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 32 

The biogeochemical cycles of iron and organic carbon are strongly interlinked. In 33 

oceanic waters organic ligands have been shown to control the concentration of dissolved 34 

iron1. In soils, solid iron phases provide a sheltering and preservative effect for organic 35 

carbon2, but the role of iron in the preservation of organic matter in sediments has not been 36 

clearly established. Here, we determine the amount of organic carbon, associated with 37 

reactive iron phases in sediments of various mineralogies collected from a wide range of 38 

depositional environments, using an iron reduction method previously applied to soils3. Our 39 

findings suggest that 21.5 ± 8.6 per cent of the organic carbon in sediments is directly bound 40 

to reactive iron phases, representing a global mass of 19 to 45 x 1015 g of organic carbon in 41 

surface marine sediments4. We propose that these organic carbon-iron associations, formed 42 

primarily through co-precipitation and/or direct chelation, promote the preservation of 43 

organic carbon in sediments. Since reactive iron phases are metastable over geological 44 

timescales, they serve as an efficient “rusty sink” for OC, a key factor in the long-term storage 45 

of organic carbon and thus contributing to the global cycles of carbon, oxygen and sulphur 5.46 
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Evidence of interactions between Fe and OC in marine sediments was reported nearly 48 

40 years ago, where concentrations of Fe and OC were found to co-vary6. Since both Fe and OC 49 

are commonly associated with clay mineral surfaces, it was simply stated that “where there is 50 

more deposited fine-grained material with high surface area for adsorption, we find more 51 

organic matter and more Fe”6. It is still not clear whether this correlation stems from the strong 52 

affinity of both species for solid surfaces or if it reflects enhanced OC preservation by Fe. Iron’s 53 

preservative effect on organic matter was previously demonstrated in laboratory studies7,8, 54 

which report that the presence of iron-rich solid substrates or the formation of organo-ferric 55 

complexes hampers microbial degradation of simple organic compounds. Iron also imparts a 56 

protective effect to OC in soil systems2, but this preservation mechanism has never been 57 

explored in sediments.  58 

 59 

In modern sediments, reactive Fe phases (operationally defined here as the solid iron 60 

phases that are reductively dissolved by sodium dithionite) are typically found as nano-spheres 61 

of goethite of <10 nm in diameter9-10. These phases accumulate or are formed within the oxic 62 

sediment layer through oxidation and precipitation of dissolved Fe(II) produced during 63 

weathering and diagenetic recycling within the sediment11. Over time, reactive Fe phases 64 

become more crystalline, resulting in reduced surface reactivity/area and solubility. 65 

Crystallization is, however, hindered by the active diagenetic recycling of iron12, and by organic 66 

matter coating of Fe phases13. Accordingly, reactive Fe phases have been shown to survive in 67 

sediments for hundreds of thousands of years14.  68 
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 69 

We examined sediments collected from a wide range of environments, including 70 

freshwaters, estuaries, river deltas, continental margins and the deep-sea, encompassing 71 

various depositional environments and mineralogies. These samples include OC-rich sulphidic 72 

Black Sea sediments and OC-rich sediments from O2-deficient zones along the Indian and 73 

Mexican (Stn. 306) margins. Also included are sediments from the Arabian Sea, the Saanish 74 

Inlet and a boreal lake (Lake Brock) which exhibit a productivity-driven seasonal pattern of O2-75 

deficient waters. Estuarine, deltaic and margin deposits accumulating below well-oxygenated 76 

waters of the Arctic margin, the St. Lawrence Estuary and Gulf, the Mexican margin (Stns. 303-77 

305), the Eel River Basin and the Washington coast and adjacent Columbia River delta are also 78 

examined along with pelagic sediments from the Southern Ocean, the Santa Barbara Basin (Stn. 79 

M) and Equatorial Pacific Ocean. This sample set comprises freshwater, estuarine and marine 80 

clastic sediments, carbonate and siliceous oozes, as well as pelagic red clay sediments. We 81 

focused on determining the amount of OC associated with reactive Fe phases by applying the 82 

citrate-dithionite iron reduction method of Mehra and Jackson15, which simultaneously 83 

dissolves all solid reactive Fe phases and the OC associated to these phases (OC-Fe) from the 84 

sediment matrix. The reduction reaction is conducted at circumneutral pH using sodium 85 

bicarbonate as a buffer, thus preventing the hydrolysis of organic matter as well as its 86 

protonation and readsorption onto sediment particles which occur under acidic conditions. 87 

Whereas the extraction of the same samples with artificial seawater released a negligible 88 

fraction of the total OC (less than 3%; results not shown), samples treated under the same 89 

experimental conditions after substituting trisodium citrate (complexing agent) and sodium 90 
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dithionite (reducing agent) for sodium chloride (equivalent ionic strength) released on average 91 

7.2 ± 5.4% of the total OC (Supplementary Table 2). Because the OC released in these control 92 

experiments is not associated with Fe, results of individual control experiments were 93 

subtracted from the amount of OC released from the dithionite extractions (see Supplementary 94 

method for results and discussion on contamination and specificity for the OC-Fe fraction).  95 

 96 

We determined that for all sediments tested, an average of 20.5 ± 7.8% of the total OC 97 

is directly associated to Fe, with the highest OC-Fe concentrations in the uppermost sediment 98 

layers where most of the reactive Fe phases accumulate (Fig. 1). Considering OC burial within 99 

different depositional settings - deltaic and continental margin sediments account, respectively, 100 

for 44% and 45% of global OC burial, while pelagic sediments and high productivity zones, 101 

including anoxic basins, account for 5% and 6%, respectively17 - we estimate that the global 102 

pool of OC specifically associated to Fe corresponds to 21.5 ± 8.6% of the total sedimentary OC 103 

or 19 to 45 × 1015 g of OC. Even in mature sediments (1000 to 1500 yrs old), 23-27% of the total 104 

OC remains bound to reactive Fe oxide phases, suggesting that the strong association between 105 

Fe and OC may inhibit microbial OC degradation and enhance OC preservation.  106 

 107 

In agreement with Wagai and Mayer’s calculations3, our measurements reveal that 108 

reactive Fe phases do not provide sufficient surface area (<5% of the total surface area of 109 

sediments; Supplementary Table 3) for adsorption of the entire OC-Fe pool onto Fe oxides. 110 

Alternatively, we propose the existence of largely organic OC-Fe macromolecular structures 111 

that are dissolved and dislodged from the sediment during iron reduction. Transmission 112 
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electron microscopy studies describe sedimentary organic matter as “discrete, discontinuous 113 

blebs” that adhere to the surface of sediment clay particles16. These “blebs” are consistent with 114 

our proposed structure of OC-Fe, as are the findings of Mayer17, who reported that sedimentary 115 

organic matter is not spread evenly over clay particles but covers only about 15% of particle 116 

surfaces. We believe that Fe or Fe oxides are critical in providing cohesion to these 117 

macromolecular structures, possibly fixing them to clay particles through strong covalent 118 

bonds.  119 

 120 

Calculations by Wagai and Mayer3 indicate that simple sorption of OM on reactive Fe 121 

oxide surfaces results in a maximum molar OC:Fe ratio of 1.0 for the co-extracted organic 122 

carbon and iron, based on the maximal sorption capacity of reactive iron oxides for natural 123 

organic matter. On the other hand, co-precipitation and/or chelation of organic compounds 124 

with Fe generates low density, organic-rich structures with OC:Fe ratios between 6 and 10 3. 125 

According to the results of our dithionite extractions, typical continental margin sediments 126 

overlain by oxic bottom waters yield an average OC:Fe ratio of 4.0 ± 2.8 (Supplementary Table 127 

3),  greatly exceeding the maximum sorption capacity of Fe oxides but consistent with the 128 

formation of OC-Fe chelates. These chelates are predominantly organic structures which likely 129 

resemble those depicted by the ‘onion model’ of Mackay and Zirino18, where organic molecules 130 

are ‘glued’ together by Fe ions or nanophases of Fe oxides. The formation of such chelates from 131 

solution is possible when the molar porewater OC to Fe ratio is approximately 10 19-20. This 132 

molar ratio is typically observed in anoxic sediment porewaters such as in the St. Lawrence 133 

Estuary (Lalonde unpubl. data) and in the nearby Saguenay Fjord21. The diffusion of dissolved 134 
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Fe(II) from anoxic to surficial oxic sediments would trigger the oxidation of Fe(II) to Fe(III) and 135 

the formation of very stable organic complexes (K ≈ 1014 M-1 for natural dissolved OC to 1052 M-
136 

1 for siderophores)22-23.  137 

 138 

Sediments bathed by oxygen-depleted bottom waters, such as in the Black Sea, the 139 

Mexican margin (Stn. 306) and the Indian margin, host high OC:Fe ratio structures (7 to 32). 140 

These organo-metallic structures appear to be particularly stable under anaerobic conditions 141 

and survive degradation. In contrast, in oxic environments, the organic lining of these structures 142 

is progressively degraded, reducing the OC:Fe ratio to levels observed in typical continental 143 

margin sediments (Fig. 1). Long periods of exposure to oxic conditions increase the fraction of 144 

the total sedimentary OC pool that is tightly adsorbed to particle surfaces24, owing to the  145 

preferential degradation of organic structures that are more loosely attached to the clay 146 

mineral matrix, such as the OC-Fe chelates. Very long exposure to oxic conditions results in the 147 

very low OC:Fe observed at the deep-sea Equatorial Pacific site (0.36; Fig.1).  148 

 149 

We also analyzed the isotopic (δ13C and δ15N) and elemental composition (C:N molar 150 

ratio) of the bulk OM and the Fe-associated OC fractions of all sediment samples. In most cases, 151 

we find that the OC-Fe is enriched in 13C (δ13C increases by 1.7 ± 2.8‰) (Fig. 2) and nitrogen 152 

(C/N decreases by 1.7 ± 2.8) relative to the rest of the sedimentary OC pool whereas δ15N 153 

displayed little or no fractionation (Supplementary Figs. 1 and 2). 13C-rich natural organic 154 

compounds include proteins and carbohydrates25, which are rich in nitrogen and/or oxygen 155 

functionalities that favour the formation of inner-sphere complexes with Fe. The preferential 156 
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binding of such highly labile organic compounds to Fe may explain why reactive organic 157 

compounds can be preserved in sediments while other, more recalcitrant molecules, are 158 

degraded4.  159 

 160 

Our findings have far-reaching implications on our understanding of organic matter 161 

cycling in sediments. First, the protection mechanism described above, which preferentially 162 

shields 13C- and nitrogen-rich organic compounds from microbial degradation, could help 163 

explain a phenomenon that has puzzled organic geochemists for decades: the replacement, 164 

seaward of river mouths, of terrigenous organic matter from sediments by compounds bearing 165 

a more marine isotopic and elemental signature26. Our data also show that the traditional 166 

sorptive stabilization mechanism, which hypothesizes that clay particles have a preservative 167 

effect on organic matter through direct adsorption on their surfaces4,27-28, does not describe 168 

accurately the mode of stabilization for all organic compounds in sediments. Although more 169 

work is needed to elucidate the exact nature of OC-Fe interactions, our data suggest that direct 170 

chelation or co-precipitation of macromolecular OC-Fe structures also plays a significant role. 171 

Finally and most importantly, our results reveal that 21.5 ± 8.6% of the OC buried in surface 172 

marine sediments (150 × 1015 g of OC4), or a global mass of 19 to 45 × 1015 g of OC, is preserved 173 

as a result of its intimate association with reactive Fe phases. Assuming that our estimate also 174 

applies to OC locked in the sedimentary rock reservoir (150,000 × 1018 g of OC4), Fe-associated 175 

OC would account for 1900 to 4500 × 1018 g of OC, or roughly 2900 to 6800 times the size of the 176 

atmospheric carbon pool. Hence, reactive Fe phases serve as an extremely efficient “rusty sink” 177 
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for OC, a key factor in the long-term storage of organic carbon and the global cycles of carbon, 178 

oxygen and sulphur. 179 

180 
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 265 

Figure captions: 266 

 267 

Figure 1: Control-corrected percentage of the total sediment organic carbon (OC) bound to 268 

reactive iron phases, i.e., dislodged from the sediment during the reductive dissolution of 269 

reactive iron oxides.  Depth intervals (cm) and sample names are indicated below the x-axis. 270 

Molar OC:Fe ratios of the uppermost surface sediment layer are also shown (black squares). 271 

The iron reduction was carried out following the method of Mehra and Jackson (1960) without 272 

adding agents that promote flocculation of the dissolved organic matter after the reduction 273 

step. Error bars show s.d. (n = 12-15 for the St. Lawrence samples, and n = 3 for all the others). 274 

 275 

Figure 2: Carbon isotopic signatures (δ13C normalized to VPDB) of non iron-bound organic 276 

carbon (OC) (blue) and iron-bound OC (brown) for all sediment samples. The samples were 277 

depth-integrated whenever possible; the number of depth intervals integrated is indicated in 278 

parentheses above the sample name. Error bars show s.d. (n = 12-15 for the St. Lawrence 279 

samples, and n = 3 for all the others). 280 

281 
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