
MINIMUM ENERGY BROADCAST IN DUTY CYCLED

WIRELESS SENSOR NETWORKS

Mosarrat Jahan

A thesis

in

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of Master of Computer Science

Concordia University

Montréal, Québec, Canada

April 2012

c© Mosarrat Jahan, 2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Concordia University Research Repository

https://core.ac.uk/display/211514072?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Concordia University

School of Graduate Studies

This is to certify that the thesis prepared

By: Mosarrat Jahan

Entitled: Minimum Energy Broadcast in Duty Cycled Wireless Sensor Networks

and submitted in partial fulfillment of the requirements for the degree of

Master of Computer Science

complies with the regulations of this University and meets the accepted standards with

respect to originality and quality.

Signed by the final examining commitee:

Chair

Dr. R. Witte

Examiner

Dr. J. Opatrny

Examiner

Dr. T. Fevens

Supervisor

Dr. L. Narayanan

Approved by

Chair of Department or Graduate Program Director

20

Robin A.L. Drew, Ph.D.,ing., Dean

Faculty of Engineering and Computer Science

Abstract

Minimum Energy Broadcast in Duty Cycled Wireless Sensor Networks

Mosarrat Jahan

We study the problem of finding a minimum energy broadcast tree in duty cycled wireless

sensor networks. In such networks, every node has a wakeup schedule and is awake and

ready to receive packets or transmit in certain time slots during the schedule and asleep

during the rest of the schedule. We assume that a forwarding node needs to stay awake

to forward a packet to the next hop neighbor until the neighbor is awake. The minimum

energy broadcast tree minimizes the number of additional time units that nodes have to

stay awake in order to accomplish broadcast. We show that finding the minimum energy

broadcast tree is NP-hard. We give two algorithms for finding energy-efficient broadcast

trees in such networks. We performed extensive simulations to study the performance of

these algorithms and compare them with previously proposed algorithms. Our results show

that our algorithms exhibit the best performance in terms of average number of additional

time units a node needs to be awake, as well as in terms of the smallest number of highly

loaded nodes, while being competitive with previous algorithms in terms of the total number

of transmissions and delay.

iii

Acknowledgments

First and foremost I would like to express my gratefulness to Almighty Allah to make this

thesis possible.

I would like to express my sincere gratitude to my supervisor Dr. Lata Narayanan.

Her invaluable guidance and encouragement made my thesis work a wonderful learning

experience. It is a great opportunity for me to interact with her that enrich my growth

as a student as well as a researcher. Thanks to Dr. Lata for her insightful comments

and continuous support for the whole duration of my research work. Her endless valuable

suggestions and comments gradually matured my research work.

I wish to thank my colleagues and friends for their continuous encouragement. Special

thanks to my friend Shaily Kabir and Rajneesh Kumar and my elder sister Upama Kabir.

They always motivate me to keep faith in myself.

Finally I would like to express my deepest gratitude to my beloved parents, A. F. M

Shahjahan and Shireen Akter, for their unconditional love, continuous support and having

faith in me. Without their encouragement, it is not possible for me to finish the degree.

iv

Contents

List of Figures viii

List of Tables xi

1 Introduction 1

1.1 Broadcast Operation in Duty Cycled WSN 4

1.2 Summary of Contributions . 6

1.3 Outline of Thesis . 7

2 Related Work 8

2.1 Broadcasting in WSN . 8

2.1.1 Neighbor-Knowledge based Broadcasting 9

2.1.2 Adaptive Broadcasting . 10

2.1.3 Probability-Based Broadcasting . 12

2.1.4 Energy Efficient Broadcasting . 13

2.1.5 Multipoint Relay based Broadcasting 17

2.1.6 Connected Dominating Set based Broadcasting 20

2.1.7 RNG and LMST based Broadcasting 21

2.2 Broadcasting in Duty Cycled WSN . 25

2.2.1 Centralized Algorithms . 25

2.2.2 Distributed Algorithms . 31

2.2.3 Differences with Our Work . 35

v

3 Algorithms and NP-Completeness 37

3.1 Definitions and Preliminaries . 37

3.2 NP-Completeness of MEBT Problem . 39

3.3 Algorithms . 42

3.3.1 Spanning Tree with Incremental Cost (STIC) Algorithm 43

3.3.2 MST Edmonds Algorithm . 53

3.3.3 The Sweep Operation . 56

4 Experimental Results 62

4.1 Performance Comparison of all Algorithms without Sweep Operation 63

4.1.1 Average Number of Additional Active Time Units per Node 63

4.1.2 Energy Distribution . 66

4.1.3 Number of Node Transmissions . 69

4.1.4 Maximum Delay of Broadcast Operation 72

4.1.5 Average Delay of Broadcast Operation 74

4.2 Performance Analysis of Various Versions of STIC Algorithm 77

4.2.1 Average Number of Additional Active Time Units per Node 77

4.2.2 Energy Distribution . 78

4.2.3 Number of Node Transmissions . 78

4.2.4 Maximum Delay of Broadcast Operation 79

4.2.5 Average Delay of Broadcast Operation 80

4.3 Performance Analysis of Various Versions of MST Edmonds Algorithm . . . 80

4.3.1 Average Number of Additional Active Time Units per Node 81

4.3.2 Energy Distribution . 81

4.3.3 Number of Node Transmissions . 82

4.3.4 Maximum Delay of Broadcast Operation 82

4.3.5 Average Delay of Broadcast Operation 84

4.4 Summary of Effect of Sweep Operation . 86

4.5 Performance Comparison of all Algorithms with Sweep Operations 86

vi

4.5.1 Average Number of Additional Active Time Units per Node 87

4.5.2 Distribution of Energy Usage . 88

4.5.3 Number of Node Transmissions . 90

4.5.4 Maximum Delay of Broadcast Operation 91

4.5.5 Average Delay of Broadcast Operation 92

4.6 Impact of Node Density . 96

4.7 Impact of Number of Nodes . 98

4.8 Impact of Schedule Length . 101

5 Conclusions and Future Work 104

Bibliography 105

vii

List of Figures

1 Abstract shapes of C(n) and A(n) . 12

2 The edge (u, v) not in E because of w . 22

3 Four cases of connecting a Covi(v) to the existing Tbcast through v 26

4 G for variables x1, x2, x3 and C1 = x1
∨
x2

∨
x3, C2 = x1

∨
x2

∨
x3 40

5 Broadcast Tree of G with W = 3 . 41

6 Example of a duty cycled WSN G used to illustrate algorithms 43

7 Construction of T with STIC algorithm with cost(T)=15 47

8 Construction of T with STIC algorithm with cost(T)=15 48

9 Construction of T with STIC algorithm with cost(T)=15 49

10 Construction of T with STIC algorithm with cost(T)=15 50

11 Construction of T with STIC algorithm with cost(T)=15 51

12 Construction of T with STIC algorithm with cost(T)=15 52

13 Construction of T with MST Edmonds algorithm with cost(T)=11 57

14 Construction of T with MST Edmonds algorithm with cost(T)=11 58

15 S as well as broadcast tree T obtained after extraction phase 59

16 Sweep Operation on T . 61

17 Average no. of additional active time units per node at node density 8 for

all values of sch len and N = 400 . 63

18 Average no. of additional active time units per node for all values of sch len

and N = 400 . 64

viii

19 Distribution of Energy Usage at node density = 12 whenN=400 and sch len =

15 . 66

20 Total number of node transmissions at node density 12 for sch len = 20 . . 70

21 Total number of node transmissions for sch len = 20 71

22 Maximum Delay of the Network at node density 12 for sch len = 20 72

23 Maximum Delay of the Network at node density 10 and 8 for sch len = 20 . 73

24 Average Delay of the Broadcast Opeation at node density 12 for sch len = 20 75

25 Average Delay of the Network at node density 10 and 8 for sch len = 20 . . 76

26 Average no. of additional active time units per node for various versions of

STIC algorithm at node density = 12 and N=400 77

27 Distribution of Energy Usage for STIC and STIC inc algorithms at node

density = 12 for N=400 and sch len=15 . 78

28 Number of node transmissions for STIC and STIC inc at node density = 12

for sch len=20 . 79

29 Maximum Delay of the Network for STIC and STIC bfs at node density 12

for sch len = 20 . 80

30 Average Delay of the Network for STIC and STIC bfs at node density 12 for

sch len = 20 . 81

31 Average no. of additional active time units per node for various versions of

MST Edmonds algorithm at node density = 12 and N=400 82

32 Distribution of Energy Usage for MST Edmonds and MST Edmonds bfs al-

gorithms at node density = 12 for N=400 and sch len=15 83

33 Number of node transmissions for MST Edmonds and MST Edmonds bfs at

node density = 12 for sch len=20 . 83

34 Maximum Delay of the Network for MST Edmonds and MST Edmonds bfs

at node density 12 for sch len = 20 . 84

35 Average Delay of the Network for MST Edmonds and MST Edmonds bfs at

node density 12 for sch len = 20 . 85

36 Maximum Delay of the Network at node density 12 for sch len = 20 92

ix

37 Maximum Delay of the Network for sch len = 20 93

38 Average Delay of the Network at node density 12 for sch len = 20 94

39 Average Delay of the Network for sch len = 20 95

40 Average no. of additional active time units per node for various values of N

at node density 12 when sch len=20 . 97

41 Percentage of nodes with active time units 14 for various values of N at node

density 12 and sch len=15 . 99

42 Average No. of Node Transmissions for various values of N at node density

12 and sch len=20 . 100

43 Total Active Time Units per Node for STIC inc in a time period of 60 at

node density=12 . 102

44 Total Active Time Units per Node for MST Edmonds bfs in a time period

of 60 at node density=12 . 103

x

List of Tables

1 Average Additional Active Time Units per Node with respect to MST Edmonds

for N=400 and sch len=20 . 65

2 Distribution of Energy Usage at node density 8 when N=400 and sch len=15 67

3 Distribution of Energy Usage at node density 10 when N=400 and sch len=15 68

4 Distribution of Energy Usage at node density 12 when N=400 and sch len=15 68

5 Percentage of Nodes with active time units 14 with respect to MST Edmonds

when N=400 and sch len=15 . 69

6 Percentage of Nodes with active time units 7 with respect to MST Edmonds

when N=400 and sch len=15 . 69

7 Total Number of Node Transmissions with respect to CSCA when N=400,

sch len=20 . 70

8 Normalized Maximum Delay with respect to SDT whenN=400 and sch len=20 74

9 Normalized Average Delay with respect to SDT when N=400 and sch len=20 74

10 Improvements obtained by the sweep operation at node density 12 forN=400:

metric for best variant of sweep divided by metric for algorithm without sweep 86

11 Best version of sweep operation for various combinations of broadcast tree

algorithm and cost measure . 86

12 Average Additional Active Time Units per Node for N=400 and sch len = 20 87

13 Average Additional Active Time Units per Node with respect to MST Edmonds bfs

for N=400 and sch len = 20 . 87

14 Percentage of Nodes with active time units 14 when N=400 and sch len=15 88

xi

15 Percentage of Nodes with active time units 7 when N=400 and sch len=15 88

16 Percentage of Nodes with active time units of 14 with respect to MST Edmonds bfs

when N=400 and sch len=15 . 89

17 Percentage of Nodes with active time units of 7 with respect to MST Edmonds bfs

when N=400 and sch len=15 . 89

18 Number of Node Transmissions when N=400 and sch len=20 90

19 Number of Node Transmissions with respect to CSCA bfs when N=400 and

sch len=20 . 90

20 Normalized Maximum Delay with respect to SDT whenN=400 and sch len=20 91

21 Normalized Average Delay with respect to SDT when N=400, sch len=20 . 94

xii

Chapter 1

Introduction

A Wireless Sensor Network (WSN) is a densely populated network consisting of a large

number of battery-operated sensor nodes. Sensor nodes are low power devices that usually

contain one or more sensors, a processor, memory, a power supply, a radio and an actuator.

Such a node utilizes a wide variety of sensors like mechanical, thermal, biological, chemical,

optical, magnetic etc. to measure different aspects of the environment [2]. Sensor nodes are

equipped with a processor and a limited size memory and thus capable of performing simple

calculations. Wireless communication among the nodes is established through the radio. If

two nodes are within the transmission range of each other they can communicate directly.

Otherwise intermediate nodes between the two end points should forward the packets. The

positions of the sensor nodes in a WSN are not usually predetermined and they are deployed

in large number to achieve accurate computation and to overcome the limitations imposed

by short transmission range of nodes. In most applications of WSNs, a large body of sensor

nodes are deployed in an ad hoc manner to monitor certain aspects of the environment and

the nodes periodically send data to a base station.

WSNs have huge potential in a wide range of applications such as health, military,

home and environment. Due to the rapid deployment, self-organization, and fault tolerance

properties, WSNs are very promising in military applications. They can be exploited for

military command, control, communication, computing, intelligence, surveillance, recon-

naissance and targeting systems [3]. Particularly, in a battlefield a WSN can be utilized

1

for surveillance of critical terrains and routes. In a target tracking system, a WSN can be

used for detection and identification of intruders. Moreover, a WSN can be exploited for

gathering information about battle damage assessment. In the health care setting, sensor

nodes can be deployed to monitor the conditions of patients and assist disabled patients.

The chance of getting and prescribing the wrong medication to the patients is decreased if

sensor nodes are used to administer medications. For home applications, sensor nodes and

actuators can be included in appliances like vacuum cleaners, microwave ovens, refrigerators

etc. Sensor nodes inside these domestic devices can interact with each other using external

networks or the Internet. They allow the end users to control home devices more conve-

niently either locally or remotely. In environmental applications, WSNs can be exploited for

tracking the movements of animals and monitoring environmental conditions affecting crops

and livestock. They can be utilized for large-scale earth monitoring, planetary exploration,

biological, earth, and environmental monitoring in marine, soil and atmospheric contexts,

forest fire detection, pollution studies etc. Some of the commercial applications include

managing inventory, monitoring product quality, monitoring material fatigue, environment

control in office building and monitoring disaster areas.

Due to the huge prospects for WSNs, significant research has been conducted to devise

suitable solutions for various challenges of WSN as well as to adapt the existing proto-

cols of other networks for WSN. Unlike traditional networks, a WSN has its own design

issues and resource limitations. Resource constraints include limited energy source, short

communication range, low bandwidth and limited processing and storage capacity in each

node. Generally in WSNs a large number of sensor nodes work together unattended. Sen-

sor nodes may be deployed in hostile environments such as disaster recovery where it is not

possible to replace the battery of the nodes. Thus, the topology of a WSN changes because

of the death of nodes due to running out of power as well as because of the addition of

new nodes. This in turn indicates that the protocols and algorithms for WSNs should be

designed with self-organizing capability. Moreover, the failure of nodes should not affect

the overall operation of a WSN; this property is known as fault tolerance. Due to large

scale deployment, protocols and algorithms for WSN should be scalable, and resilient to

2

changes in topology. Moreover wise utilization of battery power is essential for long time

operation of WSN. Malfunctioning of sensor nodes significantly changes the topology and

thus necessitates rerouting of data packets and reorganization of the network. Thus, power

conservation and power management take on additional importance. A huge amount of

research is going on to design power-aware protocols and algorithms for WSNs. Routing in

WSNs is more challenging due to their unique characteristics that distinguish them from

other wireless networks [4]. Due to large scale deployment of sensor nodes it is not possible

to build a global addressing scheme as the overhead of ID maintenance is high. Moreover,

sensor nodes deployed in an ad hoc fashion should be self-organizing in order to get itself

accustomed in the existing WSN. Routing in WSN is data-centric as there is no global

addressing scheme. Due to tight constraints on energy, processing, and storage capacities,

routing in WSN requires careful resource management.

Due to extremely limited energy it is not feasible for WSN to operate as networks that

are always operational. The fundamental idea of duty cycled WSNs is to reduce the time

spent by a node in idle state or overhearing other transmissions by putting the node in sleep

state. Each sensor keeps itself active for only a very brief period of time and this is known

as active state, while it stays dormant for a long time. During its active state a node can

sense an event, transmit a packet or receive a packet, or even stay idle. During the sleep

state, a node turns all its functional units off except a timer, to wake itself up after a fixed

amount of time. The concept of a duty cycle is represented by a periodic wake up schedule

associated with every sensor node. The duty cycle is measured as the ratio of the number

of active time units to the total number of time units. It indicates how long a node spends

in active state. A small duty cycle signifies that a node is asleep most of the time. The

duty cycle of a WSN is determined based on the requirements of the applications for which

the network is deployed.

Routing in duty cycled WSN becomes more complicated since a transmitting node may

not be active at the same time unit as its neighbors. Thus a node needs to wait until it can

forward a message to its neighbors. Unlike other wireless networks where a node can reach

all its neighbors with one message, in a duty cycled network, a node may need to transmit

3

to all its neighbors separately. Providing an energy efficient communication mechanism for

duty cycled WSN is the main focus of this thesis.

1.1 Broadcast Operation in Duty Cycled WSN

Broadcasting is a fundamental operation in wireless networks where data transmitted by

a node is sent to all nodes in the networks. For example, various reactive or on-demand

routing protocols such as AODV, DSR etc utilize the concept of discovering of a route

when the actual need to route data arises [14]. The route discovery mechanism depends

on the broadcast operation to determine a route between a source and destination nodes.

Mobile Ad-hoc Network (MANET) can use delay-efficient broadcast operation to quickly

disseminate information such as an link breakage message to the whole network so that the

topology information is updated in every node [47]. Many real-time applications such as

audio conferencing also require a low-latency broadcast operation to deliver delay-sensitive

data over the wireless ad hoc networks.

In WSNs as well as in duty cycled WSNs, broadcast operation has significant impact.

In most applications of WSN, a large number of sensor nodes monitor the occurrence of an

event and inform a central node known as the sink. Conversely, the sink node broadcasts

control messages during network configuration time and interest/ query messages at the

time of data acquisition. Broadcast operation is one of the basic communication services in

WSN that is used to establish communication between sink node and other sensor nodes.

Non-sink sensor nodes may also broadcast messages in order to synchronize with other

nodes to monitor certain events [46]. Various routing protocols for WSN also use broadcast

operation as the integral part of their operation. For example, in LEACH (Low-Energy

Adaptive Clustering Hierarchy) [15], a node selects itself as a cluster head and informs all

the nodes in the network through broadcasting an advertisement message. Various data

centric routing protocols also utilize broadcast operation for the purpose of data collection.

For example, in directed diffusion [21], the sink node requests data by broadcasting interest

messages. In SPIN (Sensor Protocols for Information via Negotiation) [16], when a node

4

has new data to share, it broadcasts an advertisement message to all nodes in the network

about the new data.

Multicasting is an important mechanism of communication used for sending information

to a group of nodes. Many researchers utilize the mechanism of broadcast operation to

determine a suitable solution for multicasting. They first construct a broadcast tree that

will cover all the nodes in the networks and then eliminate the transmissions that are not

directed to the members of the multicast group. This application of broadcast tree is used

in [49], [51].

In the literature most research has been aimed on minimizing the number of transmis-

sions in a broadcast operation while achieving whole network coverage as well as providing

reliable broadcast operation by minimizing collisions. Moreover some work has been moti-

vated by the need to minimize the delay of the broadcast operation.

Designing energy-efficient broadcast algorithm for duty cycled WSNs is a challenging

problem as sensor nodes switch between active and sleep modes. Clearly the energy con-

sumption during sleep mode is much less than that in any other mode. However, going

into sleep mode is not without cost. In fact, there is a significant amount of energy as

well as time required to change from sleep mode back to transmit mode. To get an idea of

switching cost we consider an example mentioned in [24]. When a node wakes up it listens

the channel for a brief period of time and measures the signal strength. If it is greater than

a threshold value, the node remains active to receive transmission. Otherwise, it will go

to sleep. The procedure is known as sniffing the channel [24]. For Chipcon CC1100 radio,

if a node wakes up once every second the average current consumption over 1 second is

15μA that will cause a charge draw of 15μC. Whereas, the average current draw is 15mA

for receiving or transmitting a packet. Thus, in a day of operation of the network, the total

energy consumption of a node due to wakeup is equal to 15μA*3V *86400s = 3.9J that

can be utilized to transmit or receive almost 21 Mbits of data. Recently several papers

have pointed out that neglecting the so-called switching energy to switch from one mode

to another can lead to algorithms with sub-optimal energy consumption or reduce network

lifetime [5,9,23,24]. Ruzzelli et al. [38] report measurements on three different chipsets for

5

sensor nodes that show that at low traffic load, the switching energy can dominate the en-

ergy required for transmission. Thus, depending on the traffic conditions, it is not beneficial

to switch to sleep mode at every opportunity.

When a node has a packet to transmit it has two options. As the active time slots of its

neighbors are not necessarily synchronized either with the node itself or with each other,

one option is for the node to go into sleep mode and wake up and transmit the packet when

its first neighbor wakes up, and thereafter repeatedly switch between sleep and transmit

modes until it has delivered the packet to all the relevant neighbors. Indeed several papers

make this assumption in analyzing the energy costs of their algorithms [18, 46]. However,

as mentioned earlier, this model ignores the high switching cost of switching from sleep to

transmit mode. Another option as assumed in [43], is for the node to stay awake until it has

delivered the packet to next-hop neighbors. This option not only has the merit of simplicity,

it is clearly more energy-efficient when the switching cost is high, when there are many

neighbors, or not many slots in between the active times of different neighbors. This is the

model we assume in this thesis.

In this thesis, we address the energy inefficiency issue of the broadcast operation in duty

cycled WSNs and propose algorithms to minimize the total number of additional active

time units the nodes of a network need to be active during the broadcast operation. Given

the number of nodes N in a duty cycled WSN and a wakeup schedule of fixed length k for

every node, these algorithms construct a broadcast tree that will minimize the total number

of additional active time units nodes need to be awake. This problem is known as the

Minimum Energy Broadcast Tree (MEBT) problem.

1.2 Summary of Contributions

In this thesis we address the MEBT problem for duty cycled WSNs. In this section, we give

a summary of our results.

1. We show that the MEBT problem is NP-hard.

6

2. We propose two polynomial time algorithms to construct an energy-efficient broad-

cast tree for MEBT problem: Spanning Tree with Incremental Cost (STIC) and

MST Edmonds.

3. We describe several variants of a sweep operation similar to the one in [51], that can

be applied to a given broadcast tree to reduce its cost. Our experimental results show

that this operation substantially reduces the cost of the broadcast tree, and generally

also improves the performance according to other cost measures.

4. We evaluate the performance of the algorithms using extensive simulations and com-

pare the results with two existing algorithms named Centralized Set Cover based Ap-

proximation Algorithm (CSCA) [18] and Shortest Delay Tree(SDT) which is adapted

from One-to-All Broadcast Algorithm (OTAB) [22]. The experiments show that both

MST Edmonds and STIC have the best performance for the MEBT problem, and they

also result in fewer heavily loaded nodes as compared to the two existing algorithms.

Their performance is also competitive in terms of the number of node transmissions

and maximum and average delay.

1.3 Outline of Thesis

In Chapter 2, we present a literature review on broadcast problem in WSNs as well as in

duty cycled WSNs. In Chapter 3, we propose our algorithms for energy efficient broadcast

tree construction and illustrate the operation of the algorithms with a suitable example.

We analyze the performance of the proposed algorithms in Chapter 4. Some concluding

remarks and possible directions for future work are given in Chapter 5.

7

Chapter 2

Related Work

In this chapter we review the broadcast algorithms for wireless networks that exist in the

literature. We will discuss several important broadcast algorithms and try to give an idea

of the various trends of the research in this field. We first highlight various algorithms

for broadcasting in wireless sensor networks followed by a discussion about the broadcast

protocols in duty cycled wireless sensor networks.

2.1 Broadcasting in WSN

Broadcasting is an important communication paradigm in all networks including wireless

sensor networks. The simplest way to broadcast a packet is flooding. In this technique,

every node retransmits a packet once when it receives the packet for the first time. It is a

very simple technique and ensures that every node receives the packet. The disadvantage of

flooding is that it generates abundant retransmissions causing the wastage of battery energy

and bandwidth. Retransmissions by geographically close nodes result in message collisions

and channel contentions. This scenario is known as the broadcast storm problem [32].

Extensive research has been conducted to reduce the number of retransmissions during

the broadcast operation. This optimization leads to the design of energy efficient broadcast

protocols that are a necessity for energy-constrained wireless networks. Research is also

conducted to build up protocols that will achieve reachability as well as latency-optimized

8

operation.

To organize the discussion of protocols, we divide them into a number of groups depend-

ing on a number of aspects. Algorithms belonging to the same group have some common

characteristics. In the following subsections we will describe the algorithms from various

categories.

2.1.1 Neighbor-Knowledge based Broadcasting

Algorithms in this category are mainly inspired by the work of H. Lim and C. Kim [29]. They

proposed two flooding heuristics named Self-Pruning (SP) and Dominant-Pruning (DP). SP

utilizes the direct neighbor information. Node v piggybacks N(v) in the broadcast packet.

Another node u receiving the packet, checks whether N(u) −N(v) − {v} is empty. If it is

empty, u does not forward the packets as all its adjacent nodes already received the packet.

The time complexity of the SP is O(Δ), where Δ is the maximum degree of the tree.

A similar algorithm to SP is proposed by Peng et el. [34]. They utilize the local topology

information and the statistical information about duplicate messages to eliminate unnec-

essary transmissions. Every node has the knowledge of its 2-hop neighborhood. When a

node u receives a message m from a node v it records N(v) ∩ {v} in its broadcast cover

set C(u,m). Then it checks whether N(u) ⊆ N(v) ∩ {v} and if it is true, then node u

avoids transmission of m. Otherwise, if message m is received for the first time, u initializes

C(u,m) to N(v)∩{v} and waits for a random delay period. During this time node u records

N(v) ∩ {v} in C(u,m) for any v from which it receives a duplicate of m. When the delay

period is expired, if N(u) ⊆ C(u,m), then u avoids the rebroadcast of m. Otherwise u will

rebroadcast the message m. The delay period is selected carefully so that a node with more

neighbors broadcasts earlier as compared to other nodes.

DP uses the 2-hop neighborhood information. The sending node selects from its adjacent

nodes a set of forwarding nodes to relay the broadcast packet and appends the IDs of

the selected nodes in the broadcast packet which is known as the forward list. A node

in the forward list in turn selects the forwarding nodes from its 1-hop neighbors. This

process is continued until the broadcast operation is completed. On receiving a packet

9

from node u with v in the forward list, node v determines its forward list so that all

nodes within 2-hop distance from v receive the packet. Node v tries to cover all nodes in

U = N(N(v)) −N(u) −N(v), where N(u) and N(v) are the 1-hop neighbor list of u and

v, respectively. As nodes in N(u) have already received the packet and those in N(v) will

receive the packet when v will forward the packet, this algorithm selects a set of forwarding

nodes F = {f1, f2,, fm} from B(u, v) = N(v) −N(u) such that
⋃

fi∈F (N(fi)
⋂
U) = U .

This algorithm repeatedly selects vk ∈ B(u, v) which can cover the maximum number of

uncovered neighbor nodes. Both SP and DP outperform blind flooding by reducing the

redundant retransmissions, while DP achieves the best result. DP obtains this result at the

cost of larger overhead of passing the forward list in the broadcast packet. This overhead

increases as the host mobility increases.

The authors of [30] identified the deficiencies of DP and proposed two algorithms that

reduce the forwarding set further by more effectively utilizing the 2-hop neighborhood in-

formation. In Total Dominant Pruning (TDP), N(N(u)) is piggybacked in the broadcast

packet from u. When another node v receives the packet, the 2-hop neighbor set that needs

to be covered by the forward list F of v is reduced to U = N(N(v)) − N(N(u)). As the

size of U is reduced, the size of F also gets reduced. The TDP algorithm consumes more

bandwidth as the 2-hop neighborhood information of each sender is piggybacked in the

broadcast packet. Partial Dominant Pruning (PDP) does not piggyback any neighborhood

information with the broadcast packet as in TDP but reduces nodes from U by excluding

P = N(N(u)
⋂
N(v)). Thus U will become N(N(v)) −N(u) −N(v) − P . The extra cost

of the PDP algorithm is that each forward node v needs to calculate P .

Simulation results show that both TDP and PDP significantly reduce the number of

forwarding nodes as compared to DP. TDP produces slightly better result than PDP and

PDP is cost effective since there is no piggybacking as in TDP and DP.

2.1.2 Adaptive Broadcasting

To alleviate the broadcast storm problem of simple flooding, several threshold-based broad-

casting techniques are proposed. The author of [32] proposed a counter-based scheme as

10

well as a location-based scheme for broadcast. In the counter-based scheme [32], every

host maintains a counter c for each packet. This counter c is used to keep a record of

the number of times a host has received a broadcast packet. When c reaches a predefined

threshold value C, the host refrains from rebroadcasting the packet as the additional cov-

erage achieved through this transmission is very low. In the location-based scheme [32],

each host is assumed to be equipped with a positioning device such as GPS. A receiver

can accurately calculate the additional coverage that can be achieved from the location of

the source from which it heard the broadcast packet. The receiving host uses a predefined

threshold A to determine whether it should rebroadcast or not. The location based scheme

achieved better performance in terms of both reachability and the amount of savings as

compared to the counter-based scheme as more accurate information is used.

The authors of [44] proposed improvements to both the counter-based and the location-

based schemes. Adaptive Counter-Based scheme [44], dynamically adjusts the threshold

value C(n) based on local neighbor information and introduces a time delay before broad-

casting a packet to reduce the number of redundant transmissions further. A small value of

C(n) can significantly reduce the number of redundancies in a dense network while achiev-

ing a better reachability. For sparse networks, greater values of C(n) should be used to

achieve reachability, which will increase the number of rebroadcasts. Based on the above

observations, the authors proposed abstract shapes of C(n) (shown in Figure 1). The

adaptive location-based scheme [44], dynamically adjusts the threshold value A(n) based

on neighbor information. The authors presented an abstract shape of threshold function

A(n) following the same observations for counter-based scheme. As shown in Figure 1,

when n < n1, A(n) should be 0 to enforce a host to rebroadcast. Between n1 and n2, A(n)

gradually increases to balance savings and reachability. After n > n2, A(n) = 0.187 is used

which is the expected additional coverage achieved after a host receives same broadcast

packet twice.

11

Figure 1: Abstract shapes of C(n) and A(n)

2.1.3 Probability-Based Broadcasting

In probability-based broadcasting, every node broadcasts with a fixed probability known as

gossip probability. In a static gossip strategy, every sensor broadcasts with a fixed probabil-

ity and this gossip probability is determined during the deployment stage of sensor nodes.

The static gossip strategy is not suitable for sensor networks because the topology of the

network is not known during the deployment stage. Over-estimation of gossip probabil-

ity will cause unnecessary packet transmissions in dense networks, while under-estimation

causes some portion of the network to be prohibited from getting broadcast packets. More-

over node densities may vary in the same network and the network topology changes by

addition of new sensor nodes and deletion of energy-exhausted nodes. The authors of [13]

proposed an adaptive gossip protocol known as the adaptive neighbor approach. Here a

node chooses its gossip probability in inverse proportion to the number of neighbors it has.

The authors of [26] proposed another approach to determine the gossip probability. In this

approach, a node chooses its gossip probability for a message with sequence number k, in

12

inverse proportion to the number of duplicate messages that were overheard for message

k − 1.

Kyasanur et al. [25] identified the deficiencies of the existing adaptive approaches and

proposed the smart gossip protocol for wireless sensor networks. In Smart Gossip, the

importance of each node v is quantified according to the number of nodes depend on v to

receive a disseminated message. When a large number of nodes depends on v, it will transmit

with higher probability while other less crucial nodes transmit with lower probability. This

protocol is completely decentralized and capable of handling wireless link failures and node

failures. This protocol significantly reduces energy expenditure by reducing the number of

forwarding nodes while achieving the reliability requirements of the application.

2.1.4 Energy Efficient Broadcasting

Every node v in a wireless network is associated with a power level Pv such that 1 ≤ Pv ≤
m,Pv ∈ Z. Node v can select its own power level to reach its neighbors. Algorithms in this

category try to construct broadcast trees in order to minimize the total power expenditure to

accomplish the broadcast operation. W. Liang proved in [28] that the problem of assigning

power levels to minimize the total power expenditure is NP-Complete.

Wieselthier et al. [49] proposed three heuristic algorithms for constructing broadcast

trees. Broadcast Incremental Power (BIP) algorithm takes advantage of broadcast nature

of the wireless channel. This algorithm assumes that the locations of the nodes are fixed.

The power needed to maintain the link between node i and j is denoted by Pi,j = ri,j , where

ri,j is the distance between node i and j. If a node i is transmitting to its neighbors j and

k with transmission power Pi,j and Pi,k respectively, then a single transmission at power

Pi,{j,k} = max {Pi,j , Pi.k} is sufficient to reach both node j and k. This property is known

as wireless multicast advantage (WMA). BIP starts with a source s and adds a node that

can be reached from s with minimum power. For all nodes i ∈ T and for all adjacent nodes

j of i /∈ T , BIP evaluates the following equation:

Pi,j′ = Pi,j - P (i)

13

where,

Pi,j = Cost of transmission between node i and j.

P (i) = Power level at which i is already transmitting. If i is a leaf node, then P (i) = 0.

Pi,j′ = Incremental cost of i to associate j with i.

At every step, BIP selects a j with minimum Pi,j′ to be added to T and adjusts the cost

Pi,k′ of edges between i and k, where k is a neighbor of i not in T . This process continues

until all nodes are included in T . BIP is similar to Prim’s algorithm with only difference is

that BIP will dynamically update the cost at each step.

In Broadcast least-Unicast-Cost (BLU) algorithm [49], minimum cost paths from s to

every other node are determined and a broadcast tree is obtained by superimposing these

unicast paths. As BLU cannot take the advantage of WMA, it produces trees with higher

overall power expenditure.

The Broadcast Link-based MST(BLIMST) algorithm [49] associates link cost Pi,j with

each pair of nodes i and j. A minimum cost spanning tree is formed using standard MST

techniques. This algorithm also does not take the advantage of WMA.

Wieselthier et al. [49] also found that by rearranging the structure of the broadcast

tree significant reduction in overall power expenditure can be achieved. They proposed a

operation known as sweep. Given a broadcast tree, the sweep operation makes node v a

child of u instead of its previous parent w, if doing so reduces the power expenditure at w

without increasing the power expenditure at u.

The authors of [33] proposed an algorithm to maximize the network lifetime followed by

a broadcast operation. Given a sequence of broadcast operations, they tried to increase the

number of successful communications before the first communication fails. For this purpose,

they proposed an O(m logm) algorithm to construct a broadcast tree that maximizes the

critical energy of the network following a broadcast operation, where m denotes the number

of links in the network. The critical energy of a broadcast tree T is the minimum of the

remaining battery power of all the nodes in T followed by a broadcast operation. In T ,

the residual energy of node i is re(i, T) = ce(i) − max{w(i, j)|j is a child of i in T},
where ce(i) is the current energy of i before sending a message and w(i, j) is the energy

14

expended for transmitting a message from i to j. The critical energy CE(T) following a

broadcast operation is CE(T) = min{re(i, T)|1 ≤ i ≤ n}. The Maximum Critical Energy

Problem (MCEP), finds a broadcast tree T rooted at s such that CE(T) is maximum. This

maximum value of CE(T) is called the maximum critical energy and is denoted MCE(G,

s). This algorithm first constructs a sorted list L of all possible residual energy values. For

each node i of G, the set a(i) of residual energy values is defined as a(i) = {ce(i)− w(i, j)|
(i, j) is an edge of G and ce(i) ≥ w(i, j)}. Set l(i) denotes the set of all possible values for

residual energy of i following a broadcast operation.

l(i) =

⎧⎪⎨
⎪⎩

a(i) if i = s

a(i)
⋃{c(i)} otherwise

Thus, L = sort(
⋃

1≤i≤n l(i)). The algorithm performs binary search on L to determine

MCE(G,s). For each value q ∈ L, it determines whether there exists a broadcast tree rooted

at s such that CE(T) > q, by performing breadth first or depth first search that avoids

edges (i, j) for which ce(i)− w(i, j) < q.

Chen et al. [8] proposed Power Adaptive Broadcasting (PAB) to adjust the transmission

power of a node based on its neighbor information. This information is obtained by ex-

changing the HELLO messages. Each HELLO message contains a list of 1-hop neighbors of

a node with the transmission power needed to reach them. In PAB, every node u starts with

the most distant node v that causes u to transmit at maximum power level Pmax = Pu,v.

Node u determines the subset of its 1-hop neighbors that can reach v and selects a neighbor

w that can reach v with minimum transmission power Pw,v. Node u calculates Pu,w + Pw,v

and if Pu,w+Pw,v < Pu,v it reduces its power level to a lower value and allows w to reach v.

This is known as local optimization. If u cannot find such a node it transmits using power

Pu,v. After reducing the transmission power level node u starts with the next furthest node

and tries to reduce its transmission radius by allowing other neighbor to reach the distant

node. This process stops when u cannot find such a neighbor. It may happen that when

a node receives a broadcast packet and calculates the local optimization it may considers

neighbor that already received the packet. To minimize this problem, after receiving a

15

packet, a node may wait for a randomly selected time period. During this time, if it finds

that some of its neighbors broadcast the same packet it eliminates these neighbors as well

as the nodes that receive the packet from the consideration of local optimization.

PAB will consume at most the energy consumed in a non-power- adaptive scheme in

which the nodes transmit at maximum power level and it achieves the same coverage as non-

adaptive schemes. Experimental results show that PAB reduces total energy consumption

about 40% as compared to the protocols that do not adapt the power level.

Weishelthier et el. [50] proposed two distributed versions of the centralized BIP algorithm

named as Distributed-BIP-All (Dist-BIP-A) and Distributed-BIP-Gateways (Dist-BIP-G).

In Dist-BIP-A, every node u knows the cost of the links between node u and its 1-hop

neighbors and also cost of the links between every pair of node u’s 1-hop neighbors. When

node u has a broadcast packet, it constructs a local BIP tree using this information and

broadcasts this tree to all its neighbors. When a node v becomes aware that it is in the tree

from some node u, it generates its local BIP tree and broadcasts to the neighbors. A node

v can hear from multiple parents but it becomes child of a node from which it hears for the

first time. Dist-BIP-All generates huge burden on MAC layer as every node performs the

broadcast operation. In Dist-BIP-G, every node u knows the cost of the links between u’

neighbors and their neighbors. Node u has no knowledge of the cost of the links between

its 2-hop neighbors v and w. Node u constructs local BIP tree using this information and

determines the gateway nodes from its 1-hop neighbors that cover one or more nodes in

its 2-hop. The set of gateway nodes of u covers all the 2-hop neighbors of u. After the

construction of BIP tree, node u broadcasts this information to all its neighbors. The links

between the gateways and their neighbors are not included in the global tree. Now only

the gateway nodes of u will construct their local BIP tree and broadcast this information.

It reduces the overhead on MAC layer as only fewer node will broadcast the BIP tree.

A localized version of BIP algorithm (LBIP) is proposed in [19]. In this method, each

node constructs a BIP tree within its 2-hop neighborhood using information provided by the

node from which it gets the broadcast message. Thus the tree is incrementally constructed.

The source node determines the BIP tree within its 2-hop neighborhood and selects the

16

nodes within its range that should relay the packet with which transmission radius. These

choices are forwarded with the broadcast packet. No instructions are given in the packets

for nodes that are designated as leaf nodes. When a node u receives the packet for the first

time from a node v, two cases can occur:

1. The packet contains some instructions for u. It starts constructing a BIP tree within

its own 2-hop neighborhood. But instead of starting with an empty tree, it uses the

information contained in the packet, that is with the neighbors assigned to it by v

and with its transmission range also fixed by v. In this way, nodes located exactly at

2 hops from u and 3 hops from v will be added to the tree.

2. There is no instruction for u. In this case, u will not rebroadcast the packet.

As the algorithm is localized one, it is possible that two different nodes may make conflicting

decisions that will lead to some nodes being uncovered. To avoid this situation, when a

node receives a broadcast packet, it will monitor its neighborhood for a fixed amount of

time. If the node finds that some of its neighbors do not get the packet, it can transmit the

packet to them whether it is instructed to do so or not. This ensures coverage at the cost

of some unnecessary transmissions. To minimize these unnecessary transmissions, the set

of monitored neighbors can be reduced to a smaller subset of neighbors using a subgraph

of the general graph such as RNG or LMST [19]. LBIP eliminates the overhead of message

exchange in distributed BIP and does not increase the size of the message significantly.

Experimental results showed that this algorithm has good performance at low density and

it is very energy efficient for higher densities with performance equal to BIP.

2.1.5 Multipoint Relay based Broadcasting

The authors of [36] proposed the mechanism to calculate multipoint relay (MPR) set. This

technique reduces the number of redundant message transmissions in broadcast operation.

The authors proved that the computation of MPR set with minimum size is NP-Complete

and proposed a heuristic technique to compute the MPR set. Each node calculates it

own MPR set independently and modifies its MPR set according to the changes in local

17

topology. Every node u starts with an empty MPR(u) set and selects those nodes v from

N(u) that are only neighbors of some 2-hop neighbors of u. Node u is called the MPR

selector of v. If there are some 2-hop neighbors that are not covered by MPR(u), a node

from N(u) that covers the largest number of 2-hop uncovered nodes and is not already in

MPR(u), is selected. This procedure is repeated until there is no uncovered node in the

2-hop neighborhood of u. This heuristic gives a result that is within a factor of logn from

optimality, where n is the maximum degree of a node. A forwarding node may or may not

actually retransmit a message and its status is determined by a MPR rule:

• A node retransmits a message once if it received the message for the first time from

a selector.

The collection of nodes that retransmit the message plus the source node form a connected

dominating set (CDS).

The MPR set calculated according to [36] is source-dependent as the forward node set

is determined during the broadcast operation and it is dependent on the source of the

broadcast and communication latency.

An efficient protocol for broadcasting in Mobile ad hoc networks known as Ad Hoc

Broadcast Protocol(AHBP) is proposed in [48]. It is a distributed protocol that utilizes

2-hop topology information of a node to determine broadcast relay gateway (BRG) from its

1-hop neighbors. The set of selected BRG forms a connected dominating set. This way

AHBP reduces the number of redundant messages as compared to the flooding protocol.

In AHBP, every node maintains a duplicate table and a 2-hop neighbor table. Whenever a

node receives a new packet, it makes an entry in the duplicate table and uses this table to

drop already received packets. A node uses HELLO message to construct its 2-hop neighbor

table. When a node broadcasts a packet, it selects some of its 1-hop neighbors as BRGs and

this list is included in the broadcast packet. A broadcast packet also contains information

about the route P that the packet already traversed. Only the nodes in the BRG set will

rebroadcast the packet. Unlike other protocols, in AHBP, BRGs are calculated on-demand

and no virtual backbone structure needs to be maintained. BRGs are picked out along with

18

the propagation of broadcast messages. Every node v uses the information P of the route

the packet already traversed to eliminates some nodes w ∈ P as well as its neighbors from

the consideration of BRGs. Node v then utilizes its 2-hop neighbor list to select its BRG set

in the same way as MPR set is calculated in in [36]. Technique to handle the node mobility

is also incorporated in this protocol. Although this protocol is designed for MANET, it can

be also utilized in static wireless sensor networks.

Adjih et al. [1] proposed a novel source-independent MPR where the forward node set

is determined before any broadcast operation and is constructed based on MPR using two

simple rules. It requires the knowledge of total order of the nodes. A node decides to

include itself in CDS if and only if:

1. It has the smallest ID among its neighbors OR

2. It is a multipoint relay of its neighbor with smallest ID.

Adjih et al. [1] also proposed two heuristic algorithms to calculate the multipoint relay

set. In Min-ID MPR set computation, every node u starts with an empty MPR(u) set and

scans its neighbors in the increasing order of their node ID. If the current node covers a

2-hop neighbor that is not covered with the existing MPR(u), then it is added in MPR(u).

In reverse MPR selection algorithm, every node u starts with empty MPR selector set. For

each pair of neighbors v and w, this algorithm determines the nodes that are neighbors of

both v and w and if u has the smallest ID among them, then both v and w are added into

the MPR selector set of u.

Wu [37] identified two drawbacks for MPR proposed in [1]:

1. Rule 1 is useless in many occasions

2. The Original MPR Forward node selection does not take advantage of Rule 2.

Based on the observation rule 1 is modified as follows:

1. Enhanced Rule 1: The node has a smaller ID than all its neighbors and it has two

unconnected neighbors.

19

Node u is called a free neighbor of v if v is not the smallest ID neighbor of u. In enhanced

forward node selection, all free nodes are included first. A node u in 1-hop neighborhood is

added if it is the only neighbor of a 2-hop neighbor. Then a 1-hop node with largest number

of uncovered 2-hop nodes is added in MPR set. Node IDs are used to break ties. Simulation

results show that the Enhanced MPR (EMPR) with enhanced rule 1 and enhanced forward

node set selection reduces the forward node set 10% as compared to one in [1].

Wu et al. [53] provided several extensions of EMPR [37] to generate a smaller CDS

using complete 2-hop neighborhood information. Source-dependent MPR [36], source-

independent MPR [1] and Enhanced MPR [37] use partial 2-hop neighborhood information

to determine their MPR set. Partial 2-hop neighborhood information excludes the links

among the 2-hop neighbors. The Complete 2-hop information is obtained after exchanging

two rounds of HELLO messages and if the positional information is available. It can be

obtained from 3 rounds of message exchange if positional information is not available. In

the proposed technique node v repeatedly selects a node pair (u,w) where u ∈ H1(v) and

w ∈ H1(u)∩H2(v) until all 2-hop neighbors are covered. H1(v) is the set of nodes that are

1-hop away from v and H2(v) is a set of nodes that are exactly 2-hop away from v. Node

u is directly covered by v, whereas w is indirectly covered by v. Node v is called a direct

selector of u and an indirect selector of w. The authors modified the rule 2 [1, 37] of CDS

calculation as follows:

• Enhanced Rule 2: Node u is a forward node if it is directly selected by a node in

H1(u) that has smallest ID in H1(u) and w is a forward node if it is indirectly selected

by a node in H2(w) that has a smaller ID than all nodes in H1(w).

The set of forward nodes selected by Enhanced Rule 1 and Enhanced Rule 2 form a CDS.

2.1.6 Connected Dominating Set based Broadcasting

Algorithms in this category construct a connected dominating set (CDS) to perform the task

of broadcasting. Nodes in the CDS are responsible to retransmit the messages. By reducing

the size of the CDS, significant improvements can be achieved in number of redundant

20

retransmissions. Stojmenovic et al. [42] proposed a dominating set based broadcasting

algorithm that computes set of internal nodes with locally available information. This

algorithm achieves reliability while significantly reducing the number of retransmissions. A

neighbor elimination scheme is used to avoid unnecessary retransmissions. The proposed

algorithm for dominating set eliminates the overhead of exchanging information at the

time of constructing the dominated set. For this purpose, they modified the algorithm to

compute the dominating set provided in [52] and obtain a new algorithm [41]. Here node

ID is replaced with key = (degree, x, y) where degree is the number of neighbors of a node

and x and y represent the x co-ordinate and y co-ordinate of the node, respectively. Thus,

nodes with higher degree have a higher chance of becoming internal nodes. A node u is

called an intermediate node if it has two unconnected neighbors. If node u is a neighbor of

v and if each neighbor of u is also a neighbor of v and key(u) < key(v), then u is covered

by v. A node w that is not covered by any neighboring node is called an intergateway

node. A node u is covered by two connected neighboring nodes v and w if each neighbor

of u is also a neighbor of either v and w and key(u) < key(v) and key(u) < key(w). A

node x not covered by any pair of connected neighboring nodes is called a gateway node.

Now a node u can decide whether it belongs to a dominating set or not with its locally

available information. The number of retransmissions in a broadcast operation depends on

the size of the dominating set. The authors also proposed to use the neighbor elimination

technique during the broadcast operation. Here every node u rebroadcasts the message

when it receives it for the first time if the set of neighboring nodes of u not receiving the

broadcast packet is non-empty. Internal node and neighbor elimination scheme require each

node to know the exact location of the neighbors (if GPS is available) or to know the list

of neighbors for each of its neighbors.

2.1.7 RNG and LMST based Broadcasting

Broadcast protocols in this category address the problem of adjusting transmission power of

nodes in order to reduce the total energy consumption of broadcast operations. Broadcast

21

Figure 2: The edge (u, v) not in E because of w

algorithms use sub-graphs of G to determine a topology to perform the broadcast opera-

tion. The frequently used sub-graphs are Relative neighborhood Graph (RNG) [6] and Local

Minimum Spanning Tree (LMST) [6].

Given a wireless network represented by a graph G = (V,E) where V is the set of

nodes and E is set of links such that E ={(u, v)|u, v ∈ V and d(u, v) ≤ R} where R is the

maximum transmission power of a node, the relative neighborhood graph of G is denoted by

RNG(G) = (V,Erng) where, Erng = {(u, v)|!∃w ∈ V (u,w) ∈ E ∧ (v, w) ∈ E ∧ d(u,w) <

d(u, v) ∧ d(v, w) < d(u, v)}. As illustrated in Figure 2, an edge (u, v) belongs to the RNG

if there does not exist a node w in the gray area. The gray area is the intersection of two

circles centered at u and v with radii d(u, v).

The Local Minimum Spanning Tree (LMST) is also a sub-graph of G. To determine

LMST, each node u computes of an MST in its own neighborhood denoted by MST (N(u)).

An edge between two nodes u and v exists in the LMST if and only if u is a neighbor of v in

MST (N(v)) and v is a neighbor of u in MST (N(u)). LMST of a given graph G = (V,E)

is denoted by LMST (G) = (V,Elmst). For a given graph G, LMST (G) is a sub-graph of

RNG(G).

The authors of [7], proposed RNG Broadcast Oriented Protocol (RBOP). It uses the

RNG to reduce the transmission power of nodes as much as possible and then applies the

22

neighbor elimination technique to further reduce the redundant retransmissions. Experi-

mental results show that it achieves performance comparable to the best known globalized

BIP algorithm.

Cartigny et. el [6] proposed an extension of RBOP known as RBOP-T (RNG Broadcast

Oriented Protocol with Full Timeout). In RBOP, only nodes receiving a packet on non-

RNG edge apply timeout before retransmissions. In the case of RBOP-T, all nodes wait

for a fixed amount of time before retransmitting a message. They also proposed another

protocol named LBOP-T (Local MST Broadcast Oriented Protocol with Full Timeout).

This protocol first replaces RNG in RBOP with Local MST and then applies a timeout

before any node retransmits a message.

Li et al. [27] proposed a protocol named Broadcast on Local Minimum Spanning Tree

(BLMST). In this technique an LMST is constructed and a broadcast message is relayed

through the tree in constrained flooding fashion. Here if a node v receives a message from all

its neighbors in the LMST or knows that every neighbor has already received the message,

it will not relay the message. The authors argued that as the LMST provides a minimally

connected topology, applying further optimization rules to suppress the relay nodes will

lead to marginal improvement. BLMST has several desirable features. BLMST is indepen-

dent of the power consumption model. Since the LMST preserves network connectivity,

the coverage under BLMST is 100%. The control message overhead to get neighborhood

information is not significant. Moreover, BLMST is scalable with increasing values of n.

Ingelrest et al. [20] considered that the minimal transmission energy required by a node

u so that the transmission can be received successfully by a neighbor v at distance r is

proportional to rα + ce, where α is a path loss component and ce is a factor considering

the energy expenditure due signal processing, message reception, etc. They argued for the

existence of optimal radius computed with hexagonal tiling of network area, that minimizes

the energy consumption for a broadcast operation. The authors modified the existing

LBOP [6] to take advantage of the optimal radius. This new protocol is named as Target

Radius LMST Broadcast Oriented Protocol (TR-LBOP). As the node density increases,

LBOP reduces transmission radii as LMST neighbors are getting closer. Short radii cause

23

more nodes to act as relays. The constant energy charge ce for each transmission leads to

huge energy consumption. LBOP is modified so that each node increases its transmission

range up to the target optimal value when a retransmission is needed. Every node u

maintains two lists: L(u) and L′(u). L(u) contains LMST neighbors v of u and L′(u) stores

every other neighbor of u. During the neighbor elimination scheme, each neighbor v that

receives the message is removed from either L(u) or L′(u). When the timeout occurs, if

L(u) is empty, the retransmission is canceled. If there is at least one node in L(u) node u

has to rebroadcast the message to reach the nodes left in L(u). In this case, the authors

defined two values DL and DL′ where DL is the length of the furthest LMST neighbor v

from u and DL′ is the length of the edge between u and its as yet unreached neighbor w

which is closest to optimal radius T . Finally the radius of u is chosen to be the maximum

of DL and DL′ .

In Target Radius and Dominating Set Based Protocol (TRDS) [20], the radii of nodes

are reduced to the target transmission radius T . This algorithm works in three steps.

1. The topology of the network is adapted in such a way that each node selects a trans-

mission radius very close to T and still maintains connectivity. For this purpose, a

sub-graph of G is constructed where each node considers only neighbors in RNG or

LMST and the neighbors whose distance is less than or equal to T . The resulting sub

graph GT is sparse, connected and bidirectional.

2. Given a connected graph GT , a connected dominating set (CDS) is determined using

any CDS algorithm. The size of the CDS is further reduced by computing the RNG

of the graph induced by the CDS. After this, every CDS node has just to cover its

dominant neighbors in RNG.

3. For each node u, the set of CDS neighbors is denoted by ND(u) and the set of non-CDS

neighbors is denoted by ND(u). A CDS node u wishing to launch a broadcast message

emits its message with the minimal range that covers ND(u) and ND(u). A non-CDS

node v that wishes to transmit a broadcast packet transmits its message to its nearest

associated CDS neighbor u. A CDS node u receiving a message rebroadcasts it with

24

the range which allows to cover non-covered nodes in ND(u) and ND(u). A non-CDS

node v will never relay messages.

The authors argued that several localized broadcasting protocols for minimizing energy

consumption are proposed and they are based on selecting neighbors from a sparse topology.

They do not consider the constant energy charge ce for each transmission. As a result, in the

case of dense networks, these algorithms produce energy inefficient solutions. Both TRDS

and TR-LBOP algorithms are efficient and give good results as compared to BIP for all

network densities.

2.2 Broadcasting in Duty Cycled WSN

Broadcasting in wireless ad hoc networks has been intensively studied while broadcast in

duty cycled wireless sensor networks is comparatively not as well-studied in the literature.

We classified the broadcast algorithms for duty cycled WSNs into two categories: centralized

and distributed. We first review the centralized algorithms in the following section and then

discuss distributed algorithms in section 2.2.2.

2.2.1 Centralized Algorithms

Gu et al. [11] proposed the Dynamic Switch Forwarding (DSF) technique for low duty-cycle

sensor networks with unreliable links in order to achieve optimal expected delivery ratio,

expected end-to-end delay and expected energy consumption. In duty cycled networks, link

quality-based forwarding techniques suffer from high end-to-end delay due to sleep latency.

On the other hand, sleep latency based forwarding techniques suffer from high end-to-end

delay due to the change of link quality. In DSF, given a sink, each node maintains a sequence

of forwarding nodes that are sorted in the order of the wake-up time associated with them.

To send a packet, a node scans the first node in the forwarding sequence as it will wake

up soon and tries to send the packet. If the transmission is successful then the node stops.

If it is unsuccessful, the node fetches the next node from the sequence and tries to send

the packet again. The advantage of this technique is that it reduces the time spent on

25

Figure 3: Four cases of connecting a Covi(v) to the existing Tbcast through v

transmitting a packet successfully by avoiding waiting for a particular forwarding node to

wake up again after failure. The authors proposed three metrics: Expected Delivery Ratio

(EDR), Expected End-to-End Delay (EED) and Expected Energy Consumption (EEC)

and determined the model to calculate them for a given forwarding sequence. Later they

provided dynamic programming algorithms to generate a forwarding subsequence that is

optimal in terms of EDR, EED and EEC from the full forwarding sequence.

The authors of [18] considered the minimum transmission broadcast problem in uncoor-

dinated duty-cycled wireless ad hoc or sensor networks and proved that this problem is NP-

Complete. They proposed a set-cover-based approximation scheme with both centralized

and distributed approximation algorithms. 1 The centralized set cover based approximation

(CSCA) algorithm consists of two phases. Phase 1 determines a minimum covering node

set. For each node v, T (v) denotes the set of active time units in Disk(v), and Covi(v)

denotes the set of nodes in Disk(v) with active time unit i. This algorithm groups all nodes

1Since in Chapter 4, we compare the performance of CSCA with our algorithms, we describe CSCA in
some detail here.

26

with active time slot i in G(V,E) into sets Ui and tries to find a minimum covering node

set Ci for each Ui in a greedy fashion so that ∪v∈CiCovi(v) = Ui. Phase 2 then constructs a

backbone structure by connecting all ∪i∈TCi to s through some connectors. The backbone

is determined during the formation of a spanning tree Tbcast on G. Initially, Tbcast starts

with s and a working set Temp is set to ∪i∈TCi. This phase scans all the element in Temp

and selects the first Covi(v) satisfying one of the following conditions as shown in Figure

3 and takes appropriate action:

1. v is in Tbcast; In this case no operation is required.

2. v is adjacent to some u in Tbcast; In this case connect u to v.

3. A node x belongs to Covi(v) ∩ Tbcast; In this case connect x to v.

4. A node x in Covi(v) is adjacent to some u ∈ Tbcast; In this case connect x to u and x

to v.

Node v is removed from Temp if all Covi(v) for i ∈ T are processed. This process

continues until Temp is empty.

The approximation ratio of the CSCA algorithm is shown to be 3(ln(Δ) + 1), where

Δ is the maximum degree of the network. The time complexity of the CSCA algorithm is

O(n3).

In [46], the broadcast problem in a duty cycled wireless sensor network is considered

as a shortest path problem in a time-coverage graph and an energy efficient centralized

algorithm that utilizes dynamic programming is proposed. This algorithm saves energy by

minimizing forwarding cost and delay. In this algorithm, at first a time-coverage graph is

constructed. If a set R of nodes receive a message at time t, it is represented as a vertex vR,t

in the time-coverage graph. R starts with {s} and gradually becomes {1, 2, 3,, n}. There
are two kinds of edges: time edges and forward edges. If nodes of R do not forward messages

at t, then same coverage state will exist in next time slot. This situation is depicted by a

time edge that connects neighboring vertices along a row from earlier to later. A forwarding

edge represents a forwarding event. A forwarding edge from vR,t to vR′,t′ indicates that at

27

time t, one or more nodes in R transmit a message. The weight of an edge is a combination

of message and time cost. When the weight of a time edge is calculated it emphasizes on

the delay and the number of messages forwarded by the nodes in R is highlighted during

the calculation of the weights of forward edges. Let W (vR,t, vR′,t′) denote the weight of an

edge from vR,t to vR′,t′ and W (vR,t, vR′,t′) = ∞ if no such edge exists. F (vR′,t′) is the total

weight of the shortest path from vs,t0 to vR′,t′ . F (vR′,t′) is calculated as follows:

F (vR′,t′)=minvR,t(F (vR,t)+W (vR,t, vR′,t′))

where F (vs,t0) = 0 and F (vR,t0) = ∞ for R �= s. With the above relation and the boundary

values, the weight of the shortest path from vs,t0 to each vertex from top to bottom and

for each row, from left to right can be calculated. The minimum of the total weights to the

last-row vertices is the weight of the shortest path from vs,t0 to a vertex in last row.

The problem of finding energy-efficient sleep scheduling that will optimize the end-to-end

delay is addressed in [31]. The authors made an attempt to minimize the communication

latency when each sensor has a duty cycling requirement of being awake for only 1/k time

slots on an average. As a first step, they considered each sensor can be active in exactly one

time unit among the k slots. They proved that finding a sleep scheduling that will minimize

the end to end communication delay in a network with all-to-all communication flow and

weighted communication flow is generally NP-hard. They found that an optimal solution

can be obtained for two special cases of all-to-all communications: tree topologies and ring

topologies. They proposed several heuristics for networks with all-to-all communication

patterns. In the centralized algorithm, initially all nodes are assigned same slots. Each node

calculates the delay diameter D for all possible slot assignments for itself while keeping the

time slots for other nodes fixed. The minimum of the delay diameters of all possible slot

assignments is denoted by dmin. If dmin is smaller than the previous delay diameter d, the

node changes its slot to the one with minimum D and updates d to dmin. After all nodes

perform the operation, the iteration can be repeated. The number of iterations depends on

the time limitation of the algorithm.

The authors of [17] investigated the problem to find a broadcast schedule that avoids

28

collisions and minimizes the broadcast latency in a duty cycled wireless ad hoc network and

they proved that this problem is NP-Complete. They proposed two approximation algo-

rithms named Simple Layered Coloring Algorithm (SLAC) and Enhanced Layered Coloring

Algorithm (ELAC). Both of the two algorithms construct a broadcast tree using Dijkstra’s

algorithm for shortest paths where the cost of an edge λ(u, v) is defined as follows:

λ(u, v) =

⎧⎪⎨
⎪⎩

|T | if SLa(v) = SLa(u)

(SLa(v)− SLa(u) + |T |) mod |T |, otherwise

where, SLa(u) and SLa(v) represent the active time slot of node u and v respectively

and T is the length of the wake up schedule.

If a node u in the constructed tree has a receiving time slot SLr(u) = k|T | + i, it is

considered as a node at layer k|T |+ i. The maximum k is denoted by K and the maximum

i is denoted by I and the maximum layer is denoted by K|T | + I. Collisions will occur

only when two or more nodes transmit to nodes in the same layer p on the tree at the same

time. SLAC schedules the the parents of nodes in layer p to transmit in different time. For

this purpose this algorithm utilizes the D2-coloring scheme. In D2-coloring scheme, no two

vertices having distance 1 or 2 will not be assigned the same color [39]. The approximation

ratio of SLAC is O(Δ2 + 1), where Δ is the maximum degree of the network.

ELAC improves the SLAC algorithm by dividing the transmissions on each layer into

two phases. Let Up denotes the set of nodes on layer p. ELAC constructs the Maximal

Independent Set (MIS) Ap for each Up. This algorithm finds a proper D- coloring of Ap. It

finds the transmissions from the parents of Ap to the nodes in Ap and schedules transmissions

from Ap to the nodes in Up. The approximation ratio of ELAC is 24|T |+1 where |T | is the
number of time slots in a scheduling period.

The One-to-All-Broadcast (OTAB) algorithm is proposed in [22]. This algorithm re-

duces the broadcast latency and provides a collision free broadcast schedule. As in SLAC

and ELAC, this algorithm also builds a shortest path tree with root at s using Dijkstra’s

algorithm. OTAB assumes that s starts the broadcast operation at time slot 0. For every

edge (u, v), the latency Lat(u, v) is defined as follows:

29

Lat(u, v) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

A(v) + 1, if u = s;

A(v)−A(u), if u �= s and A(v)−A(u) > 0;

A(v)−A(u) + |T |, otherwise

OTAB constructs a broadcast tree TB based on the shortest path tree and schedules the

broadcast accordingly. All the nodes in V are grouped into different layers L0, L1, . . . , LD

according to their latency of the shortest paths from s, where D is the maximum latency of

all the shortest paths. Nodes at the same layer Li have the same active time slot. All the

nodes except s are divided into different sets U0, U1, U2, . . . , U|T |−1 according to their active

time slots. For each Uj , 1 ≤ j ≤ |T | − 1, OTAB determines an MIS Qj . All the nodes at

Li, 0 ≤ i ≤ |T |− 1 are divided into two sets: an Independent Set(IS) Mi and Li \Mi, where

Mi ∈ Qj and j equals (i − 1) mod |T |. Each Uj is divided into two sets Qj and Uj \ Qj .

Now TB is constructed using a layered approach. At each Li, the parent nodes of Mi are

chosen from some nodes at higher layers. Some nodes of Mi are selected as the parents of

nodes in Li \Mi and nodes at lower layers with the same active time slot. Then for each

Uj , 1 ≤ j ≤ |T | − 1, parents of Qj and Uj \ Qj are colored using D2- coloring methods.

Transmissions from the parent nodes to their children nodes are scheduled based on the

colors of the parent nodes. This scheduling starts at time slot 0. At each layer Li, the

transmissions from the parent nodes for each node u ∈ Mi are scheduled and finally the

transmissions from the parent node of each w in Li \Mi are scheduled based on the coloring

of the nodes. The approximation ratio of OTAB is at most 17|T | where |T | is the number

of time slots in a scheduling period.

We compare the results of our algorithms with the existing algorithms CSCA [18] and an

adapted version of OTAB [22] named SDT(Shortest Delay Tree). We eliminate the phase

of resolving collisions from OTAB for the purpose of fair comparison with our proposed

algorithms.

30

2.2.2 Distributed Algorithms

Gu et al. proposed the distributed version of DSF in [11]. The centralized version of the

algorithm is discussed in Section 2.2.1. Initially, the sink node knows the values of EDR,

EED and EEC and it is 1 for EDR, 0 for EED and EEC. The distributed DSF algorithm

starts working by allowing the sink node to broadcast its EDR, EED and EEC values.

When a node receives these information it starts to calculate its own EDR, EED and EEC

utilizing the received information and determines the forwarding set for itself that optimizes

a particular metric using the proposed dynamic algorithms. If the change in new values of

EDR, EED and EEC exceeds a certain threshold compared to the old values of EDR, EED

and EEC, the node will broadcast the new values. This process continues at a node until it

does not receive any information about the updated expected values from all its neighbors.

The authors of [12] proposed a distributed flooding scheme for low-duty cycle wireless

sensor networks with unreliable communication links. They constructed an energy optimal

tree to reduce transmission redundancies and dissemination delay. The energy optimal tree

is constructed by allowing a smaller hop count node to transmit to a larger hop count

node, where every node selects only one incoming link that has the best link quality among

all its incoming links. These best quality links reduce the number of collisions as well as

retransmissions of messages. The authors proposed a recursive equation to compute the

distribution of forwarding delay for each node in a distributed way. From this a node u

determines its p-quantile delay Dp as its threshold value and shares it with all the neighbors.

If a node v has a packet to forward to u, it calculates Expected Packet Delay (EPD) and

compares with Dp. If EPD < Dp, the packet is delivered to u. In this way, a node u in

the tree can receive a packet from v that is not its parent in the tree as v can deliver the

packet faster than u’s parent. As the forwarding decision is distributed, it may happen that

two or more nodes decide to transmit to a single node and the sending nodes cannot hear

each other. To solve this problem a sender set for a given node is constructed where all

nodes can hear each other to avoid collision and a back off technique is proposed to avoid

collisions among the nodes in the sender set. Opportunistic flooding achieves significantly

31

shorter flooding delay and consumes less transmission energy as compared to an improved

version of traditional flooding implemented in duty cycled wireless sensor networks.

An adaptive algorithm to dynamically schedule message forwarding is proposed in [45].

It utilizes only local topology information and does not depend on global synchronization.

It exploits overhearing to reduce message costs. This algorithm obtains near-optimal per-

formance in terms of time and message costs and achieves high reliability.

Hong et al. [18] proposed the distributed version of CSCA algorithm described in 2.2.1.

In Distributed Set Covered Approximation (DSCA) algorithm every node is initially in idle

listening state and turns to duty-cycling mode when a trigger variable z is set from 0 to 1.

An i-dominator is a covering node for Ui and an i-dominatee is a node in Ui covered by

some i-dominator. The authors used the term ∗-dominator and ∗-dominatee to represent

any i-dominator and i-dominatee. In order to distributively implement the algorithm, the

i-dominator is elected from Ui. Each node has its 2-hop neighbor information. Initially,

all nodes are marked in white and then turned to blue if they become i-dominators or i-

dominatees. Every white node with active time slot i broadcasts the IamDominator(ID, i)

message and is marked blue if it has the most white neighbor nodes with active time

slot i among all its 1-hop white neighbors. A white node with active time slot i also

becomes an i-dominator and is marked blue if it has neither white neighbors with active

time slot i nor i-dominators. A white node with active time slot i becomes an i-dominatee

and is marked blue when it receives IamDominator(ID, i) message and broadcasts the

IamDominatee(ID, i) message. At the end, each node is a ∗-dominator or a ∗-dominatee

and all nodes in Ui are covered by i-dominators.

Next phase determines the connections among i-Dominators and s. A forwarding tree

H connecting all i-dominators and s is constructed by exchanging the INV/JOIN messages

for all i ∈ T . Each node maintains a local trigger variable z that is set from 0 to 1 after this

node joins H. The approximation ratio of the DSCA algorithm is a constant of at most

20. Both the time and the message complexities of the DSCA algorithm are O(n).

The Asynchronous Duty-Cycle Broadcasting (ADB) protocol for wireless sensor net-

works using asynchronous duty cycling is proposed in [43]. This protocol is integrated with

32

MAC layer to utilize the information available at this layer. It optimizes broadcast op-

eration at level of individual transmission of a node to a neighbor. ADB utilizes unicast

transmission to every neighbor and waits for an acknowledgment from the receiving node.

It uses a receiver- initiated mechanism to prevent a node from occupying the medium for

too long a time. Whenever a neighbor wakes up, it sends a beacon message. After receiving

the beacon message the node can send the data packet. While a node is waiting for the

beacon before transmitting data, the medium can be utilized by the neighbors of the node

that already received the packet to transmit to their neighbors in order to reduce delivery

latency. ADB efficiently incorporates the progress of broadcast operation with the data

packet to reduce number of transmissions by a node. It makes use of the best quality link

to reduce energy consumption, delivery latency and to increase delivery ratio.

Thus ADB has certain properties making it energy efficient, reduce delivery latency and

increase delivery ratio. They are:

1. ADB allows a node to go to sleep as soon as all its neighbors are reached or delegated

to other nodes.

2. It avoids transmissions on poor links.

3. It prevents a node to occupy the medium for long time.

4. When a node wakes up, it is informed about the progress of broadcast with the data

packet to avoid unnecessary waiting and transmissions.

The authors confirmed through experiments that ADB is highly energy efficient, reduces

network load and delivery latency while achieving 99% delivery ratio.

Wang et al. [46] proposed the distributed version of finding shortest path in time-

coverage graph. The centralized version of the algorithm is discussed in 2.2.1. From

the solution of the centralized algorithm the authors derived an efficient and scalable dis-

tributed algorithm that utilizes local information and is associated with loss compensation

techniques. For each sensor node this algorithm will determine the optimal forwarding

sequence covering its 2-hop neighbors. Each node w determines CovSet consisting of its

33

1-hop and 2-hop neighbors known by w being covered by at least one forwarding. When

w forwards a message or overhears a neighbor is doing so will update the CovSet. The

centralized dynamic programming algorithm is modified so that every node w starts from

the row with index equal to its CovSet and the index of the last row will contain only the

node w and its 1- and 2-hop neighbors.

From simulations it is observed that the distributed algorithm achieves a near optimal

performance and its time cost as well as the message cost is very close to the lower bound

of the time cost and the message cost. Its computation and control overheads both scale

well with the network size and density. It is also robust against wireless losses and cope

well with different duty-cycles.

Stann et al. [40] proposed the Robust Broadcast Protocol (RBP) to improve the relia-

bility of the broadcast operation while maintaining energy efficiency. This protocol requires

only local information. It makes a single broadcast more reliable and hence decreases the

frequency with which an upper layer protocol needs to invoke flooding. Thus better reli-

ability of the broadcast operation improves the energy consumption. In RBP, every node

knows its 1-hop neighbors. RBP generates a unique identifier when a new broadcast mes-

sage is initiated. It must understand when broadcasts by different nodes correspond to the

same flood. When a node hears a broadcast for the first time, it retransmits the packet

unconditionally. When other neighbors also transmit the same packet, the node keeps track

of which neighbors have broadcasted the packet. RBP considers the transmission by a

neighbor as an implicit ACK. When the number of implicit ACKs observed by a node falls

below a predetermined threshold, a node will again retransmit the packet. A receiver also

sends an explicit unicast ACK when it hears a repeated broadcast from the same sender.

RBP can switch a node from broadcast mode to unicast in order to reduce the number of

packet transmissions. RBP adjusts both the retransmission thresholds and the number of

retries based on neighborhood density. Higher density in the neighborhood implies lower

thresholds and fewer retries as other neighbors are likely to broadcast the same packet.

RBP can identify important links that bridge between dense clusters of nodes with sparse

area of nodes. Often there can be a node v at the edge of the dense area with large number

34

of neighbors but v alone provides traffic to the sparse area. RBP identifies such links and

always ensures reliability for these links.

Experimental results show 99.8% reliability is achieved with overhead less than 48% as

compared to the level of flooding required to get the same reliability.

Lu et al. [31] proposed two localized algorithms to find a sleep schedule that will minimize

end-to-end delay in networks with all-to-all communications. In the first algorithm, a node

only knows the slot assignments of its immediate neighbors and selects one slot for itself that

will minimize the maximum delay to and from its 1-hop neighbors. This process is repeated

several times. The second algorithm works in similar fashion as the Distance Vector routing

technique. Each node maintains a forward vector table FDV which stores its shortest delays

to all other nodes and a backward table BDV which stores its shortest delays from all other

nodes. These two tables can be calculated using the basic Bellman-Ford technique. A sensor

node knows the DV tables of its immediate neighbors and calculates the DV tables for all

possible new slot assignments for itself. The maximum value of entries in the sets of the

two DV tables over all possible slot assignments is denoted by maxd. The node selects the

slot which gives the minimum maxd. In the randomized algorithm, a slot for each node

is selected randomly and the delay diameter of the network is determined. After a fixed

number of iterations, every node selects a time slot that gives the minimum delay diameter.

The proposed heuristics are evaluated through simulations. It is found that the performance

of the localized heuristics is worse than the above simple randomized slot allocations, while

the centralized scheme provides more delay reductions over randomized schemes.

2.2.3 Differences with Our Work

Due to energy constrained nature of WSNs, broadcast algorithms for the duty cycled wireless

sensor networks mainly focus on reducing the energy consumption. Various algorithms

put emphasis on various aspects in order to achieve this goal. The Algorithm in [18]

minimizes the number of node transmissions in uncoordinated duty cycled WSNs, while

the algorithm in [46] converts the broadcast problem into a shortest path problem in time-

coverage graph and saves energy by reducing forwarding cost and delay. The authors of [12]

35

reduces transmission redundancies and dissemination delay by building an energy optimal

tree where every node selects the best quality link with its parent in the tree. They also

provide a technique to avoid collisions. The ADB algorithm in [43] achieves energy efficiency

by allowing a node to go back to sleep as soon as all it neighbors are reached or delegated to

other node. Here a node remains active after receiving a packet until it goes back to sleep.

SLAC [17], ELAC [17] and OTAB [22] provide a collision free broadcast schedule that will

minimize the broadcast latency.

None of the above algorithms for duty cycled wireless sensor networks consider the issue

of minimizing the total number of additional active time units that nodes of a network

need to be active in order to accomplish the broadcast operation. In our work we prove

that the problem of reducing the total additional active time units for broadcast operation

is NP-Complete and we propose two polynomial time heuristic algorithms to address this

problem.

36

Chapter 3

Algorithms and NP-Completeness

Energy efficient broadcast operation in duty cycled WSNs can be achieved by reducing the

total number of additional active time units that the nodes of a network must be awake to

complete the broadcast operation. We call the problem of minimizing the total number of

additional active time units to accomplish a broadcast operation in a duty cycled WSN as

the Minimum Energy Broadcast Tree (MEBT) problem. We prove that the MEBT problem

is NP-Complete and propose two polynomial time heuristic algorithms to find suitable

solutions for it.

In this chapter we first present the NP-Completeness proof of MEBT problem that is

followed by the heuristic algorithms to address the MEBT problem. All of the algorithms

construct a spanning tree rooted at a source node to accomplish the broadcast operation

by minimizing the total additional active time units.

3.1 Definitions and Preliminaries

A Duty Cycled WSN is a triple G = (V,E,M) where V is the set of nodes in the network,

E ⊆ V × V is the set of links and Mu is the Wakeup Schedule of node u and is a binary

37

array of length n where,

Mu[i] =

⎧⎪⎨
⎪⎩

1 if node u is in active state in time unit i

0 otherwise

Our goal is to provide broadcast service with minimum energy consumption in duty cycled

WSNs. To accomplish this task usually a broadcast tree is constructed. A broadcast tree is

a directed spanning tree rooted at a source node such that a packet from the source node

can be sent to every other node in the network using the edges of the tree. Since a parent

node has to stay awake until it delivers the packet to all its children in the tree, the number

of active time units for the parent node is usually greater than that specified in its wakeup

schedule.

In other words, the broadcast tree dictates a new schedule for each node, which we call

the Broadcast Schedule. The broadcast schedule of a node is a binary array B of length nd

where, d is the depth of the tree. Let the extended wakeup schedule of a node be specified

by an array M ′
u of size nd, which consists of d consecutive copies of the wakeup schedule;

this specifies when the nodes would be awake in a time period of nd according to their

wakeup schedules. Suppose a node u receives the broadcast packet at time t0 and it has k

children in the broadcast tree. Let ti be the next time unit when a child vi is awake, then

the number of time units u will remain active is max{ti − t0|1 ≤ i ≤ k}. The broadcast

schedule for u is defined as follows:

BT (u, t) =

⎧⎪⎨
⎪⎩

1 if t0 ≤ t ≤ max1≤i≤kti

M ′
u(t) otherwise

It is easy to see that a parent delivers a packet to all its children within n time units after

receiving it. Clearly for any node u,
∑nd

i=0BT (u, i) ≥ ∑nd
i=0M

′
u[i]. We define the cost of a

broadcast tree T to be cost(T) =
∑N

u=1

∑nd
i=0(BT (u, i) − M ′

u[i]). In other words, the cost

of a broadcast tree is the total number of additional time units that the nodes in the tree

remain awake in order to accomplish the broadcast. The problem that we are interested

in is the Minimum Energy Broadcast Tree (MEBT) problem, that is: Given a duty cycled

38

network G = (V,E,M) and a source node s ∈ V , find a broadcast tree T rooted at s for G

such that cost(T) ≤ cost(T ′) for all broadcast trees T ′ for G.

In our experiments, we also consider additional cost measures that have been studied

previously such as the minimum number of node transmissions, the maximum delay and

average delay dictated by a broadcast tree.

3.2 NP-Completeness of MEBT Problem

In this section, we show that the decision version of the MEBT problem is NP-Complete.

Theorem 1. Given a duty cycled wireless sensor network G = (V,E,M) and a source node

s ∈ V , the problem of determining if there exists a broadcast tree for G rooted at s with cost

at most W is NP-complete.

Proof. Given a candidate broadcast tree T rooted at a source node, we can calculate the

cost and check whether it is greater than W in polynomial time. So the problem is in NP.

We consider a special case of the problem, where the wakeup schedule of each node consists

of 2 time units. We will show that the problem is NP-complete for this special case by

reducing the 1-in-3 SAT problem to it and thus also NP-complete for more general case.

Let the 1-in-3 SAT instance consist of n boolean variables x1,x2,. . . ,xn and m clauses

C1,C2,. . . ,Cm where Cj = yj,1
∨
yj,2

∨
yj,3 and the three literals yj,1,yj,2,yj,3 ∈ {x1, x1, x2, x2

. . . , xn, xn}, 1 ≤ j ≤ m. If the instance is satisfiable, then in each clause Cj , exactly one

of yj,l is true, while the other two literals are false, 1 ≤ j ≤ m, 1 ≤ l ≤ 3. We construct

the MEBT instance G = (V,E,M) corresponding to this 1-in-3 SAT instance. The vertices

and their wakeup schedules are specified as follows:

• There is a source node S0,0 where MS0,0 [1] = 1 and MS0,0 [2] = 0.

• For each boolean variable xi there are two corresponding nodes Si,1 and Si,2 and

MSi,j [1] = 1 and MSi,j [2] = 0, where, 1 ≤ i ≤ n, 1 ≤ j ≤ 2.

• For each boolean variable xi there is an additional node Xi with MXi [1] = 0 and

MXi [2] = 1, where, 1 ≤ i ≤ n.

39

Figure 4: G for variables x1, x2, x3 and C1 = x1
∨
x2

∨
x3, C2 = x1

∨
x2

∨
x3

• For each clause Cj , there is a corresponding node SCj andMSCj [1] = 0 andMSCj [2] =

1, where, 1 ≤ j ≤ m.

Now the set of edges E is constructed as follows:

• Every node Si,j is within the transmission range of S0,0, where, 1 ≤ i ≤ n, 1 ≤ j ≤ 2.

• Xi is within the transmission range of Si,1 and Si,2, where, 1 ≤ i ≤ n.

• SCj is within transmission range of Si,1 when xi is a literal of SCj , where, 1 ≤ i ≤
n, 1 ≤ j ≤ m. It is within transmission range of Si,2 when xi is a literal of SCj , where,

1 ≤ i ≤ n, 1 ≤ j ≤ m

A similar graph was used in [28] to address a different problem. Figure 4 shows G for 1-in-3

SAT instance consisting of variables x1, x2, x3 and C1 = x1
∨
x2

∨
x3, C2 = x1

∨
x2

∨
x3.

We claim that the MEBT instance has a broadcast tree of cost n if and only if the

original 1-in-3 SAT instance has a satisfying assignment.

Now suppose we are given a satisfying assignment of 1-in-3-SAT. We will construct

a directed broadcast tree T rooted at S0,0 such that the cost of T is no greater than n.

First we choose S0,0 as root. All edges < S0,0, Si,j > are included in T for all i, j so

40

Figure 5: Broadcast Tree of G with W = 3

that Si,j is able to receive packets sent by S0,0 in first time unit. Thus, BT (Si,j , 1) is 1,

1 ≤ i ≤ n, 1 ≤ j ≤ 2 and BT (S0,0, 1) = 1 and BT (S0,0, 2) = 0. For each boolean variable

xi, if it is true in the assignment, then < Si,1, Xi > is in T and BT (Si,1, 2) is 1 and ,

otherwise it is 0, 1 ≤ i ≤ n. On the other hand, if the value of xi in the assignment is

false, then < Si,2, Xi > is in T and BT (Si,2, 2) is 1, otherwise it is 0, 1 ≤ i ≤ n. BT (Xi, 1)

is 0 and BT (Xi, 2) is 1 in order to receive a packet from either Si,1 or Si,2, 1 ≤ i ≤ n.

Clearly, all Xi are reached. For a given clause Cj = yj,1
∨
yj,2

∨
yj,3, exactly one literal yj,l

is true, 1 ≤ j ≤ m, 1 ≤ l ≤ 3. If yj,l = xi is true in the assignment, then the directed

edge < Si,1, SCj > is included in T, 1 ≤ i ≤ n, 1 ≤ l ≤ 3, 1 ≤ j ≤ m and BT (Si,1, 2) and

BT (SCj , 2) are 1. Otherwise if yj,l = xi is true in the assignment, then the directed edge

< Si,2, SCj > is in T, 1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ l ≤ 3 and BT (Si,2, 2) and BT (SCj , 2) are 1.

T is a spanning tree rooted at S0,0 as it is acyclic and connects all the nodes. BT (S0,0, 1)

and BT (Si,j , 1) are 1 as Si,j will receive packets from S0,0 at the first time unit, 1 ≤
i ≤ n, 1 ≤ j ≤ 2. BT (Si,j , 2) of n Si,j is 1 in order to send the message to Xi and

SCk, 1 ≤ i ≤ n, 1 ≤ j ≤ 2, 1 ≤ k ≤ m. So, the cost of T is n. Figure 5 shows the broadcast

tree of cost 3 for G in Figure 4 corresponding to the assignment x1 = T , x2 = F and x3 = T .

Now suppose there is a broadcast tree T rooted at S0,0 with cost no greater than n. We

41

want to show that we can derive a satisfying assignment for the 1-in-3 SAT instance. First

observe that since T is a directed spanning tree, and since every Xi is connected only to

Si,1 and Si,2 in the graph, exactly one of the links (Si,1, Xi) and (Si,2, Xi) must be present

in the tree, where 1 ≤ i ≤ n. Since both Si,1 and Si,2 are only awake in the first time unit,

and Xi only in the second, the presence of these links alone gives a cost of n to the tree.

Therefore, any other links in the tree must come for free; they must not add any cost to the

tree. Therefore, the parent of any node SCj in the tree must be a node Si,1 or Si,2 that is

also the parent of its corresponding Xi, where 1 ≤ i ≤ n,1 ≤ j ≤ m. That is, if (Si,1, SCj)

is a link in the tree, then (Si,1, Xi) is present as well.

To obtain a satisfying assignment now is easy. For each i, if (Si,1, Xi) is in the tree,

then the corresponding variable xi in the 1-in-3 SAT instance is assigned the value True,

otherwise (Si,2, Xi) is in the tree, and xi is assigned the value False, 1 ≤ i ≤ n. Clearly this

is a valid assignment. Finally, since T is a directed spanning tree, every SCj has exactly

one incoming link, 1 ≤ j ≤ m. If the incoming link is from a node Si,1, then the literal xi

is in the clause Cj , 1 ≤ i ≤ n, 1 ≤ j ≤ m. Recall that in this case, the edge it has been

assigned the value True, the clause will be satisfied. On the other hand, if the incoming

link is from a node Si,2, then the literal xi is in the clause Cj , 1 ≤ i ≤ n, 1 ≤ j ≤ m. Since

in this case, the variable xi has been assigned False, the clause will be satisfied. Thus we

have a satisfying assignment with exactly one true literal per clause as required.

3.3 Algorithms

In this section we present our polynomial time algorithms to find a broadcast tree with low

cost. We will use a simple duty cycled WSN G to describe the operation of our proposed

algorithms. The duty cycled WSN G used for this purpose is shown in Figure 6. It consists

of 11 nodes. The length of the wakeup schedule is 6 and every node is active for exactly

one time unit in this schedule. The nodes are labeled starting from a. We select node a as

the source node responsible for initiating the broadcast operation.

42

Figure 6: Example of a duty cycled WSN G used to illustrate algorithms

3.3.1 Spanning Tree with Incremental Cost (STIC) Algorithm

We propose a new algorithm Spanning Tree with Incremental Cost (STIC) that is similar

to Prim’s algorithm for minimum cost spanning tree [35], and differs only in that the costs

of edges are dynamically updated. It is important to note that our algorithm creates

a spanning tree of the original graph, but not necessarily a minimum spanning tree. A

similar idea was used in [49], but with a different notion of cost. As in Prim’s algorithm,

we iteratively add the lowest cost node to the tree, starting with the root node. The cost of

an edge (u, v) is initialized to w(u, v) = t′ − t (mod n), where t and t′ are the active time

units of u and v respectively and the subtraction is done in modulo n arithmetic. However,

when a node is added to the tree, the number of additional time units that its parent u

needs to stay awake in order to transmit the message to its other children, say v not yet in

the tree is reduced.

43

Algorithm 1 STIC Algorithm for Broadcast Tree Construction

Input: Duty cycled WSN G = (V,E,M) and source s ∈ V
Output: Broadcast Tree T

for all u ∈ V do
key(u) ← ∞
active(u) ← 0

end for
for all (u, v) ∈ E do

calculate w(u, v)
w′(u, v) ← w(u, v)

end for
key(s) ← 0
Q ← V
T ← ∅
while Q �= ∅ do

v ← EXTRACT MIN(Q)
T = T ∪ {v}
if v �= s and u is parent of v in T then

active(u) = active(u) + w′(u, v)
for all (u, x) ∈ E and x /∈ T do

w′(u, x) ← w(u, x) - active(u)
if key(x) > w′(u, x) then

key(x) ← w′(u, x)
end if

end for
end if
for all y ∈ Adj(v) do

if y ∈ Q and w′(v, y) < key(y) then
key(y) ← w′(v, y)

end if
end for

end while

The cost of those edges is therefore updated to w′(u, v) = w(u, v) − active(u), where

active(u) is the number of time slots for which u was already active. In every iteration, an

edge with lowest w′(u, v) is added into T . When an edge (u, v) is added to the broadcast

tree, the cost of u’s edges to its other neighbors not in T changes and is updated accordingly

before proceeding to the next iteration. This process continues until all nodes are in T . A

broadcast schedule is dictated by the tree and the cost is computed. The complexity of the

algorithm is O(m lgN) when G is sparse and it is O(N2) when G is dense, where N is the

44

number of nodes and m is the number of edges.

On our example network of Figure 6, STIC starts with node a and constructs T in a

number of steps. The construction of T is shown in Figures 7, 8, 9, 10, 11 and 12.

To conveniently illustrate the procedure to generate the tree, each node u is labeled with

key(u)/active(u) inside the circle whereas each edge (u, v) is labeled with w(u, v)/w′(u, v).

A bold directed arrow from u to v indicates that (u, v) is included into T . The construction

process is described below:

1. In Figure 7(b), initially key(a) = 0 and thus node a is added into T . Node b and

c are adjacent to a and key(c) and key(b) are updated to 5 and 1, respectively as

w(a, b) = w′(a, b) = 1 and w(a, c) = w′(a, c) = 5.

2. As shown in Figure 8(a), node b is extracted as (a, b) is the lowest cost edge with

w′(a, b) = 1 and active(a) becomes 1 as 1 is added to its previous value. Node a is the

parent of c and thus w′(a, c) becomes 4 as w′(a, c) = w(a, c) − active(a) = 5− 1 = 4

and key(c) is updated to 4. Node d is adjacent to b and thus key(d) becomes 1 as

w′(b, d) is 1.

3. In Figure 8(b), node d is selected to be included into T as (b, d) is the lowest cost

edge and active(b) becomes 1. As there are no more edges incident to b, there is no

update of w′. Node i is adjacent to d and key(i) becomes 1 as w′(d, i) is 1.

4. As shown in Figure 9(a), edge (d, i) is the lowest cost edge and thus i is added into

T and active(d) becomes 1. Node g and j are adjacent to i and key(g) and key(j)

are updated to 3 and 1, respectively as w′(i, g) = 3 and w′(i, j) = 1.

5. As shown in Figure 9(b), node j is included into T as (i, j) is the lowest cost edge

and active(i) becomes 1. Node i is the parent of g and thus w′(i, g) becomes 2 as

w′(i, g) = w(i, g) − active(i) = 3 − 1 = 2 and key(g) becomes 2. Node k and f are

adjacent to j and thus key(k) and key(f) become 1 and 2, respectively.

6. In Figure 10(a), Node k is added into T as key(k) = 1 and active(j) becomes 1. As j

is parent of f , w′(j, f) as well as key(f) become 1. Node e is adjacent to k and key(e)

45

is updated to 1 as w′(k, e) is 1.

7. As shown in Figure 10(b), key(f) and key(e) are both 1. To break the tie, we

arbitrarily select node e to add into T . Thus edge (k, e) is included into T and

active(k) becomes 1. Node c is adjacent to e but key(c) < w′(e, c) as w′(e, c) = 5 and

key(c) = 4 and hence key(c) retains the current value.

8. In Figure 11(a), Now node f is added into T as (j, f) is the lowest cost edge and

active(j) becomes 2. As key(c) < w′(f, c), key(c) retains the current value.

9. As depicted in Figure 11(b) node g is added into T as (i, g) is the lowest cost edge

and active(i) becomes 3. As key(c) < w′(g, c), key(c) does not change the current

value.

10. As shown in Figure 12(a) node c is included into T as (a, c) is the lowest cost edge

and active(a) becomes 5. As h is the only neighbour of c not in T , key(h) becomes 2.

11. Finally in Figure 12(b) node h is added into T and active(c) becomes 2.

The final cost of T is obtained by adding up the active(u) for all u ∈ V and cost(T)=15 for

this example.

46

(a)

(b)

Figure 7: Construction of T with STIC algorithm with cost(T)=15

47

(a)

(b)

Figure 8: Construction of T with STIC algorithm with cost(T)=15

48

(a)

(b)

Figure 9: Construction of T with STIC algorithm with cost(T)=15

49

(a)

(b)

Figure 10: Construction of T with STIC algorithm with cost(T)=15

50

(a)

(b)

Figure 11: Construction of T with STIC algorithm with cost(T)=15

51

(a)

(b)

Figure 12: Construction of T with STIC algorithm with cost(T)=15

52

3.3.2 MST Edmonds Algorithm

This algorithm is based on Edmonds’ algorithm for finding the minimum cost spanning tree

in a directed graph [10]. We calculate the cost of the edges based on the active time units

of the nodes. We consider the wireless sensor network G = (V,E,M) as a directed graph

and proceed through the following steps:

1. Weight Calculation: As in the STIC algorithm, the cost of an arc (u, v) is calculated

as w(u, v) = t′ − t (mod n), where t and t′ are the active time units of u and v

respectively and the subtraction is done in modulo n arithmetic.

2. Initialization: All the incoming arcs into s are discarded and for every node u other

than s, its lowest cost incoming arc is selected as its only incoming arc. This set of

N − 1 arcs is denoted by S.

3. Contraction of Nodes: If S does not contain any cycle, then S is the desired

broadcast tree. Otherwise, for each cycle C, all the nodes involved in C, are replaced

by a pseudo-node p(C) in G and the resulting graph is denoted by G′. Let x(C) be the

cost of the minimum cost arc in C. The weight of each arc which enters a node j in C

from some node i outside C is modified as w(i, p(C)) = w(i, j)−(w(pred(j), j)−x(C)),

where pred(j) is the predecessor of j in C. We recursively call the algorithm on G′.

4. Extraction of Nodes: Given the broadcast tree S′ that is the output of the recursive

call, each pseudo-node v in S′ is replaced by the nodes involved in the original cycle

corresponding to v. The arc (i, v) in the tree S′ corresponds to an arc (i, x) in the

original graph G where x ∈ C. We include the arc (i, x) in S and remove the incoming

arc into x in the cycle C. This ensures that S is a tree.

After constructing broadcast tree T , the broadcast schedule is determined and the cost is

calculated. The complexity of the algorithm is O(mlogN) for sparse graphs and O(N2) for

dense graphs. The pseudocode of the algorithm is shown in Algorithm 2.

53

Algorithm 2 MST Edmonds Algorithm for Broadcast Tree Construction

Input: Duty cycled WSN G = (V,E,M) and source s ∈ V
Output: Broadcast Tree S

procedure Initialization
for all (u, v) ∈ E do

w(u, v) ← t′ − t (mod n)
end for
Discard all the incoming arcs into s

end procedure

procedure Contraction Node(G)
S ← 0
for all u ∈ V and u �= s do

Select (v, u) with lowest w(v, u)
pred(u) ← v
S ← S ∪ {(v, u)}

end for

if S does not contain any cycle then
return S;

else
G′ ← G
for all Cycles C ∈ S do

x(C) ← Cost of min cost arc in C
Remove C and all incident arcs from G′

Replace C with a pseudo-node p(C)
cycle(p(C)) ← C
for all (u, v) ∈ E where u ∈ C and v /∈ C do

Add (p(C), v) to G′

w(p(C), v) ← w(u, v)
replace(p(C), v) ← (u, v)

end for
for all (u, v) ∈ E where v ∈ C and u /∈ C do

Add an edge (u, p(C)) to G′

org(u, p(C)) ← (u, v)
w(u, p(C)) = w(u, v)− (w(pred(v), v)− x(C))

end for
end for
S ←Contraction Node(G′)

end if
end procedure

54

Algorithm 2 MST Edmonds Algorithm for Broadcast Tree Construction

procedure Extraction Node(S)
if S does not contain any pseudo-node then

return S;
else

for all pseudo-nodes v ∈ S do
Replace v by cycle(v)
(i, j) ← org(u, v)
Replace (u, v) by (i, j)
Remove (pred(j), j) from S
for all (v, y) ∈ S do

(w, x) ← replace(v, y)
Replace (v, y) with (w, x)

end for
end for
S ← Extraction Node(S)

end if
end procedure

procedure Main
Initialization();
S ← Contraction Node(G);
S ← Extraction Node(S);

end procedure

We illustrate the MST Edmonds algorithm on our example of Figure 6. The directed

graph representation of G for this example is shown in Figure 13(a). All the incoming arcs

into node a are discarded and for every other node u ∈ V both the incoming and outgoing

arcs are considered. The cost of an arc (u, v) is calculated as w(u, v) = t′−t (mod n), where

t and t′ are the active time units of u and v respectively. For an example, node a is active

at time unit 1 and node c is active at time unit 6 and thus w(a, c) = (6− 1) (mod 6) = 5.

During the initialization phase, every node except a selects the lowest weight incoming arc

as its only incoming arc. The resulting graph is denoted as S and is shown in Figure 13(b).

To distinguish between a cycle and corresponding pseudo-node, we represent a cycle of k

nodes vi, i = 1, . . . , k by [v1, v2, . . . , vk] and the pseudo-node replacing the cycle is named

{v1, v2, . . . , vk}. As shown in Figure 13(b), S contains a cycle [c, h] and thus it enters into

contraction phase. Node c and h are contracted and replaced with pseudo-node {c, h}. Then
cycle({c, h}) is updated to [c, h] and x(C) is set to 2 as it is the minimum weight of the arcs

55

in [c, h] and org(a, {c, h}) is updated to (a, c) and w(a, {c, h}) becomes 3 as w(a, {c, h}) =
w(a, c)−(w(pred(c), c)−x(C)) = 5−(4−2) = 3. Again, org(g, {c, h}) is updated to (g, c) and

w(g, {c, h}) becomes 3 as w(g, {c, h}) = w(g, c)− (w(pred(c), c)− x(C)) = 5− (4− 2) = 3.

Similarly, org(f, {c, h}) is updated to (f, c) and org(e, {c, h}) is updated to (e, c). The

weights w(f, {c, h}) and w(e, {c, h}) are updated to 3. Arc (c, e) ∈ G is replaced with

({c, h}, e) ∈ G′ with w({c, h}, e)=w(c, e)=1. Similarly, (c, f) and (c, g) is replaced with

({c, h}, f) along with w({c, h}, f) = 1 and ({c, h}, g) with w({c, h}, g) = 1, respectively.

Then replace({c, h}, e), replace({c, h}, f) and replace({c, h}, g) are updated to (c, e), (c, f)

and (c, g), respectively. The resulting intermediary graph G′ is shown in Figure 14(a). S′

is obtained from G′ by selecting the lowest cost incoming arc for every node u ∈ V except

a. S′ is shown in Figure 14(b) and as it does not contain any cycle, the algorithm enters

into extraction phase.

In the extraction step, pseudo-node {c, h} is replaced with cycle({c, h}) = [c, h] that is

with node c and h. Arc (a, {c, h}) is replaced with org(a, {c, h}) that is (a, c) with w(a, c) =

5. Then (pred(c), c) that is (h, c) is removed and ({c, h}, e), ({c, h}, f) and ({c, h}, g) are

replaced with replace({c, h}, e) = (c, e), replace({c, h}, f) = (c, f) and replace({c, h}, g) =
(c, g), respectively. As resulting S does not contain any cycle, S is the broadcast tree T

with cost(T) = 11. Broadcast tree T is shown in Figure 15. Active time units for each

node are shown in ().

3.3.3 The Sweep Operation

In this section, we show how to reduce the cost of T constructed by all of the algorithms

using a sweep operation which consists of scanning the nodes and making local adjustments

to the tree. A similar idea was used in [51] to adjust transmission powers of nodes in a

previously constructed solution.

The main idea of our sweep operation is to scan the nodes of T in some pre-specified

order. When a node u is scanned, we check for each node v that can be reached from u

without increasing the active time of u, whether making u the parent of v will decrease

the cost of the tree. To avoid creating a loop, this process excludes the nodes between

56

(a) Directed graph representation of G = (V,E,M)

(b) S contains a cycle [c, h]

Figure 13: Construction of T with MST Edmonds algorithm with cost(T)=11

57

(a) Intermediate graph G′ after contracting node c and h

(b) S′ obtained from G′

Figure 14: Construction of T with MST Edmonds algorithm with cost(T)=11

58

Figure 15: S as well as broadcast tree T obtained after extraction phase

u and s in T . Clearly, this process may decrease the cost of T but never increases its

cost. The complexity of the sweep operation is O(N2), where N is the number of nodes.

The sweep operation can be applied multiple times, but experiments show that significant

improvement is achieved at the first application and repeating sweep rarely improves the

result. The order in which nodes are scanned can have an effect on the result. We consider

five different node orderings:

• Increasing order of node ID (sweep): Nodes are arranged in the ascending order of

their IDs and scanned in this order.

• BFS order of nodes (bfs): We start with s and scan the nodes at distance k from s

before the nodes at k + 1.

• Bottom up order of nodes (buo): We start with nodes at the next to the bottom level

and gradually move toward s.

• Decreasing order of active time units (dec): Nodes are sorted in descending order of

the active time units associated with them and scanned in this order during the sweep

59

operation.

• Increasing order of active time units (inc): Nodes are sorted in ascending order of

active time units associated with them and then scanned accordingly in the sweep

operation.

A sweep operation using any of the above orderings can be performed on the broadcast

tree produced by any algorithm. We denote a broadcast tree algorithm augmented by a

particular type of sweep by Algorithm sweeptype. For example, the MST Edmonds algo-

rithm augmented by a sweep in order of increasing order of active time units (inc) is called

MST Edmonds inc.

We illustrate the sweep operation on T generated by STIC algorithm as shown in Fig-

ure 16(a). Each node u is labeled inside the circle with the additional active time units

for which it is awake. We consider the increasing node ID version of the sweep opera-

tion(STIC sweep) that is, nodes are scanned in increasing order of node ID starting with

node a. Node a and b do not cause any improvement to cost(T). Node c has to stay awake

2 time units to send messages to node h as it is the only parent of h. During this active

time period, it can also transmit messages to node e, f and g (as shown in Figure 16(a), e,

f and g are shaded to indicate that they are in transmission range of node c). By making c

the parent of e, f and g we can eliminate 1 active time unit from k (the previous parent of

e), 1 time unit from j (the previous parent of f) and 2 time units from i (previous parent

of g). Thus it reduces 4 time units without increasing the number of time units that node

c needs to be active. No other nodes of T cause any improvement of cost(T). Thus the

sweep operation improves the cost by 4 time units. The cost of the final broadcast tree T

is 11 in this example.

60

(a) Broadcast tree T with cost(T) = 15 constructed by STIC

(b) Broadcast tree T with cost(T) = 11 after the Sweep Operation

Figure 16: Sweep Operation on T

61

Chapter 4

Experimental Results

In this chapter, we present the performance analysis of our proposed algorithms. We con-

ducted extensive simulations in order to compare the performance of the proposed algo-

rithms with two existing algorithms for broadcasting named CSCA [18] and SDT [22]

described in Chapter 2. The main performance metrics used were the average number

of additional active time units per node, the distribution of energy usage over the nodes,

the number of node transmissions and the maximum and average delay of the broadcast

operation.

In all our simulations, we used Java Platform (JDK 6 update 14). We generated networks

where the nodes were distributed uniformly at random in a geographic area of 200 by 200.

We considered networks with the number of nodes 50, 100, 150, 200, 250, 300, 350 and 400.

The number of nodes in a network is denoted by N . For each value of N , we generated

1000 connected graphs and they were stored in a file. For each value of N , the same graphs

were used across all simulations. All the results in this chapter are averaged over 1000

topologies. We used the density measures of 8, 10 and 12. Given the node density measure

we calculated the transmission range of a node for each value of N . Two nodes are adjacent

if and only if their Euclidean distance is less than or equal to the transmission range. For

each topology, a source node which is responsible for initiating the broadcast message is

selected at random. Every node in the network is accompanied with a wakeup schedule

which is a binary array of fixed length. We used the schedule length sch len of 5, 10, 15

62

Figure 17: Average no. of additional active time units per node at node density 8 for all
values of sch len and N = 400

and 20 in our experiments and assigned a single randomly chosen element of the array to

be 1 while other elements are assigned to be 0. This corresponds to a node being active for

a single unit of time during the schedule.

4.1 Performance Comparison of all Algorithms without Sweep

Operation

In this section we analyze the performance of our algorithms, STIC and MST Edmonds as

well as CSCA [18] and SDT [22] without applying the sweep operation. The results are

described in the following subsections.

4.1.1 Average Number of Additional Active Time Units per Node

For each algorithm we determined the total additional active time units the nodes of a

network need to be active in order to carry out the broadcast operation. This value excludes

the scheduled active time slot for every node. The total value is then divided by the number

63

(a) node density 10

(b) node density 12

Figure 18: Average no. of additional active time units per node for all values of sch len
and N = 400

64

Table 1: Average Additional Active Time Units per Node with respect to MST Edmonds
for N=400 and sch len=20

Node Density STIC MST Edmonds CSCA SDT

8 1.06 1.00 1.10 1.49

10 1.09 1.00 1.15 1.65

12 1.10 1.00 1.18 1.78

of nodes in a network to obtain the average number of additional active time units per node.

Both of our proposed algorithms STIC and MST Edmonds reduce the average number of

additional active time units per node as compared to CSCA and SDT, while MST Edmonds

produces a slightly better result. The SDT algorithm shows the worst performance among

all the algorithms. Our results are illustrated in Figures 17 to 18 for N=400. As can be

seen from Figure 17, at node density 8 for sch len=20, the average additional active time

units per node for STIC and MST Edmonds are 4.5800 and 4.3150, respectively which in

turn indicate that on average, a node has to stay awake additional time which is about

23% and 22% of the schedule for the STIC algorithm and for the MST Edmonds algorithm,

respectively. On the other hand, CSCA and SDT cause a node to be alive for about 24% and

32% of the schedule, respectively for the same value of sch len. All the algorithms reduce

the additional active time units per node to a greater extent with the higher values of node

density. For example, as depicted in Figure 18(b), at node density 12 for sch len=20,

the average additional active time units per node for STIC, MST Edmonds, CSCA and

SDT are 3.3400, 3.0325, 3.5900 and 5.4050, respectively. That is at node density 12 a node

needs to be active only about 17% and 15% of the schedule for STIC and MST Edmonds,

respectively. A node has to stay active for about 18% of the schedule for CSCA while SDT

causes a node to be active for about 27% of the schedule. Both CSCA and SDT produce

larger percentage of additional active time units per node compared to MST Edmonds and

STIC and these percentages are gradually increased with higher values of node density.

The normalized results with respect to MST Edmonds for N=400 and sch len=20 are

shown in Table 1. For example, at node density=12, on average, STIC produces about

10% more additional active time units compared to MST Edmonds while CSCA produces

65

Figure 19: Distribution of Energy Usage at node density = 12 when N=400 and sch len =
15

about 18% and SDT generates about 78% more additional active time units compared to

MST Edmonds.

4.1.2 Energy Distribution

Another performance measure of broadcast algorithms is the distribution of energy usage.

Even if the average energy spent by nodes is reasonable, if there are many nodes with high

energy expenditure, then the network can be disconnected or become inoperational. We

determined the percentage of nodes that are active more than or equal to t for all values of

t in the schedule. In this section, we describe our results of energy usage with respect to

N=400 and sch len=15 as the results for other values of sch len are similar. We present

the results for node density 8, 10 in Tables 2 and 3, respectively and node density 12 in

Table 4 as well as in Figure 19. As shown in Table 4, at node density 12, about 13.27%

and 23.28% of nodes have active time units of 14 for the CSCA and SDT algorithms,

respectively. On the other hand, STIC produces about 8.02% nodes with active time units

of 14 while MST Edmonds generates about 2.20% of nodes with active time units of 14.

66

Table 2: Distribution of Energy Usage at node density 8 when N=400 and sch len=15

Active Time Units STIC MST Edmonds CSCA SDT

0 100.00000 100.00000 100.00000 100.00000

1 37.45375 54.50875 37.81975 40.89400

2 28.11625 29.19375 31.92225 37.88975

3 25.52300 24.79075 28.37175 35.96775

4 24.81825 23.39550 26.30975 34.86325

5 24.59300 22.83925 25.14850 34.28600

6 24.47625 22.55425 24.53900 33.99200

7 24.37725 22.34225 24.19575 33.79875

8 24.24950 22.09725 23.98600 33.67450

9 24.00000 21.69450 23.80925 33.54725

10 23.52275 20.94850 23.59575 33.34450

11 22.62775 19.55375 23.23825 32.96025

12 20.93925 16.85025 22.50150 32.19600

13 18.08875 12.35825 20.97300 30.67075

14 13.91800 6.59100 17.59275 27.30050

Thus, the MST Edmonds algorithm achieves significant improvement in reducing number

of nodes with highest possible active time units. At node density 12, STIC produces about

3.65 times more nodes with active time units 14 as compared to MST Edmonds. On the

other hand, CSCA generates about 6.04 times and SDT produces about 10.60 times more

nodes with active time units 14 than that of the MST Edmonds algorithm.

As shown in Table 4, at node density 12, about 17.78%, 15.76%, 18.25% and 28.43%

of nodes have active time units of 7 for the STIC, MST Edmonds, CSCA and SDT algo-

rithms, respectively. CSCA, SDT and STIC produce about 1.16, 1.8 and 1.13 times more

nodes with active time units of 7, respectively compared to MST Edmonds. STIC exhibits

almost identical performance to CSCA at node density 8 for active time units of 7 but its

performance improves with higher node densities and at node density 12, CSCA generates

about 1.03 times more nodes than the STIC algorithm.

For all node densities at N=400 with sch len=15, the percentage of nodes with active

time units 14 generated by all the algorithms is divided by the percentage of nodes with

active time units 14 for MST Edmonds and the result is presented in Table 5. A similar

result for the percentage of nodes with active time units of 7 for all algorithms are shown in

67

Table 3: Distribution of Energy Usage at node density 10 when N=400 and sch len=15

Active Time Units STIC MST Edmonds CSCA SDT

0 100.00000 100.00000 100.00000 100.00000

1 34.25550 49.65250 32.92550 36.96125

2 24.09050 23.90775 27.71600 34.43300

3 21.43850 20.36300 24.58850 32.85200

4 20.84225 19.33750 22.72950 31.91725

5 20.66725 18.90950 21.67150 31.41850

6 20.57775 18.67575 21.08975 31.13300

7 20.48750 18.49650 20.76725 30.97550

8 20.35225 18.26925 20.57025 30.86700

9 20.09375 17.86750 20.41300 30.75500

10 19.58650 17.11825 20.22425 30.58350

11 18.64175 15.69600 19.90550 30.23900

12 16.89850 12.99275 19.26050 29.56425

13 14.11125 8.68975 17.93850 28.17675

14 10.45925 3.82150 15.03250 25.17275

Table 4: Distribution of Energy Usage at node density 12 when N=400 and sch len=15

Active Time Units STIC MST Edmonds CSCA SDT

0 100.00000 100.00000 100.00000 100.00000

1 32.11250 45.54600 29.22275 33.57350

2 21.30500 20.15525 24.64050 31.41275

3 18.64075 17.27875 21.87325 30.06450

4 18.07650 16.45000 20.13850 29.25350

5 17.92975 16.11175 19.12450 28.79700

6 17.86925 15.92300 18.56825 28.57275

7 17.77875 15.76350 18.25325 28.43300

8 17.63875 15.54050 18.06525 28.33825

9 17.35225 15.13675 17.92775 28.23750

10 16.83075 14.37850 17.77125 28.08600

11 15.87100 12.95975 17.49675 27.81300

12 14.07800 10.26050 16.96275 27.19850

13 11.34825 6.18925 15.81425 25.96175

14 8.02375 2.19675 13.27450 23.28275

68

Table 5: Percentage of Nodes with active time units 14 with respect to MST Edmonds
when N=400 and sch len=15

Node Density STIC MST Edmonds CSCA SDT

8 2.11 1.00 2.67 4.14

10 2.74 1.00 3.93 6.59

12 3.65 1.00 6.04 10.60

Table 6: Percentage of Nodes with active time units 7 with respect to MST Edmonds when
N=400 and sch len=15

Node Density STIC MST Edmonds CSCA SDT

8 1.09 1.00 1.08 1.51

10 1.11 1.00 1.12 1.67

12 1.13 1.00 1.16 1.8

Table 6. It is observed that MST Edmonds makes considerable improvement with respect

to other algorithms in reducing percentage of nodes with highest possible active time units

and this improvement increases with the higher values of node density. Similarly, it also

makes moderate improvements in reducing the percentage of nodes with active time units

of 7. Furthermore, these improvements are greater at higher node densities.

4.1.3 Number of Node Transmissions

In this section, we study the number of node transmissions needed by our heuristic algo-

rithms as well as by the existing algorithms CSCA and SDT for the broadcast operation.

In our experiments, the schedule length did not significantly affect the results for a given

node density and thus we describe our results for sch len=20. CSCA generates the min-

imum number of messages and this is expected as CSCA was designed to minimize the

number of node transmissions. Our proposed algorithms are second next to CSCA as they

minimize the number of node transmissions significantly with MST Edmonds producing

the best result. Although the results generated by STIC and MST Edmonds are similar

for lower values of N , the difference becomes more noticeable for larger values of N . As

depicted in Figure 20, at node density 12 for N=400, MST Edmonds, STIC and SDT

generate number of node transmissions that is about 25%, 34% and 57% more than that of

CSCA, respectively. A similar pattern of performance is observed for node density 8 and

69

Figure 20: Total number of node transmissions at node density 12 for sch len = 20

10 as depicted in Figure 21. The number of node transmissions with respect to CSCA for

all algorithms are shown in Table 7 for all node densities when N=400 and sch len=20. It

is observed that all the algorithms produce more node transmissions compared to CSCA,

and this effect increases with higher values of node density while SDT generates the worst

performance.

Table 7: Total Number of Node Transmissions with respect to CSCA when N=400,
sch len=20

Node Density STIC MST Edmonds CSCA SDT

8 1.26 1.21 1.00 1.39

10 1.29 1.23 1.00 1.48

12 1.34 1.25 1.00 1.57

70

(a) node density 10

(b) node density 8

Figure 21: Total number of node transmissions for sch len = 20

71

Figure 22: Maximum Delay of the Network at node density 12 for sch len = 20

4.1.4 Maximum Delay of Broadcast Operation

We describe our results for maximum delay with respect to sch len 20. At all node densities,

SDT generates the smallest value of maximum delay among all the algorithms. The STIC

algorithm exhibits the closest performance to it. As depicted in Figure 22, at node density

12 for N=400, STIC produces maximum delay which is about 36.05% larger than that of

SDT whereas MST Edmonds and CSCA generate delay which is about 125.45% and 128%

larger than that of the same algorithm, respectively. MST Edmonds performs in a similar

way to CSCA at node density 12 for higher values of N as shown in Figure 22 but for lower

densities, it has worse performance than CSCA for larger values of N. The results for node

density 10 and 8 are shown in Figures 23(a) and 23(b), respectively. For all node densities,

the maximum delay generated by all the algorithms with respect to SDT are shown in Table

8. It is observed that maximum delay reduces slightly for STIC with higher values of node

density while for CSCA, it gradually increases with increasing node densities compared to

SDT.

72

(a) node density 10

(b) node density 8

Figure 23: Maximum Delay of the Network at node density 10 and 8 for sch len = 20

73

Table 8: Normalized Maximum Delay with respect to SDT when N=400 and sch len=20

Node Density STIC MST Edmonds CSCA SDT

8 1.37 2.22 1.83 1.00

10 1.38 2.26 2.12 1.00

12 1.36 2.25 2.28 1.00

4.1.5 Average Delay of Broadcast Operation

SDT generates the minimum average delay for broadcast operation at all node densities.

Figures 24, 25(a) and 25(b), illustrate the result for node density 12, 10 and 8, respectively.

STIC always generates the result closest to SDT and particularly atN=50, it produces lower

delay than the SDT at all node densities. As depicted in Figure 24, at node density 12

for N=400, it produces about 22% more delay as compared to that of the SDT algorithm

while MST Edmonds generates about 116% more delay than the same algorithm. CSCA

generates about 126% more delay than the SDT algorithm at the same node density for

N=400. MST Edmonds and CSCA generate about 77% and 85% more delay respectively

compared to STIC at node density 12. MST Edmonds exhibits the worst performance at

node density 8 although it produces better result than CSCA upto N=150. Its performance

improves with increasing node densities as and finally at node density 12, MST Edmonds

generates better result than CSCA for all values of N .

Table 9: Normalized Average Delay with respect to SDT when N=400 and sch len=20

Node Density STIC MST Edmonds CSCA SDT

8 1.28 2.15 1.81 1.00

10 1.26 2.16 2.09 1.00

12 1.22 2.16 2.26 1.00

For all node densities, the average delay of all the algorithms with respect to SDT is

shown in Table 9 for N=400 and sch len=20. It is observed that with higher values of

node density the performance of STIC improves while the performance of CSCA degrades

compared to the SDT algorithm.

74

Figure 24: Average Delay of the Broadcast Opeation at node density 12 for sch len = 20

75

(a) node density 10

(b) node density 8

Figure 25: Average Delay of the Network at node density 10 and 8 for sch len = 20

76

Figure 26: Average no. of additional active time units per node for various versions of STIC
algorithm at node density = 12 and N=400

4.2 Performance Analysis of Various Versions of STIC Algo-

rithm

We apply sweep operations on the broadcast tree generated by the STIC algorithm in order

to reduce the cost of the tree. Different variants of sweep operation differ in the order in

which nodes of the tree are scanned. In this section we compare the performance of STIC

with that produced by applying different type of sweep operations on the same algorithm.

4.2.1 Average Number of Additional Active Time Units per Node

Although different versions of sweep operation produce similar results, STIC inc generates

the best result among them. We describe our results for node density 12 and N=400. As

shown in Figure 26, at sch len=20 STIC produces average additional active time units

which is about 18.75% more than that of STIC inc.

77

Figure 27: Distribution of Energy Usage for STIC and STIC inc algorithms at node density
= 12 for N=400 and sch len=15

4.2.2 Energy Distribution

We compare the energy usage of STIC with STIC inc as it gives the best result among

all variants of sweep operation. We describe the result for node density 12 , N=400 and

sch len=15. As shown in Figure 27, at node density 12, about 8.02% nodes have active

time units of 14 for STIC while about 6.343% of nodes have active time units of 14 for

STIC inc. Thus, given a schedule length STIC inc is more capable of reducing the number

of nodes with highest possible active time units. At node density 12, STIC generates about

1.26 times more nodes having active time units of 14 while it produces about 1.18 times

more nodes with active time units of 7 compared to STIC inc.

4.2.3 Number of Node Transmissions

STIC inc gives the best result in terms of number of node transmissions and we analyze the

result of STIC and STIC inc for sch len=20 at node density 12. As shown in Figure 28,

at node density=12 for N=400, STIC generates about 17.30% more node transmissions as

78

Figure 28: Number of node transmissions for STIC and STIC inc at node density = 12 for
sch len=20

compared to STIC inc.

4.2.4 Maximum Delay of Broadcast Operation

The maximum delay of the broadcast operation increases if we apply sweep operations on

the broadcast tree generated by the STIC algorithm. As a sweep operation changes the

structure of broadcast trees, it may increase the delay as the parents of some nodes are

changed. Among all versions of sweep operation, STIC bfs produces the best result. We

compare the maximum delay of STIC and STIC bfs at node density 12 for sch len 20. As

shown in Figure 29, the maximum delay produced by STIC bfs is slightly higher compared

to STIC for lower values of N but the differences become more noticeable at higher values

of N . As illustrated in Figure 29, for N=400, the maximum delay generated by STIC is

170.37 whereas the maximum delay produced by STIC bfs is 176.04.

79

Figure 29: Maximum Delay of the Network for STIC and STIC bfs at node density 12 for
sch len = 20

4.2.5 Average Delay of Broadcast Operation

The average delay of the broadcast operation also can increase with the application of sweep

operations for the same reason mentioned in Section 4.2.4. We compare the average delay

of STIC bfs with that of STIC as STIC bfs exhibits the best result among all versions of

sweep operation. As depicted in Figure 30, the average delay produced by STIC bfs is

slightly higher than that of STIC for lower values of N while the difference increases with

higher values of N .

4.3 Performance Analysis of Various Versions of MST Edmonds

Algorithm

In this section we compare the performance of MST Edmonds with that produced by apply-

ing different types of sweep operation on the broadcast tree generated by MST Edmonds.

80

Figure 30: Average Delay of the Network for STIC and STIC bfs at node density 12 for
sch len = 20

4.3.1 Average Number of Additional Active Time Units per Node

MST Edmonds bfs produces the best result among various versions of the sweep operation.

As illustrated in Figure 31, at node density=12 for N=400 and sch len=20, MST Edmonds

produces about 16.86% more average additional active time units per node compared to

MST Edmonds bfs.

4.3.2 Energy Distribution

We compare the energy usage of MST Edmonds with MST Edmonds bfs as it gives the best

result among all sweep variants. As shown in Figure 32, at node density 12 for N=400 and

sch len=15, about 2.20% and 1.64% of nodes have active time units of 14 for MST Edmonds

and MST Edmonds bfs, respectively. About 13.67% of nodes have active time units of 7

for MST Edmonds bfs while 15.76% nodes have active time units of 7 for MST Edmonds.

Thus at node density 12, MST Edmonds generates about 1.34 times more nodes with active

time units of 14 while it produces about 1.15 times more nodes with active time units of 7

81

Figure 31: Average no. of additional active time units per node for various versions of
MST Edmonds algorithm at node density = 12 and N=400

compared to MST Edmonds bfs.

4.3.3 Number of Node Transmissions

MST Edmonds bfs gives the best result in minimizing the number of node transmissions.

We describe the result of MST Edmonds and MST Edmonds bfs for sch len=20 at node

density 12. As shown in Figure 33 for N=400, MST Edmonds generates about 17.44%

more node transmissions compared to MST Edmonds bfs.

4.3.4 Maximum Delay of Broadcast Operation

Sweep operations on the broadcast tree generated by the MST Edmonds algorithm de-

crease the maximum delay. Sweep operations modify the structure of the broadcast tree

by changing the parents of some nodes and this way they may reduce the maximum

delay of the broadcast tree. We compare the maximum delay of MST Edmonds and

MST Edmonds bfs at node density 12 for sch len=20 as MST Edmonds bfs is best among

all variants of sweep operation. As shown in Figure 34, at N=400, maximum delay of

82

Figure 32: Distribution of Energy Usage for MST Edmonds and MST Edmonds bfs algo-
rithms at node density = 12 for N=400 and sch len=15

Figure 33: Number of node transmissions for MST Edmonds and MST Edmonds bfs at
node density = 12 for sch len=20

83

Figure 34: Maximum Delay of the Network for MST Edmonds and MST Edmonds bfs at
node density 12 for sch len = 20

MST Edmonds bfs is 258.742 while the maximum delay produced by MST Edmonds is

282.33. Thus MST Edmonds generates about 9.11% more delay compared to MST Edmonds bfs

for N=400.

4.3.5 Average Delay of Broadcast Operation

Sweep operations also reduce the average delay of the broadcast operation. MST Edmonds bfs

generates the best result among all versions of sweep operation and thus we compare the

average delay of MST Edmonds and MST Edmonds bfs at node density 12 for sch len=20.

As depicted in Figure 35, MST Edmonds produces about 8.17% more average delay as

compared to MST Edmonds bfs at N=400.

84

Figure 35: Average Delay of the Network for MST Edmonds and MST Edmonds bfs at
node density 12 for sch len = 20

85

Table 10: Improvements obtained by the sweep operation at node density 12 for N=400:
metric for best variant of sweep divided by metric for algorithm without sweep

Cost Measure STIC MST Edmonds CSCA SDT

Additional active time units 0.84 0.86 0.84 0.69
per node for sch len = 20

Percentage of nodes with active 0.79 0.75 0.81 0.61
time units 14 for sch len = 15

Number of Node Transmissions 0.85 0.85 0.93 0.83
for sch len=20

Maximum Delay for sch len=20 1.03 0.92 0.96 1.16

Average Delay for sch len=20 1.04 0.92 0.96 1.11

4.4 Summary of Effect of Sweep Operation

As shown in Table 10, all variants of sweep operation generally reduce all the cost measures

for all our algorithms. The only exceptions are the maximum and average delay for STIC

and SDT. However, the sweep variant that gives the best result for different combinations of

cost measure and broadcast tree algorithm is not always the same. The best sweep variant

for different combinations is presented in Table 11. In the remaining sections, we always

use the best sweep variant of the algorithm when comparing with other algorithms.

Table 11: Best version of sweep operation for various combinations of broadcast tree algo-
rithm and cost measure

cost measure MST Edmonds STIC CSCA SDT

Additional active time bfs inc bfs inc
units per node

Energy Usage of Nodes bfs inc bfs inc

Number of Node Transmissions bfs inc bfs inc

Maximum Delay bfs no sweep bfs no sweep

Average Delay bfs no sweep bfs no sweep

4.5 Performance Comparison of all Algorithms with Sweep

Operations

In this section, we compare the performance of STIC, MST Edmonds, CSCA [18] and

SDT [22] after applying the sweep operations on the broadcast tree generated by these

86

Table 12: Average Additional Active Time Units per Node for N=400 and sch len = 20

Node Density STIC inc MST Edmonds bfs CSCA bfs SDT inc

8 3.8800 3.6275 4.1150 4.6075

10 3.2550 3.0150 3.4650 4.0850

12 2.8125 2.5950 3.0025 3.7325

Table 13: Average Additional Active Time Units per Node with respect to
MST Edmonds bfs for N=400 and sch len = 20

Node Density STIC inc MST Edmonds bfs CSCA bfs SDT inc

8 1.07 1.00 1.13 1.27

10 1.08 1.00 1.15 1.35

12 1.08 1.00 1.16 1.44

algorithms.

4.5.1 Average Number of Additional Active Time Units per Node

For all node densities, we describe our results with respect to N=400 and sch len = 20.

The results are given in Tables 12 and 13. Both STIC inc and MST Edmonds bfs utilize

a smaller number of additional active time units per node as compared to CSCA bfs and

SDT inc, while MST Edmonds bfs produces slightly better result than the STIC inc algo-

rithm. For all node densities and schedule lengths, SDT inc exhibits the worst performance

among all the algorithms. With higher values of node density all algorithms utilize fewer

additional active time units per node, which is to be expected.

As depicted in Table 12, at node density 12 for sch len = 20, the average additional

active time units for MST Edmonds bfs and STIC inc are 2.5950 and 2.8125, respectively.

Thus, on average, a node has to stay awake for additional time which about 13% and 14% of

the schedule to participate in the broadcast operation for MST Edmonds bfs and STIC inc,

respectively. CSCA bfs causes a node to remain alive for about 15% of the schedule and

SDT inc causes a node to be active for about 19% of the schedule for the same value of

sch len. At node density 12, STIC inc, CSCA bfs and SDT inc produce about 8.4%, 16%

and 44% more additional active time units per node compared to MST Edmonds bfs. At

the same node density, CSCA bfs and SDT inc generate about 6.76% and 32.7% more

87

additional active time units per node compared to STIC inc, respectively.

As depicted in Table 10, all the algorithms produce improved results after the ap-

plication of sweep operation for average additional active time units per node. Although

SDT inc produces the worst result in all node densities, sweep operation makes significant

improvement on the result produced by SDT. The relative improvement for SDT is higher

than that for MST Edmonds, thereby reducing the latter’s performance advantage. As can

be seen from Table 1, at node density 12, SDT produces about 78% more additional active

time units per node compared to MST Edmonds while SDT inc generates about 44% more

additional active time units compared to MST Edmonds bfs as depicted in Table 13. It

is also observed from Table 13, MST Edmonds bfs produces better result compared to all

other algorithms with increasing values of node density.

4.5.2 Distribution of Energy Usage

For all node densities, we show the percentage of nodes with active time units of 14 and 7

produced after application of the sweep operation for N=400 and sch len=15 in Tables 14

and 15, respectively.

Table 14: Percentage of Nodes with active time units 14 when N=400 and sch len=15

Node Density STIC inc MST Edmonds bfs CSCA bfs SDT inc

8 10.97250 4.90050 14.88450 17.31100

10 8.24525 2.83375 12.43975 15.47150

12 6.34300 1.63725 10.80100 14.30600

Table 15: Percentage of Nodes with active time units 7 when N=400 and sch len=15

Node Density STIC inc MST Edmonds bfs CSCA bfs SDT inc

8 20.61025 18.83225 21.06150 24.17850

10 17.30750 15.80750 17.70950 21.62450

12 15.02175 13.66950 15.32575 19.74850

As shown in Table 14, at node density 12 only 1.64% of nodes have active time units

of 14 for MST Edmonds bfs, 6.34% of nodes have active time units of 14 for STIC inc,

while 10.80% and 14.31% nodes have active time units of 14 for CSCA bfs and SDT inc,

88

respectively. Thus MST Edmonds bfs significantly reduces the number of nodes with high-

est possible active time units. STIC inc generates about 3.87 times more nodes with active

time units of 14 than the MST Edmonds bfs algorithm. CSCA bfs and SDT inc produce

about 6.59 and 8.74 times more such nodes, respectively compared to MST Edmonds bfs.

Also as shown in Table 15, at node density 12, only 13.67% nodes have active time

units of 7 for MST Edmonds bfs while 15.02%, 15.33% and 19.75% nodes have active time

units of 7 for STIC inc, CSCA bfs and SDT inc, respectively. This in turn indicates that

STIC inc, CSCA bfs and SDT inc produce about 1.10, 1.12 and 1.44 times more such nodes,

respectively compared to MST Edmonds bfs. Thus, MST Edmonds bfs not only constructs

a tree with the lowest average number of additional active time units per node, it also

appears to create fewer highly loaded nodes and thus increasing the network lifetime. For

all node densities, the percentage of nodes with active time units 14 and 7 for all algorithms

with respect to MST Edmonds bfs are shown in Tables 16 and 17, respectively.

Table 16: Percentage of Nodes with active time units of 14 with respect to
MST Edmonds bfs when N=400 and sch len=15

Node Density STIC inc MST Edmonds bfs CSCA bfs SDT inc

8 2.24 1.00 3.04 3.53

10 2.91 1.00 4.39 5.46

12 3.87 1.00 6.60 8.74

Table 17: Percentage of Nodes with active time units of 7 with respect to MST Edmonds bfs
when N=400 and sch len=15

Node Density STIC inc MST Edmonds bfs CSCA bfs SDT inc

8 1.09 1.00 1.12 1.28

10 1.09 1.00 1.12 1.37

12 1.10 1.00 1.12 1.44

As can be seen from Table 16 and 17, MST Edmonds bfs exhibits better perfor-

mance with higher values of node density compared to all other algorithms. SDT inc

produces worst performance in all node densities but its performance gap with respect to

MST Edmonds bfs reduces more compared to that of the SDT with respect to MST Edmonds.

As shown in Table 5, at node density 12, SDT has 10.60 times the number of nodes with

89

14 active time units compared to MST Edmonds, while SDT inc has 8.74 times such nodes

compared to MST Edmonds bfs. It is observed from Tables 10, the sweep operation sig-

nificantly reduces the percentage of nodes with active time units 14 while it moderately

reduces the percentage of nodes with active time units of 7 for all algorithms as shown in

Table 6 and 17.

4.5.3 Number of Node Transmissions

We describe the performance of the algorithms with respect to N=400 and sch len=20 for

all node densities and the results are shown in Tables 18 and 19. At all node densities,

CSCA bfs demonstrates the best result while SDT inc exhibits the worst performance. Our

algorithms MST Edmonds bfs and STIC inc are next to CSCA bfs in reducing the number

of total transmissions. MST Edmond bfs consistently generates the least number of total

broadcast messages as compared to STIC inc. The result produced by the STIC inc and

MST Edmonds bfs are very close for smaller values of N , the differences become wider for

larger values of N . It is observed from Table 19 that the number of node transmissions for

Table 18: Number of Node Transmissions when N=400 and sch len=20

Node Density STIC inc MST Edmonds bfs CSCA bfs SDT inc

8 223 211 192 237

10 202 189 167 222

12 185 172 149 210

Table 19: Number of Node Transmissions with respect to CSCA bfs when N=400 and
sch len=20

Node Density STIC inc MST Edmonds bfs CSCA bfs SDT inc

8 1.16 1.10 1.00 1.23

10 1.21 1.13 1.00 1.33

12 1.24 1.15 1.00 1.41

all algorithms increases with respect to CSCA bfs with higher values of node density. The

sweep operation considerably improves the performance of SDT. As shown in Table 7, SDT

produces about 57% more node transmissions compared to CSCA while SDT inc generates

about 41% more node transmissions compared to CSCA bfs for node density 12(as shown

90

in Table 19).

4.5.4 Maximum Delay of Broadcast Operation

In contrast to the previous cost measures, all versions of the sweep operation increase the

maximum delay for STIC and SDT, while they reduce the maximum delay for MST Edmonds

and CSCA as shown in Table 10. Our results for maximum delay are illustrated in Fig-

ures 36 and 37 with respect to sch len 20. At all node densities, SDT produces the

smallest value for maximum delay of the broadcast operation. Our algorithm STIC gen-

erates the performance nearest to it. As depicted in Figure 37(b), at node density 8

MST Edmonds bfs exhibits better performance than CSCA bfs below N=150 and then the

delay of MST Edmonds bfs gradually increases with respect to CSCA bfs. At node density

10, MST Edmonds bfs is doing better than CSCA bfs below N=350 while at node density

12, MST Edmonds bfs shows better result for all values of N compared to CSCA bfs. At

node density 12 for N=400, MST Edmonds bfs generates 106.62%, STIC produces about

36.05% and CSCA bfs produces about 119.91% more delay than SDT. The maximum delay

of all algorithms with respect to SDT are shown in Table 20. As depicted in Table 20, the

Table 20: Normalized Maximum Delay with respect to SDT when N=400 and sch len=20

Node Density STIC MST Edmonds bfs CSCA bfs SDT

8 1.37 2.02 1.77 1.00

10 1.38 2.06 2.05 1.00

12 1.36 2.07 2.20 1.00

performance of SDT improves compared to the other algorithms with higher values of node

density. It is observed that the application of sweep operation improves the performance

of the MST Edmonds bfs and CSCA bfs algorithm with respect to SDT. As depicted in

Table 8, at node density 12, MST Edmonds produces about 125% more delay than SDT

while MST Edmonds bfs generates about 106.62% more delay compared to SDT as shown

in Table 20. Similary, CSCA generates about 128%(as shown in Table 8) and CSCA bfs

produces 119.91%(as shown in Table 20) more delay compared to SDT for the same value

of node density.

91

Figure 36: Maximum Delay of the Network at node density 12 for sch len = 20

4.5.5 Average Delay of Broadcast Operation

As with maximum delay, all versions of the sweep operation increase the average delay for

STIC and SDT, while they reduce the average delay for MST Edmonds and CSCA. At all

node densities, SDT obtains the smallest average delay and our algorithm STIC exhibits

the nearest performance to it. Although STIC generates less average delay than SDT

for smaller values of N at all node densities, its performance degrades with larger values

of N . At node density 8 MST Edmonds bfs exhibits better performance than CSCA bfs

below N=250 and then the delay of MST Edmonds bfs gradually increases with respect to

CSCA bfs. At node density 10, MST Edmonds bfs is doing better than CSCA bfs below

N=350 while at node density 12, MST Edmonds bfs shows better result for all values of

N compared to CSCA bfs. The average delay of all the algorithms is illustrated in Figures

38 and 39 for sch len=20. As depicted in Figure 38, at node density 12 for N=400,

STIC, MST Edmonds bfs, CSCA bfs produces about 21.97%, 99.94% and 117.57% more

delay than SDT, respectively. Average delay of all the algorithms with respect to SDT

is shown in Table 21 for N=400 and sch len=20. It is noticed SDT performs better than

92

(a) node density = 10

(b) node density = 8

Figure 37: Maximum Delay of the Network for sch len = 20

93

Figure 38: Average Delay of the Network at node density 12 for sch len = 20

Table 21: Normalized Average Delay with respect to SDT when N=400, sch len=20

Node Density STIC MST Edmonds bfs CSCA bfs SDT

8 1.28 1.97 1.74 1.00

10 1.26 1.99 2.02 1.00

12 1.22 1.99 2.18 1.00

other algorithms with increasing values of node density. The sweep operation considerably

improves the performance of MST Edmonds and CSCA compared to SDT. As shown in

Table 9, at node density 12 MST Edmonds produces about 116% more delay compared

to SDT while MST Edmonds bfs generates about 99.94% more delay compared to the

same algorithm for N=400 as depicted in Table 21. Similarly, CSCA generates about

126%(as shown in Table 9) more delay compared to SDT while CSCA bfs generates about

117.57%(as shown in Table 21) more delay compared to the same algorithm at the same

node density for N=400.

94

(a) node density = 10

(b) node density = 8

Figure 39: Average Delay of the Network for sch len = 20

95

4.6 Impact of Node Density

Node density has a profound impact on all the performance metrics. Given a schedule

length, for all the algorithms we studied, the average additional active time units per node

decreases with higher values of node density. As depicted in Table 1, with increasing

node densities, not only does MST Edmonds provides better result, but its difference of

performance with other algorithms increases. Similar performance trends are observed for

the sweep variants of the algorithms for average additional active time units per node.

Given the schedule length of 15, MST Edmonds and MST Edmonds bfs generate the

least number of nodes with active time units 14 in all node densities. With higher values

of node density, the performance difference of all the algorithms without sweep operation

increases with respect to MST Edmonds. The performance differences of the sweep variants

of all algorithms increases even more compared to MST Edmonds bfs with higher node

densities except SDT inc.

The number of node transmissions also decreases with the higher values of node density

for all the algorithms. The performance difference of all algorithms with respect to CSCA

increases with higher values of node density. Similar patterns of performance are also

observed for the sweep variants of the algorithms.

The maximum delay generated by every algorithm reduces as the node density increases.

The performance gap of STIC and MST Edmonds with SDT reduces while it increases

for CSCA with higher node densities. The performance gap of MST Edmonds bfs and

CSCA bfs also increases compared to SDT with higher values of node density.

SDT produces minimum average delay at all node densities. The performance gap

of STIC with SDT reduces while it increases for CSCA with increasing node densities.

MST Edmonds maintains similar performance gap with respect to SDT at all node densities.

The same trends hold for the sweep variants of the algorithms.

96

(a) Algorithms without sweep operation at node density 12

(b) Algorithms with sweep variants at node density 12

Figure 40: Average no. of additional active time units per node for various values of N at
node density 12 when sch len=20

97

4.7 Impact of Number of Nodes

At every node density, the impact of the number of nodes on additional active time units

per node, energy distribution and average node transmissions is small. The average addi-

tional active time units for each node decreases slightly with larger values of N for STIC,

MST Edmonds and CSCA at node density 12. As shown in Figure 40(a), SDT starts with

a smaller value at N=50, then this value increases at N=100 after which the value remains

the same for higher values of N . As depicted in Figure 40(b), similar performance trends

are noticed for STIC inc, MST Edmonds bfs and CSCA bfs. SDT inc maintains almost the

same average additional active time units per node for all values of N .

As shown in Figure 41(a), given the sch len 15, the percentage of nodes with active time

units 14 generated by STIC and MST Edmonds reduces slightly with larger values of N .

CSCA generates similar percentage of nodes with active time units 14 for all values of N .

SDT starts with a smaller value at N=50 and then increases up to N=150 and then main-

tains almost the same value for other values of N . For STIC inc and MST Edmonds bfs,

the percentage of nodes with active time units 14 gradually reduces with higher values of

N depicted in Figure 41(b). For SDT inc and CSCA bfs this percentage slightly decreases

at N=400 compared to that at N=50.

CSCA produces smallest average node transmissions among all the algorithms. As

shown in Figure 42(a), at node density 12, average node transmissions for CSCA slightly

reduces at N=400 compared to that at N=50. MST Edmonds and STIC produce similar

values for all N . SDT starts with a smaller value at N=50 and increases up to N=150.

It slightly drops at N=200 and then maintains almost similar values for remaining N .

As depicted in Figure 42(b), the average number of node transmissions for CSCA bfs,

MST Edmonds bfs and STIC inc slightly reduces with larger values of N . For SDT inc,

average node transmissions starts with a smaller value at N=50 and increases upto N=100

and then maintains similar result for the remaining values of N .

The maximum delay of the broadcast operation increases with larger values of N for all

algorithms. SDT generates the minimum value of the maximum delay in all node densities.

98

(a) Algorithms without sweep operation at node density 12

(b) Algorithms with sweep variants at node density 12

Figure 41: Percentage of nodes with active time units 14 for various values of N at node
density 12 and sch len=15

99

(a) Algorithms without sweep operation at node density 12

(b) Algorithms with sweep variants at node density 12

Figure 42: Average No. of Node Transmissions for various values of N at node density 12
and sch len=20

100

Our algorithms STIC exhibits the closest performance to it. As shown in Figures 22 and

23 although MST Edmonds generates smaller delay compared to CSCA at node density 8

and 10 for some values of N , it generates better result than the CSCA algorithm for all

values of N at node density 12. As illustrated in Figure 36, MST Edmonds bfs performs

better than CSCA bfs for node density 12 but for lower densities, it has worse performance

than CSCA bfs for larger values of N .

For all algorithms, the average delay of the broadcast operation increases with larger

values ofN . In all node densities, SDT generates the minimum average delay. Our algorithm

STIC shows the nearest performance to it. At node density 12, STIC generates smaller delay

than SDT up to N=100. MST Edmonds generates better result compared to CSCA for

some values of N at node density 8 and 10 and it generates lower delay than CSCA for all

values of N at node density 12 as shown in Figure 24. A similar performance trend is also

noticed for MST Edmonds bfs and CSCA bfs as shown in Figure 38.

4.8 Impact of Schedule Length

Our algorithms reduce the average additional active time units per node for a given value

of sch len. Although the average additional active time units per node per duty cycle

is smaller for lower values of sch len than larger values of sch len, this does not give

an accurate measure of the actual energy consumption with different values of sch len.

Selecting the larger values of sch len is often advantageous when the algorithm is executing

for a longer period of time. We take the least common multiplier of sch len 5, 10, 15 and

20, which is 60 and determine the total active time units a node needs to be active for a

single broadcast within a time period of 60 units if the algorithms work with sch len 5, 10,

15 and 20. We describe our results at node density 12 for various values of sch len. As

shown in Figure 43, for STIC inc and N=400 a node remains active for a total of 12.5925

time units out of 60 time units for sch len 5, while it stays awake for only 5.8125 time units

out of 60 time units for sch len 20. Figure 44 shows that with sch len 5, a node stays

awake for 12.5700 time units and 5.5950 time units with sch len 20 for MST Edmonds bfs

101

Figure 43: Total Active Time Units per Node for STIC inc in a time period of 60 at node
density=12

for the same value of N . Clearly it is much more energy-efficient to work with a longer

schedule length, if broadcast operations happen infrequently and if a smaller duty cycle is

not dictated by other reasons.

102

Figure 44: Total Active Time Units per Node for MST Edmonds bfs in a time period of 60
at node density=12

103

Chapter 5

Conclusions and Future Work

In this thesis, we discussed the significance of providing energy efficient broadcast mecha-

nism for duty cycled WSNs in order to ensure the longer network lifetime. The broadcast

operation is essential for executing many network activities like routing, topology control,

data acquisition, etc. We formulated the problem of constructing an energy efficient broad-

cast tree for duty cycled WSNs as the MEBT problem and proved that it is NP-hard. We

proposed two polynomial time algorithms MST Edmonds and STIC for constructing an

energy-efficient broadcast tree in a duty cycled WSN and then applied several variants of

a sweep operation that perform local adjustments on a broadcast tree in order to improve

its cost. Simulation results show that our algorithms outperform other previous algorithms

in terms of total number of additional active time units and produce the lowest number

of highly loaded nodes, with MST Edmonds being the best of all algorithms. At the same

time, they have good performance in terms of maximum and average delay as well as num-

ber of node transmissions. MST Edmonds is better than STIC in terms of the minimum

number of transmissions, while the latter algorithm has better delay performance.

The broadcast operation in duty cycled WSNs is highly challenging due to the ac-

tive/sleep nature of the sensor nodes. Moreover, the problem gets compounded by the

unreliable nature of the communication links. We are interested to find broadcast solutions

for duty cycled WSNs that will address the unreliable communication links along with a

104

mechanism to handle the collisions in order to reduce the number of redundant retrans-

missions. We proposed two polynomial time heuristic algorithms for the MEBT problem.

In future we are interested in finding efficient algorithms with provable performance ratios.

Finding a solution for delay efficient broadcasting in duty cycled WSNs is an appealing

problem. Adapting the existing broadcast mechanisms of always operational networks for

the duty cycled WSNs is also an interesting future research direction. We proposed a

centralized solution to construct energy efficient broadcast trees. We can utilize the knowl-

edge of 2-hop neighborhood information of a node to construct distributed and localized

algorithms. In this thesis, we construct a broadcast tree with respect to a specific node.

However, the construction of a global tree which can be used for broadcast from every

node and has acceptable performance is also an attractive problem. Broadcast algorithms

that will minimize the maximum energy consumption of every node is also another exciting

problem.

105

Bibliography

[1] C. Adjih, P. Jacquet, and L. Viennot. Computing connected dominated sets with

multipoint relays. Ad Hoc and Sensor Networks, 1(1–2):27–39, 2005.

[2] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. A survey on sensor

networks. IEEE Communications Magazine, 40(8):102–114, 2002.

[3] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E.Cayirci. Wireless sensor net-

works: A survey. Computer Networks, 38(2002):393–422, 2002.

[4] J. N. Al-karaki and A. E. Kamal. Routing techniques in wireless sensor networks: A

survey. IEEE Wireless Communications, 11(6):6–28, 2004.

[5] N. Aydin, M. Karaca, and O. Ercetin. Energy-optimal scheduling in low duty cycle

sensor networks. In SPECTS, 2011: Proceedings of the International Symposium on

Performance Evaluation of Computer and TeleCommunication Systems, pages 119–

126, 2011.

[6] J. Cartigny, F. Ingelrest, D. Simplot-Ryl, and I. Stojmenovic. Localized lmst and rng

based minimum-energy broadcast protocols in ad hoc networks. Ad Hoc Networks,

3(1):1–16, 2005.

[7] J. Cartigny, D. Simplot, and I. Stojmenovic. Localized minimum-energy broadcasting

in ad-hoc networks. In IEEEINFOCOM2003: Proceedings of the 22nd Annual Joint

Conference of the IEEE Computer and Communications Societies, pages 2210–2217,

2003.

106

[8] X. Chen, M. Faloutsos, and S. V. Krishnamurthy. Power adaptive broadcasting with

local information in ad hoc networks. In ICNP2003: Proceedings of the 11th IEEE

International Conference on Network Protocols, pages 168–178, 2003.

[9] C.-F. Chiasserini and M. Garetto. Modeling the performance of wireless sensor net-

works. In INFOCOM’04: Proceedings of the 23rd Conference of the IEEE Communi-

cations Society, pages 220–231, 2004.

[10] J. Edmonds. Optimum branchings. Journal of Research of the National Bureau of

Standards, 71B:233–240, 1967.

[11] Y. Gu and T. He. Data forwarding in extremely low duty-cycle sensor networks with

unreliable communication links. In SenSys’07: Proceedings of the 5th International

Conference on Embedded Networked Sensor Systems, pages 321–334, 2007.

[12] S. Guo, Y. Gu, B. Jiang, and T. He. Opportunistic flooding in low-duty cycle wireless

sensor networks with unreliable link. InMOBICOM’09: Proceedings of the 15th Annual

International Conference on Mobile Computing and Networking, pages 133–144, 2009.

[13] Z. J. Haas, J. Y. Halpern, and L. Li. Gossip-based ad hoc routing. In INFOCOM’02:

Proceedings of Twenty-First Annual Joint Conference of IEEE Computer and Com-

munications Societies, pages 1707–1716, 2002.

[14] Z. J. Haas and M. Nikolov. Towards optimal broadcast in wireless networks. In

MSWIM’11: Proceedings of the 14th ACM International Conference on Modeling,

Analysis and Simulation of Wireless and Mobile Systems, pages 213–222, 2011.

[15] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan. Energy-efficient communi-

cation protocol for wireless microsensor networks. In Proceedings of the 33rd Hawaii

International Conference on System Sciences - 2000, pages 1–10, 2000.

[16] W. Heinzelman, J. Kulik, and H. Balakrishnan. Adaptive protocols for information

dissemination in wireless sensor networks. In MOBICOM,1999: Proceedings of the

107

5th annual ACM/IEEE international conference on Mobile computing and networking,

pages 174–185, 1999.

[17] J. Hong, J. Cao, W. Li, S. Lu, and D. Chen. Sleeping schedule-aware minimum la-

tency broadcast in wireless ad hoc networks. In ICC, 2009: Proceedings of the IEEE

International Conference on Communications, pages 1–5, 2009.

[18] J. Hong, J. Cao, W. Li, S. Lu, and D. Chen. Minimum-transmission broadcast in

uncoordinated duty-cycled wireless ad hoc networks. IEEE Transaction on Vehicular

technology, 59(1):307–318, 2010.

[19] F. Ingelrest and D. Simplot-Ryl. Localized broadcast incremental power protocol for

wireless ad hoc networks. In ISCC2005: Proceedings of the IEEE Symposium on Com-

puters and Communication, pages 28–33, 2005.

[20] F. Ingelrest, D. Simplot-Ryl, and I. Stojmenovic. Optimal transmission radius for en-

ergy efficient broadcasting protocols in ad hoc and sensor networks. IEEE Transactions

on Parallel and Distributed Systems, 17(6):536–547, 2006.

[21] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed diffusion: a scalable and

robust communication paradigm for sensor networks. In MOBICOM,2000: Proceedings

of the 6th annual international conference on Mobile computing and networking, pages

56–67, 2000.

[22] X. Jiao, W. Lou, J. Ma, J. Cao, X. Wang, and X. Zhou. Minimum latency broadcast

scheduling in duty-cycled multihop wireless networks. IEEE Transactions on Parallel

and Distributed Systems, 23(1):110–117, 2012.

[23] R. Jurdak, A. G. Ruzzelli, and G.M.P. OHare. Radio sleep mode optimization in

wireless sensor networks. IEEE Transactions on Mobile Computing, 9(7):955–968, 2010.

[24] A. Keshavarzian, H. Lee, and L. Venkatraman. Wakeup scheduling in wireless sensor

networks. In MOBIHOC,2006: Proceedings of the 7th ACM international symposium

on Mobile ad hoc networking and computing, pages 322–333, 2006.

108

[25] P. Kysdsnur, R.R. Choudhury, and I. Gupta. Smart gossip: An adaptive gossip-

based broadcasting service for sensor networks. In Proceedings of IEEE International

Conference on Mobile Ad Hoc and Sensor Systems, pages 91–100, 2006.

[26] P. Levis, N. Patel, D. Culler, and S. Shenker. Trickle: A self-regulating algorithm

for code propagation and maintenance in wireless sensor networks. In NSDI’04: Pro-

ceedings of the First USENIX/ACM Symposium on Networked Systems Design and

Implementation, pages 15–28, 2004.

[27] N. Li and J. C. Hou. BLMST: A scalable, power-efficient broadcast algorithm for

wireless networks. In QSHINE2004: Proceedings of the 1st International Conference

on Quality of Service in Heterogeneous Wired/Wireless Networks, 2004.

[28] W. Liang. Constructing minimum-energy broadcast trees in wireless ad hoc networks.

In MOBIHOC’02: Proceedings of the Third ACM International Symposium on Mobile

Ad Hoc Networking and Computing, pages 112–122, 2002.

[29] H. Lim and C. Kim. Multicast tree construction and flooding in wireless ad hoc

networks. In Proceedings of ACM International Workshop Modeling, Analysis and

Simulation of Wireless and Mobile Systems, pages 61–68, 2000.

[30] W. Lou and J. Wu. On reducing broadcast redundancy in ad hoc wireless networks.

IEEE Transactions on Mobile Computing, 1(2):111–122, 2002.

[31] G. Lu, N. Sadagopan, B. Krishnamachari, and A. Goel. Delay efficient sleep scheduling

in wireless sensor networks. In INFOCOM’05: Proceedings of the 24th Joint Conference

of the IEEE Computer and Communications Societies, pages 2470–2481, 2005.

[32] S.-Y. Ni, Y.-C.Tseng, Y.-S. Chen, and J.-P. Sheu. The broadcast storm problem in a

mobile ad hoc network. In MOBICOM’99:Proceedings of International Conference on

Mobile Computing and Networks, pages 151–162, 1999.

[33] J. Park and S. Sahani. Maximum lifetime broadcasting in wireless networks. IEEE

Transactions on Computers, 54(9):1081–1089, 2005.

109

[34] W. Peng and X-C. Lu. On the reduction of broadcast redundancy in mobile ad hoc

networks. In MOBIHOC,2000: Proceedings of the 1st Annual Workshop on Mobile and

Ad Hoc Networking and Computing, pages 129–130, 2000.

[35] R. C. Prim. Shortest connection networks and some generalizations. Bell System

Technical Journal, 36:1389–1401, 1957.

[36] A. Qayyum, L. Viennot, and A. Laouiti. Multipoint relaying for flooding broadcast

messages in mobile wireless networks. In HICSS-35’02: Proceedings of the 35th Hawaii

International Conference on System Sciences, pages 298–307, 2002.

[37] A. Qayyum, L. Viennot, and A. Laouiti. An enhanced approach to determine a small

forward node set based on multipoint relays. In IEEEVTCH2003: Proceedings of the

of IEEE Vehicular Technology Conferenece, pages 2774–2777, 2003.

[38] A. G. Ruzzelli, P. Cotan, G. M. P. OHare, R. Tynan, and P. J. M havinga. Protocol

assessment issues in low duty cycle sensor networks: The switching energy. In SUTC’06:

Proceedings of IEEE International Conference on Sensor Networks, Ubiquitous and

Trustworthy Computing, pages 101–108, 2006.

[39] K. Selvakumar and S. Nithya. d2-coloring of a graph. The Journal of Mathematics and

Computer Science, 3(2):102–111, 2011.

[40] F. Stann, J. Heidemann, R. Shroff, and M. Z. Murtaza. RBP: Robust broadcast

propagaion in wireless networks. In SenSys2006: Proceedings of the 4th International

Conference on Embedded Networked Sensor Systems, pages 58–98, 2006.

[41] I. Stojmenovic. Comments and corrections to dominating sets and neighbor

elimination-based broadcasting algorithms in wireless networks. IEEE Transactions

on Parallel and Distributed Systems, 15(11):1054–1055, 2004.

[42] I. Stojmenovic, M. Seddigh, and J. Zunic. Dominating sets and neighbor elimination

based broadcasting algorithms in wireless networks. IEEE Transactions on Parallel

and Distributed Systems, 13(1):14–25, 2002.

110

[43] Y. Sun, O. Gurewitz, S. Du, L. Tang, and D. B. Johnson. ADB: An efficient multihop

broadcast protocol based on asynchronous duty-cycling in wireless sensor networks. In

SenSys’09: Proceedings of the 7th ACM Conference on Embedded Networked Sensor

Systems, pages 43–56, 2009.

[44] Y. C. Tseng, S. Y. Ni, and E. Y. Shih. Adaptive approaches for relieving broadcast

storms in wireless multihop mobile ad hoc networks. IEEE Transactions on Computers,

52(5):545–557, 2003.

[45] F. Wang and J. Liu. RBS: A reliable broadcast service for large-scale low duty-cycled

wireless sensor networks. In ICC’08: Proceedings of IEEE International Conference on

Communications, pages 2416–2420, 2008.

[46] F. Wang and J. Liu. Duty-cycle-aware broadcast in wireless sensor networks. In

INFOCOM’09: Proceedings of the 28th Conference on Computer Communications,

pages 468–476, 2009.

[47] W. Wang and B. Soong. Collision-free and low-latency scheduling algorithm for broad-

cast operation in wireless ad hoc networks. IEEE Communications Letters, 11(10):1–3,

2007.

[48] P. Wei and L. Xicheng. AHBP: An efficient broadcast protocol for mobile ad hoc

networks. Journal of Computer Science and Technology, 16(2):114–125, 2001.

[49] J. Wieselthier, G. Nguyen, and A. Ephremides. On the construction of energy-efficient

broadcast and multicast trees in wireless sensor networks. In IEEE INFOCOM 2000:

Proceedings of the 19th Annual Joint Conference of the IEEE Computer and Commu-

nications Societies, pages 585–594, 2000.

[50] J. E. Wieselthier, G. D. Nguyen, and A. Ephremides. Distributed algorithms for energy-

efficient broadcasting in ad hoc networks. In MILCOM,2002: Proceedings of the Mili-

tary Communications Conference, pages 820–825, 2002.

111

[51] J. E. Wieselthier, G. D. Nguyen, and A. Ephremides. Energy-efficient broadcast and

multicast trees for wireless networks. Mobile Networks and Applications, 7(6):481–492,

2002.

[52] J. Wu and H. Li. On calculating connected dominating set for efficient routing in ad hoc

wireless networks. In DlALM1999: Proceedings of the 3rd International Workshop on

Discrete Algorithms and Methods for Mobile Computing and Communications, pages

7–14, 1999.

[53] J. Wu, W. Lou, and F. Dai. Extended multipoint relays to determine connected dom-

inating sets in manets. IEEE Transactions on Computers, 55(3):334–347, 2006.

112

