ⋅ � �2/LJ ⋅ 2JL+2J N+JL

Proposed 2L 2L−2 4L+nc+1 N+J

62

other architectures when the filter length L is large. It should be noted that approximately

20% of the hardware resource comprises registers.

Since the area of the circuit for the DWT computation depends on the filter length L

and the total number of samples N, it would be useful to have a measure of the area of the

circuit as functions of L and N. Only the proposed architecture and those of [53] and [62]

are used for this study, since the numbers of multipliers and the numbers of adders for

these architectures are the same. Thus, any difference in the areas of the three

architectures could be accounted for due mainly to the difference in the number of the

registers used by each of the architectures. As seen from Table 3.2, the number of

registers for the architecture of [53] is (J+4)L and that for the architecture of [62] is

approximately JL+2J+2L=(J+2)L+2J. However, the number of registers for the proposed

architecture not only depends directly on the filter length L but also indirectly on L and N

through the parameter nc. These dependencies are intuitively obvious from the fact that as

the filter length or the number of samples increases, the starting point of stage 2 gets

more delayed. In other words, nc is increased. However, it is seen from this figure that the

dependence of nc on N is relatively much more non-linear than its dependence on L. The

results of Fig. 3.11 can be used to obtain a measure of the area of the proposed

architecture as functions of L and N. We estimate the areas of the proposed architecture

along with that of the other two architectures under the assumption that the ratio of areas

of one multiplier, one adder and one register is 12:3:1. The plots of the estimates of the

areas as functions of L and N are shown in Fig. 3.12. It is obvious from this figure that

area of the proposed architecture is, in general, lower than those of the other two

architectures. The lower area of the proposed architecture can be attributed due mainly to

63

the presence of the parameter nc in its expression for the NREG. Recall that nc is a

parameter that we minimized in the design of the proposed architecture in order to

maximize the parallelism between the two stages, and a lower value of nc, in turn, results

in smaller number of registers required to store the results of the operations of stage 1

before the operation of stage 2 starts.

8 16 32 64 128 256 512 1024
0
10
20
30
40
50
60
70

nc

N
4 6 8 10 12 14 16 18

15
20
25
30
35
40
45
50

nc

L
(b)(a)

Figure 3.11: Estimated values of nc. (a) nc versus filter length L (N=28), and (b) nc

versus signal length N (L=16).

4 6 8 10 12 14 16 18
1
2
3
4
5
6
7

A

L

DRU
Parallel
Proposed

×102

8 16 32 64 128 256 512 1024

5.0

5.5

6.0

6.5

7.0

×102

A

N

DRU
Parallel
Proposed

(a) (b)

Figure 3.12: Estimated areas of the three architectures. (a) Area A versus filter length L

(N=28), and (b) area A versus signal length N (L=16).

64

Considering the clock cycle period Tc as the delay of the MAC cell used by an

architecture, the computation time can be obtained as T=NCLKTc. Note that the reciprocal

of Tc is simply the throughput of the architecture assuming that one sample is inputted

during each clock cycle. Using T, one can determine the area-time complexity, AT, where

the area, A, mainly comprises the areas of the multipliers, adders and registers. In order to

evaluate the performance of the architectures in terms of Tc and AT, we consider an

example of designing a circuit for the DWT computation where the sample size N=128

and the number of the resolution levels J=7. We use Daubechies 6-tap filter (L=6) as

analysis filters and the sample and filter coefficient wordlengths are taken as 8 bits. The

carry propagation adder of the processing unit utilizes the structure of a combination of

carry-skip and carry-select adders [135]. The registers are designed using D-type flip-

flops (DFF). All the modules, such as partial products generator, DFF, full-adder, double-

adder, multiplexer and demultiplexer, used in the proposed architecture are designed by

using 0.35-micron CMOS technology and simulated by using HSpice to obtain the

delays. Note that these same modules are also used to evaluate the performance of all the

other architectures. Table 3.3 shows the values of the clock cycle period and the area-

time complexity for the various architectures. It is seen from this table that the proposed

architecture has significantly smaller value of the clock cycle period compared to that of

all the other architectures. The proposed architecture has the highest throughput of 138

MBPS (megabytes per second) and the lowest complexity in terms of area-time and area-

(time)2, among all the architectures considered.

In order to estimate the power consumption of the proposed architecture, an example

of the proposed architecture is constructed for a 7-level DWT computation of 8-bit

65

samples using 6-tap filters and simulated at a clock frequency of 138 MHz using

Synopsys Power Compiler. The resulting power consumption values are 154.2 mW and

67.6 mW using 0.35-micron (VDD = 3.3 V) and 0.18-micron (VDD = 1.8 V) technologies,

respectively.

In order to have a fair comparison of the power consumption performance of

different architectures, the circuit complexities and the technologies used for the circuit

design of the architectures under consideration must be the same. In this regard, estimates

of the power consumption for the architectures listed in Table 3.3 are either unavailable

or, if available, the underlying architectures have been designed with substantial

differences in the circuit complexities and process technologies. Despite this difficulty in

carrying out a fair comparison of power consumption of architectures, we compare the

estimated power consumption of the proposed architecture with that given in [136]. The

architecture of [136] is also a pipeline architecture that uses the same filter core as that

used in [55] of Table 3.3. In [136], an example of the architecture using 9/3 filters and 9-

bit samples has been constructed, and simulated for an operation at 100 MHz clock

frequency using a 0.35-micron technology. The resulting power consumption figure is

325 mW. This value of power consumption is more than twice the value of 154.2 mW

Table 3.3: Evaluation of various architectures

Architecture Tc (ns) A�T A�T2

Parallel [53] 17.8 243 4325

Systolic [43] 11.8 141 1664

Pipelined [61] 11.8 183 2159

DRU [62] 10.2 117 1193

IP core [55] 11.8 159 1876

Proposed 7.2 62 446

66

obtained from the example of the proposed architecture in 0.35-micron technology,

which is constructed by employing 6-tap filters operating on 8-bit samples at 138 MHz

clock frequency.

In order to verify the estimated results for the example of the DWT computation

considered above, an implementation of the circuit is carried out in FPGA. Verilog is

used for the hardware description and Xilinx ISE 8.2i for the synthesis of the circuit on

Virtex-II Pro XC2VP7-7 board. The FPGA chip consists of 36×36 arrays with 11,088

logic cells and it is capable of operating with a clock frequency of up to 400 MHz. The

implementation is evaluated with respect to the clock period (throughput) measured as

the delay of the critical path of the MAC-cell network, and the resource utilization (area)

measured as the numbers of configuration logic block (CLB) slices, DFFs, look-up tables

(LUTs) and input/output blocks (IOBs). The resources used by the implementation are

listed in Table 3.4. The circuit is found to perform well with a clock period as short as 8.7

ns, a value that is reasonably close to the estimated value of 7.2 ns. The power

consumption of the FPGA chip on which the designed circuit implemented is measured

to be 105 mW (VDD=1.5 V). Thus, the simulated value of 67.6 mW is reasonably realistic

for power consumption for the circuit realizing the proposed architecture, considering the

measured value of the power consumption also includes the power dissipated by the

unused slices in FPGA.

67

Table 3.4: Resources used in FPGA devices

Resource Number
used

Total number
available

Percentage
used

CLB Slices 1532 4928 31%

Flip Flop Slices 858 9856 8%

4-input LUTs 2888 9856 29%

Bonded IOBs 38 248 15%

In order to further validate the proposed scheme, the FPGA implantation results of

the proposed architecture are obtained and compared with those of existing architectures.

The implementation results for the architectures given in [137]−[141] and for the

proposed one are listed in Table 3.5. It is seen from this table that the proposed

architecture provides the highest operational clock frequency with a hardware cost

similar to that of the existing architectures.

Table 3.5: FPGA implementation results for various 1-D architectures

Architecture Number of CLB/LE
slices*

fmax (MHz) Device

[137] 615 73 (L=4) XC4036

[138] 369 26 XCV3000

[139] 422 94 XC300

[140] 837 14.8 Virtex V100

[141] 678 96.6 Stratix

Proposed 567 125 XC2VP30

* The slices excluding RAM

68

3.5 Summary

In this chapter, a scheme for the design of a pipeline architecture for real-time

computation of the 1-D DWT has been presented. The objective has been to achieve a

low computation time by maximizing the operational frequency (1/Tc) and minimizing

the number of clock cycles (NCLK) required for the DWT computation, which in turn,

have been realized by developing a scheme for an enhanced inter-stage and intra-stage

parallelisms for the pipeline architecture.

A study has been undertaken that suggests that, in view of the nature of the DWT

computation, it is most efficient to map the overall task of the DWT computation to only

two pipeline stages, one for performing the task of the level-1 DWT computation and the

other for performing that of all the remaining resolution levels. In view of the fact that the

amount and nature of the computation performed by the two stages are the same, their

internal designs ought to be the same. There are two main ideas that have been employed

for the internal design of each stage in order to enhance the intra-stage parallelism. The

first idea is to decompose the filtering operation into two subtasks that operate

independently on the even- and odd-numbered input samples, respectively. This idea

stems from the fact that the DWT computation is a two-subband filtering operation, and

for each consecutive resolution level, the input data are decimated by a factor of two.

Each subtask of the filtering operation is performed by a MAC-cell network, which is

essentially a two-dimensional array of bit-wise adders. The second idea employed for

enhancing the intra-stage parallelism is to organize this array in a way so as to minimize

the delay of the critical path from a partial product input bit to a bit of an output sample

69

through this array. In this chapter, this has been accomplished by minimizing the number

of layers of the array while minimizing the delay of each layer.

In order to assess the effectiveness of the proposed scheme, a pipeline architecture

has been designed using this scheme and simulated. The simulation results have shown

that the architecture designed based on the proposed scheme would require the smallest

number of clock cycles (NCLK) to compute N output samples and a reduction of at least

30% in the period of the clock cycle Tc in comparison to those required by the

architectures with a comparable hardware resource requirement. An FPGA

implementation of the architecture designed has been obtained demonstrating the

effectiveness of the proposed scheme for designing efficient and realizable architectures

for the DWT computation.

70

Chapter 4

A Scheme for the Design of Pipeline Architectures

for 2-D Discrete Wavelet Transform

As discussed in Chapter 2, the architectures for the computation of the 2-D DWT can

be classified into separable and non-separable architectures. In a separable approach, the

2-D filtering operation of an architecture is divided into two 1-D filtering operations. A

separable pipeline architecture for the computation of the 2-D DWT can easily be

developed by using the scheme proposed in the previous chapter. However, the resulting

architecture would have a large latency. Moreover, separable filters of this architecture

would not be able to approximate well arbitrary frequency responses. On the other hand,

a pipeline architecture using non-separable filters should provide more flexibility in

providing low latency and in employing filters with arbitrary frequency responses.

In this chapter, a scheme for the design of fast pipeline architectures for the

computation of the 2-D DWT based on the non-separable approach is developed [142],

[143]. Even though the goal of fast computation is achieved by minimizing the number

and period of clock cycles, the main ideas of the 1-D scheme of optimally distributing the

task of the 2-D DWT computation and maximizing the inter-and intra-stage parallelisms

71

cannot be extended in a straightforward manner to case of non-separable 2-D

architectures. The work of this chapter, while developing a scheme for the design of non-

separable pipeline architectures for the computation of 2-D DWT, is specifically focused

on optimally distributing the overall task of the 2-D DWT computation and on

maximizing the inter- and intra-stage parallelisms of the pipeline.

The chapter is organized as follows. In Section 4.1, a mathematical formulation of the

2-D DWT computation necessary for the development of the proposed architecture is

presented. In Section 4.2, a study is conducted to determine the number of stages of a

pipeline necessary for optimally mapping the task of the DWT computation onto the

stages of the pipeline. Based on this study, in Section 4.3, a three-stage pipeline

architecture is developed with an efficient structure of the 2-D input data and an optimal

organization of the processing units in each of the stages. In Section 4.4, the performance

of the proposed architecture is assessed and compared with that of other existing

architectures and validated by an FPGA implementation. Section 4.5 summarizes the

work of this chapter and highlights the salient features of the proposed scheme.

4.1 Formulations for the Computation of the 2-D DWT

The 2-D DWT is an operation through which a 2-D signal is successively

decomposed in a spatial multi-resolution domain by lowpass and highpass FIR filters

along each of the two dimensions. The four FIR filters, denoted as highpass-highpass

(HH), highpass-lowpass (HL), lowpass-highpass (LH) and lowpass-lowpass (LL) filters,

produce, respectively, the HH, HL, LH and LL subband data of the decomposed signal at

a given resolution level. The samples of the four subbands of the decomposed signal at

72

each level are decimated by a factor of two in each of the two dimensions. For the

operation at the first level of decomposition, the given 2-D signal is used as input,

whereas for the operations of the succeeding levels of decomposition, the decimated LL

subband signal from the previous resolution level is used as input.

4.1.1 Formulation for the Computation of Four Subbands

Let a 2-D signal be represented by an N0×N0 matrix S(0), with its (m,n)th element

denoted by S(0)(m,n) (0≤m ,n≤N0−1), where N0 is chosen to be 2J, J being an integer. Let

the coefficients of a 2-D FIR filter P (P=HH, HL, LH, LL) be represented by an L×M

matrix H(P). The (k,i)th coefficient of the filter P is denoted by H(P)(k,i) (0≤k≤L−1,

0≤i≤M−1). The decomposition at a given level j=1, 2, · · · , J can be expressed as

��
−

=

−

=

− −−⋅=
1

0

1

0

)1()HH()()2,2(),(),(
L

k

M

i

jj inkmSikHnmA (4.1a)

��
−

=

−

=

− −−⋅=
1

0

1

0

)1()HL()()2,2(),(),(
L

k

M

i

jj inkmSikHnmB (4.1b)

��
−

=

−

=

− −−⋅=
1

0

1

0

)1()LH()()2,2(),(),(
L

k

M

i

jj inkmSikHnmD (4.1c)

��
−

=

−

=

− −−⋅=
1

0

1

0

)1()LL()()2,2(),(),(
L

k

M

i

jj inkmSikHnmS (4.1d)

where A(j)(m,n), B(j)(m,n), D(j)(m,n) and S(j)(m,n) (0≤m,n≤Nj−1) denote the (m,n)th

elements of the four Nj×Nj (Nj=N0/2
j) matrices, A(j), B(j), D(j) and S(j), respectively,

representing the HH, HL, LH and LL subbands of the 2-D input signal at the jth level. It

is seen from (4.1) that the four decomposed subbands at a level are obtained by

performing four 2-D convolutions. Each 2-D convolution can be seen as a sum of the

products of the L×M filter coefficients and the elements contained in an L×M window

73

sliding on a 2-D data. The decimation by a factor of two in both the horizontal and

vertical dimensions can be accomplished by sliding the L×M window by two positions

horizontally and vertically for the computation of two successive samples. Only the LL

subband data of decomposition are used as input for the decomposition at the next level.

After J iterations, the 2-D signal S(0) is transformed into J resolution levels, with HH, HL

and LH subbands from each of the first J−1 levels and HH, HL, LH and LL subbands

from the last (Jth) level. Since Nj=N0/2
j, the number of samples that need to be processed

at each level j is one quarter of that at the preceding level.

4.1.2 Formulation for a Four-Channel Filtering Operation

In order to facilitate parallel processing for the 2–D DWT computation, the L×M

filtering operation needs to be divided into multi-channel operations, each channel

processing one part of the 2-D data. It is seen from (4.1) that the even and odd indexed

elements are always operated on the even and odd indexed filter coefficients,

respectively. The matrix S(j) representing the LL subband at the jth level can, therefore,

be divided into four (Nj/2+L/2)×(Nj/2+M/2) sub-matrices,)()()(,, j
eo

j
oe

j
ee SSS and)(j

ooS , whose

(m,n)th (0≤m≤Nj/2+L/2−1, 0≤n≤Nj/2+M/2−1) elements are given by

)12,12(),(

)12,2(),(

)2,12(),(

)2,2(),(

)()(

)()(

)()(

)()(

++=

+=

+=

=

nmSnmS

nmSnmS

nmSnmS

nmSnmS

jj
oo

jj
eo

jj
oe

jj
ee

 (4.2)

taking into consideration the periodic padding samples at the boundary [134]. It is seen

from (4.2) that the data at any resolution level are divided into four channels for

processing by first separating the even and odd indexed rows of S(j), and then separating

74

the even and odd indexed columns of the resulting two sub-matrices. The data in each

channel can then be computed by an (L/2×M/2)-tap filtering operation. In order to

facilitate such a 4-channel filtering operation, the filter coefficients, as used in (4.1), need

to be decomposed appropriately. Accordingly, the matrix H(P) needs to be decomposed

into four (L/2×M/2) sub-matrices,)()()(,, P
eo

P
oe

P
ee HHH and)(P

ooH , whose (k,i)th

(0≤k≤L/2−1, 0≤i≤M/2−1) elements are given by

)12,12(),(

)12,2(),(

)2,12(),(

)2,2(),(

)()(

)()(

)()(

)()(

++=

+=

+=

=

ikHikH

ikHikH

ikHikH

ikHikH

PP
oo

PP
eo

PP
oe

PP
ee

 (4.3)

respectively. By using (4.2) and (4.3) in (4.1), any of the four subband signals, A(j), B(j),

C(j) and S(j), at the jth resolution level, can be computed as a sum of four convolutions

using (L/2×M/2)-tap filters. For example, the LL subband given by (4.1d) can now be

expressed as

� �

� �

� �

� �

−

=

−

=

−

−

=

−

=

−

−

=

−

=

−

−

=

−

=

−

++⋅+

++⋅+

++⋅+

++⋅=

12/

0

12/

0

)1()LL(

12/

0

12/

0

)1()LL(

12/

0

12/

0

)1()LL(

12/

0

12/

0

)1()LL()(

),(),(

),(),(

),(),(

),(),(),(

L

k

M

i

j
oooo

L

k

M

i

j
eoeo

L

k

M

i

j
oeoe

L

k

M

i

j
eeee

j

inkmSikH

inkmSikH

inkmSikH

inkmSikHnmS

 (4.4)

At any resolution level, the separation of the subband processing corresponding to

even and odd indexed data as given by (4.4) is consistent with the requirement of

decimation of the data in each dimension by a factor of two in the DWT computation. It

is also seen from (4.4) that the filtering operations in the four channels are independent

and identical, which can be exploited in the design of an efficient pipeline architecture for

the 2-D DWT computation.

75

4.2 Pipeline for the 2-D DWT Computation

In a pipeline structure for the DWT computation, multiple stages are used to carry out

the computations of the various resolution levels of the transform [144]. The computation

corresponding to each resolution level needs to be mapped to a stage or stages of the

pipeline. It is seen from the formulation in Section 4.1 that the task of computing the jth

resolution level in a J-level DWT computation consists of computing N0
2/4 j−1 samples,

where N0=2J. The computation of each sample actually performs an (L×M)-tap HH, HL,

LH or LL FIR filtering operation that comprises the operations of (L×M) multiplications

followed by (L×M) accumulations. Assuming that these operations for the computation of

one sample are carried out by a unit of filter processor, the overall task of the DWT

computation would require a certain number of such filter units. In order to design a

pipeline structure capable of performing a fast computation of the DWT with low

expense on hardware resources and low design complexity, an optimal mapping of the

overall task of the DWT computation to the various stages of the pipeline needs to be

determined. Any distribution of the overall task of the DWT computation to stages must

consider the inherent nature of the sequential computations of the resolution levels that

limit the computational parallelism of the pipeline stages, and consequently the latency of

the pipeline. The key factors in the distribution of the task to the stages are the

maximization of the inter-stage and intra-stage computational parallelism and the

synchronization of the stages within the constraint of the sequential nature of the

computation of the resolution levels. The feature of identical operations associated with

the computations of all the output samples irrespective of the resolution levels in a DWT

computation can be exploited to maximize the intra-stage parallelism of the pipeline.

76

Further, in order to minimize the expense on the hardware resources of the pipeline, the

number of filter units used by each stage ought to be minimum and proportional to the

amount of the task assigned to the stage.

A straightforward mapping of the overall task of the DWT computation to a pipeline

is one-level to one-stage mapping, in which the tasks of J resolution levels are distributed

to J stages of the pipeline. In this mapping, the amount of hardware resources used by a

stage should be one-quarter of that used by the preceding stage. Thus, the ratio � of the

hardware resource used by the last stage to that used by the first stage has a value of

1/4J−1. For images of typical size, this parameter would assume a very small value.

Hence, for a structure of the pipeline that uses identical filter units, the number of these

filter units would be very large. Further, since the number of such filter units employed

by the stages would decrease exponentially from one stage to the next in the pipeline, it

will make their synchronization very difficult. The solution to such a difficult

synchronization problem, in general, requires more control units, multiplexers and

registers, which result in a higher design complexity. A reasonably large value of �<1

would be more attractive for synchronization. In this respect, the parameter � can be seen

as a measure of design difficulty, with a smaller value of this parameter representing a

greater design complexity.

The parameter � can be increased from its value of 1/4J−1 in the one-level to one-

stage pipeline structure by dividing the large-size stages into a number of smaller stages

or merging the small-size stages into larger ones. However, dividing a stage of the one-

level to one-stage pipeline into multiple stages would require a division of the task

associated with the corresponding resolution level into sub-tasks, which in turn, would

77

call for a solution of even a more complex problem of synchronization of the sub-tasks

associated with divided stages. On the other hand, merging multiple small-size stages of

the pipeline into one stage would not create any additional synchronization problem. As a

matter of fact, such a merger could be used to reduce the overall number of filter units of

the pipeline.

In view of the above discussion, the synchronization parameter � can be increased by

merging a number of stages at tail end of the pipeline. Fig. 4.1 shows the structure of a

pipeline in which the stages I to J of the one-level to one-stage pipeline have been

merged. In this structure, the tasks of the resolution level from j=1 to j=I−1 are mapped

to stage 1 to I−1, respectively, whereas those of the resolution levels j=I, · · · , J, are

mapped all together to the Ith stage. Note that the total amount of computations

performed by stage I is less than one-half of that performed by stage I−1. Considering the

fact that the number of filter units employed by each stage of the pipeline is an integer, it

is reasonable to have the ratio of the numbers of filter units used by the last two stages

(i.e., stages I−1 and I) to be 2:1. The value of the parameter � is now increased from

1/4J−1 to 1/4I−1.5. However, now the resources employed by stage I would not be fully

utilized, which would lower the efficiency of the hardware utilization of the pipeline of

Fig. 4.1. Assume that the parameter � represents the hardware utilization efficiency

defined as the ratio of the resources used to that employed by the pipeline. The hardware

utilization efficiency � of the pipeline in Fig. 4.1 can be shown to be equal to

(1−4−J)/(1+4−I+0.5). Since for images of typical size, 4−J is negligibly small compared to

one, the expression for � can be simplified as 1/(1+4−I+0.5). As the number of stages I

employed by the pipeline increases, the hardware utilization efficiency increases with the

78

parameter � approaching unity for a maximum efficiency. On the other hand, the

difficulty in synchronizing the stages gets worse as the parameter � decreases with

increasing value of I. A variation in the value of I results in the values of � and � that are

in conflict from the point of view of stage synchronization and hardware utilization

efficiency. Therefore, a value of I needs to be determined that optimizes the values of �

and � jointly.

Input
of N0×N0

samples

· · ·

Level 1 Level 2
Levels
I to J

Stage 1 Stage 2 Stage
I

Figure 4.1: Pipeline structure with I stages for J-level computation.

Considering an example of an image of size 28×28, in which case J=8. Fig. 4.2 gives

the plots of � and � as a function I, the number of stages employed by the pipeline. It is

seen from this figure that I=3 provides the best compromise between the values of � and

�. Therefore, a 3-stage pipeline with an acceptable value for the synchronization

parameter and high hardware utilization efficiency would be the best choice of a pipeline.

Note that the size of the images used in typical applications would have little bearing on

the conclusion thus reached regarding the number of stages employed in the pipeline.

Also, note that a 3-stage pipeline can perform the DWT computation for a variable

number of resolution levels from 3 to J. With three as the optimal choice of the number

of stages in a pipeline, one can now choose the minimum numbers of filter units as 8, 2

and 1 for the stages 1, 2 and 3 in order to perform the tasks associated with the resolution

levels 1, 2 and 3 to J together, respectively. The next section is concerned specifically

with a detailed design of the 3-stage pipeline structure.

79

(a) (b)

Figure 4.2: Parameters � and � plotted as functions of the number of stages I used in a

pipeline architecture. (a) � versus I, (b) � versus I.

4.3 Design of the Architecture

In the previous section, we advocated a three-stage pipeline structure for the

computation of the 2-D DWT to realize an optimal combination of the parameters for the

hardware utilization and pipeline synchronization. In this three-stage structure, like in any

pipeline architecture, the operations in a given stage depend on the data produced by the

preceding stage. However, because of the way that the computational load of the various

resolution levels of the 2-D DWT computation has been distributed among the three

stages, the operations in the first and second stages of the pipeline do not depend on the

data produced by themselves, whereas that in stage 3 does depend on the data produced

by itself. The operations of the three stages need to be synchronized in a manner so that

the three stages perform the computation of multiple resolution levels within a minimum

possible time period while using the available hardware resources maximally. In this

section, we present the design of the proposed 3-stage pipeline architecture, starting with

the synchronization of the operations of the stages, and then focusing on the details of the

intra-stage design so as to provide an optimal performance.

80

4.3.1 Synchronization of Stages

Recall from Section 4.2 that the distribution of the computational load among the

three stages, and the hardware resources made available to them are in the ratio 8:2:1.

Accordingly, the synchronization of the operations between the stages needs to be carried

out under this constraint of the distribution of the computational load and hardware

resources. According to the nature of the DWT, the computation of a resolution level j

depends on the data computed at its previous level j–1, in which the number of

computations is four times of that at the resolution level j. Therefore, the stages of

pipeline need to be synchronized in such a way that each stage starts the operation at an

earliest possible time when the required data become available for its operation. Once the

operation of a stage is started, it must continue until the task assigned to it is fully

completed.

Consider the timing diagram given in Fig. 4.3 for the operations of the three stages,

where t1, t2 and t3 are the times taken individually by stages 1, 2 and 3, respectively, to

complete their assigned tasks, and ta and tb are the times elapsed between the starting

points of the tasks by stages 1 and 2, and that by stages 2 and 3, respectively. Note that

the lengths of the times t1, t2 and t3 to complete the tasks by individual stages are

approximately the same, since the ratios of the tasks assigned and the resources made

available to the three stages are the same. The average times to compute one output

sample by stages 1, 2 and 3 are in the ratio 1:4:8. In Fig. 4.3, the relative widths of the

slots in the three stages are shown to reflect this ratio. Our objective is to minimize the

total computation time ta+tb+t3 by minimizing ta, tb and t3 individually.

81

Stage 3

Stage 2

Stage 1

ta

tb
t3

t1

t2

� � �

� � �

� � �

Figure 4.3: Timing diagram for the operations of three stages.

Assume that 2-D output samples for a resolution level are computed row-by-row

starting from the upper-left corner sample. Since the operations in stage 1 are

independent of those in the other two stages, it can operate continuously to compute all

the samples of level 1. The value of t1 is equal to TsN1
2, where Ts is the average time

taken by stage 1 to compute one output sample. Since the operations of stages 2 and 3

require the output data computed by stages 1 and 2, respectively, their operations must be

delayed by certain amount of times so that they can operate continuously with the data

required by them becoming available. We now give the lowest bound on ta and tb so that

once stages 2 and 3 start their operations they could continue their operations

uninterruptedly. Since the operation of stage 2 starts at time ta, the (i,k)th output sample

of level 2, denoted by S(2)(i,k), will be computed starting at the time instant

tx=ta+4Ts(i�N2+k), where 4Ts is the average time taken by stage 2 to compute one output

sample. Using (4.1), among the level-1 samples required for the computation of S(2)(i,k),

the (2i+L−1, 2k+M−1)th level-1 sample, denoted by S(1)(2i+L−1, 2k+M−1), is the latest

output sample computed at the time instant ty=Ts[N1(2i+L−1)+2k+M−1]+Ts. Now, if at

the time of starting the calculation of the output sample S(2)(i,k), i.e. tx, the sample

S(1)(2i+L−1,2k+M−1) has already been calculated by stage 1, all the leve-1 samples

necessary to calculate this level-2 output sample would be available. This requires us to

82

impose the constraint tx>ty, for all i and k, i.e. 0�i , k�N2−1. This condition implies that

)2(11 kMNLNTt sa −+−> (4.5)

The minimum value of ta is given by

])1([1min MLNTt sa +−= (4.6)

Assume that stage 3 computes all the output samples of all remaining levels (i.e. level

3 to level J) in a sequential manner. We only need to consider the requirement of the data

availability for the computation of level-3, which uses the level-2 samples computed by

stage 2. Then, in a way similar to that obtaining ta min, by imposing the condition that at

the time instant of starting the calculation of a level-3 output sample by stage 3, all the

samples in the window of the level-2 output samples are available, it can be shown that

the minimum value of tb is given by

])22/([4 22min MLNNTt sb +−+= (4.7)

Based on the above discussion, the operations of the three stages can be arranged in

the following manner:

Step 1. Stage 1 operates continuously on the input signal to compute the level-1

output samples sequentially.

Step 2. Stage 2 starts its operation immediately following the computation of the

(L−1, M)th level-1 output sample, S(1)(L−1,M), and then continues its operation of all

other level-2 output samples in a sequential manner.

Step 3. Stage 3 starts its operation for the computation of level-3 samples

immediately after stage 2 completes the computation of the (N2/2+L−2, M−1)th level-2

output sample, S(2)(N2/2+L−2, M−1), and then continues the computation of other level-3

output samples sequentially. Computations of the output samples of levels 4 to J are

83

carried out sequentially by the stage 3 following the computation of level-3 output

samples.

4.3.2 Design of Stages

As discussed in Section 1.4, in the proposed three-stage architecture, stages 1 and 2

perform the computations of levels 1 and 2, respectively, and stage 3 that of all the

remaining levels. Since the basic operation of computing each output sample, regardless

of the resolution level or the subband, is the same, the computation blocks in the three

stages can differ only in the number of identical processing units employed by them

depending on the amount of the computations assigned to the stages. As seen from (4), an

(L×M)-tap filtering operation is decomposed into four independent (L/2×M/2)-tap

filtering operations, each operating on the 2-D L/2×M/2 data resulting from the even or

odd numbered rows and even or odd numbered columns of an L×M window of an LL-

subband data. A unit consisting of L/2×M/2 MAC cells can now be regarded as the basic

processing unit to carry out an (L/2×M/2)-tap filtering operation. An L×M window of the

raw 2-D input data or that of an LL-subband data must be decomposed into four distinct

L/2×M/2 sub-windows in accordance with the four decomposed terms given by the right

side of (4). This decomposition of the data in an L×M window can be accomplished by

designing for each stage an appropriate data scanning unit (DSU) based on the way the

raw input or the LL-subband data is scanned. The stages would also require memory

space (buffer) to store the raw input data or the LL-subband data prior to scanning. Since

stages 1 and 2 need to store only part of a few rows of raw input or LL-subband data at a

time, they require a buffer of size of O(N), whereas since stage 3 needs to store the entire

84

LL-subband data of a single resolution level, it has a buffer of size of O(N2). Fig. 4.4

gives the block diagram of the pipeline showing all the components required by the three

stages. Note that the data flow shown in this figure comprises only the LL-subband data

necessary for the operations of the stages. The HH, HL and LH subband data are

outputted directly to an external memory. Now, we give details on the structure of the

data scanning unit to scan the 2-D data and establish four distinct L/2×M/2 sub-windows,

as well as on the distribution of the filtering operations to the processing units in each

stage.

(a) Structure of the Data Scanning Unit

In accordance with (4.4), an L×M window of the raw 2-D input data stored in Buffer1

or an LL-subband data stored in Buffer2 or Buffer3 must be partitioned into four L/2×M/2

sub-windows, and stored into the DSU of the corresponding stage. Further, this same

equation also dictates that a 2-D input data must be scanned in a sequential manner

shown in Fig. 4.5(a). According to this sequence of scanning, the samples in a set of data

Si
(1)

Stage 2

Buffer2

Stage 1

Control
Block 1

Control
Block 2

Si
(0)

Control
Block 3

Buffer3

Stage 3

Si
(j)

Si
(2)

DSU1 DSU2 DSU3

��� PU8 PU10PU9 PU11PU1

Computation
Block 1

Computation
Block 2

Computation
Block 3

Buffer1

Figure 4.4: Block diagram of the three-stage architecture.

85

comprising L rows of a 2-D input data are scanned starting from the top-left corner. Once

the scanning of all the samples of L rows is completed, the process is repeated for another

L rows after shifting down by two row positions. The objective is then to design a

structure for a DSU so that samples scanned with this sequential mode get partitioned

into the four sub-windows (Fig. 4.5(b)).

In order to partition an L×M window into four L/2×M/2 sub-windows, the structure of

the DSU must first partition the samples of the window into two parts depending on

whether a sample belongs to an even-indexed or odd-indexed row; then the samples in

each part must be partitioned further into two parts depending on whether a sample

belongs to an even-indexed or odd-indexed column. The first partition can be achieved by

directing scanned samples alternatively to two sets of L/2 shift registers. The second

partition can be achieved by reorganizing the samples stored in the shift registers of the

two sets depending on whether a sample belongs to even-indexed or odd-indexed column

Sub-window 1

Sub-window 2

Sub-window 3

Sub-window 4

Partitioned
L/2�M/2 data

L�M
window

(a) (b)

L

Figure 4.5: Diagram illustrating the data scanning. (a) Scanning of an Nj×Nj 2-D data.

(b) Partitioning of an L×M window into four L/2×M/2 sub-windows. The solid and

empty circles represent the samples in even-indexed and odd-indexed rows,

respectively, whereas the black and grey circles represent the samples in even-indexed

and odd-indexed columns, respectively.

86

by employing demultiplexers. Finally, the samples of the four sub-windows can be

stored, respectively, into four units of L/2×M/2 parallel registers. Fig. 4.6 shows a

structure of the DSU to accomplish this task. This data scanning scheme automatically

incorporates the downsampling operations by two in the vertical and horizontal directions

(as required by the transform), and thus no additional peripheral circuits and registers are

required for the downsampling operations by the architecture. As a result, the data

scanning scheme, in comparison to the other schemes [145], requires less hardware

resources for the control units and fewer registers for the stages.

���

DEMUX

L/2 parallel
registersScanned

sample

Even-indexed
row

Odd-
indexed

row

���

���

���

���

���
Sub-window 1

Sub-window 2

Sub-window 3

Sub-window 4

Even-
indexed
column

Odd-
indexed
column

Odd-indexed
column

Even-indexed
column

M/2

L/2 shift
registers

Figure 4.6: Structure of the data scanning unit (DSU).

(b) Distribution of filtering operations among the processing units employed by

stages

In accordance with (4.1) and (4.4), decomposing input data into four subbands

requires four L×M filtering operations, and each of the four filtering operations requires

four (L/2×M/2)-tap filtering operations. Thus, a total of 16 (L/2×M/2)-tap filtering

operations are involved for the computation of the samples for the four subbands using an

87

L×M window of the input data. Now, for each stage, these 16 types of filtering operations

must be assigned to the processing units available to the stage using four sub-windows of

data from its DSU. Given the available resources of the stages, the objective here is to

process the 16 types of filtering operations with maximized computational parallelism

and with priority given to the computation of the samples of LL subband.

In stage 1, since eight processing units are available, the processing task can be

distributed among them so that one processing unit carries out the subtask of (L/2×M/2)-

tap filtering operations corresponding to a pair of subbands from the LL, LH, HL and HH

using the data of one sub-window. One such distribution of the task is shown in Fig. 4.7,

from which it is seen that each of the processing units PU1 to PU4 carries out the LL and

LH filtering operations sequentially using the sub-windows 1 to 4, respectively, whereas

each of the processing units PU5 to PU8 carries out the HH and HL filtering operations

using the same sub-windows. In stage 1, the LL and HH subband samples are produced

in parallel in one clock cycle, whereas the LH and HL subband samples are produced in

parallel in the next.

Output sample 2

Adder
Sub-window 1

Sub-window 2

Sub-window 3

Sub-window 4

Sub-window 1

Sub-window 2

Sub-window 3

Sub-window 4

Output sample 1

Register
PU5

(HH, HL)

PU6

(HH, HL)

PU7

(HH, HL)

PU8

(HH, HL)

PU1

(LL, LH)

PU2

(LL, LH)

PU3

(LL, LH)

PU4

(LL, LH)

Figure 4.7: Structure of eight processing units employed by stage 1.

88

Since stage 2 employs two processing units, each must perform the task of all the

four subbands using two sub-windows. As the data of the four sub-windows, 1 to 4,

become available in a sequential manner, sub-windows 1 and 3 are sequentially assigned

to PU9, whereas sub-windows 2 and 4 in a similar manner are assigned to PU10. This

distribution of the task for stage 2 is shown in Fig. 4.8, from which it is seen that each of

the processing units, PU9 and PU10, carries out the (L/2×M/2)-tap filtering operations. In

stage 2, PU9 and PU10 operating in parallel produce the LL, LH, HH and HL subband

samples sequentially in eight consecutive clock cycles.

Register

PU10

PU9

Sub-window 1

Sub-window 3

Sub-window 2

Sub-window 4
(LL, LH,
HH, HL)

(LL, LH,
HH, HL)

Output sample
MUX

Adder

Figure 4.8: Structure of two processing units employed by stage 2.

Since only one processing unit, PU11, is employed by stage 3, it has to carry out all

the filtering operations for each of the four sub-windows, as shown in Fig. 4.9. In this

figure, the four sub-windows, 1 to 4, are chosen successively, as input to PU11. For each

sub-window, the processing unit PU11 then carries out the (L/2×M/2)-tap filtering

operations. In this stage, PU11 produces sequentially the LL, LH, HH and HL subband

samples in 16 consecutive clock cycles.

89

RegistersMUXSub-window 1

Sub-window 2 Adder
(LL, LH,
HH, HL)Sub-window 3

Output sample

PU11Sub-window 4

Figure 4.9: Structure of one processing unit employed by stage 3.

Note that one processing unit at a time processes the samples of only one sub-

window corresponding to one of the four subbands. Assume that such a processing time

by a processing unit to be one time unit. Now, since stages 1, 2 and 3 have 8, 2 and 1

processing units, respectively, they can process sub-windows at the rates of 2, 1/2 and 1/4

sub-windows per unit time. This coupled with the fact that the processing loads (i.e. the

number of sub-windows) assigned to the three stages are in the ratio 8:2:1, lets us to

conclude that the operations of the three stages are mutually synchronized.

(c) Design of the Processing Unit

In each stage, a processing unit carries out an (L/2×M/2)-tap filtering operation using

the samples of an L/2×M/2 sub-window at a time to produce the corresponding output.

Since the sub-windows cannot be fed into a processing unit at a rate faster than the rate at

which these sub-windows are processed by the processing unit, the processing time to

process a sub-window (one time unit) is critical in determining the maximum clock

frequency at which the processing units can operate. Each physical link from a given bit

of the input to an output bit of the processing unit gives rise to a data path having a delay

that depends on the number and the types of operations being carried out along that path.

90

Therefore, it is crucial to aim at achieving the shortest possible delay for the critical path

when designing a processing unit for our architecture [131]−[133], [142], [143].

The filtering operation carried out by a processing unit, as described above, can be

seen as L/2×M/2 parallel multiplications followed by an accumulation of the L/2×M/2

products. If the input samples and the filter coefficients have the wordlengths of X and Y

bits, respectively, then the processing unit produces an array of (Y*L*M/4)×X bits

simultaneously in one clock cycle.

In order to obtain the output sample corresponding to a given sub-window, the bits of

the partial products must be accumulated vertically downward and from right to left by

taking the propagation of the carry bits into consideration. The task of this accumulation

can be divided into a sequence of layers. The shortest critical data path can be achieved

by minimizing the number of layers and the delay of the layers. In each layer, a number

of bits consisting of the partial product bits and/or the carry bits from different rows need

to be added. This can be done by employing in parallel as many bit-wise adders as

needed in each layer. The idea behind using bit-wise adder is to produce to the extent

possible the number of output bits from a layer is smaller than the number of input bits to

that layer. This can be done by using full adders and specifically designed double adders,

in which the full adder consumes 3 bits and produces 2 bits (one sum and one carry bits)

whereas the double adder consumes two pairs of bits (2×2) from neighbouring columns

and produces 3 bits (one sum and two carry bits/two sum and one carry bits). The two

types of adders have equal delay, and are efficient in generating carry bits and

compressing the number of partial products [133]. With this structure of the layers, the

number of layers becomes minimum possible and the delay of a layer is equal to that of a

91

full adder or equivalently to that of a double adder, thereby providing the shortest critical

path for the accumulation network.

Since the two rows of bits produced by the accumulation network still remain

unaccumulated, they finally need to be added to produce one row of output bits in the

final phase of the task of a processing unit by using a carry propagation adder. Note that

tasks of the accumulation network and the carry propagation adder can be made to have

some partial overlap, since the latter can start its processing as soon as the rightmost pairs

of bits becomes available from the former. Fig. 4.10 depicts a block diagram of a

processing unit based on the above discussion.

Partial products generator

Bit-wise accumulation
network

Carry propagation adder

A sub-windowCoefficients

Output of the processing unit

Processing unit

An array of partial
product bits

Two rows of bits

Figure 4.10: Block diagram of a processing unit.

92

4.4 Performance Results and Comparisons

4.4.1 Performance of the Proposed Architecture

In order to evaluate the performance of a computational architecture, one needs to

make use of certain metrics that characterize the architecture in terms of the hardware

resources used and the computation time. In this chapter, the hardware resources used for

the filtering operation are measured by the number of multipliers (NMUL) and the number

of adders (NADD), and that used for the storage of data and filter coefficients are measured

by the number of registers (NREG). The computation time, in general, is technology

dependent. However, a metric that is technology independent and can be used to

determine the computation time T is the number of clock cycles (NCLK) elapsed between

the first and the last samples inputted to the architecture. Assuming that one clock period

is Tc , the total computation time can then be obtained as T=NCLKTc.

For a J-level 2-D DWT computation of an N×N image using (L×L)-tap filters, the

expressions for the metrics mentioned above for the proposed 3-stage architecture are

given in Table 4.1. It is seen from this table that the numbers of multipliers, adders and

registers in the DSUs employed by the architecture depend only on the filter length,

whereas the number of the registers of the buffers depends also on the image size.

Table 4.1: Performance metrics for the proposed 2-D architecture

NCLK NMUL NADD NREG

DSUs Buffers

N2/2 11L2/4 11Log2(L
2/2)+9 3L2+3L 3NL/4+3N2/128

93

In order to evaluate the performance of the proposed architecture in terms of Tc , we

consider an example of designing a circuit for the DWT computation of an image of size

N=512. For this purpose, we use 2-D filters of size L=M=4, wordlength for the filter

coefficients as 8-bit, and the number of resolution levels J=6. The input samples are

encoded by using a radix-4 booth encoder and used as one of the two operands for the

multiplication operation. All the carry propagation adders of the architecture have a 16-

bit wordlength and use a structure that combines the carry-skip and carry-select adders

[135]. The circuit is synthesized in RTL by using Synopsys with 0.18-μm CMOS

technology. The synthesized results show that the circuit can operate with a minimum

clock period of 6.5 ns (i.e. at a maximum clock frequency of 153 MHz). The circuit has a

core area of 4.95×3.84 mm2, and consists of 850K logic gates and a 24.5K-RAM. The

power consumed by the circuit is obtained as 214 mW at 100 MHz clock frequency.

Table 4.2: Resources utilized in FPGA device for the circuit implementation

for the 2-D DWT computation when N=512, L=M=4 and J=6

Resource Number used Percentage used

CLB Slices 2842 20%

Flip-flop Slices 1059 3%

4-input LUTs 4989 18%

Bonded IOBs 130 23%

BRAMs 8 5%

94

In order to validate the circuit design based on the proposed architecture, the circuit is

implemented on a typical FPGA board, Virtex-II Pro XC2VP30-7. The board is capable

of operating with a clock frequency of up to 400 MHz at a core voltage of VDD=1.5 V.

The resources utilized by the FPGA implementation in terms of the numbers of

configuration logic block (CLB) slices, flip-flop slices, 4-input look-up tables (LUTs),

input/output blocks (IOBs) and block RAMs (BRAMs) are given in Table 4.2. The circuit

implemented is found to perform well with a clock period as short as 7.4 ns (i.e. a

maximum clock frequency of 134 MHz). The time for the DWT computation of an image

of size 512×512 is 0.97 ms. In other words, the circuit is able to process motion pictures

with a speed of 1022 frames per second (FPS). The power consumption of the FPGA

device on which the circuit is implemented is measured to be 303 mW at 100 MHz clock

frequency. This measured value for the power consumption compares reasonably well

with the simulated value of 214 mW, considering that the measured value also includes

the power dissipated by the unused slices within the FPGA device.

In order to validate the proposed architecture further, various circuits, which are

designed based on the proposed architecture for the values of N=128, 256, 512, 1024,

2048 and J=3, 6, are implemented on the same type of FPGA board as used above. The

implementation results for the various circuits are shown in Fig. 4.11. It is seen from this

figure that the number of CLB slices (NCLB) changes very slightly with the image size N

or the number of resolution levels J (Fig. 4.11(a)), while the number of BRAMs (NBRAM)

increases rapidly (Fig. 4.11(b)). These results are consistent with the performance

evaluation results provided in Table 4.1, and also demonstrate that the circuits for the

DWT computation of images of different size and with different number of resolution

95

levels can be implemented essentially by varying the size of the buffer used. The

performance of only a slight decrease in the maximum clock frequency (fmax) and that of

a logarithmic decrease in the number of frames per second (NFPS), as the image size

increases (Fig. 4.11(c) and (d)), are in conformity with the normal expectation.

�

2793 2812

2842

2866

2902

2808 2822

2848

2885

2919

2720

2760

2800

2840

2880

2920

2960

128 256 512 1024 2048

NCLB

N

3 levels
6 levels

�

3 3 6

18

67

4 4
8

26

99

0

20

40

60

80

100

120

128 256 512 1024 2048

NBRAM

N

3 levels
6 levels

 (a) (b)

�
167 167

145 137
129

166 166

134 131 128

0

40

80

120

160

200

128 256 512 1024 2048

fmax
(MHz)

N

3 levels
6 levels

�
21240

5096

1106

261

62

20267
5065

1022

249

61

1

10

100

1000

10000

100000

128 256 512 1024 2048

NFPS

N

3 levels

6 levels

 (c) (d)

Figure 4.11: Results of various FPGA implementations with N=128, 256, 512, 1024,

2048, and J=3, 6. (a) The numbers of CLB slices versus N, (b) the numbers of BRAMs

versus N, (c) the maximum clock frequencies versus N, and (d) the numbers of frames per

second versus N.

96

4.4.2 Comparisons of Various 2-D Architectures

In order to compare the hardware utilization and computation time of the proposed

and other architectures, expressions for the relevant performance metrics for a J-level

DWT computation of an N×N image using (L×L)-tap filters for the various architectures

are given in Table 4.3. It is seen from this table that the architecture of Prop. 4 in [146]

and that of [66], require, respectively, N2/12 and N2/4 clock cycles, which are smaller

than N2/2 clock cycles required by the proposed architecture. This performance of [66] is

achieved by utilizing the hardware resources of adders and multipliers that is more than

twice of that required by the proposed architecture. Also, it is to be noted that in [146] the

amount of the hardware resources (adders, multipliers and delay units) is larger than that

required by the proposed architecture. Indeed, a smaller value of NCLK does not

necessarily mean a smaller computation time T, since the clock period Tc may

significantly differ from one architecture to another. It is also seen from Table 4.3 that the

hardware utilization of the proposed architecture is higher than that of the pipeline

architectures in [44], [66], [147] and [148], and it is only slightly lower than that of [146],

in which 100% hardware utilization is achieved by using a much larger number of adders.

Furthermore, the proposed architecture provides a shorter latency compared with the

architectures in [44], [147], [149] and [150] that use 1-D type filters. On the other hand,

the architectures in [146] and [66] provide smaller latencies, but employ proportionally

larger hardware resources.

97

Table 4.3: Performance metrics for various 2-D architectures

Architecture No. of
multipliers

No. of
adders

Storage size Filter
type

No. of
clock
cycles

Hardware
utilization

Latency

Recursive
architecture

[44]

12 16 4N 1-D
(9/7)

N2+N 50%-70% TcN2

Generic folded
[149]

6J (L/2) 6J(1+
log2(L/2)

)

4(L−1)N/3 1-� N2 N/A� TcN2

Symmetrically
extended

[147]

L/2+L/4+
L/8

2(L/2+
L/4+L/8)

(L+0.5)N 1-D 1.5N2 87.5% 1.5TcN
2

Parallel
FDWT [150]

12 16 3N/2 1-D
(9� 7)

N2 N/A TcN2

Line-based
[151]

N/A N/A N/A N/A N/A N/A N/A

Parallel
Prop. 4 [146]

96 240 [4N+32J +256]
(on chip delay

units)

[8N+128(J−1)]
(off

chip� buffer)

2-D
(L=4)

N2/12 100% TcN2/1
2

Arch2D-II
[152]

L2/2 L2/2+L N/A 2-D 2N2/3 N/A 2TcN2/
3

Pipeline [66] 6L2 6L2 2NL 2-D N2/4 66.7% TcN2/4

Parallel
structure [148]

48 24 6N/2+6N/4
(J=3)

2-D
(4×4)

L2N2/16
+L2N/8

� 5.6% N/A

Proposed 11L2/4 11log2

(L2/2)+9
3L+3L2 (on chip

delay units)

3NL/4+3N2/128
(off chip buffer)

2-D N2/2 96% TcN2/2

N/A: Not available

98

The performance of the proposed architecture is now compared with various other

architectures in terms of the FPGA implementation results available in the literature. The

FPGA implementation results for the architectures presented in [44] and [147]−[152] are

listed in Table 4.4. It is seen from this table that the implemented circuit for the proposed

architecture requires a time of 0.97 ms to compute a 6-level DWT of an image of size

512×512, which is about one-half and one-third of the closest computation times offered

by the implementations of the architectures of [152] and [150], respectively. In

comparison to the architecture of [150], the proposed architecture provides this 3 times

increase in the speed of computation at the expense only about 67% increase in the

hardware. In comparison to the architecture of [152], the proposed architecture provides

an improvement of 50% in the speed of computation while at the same times consumes

about 35% less hardware resources. In order to have a fair comparison with the non-

separable architecture of [152], whose computation time is next best to that of the

proposed architecture, we have implemented the latter also on Virtex 2000E. The

implementation of the proposed architecture on this device results in a computation time

of 1.4 ms and in 3430 used CLB slices. Thus, with the architecture of [152] and the

proposed architecture implemented on the same FPGA device, the latter gives a 17% gain

in the computational speed and 21% reduction in the hardware resources. Overall, the

area-time and area-(time)2 products of the proposed architecture have values that are,

respectively, at least 33% and 78% smaller than those of the other architectures.

99

Table 4.4: Comparison of various FPGA implementations

Architecture Image

size

(N)

No. of

CLB

slices

RAM

size (bits)

fmax

(MHz)

T

(ms)

Area×T* Area×T2 Device

Recursive

architecture

[44]

512

(J=3)

879 10N 50 5.3 4659 24692 XC2V250

Generic folded

[149]

256

(J=3)

4720 10×(4K) 75 0.874 4125 3605 Virtex 600E-

8

Symmetrically

extended [147]

512

(J=3)

2559 17×(18K) 44.1 9 23031 207279 XC2V500

Parallel FDWT

[150]

512

(J=5)

1700 3N/2 171.8 3.1 5270 16337 Virtex 2

Line-based

[151]

512

(J=6)

2950 4×(18K) 113.6 5.2 15340 79768 XC4VLX15

Parallel

Prob. 4 [146]

Implementation results not available

Arch2D-II

[152]

512

(J=3)

4348 24×(18K) 105 1.7 7392 12566 Virtex 2000E

Pipeline [66] Implementation results not available

Parallel

structure [148]

512

(J=3)

3580 2304 45 5.9 21122 124619 XCV600E

Proposed 512

(J=6)

2842 8×(18K) 135 0.97 2757 2674 XC2VP30

*The value of area in the calculation of area-time product is replaced by the No. of CLB

slices since the former is proportional to the latter.

100

4.5 Summary

In this chapter, a scheme for the design of pipeline architectures for a high-speed

non-separable computation of the 2-D DWT has been proposed. The objective has been

to achieve a short computation time by maximizing the operational clock frequency

(1/Tc) and minimizing the number of clock cycles (NCLK) required for the 2-D DWT

computation by developing a scheme for enhanced inter-stage and intra-stage

computational parallelism for the pipeline architecture.

To enhance the inter-stage parallelism, a study has been undertaken that suggests

that, in view of the nature of the DWT computation, it is most efficient to map the overall

task of the DWT computation to only three pipeline stages for performing the

computation tasks corresponding to the resolution level 1, level 2, and all the remaining

levels, respectively. Two parameters, one specifying the design complexity from the

point of view of synchronizing the operations of the stages and the other representing the

utilization of the hardware resources of the pipeline, have been defined. It has been

shown that the best combination for the value of these parameters is achieved when the

pipeline is chosen to have three stages. In order to enhance the intra-stage parallelism,

two main ideas have been employed for the internal design of each stage. The first idea is

to divide the 2-D filtering operation into four subtasks that perform independently and

simultaneously on the elements of even or odd indexed rows and columns of the 2-D

input data. This idea stems from the fact that for each consecutive resolution level, the

input data are decimated by a factor of two along the rows and columns of the 2-D data.

Each subtask of the filtering operation is performed by a processing unit. The second idea

employed is in organization of the array of bit-wise adders, which is the core of the

101

processing unit, in a way so as to minimize the delay of the critical path from a partial

product input bit to a bit of an output sample through this array. In this chapter, this has

been accomplished by minimizing the number of layers of the array while at the same

time minimizing the delay of each layer.

In order to validate the proposed scheme, a circuit for the DWT computation has

been designed, simulated and implemented in FPGA. The circuit is designed for a filter

length L=M=4 and simulated for the number of the resolution levels J=6 and data size

N×N=512×512. The simulation results have shown that the circuit designed based on the

proposed scheme is able to operate at a maximum clock frequency fmax=153 MHz. The

results of the FPGA implementation have shown that the circuit can process a 512×512

image in 0.97 ms, which is at least two times faster than that of the other FPGA

implementations, and in some instances, even with less hardware utilization. Finally, it is

worth noting that the architecture designed in this chapter is scalable in that its processing

speed can be adjusted upward or downward by changing the number of MAC cells in

each of the processing units by a factor equal to that of the reduction required in the

processing speed.

102

Chapter 5

Conclusion

5.1 Concluding Remarks

The DWT is a computationally intensive transform because of the processing of large

volumes of data at multiple resolution levels involved in its computation. Therefore, it is

imperative to design efficient VLSI architectures to implement the DWT computation for

real-time applications, especially those requiring processing of high-frequency signals or

broadband data. Many pipeline architectures focusing on providing high computational

speed or efficient hardware utilization have been proposed in the literature. However,

these architectures have not exploited in their designs the features inherent in the

definition of the DWT to the extent possible. Consequently, the speed provided by these

architectures is not commensurate with the amount of hardware utilized by them.

The objective of this thesis has been to develop a scheme for the design of hardware

resource-efficient high-speed pipeline architectures for the computation of the 1-D and

2-D DWT. The goal of high speed has been achieved by maximizing the operating

frequency and minimizing the number of clock cycles required for the DWT computation,

103

which in turn, have been realized by enhancing the inter-stage and intra-stage

parallelisms of pipeline architectures.

In order to enhance the inter-stage parallelism, a study has been undertaken for

determining the number of pipeline stages required for the DWT computation so as to

synchronize their operations while providing to each stage the amount of hardware

resources proportional to the task assigned to it. This study has determined that

employment of two pipeline stages with the first one performing the task of the first

resolution level and the second one that of all the other resolution levels of the 1-D DWT

computation, and employment of three pipeline stages with the first and second ones

performing the tasks of the first and second resolution levels and the third one performing

that of the remaining resolution levels of the 2-D DWT computation, are the optimum

choices for the development of 1-D and 2-D pipeline architectures, respectively.

With the number of pipeline stages as determined above, coupled with the fact that

the nature of the filtering operations required in all the subbands and resolution levels is

the same, the intra-stage parallelism has been enhanced by employing the following two

main ideas. The first idea, which stems from the fact that in each consecutive resolution

level the input data are decimated by a factor of two along each of the data dimensions, is

that the filtering operations of a stage can be conveniently divided into a certain number

of subtasks (two subtasks for the 1-D data and four subtasks for the 2-D data) that can be

performed in parallel by operating on even- and odd-numbered samples along each

dimension of the samples. Each subtask is an FIR filtering operation performing a set of

multiply-accumulate operations, which can be accomplished by employing a MAC-cell

network consisting of a two-dimensional array of bit-wise adders. The second idea in

104

enhancing the intra-stage parallelism has been the design of this network so as to

minimize its critical path. This has been achieved by maximally extending the bit-wise

addition operations of the network horizontally through a suitable arrangement of half,

full and specifically designed double adders.

In order to validate the proposed scheme for the design of pipeline architectures, two

specific design examples have been considered, one for the 1-D DWT computation and

the other for the 2-D DWT computation. For the 1-D case, a pipeline architecture has

been designed to compute a 7-level DWT using 6-tap 1-D filters and simulated using

0.35-micron technology, whereas for the 2-D case, a pipeline architecture has been

designed for the computation of a 6-level DWT using 4×4-tap 2-D filters and simulated

using 0.18-micron technology. The simulation results for the 1-D example have shown

that the architecture designed is able to operate at a maximum clock frequency of 138

MHz. Furthermore, in comparison to other 1-D architectures designed using comparable

amount of hardware resources, it provides at least 30% reduction in the computation

time, and has an area-time product that is at least 45% smaller. The simulation results for

the 2-D example have shown that the architecture designed is capable of operating at a

maximum clock frequency of 153 MHz, and in comparison to other 2-D architectures

using similar amount of hardware resources, it is at least two times faster, and has an

area-time product that is at least 33% smaller. Finally, the two pipeline architectures have

been implemented on a Xilinx FPGA board to test their performance in a real circuit

environment. The test results have been found to be in conformity with those obtained

from the simulations.

105

In conclusion, this thesis has been concerned with the design of hardware resource-

efficient high-speed pipeline architectures for discrete wavelet transforms. In order to

meet this objective, a number of novel ideas and schemes that enhance the inter- and

intra-stage parallelisms of the pipeline stages have been advanced. The effectiveness of

these ideas and schemes has been validated through designs, simulations and

implementations of specific cases of 1-D and 2-D DWT architectures.

5.2 Scope for Future Work

In this thesis, a scheme has been proposed for the design of high-speed hardware-

resource-efficient pipeline architectures for the DWT computation. In order to achieve

this goal, certain characteristics inherent in the 1-D and 2-D discrete wavelet transforms

have been exploited so as to maximize the inter- and intra-stage parallelisms of the

pipeline stages. One could investigate the possibility of optimizing the proposed

architectures further, in terms of their operating speed or the amount of hardware

resources employed. Also, the scheme for the design of 1-D and 2-D pipeline

architectures could be extended to higher dimensions.

In certain applications of the DWT, only some specific types of filters need to be

employed [153]−[155]. For example, in speech recognition systems, 9/7 or 5/3 filters are

often employed. The relationships that exist between the coefficients of the filters in

various subbands could then be utilized to further enhance the operating speed of the

pipelines.

In applications such as video compression, medical imaging and geographic data

analysis, it is 1-D or 2-D wavelet transforms that are employed. The use of 1-D or 2-D

106

wavelet architectures in such applications results in high latency. A study could be

undertaken to extend the scheme proposed in this thesis for the design of 1-D and 2-D

pipeline architectures to 3-D pipeline architectures with a view to increase the processing

speed of the applications involving 3-D data.

107

References

[1] S. M. M. Rahman, M. O. Ahmad, and M. N. S. Swamy, “A new statistical

detector for DWT-based additive image watermarking using the Gauss-Hermite

expansion,” IEEE Trans. Image Processing, vol. 18, no. 8, pp. 1782−1796, Aug.

2009.

[2] S. M. M. Rahman, M. O. Ahmad, and M. N. S. Swamy, “Bayesian wavelet-based

image denoising using the Gauss–Hermite expansion,” IEEE Trans. Image

Processing, vol. 17, no. 10, pp. 1755−1771, Oct. 2008.

[3] S. M. M. Rahman, M. O. Ahmad, and M. N. S. Swamy, “Video denoising based

on inter-frame statistical modeling of wavelet coefficients,” IEEE Trans. Circuits

and Systems for Video Technology, vol. 17, no. 2: pp. 187−198, Feb. 2007.

[4] M. I. H. Bhuiyan, M. O. Ahmad, and M. N. S. Swamy, “Spatially-adaptive

thresholding in wavelet domain for despeckling of ultrasound images,” IET Image

Processing, vol. 3, pp. 147−162, Jun. 2009.

[5] M. I. H. Bhuiyan, M. O. Ahmad, and M. N. S. Swamy, “Spatially adaptive

wavelet-based method using the Cauchy prior for denoising the SAR Images,”

IEEE Trans. Circuits and Systems for Video Technology, vol. 17, no. 4, pp.

500−507, Apr. 2007.

[6] N. Gupta, Video modeling and noise reduction in wavelet domain, Ph.D. Thesis,

Concordia University, Montreal, Nov. 2011.

[7] N. Gupta, M. N. S. Swamy, and E. I. Plotkin, “Despeckling of medical ultrasound

images using data and rate adaptive lossy compression,” IEEE Trans. Medical

Imaging, vol. 24, pp. 743−754, Jun. 2005.

[8] S. Yu, M. O. Ahmad, and M. N. S. Swamy, “Video denoising using motion

compensated 3-D wavelet transform with integrated recursive temporal filtering,”

IEEE Trans. Circuits and Systems for Video Technology, vol. 20, no. 6,

pp.780−791, Jun. 2010.

108

[9] X. Zhang and W.-P. Zhu, “Wavelet domain image restoration using adaptively

regularized constrained total least squares,” in Proc. IEEE International

Symposium Intelligent Multimedia, Video and Speech Processing, 20−22 Oct.

2004, pp. 567−570.

[10] N. Gupta, M. N. S. Swamy, and E. I. Plotkin, “Wavelet domain-based video noise

reduction using temporal discrete cosine transform and hierarchically adapted

thresholding,” IET Image Processing, vol. 1, no. 1, pp. 2−12, Mar. 2007.

[11] N. Gupta, M. N. S. Swamy, and E. I. Plotkin, “Temporally-adaptive MAP

estimation for video denoising in the wavelet domain,” in Proc. IEEE

International Conference Image Processing, 8−11 Oct. 2006, pp. 1449−1452.

[12] C. Wu, W. P. Zhu, and M. N. S. Swamy, “A watermark embedding scheme in

wavelet transform domain,” in Proc. IEEE Region 10 Conf. (TENCON), Chiang

Mai, Thailand, 21−24 Nov. 2004, vol. 1, pp. 279−282.

[13] L. Ghouti, A. Bouridane, M. K. Ibrahim, and S. Boussakta, “Digital image

watermarking using balanced multiwavelets” , IEEE Trans. Signal Processing,

vol. 54, no. 4, pp. 1519−1536, Apr. 2006.

[14] S. G. Chang, B. Yu, and M. Vattereli, “Adaptive wavelet thresholding for image

denoising and compression,” IEEE Trans. Image Processing, vol. 9, pp.

1532−1546, Sep. 2000.

[15] Y. Wang, J. F. Doherty, and R. E. Van Dyck, “A wavelet-based watermarking

algorithm for ownership verification of digital images,” IEEE Trans. Image

Processing, vol. 11, no. 2, pp. 77−88, Feb. 2002.

[16] K. Sayood, Introduction to Data Compression, San Mateo, CA, Morgan Kaufman,

2000.

[17] D. Sinha and A. Tewfik, “Low bit rate transparent audio compression using

adapted wavelets,” IEEE Trans. Signal Processing, vol. 41, no. 12, pp.

3463−3479, Dec. 1993.

109

[18] M. F. Akorede and H. Hizam, “Wavelet transforms: practical applications in

power Systems”, Journal of Electrical & Technology, vol. 4, no. 2, pp. 168−174,

2009.

[19] M. Vetterli and J. Kova�evi�, Wavelets and subband coding, Prentice Hall-PTR

Englewood Cliffs, New Jersey, 1995.

[20] C.S. Burrus, R.A. Gopinath, and H. Guo, Introduction to Wavelets and Wavelet

Transforms: A Primer, Prentice Hall, New Jersey, 1998.

[21] Wavelet. Wikipedia, 2004. Retrieved on April 14, 2009 from

http://en.wikipedia.org/wiki/wavelet

[22] M. Sifuzzaman1, M.R. Islam1, and M.Z. Ali, “Application of wavelet transform

and its advantages compared to Fourier transform,” Journal of Physical Sciences,

vol. 13, pp. 121−134, 2009.

[23] R. Polikar, “The Wavelet Tutorial,” 1994. Retrieved on April 14, 2008 from

http://engineering.rowan.edu/~polikar/WAVELETS/Wttutorial.html

[24] M. Misiti, Y. Misiti, G. Oppenheim, and J. M. Poggi, “Wavelet Toolbox for use

with MATLAB®,” MathWorks, 2002.

[25] MATLAB, Mathworks, Inc. Natick, MA, U.S.A. 1996−1997. Retrieved on

September 14, 2009 from http://www.mathworks.com

[26] S. Subbarayan and S. K. Ramanathan, “Effective watermarking of digital audio

and image using Matlab technique,” in Proc. 2nd International Conference

Machine Vision, Dec. 2009, pp. 317−319.

[27] C. Kumar, C. Shekhar, A. Soni, and B. Thakral, “Implementation of audio signal

by using wavelet transform,” International Journal of Engineering Science and

Technology, vol. 2(10), pp. 4972−4977, 2010.

[28] G. Bi, “On computation of the discrete W transform,” IEEE Trans. Signal

Processing, vol. 47 no. 5, pp. 1450−1453, May 1999.

110

[29] S. Rioul and P. Duhamel, “Fast algorithm for discrete and continuous wavelet

transforms,” IEEE Trans. Information Theory, vol. 38, no. 2, pp. 569−586, Mar.

1992

[30] M. D. Adams and R. K. Ward, “Symmetric-extension-compatible reversible

integer-to-integer wavelet transforms,” IEEE Trans. Signal Processing, vol. 51,

no. 10, pp. 2624−2636, Oct. 2003.

[31] J. Oliver and M. Perez Malumbres, “On the design of fast wavelet transform

algorithms with low memory requirements,” IEEE Trans. Circuits and Systems

for Video Technology, vol. 18, no. 2, pp. 237−248, Feb. 2008.

[32] A. Shahbahrami, B. Juurlink, and S. Vassiliadis, “Implementing the 2-D wavelet

transform on SIMD-enhanced general-purpose processors,” IEEE Trans.

Multimedia, vol. 10, no. 1, pp. 43−51, Jan. 2008.

[33] D. Chaver, C. Tenllado, L. Piñuel, M. Prieto, and F. Tirado, “2-D wavelet

transform enhancement on general-purpose microprocessors: memory hierarchy

and SIMD parallelism exploitation,” in Proc. Int. Conf. High Performance

Computing (ICHPC), 2002, pp. 9–21.

[34] G. Dimitroulakos, M. D. Galanis, A. Milidonis, and C. E. Goutis, “A high-

throughput, memory efficient architecture for computing the tile-based 2-D

discrete wavelet transform for the JPEG2000,” Integration, the VLSI Journal, vol.

39, pp. 1–11, Sep. 2005.

[35] C. Chrysytis and A. Ortega, “Line-based, reduced memory, wavelet image

compression,” IEEE Trans. Circuits and Systems for Video Technology, vol. 9,

no. 3, pp. 378–389, Mar. 2000.

[36] S. Zhuang, J. Carlsson, W. Li, K. Palmkvist, and L. Wanhammar, “GALS based

approach to the implementation of the DWT filter bank,” in Proc. IEEE 7th Int.

Conf. Signal Processing (ICSP), 31 Aug.−4 Sep. 2004, vol. 1, pp. 567−570.

[37] G. Lafruit, F. Catthoor, J. P. H. Cornelis, and H. J. De Man, “An efficient VLSI

architecture for 2-D wavelet image coding with novel image scan,” IEEE Trans.

Very Large Scale Integration (VLSI) Systems, vol. 7, no. 1, pp. 56−68, Mar. 1999.

111

[38] C. Qi and G. F. Wang, “A wavelet-based parallel implementation for image

encoding,” in Proc. IEEE 8th Int. Conf. Signal Processing, 16−20 Nov. 2006, vol.

2, pp. 102−105

[39] O. Benderli, Y. C. Tekmen, and N. Ismailoglu, “A real-time, low latency, FPGA

implementation of the 2-D discrete wavelet transformation for streaming image

applications,” in Proc. Euromicro Symposium Digital System Design, 1−6 Sep.

2003, pp. 384 – 389.

[40] A. Shahbahrami, B. Juurlink, and S. Vassiliadis, “Performance comparison of

SIMD implementations of the discrete wavelet transform,” in Proc. IEEE 16th Int.

Conf. Application-Specific Systems, Architectures Processors (ASAP), 23−25 Jul.

2005, pp. 393−398.

[41] M. Week and M. Bayoumi, “Discrete wavelet transform: architectures, design and

performance issues,” Journal of VLSI Signal Processing, vol. 35, no. 2, pp.

155−178, 2003.

[42] Y. Guo, H. Zhang, X. Wang, and J.R. Cavallaro, “VLSI implementation of

Mallat’s fast discrete wavelet transform algorithm with reduced complexity,” in

Proc. IEEE Conf. Global Telecommunications (GLOBECOM) 25−29 Nov. 2001,

vol. 1, pp. 320−324.

[43] A. Grzesczak, M.K. Mandal, and S. Panchanathan, “VLSI implementation of

discrete wavelet transform,” IEEE Trans. Very Large Scale Integration Systems,

vol. 4, no. 4, pp. 421−433, Dec. 1996.

[44] H. Y. Liao, M. K. Mandal, and B. F. Cockburn, “Efficient architectures for 1-D

and 2-D lifting-based wavelet transforms,” IEEE Trans. Signal Process., vol. 52,

no. 5, pp. 1315–1326, May 2004.

[45] S. S. Nayak, “Bit-level systolic implementation of 1D and 2D discrete wavelet

transform,” IEE Proceedings Circuits, Devices and Systems, vol. 152, no. 1, pp.

25−32, Feb. 2005.

112

[46] T. C. Denk and K. K Parhi, “Systolic VLSI architectures for 1-D discrete wavelet

transforms,” in Record of the Thirty-Second Asilomar Conference Signals,

Systems and Computers, 1−4 Nov. 1998, vol. 2, pp. 1220−1224.

[47] A.S. Lewis and G. Knowles, “VLSI architecture for 2D Daubechies wavelet

transform without multipliers,” Electron. Lett., vol. 27, no. 2, pp.171−173, Jan.

1991.

[48] S. Movva, S. Srinivasan, “A novel architecture for lifting-based discrete wavelet

transform for JPEG2000 standard suitable for VLSI implementation,” in Proc.

IEEE 16th Int. Conf. VLSI Design, 4−8 Jan. 2003, pp. 202- 207.

[49] K.C. Hung, Y.S. Hung, and Y.J. Huang, “A nonseparable VLSI architecture for

the two-dimensional discrete periodized wavelet transform,” IEEE Trans. VLSI

Systems, vol. 9, no. 5, pp. 565−576, Oct. 2001.

[50] I. S. Uzun and A. Amira, “Design and FPGA implementation of non-separable 2-

D biorthogonal wavelet transforms for image/video coding,” in Proc. IEEE Int.

Conf. Image Processing (ICIP), 24−27 Oct. 2004, vol.4, pp. 2825−2828.

[51] P. K. Meher, B. K. Mohanty, and J. C. Patra, “Hardware-efficient systolic-like

modular design for two-dimensional discrete wavelet transform,” IEEE Trans.

Circuits Syst. II: Express Briefs, vol. 55, no. 2, pp. 151–155, Feb. 2008.

[52] M. Vishwanath, “The recursive pyramid algorithm for the discrete wavelet

transform,” IEEE Trans. Signal Processing, vol. 42, no. 3, pp. 673−677, Mar.

1994.

[53] C. Chakrabarti and M. Vishwanath, “Efficient realizations of the discrete and

continuous wavelet transforms: from single chip implementations to mapping on

SIMD array computers,” IEEE Trans. Signal Processing, vol. 43, no. 3, pp.

759−771, Mar. 1995.

[54] K. K. Parhi and T. Nishitani, “VLSI architectures for discrete wavelet

transforms,” IEEE Trans. Very Large Scale Integration (VLSI) Systems, vol. 1, no.

2, pp. 191−202, Jun. 1993.

113

[55] S. Masud and J.V. McCanny, “Reusable silicon IP cores for discrete wavelet

transform applications,” IEEE Trans. Circuits Syst. I, vol. 51, no. 6, pp.

1114−1124, Jun. 2004.

[56] M. A. Farahani, M. Eshghi, “Architecture of a wavelet packet transform using

parallel filters,” in Proc. IEEE Region 10 Conf. (TENCON), 14−17 Nov. 2006,

pp.1−4.

[57] C. Chakrabarti and C. Mumford, “Efficient realizations of analysis and synthesis

filters based on the 2-D discrete wavelet transform,” in Proc. IEEE Int. Conf.

Audio, Speech, and Signal Processing, May 1996, pp. 3256–3259.

[58] P. Wu and L. Chen, “An efficient architecture for two-dimensional discrete

wavelet transform,” IEEE Trans. Circuits and Systems for Video Technology, vol.

11, no. 4, pp. 536–545, Apr. 2001.

[59] Y. Chen, Z. L. Yang, T. C. Wang, and L. G. Chen, “A programmable parallel

VLSI architecture for 2D discrete wavelet transform,” Journal of VLSI Signal

Processing, vol. 28, pp. 151−163, Jul. 2001.

[60] F. Marino, V. Piuri, and E. E. Swartzlander, “A parallel implementation of the 2-

D discrete wavelet transform without interprocessor communications,” IEEE

Trans. Signal Processing, vol. 47, no. 11, pp. 3170−3184, Nov. 1999.

[61] F. Marino, D. Guevorkian, and J. Astola, “Highly efficient high-speed/low-power

architectures for 1-D discrete wavelet transform,” IEEE Trans. Circuits Syst. II:

Analog and Digital Signal Processing, vol. 47, no. 12, pp. 1492−1502, Dec. 2000.

[62] T. Park, “Efficient VLSI architecture for one-dimensional discrete wavelet

transform using a scalable data recorder unit,” in Proc. the International

Technical Conf. Circuits and Systems, Computers and Communications (ITC

CSCC), Phuket, Thailand, 16−19 Jul. 2002, pp.353−356.

[63] P. Y. Chen, “VLSI implementation for one-dimensional multilevel lifting-based

wavelet transform,” IEEE Trans. Computers, vol. 53, no. 4, pp. 386−398, Apr.

2004.

114

[64] J. M. Jou, P. Y. Chen, Y. H. Shiau, and M. S. Liang, “A scalable pipelined

architecture for separable 2-D discrete wavelet transform,” in Proc. the Asia and

South Pacific Design Automation Conf. (ASP-DAC), 18−21 Jan. 1999, vol. 1, pp.

205−208.

[65] K. Mihi�, “An efficient semi-systolic architecture for 2-D discrete wavelet

transform,” in Proc. IEEE European Conf. Circuit Theory and Design (ECCTD),

Espoo, Finland, 28−31 Aug. 2001, pp. 333−336.

[66] F. Marino, “Efficient high-speed/low-power pipelined architecture for the direct

2-D discrete wavelet transform,” IEEE Trans. Circuits and Systems II: Analog

and Digital Signal Processing, vol. 47, no. 12, pp. 1476−1491, Dec. 2000.

[67] F. Marino, “Two fast architectures for the direct 2-D discrete wavelet transform,”

IEEE Trans. Signal Processing, vol. 49, no. 6, pp. 1284−1259, Jun. 2001.

[68] L. Debnath, Wavelet transforms and their applications, Springer, 2001.

[69] G. Strang and T. Nguyen, Wavelets and Filter Banks, Wellesley-Cambridge Press:

1996.

[70] I. Daubechies, Ten lectures on wavelets, Philadelphia (PA), SIAM, 1992.

[71] S. Mallat, “A theory for multiresolution signal decomposition: the wavelet

representation,” IEEE Trans. Pattern Analysis and Machine Intell., vol. 11, no. 7,

pp. 674−693, Jul. 1989.

[72] C. Valens, A real friendly guide to wavelets, http://polyvalens.pagesperso-

orange.fr/clemens/wavelets/wavelets.html

[73] A. Jense and A. La Cour-Harbo, Ripples in Mathematics: the Discrete Wavelet

Transform, Springer, 2001.

[74] G. Knowles, “VLSI architecture for the discrete wavelet transform,” Electron.

Lett., vol. 26, no. 15, pp.1184−1185, Jul. 1990.

[75] M. Vishwanath, R. Owens, and M. J. Irwin, “VLSI architectures for the discrete

wavelet transform,” IEEE Trans. Circuits Syst. II: Analog and Digital Signal

Processing, vol. 42, no. 5, pp. 305−316, May 1995.

115

[76] C. Chakrabarti, M. Vishwanath, and R. M. Owens, “Architectures for wavelet

transforms: a survey,” Journal of VLSI Signal Processing, vol. 14, no. 2, pp.

171−192, Feb. 1996.

[77] I. S. Uzun, A. Amira, and A. Bouridane, “An efficient architecture for 1-D

discrete biorthogonal wavelet transform,” in Proc. IEEE Int. Symp. Circuits Syst.

(ISCAS), 23−26 May 2004, vol.2, pp. (II)697−700.

[78] T. C. Denk and K. K. Parhi, “Synthesis of folded pipelined architectures for

multirate DSP algorithms,” IEEE Trans. Very Large Scale Integration Systems,

vol. 6, no. 4, pp. 595−607, Dec. 1998.

[79] T. Cooklev, “An efficient architecture for orthogonal wavelet transforms,” IEEE

Signal Processing Letters, vol. 13, no. 2, pp. 77−79, Feb. 2006.

[80] E. Huluta, E. M. Petriu, S. R. Das and A. H. Al-Dhaher, “Discrete wavelet

transform architecture using fast processing elements,” in Proc. IEEE 19th Conf.

Instrumentation and Measurement Technology (IMTC), 21−23 May 2002, vol. 2,

pp. 1537−1542.

[81] T. Acharya and P. Y. Chen, “VLSI implementation of a DWT architecture,” in

Proc. IEEE Int. Symp. Circuits and Systems (ISCAS), 31 May−3 Jun. 1998, vol. 2,

pp. 272−275.

[82] M. Weeks, J. Limqueco, and M. Bayoumi, “On block architectures for discrete

wavelet transform,” in Record of the Thirty-Second Asilomar Conf. Signals,

Systems and Computers, 1−4 Nov. 1998, vol. 2, pp. 1022−1026.

[83] S. B. Pan and R. H. Park, “Systolic array architectures for computation of the

discrete wavelet transform,” Journal of Visual Communication and Image

Representation, vol. 14, no. 3, pp. 217–231, Sep. 2003.

[84] M. Nibouche, A. Bouridane, and O. Nibouche, “Rapid prototyping of

biorthogonal discrete wavelet transforms on FPGAs,” in Proc. IEEE 8th Int. Conf.

Electronics, Circuits and Systems (ICECS), 02–05 Sep. 2001, vol. 3, pp. 1399–

1402.

116

[85] M. Bahoura and H. Ezzaidi, “Real-time implementation of discrete wavelet

transform on FPGA,” in Proc. IEEE 10th Int. Conf. Signal Processing (ICSP),

24−28 Oct. 2010, pp. 191−194.

[86] T. Y. Sung, H. C. Hsin, Y. S. Shieh, and C. W. Yu, “Low-power multiplierless 2-

D DWT and IDWT architectures using 4-tap Daubechies filters,” in Proc. IEEE

7th Int. Conf. Parallel and Distributed Computing, Applications and Technologies

(PDCAT), Dec. 2006, pp. 185−190.

[87] M. Martina and G. Masera, “Multiplierless, folded 9/7-5/3 wavelet VLSI

architecture,” IEEE Trans. Circuits Syst. II: Express Briefs, vol. 54, no. 9, pp.

770−774, Sep. 2007.

[88] S. B. Pan and R. H. Park, “VLSI architectures of the 1-D and 2-D discrete wavelet

transforms for JPEG 2000,” Signal Processing, vol. 82, no. 7, pp. 981−992 Jul.

2002.

[89] X. D. Xu and Y. Q. Zhou; “Efficient FPGA Implementation of 2-D DWT for 9/7

Float Wavelet Filter,” Int. Conf. Information Engineering and Computer Science

(ICIECS), 19−20 Dec. 2009, pp.1−4.

[90] C. Yu and S. J. Chen, “Design of an efficient VLSI architecture for 2-D discrete

wavelet transforms,” IEEE Trans. Consumer Electronics, vol. 45, no. 1, pp.

135−140, Feb. 1999.

[91] C. T. Huang, P. C. Tseng, and L. G. Chen, “Memory analysis and architecture for

two-dimensional discrete wavelet transform,” in Proc. IEEE Int. Conf. Acoustics,

Speech, and Signal Processing (ICASSP), 17−21 May 2004, vol. 5, pp. (V)13−16.

[92] X. Tian, J. Wei, and J. Tian; “Memory-efficient architecture for fast two-

dimensional discrete wavelet transform,” in Proc. IEEE Int. Conf. Computational

Intelligence and Software Engineering (CiSE), 10−12 Dec. 2010, pp. 1−3.

[93] S. K. Paek, H. K. Jeon, and L. S. Kim, “Semi-recursive VLSI architecture for two

dimensional discrete wavelet transform,” in Proc. IEEE Int. Symp. Circuits and

Systems (ISCAS), 31 May−3 Jun. 1998, vol. 5, pp. 469−472.

117

[94] J. Chen and M. A. Bayoumi, “A scalable systolic array architecture for the 2D

discrete wavelet transform,” in Proc. IEEE Workshop VLSI Signal Processing,

Osaka, Japan, 16−18 Oct. 1995, vol. 3, pp.303−312.

[95] H. Y. H. Chuang and L. Chen, “VLSI architecture for the fast 2-D discrete

orthonormal wavelet transform,” Journal of VLSI Signal Processing, vol. 10, pp.

225−236, 1995.

[96] T. Park and S. Jung, “High speed lattice based VLSI architecture of 2D discrete

wavelet transform for real-time video signal processing,” IEEE Trans. Consumer

Electronics, vol. 48, no. 4, pp. 1026−1032, Nov. 2002.

[97] J. C. Limqueco and M. A. Bayoumi, “A VLSI architecture for separable 2-D

discrete wavelet transform,” Journal of VLSI Signal Processing, vol. 18, pp. 125,

1998.

[98] T. Huang, P. C. Tseng, and L. G. Chen, “Generic RAM-based architectures for

two-dimensional discrete wavelet transform with line-based method,” IEEE Trans.

Circuits and Systems for Video Technology, vol. 15, no. 7, pp. 910–920, Jul. 2005.

[99] M. Ravasi, L. Tenze, and M. Mattavelli, “A scalable and programmable

architecture for 2-D DWT decoding,” IEEE Trans. Circuits and Systems for Video

Technology, vol. 12, no. 8, pp. 671−677, Aug. 2002.

[100] C. Y. Chen, Z. L. Yang, T. C. Wamg, and L. G. Chen, “A programmable VLSI

architecture for 2-D discrete wavelet transform,” in Proc. IEEE Int. Symp.

Circuits and Systems (ISCAS), Geneva, Switzerland, 28−31 May 2000, vol. 1, pp.

619−622.

[101] B. K. Mohanty and P. K. Meher, “Bit-serial systolic architecture for 2-D non-

separable discrete wavelet transform,” in Proc. IEEE Int. Conf. Intelligent and

Advanced Systems (ICIAS), Kuala Lumpur, Malaysia, Nov. 2007, pp.1355−1358.

[102] D. Sersic and M. Vrankic, “2-D nonseparable wavelet filter bank with adaptive

filter parameters,” in Proc. IEEE Europen Signal Processing Conf. (EUSIPCO),

3−6 Sep. 2002, vol. 1, pp. 137−140.

118

[103] M. H. Sheu, M. Der Shieh, and S. W. Liu, “A low-cost VLSI architecture design

for non-separable 2-D discrete wavelet transform,” in Proc. IEEE 40th Midwest

Symp. Circuits and Systems, 3−6 Aug. 1997, vol. 2, pp. 1217−1220.

[104] J. Kovacevic and M. Vetterli, “Nonseparable two- and three-dimensional

wavelets,” IEEE Trans. Signal Processing, vol. 43, no. 5, pp. 1269−1273, May

1995.

[105] C. Yu and S. J. Chen, “VLSI implementation of 2-D discrete wavelet trnasform

for real-time video signal processing,” IEEE Trans. Consumer Electronics, vol.

43, no. 4, pp. 1270−1279, Nov. 1997.

[106] B. Das and S. Banerjee, “VLSI architecture for a new real-time 3D wavelet

transform,” in Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Processing,

(ICASSP), Orlando, U.S.A., 13−17 May 2002, vol. 3, pp. (III)3224−3227.

[107] M. Weeks and M. A. Bayoumi, “Three-dimensional discrete wavelet transform

architectures,” IEEE Trans. Signal Processing, vol. 50, no. 8, pp. 2050−2063,

Aug. 2002.

[108] B. K. Mohanty and P. K. Meher, “Parallel and pipeline architectures for high-

throughput computation of multilevel 3-D DWT,” IEEE Trans. Circuits and

Systems for Video Technology, vol. 20, no. 9, pp. 1200−1209, Sep. 2010.

[109] Q. Dai, X. Chen, and C. Lin, “A novel VLSI architecture for multidimensional

discrete wavelet transform,” IEEE Trans. Circuits and Systems for Video

Technology, vol. 14, no. 8, pp. 1105–1110, Aug. 2004.

[110] C. Huang, P. Tseng, and L. Chen, “Analysis and VLSI architecture for 1-D and 2-

D discrete wavelet transform,” IEEE Trans. Signal Processing, vol. 53, no. 4, pp.

1575−1586, Apr. 2005.

[111] D. Zervas, G. P. Anagnostopoulos, V. Spiliotopoulos, Y. Andreopoulos, and C. E.

Goutis, “Evaluation of design alternatives for the 2-D-discrete wavelet

transform,” IEEE Trans. Circuits and Systems for Video Technology, vol. 11, no.

12, pp. 1246−1262, Dec. 2001.

119

[112] C. Tenllado, J. Setoain, M. Prieto, L. Piñuel, and F. Tirado, “Parallel

implementation of the 2D discrete wavelet transform on graphics processing units:

filter-bank versus lifting,” IEEE Trans. Parallel and Distributed Systems, vol. 19,

no. 3, pp. 299−310, Mar. 2008.

[113] K. A. Kotteri, S. Barua, A. E. Bell, and J. E. Carletta, “A comparison of hardware

implementations of the biorthogonal 9/7 DWT: convolution versus lifting,” IEEE

Trans. Circuits Syst. II: Express Briefs, vol. 52, no. 5, pp. 256−260, May 2006.

[114] C. T. Huang, P. C. Tseng, and L. G. Chen, “Flipping structure: an efficient VLSI

architecture for lifting-based discrete wavelet transform,” IEEE Trans. Signal

Processing, vol. 52, no. 4, pp. 1080−1089, Apr. 2004.

[115] T. C. Denk and K. K. Parhi, “VLSI architectures for lattice structure based

orthonormal discrete wavelet transforms,” IEEE Trans. Circuits and Syst. II:

Analog and Digital Signal Processing, vol. 44, no. 2, pp. 129−132, Feb 1997.

[116] J. T. Kim, Y. H. Lee, T. Isshiki, and H. Kunieda, “Scalable VLSI architectures for

lattice structure-based discrete wavelet transform,” IEEE Trans. Circuits and Syst.

II: Analog and Digital Signal Process., vol. 45, no. 8, pp. 1031−1043, Aug. 1998.

[117] C. Xiong, J. Tian, and J. Liu; “Efficient architectures for two-dimensional discrete

wavelet transform using lifting scheme,” IEEE Trans. Image Processing, vol. 16,

no. 3, pp. 607−614, Mar. 2007.

[118] C. Xiong, J. Tian, and J. Liu, “A fast VLSI architecture for two-dimensional

discrete wavelet transform based on lifting scheme,” in Proc. IEEE 7th Int. Conf.

Solid-State Integrated-Circuit Technology, 1−4 Nov. 2004, vol. 2, pp. 1661.

[119] M. Ferretti and D. Rizzo, “A parallel architecture for the 2-D discrete wavelet

transform with integer lifting scheme,” Journal of VLSI Signal Processing, vol. 28,

no. 3, pp.165−185, Jul. 2001.

[120] X. Lan, N. Zheng, and Y. Liu, “Low-power and high-speed VLSI architecture for

lifting-based forward and inverse wavelet transform,” IEEE Trans. Consumer

Electronics, vol. 51, no. 2, pp. 379−385, May 2005.

120

[121] W. Jiang and A. Ortega, “Lifting factorization-based discrete wavelet transform

architecture design,” IEEE Trans. Circuits and Systems for Video Technology, vol.

11, no. 5, pp. 651−657, May 2001.

[122] C. Wang and W.S. Gan, “Efficient VLSI architecture for lifting-based discrete

wavelet packet transform,” IEEE Trans. Circuits Syst. II: Express Briefs, vol. 54,

no. 5, pp. 422−426, May 2007.

[123] G. Shi, W. Liu, L. Zhang, and F. Li, “An efficient folded architecture for lifting-

based discrete wavelet transform,” IEEE Trans. Circuits Syst. II: Express Briefs,

vol. 56, no. 4, pp. 290−294, Apr. 2009.

[124] M. Alam, W. Badawy, V. Dimitrov, and G. Jullien, “An efficient architecture for

a lifted 2D biorthogonal DWT”, Journal of VLSI Signal Processing, vol. 40, no. 3,

pp. 333−342, Jul. 2005.

[125] J. Chilo and T. Lindblad, “Hardware implementation of 1D wavelet transform on

an FPGA for infrasound signal classification,” IEEE Trans. Nuclear Science, vol.

55, no. 1, pp. 9−13, Feb. 2008.

[126] S. Cheng, C. Tseng, and M. Cole, “Efficient and effective VLSI architecture for a

wavelet-based broadband sonar signal detection system,” in Proc. IEEE 14th Int.

Conf. Electronics, Circuits and Systems (ICECS), Marrakech, Morocco, Dec.

2007, pp. 593−596.

[127] K.G. Oweiss, A. Mason, Y. Suhail, A.M. Kamboh, and K.E. Thomson, “A

scalable wavelet transform VLSI architecture for real-time signal processing in

high-density intra-cortical implants ,” IEEE Trans. Circuits Syst. I, vol. 54, no. 6,

pp. 1266−1278, Jun. 2007.

[128] A. Acharyya, K. Maharatna, B. M. Al-Hashimi, and S.R. Gunn, “Memory

reduction methodology for distributed-arithmetic-based DWT/IDWT exploiting

data symmetry,” IEEE Trans. Circuits Syst. II: Express Briefs, vol. 56, no. 4, pp.

285−289, Apr. 2009.

[129] W. Sweldens, “The lifting scheme: A new philosophy in biorthogonal wavelet

constructions,” in Proc. SPIE, vol. 2569, pp.68−79, 1995.

121

[130] I. Daubechies and W. Sweldens, “Factoring wavelet transforms into lifting steps,”

Journal of Fourier Analysis and Applications, vol. 4, no. 3, pp. 247−269, 1998.

[131] C. Zhang, C. Wang, and M. O. Ahmad, “An efficient buffer-based architecture for

on-line computation of 1-D discrete wavelet transform,” in Proc. IEEE Int. Conf.

Acoustics, Speech and Signal Processing (ICASSP), Montreal, Canada, May 2004,

vol. 5, pp. 201−204.

[132] C. Zhang, C. Wang, and M.O. Ahmad, “A VLSI architecture for a high-speed

computation of the 1D discrete wavelet transform,” in Proc. IEEE Int. Symp.

Circuits and Systems (ISCAS), May 2005, vol. 2, pp. 1461−1464.

[133] C. Zhang, C. Wang, and M. O. Ahmad, “A pipeline VLSI architecture for high-

speed computation of the 1-D discrete wavelet transform,” IEEE Trans. Circuits

Syst. I, vol. 57, no. 10, pp. 2729−2740, Oct. 2010.

[134] M. Ferretti and D. Rizzo, “Handling borders in systolic architectures for the 1-D

discrete wavelet transform for perfect reconstruction,” IEEE Trans. Signal

Processing, vol. 48, no. 5, pp. 1365−1378, May 2000.

[135] A. Satoh, N. Ooba, K. Takano, and E. D�Avignon, “High-speed MARS

hardware,” in Proc. 3rd AES conf., New York, U.S.A., Apr. 2000, pp. 305−316.

[136] S. Masud and J.V. McCanny, “Rapid design of diorthogonal wavelet transforms,”

IEE Proceedings Circuits, Devices and Systems, vol. 147, no. 5, pp. 293−296, Oct.

2000.

[137] M. Nibouche, A. Bouridane, F. Murtagh, and O. Nibouche, “FPGA-based discrete

wavelet transforms system,” in Proc. the 11th International Conference Field-

Programmable Logic and Applications (FPL), London, UK, 2001, pp. 607−612.

[138] A. M. Al-Haj, “An FPGA-based parallel distributed arithmetic implementation of

the 1-D discrete wavelet transform,” Journal of Informatica, vol. 29, no. 2, pp.

241−247, 2005.

122

[139] C. Jing and H.-Y. Bin, “Efficient wavelet transform on FPGA using advanced

distributed arithmetic,” in Proc. the 8th International Conference Electronic

Measurement and Instruments (ICEMI) 16 Aug.−18 Jul. 2007, vol. 2, pp.

512−515.

[140] V. Herrero, J. Cerdà, R. Gadea, M. Martínez, and A. Sebastià, “Implementation of

1-D Daubechies wavelet transform on FPGA,” in Proc. Online Symposium for

Electronics Engineers (OSEE), Sep. 2007.

[141] Z.-G. Wu and W. Wang, “Pipelined architecture for FPGA implementation of

lifting-based DWT,” in Proc. International Conference Electric Information and

Control Engineering (ICEICE), 15−17 Apr. 2011, pp.1535−1538.

[142] C. Zhang, C. Wang, and M. O. Ahmad, “A VLSI architecture for a fast

computation of the 2-D discrete wavelet transform,” in Proc. IEEE Int. Symp.

Circuits and Systems (ISCAS), May 2007, pp. 3980−3983.

[143] C. Zhang, C. Wang, and M. O. Ahmad, “A pipeline VLSI architecture for fast

computation of the 2-D discrete wavelet transform,” IEEE Trans. Circuits Syst. I,

Digital Object Identifier: 10.1109/TCSI.2011.2180432, 2012.

[144] D. Guevorkian, P. Liuha, A. Launiainen, and V. Lappalainen, “Architectures for

discrete wavelet transforms”, U.S. Patent 6976046, December 13, 2005.

[145] J. Song and I. Park, “Pipelined discrete wavelet transform architecture scanning

dual lines,” IEEE Trans. Circuits Syst. II: Express Briefs, vol. 56, no. 12, pp.

916−920, Dec. 2009.

[146] C. Cheng and K. K. Parhi, “High-speed VLSI implementation of 2-D discrete

wavelet transform,” IEEE Trans. Signal Processing, vol. 56, no. 1, pp. 393−403,

Jan. 2008.

[147] P. McCanny, S. Masud, and J. McCanny, “Design and implementation of the

symmetrically extended 2-D wavelet transform,” in Proc. IEEE Int. Conf.

Acoustic, Speech, and Signal Processing (ICASSP), 13–17 May 2002, vol. 3, pp.

3108–3111.

123

[148] R. J. Palero, R. G. Gironez, and A. S. Cortes, “A novel FPGA architecture of a 2-

D wavelet transform”, Journal of VLSI Signal Processing, vol. 42, no. 3, pp.

273−284, Mar. 2006.

[149] A. Benkrid, D. Crookes, and K. Benkrid, “Design and implementation of a

generic 2-D biorthogonal discrete wavelet transform on an FPGA,” in Proc. 9th

Annual IEEE Symp. Field-Programmable Custom Computing Machines (FCCM),

29 Mar.–2 Apr. 2001, pp. 190−198.

[150] S. Raghunath and S. M. Aziz, “High speed area efficient multi-resolution 2-D 9/7

filter DWT processor,” in Proc. IEEE Int. Conf. Very Large Scale Integration

(IFIP), Oct. 2006, vol. 16−18, pp. 210–215.

[151] M. Angelopoulou, K. Masselos, P. Cheung, and Y. Andreopoulos, “A comparison

of 2-D discrete wavelet transform computation schedules on FPGAs,” in Proc.

IEEE Int. Conf. Field Programmable Technology (FPT), Bangkok, Thailand, Dec.

2006, pp. 181–188.

[152] I. S. Uzun and A. Amira, “Rapid prototyping -- framework for FPGA-based

discrete biorthogonal wavelet transforms implementation,” IEE Proceedings

Vision, Image and Signal Processing, vol. 153, no. 6, pp. 721–734, Dec. 2006.

[153] B. F. Wu and Y. Q. Hu, “An efficient VLSI implementation of the discrete

wavelet transform using embedded instruction codes for symmetric filters,” IEEE

Trans. Circuits and Systems for Video Technology, vol. 13, no. 9, pp. 936−943,

Sep. 2003.

[154] G. Dillen, B. Georis, J. D. Legat, and O. Cantineau, “Combined line-based

architecture for the 5-3 and 9-7 wavelet transform of JPEG2000,” IEEE Trans.

Circuits and Systems for Video Technology, vol. 13, no. 9, pp. 944−950, Sep.

2003.

[155] B. Das and S. Banerjee, “Data-folded architecture for running 3D DWT using 4-

tap Daubechies filters,” IEE Proceedings Circuits, Devices and Systems, vol. 152,

no. 1, pp. 17−24, 4 Feb. 2005.

