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ABSTRACT 

Two-Dimensional Face Recognition Algorithms  

in the Frequency Domain 

 
Alper Serhat Zeytunlu 

 

The importance of security, law-enforcement and identity verification has 

necessitated the development of automated stable, fast and highly accurate algorithms for 

human recognition. Face recognition is one of the most popular techniques used for these 

purposes. Face recognition algorithms are performed on very large size of datasets 

obtained under various challenging conditions. Principal component analysis (PCA) is a 

widely used technique for face recognition. However, it has major drawbacks of (i) losing 

the image details due to the transformation of two-dimensional face images into one-

dimensional vectors, (ii) having a large time complexity due to the use of a large size 

covariance matrix and (iii) suffering from the adverse effect of intra-class pose variations 

resulting in reduced recognition accuracy. To overcome the problem of intra-class pose 

variations, Fourier magnitudes have been used for feature extraction in the PCA 

algorithm giving rise to the so called FM-PCA algorithm. However, the time complexity 

of this algorithm is even higher. On the other hand, to address the other two drawbacks of 

the PCA algorithm, two-dimensional PCA (2DPCA) algorithms have been proposed.  

This thesis is concerned with developing 2DPCA algorithms that incorporate the 

advantages of FM-PCA in improving the accuracy and that of 2DPCA algorithms in 
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improving the accuracy as well as the time complexity. Towards this goal, 2DPCA 

algorithms, referred to as the FM-r2DPCA and FM-(2D)
2
PCA algorithms, that use 

Fourier-magnitudes rather than the raw pixel values, are first developed. Extensive 

simulations are conducted to demonstrate the effectiveness of using the Fourier-

magnitudes in providing higher recognition accuracy over their spatial domain 

counterparts. Next, by taking advantage of the energy compaction property of the 

Fourier-magnitudes, the proposed algorithms are further developed to significantly 

reduce their computational complexities with little loss in the recognition accuracy. 

Simulation results are provided to validate this claim.  
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CHAPTER 1 

Introduction 

 

1.1 Background 

Development of more sophisticated and effective techniques for human 

identification is becoming increasingly important in view of their applications in security, 

law-enforcement and verification [1]-[6]. For human identification, there are several 

biometric techniques, which use specific information to classify the subjects. Such 

specific information could be fingerprint, palmprint, signature, voice, iris, 

deoxyribonucleic acid (DNA), face, etc. All these types of information are unique and 

vary from one person to another. Many security services, airports and government 

agencies use biometrics for identification and security purposes.  

Human face recognition is one of the most popular techniques used in biometrics. 

Face recognition systems are widely used for identification, security, law enforcement, 

etc [7]-[9]. Also, face recognition systems are indispensable in cases such as when the 

police officers have only the face information of a criminal. The importance of security 

and identification necessitates stable, fast and highly accurate algorithms for face 

recognition. Hence, new approaches have been proposed that are more advanced than the 
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preceding ones with higher recognition accuracy and lower complexity under specific 

real-life conditions.  

 

1.2 Face Recognition Systems 

The goal of face recognition systems is to determine as to which face image 

belongs to which person (subject) [7]-[11]. Raw images for a face recognition system are 

grouped as training images and test images. The subject of each training image is already 

known to the system, but for the test images, subjects are assigned through a 

classification process. Typically, a face recognition system consists of data acquisition, 

feature extraction and classification subsystems [7]-[11].  

In a data acquisition subsystem, raw face images are first acquired and some pre-

processing is carried out to improve the recognition accuracy or to decrease the time 

complexity of the recognition process. The resulting data are then employed by the 

feature extraction subsystem for extraction of features. In the feature extraction 

subsystem, each image is represented as a set of features, which are signatures to 

characterize the data. The main advantage of this representation lies in reducing the data 

size in comparison to size of the original data. Also, features are useful to discriminate 

the details between different subjects and to determine the common characteristics of 

different images of the same subject. In the literature of face recognition systems, 

different techniques for feature extraction, such as principal component analysis (PCA) 

[10] and its variants, row-directional two-dimensional PCA (r2DPCA) [12], column-



3 
 

directional 2DPCA (c2DPCA) [13], two-directional two-dimensional PCA ((2D)
2
PCA) 

[13], exist. PCA and its variants are well-known for their robustness and stability against 

illumination variation, noise and changes in intra-class pose details within tolerable 

limits.  

Classification subsystem is the final module of a face recognition system. In this 

part, the subject of each test image is determined. There are different approaches, such as 

the nearest neighbour classifier, neural networks and hidden Markov model (HMM), for 

classification. The nearest neighbour classifier is one of the most popular classification 

approaches in the literature [10]-[13], [16], [18], [19], [26], [27]. In this classifier, a 

distance metric is used to measure the distance between the feature set of a test image and 

that of each of the training images. Then, the subject of the training image with the 

shortest distance from the test image is assigned as the subject of the test image. The 

Euclidean, Frobenius and Yang distances are commonly-used metrics in the nearest 

neighbour classifiers to compute the distance between feature-sets [10]-[13]. 

 

1.3 A Brief Review of PCA-Based Face Recognition Systems    

Principal component analysis, also known as the discrete Karhunen-Loève 

transform, is a linear transformation with a strong energy compaction property that 

allows high-dimensional data to be represented compactly with a much smaller number 

of coefficients [10], [14], [15]. In the classical PCA technique, each face image is 

represented as a single point in a very high-dimensional space by concatenating a two-
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dimensional face image into a one-dimensional vector. In the feature extraction process, a 

transformation matrix is first computed using all the training image vectors, then the 

feature set of a test or training image is obtained using this transformation matrix. Finally, 

using these feature sets, a test image is classified by employing a suitable classification 

technique. Although the PCA technique has a strong energy compaction property to 

represent face images efficiently, it has significant  drawbacks of (a) losing image details 

due to concatenation that affects the accuracy and (b) having a large time complexity due 

to the use of a large-size covariance matrix employed in the feature extraction module. 

In 2004, Yang et al. proposed the r2DPCA technique [12] with an objective to 

overcome the drawbacks of PCA. The r2DPCA technique works without concatenation 

of the two-dimensional data. It directly employs the two-dimensional data for feature 

extraction. Thus, the loss of image details resulting from the concatenation process is 

significantly reduced. Consequently, the recognition accuracy gets improved in 

comparison to the conventional PCA. The covariance matrix employed in r2DPCA is 

smaller than the one employed in PCA. Since the computational complexity of the feature 

extraction process depends mainly on the size of the covariance matrix, the r2DPCA 

technique has a lower computational complexity than PCA does [12]. However, the 

r2DPCA approach, which utilizes the original face images for feature extraction, is not 

sufficiently pose-tolerant against intra-class pose variations.  

Although significant improvements have been achieved using the r2DPCA 

technique, challenging real-life conditions require for more robust algorithms. One of the 

most common real-life problems for face recognition is intra-class pose-variation that has 

a negative effect on the recognition accuracy. To solve the intra-class pose-variation 
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problem, Bhagavatula and Savvides [16] have proposed a Fourier magnitude PCA (FM-

PCA) approach in 2005. In the FM-PCA approach, the Fourier magnitudes are employed 

for the feature extraction step of the PCA algorithm. Use of the Fourier magnitudes for 

feature extraction makes the algorithm more pose tolerant and the recognition accuracy is 

also significantly increased for face databases having pose variations. However, 

computing the Fourier magnitudes increases the time complexity.  

During the same year that FM-PCA was proposed [16], Zhang and Zhou 

presented a modified version of r2DPCA addressing one of its problems, namely, that it 

takes into consideration only the variation in the information between the rows and not 

between the columns. They developed a two-directional two-dimensional PCA 

((2D)
2
PCA) technique [13] by combining r2DPCA [12] and c2DPCA [13], which is a 

column version of r2DPCA. The (2D)
2
PCA algorithm takes into consideration not only 

the variations in the information between rows, but also that between  columns. As a 

result, there is a very slight improvement in the recognition accuracy of (2D)
2
PCA over 

that of r2DPCA, when the algorithm is run using the ORL database [17]. However, the 

(2D)
2
PCA  algorithm has a significant advantage over r2DPCA in terms of the time 

complexity in view of the smaller size of the feature matrix of the former.  

In addition to the r2DPCA and (2D)
2
PCA algorithms in the 2-D spatial domain, 

there are two other algorithms, namely, diagonal PCA and Diagonal PCA + r2DPCA [18] 

that have been reported in the literature. However, the recognition accuracies of these two 

algorithms, using ORL database, have been reported to be generally lower than that of the 

r2DPCA algorithm, in addition to the time complexities being higher than that of the 
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r2DPCA algorithm [19]. In view of these results, these two algorithms will not be further 

pursued in this thesis. 

 

1.4 Scope and Objective of the Thesis 

From the brief review in Section 1.3 of the classical PCA algorithm and its 

derivatives, it is seen that the (2D)
2
PCA algorithm developed by Zhang and Zhou [13] by 

modifying r2DPCA reduces the complexity, with the recognition accuracy remaining 

about the same. On the other hand, the FM-PCA algorithm developed by Bhagavatula 

and Savvides [16] provides a significantly higher accuracy than that of PCA, but with a 

computational complexity that is higher than that of PCA due to the cost of computing 

the Fourier magnitudes of the pixels of the image. 

This thesis is aimed at developing two-dimensional PCA-based algorithms that 

incorporate the advantages of the FM-PCA and two-dimensional PCA algorithms. 

Specifically, a study is undertaken to first develop the Fourier magnitude (FM) version of 

the r2DPCA and (2D)
2
PCA algorithms. Then, by taking advantage of the energy 

compaction property of the Fourier transform, the FM versions of both the r2DPCA and 

(2D)
2
PCA algorithms are further modified to significantly reduce their computational 

complexities. 
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1.5 Organization of the Thesis 

This thesis is organized as follows. 

In Chapter 2, a brief review of the PCA algorithm and its subsequent 

modifications in the spatial domain, r2DPCA [12] and (2D)
2
PCA [13], is presented. This 

chapter brings out the shortcomings of these algorithms and provides the background 

material necessary for the development of the work undertaken in the thesis.  

In Chapter 3, FM-PCA [16] is first examined along with extensive simulations of 

PCA and FM-PCA using the ORL face database in which the intra-class pose variations 

are substantial. It is verified that the considerable improvement in the recognition 

accuracy is obtained at the expense of the overhead for computing the Fourier 

magnitudes. It is shown that the FM-PCA algorithm inherits the drawbacks of the PCA 

algorithm, namely, the high computational complexity in the feature extraction due to the 

use of very large size covariance matrix and the loss of image details resulting from the 

conversion of two-dimensional data into one-dimensional vectors. In order to explore the 

possibility of improving the accuracy as well as reducing the time complexity as 

compared to that of FM-PCA, two new algorithms are proposed by applying the Fourier 

magnitude concept to r2DPCA and its modified version (2D)
2
PCA, which have been 

reported in the literature to have higher recognition accuracy and lower time complexity 

over PCA algorithm. Finally, extensive simulations for the r2DPCA and (2D)
2
PCA 

algorithms as well as for the proposed FM-r2DPCA and FM-(2D)
2
PCA  algorithms are 

carried out using the ORL face database to compare the proposed algorithms with their 

spatial domain versions and with the FM-PCA algorithm.  
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 Unlike Chapter 3, in which the feature extraction and classification processes are 

carried out based on the entire set of Fourier magnitude coefficients, in Chapter 4, using 

the energy compaction property of Fourier magnitudes, only a small subset of the entire 

Fourier magnitude coefficients, namely, the low-pass Fourier magnitude (LPFM) 

coefficients, are used for this purpose leading to the development of new algorithms with 

reduced computational complexity. Specifically, LPFM versions of the r2DPCA, and 

(2D)
2
PCA algorithms are developed. Simulations are carried out to demonstrate the 

effectiveness of the LPFM approach over their FM counterparts in significantly 

decreasing the computational complexity with almost the same recognition accuracy. 

In Chapter 5, the thesis is concluded by summarizing and highlighting the main 

contributions of the study undertaken therein. Some suggestions for further work to solve 

the real-life problems in face recognition are also provided. 
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CHAPTER 2 

Review of 1-D and 2-D PCA 

Algorithms in the Spatial Domain 

 

2.1 Introduction 

This chapter gives a brief review of the classical PCA algorithm and its 

derivatives in the spatial domain in order to provide the basic ideas used in their 

development and to provide the background material essential for the development and 

solutions of the problem undertaken in this thesis. The derivatives of the PCA algorithm 

considered are the r2DPCA and (2D)
2
PCA algorithms. A brief discussion of the 

Euclidean, Frobenius and Yang distance metrics that are generally used in classifiers of 

PCA-based face recognition algorithms is also included. 

 

2.2 Principal Component Analysis  

The use of PCA as a feature extraction technique is popular in pattern recognition 

because of its strong energy compaction property and its robustness against the data 

acquired under reasonably different conditions. In 1987, Sirovich and Kirby [14] 

proposed the idea of utilizing the principal components of the distribution of faces to 

characterize the variations between them. In 1991, Turk and Pentland [10] utilized the 

PCA technique for face recognition because of its efficiency and capability to distinguish 
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the patterns of the subjects using a small number of coefficients. A description of the 

PCA algorithm follows.  

A face image is basically a two-dimensional array   of size     given by 

    
               

   
                   

      (2.1)  

In the PCA method, each face image is first concatenated by arranging the elements of   

taken row-by-row (or alternatively column-by-column) into a column vector given by  

   

 
 
 
 
 
 
 
 
 
 

      
 

        
      

 
        

 
        

 
           

 
 
 
 
 
 
 
 
 

    

 (2.2) 

The average of K  concatenated training samples computed as 

   
 

 
      

    (2.3) 

is subtracted from each concatenated training sample giving  

             (2.4) 

Then, the mean-subtracted training samples are used to construct a matrix given by 

                    
               

   
                     

     (2.5) 

where   is the number of samples in the training set. Using  , the covariance matrix is 

obtained as  
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        (2.6) 

The covariance matrix, which actually gives the relationship between the samples, 

is a square matrix of size       . In order to obtain the principal components of the 

samples in the training set, the eigenvectors of the covariance matrix are computed. 

Because of the large size of   , a direct computation of its eigenvalues and eigenvectors is 

practically not feasible [10]. For example, the ORL face database has 40 subjects each 

having 10 samples and the size of each sample is            [17]. If the training 

set consists of       images, the size of   becomes                    

with           eigenvalues and eigenvectors. Thus, if these eigenvalues and 

eigenvectors given by (2.6) are computed directly, it would result in a huge 

computational burden.  

Fortunately, there is a remedy to this problem. Each eigenvector corresponds to a 

different amount of variation among the face images, in that an eigenvector of   

corresponding to a large eigenvalue is associated with large variations in the face images. 

Thus, since the training set has only   samples (    ), no more than     

eigenvectors are meaningful [10]. These meaningful eigenvectors (also called standard 

images, eigenpictures, eigenfaces, or eigenimages) are obtained by eigen-decomposing 

the matrix 

       (2.7) 

as 

             (2.8) 

where    is an eigenvalue of    and    is the corresponding eigenvector. Pre-multiplying 

both sides of (2.8) by   yields  
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                       (2.9) 

                  (2.10)
 

Thus, it is clear from above equation that the eigenvalue     of    is also an eigenvalue of 

  and the corresponding eigenvector of    is given as          . The matrix    being a 

square matrix of size     has   eigenvalues and   eigenvectors. Thus, through this 

process all the meaningful eigenvectors of    are obtained with much less computational 

burden. Next, these eigenvectors, are normalized as    
   

     
  and arranged in a sequence 

corresponding to the decreasing eigenvalues, and denoted by             , 

respectively.  

Since the objective of the PCA technique is to significantly reduce the size of the 

data, each image is represented by a feature vector Ω of size that is much less than   , 

the dimension of a training or test sample. A training image feature vector Ω
(i)

  is 

obtained by projecting the mean-subtracted training sample Φ
(i)

 onto the normalized and 

ordered eigenvectors   ,          , where   is the number of chosen normalized 

eigenvectors that sufficiently expose the variations in the face images. The feature vector 

Ω
(i)

 corresponding to the     training image sample is computed as 

             (2.11) 

where 

               (2.12) 

is called the transformation matrix. The size of each feature vector is     and it can be 

expressed in terms of its coefficients as  
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  (2.13) 

where the     element of the of the     training image’s feature vector is given by 

  
   

   
     .  

 Similarly, for a test image         , the corresponding feature vector is obtained as 

                       (2.14) 

where         is the concatenated vector corresponding to the test image        ,   is the 

transformation matrix given by (2.12) and   is the mean vector given by (2.3). The 

feature vector of the test image is given by 

         

 
 
 
 
   

      

  
      

 

  
      

 
 
 
 
 

   

  (2.15) 

 In the classification module of the PCA algorithm [10], Euclidean distance is 

commonly used to measure the distance between the feature vector of a test image and 

that of a training image. The Euclidean distance between the feature vector of a test and 

that of each training image is computed as 

 

    
                  

      
   

   
  

   

 

  (2.16) 

where   
      

 and   
   

 are, respectively, the    elements of the test image feature vector 

Ω
(test)

  and the   
   training image feature vector Ω

(i)
. Then, the subject of the training 

image corresponding to the feature vector Ω
(i)

 that has the shortest distance from the test 
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image feature vector Ω
(test)

 is assigned as the subject of the test image. The block diagram 

of Fig.2.1 summarizes the PCA algorithm.  

 

Training images 

  

 

 

   … 

 

 

Test image 

 

 

 

 

 

 

 

Fig.2.1: Summary of the PCA algorithm. 
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Concatenate the 

training images: 

Obtain the eigenvectors of    as          , 

where 
jd  is an eigenvector of    .These 

eigenvectors are normalized as    
   

     
 and 

arranged corresponding to the decreasing order 

of their eigenvalues. A subset of these   

normalized and ordered eigenvectors are used to 

construct the transformation matrix.  

            . 
 

           

 
 
 
 
   

   

  
   

 

  
   

 
 
 
 
 

   

 

The feature vector      corresponding to 

the thi  training image is given by  

 

where its thj  row is   
   

   
     . 

                

Concatenate the 

test image: 
                     

 
 
 
 
   

      

  
      

 

  
      

 
 
 
 
 

   

 

Obtain the feature vector of the test image as 

 
 

 Obtain the Euclidean distance between a test image and each training image as 

    
                  

      
   

   
  

   

 
  

where   is the number of chosen normalized eigenvectors that sufficiently expose the variations in the 

face images. Then, classify the test image to the class of the training image having the feature vector 

closest to that of the test image.
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2.3 Row-Directional Two-Dimensional PCA  

In order to decrease the computational complexity of the PCA technique, methods 

have been developed in which the DCT or DWT coefficients, instead of the raw pixel 

coefficients of the image, are used for the feature extraction [20]-[24]. In these methods, 

the recognition accuracy of the PCA method is also somewhat improved by decreasing 

the effects of noise and illumination variations because of the use of transformed 

coefficients. However, the high computational complexity due to the large size 

covariance matrix and low recognition accuracy resulting from the concatenation of the 

images still remain a matter of concern of the PCA techniques using transformed data.  

In 2004, Yang et al. proposed a two-dimensional PCA algorithm [12], which 

directly employs the two-dimensional data for feature extraction without concatenation. 

Consequently, the face images are less distorted, and the image details are better 

preserved in comparison to the PCA algorithm [12], [13]. They also modified the 

covariance matrix with an objective of decreasing the time complexity and increasing the 

recognition accuracy. The normalized eigenvectors of this covariance matrix are used to 

construct a linear transformation matrix. A face image matrix is then projected onto this 

transformation matrix row-by-row in order to obtain the feature matrix, which represents 

the face image better than the feature vector obtained in the PCA algorithm. A 

description of this 2DPCA algorithm, which henceforth will be referred to as the row-

directional 2DPCA (r2DPCA) algorithm, follows.  

The modified covariance matrix is computed as 

         
 

 
                     

     (2.17) 
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where      is the     training image of size    ,   is the number of training images and 

   is the average of the training samples computed as 

    
 

 
      

        (2.18) 

The size of the resulting covariance matrix is     . Next,    eigenvalues and the 

corresponding eigenvectors of         are computed. The eigenvectors are normalized 

and arranged in a sequence     ,           , corresponding to the decreasing 

eigenvalues. Similar to the PCA algorithm, the data is compressed by using a 

transformation matrix constructed using a subset of the normalized eigenvectors of  

        as  

   
            (2.19) 

where      is the number of chosen normalized eigenvectors, which sufficiently 

expose the variations among the face images. In order to obtain the feature matrix of the 

    training image     , it is projected onto the transformation matrix as 

 
        

   
  

   
   

   
      X

 
  (2.20) 

In the above equation, the elements of the     column   
   

 of the     feature matrix is 

obtained by projecting the     training image row-by-row onto the      projective vector 

of the transformation matrix, i.e., the      column vector of the     feature matrix is 

obtained as   
   

        , where           and           . Similarly, the feature 

matrix of a test image         is computed by projecting it onto the transformation matrix 

as       

 
                

 
  (2.21) 

where   is the transformation matrix as obtained in (2.19). Each column vector of       or 

          obtained in (2.20) or (2.21) is called the principal component vector of the 
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sample image       or          [12].  It is noted that each principal component of a two-

dimensional PCA is a vector, while each principal component of PCA is a scalar. 

In the classification module of the r2DPCA algorithm [12], and other two-

dimensional face recognition schemes [13], [24], matrix similarity measures, instead of 

the Euclidean distance, are used. After obtaining the distance between the feature matrix 

of a test image and that of each training image, the subject of the training image whose 

feature matrix has the shortest distance from the test image feature matrix         , is 

assigned the subject of the test image. The Frobenius and Yang distances are commonly 

used matrix similarity measures in the literature for two-dimensional face recognition 

schemes [12], [13], [18], [19], [26]. The classifiers using these similarity measures are 

called as nearest neighbour classifiers. Frobenius distance metric is an adapted form of 

the Euclidean distance metric for the classification of the samples, which are represented 

as two-dimensional feature sets; it is given by  

     
                                        

 
   

  
    (2.22)

 

where              . Yang distance [12], which provides a higher recognition 

accuracy than the Frobenius distance does, is obtained by summing the Euclidean 

distance between the respective columns of the test and training image feature matrices 

and is given by 

     
                                        

 
   

  
     

 (2.23)
 

The r2DPCA technique increases the recognition accuracy and decreases the 

computational complexity. However, it requires many more coefficients to represent the 

face images than the PCA technique does. In the r2DPCA, the size of the feature matrix 
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for an       face image is     , and thus has many more coefficients than the 

feature vector of size     obtained in the PCA technique.  

Also, in the r2DPCA technique, since the rows of the     face image are projected 

onto the vectors of the transformation matrix as            , only the variations between 

the rows of a face image are projected while ignoring the variations between the columns. 

The block diagram of Fig.2.2 summarizes the r2DPCA algorithm. 

 

Training images 

  

 

 

   … 

 

Test image 

 

 

 

 

Fig.2.2: Summary of the r2DPCA algorithm. 

 

        
 

 
                    

 

   

 

Compute the covariance matrix; Compute the average 

of the training images: 

   
 

 
      

        

Compute the eigenvectors of        . Then, normalize and arrange the eigenvectors in a 

sequence   , (         ), corresponding to the decreasing values of their eigenvalues. 

So, the data is compressed by using a transformation matrix constructed using sufficient 

number of meaningful normalized eigenvectors of          as             . 

 

        
   

  
   

   
           

Obtain the feature matrix of the      training image      

by projecting it onto the transformation matrix as 

Obtain the feature matrix of a test image         by projecting it 

onto the transformation matrix as                  . 

 

 

 

Obtain the Frobenius distance or Yang distance between a test image feature matrix and each training 

image feature matrix using, respectively, (2.22) or (2.23). Next, classify the test image to the class of the 

training image having the feature matrix closest to that of the test image.  
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2.4 Two-Directional Approach for 2DPCA  

The row-directional 2DPCA technique [12] discussed in the previous section 

improves  the recognition accuracy and reduces the computational complexity in 

comparison to the PCA technique, but it projects the variations only between the pixels of 

the rows of a face image and ignores the variations of those between the columns. Zhang 

and Zhou [13] in 2005 proposed a two-directional approach for 2DPCA in which the 

variations of the image details between the rows as well as the columns are taken into 

consideration. More specifically, they developed a technique that combines r2DPCA with 

a PCA technique that emphasizes the variations of the pixels between the columns. The 

latter is essentially a column alternative of the former. In the following, a brief 

description of the column alternative of the r2DPCA algorithm followed by a description 

of the two-directional 2DPCA is provided. 

 

2.4.1 Column-Directional 2DPCA  

In the column-directional 2DPCA technique (c2DPCA), column-directional 

variations of a face image are emphasized [13].  

The covariance matrix is computed as  

         
 

 
                     

     (2.24) 

where   is the number of the training images and    
 

 
      

    is the average of the 

training images. The size of this covariance matrix is     . Next,    eigenvalues and 
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the corresponding eigenvectors of         are computed. The eigenvectors are arranged 

and normalized as described in Section 2.3. The transformation matrix is constructed 

using a sufficient number of normalized eigenvectors of          as  

 
            (2.25) 

where    .  

The feature matrix for each training image is obtained as 
 
  

 
        

   
  

   
   

   
        

 
 (2.26) 

In (2.26), the elements of the      column   
   

 of the      feature matrix is obtained by 

projecting the      training image column-by-column onto the       projective vector of 

the transformation matrix   , that is the     column vector of the     feature matrix is 

obtained as    
   

     
 
  ,   

where           and           . The feature matrix 

of a test image         is computed by projecting it onto the transformation matrix 

column-by-column as        

 
                  (2.27) 

 Similar to the r2DPCA technique, a nearest neighbour classifier can be used to 

classify the test images as described in Section 2.3. As in the case of r2DPCA, the 

c2DPCA technique also has a higher accuracy and lower complexity in comparison to the 

PCA technique.  
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2.4.2 Two-Directional Two-Dimensional PCA  

As pointed out earlier, the two 2DPCA algorithms discussed so far project the 

variations of the information only between the rows or only between the columns of a 

face image. The size of the resulting feature matrix is very large. In order to obtain a 

more efficient feature representation, Zhang and Zhou [13] have proposed to take the 

variations of the image details between the rows as well as that between the columns into 

consideration by combining r2DPCA with c2DPCA. A brief description of the two-

directional 2DPCA ((2D)
2
PCA) is provided below. 

In the (2D)
2
PCA technique, the transformation matrices   and   given by (2.19) 

and (2.25) are first obtained, as described in Sections 2.3 and 2.4.1. Next, the feature 

matrix for each training image is computed as  

              
(2.28)

 

The size of the feature matrix     , where     and     , is chosen to sufficiently 

expose the variations among the face images. Similarly, the feature matrix of a test image 

is computed as  

                    
(2.29)

 

Similar to the r2DPCA or c2DPCA technique, a nearest neighbour classifier can be used 

to classify the test images, as described earlier. In the (2D)
2
PCA technique, the number of 

coefficients in the feature matrix for image representation is significantly reduced in 

comparison to the r2DPCA or c2DPCA technique. Although in the (2D)
2
PCA technique 

a more efficient face representation is obtained, still it is sensitive to intra-class pose 

variations. A summary of the (2D)
2
PCA algorithm is given in Fig.2.3. 
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Training images 

  

 

 

   … 

 

 

Test image 

 

 

 

 

Fig.2.3: Summary of the (2D)
2
PCA algorithm. 

 

 

2.5 Summary 

In this chapter, a brief review of the classical PCA algorithm and its two-

dimensional derivatives in the spatial domain, r2DPCA, c2DPCA and (2D)
2
PCA, has 

been presented in order to provide the background material essential for the work 

undertaken in this thesis. Advantages and shortcomings of these techniques have been 
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values of their eigenvalues. Then, obtain the transformation matrices   and   using 

sufficient number of normalized eigenvectors of         and         as  

            and              . 

             

Obtain the feature matrix of the      training image      as 

                   

Compute the feature matrix the test image         by projecting 

it onto the transformation matrix as 

 
Obtain the Frobenius distance or Yang distance between a test image feature matrix and each training 

image feature matrix using, respectively, (2.21) or (2.22). Next, classify the test image to the class of the 

training image having the feature matrix closest to that of the test image.  
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discussed in terms of the recognition accuracy and computational complexity. The PCA 

algorithm, which is the foundation for the development of many other algorithms, has 

been first introduced. A two dimensional version of the PCA technique, namely, r2DPCA 

that exposes the image details among the rows and has a lower computational complexity 

compared to that of PCA, has been presented. Next, the two-directional 2DPCA 

algorithm ((2D)
2
PCA), which combines r2DPCA and its column-directional counterpart, 

c2DPCA, is briefly described. This algorithm, while exposing the image details between 

the rows as well as between the columns has a lower computational complexity in 

comparison to its two constituent algorithms.  
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CHAPTER 3 

Two-Dimensional PCA Algorithms in 

the Fourier Domain 

 

3.1 Introduction 

As mentioned in the previous chapter, the classical PCA algorithm [10] is affected 

by intra-class pose variations. In an effort to overcome this problem, Bhagavatula and 

Savvides have proposed in [16] to apply the Fourier magnitudes of the pixels of the 

images for feature extraction in the PCA algorithm instead of the pixel values themselves. 

This resulted in considerable improvement in the recognition accuracy, but at the expense 

of the overhead for computing the Fourier magnitudes. As stated in the previous chapter, 

the two-dimensional extensions of the PCA algorithm, r2DPCA and (2D)
2
PCA, provide 

higher accuracies with lower complexities as compared to PCA. Hence, we propose to 

employ the Fourier magnitudes for feature extraction in these two 2DPCA algorithms in 

order to explore the possibility of improving the accuracy as well as reducing the time 

complexity over that of FM-PCA. In this chapter, a brief description of the FM-PCA 

algorithm is given, followed by extensive simulation results, using the ORL database, to 

study the improvement in the recognition accuracy and the computational cost of the FM-

PCA over the classical PCA. We then propose FM-versions of the two-dimensional 



25 
 

r2DPCA and (2D)
2
PCA algorithms. Finally, extensive simulations are carried out to 

study the effectiveness of applying the FM approach to the two-dimensional PCA 

algorithms. 

 

3.2 Fourier-Magnitude PCA  

3.2.1 A Brief Review 

Although the PCA technique, discussed in Section 2.2, has been commonly used 

for feature extraction and data representation in the literature, it is sensitive to intra-class 

pose variations. In order to decrease the adverse effect of intra-class pose-variations in 

the PCA algorithm, Bhagavatula and Savvides [16] have employed the Fourier 

magnitudes (FM) of face images for the feature extraction. Using the ORL face database, 

in which there are substantial intra-class pose variations, they have shown that employing 

the Fourier magnitudes of the images for feature extraction improves the recognition 

accuracy of the PCA algorithm [16]. A brief explanation of the Fourier magnitude PCA 

(FM-PCA) follows. 

In this method, the Fourier transform of a digital image of size     is first 

computed as [27], [28] 

                       
  

 
 

  

 
    

                  
 
              

    (3.1) 

Each Fourier coefficient given by (3.1) is a complex number expressed as                   

                                 , where             and             are, 



26 
 

respectively, the real and imaginary parts of the coefficient        . The magnitude of the 

coefficient is given by 

                                               
(3.2) 

The magnitudes of the Fourier coefficients for the     training image can be represented 

as an     matrix given by 

    
   

     
         

    
(3.3) 

Similarly, the magnitudes of the Fourier coefficients of a test image is given by  

    
      

     
            

   
 
 

(3.4) 

 

Any matrix given by (3.3) or (3.4) can be expressed as a column vector by rearranging 

the elements of     taken row-by-row (or alternatively, column-by-column):  

     

 
 
 
 
 
 
 
 
 
 

        
 

          
        

 
          

 
          

 
             

 
 
 
 
 
 
 
 
 

    

 (3.5) 

The average of K  such concatenated Fourier magnitude versions of the training samples 

computed as 

     
 

 
    

    
    (3.6) 
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is subtracted from each of the concatenated FM versions of the training samples giving  

    
   

    
   

     (3.7) 

Then, the above mean-subtracted training samples are used to construct a matrix given by 

         
   

   
       

   
   

   
   

       
   

   

   

   
   

          
   

      

   (3.8) 

Using    , we define the matrix     as  

        
      (3. 9) 

Next, its eigenvalues and the corresponding eigenvectors are computed by 

    
             (3.10) 

where    is an eigenvalue of     and    is the corresponding eigenvector. Pre-

multiplying both sides of (3.10) by     yields  

 
      

      
 
                     (3.11) 

       
                   (3.12)

 

Since the covariance matrix           
 , the eigenvalue     of      is also an 

eigenvalue of     and the corresponding eigenvector of      is given as            . 

Next, these eigenvectors, are normalized as    
   

     
  and arranged in a sequence 

corresponding to the decreasing eigenvalues, and denoted by             , 

respectively.  
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Each sample is represented by a feature vector     . A training feature vector 

   
   

  is obtained by projecting    
   

 onto the normalized and ordered eigenvectors    , 

         , where   is the number of chosen normalized eigenvectors that sufficiently 

expose the variations in the face images. The feature vector Ω
(i)

 corresponding to the     

training image sample is computed as 

    
   

         
   

  (3.13) 

where 

                 (3.14) 

is called the transformation matrix. Similarly, for a test image     
      

, the corresponding 

feature vector is obtained as 

    
      

          
      

       (3.15) 

where    
      

is the concatenated vector corresponding to the test image’s Fourier 

magnitude version    
      

,     is the transformation matrix given by (3.14) and     is 

the mean vector given by (3.6).  

 As in the case of the PCA algorithm, the Euclidean distance is used to measure 

the distance between the feature vector of a test image and that of a training image. Then, 

the subject of the training image corresponding to the feature vector Ω
(i) that has the 

shortest distance from the test image feature vector Ω
(test) is assigned as the subject of the 

test image. A block diagram of Fig.3.1 summarizes the FM-PCA algorithm. 



29 
 

 

Training images 

  

 

 

   … 

 

Test image 

 

 

 

 

 

 

Fig.3.1: Summary of the FM-PCA algorithm. 
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3.2.2 Simulation Results 

In this subsection, detailed simulation results for the conventional PCA algorithm 

as well as for the FM-PCA algorithm are provided in terms of the recognition accuracy 

and the computational complexity. Simulations are performed on a 2.8 GHz Intel Core i7 

CPU with 4GB RAM and Windows 7 operating system. Simulations are carried out using 

MATLAB [29]. The algorithms are tested on the Olivetti Research Laboratory (ORL) 

face database [17], a benchmark database in the literature [12], [13], [18], [19], [22], [23], 

[26]. The database consists of face images taken against a dark homogeneous background 

and represented with an 8 bit-greyscale. There are 40 subjects, each having 10 different 

images of size 92×112. The images of each subject vary from one another in terms of 

pose, expression and zooming. In addition, the intra-class pose variations are substantial 

in this database. The complete set of images in the database are shown in Fig. 3.2. 

For the sake of clarity in explaining how the simulations are conducted, we assign 

indices 1-to-10, starting with the left most image to the right most image, for each 

subject. A set of 5 indices are chosen randomly and the five images in each subject 

corresponding to these indices are chosen as the training images (thus, constituting a total 

of 200 training images) to train a given algorithm. For each of the training image, the 

corresponding feature matrix is obtained. For a given test image, the Euclidean distance 

between the feature vector of the test image and that of  each  of  the  200 vectors of the 

training images is obtained, and the one with the closest distance chosen to determine the  
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Fig.3.2: Face images in the ORL face database. 
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class of the test image under consideration. This is repeated for each of the 200 test 

images and the recognition accuracy found. 

The above procedure is repeated 49 times, each time choosing randomly a set of 5 

indices that is distinct from the sets of the previous runs of the algorithm. Finally, the 

recognition accuracy of the algorithm is obtained as the average of the recognition 

accuracies derived from the 50 runs. 

Table 3.1 gives the performance of the PCA and FM-PCA algorithms in terms of 

the recognition accuracy for different sizes of the feature vector. The recognition 

accuracy as a function of the feature vector size is also illustrated in Fig. 3.3. It is clearly 

seen from the table and this figure that the use of the Fourier magnitudes in feature 

extraction for PCA improves its recognition accuracy substantially.  

We now consider the time complexities for the PCA and FM-PCA algorithms. 

For this purpose, each algorithm is run 10 times and the average execution time is 

computed; ten runs are considered sufficient to compute the time complexity, since the 

algorithms are not data dependent for a fixed image size. The average total time taken for 

each of the algorithms is given in Table 3.2. As expected, it is seen from this table that 

FM-PCA has a higher time complexity than that of FM-PCA due to the overhead 

involved in the computation of the Fourier magnitudes.  

In conclusion, it is to be noted that there is about 3% improvement in the 

recognition accuracy, but at the cost of a 23% increase in the computational time. 
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Table 3.1 : Recognition accuracy in percentage of the PCA and FM-PCA algorithms. 

Number of 

principal 

components 

Recognition 

accuracy (%) 

PCA FM-PCA 

10 89.9 92.6 

11 90.3 93.1 

12 90.7 93.5 

13 90.8 93.7 

14 90.9 93.9 

15 91.1 94.1 

16 91.1 94.2 

17 91.2 94.3 

18 91.2 94.3 

19 91.3 94.4 

20 91.4 94.4 

21 91.5 94.5 

22 91.5 94.6 

23 91.6 94.7 

24 91.7 94.7 

25 91.7 94.7 

26 91.8 94.8 

27 91.8 94.8 

28 91.9 94.8 

29 91.9 94.8 

30 91.9 94.8 

31 91.9 94.8 

32 91.9 94.8 

33 91.9 94.8 

34 91.9 94.9 

35 91.9 94.9 

36 91.9 94.8 

37 91.9 94.9 

38 92 94.8 

39 92 94.9 

40 92 94.8 
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Fig.3.3: Recognition accuracies for the PCA and FM-PCA algorithms using the 

Euclidean distance for classification. 

 

Table 3.2: Time complexity in seconds of the PCA and FM-PCA algorithms. 

 

Algorithm and number of 

principal components 

 

Total time complexity (s) 

 

PCA  

35 3.016 

FM-PCA 

35 3.719 

PCA 

38 3.027 

FM-PCA 

38 3.730 
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3.3 Proposed Two-Dimensional PCA Algorithms in the 

Fourier Domain 

 As seen from the previous section, the use of the Fourier magnitudes in the PCA 

algorithm improves the recognition accuracy, but at the expense of increased time 

complexity. On the other hand, we also know that the two-dimensional extensions of the 

PCA algorithm have lower time complexities, while providing at the same time higher 

accuracies compared to the PCA. Hence, in this section, we develop Fourier magnitude 

versions of the two-dimensional PCA algorithms, r2DPCA and (2D)
2
PCA, and refer to 

them as FM-r2DPCA and FM-(2D)
2
PCA, respectively.   

 

3.3.1 Fourier-Magnitude r2DPCA  

The Fourier magnitudes for the pixels of an image are computed first using (3.2). 

The magnitudes of the Fourier coefficients for the     training image can be represented 

as an     matrix given by     
   

     
         

   
. Similarly, the FM version of a 

test image is represented as      
      

     
            

   
. The Fourier magnitude 

matrices of the training images are then used to obtain the covariance matrix of FM-

r2DPCA as   

            
 

 
     

   
           

   
       

    
(3.16) 
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where   is the number of training samples and        is the matrix in which each entry is 

the average of the corresponding entries in the matrices    
   

,          , and is given 

by 

      
 

 
    

    
    

(3.17) 

Next, the eigenvalues and eigenvectors of            are computed. The eigenvectors 

are normalized and rearranged in descending order of the corresponding eigenvalues. A 

transformation matrix          
    

     
  is obtained using sufficient number of 

normalized eigenvectors of           . The, feature matrices for the 
thi

 training sample 

and the test sample are, respectively, given by 

    
   

    
   

    
(2. 18) 

and  

    
      

    
      

    
(2. 19) 

For the classification module of the FM-r2DPCA algorithm, the Frobenius or 

Yang distance metric, given by (2.22) and (2.23), is used. The distance between the 

feature matrix of a test sample and that of each training sample is obtained. Then, the 

subject of the training sample, whose feature matrix has the shortest distance from the 

test image feature matrix     
      

 , is assigned as the subject of the test image. The block 

diagram of Fig.3.4 summarizes the FM-r2DPCA algorithm. 
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Training images 

  

 

 

   … 

 

 

 

Test image 

 

 

 

 

Fig.3.4: Summary of the FM-r2DPCA algorithm. 

 

3.3.2 Fourier Magnitude (2D)
2
PCA 

As discussed in Section 2.4.2, the (2D)
2
PCA algorithm has  a  lower 

computational complexity than that of even the r2DPCA algorithm. Hence, we now 

develop an FM-version of the (2D)
2
PCA algorithm.  Henceforth, this algorithm is 

referred to as the FM-(2D)
2
PCA algorithm. 

           
 

 
     

   
               

   
          

 

   

 

Compute the covariance matrix; 

 

        
 

 
    

   

 

   

 

Compute the average of the 

training samples: 

     

   
   

      
       

        
        

   
    

Obtain the feature matrix of the      training image    
   

 

by projecting it onto the transformation matrix as 

 

Obtain the feature matrix of a test image    
      

 by projecting 

it onto the transformation matrix as    
      

    
      

   . 

 

 

 

Obtain the Frobenius distance or Yang distance between a test image feature matrix and each training 

image feature matrix using, respectively, (2.22) or (2.23). Next, classify the test image to the class of the 

training image having the feature matrix closest to that of the test image.  

   
   

 

Obtain 

Fourier 

magnitude

s of 

training 

images. 

   
      

 

Obtain 

Fourier 

magnitudes  

Compute the eigenvectors of           . Then,  normalize and arrange the 

eigenvectors in a sequence     
,          , corresponding to the 

decreasing values of their eigenvalues. So, the data is compressed by using a 

transformation matrix constructed using sufficient number of meaningful 

normalized eigenvectors of             as          
    

     
 .
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The row-directional covariance matrix            is computed using (3.16) and 

its column-directional counterpart is computed as 

            
 

 
     

   
          

   
        

    
(3.20) 

The eigenvalues and eigenvectors of            and            are then computed. 

Next, the eigenvectors of each of the two covariance matrices are normalized and 

arranged in descending order of the corresponding eigenvalues. Then, the row-directional 

and column-directional transformation matrices          
    

     
  and 

         
    

     
  are obtained using sufficient numbers of the eigenvectors of  

            and             , respectively.  

The feature matrices for the 
thi

 training sample and the test sample are, 

respectively, given by 

    
   

    
    

   
    

(3.21) 

and  

    
      

    
    

      
    

(3.22) 

For the purpose of classification, we again employ the Frobenius as well as the 

Yang distance metrics given by (2.22) and (2.23), respectively. The distance between the 

feature matrix of a test sample and that of each of the training samples is obtained. Then, 

the subject of the training sample, whose feature matrix has the shortest distance from the 

feature matrix of the test sample, is assigned as the subject of the test image. A summary 

of the FM-(2D)
2
PCA algorithm is given in Fig. 3.5. 
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Training images 

  

 

 

   … 

 

 

Test image 

 

 

 

Fig.3.5: Summary of the FM-(2D)
2
PCA algorithm. 

 

Fig.3.5: Summary of the FM-(2D)
2
PCA algorithm. 

 

 

3.4 Experimental Results  

In this section, detailed simulation results for the r2DPCA, FM-r2DPCA, 

(2D)
2
PCA and FM-(2D)

2
PCA algorithms are provided and the algorithms compared in 
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terms of the recognition accuracy and the computational complexity. In order to obtain 

the simulation results, the hardware and software platforms described in Section 3.2.2 are 

utilized. As mentioned earlier, we assign indices 1-to-10 for each subject starting with the 

left most image to the right most image. A set of 5 indices are chosen randomly and the 

five images in each subject corresponding to these indices are chosen as the training 

images (thus, constituting a total of 200 training images) to train a given algorithm. For 

each of the training image, the corresponding feature matrix is obtained. For a given test 

image, the Frobenius or the Yang distance between the feature matrix of the test image 

and that of each of the 200 feature matrices of the training images is obtained and the one 

with the closest distance chosen to determine the class of the test image under 

consideration. This is repeated for each of the 200 test images and the recognition 

accuracy found. The above procedure is repeated 49 times, each time choosing randomly 

a set of 5 indices that is distinct from the sets of the previous runs of the algorithm. 

Finally, the recognition accuracy of the algorithm is obtained as the average of the 

recognition accuracies derived from the 50 runs. 

Tables 3.3 and 3.4 give, respectively, the performance of the r2DPCA, FM- 

r2DPCA, (2D)
2
PCA and FM-(2D)

2
PCA  algorithms in terms of the recognition accuracy 

using the Frobenius and Yang distance metrics for classification. The first column in 

these tables gives the name of the algorithm along with the size of the feature matrix.  
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Table 3.3: Recognition accuracy in percentage of the various algorithms using the 

Frobenius distance as the metric for classification. 

Algorithm 

 

Recognition accuracy 

Number of principal component vectors ( ) 

3 4 5 6 7 8 9 10 

r2DPCA 

(     ) 95.1 95.3 95.0 95.0 95.0 95.0 94.8 95.0 

FM-r2DPCA 

(     ) 97.2 97.5 98.0 97.8 98.0 97.8 98.0 97.9 

(2D)
2
PCA 

(    ) 94.9 95.0 95.3 95.0 95.1 95.0 95.0 95.2 

FM-(2D)
2
PCA 

(    ) 97.9 98.1 98.2 98.1 98.2 98.1 98.1 98.2 

(2D)
2
PCA 

(    ) 95.2 95.3 95.3 95.2 95.2 95.2 95.1 95.2 

FM-(2D)
2
PCA 

(    ) 98.3 98.2 98.3 98.3 98.2 98.2 98.2 98.2 

(2D)
2
PCA 

(    ) 95.2 95.0 95.1 95.0 95.1 95.0 95.0 95.0 

FM-(2D)
2
PCA 

(    ) 98.1 98.2 98.2 98.0 98.1 98.0 98.1 98.0 
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Table 3.4: Recognition accuracy in percentage of the various algorithms using the Yang 

distance as the metric for classification. 

Algorithm 

 

Recognition accuracy 

Number of principal component vectors ( ) 

3 4 5 6 7 8 9 10 

r2DPCA 

(     ) 96.0 96.0 95.8 95.7 95.4 95.2 95.6 95.5 

FM-r2DPCA 

(     ) 97.3 98.0 98.5 98.4 98.4 98.4 98.3 98.5 

(2D)
2
PCA 

(    ) 95.5 95.7 95.8 95.7 95.6 95.3 95.7 95.5 

FM-(2D)
2
PCA 

(    ) 97.6 98.8 98.9 98.8 98.7 98.7 98.8 98.7 

(2D)
2
PCA 

(    ) 96.0 96.5 96.4 95.7 95.5 95.3 95.6 95.6 

FM-(2D)
2
PCA 

(    ) 98.1 98.9 98.8 98.9 98.9 98.8 98.8 98.8 

(2D)
2
PCA 

(    ) 96.0 96.0 96.0 95.7 95.5 95.3 95.7 95.5 

FM-(2D)
2
PCA 

(    ) 97.3 98. 8 98.8 98.8 98.8 98.6 98.7 98.7 
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It is seen from these tables that, as expected, the FM-r2DPCA and FM-(2D)
2
PCA 

algorithms provide higher recognition accuracies compared to that provided by r2DPCA 

and (2D)
2
PCA, respectively, regardless of whether the Frobenius or the Yang distance is 

used as the metric. It is to be noted that even though the recognition accuracies of 

r2DPCA and (2D)
2
PCA are about the same, the application of FM on (2D)

2
PCA results 

in better accuracies than when applied on r2DPCA. The results for r2DPCA and FM-

r2DPCA as well as for (2D)
2
PCA and FM-(2D)

2
PCA, when the number of rows in the 

resulting feature matrix is 23, are also illustrated in Figs. 3.6 and 3.7 for the two metrics. 

It is to be pointed out that the FM-(2D)
2
PCA algorithm provides the best recognition 

accuracy amongst all the PCA algorithms considered.  

 

Fig.3.6: Recognition accuracy for the r2DPCA, FM-r2DPCA, (2D)
2
PCA and FM-

(2D)
2
PCA  algorithms using the Frobenius distance for classification. 
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Fig.3.7: Recognition accuracy for the r2DPCA, FM-r2DPCA, (2D)
2
PCA and FM-

(2D)
2
PCA  algorithms using the Yang distance for classification. 

 

We now consider the time complexities for the r2DPCA, FM-r2DPCA, (2D)
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algorithm are given. Each algorithm is executed 10 times and this number can be 

considered sufficient to compute the time complexity, since the algorithms are not data 

dependent for a fixed image size. It is seen from these tables that, as expected, the time 

complexities of FM-r2DPCA and FM-(2D)
2
PCA are higher than that of their spatial 

domain counterparts. However, these complexities are much lower than that of FM-PCA, 

as seen from Table 3.2. Further, between the two algorithms, FM-(2D)
2
PCA has a lower 

time complexity than that of FM-r2DPCA in view of the much smaller size feature matrix 

of the former. Thus, FM-(2D)
2
PCA not only provides the highest recognition accuracy 

amongst all the PCA algorithms considered, but also has the lowest time complexity 

amongst all the Fourier magnitude PCA algorithms. 

3.5 Summary 

In this chapter, a comprehensive simulation study of the classical PCA algorithm 

and the FM-PCA algorithm, wherein the Fourier magnitudes of the pixel values rather 

than the raw pixel values are used, has been first undertaken. This study has confirmed 

that the use of Fourier magnitudes improves substantially the recognition performance of 

the PCA algorithm, but at the expense of an increased time complexity. This observation 

coupled with the fact that the two-dimensional extensions of the PCA algorithm provide 

higher accuracies with lower complexities as compared to PCA, has motivated us to 

apply the concept of Fourier magnitudes to two 2DPCA algorithms. Using this concept, 

two new Fourier magnitude based 2DPCA algorithms, FM-r2DPCA and FM-(2D)
2
PCA, 

have been developed. Next, extensive simulations of r2DPCA, (2D)
2
PCA, FM-r2DPCA     
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Table 3.5: Time complexity in seconds of the r2DPCA, FM- r2DPCA, (2D)
2
PCA and 

FM-(2D)
2
PCA  algorithms using the Frobenius distance as the metric. 

Algorithm and 

size of feature 

matrix 

Time (s) 

Data 

acquisition 

 

Feature extraction 

Classification Total 

Transfer 

matrix 

extraction Transformation 

r2DPCA 

(     ) 

(     ) 

0.429 

0.429 

0.052 

0.052 

0.018 

0.019 

0.301 

0.347 

0.800 

0.847 

FM-r2DPCA 

(     ) 

(     ) 

1.132 

1.132 

0.052 

0.052 

0.018 

0.019 

0.301 

0.347 

1.503 

1.550 

(2D)
2
PCA 

(    ) 

(    ) 

0.429 

0.429 

0.081 

0.081 

0.024 

0.024 

0.053 

0.058 

0.587 

0.592 

FM-(2D)
2
PCA 

(    ) 

(    ) 

1.132 

1.132 

0.081 

0.081 

0.024 

0.024 

0.053 

0.058 

1.290 

1.295 

(2D)
2
PCA 

(    ) 

(    ) 

0.429 

0.429 

0.081 

0.081 

0.024 

0.025 

0.054 

0.058 

0.588 

0.593 

FM-(2D)
2
PCA 

(    ) 

(    ) 

1.132 

1.132 

0.081 

0.081 

0.024 

0.025 

0.054 

0.058 

1.291 

1.296 

(2D)
2
PCA 

(    ) 

(    ) 

0.429 

0.429 

0.081 

0.081 

0.025 

0.026 

0.055 

0.060 

0.590 

0.596 

FM-(2D)
2
PCA 

(    ) 

(    ) 

1.132 

1.132 

0.081 

0.081 

0.025 

0.026 

0.055 

0.060 

1.293 

1.299 
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Table 3.6: Time complexity in seconds of the r2DPCA, FM- r2DPCA, (2D)
2
PCA and 

FM-(2D)
2
PCA  algorithms using the Yang distance as the metric. 

Algorithm and 

size of feature 

matrix 

Time (s) 

Data 

acquisition 

 

Feature extraction 

Classification Total 

Transfer 

matrix 

extraction Transformation 

r2DPCA 

(     ) 

(     ) 

0.429 

0.429 

0.052 

0.052 

0.018 

0.019 

0.308 

0.354 

0.807 

0.854 

FM-r2DPCA 

(     ) 

(     ) 

1.132 

1.132 

0.052 

0.052 

0.018 

0.019 

0.308 

0.354 

1.510 

1.557 

(2D)
2
PCA 

(    ) 

(    ) 

0.429 

0.429 

0.081 

0.081 

0.024 

0.024 

0.055 

0.061 

0.589 

0.595 

FM-(2D)
2
PCA 

(    ) 

(    ) 

1.132 

1.132 

0.081 

0.081 

0.024 

0.024 

0.055 

0.061 

1.292 

1.298 

(2D)
2
PCA 

(    ) 

(    ) 

0.429 

0.429 

0.081 

0.081 

0.024 

0.025 

0.057 

0.062 

0.591 

0.597 

FM-(2D)
2
PCA 

(    ) 

(    ) 

1.132 

1.132 

0.081 

0.081 

0.024 

0.025 

0.057 

0.062 

1.294 

1.300 

(2D)
2
PCA 

(    ) 

(    ) 

0.429 

0.429 

0.081 

0.081 

0.025 

0.026 

0.059 

0.064 

0.594 

0.600 

FM-(2D)
2
PCA 

(    ) 

(    ) 

1.132 

1.132 

0.081 

0.081 

0.025 

0.026 

0.059 

0.064 

1.297 

1.303 
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and FM-(2D)
2
PCA have been carried out showing the effectiveness of applying the FM 

approach to the two-dimensional PCA algorithms in improving their recognition 

accuracy. Further, the simulation results have also shown that the time complexities of 

the two proposed algorithms are also lower than that of FM-PCA. Finally, it is pointed 

out that the FM-(2D)
2
PCA provides the highest recognition accuracy amongst all the 

PCA algorithms considered, whether they be 1-D, 2-D, spatial domain or Fourier domain; 

further, it has the lowest time complexity amongst all the Fourier magnitude PCA 

algorithms. 
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CHAPTER 4 

Reduced Time Complexity  

Fourier-Magnitude 2DPCA 

Algorithms 

 

4.1 Introduction 

The approach of using Fourier magnitudes rather than the raw pixel values of an 

image in 2DPCA algorithms, presented in the previous chapter, substantially improves 

the recognition accuracies, but this improvement is obtained at the cost of increased time 

complexity. Since the Fourier magnitudes possess energy compaction property, in this 

chapter we propose to reduce the time complexity of the Fourier-magnitude 2DPCA 

algorithms by discarding the high frequency Fourier magnitude coefficients.  

 

4.2 Lowpass Fourier-Magnitude 2DPCA Algorithms 

In order to reduce the time complexity of the FM-r2DPCA and FM-(2D)
2
PCA 

algorithms, we propose to use the DFT’s energy compaction property, i.e., the property 
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that most of the energy of practical signals lies in the low frequency band. Fig. 4.1(a) 

shows an original image from the ORL database and Fig. 4.1(b) its Fourier magnitude. It 

is seen from Fig. 4.1(b) that almost all of the Fourier coefficients with high energy are 

located at the corners, when the coefficients are not centered. Thus, only these Fourier 

magnitude coefficients, which contain most of the signal energy, can be used to perform 

the principal component analysis without any appreciable loss in the recognition 

accuracy. Fig. 4.2 shows how a reduced-size data set is obtained by cropping only a 

certain number of Fourier magnitude coefficients located at the corners of the complete 

Fourier magnitude spectrum. It is seen from this figure that the dataset on which the 

principal component analysis has to be performed gets reduced from      to    .  

In the following subsections, we present PCA algorithms based on this new data 

set, which we will refer to as the lowpass Fourier-magnitude row-directional 2DPCA 

(LPFM-r2DPCA) and lowpass Fourier-magnitude two-directional 2DPCA (LPFM-

(2D)
2
PCA) algorithms.  

 

 

 

Fig. 4.1: (a) A face image from ORL database and (b) its Fourier magnitude spectrum. 
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Fig.4.2: How to obtain the new form of the sample using its Fourier magnitudes. 

 

 

4.2.1 Lowpass Fourier-Magnitude r2DPCA  

The Fourier magnitudes for a training or a test image are computed first using 

(3.2). The magnitudes of the Fourier coefficients for the     training image and a test 

image are represented as     matrices given by    
   

     
         

   
 and 

   
      

     
            

   
, respectively. Let      

   
 and      

      
 represent, respectively, 

the cropped versions of    
   

  and     
      

, obtained by retaining only the high energy 

coefficients of the Fourier magnitudes, as explained previously. The new row-directional 

covariance matrix              is computed as 
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(4.1) 

where         is the matrix in which each entry is the average of the corresponding entries 

in the matrices      
   

              , and is given by 

        
 

 
      

    
    

(4.2) 

The eigenvalues and eigenvectors of              are then computed. Next, the 

eigenvectors are normalized and arranged in descending order of the corresponding 

eigenvalues. Then, the row-directional transformation matrix 

             
      

       
  is obtained using a sufficient number of the 

eigenvectors of                .  

The feature matrices for the i
th

 training sample and the test sample are, 

respectively, given by 

      
   

      
   

      
(4.3) 

and  

      
      

      
      

      
(4.4) 

For the classification module of the LPFM-r2DPCA algorithm, the Frobenius or 

the Yang distance metric, given by (2.22) and (2.23), can be used. The distance between 

the feature matrix of a test sample and that of each of the training samples is obtained. 
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Then, the subject of the training sample, whose feature matrix has the shortest distance 

from the feature matrix of the test sample, is assigned as the subject of the test image. A 

summary of the LPFM-r2DPCA algorithm is given in Fig. 4.3. 

 

Training images 

  

 

 

   … 

 

 

 

Test image 

 

 

 

 

Fig.4.3: Summary of the LPFM-r2DPCA algorithm. 
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4.2.2 Lowpass Fourier-Magnitude (2D)
2
PCA  

As in the case of the LPFM-r2DPCA algorithm, the row-directional covariance 

matrix              is first obtained using (4.1) and its column-directional counterpart  

is then computed as 

              
 

 
       

   
              

   
          

    
(4.5) 

The eigenvalues and eigenvectors of              and              are then 

computed. The eigenvectors of each of the two covariance matrices are normalized and 

arranged in descending order of the corresponding eigenvalues. The row-directional and 

column-directional transformation matrices              
      

       
  and      

             
      

       
  are obtained using sufficient numbers of the 

eigenvectors of                and               , respectively.  

The feature matrices for the 
thi  training sample and the test sample are, 

respectively, given by 

      
   

      
      

   
      

(4.6) 

and  

      
      

      
      

      
     X

 
(4.7) 
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For classification, we again employ the Frobenius as well as the Yang distance 

metrics given by (2.22) and (2.23), respectively. The distance between the feature matrix 

of a test sample and that of each of the training samples is obtained. Then, the subject of 

the training sample, whose feature matrix has the shortest distance from the feature 

matrix of the test sample, is assigned as the subject of the test image. A summary of the         

LPFM-(2D)
2
PCA algorithm is given in Fig.4.4. 

Training images 

  

 

 

   … 

 

 

Test image 

 

 

 

 

Fig.4.4: Summary of the LPFM-(2D)
2
PCA algorithm. 
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4.3 Experimental Results  

In this section, detailed simulation results for the LPFM-r2DPCA and LPFM-

(2D)
2
PCA algorithms are provided and the results compared with those of FM-r2DPCA 

and FM-(2D)
2
PCA, in terms of the recognition accuracy and the computational 

complexity. In order to obtain the simulation results, the hardware and software platforms 

described in Section 3.2.2 are utilized. In order to determine a suitable value for the 

cropping parameter   (see Fig. 4.2), extensive experiments were carried out to find the 

energy content of the cropped magnitude spectrum of the images in the ORL database for 

various values of   . From these experiments it was found that, on an average, 99% of the 

energy of the original image is contained in the first       lowpass coefficients of the 

magnitude spectrum of the image. In view of this,       is used in all the simulations 

performed to determine the recognition accuracy and the time complexity of the two 

algorithms proposed in this chapter. 

As mentioned earlier, we assign indices 1 to 10 for each subject in the ORL 

database starting with the left most image to the right most image (see Fig. 3.2). A set of 

5 indices are chosen randomly and the five images in each subject corresponding to these 

indices are chosen as the training images (thus, constituting a total of 200 training 

images) to train a given algorithm. For each of the training image, the corresponding 

feature matrix is obtained. For a given test image, the Frobenius or the Yang distance 

between the feature matrix of the test image and that of each of the 200 feature matrices 

of the training images is obtained and the one with the closest distance chosen to 
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determine the class of the test image under consideration. This is repeated for each of the 

200 test images. The above procedure is repeated, each time choosing randomly a set of 5 

indices that is distinct from the sets of the previous runs of the algorithm. Finally, the 

recognition accuracy of the algorithm is obtained as the average of the recognition 

accuracies derived from 50 runs. 

Tables 4.1 and 4.2 give the recognition accuracies of the FM-r2DPCA and LPFM-

r2DPCA   algorithms   using, respectively,  the  Frobenius   and   Yang  distance  metrics.  

 

Table 4.1: Recognition accuracy in percentage of the FM-r2DPCA and LFPM-r2DPCA 

algorithms using the Frobenius distance as the metric for classification. 

Algorithm and 

size of feature 

matrix  

Recognition accuracy 

Number of principal component vectors ( ) 

3 4 5 6 7 8 9 10 

FM-r2DPCA 

(     ) 97.2 97.5 98.0 97.8 98.0 97.8 98.0 97.9 

LPFM-r2DPCA 

(    ) 97.0 97.4 98.0 97.8 98.0 97.9 97.8 97.7 

LPFM-r2DPCA 

(    ) 97.1 97.6 98.0 98.0 98.0 97.8 98.0 97.9 

LPFM-r2DPCA 

(    ) 97.2 97.4 98.1 98.0 98.0 98.0 98.0 98.1 
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Table 4.2: Recognition accuracy in percentage of the FM-r2DPCA and LFPM-r2DPCA 

algorithms using the Yang distance as the metric for classification. 

Algorithm and 

size of feature 

matrix 

Recognition accuracy 

Number of principal component vectors ( ) 

3 4 5 6 7 8 9 10 

FM-r2DPCA 

(     ) 97.3 98.0 98.5 98.4 98.4 98.4 98.3 98.5 

LPFM-r2DPCA 

(    ) 97.1 97.9 98.3 98.3 98.4 98.3 98.3 98.3 

LPFM-r2DPCA 

(    ) 97.4 98.0 98.3 98.5 98.4 98.4 98.4 98.5 

LPFM-r2DPCA 

(    ) 97.4 98.1 98.5 98.5 98.5 98.4 98.5 98.4 

 

It is seen from these tables that, when     , the LPFM-r2DPCA algorithm provides 

about the same recognition accuracy compared to that provided by FM-r2DPCA, 

regardless of whether the Frobenius or the Yang distance is used as the metric. It is also 

seen that the accuracy is reduced when   is decreased to 24, whereas it is not improved if 

  increased to 28, showing that the choice of        is most appropriate from the point 

of view of accuracy. Therefore, only 676 lowpass Fourier-magnitude coefficients are 

used for feature extraction rather than 10304 coefficients. 
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For the purpose of determining the time complexity, the two algorithms are 

executed 10 times and the average time taken. The time complexities for the FM-

r2DPCA and LPFM-r2DPCA algorithms using the Frobenius and Yang distance metrics 

for classification and the results are given in Tables 4.3 and 4.4, respectively. It is seen 

from these tables that, as expected, the time complexity of LPFM-r2DPCA is 

significantly smaller than that of FM-r2DPCA, whether the Frobenius or Yang distance is 

used for classification and the complexity increases with increasing value of   . This fact 

coupled with our earlier observation regarding accuracy, it is seen that there is a 

reduction of at least 36% in time complexity with little loss in the accuracy for      .  

Table 4.3: Time complexity in seconds of the FM-r2DPCA and LPFM-r2DPCA 

algorithms using the Frobenius distance as the metric. 

Algorithm and 

size of feature 

matrix 

 

Time (s) 

Data 

acquisition 

 

Feature extraction 

Classification Total 

Transfer 

matrix 

extraction Transformation 

FM-r2DPCA 

(     ) 1.132 0.052 0.019 0.347 1.550 

LPFM-r2DPCA 

(    ) 0.880 0.010 0.005 0.061 0.956 

LPFM-r2DPCA  

(    ) 0.882 0.010 0.005 0.065 0.962 

LPFM-r2DPCA 

(    ) 0.885 0.010 0.005 0.067 0.967 
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Table 4.4: Time complexity in seconds of the FM-r2DPCA and  LPFM-r2DPCA 

algorithms using the Yang distance as the metric. 

Algorithm and 

size of feature 

matrix 

 

Time (s) 

Data 

acquisition 

 

Feature extraction 

Classification Total 

Transfer 

matrix 

extraction Transformation 

FM-r2DPCA 

(     ) 1.132 0.052 0.019 0.354 1.557 

LPFM-r2DPCA 

(    ) 0.880 0.010 0.005 0.069 0.964 

LPFM-r2DPCA 

(    ) 0.882 0.010 0.005 0.080 

 

0.977 

LPFM-r2DPCA 

(    ) 0.885 0.010 0.005 0.084 0.984 

Tables 4.5 and 4.6 give the recognition accuracies of the FM-(2D)
2
PCA and 

LPFM-(2D)
2
PCA algorithms using, respectively, the Frobenius and Yang distance 

metrics. Tables 4.7 and 4.8 give time complexities for the algorithms corresponding to 

the two metrics. It is seen from these tables that, as in the case of LPFM-r2DPCA, the 

recognition accuracy of LPFM-(2D)
2
PCA remains about the same as that of FM-

(2D)
2
PCA when     , with a reduction in time complexity of about 25.5%. When   is 

decreased to 24, the time complexity is slightly reduced, but with a lower recognition 

accuracy. On the other hand, when   is increased to 28, the time complexity is increased 

with little gain in recognition accuracy.  
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Table 4.5: Recognition accuracy in percentage of the FM-(2D)
2
PCA and  

LPFM-(2D)
2
PCA algorithms using the Frobenius distance as the metric for classification. 

Algorithm, data size and size of 

feature matrix 

Recognition accuracy 

Number of principal component vectors ( ) 

3 4 5 6 7 8 9 10 

FM-(2D)
2
PCA  

(    ) 98.3 98.2 98.3 98.3 98.2 98.2 98.2 98.2 

LPFM-(2D)
2
PCA (    ) 

(    ) 97.9 98.0 98.0 98.0 98.0 98.0 98.1 98.1 

LPFM-(2D)
2
PCA (    ) 

(    ) 98.3 98.3 98.2 98.3 98.3 98.1 98.2 98.0 

LPFM-(2D)
2
PCA (    ) 

(    ) 98.3 98.3 98.3 98.3 98.3 98.2 98.2 98.3 

 

 

Table 4.6: Recognition accuracy in percentage of the FM-(2D)
2
PCA and  

LPFM-(2D)
2
PCA algorithms using the Yang distance as the metric for classification. 

Algorithm, data size and size of 

feature matrix 

Recognition accuracy 

Number of principal component vectors ( ) 

3 4 5 6 7 8 9 10 

FM-(2D)
2
PCA  

(    ) 98.1 98.9 98.8 98.9 98.9 98.8 98.8 98.8 

LPFM-(2D)
2
PCA (    ) 

(    ) 98.2 98.2 98.4 98.3 98.2 98.5 98.5 98.6 

LPFM-(2D)
2
PCA (    ) 

(    ) 98.2 98.7 98.6 98.8 98.9 98.7 98.8 98.7 

LPFM-(2D)
2
PCA (    ) 

(    ) 98.2 98.9 98.9 98.9 98.8 98.8 98.9 98.7 
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Table 4.7: Time complexity in seconds of the FM-(2D)
2
PCA and                              

LPFM-(2D)
2
PCA algorithms using the Frobenius distance as the metric. 

Algorithm and size of 

feature matrix  

 

Time (s) 

Data 

acquisition 

Feature extraction 

Classification Total 

Transfer 

matrix 

extraction Transformation 

FM-(2D)
2
PCA  

(    ) 1.132 0.081 0.025 

 

0.058 1.296 

LPFM-(2D)
2
PCA  

(    ) (    ) 0.880 0.012 0.007 0.058 

 

0.957 

LPFM-(2D)
2
PCA  

(    ) (    ) 0.882 0.013 0.007 0.058 

 

0.960 

LPFM-(2D)
2
PCA  

(    ) (    ) 0.885 0.013 0.007 0.058 

 

0.963 

 

Table 4.8: Time complexity in seconds of the FM-(2D)
2
PCA and                              

LPFM-(2D)
2
PCA algorithms using the Yang distance as the metric. 

 

Algorithm and size of 

feature matrix  

 

Time (s) 

Data 

acquisition 

Feature extraction 

Classification Total 

Transfer 

matrix 

extraction Transformation 

FM-(2D)
2
PCA  

(    ) 1.132 0.081 0.025 

 

0.062 1.300 

LPFM-(2D)
2
PCA  

(    ) (    ) 0.880 0.012 0.007 0.062 

 

0.961 

LPFM-(2D)
2
PCA 

 (    ) (    ) 0.882 0.013 0.007 0.062 

 

0.964 

LPFM-(2D)
2
PCA  

(    ) (    ) 0.885 0.013 0.007 0.062 

 

0.967 
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In conclusion, the simulation results show that the LPFM approach for both the 

r2DPCA and (2D)
2
PCA algorithms can provide more or less the same recognition 

accuracy as compared to that provided by FM-r2DPCA and FM-(2D)
2
PCA, respectively, 

but at a substantially reduced time complexity. It is further noted that the Yang distance 

metric gives better recognition accuracy than that using the Frobenius distance metric, 

with about the same time complexity. This result is consistent with our findings in 

Chapter 3 as well as that reported in [19].  

 

 

4.4 Summary 

In this chapter, using the energy compaction property of Fourier magnitudes, FM-

r2DPCA and FM-(2D)
2
PCA algorithms proposed in Chapter 3 are further developed to 

reduce their time complexities without an appreciable loss in the recognition accuracy. 

Towards this goal, a new dataset containing an appropriate number of lowpass Fourier 

magnitudes is first obtained. Based on extensive experiments, it was established that, on 

an average, 99% of the energy of the original image is contained in the first       

lowpass coefficients of the images in the ORL database.  

Next, extensive simulations of LPFM-r2DPCA and  LPFM-(2D)
2
PCA have been 

carried out showing the effectiveness of these algorithms over the FM-r2DPCA and FM-

(2D)
2
PCA algorithms in substantially reducing the time complexity with little loss in the 
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recognition accuracy. The simulation results have also shown that LPFM-(2D)
2
PCA has 

the lowest time complexity amongst all these algorithms.  
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Chapter 5  

Conclusion and Future Work  

 

5.1 Concluding Remarks  

Human identification systems are becoming increasingly popular in view of their 

importance of security, law-enforcement and identity verification. For human 

identification, specific information, such as that contained in fingerprint, palmprint, 

signature, voice, iris, DNA and face, is used. Face recognition is one of the most popular 

techniques used for human identification and has led to the development of fast and 

highly accurate algorithms. In practice, face recognition systems need to work on very 

large size of datasets obtained under various challenging conditions.  

Principal component analysis (PCA) is a widely used technique for face 

recognition. However, it has major drawbacks of losing image details, having a large time 

complexity and suffering from the adverse effect of intra-class pose variations resulting 

in reduced recognition accuracy. To overcome the problem of intra-class pose variations, 

Fourier magnitudes have been used for feature extraction in the PCA algorithm giving 

rise to the so-called FM-PCA algorithm. However, the time complexity of this algorithm 
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is even higher. On the other hand, to address the other two drawbacks of the PCA 

algorithm, two-dimensional PCA (2DPCA) algorithms have been proposed.  

In this thesis, incorporating the advantages of FM-PCA in improving the 

recognition accuracy and that of 2DPCA algorithms in improving the accuracy as well as 

the time complexity, new algorithms have been proposed. Then, the proposed algorithms 

have been further investigated in view of the energy compaction property of the Fourier 

magnitudes of the image pixels. 

In Chapter 3, two-dimensional PCA algorithms, that utilize the Fourier 

magnitudes for feature extraction and incorporate the advantages of the FM-PCA and 

two-dimensional PCA algorithms, have been developed [30]. Extensive simulations have 

been conducted using the Olivetti Research Laboratory (ORL) face database, a 

benchmark database in the literature, in which the intra-class pose variations are 

substantial. Simulation results have shown that applying the Fourier magnitude concept 

on the two-dimensional PCA algorithms results in improving their recognition accuracy. 

It has also been shown that the new algorithms have higher recognition accuracy and 

lower time complexity as compared to FM-PCA.  

In Chapter 4, by taking advantage of the energy compaction property of the 

Fourier transform, the algorithms proposed in Chapter 3 have been further investigated to 

develop new algorithms that significantly reduce the computational complexities with 

little loss in the recognition accuracy [31]. This has been achieved by utilizing only a 

small fraction of the lowpass Fourier-magnitude coefficients of image data rather than all 

the coefficients for feature extraction. Extensive experiments have been conducted to 
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demonstrate the effectiveness of these algorithms in terms of their recognition accuracy 

and time complexity.   

In conclusion, this study has demonstrated the effectiveness of using Fourier 

magnitudes rather than the raw pixel values in two-dimensional PCA algorithms in 

substantially improving their recognition accuracy. Further, it has also been demonstrated 

that the use of the energy compaction property of practical signals can significantly 

reduce the time complexity of the Fourier magnitude versions of two-dimensional 

algorithms with little loss in their recognition accuracy.  

 

5.2 Future Work  

The concept of using the Fourier magnitudes rather than the raw pixel values in 

conjunction with the utilization of the energy compaction property can also be applied to 

two-dimensional linear discriminant analysis algorithms. It can also be applied in 

developing algorithms for palmprint and fingerprint recognition problems, as well as for 

recognition problems using fused biometric data.  
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