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Abstract 

Trace Abstraction Framework and Techniques 

Heidar Pirzadeh, Ph.D. 

Concordia University, 2012 

Understanding the behavioural aspects of software systems can help in a variety of software 

engineering tasks such as debugging, feature enhancement, performance analysis, and 

security.  

Software behaviour is typically represented in the form of execution traces. Traces, 

however, have historically been difficult to analyze due to the overwhelming size of typical 

traces. Trace analysis, more particularly trace abstraction and simplification, techniques 

have emerged to overcome the challenges of working with large traces. Existing traces 

analysis tools rely on some sort of visualization techniques to help software engineers make 

sense of trace content. Many of these techniques have been studied and found to be limited 

in many ways.  

In this thesis, we present a novel approach for trace analysis inspired by the way the human 

brain and perception systems operate. The idea is to mimic the psychological processes that 

have been developed over the years to explain how our perception system deals with huge 

volume of visual data. We show how similar mechanisms can be applied to the abstraction 

and simplification of large traces.  

As part of this framework, we present a novel trace analysis technique that automatically 

divides the content of a large trace, generated from execution of a target system, into 
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meaningful segments that correspond to the system’s main execution phases such as 

initializing variables, performing a specific computation, etc.  

We also propose a trace sampling technique that not only reduces the size of a trace but 

also results in a sampled trace that is representative of the original trace by ensuring that the 

desired characteristics of an execution are distributed similarly in both the sampled and the 

original trace. Our approach is based on stratified sampling and uses the concept of 

execution phases as strata.  

Finally, we propose an approach to automatically identify the most relevant trace 

components of each execution phases. This approach also enables an efficient 

representation of the flow of phases by detecting redundant phases using a cosine similarity 

metric. 

The techniques presented in this thesis have been validated by applying to a variety of 

target systems. The obtained results demonstrate the effectiveness and usefulness of our 

methods. 
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Chapter 1. Introduction 

The goal of this thesis is to present new techniques that facilitate the analysis of large 

execution traces for maintenance tasks. More precisely, the techniques we propose in this 

thesis are 1) to enable software engineers to have an abstract view of an execution trace by 

viewing it as a series of segments composed of trace events, we call these segments 

execution phases; 2) to provide software engineers with an ability to generate a 

representative sample of a trace for quick analysis 3) to provide capabilities to find the most 

representative events of each execution phase, thus extract the most important events of a 

trace. 

The organization of this chapter is as follows: We present the motivations of our work in 

Section  1.1. We briefly review the concept of execution traces in Section  1.2. We present 

the contributions of the thesis in Section  1.3. Finally, in Section  1.4, we describe the 

organization of the rest of the thesis. 
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1.1. Problem and Motivations 

A common and difficult problem experienced by software engineers when maintaining 

large complex systems is to understand how the system is built and why it is built in a 

certain way [DRW00]. Software engineers often spend considerable amount of time to 

understand the code, documentation, and tap into other available sources of information to 

build an understanding of the software system. This is often caused by lack of good 

documentation (if it exists at all) and the fact that the original designers have moved to new 

projects or companies. Tools and techniques that help in understanding the system can 

therefore reduce the time spent on maintenance tasks. 

The existing tools and techniques can be categorized based on the type of data they use. 

Some techniques collect and analyze the data that they use without executing the system - 

these are referred to as static analysis techniques. Another type of techniques where the 

data is gathered from a running system is referred to as dynamic analysis.  

As one can expect, these techniques have pros and cons. While the most predominant 

techniques are the ones that rely on static analysis, they tend to be limited to analyzing the 

static relationship among the system entities. Dynamic analysis techniques, as noted by 

[Bal99], can be very useful for applications that require the understanding of the system’s 

behaviour by relating the system inputs to its outputs. Unlike static analysis, dynamic 

analysis techniques focus on only parts of the system that need to be understood. In other 

words, software engineers do not need to understand the entire system if only part of it 

needs to be modified. Dynamic analysis techniques, however, can only provide a partial 

picture of the system.  
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In dynamic analysis, the system is executed according to an execution scenario and the 

runtime data is typically stored in a file that is referred to as an execution trace. Traces, 

however, tend to be considerably large. Tracing even a small system can generate large 

amounts of data that poses a real obstacle to any viable analysis.  

There exist several approaches (e.g., [GD05, HBAL05, ZD04]) that aim to reduce the size 

of large traces while keeping their main content. The common practice is to develop 

heuristics that can guide the trace abstraction and simplification process. Although 

significant improvement has been made in the area, existing techniques suffer from several 

limitations such as their reliance on particular visualization methods, which hinders their 

reuse. Visualization techniques also require extensive user intervention. In other words, it is 

up to the user to choose among the variety of available features to gain insights into a trace.  

There is clearly a need for effective trace abstraction and simplification techniques that can 

reduce the time and effort spent on understanding the content of large traces.  

The objective of this research is to propose an effective framework for trace abstraction 

along with a set of techniques that can effectively simplify understanding of large execution 

traces. 

1.2. The Concept of Execution Traces 

Many different aspects of a running system can be monitored and traced. In fact, one can 

trace just about any aspect of the system that is deemed helpful to accomplish the task at 

hand. These different aspects include method and procedure calls and returns, variable 

values, loops and branches, inputs and outputs, inter-process communication, executed 
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statements, system state transitions, external interrupts, system calls, as well as data 

structures such as process control blocks. Recording the events related to one or more of 

the mentioned aspects in a file will result in an execution trace.  

An execution trace, therefore, is a sequence of events (e.g., method calls, classes, system 

calls, etc.) resulting from the execution of the software system under study (also referred to 

as the target system). The execution of a system can be based on feeding the system with a 

set of predefined test cases or exercising one or more software features of the system. A 

feature is defined as an observable functionality triggered by a user [EKS03].  

A trace event can have a number of attributes (e.g., nesting level, timestamp, code line 

number, the thread in which the event occurs, etc). The focus of this thesis is on traces of 

method calls. The term method here means also function and procedure. Although we focus 

on method call traces, the techniques presented in this thesis are readily adaptable to other 

types of traces such as system call and inter-process communication traces.  

A trace of method calls can be represented as a tree structure as shown in Figure 1.1. In this 

figure, we can see an example of interactions between two objects of the classes Test and 

SimpMath that implement multiplication of numbers using repeated addition. In this 

figure, we only show the methods being involved. It is also possible to show the actual 

objects and the method parameters. However, many studies in program comprehension 

choose to ignore such information. The rationale is that building a high-level of 

understanding of a trace using method calls alone might turn to be as effective as if other 

information is used.   
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Figure  1.1. Example of trace of method calls 

There exist different methods and tracing tools for generating execution traces. These 

methods usually instrument the system by injecting a piece of code (called probe) that will 

be invoked at the specified points. A probe can be, for example, a printout statement that 

outputs the desired data at the specified point. Instrumentation methods are different from 

one another in: 

• Instrumentation site: different environments can be instrumented for generating a 

trace. Some tracing tools instrument the source code of the system while other tools 

instrument the bytecode (or the object file or a compiled version of the code) of the 

system. The execution environment in which the system runs can also be 

instrumented. Execution environment of the target system (be it a virtual machine or 

an operating system) can send out event notifications at certain points of the 

execution. Once received by the tool, the event can be added to a trace file. 

Test.main 

SimpMath.multiply 

SimpMath.add 

SimpMath.add 

SimpMath.print 

Test.exit 
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• Probe injection points: it is also important to know where a probe is being injected. 

For example, in object-oriented systems, probes can be inserted into the body of a 

target method at entry/exit point to create events in the trace file that indicate the 

target method call’s entry/exit. Another point of injection can be the body of any 

method that calls the target method (i.e., probe is injected into the caller method, 

and not the called method). The latter type of injections is useful when it is difficult 

or impossible to instrument the files containing the methods that need to be 

targeted. 

• Instrumentation time: instrumentation can happen during or before the execution of 

the system. The latter case is referred to as static instrumentation. In this type of 

instrumentation, the instrumentation site is first modified on disk by injecting the 

probes. Then, the target system can be executed normally to have the probes collect 

the data. Once tracing is finished, the instrumentation site needs a clean up to its 

original state. In dynamic instrumentation, however, when the tracing tool (usually 

a profiler) is notified that a system component (e.g., a class, method, etc.) of the 

target system is being loaded, it modifies the in-memory representation of that 

component by inserting the probe [TPTP]. For this type of instrumentation, the 

tracing tool needs to run along with the target system. Unlike dynamic 

instrumentation, in static instrumentation, if the instrumentation environment is 

changed (e.g., a new feature is added or a bug is fixed), we need to do a clean-up 

(remove the probes) and perform another round of instrumentation.  
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1.3. Research Contributions 

The major research contributions of this thesis are: 

• A trace abstraction framework inspired by the human perception system. 

• A trace segmentation approach that divides a trace into meaningful trace segments 

that characterize the main computations of the traced scenarios. 

• An approach based on text mining for automatic extraction of the most important 

information conveyed in a trace.  

• A technique for reducing the size of traces based on stratified sampling of the trace 

content. 

1.3.1. Trace Abstraction Framework 

We present an innovative approach for trace analysis inspired by the way the human brain 

and perception systems operate. There are psychological processes that have been 

developed over the years to explain how our perception system deals with huge volume of 

visual data. We draw parallels between trace analysis and the human perception system and 

propose a framework [PH11a, PH11b, PSHM11, PHS11] for trace analysis to facilitate the 

understanding of large traces.  
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1.3.2. Trace Segmentation 

We present a novel trace analysis technique that automatically divides the content of a trace 

into smaller and meaningful trace segments that correspond to the program’s main 

execution phases [PH11b, PAH10]. These phases construct a higher-level view of the 

execution trace that aim to simplify the exploration of large traces by allowing software 

engineers to browse the trace by focusing on its execution phases instead of a flow of mere 

low-level events.  Our phase detection method is inspired by Gestalt laws that characterize 

the proximity, similarity, and continuity of the elements of a data space. We model these 

concepts in the context of execution traces to find execution phases. The effectiveness of 

the approach is shown through case studies.  

1.3.3. Stratified Sampling of Execution Traces 

To reduce the size of execution traces, sampling techniques, especially the ones based on 

random sampling, have been extensively used. Random sampling, however, may result in 

samples that are not representative of the original trace. In this thesis, we propose a trace 

sampling technique that not only reduces the size of a trace but also results in a sample that 

is representative of the original trace by ensuring that the desired characteristics of an 

execution are distributed similarly in both the sampled and the original trace [PSHM11]. 

Hence, the insights gained from analyzing the sample trace could be extrapolated to the 

original execution trace. Our approach is based on stratified sampling instead of random 

sampling and uses the concept of execution phases as strata. We show the effectiveness of 

our sampling technique through two case studies. 
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1.3.4. Identification of Relevant Events of a Trace 

Motivated by the work done in the area of text mining, we propose a trace exploration 

approach based on examining the trace execution phases. The approach [PHS11] consists 

of automatically identifying relevant information about the phases as well as the ability to 

provide an efficient representation of the flow of phases by detecting redundant phases 

using a cosine similarity metric. We applied our approach to traces generated from two 

different systems and were able to quickly understand their content and extract higher-level 

views that characterize the essence of the information conveyed in these traces. 

1.4. Organization of the Thesis 

The rest of this thesis is organized as follows.  

Chapter 2 - Background 

This chapter presents the concepts and research areas that are related to our research. The 

chapter starts by briefly presenting software maintenance and program comprehension. The 

chapter continues with introducing different models of program comprehension. Next, 

reverse engineering is presented as a way of supporting program comprehension through 

static and dynamic analysis. The chapter proceeds with a detailed review of trace 

abstraction and simplification techniques. Trace visualization is then discussed along with 

introducing representation methods, interaction features, and navigation strategies.  
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Chapter 3 – Trace Abstraction Framework 

This chapter starts by a discussion on the relationship between the human perception 

system and trace analysis. The chapter continues with a discussion on the psychological 

processes that govern the way the human perception system functions when looking at a 

scene. Inspired by these psychological processes, three novel trace analysis processes are 

proposed in this chapter. The chapter continues with introducing a framework that 

integrates the proposed trace analysis processes. 

Chapter 4 – Trace Segmentation 

This chapter starts by introducing the concept of execution phases and its potential 

applications. An approach for segmenting a trace into execution phases is then presented. 

The chapter proceeds by discussing different steps involved in our proposed trace 

segmentation technique. Evaluation of the trace segmentation technique is then presented  

Chapter 5 – Content Prioritization 

This chapter starts by explaining how automatic identification of the trace events that are 

most relevant to the implementation of each execution phase can be helpful in simplifying 

the exploration of large traces. The chapter proceeds by determining a mapping between the 

set of concepts in two domains of trace analysis and text mining. A content prioritization 

approach is proposed to extract the trace events that are most relevant to each execution 

phase. Different steps involved in this approach are discussed in details. The chapter 

proceeds by proposing a technique to find similar phases in a flow of phases. Evaluation of 

these techniques is then presented.  
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Chapter 6 – Stratified Trace Sampling 

This chapter starts with discussing drawbacks of existing trace sampling approaches. The 

chapter continues with a theoretical description of the problematic cases of random 

sampling. Then, the concept of stratified sampling of execution traces is introduced as a 

way to solve the previously investigated problems. The chapter proceeds by explaining the 

process through which strata are specified. Then, the sampling process is described. The 

chapter continues by a running example. Two case studies are then presented and discussed 

as evaluations of the proposed stratified sampling approach. 

Chapter 7 – Conclusion and Future Work 

In the beginning of this chapter, we revisit the main contributions of the thesis. The chapter 

continues by describing opportunities for future research. 
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Chapter 2. Background  

In this chapter, we introduce the background concepts that pertain to this thesis. In Section 

 2.1, we present the software maintenance as a related topic. In Section  2.2, we present 

program comprehension and its models. In Section 2.3, we present reverse engineering and 

discuss static and dynamic analysis techniques. In Section  2.4, we present in detail existing 

approaches for trace abstraction and simplification for maintenance tasks. Finally, in 

Section  2.5, we present trace visualization of execution traces and its related concepts. 

2.1. Software Maintenance 

An integral part of the software lifecycle that accounts for a large portion of the total cost of 

the development of a software system is the maintenance of the system after its delivery. 

IEEE has categorized the maintenance activities into four major categories in its Standard 

for Software Maintenance [IEE98]: 

• Adaptive activities: These activities are concerned with adjusting the system to 

adapt to changing external environments. 
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• Corrective activities: These activities deal with fixing discovered problems and 

bugs.  

• Perfective activities: This type of activities is concerned with changing the system 

to enhance or add new features to the system. 

• Preventive activities: the goal of this type of activities is to increase software 

maintainability and prevent problems in the future 

The analysis of execution traces can help with many of the above task. For example, 

Jerding et al [JR97] showed the usefulness of analyzing execution traces in facilitating the 

corrective and adaptive maintenance tasks. Silva et al. [SPAM 11] conducted experiments 

that show how the analysis of execution traces can help in perfective maintenance task. 

Cornelissen et al [CZD11] also conducted a controlled experiment with a number tasks 

representative of real maintenance contexts to see how their trace analysis approach can 

improve the performance in terms of time spent and correctness.  

2.2. Program Comprehension  

Program comprehension is the study of how software engineers understand a system 

(usually in the absence of documentation and other reliable sources of information) before 

they can modify it. Basili showed that 50-60% of software engineering effort is spent on 

understanding the code [Bas97]. Similarly, Von Mayrhauser et al. [VV95] argued that for 

almost every type maintenance tasks software engineers need to understand the system 

(even if it is a partial understanding) before they can proceed. .  
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To understand a system, software engineers build a mental model that describes their 

mental representation of the system. Many models and strategies have been proposed 

[Pen87, VV95, Sto06] to explain the process through which software engineers build their 

mental models and obtain understanding about the system. 

Top-down Model: 

In this model of program comprehension, a software engineer is somewhat familiar with 

the system that he/she wants to understand. This familiarity can be due to his previous 

experience with performing a maintenance task on the system, knowing the technological 

aspect of the system, and so on. Because of this familiarity, the software engineer can make 

hypotheses about the code that he is investigating. To form a hypothesis, the software 

engineer uses his pre-existing knowledge to quickly find the code components (e.g., 

classes, methods, lines of code, etc) that he recognizes to act as cues to the presence of 

certain functionalities or structures. These cues are commonly referred to as beacons. A 

beacon can be a method name that shows the implementation of a specific feature. 

Detecting common code fragments, called clichés, that implement typical programming 

scenarios (e.g., sorting) is also used to form hypotheses.  

Once a hypothesis is formed, the software engineer tries to evaluate the hypothesis based 

on the code. The process of evaluation is an iterative one where the hypothesis is whether 

refined, verified, or rejected. That is, in the evaluation process of a hypothesis, secondary 

hypotheses are made in a hierarchical manner until they can be matched to specific code in 

the system.  
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Bottom-up Model: 

This model is commonly used when software engineers are unfamiliar with the system that 

they are going to understand. Unlike top-down model, bottom-up understanding starts at 

the code level and goes up to the level that a software engineer obtains an understanding 

about the whole system.  

In the bottom-up model, the process of building a mental model proceeds by reading the 

code of the system, grouping the code statements, and forming mental abstractions about 

that group. The process of grouping is referred to as chunking. As mentioned earlier 

chunking is followed by relating the created groups of statements (chunks) to a higher level 

of abstraction. Building this relation is referred to as cross-referencing. The process of 

chunking and cross-referencing continues until software engineers obtain a high-level 

understanding of the system. 

To explain how software engineers use chunking and cross-referencing to build their 

mental model in the bottom-up understanding, Pennington [Pen87] suggested that software 

engineers commence by building a program model. The program model is concerned with 

the control-flow of the code. More precisely, program model refers to an abstract 

representation of the control flow of the code that is obtained through a bottom-up 

investigation of the system. Once a program model is built, software engineers start 

developing a second model called situation model. The situation model represents the data-

flow abstractions and functional abstractions of the system.  
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The Integrated Model: 

In the integrated model of program comprehension, software engineers use both top-down 

and bottom-up strategies to understand the system at hand. Top-down strategy is used for 

parts of the system that are familiar to software engineers and bottom-up is used for the 

parts that are completely new to them. Software engineers switch between different 

strategies. 

In the process of building a mental model, in addition to the program model and the 

situation model, software engineers use a knowledge base that represents the software 

engineer’s knowledge gained so far through the bottom-up and top-down investigations of 

the system. Another source for updating the knowledge base is inferred knowledge.  

Each of the mentioned models can be used to obtain a complete understanding of the 

system. However, as argued by [ES98], many software engineers take an as-needed 

approach, in which they focus only on the code relating to a particular task at hand which, 

in turn, results in a partial understanding of the system. 

Tracing the control-flow and data-flow can be clearly used to build abstractions to gain an 

understanding of the program. Furthermore, strategies similar to bottom-up, top-down and 

integrated can be used to understand the execution traces. In this thesis, we only focus on 

understanding the flow of execution of a system by analyzing the method calls generated 

from executing the software features.   
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2.3. Reverse Engineering  

One way to support the process of program comprehension is to use reverse engineering 

techniques. Reverse engineering can be defined as the process of obtaining a high-level and 

more abstract representation of the system from existing system artefacts such as the code. 

Software maintainers can use these views to speed up their comprehension process. 

Reverse engineering techniques vary with respect to their sources of information to static 

analysis or dynamic analysis. Static analysis uses the source code as its main artefact to 

uncover the system’s main components and their relationships. Performing static analysis 

has the benefit that all the system’s execution paths could be potentially covered. However, 

it can only reveal the static aspects of the system. It is very limited to providing insights 

into the behavioural characteristic of a system’s design. 

 Dynamic analysis, which is the focus of this thesis, is the study of how the system behaves 

by analyzing its execution traces. Unlike static analysis, dynamic analysis has the 

advantage of allowing the software engineer to focus only on parts of the system that need 

to be analyzed by studying the interactions among the involved components [Bal99]. There 

exist two types of dynamic analysis: Online (ante-mortem) analysis and Offline (post-

mortem) analysis. Online analysis is the analysis of the behaviour of a system while it is 

running. This type of dynamic analysis comes handy when the system is not going to 

terminate its task any time soon (e.g., servers). In offline dynamic analysis, on the other 

hand, the analysis is performed when the execution is finished.  
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2.4. Trace Abstraction Techniques 

As mentioned earlier, traces tend to be considerably large [RR01], which hinders any 

possible analysis [ZL01]. To address this issue, many trace abstraction and simplification 

techniques have been proposed with a common objective being to extract high-level views 

from raw traces. We categorize these techniques into four groups based on the criteria 

applied to reduce the size of a trace: 1) Event properties, 2) Patterns, 3) Techniques that are 

language-dependant, and 4) Sampling.  

2.4.1. Event Properties 

Many techniques focus on filtering trace events based on individual event properties. For 

example, one can filter all the events that occurred in a particular thread. Another example 

that has been frequently used is based on the nesting level of events. Rountev et al. [RC05] 

used this criterion to filter call graph in their technique. Cornelissen et al. [CDMZ07, 

CMZ08] used it for abstracting scenario diagrams by removing events that take place at 

nesting levels higher than a threshold. Kuhn et al. [KG06] also used a minimal nesting level 

threshold as one of several filtering criteria to reduce trace size. Other event properties such 

as execution time have also been used for filtering events from traces [MWM06]. Another 

possibility is to use metrics based on a variety of event properties. For example, in their 

trace summarization approach, Hamou-Lhadj et al. [HL06] proposed a metric to measure 

the extent to which an event can be considered a utility is or not. Utilities are then removed 

from the trace and a summary of the trace is constructed.  
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2.4.2. Pattern-based Techniques 

Pattern-based techniques operate by grouping events into patterns for which software 

engineers can assign descriptions. The grouping is usually based on some sort of similarity 

among events. Systä et al. [SKM01] used Boyer-Moore string matching algorithm to detect 

patterns of events where identical events are repeated in sequences, referred to as 

behavioural patterns.  

Hamou-Lhadj et al. [HL02] proposed an approach where the repeated instances of patterns 

of events are removed from a trace and represented only once with the objective of keeping 

only useful information. In their work, they started by a pre-processing step where the 

contiguous repetitions are removed. The next step was to find non-contiguous repetitions of 

events. For this, they used an algorithm for transforming a rooted call tree (the focus of 

their research) into an ordered directed acyclic graph. The result was a compressed trace in 

which repetitions were factored out.  

Kuhn et al. [KG06] proposed an approach where the volume of data can be reduced by 

grouping sequences of events based the amount of changes in their nesting levels of routine 

call trees and replacing each group with the first event of that group along with the nesting 

level information of that group. This is followed by the application of several filters such as 

using the minimal nesting level threshold.  

2.4.3. Programming Language-Based Filtering 

Many programming languages add components that are dependent on the programming 

paradigm that is supported such as accessing functions and constructors in Object-Oriented 
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(OO) systems. Hamou-Lhadj et al. [HL06] proposed the removal of events from a trace as a 

step in their trace summarization process. In their algorithm, they filtered constructors and 

destructors because they did not implement core system operations. Accessing methods, 

nested classes, and methods related to programming languages libraries were among other 

kind of methods that were removed in their approach. Cornelissen et al. [CDMZ07] also 

removed accessing methods and their control flow, private and protected method calls, and 

constructors and their control flow to reduce the size of an execution trace.  

2.4.4. Trace Sampling 

Sampling techniques have also been used to reduce the size of traces (e.g., [CHMY03, 

LAZJ03, RR03, RZ05, Dug07]) just like in traditional information theory. Sampling 

consists of selecting parts of a trace for analysis instead of analyzing the entire trace. 

Existing approaches, however, have two major drawbacks: First, finding the right sampling 

parameters can be a difficult task and even if some parameters work well for one trace, they 

might not work for another trace (even if generated from the same system) [CHMY03]. The 

second and the most important drawback is that there is no guarantee that the resulting 

sample is representative of the original trace. This appears to be due to the fact that existing 

sampling techniques are blind to the information contained in the trace - they treat a trace as 

a stream of data for which the pieces are considered equal. 
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2.5. Trace Visualization 

Visualization techniques have been used to facilitate trace exploration and analysis.  There 

exist several tools that implement features that can be used by software engineers to 

abstract the content of traces (e.g. [SEAT, JR97, SKM01, DJM+02, CZD11]).   

A trace visualization tool has a set of views along with a number of functional features. A 

view shows one or more execution traces or a number of their attributes via a visualization 

approach. A visualization approach combines representation methods, interaction features, 

and a number of navigation strategies (see Figure  2.1).  

 

Figure  2.1. Decomposition of a visualization tool 

 

2.5.1. Representation methods 

The main factor in a visualization approach is its representation methods used to render the 

content of a trace. The representation methods include tables, charts, graphs, treemaps, and 

so on. Each of these representation methods is useful for understanding different types of 

information that can be derived or extracted from execution trace. For example, it is 

Visualization Tool 

Functional Features 

Visualization Approach Presentation Methods 

Interaction Features 

Navigation Strategies 
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important to know where it is more preferable to use a table instead of a chart and what are 

the benefits and the limitations each representation method comes with.  

2.5.2. Interaction Features 

The interaction features allow users to interact with one or more elements of the 

representation method of a visualization tool. These features are used to establish and 

facilitate the dialog between the user and the presentation. This dialog is a sequence of 

interaction features (where one interaction is linked to another one) used to enrich user 

exploration and discovery. Examples of interaction features include highlighting (a method 

by which users can mark a representation element of interest to keep track of it) [BG98], 

rearranging of trace elements [Hya10], showing more/less details [SEAT], 

grouping/ungrouping of presentation elements EXTRAVIS [CHZ+07, CZH+08], and more.  

2.5.3. Navigation Strategies 

Navigation strategies can be regarded to as the use of a virtual camera across the 

presentation scene to enhance visualization. This camera can potentially move, change lens, 

and show overviews to help software engineers uncover where he is within the 

representation (context) and makes it possible for the user to go to other locations of 

interest and show them in more details (focus). Camera movement-based navigation can be 

seen when users perform panning, zooming, and scrolling. In Panning, the user grabs the 

scene and moves it in different directions using a mouse. Zooming gives the feeling to the 

user as if the camera is moving towards or away from the scene. Scrolling is similar to the 

panning except that the camera movement is controlled via scrollbars. The Histogram, 
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Execution, Execution Pattern, and Reference Pattern views in Jinsight [DJM+02, 

DHKV93] and the liner view in ALMOST [RR99] are examples of views in trace analysis 

tools that support zooming and scrolling. 

2.5.4. Functional Features 

Functional features in a trace visualization tool are higher-level features that are supported 

by the tool to perform more advanced handling of a trace content including the application 

of trace abstraction algorithms, search, undoing/redoing, saving the current state and so on. 

The ‘search’ feature in trace analysis tools is used to retrieve trace events of interest just 

like in searching text. Depending on the size and the complexity of the system under 

analysis, the lack of a search feature in trace analysis tool can easily slow down or even 

make the whole investigation impractical. For example, although using EXTRAVIS brings 

about much convenience to maintainers, it suffers from the lack of search capabilities. 

Shneiderman [Shn96] suggests that keeping history of the actions performed by a user is 

among the tasks that an effective tool should support. Therefore, it is necessary for trace 

visualization tools to keep a history of the performed actions. This history can be as simple 

as recording one step back and one step ahead or as complete as recording all the 

interaction performed by the user during the visualization. 

Another important interaction feature consists of the ability to navigate through multiple 

views. For example, in SEAT, at any time, the software engineer can map the trace 

components to the source code (if available) to retrieve more information about the trace 

components. In ALMOST, double clicking on a method call in the linear view displays the 
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corresponding implementation of the method in the source code view. Similarly, in VET 

[MWM06], the location within the execution trace and the information about the selected 

element are synchronized in the two available views.  

Other advanced interaction features include animation in AVID [WMF+98], for example, 

software engineers can control the sequence of events they want to visualize by breaking 

the execution trace into a sequence of views called cels. Animation techniques are used to 

play the execution from one cel to another. There exist many other tools that support 

animated views such as VET [MWM06] and ExtraVis [CHZ+07, CZH+08]. 
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Chapter 3. A Trace Abstraction Framework 

3.1. Introduction  

In this chapter, we present our framework for simplifying the analysis of large traces that is 

inspired by the way the human brain operates when dealing with information obtained 

through the visual sense. In the next section, we present the motivations for drawing such a 

parallel. We also list a number of processes that explain how the human perception system 

deals with visual data received from a scene.  

In Section  3.3, we discuss how the human implicit perception of objects has motivated us to 

have a process that can find homogeneous segments of a trace. In Section  3.4, we discuss 

the global percept of a scene and suggest a process for trace analysis that can give us a trace 

that is in concept similar to a global percept by giving a representative sample of the trace. 

In Section  3.5, inspired by pop-out effect in human perception, we suggest a trace analysis 

process that finds important events of different parts of a trace. In Section  3.6, we explain 

how the mentioned trace analysis processes relate to one another and propose a trace 

analysis framework that incorporates those processes.  
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Parts of the material in this chapter is adapted and expanded from a paper published in the 

33rd International Conference on Software Engineering (ICSE 2011), New Ideas and 

Emerging Results Track, 2011 [PH11a].  

3.2. Human Perception vs. Trace Analysis  

As discussed earlier, excessive size of execution traces, finding what is being performed in 

different parts of a trace, and building high-level views to help in program comprehension 

are among the difficulties of trace analysis. As suggested by Zayour et al. [ZL01] for an 

analysis to be practical the results need to be presented in an acceptable size so that the user 

is not overloaded with the information. Trace analysis, however, is not the only field where 

the users need to deal with large amount of data. Human perception is another area with 

similar challenges. More particularly, we noted three main commonalities between the two 

areas:  

1. The amount of visual data received through our sensory is in general too high to be 

completely processed in detail so is the amount of information generated from a 

system run [FRC10]. 

2. The inability for the human brain to keep track of all relevant data in a specific 

domain of interest in both cases. There is a limited amount of information that can 

be handled by the human memory at any given time [Cow05]. Miller showed that 

short-term memory, or working memory, has a limited capacity (only 7±2 pieces of 

information, such as words or numbers, can be held at any one time) and cannot 

keep track of all the information from the visited knowledge domain [Mil56].  
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3. The need to acquire the necessary information in a relatively short time. In the case 

of trace analysis, time-to-market and other constraints such as the criticality of the 

analysis makes it necessary to obtain the needed information as quickest as possible. 

The same holds for human perception. Our perception system works in a way we 

grasp the essence of a scene within a small fraction of a second [FRC10]. This 

remarkable speed in gaining the information contributes to low response time and 

quick reactions.  

There are a number of processes that are proposed in psychology to explain how the human 

brain and the perception system automatically (not voluntarily) deal with massive volumes 

of visual data considering limited short-term memory and necessity of a short response 

time. Some of the processes that attracted our attention are described below. We are 

however aware that the human perception system works in a complex way and that the 

following list of processes is far from being exhaustive [UKM06, FRC10, Boo02, GRT93, 

TG80, SF99]:  

• Implicit Perception: It appears that our perceptual system segments local 

elements against their context and integrates them as objects and regions. 

• Global Percept: The segmented scene is then quickly scanned so as the brain 

obtains an overall impression of it. 

• Preattentive Process: The scene is analyzed in more detail by visiting the regions 

in a certain order. The pop-out effect is an important factor in this process.  
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In the next subsections, we elaborate more on the ideas behind these processes and suggest 

how trace analysis techniques can be developed based on these processes.  

3.3. Data Segmentation  

When we look at a scene, information flows from the physical sources and elements of the 

scene into our sensory device (i.e., eyes). But how do we start the analysis of the data 

received from the scene? As observed by Bowers et al. [BRBP90], first, an implicit 

perception of the scene occurs in which coherent regions and areas of the scene are 

identified. The implicit perception “precedes and guides a person to a conscious perception 

of [detected regions]” [BRBP90]. Thus, the first step in an implicit perception of a scene is 

finding and locating coherent segments of the scene.   

Given that different points of the scene carry no significance and are not segmented as 

groups when they reach the sensory device, a grouping mechanism [Kof99] can explain the 

detection of regions. The same mechanism explains why we see a scene as objects and 

surfaces that represent our best guesses of the meaning of the particular scene. Similar 

mechanism might be useful in trace analysis. By analogy, a trace can be seen as the scene 

in which the points and lines represent trace events. What we need is to develop a 

mechanism that groups these events into something meaningful that can help software 

engineers quickly understand what is happening in a trace. In the next chapter, we propose 

a mechanism that automatically identifies the main computations of the traced scenario 

using the ideas discussed here. However, before we propose our mechanism, we need to 

further dig into the human perception systems to understand how the grouping of scene 
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elements is done. This is explained through a set of laws known as Gestalt laws of 

perception that we describe in the following subsection. 

3.3.1. Gestalt Laws 

To explain how human perception performs, Musatti [Mus31] suggested that we perceive 

the grouping of scene elements that comprises the most homogeneous or uniform 

organization. Koffka [Kof99] and Wertheimer [Wer58] also suggested that our perception 

tends to group element that results in the simplest and most homogeneous (in certain 

characteristics) and regular organization of each group. Gestalt laws of perception describe 

how people group items visually based on their perception [Kof99, SF99, QB09]. Gestalt  

psychology [QB09] is an  application of  physics  to  essential  parts  of  brain  physiology 

describing the processes occurring in  the  brain  when  we  see  visual  objects and how our 

perceptual systems follow certain grouping principles to integrate the scene elements (i.e., 

objects and regions) as a whole and not just as points and lines. These laws explain how our 

perceptual system segments local elements against their context and integrates them as 

objects.  

Law of Similarity 

In a scene, elements that have similar characteristics are often distinguished from other 

elements as they tend to be seen as a group. This type of grouping is referred to as the 

Gestalt law of similarity. For example, when asked to describe the shapes illustrated in 

Figure  3.1, the majority of respondents will most likely point out to successive columns of 

squares and circles despite the fact that the figure can also be described as rows of 
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combined squares and circles. This is because the human perception system follows 

unconsciously a certain similarity-based grouping principle when it comes to interpreting a 

scene.   

 

Figure  3.1. Gestalt law of similarity 

The law of similarity does not force a certain scene dimension. That is, the elements of the 

scene can be distributed in two dimensions as in Figure  3.1 or in a single dimension (a 

linear representation) as shown in Figure  3.2. In this figure, also, similar elements tend to 

be grouped together as a group of as and a group of bs. 

 

Figure  3.2.  Similarity in a sequence of elements 

Law of Good Continuation 

The law of Good Continuation [GPSG01] refers to the tendency of things to be perceived 

as a group if they are visually co-linear or nearly co-linear. The lines shown in Figure  3.3 

(a) tend to be interpreted as the Figure  3.3 (b) and not as Figure  3.3 (c). The law of good 

a  a  a  a  b  b  b  b 
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continuation explains why we perceive the elements of a scene as a smooth flow rather than 

yielding abrupt changes. 

 

Figure  3.3. Gestalt law of good continuation (from [WKL+08]) 

 

Law of Proximity 

The Law of Proximity, the most fundamental law of Gestalt laws, states that “being all 

other factors equal, the closer [in terms of distance] two elements are to each other the more 

likely they are to be perceived as belonging to the same group” [SF99].  

 

Figure  3.4. Gestalt law of proximity 
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As shown in Figure  3.4, although the shapes on the top left-hand-side of the figure are 

different from one another, they form a group because of their close distance. The same 

holds for the shapes on the bottom right-hand-side of the figure that form a group. 

3.3.2.  Segmenting a Trace  

Inspired by how human perception segments a scene we suggest trace segmentation as an 

initial step in analyzing a trace. A trace as a flow of segments can provide the user with a 

high-level view that can help in trace exploration. Furthermore, each segment of the trace is 

composed of trace events that have similar behaviours and characteristics that can isolate 

them from the events in other groups. Thus, such segmentation can yield a behavioural 

model of the trace, where the execution flows from one phase to another.  

Grouping mechanisms, similar to Gestalt laws of similarity and good continuation, can be 

used to find the places where the behaviour of the execution changes and to segment the 

trace at those locations.  

3.4. The Gist 

In the first steps of analyzing a scene, we have the impression to see the entire scene, and 

rarely focus on the details. This representative image, called the gist of the scene, is 

provided by performing a single short sampling that lasts in the order of 0.1 sec [Oli05]. 

Boothe explains that the sampling mechanism cannot be a dumb process, as “it would 

seriously limit our ability to maintain a high-fidelity perceptual database” [Boo02]. A more 

intelligent sampling needs to be performed. This smart sampling is suggested to be 



 33 

evolutionarily advantageous because it can speed up information processing. Finding the 

gist of a scene is a remarkable aspect of our perception that provides us with the ability to 

understand the meaning of a complex novel scene very quickly. A similar idea can be 

applied to trace analysis to quickly find a sample that shows the general context of a trace 

and that is representative of its contents.  

3.4.1. Building a Gist  

Fast scene perception suggests that we do not need to perceive the details of the scene to 

identify its gist. As suggested by Olivia et al. [OT06], the general context of a scene can be 

inferred from the spatial properties of the elements of the scene. Many studies (e.g., [SO94, 

Bar04]) have suggested that elements and regions of low spatial frequencies in a scene 

represent global information about the scene. For example, in Figure  3.5, the right panel 

shows an image containing only the low spatial frequency whereas the left panel shows the 

original image containing the entire spectrum. Our perception system is likely to perceive 

the image in the left panel at a glance by the low spatial frequencies in the image as shown 

on the right panel. 

The low spatial frequency regions in a scene are the regions that are most homogeneous. As 

shown Figure  3.6, low spatial regions in a figure are the ones where the characteristics 

(e.g., color) of pixels on a reference plot (that covers an area 16 pixels) does not change 

abruptly and significantly.  

Uchida et al. [UKM06] suggest that processing limited low-level information from short 

chunks could facilitate rapid construction of global percept of a scene. An effective process 
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could be one that performs sampling on each homogeneous segment of the scene rather 

than on mere unstructured details of the scene.  

In execution traces, similarly, the initial global information about the trace might be 

extracted by applying sampling that samples the homogeneous regions of a trace instead of 

blindly sampling the entire trace.  

 

Figure  3.5. Spatial frequencies convey different information about the scene (form 

[Bar04]). 

 

Figure  3.6. Examples of regions with high and low spatial frequencies 
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3.4.2. Trace Sampling 

In the domain of trace analysis, regular and random sampling techniques have often been 

used to reduce the size of execution traces (e.g., [Dug07, CHMY03]). In general, sampling 

techniques are concerned with selecting a sample of a trace for analysis instead of 

analyzing the entire trace. However, since trace sampling is often not based on information 

about the trace (e.g., distribution of the trace events, its homogeneous subsequence, 

outliers, etc.) it may result in a sample that is not representative of the original trace.  

Inspired by the process of obtaining the gist in the human perception system, we have 

proposed an effective sampling process [PSHM11] that makes use of proportional stratified 

sampling techniques studied in Information Theory. In stratified sampling [Coc77], first, 

the trace needs to be segmented into non-overlapping exhaustive subsets that are 

homogeneous (called stratum) and then sample instances are drawn from each stratum. By 

doing this, we guarantee that the final sample contains elements that are representative of 

every part of the trace. 

3.5. Pop-out Effect 

When we look at a scene, parts of the scene might quickly draw our attention. This 

phenomenon is referred to as the “pop-out effect”. The pop-out effect is also explained in 

evolutionary terms: it may often be necessary for survival to notice scene elements that 

have different properties than ones of their surroundings, even if we are not explicitly 

looking for them, because they may be predators, preys, etc. [Ros99]. In general, odd 
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elements pop out from a larger group of homogeneous elements. For example, as shown in 

Figure  3.7, a red circle among green circles pops out and draws our attention. 

  

Figure  3.7. Pop-out effect 

The pop-out effect leads to rapid detection of elements that differ greatly from surrounding 

elements usually in single dimension such as color or orientation [TG80, FRC10, WC99]. 

Although many models that explain the pop-out effect focus on local differences between 

each scene element and its neighbours, one could imagine scenes in which the variation in 

more distant elements (and not the local ones) increases or decreases the degree in which an 

element could pop-out [Alv11]. In general, a high frequency of an element in one region 

shows the importance of that element whereas an element that is scattered across different 

regions is considered less important. In other words, the elements that appear more times in 

one region and not in many other regions of a scene are the ones that pop-out. 

Inspired by the pop-out effect in human perception where some scene elements are given 

more priority during the analysis, for execution traces, we need to develop a mechanism 

that can help us extract important events from a trace by a process that prioritizes the events 

based on how they appear in different parts of the trace.  
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3.5.1. Important Events of a Trace 

The idea of weighting trace events based on their frequency has been proposed in many 

studies (e.g., [Dug07, Bal99]) to detect the events that do not follow the same frequency 

distribution (they are invoked considerably more than the other events). However, simply 

relying on mere frequency, we do not think that it is sufficient to detect important events of 

a trace. In fact, Durgerdil et al. [Dug07] showed that the events that appear frequently all 

over the trace, called temporal omnipresent events, are the least important events.  

Inspired by the pop-out effect in human perception, we suggest a new technique that takes 

into account both frequency of events and their appearance in homogeneous segments of a 

trace. This will be, in nature, similar to term frequency – inverse document frequency (TF-

IDF) in information retrieval [Joa98]. In our proposed technique, a weight assigned to each 

trace event (term) in each segment (document). The events that are more representative of a 

segment obtain higher weights in that segment and lower weights are assigned to less 

representative events. We propose a weighting function in which higher weight is assigned 

to a trace event that appears often in a particular segment, but appears not in many other 

segments of the trace. 

3.6. Proposed Framework 

We introduce, in this section, a framework for trace analysis that is inspired by three 

processes that were discussed in the previous sections. Our proposed framework is 

composed of three components (see Figure  3.8). We discuss trace segmentation, smart 

sampling, and content prioritization components in more details in  Chapter 4, 5, and 6. 
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Figure  3.8. Our proposed framework and its components for trace analysis 

The first component of our framework, the trace segmentation component, aims to divide a 

large trace into meaningful and homogeneous segments that that we call execution phases. 

Examples of execution phases could be initializing variables, applying a specific algorithm, 

etc. To perform trace segmentation, we use a number of schemes inspired by Gestalt laws. 

Given a trace T as input, the trace segmentation component applies the schemes on the 

trace content and will result in a trace T’ which is an annotated trace where the execution 

phases are indicated. 

As shown in Figure  3.8, in smart sampling of an execution trace, we use the trace 

homogeneous segments (execution phases) to serve as strata in the sampling process. In 

other words, once the phases are detected (i.e. the trace T’ is obtained –Figure  3.8), we start 

the stratified sampling process, which is implemented in our framework, as part of the 

smart sampling component. This component receives a phased execution trace T’ as its 

input and outputs a sample of the execution trace using stratified sampling. Since the events 

within each stratum are homogeneous, we perform the selection of trace events from each 
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stratum using random sampling. The size of a sample of each phase is relative to the size of 

the phase. The result of this phase in a sampled trace T’’ which is a smaller trace than T’ 

and yet representative of the content of T’. 

As shown in Figure  3.8, the content prioritization component, receives a phased trace T’ as 

input and outputs a trace T’’’ containing only the representative events of each phase. For 

this, the content prioritization component ranks the trace events of each execution phase. 

The ranking is based on the frequency of occurrence of each event in a phase and the 

number of other phases in which the same event has occurred.  

3.7. Summary 

In this chapter, we investigated possible analogies between the two fields of human 

perception system and trace analysis. We focused on three processes that happen in our 

perception system when we look at a scene. These processes are preattentive and therefore, 

unlike attentional processes, they can be different from one person to another.  

Inspired by the psychological processes that govern the human perception system, we 

introduced processes for trace analysis. The first process aims to identify different segments 

of an execution trace that groups trace events that collaborate to a common task. Schemes 

similar to Gestalt laws can be applied to a trace to find its homogeneous segments.  

We proposed a second process for generating a representative sample of an execution trace. 

This process was inspired by the process of building the gist of a scene in our perception 

system. For this process, we proposed a stratified trace sampling process where strata are 

the segments detected in the first process. 
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Given that not all events in a trace have the same importance, the last process that we 

proposed in this chapter is intended to prioritize events according to their relevance to 

different parts of a trace. This process is inspired by the pop-out effect in human perception 

that helps in quick identification of elements of a scene that are different from others.  

Finally, we proposed a framework that integrates the proposed processes so that the results 

obtained by one can be used, if needed, by other processes. Three components in our 

framework are intended to implement the three proposed processes for trace analysis.  
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Chapter 4. Trace Segmentation 

4.1. Introduction  

In this chapter, we focus on the problem of creating abstractions from large traces. Trace 

abstraction is useful in itself to reduce the size of traces and simplify their understanding 

for the human viewer. We present a number of algorithms by which a trace can be divided 

into smaller and more manageable trace segments that characterize the main execution 

phases of the traced scenario. We call this trace segmentation. For example, a trace that is 

generated from a compiler will contain events that represent the various compiler’s phases 

including parsing, preprocessing, lexical analysis, semantic analysis, and so on. Knowing 

where each of these phases occurs in the trace is usually a challenging task since there is no 

support at the programming language level of how to explicitly indicate the beginning and 

end of each phase.  

Trace segmentation should not be confused with the techniques that extract very high level 

views of a system execution used for redocumentation and general understanding of the 

system behaviour (often shown as UML sequence diagrams) such as the ones we developed 
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in [HBAL05, HL06]. These techniques are not designed to uncover the specific 

computational phases of the traced scenario. On the other hand, the phase detection 

methods can be further refined to build higher-level views of the system.  

We believe that a technique that could automatically identify these phases (and their sub-

phases) has numerous benefits:  

• Software engineers can easily navigate through the trace content by viewing it as a 

flow of execution phases instead of mere low-level events 

• Phases can provide important information on how a particular feature is 

implemented, which in turn can help software maintainers enhance these features.  

• Phases can be further refined to recover a high-level behavioural view from raw 

traces, enabling the understanding of the traced scenario. 

• Phases might be helpful in fault localization as they can show in what phase of the 

system’s execution the error has occurred. An execution shown as phases can be an 

excellent means of communication between maintainers, developers, programmers 

to obtain a quick and clear idea and description of the system. 

To the best of our knowledge, this is the first time that automatic extraction of execution 

phases from a trace is attempted.  

Some visualization approaches such as the ones presented in [CHZ+07] offer an overview 

of the execution trace that helps the user to detect segments of an execution trace that are 

visually distinguishable from one another. This overview shows the call relations between 
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the methods from different classes and packages that can be used to visually detect the 

different segments of the system’s execution. Being aware of the execution scenario, the 

user can also hypothetically relate the repetitive (or ordered) patterns of events to the 

repetitive (or ordered) features in the execution scenario. Users then need to verify their 

hypothesis by going deeper in the trace content. Unlike our approach that automatically 

finds the trace segments, their approach does not provide an actual segmentation for the 

trace data, and the burden of detecting, hypothesizing, and verifying the segments is on the 

user’s shoulders.  

In their tool called Jive, Reiss et al. [Rei05, Rei07] visualize the behaviour of a Java 

program as it is running at certain intervals of time. The statistical information about the 

system’s behaviour during each interval is captured at the class and thread levels (e.g., 

numbers of invocations from one class, the information about the behaviour of the threads 

during execution) in the form of a vector. While the system is executing, the current vector 

(which belongs to the last interval) is compared with a general vector (a vector that 

represent the statistics of the system since last three intervals). The two vectors not being 

“close enough” can indicate a new phase. The vector for the new phase is then compared 

with the saved vectors of all previously detected phases. If the vector of any previous phase 

is close to the current vector, that segment is being repeated, otherwise, this is a completely 

new segment. The duration of an interval, the amount of closeness when comparing the 

vectors, and the number of intervals that are considered in computing the general interval 

are the parameters that can significantly impact the quality of phase detection in their 

approach. Furthermore, the user is only provided with some statistics of each phase, which 

may not be much helpful in understanding the tasks delivered by the phase. Visualization-
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based approaches commonly require human intervention and are open to human 

interpretation.  

Another online phase detection technique proposed by Watanabe [WII08] is based on the 

investigation of Least Recently Used (LRU) cache for observing objects that are created or 

destroyed during a system’s execution. The assumption is that at the beginning of each 

phase many new objects are created to implement the tasks in that phase and once the tasks 

are delivered the corresponding objects are destroyed, therefore, a significant change in the 

cache (list of current objects) can show the emergence of a new phase. The proposed 

approach has a number of shortcomings. Several parameters (cache size, window size, 

threshold, and phase search distance) control their phase detection algorithm. However, no 

solution is suggested on how to tune these parameters. Changing one or more of these 

parameters can result in different phases. As the authors also mentioned, their algorithm 

falls short when one method is contributing to one or more features. Furthermore, once the 

phases are detected, the user needs to manually investigate each phase contents to 

understand what is happening inside the phases (no phase description is provided). 

Handling repeated phases is another issue that is not addressed in their approach.    

Kuhn et al. [KG06] suggest a possible analogy between analysis of trace information and 

signal processing. For this, they first transform method call traces into time series by 

plotting the nesting level of the calls against points in time through the execution. Then, 

they apply trace size reduction technique based on events interaction where sequences of 

events are grouped based on the amount of changes in their nesting levels and each group is 

replaced with the first event of that group. This volume reduction makes it possible to 

visualize a large number of calls in multiple traces on a single screen. This way, users can 
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manually identify similar phases within a trace and between the traces. This technique does 

not take into consideration the method names when preparing the plot to match patterns 

between trace signals. In addition, it removes a lot of information that it considers 

inessential data from a trace by applying multiple filtering logics (independent of method 

names), having as target mainly the representation size. This could potentially result in loss 

of important trace information during the abstraction process.  

This chapter is organized as follows: in Section  4.2, we define the concept of execution 

phases. In Section  4.3, we introduce our proposed phase detection approach along with its 

different steps and components. In Section  4.4, we explain how the phases are located on 

the execution trace. In Section  4.5, we propose a method for automatic tuning of the 

parameters as an optional step. In Section  4.6, we discuss the tool support for our approach. 

In Section  4.7, we present the case studies to evaluate our proposed sampling approach. 

Finally, in Section  4.9, we conclude this chapter with a summary.  

Parts of the material in this chapter is adapted and expanded from a paper published in the 

16th IEEE International Conference on Engineering of Complex Computer Systems, 2011 

[PH11b].  

4.2. Reasoning about Execution Phases 

We define an execution phase as a segment of a program’s execution that performs a 

specific task.  At a very high-level, one could argue that any program is composed of three 

major phases (Figure  4.1): The initialization phase, the computation phase, and the 

finalization phase. Each phase can be further decomposed into smaller sub-phases that 

implement specific sub-tasks of the program.  



 46 

Execution phases can appear at various levels of a system’s execution [Rei07, SPHC02, 

WII08]. At the highest level of abstraction, a system’s execution can be considered as an 

algorithm or a general procedure for solving a specific problem. The phases in this case are 

the key steps of the algorithm. At a lower level of abstraction the execution phases of a 

system implemented in a specific programming language are segments of the system’s 

execution that collaborate with each other to implement a specific task ([Rei05, Rei07]). 

The lowest level of abstraction of a system’s execution is presented as machine code. The 

execution phases in this level can show how the system accesses and uses resources. For 

example, the phases can show distinctive patterns of hardware usage (e.g., CPU usage, 

memory access, communication ports access) or stable states of machine resources during 

the execution as noted by Sherwood et al. [SPHC02].  

This thesis focuses on identifying the key execution phases that compose a system’s 

execution at the source code level. In such context, we want to be able to take an execution 

trace (generated from exercising one or more particular features) and identify execution 

phases where each phase performs a portion of the overall program part that is being traced. 

Each phase denotes a step of the flow of execution and phase transitions denote the logic of 

the execution flow from one step to another. This way, the understanding of how a feature 

is implemented will presumably no longer require, at least in the beginning, that its 

corresponding trace be explored as a flow of mere low-level events.  Thus, a trace can be 

seen as a sequence of execution phases, in which a phase denotes a step of the general 

execution and the transitions among phases depict the logic that connects the phases. 

Moreover, each phase can be further decomposed into a number of smaller sub-phases, 

hence, varying the granularity of execution phases.  
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For example, Figure  4.1 shows a system’s execution composed of three major phases: The 

initialization phase, the computation phase, and the finalization phase. The logic of the flow 

(represented by the numbers over the transition) shows that from initialization, we go to 

computation and from there we go to finalization.  

 

Figure  4.1. High-level phases of a system’s execution 

4.3. Phase Detection Approach 

Recall that an execution phase is a segment of a system’s execution that exhibits common 

behaviour at a level the programmer would recognize. For example, Figure  4.2 shows a 

very simple trace composed of several calls to two methods a and b. The figure also shows 

a ruler that is used to indicate the position of the calls in the trace (e.g. the first call to a 

appears in position 1, the second call in position 2, etc.). If asked to identify the major 

phases that appear in this trace, a programmer would most likely perceive two major 

phases: The first one is composed of the calls to a, while the second phase could consist of 

the calls to b.  

 

Figure  4.2.  A sample trace 

a  a  a  a  b  b  b  b 

1  2  3  4  5  6  7  8 

Initialization Computation Finalization 

1 2 
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As the trace grows in size and complexity, manual detection of phases becomes harder. The 

complexity here can be defined as the number of new methods that are invoked in a trace.  

Figure  4.3 shows an overview of our approach for automatic detection of execution phases 

from traces. The phase detection component receives a trace (hereby referred to as the 

original trace) as its input. This component analyzes the original trace in one pass, 

automatically dividing its content into the system’s main execution phases. The output of 

the phase detection component is an annotated version of the original trace where the 

execution phases are marked (hereby referred to as the phased trace). The phase detection 

component is composed of two main units: “Application of Gravitational Schemes” and 

“Clustering and Mapping”. In the application of gravitational schemes, two schemes are 

applied on the original trace to group its similar and continuous events into dense groups. 

The output of this unit is an intermediate representation of the original trace where the 

events are rearranged by the gravitational forces. We refer to this intermediate 

representation as the rearranged trace. The Clustering and Mapping unit then uses a 

clustering algorithm to locate the dense groups on the rearranged trace and maps them back 

to the original trace as execution phases. This unit outputs a phased trace. 

The effect of applying each of the similarity and continuation schemes is as follows:  

• Similarity scheme: By applying this scheme, the events in the trace are rearranged in 

a way that the distance between similar trace events is reduced. We consider two 

method calls similar if they call the same methods.  

• Continuation scheme: The application of this scheme results in the repositioning of 

the trace events in a way that the consecutive events are made closer one to another 
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if there a continuous change (no sudden jump or drop) in the values of a certain 

attribute of the events. For example, in traces of method calls, the consecutive 

method calls that are in the calling nesting level are made closer to one another to 

emphasize a trend in the execution of the system.  

The two gravitational schemes that we have developed are also aligned with the fact that a 

phase change in an execution trace corresponds to a significant change in the pattern of 

attributes of the events in the trace over time [WII08, Rei05]. Therefore, our strategy can be 

seen as reducing the distances between the events for which the characteristics can form a 

pattern specifying a phase. Again, this is similar in principal to the way a human brain 

automatically groups points and lines into shapes and regions as explained in the previous 

chapter. 

 

Figure  4.3. Detailed view of the execution phase detection unit 

To help with the description of these techniques, we introduce the following definitions: a 

trace T of size n (the number events, here, method calls invoked in the trace) is a tree, 

where each node is a method call denoted as dic , where i represents the invocation order of 

the method call c and d (depth of the node) shows the nesting level of the call. Each method 

call dic , can result in calls of zero or more methods, with 1,1 ++ dic  as its first callee, if any.  
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{ }dndidid cccccT ′′′′′+′= ,,1,,20,1 ,,,,,,   

To apply our gravitational schemes, we define the distance between the method calls in the 

trace. The difference in invocation orders between the method calls in the trace is 

considered as distance between the method calls and it is assumed that there is equal 

distance of one between consecutive invocations in the original trace. For instance, the 

distance between dic ,  and djc ′,  would be equal to || ij − . This way, we map the ordinal 

scale of method calls to an interval scale. Furthermore, we define the function )( ,dicPos  to 

return the position of the method call c in the interval scale (i.e., on a ruler). The position of 

a method call is also the order in which it was invoked right after the trace is generated. 

However, as the method calls are rearranged as a result of applying the two schemes, the 

new position of a method call might differ from its original order of invocation. We use this 

rearranged trace to find the phases of the original trace. 

4.3.1. The Similarity Scheme 

The objective of the similarity scheme is to reposition the events of a trace in such a way 

that similar events gravitate to each other forming a group of dense events, which could 

indicate the presence of a phase. In other words, the events of a trace are repositioned in a 

way that the distance between two same events is less than the distance between two 

different events given that the difference in terms of the invocation order is the same for the 

events of both pairs. A simple repositioning scheme based on the similarity scheme, which 

we refer to as simPos , and which divides by half the distance of similar methods changes the 

position of method calls as follows: 
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We visit each method call dic ,   in the original trace. If there is a previous method call djc ′,  

to the same method, we reposition dic ,  to half way from djc ′,  (i.e., by reducing the distance 

to half). Otherwise, we do not change its position ( dic ,  remains in i-th position).  

A pseudo code that implements the similarity scheme is shown in Figure  4.4. As shown in 

the figure, the function CalculateSimilarity calculates a new position for method 

call currentEvent and returns similarityPosition as output. 

CalculateSimilarity uses a data structure positionTable that, for each method, 

keeps the position of the last call to that method in the trace. Line 1 initializes 

similarityPosition to zero and line 2 initializes the similarityDenominator 

to 2. similarityDenominator sets the fraction by which two similar method calls are 

made closer to each other. Line 3 sets currentName to the name of the method invoked 

in currentEvent and line 4 finds the position of currentEvent in the original trace 

(recall that the order of a method call is the position of that method call in the original trace, 

thus, currentOrder is set to the order of currentEvent). Line 5 sets the 

currentPosition of the currentEvent equal to its currentOrder. Line 6 

checks if there has been any other method call to a method with currentName earlier in 

the trace. If so, the algorithm finds the distance offset between the currentEvent 

and the previous call to the method invoked in currentEvent (line 7 and 8). Line 9 sets 
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the similarityPosition to half of offset from the position of the previous call to the 

method invoked in currentEvent and line 10 updates the position of the method in the 

positionTable. If the no similar method has been previously invoked (i.e., we do not 

have a method with currentName in the positionTable), line 12 adds the current 

method and its position to the positionTable. Finally, as the result of the algorithm, 

Line 13 returns a new position similarityPosition for currentEvent. In this 

pseudo-code, by setting similarityDenominator to 2, we chose to reduce the 

distance between calls to the same method by half, although one could use a different 

measure. The focus here is on the fact that the calls to a same method are placed closer to 

each other to form a dense group (see Section  4.5 for more on fine tuning 

similarityDenominator parameter). 

Algorithm CalculateSimilarity ( currentEvent ) 

Input: the method call currentEvent that we want to update its position. 

Output: a new position similarityPosition for currentEvent. 

Begin 

1:      similarityPosition  0 

2:      similarityDenominator  2 

3:      currentName  name of currentEvent 

4:      currentOrder  order of currentEvent 

5:      currentPosition  currentOrder 

6:      if  similarityTable contains currentName 

7:          previousSimilarEventPosition  position of currentName in positionTable 

8:          offset  currentPosition - previousSimilarEventPosition 

9:          similarityPosition  previousSimilarEventPosition + offset / similarityDenominator 

10:          update the position of currentName in positionTable with similarityPosition 

11:     else 
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12:          similarityPosition  currentPosition 

13:     return similarityPosition 

End 

Figure  4.4. Calculating the position of a method call according to the similarity scheme 

Figure  4.5 shows the result of applying the similarity scheme to the sample trace of Figure 

 4.2. The formation of two dense groups of method calls could indicate the presence of two 

phases. The first phase begins at the first method invocation (and contains calls to a) and 

the second phase starts at the fifth method invocation (calls to b). After using the similarity 

scheme, even if the similarity of the items in each of each group becomes imperceptible, 

the groups still can be recognized by their structure and the distance between them. This is 

shown in Figure  4.6 where we replaced all method calls with “●”.  

 

 

Figure  4.6. Events are shown as dots 

In Figure  4.7, we show the effect of applying the similarity scheme to another sample trace 

(this trace does not reflect real world traces and is used here for illustration purposes only). 

The resulting trace appears to contain two dense groups that could indicate the presence of 

two distinct phases. The first one starts at the first invocation and is composed of calls to 

methods a and b, while the other one which starts at the seventh invocation contains calls 
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Figure  4.5. The result of applying the similarity scheme to the trace of Figure  4.2.  
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to c and d. Figure  4.7 (step 3) shows the same result when discarding the effect of 

similarity in perception (replacing all methods with “●”). Although the size and complexity 

have increased compared to the sample example of Figure  4.2, one can still quickly 

recognize two phases based on the formed groups. As discussed in Section  3.3.1, 

structurally recognizable groups can are explained by Gestalt law of proximity. Thus, one 

may conclude that the similarity scheme technically converts similarity to proximity.  

Although in this work, we only consider the similarity between the names of method calls, 

one can define other similarities (e.g., cohesiveness either from a structural or from a 

conceptual point of view) and apply the scheme introduced here. 

 

Figure  4.7. The result of applying the similarity scheme to a sample trace 

4.3.2. The Continuation Scheme 

The similarity scheme works well for a trace that contains similar events. But what happens 

if there is no noticeable similarity between the events of an execution trace? For example, 

Figure  4.9  (step 1) shows an execution trace where it is hard to distinguish the similar 
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nodes -no distinct method is invoked more than once. However, one can perceive two 

different segments in this trace. As discussed in Section  3.3.1, this perception can be 

explained by the Gestalt law of Good Continuation. We use the continuation scheme to 

group trace events using the nesting level of the method calls.  

For example, one can notice that there is a good continuation between the calls from a to o, 

which can intuitively suggests the existence of a phase. Using the nesting level of calls to 

detect execution phases has also been the topic of other studies [KG06, WII08]. Watanabe 

et al. [WII08] used the nesting levels of a call tree to detect phases and locate phase shifts. 

The authors suggested that the depth of the call stack (i.e., the nesting level) is a local-

minimum at the beginning of a phase indicating a phase transition.  They also showed that 

the events that have a high nesting level (i.e., which are deep in the tree hierarchy) were 

unlikely to initiate new phases.  

The continuation scheme groups trace events by keeping the method calls with higher 

nesting levels closer to the previous method calls. The higher the nesting level of a method 

call, the stronger it is attracted by the previous method call. A continuation scheme that 

repositions the events of a trace based on their nesting level, and that we call here Poscont, is 

as follows: 


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When applied to a trace, this scheme reduces the distance between method calls based on 

the nesting level (d) of the callee by changing the distance of two consecutive method calls 



 56 

from 1 to 1/d. The condition 2
dd ′>  disables gravity for the cases in which the nesting 

level of the current method call is drastically lower than the nesting level of the previous 

method call (i.e., the case of local minimums). For example, a call with a nesting level 6 

that immediately occurs after a call with a nesting level 12 will not be repositioned because 

it indicates a drastic change in nesting levels ( 2
126 ≤ ) and thus a possible phase shift.   

The pseudo code for the continuation scheme is shown in Figure  4.8. As shown in the 

figure, the function CalculateContinuity calculates a new position for method call 

currentEvent, and returns continuityPosition as the calculation result. Line 1 

initializes continuityPosition to zero. Line 2 sets currentNestingLevel to 

the nesting level of currentEvent and line 3 sets currentOrder to the order of 

currentEvent. Line 4 sets the currentPosition of the input method call to the 

order of the method call currentOrder. Line 5 sets continuityDenominator to 2. 

continuityDenominator sets the fraction by which the variation in nesting levels is 

considered significant. Line 6 checks if the method call currentEvent is not the first 

method call of the trace (i.e., there has been a previous method call). If so, 

prvNestingLevel is set to the nesting level of the previous method call and 

prvcontinuityPosition is set to the position of the previous method call. Line 9 

checks whether the change from prvNestingLevel to currentNestingLevel is 

significant or not. If not significant, the algorithm sets the position of current event 

continuityPosition closer to prvcontinuityPosition according to 

currentNestingLevel. Otherwise, continuityPosition will not change (it will 

be equal to currentPosition). Finally, as the result of the algorithm, Line 16 returns a 
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new position continuityPosition for currentEvent. In this pseudo-code, by 

setting continuityDenominator to 2, we chose not to reposition subsequent subtrees 

where the nesting levels vary by more than half. A different value for 

continuityDenominator could be used as long as a significant change among 

subtrees can be identified (see Section  4.5 for more on fine-tuning this parameter).  

Algorithm CalculateContinuity ( currentEvent ) 

Input: the method call currentEvent that we want to update its position. 

Output: a new position continuityPosition for currentEvent. 

Begin 

1:     continuityPosition  0 

2:     currentNestingLevel  nesting level of currentEvent 

3:     currentOrder  order of currentEvent 

4:     currentPosition  currentOrder 

5:     continuityDenominator  2 

6:     if we have a prvEvent 

7:          prvNestingLevel   nesting level of prvEvent 

8:          prvContinuityPosition   position of prvEvent 

9:          if currentNestingLevel > prvNestingLevel / continuityDenominator  

10:           continuityPosition  prvContinuityPosition + (1 / currentNestingLevel) 

11:          else 

12:          continuityPosition  currentPosition   

13:    return continuityPosition 

End 

Figure  4.8. Calculating the position of a method call according to the continuation scheme 
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Figure  4.9. The result of applying the continuation scheme to a sample trace. 

 

Figure  4.10. The resulting trace with the routines replaced with dots 
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Figure  4.9  (step 2) shows the result of applying the continuation scheme to the sample 

trace Figure  4.9  (step 1). As we can see, the new positioning of the trace events leads to 

two distinguishable groups of method calls. The first phase begins at the first method 

invocation and the second phase starts at the tenth method invocation. This way, we used 

the effect of good continuation in perceptual grouping to build groups that are structurally 

recognizable. Even if the manual detection group of method calls bearing good 

continuation becomes harder due to the size and complexity of a trace, the application of 

continuation scheme automatically forms dense groups of method calls that are 

recognizable through their structure and the distance between them. If we omit to visualize 

the nesting level (see Figure  4.9 (step 3)) and replace the methods with a “●” (Figure  4.10), 

we can clearly see that two phase have been formed. We may say that the continuity 

scheme technically converts continuation to proximity. 

4.3.3. Integration of Schemes 

We combine the similarity and the continuation schemes into an integrated scheme to 

facilitate their application. When applied to a trace, the integrated scheme first reduces the 

distance between method calls based on their nesting level (as we have in the continuation 

scheme), followed by the application of the similarity scheme. This results in reduction of 

the distance between calls to the same methods. 

The integrated repositioning scheme can be iteratively applied to a trace to detect major 

phases, their sub-phases, etc, until we reach the individual events of the trace. To harness 

gravity so that phases could be detected with different levels of granularity, a threshold t is 

introduced to prevent two considerably distant methods from attracting each other and 
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hence forming a large block. More precisely, the threshold t works in such a way that a call 

to a method m is attracted to a previous call to the same method only and if only the 

distance between these two calls is less than the threshold. Major phases can be detected by 

setting a threshold t that is close to the size of the trace. An integrated scheme with 

threshold t changes the position of method calls as follows: 
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Figure  4.11 shows a pseudo code that implements the integrated scheme. The pseudo code 

is a modified version of the algorithm that implements the similarity scheme (Figure  4.4). 

In the modified version, along with the currentEvent its continuityPosition 

(calculated via CalculateContinuity) is also passed to the algorithm to find the final 

position of the currentEvent. Line 1 initializes IntegratedPosition to 

continuityPosition. If there was a previous call to the method invoked in 

currentEvent (i.e., we have this method in the positionTable) line 4 fetches the 

position of that method call in the original trace (recall that the order of a method call is the 

position of that method call in the original trace). Lines 5 to 10 apply the similarity scheme 

on the currentEvent if the distance between the currentEvent and the previous call to 
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the method invoked in currentEvent in the original trace is less than t. Finally, as the 

result of the algorithm, Line 16 returns a new position integratedPosition for 

currentEvent. In this pseudo-code, t is passed as an input to the algorithm. The 

smaller the threshold t, the more fine-grained phases we can detect. We anticipate that the 

threshold is application-specific and that our tool that supports this approach allows enough 

flexibility to vary the threshold (see Section 4.5 for more on fine-tuning of this parameter).  

Algorithm IntegratedScheme ( continuityPosition, currentEvent, threshold ) 

Input: the method call currentEvent that we want to find its position. The position 

continuityPosition of currentEvent calculated by method CalulateContinuity. Threshold 

threshold.  

Output: a new position integratedPosition for currentEvent. 

Begin 

1:      integratedPosition  continuityPosition 

2:      similarityDenominator  2 

3:      currentName  name of currentEvent 

4:      if  similarityTable contains currentName 

5:           previousSimilarEventOrder  order of currentName in positionTable 

6:           if continuityPosition – previousSimilarEventOrder <=  t 

7:        previousPosition  position of currentName in positionTable 

8:        offset  continuityPosition - previousPosition 

9:        integratedPosition  previousPosition + offset / similarityDenominator 

10:        update position of currentName in positionTable with integratedPosition  

10:           endif 

12:     return integratedPosition 

End 

Figure  4.11. Calculating the position of a method call according to the integrated scheme 
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4.4. Identifying the Beginning and End of Phases  

Once the method calls of a trace are repositioned according to the integrated scheme and 

dense groups of method calls are formed on the rearranged trace, we map the groups back 

to the original trace as phases.  

 

Figure  4.12. Mapping clustered groups to phases on the original trace 

Figure  4.12 shows the steps that are taken to perform this mapping. First, we need to 

automatically locate the groups on the rearranged trace because it would be impractical to 
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expect from programmers to distinguish the various groups visually for considerably large 

traces. By locating, we mean to identify the beginning and end of each group on the 

rearranged trace. We use a clustering algorithm to automatically find the beginning and the 

ending method call of each dense group based on the positions of method calls. The 

beginning method call of each group is then marked as the beginning of a corresponding 

phase on the original trace. Therefore, the beginning of each phase in the original trace is 

marked by the beginning of a corresponding group in the rearranged trace and the ending of 

that phase is marked by the beginning of next phase. 

4.4.1. Clustering Algorithm 

In [TH98], a number of hierarchical and partitional clustering algorithms and their 

applications to software engineering are presented. In this thesis, we chose a partitional 

clustering algorithm, the K-means clustering [Mac67], as our clustering algorithm. We 

chose to use K-means clustering because of its simplicity and observed speed [Vas07]. The 

study of the impact of various clustering algorithms on our approach is left as future work. 

K-means is an unsupervised clustering technique that partitions the data points into a 

predetermined number (K) of non-hierarchical clusters. The algorithm starts by choosing K 

data points (in our case data point are the method calls of the rearranged trace) as initial 

centroids ( Kµµ 1 ). Each of these points is an initial center of a cluster. The rest of the 

algorithm is iteratively performed according to the below two steps, trying to minimize the 

overall sum of distances of the points from their cluster centroids: 

1. Each instance x is assigned to the cluster with the closest centroid (the distances in 

our case are Euclidian): 
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ijxxDx jii ≠∀−<−∈ µµif  

where iD  is the set of points that have iµ  as their nearest centroid. 

2. : Update the centroid of each cluster by moving it to the center of assigned points to 

that cluster: 

∑
∈

=
iDxi

i x
R
1

µ  

where ii DR = . The iteration continues until we have the same cluster assignment in 

two successive iterations. 

K-means clustering yields a partitioning where data points close to a centroid are grouped 

together as a cluster. It should be mentioned that performing clustering with a different 

value for K results in different partitioning of data. Therefore, it is important to input the 

input a K value that is as close as possible to the actual number of dense groups (see 

Section 4.5 for a discussion on how to automatically find the number of dense groups) 

4.5. Parameter Tuning 

Recall that given an execution trace, our approach builds a rearranged trace by applying the 

integrated scheme on the original trace. The quality of our phase detection approach 

depends on how it automatically locates groups of events on the rearranged trace to map 

them to phases on the original trace. The automatic localization of groups, itself, depends 

on the following factors: 
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1- How the methods are repositioned to form dense groups: as discussed in Section 

 4.3.3, the integrated scheme repositions the method calls in a way that methods that 

bear similarities are made closer to one another to form dense groups. Our integrated 

scheme, by default, halves the distance between calls to the same method. As shown 

in Figure  4.11, this reduction in distance is controlled by the parameter 

similarityDenominator.  The algorithm also reduces the distance between 

the callees and callers as long as the nesting level of the callee is greater than half of 

the nesting level of the caller. That is, the drop in nesting levels by half is considered 

a significant change in nesting levels. As shown in Figure  4.11, the detection of a 

significant change is controlled by the parameter continuityDenominator. 

The user can change both of these repositioning parameters as long as they results in 

reducing the distance between calls that bear similarities.  

2- How the number of dense groups is detected: as mentioned in Section  4.4, to 

correctly locate each dense group, our clustering needs the number of dense groups 

(K) as its input. This parameter can be set, for example, based on visual inspection of 

the rearranged trace and manual counting of the number of dense groups. 

Thus, our phase detection involves fine-tuning of a number of parameter (e.g., K in K-

means clustering, similarityDenominator in the integrated scheme) to 

automatically (and adequately) locate the dense groups. The settings of these parameters 

can be different from one trace to another based on manual observations (e.g. based on 

visual inspection). As an optional step after the phase detection, in this section, we offer a 

general guideline for automatic setting and tuning of these parameters.  



 66 

Intuitively, dense groups that are well separated from one another show that the phase 

detection has resulted in well distinct phases. The same criteria are used as quality factors 

in clustering: low intra-cluster distances (high intra-cluster similarity) and high inter-cluster 

distances (low inter-cluster similarity) [HKM11]. Many clustering algorithms follow a 

procedure through which they optimize a global criterion function that measures one or 

both of the mentioned criteria (e.g., the first step of K-means clustering discussed in 

Section  4.4 is one of such functions). Similar global criterion functions can be used to find 

the best partitioning1 of data among a set of available partitionings obtained choosing 

different clustering parameters. As shown in Section  4.4.1, given a set of alternative 

partitionings ( xPP 1 ), the criterion function assigns a score to each partitioning and the 

partitioning with the highest score (or the lowest score depending on the criterion function 

used) shows the best partitioning and therefore, the better clustering parameters. In this 

thesis, we discuss two criterion functions: Bayesian Information Criterion and Penalized 

Sum of Squared root Errors.  

 

 

Figure  4.13. Application of criterion function to find the best partitioning 

                                                   
1 Recall that a partitioning is the result of clustering  
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4.5.1. Bayesian Information Criterion 

Pelleg et al. [PM00] proposed an approach to find the best partitioning of data where the 

average variance of the clusters is minimum. It is clear that as the number of clusters 

increases, the average variance of the clusters decreases (as K approaches the number of 

data points the variance becomes zero - this is known as overfitting). Therefore, the 

problem of finding the best partitioning is reduced to finding a trade-off between the 

number of clusters and the average variance of the clusters that can keep the number of 

clusters and the variance both minimized. The Bayesian Information Criterion (BIC) 

[Sch78] can be used to find such a trade-off.  

As shown in Section  4.4.1, one can perform the K-means clustering on the rearranged trace 

and change one or more parameters to obtain a set of alternative partitionings ( xPP 1 ). To 

evaluate these partitionings, we compute the BIC score of each partitioning; the highest 

BIC means best available partitioning. Since the dimension of the data in our case is 1, we 

use a special formulation of the BIC (for a more general case of BIC formulation see 

[PM00]): 

)log(.)()(
^

RKDlPBIC jjj −=  

where D is the set of data points in the input space, DR = , jK  is the number of clusters in 

the j-th partitioning, )log(. RK j  is the penalty, and )(
^

Dl j  is the log-likelihood of the data 

according to the j-th partitioning which can be computed as follows (see [11] for more 

details on using BIC formulation in K-means clustering): 
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where DDi ⊆ is the set of points that have iµ  as their nearest centroid, ii DR = , and 2σ  

is the average variance of the distance from each point to its corresponding centroid. The 

BIC score provides us with the best partitioning of the repositioned execution trace 

according to its complexity.  

4.5.2. Penalized Sum of Squared Errors 

The second criterion function that we use in this thesis is similar to the criterion function in 

K-means clustering which uses the Euclidean distance to determine which data points 

(events) should be clustered together. Penalized Sum of Squared Errors (PSSE) determines 

the overall quality of the partitioning by using the sum-of-squared-errors function (SSE). 

SSE is the sum of the squares of the distances from the data points in each cluster to the 

center of that cluster. Thus, SSE is concerned with intra-cluster distances. Therefore, a 

lower SSE shows a better partitioning. However, a larger number of clusters will always 

reduce the amount of SSE in the resulting partitioning to the extreme case of zero error if 

each data point is considered its own cluster. To avoid this problem, in PSSE, SSE is 

penalized over the number of clusters. In particular, having a set of alternative partitionings 

( xPP 1 ) a PSSE criterion is defined as follows: 
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where jK  is the number of clusters in the j-th partitioning, 2
jK  is the penalty, nD is the set 

of data points ( ix ) of the nth cluster that has nµ  as its centroid. The lowest PSSE score 

indicates the best available partitioning of the repositioned execution trace.  

4.5.3. Number of Dense Groups 

Using either of the criterion functions discussed earlier we can automatically find the best 

value among a set of possible values for parameter K. Figure  4.14 shows how we can 

automatically find the number of groups in our repositioned execution trace and locate 

them. In this figure, first the rearranged trace is passed to K-means Clustering component. 

Applying K-means clustering with K=1 results in partitioning P1 that has a single cluster. 

Similarly, K-means is applied on the rearranged trace with K=2, K=3, up to K=n which 

respectively results in partitionings P1, P2, to Px. These available partitionings are then 

passed to the component that applies the criterion function. This component finds the best 

available partitioning and consequently the best estimation of the number of dense groups 

which, in turn, corresponds to the number of identified phases 

 

Figure  4.14. Application of criterion function to find K  
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4.5.4. Parameter Repositioning 

The repositioning of trace elements as presented earlier simply divides the distance between 

calls by two. This can be further improved by having the result of the partitioning algorithm 

guide the tuning of this parameter. As shown in Figure  4.15, one can reposition the original 

trace having the repositioning parameter set to M1. The trace repositioned with M1 is then 

passed to the clustering component that outputs a corresponding partitioning P1. Similarly, 

the rearranged traces using M2, M3 to Mx are clustered to corresponding partitionings P2, 

P3, to Px. These available partitionings are then passed to the component that applies the 

criterion function. This component finds the best available partitioning and consequently 

the best estimation for value of the repositioning parameter. 

 

Figure  4.15. Find the best value for parameter M that impacts repositioning of the trace 

4.6. Tool Support 

Different tools have been implemented and reused to support the proposed approach. These 

tools are implemented in Java as part of a tool-suite called Tratex, which is an Eclipse plug-
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University. Both the integrated scheme and the clustering algorithm are implemented as 

part of Tratex.  

The integrated scheme is implemented as an algorithm that does one pass through the trace. 

The algorithm first creates a position table (a hash table). For each method, the position 

table keeps the position of the last call to that method (as used in the similarity scheme). The 

algorithms proceeds by visiting each method call in the original trace, it looks up the 

position table for that method, if not found, it adds the method and the position of the 

method call to the table, otherwise, it fetches the previous position of the method call. The 

algorithm also records the nesting level of the previous method call (as used in continuity 

scheme). The time complexity of the algorithm that implements the integrated scheme is 

O(n), where n is the size of the trace.  

The K-means and cluster evaluation implemented in Java-ML library [ADS09] are used as 

the bases of the clustering unit. Modifications are made to the code to support threading1.  

The time complexity of the standard K-means algorithm is O(icnd), where i is the number of 

iterations, c is the number of clusters, n is the size of the dataset, and d is the dimensionality 

[DRS08]. In our case, the size of the dataset is equal to the size of the trace, number of 

iteration is fixed to 50, dimension is 1, and the number of clusters is set from 1 to 14 (in 

parallel).  

                                                   
1 In the case where user wants the number of phases to be automatically selected, several clusterings are 
performed and the one with the best score is selected as the best clustering. Each clustering can be 
implemented as a thread because the clusterings are independent of one another. 
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4.7. Case Study 

4.7.1. Target Systems and Traces 

In this thesis, we evaluate our technique through a number of intrinsic case studies. For 

this, we perform our evaluations according to the documentations provided by the original 

developers and maintainers of our target systems. The choice of intrinsic studies 

constrained us to select our target systems that satisfy two conditions: 1) the systems have 

to be publicly available for replication purposes and 2) the systems need to be well 

documented to allow us to verify the results of our study. These conditions led us to choose 

well-known open source systems. To evaluate the effectiveness of our phase detection 

approach, we conducted two case studies where we applied our technique to execution 

traces generated from two different systems that satisfy the mentioned conditions.  

The first execution trace is generated from JHotDraw 5.2 [JHO]. JHotDraw is a framework 

implemented in Java for technical and structured graphics. It consists of 11 packages, 171 

classes, and 1414 methods. JHotDraw 5.2 has 9419 lines of code.  

The second case study was conducted on an execution trace generated from ArgoUML 0.27 

[ARG]. ArgoUML is an open source UML modeling tool implemented in Java. It consists 

of 1853 classes, 10214 methods, and 130995 lines of code. 

To deal with multiple threads of execution, we simply treat each thread as a separate trace.  

During data collection, the system is instrumented in such a way that the nesting levels of 

method calls in each thread are independent of nesting levels of method calls in other 
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threads. For example, in the flow of execution of a system we might see a method call with 

nesting level 4 followed by another method call with nesting level 7 from a different thread 

(while in a single thread the nesting level from one method call to the next cannot increase 

more than 1 level).  

4.7.2. JHotDraw 

Scenario Description 

For our first case study, we used an execution trace generated from JHotDraw by exercising 

a scenario that involves the following actions:  

Drawing three different figures (a rectangle, a round-rectangle, and an ellipse) followed by 

drawing the same three figures for the second time on the same sheet and closing the 

application. 

Since JHotDraw registers all mouse movements, and mouse movements are required while 

drawing figures, the resulting trace was bound to contain a lot of noise. We have therefore 

filtered these mouse movements to obtain a trace that is cleaner. We are aware that the 

detection of noise in a trace might not always be straightforward and that noise detection 

techniques such as the ones presented by Hamou-Lhadj et al. in [17] might be needed. The 

resulting trace contained 4197 method invocations (8394 events considering entry and 

exit), which is considered a small trace. It is used here as a proof of concept. We show how 

our approach works on a larger trace in the second case study.  
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Results 

We first applied our approach to detect the major phases in the trace. This is achieved by 

setting the threshold to the size of the trace. Figure  4.16 shows the result of applying the 

integrated gravity scheme on the trace. The result is shown in the form of a histogram, 

where the x-axis shows the distance between the positions of the calls and the y-axis 

represents the number of methods whose position falls into one interval of x-axis. As we 

can see in Figure  4.16, there are two dense groups of method calls (DG1 and DG2) that 

have been formed and which indicate the possibility of the existence of two major 

execution phases.  

 

These dense groups are then mapped back to the original trace as two execution phases. 

Table  4.1 shows the specification of the execution phases corresponding to dense groups. 

We explored the contents of the two phases and found that Phase1 represents the 

initialization of variables (about 1500 invocations), whereas Phase2 contains the methods 

invoked in the trace to perform the core computations (i.e. drawing the figures). 

 

Figure  4.16. The result of applying the integrated scheme 
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Table  4.1. Detected major phases 

Phases Size Location 

Phase 1 1548 1-1548 

Phase 2 2649 1549-4197  

 

A corresponding phase flow that shows the major phases of the traced scenario is shown in 

Figure  4.16. 

 

Figure  4.17. Major phases in the traced scenario 

We applied our technique to Phase2 with a lower threshold so as to detect the sub-phases 

that it composes. As for the threshold, we set it to the longest sequence of method call with 

no repetition that is possible in the second phase. For this, we set t equal to the number of 

unique method calls in Phase2. Figure  4.18 shows the results of applying the integrated 

scheme, using t=125, to the Phase2 of the JHotDraw trace. A number of dense groups can 

be seen in this figure.  

As an optional step in our technique, we can automatically determine the number of dense 

groups formed on the rearranged trace (this process is explained in Section  4.5.3). For this, 

the trace resulting from applying the integrated gravity is partitioned by K-means clustering 

for K from 1 to 10. The BIC score for different partitionings of DG2 are shown in Figure 

 4.19. The highest BIC score was for the partitioning with K = 7 dense groups as the best fit. 

Except for the last of these seven dense groups (DG7), the six phases (DG1 to DG6) are 

Phase 1 Phase 2 
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similar in terms of length and density. The application of our integrated scheme took 0.412 

seconds and the clustering and mapping (including the optional step of parameter tuning)1 

took 7.06 seconds on an Intel Core i5 CPU 2.30GHz, 4.00 GB main memory, running 

Windows 7.  

 

 

Figure  4.19. The BIC score for different partitionings of DG2, the partitioning with 7 

clusters is the fittest 

                                                   
1 Performing the clustering step without parameter tuning (setting K to the number of dense group that 
visually can be perceived) took 1.488 seconds. 
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Table  4.1 shows the specification of the execution phases corresponding to dense groups of 

Phase2 (i.e. drawing the figures). A corresponding phase flow that shows the sub-phases of 

Phase2 is shown in Figure  4.16. We validated the results by referring to JHotDraw 

documentation and by manually analysing the methods invoked in each phase.  

Table  4.2. Detected sub-phases of Phase2 

Sub-phases of Phase2 Size  Location 

Phase2.1 374 1549-1922 

Phase2.2 385 1923-2307 

Phase2.3 403 2308-2710 

Phase2.4 427 2711-3137 

Phase2.5 461 3138-3598 

Phase2.6 487 3599-4085 

Phase2.7 112 4086-4197 

 

 

Figure  4.20. Major phases in the traced scenario 

After exploring the content of the trace, we found that Phase 2.7 contains methods that end 

the application (finalization methods) including the following methods: 

contrib.MDI_DrawApplication.internalFrameClosing 

contrib.MDI_DrawApplication.internalFrameDeactivated 

contrib.MDI_DrawApplication.internalFrameClosed 

application.DrawApplication.actionPerformed 

Phase2.1 Phase2.2 Phase2.3 Phase2.4 Phase2.5 Phase2.6 Phase2.7 
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application.DrawApplication.exit 

samples.javadraw.JavaDrawApp.destroy 

application.DrawApplication.destroy 

samples.javadraw.JavaDrawApp.endAnimation 

As for the phases Phase 2.1 to Phase 2.6, we found that each of these phases corresponded 

to the drawing of a figure. For example, the phase Phase 2.1 contained methods involved in 

drawing a rectangle. Phase 2.2 contained the methods responsible of drawing a circle, etc.  

To further determine the sub-phases that compose Phase 2.1, we re-applied the integrated 

gravity scheme on this phase with a lower threshold. This resulted in three sub-phases 

which contained methods for “selecting the rectangle button in the buttons menu”, 

“preparation for creating and adding a rectangle to the sheet”, and “drawing of a rectangle 

on the sheet”. An example of methods involved in the third sub-phase of Phase 2.1 is: 

standard.DecoratorFigure.draw 

figures.AttributeFigure.draw 

figures.AttributeFigure.getFillColor 

figures.AttributeFigure.getAttribute 

figures.AttributeFigure.getDefaultAttribute 

figures.FigureAttributes.get 

util.ColorMap.isTransparent 

util.ColorMap.color 

figures.RectangleFigure.drawBackground 

figures.RectangleFigure.displayBox 

We applied the same process to Phase2.2 to Phase2.6 and were able to confirm that each 

phase corresponded to the drawing to one of the figures and that all of them consisted of 
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three other sub-phases. One interesting observation was that the length and the density of 

part of the phase which contains the methods that actually draw the figure on the sheet 

(indicated by blue arrows) grows from Phase 2.1 to Phase 2.6 while the first parts of all 

phases (Phase 2.1-Phase 2.6) exhibit similar distribution. This is due to the massive use of 

design patterns in JHotDraw where some features just differ for the invocation of a few 

methods. That is, drawing a circle is performed very similarly to drawing a rectangle. This 

explains the phase parts that are similar. It also justifies the fact that these phases formed a 

single major phase (Phase 2) at a higher level of granularity. The reason for the growing 

part (indicated by blue arrows) is that every time we draw a figure, JHotDraw redraws the 

existing figures on the sheet. 

4.7.3. ArgoUML 

Scenario Description 

For the second case study, we applied our technique to a trace generated from ArgoUML 

by exercising the following scenario: Starting up ArgoUML, drawing a class on the class 

diagram, and quitting ArgoUML. The resulting trace contained 35753 method calls (to 

2331 different methods). Note that a method invocation requires at least two events to be 

collected, the entry and exit of a method. The trace size in terms of events is therefore about 

71506 events, which is considered a relatively large trace. 

Results 

Figure  4.21 shows the result of applying the integrated gravity scheme on the ArgoUML 

trace. A clear division of the execution trace into five major phases can be seen in this 
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figure. Figure  4.22 shows PSSE scores of partitioning with different numbers of groups 

(see Section  4.5.2 for a discussion on how PSSE works). A lower PSSE suggests a better 

partitioning. Thus, K = 5 as the number of dense groups is selected as the best fit. The 

application of our integrated scheme took 1.168 seconds and the clustering and mapping 

(including the optional step of parameter tuning)1 took 24.32 seconds on an Intel Core i5 

CPU 2.30GHz, 4.00 GB main memory, running Windows 7. 

 

 
                                                   
1 Performing the clustering step without parameter tuning (setting K to the number of dense group that 
visually can be perceived) took 3.523 seconds. 

 
Figure  4.22. PSSE scores for different partitionings 

 
Figure  4.21. Dense groups formed on the rearranged trace of ArgoUML 

DG4 DG3 DG2 DG1 DG5 
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Five clusters are then mapped back to the original trace as five execution phases. Table  4.4 

shows the specification of these execution phases. The first phase contains about 16000 

method calls. When checked against the documentation, as expected, the methods of the 

first phase indicate the initialization of ArgoUML where the main application frame and 

project are set up. The project corresponds to a model that contains an empty class diagram, 

and an empty use case diagram. The second detected phase is concerned with loading 

auxiliary modules from the input stream.  

Table  4.3. Specifications of major phases 

Phases Size Location 

Phase1 16036 1-16036 

Phase2 8766 16037-24802 

Phase3 4221 24803-29023 

Phase4 4095 29024-33118 

Phase5 2635 33119-35753 

 

 

Figure  4.23. Major phases of the traced scenario 

The third phase is the phase where the actual class element is drawn. This phase is followed 

with two other small phases. The first of these phases (i.e., Phase 4) refreshes and updates 

the models and the last phase (Phase 5) terminates the application. An example of the 

methods involved in the last phase is: 

org.argouml.ui.cmd.ActionNotation.menuSelected 

Phase1 Phase2 Phase3 Phase4 Phase5 



 82 

org.argouml.kernel.ProjectSettings.getNotationName 

org.argouml.notation.NotationNameImpl.getIcon 

org.argouml.notation.NotationNameImpl.sameNotatioAs 

org.argouml.ui.cmd.ActionNotation.menuDeselected 

org.argouml.ui.cmd.ActionExit.actionPerformed 

org.argouml.ui.ProjectBrowser.tryExit 

org.argouml.ui.ProjectBrowser.saveScreenConfiguration 

org.argouml.configuration.Configuration.save 

We further applied our technique, with a lower threshold to Phase 3 (drawing a class) to 

understand how this is accomplished.  

 

Figure  4.24 shows the result of applying the integrated gravity, using t=20, to Phase 3. Four 

dense groups can be seen on the rearranged trace. PSSE scores of different partitionings 

also show that the partitioning with 4 clusters (K = 4) is the best fit. The PSSE scores are 

shown in Figure  4.25 (lowest score shows the best fit). Table  4.4 show the specifications of 

execution phases corresponding to the formed dense groups. These phases that compose 

Phase 3 of the traced scenario are shown in Figure  4.26.  

 
Figure  4.24. The result of applying integrated scheme on Phase3 

DG4 DG3 DG2 DG1 
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Figure  4.26. Sub-phases of phase3 

Table  4.4. Specifications of the sub-phases of Phase 3 
Phases Size Location 

Phase1 1406 24803-26208 

Phase2 320 26209-26528 

Phase3 1905 26529-28433 

Phase4 590 28434-29023 

 

The important tasks that are performed when drawing a class organized based on the sub-

phases that were identified are summarized as high-level descriptions in Table  4.5. To 

describe these tasks as shown in Table  4.5, we referred to ArgoUML source code. We 

Phase3.1 Phase3.2 Phase3.3 Phase3.4 

 
Figure  4.25. PSSE scores of different partitionings 
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validated these tasks using ArgoUML documentation and the Cookbook for Developers of 

ArgoUML [25].  

Table  4.5. Summary of the task performed in Phase 3 
 Phase 3: Adding a class:  
o Sub-phase 3.1: 
⇒ Command to create nodes with the appropriate modelelement: Delegate creation of the 

node to the uml model subsystem and return an object which represents a UML class diagram. 
⇒ Define a renderer object for UML Class Diagrams: Return a Fig that can be used to 

represent the given node. 
o Sub-phase 3.2: 
⇒ Prepare the box coordinates to display graphics for a UML Class in a diagram.  
⇒ Determine whether the graphmodel will allow adding the node (Define a bridge between 

the UML meta-model representation of the design and the GraphModel interface used by 
GEF). 

⇒ Determine if the given object is present as a node in the graph 
⇒ Final call at creation time of the Fig, i.e. here the node icon is put on a Diagram: where the 

displayed diagram icons for UML ModelElements looks like nodes and has editable 
names and can be resized. 

⇒ Add the given node to the graph, if of the correct type. 
o Sub-phase 3.3: 
⇒ Give continuous feedback to aid in the making of good design decisions: Perform critiques 

about well-formedness of the model.  
⇒ Change the mode of multieditorpane (particularly the TabDiagrams) to deselect all tools 

in the toolbar (Unselect all the toolbar class button). 
o Sub-phase 3.4: 
⇒ Hit the class (prepare selection of the class diagram). Necessary since GEF contains some 

errors regarding the hit subject.  
⇒ Compute handle selection, if any, from cursor location.  
⇒ Prepare selection of the current element (through an extension package for swing 

classes. This package provides ArgoUML independent swing extensions.) 

 

4.8. Threats to Validity 

Although our approach performed well when applied to the trace in our case study, there 

are several aspects that can impact its effectiveness. 
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First, the phase detection algorithm relies on method calls names to assess the similarity 

between the method calls and decide whether to bring them together or not when applying 

the similarity scheme. Method names, however, might not be sufficient. For example, some 

methods might be overloaded and we should not assume that they all perform computations 

related to the same phase. Also, one can use patterns of calls instead of mere method 

names. Future work should focus on investigating better similarity criteria and metrics 

between the trace events.  

During the first case study, we had to remove some mouse movement events because they 

cluttered the trace. However, we did not attempt to remove all low-level utilities, an activity 

which might be needed when we generalize our approach and apply it to other systems. In 

general, we need to study the impact of removing utilities on the final sample before the 

phase detection algorithm is applied. 

Varying clustering algorithms might also have an impact on the phase detection method, 

which forms the basis for sampling. It is therefore important to study how various 

clustering algorithms can be used. 

4.9. Summary 

In this chapter, we presented the trace segmentation process that consists of dividing a trace 

in execution phases. We defined an execution as something that characterizes program 

computations that are invoked in a trace.  

We also proposed an implementation for the trace segmentation component. We created 

what we call gravitational schemes that when applied on an execution trace result in 
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formation of dense groups of events. Each of these dense groups can indicate the presence 

an execution phase on the original trace.  

The two schemes that we proposed are inspired by the Gestalt laws of similarity and good 

continuation. These schemes are also aligned with the fact that a phase change in an 

execution trace corresponds to a significant change in the pattern of attributes of the events 

in a trace over time. We also created an integrated scheme that combines the similarity and 

the continuity schemes. 

We used K-mean clustering to automatically find the beginning and the ending of each 

dense group. Our approach has a number of parameters that can be set by the user if 

necessary. As an optional step to our phase detection technique, we provided an automatic 

way to tune these parameters by defining the criterion function. Finally, we performed a 

number of case studies on open source systems to evaluate the effectiveness of our phase 

detection approach. For the evaluation, we compared the results with available system 

documentation. 
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Chapter 5. Content Prioritization 

5.1. Introduction 

In this chapter, we propose a method for automatically identifying the trace events that are 

most relevant to the implementation of each execution phase. This is particularly important 

since it can significantly simplify the exploration of large traces by allowing software 

engineers to quickly understand the phases of an execution and select the intended ones 

before deciding to dive into the details.  

We also propose a technique for identifying similar phases within a trace. It is possible that 

a single major computation happens several times in different periods during the execution 

of a system. Existing phase detection algorithms usually detect each occurrence as a 

different phase (although they are very similar). A better representation of a system’s 

execution is the one where a phase is indentified only once and referred to it in other places. 

To achieve our objectives, we adopt techniques from the area of text mining, more 

particularly the Term Frequency, Inverse Document Frequency (TF-IDF) technique and the 
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cosine similarity measure. The contributions of this chapter can be further refined to help 

with tasks such as:  

• The ability for software engineers to understand the most relevant events that 

implement the traced scenario (or software feature). As such, the contribution of this 

paper falls under the category of feature location research. 

• The recovery of high-level behavioural design models from large execution traces. 

The most important events of a trace uncovered by our approach can be represented, 

for example, in a UML sequence diagram. These models can in turn be used for 

redocumentation, or for assessing if the system does what it is supposed to do by 

comparing the resulting diagrams with existing design diagrams.  

• Any area where trace summaries are needed. This will be particularly useful if the 

proposed techniques are integrated in a tool, in which the ability to switch between a 

high-level view of a trace and a detailed view is provided. 

This chapter is organized as follows: in Section  5.2, we discuss a number of works that bear 

some similarities with the approach proposed in this chapter. In Section  5.3, we draw a 

parallel between trace analysis and text mining. In Section  5.4, we introduce our proposed 

content prioritization process and its related steps. In Section  5.5, we present the case 

studies that evaluate our proposed approach. Finally, in Section  5.7, we conclude this 

chapter with a summary. 

Parts of the material in this chapter is adapted and expanded from a paper published in the 

27th IEEE International Conference on Software Maintenance (ICSM), 2011 [PHS11].  
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5.2. Related Work 

The following studies bear similarities with our work in the sense that they also try to 

indentify events of a trace that are important to the users’ tasks. However, no previous 

study has been done on extracting relevant trace events based on the execution phases.  

Software Reconnaissance [WS95], introduced in 1995, is one of the best-known techniques 

that fully relies on dynamic analysis to locate source code components that implement a 

specific feature. Software Reconnaissance starts by generating multiple execution traces by 

exercising several features of the system in a way that one execution trace exercises the 

desired feature and the others do not. The generated traces are then compared for overlap 

removal. Roughly said, if the set of code components invoked in the execution traces not 

exercising the desired feature is subtracted from the set of such components in the feature 

specific trace, the result contains components of the system relevant to the feature of 

interest. Although the ultimate goal is to only identify the components of a single feature, 

Software Reconnaissance requires the exercising of several features of the system. 

Moreover, the number of features that must be considered for the approach to be effective 

is unclear. Software Reconnaissance has been enhanced by including three measurements 

used to identify the extent to which a particular component belongs to a feature [WGH00]. 

As another enhancement to this approach [AG05], the traces can be filtered for unwanted 

events (e.g., mouse motion) before the comparison phase.  

The idea of ranking how likely each code component belongs to a given feature based on 

pure dynamic analysis was also proposed as an approach to feature location in [ED05]. This 



 90 

approach argues that a code component executed several times in the execution of a feature 

under different situations (i.e., normal and exceptional scenarios) should be regarded as an 

important component, whereas a component that occurs in traces of several features should 

be considered as a utility component and should be ranked lower in comparison with other 

components.  

A hybrid approach that combines dynamic and static analysis techniques to feature location 

has also been proposed [EKS03]. This approach uses dynamic analysis to gather traces that 

correspond to software features of the system and adds static code dependency information 

to the content of traces to build a concept lattice that maps features to code components. 

One of the shortcomings of this approach is that overlapping components (i.e., the ones that 

implement several features) can appear in the concept lattice. To overcome this issue, users 

are required to navigate through the concept lattice and identify manually the components 

specific to each feature. This process requires a considerable effort from the users and a 

good understanding of the source code as well as the domain of the system. A similar 

approach that combines static and dynamic analysis was proposed by Antoniol et al. 

[AG05] to locate and compare different features in multi-threaded object-oriented C++ 

programs. Smit et al. [SSW08] proposed an approach for identifying usage scenarios from 

GUI event traces. Poshyvanyk et al. [PGM+07] introduced an approach based on 

information retrieval (IR) for feature location. Asadi et al. [ADAG10, AAG10] also 

proposed an interesting approach that uses IR to identify concepts in execution traces. In 

their work, for each method, they first extract terms from source code of that method. Then 

they perform a multiple-step pre-processing (tokenizing, stopword removal, stemming) on 

the terms of each method. This is followed by applying a weighting scheme that assigns a 
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weight to each term of each method. The weighting scheme works based on the appearance 

of terms across methods: the terms that are shared between more methods are less 

representative of that method and vice versa. Then, they segment the trace several times 

according to an optimization function. The near optimal segmentation is output. As the 

authors mention their approach suffers from problems in scalability (in both time and 

space) as well as in the possibility to handle longer traces. Furthermore, their approach may 

produce a different concept assignment on each run.  

In [RHR08], Rohatgi et al. proposed another feature location approach based on impact 

analysis: measuring the impact of a modification made to a code component on the rest of 

the system. The approach uses dynamic analysis to generate a trace that corresponds to the 

feature under study and applies static analysis to rank the components invoked in the 

generated trace according to their relevance with respect to the executed feature. The 

ranking mechanism guides software engineers in locating feature-specific components 

without the need for prior knowledge of the system. This approach operates on only one 

trace that corresponds to the feature under study and it facilitates the automatic 

identification of feature-specific components. 

5.3. Trace Analysis and Text Mining  

Dealing with large data spaces, whether the data takes the form of traces, text, or any other 

artefact, is in principle subject to similar challenges.  

Research in the area of text mining has long been active in addressing the challenges 

related to document size. Much of the work has been devoted to extracting summaries and 
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relevant information from large document corpuses, which motivated us to explore how the 

application of existing techniques can be applied to the analysis of traces.  

However, before drawing any parallel between the two domains, we first need to determine 

the mapping between the concepts in the two domains as stated by Gentner in his theory of 

structural mapping [Gen83]. Figure  5.1 shows three types of objects in the domain of text 

mining: Corpus, Document, and Term, where a document is a sequence of terms and a 

corpus is a set of documents. We propose to view an execution trace as a corpus and the 

execution phases that compose it as the corpus documents. In  Chapter 4, we proposed a 

way to automatically detect execution phases from a trace. Each trace event can be viewed 

as a term within a phase document. Note that the mapping takes place not only between 

objects, but also between the containment relations between the objects. 

There exists a variety of text mining techniques; here we focus on the ones that make use of 

three types of information:  

• Local information: It refers to the information inside individual documents (e.g., 

term frequency).  

• Global information: It is the information from the collection of documents in the 

corpus (e.g., document frequency).  

• Domain information that refers to the information from the domain of a term. For 

example, the term “can” has different significance in the domain of literature and the 

domain of packaging [Pri10].  
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Similarly, we consider the information inside each phase (e.g., the frequency of an event 

within a phase) as local information in trace analysis. Global information in this domain 

can be considered as the information from the collection of phases in the trace (e.g., number 

of phases in which a particular event is invoked). Finally, domain information in trace 

analysis is the information about the trace events where they are defined. This information 

could be extracted from the source code or the documentation (e.g., static call graph 

information of each element). 

Figure  5.2 shows our approach for extracting relevant information from a trace based on the 

analysis of its execution phases. The approach encompasses two main phases. The first 

phase (Trace Segmentation) consists of automatically dividing the content of a trace into 

Corpus 

Documents 

Terms 

Trace 
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l  
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Figure  5.1. Mapping between domains of text mining and trace analysis 
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execution phases. To segment a trace, we use the phase detection technique that we as 

presented in  Chapter 4. Other phase detection techniques such as the ones presented in 

[Reiss07, WII08, PAH10] could also be used. 

The second phase consists of the application of a newly designed technique called content 

prioritization with which the trace events of each phase are weighted and the ones that have 

the highest weight are deemed to be the most representative events of a phase. Once the 

events are weighted, we extract the most representative ones. We also use the weighted 

events to detect similar phases.  

 

Figure  5.2. Overview of our proposed approach 

5.4. Content Prioritization 

Once the phases of a trace are found, the phased trace is passed to the content prioritization 

component to extract the trace events that are most relevant to each execution phase. For 

this purpose, we use text mining techniques as previously mentioned. More precisely, the 
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content prioritization phase is composed of the following steps, which are listed here and 

discussed in more detail in the subsequent sections:  

1. We first remove utility methods from the execution phases to reduce the noise in the 

data. The process of removing utilities is similar to removing stop words from text.  

2. We apply a weighting function to weigh events of a phase according to their 

relevance. The higher the weight, the more representative the event.  

3. We propose a way to select the most representative events in a phase from the list of 

ranked events obtained in 2.  

4. We measure the similarity between phases based on their weighted events.  

5.4.1. Utility Removal 

Text mining techniques usually start with a pre-processing step that removes stop words -

The words that add little value to the process of finding relevant information. Stop word 

identification, which is the process of identifying these words, makes use of domain and 

global information. For example, in the domain of English literature, stop words are among 

auxiliary verbs (e.g., have, be), pronouns (he, it), or prepositions (to, for). Similarly, we 

proceed with removing utilities from the trace before weighting its events. According to 

Hamou-Lhadj et al. [HL06], a utility is a component that implements a low-level concept 

such as accessing methods or language libraries. We limit ourselves to this type of utilities 

that can be detected without advanced processing techniques. This type of filtering falls in 

filtering a trace based on programming conventions as discussed in  2.4.3. 
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5.4.2.  Event Weighting 

In text mining, the process of term weighting is used for finding representative terms in 

each documents of a corpus. One of the best-known weighting schemes is called TF-IDF 

(Term Frequency, Inverse Document Frequency) [Joa98]. The goal of TF-IDF term 

weighting is to obtain high weights for terms that are representative of a document’s 

content and lower weights for terms that are less representative. The weight of a term 

depends both on how often it appears in the given document (term frequency, or tf) and on 

how often it appears in all the documents of the collection (document frequency, or df). In 

general, a high frequency of a term (high tf) in one document shows the importance of that 

term while if a term is scattered between different documents (high df), then it is considered 

less important. Therefore, if a term has high tf and low df (or high idf -inverse document 

frequency) then it will have a higher weight.  

A similar idea can be adapted to trace analysis to weigh the events of a trace. We suggest a 

weighting function that considers the frequency of trace events across the execution phases. 

Our hypothesis is that a trace event that appears often in a particular phase, but appears 

relatively infrequently in other phases potentially indicates that it is doing something 

important in that particular phase. We use the trace T shown in Figure  5.3, where the 

execution phases are already identified, to illustrate the proposed weighting function. 

Our weighting function is composed of three factors: local, global, and normalization. The 

weight of an event i in a phase k has the following general form: 

kikiki NGLw ,, =  
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where kiL ,  is the local weight of the event i in phase k (local information) which is usually 

based on the number of occurrences of the event in the phase. iG  is the global weight of 

the event in the phases of the trace (global information). This factor tends to under-weigh 

the events that are too common in the trace. kN  is the normalization factor for the event 

weights in phase k.  

We create an index vector called event vector for each phase. The magnitude of each event 

in this vector indicates how well that event represents the content of the phase based on its 

frequency within the phase and other phases. If an event occurs very frequently in some 

phases, but occurs rarely in the trace as a whole, it will be given high weight in the event 

vector.  

The event frequency i,kef  of event i in phase k is defined as the number of times that i 

occurs in k. Similar to approaches in text mining, and since the importance of an event does 

not increase proportionally with the event’s frequency, we use the following local 

weighting kiL ,  for event frequency. 
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In Figure  5.3, kiL , is calculated for the events in each of the 3 phases of trace T. For 

instance, in Phase 1, event d is invoked twice, therefore, its local weight (noted as L(d) in 

Figure  5.3) is calculated as 3.1)2log(11,d =+=L . 
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Following the general form, we want to assign the weight kiw ,  to event i in phase k in 

proportion to the frequency of occurrence of the event in phase k, and in inverse proportion 

to the number of phases in which the event is invoked. It should be noted that the phase 

lengths, and hence the number of non-zero event weights assigned to a phase, varies 

widely. To allow a meaningful final retrieval similarity, it is convenient to use a length 

normalization factor as part of the event weighting formula. A high-quality event weighting 

formula for kiw , , the weight of event i in phase k is 

 

where i,kef  is the occurrence frequency of event i in phase k, N is the total number of 

phases, in  is the number of phases with event i assigned and e is the total number of 

events. The factor   )/log( inN is an inverse phase frequency (similar to “idf”) factor that 

decreases as the events are used widely in a trace and the denominator in the equation is 

used for weight normalization. This factor is used to adjust the event vector of the phase to 

its norm, so all the phases have the same modulus and can be compared no matter the size 

of the phase.  

This weighting system enables us to adjust the weighting for an event according to not only 

local but also global information available in the entire trace. Figure  5.3 shows kiw , for the 

events in each phase. The weight of the events that do not appear in a phase is zero (events 
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that are not shown in the vector of a phase are also of weight zero). For instance, 1,dw  the 

weight of event d in Phase 1, given that G(d) in the trace is 0.17,  is calculated as follows: 
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Figure  5.3 Running example to illustrate the weighting function 
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5.4.3. Extracting Relevant Information 

The output of the event-weighting step is a list of phase events ranked according to their 

relevance. We need to determine a threshold with which we can select the most 

representative events among this list. For example, a software engineer can decide to only 

consider the top 20% of the events that have the highest ranking to be the most 

representative events of a phase.  

Another possible method is to set a cap on the maximum number of events we want to 

extract and compute the number of events per phase proportionally to the size of that phase 

as follows: 
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where R(Pi) in the number of most relevant events of a phase Pi, M is the maximum number 

of events considered given as input, |T| is the size of the trace after removing the utilities, 

and iP is the size of a phase. In the example of Figure  5.3, if the maximum number of 

events that we want is set to 3, given that the size of the trace which is 25, we have: 

• R(Phase1)=3*8/25=1 

• R(Phase2)=3*8/25=1  

• R(Phase3)=3*9/25=1 
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Then for each phase, we chose the top 1 event from the event vector as the most 

representative of that phase. This way, m is the most representative event of Phase 2 and c 

is the most representative of both phases 1 and 3.  

We can further improve the information contained in each phase, and hence facilitate the 

browsing the trace, by enriching the phase most representative events with any descriptive 

information such as source code comments or any information extracted from valid 

documentation. We are aware that this informal source of data might not be reliable in 

practice though. In the worst-case scenario, the event names will be the only information 

that can be used. Figure  5.4 shows the high-level flow of phases in Trace T of Figure  5.3 

where the relevant information about each phase is added. The trace T can now be browsed 

as a sequence of phases with relevant information rather than a large trace of events. 

 

Figure  5.4. Flow of phases with relevant information added 

5.4.4. Determining Similar Phases 

The similarity between two objects is in general regarded as how much they share in 

common. In the domain of text mining, the most commonly used measure for evaluating 

the similarity between two documents is the cosine of the angle between term vectors 
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representing the documents. In the same way, the similarity between two phases can be 

calculated based on the list of their events vector.  

In general, the cosine similarity between two vectors xV  and yV  is calculated as follows:  
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where xiw ,  and yiw ,  are respectively the weight of event i in vectors xV  and yV , and the 

denominator of the fraction is for normalization. The weights cannot be negative and, thus, 

the similarity between two vectors ranges from 0 to 1, where 0 indicates independence, 1 

means exactly the same, and in-between values indicate intermediate similarity. Since the 

events vectors in our case are already normalized we measure the similarity between each 

pair of phases by calculating the cosine of the angle between the event vectors yx PP ,  

representing the phases as follows: 
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To determine the similarity between the phases, we take the event vector of each phase and 

measure the similarity between each pair of vectors. If the similarity between two phases is 

more than a user-specified threshold, they are considered as the same. As a result, for 

phases that are repeated in a sequence of phases, the first occurrence is kept and the next 

occurrences are referred to the first occurrence.  
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For our sample trace T in Figure  5.3, the similarities between phases are shown in Figure 

 5.5. If we consider a threshold of 85% for two phases to be considered similar, then Phase 1 

and Phase 3 are the same. This enables us to reduce the high-level flow of the phases to the 

one shown in Figure  5.5. 

 

Figure  5.5. Calculating the similarity between phases 

5.5. Case Study 

We conducted experiments with traces generated from WEKA [WEKA] and ArgoUML 

[ARG] that we present separately in this section. Both systems where instrumented using 

TPTP (the Eclipse instrumentation tool). 

5.5.1. WEKA 

WEKA is an open source machine learning tool that implements several learning 

algorithms [WEKA]. We used WEKA 3.7.3 (latest version) which consists of 76 packages, 

1133 classes, 14210 methods, and 226220 lines of code. 
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To generate a trace, we applied the WEKA machine learning toolkit to build a decision tree 

learning algorithm for classifying data instances. Each data instance is typically a vector of 

attribute values where each attribute denotes some measurement of interest. Training 

involves executing the decision tree learning algorithm on a set of training data instances. 

The algorithm identifies specific patterns in the data and outputs a decision tree model each 

node of which uses a predicate built on specific data attributes to fine tune the 

classification. The output decision tree model is subsequently evaluated on a separate set of 

test data instances. The model evaluates the predicate on each node of the decision tree 

against their corresponding values in each data instance and outputs a class prediction. 

Different performance statistics, e.g., prediction accuracy over all test instances, are then 

calculated for evaluation purposes [JS11]. As such, the core process of learning a model 

consists of three main stages: data input, learning a model from training data, evaluating the 

model on test data.  

The detailed steps of the scenario we used to generate a trace are: (a) Run the WEKA 

Explorer tool, select a training set, go to the Classify tab, (b) Select the classifier J48 (see 

[28] for a description on this algorithm), select the “supplied test set” option, (c) Select a 

test set, start the classification, close the program. The generated trace contains 872,291 

method calls. Since it is common to report the size of a trace considering two events (entry 

and exit events) for each method, the size of the trace in terms of events is 1,744,582. The 

number of distinct methods involved in the trace is 1309. 
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The application of the phase detection technique resulted in the identification of four main 

phases. This can be seen in Figure  5.6 that shows four dense groups of methods appearing 

in the phase detection. These dense groups are then mapped back as execution phases to the 

original trace. Table  5.1 shows the size of the detected phase (SP) in terms of the number of 

method calls.  

In the next step, the original trace with its phases annotated is given to the utility removal 

component, where accessing methods are removed. The resulting trace is then processed to 

weigh the events of each phase. Table  5.1 shows the number of events with non-zero 

weights in the event vector for each phase (SV). The event vector is passed to the 

“preparation of relevant information” component where the top first 20% of the methods in 

each event vector is selected as most representative methods for each phase. This threshold 

is set by the user; a higher percentage provides the user with a higher number of methods. 

This customization is integrated in our tool to allow enough flexibility to vary this 

threshold.  Table  5.3 shows the representative methods of each phase (the methods are 

sorted based on their original order of invocation to help with better understanding of the 

flow of events).  Table  5.1 shows the number of representative methods for each phase 

(SR). 

Phase 1     Phase 
 

Phase 3 Phase 4 

Figure  5.6. Detected phases for execution trace of WEKA 
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Table  5.1. Statistics about representative events 

Phases (SP) (SV) (SR) Ratio 

SR/SP 

Phase 1 82544 95 19 0.02% 

Phase 2 124586 137 27 0.02% 

Phase 3 445291 69 14 0.003% 

Phase 4 219871 127 25 0.01% 

We referred to the source code and the WEKA documentation [WEKA] to extract 

descriptions of the routines that were deemed most representative of each phase. We were 

able to interpret the phases that composed the original trace by analyzing the phases’ most 

relevant information, which significantly simplified the understanding of the entire trace. 

We now briefly discuss the information contained in the trace. 

The first phase involves initialization of the WEKA toolkit itself. Since WEKA has a 

Graphical User Interface (GUI), this initialization also involves calls to processes that 

establish communication channels through this GUI. Some prominent examples in the most 

frequently called routine in Phase 1 can be seen with regard to the weka.core.tee 

objects. These objects refer to the WEKA's I/O stream initialization that enables it to both 

communicate with GUI interface selections by the user and establish streams for data input 

and results output.  

The next phase (Phase 2) involves reading and organizing the data in requisite data 

structures. This phase prepares the data as well as enables data capabilities based on data 

specifics. Data organization and preparation is represented by the calls to the 



 107 

weka.core.Instances and weka.core.Capabilities methods that involve 

organizing and handling instances in an ordered set, and set the classifier-specific data 

handling preferences respectively. 

The following phase (Phase 3) involves executing the learning algorithm to build a model 

on the training data. This is represented by methods in the 

 weka.classifiers.trees.j48 class.  

Finally, the last phase consists of the evaluation of the decision tree model output by Phase 

3, on a set of test instances. This is indicated by calls to the methods in 

weka.classifiers.Evaluation class.  

Since a prediction is obtained on each individual test data instance, repeated calls to 

weka.classifiers.Evaluation.evaluationForSingleInstance method 

can be seen. This method performs an instance-wise evaluation of the decision tree model. 

This phase also estimates different performance statistics for the model.  

The phase event vectors were also used to determine the similarity between each pair of 

phases. As shown in Table  5.2, the calculated similarities between every pair of phases 

were less than 1%.  

Finally, the high-level view of the flow of phases with assigned description (extracted by 

reading the WEKA documentation) is shown in Figure  5.7. This high-level information 

flow is obtained by investigating a very small percentage of the original trace, which is 

quantified as SR/SP (Table  5.1). The content prioritization step, except for assigning 
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description to the selected phase events which is done manually, took 74 sec on  an  Intel  

Core  Duo  CPU  2.00GHz,  2MB  cache, 1GB  main  memory,  running  Windows  XP. 

Table  5.2. Similarities between phases for WEKA Trace 

 P2 P3 P4 

P1 0.18 % 0.04% 0.00% 

P2  0.98% 0.68% 

P3   0.48% 

 

 

Figure  5.7. Flow of phases with relevant information added 
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Table  5.3. Representative elements of the WEKA trace 

Reps. of Phase 1 Reps. of Phase 3 

weka.core.Tee.add 
weka.core.WekaPackageManager.loadPackages 
weka.core.ClassDiscovery.initCache 
weka.core.ClassCache.initFromDir 
weka.core.ClassCache.add 
weka.core.ClassCache.cleanUp 
weka.core.ClassCache.extractPackage 
weka.core.ClassCache.initFromJar 
weka.core.ClassDiscovery.find 
weka.core.ClassDiscovery.hasInterface 
weka.core.ClassCache.remove 
weka.core.ClassDiscovery.addCache 
weka.gui.GenericPropertiesCreator.isValidClassname 
weka.core.ClassDiscovery.isSubclass 
weka.core.Stopwords.add 
weka.core.Tee.size 
weka.core.converters.AbstractFileSaver.resetOptions 
weka.core.converters.AbstractSaver.resetOptions 
weka.gui.GenericObjectEditor.registerEditor 
 

weka.core.WekaEnumeration.hasMoreElements 
weka.core.WekaEnumeration.nextElement 
weka.classifiers.trees.j48.Distribution.add 
weka.classifiers.trees.j48.Distribution.numClasses 
weka.classifiers.trees.j48.Distribution.total 
weka.core.Instances.quickSort 
weka.core.Instances.partit ion 
weka.classifiers.trees.j48.EntropyBasedSplitCrit .logFunc 
weka.classifiers.trees.j48.Distribution.shiftRange 
weka.classifiers.trees.j48.Distribution.perBag 
weka.classifiers.trees.j48.InfoGainSplitCrit.splitCritValue 
weka.classifiers.trees.j48.EntropyBasedSplitCrit .newEnt 
weka.classifiers.trees.j48.Distribution.numBags 
weka.classifiers.trees.j48.Distribution.perClassPerBag 

Reps. of Phase 2 Reps. of Phase 4 

weka.gui.explorer.Explorer.addCapabilit iesFilterListener 
weka.core.Instances.numAttributes 
weka.core.Attribute.indexOfValue 
weka.core.AbstractInstance.weight 
weka.core.Instances.numInstances 
weka.core.Instances.instance 
weka.gui.explorer.PreprocessPanel.updateCapabilit iesFilter 
weka.core.Capabilit ies.assign 
weka.core.Capabilit ies.handles 
weka.core.Capabilit ies.disable 
weka.core.Capabilit ies.hasDependency 
weka.core.Capabilit ies.disableDependency 
weka.core.Instances.classIndex 
weka.core.Capabilit ies.enable 
weka.core.AbstractInstance.classIndex 
weka.core.AbstractInstance.isMissing 
weka.core.DenseInstance.value 
weka.core.Instances.attributeStats 
weka.core.AttributeStats.addDistinct 
weka.experiment.Stats.add 
weka.experiment.Stats.calculateDerived 
weka.gui.explorer.ClassifierPanel.updateCapabilit iesFilter 
weka.gui.explorer.ClustererPanel.updateCapabilit iesFilter 
weka.gui.explorer.AttributeSelectionPanel.updateCapabilit i
esFilter 
weka.core.Instances.swap 
weka.core.Attribute.isString 
weka.core.Capabilit ies.enableDependency 

weka.gui.explorer.ClassifierErrorsPlotInstances.process 
weka.classifiers.Evaluation.evaluateModelOnceAndRecor
dPrediction 
weka.classifiers.Evaluation.evaluationForSingleInstance 
weka.core.AbstractInstance.dataset 
weka.core.DenseInstance.freshAttributeVector 
weka.core.DenseInstance.toDoubleArray 
weka.classifiers.trees.J48.distributionForInstance 
weka.classifiers.trees.j48.ClassifierTree.distributionForIns
tance 
weka.core.AbstractInstance.numClasses 
weka.classifiers.trees.j48.ClassifierTree.localModel 
weka.classifiers.trees.j48.ClassifierTree.son 
weka.classifiers.trees.j48.ClassifierSplitModel.classProb 
weka.classifiers.trees.j48.NoSplit.weights 
weka.classifiers.trees.j48.Distribution.prob 
weka.classifiers.Evaluation.updateStatsForClassifier 
weka.classifiers.Evaluation.updateMargins 
weka.classifiers.Evaluation.makeDistribution 
weka.classifiers.Evaluation.updateNumericScores 
weka.classifiers.evaluation.NominalPrediction.updatePred
icted 
weka.core.AbstractInstance.classAttribute 
weka.classifiers.evaluation.NominalPrediction.distribution 
weka.classifiers.evaluation.NominalPrediction.actual 
weka.classifiers.evaluation.NominalPrediction.weight 
weka.gui.visualize.Plot2D.convertToPanelX 
weka.gui.visualize.Plot2D.convertToPanelY 
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5.5.2. ArgoUML 

For the second case study, we applied our technique to a trace generated from ArgoUML 

[ARG] by exercising the following scenario: Starting up ArgoUML, drawing a class on the 

class diagram, and quitting ArgoUML). The resulting trace contained 38321 method calls 

(2330 distinct methods). Figure  5.8 shows the dense groups formed as the result of 

applying the phase detection technique to the ArgoUML trace. These groups are mapped 

back to the original trace as five phases. Table 4 shows the size of each detected phase as 

the number of method calls (SP). Similar to the previous case study, we applied the 

removed the accessing methods.  

Then, we performed the weighting step on the resulting trace events. The top 20% of each 

vector was selected as most representative events of each phase (see Table  5.4 for the 

number of representatives for each phase (SR)). The information about the representative 

methods is gathered from the documentation and comments in the source code of the 

system [TCA]. 

 

Figure  5.8. Detected phases for execution trace of ArgoUML 

   
 

 
Phase 1 Phase 2 Phase 3 

Ph
as

e 
4 

Ph
as

e 
5 



 111 

Table  5.4. Statistics about representative events 

Phases (SP) (SV) (SR) Ratio 

SR/SP 

Phase 1 16035 334 47 0.29% 

Phase 2 9089 231 34 0.37% 

Phase 3 4225 270 38 0.89% 

Phase 4 3832 113 16 0.41% 

Phase 5 5140 83 12 0.23% 

 

Similar to the previous system, we were able to understand the original trace by examining 

the most relevant events of its phases, which we briefly review in what follows.  

The first phase focuses on the initialization of ArgoUML where the main application frame 

(e.g., main panes: navigation pane, multieditor pane, to-do pane, and details pane), status 

bar, and project are set up. The second phase is concerned with loading auxiliary modules 

from the input stream and adding them to the Post Load Actions list, which contains actions 

that are run after ArgoUML has started. The third phase is the phase where the actual class 

element is drawn. This phase is followed with two other small phases. The first of these 

phases (Phase 4) refreshes and updates the models properties set in the previous phase, such 

as boundaries, NameText, font, etc. The representative methods of the last phase (e.g., save 

methods, menu selection method, and exit methods) clearly show the termination of the 

application. As an example, Table  5.6 shows the representative methods of Phase 3 and 

Phase 5. 
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Table  5.5. Similarities between phases for ArgoUML Trace 

 P2 P3 P4 P5 

P1 0.79 % 0.16% 0.01% 0.00% 

P2  0.32% 0.33% 0.53% 

P3   2.50% 0.13% 

P4    3.75% 

 

The event vectors are then used to measure the similarity between phases. As shown in 

Table  5.5, a very small similarity between the phases does not suggest any change to the 

sequence of phases in the high-level. Finally, the high-level view of the flow of phases with 

assigned description is shown in Figure  5.9. Table 4 shows the percentage of the event 

investigated in each phase to extract relevant information (SR/SP). The content 

prioritization stage except for the information gathering which is done manually took 14 

sec on  an  Intel  Core  Duo  CPU  2.00GHz,  2MB  cache, 1GB  main  memory,  running  

Windows  XP. 

 

Figure  5.9. Flow of phases with relevant information added 
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Table  5.6. Representative events of the ArgoUML trace 

Reps. of Phase 3 

org.argouml.ui.explorer.ExplorerTreeModel.traverseModified 

org.argouml.ui.explorer.ExplorerTreeNode.nodeModified 

org.argouml.uml.ui.UMLModelElementListModel2.getTarget 

org.argouml.ui.StylePanel.getPanelTarget 

org.argouml.uml.util.namespace.StringNamespaceElement.toString 

org.argouml.uml.ui.UMLModelElementListModel2.setAllElements 

org.argouml.uml.ui.UMLModelElementListModel2.addAll 

org.argouml.uml.ui.UMLModelElementListModel2.rebuildModelList 

org.argouml.uml.ui.UMLModelElementListModel2.setTarget 

org.argouml.uml.ui.UMLModelElementListModel2.addOtherModelEventListeners 

org.argouml.uml.ui.UMLModelElementListModel2.targetSet 

org.argouml.uml.ui.UMLCheckBox2.getTarget 

org.argouml.uml.ui.ScrollList.addNotify 

org.argouml.uml.diagram.ui.FigCompartment.getBigPort 

org.argouml.ui.explorer.ExplorerTreeModel.modelElementChanged 

org.argouml.uml.ui.PropPanel.collectTargetListeners 

org.argouml.uml.ui.UMLList2.getTargettableModel 

org.argouml.uml.ui.UMLCheckBox2.setTarget 

org.argouml.uml.util.namespace.StringNamespace.pushNamespaceElement 

org.argouml.uml.util.namespace.StringNamespaceElement.-init- 

org.argouml.ui.explorer.ExplorerTreeModel$ExplorerUpdater.schedule 

org.argouml.uml.ui.UMLCheckBox2.targetSet 

org.argouml.uml.diagram.static_structure.ui.FigClassifierBox.propertyChange 

org.argouml.uml.diagram.ui.FigNodeModelElement.propertyChange 

org.argouml.uml.diagram.ui.FigEditableCompartment$FigSeperator.getMinimumSize 

org.argouml.uml.ui.ScrollList.-init- 

org.argouml.uml.ui.UMLModelElementListModel2.removeOtherModelEventListeners 
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org.argouml.ui.explorer.ExplorerTreeNode.getPending 

org.argouml.ui.explorer.ExplorerTreeModel.getNodeUpdater 

org.argouml.uml.ui.ScrollList.removeNotify 

org.argouml.uml.diagram.static_structure.ui.StylePanelFigClass.itemStateChanged 

org.argouml.uml.util.namespace.StringNamespace.toString 

org.argouml.uml.diagram.ui.FigNodeModelElement.getStereotypeFig 

org.argouml.uml.diagram.ui.FigNodeModelElement.getNameFig 

org.argouml.uml.diagram.ui.FigNodeModelElement.addElementListener 

org.argouml.notation.NotationProvider.addElementListener 

org.argouml.uml.diagram.static_structure.ui.FigClassifierBoxWithAttributes.updateListeners 

org.argouml.uml.diagram.ui.FigNodeModelElement.addElementListeners 

Reps. of Phase 5 

org.argouml.notation.NotationNameImpl.getIcon 

org.argouml.notation.NotationNameImpl.sameNotationAs 

org.argouml.configuration.Configuration.save 

org.argouml.configuration.ConfigurationHandler.saveDefault 

org.argouml.ui.ProjectBrowser.saveScreenConfiguration 

org.argouml.ui.cmd.ActionNotation.menuDeselected 

org.argouml.kernel.ProjectSettings.getNotationName 

org.argouml.ui.ProjectBrowser.tryExit 

org.argouml.configuration.ConfigurationProperties.saveFile 

org.argouml.ui.cmd.ActionExit.actionPerformed 

org.argouml.ui.cmd.ActionNotation.menuSelected 

org.argouml.profile.internal.ocl.EvaluateExpression.loadState 
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5.6. Threats to Validity 

In our case studies, we used the content prioritization approach to find out what is 

happening in different execution phases of each system. First, we used our trace 

segmentation technique to detect the execution phases. One can use other phase detection 

techniques to extract phases. Changing the phase detection component might result in 

detection of different phases which in turn can potentially change the end result of our 

content prioritization approach. It is therefore important to investigate how various phase 

detection algorithms can be used. 

Furthermore, in our case studies, we manually generated a human readable description for 

each phase based on the relevant events of each phase. This can pose a threat to internal 

validity. In fact, given the same set of relevant events, one might come up with a different 

description. Thus, automatic ways of generating descriptions should be investigated.  

5.7. Summary 

Large amount of data in any form (traces, text, etc.) is in principle subject to similar 

challenges, among which perhaps the most important ones consist of coping with the size, 

overcoming the limited capacity of the human working memory, and the constant need to 

reduce the presence of noise in the data so as to focus on what is important. Based on this 

observation, in this chapter, we proposed an approach for prioritizing the content of 

execution traces that aim to identify the most relevant events of different parts of a trace. 
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Our idea was that an event that is frequently invoked in a certain part of a trace is relevant 

to what is being done in that part, while an event that is shared between different parts of 

the trace is less representative of any part of the trace. We found this idea, in nature, similar 

to the idea of TF-IDF in text mining. 

We explored the possibility of applying existing techniques in text mining to rank different 

events of a trace. For this, we first determined a mapping between the concepts in the two 

domains of text mining and trace analysis. We proposed to map an execution trace as a 

corpus and the trace segments (execution phases) that compose it as the corpus’s 

documents. Each event is also mapped as a term within a phase document. We made sure 

that the mapping holds not only between objects, but also between the containment 

relations between the objects of the two domains. 

We used the phases that we detect through our proposed phase detection technique and 

ranked their events according to TF-IDF. As a result, each phase was assigned an events 

vector where the events were arranged according to their relevance. We reported top events 

as the relevant events of each phase. 

We also used the events vectors to find the similarity of each pair of phases in our phase 

flow. This way, we made it possible to detect if a phase is being repeated in the flow of 

phases. We kept the first occurrence of each phase and refer to it if there is a repetition. 

Finally, we performed a number of case studies on open source system to evaluate our 

content prioritization approach. We identified the representative events of each phase in our 

traces. We also reported the phase flow in each case study and verified if the phase flow is 
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in accordance to what was expected according to the system’s documentations. The results 

were promising. 
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Chapter 6. Stratified Sampling of Execution 

Traces 

6.1. Introduction 

One way to cope with a large execution trace is to sample the trace and use the sampled 

trace for further analysis. This technique has been used in several approaches (e.g., 

[CHMY03, RR03, RZ05, Dug07]) to reduce the size of traces. Sampling consists of 

selecting a subset of trace events for analysis instead of analyzing the entire trace.  

A major drawback of existing sampling approaches is that there is no guarantee that the 

resulting sampled trace is representative of the original trace. This appears to be due to the 

fact that existing sampling techniques are blind to the information contained in the trace; 

they treat a trace as a stream of data for which the pieces are considered equal.  

In a study performed by Cornelissen et al. [CMZ08], the authors compared four trace 

abstraction techniques. These techniques were consisted of sampling, subsequence 

summarization [KG06], language-based filtering, and filtering events based on their nesting 
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levels. For sampling a trace, they kept every n-th event (i.e., a systematic sampling was 

performed). The result of their study suggested that while sampling performs well in terms 

of reducing trace size, it is the least useful technique (among the four techniques) in 

preserving high-level and medium-level information contained in their traces. This means 

that the sampled traces in their study were not representative of the original traces. 

Using unrepresentative samples can seriously limit the trace analysis, as we might not be 

able to make inference about a trace based on the sample from that trace.  

To overcome this limitation, in this chapter, we present an approach for reducing the size of 

traces that is based on the stratified sampling of execution traces. We first divide the trace 

into execution phases using the approach presented in  Chapter 4. A trace can then be seen 

as a sequence of exhaustive and non-overlapping execution phases rather than a mere flow 

of events. By using execution phases as strata, we ensure that a certain number of events 

will be selected from each execution phase to yield a sample that is representative of the 

original trace. 

This chapter is organized as follows: in Section  6.2, we theoretically discuss the cases that 

can be problematic in random sampling of execution traces. In Section  6.3, we introduce 

our proposed approach for stratified sampling of execution traces along with the steps 

needed in the process of sampling. In Section  6.4, we present the sampling unit of our 

proposed approach. In Section  6.5, we present the case studies to evaluate our proposed 

sampling approach. Finally, in Section  6.7, we conclude this chapter with a summary. 

Parts of the material in this chapter is adapted and expanded from a paper published in the 

16th IEEE International Conference on Program Comprehension, 2011 [PSHM11].  
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6.2. Reasoning about Sampling 

To help with the description of these techniques, we present the following definitions. A 

population can be defined as a group of elements (people, plants, animals, cars, numbers, 

etc.) about which we want to make judgments. Studying an entire population may be slow 

and expensive. Sampling is a process through which we select parts of a population for 

analysis instead of analyzing the entire population. To be able to generalize the results of 

the analysis on a sample to the population, the sample has to be representative of the 

population. Sample representativeness means that the characteristics of the sample closely 

match those of the population. Thus, the goal in sampling is to find a representative sample 

of the population.  

In trace sampling, the population is the trace under study. We refer to this trace as the 

original trace. A sampled trace is a trace generated through the sampling of an original 

trace. Similar to other fields, in trace sampling, the aim is to generate a sampled trace that is 

representative of the original trace. Given that an original trace represents the 

functionalities triggered by the user, a sampled trace is representative of its original trace if 

the sampled trace can represent similar functionalities triggered in the original trace. 

A simple and a naive way to sample the content of a trace is to consider every n-th 

generated event. The size of the trace can be controlled automatically based on the 

sampling parameter n. The sampling parameter (also called distance) for a given trace T in 

systematic sampling is usually represented as follows: 
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'T
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n =
 

where |T’| is the size of the sampled trace which must be specified by the user and T  is the 

size of the original trace (i.e., the number of events recorded during the generation of the 

trace).  

Although efficient, this sampling technique might be biased when the original trace, for 

example, possesses iterations (or patterns) that coincide with the n value. As an example, 

suppose in a trace T where one specific event e is repeated after each six other events. If the 

sampling parameter happens to be seven (n = 7), then depending on where the sampling 

starts, one could obtain a sample either with all es or with no e.  

One way to overcome this problem is to use random sampling, which is a technique that is 

commonly used in trace analysis (e.g., [CHMY03, RR03, RZ05, Dug07]).  Instead of 

selecting every n-th event, trace events are sampled in a way that each event has equal 

chance to be selected (if we have x event, each of them would have 1/x chance of being 

selected). If we do not exclude the events that have been drawn from further selection, the 

resulting sampling strategy is called random sampling with replacement. Otherwise, it is 

called random sampling without replacement. It should be noted that random sampling can 

result in a sampled trace where the invocation order of the events is changed. This could be 

potentially dangerous when sampling a trace where the temporal order of events must be 

kept. To avoid this, one can sort the events in the sampled trace according to their temporal 

order in the original trace, if this information is available. For example, if we have a trace 

T:{e1, e2, e3, e4, e5, e6, e7} and we want to generate a sampled trace T’ of size 3 with 
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random sampling by drawing events one by one without replacement. The first event drawn 

is e6, followed by e2, and e7, that is, {e6, e2, e7}. Once sorted, we have the sampled trace 

T’: {e2, e6, e7}. The problem with random sampling is that it makes no use of auxiliary 

information about the trace (e.g., distribution of the trace events, the homogeneous nature 

of its parts, outliers, etc.) that could assist in selecting a sample that is more representative 

of the original trace.  

Statistically, when we are dealing with a population that is not homogeneous (i.e., it is 

made up of elements that are different from each other in sub-populations, and each sub-

population represents a group of similar events), then random sampling might result in an 

unrepresentative sample [Bru60]. It is a common situation for execution traces not to be 

homogeneous. The reason is that a trace is composed of a sequence of events where each 

subsequence represents a specific task performed by the system. The events in one 

particular set of events can be completely different from the ones of another subsequence.  

We can study the representativeness problem of random sampling of execution traces in the 

following formal framework. Given an original trace T of method calls, a sampled trace T’ 

can be built by randomly drawing method calls from the original trace without replacing 

them. Let T be composed of homogeneous subsequences of method calls {h1, h2, …, hn}. 

Then, ( )chP  the probability that no method call from a candidate homogeneous 

subsequence ch  appears in the sampled trace T’ is calculated as follows: 

( ) 










−
−××











−
−×











−
−×










−=

'
1

2
1

1
11

TT
h

T
h

T
h

T
h

hP cccc
c 

 



 123 

( ) ( )
( ) ( )!'!

!'!
ThTT
TThT

c

c
−−×

−×−
=

 

where ch  is the size of ch , |T’| is the size of the sampled trace. Thus, ( )chP  is the 

multiplication of the probability that, on each draw from the execution trace, we do not 

select a method call from ch . The formula shows the problematic situations in random 

sampling of trace T, which are the cases where no method from a homogeneous 

subsequence appears in the sample (high values of ( )chP ), resulting in an unrepresentative 

sample (and sometimes a sampled trace that is not informative at all). Therefore, having a 

trace T with size |T|, we need to analyze the value of ( )chP  according to the size of the 

sampled trace |T’| and the size of a candidate homogeneous subsequence ch looking for 

cases that result in high ( )chP . 

Figure  6.1 shows the behaviour of ( )chP  according to the changes of 'T and ch . As shown 

in Figure  6.1, in random sampling, the smaller the size of the sampled trace, the higher is 

the probability of having an unrepresentative sample. Furthermore, small sizes of 

homogeneous subsequences can also result in unrepresentative samples. 
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Figure  6.1. Behavior of ( )chP  with respect to |T’| and ch  

6.3. Stratified Sampling of Execution Traces 

Another approach to sampling, extensively studied in Information Theory is known as 

stratified sampling [Coc77]. Stratified sampling techniques are generally used when the 

population on which sampling is applied is heterogeneous as a whole but can be divided 

into homogeneous sub-populations, referred to as strata. We deal with similar situation in 

execution traces, as they are composed of a sequence of events where one can find 

subsequences that represent specific tasks performed by the system. The level of 

granularity of a task depends on the type of samples that we want to extract.  

In stratified sampling of a population, first, the population is separated into a desired 

number of partitions1 (called strata) and then sample elements are drawn from within each 

stratum. The size of the sample from each stratum is kept proportional to the size of the 

                                                   
1 A partition is a non-overlapping and exhaustive sub-population. 
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stratum (this is called proportionate stratified sampling). We thus guarantee that the final 

sample contains elements representative of every part of the population. The process of 

stratified sampling is shown as a flow chart in Figure  6.2. 

The quality of stratified sampling is determined by the way strata are specified (strata 

specification), and the strategy by which sample elements are drawn from within each 

stratum (selection strategy). In strata specification, strata are commonly created by dividing 

the population into partitions of relatively homogeneous elements. 

Drawing a parallel between population sampling and trace sampling, we are interested in a 

trace sampling method that can create a more representative sample in comparison with 

existing trace sampling methods. We propose stratified sampling of execution trace. For 

strata specification, we propose using execution phases as strata. We use the approach 

proposed in  Chapter 4 to detect execution phases.  

 

Figure  6.2 Stratified sampling process 
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Once the phases are detected, we select sample events within each stratum (phase) using 

random sampling. It might sound contradictory that we are using random sampling after 

criticizing it in the previous sections. In fact, the problem with random sampling is when it 

is used on non-homogeneous data spaces such as an entire trace. This is not the case now 

because it is applied to the contents of execution phases, as we detect in  Chapter 4, are by 

definition homogeneous. 

 

Figure  6.3. Overview of the proposed sampling framework 

Our framework for stratified sampling of execution traces is shown in Figure  6.3. By 

splitting the process into different units, our proposed framework achieves a flexible and 

extensible architecture where each unit or its composing components can be supplemented 

or replaced by alternative approaches. As shown in Figure  6.3, we first need to identify the 

execution phases to serve as strata for our stratified sampling approach. We use the 

execution phase detection unit to detect the execution phases of the trace. The result of this 

unit is then given to the sampling unit that outputs a sampled trace. Both units are described 

in more details in the following sections. 
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6.4. Sampling Unit 

Once the phases are detected, we start the stratified sampling process, which is 

implemented in our framework, as part of the sampling unit (shown in Figure  6.4). The 

sampling unit receives a phased execution trace as its input and outputs a sample of the 

execution trace using stratified sampling. 

 

Figure  6.4. The Sampling unit in details 

We use the sample trace shown in Figure  6.5 (part 1) to explain how the sampling is 

performed in a step-by-step fashion. Figure  6.5 (part 2) shows the trace divided into 4 

major phases as a result of the application of our phase detection approach presented in 

 Chapter 4. The trace in Figure  6.5 contains 25 events and we would like to obtain a 

sampled trace of size 6. 
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Figure  6.5. An example of applying the integrated scheme on a sample trace 

As mentioned previously, the sampling unit treats the phases of the execution trace as 

strata. More precisely, given a phased trace T, the sampling unit defines H strata in the 

trace, where each stratum is a phase. Each event of the trace is assigned to one, and only 

one: 

HH StratumStratumStratumStratumT ++++= 1-21||   

where hStratum is the number of events in each stratum. Table  6.1 shows the number of 

events within each stratum of our sample trace in Figure  6.5. 

Table  6.1. Execution phases that were detected 

Phase Phase Location Strata Size 

P1 1 – 9 1Stratum  9 

P2 10 – 14 2Stratum  5 

P3 15 – 21 3Stratum  7 

P4 22 – 25 4Stratum  4 
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The next step is to select a sampled trace of size |T’|, which is an aggregation of the samples 

selected from each stratum. More precisely: 

HH SSSSST +++++= −1321'   

where hS  is the number of events sampled from hStratum . For sample allocation, we must 

determine the size of the sample for each stratum. The number of events to be sampled 

from each stratum is kept proportional to the size of the stratum:  

{ }HhT
T

Stratum
S h

h 1' ∈×≈  

Therefore, we select hS  events from each stratum. For our sampled trace of Figure  6.5, the 

number of samples to be drawn from each stratum is calculated the same way: 
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Finally, since the events within each stratum are homogeneous, we perform the selection of 

trace events from each stratum using random sampling as discussed earlier.  

6.5. Case Study 

We apply our proposed phase-based stratified sampling approach in two case studies. The 

goal of the first case study is to analyze the use of phase-based stratified sampling of 
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execution traces, with the purpose of comparing its usefulness with random sampling in 

program comprehension. The second case study is a real-world running example of the 

problematic case that is theoretically discussed in Section  6.2 and shows how our phase-

based stratified sampling compares to random sampling of execution traces. The case 

studies are on traces generated from two different systems: WEKA 3.0 [WEKA] and 

JHotDraw 5.2 [JHO]. To generate the traces we instrumented both systems using TPTP (the 

Eclipse Test and Performance Tools Platform) [TPTP].  

The Sampling unit (Section  6.4) of the Tratex implements random sampling that is used in 

stratified sampling. The implementation of random sampling uses the Random class in Java 

to generate a random number in constant time. Similar implementation is used to generate 

sampled traces through random sampling in our case studies. 

6.5.1. WEKA 

The experimental unit in this study is WEKA. We selected to analyze the C4.5 

classification algorithm that builds a decision tree for classifying data instances. For this we 

use the C4.5 trace (the original trace) generated by Hamou-Lhadj et al. [HL06].  

The main factor in this study is the sampling method that is applied on the original trace to 

extract a sample to be used for program comprehension. The dependent variable in this 

study is the comprehension level. The comprehension level is evaluated on authoritative 

bases. That is, for each sampling method, the extracted sampled trace is compared with 

established reference data provided by Hamou-Lhadj et al. [HL06]. The reference data is a 

summarized version of the original trace (hereby referred to as the oracle trace) that has 
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been shown to have captured the most important interactions of the trace and to be effective 

in program comprehension.  

The comprehension score of a sampled trace is the percentage of events that exist in both 

the sampled trace and the oracle trace. This way, a higher comprehension score of a 

sampled trace represents a higher comprehension level and a lower comprehension score 

represents a lower comprehension level that can be achieved using the sampled trace. It is 

important to note that the comprehension score calculated by means of comparison to the 

oracle trace represents, by consequence, a subjective feedback, and that more objective 

measurements such as those used to assess the comprehension level during the maintenance 

tasks may result in a more precise conclusions. 

To investigate the effect of the main factor on the dependent variable we formulate the 

following hypotheses: 

• 0H (Null hypothesis): When performing a comprehension task, the use of phase-

based stratified random sampling (versus random sampling) does not significantly 

improve (or decline) the comprehension level. 

• aH (Alternative hypothesis): When performing a comprehension task, the use of 

phase-based stratified random sampling (versus random sampling) significantly 

improves (or declines) the comprehension level. 

We are interested in investigating how the effect of phase-based stratified sampling on 

software comprehension compares to the ones of random sampling. Therefore, our null 

hypothesis is two-tailed. 



 132 

Experiment Design and Procedure 

The experiment design in our study is a variant of after-only with control group design 

[Zik00] where we compare two groups of subjects: one treated with random sampling and 

the other treated with phase-based stratified sampling and then trying to infer a difference 

in the performance of the two treatments. 

 

Figure  6.6. Overview of the experiment 

 For this, as shown in Figure  6.6, we apply random sampling on the original trace to obtain 

a sampled trace T1 of a given size. Similarly, we apply the phase-based stratified random 

sampling on the original trace to obtain another sampled trace T’1. Both T1 and T’1 are of a 

given size s (equal to the oracle trace size) and the sampling is performed without 

replacement. The C-Score Calculation module, receives the sampled trace T1 and compares 

it with the oracle trace and assigns it a comprehension score C(T1), the percentage of the 

events that are common between T1 and the oracle trace. Similarly, a C(T’1) is assigned to 

T’1. The pair of (C(T1), C(T’1)) is added to the list of observations for statistical analysis.  
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Statistical Analysis: 

Since the observed comprehension scores of sampled traces are not normally distributed, 

we need to use a type tests that has no assumption on normality of observations. Non 

parametric tests are a good choice as they have minimal assumptions on the observations. 

Furthermore, comprehension scores are ordinal data which is a natural fit for non-

parametric tests. Moreover, non-parametric test are not sensitive outlier. 

Since the same original trace (the subject) is used for both random sampling and phase-

based stratified sampling, we use a paired test (similar in concept with pre-test/post-test 

data). Wilcoxon signed ranks test [Con80] is a non-parametric paired test. We decided to 

use Wilcoxon test to evaluate out two tailed null hypothesis. 

We carried out our statistic analysis procedures through the statistical package for the social 

sciences software (SPSS v.20) [SPSS]. A statistic significance level of 0.05 was 

considered, that is, the null hypothesis could be rejected in all the situations where the 

probability associated with the statistics of the test (p-value) was inferior to this value.   

Results 

This section reports and analyzes results obtained from our experiments1. The original trace 

contained 97,413 method calls. We applied our phase detection technique on the trace to 

detect its major phases (i.e., t = trace size). The application of our integrated scheme results 

in the formation of 11 dense groups in the rearranged trace. These groups can be seen in 

Figure  6.7. These 11 groups indicate 11 phases when mapped back the original trace. Table 

                                                   
1 For replication purposes, the experimental package and raw data from the experiment are available for 
downloading at: http://www.ece.concordia.ca/~s_pirzad/sampling-case-study/ 
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 6.2 shows the detected phases and their information. On an Intel Core i5 CPU 2.30GHz, 

4.00 GB main memory, running Windows 7 it took 12.838 seconds for our phase detection 

algorithm to detect phases. Out of this time, 1.375 seconds were spent on the application of 

the integrated scheme and 11.463 seconds were spent on clustering.  

 

Figure  6.7. Dense groups resulted from applying the integrated scheme on the trace. 

These phases were then used as strata to perform stratified sampling. To implement the 

random sampling within each stratum, our program randomly draws a method call from 

that stratum and excludes the drawn method call from further selection. The oracle trace 

contained 31 method calls. We executed the experiment 100 times (obtain 100 pairs of 

observation) with s = 31. Table  6.4 shows the list of observations. 

A pair-wise application of the Wilcoxon test shows that comprehension scores of phase-

based random sampling are significantly higher than random sampling scores, (z = –2.628, 

n = 100, p = 0.009, two-tailed). This information is shown in details in 
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Table  6.3. This table tells us that the statistic is based on the negative ranks, that the z-score 

is –2.628 and that this value is significant at p = 0.009. Therefore, because this value is 

based on the negative ranks, we should conclude that there was a significant increase in 

comprehension score from random sampling to phase-based stratified random sampling.   

Table  6.2. Phases information 

Phase Phase Location Size 

P1 1 – 8836 8836 

P2 8837 – 19299 10463 

P3 19300 – 27673 8374 

P4 27674 – 35500 7827 

P5 35501 – 51651 16151 

P6 51652 – 60537 8886 

P7 60538 – 69728 9191 

P8 69729 – 78640 8912 

P9 78641 – 87275 8635 

P10 87276 – 95811 8536 

P11 95812 – 97413 1602 
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Table  6.3. Statistical analysis 

Descriptive Statistics 

 N Mean Std. Deviation Minimum Maximum 

Random Sampling 100 .9355 1.73352 .00 6.45 

Phase-based Stratified Sampling 100 1.7742 2.35468 .00 9.68 

Ranks 

 N Mean Rank Sum of Ranks 

Phase-based Stratified 

Sampling - Random Sampling 

Negative Ranks 17a 26.65 453.00 

Positive Ranks 37b 27.89 1032.00 

Ties 46c   

Total 100   

a. Phase-based Stratified Sampling < Random Sampling 

b. Phase-based Stratified Sampling > Random Sampling 

c. Phase-based Stratified Sampling = Random Sampling 

Test Statisticsa 

 Phase-based Stratified Sampling - Random Sampling 

Z -2.628b 

Asymp. Sig. (2-tailed) .009 

a. Wilcoxon Signed Ranks Test 

b. Based on negative ranks. 
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Table  6.4. Comprehension scores of trace resulted from random sampling and stratified 

sampling 
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6.5.2. JHotDraw 

In this section, we show how our approach compares to random sampling. To generate an 

execution trace, we used an execution scenario that involves several major features. The 

execution trace was generated based on a scenario where the features F1 to F12 shown in 

Table  6.5 were exercised one after another.  

Table  6.5. The features included in the traced scenario 

F1: Drawing a rectangle. F5: Drawing a circle. F9: Drawing a round rectangle. 

F2: Moving the rectangle. F6: Moving the circle. F10: Moving the round rectangle. 

F3: Saving work sheet. F7: Deleting the circle. F11: Deleting the round rectangle. 

F4: Deleting the rectangle F8: Saving work sheet. F12: Saving work sheet. 

 

Because JHotDraw registers all mouse movements, and mouse movements are required 

while drawing figures, the trace that resulted from our scenario was bound to contain a lot 

of noise. We have therefore filtered these mouse movements to obtain a trace that is 

cleaner. We are aware that the detection of noise in a trace might not always be 

straightforward and that noise detection techniques such as the ones presented by Hamou-

Lhadj et al. in [HL06] might need to be used. The resulting trace contained 36571 method 

invocations and the trace file was of size 1.8 MB. Note that a method invocation requires at 

least two events to be collected, the entry and exit of a method. The trace size in terms of 
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events is therefore about 73142 events, which is considered a relatively medium-sized 

trace. 

We randomly set the phase detection threshold to t = 200 so as to detect phases that are not 

too large but not too fine-grained either. This threshold is a result of conducting several 

experiments with JHotDraw traces. We still do not have a solution on how such a threshold 

should be selected automatically to detect adequate phases. Although, we anticipate that it 

would be application-specific, further studies should be conducted to, at least, provide hints 

on acceptable ranges of thresholds and their impact on detecting phases. We have not done 

such studies yet.  

Figure  6.8 shows the results of applying the integrated gravity, using t, to the JHotDraw 

trace.  

 

Figure  6.8.  Detected phases in JHotDraw trace 

The results are shown in the form of a histogram, where the x-axis shows the distance 

between the positions of the calls and the y-axis shows the frequency (the number of 

methods that their position falls into one interval of x-axis). As part of our technique, in 

     P1               P2                           P3               P4                       P5               P6                   
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order to automatically determine the number of phases and their location, the trace resulted 

from applying the integrated gravity scheme is partitioned by K-means clustering for K 

from 1 to 10. The highest BIC score was for the partitioning with K = 8 as the best fit. 

Figure  6.8 shows the location of the eight clusters (P1 to P8), highlighted by dashed 

rectangles.  

These phases are explained in Table  6.6. Each row contains the location of the phase in the 

execution trace, the task performed in the phase, and the corresponding stratum. This 

information was used for stratification. As shown in this table, we were able to use our 

phase detection technique to successfully recover parts of the trace that implement each of 

the features that were traced.  

Table  6.6. Execution phases that were detected 

Phase Phase Location Description Strata Size 

P1 1 – 1134 Initialization Stratum 1 1134 

P2 1135 – 10948 New sheet, F1, F2 Stratum 2 9814 

P3 10949 – 14816 F3, F4 Stratum 3 3868 

P4 14817 – 22391 F5, F6 Stratum 4 7575 

P5 22392 – 26298 F7, F8 Stratum 5 3907 

P6 26299 – 32812 F9, F10 Stratum 6 6514 

P7 32813 – 36461 F11, F12 Stratum 7 3649 

P8 36462 – 36571 Finalization Stratum 8 110 
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We chose to generate three sampled traces from the original trace that vary in size and 

assess their effectiveness in being representatives of the original traces. The three sampled 

traces are respectively of sizes 3,646, 1,829, and 365, shown as Strat1, Strat2, and Strat3 in 

Table  6.7. In this table, the sampling parameter 
T

Stratumh  for each stratum is calculated 

according to the size of the stratum hStratum  and the size of original trace (|T| =36,571). 

Then, the sampling parameter and |T’| the sample size are used for calculation of the 

number of calls to be sampled from each stratum (i.e., hS ). For instance, we can see that to 

obtain a sample trace of size 365 we need to randomly sample 12 calls from “Stratum 1” of 

the original trace, 96 calls from “Stratum 2” and so on.  

The next step is to assess the representativeness of the three samples with respect to the 

original trace. We compared the sample traces generated by our approach to the ones 

generated using mere random sampling. For this purpose, we first created three other 

sampled traces (Rand1, Rand2, and Rand3) of sizes 3,646, 1,829, and 365 using random 

sampling from our original trace. 

As mentioned earlier, a sampled trace is representative if it closely resembles the execution 

trace from which it is drawn. This resemblance could be quantified by the extent of 

similarity of statistical characteristics between the original trace and each set of generated 

samples. We consider the distribution of features and their contribution to the overall size 

of the original execution trace as our comparison reference. The closer the distribution of 

features in sample traces is to the actual distribution of features in the original trace, the 

more representative the sampled trace is.  
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Table  6.7. Contribution of features of JHotDraw trace to the size of the sample traces using 

both stratified and random sampling 

 10% of Orig. Size 

(3646) 

5% of Orig. Size 

(1829) 

1% of Orig. Size 

(365) 

Strat 1 Rand 1 Strat2 Rand2 Strat3 Rand 3 

Initialization 113 115 57 51 12 5 

NewSheet 47 47 22 14 4 6 

F1 31 31 14 13 3 2 

F2 915 914 460 464 90 98 

F3 420 418 211 225 46 47 

F4 30 35 15 12 3 4 

F5 13 11 7 8 1 2 

F6 674 672 339 354 63 55 

F7 14 11 6 9 1 1 

F8 381 368 191 197 39 36 

F9 15 8 6 6 1 1 

F10 598 653 308 308 63 74 

F11 21 14 8 4 1 15 

F12 362 342 182 157 37 14 

Finalization 11 7 6 7 1 0 

 

The distribution of features in each sample trace in terms of their contribution to the size of 

the sample trace is shown in Table  6.7. For instance, the number of calls belonging to 

feature F12 in the sample trace “Strat 3” is 37; its contribution to the size of “Strat 3” (i.e., 

365) is 10.13%. The same feature contributes only 14 calls (3.83%) to the sampled trace 

“Rand 3”, generated using random sampling. When we contrast this with the contribution 

of the features to the size of the entire trace (shown in Table  6.9), we can see that feature 
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F12 represents 10.01% of the size of the original. Therefore, F12 is better represented in 

“Strat 3” than in “Rand 3”.  

Table  6.8. The samples obtained from applying our approach to JHotDraw trace 

Strata hN  
T

Stratumh  hS  

( 'T = 365) 

hS   

( 'T = 1829) 

hS   

( 'T = 3646) 

1 1134 0.031 12 57 113 

2 9815 0.265 96 492 983 

3 3868 0.105 39 193 384 

4 7575 0.207 76 379 756 

5 3907 0.106 39 194 387 

6 6514 0.178 65 326 650 

7 3649 0.099 37 182 362 

8 109 0.003 1 6 11 

 

Table  6.9. Contribution of features to the size of the entire trace 

Initialization 3.101% 
NewSheet 1.233% 
F1 0.845% 
F2 25.094% 
F3 11.731% 
F4 0.727% 
F5 0.353% 
F6 18.496% 
F7 0.325% 
F8 10.454% 
F9 0.358% 
F10 16.486% 
F11 0.481% 
F12 10.019% 
Finalization 0.298% 
TOTAL 100% 
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Figure  6.9. Comparison between the distribution of a number of features in the original 
trace, stratified sample, and random sample. The x axis shows the contribution of the 

feature to the size of the trace in percentage. The y axis shows the feature name and the 
sample size. 
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When we applied the same reasoning to all features, we found that our approach provided 

better results in more than 80% of the cases and in all these cases it led to a more 

representative sample trace. Furthermore, as the size of the sample decreases, our approach 

maintains its representativeness while random sampling, as theoretically discussed in 

Section  6.2, leads to cases that are significantly unrepresentative of the original trace. Some 

of these cases are shown in Figure  6.9. For instance, as it can be seen in Figure  6.9 the trace 

“Rand 3” contains a sudden high number of calls from feature F11 (shown as the rightmost 

yellow bar) while the percentage of the presence of the same feature in all the traces 

generated in our approach (the three plum bars) is maintained close the its percentage in the 

original trace (the blue bars). In all cases reported in Figure  6.9, our approach maintains the 

same distribution of features with respect to the original trace, which is not the case for 

random sampling. This demonstrates (at least for this case study) the superiority of our 

approach compared to random sampling. 

6.6. Threats to Validity 

In our case studies, we used our trace segmentation approach to find the execution phases 

of our traces. These phases are used by our smart sampling approach as strata to perform 

stratified sampling. Changing the phase detection technique can potentially result in the 

detection of a different number of phases (of different sizes). Therefore, we need to 

investigate how a different phase detection algorithm can impact the results of our sampling 

technique. 
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Another limitation of our approach is that the sampling is performed in a post-mortem 

manner, i.e., after the trace is generated and saved. This type of sampling contradicts the 

common application of sampling which consists of sampling a trace while it is being 

generated. Future work should focus on improving the algorithm to sample the traces on the 

fly.  

During the second case study, we had to remove some mouse movement events because 

they cluttered the trace. However, we did not attempt to remove all low-level utilities, an 

activity which might be needed when we generalize our approach and apply it to other 

systems. In general, we need to study the impact of removing utilities on the final sample 

before the phase detection algorithm is applied. 

6.7. Summary 

A major shortcoming of existing trace sampling approaches is that they cannot guarantee 

that the resulting sampled trace will be representative of the original trace. This 

shortcoming can be attributed to these techniques being blind to the information contained 

in the trace.  

In this chapter, we presented a novel sampling technique of large execution traces that not 

only reduces the size of traces but also generates sampled traces that are representative of 

the original traces. We proposed an approach that guaranties that a certain number of events 

from each homogeneous part of an execution trace will be included traces sampled from the 

original trace.  
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Our approach relied on stratified sampling, using execution phases as strata. For this, we 

used the phases resulted from our proposed trace segmentation algorithm. Then, we 

performed random sampling within each phase and drew a number of events as the sample 

events of that phase. The number of events drawn from each phase is proportional to the 

size of that phase.  

We evaluated our proposed phase-based stratified sampling approach in two case studies. 

The first case study evaluated the usefulness of our proposed stratified sampling in 

comparison with random sampling in terms of program comprehension. The second case 

study showed a real-world running example of the problematic case and showed how our 

proposed approach compares to random sampling of execution traces. 
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Chapter 7. Conclusion 

In order to perform any type of maintenance tasks software engineers first need to have 

some sort of understanding about the system that they are going to modify. Understanding 

software systems is a challenging task that consumes most of the time and efforts assigned 

to a maintenance task.  

Development of trace analysis techniques and tools holds real potential to address the 

software maintenance problem. In this type of analysis, a system’s runtime behaviour 

commonly presented in forms of execution traces is used for understanding the software 

system. Traces, however, tend to contain large amounts of data that pose a real obstacle to 

any viable analysis.  

In this thesis, our contribution includes a set of novel approaches for trace analysis inspired 

by the way the human brain and perception system operate when dealing with information 

received through the visual sense. We review these contributions in the following section. 
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7.1. Research Contributions 

Trace Abstraction Framework 

We presented a novel framework for trace analysis and abstraction by drawing parallels 

between trace analysis and the human perception system. The proposed framework is 

composed of three components that are intended to perform trace segmentation, smart 

sampling, and content prioritization. Inspired by scene segmentation, the goal of the first 

component is to segment traces into meaningful and homogeneous segments to provide 

users with more structure data that should help in better exploration and easier analysis of 

execution trace. Inspired by the process of finding the gist of scenes, the second component 

aims to use the trace homogeneous segments to perform smart sampling. In this type of 

sampling, the different segments of trace are taken into account during the sampling 

process to generate a representative sample. Inspired by the pop-out effect in human 

perception, the goal of content prioritization component is to indentify events that are 

relevant to different parts of a trace. The ranking is based on the frequency of occurrence of 

each event in a phase and the number of other phases in which the same event has occurred. 

Trace Segmentation 

We presented a new trace analysis technique that automatically divides the content of a 

trace into smaller and meaningful trace segments. These segments correspond to the 

system’s main execution phases. Presenting an execution trace as a flow of phases can 

facilitate trace exploration by software engineers and provide structure to the content of the 

trace which in turn can be used for more advanced approaches of trace analysis.     
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In our trace segmentation, we used the concepts of similarity and good continuation of 

Gestalt laws to measure the extent by which trace events can be grouped into dense clusters 

that indicate the presence of execution phases. We applied our approach to two software 

systems and the results are very satisfactory. 

Stratified Sampling of Execution Traces 

Using sampling techniques is an easy way for reducing the size of execution traces. 

Commonly used sampling methods such as random sampling may result in sampled traces 

that are not representative of the original trace. We proposed a stratified sampling method 

that not only reduces the size of a trace but also results in a sample that is representative of 

the original trace.  

In our proposed approach, we use the homogeneous trace segments that are detected 

through our trace segmentation approach as strata. Then we perform random sampling to 

select events from within each segment based on the size of the segment. This way, we 

ensure that the desired characteristics of an execution are distributed similarly in both the 

sampled and the original trace. We showed the effectiveness of our sampling technique 

through two case studies. 

Identification of Relevant Events Based on Text Mining 

Different events of an execution trace are not equally important. Some events in a certain 

part of a trace can show what is being delivered in that part. Thus, identifying the most 

relevant events of different parts of a trace should help software engineers in finding the 

parts that they are interested in.  
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We proposed a trace analysis approach that automatically identifies relevant information 

about each execution phase of a trace. For this identification, we use TF-IDF as a known 

ranking technique used in text mining to find the events that are frequently invoked in a 

phase but not shared between many phases. These events are relevant event of that phase. 

Once the relevant events of each phase are identified, they are used to find similar phases. 

Finding the similarity of phases gives us the ability to provide an efficient representation of 

the flow of phases by detecting redundant phases. We applied our approach to traces 

generated from two different systems and we were able to quickly understand their content 

and extract higher-level views that characterize the essence of the information conveyed in 

these traces. 

7.2. Opportunities for Further Research 

7.2.1. Trace Analysis Framework 

Various studies in the fields of psychology and neurophysiology have found that the human 

perception system analyzes the visual information in a scene through two types of 

processes: preattentive and attentional processes. Segmenting local elements against their 

context and integrating them as objects and regions is among the operations that occur 

during the preattentive process. The information returned by preattentive processes delivers 

the units for which attention can be allocated for further, more elaborated, processing 

handled by attentional processes. 

While preattentive processes are built-in and standard, attentional processes, since they can 

occur on a voluntary level, may be equipped with learning strategies to lead to better 
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results. Successful analysis of a scene is therefore dependent on successes of all three 

components of preattentive processes, attentional processes, and learning strategies.  

In this thesis, we only investigated the preattentive process. One possible improvement is to 

augment our proposed framework in a way that all three groups of techniques (similar to 

the three discussed components in human perception) work together to result in better 

software behavioural analysis tools that can help understand various aspects of a running 

system. 

For example, we can work investigate the second group of techniques (similar to attentional 

operations) along with guidelines from the field of educational psychology that explain 

how technologies --such as multimedia and interactive tools--can be used to foster 

understanding and learning of new subjects in human. The proposed techniques should 

adhere to the following learning strategies: 

• Selecting: important information of an execution trace needs to be selected from less 

important (this is similar to selection strategy in educational psychology where less 

important information is excluded so as not to overload attention and working-

memory of the user).  

• Organizing: selected information has to be organized in a way that makes it easier to 

process for the user. This might be done by providing a textual outline of the 

selected information or by graphically presenting it through a suitable representation 

method such as a map (similar to organizing theory of active learning information 

needs to be presented such that user can mentally organize the presented material 

into a coherent structure). 
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• Associating: possible associations (e.g., dependency, co-occurrence) among 

organized information need to be presented. This could be done graphically (e.g., by 

highlighting, color-coding, or drawing arcs) to show the connection between the 

organized information (similar to integration strategy in education psychology). 

7.2.2. Trace Segmentation 

Our trace segmentation approach tries to find execution phases by investigating the changes 

that occur in the flow of events in an execution trace. These changes are currently of two 

types of measures: changes in the naming similarity of the events, changes in the continuity 

of the nesting level of events. One direction of future work is to investigate how changes of 

other measures can affect the phase detection. For example, significant changes in the 

elapsed time of method calls might suggest a new phase. This change can be mapped to our 

continuation scheme.  

As mentioned earlier, in this thesis, we only considered the exact naming similarity of 

events in our similarity scheme for its simplicity and low overhead. The result might be 

improved if a more flexible type of similarity is used. For example, right now, the 

similarity of two method calls has a two-valued logic (i.e., it is whether 1 or 0). This could 

be improved by introducing a truth-value logic (that ranges in degree between 0 and 1). For 

this, one may use text cleaning and pre-processing like stemming. Other types of 

similarities, for example, based on analyzing the source code could also be used to find 

similarity of events as long as they result in a reasonable overhead. 
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In our segmentation approach, we have a clustering and mapping component that tries to 

find the beginning and end of each group of method calls and map the group to the original 

trace as an execution phase. In this component, we use K-mean clustering as our choice of 

clustering algorithm. This was due to simplicity, good speed, and availability of the K-

means algorithm. However, other clustering algorithm might improve the results of 

clustering. For example, density based clustering is a potential candidate to be investigated. 

In general, any clustering algorithm that is automatic (does not have many parameters to be 

set by the user) and has a reasonable overhead could be a good choice for further 

exploration. 

In our phase detection, we have a threshold t that provides the user with the opportunity to 

find the sub-phases of a major phase. We anticipate that this threshold is application-

specific. However, providing users with some hints or suggestions might help the user to 

find an appropriate threshold more quickly. A useful future avenue, therefore, is developing 

heuristics to help in finding good thresholds. 

Finally, the phases that are detected in our approach can help predict execution phases at 

runtime. Phase prediction can be used for optimizing the management of system resource 

while the system is executing.  

7.2.3. Trace Sampling 

At the theoretical level, our trace sampling method was inspired by the way our perception 

system achieves the gist of a scene. It has been suggested that scene elements with low 

spatial frequency are the ones that contribute most to building a gist. In this thesis, we used 
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stratified sampling to find a sample of a trace. One possible future direction is to adapt 

image processing approaches that find elements of low spatial frequency in an image. One 

can adapt those approaches to the field of trace analysis for finding representative samples. 

Our trace sampling method performs stratified sampling of execution traces by using the 

execution phases as strata. In this thesis, we used the phases resulted from our phase 

detection approach. Since the phase detection proposed in this thesis works in an offline 

manner, that the sampling would be also performed in a post-mortem manner, i.e., after the 

trace is generated and saved. Some approaches might need to perform trace sampling in an 

online manner. Therefore, one direction for future work would be to explore ways in which 

our approach can be adapted to online sampling where we can sample a trace while it is 

being generated.  

7.2.4. Content Prioritization 

An immediate direction to continue our content prioritization approach is to use the 

relevant events of each phase to generate a human readable description for that phase. For 

this, one can explore text mining approaches to generate summaries for each relevant event 

from available sources and eventually from a description for each phase. 

7.2.5. General Directions 

In this thesis, we evaluated our techniques through a number of case studies. Almost all of 

the case studies we performed in this thesis were of an intrinsic nature. That is, we 

performed our validations according to the documentations provided by the original 

developers and maintainers of open source systems. 
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Other investigations through extrinsic evaluations (e.g., controlled experiments) can be 

done to refine the validation of our techniques. We need to plan a controlled experiment 

where we can asses the impacts of our techniques on program comprehension.  

We are integrating the techniques proposed in this thesis into a tool. We are also working 

on developing a new type of diagram called a phase flow diagram to representation the 

flow of phases of an execution trace. This diagram is equipped with useful information 

about phases such as relevant events and so on. We also like to investigate the usefulness of 

our proposed approaches in other software engineering and maintenance tasks such as 

redocumentation and testing. 
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